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Abstract 
 

 

In order to achieve efficient gene delivery, we have designed pKa modulatable oligopeptides 

(2COPs) by combining with lysine, histidine and cysteine residues which will bind DNA 

extracellularly, internalize via endocytosis, provide a tunable endosomal release mechanism, 

and provide a degradable backbone in order that the DNA can be released once in the 

cytoplasm. The reducible polycations (RPCs) were synthesized from 2COPs. The sizes, surface 

charges and the stability of RPC polyplexes under the simulated physiological conditions 

extra- and intracellularly suggested that these RPCs are promising vectors. In addition, the 

transfections revealed that the RPCs can facilitate endosomal buffering and intracellular 

reduction and are non-toxic to cells.  

 

The nuclear targeting signal (TAT) was incorporated into these vectors. The reducible 

copolycations (RcPCs) were synthesized via oxidative polymerisation between 2COPs and 

TAT. The RcPC polyplexes are ~100 nm, and are positively charged. Gel shift assay revealed 

that RcPCs have less potential than RPCs to be used as vectors as they are less stable 

extracellularly than the RPCs. In addition, chloroquine was required to enhance the 

transfection of RcPCs. Furthermore, there is no improvement in transfection of RcPC 

compared to RPCs. Therefore, this suggests that the incorporation of TAT does not improve 

the transfection.  
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1       INTRODUCTION 

Abstract  
 
This section overviews vectors used in gene delivery. The types of vectors, 
cellular barriers and the mechanism to overcome gene delivery are described, 
including a review of the previous research which has studied synthetic 
vectors, and the biological hurdles these vectors have to overcome to deliver a 
gene to the cell.  

 

1.1     Introduction to gene delivery 

 

Genes consist of bases that are specific sequences which encode instructions on how to 

produce proteins.[1] When genes are mutated so that the encoded proteins are unable to 

complete their normal functions genetic disorders can result.[2] Gene therapy is a challenging 

technique which could potentially be used to correct defective genes responsible for disease 

development. Since the completion of the Human Genome Project (HGP), gene therapy has 

become an increasingly important  technique which many research groups focus on.[3] There 

are two types of gene therapy, somatic gene therapy[4,5] and germline gene therapy.[6] The 

correction by the former approach can not be inherited by the offspring, whereas the latter 

corrects malfunction in eggs and sperm cells, thus these corrections can be passed down to the 

offspring. It has been claimed that the first clinical trial in gene therapy occurred in the 

1960s,[7-9] when Shope papilloma virus that encoded an enzyme arginase was injected into 

two patients which were suffering from hyperargininemia, a hereditary deficiency of enzyme 

arginase which leads to high level of arginine concentration in blood and celebrospinal fluid 

leading to severe mental retardation.  There have been increasingly more gene therapy clinical 

trials since 1989, as can be seen in Figure 1.1. 
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Figure 1.1.   Number of gene therapy clinical trails approved world wide between years 1989 - 2008.   

(Data from www.wiley.co.uk/genmed/clinical ) 

 

Human gene therapy (HGT) is aimed to correct defective genes by transferring a normal gene 

to the disease cells of a patient. There are several approaches to correct defective genes[10] 

such as (i) the insertion of a normal gene in nonspecific location within the genome, in order 

to replace the function of an abnormal gene,[7,11] (ii) gene exchange through homologous 

recombination in order to replace a nonfunctional gene with a normal gene,[12,13] (iii) an 

abnormal gene could be repaired to a normal gene through selective reverse mutation,[14] and 

(iv) a specific gene could be altered in order to regulate a gene to be turned on or off.[15]  

 

HGT involves multiple steps[3] including delivery to an organ, tissue targeting, cellular 

trafficking, regulation of gene expression, and modulating the biological activity of 

therapeutic proteins. In addition, safety[16] of the vector and gene product need to be 

understood. Most of these issues are not completely understood.  The gene carrier, which is 
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called a vector, must be utilized to deliver the normal gene, and is one of the important parts 

in human gene therapy process.  

 

1.1.1  Vectors for gene delivery   

 

The main objective in gene therapy is successful in vivo transfer of genetic materials to target 

cells of patient. The success or failure of gene therapy depends on the development and 

efficiency of the transfection of vectors. Vectors that have been developed for gene therapy 

approaches are divided into two major groups: viral vectors[17] and non-viral vectors (so-

called synthetic vector).[17]  

  

1.1.1.1 Viral vectors 

 

Viruses have evolved to deliver viral disease-causing genes to specific target cells and utilize 

the mechanisms of the host cell to multiply the new virus particles in a pathogenic manner.[18] 

In gene therapy, viruses are denatured, the viral gene removed, a therapeutic gene is added, 

followed by renaturation of the virus.[17] 

 

There are several types of viruses that have been used in gene therapy such as retroviruses, 

adenoviruses, adeno-associated viruses and herpes simplex viruses.[19] Retrovirus was the first 

to be used as a vector.[20] Retroviruses are RNA viruses that can be reverse transcribed to 

double-stranded DNA copies.[21] These copies of DNA can then be integrated into the human 

genome providing long term and heritable expression of the transduced gene. Major 

limitations of retrovirus are low titre, inability to transfect non-dividing cells and the risk of 
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insertional mutagenesis.[19] A sample of retrovirus is Human Immunodeficiency Virus (HIV). 

Adenoviruses are double-stranded DNA viruses which normally cause the common cold.[22] 

They can introduce their DNA into the nucleus of the cells. Unlike those of retrovirus, 

adenovirus DNA is not integrated into human genome, thus they are safer to use than 

retroviruses and can be produced in high titre. However, using the unintegrated property 

means adenoviral gene delivery is not permanent, and results in protein production for only a 

few days to a few weeks. Adeno-associated viruses (AAV) are believed to occur naturally in 

humans, existing without causing disease or immune response from the body.[22] Adeno-

associated viruses are small single-stranded DNA viruses that can insert their genetic material 

at a specific site on chromosome 19. However, this type of vector can only carry less than 5 

kb of DNA.  Herpes simplex viruses are double-stranded DNA viruses that can infect a 

particular cell type, neurons.[22]  

 

Using viral vectors for gene therapy is efficient. However, there are many hurdles[23] such as 

the limited amount of  DNA that viruses can carry (Table 1.1).[24]  

 

Table 1.1.  Properties of viruses used for gene therapy[24]

Virus Genetic material Genome size (kb) Insert size (kb) 

Retrovirus 

Adenovirus 

AAV 

HSV-1 

Poxvirus 

Linear single-stranded RNA 

Linear double-stranded DNA 

Linear single-stranded DNA 

Linear double-stranded DNA 

Linear double-stranded DNA 

7-11 

36 

4.7 

152 

130-280 

4 

8-9 

4.5 

30 

30 
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Moreover, viral vectors can be toxic,[16] immune responses,[16] are difficult to manufacture at 

high titres, are expensive to produce and patient compliance is poor. An alternative way to 

address these drawbacks is with non-viral vectors as a result of (i) the ease of chemical 

manipulation, which can aid incorporation of essential vector features such as targeting 

ligands[25] and nuclear localization signal,[26] (ii) the higher capacity to deliver genetic 

material, (iii) lower toxicity, (iv) lower cost and easy scale-up processes, and (v) better patient 

compliance.[16,17] The summary of the advantages and limitations of viral and non-viral 

vectors also show in Table 1.2. 

 
 
Table 1.2 Advantages and limitations of viral and non-viral vectors[16,17,25-29] 
 

Advantages/Limitations Viral vectors Non-viral vector 

Advantages 
- higher transduction efficiency 

- long-term gene expression as some 

viruses can facilitate genetic 

integration into genome (retrovirus, 

AAV) 

- broad host range 

- some viruses are non-pathogenic    

  (AAV) 

- ease of manipulation 

- high flexibility on size of the delivered    

  transgene 

- safety 

- low cost 

- good patient compliance 

Limitations 
- cytotoxicity 

- immunogenicity 

- genetic material capacity limitation  

  (retrovirus, adenovirus, AAV) 

- Insertional mutagenesis (retrovirus) 

- difficulty to manufacture at high   

   titres 

- highly expensive to produce   

- poor patient compliance 

- poor transfection efficiency 

- transient gene expression 

- rapid plasma clearance (liposomes) 

- need targeting ligands for deliver to 

specific tissue such as transferin  

- need to escape from endosome 

- need nuclear localization signal for 

nuclear import in non-dividing cells 
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1.1.1.2 Non-viral vectors or synthetic vectors  

 
Currently, many researchers are interested in studying non-viral gene delivery systems,[30] 

since synthetic vectors are safer and are able to carry more copies of the gene than viral 

vectors. Furthermore, they can be manipulated more readily than viral vectors. Synthetic 

vectors are generally polycationic in nature, therefore, they can form complexes with the 

polyanionic phosphate backbone of the DNA or RNA. The net charge of these complexes is 

designed to be positive, which will enable the complexes to interact with the anionic nature of 

cell membranes, facilitating internalization into cells by syndecan-mediated endocytosis.[31] 

During the last decade efforts to design synthetic vectors have been made by taking advantage 

of the electrostatic self-assembly of nucleic acids with polycationic materials.[32] There are 

many types of synthetic vectors that have been used such as cationic lipids[33,34] and cationic 

polymers.[35-42] Polyamines are among the earliest compounds that were identified as DNA 

condensing agents.[43,44]  

 

1.1.1.2a Cationic lipids 

Cationic lipids that form liposomes have become one of the most studied non-viral 

vectors.[33,34] They condense with DNA via electrostatic interaction. Cationic liposomes are 

promising non-viral delivery systems for gene therapy, although the biochemical and 

biophysical mechanisms of these vectors with respect to gene transfection and expression are 

not thoroughly understood.[45] Most of the cationic lipids used as transfection reagents have 

three parts: (i) hydrophobic lipid anchor group which can be either a double chain 

hydrocarbon such as N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride 

(DOTMA),[46] 1,2-bis(oleoyloxy)-3-(timethylammonio)propane (DOTAP),[47] and dioctadecyl 

amino glycil spermine (DOGS, Transfectam®)[48] or a cholesterol derivative such as 3β[N-

(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol),[49] (ii) linker group such as 
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an ester, amide or carbamate, and (iii) a positively charge head group which interacts with the 

nucleic acid backbone (Figure 1.2).[50,51]  
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Figure 1.2.  Cationic lipids; a) N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), 

b) 1,2-bis(oleoyloxy)-3-(timethylammonio)propane (DOTAP), c) dioctadecyl amino glycil 
spermine (DOGS), and d) 3β[N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) 
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The model of DNA release from lipoplexes into the cytoplasm was proposed by Xu and 

Szoka[52] and called the flip-flop mechanism (Figure 1.3). The interaction between cationic 

lipids of lipoplexes and endogenous anionic lipids may promote membrane fusion and 

transport of DNA across the cell membrane. Thus, the key attribute of lipoplexes may be the 

ability of the lipid to dissolve into and undergo translational movement within lipid bilayers.  

 

Figure 1.3. Flip-flop mechanism to uptake  lipoplexes and subsequently release of DNA.[52]  After 

electrostatic interaction of cationic lipoplexes with the plasma membrane, lipoplexes are 

internalized by endocytosis (step 1) followed by the fusion of the lipid bilayers and a vesicle is 

formed if the membrane pinches off from the cell membrane (step 2). In the early endosome, 

membrane destabilization results in anionic lipids diffusing into the vesicle and forming a charge 

neutral ion pair with the cationic lipids (step 3). The DNA dissociates from the vesicle and enters 

the cytoplasm (step 4).  
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Reducible cationic lipids (RCLs) (Figure 1.4) have also been developed for gene transfer by 

incorporating disulfide bonds in either the hydrophilic or hydrophobic part of cationic lipids, 

or within an alkyl chain in order to enhance DNA release from lipoplexes after intracellular 

reduction.[34,53] The transfection by RCLs was 1000-fold greater than their analogues without 

disulfide bonds.[53]  

 

H2N N
H

H
N

H
N

N
H

S
S

H
NO

O

H2N N
H

H
N

H
N

N
H

S
S

H
NO

O

H2N N
H

H
N

H
N

N
H

O

N

O

H
N

O

a) RPR 132775

b) RPR 202059

c) RPR 203769

H

 

a) RPR 132775 

b) RPR 202059 

c) RPR 203769 

 

Figure 1.4.   Reducible cationic lipids (RCLs) stuctures.[53] Lipids with disulfide bond within hydrophobic 

chain (a.b), and control lipid without disulfide bond (c) 

 

Water soluble cationic lipopolymer (WSLP) (Figure 1.5) has been synthesized by 

conjugating cholesterol choroformate directly to branched PEI 1800 Da.[54,55] The cholesterol 

was used as a lipophilic portion grafted onto branched PEI which serves as a hydrophilic head 

group. The mean size of WSLP/DNA complexes was approximately 70 nm. The transfection 
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efficiency of WSLP was higher than PEI 1800 Da, PEI 2500 Da, and naked DNA. 

Furthermore, WSLP is less toxic than PEI.[55]  
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Figure 1.5.   Water soluble cationic lipopolymer (WSLP)[54]  

 

1.1.1.2b Cationic polymers 

Cationic polymers have been widely studied as vectors for gene delivery. They include 

polyethylenimine (PEI)[35-40] and amine containing dendrimers[41,42] which complex with the 

gene. The complex is referred to as a polyplex.  

 

  (i) Polyethyleneimine (PEI) 

Branched PEI polymers contain primary, secondary and tertiary amino groups (Figure 1.6). 

This polymer has wide range of buffering capacity (pKa values of primary, secondary and 

tertiary amines are 9, 8 and 6-7, respectively) which allows varying degree of  protonation of 

the amine groups in the complex depending on the local pH.[56] The overall protonation level 

increases from 20 to 45% between pH 7 and 5.[57,58] This buffering property is very useful in 
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in vivo applications where it can lead to a release process from the endosome (proton sponge 

hypothesis).[36,58,59] PEI is inexpensive, easily available, and its potential use in gene delivery 

has generated much interest.[37,56,60,61]  

 

 a) Branched PEI       b) Linear PEI 
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Figure 1.6.   Polyethyleneimine (PEI) structures; a) branched PEI, and b) Linear PEI 

 

The combination of a cell-binding ligand and endosomolytic activity of PEI has been 

demonstrated which can lead to very efficient gene delivery systems.[62]  Some of which may 

be used for condensing and linking plasmid DNA to adenovirus particles.[63] However, PEI 

can cause significant in vivo toxicity in cultured cells. PEI is an organic polymer which can 

not be degraded by cellular enzymes. As a result, total body clearance of high molecular 

weight PEI is a slow process which leads to the accumulation of PEI in vivo.[38] To overcome 

this drawback, the introduction of disulfide bonds into low molecular weight PEI (800 Da) 
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through dimethyl-3,3’-dithiobispropionimidate•2HCl (DTBP) have been designed (Figure 

1.7) to promote reversion of high molecular weight polyplexes back to their low molecular 

weight counterparts which should  clear more easily from the body.[35]  PEI (1800 Da) has 

also been cross-linked with DTBP (CLPEI50%, molar ratio of cross-linker reactive group to 

PEI primary amine was 1:2) and was found that the polyplexes were reduced by GSH at a 

concentration of 3 mM.[64]   
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Figure 1.7.   Proposed reaction scheme of DTBP (dimethyl-3,3’-dithiobispropionimidate•2HCl)  cross-

linked PEI[35] 

 

It was found that the cytotoxicity of low molecular weight PEI (LMW-PEI, 5.4 kDa) was 

reduced by more than one order of magnitude compared with high molecular weight PEI 

(HMW-PEI, 25 kDa). Moreover, LMW-PEI was shown to increase the transfection efficiency 

in many types of cell lines.[37] The corporation of the fusogenic peptide (KALA, 

WEAKLAKALAKALAKHLAKALAKALKACEA) and PEI has also been modulated in 
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order to combine the endosomal escape and DNA condensation properties of PEI, as well as 

the cellular entry properties of KALA. The DNA polyplex was produced by condensing DNA 

with PEI as the core component and the outer layer linked with KALA. This tricomposite 

showed transfection efficiency better than that by either of KALA or PEI polyplexes alone.[60]   

 

  (ii) Dendrimers 

Dendrimers are a more recent class of cationic polymers that have been used as vectors for 

gene delivery.[41] A dendrimer[65] is a tree-like highly branched monodisperse polymer 

molecule. Dendrimers can be synthesized by two different routes which are convergent[66] and 

divergent[67] routes to form a tree-like architecture (Figure 1.8).  

 

 

 

Figure 1.8.  Dendrimer synthesis by convergent and divergent routes 
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Several different kinds of dendrimers have been synthesized,[68-70] for instance, 

polyamidoamine (PAMAM) is a dendrimer formed from the amidoamine monomer which is 

terminated with amine groups (Figure 1.9)[69] consist of highly ordered, three dimentional, 

hyperbranched arrays of dendrons. They are synthesized by iterative reaction sequences with 

methylacrylate and ethylenediamine.[65]  
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Figure 1.9. Structure of  polyamidoamine (PAMAM) dendrimer. (The core is shown in red (G0). Primary 

(G1) and  secondary (G2) generations are shown in blue and green, respectively) 
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Dendrimer size is designated by a generation number. After one reaction iteration on the 

initiator core, the dendrimer is a generation 0 dendrimer (G0), and with each subsequent 

reaction iteration, the generational number increases by one. PAMAM dendrimers have 

multiple terminal primary amine groups with pKa of approximately 9, thus at physiological 

pH these amine groups are protonated which gives a spheroidal polycation character and their 

tertiary amines have a pKa of 5.5.[71,72] The tertiary amines are able to buffer the endosome 

and prevent plasmid degradation. The capability of dendrimers in cell transfection depends on 

their size, structure and number of amino group on the surface.[41]   PAMAM dendrimers from 

G2-G10 were used to study their gene transfer properties in vitro.  The G6 dendrimer at 

charge ratio of 1:6 (-/+) produced maximal transfection levels at 1000-fold greater gene 

expression in CV-1 cells than that from PLL and 100-fold greater than that from DOTMA-

based lipoplexes.[71 A fusogenic peptide, GALA (WEAALAEALAEALAEHLAEALAEAL 

EAL(C)AA), was modified by replacing leucine (L) at position 28 with cysteine (C) and  

attaching it to a modified PAMAM (G5) dendrimer by disulfide bond formation (Figure 

1.10).[71] The combination of a fusogenic peptide and a dendrimer resulted in improving the 

transfection efficiency because GALA catalyzed the endosomal lysis leading the free 

drendriplex escaped to the cytoplasm.    

 

Figure 1.10.   The model of modified PAMAM attached to GALA via disulfide bond formation[71] 
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The investigation of in vitro transfection efficiencies of dendrimer complexes has also been 

studied by Tomlinson and colleagues.[73] The mean size of the complexes were shown to be 

monodisperse and below 200 nm at charge ratios of 1:0.25 to 1:6 (-/+). The maximum 

transfection efficiency was also observed with G5 and G6 dendrimer complexes at a charge 

ratio of 1:6 (-/+). The larger dendrimers resulted in significant cell toxicity.  

Polypeptides are also used as vector as will be described later. 

 

1.1.2  Cellular barriers to gene delivery 

 

There are several cellular barriers that need to be overcome in order for a gene to be delivered 

to the nucleus.[74,75]  The polyplexes have to protect the nucleic acids from degradation by 

nucleases[74] and the interactions with blood components extracellularly, which would result 

in the clearance of the polyplexes. Cells must be able to internalize the vector/DNA or RNA 

polyplexes in the form of an endosome by endocytosis.[76] When internalized into the 

cytoplasm the polyplexes must be able to escape from the endosomal compartment by the 

proton sponge mechanism.[58] Once released to the cytoplasm, the polyplexes have to unpack 

and release the nucleic acid.[75] If the polyplexes were formed with RNA, then it can be 

expressed transiently by the cell. If the polyplexes were formed with DNA, the transportation 

of DNA to the nucleus is essential. In the nucleus, the normal DNA replaces the abnormal 

DNA or is transcribed to mRNA which is exported to the cytoplasm, where it is translated to 

the therapeutic protein (Figure 1.11). Thus, the design of a vector carrying DNA needs to 

have several factors (i) gene binding, (ii) cell targeting, (iii) cell uptake, (iv) endosomal 

escape, (v) DNA release and (vi) nuclear localization. 

 

 



Figure 1.11.   Gene delivery by non-viral vector system.  Cationic polyplex interacts with anionic cell membrane then enters into cell by endocytosis (a). pH in endosome 

drop from 7 to 5 by proton and chloride ions accumulation (b) which cause water influx since the increasing of the osmolarity in the endosome, and result 

endosomal disrubtion eventually (c) The free polyplex in cytosol then has to unpack and release free nucleic acid (d) then DNA translocates to nucleus (e) for 

further DNA trancription (f) and mRNA translation (g). 
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In this section, extra- and intracellular barriers for gene delivery will be described.  

 

1.1.2.1 Extracellular barriers 

 

 1.1.2.1a Biodistribution and interaction in bloodstream 

In general, opsonization occurs in the bloodstream when foreign particles are coated by 

specific plasma proteins (opsonins), which allows macrophages to recognize and remove 

foreign particles from the bloodstream.[77]  The opsonization of hydrophobic particles has 

been shown to occur more quickly than hydrophilic particles due to the higher adsorbability 

of plasma proteins on the surfaces.[78] A study of liposome clearance from blood circulation 

by opsonization,[79] showed that hydrophobic particles are opsonized and taken up by fixed 

macrophages of liver and spleen with 80-90% efficiency within a few minutes of intravenous 

administration. Therefore, non-viral delivery systems must have a hydrophilic surface in order 

not to be opsonized. [80, 81]  

 

Particle size is also significant for survival in bloodstream. Particle diameters that are greater 

than 7 µm cause capillary blockage, regardless of their surface properties. [79] Whilst particle 

diameter less than 1 µm may circulate longer in  the bloodstream if there are no interactions 

with blood components or fixed macrophages.[79] Normally, a single plasmid could be 

condensed to approximately 25 nm in diameter.[82] However, the polyplexes mostly contain 

several plasmids which lead to sizes of 100-150 nm in diameter.[83] At physiological salt 

concentration (~0.1M),[84] however, the polyplexes tend to aggregate,[85] and they are bound 

with negative serum proteins resulting in larger sizes (200-1000 nm in diameter).[86,87] This 

aggregation results in mobility retardation of the polyplexes to the target cells.[81]  
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1.1.2.1b Cell targeting 

Synthetic vectors that are non-specific are able to transfer a gene in vitro, however, these 

vectors are unable to transfer genes in vivo, since they are non-specific to the target cells.[88, 89] 

In order to target the specific cells, the vector needs to be coupled with a ligand which is able 

to bind to a receptor on the cell surface.[25] The most widely used preexisting targeting ligands 

are based on endogenous molecules which are already present in the body such as folic 

acid[90] and transferrin.[91-95] The receptor of folic acid is overexpressed on a number of human 

tumors via folate receptor-mediated endocytosis.[90] Transferrin is a serum iron transport 

protein which delivers Fe(III) into cells via receptor-mediated endocytosis, and has become 

one of the most widely used ligands for targeting the synthetic vectors. For example, Wagner 

and colleagues[93] used conjugates of PLL-trasferrin to bind and condense DNA and deliver it 

to the transferrin receptor, where upon it enters the cell via endocytosis in vitro.  A galactose-

terminated (asialo-) glycoprotein, asialoorosomucoid (AsOR), is a ligand of 

asialoglycoprotein receptor of the liver, and was linked to polylysines in order to condense 

with DNA.  This glycosylated-PLL could carry the DNA to the liver in vivo via  receptor-

mediated gene delivery.[96]  

 

1.1.2.1c Cell uptake  

The uptake of most macromolecules or particles into cells by passive duffusion across the 

plasma membrane is limited by their solubility in the lipid bilayer. Endocytosis[76] is the 

process by which substances are internalized into cell (Figure 1.12). When a polyplex binds 

to the cell an extracellular portion of the plasma membrane is invaginated and pinched off 

forming a membrane–bounded vesicle called an endosome which encases the polyplex.[97] 

There are several pathways of endocytosis.  
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  a) Phagocytosis – or cell eating – is a form of endocytosis which occurs in 

phagocytes cells such as macrophages, dendritic cells and neutrophils to capture solid 

particles that are larger than 0.5 µm such as bacteria, phatogens and particulate antigens by 

pseudopodium (Figure 1.12a). The phagosome then fuses with the lysosome to hydrolyse the 

particles. The sizes of phagosomes vary from 0.5-4 µm.[98]  

   b) Pinocytosis – or cell drinking – occurs in almost all cells. Pinocytosis is the 

process that small particles or extracellular fluid are brought into cell by the invagination of 

the cell membrane which then pinches off to form endocytic vesicle called a pinosome 

(Figure 1.12b), which subsequently fuses with the lysosome to hydrolyse the particles. The 

size of micropinosome is 95-100 nm, whilst a macropinosome is 0.5-2 µm.[99]    

  c) Receptor-mediated endocytosis, in general, also called clathrin-dependent 

endocytosis,[100] is a major route of most cells to internalize molecules by strong binding of a 

ligand to a specific cell surface receptor leading to the invagination of coated pits which pinch 

off from the membrane to form a vesicle called an endosome (Figure 1.12c). The coated pit is 

a region of the membrane that is coated with clathrin for stability and to aid the transport 

process. Other examples of receptors, such as transferrin receptor and folate receptor, are cell 

uptaking via receptor- mediated endocytosis described in section 1.1.2.1b.   

  d) Syndecan-mediated endocytosis is an internalization process of positively 

charge polyplexes which adhere to the negatively charge heparan sulfate proteoglycans 

(HSGPs) of transmembrane syndecan expressed on surface of all adherent cells[101,102] via 

electrostratic interactions (Figure 1.12d).[103,104] Cationic polyplexes that enter into cell by 

this process are, for instance, protonated PEI[104] and PLL polyplexes.[103,104] 
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a) Phagocytosis b) Pinocytosis c) Recepter-mediated 
    endocytosis 

d) Syndecan-mediated    
    endocytosis 

 

Figure 1.12.   Endocytic pathways; a) Phagocytosis, b) Pinocytosis, c) Recepter-mediated endocytosis,  

    d) Syndecan-mediated endocytosis 

 

1.1.2.2 Intracellular barriers  

 

1.1.2.2a Endosomal escape 

As the pH decreases in the endosome from the early (pH ~6) to late (pH ~5-6) endosome, and 

finally fuses with the lysosomes (pH ~4.5) by the ATPase proton pumps,[105] many of the 

proteins and lipids begin to degrade in the late endosome. Therefore, after internalization into 

the cell, the polyplex has to be released from the endosome before reaching the late endosome 

state where it would be degraded.[97,106] A mechanism for endosomal polyplex release is based 

upon proton sponge hypothesis.[59] This postulates enhanced transgene delivery by polyplexes 

containing H+ buffering polyamines. As the pH in the endosome is buffered by the 
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polyplexes, the ATPase continues to pump protons into the endosome. This buffering leads to 

an influx of chloride counterions and increases the osmotic pressure, thus, inducing osmotic 

swelling by water influx into the vesicle and eventual lysis. The synthetic vectors that are able 

to release the polyplex by this mechanism are cationic polymers such as PEI,[36,107] since they 

have a capability to buffer the endosomal vesicle. PEI is able to condense DNA at 

physiological pH, but contains a proportion of tertiary amines that protonate only at lower pH. 

Thus, PEI becomes protonated in the endosome when the pH drop and causes the endosome 

disruption.[40] Figure 1.13 shows the mechanism of the proton sponge.  

 

 

Figure 1.13.   The proton sponge mechanism; a) Due to the pH buffeing in the endosome, the protons are 

continued to pump in the the vesicle resulting in Cl- influx and increase in the osmolarity inside 

the endosomal vesicle. b) Because of the osmolarity increase, water passes into the endosomal 

vesicle. (c) The increase of water volume results in the swelling of the endosomal compartment 

until it ruptures to release the polyplex into the cytoplasm which leads to nuclear uptake of DNA.     
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  - Endosomolytic compound 

Chloroquine (Figure 1.14), a low molecular weight drug used as a treatment for malaria,[108] 

has been also used in conjunction with the polyplexes.[107] Chloroquine is a weak base with 

pKa of 8.1 and 10.2 and is able to diffuse into low-pH compartments, whereupon it is 

protonated and buffers acidic vesicles, which aids the lysis of the endosome. At approximate 

concentration 100 µM, chloroquine causes substantial improvement in the transfection 

efficiency. Although cells may be exposed to relative low concentration of chloroquine (100 

µM) during the transfection, the concentration within cells is found to be much higher and this 

causes toxicity to cell and further increases in concentration causes substantial loss of cell 

viability.[109, 110] 

 

 Cl

N
H

N
N

 

pKa 8.1 

pKa 10.2 

Figure 1.14.  Structure of chloroquine 

 

There were developments of pH-dependent degradation polymer using polyacetals,[111,112] as it 

is degraded rapidly in endosomal pH (41% MW loss in 25 hours) resulting in non-toxic to 

cells. 

 

  1.1.2.2b Nuclear localization   

The DNA must be internalized into the nucleus in order to either replace the non-functional 

gene or transcribe to mRNA for furthering translation to the therapeutic protein.[113] The 

nuclear membrane is a barrier for most macromolecules that are greater than 40 kDa, unless 

they are able to interact with the nuclear pore active transport system.[113] Nuclear pore 
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complexes (NPCs) are macromolecular assemblies constructed from multiple copies of 

approximately 30 different proteins call nucleoporins.[114] Importins are the carriers to import 

protein into nucleus. Importin-β is mostly used as an import carrier, while importin-α is used 

as an adapter protein to import many proteins through NPCs. In order to locate the nucleus, 

the DNA strand needs to be combined with peptides referred to as nuclear localization signals 

(NLS) which can be recognized by the import carriers in the cytoplasm.[115,116] The 

mechanism of using the NLS peptides to translocate the DNA into the nucleus is shown in 

Figure 1.15.[114,117] Briefly, cargo proteins which contain NLS form complexes with the 

importin-α:β heterodimer (a, b). This heterotrimer then binds to the cytoplasmic filaments of 

NPCs (c) and translocate through the NPCs (d). Inside nuclearplasmic cargo proteins 

disassemble from importin complexes (e, f) and these importins are then recycled to the 

cytoplasm (g). The components involved in the nuclear protein import cycle shown in Table 

1.3.    

 

Table 1.3.  The components in nuclear protein import cycle and their functions 

Component Function 

Importin-α 

Importin-β 

Ran 

Ran-GAP 

NUP50 

CAS 

Adapter that link NLS-protein cargoes to importin-β 

Import factor that carriers protein cargoes through NPCs 

GTP binding protein 

RanGTPase activating protein 

Nucleoporin 50kDa that displaces protein cargoes bound to importin-α  

Nuclear export factor for importin-α 
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Bremner and colleagues[116] demonstrated that a peptide derived from human T cell leukemia 

virus type 1 (HTLV), MPKTRRRPRRSQRKRPPTWAHFPGFGQGSLC, was able to 

condense DNA and mediate levels of transgene expression up to 32-fold higher than PLL-

based polyplexes.[116] The single nuclear localized signal peptide (PKKKRKVEDPYC) 

modified from the NLS of simian virus 40 large tumor antigen was attached to DNA which 

was sufficient for translocation through the nuclear pore.[115] However, the use of SV40 NLS 

was the only apparent benefit when used in gene expression for non-dividing cells.[118]  



Figure 1.15.    Schematic representation of nuclear protein import cycle.  Importin-β form heterodimer with importin-α in cytoplasm (a) which then binds to the protein cargo 

containing nuclear localization signal (NLS) at the regonition site (b). The heterotrimer then binds to cytoplasmic filaments of the nuclear pore complex (NPC) (c), 

and subsequently translocate through the nuclear pore into the nucleoplasm (d). The Ran-GTP binds to the complex resulting in dissociation of importin-α complex 

and NLS-protein cargo is then replaced with NUP50 (e). CAS-RanGTP complex then binds to importin-α to release NUP50 (f) and enables CAS-RanGTP-improtin 

α complex to transport to the cytoplasm. Importin-β and improtin-α complex are recycled into the cytoplasm by the activation of RanGAP resulting in dissociation of 

improtins from the comlexes (g).  
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1.2  Non-viral gene delivery based on synthetic peptides 
 

A main advantage of a synthetic peptide-based DNA delivery system is its flexibility. For 

gene delivery, the composition of the polyplex can be easily modified in order to take 

advantage of specific peptide sequences to overcome extra- and intracellular barriers. As 

described previously, vectors need to bind the nucleic acid extracellularly in order to prevent 

the polyplex degradation. The vectors will then have to promote the endosomal escape after 

internalization into the cell via endocytosis (before it becomes a lysosome where the 

polyplexes are degraded).[97,106] Several peptide sequences are known that can cause pH 

selective endosomal lysis.[119] Furthermore, the intracellular release of DNA from polyplexes 

is necessary for further gene expression. The nuclear localization signal (NLS) has also shown 

to be an essential peptide for nuclear translocation to promote gene delivery.[116,118]  

 

Below, we review the various amino acids that have been incorporated into peptides for gene 

delivery and their function. 

 

1.2.1 Lysine-based peptides: Extracellular binding of DNA 

 

Lysine is one of the most utilized amino acid in gene delivery studies.[88,120-122] The reason 

being is that the primary amino side chain has a pKa of approximately 10.5 (Figure 1.16). The 

high pKa means that at physiological pH (~7.4)[123] the amine groups in a polylysine derivative 

will have a high degree of protonation. Thus, a polycation exists at physiological pH, 

allowing it to bind to DNA via electrostatic interactions. This binding means the polyplex will 

be stable extracellularly. PLL-Polyplexes are biodegradable, which is an advantage if using 

the polyplex in vivo. PLL is commercially available in various molecular weights ranging 

from approximately 1 kDa to 300 kDa. However, high molecular weight PLL shows high 
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levels of toxicity in vitro, and PLL-polyplexes without a targeting ligand has poor transfecting 

ability.[89, 124] The immunogenicity study of the D-isomer of  PLL showed that it induced the 

formation of antibodies; thus rendering it unsuitable for use as a vector.[125]  It is likely that 

PLL-polyplexes are cleared from the blood as a function of molecular weight. PLL20 (20 kDa 

PLL) polyplexes compared to PLL211 (211 kDa PLL) polyplexes displayed 20 times greater 

level clearance in blood after 30 minutes.[126] Wolfert and colleagues[127,128] studied the DNA 

polyplexes formed from PLL at two different molecular weights (3.9 and 244 kDa) as vectors. 

The sizes of polyplexes from PLL3.9 and PLL244 were in the range from 20-30 nm and 120-

300 nm, respectively. However, low molecular weight PLL significantly decreased 

cytotoxicity. PLL54 (54 kDa PLL) was used as vector to form polyplex with mRNA and found 

that it was too stable to release mRNA for further gene expression,[129]  whereas, using lower 

molecular weight PLL (3.4 kDa) improved the transfection, but it still required chloroquine. 

