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Geothermal Project Office. 130 Merchant Street. Suite 1060. Honolulu. Hawaii 96813

DEPARTMENT OF BUSINESS,
ECONOMIC DEVELOPMENT & TOURISM

July 30, 1993

MEMORANDUM

TO: Manabu Tagomori, Manager and Chief Engineer
Division of Water and Land Development

FROM: Dean A. Nakano~

SUBJECT: Request for Revi ew and Comment on Two Draft Reports Prepared by
GeothermEx, Inc. for the Department of Bus i ness, Economi c
Development and Tourism

The Geothermal Project Offi ce respectfully requests your assi stance in
reviewing and providing comments on the following revised draft reports prepared
by GeothermEx, Inc:

1) "Volcanic Hazards to Geothermal Installations in Hawaii: Experience
at Geothermal Fields in Volcanic Island Environments"; and

2) "Induced Seismicity and Ground Subsidence in Developed Geothermal
Fields: Relevance to Geothermal Development in Hawaii"~

I sincerely appreciate your earlier efforts to review the preliminary draft
reports and would like to thank you for your comments, many of which have been
assimilated within the enclosed draft reports. Any additional input and/or
recommendations that you may have will be greatly appreciated.

Thank you again for your continued assistance and should you have any
questions, please contact me at 586-2353.

Enclosure

cc: Maurice H. Kaya
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Possible induced seismicity and subsidence from geothermal
development in Hawaii are concerns to developers, financial supporters
of projects, public health and safety agencies and the public. Induced

seismicity and subsidence at geothermal fields have been related to

production/injection activities, no numerical in geothermal projects
elsewhere but no numerical formulas may be applied. Tectonic,

volcanologic and hydrothermal conditions in Hawaii are dissimilar to

conditions at most other geothermal fields. Injection, and possibly
intense production, at geothermal fields of the Kilauea East Rift Zone

(KERZ) may result in low magnitude seismic activity. A complex set of

physical conditions that involves altering hydrostatic balance by
removal and addition of mass by production and injection wells, as well
as the less understood effect of withdrawal of heat content from rocks

may affect possible seismicity. Generalizations can be made from the
histories of some other geothermal fields reviewed for this study; an
objective qualitative analysis of the risk to development in Hawaii can
then be made.
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Considerations relevant to Hawaiian geothermal development are:

Rapid dispersal of injected fluid in high-permeability,

extensive geothermal fields precludes significant probability

of induced seismicity; induced seismicity typically accompanies

injection into 10w- or medium-permeability zones, where pore

fluid pressures are increased and fracture shear strength is

decreased. Also, the stress field may be changed by cool

injectate into fields with low permeability and limited extent.
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• In low- and medium-permeability zones, the number of induced
earthquakes probably is approximately proportional to the rate

of water injection and/or the injection pump pressure.

• Earthquake magnitude does not appear to increase with increases
in the volume of injected water or the rate of injection.

Individual events have reached magnitudes of as great as 4 in
the Geysers area of northern California, and are not expected

to reach destructive magnitude or intensity levels.

• The magnitude-frequency distribution of induced earthquakes

probably follows an exponential pattern similar to that of

tectonic earthquakes.

• The maximum magnitude of induced earthquakes in geothermal
fields has been historically lower than that of regional

tectonic earthquakes.

• Only a very small fraction of geothermal injection induced
earthquakes will be felt. Induced seismicity will be masked by
the high level of tectonic and volcanic earthquakes of the

region and it may be difficult to distinguish natural from
cultural induced seismicity. Induced seismicity will cease
almost immediately after injection ceases.

• Production may also reduce normal stress by decreasing volume

and cooling fracture surfaces upon in-situ boiling.

Regarding subsidence:

2



Controlling variables include fluid phase in the reservoir,
percentage of fluid injected back into reservoir, rock
permeability and porosity, rock compactability, and the rate of

pressure decline within the geothermal system.
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Ground subsidence will be approximately proportional to fluid

production, especially for reservoirs where two-phase

conditions exist initially or are induced as a result of

pressure declines during production.

Statistically, the rate of ground subsidence has ranged from

between one-quarter of an inch to as great as 15 inches per
year in some geothermal fields around the world; subsidence

depends upon physical characteristics of a region.

• Geothermal systems characterized by moderate to low
permeability and porosity, dense, brittle rock, and a
relatively high percentage of injection will experience the
least amount of ground subsidence, while ground subsidence will

be greatest in geothermal fields characterized by highly
porous, weakly consolidated and/or highly fractured rocks.

• Spatially, the maximum subsidence will occur at the surface
point above the area of maximum pressure decline or maximum

conversion to two-phase conditions, and will diminish in amount

outwards from that point.

• The size and shape of the area undergoing subsidence, and the

distribution of values within the subsiding area, will be a

function of the reservoir size, shape and permeability, and the

distribution of production and injection wells.

3
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• Injection cannot fully arrest ground subsidence, because
usually less than 100% of production probably will be injected,

and because of the lag time in pressure communication within
the reservoir.

Geothermal fields of the KERZ probably will experience the

smaller range of ground subsidence (perhaps one inch or less per year).

Indeed, discounting the possible small effect of production from well
HGP-A, it appears that natural subsidence has been occurring at about

0.5 inches per year across the well field area during the 1980s. In the
KERZ, subsidence from geothermal production will be partly masked by
changes in surface elevation resulting from tectonic rifting, magma

intrusion into fractures, flows of lava resulting from volcanic

eruptions and natural fault subsidence on the south, unbuttressed side
of Mauna Loa and Kilauea volcanoes.

