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Abstract 

Myeloid differentiation factor 88 (MyD88) is a key and essential adapter 

involved in the interleukin-1 receptor (IL-1R) and toll-like receptor (TLR)-

mediated activation signaling pathway. To investigate molecular 

characterization of MyD88 and its gene expression profile in response to 

stimulation by lipopolysaccharide (LPS) and polyinosinic-cytidylic acid (poly (I: 

C)), we isolated the MyD88 cDNA sequence in Pinctada fucata and analyzed 

expression patterns using quantitative real-time PCR. Sequence analysis 

indicated that Pf-MyD88 cDNA is 1463bp in length and contains a1050bp open 

reading frame that encodes a 349 α peptide. Pf-MyD88 has the highest 

similarity with homologues of Crassostrea gigas and highly conserved death 

and toll/IL-1R domains. Furthermore, during LPS and poly (I:C)-stimulated 

experiments in the gill, peak expression levels of Pf-MyD88 were detected at 

2h and 8h with a 1.58-fold and 3.58-fold increase, respectively. The results 

revealed the existence of a MyD88-dependent signaling pathway in P. fucata 

and contributed to understanding the potential role of Pf-MyD88 in the 

TLR/IL-1R-mediated signaling pathway. 
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Introduction         

The innate immune system is the first line of defense in an organism against invading 

pathogens and almost the only invertebrate defense mechanism to protect the host from 

microbial pathogens (Akira et al., 2006). The recognition of pathogen-associated 

molecular patterns (PAMPs) by various pattern recognition receptors (PRRs) can trigger 

signaling pathway-mediated immune responses to generate effectors and defend against 

these intruders (Medzhitov and Janeway, 2002). One well-characterized PRR is the family 

of toll-like receptors (TLRs), only present in microorganisms, that detect various kinds of 

PAMPs such as lipopolysaccharides (LPS), peptidoglycans (PGN), polyinosinic-cytidylic 

acid (poly(I:C)), β-glycan of fungi and lipoproteins of various pathogens (Akira et al., 

2006; Mogensen, 2009).After PAMP recognition, the intracellular toll-IL-1R (TIR) domain 

of TLRs recruits the adaptor molecule myeloid differentiation factor 88 (MyD88) which 

can interact with the death domains (DDs)of interleukin-1 receptor (IL-1R)-associated 

kinase (IRAK) family members (including IRAK1, IRAK2, IRAK4, and IRAK-M) and tumor 

necrosis factor receptor-associated factor6 (TRAF6) (West et al., 2006; Kawai and Akira, 

2011; Moresco et al., 2011; Ren et al., 2014).  

   Gene knockout studies in wild-type mice have indicated that the lack of MyD88 may 

lead to larger periapical lesions, with a severe inflammatory infiltrate and a significantly 

higher number of neutrophils (Bezerra da Silva et al., 2014). To date, MyD88 has been 

identified in mammals, birds, reptiles, amphibians, fishes and invertebrates (Deepika et 

al., 2014; Li et al., 2011; Prothmann et al., 2000; Wheaton et al., 2007). In 

invertebrates, MyD88 cDNA has been characterized in Apostichopus japonicus (Lu et al., 

2013), Hyriopsis cumingii (Ren et al., 2014), Chlamys farreri (Qiu et al., 2007), 

Litopenaeus vannamei (Zhang et al., 2012), Ruditapes philippinarum (Lee et al., 2011), 

and Drosophila (Horng et al., 2001). The MyD88 protein consists of three functional 

domains: the carboxyl terminal TIR domain, which is essential in the interactions 

between TLRs and MyD88; the intermediate domain; and the N-terminal DD, which is 

associated with the DD of IRAK family members and plays an important function in death 

signal transduction, regulation of apoptosis, and the inflammatory response (Kawai and 

Akira, 2007; West et al.,2006). 