 

Fusogenic peptides are also used in order to increase the transfection efficiency of PLL.[130-132]   

For example, Lys based reducible polycations (RPCs) were oxidatively polymerized from 

CK16C and formed a DNA polyplex which contained a fusogenic peptide 

(GLFEALLELLESLWELLLEA). This polyplex was stable in an extracellular environment 

and could also release DNA intracellularly for nuclear translocation.[133] Targeting ligands, 

such as  transferring, were also conjugated to PLL to improve the transfection efficiency.[93] 
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Figure 1.16. Chemical structures of  amino acids used in peptides for gene delivery 

 

1.2.2 Histidine-based peptides:  Endosomal escape of DNA 

 

An important barrier to be addressed for in vivo gene delivery when using positively charged 

peptide-DNA polyplexes is that they find it difficult to escape from the endosome before it 

becomes a lysosome, because there is no proton sponge mechanism. The design of fusogenic 

peptides in order to make polyplexes that are able to disrupt the endosome was achieved by 

making use of histidine. Since the pKa of an imidazole group in the histidine side chain is 

approximately 6.0 (Figure 1.16),[134-136] it promotes buffering of endosomal pH and hence an 

influx of water, leading to an osmotic pressure in the endosome, leading to the endosome 

buffering, thus allowing the DNA polyplex to escape from the endosome into the cytoplasm 

(the proton sponge hypothesis).[58,137,138] Midoux and colleagues[139] designed a peptide 

containing several histidine residues (GLFHAIAHFIHGGWHGLIHGWYG). This peptide 

disrupted the endosomal membrane at a slightly acidic pH (pH 6.4). Subsequently, poly-L-

histidine (Mw 11 kDa) has been utilized as a gene vector and was shown to have desirable 

properties for gene delivery and was nontoxic to cells.[140]  
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1.2.3 Lysine and histidine-based peptides: Extracellular binding and endosomal escape 

of DNA 

 

There are many studies that focus on the combination of extracellular binding of DNA and 

endosomal escape of polyplexes in order to improve transfection efficiency. For instance, 

histidylated polylysine polyplexes show enhance transfection levels over PLL-polyplexes in 

the presence either of chloroquine or the fusogenic peptide.[130] N-Ac-poly(L-histidine)-graft-

poly-(L-lysine) (PLH-g-PLL) (Figure 1.17) was synthesized in order to combine the polyplex 

formation efficiency of PLL and endosomolytic efficiency of PLH.[141] The PLH-g-PLL 

polyplex enhanced gene expression. However, chloroquine was required for reasonable levels 

of gene expression.   
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Figure 1.17.  The structure of N-Ac-poly(L-Histidine)-graft-poly-(L-Lysine) (PLH-g-PLL)[141] 
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The aminated poly-L-histidine (Figure 1.18) has been reported to form polyplexes with DNA 

which led to endosomolysis.[142]  
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Figure 1.18.   The aminated poly-L-histidine synthesized by Asayama and colleague. [142]

 

A pH-responsive histidylated oligolysine -K[K(H)KKK]5-K(H)KKC- has been designed to 

incorporate into ligand-liposome polyplex in order to aid in endosomal escape and DNA 

condensation which improved the transfection efficiency of ligand-liposome polyplex 

itself.[143] The combination of liposomes and  branched co-polymers of histidine and lysine as 

vectors was shown to improve the gene expression 400-fold compared to the liposomes 

themselves.[120] Manickam and Oupicky[144] synthesized reducible copolypeptides (RCPPs) 

from bis-cysteine terminated histidine rich oligopeptide (CKHHHKHHHKC) and bis-cysteine 

terminated  nuclear localization signal (NLS, CGAGPKKKRKVC) via oxidative 

polymerization (see section 1.2.4). These RCPPs had enhanced trasfection levels of up to 10 

fold over PEI. 
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1.2.4  Cysteine-based peptides: Intracellular release of DNA 

 

The use of cysteine in biological systems has been primarily to bioconjugate molecules 

together via a covalent disulfide bond linkage.[88] The disulfide bond arises from the oxidation 

of two thiol (SH) groups as shown in Figure 1.19.  
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Figure 1.19.  The formation of a disulfide bond of two cysteine residues 

 

Polyplexes have been formed with disulfide bonds in the polymer backbone which are 

stabilized in the extracellular matrix, but are cleaved efficiently by high concentrations of 

intracellular glutathione (GSH), located in both cytoplasmic and nuclear compartments at 

concentrations of approximately 0.5 – 20 mM, leading to the vector degrading and efficient 

release of its DNA.[88,121,144] Reducible polycations (RPCs) have been synthesized from the 

Cys-(Lys)10-Cys by oxidative polymerization and used to form the polyplexes in combination 

with DOTAP which result in 187-fold higher transgene expression compared to non-reducible 

PLL.[89]  Mckenzie and colleagues[121] have also developed a reducible polycation by 

incorporating Lys, His and Cys residues, Cys-His-(Lys)6-His-Cys, resulting in improved gene 

transfection properties.  
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Cross-linked polymers via disulfide bonds were used to form the polyplexes that prevented an 

early dissociation of polyplexes inside the endosomes.[88,145] Thus, cross-linking peptides have 

been developed by inserting multiple cysteine residues into several 20 amino acid peptides 

(Table 1.4). Increased cross-linking via disulfide bond formation increased the stability of 

polyplexes and decreased the polyplex size.[88] However, the gene expression efficiency was 

inversely propotional to the number of the incorporated cysteine residues. In the study, 

peptides containing two cysteine residues (II) gave the highest gene expression. 

 

Table 1.4.  Cysteine containing peptides studied by Mckenzie and colleagues[88] 

Name Sequence 

CWK18

II 

III 

IV 

V 

Cys-Trp-Lys18  

Cys-Trp-Lys17-Cys  

Cys-Trp-Lys8-Cys-Lys8-Cys  

Cys-Trp-Lys5-Cys-Lys5-Cys-Lys5-Cys  

Cys-Trp-Lys4-Cys-Lys3-Cys-Lys3-Cys-Lys4-Cys  

 

 

1.2.5 Arginine-based peptides: Nuclear localisation 

 

The study of arginine has been interesting, since the pKa of the side chain in the arginine 

residue is approximately 12.5 (Figure 1.16), and is, therefore, fully protonated at 

physiological pH which promotes the electrostatic interaction with the nucleic acid. Arginine 

residues also play an important role  as protein transduction domains (PTDs) or cell 

penetrating peptides (CPPs) [137,146,147] which can facilitate uptake of the protein into the cells. 

For example the TAT-peptide 47-57 sequence, RKKRRQRRR, is the transduction domain, or 

region conveying the cell penetrating properties from HIV-1, and has recently been studied 
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for its properties as a vector.[148]  The result revealed that TAT peptides enhanced transfection 

activity of polyplexes and reduced cytotoxicity. However, they required chloroquine in order 

for the endosomal vesicles to burst. The condensation between oligomers of TAT peptides 

and DNA forms nanometric polyplexes. These TAT peptides improved the transfection 

efficiency 6-7 fold greater than poly-L-arginine.[149]   

 

1.3  Essential vector features for efficient non-viral gene delivery 

 

As described above, there are many biological barriers for non-viral gene delivery system, 

which result in less efficient transfection compared to viral vectors (described in table 1.2 and 

associated texts). Therefore, the design of a vector needs to have several features in order to 

achieve an efficient gene delivery system (Table 1.5):  

 

Table  1.5. Vector features for gene delivery 

Vector feature Function 

I 

II 

III 

IV 

V 

VI 

Bind DNA extracellularly 

Provide a cell targeting ligand 

Cell uptake via endocytosis 

Provide a tunable endosomal release mechanism 

Provide a degradable backbone in order that the DNA can be released once in the cytoplasm 

Provide a nuclear localization signal 

 

As reviewed above, there are several research groups that have focused on the combination of 

the above features in order to design a promising vector. The summary of those combining 

vector features are shown in Table 1.6. 
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Table 1.6.  The summary of vector features from previous research  

Vector features Reference 

I + II 

I + III + IV 

I + III + V 

I + III + VI 

I + II + III + IV 

I + III + IV + V 

I + III + IV + V + VI 

[93], [96] 

[60], [71], [130-132], [141-143] 

[89] 

[116] 

[62] 

[88], [121] 

[144] 

 

1.4  Can we extend the design of non-viral peptide vectors? 
 

As summarized in Table 1.6, the most common vectors that have been studied combined 2-4 

vector features. Therefore, a question arises as to how it might be possible to extend the 

capability of peptide vectors to 5 or more of the features. 

 

In order to examine this question, we should first examine the specific roles that several 

amino acids adopt in peptide vectors in order that we can rationally design new vectors. 

 

1.4.1    Lysine: extracellular stabilization (Vector feature I) 

 

Lysine has a pKa of approximately 10.5, thus at physiological pH (~7.4), it will be almost 

fully protonated. Thus, this will provide a strong interaction with the phosphate anions of the 

DNA backbone (Figure 1.20) leading to extracellular stability.  
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Figure 1.20  Polyplex formation via electrostratic interaction between nucleic acid and vector 

 

1.4.7 Cysteine: extracellular stabilization (Vector feature I) 

 

The terminal cysteine moieties provide functional groups that will allow polymerization of the 

oligopeptides via oxidation of the thiols (R-SH) to disulfides (R-S-S-R) to afford the 

intracellularly reducible polycations (RPCs). This polymerization will afford RPCs with 

enhanced binding to the DNA over shorter oligopeptides by virtue of the cooperativity of the 

extracellular binding.  

 

1.4.3 Lysine: endocytosis (Vector feature III) 

 

The surface charge of the polyplexes formed between the DNA and the RPCs is positive, 

which promotes electrostatic binding with the negatively charged heparan sulfate 

proteoglycan of transmembrane syndecan, [101, 102] which in turn leads to internalization into 

cells via endocytosis[103,104] Figure 1.21 illustrates the mechanism of polyplexes 

internalization via syndecan-mediated endocytosis : i) the cationic polyplex electrostraticlly 

binds to heparan sulfate proteoglycan (HSPGs) on cell suface, ii) then the cluster triggers the 

phosphorylation of syndecan and linker protein-mediated actin binding to cytoplasmic tail of 
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the syndecans, which in turn leads to actin binding to linker proteins, and iii) the constant 

formation of a growing network of cortical actin fibers or of tension fibers is sufficient to pull 

the polyplexes into cell. 

 

Figure 1.21.  Syndecan mediated endocytosis of cationic polyplexes 

 

1.4.4 Histidine: endosomal release (Vector feature IV) 

 

Histidine has an imidazole residue with a pKa of approximately 6, thus at physiological cell 

pH (~7.4) it will not be fully protonated and will have a buffering capacity when it is 

incorporated into the early endosome, whose pH is ~6. This buffering will promote 

endosomolysis as described earlier under the proton sponge hypothesis in section 1.1.2.2a 

(page 27) 
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1.4.5 Cysteine: intracellularly degradable (Vector feature V) 

 

The disulfide bonds will be cleaved upon release from the endosome by the relatively high 

concentration of cytoplasmic glutathione (Figure 1.22).[150] 

 

 

Figure 1.22.    The disulfide bond reduction by glutathione (GSH) catalyzed by glutathione reductase 

using NADPH to reduce oxidized glutathione (GSSG) 

 

The cleavage will result in only the oligopeptides binding to the DNA which will dissociate 

relative easily from the DNA, leaving naked DNA in the cytoplasm (Figure 1.23), which is 

free to be internalized into nucleus. 

 

 

Figure 1.23.      Polyplex dissociation by GSH to release DNA intracellularly 
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1.4.6 Nuclear targeting signal (Vector feature VI) 

 

Nuclear targeting signal (NLS) is the peptide that facilitates the nuclear transport through 

nuclear pore complexes[114-118] as described earlier in section 1.1.2.2b (page 29). Therefore, 

incorporation of NLS into non-viral vectors leads to promote nuclear import of transgene, 

which could make non-viral vector system more efficient. The most common NLS peptide 

derived from the simian virus 40 large tumor antigen (PKKKRKV).[115,116] In addition, TAT 

peptide derived from HIV-1 was also investigated as novel type of NLSs,[147] and could 

facilitate nuclear import faster than the SV40 NLS.[151]  

 

1.5 Design of new vectors 
 
 
Thus, considering the molecular design elements in the preceding sections (1.41-1.46) and 

considering the barriers for genes to be delivered to the cell nucleus (Figure 1.11), we have 

designed some new vectors by combining lysine, histidine and cysteine in various 

constitutional arrangements, and by incorporating TAT such that we could potentially have a 

vector with up to 5 features. 

   

Table 1.7 illustrates the oligopeptides which have been designed for the tasks above. They are 

10 mers containing lysine (K), histidine (H), and cysteine (C). Each one is terminated by 

cysteine residues (referred to as bis-cysteine containing oligopeptides (2COPs)) which are 

2COPs 1-6. 2COP 1 has 8 lysine, 2COPs 2-5 have 4 lysine and 4 histidine with an increased 

degree of “mixing” of the constitution, 2COP 6 has 8 histidine. Peptide 7 is a tris-cysteine 

containing oligopeptide (3COP) with 4 lysine residues. Bis-cysteine terminating TAT peptide 

was also designed as a vector in the study. 



  
 

Table 1.7.  Synthetic oligopeptides used in this study 

Oligopeptide Structure Oligopeptide Structure 

2COP 1 

(CK8C) 

 

2COP 5 

(CKHKHKHKHC) 

 

2COP 2 

(CK4H4C) 

 

2COP 6 

(CH8C) 

 

2COP 3 

(CK2H2K2H2C) 

 

3COP 7 

(CK2CK2C) 

 

2COP 4 

(CK2 2C) 

TAT 

(CRKKRR RRRC) HKHKH
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Strategies Designed vectors 

New strategies Chemical unit 

 

Advantage 

Vector 

features PLL RPC 1 Cross-linked RPCs 2-5 RPCs 2-5 RcPCs 2-5 

- pKa modulation 2COPs 2-5 (degree 

dilution of His and Lys) 

Proton sponge mechanism for endosomal 

escape of polyplex 

IV X X √ √ √ 

- Cross-linking disulfides 2COPs/3COP  Extra extracellular stability of polyplex I X X √ X X 

Known strategies Chemical unit        

- Electrostratic binding 

with DNA 

Lysine residues -Electrostratic binding of lysine side 

chains to DNA to aid extracellular 

stability  

-cell uptake via endocytosis 

I, III √ √ √ √ √ 

- Disulfide bond 

backbone 

Terminated cysteines -Extracellular stability of polyplex 

-Intracellular reduction of DNA into 

cytoplasm 

I, V X √ √ √ √ 

-NLS incorporation TAT incorporation Nuclear entry of DNA VI X X X X √ 

From the oligopeptides designed in Table 1.7, we can synthesize the new vectors by combination of new and known strategies described in 

Table 1.8.  

Table 1.8.  Strategies used in vector design and their advantage 

 



  
 

Section 1.6 describes in detail of hypothesis behind the strategies in term of how the various 

chemical molecules will control various processes during gene delivery. 

 

1.6 Hypothesis behind the vector design 

 

1.6.1   New strategies 

 

1.6.1.1   pKa modulation 

 

The mixing of the position of the constitution of the amino acid in 2COPs 2-5 will provide a 

subtle way of modulating the pKa of the imidazole residues. The degree of dilution of the 

histidine residues in the protonated lysine residues will make it increasingly more difficult for 

the imidazole nitrogen to become protonated, due to charge repulsion of the subphase protons 

by the protonated lysine residues as can be seen in Figure 1.24a. For –His-His-His-His- 

sequence (Figure 1.24b), it is shown that the amino groups on the imidazole ring are more 

easily protonated due to a lower degree of electrostratic repulsion by the distal protonated 

lysine residues.  

 

Therefore, the modulation of the pKa will provide a way to modulate the buffering capacity in 

the endosome (vector feature IV). RPCs 2-5, cross-linked RPCs 2-5, and RcPCs 2-5 (see 

Table 1.8) have buffering capacity in the endosome, thus these vectors do not require 

chloroquine to promote endosomal escape (Figure 1.27 c,d and e). On the other hand, PLL 

and RPC 1 that have no buffering properties and will need chloroquine to promote endosomal 

disruption. Hence we expect PLL and RPC 1 without CQ not to be released from the 
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endosome as there is no buffering capacity, and hence transfection will be poor (Figure 1.27 

a and b). 
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Figure 1.24.  The proton repulsion of the lysine and histidine based sequences; a) and -Lys-His-Lys-His- 

 b) -His-His-His-His- 

 
 

1.6.1.2   Cross-linking disulfide bonds 

 

Mckenzie and colleagues[88] developed the low molecular weight peptides (20 amino acids) 

by incorporating multiple cysteine residues into the peptides. After binding to plasmid DNA 

thiol groups of cysteine side chains spontaneously oxidize to form cross-linked disulfides 
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promoting extracellular stability of polyplexes. They also revealed that the cross-linked 

peptide polyplexes were 5-60 fold more efficient in transfection relative to uncross-linked 

peptide polyplexes. In addition, Mckenzie and colleagues[121] revealed that using low 

molecular weight peptide, CK2CK2C, to condense with DNA produced large particle (1668 

nm), and induced lower transfection level (10-100 fold) relative to CK8C polyplexes. 

However, in none of the previous publications have high molecular weight cross-linked 

disulfide polypeptides been used. Thus, in our study the tris-cysteine oligopeptide (3COP 7, 

CK2CK2C) will be used to form a cross-linked RPCs via disulfide bond formation (Figure 

1.25) with the 2COPs. These cross-linking backbones will provide further extracellular 

stabilization of the polyplex. Therefore, in combination between cross-linking backbones and 

pKa modulation in cross-linked RPCs 2-5 vectors could result with increase efficient 

transfection (Figure 1.27c). In addition, the linear polymer RPCs will also be synthesized by 

oxidative polymerization of 2COPs in order that the properties of cross-linked RPC and linear 

RPC can be compared. 

 

 

Figure 1.25.  Polyplex formation from reducible polycations (RPCs) and cross-linked RPC 
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1.6.2     Known strategies 

 

1.6.2.1   Electrostatic binding with DNA 

 

The lysine residue has been widely used in peptide vectors because of the positive side chain 

that results upon protonation, that can bind electrostatically to the negative charged phosphate 

groups in DNA backbone.[89,124,127] Therefore, our designed vectors (cross-linked RPCs, 

RPCs, and RcPCs) which have lysine residues incorporated will bind strongly to the DNA 

resulting in extracellular stability of polyplexes (vector feature I). In addition, the cationic 

polyplexes will electrostratically bind to the negative groups of heparan sulfate proteoglycans 

on cell surface which facilitates cell uptake via endocytosis (vector feature III).  

  

1.6.2.2 Disulfide bond backbone 

 

In recent years, reducible polycations (RPCs) have been synthesized by oxidative 

polymerization of oligopeptides that have terminated cysteine residues.[85,89,133,152] These 

RPCs resulted in extracellular stability of polyplexes (vector feature I), as well as intracellular 

reduction of polyplexes leading to DNA release in the cytoplasm (vector feature V). 

Therefore, the RPCs and RcPCs are likely to provide extracellular stability and an 

intracellular disassembles mechanism to provide polyplexes with efficient transfection 

(Figure 1.27d and e). In contrast, PLL polyplex does not have disulfide linkage, thus, it is 

unable to be reduced in the cytoplasm resulting in poor transfection level (Figure 1.27a).  
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In addition, the RcPCs 2-5 contain 2COPs and TAT in order to combine the extracellular 

binding with DNA (I), cell uptake (III), endosomal escape (IV), intracellular degradability 

(V) and nuclear targeting (VI) could induce excellent transfection levels (Figure 1.27e). 

 

Figure 1.26.   Reducible copolycations (RcPCs) synthesised by oxidative polymerisation between 2COPs 

and Bis-cysteine containing TAT oligopeptides 

 

NLS has been widely use in non-viral vectors[115,118,144] as described previously in section 

1.1.2.2b. The introduction of NLS into vectors could enhance the transfection level as the 

DNA is more likely to enter into nucleus in non-dividing cells (vector feature VI). Therefore, 

RcPC vectors (Figure 1.26) with TAT (NLS derived from HIV-1) should facilitate efficient 

transfection compare to other vectors that do not have TAT incorporation.  

 

1.6.2.3 NLS incorporation 
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Figure 1.27.  Schematic model of the transfection manner of RPCs and PLL polyplexes based on vector features I and III-VI: a) PLL, b) RPCs 1, c) cross-linked 

RPCs 2-5, d) RPCs 2-5 and e)  RcPCs 2-5 polyplexes.  

 



  
 

1.7 Overview of thesis 

 
This PhD thesis will be divided into 4 chapters as described below: 

 

(i) In chapter 3, the oligopeptides (2COPs 1-6 and 3COP 7) will be purified and 

characterised. The reducible polycations (RPCs 1-6) will be synthesized from 

2COPs 1-5 via disulfide bond formation by oxidative polymerisation. The DNA 

polyplexes from either RPCs or 2COPs will be produced and characterized in 

simulated extra – and intracellularly conditions based on vector features I and III-

V. In addition, the oxidative polymerisation of the cross-linked RPCs between 

2COPs and 3COP will also be studied. 

 

(ii) In chapter 4, the cell transfection of RPCs polyplexes based on vector feature I and 

III-V will be studied. The transfection of the RPCs polyplexes will be combined 

with the following compounds : 

-  Chloroquine (CQ) will be added into cell lines as its ability to buffer endosome 

and to enhance the transfection efficiency.   

-  Glutathione monoethyl ester (GSH-MEE), which is cell permeable and is 

converted to reduced gluthione intracellularly, will be added in order to boost 

intracellular GSH and enhance polypeptide vector cleavage of the disulfide 

bonds. 

- Buthionine sulfoximine (BSO), which is an inhibitor of intracellular GSH 

synthesis, will be used to deplete intracellular GSH, thus probing the reductive 

cleavage mechanism in the cells of the disulfide bonds. 
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(iii) In chapter 5, the reducible copolycations between 2COPs and TAT peptide 

(RcPCs) will be synthesized and characterized by randomly oxidative 

polymerisation in order to combine vector feature I and III-V of 2COPs and 

vector feature VI of TAT peptide.  

 

(iv) In Chapter 6, the cell transfection of RcPC polyplexes will be preformed in the 

same basis with Chapter 4 in order to compare with RPC polyplexes. 

 

The transfections will be carried out in two representative cell lines, human lung carcinoma 

epithelial cell (A549) and mouse brain endothelial cell (bEND3). These cell lines were chosen 

because for therapeutic applications it is important to consider transduction of both epithelial 

and endothelial cells. The A549 cells are the representative of most types of common cancer, 

while the bEND3 cells serve as a model for the surfaces that are accessible following the 

bloodstream administration of the polyplexes.  

 

PLL and PEI polyplexes at N:P 5 and 10, respectively were used as controls. 
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2   MATERIALS AND METHODS 

Abstract 

In this chapter the experimental principles and procedures used during the 
course of this thesis are described. The techniques employed ranged from 
chemical characterization of synthesised peptides, formation of reducible 
polycations (RPCs) and reducible copolycations (RcPCs) and their DNA 
polyplexes through to determination of gene transfection studies of RPCs- and 
RcPCs-based vectors in endothelial (bEND3) and epithelial (A549) cell lines.  

 

2.1     Suppliers of materials 

 

All materials were purchased from Sigma-Aldrich, Fisher Scientific or Applied Biosystems, 

in the UK unless otherwise stated. All solvents were laboratory reagent grade or anhydrous, 

with the exception for HPLC analysis, where HPLC grade solvents were used. All water was 

distilled, followed by purification to 18 MΩ.cm using an Elga water purifier. 

 

2.2   Source of nucleic acids, oligopeptides and cell lines 

 

2.2.1   Source of nucleic acid 

 

The expression vector used in all of the transfection studies was pCMV-Luc, a luciferase gene 

expression plasmid that contains CMV promoter and enhancer regions (Figure 2.1). Plasmid 

DNA was grown in Escherichia coli, and all nucleic acids were amplified by standard 

techniques followed by purification using preparation kits (Qiagen, Crawley, UK) or 

otherwise stated, and finally stored at -18oC in appropriate aliquot concentrations (1.2 mg/ml) 
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prior to use. The concentration and purity of DNA was checked on a spectrophotometer at 

A260/A280 absorbance wavelengths.  

 

Figure 2.1.   Map of pCMV-Luc (5.9 kb) 

 

2.2.2 Source of oligopeptides 

 

All of the oligopeptides were synthesized by Alta Biosciences (Birmingham, UK) and Peptide 

protein research Ltd (Wickham, UK) using standard Fmoc method. Oligoeptides used in the 

studies are shown in Table 2.1. 

 

2.2.3 Source of cell lines 

 

A549 (human lung carcinoma cells) and bEND3 (mouse brain carcinoma cells) were used in 

this study and were obtained from ATCC unless otherwise stated. Both cell lines were 
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maintained and grown in Dulbecco’s modified Eagles media (DMEM, Gibco-BRL, Paisley, 

UK) supplemented with 2 mM L-glutamine and 10 % foetal calf serum (FCS). The media was 

supplemented with penicillin and streptomycin to prevent bacterial contamination of the cell 

lines 

 

Table 2.1 Oligopeptides used in this work  

 

Oligopeptide 

 

Sequencea

Calculated 

Mass  (g mol-1) b

2COPs (bis-cysteine containing oligopeptides) 

1 

2 

3 

4 

5 

6  

TAT 

 

3COP (tris-cysteine containing oligopeptides) 

7 

 

CK8C 

CK4H4C 

CK2H2K2H2C 

CK2HKHKH2C 

CKHKHKHKHC 

CH8C 

CRKKRRQRRRC 

 

 

CK2CK2C 

 

1249.70 

1285.56 

1285.56 

1285.56 

1285.56 

1321.43 

1545.10 

 

 

839.42 

a C = Cysteine, K = Lysine, H = Histidine, R = Arginine, Q = Glutamine 
b Molecular weight from the calculation 

 

2.3   Oligopeptide purification and characterization 

 

The crude oligopeptides 1-7 and TAT were purified by preparative RP-HPLC. Briefly, all 

crude peptides were analyzed by analytical RP-HPLC eluted with the gradient 0-100% of 

MeCN/water (60:40) plus 0.05% TFA for 60 minutes. The methods used in analytical RP-

HPLC were then written separately for separating all peaks for each oligopeptide sample. 
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Analytical RP-HPLC runs were preformed on a Luna (Phenomenex), C18, 250 mm × 4.6 mm 

ID, with 10 μm pore size column. The crude oligopeptides (~1mg) were dissolved in water 

(100 μl) and a 10 μl aliquot was injected at 1.0 ml/min flow rate and the UV absorbance at 

210 nm was mornitored.  After finding the suitable method, all fractions were collected and 

their mass was determined by ElectroSpray Mass Spectrometry (TOF-ESI MS, Micromass, 

UK). Preparative RP-HPLC (Phenomenex), C18 with 250 mm × 21.2 mm ID and 10 μm pore 

size, was utilized for oligopeptide purification. An aqueous solution of the crude 

oligopeptides (20 mg in 700 μl of water) were injected onto the column using of MeCN plus 

0.05% TFA as an elution solvent at 10 ml/min flow (see below). The methods applied for 

purifying oligopeptides were those used in analytical HPLC. Fractions of the oligopeptides 

were collected, concentrated by rotary evaporation, lyophilized, purged with nitrogen or 

helium and stored dry at -20°C. The lyophilized samples were then analyzed by ESI-MS. The 

structures of the purified oligopepides were determined using 1H NMR 500 MHz (Bruker 

AC500) using deuterated solvents and the residual solvent as the lock. Purity of purified 

peptides was further analyzed by analytical RP-HPLC (preparative HPLC of crude peptides, 

analytical HPLC and 1H NMR of purified peptides are shown in appendix).   

 

Dr. Parvez Iqbal and Dr. Neil Spencer (School of Chemistry, University of Birmingham) 

characterized the 2COPs and TAT by 1H NMR. 

 

2COP 1 (CK8C) 

Preparative HPLC eluting time: ~24 minutes with MeCN (1%) plus TFA (0.05%) as an 

elution solvent at 10 ml/min flow rate for 60 minutes 

Mass (g mol-1): 1249.9 [M]+, 625.4 [M+H]+2, 417.3 [M+H]+3 

   82



 
1H NMR δ (ppm) (D2O): 4.61 (t, J = 5.23Hz, 1H, -CO-CH-N-), 4.36-4.24 (m, 9H, -CO-CH-

N-), 2.98 (t, J = 6.99 Hz, 20H, CH-C3H6-CH2-NH2, -CH2-SH), 1.79-1.66 (m, 32H, CH-CH2-

CH2-CH2-CH2-NH2, CH-CH2-CH2-CH2-CH2-NH2), 1.45-1.42 (m, 16H, CH-CH2-CH2-CH2-

CH2-NH2) 

 

2COP 2 (CK4H4C) 

Preparative HPLC eluting time: ~35 minutes with the gradient of MeCN (0-5%) plus TFA 

(0.05%) for the first 30 minutes, and with MeCN+TFA (5%) for further 10 minutes as an 

elution solvent at 10 ml/min flow rate  

Mass (g mol-1): 1285.9 [M]+, 643.4 [M+H]+2, 429.3 [M+H]+3 

1H NMR δ (ppm) (D2O): 8.63-8.61 (m, 4H, Im, -N=CH-NH-), 7.32-7.27 (m, 4H, Im, -C-CH-

N-), 4.69-4.63 (m, 4H, -CO-CH-N-), 4.54 (t, 1H, J = 5.73 Hz,-CO-CH-N-), 4.35 (t, J = 5.73 

Hz, 1H, -CO-CH-N-), 4.33-4.21 (m, 4H, -CO-CH-N-), 3.21-3.10 (m, 10H, -NH-CH-CH2-,-

CH2-SH), 3.07-2.92 (m, 10H, CH-C3H6-CH2-NH2, -CH2-SH), 1.74-1.66 (m, 16H, CH-CH2-

CH2-CH2-CH2-NH2, CH-CH2-CH2-CH2-CH2-NH2), 1.45-1.38 (m, 8H, CH-CH2-CH2-CH2-

CH2-NH2) 

 

2COP 3 (CK2H2K2H2C) 

Preparative HPLC eluting time: ~32-34 minutes with MeCN (3%) plus TFA (0.05%) as an 

elution solvent at 10 ml/min flow rate for 50 minutes 

Mass (g mol-1): 1285.7 [M]+, 643.3 [M+H]+2, 429.2 [M+H]+3 

1H NMR δ (ppm) (D2O:H2O=1:9): 8.63-8.62 (m, 4H, Im, -N=CH-NH-), 7.31-7.26 (m, 4H, 

Im, -C-CH-N-), 4.67-4.64 (m, 4H, -CO-CH-N-), 4.49 (t, 1H, J = 5.59 Hz,-CO-CH-N-), 4.34-

4.21 (m, 5H, -CO-CH-N-), 3.25-3.10 (m, 10H, -NH-CH-CH2-, -CH2-SH), 3.08-2.89 (m, 10H, 
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CH-C3H6-CH2-NH2, -CH2-SH), 1.77-1.65 (m, 16H, CH-CH2-CH2-CH2-CH2-NH2, CH-CH2-

CH2-CH2-CH2-NH2), 1.45-1.35 (m, 8H, CH-CH2-CH2-CH2-CH2-NH2) 

 

2COP 4 (CK2HKHKH2C) 

Preparative HPLC eluting time: ~32-34 minutes with MeCN (3%) plus TFA (0.05%) as an 

elution solvent at 10 ml/min flow rate for 50 minutes 

Mass (g mol-1): 1285.7 [M]+, 643.3 [M+H]+2, 429.2 [M+H]+3 

1H NMR δ (ppm) (D2O:H2O=1:9): 8.64-8.62 (m, 4H, im, -N=CH-NH-), 7.32-7.28 (m, 4H, im, 

-C-CH-N-), 4.69-4.63 (m, 4H, -CO-CH-N-), 4.53 (t, 1H, J = 5.66 Hz,-CO-CH-N-), 4.35 (m, 

1H, -CO-CH-N-), 4.33-4.27 (m, 4H, -CO-CH-N-), 3.26-3.03 (m, 10H, -NH-CH-CH2-,-CH2-

SH), 2.98-2.90 (m, 10 H, CH-C3H6-CH2-NH2, -CH2-SH), 1.76-1.65 (m, 32H, CH-CH2-CH2-

CH2-CH2-NH2, CH-CH2-CH2-CH2-CH2-NH2), 1.43-1.35 (m, 8H, CH-CH2-CH2-CH2-CH2-

NH2) 

 

2COP 5 (CKHKHKHKHC) 

Preparative HPLC eluting time: ~35-37 minutes with MeCN (3%) plus TFA (0.05%) as an 

elution solvent at 10 ml/min flow rate for 50 minutes 

Mass (g mol-1): 1285.8 [M]+, 643.3 [M+H]+2, 429.2 [M+H]+3 

1H NMR δ (ppm) (D2O:H2O=1:9): 8.64-8.63 (m, 4H, Im, -N=CH-NH-), 7.34-7.30 (m, 4H, 

Im, -C-CH-N-), 4.69-4.63 (m, 4H, -CO-CH-N-), 4.55 (t, 1H, J = 5.62 Hz,-CO-CH-N-), 4.33-

4.24 (m, 5H, -CO-CH-N-), 3.22-3.07 (m, 10H, -NH-CH-CH2-, -CH2-SH), 3.01-2.94 (m, 10 H, 

CH-C3H6-CH2-NH2, -CH2-SH), 1.74-1.64 (m, 16H, -CH-CH2-CH2-CH2-CH2-NH2, -CH-CH2-

CH2-CH2-CH2-NH2), 1.45-1.38 (m, 8H, -CH-CH2-CH2-CH2-CH2-NH2) 

 

2COP 6 (CH8C) 
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Preparative HPLC eluting time: ~37 minutes with the gradient of MeCN (0-10%) plus TFA 

(0.05%) as an elution solvent at 10 ml/min flow rate for 40 min  

Mass (g mol-1): 1321.9 [M]+, 661.4 [M+H]+2, 441.3 [M+H]+3

1H NMR δ (ppm) (D2O): 8.64-8.63 (m, 8H, Im, -N=CH-NH-), 7.28-726 (m, 8H, Im, -C-CH-

N-), 4.73-4.63 (m, 8H, -CO-CH-N-), 4.45 (t, 1H, J = 5.38 Hz,-CO-CH-N-), 4.17 (t, J = 5.37 

Hz, 1H, -CO-CH-N-), 3.00-2.84 (m, 20H, -NH-CH-CH2-, -CH2-SH) 

 

3COP 7 (CK2CK2C) 

Preparative HPLC eluting time: ~19 minutes with MeCN (3%) plus TFA (0.05%) as an 

elution solvent at 10 ml/min flow rate for 50 minutes 

Mass (g mol-1): 840.5 [M]+, 420.7 [M+H]+2 

1H NMR δ (ppm) (D2O:H2O=1:9): 4.54-4.49 (m, 2H, -CO-CH-N-), 4.36-4.31 (m, 4H, -CO-

CH-N-), 3.13-2.90 (m, 14H, CH-C3H6-CH2-NH2, -CH2-SH), 1.81-1.66 (m, 16H, CH-CH2-

CH2-CH2-CH2-NH2, CH-CH2-CH2-CH2-CH2-NH2), 1.45-1.42 (m, 8H, CH-CH2-CH2-CH2-

CH2-NH) 

 

TAT (CRKKRRQRRRC) 

Preparative HPLC eluting time: ~32 minutes with the gradient of MeCN (0-20%) plus TFA 

(0.05%) as an elution solvent at 10 ml/min flow rate for 60 min 

Mass (g mol-1): 783.9 [M+H]+2, 515.6 [M+H]+3

1H NMR δ (ppm) (D2O:H2O=1:9):  8.78 (d, J = 6.41 Hz, 1H, -CH-CO-NH-), 8.48 (m, 9H, -

CH-CO-NH-), 7.52 (m, 4H, -CH-CH2-CH2-CH2-NH2), 7.18-7.16 (m, 6H, -CH-CH2-CH2-

CH2-NH-CNH-NH2, -N-CH-CH2-NH2,), 4.34-4.24 (m, 4H, -CO-CH-N-), 3.20-3.16 (m, 12H, 

-CH-CH2-CH2-CH2-NH-CNH-NH2), 3.10 (dq, 2H, J = 17.42 Hz, 5.50 Hz, -N-CH-CH2-SH), 

3.04-2.98 (m, 6H, -CH-CH2-CH2-CH2-CH2-NH2, -N-CH-CH2-SH), 2.34 (t, J = 8.14 Hz, 2H, -
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CH-CH2-CH2-CO-NH2), 2.06-1.92 (m, 2H, -CH-CH2-CH2-CO-NH2), 1.82-1.61 (m, 32H, CH-

CH2-CH2-CH2-CH2-NH2, -CH-CH2-CH2-CH2-NH-CNH-NH2), 1.44-1.36 (m, 4H, CH-CH2-

CH2-CH2-CH2-NH2) 

 

2.4  pKa determination of the olipeptides  

 

NMR titration was used for the determination of the pKa values of the histidine moieties. 10 

mg of each peptide was dissolved in deuterated water (D2O) (0.75 ml). An aliquot of NaOD 

solution (100 mM, 20 μl) was added to the peptide solution and then mixed by vortex for 2 

minutes. The pH values were measured using a thin stem stainless pH reference probe (ISFET 

electrode). The NMR spectra were recorded using 1H NMR (500 MHz). The NMR sample 

was left in the NMR instrument for 10 minutes at 27°C. The chemical shifts of Hε of lysine 

residues and H5 and H6 of the imidazole rings of histidine residues (Figure 2.2) were 

measured as a function of pH.  
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Figure 2.2.  Structures of lysine (a) and histidine (b) 

 

The pKa values were determined by plotting the change of chemical shift against the pH 

values (Figure 2.3) 
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Dr. Parvez Iqbal (School of Chemistry, University of Birmingham) performed the NMR 

experiments to calculate the pKa. The NMR spectra examples from the NMR titration 

experiments are shown in appendix (section 8.3, Figure 8.25-8.27)  
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Figure 2.3.  pKa determinations by plotting the change of chemical shift against pH  

 

2.5    Reducible polycations (RPCs) formation   

2.5.1  Oxidative polymerisation to form RPCs 

 

The purified oligopeptides were dissolved in PBS (0.5X PBS, pH 7.4, 70 µl) and 30% DMSO 

(60 µl) (~70 fold molar excess in respect to thiol groups) to form 200 µl total volume 

mixtures at 18, 30 and 60 mM oligopeptide concentration (Table 2.2).  The reactions were 

incubated at ambient or 40°C and the reaction progress was monitored by measuring the 

increase in molecular weight of the resulting polymers by gel permeation chromatography 

(section 2.5.4) as a function of time. Aliquots (5 µl) of the reaction were removed and 
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terminated using fresh prepared aminoethanethiol (AET, 17 µM, 40 µl), unless otherwise 

stated, every 2 hours for the first 12 hours then 24, 30, 36 and 48 hours. 