Conditions approximately similar to those in Hawaii may exist

at geothermal fields in Iceland and Djibouti. Conditions in Hawaii and
case histories of induced seismicity and subsidence at The Geysers,

California; Wairakei, New Zealand; Hengill and Svartsengi, Iceland and

Landarello, Italy are considered in this report.

At present, it is recommended that induced seismicity and
ground subsidence in Hawaii be carefully measured against the high level
of tectonic "background" activity. To understand this tectonic
background better, it is useful to continue the cataloguing and analysis

of the tectonic and volcanic earthquakes that occur regularly in the

KERZ, as well as maintaining levelling measurements. DBEDT is currently

supporting continuing measurements of subsidence by Dr. J. Anderson of

UH/Hilo in the lower East Rift Zone.

4
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Geothermal fields are located mostly at crustal plate
boundaries and at intra-plate rifts and hot spots, and typically
experience a higher level of earthquake activity than do places located
within the stable plate interiors, far from boundaries, hot spots and
rifts. These are tectonic earthquakes, that serve to release the strain
that continually accumulates when plates move against each other and
deform internally. This strain release often is destructive of man's
works, while at the same time modifying the local topography.
Modifications to topography may include horizontal and vertical offsets,
landslides and soil liquefaction and, occasionally, the formation of
open fissures. Seismic shock waves traveling through large bodies of
water can generate tsunamis and seiches that in turn cause shoreline

erosion.

Ground subsidence also can occur naturally, with or without the
accompaniment of earthquakes, in response to tectonic processes.
Mechanisms include basin downwarping, block rotation and downdrop, and
magma withdrawal from shallow chambers.

In addition to these natural 'tectonic processes, there are
cultural processes that have the possibility of inducing earthquakes or
ground subsidence. Because of their potentially destructive effects, it

is important to determine under what conditions and to what degree these

processes operate in geothermal fields. The purpose of this study and

report is to investigate and use the experience gained from development

of geothermal resources at comparable islands and similar volcano­

tectonic environments to assist development and appropriate regulation

in Hawaii relative to seismicity and subsidence.

5
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CAUSES OF INDUCED SEISMICITY AND GROUND SUBSIDENCE

The injection of fluids into underground reservoirs, and under

certain circumstances the withdrawal of fluids from an underground

reservoir, have the potential to cause earthquakes. This is true
whether the fluid is cold water, hot water, steam, natural gas, oil, or

even treated sewage. The withdrawal of fluids from underground oil, gas
or water reservoirs also can cause the ground surface to subside,

especially in highly fractured, porous and/or poorly consolidated rocks
where the voids left by fluid withdrawal are closed by compaction.

Both seismicity and subsidence may result from causes other

than the withdrawal/injection of fluid, and it is sometimes difficult to
distinguish between the natural and the induced causative factors. In

addition to on-going tectonic processes, and to fluid withdrawal/
injection, seismicity may be due to natural volcanic activity (the

movement of magma towards the surface), or to the artificial ponding of

large volumes of water behind dams. Earthquakes associated with deep

magmatic activity typically have a different seismic wave signature than

earthquakes caused by tectonic processes, injection/withdrawal or water­
loading. However, the signatures of the other types of earthquakes

often are identical.

Subsidence may be due to tectonic processes, or may be caused

by such non-tectonic factors as overproduction from an aquifer, the

compaction of loose, dry soils during irrigation, the ponding of water

behind dams, and the progressive lowering of the water table as a result

of persistent drought. This, again, may occur with or without

earthquake accompaniment.
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MECHANISMS OF INDUCED SEISMICITY IN GEOTHERMAL FIELDS

Significant quantities of data now are available from several

geothermal fields, representing a very wide range of geologic and
operational conditions. Seismicity has been noted at certain fields
almost immediately upon the onset of production and injection, but at
others only after the passage of considerable time (weeks or months).

Various mechanisms have been proposed to account for this
sudden increase in seismicity or microseismicity (smaller earthquakes,
with Richter magnitudes ranging between -1.0 and 3.0). These increases
have occurred either in many-year-long "steps", or as discrete pulses;
and across a spectrum of conditions, from fields where no seismicity had
been recognized previously, to fields in zones of strong seismic

act i vity.

All of the proposed mechanisms involve a change in the response
of reservoir rocks to the ambient tectonic stress and deformation
fields. These mechanisms are based on the presumption that the state of
stress in reservoir rocks was very near the failure condition prior to
field development. The processes leading to induced seismicity fall
into three major categories:

1. decrease of fracture shear strength, resulting from an increase

in pore-fluid pressure;

2. increase of fracture shear strength, as a result of decreased

pore pressure, increased normal stress, or mineral deposition

in fractures; and

7
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3. increase or decrease of shear stress on fractures, because of

increased or decreased vertical stress (most likely due to

water loading or unloading over the reservoir).

4. Cooling of rock immediately adjacent to fractures from

production that causes flashing of fluid to steam in the
reservoir.

The first mechanism can increase the frequency of occurrence of
seismic failure on small, pre-existing faults under an ambient stress

field. The second may cause a change of regime from a seismic plastic

deformation ("creep") to one of seismic brittle failure. The third

mechanism appears to have limited application to known cases of induced

seismicity in geothermal fields.