Pinctada fucata is an important commercial marine bivalve mollusk that is widely 

used to culture pearls. In both invertebrates and vertebrates, although MyD88 plays key 

roles as an adapter protein of toll in the toll signaling pathway, there is little information 

about innate immune systems in bivalve mussels, especially in P. fucata. Consequently, 

to characterize Pf-MyD88 and further understand its role in vivo upon stimulation with 

LPS and poly(I:C), we analyzed Pf-MyD88 sequence and the influence of these two 

immunostimulants on Pf-MyD88 expression patterns in P. fucata. This research could 

provide useful information in improving understanding of the innate immune system in P. 

fucata. 

Materials and methods 

Animals and stimulation experiment. P. fucata were obtained from Lingshui in Hainan 

Province, China. Before the initiation of the injection trial, adults (body weight 26.11 ± 

2.52 g; shell length 5.30 ± 0.13 cm; shell width 5.01 ± 0.19 cm) were held (50 

shell/tank) in 300 L tanks with circulating seawater (temperature 22 ± 0.5°C). After two 

weeks, P. fucata were randomly distributed into two groups with three replicates per 

group (n = 50). Shells were injected intramuscularly with LPS (0.1 mL, 1 mg/L) and poly 

(I:C) (0.1 mL, 1 mg/L, Sigma-Aldrich, St. Louis, MO, USA) or the same volume of PBS 

(the control). 

   In order to investigate the LPS and poly (I:C) effects on expression of MyD88 in P. 

fucata gills, shellfish at 0, 2, 4, 8, 12, 24, 48 and 72 h post-injection were dissected and 

gills from all groups (n = 5) were immediately collected and snap-frozen in liquid 

nitrogen. 

Total RNA isolation and reverse transcription. Total RNA samples were extracted from 

different tissues using a Trizol kit (Promega, Madison, WI, USA), and RNA quality and 

quantity (concentration) were measured by NanoDrop 2000 spectrophotometer 

(ThermoScientific, Waltham, USA). A PrimeScript™ RT reagent Kit with gDNA Eraser 

(TaKaRa, Japan) was used to synthesizec DNA. Two micrograms of RNA and 0.5 µg of  

Oligo d(T)16 were reacted for 5 min at 70oC. After incubation for 2 min on ice, the 

mixture was reversely transcribed with 200 units of M-MLV reverse transcriptase, 

http://www.sciencedirect.com/science/article/pii/S0145305X12002686#b0110
http://www.sciencedirect.com/science/article/pii/S0145305X15001226#bib0015
http://www.sciencedirect.com/science/article/pii/S0145305X15001226#bib0015
http://www.sciencedirect.com/science/article/pii/S0145305X15001226#bib0120
http://www.sciencedirect.com/science/article/pii/S0145305X15001226#bib0030
http://www.sciencedirect.com/science/article/pii/S0145305X15001226#bib0030
http://www.sciencedirect.com/science/article/pii/S0145305X15001226#bib0095
http://www.sciencedirect.com/science/article/pii/S0145305X15001226#bib0140
http://www.sciencedirect.com/science/article/pii/S0145305X15001226#bib0230
app:ds:circulating
app:ds:water


 Response of My88 to lipopolysaccharides and polyinosinic-cytidylic acid 3 

 

5×buffer, 25 units RNasin and 0.8 mM dNTPs in a total volume of 25 µL for 1 h at 

42oC.The cDNA was stored at –20oC until used. 

Molecular cloning and sequencing. Based on the conserved sequences of C. gigas 

and C. farreri MyD88 (AFX68459.1, ABB76627.1), we designed gene-specific primers 

(Table 1) to clone the open reading frame (ORF) of MyD88. The PCR products were 

ligated into a pGEM®-T easy vector (Promega), respectively, and then sequenced on an 

ABI 3730XL Automated Sequencer using Sequencing Analysis 5.2. 

 

Table 1. Primers used for cloning and expression. 