 

Table 2.2.   Specific masses and volumes of peptides and reagents used in oxidative polymerization to   

  synthesize RPCs 

RPCs 2COPs used 
Concentration of 

2COPs (mM) 

Mass of peptide used 

 (mg) 

Vol of PBS 

(µl) 

Vol of DMSO 

(µl) 

RPC 1 2COP 1 18 4.5 140 60 

  30 7.5 140 60 

  60 15.0 140 60 

RPC 2 2COP 2 18 4.6 140 60 

  30 7.7 140 60 

  60 15.4 140 60 

RPC 3 2COP 3 18 4.6 140 60 

  30 7.7 140 60 

  60 15.4 140 60 

RPC 4 2COP 4 18 4.6 140 60 

  30 7.7 140 60 

  60 15.4 140 60 

RPC 5 2COP 5 18 4.6 140 60 

  30 7.7 140 60 

  60 15.4 140 60 

RPC 6 2COP 6 18 4.6 140 60 

  30 7.9 140 60 

  60 15.8 140 60 
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2.5.2 Formation of cross-linked RPCs 

 

The reaction mixtures were performed at 30 mM concentration of 2COP 1-5 containing 3COP 

7 at 4 and 32% mole fraction in PBS (0.5X PBS, 70 µl) and 30% DMSO (30 µl). The 

reactions were incubated at ambient and the reaction progress was monitored by measuring 

the increase in molecular weight of resulting polymer by gel permeation chromatography 

(section 2.5.4). Aliquots (5 µl) of the reaction were removed and terminated using fresh 

prepared aminoethanethiol (AET, 17 µM, 8 mol % excess, 40 µl), unless otherwise stated, 

every 2 hours for the first 12 hours then 24, 30, 36 and 48 hours. 

 

2.5.3 Formation of reducible copolycations (RcPCs) and reducible polyTAT (RP-TAT) 

 

Reducible copolycations (RcPCs) were produced from 2COPs 1-5 and the TAT oligopeptide. 

2COPs (30 mM) and TAT solution (30 mM) in 5x PBS and 30% DMSO at 2COPs:TAT 

molar ratios of 1:1 for RcPCs 1-5 and also 1:3 for RcPC 5 (Table 2.3) were incubated at 

ambient for 48 hours. In addition, the reducible polymer from TAT (RP-TAT) was 

synthesized from 60 mM TAT solution in 5x PBS and 30% DMSO, and was incubated at 

ambient form 48 hours. The progress of the polymerisation was measures by monitoring the 

increase in molecular weight of resulting polymer by gel permeation chromatography (section 

2.5.4) 
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Table 2.3.   Specific masses and volumes of peptides and reagents used in oxidative polymerization to 

synthesize RP-TAT and RcPCs 

RP-TAT/RcPCs 2COP:TAT Molar ratio 
Mass of peptide used 

 (mg) 

Vol of PBS 

(µl) 

Vol of DMSO 

(µl) 

RP-TAT TAT - 18 140 60 

RcPC 1 2COP 1:TAT 1:1 7.5:9.3 140 60 

RcPC 2 2COP 2:TAT 1:1 7.7:9.3 140 60 

RcPC 3 2COP 3:TAT 1:1 7.7:9.3 140 60 

RcPC 4 2COP 4:TAT 1:1 7.7:9.3 140 60 

RcPC 5 2COP 5:TAT 1:1 7.7:9.3 140 60 

RcPC 5 2COP 5:TAT 1:3 3.9:14.0 140 60 

 

 

2.5.4 Gel permeation chromatography (GPC) 

 

The molecular weight distributions of the quenched polymerization reactions (section 2.5.1 

and 2.5.2) were analyzed by size exclusion chromatography (SEC). The SEC analysis was 

performed using HPLC with CATSEC-300 (250 mm x 4.5 mm ID) column (Hichrom, UK) 

eluted with 200 mM NaCl with 0.1% TFA. 10 µl of the samples were injected with 0.5 

ml/min flow rate (20 µl injecting loop) using a UV detector system at 220 nm. Commercially 

available poly-L-lysine (PLL) (Sigma, UK) samples (5.6, 8.3, 21.3, 62.1 and 128.5 kDa) were 

used to estimate the molecular weight (Figure 2.4).  
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Figure 2.4.  PLL standard plotted between Log MW and GPC retention time 

 

2.5.5 Polymer purification 

 

The reaction mixtures from section 2.5.1 and 2.5.2 were diluted in HEPES (15 ml, 15 mM, 

pH 7.4). The RPCs, RcPCs and RP-TAT were purified on centrifugal filter concentrators with 

molecular weight cut-off of 10,000 (Centricon Plus 2, Amicon Biosperation, Millipore, 

cellulose membrane, UK).  The solution was spun down to 150 μl at 4000 rpm (repeated three 

times for this procedure). For the final time of the centrifugation, the sample was spun down 

until a final volume of 400-500 µl obtained. After purification of the polymers, the molecular 

weight of the polymers and the removal of DMSO and other impurities were verified by GPC 

(section 2.5.4).  
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2.5.6 Polydispersity index (PDI) of polycations 

 

SEC-MALLS (size exclusion chromatography coupled to multi-angle laser light scattering) 

was used to detect absolute molecular weights and molecular weight distributions. The Wyatt 

Technology (Santa Barbara, USA)  DAWN® HELEOS multi-angle laser light scattering 

photometer was coupled to TSK Gel G6000PW and G4000PW columns  protected by a 

similarly packed guard column (Anachem Ltd., Luton, UK) and pre-equilibrated for at least 1 

hour  at 30°C before sample measurement. The eluent was aqueous acetic acid (0.5 M) and 

aqueous sodium nitrate (0.1 M) and the injection volume was 100 μl. A value for the 

refractive index change with concentration dn/dc of 0.155 was used. Polypeptide molar 

masses and polydispersities were analyzed using software Astra V 5.3.2.16. This 

measurement was carried out by Dr. Gordon Morris (National Centre for Macromolecular 

Hydrodynamics, Division of Food Sciences, School of Biosciences, University of 

Nottingham)  

 

2.6 Amino acid analysis of RcPCs 

 

Ratios of the 2COP and TAT sequences of RcPCs 1-5 were determined using amino acid 

analysis. RcPCs were hydrolysed by liquid phase hydrolysis by adding HCl (6N) with 4% of 

thioglycolic acid (100 µl) into polypeptide (500 µg).  The reaction mixtures were placed in a 

heating block in a tightly capped vial at 110oC for 22 hr, to cleave the peptide bonds. The 

sample was then placed at -20oC for 24 h, unless stated otherwise. The samples were 

neutralised and analysed using EZ:faast kits (phenomenex, UK). An amino acid calibration 

standard (50, 100 and 200 nmol ml-1) (Figure 2.5) was run with gas chromatography (GC) to 
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allow quantification of the amount of unknown amino acids found in each sample, thereby 

enabling calculation of the % recovery of amino acids within the sample to be determined.  
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Figure 2.5.  Amino acid standard at 200 nmol ml-1 (EZ:faast kits, Phenomenex, UK) run with GC 

 

The amino acid standards were plotted between the concentration of amino acid and the peak 

area obtained from GC (Figure 2.6). 
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Figure 2.6. Amino acid standard plotted between the concentration of amino acid and the peak area  

obtained from GC 
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2.7    Formation of polyplexes 

2.7.1    Calculation of charge ratio 

 

An average mass of DNA per phosphate group is 325 Da and an average mass of PLL per 

amino group is 208. Hence, to obtain a theoretical charge ratio of PLL:DNA at 1:1, a 

weight/weight (w/w) ratio of 1:0.64 was required. For oligopeptides, PEI, RPCs and TAT-

RPCs, the ratio of N:P  was used rather than charge ratio, since the charge ratio is dependent 

on pH, and therefore, difficult to calculate accurately and only a proportion of the amino 

groups are fully ionised. The N:P ratio is defined as: N is the number of amino groups in the 

polycation, and P is the number phosphate groups in the DNA. The N:P ratio calculations 

have been used and will be discussed in detail in the appropriate chapters.  

 

2.7.2 Formation of polyplexes 

 

The addition of the 2COPs, RPCs, RcPCs and RP-TAT as well as PLL and PEI, oligopeptides 

and RPCs to a solution of DNA results in an electrostatic interaction between the oppositely 

charged components resulting in partial charge neutralisation and hydrophobic collapse of the 

DNA into discrete nanomolecular sized polyplexes. Plasmid DNA was dissolved in 10 mM 

HEPES buffer, pH 7.4 (1 ml, 40 µg/ml DNA). Plasmid DNA solution (500 µl) was added into 

a polypropylene microcentrifuge tube. The amount of polycation to produce the polyplexes at 

the desired N:P ratios was dissolved in 10 mM HEPES buffer (1 ml) at pH 7.4 and then added 

(500 µl) into the plasmid DNA solution to give the final concentration at 20 μg/ml of plasmid 

DNA. The resulting suspension of polyplexes was mixed by inverting the tube 5 times. The 
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polyplexes were allowed to equilibrate overnight at ambient temperature, unless otherwise 

stated. 

2.8   Physicochemical characterisation of polyplexes 

2.8.1    Analysis of polyplex diameter by photon correlation spectroscopy (PCS) 

 

The hydrodynamic diameters of the polyplexes were measured by dynamic light scattering 

(DLS) using a Zetasizer 3000 (Malvern Instruments, Worcestershire, UK), equipped with a 50 

mW internal laser. Measurements were taken at 25oC at an angle of 90o to the incident light 

using disposable polymethacrylate cuvette. The machine was calibrated using latex spheres 

(204 nm diameter). Polyplexes for PCS measurements were prepared in 10mM HEPES buffer 

at pH 7.4 (1 ml)(section 2.7.2) in triplicate and analysed by monomodal analysis (where n = 3 

(total of 30 sub-runs)).  

 

2.8.2 Analysis of polyplex surface charge by zeta potential 

 

The polyplex solution was diluted with 10 mM HEPES buffer at pH 7.4 (3 ml) before 

injecting into the Zetamaster (Malvern Instruments, Worcestershire, UK) instrument. 

Measurements were taken at 25 oC and repeated 10 times. Before each measurement the flow 

cell was washed through with 18 ΩM.cm water (5 ml). 

 

2.8.3 Atomic force microscopy 

 

An AFM liquid cell and oxidation-sharpened NP-S tips on a V-shaped, silicon nitride 

cantilever, with a spring constant of around 0.1 N/m (Nanoprobe, Veeco Instruments) and 
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resonant frequency between 9 and 10 kHz were used. All AFM imaging was carried out 

using a Tapping Mode on a Veeco Nanoscope (IIIa) MultiMode system (Veeco 

Instruments, Santa Barbara, CA). Topographical images were taken at 512X512 pixel 

resolution, plane-flattened, and analyzed by the computer program Nanoscope Software v 

5.12. 

 

The polyplexes were incubated at room temperature prior to immobilization onto freshly 

cleaved muscovite mica (Agar Scientific,Essex, UK) and being imaged directly in liquid. 

 

For time-course experiments, the polyplexes (120 µl, 97.8 µg/ml) were deposited on 

freshly cleaved NiCl  modified mica and incubated for 10 minutes before being washed 

twice with deionized water (2 x 200 µl). An aliquot of the fluid (100 µl) in the cell was 

then exchanged with GSH (20mM, 100 µl). The time for this exchange was defined as 

time zero and images were then captured according to stated times. 

2

The AFM experiments were carried out by Mahmoud Soliman (School of Pharmacy, 

University of Nottingham, UK) 

 

2.8.4 Agarose gel electrophoresis of DNA 

 

All agarose gel electrophoresis used Horizon 11.14 horizontal gel tanks (Gibco BRL, 

Invitrogen Life Technologies, Paisley, UK). Low melting point agarose gel (Gibco, BRL) was 

prepared at 1 % in TBE buffer (50 mM Tris, 50 mM boric acid, 0.8 mM EDTA, 0.5X TBE). 

Ethidium brominde (5 µl, 10 mg/ml) was added into melted gel (100 ml).  The agarose gel 

was poured into the casting tray and allowed to set at room temperature before TBE (0.5X 

TBE) was added as running buffer. TBE buffer (0.5X) was used as the electrophoresis 
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running buffer. The samples were loaded into wells and the gel was run at 110 V (Biorad, 

UK) for 60 mins. The Typhoon gel scanner set at 533 nm/610 nm wavelengths and 550V was 

used to scan the gel and the quantity of DNA in particular bands analysed using 

ImageQuantTM software. Gels visualised on the transilluminator and the image captured using 

a Polaroid camera (Analysis software, FluorChem 8800, Alpha Innotech). 

 

2.8.5 Gel shift assay  

 

2.8.5.1 Polyaspartic assay 

 

The simulated extracellular stability of the polyplexes was studied using polyaspatic acid 

(PAA). The polyplex solutions were prepared by mixing with PAA at 250 times of the 

plasmid DNA concentration. The gel was run (section 2.8.4) at 110 volt for 60 minutes in 

0.5x TBE. The pCMV-Luc was loaded into gel in the equal amount with the plasmid DNA in 

the polyplex samples as control. 

 

  2.8.5.2  Glutathione and NaCl assay 

 

The intracellular stability of polyplexes was studied using glutathione (GSH) and NaCl for 

monitoring the reduction of the disulfide bonds. The polyplex solutions were prepared by 

mixing with 5mM. The mixtures were incubated at ambient for 1 hr before adding 0.15 M, 0.5 

M or 1 M NaCl.  The gel was run (section 2.8.4) at 110 volt for 60 minutes in 0.5x TBE. The 

pCMV-Luc was loaded onto the gel in the equal amount with the plasmid DNA in the 

polyplex samples as control. 
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2.9    Cell culture 

 

All cell cultures were preformed using biological safety class II laminar flow cabinet (Class II 

Microbiological Safety Cabinet, Envair Ltd, UK), cleaned with 70 % ethanol before and after 

use. Cells were maintained in an incubator (MCO-17AIC, Sanyo, UK) at 37oC with a constant 

CO2 level of 5 %. Cells were maintained and grown in Dulbecco’s modified Eagles media 

(DMEM, Gibco-BRL, Paisley, UK) supplemented with L-glutamine (2mM) and 10 % foetal 

calf serum (FCS). The media was supplemented with penicillin and streptomycin to prevent 

the bacterial contamination to the cell lines. Phosphate buffered saline (1x PBS, Gibco-BRL, 

Paisley, UK) was used for washing cells. All media and PBS buffer were stored at 4oC.  

 

2.9.1 Maintenance of established cell lines 

 

Cells were grown as a monolayer in 75 cm3 flasks containing of DMEM with 10% FCS (10 

ml) at 37oC, 5% CO2. The culture medium was replaced every 3-4 days to avoid depletion of 

essential nutrients and build up of toxic metabolites. Cells were routinely passaged at 80 % 

confluence at a ratio of 1:10 to prevent overgrowth and loss of surface contact. To the sub-

culture, the medium was removed and the cells were washed briefly with 1x PBS buffer (10 

ml). The cells were suspended by trypsinising by adding trypsin/EDTA (5 ml; 0.05/0.02 %, 

respectively) and incubated at 37oC, 5% CO2 for 5 mins. Cells were resuspended in fresh 

media and aliquoted (10 ml) into fresh flasks, unless otherwise stated. 
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2.9.2 Determination of viable cell number 

 

An aliquot of the cell suspension (20 µl) was added to aqueous trypan blue solution (20 µl). 

Only viable cells take up the trypan blue dye, thereby allowing the number of viable cell 

numbers to be determined microscopically by discounting blue cells using a haemocytometer 

of fixed volume. The cell concentration was calculated as the equation below.  

 

( ) ( )sampleinmixtureoriginalofvolume
dilutionsampleofvolume

chamberofvolumecountedchamberofpropotion
countedcellofnumber ××  

 

2.10 Biological studies of polyplexes 

2.10.1 Cell transfection in vitro 

 

Cells were prepared in 96 well plates (104 cells per well) in DMEM (100 µl) containing 10% 

FCS and 1% penstrep. The cells were allowed to adhere for 18 hours at 37°, 5% CO2. The 

media was removed from the wells and the cells were washed with PBS (100 µl) and replaced 

with the serum free DMEM (50 µl). The polyplex solutions (25 µl) were mixed with serum 

free DMEM (25 µl) then added 50 µl of the mixture to each well of the cells (3 replicates 

were performed for each polyplex). The polyplexes were incubated at 37°C with 5% CO2 for 

4 hours then removed from the wells. The cells were washed with PBS (100 µl) and replaced 

with DMEM (100 µl) containing 10% FCS and 1% penstrep. The plates were incubated at 

37°C with 5% CO2 for a further 44 hours. The media was removed from the wells and the 

cells were washed with PBS (100 µl) and replaced with 1x cell lysis buffer (50 µl). The plates 

were kept at -80°C for at least 30 minutes and then thawed at room temperature. The cell 
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lysate were further analyzed by luciferase assay (section 2.10.2) to obtain the relative light 

units (RLU), and the amount of protein produced by the advanced protein assay (section 

2.10.3). Thus, the gene expression will be shown in relative light units per milli gram of 

protein (RLU/mg protein).  

 

In some experiments, cells were incubated in the DMEM (100 µl) containing chloroquine 

(100 µM), glutathione monoethyl ester (5 mM) or buthionine sulfoximin (100 µM) at 37°C 

with 5% CO2  for 1, 3 and 24 hours, respectively. The cells were washed with PBS before 

transfecting with the polyplexes.  

 

2.10.2 Luciferase assay 

 

The luciferase assay is used to determine the luminescence produced by luciferase enzyme in 

the cell lysate (section 2.10.1).  

 

The cell lysate (25 µl) was added into the appropriate Rohren tube. The luminescence of the 

samples was analysed automatically by the luminormeter (EG and G Berthold, Bundoora, 

Australia) using the luciferase assay reagent (25 µl) (Promega, Madison, WI, USA). 

Luminescence was integrated over 10 sec and normalised to total cell protein, obtained using 

the advanced protein assay (section 2.10.3).  

 

2.10.3 Advanced protein assay 

 

The advanced protein assay is a colorimetric method for determining the protein 

concentration of cell lysate. It was performed in a 96 well plate.  
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The cell lysate (5 µl) was added into each well (triplicate per sample) and the advanced 

protein assay reagent (250 µl, 1x APAR) (Totam Biologicals, Northampton, UK) was added 

into sample. The absorbance was measured at 590 nm using the Victor plate reader (Wallec, 

Perkin Elmer Life Sciences, UK). Blank was also performed by adding 1x lysis buffer (5 µl) 

instead of protein sample. The absorbance of each measurement was deducted from the blank.  

Bovine serum albumin (BSA) at different concentrations (7.8, 15.6, 31.2, 62.5, 125, 250 and 

500 µg ml-1) was used to produce a standard curve (Figure 2.7). 
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Figure 2.7.   BSA standard plotted between BSA concentration and absorbance  

 

2.10.4 MTS cell proliferation assay 

 

MTS cell proliferation assay is a colourimetric method to identify the cytotoxic potential of a 

test agent. The active agent of this assay is [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium, inner salt] (Owen’s reagent or 
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MTS). The MTS agent is bioreduced by NADPH and NADH produced by dehydrogenase 

enzymes in metabolically active cells, producing a yellow/orange formazan product. The 

amount of formazan product is directly proportional to the number of living cells. Thus, the 

cell proliferation or death can be quantified by reading the plate at 490 nm.  

 

After cell transfection for 96 hrs, cells were washed with PBS (200 µl) and reaction media 

(120 µl), containing DMEM (100 µl) with 10% FCS and MTS reagent (20 µl) (Promega, 

Madison, WI, USA) was added to the cells. Cells were incubated at 37°C with 5% CO2 for 45 

minutes. The quantity of formazan product was measured by the amount of absorbance at 490 

nm. A blank was also performed by adding the reaction media into empty wells. The 

absorbance was read using the Victor plate reader (Wallace, Perkin Elmer Life Sciences, UK). 

Each measurement was deducted from the blank before calculating the percentage cell 

viability.  

 

2.10.5 Intracellular glutathione analysis 

 

Monochlorobimane (mBCl) fluorometric method was used to measure the intracellular GSH 

in this thesis. Adding the membrane-permeant mBCl into culture medium leads the 

intracellular GSH to form GSH-mBCl adduct which can be measured fluorometrically.  

 

A stock solution of mBCl (8mM) was prepared in DMSO and stored at -80°C. The working 

solution of mBCl was prepared immediately before using by adding PBS to give the 800 µM 

final concentration.  
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Following the cell incubation with chemical agents such as GSH-MEE, BSO or CQ at 

appropriate time (section 2.10.1), the cells were washed with PBS (100 µl) and the mBCl (5 

µl, 800 µM) was added into DMEM (95 µl), then added into cells to give final concentration 

at 40 µM. The cells were incubated at 37°C with 5% CO2 for 60 min. The fluorescence of the 

cells was measured at λex 355 nm and λem 460 using the Victor plate reader (Wallace, Perkin 

Elmer Life Sciences, UK). A blank was also performed by measuring the cell fluorescence 

before adding fluorescent probe mBCl. Each measurement was deducted from the blank 

before calculating the relative fluorescence.  

 

2.11 Expression of data 

 

All error bars shown represent the mean and standard deviation of the data from three 

independent experiments. 
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3  SYNTHESIS AND CHARACTERIZATION OF 

OLIGOPEPTIDES, REDUCIBLE POLYCATIONS (RPCs) 

AND POLYPLEXES 

 Abstract 
 

As described previously there are several barriers to be overcome to deliver a 
gene in vitro and in vivo, which provided the key features to achive the 
efficient gene delivery including. In this chapter, the synthetic oligopeptides 
were designed by combining with lysine, histidine and cysteine residues which 
will bind DNA extracellularly, internalise via endocytosis, provide a tunable 
endosomal release mechanism and provide a degradable backbone in order 
that the DNA can be released once in the cytoplasm. The design, synthesize, 
characterize moleculary and biologically of pKa modulatable oligopeptides 
and reducible polycations (RPCs) will be described. The sizes, surface 
charges and the stability of RPC polyplexes under the simulated physiological 
conditions extra- and intracellularly suggested that these RPCs are the 
promising vectors for gene delivery, especially the low molecular weight 
RPCs. 

 

3.1 Introduction  
 
 
For efficient gene delivery, DNA or RNA must be taken across a number of formidable 

biological barriers. In the case of DNA, delivery is to the cell nuclei, while for RNA only 

cytoplasmic delivery is required. For both nucleic acids, a challenging step is to cross the cell 

membrane and gain entry into cellular cytoplasm which can be achieved via endocytosis.[1,2] 

Cationic polymers can be used as non-viral gene carriers by condensing nucleic acids with 

polycations to form polyelectrolyte complexes, known as ‘polyplexes’.[3] When internalized 

into the cytoplasm, via endocytosis, the polyplexes must be able to escape from endosomal 

compartments: and a means to do this is via a buffering capacity as the pH in the maturing 

endosome drops – this is known as the proton sponge hypothesis.[4] This hypothesis 

specifically describes the buffering action of polyethylenimine (PEI)/DNA polyplexes in the 

endosome during acidification and subsequent lysis of the endosome, due to an influx of 
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water due to the change in osmolarity.  This hypothesis can be extended to describe the 

activity of polyplexes which contain other basic groups which are capable of buffering the 

endosome.[5] 

 

In recent years, lysine (K) and histidine (H) have been incorporated into vectors on account of 

their varying abilities to deliver genes in vitro and in vivo,[6-13] which in turn may stem from 

their varying basicities. The degree of success of these vectors may be related to the ability of 

the polycation to buffer acidification in the endosome sufficiently. For example, polyplexes 

formed from poly(L)lysine (PLL) are not very efficient for gene delivery when used alone 

because the primary amine on the side chain of lysine has a pKa of ~10.5, and thus, is highly 

protonated at physiological pH (~7.4),[14] and is therefore unable to buffer the pH effectively. 

Therefore, an endosomolytic agent, chloroquine, is used to increase the transfection efficiency 

of PLL.[7] The rational for the addition of the chloroquine is that it is a weaker base with pKa 

of 8.1 and 10.2 and is able to diffuse into low-pH compartments, whereupon it is protonated 

and buffers acidic vesicles, which aids the lysis of the endosome.[15] Thus, the lack of 

buffering capacity of the protonated amine groups in PLL results in low transfection activity 

of the polyplexes, without chloroquine. Therefore, histidine residues have been incorporated 

into synthetic peptides in order to enhance endosomal release, since the pKa of an imidazole 

group in the histidine side chain is approximately 6.0.[16] It was found that poly(L)histidines 

were able to promote buffering in endosomal compartments allowing the polyplexes to escape 

from the endosome via the proton sponge hypothesis.[17-21]  

 

The use of cysteines in bioconjugates is a well-known strategy for linking molecular 

fragments together via a covalent disulfide bond, and is an appealing option in gene delivery 

chemistries owing to the ready reversibility of the disulfide bonds by the reducing agent 
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intracellular glutathione (GSH).[9,22] Polyplexes have been formed with disulfide bonds in the 

polymer backbone which are stabilized in the extracellular matrix,[23,24] but are cleaved 

efficiently by high concentration of intracellular glutathione, leading to the vector falling apart 

and efficient release of the DNA. These polyplexes are also reasonable gene delivery agents.  

 

3.2 Objectives 
 

In this chapter, we focus on producing a vector from synthetic oligopeptides, that 

incorporrate 3 amino acids – lysine, histidine and cysteine – in order to combine the 

vector features as described previously in Chapter 1 (Table 1.5). Thus, the vectors should 

address several of the key features  highlighted on page 40. 

   - bind DNA extracellularly (I),   

   - cell uptake via endocytosis (III),   

   - provide a tunable endosomal release mechanism (IV),  

  - and provide a degradable backbone in order that the DNA can be released  

       once in the cytoplasm (V).  

 

The design of the oligopeptides (Table 3.1) used in this study was described in section 

1.5.  
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Table 3.1. The synthetic oligopeptides used in this study 

Oligopeptide Sequencea

Bis-(cysteine containing oligopeptides) (2COPs) 

1 

2 

3 

4 

5 

6 

Tris-(cysteine contaning oligopeptides) (3COP) 

7 

 

CK8C 

CK4H4C 

CK2H2K2H2C 

CK2HKHKH2C 

CKHKHKHKHKHC 

CH8C 

 

CK2CK2C 

 a C = Cysteine, K = Lysine, H = Histidine 

 
 

3.3 Methodology 
 
 
The experimental processes in this chapter will be divided into 5 sections as described 

below and show in diagrammatically in Figure 3.1 and 3.2.  

 

   (i) The purification and characterisation of the oligopeptides: The crude 

oligopeptides 2COPs and 3COPs were purified and characterized (Figure 3.1 and 3.2a-b, 

step 1) using high perfomance liquid chromatography (HPLC), electrospray mass 

spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). The pKa values of the 

oligopeptides were then determined using 1H NMR titration. 

 

   (ii) The formation and characterization of RPCs: The reducible polycations 

(RPCs) were synthesized via oxidative polymerisation from 2COPs (Figure 3.1, step 2). 
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The characterisation of RPCs was carried out using gel permeation chromatography 

(GPC) and multi-angle laser light scattering (MALLS).  

 

   (iii) The formation and characterization of RPCs polyplexes: The formation 

of RPCs polyplex with the DNA was performed in a condensation reaction (Figure 3.1, 

step 4), and the stability of the polyplexes under extra- and intracellularly simulated 

conditions was carried out (Figure 3.1, step 5-7). 

 

   (iv) The formation and characterisation of oligopeptide polyplexes: 2COPs 

1-5 were used to form the polyplexes with the DNA (Figure 3.2a, step 2) in order to 

compare their characteristic with RPCs polyplexes. The characterization of 2COPs 

polyplexes was carried out using dynamic light scattering (DLS) (Figure 3.2a, step 3).  

 

   (v) The synthesis of cross-linked RPCs: The cross-linked RPCs were 

synthesized via oxidative polymerisation between 2COPs and 3COPs (Figure 3.2b, step 

step 2) in order to compare with the synthesis of the linear RPCs. The characterization of 

the cross-linked RPCs was performed using GPC (Figure 3.2b, step 3).  
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Figure 3.1.   Schematic overview of characterisation and analysis of oligopeptides and polyplexes in this chapter 
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3.2.   Schematic overview of experiperimental processes of a) 2COPs and polyplexes and b) 3COPs and cross-linked RPC 

Step 1 
 

Purification 
and 

characterization 

SH 

2COPs 

Step 2 
Oxidative  

polymerization 

Crude 
oligopeptide 

HS 
SH 

2COPs 

HS SH 
SH 

3COP 

Step 2 
DNA polyplex 

formation 

Step 3 
 

Characterisation 

Purified 
oligopeptides 

DLS 

Polyplex 

DNA 

HS 
HS SH 

SH 

3COP 

Step 1 
 

Purification 
and 

characterization 

2COPs 

SH 

HS 

Crude 
oligopeptide 

Purified 
olipeptides 

S-S 
S-S

S-S 

S-S
S-S 

S-S

S-SS-S
HS

S-S

Cross-linked RPC

S-S

S-S 

Step 3 
 

Characterisation 
GPC 

b)  a)  

 

 

 
 



  
 

3.4    Results and discussion 
 

3.4.1  Oligopeptide purification and characterization (Figure 3.1 and Figure 3.2a-b, 

Step 1) 

 
 
Crude samples of oligopeptides 1-7 synthesized by Alta Bioscience (Birmingham, UK) using 

Fmoc procedure were purified by preparative reverse phase HPLC as described in section 2.3. 

The final purity of each oligopeptide was determined by analytical reverse phase HPLC, the 

experimental and calculated mass was determined by electrospray-MS and is shown in Table 

3.2. The purity of all oligopeptides was between 97.35-99.64 % by analytical RP-HPLC. The 

purified oligopeptides were then characterized by 1H NMR (500 MHz) and ESI-MS to 

comfirm their structures (section 2.3).  

Table 3.2.  The purity and mass of purified oligopeptides 

 

Oligopeptide 

 

Sequencea

 

Purity (%) b

Experimental Mass 

[M]+ (g mol-1) c

Calculated 

Mass  (g mol-1) d

2COPs 

1 

2 

3 

4 

5 

6 

3COP 

7 

 

CK8C 

CK4H4C 

CK2H2K2H2C 

CK2HKHKH2C 

CKHKHKHKHKHC 

CH8C 

 

CK2CK2C 

 

99.59 

97.42 

98.45 

97.35 

97.41 

97.56 

 

99.64 

 

1249.90 

1285.90 

1285.70 

1285.70 

1285.80 

1321.90 

 

840.50 

 

1249.70 

1285.56 

1285.56 

1285.56 

1285.56 

1321.43 

 

839.42 

a C = Cysteine, K = Lysine, H = Histidine   

b Purity determined by analytical RP-HPLC (see appendix) 
c Mass analyzed by ESI-MS 
d Mass from the calculation 
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3.4.2 Determination of the pKa of the oligopeptides (Figure 3.1 and Figure 3.2a-b,   

Step 1) 

 
 
The pKa values of the purified oligopeptides was determined using 1H NMR titration (section 

2.4). The pKa values were calculated by plotting the change in chemical shift of reporter 

proton resonances against pH (Figure 3.3). At 50% of the height of the change in chemical 

shift the equilibrium position of protonated and unprotonated amino groups is 1:1. Thus, the 

pH at this point is referred as the pKa.   
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Figure 3.3.   pKa calculation by 1H NMR titration plotting the change in chemical shift of reporter proton 

resonances against pH 

 

For 2COP 1 and 3COP 7 the lysine moieties pKa were measured by observing the Hε proton 

of the side chain (Table 3.3). Whilst,  2COPs 2-6, the H5 and H6 proton on the imidazole ring 

were monitored as shown in Figure 3.4 and Table 3.3. The NMR spectra examples from the 

NMR titration experiments are shown in the appendix (section 8.3, Figure 8.25-8.27). 
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The determination of the pKa of the lysine residues in 2COPs 2-5 is not possible because of 

overlapping proton resonance with the β-methylene group of the histidine. However, the pKa 

of the lysine is so much greater (~10.5) than the physiological pH (~7.4), leading to it being 

highly protonated at pH 7.4. Hence small pH shifts will not affect the DNA binding 

significantly. 

  

Table 3.3. pKa value of oligopeptides determined by 1H NMR titration (500 MHz) 

Histidine                                 Lysine 

  

 

 

                  

pKa

 

Oligopeptide 

β 

α 

γ 

δ 
ε 

H2N
OH

O

NH2

α 

β 

H2N
OH

O

N
HN

H5

H6

H5 H6 Hε Average 

2COPs 

CK8C (1) 

CH4K4C (2) 

CH2K2H2K2C (3) 

CH2KHKHK2C (4) 

CHKHKHKHKC (5) 

CH8C (6) 

 

3COP 

CK2CK2C (7) 

 

- 

6.18 

6.15 

6.10 

6.14 

6.2 

 

 

- 

 

- 

6.22 

6.17 

6.12 

6.04 

6.3 

 

 

- 

 

10.51 

- 

- 

- 

- 

- 

 

 

10.81 

 

10.51 

6.20 

6.16 

6.11 

6.09 

6.25 

 

 

10.81 
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For 2COP 1 and 3COP 7 the pKa of the lysine residue were 10.51 and 10.81, respectively. For 

2COPs 2-6 the pKa of the histidine residues were 6.20, 6.16, 6.11, 6.09 and 6.25, respectively. 

As expected the pKa of the imidazole residues in the histidine decreases from 2COPs 2-5 

(Figure 3.5), due to charge repulsion of the subphase protons by the protonated lysine 

residues as described in section 1.6.1.1 and Figure 1.24. 
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Figure 3.5.  Average pKa of histidine-containing oligopeptides 

 

 

In addition, as can be seen in Figure 3.4, at physiological pH (pH 7.4) 2COP 1 is fully 

protonated as there is no chemical shift of Hε at pH less than 8, whereas there is only partial 

protonation in 2COPs 2-6. Furthermore, the 2COPs 2-6 are still not fully protonated at 

endosomal pH (pH ~5), suggesting that 2COPs 2-6 will have a buffering capacity in the 

endosome leading to endosomal disruption via the proton sponge mechanism.[4] 
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3.4.3 Formation and characterization of reducible polycations (RPCs)  (Figure 3.1, 

Step 2, 3) 

 

2COPs 1-6 were oxidative polymerized to form linear polymers via disulfide bond formation 

(referred to reducible polycations, RPCs) (section 2.5.1). The polymerization is shown for 

2COP 2 in Figure 3.6.  
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Figure 3.6. The oxidative polymerization procedure of 2COP 2 (CK4H4C) 

 

We investigated for 2COPs 1-6 the effect of concentration of the oligopeptides on the degree 

of polymerization, and for 2COP 1, we investigated the effect of temperature (ambient and 

40°C) 
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The growth of the RPCs molecular weights was monitored by gel permeation chromatography 

(GPC) (section 2.5.4). At various time intervals 5 μl aliquots were removed and quenched 

with aminoethanethiol (AET, 17 µM, 40 µl). This aliquot was analysed by GPC eluting with 

200 mM NaCl with 0.1% TFA, in order to get the molecular weight against PLL standards 

(5.6, 8.3, 21.3, 62.1 and 128.5 kDa). The GPC chromatogram examples of some 

polymerization reactions are shown in the appendix (Figure 8.28-8.30). 