The specific mechanisms by which seismicity can be induced in a
geothermal reservoir have been summarized in Eberhart-Phillips and

Oppenheimer (1984) and reviewed by Stark (1990). They are as follows:

Injection-induced

1. Increased pore pressure, resulting from fluid injection, causes
a decrease of effective normal stress across fractures in the
geothermal reservoir. According to the well-known Hubbert­

Rubey theorem, this phenomenon may induce brittle fracture

along fractures or small faults. This results in the

occurrence of small earthquakes, under the ambient stress

field. (Effective normal stress is defined as normal stress

minus pore pressure.)

8
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2.

3.

4.

5.

6.

7.

Cooling of rock immediately adjacent to fractures in and above
the geothermal reservoir, probably because of the downward

penetration of the cool injectate, reduces the normal stress in

and above the reservoir to some critical value. This failure
mechanism is also described by the Hubbert-Rubey theorem.

Loading of injectate into aquifers overlying the geothermal

reservoir increases the vertical component of stress, and hence

the shear stress acting across dipping fractures. This

perturbation may induce small earthquakes.

Production-induced

Volume decreases throughout the geothermal reservoir, as a
result of cooling of fracture surfaces, especially if in situ

boiling occurs, may reduce the normal stress, with induced

seismic effects, as described in 2, above.

Volume decreases throughout the geothermal reservoir, resulting

from withdrawal of geothermal fluid, may perturb stresses, in
ways not yet defined, so as to induce seismicity.

Increased shear strength as a result of mineral deposition
(silica, calcite, sulfide minerals, etc.) in fractures, pores

or other voids during production or during phase separation of

the geothermal fluid, may allow a change of regime from a

seismic creep to brittle failure with accompanying seismicity.

Increased shear strength within the geothermal reservoir

resulting from the closing of fractures by compaction, due to

9
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fluid production and lowered water levels in the reservoir,

allows shear stress to build up to seismogenic levels.

8. Declines in geothermal reservoir temperature and pressure, due

to continued fluid production, increase the shear strength of

the reservoir rocks, with resulting seismicity as described in
6, above.

It has been conjectured by Kauahikaua and Moore (1993, in

press) that intense heat withdrawal rates may significantly drop the

temperature of rock adjacent to producing fractures. If the producing

fractures are also potential magma conduits then the conduits may be

cooled below melt temperature at depth and require new dike material to

ascend forcefully, i.e. cause seismic events. These changes would occur

over long time periods and the seismic events would have subordinate

effects to actual eruptions of magma.

It can be seen that several of these proposed mechanisms are

mutually contradictory, citing injection on the one hand and production

on the other as the principal mechanism of induced seismicity. Probably

this contradiction is more apparent than real: geothermal reservoirs

differ widely in permeability, enthalpy, fluid phase, existing stress
field, pre-existing seismicity, and patterns, methods, rates and

duration of fluid production and injection.

The most widely held belief is that the Hubbert-Rubey theorem

(increased pore pressure as a result of injection) is the causative

agent where injection is practiced. Where there is no injection, or

where there is only limited injection testing, the mechanisms of

production-cooling, volumetric change, and increased frictional streng!h

may each operate to some degree in individual fields. However, the

10



r (510) 527-9876

I CABLE ADDRESS GEOTHERMEX
TELEX 709152 STEAM UD
FAX (510) 527-8164

GeothermEx, Inc.
SUITE 201
5221 CENTRAL AVENUE
RICHMOND. CALIFORNIA 94804-5829

I

I

I

I

I

I

I

I

I

I

I

I

I

cases wherein seismicity has resulted exclusively from production are

fewer in number than those where injection also takes place, and are

less in level of seismic activity.

By contrast, the Icelandic and Hawaiian rifts, and perhaps that

of Djibouti, appear to be characterized by linear, narrow zones of high

permeability, within wide regions of low to moderate permeability.

Kauahikaua (1993, in press) has pointed out that the KERZ is a narrower

structure than that near Krafla and that seismic events may therefore be

more concentrated in the KERZ. Tectonic seismicity is high, and induced

seismicity is likely in response to sustained injection. The absence of

induced seismicity probably reflects the absence of long-term injection

act i vity.

It is difficult to generalize further about the absence of

injection-induced seismicity because, as mentioned earlier, no two

fields exhibit identical production or injection conditions.

11
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GEOTHERMAL FIELD CHARACTERISTICS AND CASE HISTORIES

Fields with Induced Seismicity

The Geysers, California

A strong correlation has been observed between seismic activity

and the injection of residual geothermal fluid at The Geysers geothermal

field (Stark, 1990); to some unknown but probably lesser degree, seismic

activity also can be correlated with production of geothermal steam
(Stark, 1990; Peterson et a7., 1992).

The Geysers field is a vapor-dominated, two-phase system,
characterized by fractured zones of relatively high porosity and
permeability within a regionally low-permeability suite of highly

indurated rock. Communication between the reservoir and the surrounding
rocks appears to be very limited. Thus, The Geysers may represent the

best well-studied analogy to the KERZ.

Injection of steam condensate began in 1968, has continued
uninterrupted to date, and has dramatically increased in volume as the
level of power production has increased through the years. Currently

about 30% of produced steam is injected as condensate. This is
equivalent to about 3,000 tons per hour of water. At the peak of
production from The Geysers (1987-88), some 4,500 tons per hour were

injected. Additional make-up water is being sought, to allow a higher

total quantity of injection.