  

Gene Primer sequences (5’–3’) 
Tm 

(oC) 
Application 

MyD88-F CGGTGAACAATGGCTATG 
56 ORF 

MyD88-R AATGTGGCGTTTCGTCTT 

MyD88-qRT -F CAGACAATAGTAGCATCAAGGACG 
58 Real-time PCR 

MyD88-qRT -R AAGCCAGCACATTCAGCAAG 

18s RNA-F TCTCTGCCCTATCAACTTTC 
58 Real-time PCR 

18s RNA -R TGTGGTAGCCGTTTCTCA 

 

Bioinformatic analysis. Nucleotide and amino acid sequence similarity searches 

were performed using the BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The 

ORF Finder (http://www.ncbi.nlm.nih.gov/projects/gorf/) was used to predict the coding 

sequences of MyD88. The molecular weight (Mw), theoretical isoelectric point (pI) and 

features of the predicted proteins were obtained by ExPASy analysis 

(http://us.expasy.org/tools), and the SignaIP 4.1 Serverwas used for signal peptide 

prediction (http://www.cbs.dtu.dk/services/). Multiple sequence alignments were 

performed using Clustal X2 software, and phylogenetic trees were constructed with MEGA 

5.1 program using the unweighted pair group method with arithmetic (UPGMA) method. 

Gene expression analysis. Gene expression was analyzed by quantitative real-time 

PCR (qRT-PCR; Bustin et al., 2009). Specific primer pairs for MyD88 and reference gene 

Ef1a (elongation factor 1, alpha) were obtained (Table 1). The qRT-PCR was performed in 

20 µL total volume containing 10 µL SYBR Green qPCR Master Mix (Toyobo, Osaka, 

Japan), 50 ng cDNA, 0.3 µM of each primer and RNase-free H2O. The qRT-PCR program 

consisted of an initial denaturation at 95oC for 3 min, followed by 40 cycles of 

amplification 7 s at 95oC, 10 s at specific annealing temperatures (Table 1), 15 s at 72oC, 

and final extension for 10 min at 72oC in a Light Cycler® 480 II (Roche, Basel, 

Switzerland). Relative expression was determined using the 2–ΔΔCT method (Livak and 

Schmittgen, 2001). 

Statistical analysis. The data were presented as mean ± SE in triplicate for each 

sample. Statistical analysis was performed using one-way ANOVA, and Duncan’s test was 

used for multiple comparisons. Differences were considered to be significant   at p< 0.05. 
 

Results 

Cloning and sequence analysis of Pf-MyD88. The ORF sequences of Pf-MyD88 were 

amplified and identified. Bioinformatic analysis revealed that the MyD88 ORF (GenBank 

accession no. KT894820) was 1463 bp in length and encoded a polypeptide of 349 amino 

acids. The predicted MyD88 protein had a molecular mass of 39 kDa with an isoelectric 

point of 5.58. No peptide signal was predicted in the amino acid sequence of MyD88. 

Signal P 4.1 analysis showed that a signal peptide was absent in MyD88. 

Multiple alignment and phylogenetic analysis of Pf-MyD88. The MyD88 protein 

sequence contained two conserved domains, a typical DD and a conservative TIR 

domain, which are clearly identified in positions between13–109 and 168–305 (Fig. 1). 

The deduced amino acid sequence of Pf-MyD88 shared 35–57% identity with other  

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/projects/gorf/
http://us.expasy.org/tools
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species. Moreover, homologues of the DD and TIR domains were moderately conserved 

in all species tested (Table 2). These results suggest that the Pf-MyD88 protein probably 

has discriminative immune regulation functions as observed in other shellfish and 

vertebrates. 

 

Table 2. Comparison of amino acid sequence, death and toll/IL-1R domain of P. fucata 

MyD88 with the orthologues of other species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A phylogenetic tree analysis of MyD88 in P. fucata and other metazoans was 

constructed (Fig. 2). It revealed that Pf-MyD88 was grouped together with other 

members of the Pterioida family, such as C. gigas. The homology of Pf-MyD88 from near 

to far was other mollusca, fishes, amphibians, birds, reptiles and mammals. These results 

correspond with conventional taxonomy. 

Effect of LPS and poly (I:C) on MyD88 expression in P. fucata gills. As shown in Fig. 3, 

the transcript levels of MyD88 indicated a strong response to LPS and poly (I:C) 

induction. MyD88 expression predominantly increased to highest levels at 2h post-

injection with LPS, approximately 1.57 times the level normally observed in P. fucata, 

then subsequently declined (Fig.3A). Moreover, the MyD88 mRNA expression fluctuated 

during the whole experimental period, it reached a peak at 8 h post-injection with poly 

(I:C), then significantly reduced until 12 h post-injection, but was still lower than the 

control even at the end of the experiment (Fig. 3B).  