 

3.4.3.1  Polymerization as a function of oligopeptide concentration  

 

The polymerizations were performed at three 2COP concentrations (18, 30 and 60 mM 

(ambient temperature)) and the molecular weights were determined as a function of time. This 

data is shown in Figure 3.7.  Due to the nature of the step growth polymerization 

mechanism,[25] in which monomers react to form dimers, then trimers, oligomers and finally 

long chain polymers, unsurprisingly, to produce the higher the molecular weight of the RPCs 

the higher concentration of 2COPs is needed in order to increase the chance of interacting to 

the adjacent monomers. At 2COP concentrations of 18, 30 and 60 mM, the relative 

conversions are 40, 60 and 80 %, respectively (data not shown). We propose at the lower 

2COP concentration there may be a competing oxidation forming R-SO-O-,[26,27] resulting in 

the lower polymerization yields, for example, at lower peptide concentration reaction there is 

more chance of thiol groups to be oxidized to R-SO-O-  which resulted in less conversion of 

monomers. All 2COPs showed the same general pattern of the RPC growth. During the first 

12 hr the RPC molecular weight grew slowly and increased rapidly after 12 hr. The maximum 

molecular weight of the RPCs generally reduced after 36 hrs.  
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a) 2COP 1 (CK8C) b) 2COP 2 (CK4H4C) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3.7. Oxidative polymerization of 2COPs (bis-cysteine containing peptides) at various peptide       

concentrations incubated at ambient. [18mM         , 30mM           and 60mM         ] 

The molecular weight was analyzed by GPC using PLL at 5.6, 8.3, 21.3, 62.1 and 128.5 kDa as 

standard curve (all data are an average of the triplicate experiments). 

c) 2COP 3 (CK2H2K2H2C) d) 2COP 4 (CK2HKHKH2C) 

e) 2COP 5 (CKHKHKHKHC) f) 2COP 6 (CH8C)  
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The maximum RPC molecular weight for all 2COPs at 18 mM, 30mM and 60mM are 

approximately 25-45, 30-65, and 50-90 kDa, respectively, as can be seen in Figure 3.8. 
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Figure 3.8.  Oxidative polymerization compared between all 2COPs at different concentrations         

incubated at ambient.  All data are an average of triplicate experiments. 

      [peptide 1         , 2         , 3    X    , 4     X    , 5        , and 6         ]  
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3.4.3.2  Polymerization as a function of temperature for 2COP 1 (ambient and 

40°C) 

 

The reaction mixtures were incubated at ambient and 40°C. Unsurprisingly the 

polymerization at 40°C proceeds more rapidly than that at ambient, reaching a molecular 

weight of approximately 45 kDa after 4 hr, followed by a decrease in molecular weight 

(~25% over 70 hrs) (Figure 3.9a). The ambient  polymerization  reaches  approximately the 

same maximum molecular weight, but after ~24 hr, at which point there is 3% decrease of the 

RPC molecular weight. Both temperatures proceed only to ~37% (40°C) and 41% (ambient) 

yield (Figure 3.9b). The remaining ~60% of material that is eluted has a retention time of 

2COP 1. The GPC chromatograms are shown in the appendix (Figure 8.30). 

 

b) a) 

  

0
5

10
15
20
25

30
35
40
45
50

0 12 24 36 48 60 7
Time (hr)

R
el

at
iv

e 
ar

ea
 (%

)

 ambient 

40°C 
 

 

 

 

 

 

5

10

15

20

25

30

35

40

45

50

0 12 24 36 48 60 7
Time (hr)

M
ol

ec
ul

ar
 w

ei
gh

t (
kD

a) ambient 

40°C 

22

Figure 3.9.   Oxidative polymerization of 2COP 1 (CK8C) at 18 mM concentration reacted at ambient     

 and 40°C           ; a) molecular weight growth, and b) relative area of polymer yield 
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3.4.3.3   RPCs  stability in HEPES buffer 

 

The purified RPCs were stored in the HEPES buffer at -20°C for a period of 2-3 days and 

then reanalyzed by GPC. All the RPCs were stable, except for the RPC formed from 2COP 6, 

which degraded to form a material of molecular weight less than 10 kDa (data not shown). 

 

3.4.4    Formation and characterization of polyplexes  

 

The polyplexes were prepared by mixing the plasmid DNA (pCMV-Luc or pEGFP-C1) in 

HEPES buffer with the vectors (RPCs or oligopeptides) in HEPES buffer. The ratio of 

protonated basic groups (lysine and imidazole) of the vectors to the negative phosphate group 

on the DNA backbone is defined as the N:P ratio. Previously, RPCs (RPC(59) (CH3K3H3C, 59 

kDa) and RPC (113) (CH6K3H6C, 113 kDa) [8]  revealed an N:P ratio of 5:1 gave polyplexes of 

~100 nm diameter, which were non toxic to cells (95% cell viability). Therefore, the 

experiments here were carried out at N:P ratio of 5:1, with controls PLL and PEI at N:P ratios 

of 5:1 and 10:1, respectively, as these represented the most effective system in the 

literature.[28,29]  High N:P ratios were not tested for toxicity and transfection because N:P 

ratios grater than 10:1 lead to high level of cell death and result in decrease in transfection,[30] 

because of a high free concentration of the polycations. 

 

3.4.4.1  Weight per charge and N:P ratio calculation 

 
 
The weight per charges (wpc) were calculated on the actual mass of the oligopeptides 

(2COPs), taking into consideration the counterion associated with the protonation of the 
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amino groups on the lysine and histidine residues at physiological pH. During the synthesis, 

the 10 mer peptides were deprotected in an acidic cocktail containing trifluoroacetic acid 

(TFA), which acts as the counterion forming a TFA salt. Therefore, the number of TFA 

counterions of 2COP 1-5 is 9, due to the TFA counterion forming a salt molecule with the 4 

ammonium ions and 4 imidazolium ions of the 2COP backbone and the protonated N-

terminus of the oligopeptide. The following calculation was used to determine the wpc of all 

oligopeptides in this study.  

 

wpc = 
pHicallogphysioatgroupshistidinelysinebasicprotonatedofnumber

TFAofMWscounterionTFAofnumberpeptideofMW
)/(

)()( ×+
 

 
MW of TFA    = 114 g/mol 

TFA counterion   = CF3COO – 

 

For example, in the case of 2COP 1 (CK8C), as can be seen in Figure 3.4a, there is no change 

in chemical shift of Hε at pH 7.4 which mean the amino groups on the side chain of lysine 

residues are fully protonated at physiological pH. Therefore, the number of positive amino 

groups of this 2COP 1 is 9. 

 

In the cases of 2COPs 2-5, the basic nitrogen atom on the imidazole rings of histidine residues 

are not fully protonated. However, there is a change in the chemical shift of H5 and H6 at pH 

7.4, as can be seen in Figure 3.4b-e, which means there is a degree of protonation of the 

histidine side chain. Therefore, the number of protonated amino groups of the histidine based 

sequences was calculated from the average percentage of the chemical shift changing at pH 

7.4 of H5 (b) and H6 (b’) (Figure 3.10). 
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a 

b 

a' 

b’ 

pH 7.4 

H5

H6

   a , a’ = 100% protonation 

   b, b’ = Fraction of protonated imidazole groups at pH 7.4 

 

Figure 3.10.   The chemical shift change between pH 2-10  

 

Weight per charge (wpc) of 2COPs 1-5 is shown in Table 3.4. 

 

Table 3.4.  Weight per charge (wpc) of  2COPs  

 

2COPs 

 

Number of TFA 

counterions 

Number of positive 

charges 

at pH 7.4 

Peptide Mw  

(g mol-1) 

wpc 

 (g mol-1) 

CK8C (1) 

CK4H4C (2) 

CK2H2K2H2C (3) 

CK2HKHKH2C (4) 

CKHKHKHKHKHC (5) 

9 

9 

9 

9 

9 

9 

5.7 

5.2 

5.4 

5.3 

1249.90 

1285.90 

1285.70 

1285.70 

1285.80 

252.8 

405.6 

444.6 

428.1 

436.2 
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The wpc value is used to calculate the N:P ratio, which is the number of possible protonatable 

basic groups with respect to the negative phosphate groups on the backbone of the nucleic 

acid. The concentration of 2COPs or RPCs calculated to form the polyplexes at final 

concentration of plasmid DNA at 20 µg/ml and at the N:P ratios used in this study is shown 

by the following equation.  

 

Peptides conc. (µg ml-1) = wpcPN
groupphosphateperDNAofmassaverage

DNAplasmidofionconcentratFinal
×× :  

 

Final concentration of plasmid DNA              = 20 µg ml-1

Average mass of DNA per phosphate group  = 325 g mol-1 

wpc    = weight per charge 

 

3.4.4.2  RPC polyplex formation and characterization (Figure 3.1, step 4-7) 

 

3.4.4.2a  Diameter and zeta potential of polyplexes (Figure 3.1, Step 4-5) 

Polyplexes were formed from RPCs 1-5 as described in section 2.7.1 and 2.7.2 at N:P 5. PEI 

(25 kDa) and PLL (70 kDa) were used as controls to form the polyplexes at N:P 10 and 5 by 

leaving the condensation mixtures overnight at ambient temperature. The resultant polyplex 

dispersion was analyzed by zeta potential and dynamic light scattering (Table 3.5). 

 

Zeta potentials were positive in all cases, which will allow the polyplexes to promote the 

internalization via syndecan-mediated endocytosis[31] (Figure 1.22) by electrostatic 

interaction between the positively charged polyplexes and the negatively charged cell 

membrane. 
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Table 3.5.   Properties of RPCs and their polyplexes  

RPCs/ polymer 
Average 

pKa

MW 

(kDa)a

Polydispersity 

indexb

N:P 

ratio 

Zetapotential 

(mV)c

Polyplex size 

(nm)d

RPC 1  

(CK8C)  
10.51 111.4 1.119     5 

       
      10.0  ±  10.9 

     
    132.1  ±    4.5 

RPC 2 

 (CK4H4C) 
6.20   118.0 1.142 5 

      
      14.3  ±    9.7 

     
      98.3  ±    0.6 

RPC 3 

 (CK2H2K2H2C) 
6.16   115.1 1.167 5 

     
      13.5  ±    7.2 

     
      99.8  ±    0.9 

RPC 4 

 (CK2HKHKH2C) 
6.11   102.9 1.063 5 

 
        5.8  ±    3.6 

    
     101.1  ±    2.8 

RPC 5 

(CKHKHKHKHC) 
6.09     94.8 1.125 5 

     
      17.4  ±   11.3 

 
      95.5  ±    1.1 

PEI - 25 - 10        3.4   ±     0.2     108.7  ±    8.6 

PLL - 70 - 5       11.3  ±     9.0       81.0  ±    0.9 

a   Molecular weight of RPCs was analyzed by GPC using CATSEC300 column compared to PLL standard. 
b  Polydispersity index (PDI) of RPCs was measured by size exclusion chromatography (Anachem Ltd., Luton,     

   UK) coupled with multi-angle laser light scattering photometer (Wyatt Technology (Santa Barbara, USA). 
c   Zetapotential was measured by using  Zetamaster (Malvern Instruments, Worcestershire, UK).  
d  Hydrodynamic diameters of the polyplexes were measured by dynamic light scattering using a Zetasizer 3000 

(Malvern Instruments, Worcestershire, UK). 

 

The diameters by DLS for each RPC/DNA polyplex were in the range between 95.5-132.1 nm 

(Table 3.5). However, the polyplexes of RPCs 2-5 were all smaller than for RPC 1, 

suggesting better compaction through the introduction of histidine residues. On first 

inspection this result is counter-intuitive as RPC 1 is more highly charged and one might 

expect tight compaction, as a result of the greater electrostatic interaction. However, the 

incorporation of histidine residues, which are only slightly protonated at physiological pH 

(pH 7.4)(Figure 3.4) results in the polymer chains maybe having a shorter persistence length 
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(Figure 3.11a) that may result in better compaction of the histidine containing polyplexs over 

RPC 1 with it is more potentially rigid structure (Figure 3.11b).  

 

a) -Lys-His-Lys-His- 

 Shorter persistance lenght 

 

 

 

 

 

b) –Lys-Lys-Lys-Lys- 

  

 

 

 

 

 

 

 

 

 

Figure  3.11.    Length persistency of the lysine and histidine based sequences; a) -Lys-His-Lys-His  

and b) -Lys-Lys-Lys-Lys 

3.4.4.2b  Shape of polyplexes (Figure 3.1, Step 5) 

Polyplexes imaged in a solution AFM cell on mica all revealed nanoparticulate matter with 

diameters as indicated by DLS. Comparing the AFM images for RPC 1 (Figure 3.12a and b) 

against RPC 2-5 (Figure 3.12c-f), it can be seen that RPC 1 architectures are less symmetric 
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and appear to have a ‘halo’ around the bright core. These images would suggest and support 

the lower degree of compact for RPC 1, as its ‘halo’ is likely to be non-condensed DNA (see 

Figure 3.16 and associated text). 

 a) RPC 1 b) RPC 1 

c) RPC 2 d) RPC 3 

 

 

 

 

 

 

 

 

 

 

 

 

 
e) RPC 4 f) RPC 5 

 

 

 

 

 

 

Figure 3.12.   Aqueous phase atomic force microscopy of RPCs polyplexes at N:P 5. Images show 

polyplexes of pEGFP-C1 with (a,b) RPC 1; (c) RPC 2 ; (d) RPC 3 ; (e) RPC 4 ; and (f) RPC 5. 

Note that RPC 1 polyplex (CK8C) displays several morphologies consistent with the more rigid 

structure of the fully protonated polylysine backbone at pH 7.4, as seen clearly in plate b) at 

higher magnification. (Studied by Mahmoud Soliman at School of Pharmacy, University of 

Nottingham, UK) 
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3.4.4.2c  Extracellular stability studies of polyplexes (Figure 3.1, Step 6) 

The stability of polyplexes can be investigated by studying the polyelectrolyte exchange 

reaction. The simple method to determine the stabilisation of polyplexes is to evaluate the 

suseptibility to disruption by polyanions. Therefore, polyaspartic acid (PAA) was used as a 

model polyanions to investigate the stability of polyplexes against polyelectrolyte exchange 

reaction. [32,33] The results (Figure 3.13) without PAA all RPCs, PEI and PLL were able to 

form stable polyplexese as shown by no loss of DNA in the gel electrophoresis assay (lane 

a1-g1). Furthermore, the polyplexes formed with RPCs 2-5 were found to be stable even after 

incubating with PAA (lane b2-e2), and were more stable than the polyplex formed with RPC 

1 (lane a2), PEI (lane f2) and PLL (lane g2). The rational of lower stability of RPC 1 

(slightly released DNA with PAA, lane a2) fits with the hypothesis of the higher length 

persistency of the polymer chain resulting in less compaction with DNA (as described in 

section 3.4.4.2a and Figure 3.11) leading to PAA competitively replacing the DNA with 

greater than RPC 2-5. Thus, RPC/DNA binding is not entirely due to electrostratic interaction, 

but also due to some steric contribution, such as molecular entanglement. 
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b) a) 

 

Figure 3.13.    Gel shift assay with (a) and without (b) polyaspartic acid (PAA) of polyplexes formed from 

RPCs 1-5 (N:P 5), PEI (N:P 10) and PLL (N:P 5).  Polyaspartic acid at 250 times of DNA 

concentration was mixed into the polyplex solution. Lanes a1-g1on the left panel are for 

polyplexes without incubating with PAA. Lanes a2-g2 on the right panel are for polyplexes 

incubated with PAA. pCMV-Luc was used to run as standard DNA. Agarose gel electrophoresis 

was run using 1% agarose gel with EtBr (0.5 µg.ml) at 110 V for 60 mins in 0.5x TBE buffer.  

 

 

3.4.4.2d   Intracellular reduction studies of polyplexes (Figure 3.1, Step 7) 

  (i)  Gel shift assay with salt and GSH 

Another key aspect of the vector design criteria was the inbuilt release mechanism aimed 

at destabilising vector-DNA association through the cleavage of the disulfide bonds 

forming the polypeptide. Thus, the stability against physiological concentrations of salt 

and a biological reducing agent, glutathione, was assessed. GSH is thought to be present 

in the cytoplasm at concentrations varying between 5-20 mM dependent on the cell cycle, 

thus  5 mM GSH was used in these studies.[34] Gel electrophoresis assays were carried out 

on polyplexes with NaCl (0.15, 0.5 and 1 M) to evaluate primary binding stability in the 

presence of electrolytes, with GSH and GSH with NaCl to assess polyplex destabilisation 

(Figure 3.14).  
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Figure 3.14.    DNA binding and release demonstrated by agarose gel electrophoresis (gel shift assays). All 

polyplexes formed at N:P 5. Top panel: polyplexes of RPCs 1-3 with pDNA; bottom panel shows 

RPCs 4, 5 compared against non-cleavable polypeptide poly(lysine). Gel shift assays 

demonstrate tight binding of DNA and stability to dissociation by NaCl solutions (lanes a-d for 

all RPCs) but release of DNA following addition of GSH (lanes f-h) for RPCs 1-5 . Agarose gel 

electrophoresis was run using 1% agarose gel with EtBr (0.5 µg.ml) at 110 V for 60 mins in 0.5x 

TBE buffer 

 

The percentage of DNA release against salt concentration in the presence of GSH (5 mM) 

in plotted in Figure 3.15. 
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Figure 3.15.    Percentage of DNA release from RPCs 1-5 after incubating with GSH (5mM) in 

combination with NaCl (0, 0.15, 0.5 and 1 M) 

   [RPC 1         , RPC 2          , RPC 3         , RPC 4    x   , RPC 5         ]             

 

These gel shift assays reveals   

    (a)  RPC 1 produced polyplexes that were both stable in salt alone 

and GSH alone. Data presented later (Figure 3.16) suggested that the GSH does indeed 

cleave the RPC 1. Thus we concluded the short oligopeptide 2COP 1 that probably results, 

after GSH treatment, binds strongly to DNA, and therefore does not release it in the gel. 

Indeed even salt and GSH in combination does not release the DNA from RPC 1/2COP 1 

(Figure 3.15). This result is in contrast to RPCs 2-5 (described below) presumably due to 

the higher charge of 2COP 1, that results in much stronger electrostatic bindng to the 

DNA. 

 

    (b)  RPCs 2-5 produced the polyplexes that were stable in salt (0.15-

1 M) as can be seen from lanes b-d of RPCs 2-5. Furthermore, these RPCs polyplexes 

were also stable in GSH alone (5mM) (lane e of RPCs 2-5). Importantly, however, 

addition of GSH (5mM) in the presence of salt destabilised the polyplexes, leading to 
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release of the DNA in all cases (lane f-h of RPCs 2-5 and Figure 3.15). Thus, the 

combination of GSH under physiological salt concentrations was able to both cleave the 

polydisulfide bonds in the polyplexes leading to lower a molecular weight peptides that 

had a lower affinity for the DNA in the salt solution, leading to disassociate of the 

polyplexes. 

 

    (c)  poly L-lysine (PLL), the non-cleavable RPC 1 analogue, used as 

a control, was found not to release DNA in salt alone, GSH alone and in combination as 

can be seen in lanes b-d, e and f-h of PLL, respectively, as would be expected. 

 

   (ii)  AFM analysis of degradation by GSH 

Disassembly of the polyplexes under reducing conditions was apparent in aqueous phase 

AFM imaging in the presence of GSH. Polyplexes formed from RPC 1 with pEGFP-C1 were 

imaged sequentially following the addition of the reducing agent and marked changes were 

observed in the structures of the individual polyplexes over a period of 220 minutes (Figure 

3.16 a-d). Initially the polyplexes appeared a compact spherical structure (Figure 3.16a). 

However, after 25 minutes expose to GSH (20mM), the polyplexes became less dense, and 

DNA strands were observed to protrude from the core (Figure 3.16). After prolonged times 

(Figure 3.16c-d), a DNA ‘halo’ is visible and the core area is diminished, although complete 

DNA release is not observed for RPC 1. This ‘ halo’ suggested that interactions of the 

cationic components with DNA were diminishing with time, and that condensation of the 

DNA by the vector components was less effective, in line with the earlier gel shift results, 

which suggest disulfide bond cleavage. 
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a) RPC 1 (0 min) b) RPC 1 (25 min) 

c) RPC 1 (90 min) d) RPC 1 (220 min) 

Figure 3.16.   Aqueous phase atomic force microscopy of RPC 1 polyplexes at N:P 5 showing effect of 

reduction by GSH (20 mM). Images (a-d) show individual RPC 1-pEGFP-C1 polyplexes 

immediately after addition of glutathione and after 25, 90 and 220 minutes, respectively. (Studied 

by Mahmoud Soliman at School of Pharmacy, University of Nottingham, UK) 

 

Polyplexes formed from RPC 2 and 3 with pEGFP-C1 were also imaged before (Figure 3.17a 

and c) and 4 hrs after addition of GSH (20 mM) (Figure 3.17b and d). Polyplexes are fewer 

in number after incubating with GSH for both RPCs, and strands of free DNA are visible for 

both RPCs after incubating with GSH (images b,d arrows).  
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 a) RPC 2 (before GSH added) b) RPC 2 (220 mins after GSH) 

 

 

 

 

 

 d) RPC 4 (220 mins after GSH) c) RPC 3 (before GSH added) 

 

 

 

 

 

 

Figure 3.17.    Aqueous phase atomic force microscopy of RPC 2, 3 polyplexes at N:P 5 showing effect of 

reduction by GSH (20 mM).  Image (a,b) and (g,h) depicts RPC 2 and RPC 3 polyplexes with 

pEGFP-C1, respectively, before GSH added and after 220 minutes of incubating with GSH. 

(Studied by Mahmoud Soliman at School of Pharmacy, University of Nottingham, UK) 

 

The control experiments with non-cleavable PLL vectors did not show polyplex breakdown 

under the same conditions (NaCl, GSH) over a time period of 223 minutes (Figure 3.18). 

Compared to RPC 1 in Figure 3.16, the core area of PLL polyplex did not diminish with time, 

as would be expected there are no disulfide bonds that the GSH might cleave. 

 

Thus, the gel shift assay (Figure 3.14) and AFM data have established RPCs 2-5 vectors 

release the DNA under physiological reducing conditions, whereas RPC 1 and PLL do not.  
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 a) 0 min b) 40 min c) 59 min 

d) 80 min e) 153 min f) 223 min 

 

 

 

 

 

 

 

 

 

 

 

 
Scale bar 200 nm,  z = 10 nm 

 

Figure 3.18.   Aqueous phase atomic force microscopy of PLL/DNA polyplexes at N:P 5 showing effect of 

reduction by GSH (20 mM) at the different times. (Studied by Mahmoud Soliman at School of 

Pharmacy, University of Nottingham, UK)  

 

   (iii)  Dynamic light scattering analysis of degradable by GSH 

Further confirmation of RPCs polyplex breakdown under reducing conditions was obtained 

by dynamic light scattering after incubating RPCs polyplexes with GSH (20mM) over a time 

period of 210 minutes (Figure 3.19).  
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Figure 3.19.   Diameters of RPC polyplexes 1-5 following incubation with 20 mM glutathione 

   [RPC 1         , RPC 2          , RPC 3         , RPC 4    x   , RPC 5         ]             

 

The model in Figure 3.20 explains why this should occur. The GSH cleaves the disulfide 

bonds and leads to unpacking of the polyplexes and thus expansion. This model is 

corroborated with the DLS experiments (Figure 3.19).  

 

 

Figure 3.20.    Model of polyplex reduction by GSH 
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In summary, the PLL polyplex is disassembled by PAA (Figure 3.21a) to a greater extend 

than RPC 1 (Figure 3.21b). Presumably, this is because PLL has a higher persistence length 

than RPC 1. This reduction in persistence length of RPC 1 is a result of the reduction in 

charge repulsion of the protonated lysine groups either side of the reducible disulfide bond 

from the cysteines, allow the s-s bond to act as a molecular hinge.  Whereas, RPCs 2-5 are 

stable to PAA (Figure 3.21c) because of the greater compaction of the polyplexes, which we 

hypothesized, is a result of the lower persistence length of RPCs 2-5 over RPC 1 and PLL. 

 

PLL polyplex is unable to be disassembled by GSH and NaCl due to the lack of the disulfide 

bonds (Figure 3.21a). RPC 1 polyplex is cleaved by GSH (Figure 3.21b). However, the short 

2COP 1 that results still binds strongly to the DNA resulting in it being unable to release the 

DNA. RPC 2-5 polyplexes are cleavable by GSH and NaCl and the resulting 2COPs are less 

strongly bound to the DNA, than 2COP 1, and hence the DNA is released (Figure 3.21c). 

 

Therefore, with these stability models, RPCs 2-5 could be promising vectors for non-viral 

gene delivery system. 
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Figure 3.21.  The models of PLL and RPC polyplexes after treating with PAA or GSH+NaCl: a) PLL, b) RPC 1 and c) RPCs 2-5  



  
 

3.4.4.3 Formation of polyplexes with lower molecular weight RPCs (Figure  

3.1, step 4-7) 

 
 

3.4.4.3a  Diameter and zeta potential of polyplexes (Figure 3.1, Step 3-

4) 

DNA polyplexes were prepared from the lower molecular weight (~50 kDa) RPCs at N:P 

ratio 5 in order to compare their properties with the high molecular weight (~100 kDa) RPCs 

(Table 3.6).  

 
Table 3.6. Properties of RPCs at different molecular weight and their polyplexes formed at N:P  5 
 

RPCs 
MW 

(kDa)a

Polydispersity 

indexb

Diameter 

(nm)c

Zeta potential 

(mV)d

  53.9 1.563      99.9  ±    8.3        16.8  ±  11.0 
          

RPC 1 

(CK8C)  111.4 1.119    132.1  ±    4.5        10.0  ±  10.9 

            60.8 1.339      98.4  ±    0.7        10.1  ±  14.0 RPC 2 

 (CK4H4C) 118.0 1.142      98.3  ±    0.6        14.3  ±    9.7 

 40.4 1.318      94.7  ±    1.5 
       

       15.5  ±  15.5 
         

RPC 3 

 (CK2H2K2H2C) 115.1 1.167      99.8  ±    0.9        13.5  ±    7.2 

48.5 1.279    101.1  ±    2.2 
       

         5.3  ±    5.7 
       

RPC 4 

 (CK2HKHKH2C) 102.9 1.063    101.1  ±    2.8          5.8  ±    3.6 

 42.3 1.292      90.7  ±    3.4        12.6  ±   12.3     RPC 5 

(CKHKHKHKHC)  94.8 1.125      95.5  ±    1.1        17.4  ±   11.3 

a  Molecular weight of RPCs was analyzed by GPC using CATSEC300 column compared to PLL standard. 
b Polydispersity index (PDI) of RPCs was measured by size exclusion chromatography (Anachem Ltd., Luton,     

   UK) coupled with multi-angle laser light scattering photometer (Wyatt Technology (Santa Barbara, USA). 
c  Hydrodynamic diameters of the polyplexes were measured by dynamic light scattering using a Zetasizer 3000    

   (Malvern Instruments, Worcestershire, UK). 
d  Zetapotential was measured by using  Zetamaster (Malvern Instruments, Worcestershire, UK). 
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As can be seen in Table 3.6, the diameters for all N:P ratios for each RPC/DNA polyplex at 

lower molegular weight were in the range between 90.7-101.1 nm, compared to the 

polyplexes produced from higher molecular weight RPCs were in the range between 95.5-

132.1 nm. The polyplex diameters and zeta potential values of RPC polyplexes which formed 

from the RPCs at the different molecular weight were similar in all cases. Thus, revealing 

reduction in molecular weight of the RPCs greater than 50% do not affect the diameter and 

surface charge of the polyplexes.  

 

3.4.4.3b  Extracellular stability studies of polyplexes (Figure 3.1, 

Step  5) 

The extracellular stability of the polyplexes of lower molecular weight RPCs was also studied 

using the gel shift assay by incubating the polyplexes with polyaspartic acid (PAA) as shown 

in Figure 3.22.  PEI polyplexes at N:P 10 and PLL polyplexes at N:P 5 were used as a 

control. 
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 a) b) 

 

 
Figure 3.22.   Gel shift assay with (a) and without (b) polyaspartic acid (PAA) of polyplexes formed from  

low molecular weight RPCs 1-5 (N:P 5) ,PEI (N:P 10) and PLL (N:P 5).  Polyaspartic acid at 

250 times of DNA concentration was mixed into the polyplex solution. Lanes a1-g1on the left 

panel are for polyplexes without incubating with PAA. Lanes a2-g2 on the right panel are for 

polyplexes incubated with PAA. pCMV-Luc was used to run as standard DNA. Agarose gel 

electrophoresis was run using 1% agarose gel with EtBr (0.5 µg.ml) at 110 V for 60 mins in 

0.5xTBE buffer. 

 

The results revealed that all RPCs at low molecular weight were able to form stable 

polyplexes with DNA as no DNA was released (lane a1-e1). Furthermore, after incubating 

with PAA (lane a2-e2) they did not release DNA, and were more stable than the polyplex 

formed with PEI and PLL (lane f2 and g2, respectively).  

 

 3.4.4.3c  Intracellular reduction studies of polyplexes (Figure 3.1, 

Step 7) 

Stability of the lower molecular weight RPCs polyplexes against physiological 

concentrations of salt and GSH, was assessed by gel electrophoresis by treatment with 

GSH alone (5 mM), salt alone (NaCl 0.15 and 0.5 M), and combination of salt (NaCl 0.15 

and 0.5 M and GSH (5 mM) to assess polyplex destabilisation (Figure 3.23). PLL 

polyplexes at N:P 5 were used as  controls. These gel shift assays demonstrate that: 
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    (a)  Polyplexes produced from lower molecular weight RPCs 2-5 

slightly released the DNA when in the presence of GSH (5mM) without NaCl (Figure 

3.23, lane b), suggesting that they are more easily reducible than polyplexes with higher 

molecular weight RPCs (Figure 3.14, lane e). However,  these lower molecular weight 

RPCs polyplexes were stable in salt alone (0.15-0.5M) as can be seen in Figure 3.23, lane 

c,d which is similar to the high molecular weight RPC polyplexes (Figure 3.14, lane b,c). 

Importantly, however, addition of GSH (5mM) in the presence of salt destabilised the 

polyplexes, leading to a greater release of the DNA in all cases (Figure 3.23, lane e-f), 

relative to the higher molecular weight RPC polyplexes (Figure 3.14, lane f,g).  

 

    (b)  RPC 1(54) produced polyplexes that were stable in GSH alone, 

salt alone and a combination of both as can be seen in lane b, c-d and e-f (Figure 3.23), 

respectively, and are similar to RPC 1(111) (Figure 3.14, lane a-h). These results reveal 

that the molecular weight of RPCs in both cases does not affect the stability of polyplexes: 

Electrostratic interaction dominate the stability it would seem. 
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Figure 3.23.   DNA binding and release demonstrated by gel shift assays of low molecular weight RPC  

polyplexes. All polyplexes formed at N:P 5. Top panel: polyplexes of RPC 1(54), RPC 2(60) and 

RPC 3(40) with pDNA; bottom panel shows RPCs 4(48), RPC 5(42) compared against non-

cleavable polypeptide poly(lysine). Agarose gel electrophoresis was run using 1% agarose gel 

with EtBr (0.5 µg.ml) at 110 V for 60 mins in 0.5x TBE buffer 

 

In combination, the diameters, surface charges and gel shift assays of polyplexes from low 

molecular weight RPCs 2-5 compared to high molecular weight RPCs 2-5 suggest that the 

low molecular weight RPCs could be promising vectors for gene therapy. However, the cell 

transfections of these polyplexes have to be further investigated to confirm (Chapter 4). 
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3.4.4.4    Oligopeptide polyplex formation and characterization (Figure 3.2a, 

Step 2-3) 

 

As shown in the previous section, the DNA polyplexes were synthesized from RPCs with 

molecular weight of approximately 100 kDa. In this section, the DNA polyplexes were 

formed from the oligopeptides (2COPs 1-5) in order to compare their properties with the 

associated RPCs polyplexes. 

  

DNA polyplexes were formed from 2COP 1-5 at N:P ratio 5 as described in section 2.7.1 and 

2.7.2. PEI (25 kDa) was also used to form polyplexes at N:P 10 as control. Briefly, the 

polyplexes were formed by mixing the oligopeptides in HEPES buffer and the DNA in 

HEPES buffer in the appropriate molar ratios. Diameter of the polyplexes were analyzed by 

dynamic light scattering (section 2.8.1) after approximately 6, 24 and 48 hr of the polyplex 

formation. The diameters of the polyplexes over the course of 48 hr are shown in Table 3.7.  
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Table 3.7.  Diameter of polyplexes from 2COPs 1-5 at N:P 5 and PEI at N:P 10 after 6, 24 and 48 hr of the 

formation. 

Diameter (nm) a
Polyplexes 

N:P 

ratio 6 hr 24 hr 48 hr 

2COP 1 

(CK8C) 
5     2848.0   ±   1500.0    1080.8    ±       135.2       741.6    ±         12.4 

2COP 2 

(CK4H4C) 
5     5217.9   ±   1091.5     1563.7   ±     1103.6     7017.2    ±   10211.4 

2COP 3 

(CK2H2K2H2C) 
5     8643.8   ±   3779.3     4438.7   ±     4186.8     2248.6    ±     2669.6 

2COP 4 

(CK2HKHKH2C) 
5     4830.5   ±     640.7     2415.0   ±       990.6     2320.8    ±     1430.1 

2COP 5 

(CKHKHKHKHC) 
5     7116.9  ±    2546.1   11399.1   ±   10939.3     2150.4    ±     2400.5 

PEI 10         98.0   ±         3.8      126.1    ±          4.6         87.7    ±           1.2 

a The hydrodynamic diameters of the polyplexes were measured by dynamic light scattering using a Zetasizer 

3000 (Malvern Instruments, Worcestershire, UK). 

 

As can be seen in Table 3.7 the diameters of polyplexes reduced over the time course of 48 

hrs. 2COP 1 formed the smallest polyplexes (~741 nm) compared to 2COPs 2-5 (greater than 

1 µm diameter in most cases). The polyplexes formed from 2COP 1 are smaller than those 

from 2COPs 2-5 as a result of higher charged on 2COP 1.  Compared to RPC polyplexes 

diameter (~100 nm), the 2COPs polyplexes are much larger suggesting that the 2COPs 

polyplexes are not suitable for use as vectors for gene delivery, because polyplexes that are 

larger than 1 µm more readily interact with blood components or fixed macrophages resulting 

in the clearance from the blood stream before reaching the cells.[35]  
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3.4.5   Formation and characterization of cross-linked RPCs (Figure 3.2b, step 2-3) 
 

In this section, cross-linked RPCs were synthesized and characterized in order to compare 

their properties with the linear RPCs. 

 

Bis-cysteine containing oligopeptides (2COPs 1-5) were oxidative polymerized with tris-

cysteine containing oligopeptide (3COP 7) to form cross-linked RPCs via disulfide bond 

formation (section 2.5.2). The scheme of the cross-linking polymerization is shown in Figure 

3.24. 

 

Oxidative 
Polymerization 

S-S 
S-S 

SH 

S-S 

S-S 

S-S 

S-S 

S-S 
S-S 

S-S 
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SH 

HS SH 
SH 
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3COP 

HS 

S-S 

+ 

S-S 

Cross-linked RPC 

SH 

 

Figure 3.24.  The model of cross-linking polymerization to form cross-linked RPC via disulfide bond 

formation 

 

The reactions were performed at ambient temperature with 30mM concentration of 2COPs 1-

5 containing 3COP 7 at 4% and 32 % mole fractions. The growth of the cross-linked RPC 

molecular weights was monitored by gel permeation chromatography (GPC) (section 2.5.4). 

At various time intervals 5 μl aliquot were removed from the polymerization vessel and AET 

was added to terminate the polymerization. This aliquot was injected onto the GPC eluting 

with 200 mM NaCl with 0.1% TFA. The eluting time was used to determine the molecular 
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weight against calibration data from PLL standards 5.6, 8.3, 21.3, 62.1, and 128.5 kDa. This 

data is plotted in Figure 3.25. 

 a) 2COP 1 (CK8C) 

0

10

20

30

40

50

60

70

0 12 24 36 4
Time (hr)

M
ol

ec
ul

ar
 w

ei
gh

t (
kD

a)

b) 2COP 2 (CK4H4C) 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

0 12 24 36
Time (hr)

M
ol

ec
ul

ar
 w

ei
gh

t (
kD

a)

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25.   Oxidative polymerization of 2COPs 1-5 at 30mM concentration with and without 4% and    

30% mole fraction of 3COP 7 (CK2CK2C) incubated at ambient. The molecular weight was 

analyzed by GPC using PLL as standard curve. 

  [no 3COP 7          ,  + 4% 3COP 7            and + 32% 3COP 7         ] 

0

10

20

30

40

50

60

70

0 12 24 36 4
Time (hr)

M
ol

ec
ul

ar
 w

ei
gh

t (
kD

a)

8

0

10

20

30

40

50

60

70

0 12 24 36 4
Time (hr)

M
ol

ec
ul

ar
 w

ei
gh

t (
kD

a)

8
0

10

20

30

40

50

60

70

0 12 24 36 4
Time (hr)

M
ol

ec
ul

ar
 w

ei
gh

t (
kD

a)

8

848

c) 2COP 3 (CK2H2K2H2C) d) 2COP 4 (CK2HKHKH2C) 

e) 2COP 5 (CKHKHKHKHC)

No 3COP 7 

No 3COP 7 
 
 
 
 
 
 
 
+ 4% 3COP 7 
 
+ 32% 3COP 7 

 
 
 
 
 
 
+ 4% 3COP 7 
 
+ 32% 3COP 7 

No 3COP 7 
 
 
 
 
 
+ 4% 3COP 7 
 
+ 32% 3COP 7 

No 3COP 7 
 
 
 
+ 4% 3COP 7 
 
 
+ 32% 3COP 7 

No 3COP 7 
 
+ 4% 3COP 7 
 
+ 32% 3COP 7 

References for Chapter 3 are on page 160-163. 
 