Based on his study of 14 years of production and injection

data, Stark (1990) concluded that there is "... good spatial and

12
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gravity flow or by means of positive pump pressure. The spatial

correlation is "not simple," although the clustering of MEQ (especially

the deeper-focus MEQ) around injection wells is noted. Temporally,

there is typically a time lag of days to weeks between the
beginning/ending of injection and that of seismicity begins/ends.
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The largest seismic event identified by Stark (1990) during

this 14-year period had a Richter magnitude of 4.0. This was strong

enough to be felt locally, but caused no damage. The vast majority of

the many thousands of recorded events were too small to be felt by
people. One measure of the rate of occurrence is that there are
approximately 10 MEQ per day of magnitude 0.5 or less, and "several"

events annually with magnitude 3.0 or greater.

Stark (1990) did not offer much support to the earlier

conclusion of Eberhart-Phillips and Oppenheimer (1984) and Oppenheimer
(1986) that geothermal steam production (rather than injection) is a
principal cause of induced seismicity at The Geysers. Stark did

acknowledge that production and tectonic activity both probably caused
some of the MEQ recorded at The Geysers, but offered no numerical
estimates. He also concluded that steam-production zones could be

defined by the earthquake-distribution patterns, and that this might

have a future use in estimating reservoir thickness and in determining

steam flow paths within the reservoir. No single mechanism for inducing

earthquakes at The Geysers is endorsed by Stark (1990) or Eberhart­

Phillips and Oppenheimer (1984).

Focal depths of MEQ (Peterson et a7., 1992) range between abo~t

5,000 and 20,000 feet, with clusters at 10,000 to 15,000 feet deep.

13



This is deeper than the reservoir across most of the field. Peterson et

al's analysis of the travel times and velocities of P and S waves

indicates that the degree of steam saturation within the reservoir

varies widely with location. This is confirmed by pressure data from

product i on wells. Based on th is, Peterson et a1. (1992) propose us i ng

microearthquake data to calculate the remaining steam reserves.
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Tectonic earthquakes of a non-injection origin are common and
widespread across that part of the northern California Coast Ranges

within which The Geysers geothermal field is located (figure 2).

Several historic earthquakes have exceeded Richter magnitude 5.5, and

the maximum potential magnitude is still greater (on the order of 7.0 or

slightly greater). These values greatly exceed the 4.0 maximum observed

during 14 years of monitoring injection at The Geysers. Therefore, the

conclusion is that microseismicity resulting from injection presents no

additional risk to life or to structures, and that it may be of use in

modeling reservoir performance or in siting future wells.

Wairakei, New Zealand

Although the Wairakei geothermal system exhibits high

temperature, the analogy to geothermal reservoirs of the KERZ is not

very strong. Unlike the KERZ, geology is not homogeneous, and the

layered volcanic and sedimentary rocks exhibit widely different chemical

and physical properties, including permeability and compactability.

Production has gone on for over 30 years, but without injection during

almost the entire period. As a result, the initial hot-water reservoir

has developed a steam cap, in response to continued lowering of the

water table and the field pressure.
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Environmental considerations and concern over the declining

field pressure have led to two episodes of injection testing at
Wairakei, in 1984 and in 1988-89. The results from these two injection
tests were strikingly different, and therefore have some relevance,

despite the lack of close analogy to the KERZ.

In the 1984 test, as much as 668 tons per hour of fluid was

injected into a zone at approximately 4,400 feet in depth, at pressures

as high as 500 psig (Hunt et al., 1990). Hydrofracturing of the

reservoir rocks is inferred to have occurred, based on sudden increases
in injectivity ("jumps"). Seismic activity began almost at once across

an area of several square miles; the induced seismic activity stopped at
once when the injection test was halted after several months. Hunt et
al. (1990) conclude that the injection test had taken place into a zone

of low permeability, rather than into an open fracture as had been

hoped.

By contrast, the 13-month test conducted in 1988-89 resulted in

no seismic activity greater than the approximately 4 MEQ per month of

the natural state (Hunt et al., 1990). No clustering of events
occurred. Up to 570 tons per hour of fluid was injected at about 75
psig, into a highly permeable pumice zone located at about 1,500 feet in
depth. The resulting measurements of pressure at nearby wells indicated
rapid communication over a relatively large area.

From this it is concluded that the careful selection of highly

permeable zones for injection in a widely heterogeneous reservoir, such

as Wairakei, may prevent hydrofracturing of rock and thus prevent

induced seismic activity. It is recognized, however, that the advanced

state of depletion of the Wairakei reservoir, after nearly 30 years of

operation without significant injection, may contribute to this absence
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of induced seismicity. If injection had began in the initial production
year, the results of seismic monitoring might have been different.

Significantly, no production-induced seismicity was reported during this
3D-year production period.

Hengill, Iceland

The Hengill geothermal area represents a possible analogue to
the KERZ of Hawaii. Both are areas of active fissuring, with the most

recent rifting event at Hengill occurring in 1789. Both areas are
characterized by locally high permeability within the rift zone, and by

relative low communication in the natural state with the adjacent less­

fractured basaltic terrain. In each case there has been the

construction of a central volcanic edifice, although differentiation to
silicic end products has occurred at Hengill. The most recent major
eruptive series there is dated at about 2,000 years before present.