Species Identity (%) 

Full length 

amino 

acid 

death  

domain 

Toll/IL-1R 

domain 

Crassostrea gigas (%) 57 60 75 

Mizuhopecten 

yessoensis 
(%) 42 45 56 

Chlamys farreri    (%) 41 41 57 

Haliotis 

diversicolor 
(%) 41 39 54 

Lottia gigantea (%) 39 35 51 

Mytilus 

galloprovincialis 
(%) 36 38 56 

Apostichopus 

japonicus 
(%) 36 33 46 

Danio rerio    (%) 36 36 43 

Gallus gallus (%) 36 37 44 

Mus musculus (%) 36 40 42 

Homo sapiens (%) 35 36 42 
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Fig. 1. 

 
Fig. 2. Phylogenetic analysis of P. fucata MyD88 relative to the homologues of other vertebrates. 
Sequence alignment of MyD88 was analyzed using the MEGA 5.0 software with Neighbor-joining 
method. The numbers at each node indicate the percentage of bootstrapping after 1000 
replications. The accession numbers of the sequences used in the phylogenetic analysis are listed 
in supplement table. 
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Fig. 2.  

 

 
 

 
Fig. 3. 
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Discussion 

The ORF of Pf-MyD88 was identified in this paper. Unfortunately, the full length of Pf-

MyD88 was not cloned. However, two typical conserved structural domains, DD and TIR, 

were determined in the Pf-MyD88 protein (Qin et al., 2015). This was consistent with 

MyD88 proteins in other species (Liu et al., 2007; Ren et al., 2014; Huang et al., 2014).  

DD is typically located in the C-terminal sequence (Feinstein et al., 1995). 

However, the DD in MyD88 and IRAKs (Interleukin-1 receptor-associated kinases, IRAKs) 

of the TLR signaling pathway is located in the N-terminal region (Medzhitov et al., 1998). 

The Pf-MyD88 DD was found to be located at amino acid positions 13–109 of the N-

terminal region in our study. In eukaryotic host organisms, the TIR domain is regarded 

nearly exclusively between TLRs and the association between TLRs and TIR domain-

containing adaptors (Barton and Medzhitov, 2003). Three highly conserved regions 

(box1–3), which play a key role in TIR function and exist in most TIRs, were also present 

in Pf-MyD88. Nevertheless, Artemia sinica lacks box 3, and box1 and box2's positions are 

reversed (Qin et al., 2015). Two hydrophobic acids (Leu210 and Pro211), known to be 

essential for the interaction of TLRs with MyD88 in box2 of Pf-MyD88 (Xu et al., 2000), 

were consistent with MyD88 proteins from C. gigas (Du et al., 2013), A. japonicus (Qin et 

al., 2015), and R. philippinarum (Lee et al., 2011).While these are Ile and Pro 

in H.cumingii (Ren et al., 2014), Ile and Gly in shrimp (Zhang et al., 2012), and Leu and 

Val in C. farreri (Qiu et al., 2007). Overall, two amino acids (Leu and Pro) were identified 

unanimously in most vertebrates in box2, and were likely to be more diverse in 

invertebrates than in vertebrates (Zhang et al., 2012; Ren et al., 2014). 

   Protein alignments with other species indicated that the Pf-MyD88 shared the highest 

homology with C. gigas, consistent with the fact that both P. fucata and C. gigas were 

members of the Pterioida superfamily. However, there was a significant difference in 

protein sequences of MyD88 between invertebrates suggested that Pf-MyD88 

demonstrated relatively low similarity to other species(Fig. 2).  