152



  
 

The polymerization mixtures of each 2COP without 3COP 7 gave higher molecular weight 

RPCs over an extended time compared to those with 4% and 32% mole fractions of 3COP 7. 

During the first 12 hr the RPCs from 2COP itself grew slowly and increased rapidly after 12 

hr of incubation. The maximum molecular weights of the RPCs (2COP alone) were observed 

between 30 to 36 hr. After 36 hr the molecular weight of the polymers generally reduced. 

However, when 3COP 7 at 4% and 32% mole fractions were present this reduced the growth 

of polymers. For all oligopeptide reactions, the growth of cross-linked RPCs at 32% mole 

fraction of 3COP 7 was lower than those at 4% mole fraction. Therefore, using higher mole 

fraction of 3COP 7 resulted in lower molecular weight of polymers over 4% and 32% 3COP. 

 

The maximum molecular weight of cross-linked RPCs synthesized from all oligopeptides 

varied from approximately 10-35 kDa when carried out with 3COP 7 at 4% mole fraction. 

Synthesis at 32% mole fraction of 3COP 7 in the mixture produced the highest polymer 

molecular weight with 2COP 5 (~30 kDa). The molecular weight of the cross-linked RPCs 

produced from other 2COPs at 32% mole fraction of 3COP 7 are only in the range of 

approximately 5-10 kDa as can be seen in Figure 3.26. 

 

 

 

 

 

 

 

 

 

References for Chapter 3 are on page 160-163. 
 

153



  
 

 a) + 4% 3COP 7 
 
 2COP 4 

2COP 5  
 
2COP 2 

  
 
2COP 1  2COP 3 

 

 

 

0

5

10

15

20

25

30

35

40

0 12 24 36 4
Time (hr)

M
ol

ec
ul

ar
 w

ei
gh

t (
kD

a)

8

b) + 32% 3COP 7 

 

 2COP 5 
 
   
 

  
2COP 2, 3, 4 
 

2COP 1 

0

5

10

15

20

25

30

35

40

0 12 24 36 4
Time (hr)

M
ol

ec
ul

ar
 w

ei
gh

t (
kD

a)

 

 8

 

Figure 3.26.   Oxidative polymerization compared between 2COPs 1-5 at 30mM concentration with and  

without 4% (a) and 30% (b) mole fraction of 3COP 7 (CK2CK2C) incubated at ambient. 

(all data are an average of the triplicate experiments). 

        [2COP 1        , 2         , 3         , 4    X    and 5   X   ] 

 

Due to the inability of the cross-linking polymerization to produce high molecular weight 

polymers, these cross-linked RPCs were not considered further as vectors.  
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3.5    Conclusions 

 
3.5.1   RPC conclusion 

 

The work presented in this chapter has shown the design of synthetic vectors by 

combining lysine, histidine and cysteine residues to provide the key features to hopefully 

achieve efficient gene delivery. These vectors are designed to bind DNA extracellularly 

(I), achieve cell uptake via endocytosis (III), provide a tunable endosomal release 

mechanism (IV) and provide a degradable backbone in order that the DNA can be 

released once in the cytoplasm (V). 

 

Crude samples of bis-cysteine containing oligopeptides (2COPs 1-6) and tris-cysteine 

contaning oligopeptide (3COP 7) (CK8C (1), CK4H4C (2), CK2H2K2H2C (3), CK2HKHKH2C 

(4), CKHKHKHKHC (5), CH8C (6) and CK2CK2C (7)) synthesized by Alta Bioscience 

(Birmingham, UK) were purified by the preparative reverse phase HPLC. All purified 

oligopeptides were analyzed by analytical RP-HPLC, ESI-MS and 1H NMR to obtain the 

purity and to characterize the oligopeptides. The purity of all oligopeptides is shown to be 

between 97.35-99-64 %. 

 

The pKa values of the oligopeptides 1-7 were determined via 1H NMR titration method. For 

2COP 1 and 3COP 7, the pKa of the lysine residue were 10.51 and 10.81, respectively. For 

2COP 6 (CH8C) and RPCs 2-5 the pKa of the histidine residues were 6.25, 6.20, 6.16, 6.11 

and 6.09, respectively. The increase in the mixing of the constitution of the histidine residues 

in the lysine residues results in the reduction of the pKa for 2COPs 2-5 because of the charge 

repulsion of subphase protons by its proximity to the protonated lysine residues.  
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2COPs 1-6 were oxidative polymerized to form linear reducible polycations (RPCs) via 

disulfide bond formation. The polymerization as a function of oligopeptide concentration 

produced higher molecular weight RPCs at high oligopeptides concentration. The maximum 

RPCs molecular weight obtained for all the oligopeptides at 18 mM, 30mM and 60mM are 

approximately 25-45, 30-65, and 50 -90 kDa, respectively. The maximum molecular weights 

of the RPCs were observed between 30 to 36 hr. After 36 hr the molecular weight of the 

RPCrs generally reduced. The RPCs produced from 2COP 3 did not show this decrease in 

molecular weight after 36 hr and produced the longest RPCs at all oligopeptide 

concentrations. All RPCs were stable to the degradation in the HEPES buffer at  -20°C over a 

period of 2-3 days, with the exception of the RPC formed from 2COP 6 (CH8C) which 

degraded. Therefore, the 2COP 6 was not used for further studies. 

 

The polymerization as a function of temperature revealed that the growth of the RPCs at 40°C 

was more rapid than that at ambient. However, approximately the same maximum molecular 

weight was observed (~45 kDa). The polymerisation proceed only to ~37% (40°C) and 41% 

(ambient), the remaining ~60% of material that was eluted has a retention time of 2COP 1. 

 

DNA polyplexes were then formed from RPCs 1-5 (~100 kDa) at N:P ratios 5 and their 

diameters and surface charges were measured. The polyplexes produced from RPCs-DNA 

condensation showed their diameters were at ~100 nm. However, the RPCs 2-5 introduced 

better compaction of the DNA than RPC 1. We hypothesize RPCs 2-5 are more flexible than 

RPC 1, as a result of the incorporation of histidine residues in the lysine based peptides giving 

them a shorter persistence length.   

 

References for Chapter 3 are on page 160-163. 
 

156



  
 

The surface charges were positive for all polyplexes, enabling them to electrostatically 

interact with the negatively charged cell membrane and promote the internalization into cell 

via syndecan-mediated endocytosis.[31] These primary characteristics of RPC polyplexes 

suggested that they are suitable for further cell transfection.  

 

Simulated extracellular stability of these polyplexes was examined. PAA (found in blood 

serum) was used as a competitively polyanionic agent to destabilize the polyplexes.  The 

polyplexes from RPCs 2-5 were stable in this simulated extracellular condition. However, the 

RPC 1 polyplex was slightly unstable in PAA assay. The PEI polyplex was completely 

disrupted under these conditions.  

 

In addition, to the simulated extracellular destabilized conditions, GSH was used as a 

biological intracellular reducing agent, since GSH is present in the cytoplasm (the stability 

under physiological salt concentrations was studied). The polyplexes from RPCs 2-5 were 

stable in salt solution alone in the range 0.15 – 1 M. However, after adding GSH (5 mM), all 

polyplexes released DNA. However, the polyplex from RPC 1 did not release DNA. These 

results suggested that RPCs 2-5 are able to facilitate intracellular reduction resulting in DNA 

releasing for further gene expression mechanisms. Whereas, RPC 1 although probably does 

undergo the disulfide bonds reduction the high net charge on the 2COP 1 that results is still 

bound the DNA more strongly than 2COPs 2-5. 

 

In conclusion, the sizes, surface charges, stability of these polyplexes under simulated 

physiological conditions combined with their sensitivity to levels of GSH which are likely to 

be encountered inside cells (as evidenced by combined gel shift, AFM and DLS) indicated that 

these systems might be effective transfection reagents in vitro.  
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3.5.2   RPC molecular weight conclusion 

 

DNA polyplexes were then formed from low molecular weight RPCs 1-5 (38-60 kDa) at N:P 

5 in order to compare their characteristic as a function of RPC molecular weight. The 

polyplexes produced from low molecular weight RPCs were similar to those from high 

molecular weight RPCs (~100 kDa). The surface charges were similar to polyplexes from 

high molecular weight RPCs. These primary characteristics suggested the lower molecular 

weight RPC polyplexes may also be suitable vectors. 

 

Extracellular stability of these polyplexes were further examined by the PAA assay, and 

revealed that the polyplexes from low molecular weight RPCs 1-5 were stable in this 

simulated extracellular condition.  

 

The intracellular stability of these lower molecular weight RPC polyplexes against 

physiological salt concentrations (0.15-0.5 M) and GSH (5 mM) was studied. The polyplexes 

from RPCs 2-5 were stable in salt solution alone. However, these RPCs polyplexes are less 

stable to GSH compared to the polyplexes from high molecular weight RPCs. Therefore, 

unsurprisingly, when combined salt and GSH in the RPCs polyplex solutions, they released 

more DNA, which might promote enhanced gene delivery over the higher molecular weight 

RPC polyplexes. 

 

In conclusion, the diameters, surface charges and gel shift assays of polyplexes from low 

molecular weight RPCs 2-5 were similar to high molecular weight RPCs 2-5, but had 

enhanced release of DNA when treated with GSH suggesting that the low molecular weight 

RPCs could also be promising vectors for gene therapy. 
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3.5.3 Oligopeptide polyplexes conclusion 

 

DNA polyplexes were then formed from 2COPs 1-5 at N:P 5 and their diameters were 

measured.  All polyplexes from 2COPs 1-5 formed large particles which were greater than 1 

µm diameter over time course of 48 hr. In general, the particle diameter less than 1µm 

circulate longer in the bloodstream than the larger particles if there are no interactions with 

blood components or fixed macrophages.[35] Therefore these polyplexes suggest that they are 

not suitable for further cell transfection. 

 

3.5.4 Cross-linked RPCs conclusion 

 

The oxidative polymerization to form cross-linked RPCs was also studied by mixing between 

2COP 1-5 and 3COP 7 at 4% and 32% mole fraction of 3COP 7. The results showed 

termination in the growth of cross-linked RPCs producing low molecular weight in all cases. 

The higher the mole fraction of 3COP used, the lower the polymer molecular weight 

produced. We believe the 3COP leads to the termination of the cross-linked RPCs during the 

reaction. The maximum molecular weight of cross-linked RPCs for all 2COPs varied from 

approximately 10-35 kDa with 3COP at 4% mole fraction, whereas reacting with 32% mole 

fraction of 3COP the maximum molecular weight was only 5-10 kDa. With such low 

molecular weights of these polymers, they not considered further study as gene delivery 

carriers.  
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4   DELIVERY OF NUCLEIC ACID USING LYSINE, 

HISTIDINE AND CYSTEINE BASED OLIGOPEPTIDES 

AND REDUCIBLE POLYCATIONS (RPCs) 

Abstract 
 

In this chapter the cell transfections based on endosomolytic and 
intracellularly reducible characteristics of the pKa modulated-reducible 
polycations (RPCs) were carried out. These RPCs are not only more active 
at transfection than current systems such as PEI and PLL, but importantly 
are also much better tolerated by two different cell types, bEND3 and A549. 
Furthermore, they can facilitate endosomal buffering and intracellular 
reduction. The highest transfection efficiencies in both cell types were with 
RPC 2. In addition, using low molecular weight RPCs (~50 kDa) as a vector 
induces higher transfection levels than the high molecular weight RPCs 
(~100 kDa). The oligopeptides were shown to be unsuitable to be vectors. 

 
 

4.1     Introduction  
 
 
 
Nature employs a number of highly evolved strategies to package and process nucleic acids. 

Proteins such as histones condense DNA within a cell via the spatially-controlled display of 

protonatable peptide side-chains.[1] Viruses have developed polymeric structures that compact 

nucleic acids for transfer across cellular barriers, then release the ‘foreign’ genetic material 

via specific biological triggers.[2] For the delivery of nucleic acids for therapy, synthetic 

carrier molecules that combine advantageous features of DNA condensing agents, but without 

the infection and immune response problems of viruses are needed.[3-8] The most efficient 

synthetic gene delivery agents for many applications are partially protonated branched 

poly(ethyleneimine)s (PEI), a polycation that can transfect cells in vitro and in vivo.[9-13] 

Unfortunately, PEI exhibits unacceptable toxicity,[14] which arises in part from the 

combination of a non-degradable polymer backbone and a residual high polycation content. 
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As described in Chapter 1, chloroquine has the ability to buffer the endosomal pH, resulting in 

endosomal membrane disruption.[15] Therefore, polyplexes that have no buffering capacity 

such as those contain PLL need chloroquine to promote the endosomal escape.[16, 17] However, 

the use of chloroquine results in cell toxicity.[17] 

 

Therefore in our group’s previous work,[18] The RPC(59) (CH3K3H3C, 59 kDa) and RPC 

(113) (CH6K3H6C, 113 kDa) were developed by incorporating histidine residues which help 

promote the endosomal buffering. These RPCs were synthesized by oxidative polymerization, 

and they have an average pKa of ~5-6. These RPCs formed stable polyplexes with plasmid 

DNA at N:P ratio of 5 with the polyplex sizes ~100 nm in diameter. Addition of chloroquine 

increased the transfection of RPC(59) ~3.2-12.7 fold. However, there was no enhancement in 

RPC(113). These previous results indicated that incorporating histidine improves the 

transfection ability. In addition, RPCs containing disulfide linkages have previously been 

shown to be stable in the extracellular matrix,[18-20] but cleaved efficiently by intracellular 

glutathione, leading to disassemble of the vector to oligomers, which also reduces the toxicity, 

and efficient release of the nucleic acid payload.  

 

However, the coupling of reducible vector backbones with modulated pKa DNA-binding side-

chains has not hitherto been investigated. Therefore, we planned to exploit proximities of 

protonatable groups on a peptide side chain in order to control the pKa range (shown in 

Chapter 3, page 119 and discussed in term of the hypothesis in Chapter 1, page 48). 

Therefore, the pKa of vectors that promotes the endosomal escape in cell transfection will be 

optimized. 
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4.2    Objectives 
 
 

Therefore, the six pKa-moduatable decameric peptides containing lysine and/or histidine and 

terminated with cysteine residues (CK8C (1), CK4H4C (2), CK2H2K2H2C (3), CK2HKHKH2C 

(4), CKHKHKHKHC (5) and CH8C (6)), prepared in Chapter 3, have 4 key criteria to 

enhance gene delivery. These are:  

 

i) Peptide-side-chain functionality provide electrostatic interaction with the DNA 

via the incorporation of lysine residues, which will be fully protonated at physiological pH, 

leading to strong extracellular binding to DNA, 

ii) Modulatable endosome release via buffering by the mixing of lysine and 

histidine residues to modulate the pKa of vectors, 

iii) Biodegradation to promote the release of the DNA, by introducing the 

disulfide backbone, which will be reduced by intracellular GSH, and 

iv) Biodegradation to reduce the toxicity, as the polyplexes can be reduced by 

intracellular GSH, resulting in small fragments of oligopeptides which will be cleared more 

readily than high molecular weight polymers. 

 

Therefore, in this chapter, the cell transfection of these vectors will be studied via experiments 

that manipulate the endosomolysis (addition of CQ) and the intracellular reduction (addition 

of BSO (GSH depleter) and GSH-MEE (GSH raiser)). 
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4.3    Methodology 

 

The transfections were carried out in two representative cell lines, mouse brain endothelial 

cells (bEND3) and human lung carcinoma epithelial cells (A549). These cell lines were 

chosen because for therapeutic applications it is important to consider transduction of both 

endothelial (bEND3) and epithelial cells (A549). The bEND3 cells serve as a model for the 

surfaces that are accessible following bloodstream administration of the polyplexes, while 

A549 cells are representative of most types of common cancer cells. Therefore, for efficient in 

vivo transfection polyplexes should not attach and/or transfect endothelial cells if they are 

injected into bloodstream, otherwise they are unable to reach the target tissue that needs to be 

treated (Figure 4.1). 

 

The controls, PLL and PEI polyplexes, were used, and the background of cell transfection was 

performed by cell lines with no transfection agent (the polyplexes).  
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Figure 4.1.  Physiology of artery, endothelium and capillaries; Image modified from:     

      http://www.webbooks.com/eLibrary/Medicine/Physiology/Cardiovascular/capillary.jpg , and 

                    http://cache-media.britannica.com/eb-media/83/98483-004-FD45DAA5.jpg 

 

The experimental processes in this chapter will be divided into 2 sections as described below 

and shown in Figure 4.2. 
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GSH-MEE) 

SH 
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Cell transfections (bEND3 and A549)
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DNA 
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Polyplex 

Step 2 
Cell transfections (A549)

Figure 4.2.   Schematic overview of cell transfection in this chapter; a) transfection with RPCs polyplexes 

and b) transfection with 2COPs polyplexes  

 

4.3.1  Cell transfections of RPCs polyplexes 

 

The cell transfections of RPC polyplexes were carried out based on four experiments (Figure 

4.2a, step 2). 

 

   Exp  1.  Investigate the cytotoxicity of RPCs polyplexes: The 

cytotoxicity of RPCs polyplexes was investigated using the MTS assay. 
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Exp 2. Investigate the endosomolytic buffering: The transfection of the pKa 

modulated RPCs based on the endosomal buffering and endosomal escape was investigated. 

Chloroquine (CQ) was added to the cell lines for its ability to buffer the endosome. The 

transfection efficiencies of polyplexes with and without CQ were investigated, in order to 

assess the ability of the histidine moieties to buffer the endosome. 

 

Exp 3. Investigate the intracellular reducible property: The intracellular cleavage 

of the disulfide bonds in the RPCs polyplexes by GSH was studied as a function of 

transfection. Intracellular GSH levels were boosted by adding glutathione monoethyl ester 

(GSH-MEE), which is cell permeable and is hydrolysed to GSH intracellularly.[21] In addition, 

an experiment using buthionine sulfoximine (BSO) which inhibits the synthesis of the 

intracellular GSH was studied as a function of transfection. Thus, an assessment of the nature 

of the disulfide bonds can be made on transfection efficiency. 

 

Exp 4. Investigate the endosomolytic buffering and intracellular reducible 

properties: The combination of CQ and GSH-MEE was also carried out in the cell 

transfection studies. The transfections of polyplexes with CQ, GSH-MEE, CQ+GSH-MEE 

and only poplyplexes were investigated, to make a combined assessment of both the nature of 

the histidine moities and the disulfide bonds on the transfection efficiency. 

In addition, the characterization of lower molecular weight RPCs (~40-60 kDa) and their 

polyplexes at N:P 5 studied in Chapter 3 (section 3.3.4.3) also suggested that they were 

suitable for cell transfection. Therefore, the transfection efficiency of RPCs as a function of 

molecular weight will be investigated in this chapter as well. 
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 4.3.2  Cell transfections of oligopeptides polyplexes 

 

Although, the polyplexes produced from 2COPs (see section 3.4.4.4) revealed that they were 

not  suitable for using as vectors as the polyplex diameters were large, the transfection of 

these polyplexes was also investigated (Figure 4.2b) to compare with RPCs. 

 

4.4   Results and discussion 

 

The overview of cytotoxicity and transfection experiments are shown in Figure 4.3 and 

described in detail in section 2.10.1. Briefly, cell lines (104 cells/well) were grown in 96 well 

plates for 18 hr. The cells were washed (step 1) and serum free DMEM medium and CQ (100 

µM), GSH-MEE (5 mM) or BSO (100 µM) (step 2) was added. Cells were incubated for 1, 3 

or 24 hrs with CQ, GSH-MEE or BSO, respectively, before washing and transfecting cells 

with the polyplexes (step 3). Further serum containing DMEM medium was added to the 

washed cells, and the cells were further incubated for 96 or 44 hrs for cytotoxicity 

determination (step 5-6) or transfection level determination (step 7-9), respectively. 
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Figure 4.3.   Schematic processes of cytotoxicity and cell transfection studies of polyplexes with CQ, GSH-

MEE or BSO 

 
 

4.4.1   Cytotoxicity of RPC polyplexes (Figure 4.2a, step 2, Exp 1) 

 
The MTS cell proliferation assay was utilized to determine the cytotoxicity of all polyplexes 

at both high and low molecular weight as described in section 2.10.4. The MTS reagent is 

bioreduced by NAD+ and NADH produced by dehydrogenase enzymes in metabolically 

active cells, producing a yellow/orange formazan product (Figure 4.4). The amount of 
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formazan product is directly proportional to the number of living cells. Thus, the cell 

proliferation or death can be quantified by reading the absorbance of the plate at 490 nm.  
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Figure 4.4.   Schematic diagram showing cellular metabolism resulting in the conversion of MST agent to 

formazan in MTS assay 

 

The process of cytotoxicity determination of the transfected cells is shown in Figure 4.3. 

Briefly, after transfecting cells with polyplexes (step 1-4) with or without the combination 

with the additive compounds (CQ or GSH-MEE), the cells were further incubated for 96 hrs. 

The incubated cells were washed and subjected to the MTS assay by adding the MTS reagent 

(step 5) and further incubated for 45 minutes. The absorbance was then measured at λ = 490 

nm. A blank was also performed by adding the reaction media into empty wells. The blank 
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was deducted before calculating the percentage of cell viability relative to non-transfected 

cells. 

 

In addition, in order to compare with our group’s previously developed RPCs (CH6K3H6C, 

RPC(113) and CH3K3H3, RPC(59))[18] which shown that they are less toxic to cell (~95% cell 

viability) the same amount of DNA polyplexes (with 0.5 µg DNA per well) was used in this 

thesis.  

 

The cell viability after 96 hours of the transfection is illustrated in Figure 4.5.  
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Figure 4.5.      Cell viability following exposure to RPCs (~50 and ~100 kDa) polyplexes 1-5 at N:P 5, PLL polyplex at N:P 5, PEI polyplex at N:P 10 and 

cell    controls; (a, b) : cell viability of transfected cells with RPCs at lower molecular weight (~50 kDa) in bEND3 and A549, respectively. and 

(a1,b1) : cell viability  of transfected cells with RPCs at high molecular weight (~100 kDa) into bEND3 and A549, respectively. Note: The 

percentage of cell viability shown in this diagrame derived from the average cell viability (%) of cells treated with polyplex alone and in the 

combination of polyplexes and CQ, GSH-MEE and CQ+GSH-MEE in each cases 
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As can be seen in Figure 4.5 the data demonstrated that using RPCs alone at both molecular 

weights as vectors were tolerated well by both cell lines (blue bars), apart from RPC 1 (~100 

kDa) which is slightly toxic to A549 (~75% viability after 96 hours post transfection). In 

addition, GSH-MEE does not decrease the cell viability. However, both CQ (black bars) and 

CQ+GSH-MEE (yellow bars) treated cells are less viable. This data indicates that CQ caused 

toxicity to cells. In addition, there was previous study that also indicated cells may be exposed 

to relative low concentration of chloroquine (100 µM) during the transfection, but the 

concentration within cells is found to be much higher resulting in cell toxicity and substantial 

loss of cell viability.[17] 

 

Furthermore, the average cell viability in the transfections with PLL and PEI polyplexes when 

in combination with CQ, GSH-MEE and GSH-MEE+CQ in both cells showed that they are 

slightly toxic to both cells (~80-87% cell viability).  

 

In summary, the overall cytotoxicity data indicated that RPCs 1-5 at low and high molecular 

weight are less toxic to both cell lines (~84-108% cell viability) and similar to (CH6K3H6C-

RPC113 and CH3K3H3-RPC59)[18] (~95% cell viability)  relative to PLL (77-85% cell viability) 

and PEI (71-91% cell viability) polyplexes.  
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4.4.2 Cell transfection of RPCs polyplexes (Figure 4.2a, step 2) 

 

The process of transfecion experiments is shown in Figure 4.3. Briefly, after transfecting 

cells with polyplexes (step 1-4) with or without the combination with the additive compounds 

(CQ or GSH-MEE), the cells were further incubated for 44 hrs. The cells were washed and 

the cell lysis buffer was added to the cells (step 7). The cell lysate (from freezing and thawing 

the cells were analysed by luciferase assay to obtain the relative light units (RLU) (step 8) 

(section 2.10.2) and the amount of protein produced by the advanced protein assay (step 9) 

(section 2.10.3). Thus, the gene expression will be shown in relative light units per milli gram 

of protein (RLU/mg protein). NB. The luciferase assay is a chemiluminescence assay that is 

directly proportional to the amount of protein that is produced upon transfection.  

 

PLL and PEI polyplexes at N:P 5 and 10, respectively were used as controls.  

 

A background experiment was carried out with cell lines in which the process outlined in 

Figure 4.3 was repeated, but whereby the polyplex was not added in step 3.  
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4.4.2.1 Cell transfection of RPCs polyplexes based on the endosomolytic 

buffering: effect of CQ    (Figure 4.2a, step 2, Exp 2) 

 

The mixing of the position of the constitution of the histidine and lysine in 2COPs 2-5 

provided a subtle way of modulating the pKa of the imidazole residues. The average pKa of 

2COPs 2-5 were 6.2-6.09 (section 3.4.2, page 117), thus at physiological pH (~7.4) they will 

not be fully protonated and will have different buffering capacities when in the early 

endosome, whose pH is ~6. Therefore, using the reducible polycations (RPCs) of these 

2COPs, their buffering will promote modulatable endosomolysis as described earlier (page 

27) under the proton sponge hypothesis.[22]  

 

In this experiment, we investigated the cell transfection with RPCs/pCMV-luc polyplexes. 

The RPCs used as vectors are shown in Table 4.1.  
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Table 4.1.  RPCs, polymers and their polyplexes used in cell transfection studies 

 

RPCs/polymers 

 

pKa
a

MW  

of RPCs 

(kDa)b

N:P 

of 

polyplexes 

Diameter  of 

polyplexes 

(nm)c

Zeta potential  of 

polyplexes  

(mV)d

RPC 1 (CK8C) 

RPC 2 (CK4H4C) 

RPC 3 (CK2H2K2H2C) 

RPC 4 (CK2HKHKH2C) 

RPC 5 (CKHKHKHKHC) 

PLL 

PEI 

10.51 

6.20 

6.16 

6.11 

6.09 

- 

- 

111.4 

118.0 

115.1 

102.9 

94.8 

70 

25 

5 

5 

5 

5 

5 

5 

10 

     132.1  ±    4.5 

       98.3  ±    0.6 

       99.8  ±    0.9 

     101.1  ±    2.8 

       95.5  ±    1.1 

       81.0  ±    0.9 

     108.7  ±    8.6 

10.0  ±  10.9 

14.3  ±    9.7 

13.5  ±    7.2 

  5.8  ±    3.6 

 17.4  ±   11.3 

 11.3  ±     9.0 

  3.4   ±     0.2 

a average pKa values analysed by 1H NMR titration  
b  Molecular weight of RPCs was analyzed by GPC using CATSEC300 column compared to PLL standard. 
c Hydrodynamic diameters of the polyplexes measured by dynamic light scattering using a Zetasizer 3000 

(Malvern Instruments, Worcestershire, UK). 
d  Zetapotential measured by using  Zetamaster (Malvern Instruments, Worcestershire, UK). 

 

Chloroquine (CQ) (section 1.1.2.2a), a quinoline base with a protonatable diamine containing 

side-chain, was used for its ability to buffer endosomes.[23] The ability of these polyplexes to 

act as proton sponges for endosome escape could be inferred from the studies with added 

chloroquine: for example if the polyplexes had good buffering capacity, then the addition of 

CQ would have a reduced impact on the transfection than if the polyplexes had poor buffering 

capacity. 

 

Cell lines were incubated with or without CQ (100 µM) for 1 hr (Figure 4.3, step 2) before 

washing and transfecting cells with polyplexes. The transfections of polyplexes with or 

without CQ were compared and shown in Figure 4.6.  
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Figure 4.6.   Transfection based on CQ with RPC polyplexes 1-5 at N:P 5, PLL polyplex at N:P 5, PEI 

polyplex at N:P 10 and cell control; a) transfection in bEND3 and b) transfection in A549 
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 bEND3 cells (Figure 4.5a): 

 

  Without CQ 

 

As can be seen in Figure 4.6a RPCs 1-5 polyplexes alone all transfect with significant levels 

above the background. RPC 1 polyplex gives the lowest level of transfection of the RPCs 1-5, 

indicating the histidine moieties are playing a significant part in the transfection ability, i.e. 

increasing the endosomal release. Furthermore, RPC 1 polyplex has ~2 order of magnitude 

increase transfection over the non-reducible PLL polyplex, i.e. the reducible disulfide bond is 

playing a significant part in the transfection efficiencies. 

 

RPCs 2-5 polyplexes have ~1 to ~4 orders of magnitude greater transfection ability that PEI10 

and PLL, respectively.  

 

  With CQ 

 

The addition of CQ increases the transfection ability by ~1 order of magnitude for all the 

polyplexes studied, indicating that these polyplexes need CQ to promote endosomal buffering. 
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A549 cells (Figure 4.6b): 

 

  Without CQ 

 

The first point to note is that RPC 1 alone does not trasfect the cells (RLU is below 

background), whereas, RPCs 2-5 all transfect the cells. Thus, indicating that RPC 1 does not 

have an efficient mechanism for escaping the endosome. 

 

  With CQ 

 

As expected, there is ~3 orders of magnitude increase in transfection with cells incubated with 

CQ and RPC 1 polyplex relative to the polyplex alone. This enhancement is because the RPC 

1 has no histidine residues which promote the buffering capacity in the endosomes, therefore 

it has no efficient mechanism to escape from the endosome by itself for gene expression.  

 

In contrast, there is a modest increase (less than one order of magnitude) in transfection with 

cells (A549) incubated with CQ and polyplexes of RPCs 2-5 (black bars) than the cells 

incubated with the polyplexes alone (blue bars). This result suggests that RPCs 2-5 are 

buffering the endosome, indicating the importance of the intermediate pKa of these RPCs. 

 

There is only a slight increase in the transfection of cells incubated with CQ and PLL and the 

transfection level is near to the background. This result indicates both the lack of a buffering 

mechanism in the endosome and the lack of DNA release once subsequently in the cytoplasm. 
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In summary, from the results of this transfection study based on the endosomolytic buffering 

capacity of the RPCs 1-5 it can be inferred that histidine moiety is important for gene 

transfection. 

 

4.4.2.2 Cell transfection of RPCs polyplexes based on intracellularly reducible 

property: effect of GSH-MEE/ BSO (Figure 4.2a, step 2, Exp 3) 

 

It was established that the RPCs 1-5 polyplexes are stable in the extracellular matrix (section 

3.4.4.2c), and they are cleavable in GSH and salt solution (section 3.4.4.2d). In this study we 

investigated the intracellular reduction of these polyplexes as a function of transfection. 

Glutathione monoethyl ester (GSH-MEE) (Figure 4.7a) was incubated with the cell lines in 

order to increase the intracellular concentration of GSH. The GSH-MEE is transported into 

cells effectively by incubation, and is converted into GSH intracellularly.[21] Thus, 

transfection efficiency of RPCs 1-5 should be boosted. Conversely, another set of cells was 

incubated with buthionine sulfoximine (BSO) (Figure 4.7b) which inhibits GSH production, 

and hence should knock down the transfection efficiency. 
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Figure 4.7.  Structures of Glutathion monoethyl ester (GSH-MEE) (a), and buthionine sulfoximine (BSO) 

(b) 

 

4.4.2.2a Artificially increase the intracellular GSH level: effect of   

               GSH-MEE (5mM) 

The GSH-MEE was used to boost the intracellular GSH in order to probe the reductive 

cleavage mechanism in the cells. Briefly (Figure 4.3), cell lines were incubated with GSH-

MEE (5mM) (step 2) containing medium for 3 hrs before washing and transfecting the cells 

with the polyplexes (section 2.10.1). The transfection cells (bEND3 and A549) with 

polyplexes without (blue bars) and with incubation with GSH-MEE (pink bars) are shown in 

Figure 4.8. 

 

 bEND3 cells (Figure 4.8a): 

 

Transfection of cells incubated with GSH-MEE (pink bars) has in all cases increased the 

transfection ability over no incubation with GSH-MEE (blue bars). This result is as expected 

as we have raised the intracellular GSH levels and hence the DNA should be released more 

efficiently once in the cytoplasm, via more rapid cleavage of the disulfide bonds in the RPCs. 
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 A549 cells (Figure 4.8b): 

 

The case with A549 cells is not so clear cut as for bEND3 cells. Here polyplexes from RPCs 

1, 2, 4 and PLL observed the expected results of an increase in transfection, whereas RPC 3 

saw a reduction in the transfection and RPC 5 has no change in transfection. However, taken 

as a series we conclude the transfection efficiencies have increased as one might expect. 
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Figure 4.8.  Transfection based on GSH-MEE and BSO with RPC polyplexes 1-5 at N:P 5, PLL polyplex 

at N:P 5, PEI polyplex at N:P 10 and cell control; a) transfection in bEND3 and b) transfection 

in A549 
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4.4.2.2b Artificially depleting the intracellular GSH level: effect of 

BSO 

BSO is a GSH biosynthesis inhibitor by inhibiting the γ-glutamylcysteine synthetase in the 

glutamyl cycle for glutathione synthesis (Figure 4.9).[24] Therefore, BSO was used to deplete 

intracellular GSH.[25] Briefly (Figure 4.3), cell lines were incubated with BSO (100 µM) 

(step 2) containing medium for 24 before washing and transfecting the cells with the 

polyplexes (section 2.10.1).  

 

 

Figure 4.9.    Inhibition of glutathione synthesis by buthionine sulfoximine (BSO) in γ-glutamyl cycle  

 

The transfection cells (bEND3 and A549) with polyplexes without (blue bars) and with BSO 

(green bars) are shown in Figure 4.8. 
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 bEND3 cells (Figure 4.8a): 

 

The transfection ability of cells incubated with BSO (green bars) and treated with the 

polyplexes increased. Clearly, this result is contrary to what was expected as the BSO should 

deplete the amount of intracellular GSH, resulting in poorer release of DNA from the 

polyplex in the cytoplasm and hence reduced transfection. 

 

 A549 cells (Figure 4.8b): 

 

In contrast, the A549 cells behaved as expected and all the transfections were knocked down 

by BSO treatment.  

 

4.4.2.2c Assessing intracellular GSH levels in A549 and bEND3 cells 

treated with GSH-MEE and BSO 

     

As noted ealier (section 4.4.2.2b) the bEND3 cells treated with BSO had increased levels of 

transfection over the cells not treated with BSO. This result appears anomalous, as the BSO 

should knock down intracellular GSH levels and hence the polyplexes should not be degraded 

less efficiently in the cytoplasm. Therefore, we examined the glutathione content of both cell 

lines with and without treatment with GSH-MEE and BSO. Monochlorobimane (mBCl) was 

utilized to probe the intracellular GSH (section 2.10.5) (Figure 4.10). Briefly, after incubating 

cells with GSH-MEE or BSO at appropriate times (step 1, 2), the background fluorescence 

was measured (λex at 355 nm and λem at 460 nm) (step 3). The monochlorobimane (mBCl) 

was added into cells (step 4) and further incubated for 60 minutes before measuring the 

References for Chapter 4 are on page 210-214. 
 

192



fluorescence again (step 5). The relative fluorescence was calculated after subtracting the 

background.  

 

Figure 4.10.  The schematic processes of intracellular GSH determination 

 

The intracellular GSH levels of cell lines incubated with GSH-MEE or BSO are shown in 

Figure 4.11. 
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Figure 4.11.    Relative fluorescence of intracellular GSH based on the addition of GSH-MEE and BSO in 

bEND3 and A549 cells 

 

 

There is boosting in intracellular GSH level in both cell lines incubated with GSH-MEE 

(bEND3 and A549, pink bars) relative to the cell control (bEND3 and A549, yellow bars). 

However the effect is more enhanced in bEND3 as the relative fluoresence increases ~ 175% 

compared to ~ 40% in A549.  

 

However, There is no reduction of the intracellular GSH in bEND3 cells incubated with BSO 

(bEND3, green bar) relative to the cell control (bEND3, yellow bar), indeed, there is ~50% 

increase. In contrast, the intracellular GSH in A549 cells incubated with BSO (A549, green 

bar) decreases relative to the cell control (A549, yellow bar) by 75%.  