Exploratory drilling and development of high-enthalpy hot-water
fields at Nesjavellir and Hveragerdi has gone on for over three decades

(Thorhallson, 1988), despite the evident possibility of renewed volcanic

or rifting activity. Microseismic activity has been "continuous"
throughout this period. It is uncertain whether geothermal field
operations have induced any of this seismic activity. It should be

noted that no injection takes place at Hveragerdi; and that only two
wells have been used intermittently for injection at Nesjave11ir, and
these only during the past decade. Instead, it is concluded that the

cause of the earthquake activity is the cooling and contraction of

intrusive bodies located at depths of about 3 to 4 miles. The cooling,

in turn, supposedly reflects the quenching effect of the deep

circulation of cold water within permeable fracture zones.
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Hot Dry Rock Experiments

There is very little published information on earthquake

magnitude, frequency, spatial or temporal distribution, or possible

relationship to the on-going geothermal field development and operation
in the Hengill area. Additional data should be obtained for comparison

with the KERZ and for possible predictive use as development proceeds in

Hawaii.

Because parts of the KERZ exhibit low permeability, and because

very high temperature is found at relatively shallow depth, in future

years there may be attempts to explore and develop hot dry rock (HDR)

geothermal resources. In this type of operation, wells are drilled into
zones of known low permeability, and fractures are created between
couplet wells by the injection of water under high pressure. Water

pumped into the first well circulates along these hot fractures, and
steam is produced from the second well. Cooling of the rock by

continued forced circulation results in further fracture formation.
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This is virtually certain to induce seismicity. Induced
seismicity has been reported from HDR experiments in the United States,

France, Japan, Germany and England. However, the experiments appear to
show that HDR production is not economically feasible. The Department
of Energy is reported to have stopped funding of HDR experiments in 1993

and it is unlikely that HDR development will be promoted in the KERZ.

Because emphasis has been on the "success" of creating new

fractures, and on tracking fluid movements between wells, relatively

little attention has been given to the induced seismic events except as

evidence of this successful fracturing. However, the induced seismicity
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is referred to in passing in an extensive published literature. A few

examples are:

During a 70-hour injection experiment in a well drilled into

granite at Le Mayet de Montagne HDR site, France (Cornet and Yin, 1992),

about 100 MEQ were induced. Of these, 46 occurred when the injection

was increased from approximately 30 tons per hour of water to about 75

tons per hour. The earthquakes were located within a tight cluster

horizontally, but widely dispersed vertically. Cornet and Yin (1992)

concluded that induced seismicity is a function of injection flow rate

and pressure, and of the degree of induced fracturing, itself a function

of system permeability. No information was provided on earthquake

magnitudes; it is assumed herein that all were microearthquakes, below

the felt earthquake threshold.

Beauce et a7. reported 135 and 239 induced MEQ in response to

HDR injection at rates of approximately 75 and 150 tons per hour of

fluid in a hole at Soultz, France, also in granite, at 4,300 to 6,600

feet in depth. Seismicity began almost immediately, and progressed

directionally as fracturing spread during the two 50-hour tests.

Injection pressure appears to have exceeded 4,000 psig during the test
at the higher flow rate. Here, again; seismicity is a function of
injection flow rate and pressure, and no data are reported on magnitude

distribution.

At Fenton Hill HDR site, New Mexico, large swarms of

microearthquakes have been measured in connection with hydrofracturing

between couplet wells. In one example, over 600 events are reported

from one such test, having a magnitude distribution between Richter -3.0

and 0.0 (Robinson, 1991). A total of over 11,000 induced micro­

earthquakes have been recorded at Fenton Hill (Fehler et a7., 1991).
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These events are far below the felt threshold for people;

however, larger-magnitude events may occur if significant quantities of
fluid are injected at high pressure for prolonged periods into

previously un fractured rock. The combination of high-injection pressure

and cooling of the host rock as a result of continued injection, may

result in continued or even increased seismicity. Seismicity probably

will not cease as long as injection continues to progressively fracture

the rock.

Other Areas

Microseismicity is reported to be related to production and/or

injection of geothermal fluids at Larderello and Travale, Italy;
Tongonan and Puhagan (Palimpinon), the Philippines; and possibly

elsewhere. These fields have geologic and reservoir conditions

significantly different from those of the KERZ.

In the Larderello-Travale area (Satini et a7., 1985), thrust­

faulted sheets of sedimentary rock overlie a metamorphic basement.
Steam production comes from a highly fractured evaporite sequence. Over
1,000 earthquakes were recorded between 1978 and 1982, ranging in

magnitude from 0.0 to 3.2. Epicentral depth generally is less than 5

miles. The greatest concentration of epicenters is outside of the area
of geothermal development, probably related to structures in the

regional basement.

Some correlation is observed between the productive field and

seismicity. The number of earthquakes increased almost in direct

proportion to increases in the rate of fluid injection; however, there

was no increase either in the maximum magnitude recorded or in the

average magnitude of events (figure 3). The maximum magnitude of future
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events, therefore, probably will depend upon the regional structural and
dynamic conditions, regardless of the quantity of fluid to be injected

(Satini et a7., 1985).
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The Asal geothermal area of Djibouti is covered by a seismic

network installed over a decade ago to monitor tectonic activity at the

Red Sea-Ethiopian Rift triple junction. Thousands of earthquakes have

been recorded. If field development at Asal proceeds beyond the initial

drilling and testing phase already accomplished, a parallel to the

Hawaiian KERZ will thus be available for comparative monitoring and

modeling.

Natural seismic activity occurs at several other fields,

usually in association with rifting or subduction. It is reasonable to

assume that some induced seismicity accompanies fluid injection at one

or more fields. To date there have been no reports of damage to the

field installations or to other property as a result of increased

seismicity at any of these fields.