    In order to better evaluate the functional role of Pf-MyD88, particularly in relation to 

endotoxin exposure and virus analog induction, the expression of Pf-MyD88 mRNA after 

immune stimulation was researched. The gram negative bacterial endotoxin LPS has 

been reported as a powerful stimulator of innate immunity and PAMP in various 

eukaryotic organisms (Qiu et al., 2007). Moreover, poly(I:C), a synthetic analog of 

double-stranded RNA, is another typical PAMP that mimics viral infection. It has been 

reported that R. philippinarum MyD88 was up-regulated in gills and hemocytes after 

immune challenge with both a Vibrio tapetis and LPS challenge (Lee et al., 2011). It was 

suggested there was an up-regulation of MyD88 transcript levels in response to LPS, CpG 

oligodeoxynucleotide (CpG-ODN) and turbot reddish body iridovirus (TRBIV) treatment in 

the Scophthalmus maximus head kidney, spleen, gills and muscle over a 7-day time 

course (Lin et al., 2015). Moreover, MyD88 transcripts significantly increased in response 

to experimental exposure to LPS, PGN, and poly (I:C) in Paralichthys olivaceus peripheral 

blood leukocytes (Takano et al., 2006). In addition, during acute viral infection and 

periapical lesions in mice, MyD88 has been demonstrated to play an important role in 

regulating inflammatory responses (Bezerra da Silva et al., 2014; Butchi et al., 2015). In 

the present study, the up-regulation of MyD88 mRNA expression was stronger and arose 

earlier in the case of LPS treatment in gills during a 7-day time course, with 1.58-fold 

increases at 2 h post-injection, relative to poly (I:C) treatment which increased 3.58-fold 

at 8 h post-injection. Taken together, these experiments indicate that Pf-MyD88 may 

serve as an important innate immune response gene during the early stage of endotoxin 

and virus infections in P. fucata. 
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Figure Legends:  
Fig. 1. Comparison of deduced amino acid sequences of Pinctada fucata MyD88 with published 

MyD88s in other species. The moderately conserved Death and TIR domains are underlined in red 

and green, respectively. Identical amino acid residues are represented by stars. Dashes represent 
gaps created to maximize the degree of similarity among all compared sequences. The red boxed 
areas are labeled to indicate the Box1, Box2 and Box3 positions in TIR domain. The accession 
numbers of the sequences used are listed in supplement table 1. 
 

Fig. 2. Phylogenetic analysis of P. fucata MyD88 relative to the homologues of other vertebrates. 
Sequence alignment of MyD88 was analyzed using the MEGA 5.0 software with Neighbor-joining 
method. The numbers at each node indicate the percentage of bootstrapping after 1000 
replications. The accession numbers of the sequences used in the phylogenetic analysis are listed 
in supplement table. 
 

Fig. 3. Expression profiles of MyD88 in gills of P. fucata after LPS (A) and Poly (I:C) (B) challenge. 
Significant differences at P<0.01 are labeled with different letters, mean ± SEM of each mRNA 
quantity is shown for each stage tested. 
  

Supplement table 1 
The accession numbers of the sequences used in the phylogenetic analysis. 

Species GenBank No. Species GenBank No. 

Danio rerio AAI64642.1 Chrysemys picta bellii XP_005297196.1 
Apostichopus japonicus 
Xenopus laevis MyD88-B 

AHA83603.1 
NP_001089255.1 

Gallus gallus 
Xenopus laevis MyD88-A 

NP_001026133.2 
NP_001081001.1 

Mus musculus AAC53013.1 Homo sapiens AAC50954.1 

Crassostrea gigas AFX68459.1 Azumapecten farreri ABB76627.1 

Mizuhopecten yessoensis AKN04685.1 Haliotis diversicolor AHK60398.1 

Cyclina sinensis AIZ97751.1 Mytilus galloprovincialis AFR54116.1 

Biomphalaria glabrata-X1 XP_013086371.1 Biomphalaria glabrata-X2 XP_013086405.1 

Lottia gigantea XP_009046476.1 Hyriopsis cumingii AHB62785.1 
Ruditapes philippinarum AEF32114.1 Aplysia californica XP_005094456.1 

Dipodomys ordii XP_012885778.1 Branchiostoma belcheri ABQ32299.1 
Octopus bimaculoides KOF72031.1 Oreochromis aureus AEK87127.1 

Sus scrofa ABW74617.1 Haliotis diversicolor AHK60398.1 

 