 

We do not understand why the intracellular GSH levels rise when the bEND3 cells are treated 

with BSO. However, now known this the data present in Figure 4.8a (green bars) is not 

anomalous. 
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4.4.2.3 Cell transfection of RPCs polyplexes based on the combination of 

endosomolytic and intracellularly reducible properties (Figure 4.2a,    

step 2, Exp 4) 

 
 
The transfection of RPCs polyplexes based on endosomolytic and intracellularly reducible 

properties were also investigated. The transfections were carried out by adding CQ alone, 

GSH-MEE alone and the combination of CQ and GSH-MEE into cell lines, as well as 

incubation with the polyplexes alone (section 2.10.1). The transfection processes are shown in 

Figure 4.3. The transfection levels by the polyplexes with CQ alone, GSH-MEE alone, or 

CQ+GSH-MEE and the polyplexes alone are shown in Figure 4.12. 
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Figure 4.12.    Transfection based on CQ and GSH-MEE with RPC polyplexes 1-5 at N:P 5, PLL polyplex 

at N:P 5, PEI polyplex at N:P 10 and cell control; a) transfection in bEND3and b) transfection 

in A549 
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 bEND3 cells (Figure 4.12a): 

 

In all cases addition of CQ alone (black bars) and GSH-MEE alone (pink bars) increases the 

transfection ability of the polyplexes. However, the combination of CQ and GSH-MEE does 

not give a cumulative effect on the transfection ability (yellow bars). 

 

A549 cells (Figure 4.12b): 

 

As with bEND3 cells there is no cumulative effect of adding CQ and GSH-MEE in 

combination. As can be seen in Figure 4.12b for RPCs 2-5, there is no significant change in 

transfection efficiencies of RPCs 2 and 4 in A549 incubated with the combination of CQ and 

GSH-MEE relative to CQ alone and GSH-MEE alone. In addition, for RPCs 2 and RPC 3 

there is a modest increase (less than one order of magnitude) in the transfection ability in cells 

incubated with the combination of CQ and GSH-MEE (yellow bars) relative to the cells 

incubated with the polyplexes alone (blue bars). This result may suggest that RPCs 2 and 3 do 

not require the addition of CQ and extra GSH in the transfection. However, the combination 

of CQ and GSH-MEE appeared to improve the transfection efficiencies of RPCs 4 and 5 

(~one order of magnitude relative to the polyplexes alone). 
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4.4.2.4    Cell transfection of RPCs polyplexes as a function of RPCs molecular 

weight (Figure 4.2a, step 2) 

 

In the previous chapter the set of RPCs based on the oligopeptides were prepared with 

molecular weights of ~50 kDa and ~100 kDa. Characterizations of these polyplexes showed 

that RPCs of lower molecular weight bound DNA as well as the higher molecular weight 

RPCs, but released DNA more efficiently upon treatment with GSH and NaCl, as shown by 

gel shift assay experiments (Chapter 3, Figure 3.14 and 3.22). Therefore, it is expected that 

these lower molecular weight RPCs might induce higher transfection efficiency than the high 

molecular weight RPCs as the DNA is released more efficiently from the polyplexes. The 

properties of these RPCs and their polyplexes are shown in Table 4.2.  
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Table 4.2.  The characteristic of RPCs and their polyplexes 

RPCs/ polymer 

MW 

of RPCs 

(kDa)a

Diameter 

of polyplexes 

(nm)b

Zeta potential 

of polyplexes 

(mV)c

DNA released (%)d  from 

polyplexes by  

GSH (5mM)+NaCl (0.5 mM) 

  53.9      99.9  ±    8.3        16.8  ±  11.0 
          

0 RPC 1 

(CK8C)  111.4    132.1  ±    4.5        10.0  ±  10.9 0 

     60.8      98.4  ±    0.7        10.1  ±  14.0 95 RPC 2 

 (CK4H4C) 118.0      98.3  ±    0.6        14.3  ±    9.7 61 

 40.4      94.7  ±    1.5 
       

       15.5  ±  15.5 
         

95 RPC 3 

 (CK2H2K2H2C) 115.1      99.8  ±    0.9        13.5  ±    7.2 48 

48.5    101.1  ±    2.2 
       

         5.3  ±    5.7 
       

95 RPC 4 

 (CK2HKHKH2C) 102.9    101.1  ±    2.8          5.8  ±    3.6 95 

 42.3      90.7  ±    3.4       12.6  ±   12.3   90 RPC 5  

(CKHKHKHKHC)  94.8      95.5  ±    1.1        17.4  ±   11.3 63 

a  Molecular weight of RPCs was analyzed by GPC using CATSEC300 column compared to PLL standard. 
b  Hydrodynamic diameters of the polyplexes were measured by dynamic light scattering using a Zetasizer 3000    

   (Malvern Instruments, Worcestershire, UK). 
c  Zetapotential was measured by using  Zetamaster (Malvern Instruments, Worcestershire, UK).  
d DNA released (%) was determined by gel electrophoresis. 

 

The transfection levels of lower molecular weight RPCs based on CQ, GSH-MEE, and the 

combination of CQ and GSH-MEE in both cell lines are shown in Figure 4.13. 
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Figure 4.13.   Transfection based on CQ and GSH-MEE with RPC polyplexes 1-5 (~50 kDa) at N:P 5,  

PLL polyplex at N:P 5, PEI polyplex at N:P 10 and cell control; a) transfection into bEND3 

and b) transfection into A549 
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As can be seen in Figure 4.13 there is similar trend of the transfection efficiencies of lower 

molecular weight RPCs compared to high molecular weight RPCs (Figure 4.12). Thus, 

similarity suggests that transfection mechanism is similar for both low and high molecular 

weights (~50 kDa and ~100 kDa). 

 

A plot of transfection levels versus polyplex types is shown in Figure 4.14 for both sets of 

molecular weight. These graphs clearly show that the lower molecular weight RPCs show 

greater transfection levels for both cell types. In addition, all profiles are similar with a 

maximum transfection levels at a pKa between 6.20-6.16.  
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Figure 4.14.   The transfection efficiency in bEND3 and A549 of RPCs polyplexes at different molecular 

weight (~50 and ~100 kDa), PEI and PLL polyplexes; a) Transfection in bEND3 and b) 

Transfection in A549  
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The transfection efficiency of the pair of polyplexes from RPCs at different molecular weights 

were carried out based on the endosomolytic (added CQ) and intracellular reducible (added 

GSH-MEE) properties in both A549 and bEND3 cell lines is a similar fashion to the higher 

molecular weight RPC polyplexes (Figure 4.14a and b). The comparisons of the various 

transfection levels of RPCs at low and high molecular weight are shown in Figure 4.15. 
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Figure 4.15.    Transfection in bEND3 and A549 based on CQ and GSH-MEE of polyplexes from the 

RPCs 1-5 at the different molecular weight; (a)-(d): transfections in bEND3, (a1)-(d1): 

transfections in A549 
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As can be seen in Figure 4.15 the transfection results showed the similar trend by using 

different molecular weight RPCs as vectors in most cases of both cell lines.  

  

bEND3 cells (Figure 4.15a-d): 

As can be seen the treatment of the cells with both CQ (Figure 4.15b), GSH-MEE (Figure 

4.15c) and in combination (Figure 4.15d) reduces the differential between the transfection 

levels and molecular weight considerably when compared to no such treatment (Figure 

4.15a). 

 

 A549 cells (Figure 4.15a1-d1): 

In contrast, A549 cells maintain a differential in transfection cells as a function of molecular 

weight when treated with CQ (Figure 4.15b1), GSH-MEE (Figure 4.15c1) and in 

combination (Figure 4.15c1) when compared to no such treatment (Figure 4.15a1) 

 

In summary, lower molecular weight RPC polyplexes (~50kDa) give higher transfection 

levels than high molecular weight RPC polyplexes (~100 kDa).  

 

4.4.3    Cell transfection of oligopeptide polyplexes 

 

Oligopeptide (2COPs 1-5) polyplexes were prepared at N:P 5 (See section 3.6.2), and were 

found that their sizes were greater than 1 µm over the time course of 48 hrs (Table 3.7 and 

Figure 3.23). However, the transfection efficiency of these polyplexes was still determined, 

although it was expected that this would be poor in vivo, because the large polyplexes would 

interact with blood components or macrophages, resulting in the clearance from the blood 
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stream before reaching the cells.[26] In addition, we might expect poor transfection in vitro 

because of polyplex uptake by endocytosis is poor for polyplexes larger than 200 nm.[27]  

 

The PEI polyplexes formed at N:P 10 were utilized as positive control. The human lung 

carcinoma cells, A549, were used in the in vitro transfection (section 2.10.1). The cell 

transfections with these polyplexes were carried out in the same manner as with RPCs 

polyplexes as shown in Figure 4.3. However, the experiments with GSH and CQ were not 

performed. Therefore, after 18 hrs of growing cells, the polyplexes were added directly to the 

washed cells (Figure 4.3, step 3). The relative transfection efficiencies are shown in Figure 

4.16. 
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Figure 4.16.     Relative transfection efficiency of 2COPs, RPCs at N:P 5 and PEI at N:P 10 in A549 cells  

 
 

As predicted the oligopeptides 2COPs were poorly transfecting the cells relative to the RPCs 

that they formed (Figure 4.16). This result is presumably due to the series of the polyplexes 

formed from the 2COPs. 
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4.5 Conclusions 

 

The work presented in this chapter involved evaluating the cytotoxicity and transfection of 

RPCs 1-5 (~50 kDa and ~100 kDa) in order to investigate the endosomolytic and 

intracellularly reducible properties and the affect of different molecular weight RPCs on 

transfection efficiency. The transfection efficiency of 2COPs 1-5 was also investigated in 

comparison with RPCs. 

 

4.5.1  Cytotoxicity of RPCs polyplexes 

 

Transfections in combination with CQ causes toxicity to cells. However, the overall 

cytotoxicity data indicated that RPCs 1-5 at lower and high molecular weight are less toxic to 

both cell lines relative to PLL and PEI polyplexes as its ability to unpackage in the cytoplasm 

suggested a reduced cytotoxicity compared to PEI and PLL, as it would be expected to 

degrade to readily cleared fragments (2COPs). 

 

4.5.2  Cell transfection of RPC polyplexes 

 

Our overall data of both cells indicates that RPCs 2-5 (with 40% histidine content) – which 

are less aided by CQ relative RPC 1 – is behaving in a similar way to PEI, in term of the 

proton sponge mechanism, escaping to the cytoplasm without developing into the lysosome[28] 

and does not require addition of the endosome buffering agent CQ to achieve high 

transfection efficiencies, whereas PLL and RPC 1 polyplexes do. These findings are in 

agreement with the study by Read and colleagues[29] which revealed that RPCs (45, 187 kDa) 
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oxidatively polymerized from CK10C required  combining with CQ or DOTAP for efficient 

transfection because CK10C-RPC itself lacked endosomal buffering capacity. In addition, by 

incorporation of histidine moities in our group’s previous work[18] also indicated that 

histidine-containing RPCs (RPC(59) (CH3K3H3C, 59 kDa) and RPC (113) (CH6K3H6C, 113 

kDa) promote the endosomal escape mechanism. However, using the new strategy to 

modulate the pKa of RPCs in this study revealed that the range of pKa of RPCs 2-5 (6.09-6.20) 

indeed buffer in a similar way to PEI. In addition, the highest transfection efficiencies in both 

cell types were with RPC 2, the ‘poly(diblock)’ [CK4H4C]n polymer, which was 4 orders of 

magnitude better than PEI and 100-fold better than PLL in bEND 3 cells. In addition, 

comparing the pKa of RPCs 2-5 (pKa 6.20-6.09) suggested that the optimum pKa that induced 

the highest transfection efficiency in both cells is at pKa 6.20 (RPC 2) (Figure 4.17). 

 

 

 

bEND3

A549

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

0 1 2 3 4 5

RL

 

 

 

 

 

 

 

Figure 4.17.  The transfection efficiency in bEND3 and A549 of RPCs polyplexes based on the pKa values 
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From the results of the artificial depletetion and increase of the intracellular GSH level 

studies, it could be shown that these RPCs are reduced by intracellular GSH (vector feature 

V).  

The difference observed between transfection efficiencies in bEND3 and A549 cell lines was 

most likely due to the different rate of cell growth in vitro. Change in growth rates would 

have affected the level of intracellular glutathione and the protein expression. Concomitant 

degradation of the nuclear membrane would, therefore, have led to the release of high level of 

glutathione into cytoplasm. 

 

4.5.3.  Cell transfection of RPCs polyplexes as a function of RPCs molecular weight 

 

The trend of transfection efficiency of lower molecular weight RPCs and high molecular 

weight RPCs were similar in both cells: The lower molecular weight RPCs induced higher 

transfection efficiency. 

 

4.5.4  Cell transfection of oligopeptides polyplexes 

 

As predicted the oligopeptides 2COPs were poor transfection agents relative to the RPCs as 

they formed large polyplexes which are not efficiently internalized into the cells via 

endocytosis effectively.[26] Manpreet and colleagues[30] also revealed that condensing DNA 

with low molecular weight peptides (DiCWK3, AlkCWK8 and K19) failed to produce 

significant gene transfection which was put down to their large particle diameters (724, 2412 

and 3102 nm, respectively). 
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In summary, incorporation of lysine, histidine, and cysteine residues in RPCs provide 

promising vectors that bind DNA extracellularly and protect against nucleases and protein-

mediated disassembly (vector feature I), cell uptake via syndecan mediated endocytosis 

(vector feature III), provide a tunable endosomal release mechanism (vector feature IV), and 

release DNA into the cytoplasm via glutathione reduction mechanisms (vector feature V) 

leading to further gene expression. In addition, these RPCs are non-toxic to cells.  

 

However, using endothelium (bEND3) and epithelium cell lines (A549) in the in vitro 

transfection could suggest these polyplexes may not be suitable to inject into blood vessels as 

they could internalize into endothelium cells that line the interior surface of the blood vessels 

before they get to epithelium cells, which are the tissues to be treated. However, injecting the 

polyplexes to the specific tissue could be the alternative way to overcome this hurdle. 
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5     SYNTHESIS AND CHARACTERIZATION OF 

REDUCIBLE COPOLYCATIONS (RcPCs) CONTAINING 

LYSINE, HISTIDINE AND CYSTEINE BASED 

SEQUENCES AND TAT PEPTIDE 

Abstract 

As shown previously in Chapters 3 and 4 the reducible polycations (RPCs) are 
promising vectors for gene delivery in non-viral system. However, these 
vectors have no nuclear targeting signal. Therefore, in this chapter we design 
to incorporate the nuclear targeting signal (TAT) in the vectors in order to 
potentially improve the transfection ability. The RP-TAT was synthesized via 
oxidative polymerisation of TAT oligopeptide (CRKKRRQRRRC). The RcPCs 
1-5 (~50 kDa) were synthesized via random oxidative polymerisation of 
2COPs 1-5 and TAT oligopeptide at molar ratio 1:1. The RcPC 5 was also 
synthesized at 1:3 molar ratio of 2COP 5:TAT. The DNA polyplexes of RP-
TAT and RcPCs 1-5 were formed at N:P 5 and characterized.  The RP-TAT 
and RcPCs polyplexes are approximately 100 nm in diameter, and are all 
positively charged. Gel shift assay revealed that the RP-TAT and RcPCs 
polyplexes are unpacked by interacting with PAA (extracellularly simulated 
condition) and GSH+NaCl (intracellularly simulated condition). These results 
suggested that the RcPCs have less potential than RPCs to be used as vectors 
as they are less stable to PAA than the RPCs, and hence may be degraded in 
the blood before they are internalized into the cells.  
 

 

5.1    Introduction 
 
 

As described in Chapter 1 (page 22), there are several cellular barriers that need to be 

overcome in order for a gene to be delivered to the nucleus.[1] In Chapters 3 and 4, we have 

shown that the RPCs incorporating lysine, histidine and cysteine residues are promising 

vectors for non-viral gene delivery. In particular, these polyplexes were stable in an 

extracellular environment. The positively charged polyplexes could internalize into cells via 

syndecan-mediated endocytosis,[2,3] whilst the histidine residues help to buffer the endosomes, 
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resulting in endosomal disruption and release of the polyplexes into the cytoplasm.[4] 

Disulfide bonds in the backbone of the polycations provide the reducible property of the 

polyplexes (cleavage by intracellular GSH) leading to release of the nucleic acid for further 

enhancements in the gene expression mechanism.[5,6]  

 

However, there is another key challenge to improve these cationic vectors, which is the 

nuclear import property.[7,8] The DNA must be internalized into the nucleus in order to either 

replace the non-functional gene or transcribe to mRNA for furthering translation to the 

therapeutic protein.[9] The nuclear membrane is a barrier for most macromolecules that are 

greater than 45 kDa, unless they are able to interact with the nuclear pore active transport 

system[10] as described in Chapter 1 (section 1.1.2.2b). The nuclear localization signals (NLS) 

are peptide sequences that are recognized by this nuclear transport system. Therefore, to 

improve the non-viral RPCs 1-5 vectors designed in Chapters 3 and 4, the conjugation of an 

NLS with 2COPs 1-5 to afford reducible copolycations (RcPCs 1-5) has been considered in 

the research described in Chapters 5 and 6.  

 

The most common NLS peptide that has been used in non-viral vectors derives from the 

simian virus 40 large tumor antigen (PKKKRKV) [7,11,12]  that mediates binding of cargo 

protein to the importin-α,  which in turn binds to importin-β. The heterotrimer then binds to 

cytoplasmic filaments of NPCs and translocates through the nucleus pore complex (see 

section 1.1.2.2b).  

 

The basic region (49RKKRRQRRR57) of the TAT protein from human immunodeficiency 

virus 1 (HIV-1) has widely been known as a cell penetrating peptide (CPP)[13-17]. However, 

TAT has also been investigated as a novel class of NLSs. [18,19] The mechanism for its nuclear 
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active transport is different from SV40 NLS. Instead of targeting to importin-α, TAT binds to 

importin-β directly.[19] In addition, recently, it has been found that TAT could trigger the 

nuclear import faster than SV40 NLS and is capable of importing nanoparticles (5-90 nm).[20] 

 

There was a study by Manickam and colleagues[21] in which reducible copolypeptides 

containing histidine-rich peptides (CKHHHKHHHKC) and nuclear localization signal 

peptides (CGAGPKKKRKVC) from SV40, which combined the endosomal buffering 

capacity and nuclear localization capability features. The transfection efficiency of the 

reducible copolypeptides increased when the content of histidine increased. However, it was 

still unclear as to the effect of the NLS sequence in the transfection. Therefore, in our study 

the TAT peptide was used as nuclear importing factor instead of NLS from SV40, and by 

combining with pKa modulation we investigate the effect of the NLS. 

 

5.2 Objectives 
 

In Chapter 4 we have shown that the reducible polycations (RPCs) produced from 2COPs 2-5 

were promising vectors for non-viral delivery system. The incorporation of a nuclear 

localisation signal could improve the transfection efficiency of these polycations even further. 

Therefore, in this Chapter, the basic region of TAT-peptide 49-57 sequence (RKKRRQRRR) 

(Figure 5.1) that functions as a nuclear targeting signal was used, and terminally modified 

with cysteine moieties (CRKKRRQRRRC) in order that it could be copolymerized with 

2COPs 1-5 to form a series of reducible copolycations (RcPCs).  
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Nuclear localisation signal (TAT) 

 

Figure 5.1.  The amino acid sequence of human immunodeficiency virus 1 (HIV-1) TAT protein 

 

5.3   Methodology 
 

In this chapter we show the synthesis and characterization of the RcPCs and the 

physiochemical properties of the polyplexes. In order to achieve these objectives the 

following overview of the experimental process was devised as shown in Figure 5.2. 

 

   (i) The purification and characterisation of TAT oligopeptide: The crude 

TAT oligopeptide (CRKKRRQRRRC) was purified and characterized (Figure 5.2 step 1) 

using high perfomance liquid chromatography (HPLC), electrospray mass spectrometry 

(ESI-MS) and nuclear magnetic resonance (1H NMR) 
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   (ii) The formation and characterization of TAT polycation and RcPCs: The 

TAT reducible polycation (RP-TAT) was synthesized from TAT oligopeptide 

(CRKKRRQRRRC)  via oxidative polymerisation (Figure 5.2, step 2). In addition, the 

reducible copolycations (RcPCs) were synthesized via random oxidative polymerization 

between TAT and 2COPs 1-5 (Figure 5.2, step 2). The characterisation of the RP-TAT and 

RcPCs was carried out using gel permeation chromatography (GPC), multi-angle laser light 

scattering (MALLS) and amino acid anaysis.  

 

   (iii) The formation and characterization of RcPC and RP-TAT polyplexes: 

The formation of RcPC and RP-TAT polyplexes with the DNA (pCMV-Luc) was 

performed in a condensation reaction (Figure 5.2, step 4), and the stability of the 

polyplexes under extra- and intracellularly simulated conditions was carried out (Figure 

5.2, step 5-7). 



 

Step 1 
 

Purification 
and characterization 
(HPLC, MS, 1H NMR ) 

SH 

TAT 

Step 2 
Oxidative polymerization 

Crude 
oligopeptide 

SH 

TAT 

S 
S-S 

S ( )n
Reducible copolycations (RcPCs) 

Step 4 
DNA polyplex 

formation 

Purified 
Oligopeptides 

HS 
Step 3 

 
Characterisation 

Step 7 
 

Intracellular 
reduction 

(Glutatione, NaCl) 

Step 5 
 

Characterisation 

DLS 

Zeta potential 

Gel electrophoresis 

Step 6 
Extracellular stability 

Gel shift assay (Polyaspatic acid) 

DLS 

Gel shift assay 

Polyplex 

References for Chapter 5 are on page 244-246. 
 

224 

DNA 

With 
2COPs 

GPC 

MALLS 

Amino acid 
analysis 

Figure 5.2.   Schematic overview of characterisation and analysis of oligopeptides and polyplexes in this chapter 

S 
S-S 

S )
Reducible poly-TAT (RP-TAT) 

( n

HS 



5.4   Results and discussion 
 

5.4.1   TAT oligopeptide purification and characterization (Figure 5.2, Step 1) 

 
 
Crude samples of TAT oligopeptide synthesized by Alta Bioscience (Birmingham, UK) using 

Fmoc procedure were purified by preparative reverse phase HPLC as described in section 2.3. 

The final purity of TAT was determined by analytical reverse phase HPLC, the experimental 

and calculated mass was determined by electrospray-MS (Table 5.1). The purity of all 

oligopeptides was between 97.35-99.59 % by analytical RP-HPLC (see appendix). The 

purified oligopeptides were additionally characterized by 1H NMR (500 MHz) (see appendix) 

and ESI-MS to confirm their structures (section 2.3). Selected data of the purified TAT and 

the oligopeptides from Chapter 3 used in this chapter are shown in Table 5.1. 

 

Table 5.1.  The purity and mass of purified oligopeptides 

 

Oligopeptide 

 

Sequencea

 

Purity (%) b

Experimental Mass 

[M]+ (g mol-1) c

Calculated 

Mass  (g mol-1) d

TAT  

2COPs 

1 

2 

3 

4 

5 

CRKKRRQRRRC  

 

CK8C 

CK4H4C 

CK2H2K2H2C 

CK2HKHKH2C 

CKHKHKHKHKHC  

98.73 

 

99.59 

97.42 

98.45 

97.35 

97.41 

1545.40 

 

1249.90 

1285.90 

1285.70 

1285.70 

1285.80 

1545.10 

 

1249.70 

1285.56 

1285.56 

1285.56 

1285.56 

a C = Cysteine, K = Lysine, H = Histidine, R = Arginine, Q = Glutamine   

b Purity determined by analytical RP-HPLC (see appendix) 
c Mass analyzed by ESI-MS 
d Mass from the calculation 
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5.4.2 Formation and characterization of reducible copolycations (RcPCs)  (Figure 5.1, 

Step 2, 3) 

 
Reducible copolycations (RcPCs) were produced from 2COPs 1-5 and the TAT oligopeptide 

(section 2.5.3). Briefly, 2COPs (30 mM) and TAT solution (30 mM) in 5x PBS and 30% 

DMSO at 2COPs:TAT molar ratios of 1:1 for RcPCs 1-5 and also 1:3 for RcPC 5 were 

incubated at room temperature for 48 hrs. In addition, the RP-TAT was synthesized from 60 

mM TAT solution in 5x PBS and 30% DMSO, and was incubated at room temperature form 

48 hrs (Figure 5.3).  

 

SH 

TAT 

HS 

2COPs 

HS 
SH 

HS 

SH 
HS 

S-S 
S-S 

Reducible copolycations (RcPCs) 

S-S 
S-S 

SH 
HS 

SH 

SH 
HS 

S-S 
-S S- 

Oxidative polymerisation  
with DMSO 

 

Figure 5.3. Schematic model of reducible copolycations (RcPCs) synthesis via random oxidative 

polymerization  

 

The growth of the RcPCs and RP-TAT molecular weights was monitored by gel permeation 

chromatography (GPC) (Table 5.2 and Figure 5.4) (section 2.5.4). At various time intervals 

over 48 hrs, 5 μl aliquots were removed and quenched with aminoethanethiol (AET). This 
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aliquot was analysed by GPC eluting with 200 mM NaCl with 0.1% TFA, in order to obtain 

the molecular weight against PLL standards (5.6, 8.3, 21.3, 62.1 and 128.5 kDa). The 

sequence ratio of 2COP and TAT in RcPCs was analysed and calculated using amino acid 

analysis (EZ:faast kits, phenomenex, UK) (section 2.6). 

 

Table 5.2.  RP-TAT and RcPCs produced from TAT and 2COPs 1-5 

2COPs and TAT  

in reaction mixtures 

 

Entry RP-TAT/ 

RcPCs 
2COPs TAT 

2COP : 

TAT  

molar 

ratio 

 

Incubation 

time 

(hr) 

 

MW 

(kDa)a

PDIb

i 
RP-TAT 

(40) - CRKKRRQRRRC - 48 39.7 1.260 

ii RcPC 1 (37) 2COP 1 
(CK8C) CRKKRRQRRRC 1:1 48 36.8 1.275 

iii RcPC 2 (52) 2COP 2 
CK4H4C CRKKRRQRRRC 1:1 48 51.6 1.265 

iv RcPC 3 (45) 2COP 3 
CK2H2K2H2C CRKKRRQRRRC 1:1 48 44.7 1.169 

v RcPC 4 (39) 2COP 4 
CK2HKHKH2C CRKKRRQRRRC 1:1 48 38.5 1.222 

vi RcPC 5 (45) 2COP 5 
CKHKHKHKHC CRKKRRQRRRC 1:1 48 45.1 1.211 

vii RcPC 5 (22) 2COP 5 
CKHKHKHKHC CRKKRRQRRRC 1:1 24 22.3 1.168 

vii RcPC 5 (23) 2COP 5 
CKHKHKHKHC CRKKRRQRRRC 1:3 24 23.3 1.213 

a  Molecular weight of RP-TAT and RcPCs was analyzed by GPC using CATSEC300 column compared to PLL 

standards. 

b  Polydispersity index (PDI) of TAT and RcPCs was measured by size exclusion chromatography (Anachem 

Ltd., Luton, UK) coupled with multi-angle laser light scattering photometer (Wyatt Technology (Santa 

Barbara, USA). 
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From Table 5.2 and Figure 5.4 the molecular weight of RP-TAT and RcPCs 1-5 (1:1) were 

~40-~50 kDa when synthesized over 48 hrs. In addition, RcPC 5 (1:1) when synthesized over 

24 hrs has molecular weight of ~22 kDa which is similar to RcPC 5 (1:3) synthesized over 24 

hrs. 

0

10

20

30

40

50

60

0 12 24 36 4
Time (hr)

M
ol

ec
ul

ar
 w

eo
gh

t (
kD

a)

RcPC 2 (52) 
 
RcPC 3 (45) 
RcPC 5 (45) 
RP-TAT (40) 
RcPC 4 (39) 
RcPC 1 (37) 

RcPC 3 (23, 1:3) 
RcPC 5 (22, 1:1) 

8

 

Figure 5.4.  Oxidative polymerization compared between RcPCs 1-5 prepared from 2COPs (1-5) : TAT at 

1:1 and RcPC 5 (1:3) incubated at ambient 

[RP-TAT         , RcPCs 1         , 2    X    , 3   X    , 4        , 5         , RcPC 5 (22)   +   and    

RcPC 5 (23)      -     ]  

 

5.4.3 2COPs and TAT sequence ratio analysis 

 

The ratios of 2COP and TAT content of the RcPCs 1-5 were determined using amino acid 

analysis (section 2.6). Briefly, RcPCs (500 µg) were hydrolysed by liquid phase hydrolysis 

with 6N HCl with 4% of thioglycolic acid.  The reaction mixtures were placed in a heating 

block in a tightly capped vial at 110oC for 22 hr, to break peptide bonds. The sample was then 

placed at -20oC for 24 h, unless stated otherwise. The samples were neutralised and analysed 

using EZ:faast kits (phenomenex, UK). An amino acid calibration standard at 50, 100 and 200 
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nmol ml-1 (Figure 5.5) was run by gas chromatography (GC) to allow quantification of the 

amount of unknown amino acids found in each sample, thereby enabling calculation of the 

quantity of amino acids within the sample to be determined.  

 

 

 

 

 
 
 
 
 

0.0

10.0

20.0

30.0

40.0

 
Figure 5.5. Amino acid standard at 200 nmol ml-1 (EZ:faast kits, phenomenex, UK) run with GC. 
 
 
To determine the ratios of 2COPs and TAT in RcPCs, the quantities of lysine (Lys), histidine 

(His) and glutamic acid (Glu) (glutamine (Gln, Q) is converted to glutamic acid (Glu, E) 

during acid hydrolysis) were considered. Therefore, in case of RcPC 1 (2COP 1 + TAT), the 

ratio of Lys:Glu was determined. In cases of RcPC 2-5 (2COP 2-5 + TAT), the ratios of 

Lys:Glu, Lys:His and His:Glu were determined (Table 5.3). 2COP 2 and TAT were also 

analyzed as controls. 

 

As can be seen in Table 5.3 the ratios of 2COP and TAT were derived from the calculation of 

the number of lysine, histidine and glutamic acid residues obtained from amino acid analysis. 

Using TAT oligopeptide (CRKKRRQRRRC, 2 Lys and 1 Gln) as a control should have 

produced the number of Lys per Glu at 2. Thus, the experimental result from TAT is 

unreliable (the number of Lys per Glu is 4.8). However, using 2COP 2 (CK4H4C, 4 Lys and 4 

His) as a control produced the experimental result (the number of Lys per His is 1.0) as 

expected. Therefore, we presume that the calculation of amino acid ratio between Lys and His 
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is reliable. The glutamic acid analysis is not accurate and may result from the nonquantitative 

conversion of glutamine to glutamic acid. Therefore, in this study we only relied on the 

calculation between Lys and His.  Therefore, as can be seen in Table 5.3, based on the 

number of Lys per His from feed ratio, the calculated numbers of Lys per His from RcPC 2-5 

(~50 kDa) and RcPC 5 (22) indicated that they have 2COP:TAT ratio content  1:1, and  RcPC 

5 (23) has 2COP:TAT ratio content 1:3. We could not indicate the 2COP:TAT ratio content 

for RcPC 1 as the calculated number of Lys per Glu is unreliable. However, we presumed that 

it is 1:1.  

 

Table 5.3.  2COP and TAT sequence ratios of RcPCs 1-5 analyzed by amino acid analysis 

Calculated number of Lys per 

Glu or His based on feed ratio 

Calculated number of Lys per 

Glu/His from experimental data TAT/ 

2COP/RcPC 

Feed ratio 

of 

2COP:TAT 
Number of  

Lys per Glu 

Number of 

Lys per His 

Number of 

Lys per Glu a

Number of 

Lys per His 

2COP:TAT 

ratio 

contentb

TAT 

2COP 2 

RcPC 1 (37) 

RcPC 2 (52) 

RcPC 3 (45) 

RcPC 4 (39) 

RcPC 5 (45) 

RcPC 5 (22) 

RcPC 5 (23) 

0:1 

1:0 

1:1 

1:1 

1:1 

1:1 

1:1 

1:1 

1:3 

2 

- 

6 

6 

6 

6 

6 

6 

3.33 

- 

1 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

2.5 

   4.8 ± 1.6 

- 

 17.2 ± 10.6 

 12.3 ±   0.1 

 10.1 ±   0.3 

 11.8 ±   1.2 

 14.9 ±   2.1 

 11.0 ±   0.2 

   5.3 ±   0.1 

- 

1.0 ± 0.1 

- 

1.3 ± 0.1 

1.3 ± 0.1 

1.3 ± 0.1 

1.3 ± 0.6 

1.4 ± 0.1 

2.4 ± 0.2 

- 

- 

1:1c

1:1 

1:1 

1:1 

1:1 

1:1 

1:3 

a The number of Lys per Glu from the experiments are unreliable as they are much higher than the expecting    

number base on feed ratio 

b  2COP:TAT ratio content of RcPCs indicated from the calculated number of Lys per His  

c  The 2COP:TAT ratio content of RcPC 1 is unable to indicate as the experimental number of Lys per Glu is  

unreliable, however, we presumed that it is 1:1. 
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5.4.4    Formation and characterization of TAT and RcPC polyplexes  

 

The polyplexes were prepared by mixing the plasmid DNA (pCMV-Luc) in HEPES buffer, 

pH 7.4, with the vectors RPCs 1-5 (~50kDa), TAT (40) or RcPC s 1-5 in HEPES buffer (pH 

7.4). The ratio of basic groups (lysine (K), imidazole (H) and arginine (R)) of the vectors to 

the negative phosphate group on the DNA backbone (N:P ratio) was calculated. 

5.4.4.1 Weight per charge and N:P ratio calculation 

 
The calculation of weight per charges (wpc) of 2COPs for polyplexes formation at appropriate 

N:P ratio was described previously in Chapter 3 (section 3.4.4.1). However, there is a 

difference in the weight per charge calculation of the RcPCs because there is a mixture of 

2COP and TAT sequences. Therefore, to calculate the wpc of RcPC s the ratio of 2COP and 

TAT sequence was considered. The calculation of wpc was calculated on the actual mass of 

the 2COP and TAT, taking into consideration the counterion associated with the protonation 

of the amino groups on the lysine, histidine and arginine residues at physiological pH.  In 

addition, during the synthesis, the 2COPs and TAT were deprotected in an acidic cocktail 

containing trifluoroacetic acid (TFA), which acts as the counterion forming a TFA salt. 

Therefore, the number of TFA counterions of 2COP 1-5 is 9, due to the TFA counterion 

forming a salt with the 4 ammonium ions of lysine residues and 4 imidazolium ions of 

histidine residues of the 2COP backbone and the protonated N-terminus of the oligopeptide. 

Moreover, the number of TFA counterions of TAT is 9, due to the TFA counterion forming a 

salt with the 9 ammonium ions of the lysine and arginine residues of the TAT backbone and 

the protonated N-terminus of the oligopeptide. Therefore, the number of TFA counterions of 

this polycation is 18. The following calculation was used to determine the wpc of all 

oligopeptides in this study. 
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wpc = 
pHcalphysiologiatupsginine)grostidine/ar(lysine/hibasicpotonatedofnumber

TFAofMWscounterionTFAofnumberpeptideofMW )()( ×+  

 
MW of TFA    = 114 g/mol 

TFA counterion   = CF3COO – 

 

For example, in the case of RcPC 1 (2COP 1 (CK8C):TAT (CRKKRRQRRRC) = 1:1), the 

pKa of lysine (K) and arginine (R) side chain are approximately 10.5 and 12.5, respectively. 

Therefore, the side chains of the lysine (pKa ~10.5) and arginine (pKa ~12.5) residues are fully 

protonated at physiological pH (pH 7.4). Thus, the number of positive amino groups of this 

RcPC 1 is 18. 