Fields Without Induced Seismicity

There is no compelling evidence of induced seismicity at

several of the world's major geothermal fields. At Krafla and

Svartsengi, Iceland, Cerro Prieto, Mexico and Olkaria, Kenya the

probable reason why there has been no induced seismicity is that there
has been no long-term injection of residual geothermal fluids. However,

the background seismicity is high in the Icelandic fields (figure 1) and

in the Cerro Prieto area, and there is a possibility that some level of

induced seismicity accompanies production but has gone unnoticed at one

or more of these fields.
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At other geothermal fields where injection has occurred in

quantity, there may be no induced seismicity because field permeability

is sufficiently high, or because a combination of adequate permeability

and low rates of fluid injection precludes the significant bUildup of

pore pressure during injection. Ahuachapan, El Salvador appears to be

an example of the latter. The neighboring field of Chipilapa, El

Salvador also experienced no induced seismicity during several short

periods of injection testing (Fabriol et al., 1992).

I
I

II

I

I

I

I

I

(510) 527·9876
CABLE ADDRESS GEOTHERMEX
TELEX 709152 STEAM UD
FAX (510) 527-8164

GeothermEx, Inc.
SUITE 201
5221 CENTRAL AVENUE
RICHMOND, CALIFORNIA 94804-5829

I

I

I

I

I

I

I

I

I

I

I

I

Other fields with no reports of induced seismicity during

injection operations or during short-term injection testing include:

Ohaaki, New Zealand (Clotworthy et al., 1989), and Otake and Hatchobaru,

Japan (Inoue and Shimada, 1985). Here, also, it is suggested that the

absence of induced seismicity reflects the high degree of local

permeability and the limited quantity of injectate. However, future

injection and monitoring may result in a different conclusion.

The fields described above in Mexico, El Salvador, New Zealand

and Japan are characterized by layered geology, volcanic and

sedimentary, in which there is significant variation in permeability

layer by layer; individual permeable units appear to have broad areal

extent in most of these fields. This 'may allow injection to occur

without significant increase in pore pressure, as the injected fluid

spreads rapidly over a wide reservoir area. It remains unknown if long­

term injection in highly permeable, areally extensive fields will lead

to an increase in pore pressure sufficient to induce seismic activity.

Hawaii

Geothermal fields of the Kilauea East Rift Zone (KERZ) appear.

to be characterized by high-enthalpy fluid; local development of steam

21



(510) 527·9876
CABLE ADDRESS GEOTHERMEX
TELEX 709152 STEAM UD
FAX (510) 527-8164

GeothermEx, Inc.
SUITE 201
5221 CENTRAL AVENUE
RICHMOND, CALIFORNIA 94804-5829

I

I

I
I

I

saturation conditions; highly indurated, largely homogeneous rocks; low

regional permeability, with local high-permeability pockets associated

with specific fractures; and with a moderate to low degree of horizontal
communication between the reservoir zone and the ocean. Thus, the best

analogies to geothermal development in the KERZ are to be sought in low­

to moderate-permeability geothermal fields containing high-enthalpy

fluid, preferably representing two-phase reservoirs or reservoirs in

which two-phase conditions develop during years of production, in highly

indurated, vertically fractured rock.

The level of natural seismicity in the KERZ resulting from

tectonic and volcanic processes is among the world's highest. Many

thousands of seismic events have been recorded at the Hawaiian Volcano
Observatory, with Richter magnitudes ranging from below the threshold of

detection up to at least 7.0. Within the KERZ, earthquake activity is

believed to be related to the wedging open of the fractures to

accommodate dike intrusion and to intrusion of magma into individual

fissures, similar to Iceland and Djibouti. Some of the larger-magnitude

earthquakes have caused damage or injury, and the potential exists for

future damaging earthquakes in the KERZ in response to continued
rifting.

In contrast, no set of earthquakes has been identified
specifically with the HGP-A production or with subsequent

production/injection testing in other parts of the KERZ. This does not
preclude induced seismicity. Induced seismicity is likely to occur in

the future, if it is not already occurring, as geothermal development

proceeds and injection is practiced on a commercial scale. However,

based on the high frequency and magnitude of natural earthquakes in the

KERZ, and given the experience in other geothermal fields (see below),
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any geothermally induced earthquakes are likely to be of such magnitude

as to present no additional risk to life or structures.
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CASE HISTORIES OF INDUCED SUBSIDENCE IN GEOTHERMAL FIELDS
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Three case histories in which ground subsidence has occurred
are described in the folloWing sections. These cases represent very

different geologic and tectonic settings and reservoir characteristics.
Only the first case can be considered to be approximately analogous to

the KERZ, and even in this first case there has been no long-term

injection of residual geothermal fluids. The other cases are presented
to provide a broad picture of the ground subsidence in other settings

and under other conditions of production and injection.

Svartsengi, Iceland

Located in a seismically active oceanic rift, and characterized

by basaltic volcanism, Svartsengi (figures 1 and 4) is a close analogue

of the KERZ. The hot-water reservoir has an average temperature of

nearly 240·C; fluid is produced for electric-power generation (11.6 MW)

and for space heating purposes, at a combined total rate of about 900

tons per hour (Bjornsson and Steingrimsson, 1992). Since production

began in 1976, some 80 million tons of fluid have been produced.
Production has resulted in a pressure decline of about 320 psig, which
in turn has led to the development of a steam cap at the upper surface

of the reservoir. Pressure currently is declining at about 18 psig per
year. As mentioned earlier, injection of residual fluids is not
practiced.