 

In the cases of RcPC s 2-5 (2COP 2-5:TAT = 1:1), the basic nitrogen atom on the imidazole 

rings of histidine residues are not fully protonated as shown in the pKa determination in 

Chapter 3 (Figure 3.4). Therefore, the number of protonated amino groups of the histidine 

based sequences was calculated from the average percentage of the chemical shift changing at 

pH 7.4 described in Chapter 3 (Figure 3.10). Weight per charge (wpc) of 2COPs 1-5 (Chapter 

3, section 3.3.4.1), TAT and RcPC 1-5 at 2COPs and TAT for ratios are 1:1 and 1:3 are 

shown in Table 5.4. 
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Table 5.4.  Weight per charge (wpc) of 2COPs, RP-TAT and RcPCs used in this chapter  

 

2COPs 2COP:TAT 

ratio 

 

Number of 

TFA 

counterions 

Number of 

positive 

charges 

at pH 7.4 

Peptide MW 

  (g mol-1) 

wpc 

 (g mol-1) 

2COP 1 

2COP 2 

2COP 3 

2COP 4 

2COP 5 

RP-TAT 

RcPC 1(2COP 1+TAT) 

RcPC 2 (2COP 2+TAT) 

RcPC 3(2COP 3+TAT) 

RcPC 4 (2COP 4+TAT) 

RcPC 5 (2COP 5+TAT) 

RcPC 5 (2COP 5+TAT) 

- 

- 

- 

- 

- 

- 

1:1 

1:1 

1:1 

1:1 

1:1 

1:3 

9 

9 

9 

9 

9 

9 

18 

18 

18 

18 

18 

36 

9 

5.7 

5.2 

5.4 

5.3 

9 

18 

14.7 

14.2 

14.4 

14.3 

32.3 

1249.9 

1285.9 

1285.7 

1285.7 

1285.8 

1545.4 

2793.3 

2829.3 

2829.1 

2829.1 

2829.2 

5916.0 

252.8 

405.6 

444.6 

428.1 

436.2 

285.7 

269.2 

332.1 

343.7 

339.0 

341.3 

310.2 

 

 

The wpc value is used to calculate the N:P ratio, which is the number of possible protonatable 

basic groups with respect to the negative phosphate groups on the backbone of the nucleic 

acid. The concentration of RPCs, RP-TAT or RcPCs calculated to form the polyplexes at final 

concentration of plasmid DNA at 20 µg/ml and at the N:P ratios used in this study is shown 

by the following equation.  
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Peptides conc. (µg ml-1) = wpcPN
groupphosphateperDNAofmassaverage

DNAplasmidofionconcentratFinal
×× :  

 

Final concentration of plasmid DNA              = 20 µg ml-1

Average mass of DNA per phosphate group  = 325 g mol-1 

wpc    = weight per charge 

 

5.4.4.2 TAT and RcPCs polyplex formation and characterization (Figure 5.2,   

step 4-7) 

 

5.4.4.2a  Diameter and zeta potential of polyplexes (Figure 5.2, Step 4-5) 

Polyplexes from RP-TAT, RPCs 1-5 and RcPCs 1-5 were formed with plasmid DNA 

(pCMV-Luc) as described in section 2.7.1 and 2.7.2 at N:P 5. The polyplexes were analysed 

by dynamic light scattering (section 2.8.1) and zeta potentiometry (section 2.8.2) (Table 5.5).  

 
As can be seen in Table 5.5, the diameter of the RP-TAT polyplex was 95.2 nm. The 

polyplex diameters from RcPCs 1-5 (~40-50 kDa), 2COP:TAT at 1:1 ratio, were in the range 

between 98.1-111.4 nm. Comparison of the diameter of RPCs 1-5 polyplexes and RcPC 1-5 

polyplexes reveals only marginal differences of at most ~10%, from the corresponding RPCs. 

Zeta potentials were positive in all cases and were similar for RPCs and RcPCs (Table 5.5), 

which will allow the polyplexes to promote the internalization via syndecan-mediated 

endocytosis[2] (Figure 1.22) by electrostatic interaction between the positively charged 

polyplexes and the negatively charged cell membrane. 
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Table 5.5. Properties of RP-TAT, RPCs, RcPCs and their polyplexes formed at N:P 5 
 

Polymer Polyplexes 
RP-TAT/ RPCs/  

RcPCs 

2COP : 

TAT ratio 
MW 

(kDa)a

Polydispersity 

indexb

Diameter 

(nm)c

Zeta potential 

(mV)d

RP-TAT (40) - 39.7 1.260      95.2  ±    0.3 
 

       14.4  ±    9.3 

RPC 1 (54) 

RcPC 1 (37) 

- 

1:1 

53.9 

36.8 

1.563 
 

1.275 

     99.9  ±    8.3     
 
    104.1 ±    1.4 
 

       16.8  ±  11.0 
          
       13.5  ±  10.0 

RPC 2 (60) 

RcPC 2 (52) 

- 

1:1 

60.8 

51.6 

1.339 

1.265 

     98.4  ±    0.7 
 
   111.4  ±    2.6 

       10.1  ±  14.0 
 
         8.8  ±    8.0 

RPC 3 (40) 

RcPC 3 (45) 

- 

1:1 

40.4 

44.7 

1.318 

1.169 

     94.7  ±    1.5 
       
   105.7  ±    3.7 

       15.5  ±  15.5 
         
       17.8  ±   12.8 

RPC 4 (48) 

RcPC 4 (39) 

- 

1:1 

48.5 

38.5 

1.279 

1.222 

   101.1  ±    2.2 
       
     98.1  ±   3.7 

         5.3  ±    5.7 
       
       10.3  ±     9.1 

RPC 5 (42) 

RcPC 5 (45) 

RcPC 5 (22) 

RcPC 5 (23) 

- 

1:1 

1:1 

1:3 

42.3 

45.1 

22.3 

23. 

1.292 

1.211 

1.168 

1.213 

     90.7  ±    3.4 
 
   108.1  ±    1.6 
 

 98.4   ±   0.9 
  
  110.3   ±   1.1 

       12.6  ±  12.3     
        
       11.6  ±   14.3 
 
       12.6  ±    8.4 
       
       12.9  ±  12.0 

a  Molecular weight of RP-TAT, RPCs and RcPCs were analyzed by GPC using CATSEC300 column compared 

to PLL standard. 
b  Polydispersity index (PDI) of RPCs was measured by size exclusion chromatography (Anachem Ltd., Luton,     

   UK) coupled with multi-angle laser light scattering photometer (Wyatt Technology (Santa Barbara, USA). 
c  Hydrodynamic diameters of the polyplexes were measured by dynamic light scattering with a Zetasizer 3000    

   (Malvern Instruments, Worcestershire, UK). 
d  Zetapotential was measured by with a  Zetamaster (Malvern Instruments, Worcestershire, UK).  
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5.4.4.2b  Extracellular stability studies of polyplexes (Figure 5.2, 

Step  6) 

The extracellular stability of the RP-TAT and RcPCs polyplexes was studied using the gel 

shift assay by incubating the polyplexes with polyaspartic acid (PAA) (Figure 5.6). PEI 

polyplexes at N:P 10 and PLL polyplexes at N:P 5 were used as a control. The results without 

PAA revealed that RP-TAT and all RcPCs were able to form stable polyplexes as shown by 

no loss of DNA in the gel electrophoresis assay (lanes a1-h1).  

 

However, the polyplexes formed with RP-TAT and all RcPCs were found to be unstable after 

incubating with PAA (lanes a2-h2) which is similar to PEI (lane i2) and PLL (lane j2), 

indicating that RP-TAT and RcPCs polyplexes are less stable than RPCs (Chapter 3, Figure 

3.22). Thus, to use RcPCs vectors may not be suitable in vivo as they may unpack and release 

the DNA by blood components before reaching the target cells.  
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a) 

 

b) 

 

Figure 5.6.   Gel shift assay with (a) and without (b) polyaspartic acid (PAA) of polyplexes formed from  

RP-TAT (N:P 5), RcPCs 1-5 (N:P 5), PEI (N:P 10) and PLL (N:P 5).  Polyaspartic acid at 

250 times of DNA concentration was mixed into the polyplex solution. Lanes a1-j1 on the top 

panel  (a) are for polyplexes without incubating with PAA. Lanes a2-j2 on the bottom panel (b) 

are for polyplexes incubated with PAA. Agarose gel electrophoresis was run using 1% agarose 

gel with EtBr (0.5 µg.ml) at 110 V for 60 mins in 0.5x TBE buffer 
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5.4.4.2c  Intracellular reduction studies of polyplexes (Figure 5.2,  

Step 7) 

Stability of the RP-TAT and RcPCs polyplexes against physiological concentrations of salt 

and GSH, was assessed by gel electrophoresis via treatment with (i) GSH alone (5 mM), 

(ii) salt alone (NaCl 0.15 and 0.5 M), and (iii) combination of NaCl (0.5 and 0.5 M) and 

GSH (5 mM) to assess polyplexes destabilisation (Figure 5.7). PLL polyplexes at N:P 5 

were used as  controls. These gel shift assays demonstrate that: 

 

    (a)   RP-TAT produced polyplexes that were stable in GSH alone, salt 

alone as can be seen from lanes b-d of RP-TAT. Importantly, however, addition of GSH 

(5mM) in the presence of salt destabilised the polyplexes, leading to release of the DNA 

(lanes e-f of RP-TAT). Thus, the combination of GSH under physiological salt 

concentrations was able to both cleave the polydisulfide bonds in the polyplexes leading to 

lower a molecular weight peptides that had a lower affinity for the DNA in the salt 

solution, leading to disassociation of the polyplexes. 

 

    (b)  RcPC 1 produced polyplexes that were both stable in GSH alone, 

salt alone and in the combination of GSH and salt (lanes b-f of RcPC 1). These results are 

probably due to the short oligopeptide 2COP 1 that probably results, after GSH treatment, 

binding strongly to DNA, and therefore does not release the DNA into the gel. This result 

is in contrast to RcPCs 2-5 (described below) presumably due to the lower charge on 2COP 

2-5, that results in weaker electrostatic bindng to the DNA, and hence it release. 

 

    (c)  RcPCs 2-5 produced polyplexes that were stable in GSH alone 

(5mM) as can be seen from lanes b of RcPCs 2-5. Furthermore, these RcPC polyplexes 
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were also stable in salt (0.15-0.5 M) (lanes c, d of RcPCs 2-5). Importantly, however, 

addition of GSH (5mM) in the presence of salt destabilised the polyplexes, leading to 

release of the DNA in all cases (lanes e, f of RcPCs 2-5). Therefore, these results probably 

indicate that the combination of GSH under physiological salt concentrations was able to 

both cleave the disulfide bonds in the polyplexes leading to lower a molecular weight 

peptides that had a lower affinity for the DNA in the salt solution, leading to disassociation 

of the polyplexes. 

 

    (d)  The lower molecular weight RcPC 5 (22) polyplex was stable in 

GSH alone and salt alone as can be seen in Figure 5.7. (lanes b-d of RcPC 5 (22)) which is 

similar to the high molecular weight RcPC 5 (45) polyplex (Figure 5.7, lane b-d of RcPC 

5 (45)). However, the polyplex produced from the lower molecular weight RcPC 5 (22) 

released more DNA than the polyplex with higher molecular weight (RcPC 5 (45)) when 

treated with GSH and NaCl in combination (lanes e, f of RcPC 5(45) and RcPC 5(22)). 

This suggests that the kinetics of release is more rapid, as would be expected, due to small 

fragments of the polycations dissociate more rapidly from the DNA. 

 

    (e) Polyplexes produced from RcPC 5 at different 2COP:TAT ratios 

(RcPC 5 (22, 1:1) and RcPC 5 (23, 1:3) indicated that there is no ratio effect of 2COP to 

TAT, as they are stable in GSH alone (lane b), salt alone (lanes c, d), and released the 

similar amout of DNA in the combination with GSH and salt (lanes e, f). 
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Figure 5.7.      DNA binding and release demonstrated by gel shift assays of RP-TAT and RcPC 

polyplexes. All polyplexes formed at N:P 5. Top panel: polyplexes of RP-TAT (40), RcPC 1 

(37) and RcPC 2 (52, 1:1) with pDNA; middle panel shows RcPC 3 (45, 1:1), RcPC 4 (39, 1:1) 

and RcPC 5 (45, 1:1); bottom panel shows RcPC 5(22, 1:1), RcPC 5(23, 1:3) compared against 

non-cleavable polypeptide poly(lysine). Agarose gel electrophoresis was run using 1% agarose 

gel with EtBr (0.5 µg.ml) at 110 V for 60 mins in 0.5x TBE buffer 
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5.5  Conclusions 
 
 

The work in Chapters 3 and 4 has shown that the reducible polycations (RPCs) are promising 

vectors for non-viral gene delivery. However, these vectors have no nuclear targeting signal. 

Therefore, the work in this chapter has highlighted a vector design that combines 5 vector 

features together (Table 1.4, page 38): the extracellular binding with DNA (I), cell uptake via 

endocytosis (III), endosomal escape (IV), intracellular degradability (V), and nuclear 

targeting (VI).  

 

5.5.1   TAT oligopeptide purification and characterization 

 

TAT oligopeptide (CRKKRRQRRRC) synthesized by Alta Bioscience (Birmingham, UK) 

was purified by the preparative reverse phase HPLC. All purified oligopeptides were analyzed 

by analytical RP-HPLC, ESI-MS and 1H NMR to obtain the purity and to characterize the 

oligopeptides. The purity of TAT oligopeptide is 98.73%. 

 

5.5.2  Formation and characterization of RP-TAT and RcPC  

 

2COPs 1-5 and TAT oligopeptide at 2COP:TAT molar ratio 1:1 were randomly oxidative 

polymerized to form reducible copolycations (RcPCs) via disulfide bond formation. The 

RcPC 1-5 molecular weights obtained are approximately 37-52 kDa with a 2COP:TAT ratio 

is 1:1. RP-TAT was synthesized, and the molecular weight is approximately 40 kDa. RcPC 5 

with 2COP:TAT is 1:1 at molecular weight approximately 22 kDa, and the RcPC 5 with 

2COP:TAT is 1:3 at molecular weight approximately 23 kDa were also synthesized in order 

to investigate the vectors as a function of RcPC molecular weight and 2COP:TAT ratio.  
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5.5.3   Formation and characterization of RP-TAT and RcPC polyplexes 

 

Polyplexes were formed from RP-TAT and RcPCs 1-5 at N:P 5, and the resultant polyplex 

dispersion were analyzed by zeta potential and dynamic light scattering comparing to RPC 1-

5 from Chapter 3. 

 

  5.5.3.1  Diameter and zeta potential of RP-TAT and RcPC polyplexes 

 

The polyplex diameters of RP-TAT, RcPCs 1-5 (~50 kDa) prepared from 2COP:TAT at 1:1 

ratio and RcPC 5 at ~22 kDa with 2COP:TAT ratios are 1:1 and 1:3 were approximately 100 

nm.  

 

Zeta potentials were positive in all cases, which will allow the polyplexes to promote the 

internalization via syndecan-mediated endocytosis (Figure 1.22) by electrostatic interaction 

between the positively charged polyplexes and the negatively charged cell membrane. 

 

  5.5.3.2  Extracellular stability of RP-TAT and RcPC polyplexes 

 

The extracellular stability of the RP-TAT and RcPCs polyplexes was studied using the gel 

shift assay by incubating the polyplexes with polyaspartic acid (PAA). The results without 

PAA revealed that RP-TAT and all RcPCs were able to form stable polyplexes. However, 

they were unstable with PAA, indicating that RP-TAT and RcPCs polyplexes are less stable 

than RPCs. Thus, to use RcPCs as vectors may not be suitable in vivo as they would unpack 

and release the DNA by blood component before reaching the target cells.  
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  5.5.3.3  Intracellular reduction of RP-TAT and RcPC polyplexes 

 

In addition, GSH was used as a biological intracellular reducing agent, since GSH is present 

in the cytoplasm (the stability under physiological salt concentrations was studied). The 

polyplexes from RP-TAT and RcPCs 2-5 were stable in GSH alone (5mM) and salt solution 

alone (0.15 and 0.5M). However, in combination with GSH (5mM) and salt (0.15 and 0.5M), 

these polyplexes released DNA. However, the polyplex formed from RcPC 1 did not release 

DNA. These results suggested that RP-TAT and RcPCs 2-5 polyplexes are able to facilitate 

intracellular reduction resulting in DNA releasing for further gene expression mechanisms. 

Whereas, RcPC 1 although probably does undergo the disulfide bonds cleavage the high net 

charge on the 2COP 1 that results is still bound to the DNA by strong electrostatic interaction. 

 

Polyplexes produced from lower molecular weight RcPC (RcPC 5 (22)) released more 

DNA than polyplex with higher molecular weight (RcPC 5 (45)) in the combination with 

GSH and NaCl. This result is indicative of the fact that the kinetics of release will be 

quicker with RcPC 5(22), because shorter fragments of polycations will dissociate more 

rapidly from the DNA. 

 

Polyplexes produced from RcPC at different 2COP:TAT ratios ((RcPC 5 (22, 1:1) and 

RcPC 5 (23, 1:3)) indicated that there is no affect of the ratio of 2COP and TAT sequences, 

as they are stable in GSH alone, salt alone, and  released the similar amout of DNA in 

combination with GSH and salt. 

 

In summary, in comparisons between RPCs and RcPCs charateristics by DLS, zeta 

potential and gel shift assay, it might be expected that RcPCs will be less effective vectors 
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than RPCs, because their polyplexes can be dissociated by PAA. However, the transfection 

efficiencies of RcPCs will be studied in Chapter 6 to compare with RPCs.  
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6  DELIVERY OF NUCLEIC ACID USING REDUCIBLE 

COPOLYCATION (RcPC) CONTAINING LYSINE, 

HISTIDINE AND CYSTEINE BASED SEQUENCES AND 

TAT PEPTIDE 

Abstract 

As shown in Chapter 5 the RcPCs were synthesized via randomly oxidative 
polymerisation in combination of 2COPs and TAT oligopeptides. The RcPC 
polyplexes were characterised and it was revealed that they seemed to be 
suitable vectors for gene delivery in non-viral system as a result of their 
diameters and surface charges and the reducible nature by GSH and NaCl. 
However, they were unstable under simulated extracellular conditions (with 
PAA). In this chapter the transfection efficiencies of RcPC polyplexes were 
investigated and it was revealed that CQ was required to enhance the 
transfection of the RcPCs. In addition, using the lower molecular weight 
RcPCs (22 kDa) showed higher transfection level than higher molecular 
weight RcPCs (45 kDa) as with RPCs. The different ratio of 2COP and TAT 
peptides in RcPCs (1:1 and 1:3) did not affect the transfection levels. 
Furthermore, there is no improvement in transfection of RcPC compared to 
RPCs. Therefore, it may suggest that incorporation of nuclear localization 
signal (TAT) in this study does not improve the transfection.  

 

 

6.1    Introduction 
 

Non-viral vectors are limited for transfection in vivo as they inefficiently transfer DNA into 

nucleus.[1-3] In order to improve nuclear entry of non-viral vectors, there are many strategies 

to couple of NLS peptide to DNA that have been developed. [4-13]  For example, Ciolina and 

colleagues[10] developed a chemical strategy for the covalent coupling of NLS peptides 

(ACGAGPKKKRKV) of  SV40 large T antigen  to plasmid DNA. A p-azido-tetrafluoro-

benzyl-NLS peptide conjugate (Figure 6.1) was synthesized and was used to covalently 

associate NLS peptides to plasmid DNA by photoactivation.  
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Figure 6.1.  p-azido-tetrafluoro-benzyl-NLS peptide conjugate[10] 

 

Zanta and colleagues[5] synthesized capped 3.3-kbp CMVLuciferase-NLS containing a signal 

nuclear localization signal peptide from SV40 (PKKKRKVEDPY) (Figure 6.2). PEI or 

transfectam were used to form polyplexes with CMVLuciferase-NLS. The results revealed 

that only a single NLS peptide per strand of DNA was required to improve the transfection 

efficiencies (10-1000 fold) relative to the polyplexes without NLS.  
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Figure 6.2.  Strategy for preparation of CMVLuc-NLS [5]  

 

However, van der Aa and colleagues[6] revealed that covalently linked NLS peptide linked to 

linear DNA did not enhance transfection.  

 

Neves and colleagues[11] developed a strategy for covalent coupling of NLS peptides to 

plasmid DNA at a specific site by triple helix formation. A psoralen, a nucleic acid 

intercalating agent, was used to conjugate with NLS-peptide. A psoralen-oligonucleotide-NLS 

peptide conjugate was synthesized (Figure 6.3) and was used to covalently associate one NLS 

peptide to plasmid DNA by triple helix formation and photoactivation. This conjugate 
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interacted with the α-importin which is the NLS receptor. The transfection of the plasmid 

DNA coupled with this conjugate indicated that there is no loss of the gene expression 

functionality of the plasmid. The researchers suggested that this site-specific coupling 

technology can be used to couple to a plasmid other ligands targeting to a specific receptor. 
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Figure 6.3.  psoralen-oligonucleotide-NLS peptide conjugate[11] 

 

The NLS (GGGPKKKRKV) was also chemically attached to psoralen – a nucleic acid-

intercalating agent (Figure 6.4)[4] in order that the conjugate intercalated into the double 

strand DNA. PEI was then used to form the polyplexes with the DNA intercalated with 

psoralen-NLS resulting in enhancement of transfection by ~10 fold relative to PEI/DNA 

polyplex alone.  
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Figure 6.4.  Schematic conjugation of succinimidyl-[4-(psoralen-8-yloxy)]-butylrate (SPB) to NLS [4] 

 

The condensation between TAT oligomers (C(YGRKKRRQRRRG)2)[7] or TAT polymer 

(CQRKKRRQRRRGC)n, ~100 kDa)[8]  and DNA enhanced transfection activity of DNA 

polyplexes and reduced cytotoxicity. However, they required chloroquine in order for the 

endosomal vesicles to burst.  

 

The reducible copolypeptides[9] containing histidine-rich peptides (CKHHHKHHHKC) and 

nuclear localization signal peptides (CGAGPKKKRKVC) from SV40 were used as vectors in 

order to combine the endosomal buffering capacity and nuclear localization capability 

features. The transfection efficiency of the reducible copolypeptides increased when increased 

the content of histidine-rich peptide. However, it was still unclear as to the effect of the NLS 

sequence in the transfection. 
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6.2    Objectives 
 

We have shown that the RPCs (see chapters 3 and 4) that consist of lysine, histidine and 

cysteine moieties are promising non-viral vectors. However, the vector transfection efficiency 

may be improved by incorporating the NLS peptide in order to promote DNA nuclear 

transport. In this chapter the cytotoxicity and transfection efficiency of RcPCs are investigated 

in order to compare with RPCs and see if there is an improvement in the transfection by 

incorporation with TAT peptide.  

 

6.3     Methodology 
 

The cell transfection of the RP-TAT and RcPCs polyplexes prepared at N:P 5 (Figure 6.5, 

step 1) were carried out based on four experiments (Figure 6.5, step 2) which are similar to 

the transfection experiments of RPCs in Chapter 4 (section 4.3). 
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Exp 1)   Cytotoxicity (MTS assay) 
Exp 2)   Transfection based on endosomolytic property (CQ) 
Exp 3)   Transfection based on intracellular reducible property  
              (GSH-MEE, BSO) 
Exp 4)   Transfection based on combination of 2) & 3) (CQ, GSH) 

Step 2 
Cell transfections (bEND3 and A549)

Step 1  
(Figure 5.2, step 4) 

DNA polyplex formation 
(N:P 5) 

DNA 

Polyplex

S 
S-S 

S ( )n
S 

S-S 
S ( )n

Reducible copolycations (RcPCs) RP-TAT  
or 

TAT  TAT  TAT  2COP 

Figure 6.5. Schematic overview of cell transfection in this chapter 

    

   Exp 1.  Investigating the cytotoxicity of RP-TAT and RcPCs polyplexes: 

The cytotoxicity was investigated using the MTS assay. 

 

Exp 2.  Investigating the endosomolytic buffering: The transfection of 

RP-TAT and RcPCs based on the endosomal buffering and endosomal escape was 

investigated. The transfections of polyplexes with and without CQ were investigated. 

Chloroquine (CQ) was added into cell lines for its ability to buffer the endosome. 
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   Exp 3. Investigating the intracellular reducible property: The 

intracellular cleavage of the disulfide bonds in the RP-TAT and RcPCs polyplexes by GSH 

was studied as a function of transfection. Intracellular GSH level were boosted by adding 

glutathione monoethy ester (GSH-MEE), which is cell permeable and is hydrolyzed to GSH 

intracellularly.[14] In addition, experiment using buthionine sulfoximine (BSO), which inhibits 

the synthesis of the intracellular GSH, was studied as a function of transfection. 

 

   Exp 4. Investigating the endosomolytic buffering and intracellular 

reducible properties: The transfections of polyplexes with CQ, GSH, and CQ+GSH and 

polyplexes alone were investigated. 

    

6.4   Results and discussion 

 

6.4.1  Cytotoxicity of polyplexes (Figure 6.5, step 2, Exp1) 

 

  6.4.1.1 Cytotoxicity of RP-TAT and RcPCs polyplexes 

 

The cytotoxicity of RP-TAT and RcPCs polyplexes based on the effect of CQ, GSH-MEE and 

the combination of CQ and GSH-MEE was investigated using MTS assay. All experiments 

were performed as with RPCs in Chapter 4 (Figure 4.3). The cytotoxicity of RP-TAT and 

RcPC 1-5 in comparison with RPCs 1-5 are shown in Figure 6.6. 

 

As can be seen in Figure 6.6 the data demonstrated that RP-TAT and RcPCs were tolerated 

well by both cell lines in all cases (over 100% cell viability in most cases), and the percentage 
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of cell viability of cell treated with RcPCs are higher than RPCs in all cases. However, RPCs 

1-5 are less toxic than PEI and PLL in both cells. 

 

In addition, there is toxicity to cells treated with CQ and RPC polyplexes (black bars) and 

CQ+GSH-MEE and polyplexes (yellow bars) relative to cells treated with RPC polyplexes 

alone (blue bars) in most cases. However, there is none or low toxicity to cells treated with 

these additives (CQ, GSH-MEE and CQ+GSH-MEE) and RcPC polyplexes in bEND3. 

However, there is only slight toxicity to cells treated with CQ+GSH-MEE and RcPC 

polyplexes in A549.   

 

The overall cytotoxicity data indicated that RP-TAT (108-140% cell viability) and RcPCs 1-5 

(~86-145% cell viability) are less toxic to both cell lines and are better than PLL (79% cell 

viability) and PEI (69-89% cell viability) polyplexes.  
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Transfection in A549
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Figure 6.6.     Cell viability following exposure to RPC 1-5 , RP-TAT and RcPC 1-5 polyplexes at N:P 5, 

PLL polyplex at N:P 5, PEI polyplex at N:P 10 and cell controls; (a): cell viability of 

transfected cells in bEND3, (b): cell viability of transfected cells in A549. Note: The percentage 

of cell viability shown in this diagramed derived from the average cell viability (%) of cells 

treated with polyplex alone and in the combination of polyplexes and CQ, GSH-MEE and 

CQ+GSH-MEE in each cases 
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6.4.1.2 Cytotoxicity of RcPCs polyplexes as a function of RcPC molecular  

weight and 2COP:TAT ratio 

  

6.4.1.2a Cytotoxicity of RcPCs polyplexes as a function of RcPC 

molecular weight 

As can be seen in Figure 6.7 there is no toxicity to cells of RcPC 5 of different molecular 

weights (45 and 22 kDa) for both bEND3 (Figure 6.7a) and A549 (Figure 6.7b) cells as the 

cell viabilities are over 100% and are better than PLL (78-81% cell viability) and PEI (77-

78% cell viability) polyplexes. 
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Transfection in bEND3
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Figure 6.7.      Cell viability of cells transfected with RcPC 5 (45 and 22 kDa with 2COP 5:TAT ratio 1:1), 

RcPC 5 (23 kDa with 2COP 5:TAT ratio 1:3) at N:P 5, PLL polyplex at N:P 5, PEI polyplex 

at N:P 10 and cell controls; (a): cell viability of transfected cells in bEND3, (b): cell viability of 

transfected cells in A549. Note: The percentage of cell viability shown in this diagramed derived 

from the average cell viability (%) of cells treated with polyplex alone and in the combination of 

polyplexes and CQ, GSH-MEE and CQ+GSH-MEE in each cases 
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6.4.1.2b Cytotoxicity of RcPCs polyplexes as a function of 2COP:TAT 

ratio 

As can be seen in Figure 6.7 there is no toxicity to cells of RcPC 5 (22 and 23 kDa) in 

different 2COP:TAT ratios (1:1 and 1:3) for both bEND3 (Figure 6.7a) and A549 (Figure 

6.7b) cells as the cell viabilities are over 100% and are better than PLL and PEI polyplexes. 

 

 

6.4.2  Cell transfection of polyplexes (Figure 6.5, step 2, Exp 2-4) 

 

The transfection efficiencies of RP-TAT and RcPCs polyplexes based on endosomolytic 

buffering and intracellular reduction in both cell lines were investigated. All transfection 

experiments were performed as outlined in Chapter 4 (Figure 4.3). The transfection 

efficiencies of RP-TAT and RcPC 1-5 based on the effect of CQ, BSO, GSH-MEE and the 

combination of CQ and GSH-MEE are shown in Figure 6.8. 

 

The first point to note is that the overall transfection efficiency of RP-TAT is similar to 

RcPCs 2-5 in both cells (Figure 6.8). However, RP-TAT polyplexes seemed to induce higher 

transfection efficiency than RcPCs 1-5 in the transfection with polyplexes alone (blue bars). 

RcPC 1 showed the least transfection efficiency relative to other RcPCs polyplexes. 
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Figure 6.8.    Transfection based on CQ, GSH-MEE and BSO with RP-TAT, RcPC polyplexes 1-5 (~50 

kDa) at N:P 5,  PLL polyplex at N:P 5, PEI polyplex at N:P 10 and cell control; a) 

transfection into bEND3 and b) transfection into A549 
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7    CONCLUSIONS  

Abstract  
 
This chapter gives an overview of the conclusions of the experimental results 
presented in this thesis. Also the limitations to our research and potential 
future work to improve the RPC base vectors are described. 

 
 
 

7.1 Conclusions 
 
 

In this thesis we have synthesized and characterised synthetic vectors by combining lysine, 

histidine and cysteine residues (described in Chapter 1, page 44) to provide the key features to 

hopefully achieve efficient gene delivery. These vectors are designed to bind DNA 

extracellularly (I), achieve cell uptake via endocytosis (III), provide a tunable endosomal 

release mechanism (IV), provide a degradable backbone in order that the DNA can be 

released once in the cytoplasm (V), and provide a nuclear localization signal (VI).  

 

The summary results of the physiological and biological properties of vectors studied in this 

thesis are shown in Table 7.1 and the associated text below. 
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Table 7.1.  Summary of physicological and biological properties  

a   Hydrodynamic diameters of the polyplexes (N:P 5) measured by dynamic light scattering with a Zetasizer 3000 (Malvern Instruments, Worcestershire, UK) 
b   Zetapotential measured by with a  Zetamaster (Malvern Instruments, Worcestershire, UK) 
c   DNA released investigated by agarose gel electrophoresis 
d The percentage of cell viability derived from the average cell viability (%) of cells treated with polyplex alone and in the combination of polyplexes and CQ, GSH-MEE and 

CQ+GSH-MEE in each cases 
e   Normalized transfection efficiency of polyplexes to PLL polyplex = transfection level of polyplex/transfection level of PLL polyplex 
f   Relative transfection enhancement by chloroquine (%) = (transfection level of polyplex with CQ/transfection level of polyplex only)*100 

DNA released from 

polyplexc

Cell viability (%)d

 

Normalized transfection 

efficiency of polyplexes to PLL 

polyplexe

Relative  transfection  

enhancement by CQ (%)f

Vectors MW (kDa) Oligopeptides 
pKa of  

2COPs 

Polyplex 

diameter  

(nm)a  

Polyplex 

zetapotential 

(mV)b  

PAA  GSH+NaCl bEND3 A549 bEND3 A549 bEND3 A549 

PLL 

PEI 

70 

25 

- 

- 

- 

- 

  81.0  ±  0.9 

108.7  ±  8.6 

  11.3  ±     9.0 

   3.4   ±     0.2 

√ 

√ 

X 

- 

79 

83 

80 

81 

1.0 

147.0         

        1.0 

    1349.4 

1049 

1268 

161 

271 

RPC 1 (111) 

RPC 2 (118) 

RPC 3 (115) 

RPC 4 (102) 

RPC 5 (94) 

111 

118 

115 
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94 

2COP 1 

2COP 2 

2COP 3 

2COP 4 

2COP 5 

10.51 

  6.20 

  6.16 

  6.11 

  6.09 

132.1  ±  4.5 

  98.3  ±  0.6 

  99.8  ±  0.9 

101.1  ±  2.8 

  95.5  ±  1.1 

  10.0  ±  10.9 

  14.3  ±    9.7 

  13.5  ±    7.2 

    5.8  ±    3.6 

  17.4  ±  11.3 

X 

X 

X 

X 

X 

X 

√ 

√ 

√ 

√ 

104 
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104 
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88 

97 
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96 
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1343.8 
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7.1.1 pKa modulation of 2COPs 

 

We have shown that using the new strategy of increasing the mixing of the constitution of the 

histidine residues in the lysine residues we were able to modulate the pKa of 2COPs 1-5 from 

10.51-6.09 (Table 7.1, pKa of 2COPs) because of the charge repulsion of subphase protons 

by its proximity to the protonated lysine residues. The modulation of the pKa of 2COPs 2-5 

(pKa 6.20-6.09) will provide a way to modulate the buffering capacity in the early endosome 

(pH ~6) leading to endosomal disruption, before it develops into the late endosome where 

polyplexes would be degraded (vector feature IV) as described in the hypothesis (Chapter 1, 

page 48).  

 

7.1.2 Diameter and zetapotential of polyplexes 

 

Regarding to the hypothesis in Chapter 1 (page 51), the incorporation of lysine into synthetic 

vectors provides the strong binding of the vector to DNA via electrostatic interactions (Vector 

feature I). The RPCs and RcPCs in this thesis have lysine residues incorporated and not only 

bind strongly to the DNA, but also form polyplexes of ~100 nm (Table 7.1, polyplex 

diameter). 

 

In addition, incorporation of lysine residues into the synthetic vectors resulted in positively 

charged polyplexes (Table 7.1, polyplex zetapotential), which further enabled them to 

electrostatically interact with the negatively charged cell membrane and promote the 

internalization into cells via syndecan-mediated endocytosis[1,2] (vector feature III) as 

described in the hypothesis in Chapter 1 (page 51).  
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7.1.3 Extracellular stability of polyplexes 

 

PLL polyplexes are less stable than RPC 1 when exposed to PAA (Table 7.1, PAA). This 

result indicates RPC 1 binds more strongly to DNA than PLL. We hypothesized that PLL has 

a higher persistent length (Figure 7.1a) than RPC 1 (Figure 7.1b). This reduction in 

persistence length of RPC 1 is a result of the reduction in charge repulsion of the protonated 

lysine groups either side of the reducible disulfide bond from the cysteines, allow the s-s bond 

to act as a molecular hinge. 

 

a) PLL (K20) electrostratic 
repulsion 

 

 

 

 

b) RPC 1 (CK8C)2

electrostratic 
repulsion 

 less electrostratic 
repulsion 

S-S bond acts like 
a molecular hinge 

“+” ‘s Not in plane 

 

 

 

 

 

 

 

 

Figure 7.1.  Disulfide bond backbone in RPC resulting in polymer chain bending compared to PLL (K20) 

with more rigid structure: a) PLL (K20) and b) RPC 1 (CK8C)2
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RPCs 2-5 have inherently more extracellular stability than other polyplexes as they did not 

release the DNA when exposed to PAA (Table 7.1, PAA). This result was a surprise as there 

were only 50% of the fully protonated lysine residues compared to RPC 1, thus, the 

electrostatic interaction would be much weaker. However, continuing the argument around 

persistence length and better compaction of RPC 1 polyplexes, one can envisage that RPCs 2-

5 have even shorter persistent lengths than RPC 1, and hence compact better with DNA, and 

are therefore more stable. This result suggested that polyplexes formed from RPCs 2-5 are 

more stable extracellularly than PLL and RPC 1 polyplexes and, therefore, would be able to 

reach the target cells after blood stream circulation (vector feature I). 

 

7.1.4 Intracellular reduction and toxicity of polyplexes 

 

As described previously in the hypothesis (Chapter 1, page 51), the disulfide backbone in 

RPCs and RcPCs provides the point of cleavage of the reducible polycations by intracellular 

GSH leading to the DNA release in the cytoplasm (vector feature V). The gel shift assay of 

RPCs 2-5 and RcPCs 2-5 polyplexes with GSH in combination with salt revealed that they are 

able to be reduced and release the DNA intracellularly (Table 7.1, GSH+NaCl). However, 

treatment of polyplexes with GSH revealed no release of DNA with RPC 1 and RcPC 1, in 

contrast to RPCs 2-5 and RcPCs 2-5. Presumably, all polyplexes are undergoing disulfide 

bond cleavage, but the enhanced positive charge of 2COP 1 (twice as many lysine residues in 

RPC 1 compared to RPCs 2-5) means the short oligopeptide fragments (2COP 1) remain 

bound to the DNA, unlike 2COPs 2-5. 

 

In addition, all of the intracellular reducible vector systems studied here are less toxic to both 

cell types than the non-degradable polymers (PLL and PEI). Presumably, the RPCs and 
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RcPCs degrade to readily cleared fragments (2COPs) compared to the high molecular weight 

PLL and PEI (Table 7.1, cell viability).  