The reservoir is located at depths greater than 2,000 feet, in

highly fractured and locally high-permeability basalt flows, intrusive

dikes, and submarine glassy rubble (hyaloclastite). The production well

field covers an area of less than one-half square mile. Permeability is
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calculated to be 100 to 150 millidarcies in the principal fracture

zones. Injection of cooled geothermal fluid (167°F) takes place without

significant impact on the reservoir: neither induced seismic activity
nor permanent cooling is observed (Bjornsson and Steingrimsson, 1992).
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Subsidence has occurred as a result of production and pressure

declines. The exact mechanism is not identified, but compaction of

hyaloclastite beds is suspected. An elliptical figure 6 by 5 miles in

area, centered on the wellfield, is subsiding at a rate of nearly 0.1

inch per year, and a central zone whose long diameter is approximately

1.3 miles in length is subsiding at almost one-half inch per year

(Bjornsson and Steingrimsson, 1992). To date, the maximum total

subsidence has been about 6 inches. Subsidence is expected to continue.

In this area of rough topography, subsidence has not yet become

a significant matter. There are as yet no reports of significant

disruption of pipelines, foundations or other structures. Over a

presumed 3D-year productive field life, using the maximum reported
subsidence rate, up to one foot of ground subsidence can be anticipated.
This has the potential to disrupt certain delicately balanced equipment
and facilities. However, because of the slow rate of annual change,

facilities can be jacked, realigned arrd re-leveled in sufficient time to

avoid disruption. For example, in the Krafla field, where tectonic
block rotation has caused up to 3 feet of tilting across the well field

and one inch of tilting within the power plant (Thorhallsson, 1988),

engineering technology has been utilized successfully to keep all

facilities in operation.
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As described elsewhere in this report, the Larderello reservoir

consists principally of fractured evaporate beds that unconformably

overlie a metamorphic basement complex, and that in turn are overlain

unconformably by other sedimentary and metasedimentary rocks. No active
rifting or volcanism is known; there is continuous regional seismic

activity of tectonic origin (Dini and Rossi, 1990). Thus the area

geologically is quite unlike the KERZ.

The two-phase Larderello reservoir produces steam. Production,

which began over 80 years ago, has resulted in extensive pressure
declines across the field. Seismic activity has been observed to

increase nearly in direct proportion to the quantity of injection,

leading to the conclusion that injection induces seismicity (Satini et

al., 1985). The areas of maximum fluid withdrawal from the reservoir,

and of maximum pressure decline, also are characterized by significant

ground subsidence. This has led to the conclusion that subsidence is

non-tectonic, and occurs in response to production from the reservoir

(Dini and Rossi, 1990). The first several decades of field development

were characterized by steam production without injection of steam
condensate, principally because the turbine-generators were of the non­
condensing type, and steam was evaporated to the atmosphere. It is only

in the last twenty years that injection has been carried out in

significant amounts, as condensing turbine-generators have been
introduced into the field.

During the 65-year period 1921-1986, a series of precise

leveling surveys was run, utilizing some 120 miles of survey lines.

Subsidence of about one foot was calculated across a roughly linear NE­

trending zone about 9 miles in length. The maximum subsidence,
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The cause of subsidence is believed by Dini and Rossi (1990) to

be compaction of both reservoir rocks and overburden, the former in

response to fluid withdrawal and pressure declines. Compaction of the

overburden is attributed to lowering of the local water table, perhaps

related to pressure declines in the reservoir. This presupposes

communication between reservoir and overburden.

approximately 67 inches, was measured in a 2.5-mile-long section of the

longer lone. This averages about one inch per year within the zone of

maximum subsidence (Dini and Rossi, 1990). No reports are given of

damage to facilities as a result of as much as 5-1/2 feet of total

ground subsidence. The rate of subsidence appears now to be diminishing

or even ceasing, although this is not fully documented.
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Wairakei, New Zealand

The Wairakei geothermal system consists of a layered sequence

of volcanic and sedimentary rocks, located in a region of Quaternary

volcanism and tectonic activity probably resulting from plate
subduction. This is quite different geologically from the KERZ. The
hot-water reservoir has developed a two-phase cap in response to steep

declines in pressure that developed during 30 years of production.

During almost that entire period there was no injection of residual
fluids. The results of two relatively short-term injection experiments

at Wairakei are described elsewhere in this report: seismicity was

induced only by injection under high pressure into a low-permeability
rock sequence.

Careful measurements over a period of years (Allis, 1990) have

shown that ground subsidence has been both intensive and widespread. A

maximum of 38 feet of subsidence is recorded. This is equivalent to
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almost one foot per year on average. The rate of subsidence increased

from zero in the initial year of production, to over 17 inches per year
in the 1970s, decreasing to 13 inches per year by the late 1980s,

Within a central area of almost one square mile, subsidence still

averages 2 inches per year.

A pond of over one-half square mile in area has formed at the

center of subsidence, as the result of subsidence-induced damming of a
stream that flowed through the field area. A zone of tension fractures

is reported to have formed at the outer subsidence boundary (Allis,

1990). Drains and pipelines within the field are reported to have been

affected. No impact on the power plant or other major facilities is

reported.

Subsidence is believed (Allis, 1990) to have occurred in

response to compaction of a pumice breccia horizon near the top of the

reservoir, located at about 500 feet in depth, sandwiched between

lacustrine mudstone layers. The rate and total amount of subsidence are

broadly proportional to the annual rate and total amount of pressure

decline at the top of the reservoir. In addition to the production­

induced subsidence, tectonism results in a block rotation ("tilt") of
perhaps one-fifth of an inch annually 'across the entire field. Tectonic

tilt is expected to continue, at some unknown rate, indefinitely.

Induced subsidence, although greatly reduced in magnitude in recent

years, also may continue at the present diminished level as long as

production continues at current levels at Wairakei.
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DISCUSSION AND CONCLUSIONS

Although induced seismicity and subsidence at geothermal fields

in various parts of the world are seen to be related to production/
injection activities, no numerical expression clearly defines the
relationship. Furthermore, these disparate fields do not clearly
reflect the tectonic, volcanologic and hydrothermal conditions in
Hawaii. It can be concluded that injection (and possibly production) at
geothermal fields of the KERZ can result in seismic activity. The
activity may be in the form of an increased number of microseisms and/or

low magnitude seismic events. Several qualitative generalizations can

be made:

Regarding seismicity:

• Controlling variables include stress field, permeability, pore
fluid pressures, rate and volume of injection, pressure of

injection, natural volcanism, strain buildup and mineralization
in fractures.

• In geothermal fields where there is no injection of residual
geothermal fluid, induced seismicity has not yet been proven to

occur.

• High-permeability geothermal fields of broad areal extent
probably do not experience a significant level of induced

seismicity even if injection occurs, because the rapid

dispersal of injected fluid precludes the strong build-up of

pore pressure.
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•

•

•

Induced seismicity typically accompanies injection into low- or

medium-permeability zones.

In low- and medium-permeability zones, the number of induced
earthquakes probably is approximately proportional to the rate

of water injection and/or the injection pump pressure.

Earthquake magnitude probably does not increase with increases
in the volume of injected water or the rate of injection.

• The magnitude-frequency distribution of induced earthquakes
probably follows an exponential pattern similar to that of

tectonic earthquakes.

• Historically, the maximum magnitude of induced earthquakes in
geothermal fields has been lower than that of regional tectonic

earthquakes, perhaps because the shear stress does not build up

to the magnitudes observed in adjacent cooler terrain, or

because the stress field is relatively inhomogeneous. There is

no evidence from any geothermal field that this condition

(induced earthquakes being smaller in magnitude than regional
tectonic earthquakes) will change with time.

• Induced seismicity always accompanies the hydrofracturing
activities of HDR injection tests.

• Only a very small fraction of the induced earthquakes will be
felt. Induced seismicity will be masked by the high level of

tectonic and volcanic earthquakes of the region. Individual

events have reached magnitudes of as great as 4, and are not

expected to reach destructive magnitude or intensity levels.
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•

•

•

•

•

Induced seismicity will cease almost immediately after
injection ceases.

Regarding subsidence:

Controlling variables include fluid phase in the reservoir,
percentage of fluid injected back into reservoir, rock
permeability and porosity, rock compactability, and the rate of

pressure decline within the geothermal system.

Ground subsidence will be greatest in geothermal fields
characterized by highly porous, weakly consolidated and/or
highly fractured rocks.

Ground subsidence will be approximately proportional to fluid
production, especially for reservoirs where two-phase
conditions exist initially or are induced as a result of
pressure declines during production.

The rate of ground subsidence has ranged from between one­
quarter of an inch to as great as 15 inches per year in some

geothermal fields around the ~orld; subsidence depends upon
many variables. The greater rates of subsidence are related to
intense production in regions where, unlike Hawaii, there are

thick sections of saturated sediments.

Geothermal systems characterized by moderate to low

permeability and porosity, dense, brittle rock, and a

relatively high percentage of injection will experience the
least amount of ground subsidence.
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• Spatially, the maximum subsidence will occur at the surface
point above the area of maximum pressure decline or maximum

conversion to two-phase conditions, and will diminish in amount

outwards from that point.

• Injection cannot fully arrest ground subsidence, because

usually less than 100% of production probably will be injected,

and because of the lag time in pressure communication within

the reservoir.

I

I

• The size and shape of the area undergoing subsidence, and the

distribution of values within the subsiding area, will be a

function of the reservoir size, shape and permeability, and the

distribution of production and injection wells.
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Based on these conclusions, geothermal fields of the KERZ

probably will experience the smaller range of ground subsidence (perhaps

one inch or less per year). This will likely be masked by changes in

surface elevation resulting from tectonic rifting, magma intrusion into

fractures, and flows of lava resulting from volcanic eruptions.

Additionally, the rolling topography, locally dense vegetation, and

locally thick soil development may make ground subsidence more difficult

to recognize or to differentiate from tectonic/volcanic effects. The

extreme conditions of subsidence observed in Wairakei, or even those of

Larderello, are very unlikely to occur in the KERZ.

As discussed elsewhere in this report, conditions approximately

similar to those in Hawaii may exist at geothermal fields in Iceland and

Djibouti. Additional data on the history and current state of

geothermal operations in these fields may prove instructive over time,

especially data relating to: injection practices, changes in production
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or injection with time, monitoring systems, impacts upon cultural works

or upon the environment, and impact mitigation (if any).

At present, no specific measures are recommended for

implementation or evaluation regarding induced seismicity or ground

subsidence in Hawaii, given the relatively low level of anticipated

impact and the very high level of tectonic "background" activity. To

understand this tectonic background better, it is useful to continue the

cataloguing and analysis of the tectonic and volcanic earthquakes that

occur regularly in the KERZ, and the surveying of the land surface to

measure the rate of subsidence.
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