 

7.1.5 Transfection efficiency of polyplexes 

 

7.1.5.1  Transfection in endothelial (bEND3) and epithelial (A549) cells 

 

bEND3 cells have higher transfection levels than A549 cells (Table 7.1, relative transfection 

efficiency of polyplexes to PLL polyplex). The difference observed between transfection 

efficiencies in bEND3 (mouse brain endothelial cells) and A549 (human lung carcinoma 

epithelial cells) is most likely due to the different rate of cell growth in vitro, as endothelial 

cells grow faster. Change in growth rates would have affected the level of intracellular 

glutathione and the protein expression as described in Chapter 4 (in the transfection results 

with GSH-MEE/BSO). Concomitant degradation of the nuclear membrane would, therefore, 

have led to the release of high level of glutathione into the cytoplasm leading to more efficient 

release of DNA from the polyplexes to the cytoplasm resulting in higher transfection levels 

than in A549, and may result in the different trends of the transfection between bEND3 and 

A549.  

 

The higher transfection rates of the endothelium (bEND3) cells might be a contra-indication 

to support the administration of the RPC polyplexes via intravenous injection if one was 

trying to treat a tumor, as the polyplexes would be internalized by blood vessels before 

reaching the tumor. 
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7.1.5.2 Transfection efficiency of RPC and RcPC  polyplexes  

 

In Table 7.1 we have normalized the transfection data by dividing the PLL polyplex 

transfection level into all the other polyplex transfection levels. Several conclusions can be 

drawn from this if we consider the bEND3 cells and A549 cells both independently and then 

together. 

  

bEND3 cells : 

  

(i)        PLL polyplexes are the worst transfection agents. 

(ii)       RPC 1 (111) and RPC 1 (54) have increased transfection levels over PLL (80.6 

and 16.6 fold increase, respectively).  Therefore, the incorporation of the disulfide bond has 

significantly increased the transfection efficiency. 

(iii)     The histidine containing RPCs (2-5), both high and low molecular weight, have 

increased transfection efficiency over RPC 1, ranging from 431.6 (RPC 4) to 1343.8 (RPC 2) 

for the high molecular weight materials. All of the lower molecular weight materials have 

even better transfection.  Therefore, the incorporation of histidine moieties enhances the 

transfection above and beyond the introduction of the disulfide bonds. 

 (iv)     The lower molecular weight RPCs 2-5 have higher transfection levels than 

the higher molecular weight RPCs 2-5.  Therefore, molecular weight is key determinant in 

transfection levels. We have also shown that the diameters, surface charges and gel shift 

assays of polyplexes from low molecular weight RPCs 2-5 (~50 kDa) were similar to high 

molecular weight RPCs 2-5 (~100 kDa), but had enhanced release of DNA when treated 

with GSH. This result is indicative of the fact that the kinetics of DNA release is quicker 

with low molecular weight RPCs, presumably because shorter fragments of polycations 
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will dissociate more rapidly from the DNA. Therefore, the low molecular weight RPCs 

might induce higher transfection level than high molecular weight RPCs, and indeed this 

was the case. 

(v) Incorporation of TAT (RcPCs 4-5) significantly enhances the transfection of 

the polyplexes, whilst it is variable for RcPCs 2-3.  Thus, TAT potentially has an effect in 

endothelial cells (which is in contrast to A549 epithelial cells). 

(vi) The cell transfections with RcPC 5 polyplexes at different 2COP:TAT ratios 

(1:1 and 1:3) revealed that  the amount of nuclear localization signal (TAT) incorporated in 

the RcPCs does not affect the transfection level as similar transfection levels were determined  

(RcPC 5 (22 (1:1), 23 (1:3)). This result may be due to the RcPC polyplexes upon 

intracellular GSH reduction leading to the DNA dissociating totally from the TAT fragments, 

and therefore no translocation and internalization of the DNA to the nucleus. Therefore, there 

is no improvement in addition of TAT sequence relative to the transfection with RPC 

polyplexes.  

 

A549 cells : 

  

Similar conclusions with respect to the introduction of the disulfide bond, histidine and 

molecular weight can be drawn for A549 as were for bEND3 cells.  However, for RcPC 

polyplexes the transfection levels were lower or about the same for RPCs 2-5.  Therefore, it 

appears that the type of cell – endothelial or epithelial – has a significant effect on the 

transfection levels.  
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7.1.5.3 Relative transfection enhancement by CQ of RPC and RcPC  polyplexes 

 

In Table 7.1 the relative transfection enhancement of polyplexes by CQ are shown. Several 

conclusions can be drawn. 

 

(i)  We were expecting that the transfection levels of RPCs 2-5 would be less 

enhanced by CQ than RPC 1 because of the buffering capacity by histidine residues. 

However, the transfection levels of RPC 2-5 (~100 kDa) in bEND 3 enhanced by CQ were 

about the same or even higher than RPC 1, which are anomalous. These results in bEND 3 are 

in contrast to RPC 1-5 (~100 kDa) in A549, as the transfection levels were less enhanced by 

CQ when incorporation of histidines (RPCs 2-5) compared to RPC 1. Therefore, once again, 

it appears that the type of cell – endothelial or epithelial – has a significant effect on the 

transfection levels.  

 (ii) The lower molecular weight RPCs 1-5 (~50 kDa) have less enhancement by 

CQ than the higher molecular weight RPCs 1-5 (~100 kDa) in both cells. Therefore, the lower 

molecular weight RPCs used in this thesis are better transfection agents than higher molecular 

weight RPCs. 

 (iii) CQ was required to enhance the transfection levels of RcPCs 1-3 compared to 

RPC 1-3 (~50 kDa) in bEND3. However, CQ did not affect the transfection of RcPC 4-5. 

Also these results are in contrast to the transfection in A549, in which all of the RcPCs 2-5 

required CQ to give better transfection levels than corresponding RPCs. Presumably, this is 

because the buffering capacity (proton sponge mechanism) is lower in the RcPCs. 
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7.1.6  2COPs conclusion 

 

DNA polyplexes formed from 2COPs 1-5 at N:P 5 (Chapter 3) formed large particles  (1µm ) 

over a time course of 48 hr (Chapter 3, Table 3.7). In general, particle diameters less than 

1µm survive longer in the bloodstream than the larger particle if there are no interactions with 

blood components or macrophages.[4] Therefore, these polyplexes were not suitable for further 

cell transfection. As predicted the oligopeptides 2COP polyplexes were poor transfection 

agents relative to the RPCs (Chapter 4, Figure 4.16). 

 

7.1.7 Cross-linked RPC conclusions 

 

The oxidative polymerization to form cross-linked RPCs was also studied by oxidatively 

polymerising 2COPs 1-5 and 3COP 7 at 4% and 32% mole fraction of 3COP 7 (Chapter 3, 

section 3.4.5). The results showed termination in the growth of cross-linked RPCs producing 

low molecular weight polymers in all cases. The higher the mole fraction of 3COP used, the 

lower the polymer molecular weight produced. We believe the 3COP leads to the termination 

of the cross-linked RPCs during the reaction.  

 

7.2   Limitations and future work 
 

7.2.1    Improve cell targeting 

 

In our primary vector design the cell targeting ligand was not attached to the vector. 

Therefore, theses non-targeting vectors can not be used effectively in transfection in vivo. To 

improve this vector feature the targeting ligands have to be attached to the vectors as 
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described in Chapter 1 (Section 1.1.2.1b). The targeting ligands that have been widely used 

are transferrin, which specifically targets transferrin receptors that are overexpressed in 

rapidly dividing tissues, such as tumors,[5-13]  and folic acid that specifically target folate 

receptors, which are also overexpressed in proliferating tissues.[13-15] In addition, various 

sacharide ligands such as galactose, manose, fucose, lactose as well as asialoorosomucoid and 

asialoglycoprotein are specifically targeting asialoglycoprotein receptors, which are 

abundantly expressed in hepatocytes.[12,13,16]   

 

In addition, using endothelium (bEND3) and epithelium cell lines (A549) in the in vitro 

transfection studies indicated that the in vivo injection of RPC polyplexes in blood vessel 

would not be a suitable method for delivering genes, as the polyplexes entered into the 

endothelial cells. Therefore, to improve the transfection at the target sites, the administration 

methods have to be considered such as direct injection[17,18] and electroporation[19,20] based on 

formation of membrane pores induced by electric pulses into tissues. 

  

7.2.2 Improve nuclear localization 

 

Another limitation in our studies is that the incorporation of TAT peptide in RcPCs did not 

improve the transfection level compared to RPCs. This result is likely to be due to the free 

DNA being fully released from TAT peptides after the reduction by intracellular GSH. 

Therefore, to improve the nuclear localization the direct covalent/non covalent attachment of 

NLS to DNA is a way of developing RPC based polyplexes.  

 

There are many strategies developed to attaching the NLS to DNA as described in Chapter 6 

(section 6.1). For instance, the attachment of NLS to the hair pin loop at the end of linear 
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DNA.[21] The intercalating agent such as psoralen[22,23] and p-azido-tetrafluoro-benzyl[24] were 

also chemically attached to the NLS peptide, in order that the NLS peptide is covalently 

attached to the DNA by photoactivation.  
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7    CONCLUSIONS  

Abstract  
 
This chapter gives an overview of the conclusions of the experimental results 
presented in this thesis. Also the limitations to our research and potential 
future work to improve the RPC base vectors are described. 

 
 
 

7.1 Conclusions 
 
 

In this thesis we have synthesized and characterised synthetic vectors by combining lysine, 

histidine and cysteine residues (described in Chapter 1, page 44) to provide the key features to 

hopefully achieve efficient gene delivery. These vectors are designed to bind DNA 

extracellularly (I), achieve cell uptake via endocytosis (III), provide a tunable endosomal 

release mechanism (IV), provide a degradable backbone in order that the DNA can be 

released once in the cytoplasm (V), and provide a nuclear localization signal (VI).  

 

The summary results of the physiological and biological properties of vectors studied in this 

thesis are shown in Table 7.1 and the associated text below. 
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Table 7.1.  Summary of physicological and biological properties  

a   Hydrodynamic diameters of the polyplexes (N:P 5) measured by dynamic light scattering with a Zetasizer 3000 (Malvern Instruments, Worcestershire, UK) 
b   Zetapotential measured by with a  Zetamaster (Malvern Instruments, Worcestershire, UK) 
c   DNA released investigated by agarose gel electrophoresis 
d The percentage of cell viability derived from the average cell viability (%) of cells treated with polyplex alone and in the combination of polyplexes and CQ, GSH-MEE and 

CQ+GSH-MEE in each cases 
e   Normalized transfection efficiency of polyplexes to PLL polyplex = transfection level of polyplex/transfection level of PLL polyplex 
f   Relative transfection enhancement by chloroquine (%) = (transfection level of polyplex with CQ/transfection level of polyplex only)*100 

DNA released from 

polyplexc

Cell viability (%)d

 

Normalized transfection 

efficiency of polyplexes to PLL 

polyplexe

Relative  transfection  

enhancement by CQ (%)f

Vectors MW (kDa) Oligopeptides 
pKa of  

2COPs 

Polyplex 

diameter  

(nm)a  

Polyplex 

zetapotential 

(mV)b  

PAA  GSH+NaCl bEND3 A549 bEND3 A549 bEND3 A549 

PLL 

PEI 

70 

25 

- 

- 

- 

- 

  81.0  ±  0.9 

108.7  ±  8.6 

  11.3  ±     9.0 

   3.4   ±     0.2 

√ 

√ 

X 

- 

79 

83 

80 

81 

1.0 

147.0         

        1.0 

    1349.4 

1049 

1268 

161 

271 

RPC 1 (111) 

RPC 2 (118) 

RPC 3 (115) 

RPC 4 (102) 

RPC 5 (94) 

111 

118 

115 

102 

94 

2COP 1 

2COP 2 

2COP 3 

2COP 4 

2COP 5 

10.51 

  6.20 

  6.16 

  6.11 

  6.09 

132.1  ±  4.5 

  98.3  ±  0.6 

  99.8  ±  0.9 

101.1  ±  2.8 

  95.5  ±  1.1 

  10.0  ±  10.9 

  14.3  ±    9.7 

  13.5  ±    7.2 

    5.8  ±    3.6 

  17.4  ±  11.3 

X 

X 

X 

X 

X 

X 

√ 

√ 

√ 

√ 

104 

102 

104 

105 

101 

88 

97 

108 

96 

104 

78.0 

1343.8 

497.9 

431.6 

1204.9 

          0.3 

406.7 

378.4 

32.4 

21.0 

1296 

2492 

2526 

3316 

1381 

257547 

722 

129 

611 

717 

RPC 1 (54) 

RPC 2 (60) 

RPC 3 (40) 

RPC 4 (48) 

RPC 5 (42) 

54 

60 

40 

48 

42 

2COP 1 

2COP 2 

2COP 3 

2COP 4 

2COP 5 

10.51 

  6.20 

  6.16 

  6.11 

  6.09 

  99.9  ±  8.3 

  98.4  ±  0.7 

  94.7  ±  1.5 

101.1  ±  2.2 

  90.7  ±  3.4 

  16.8  ±  11.0 

  10.1  ±  14.0 

  15.5  ±  15.5 

    5.3  ±    5.7 

  12.6  ±  12.3     

X 

X 

X 

X 

X 

X 

√ 

√ 

√ 

√ 

110 

93 

86 

79 

89 

95 

97 

98 

101 

96 

80.6 

6892.5 

5648.7 

1633.4 

4499.3 

5.9 

2434.6 

1519.3 

166.5 

146.5 

836 

186 

130 

32 

283 

12143 

806 

418 

22 

972 

17722 

13242 

2587 

6117 

220532 

2127 

1615 

360 

29 

28 

112 

178 

31 

2055 

4889 

RcPC 1 

RcPC 2 

RcPC 3 

RcPC 4 

RcPC 5  

RcPC 5 

RcPC 5 

RP-TAT 

37 

52 

45 

39 

45 

22 

23 

40 

2COP 1:TAT (1:1) 

2COP 2:TAT (1:1) 

2COP 3:TAT (1:1) 

2COP 4:TAT (1:1) 

2COP 5:TAT (1:1)  

2COP 5:TAT (1:1)  

2COP 5:TAT (1:3)  

TAT 

10.51 

  6.20 

  6.16 

  6.11 

  6.09 

  6.09 

  6.09 

- 

104.1 ±  1.4 

111.4  ±  2.6 

105.7  ±  3.7 

  98.1  ±  3.7 

108.1  ±  1.6     

  98.4  ±  0.9 

110.3  ±  1.1 

 95.2 ±  0.3 

  13.5  ±  10.0 

    8.8  ±    8.0 

  17.8  ±  12.8 

  10.3  ±    9.1 

  11.6  ±  14.3 

  12.6  ±    8.4 

  12.9  ±  12.0 

  14.4  ±    9.3 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

X 

√ 

√ 

√ 

√ 

√ 

√ 

√ 

124 

129 

110 

93 

86 

136 

134 

140 

124 

129 

138 

145 

107 

103 

100 

108 

16.6 

252.6 

1390.0 

14177.4 

12717.5 

2715.4 

2593.8 

21574.6 

11.5 

335.8 

173.1 

107.9 

4.1 

40.1 

36.7 

760.8 1960 



7.1.1 pKa modulation of 2COPs 

 

We have shown that using the new strategy of increasing the mixing of the constitution of the 

histidine residues in the lysine residues we were able to modulate the pKa of 2COPs 1-5 from 

10.51-6.09 (Table 7.1, pKa of 2COPs) because of the charge repulsion of subphase protons 

by its proximity to the protonated lysine residues. The modulation of the pKa of 2COPs 2-5 

(pKa 6.20-6.09) will provide a way to modulate the buffering capacity in the early endosome 

(pH ~6) leading to endosomal disruption, before it develops into the late endosome where 

polyplexes would be degraded (vector feature IV) as described in the hypothesis (Chapter 1, 

page 48).  

 

7.1.2 Diameter and zetapotential of polyplexes 

 

Regarding to the hypothesis in Chapter 1 (page 51), the incorporation of lysine into synthetic 

vectors provides the strong binding of the vector to DNA via electrostatic interactions (Vector 

feature I). The RPCs and RcPCs in this thesis have lysine residues incorporated and not only 

bind strongly to the DNA, but also form polyplexes of ~100 nm (Table 7.1, polyplex 

diameter). 

 

In addition, incorporation of lysine residues into the synthetic vectors resulted in positively 

charged polyplexes (Table 7.1, polyplex zetapotential), which further enabled them to 

electrostatically interact with the negatively charged cell membrane and promote the 

internalization into cells via syndecan-mediated endocytosis[1,2] (vector feature III) as 

described in the hypothesis in Chapter 1 (page 51).  
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7.1.3 Extracellular stability of polyplexes 

 

PLL polyplexes are less stable than RPC 1 when exposed to PAA (Table 7.1, PAA). This 

result indicates RPC 1 binds more strongly to DNA than PLL. We hypothesized that PLL has 

a higher persistent length (Figure 7.1a) than RPC 1 (Figure 7.1b). This reduction in 

persistence length of RPC 1 is a result of the reduction in charge repulsion of the protonated 

lysine groups either side of the reducible disulfide bond from the cysteines, allow the s-s bond 

to act as a molecular hinge. 

 

a) PLL (K20) electrostratic 
repulsion 

 

 

 

 

b) RPC 1 (CK8C)2

electrostratic 
repulsion 

 less electrostratic 
repulsion 

S-S bond acts like 
a molecular hinge 

“+” ‘s Not in plane 

 

 

 

 

 

 

 

 

Figure 7.1.  Disulfide bond backbone in RPC resulting in polymer chain bending compared to PLL (K20) 

with more rigid structure: a) PLL (K20) and b) RPC 1 (CK8C)2
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RPCs 2-5 have inherently more extracellular stability than other polyplexes as they did not 

release the DNA when exposed to PAA (Table 7.1, PAA). This result was a surprise as there 

were only 50% of the fully protonated lysine residues compared to RPC 1, thus, the 

electrostatic interaction would be much weaker. However, continuing the argument around 

persistence length and better compaction of RPC 1 polyplexes, one can envisage that RPCs 2-

5 have even shorter persistent lengths than RPC 1, and hence compact better with DNA, and 

are therefore more stable. This result suggested that polyplexes formed from RPCs 2-5 are 

more stable extracellularly than PLL and RPC 1 polyplexes and, therefore, would be able to 

reach the target cells after blood stream circulation (vector feature I). 

 

7.1.4 Intracellular reduction and toxicity of polyplexes 

 

As described previously in the hypothesis (Chapter 1, page 51), the disulfide backbone in 

RPCs and RcPCs provides the point of cleavage of the reducible polycations by intracellular 

GSH leading to the DNA release in the cytoplasm (vector feature V). The gel shift assay of 

RPCs 2-5 and RcPCs 2-5 polyplexes with GSH in combination with salt revealed that they are 

able to be reduced and release the DNA intracellularly (Table 7.1, GSH+NaCl). However, 

treatment of polyplexes with GSH revealed no release of DNA with RPC 1 and RcPC 1, in 

contrast to RPCs 2-5 and RcPCs 2-5. Presumably, all polyplexes are undergoing disulfide 

bond cleavage, but the enhanced positive charge of 2COP 1 (twice as many lysine residues in 

RPC 1 compared to RPCs 2-5) means the short oligopeptide fragments (2COP 1) remain 

bound to the DNA, unlike 2COPs 2-5. 

 

In addition, all of the intracellular reducible vector systems studied here are less toxic to both 

cell types than the non-degradable polymers (PLL and PEI). Presumably, the RPCs and 
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RcPCs degrade to readily cleared fragments (2COPs) compared to the high molecular weight 

PLL and PEI (Table 7.1, cell viability).  

 

7.1.5 Transfection efficiency of polyplexes 

 

7.1.5.1  Transfection in endothelial (bEND3) and epithelial (A549) cells 

 

bEND3 cells have higher transfection levels than A549 cells (Table 7.1, relative transfection 

efficiency of polyplexes to PLL polyplex). The difference observed between transfection 

efficiencies in bEND3 (mouse brain endothelial cells) and A549 (human lung carcinoma 

epithelial cells) is most likely due to the different rate of cell growth in vitro, as endothelial 

cells grow faster. Change in growth rates would have affected the level of intracellular 

glutathione and the protein expression as described in Chapter 4 (in the transfection results 

with GSH-MEE/BSO). Concomitant degradation of the nuclear membrane would, therefore, 

have led to the release of high level of glutathione into the cytoplasm leading to more efficient 

release of DNA from the polyplexes to the cytoplasm resulting in higher transfection levels 

than in A549, and may result in the different trends of the transfection between bEND3 and 

A549.  

 

The higher transfection rates of the endothelium (bEND3) cells might be a contra-indication 

to support the administration of the RPC polyplexes via intravenous injection if one was 

trying to treat a tumor, as the polyplexes would be internalized by blood vessels before 

reaching the tumor. 
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7.1.5.2 Transfection efficiency of RPC and RcPC  polyplexes  

 

In Table 7.1 we have normalized the transfection data by dividing the PLL polyplex 

transfection level into all the other polyplex transfection levels. Several conclusions can be 

drawn from this if we consider the bEND3 cells and A549 cells both independently and then 

together. 

  

bEND3 cells : 

  

(i)        PLL polyplexes are the worst transfection agents. 

(ii)       RPC 1 (111) and RPC 1 (54) have increased transfection levels over PLL (80.6 

and 16.6 fold increase, respectively).  Therefore, the incorporation of the disulfide bond has 

significantly increased the transfection efficiency. 

(iii)     The histidine containing RPCs (2-5), both high and low molecular weight, have 

increased transfection efficiency over RPC 1, ranging from 431.6 (RPC 4) to 1343.8 (RPC 2) 

for the high molecular weight materials. All of the lower molecular weight materials have 

even better transfection.  Therefore, the incorporation of histidine moieties enhances the 

transfection above and beyond the introduction of the disulfide bonds. 

 (iv)     The lower molecular weight RPCs 2-5 have higher transfection levels than 

the higher molecular weight RPCs 2-5.  Therefore, molecular weight is key 

determinant in transfection levels. We have also shown that the diameters, surface 

charges and gel shift assays of polyplexes from low molecular weight RPCs 2-5 

(~50 kDa) were similar to high molecular weight RPCs 2-5 (~100 kDa), but had 

enhanced release of DNA when treated with GSH. This result is indicative of the 

fact that the kinetics of DNA release is quicker with low molecular weight RPCs, 
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presumably because shorter fragments of polycations will dissociate more rapidly 

from the DNA. Therefore, the low molecular weight RPCs might induce higher 

transfection level than high molecular weight RPCs, and indeed this was the case. 

(v) Incorporation of TAT (RcPCs 4-5) significantly enhances the transfection of 

the polyplexes, whilst it is variable for RcPCs 2-3.  Thus, TAT potentially has an effect in 

endothelial cells (which is in contrast to A549 epithelial cells). 

(vi) The cell transfections with RcPC 5 polyplexes at different 2COP:TAT ratios 

(1:1 and 1:3) revealed that  the amount of nuclear localization signal (TAT) incorporated in 

the RcPCs does not affect the transfection level as similar transfection levels were determined  

(RcPC 5 (22 (1:1), 23 (1:3)). This result may be due to the RcPC polyplexes upon 

intracellular GSH reduction leading to the DNA dissociating totally from the TAT fragments, 

and therefore no translocation and internalization of the DNA to the nucleus. Therefore, there 

is no improvement in addition of TAT sequence relative to the transfection with RPC 

polyplexes.  

 

A549 cells : 

  

Similar conclusions with respect to the introduction of the disulfide bond, histidine and 

molecular weight can be drawn for A549 as were for bEND3 cells.  However, for RcPC 

polyplexes the transfection levels were lower or about the same for RPCs 2-5.  Therefore, it 

appears that the type of cell – endothelial or epithelial – has a significant effect on the 

transfection levels.  
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7.1.5.3 Relative transfection enhancement by CQ of RPC and RcPC  polyplexes 

 

In Table 7.1 the relative transfection enhancement of polyplexes by CQ are shown. Several 

conclusions can be drawn. 

 

(i)  We were expecting that the transfection levels of RPCs 2-5 would be less 

enhanced by CQ than RPC 1 because of the buffering capacity by histidine residues. 

However, the transfection levels of RPC 2-5 (~100 kDa) in bEND 3 enhanced by CQ were 

about the same or even higher than RPC 1, which are anomalous. These results in bEND 3 are 

in contrast to RPC 1-5 (~100 kDa) in A549, as the transfection levels were less enhanced by 

CQ when incorporation of histidines (RPCs 2-5) compared to RPC 1. Therefore, once again, 

it appears that the type of cell – endothelial or epithelial – has a significant effect on the 

transfection levels.  

 (ii) The lower molecular weight RPCs 1-5 (~50 kDa) have less enhancement by 

CQ than the higher molecular weight RPCs 1-5 (~100 kDa) in both cells. Therefore, the lower 

molecular weight RPCs used in this thesis are better transfection agents than higher molecular 

weight RPCs. 

 (iii) CQ was required to enhance the transfection levels of RcPCs 1-3 compared to 

RPC 1-3 (~50 kDa) in bEND3. However, CQ did not affect the transfection of RcPC 4-5. 

Also these results are in contrast to the transfection in A549, in which all of the RcPCs 2-5 

required CQ to give better transfection levels than corresponding RPCs. Presumably, this is 

because the buffering capacity (proton sponge mechanism) is lower in the RcPCs. 
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7.1.6  2COPs conclusion 

 

DNA polyplexes formed from 2COPs 1-5 at N:P 5 (Chapter 3) formed large particles  (1µm ) 

over a time course of 48 hr (Chapter 3, Table 3.7). In general, particle diameters less than 

1µm survive longer in the bloodstream than the larger particle if there are no interactions with 

blood components or macrophages.[4] Therefore, these polyplexes were not suitable for further 

cell transfection. As predicted the oligopeptides 2COP polyplexes were poor transfection 

agents relative to the RPCs (Chapter 4, Figure 4.16). 

 

7.1.7 Cross-linked RPC conclusions 

 

The oxidative polymerization to form cross-linked RPCs was also studied by oxidatively 

polymerising 2COPs 1-5 and 3COP 7 at 4% and 32% mole fraction of 3COP 7 (Chapter 3, 

section 3.4.5). The results showed termination in the growth of cross-linked RPCs producing 

low molecular weight polymers in all cases. The higher the mole fraction of 3COP used, the 

lower the polymer molecular weight produced. We believe the 3COP leads to the termination 

of the cross-linked RPCs during the reaction.  

 

7.2   Limitations and future work 
 

7.2.1    Improve cell targeting 

 

In our primary vector design the cell targeting ligand was not attached to the vector. 

Therefore, theses non-targeting vectors can not be used effectively in transfection in vivo. To 

improve this vector feature the targeting ligands have to be attached to the vectors as 
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described in Chapter 1 (Section 1.1.2.1b). The targeting ligands that have been widely used 

are transferrin, which specifically targets transferrin receptors that are overexpressed in 

rapidly dividing tissues, such as tumors,[5-13]  and folic acid that specifically target folate 

receptors, which are also overexpressed in proliferating tissues.[13-15] In addition, various 

sacharide ligands such as galactose, manose, fucose, lactose as well as asialoorosomucoid and 

asialoglycoprotein are specifically targeting asialoglycoprotein receptors, which are 

abundantly expressed in hepatocytes.[12,13,16]   

 

In addition, using endothelium (bEND3) and epithelium cell lines (A549) in the in vitro 

transfection studies indicated that the in vivo injection of RPC polyplexes in blood vessel 

would not be a suitable method for delivering genes, as the polyplexes entered into the 

endothelial cells. Therefore, to improve the transfection at the target sites, the administration 

methods have to be considered such as direct injection[17,18] and electroporation[19,20] based on 

formation of membrane pores induced by electric pulses into tissues. 

  

7.2.2 Improve nuclear localization 

 

Another limitation in our studies is that the incorporation of TAT peptide in RcPCs did not 

improve the transfection level compared to RPCs. This result is likely to be due to the free 

DNA being fully released from TAT peptides after the reduction by intracellular GSH. 

Therefore, to improve the nuclear localization the direct covalent/non covalent attachment of 

NLS to DNA is a way of developing RPC based polyplexes.  

 

There are many strategies developed to attaching the NLS to DNA as described in Chapter 6 

(section 6.1). For instance, the attachment of NLS to the hair pin loop at the end of linear 

References for Chapter 7 are on page 294-297. 
 

293



DNA.[21] The intercalating agent such as psoralen[22,23] and p-azido-tetrafluoro-benzyl[24] were 

also chemically attached to the NLS peptide, in order that the NLS peptide is covalently 

attached to the DNA by photoactivation.  
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8.  APPENDIX 
 
8.1 Preparative HPLC chromatograms of crude oligopeptides and 

analytical HPLC chormatograms of purified oligopeptides 
 
8.1.1 Preparative HPLC and analytical HPLC of 2COP 1 
 

-100

0

100

200

300

400

500

600

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.6

mAU

min

M1224A (crude) #1 [modified by BIRMINGHAM UNIV.] M1224A (crude) UV_VIS_1

6.50
10.77

21.58

23.50

25.04

35.56

WVL:210 nm 
 
 
 
 
 
 
 
 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

6.505 10.2625 16.462 0.7 
10.768 21.491 39.77 1.47 
21.584 72.4728 33.147 4.96 

23.5 915.8373 509.08 62.65 
25.035 373.135 256.823 25.53 
35.561 68.6066 21.518 4.69 

Figure 8.1.   Preparative HPLC chromatogram of crude 2COP 1 with MeCN (1%) plus TFA (0.05%) as 

an elution solvent at 10 ml/min flow rate for 60 minutes: Preparative RP-HPLC 

(Phenomenex), C18 with 250 mm × 21.2 mm ID and 10 μm pore size 
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Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

2.753 0.0923 2.111 0.07 
4.345 0.4416 1.347 0.34 
10.12 129.9928 199.343 99.59 

 
Figure 8.2.  Analytical HPLC chromatogram of purified 2COP 1 with 1% of MeCN:water (60:40) plus 

TFA (0.05%) as an elution solvent at 10 ml/min flow rate: Analytical RP-HPLC 

(Phenomenex), C18 with 250 mm × 4.60 mm ID and 10 μm pore size 
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8.1.2   Preparative HPLC and analytical HPLC of 2COP 2 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

29.162 618.4015 0.051 14.32 
34.794 3036.87 1719.812 70.3 

37.78 147.7109 148.543 3.42 
50.034 516.8252 739.581 11.96 

 

Figure 8.3.  Preparative HPLC chromatogram of 2COP 2 with the gradient of MeCN (0-5%) plus TFA 

(0.05%) for the first 30 minutes, and with MeCN+TFA (5%) for further 10 minutes as an 

elution solvent at 10 ml/min flow rate: Preparative RP-HPLC (Phenomenex), C18 with 250 

mm × 21.2 mm ID and 10 μm pore size 

 

 

 

 

 

 
 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

16.173 3.9422 8.923 0.44 
21.308 19.1764 29.486 2.14 
22.107 874.5357 854.936 97.42 

 
 
Figure 8.4.  Analytical HPLC chromatogram of 2COP 2 with 0-5% gradient of MeCN:water (60:40) plus 

TFA (0.05%) as an elution solvent at 10 ml/min flow rate for 40 minutes: Analytical RP-

HPLC (Phenomenex), C18 with 250 mm × 4.60 mm ID and 10 μm pore size 
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8.1.3   Preparative HPLC and analytical HPLC of 2COP 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

6.493 12.9678 35.454 0.27 
15.356 81.0607 91.457 1.68 
23.147 72.938 42.955 1.51 
27.355 61.993 49.589 1.28 
30.919 1660.315 729.83 34.38 
31.909 859.2431 613.991 17.79 
47.143 2081.071 0.008 43.09 

 

Figure 8.5.  Preparative HPLC chromatogram of 2COP 3 with MeCN (3%) plus TFA (0.05%) as an 

elution solvent at 10 ml/min flow rate for 50 minutes: Preparative RP-HPLC (Phenomenex), 

C18 with 250 mm × 21.2 mm ID and 10 μm pore size 

 
 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

23.734 1.237 1.228 1.55 
26.531 78.7612 56.096 98.45 

 

Figure 8.6.  Analytical HPLC chromatogram of 2COP 3 with 3% of MeCN:water (60:40) plus TFA 

(0.05%) as an elution solvent at 10 ml/min flow rate: Analytical RP-HPLC (Phenomenex), C18 

with 250 mm × 4.60 mm ID and 10 μm pore size 
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8.1.4 Preparative HPLC and analytical HPLC of 2COP 4 
 
 

 

 

 

 

 

 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

6.551 2.5335 6.13 0.29 
10.207 15.7244 4.979 1.78 
15.001 14.1372 19.487 1.6 

20.53 2.0093 2.004 0.23 
26.193 6.1545 4.649 0.7 
30.414 27.3071 19.554 3.09 
31.452 47.0425 11.172 5.32 

34.65 338.4223 177.384 38.29 
36.055 430.5263 131.709 48.71 

 

Figure 8.7.  Preparative HPLC chromatogram of 2COP 4 with MeCN (3%) plus TFA (0.05%) as an 

elution solvent at 10 ml/min flow rate for 50 minutes: Preparative RP-HPLC (Phenomenex), 

C18 with 250 mm × 21.2 mm ID and 10 μm pore size 

 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

9.006 1.0138 1.819 0.56 
10.128 0.681 0.991 0.38 
22.948 3.1209 1.806 1.72 
27.925 176.6629 102.104 97.35 

 
Figure 8.8.  Analytical HPLC chromatogram of 2COP 4 with 3% of MeCN:water (60:40) plus TFA 

(0.05%) as an elution solvent at 10 ml/min flow rate: Analytical RP-HPLC (Phenomenex), C18 

with 250 mm × 4.60 mm ID and 10 μm pore size 
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8.1.5 Preparative HPLC and analytical HPLC of 2COP 5 
 
 

 

 

 

 

 

 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

6.525 3.3749 8.451 0.29 
15.247 26.5209 29.116 2.25 
20.917 4.2119 4.004 0.36 
23.387 11.3968 10.66 0.97 
27.317 10.083 5.612 0.86 
30.468 69.63 37.784 5.91 
32.583 70.8984 11.716 6.01 
36.913 445.3131 182.781 37.77 
38.111 198.7216 148.707 16.85 
39.708 280.6761 99.729 23.8 
51.127 58.2464 15.338 4.94 

 

Figure 8.9.  Preparative HPLC chromatogram of 2COP 5 with MeCN (3%) plus TFA (0.05%) as an 

elution solvent at 10 ml/min flow rate for 50 minutes: Preparative RP-HPLC (Phenomenex), 

C18 with 250 mm × 21.2 mm ID and 10 μm pore size 
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Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

3.398 1.1046 13.563 0.12 
4.706 1.0048 2.424 0.11 

11.645 5.5597 6.243 0.61 
22.074 15.8503 12.839 1.74 
23.696 885.4355 350.93 97.41 

 
 
Figure 8.10.  Analytical HPLC chromatogram of 2COP 5 with 3% of MeCN:water (60:40) plus TFA 

(0.05%) as an elution solvent at 10 ml/min flow rate: Analytical RP-HPLC (Phenomenex), C18 

with 250 mm × 4.60 mm ID and 10 μm pore size 
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8.1.6  Preparative HPLC and analytical HPLC of 2COP 6 

 

 

 

 

 

 

 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

28.878 16.1422 27.719 1.63 
31.267 11.7999 19.283 1.19 
31.793 74.5133 114.364 7.54 
32.809 32.5065 43.353 3.29 
34.841 26.6092 50.353 2.69 
35.351 132.3657 126.6 13.39 
37.631 694.6778 716.758 70.27 

 

Figure 8.11.  Preparative HPLC chromatogram of 2COP 6 with the gradient of MeCN (0-10%) plus TFA 

(0.05%) as an elution solvent at 10 ml/min flow rate for 40 min: Preparative RP-HPLC 

(Phenomenex), C18 with 250 mm × 21.2 mm ID and 10 μm pore size 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

36.435 988.786 1234.293 97.56 
37.631 24.7081 80.372 2.44 

 
 
Figure 8.12.  Analytical HPLC chromatogram of 2COP 6 with 0-10% gradient of MeCN:water (60:40) 

plus TFA (0.05%) as an elution solvent at 10 ml/min flow rate for 40 minutes: Analytical RP-

HPLC (Phenomenex), C18 with 250 mm × 4.60 mm ID and 10 μm pore size 
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8.1.7  Preparative HPLC and analytical HPLC of 3COP 7 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

6.514 3.1792 6.801 0.76 
9.59 1.5977 2.294 0.38 

11.025 4.5985 7.098 1.1 
13.636 3.8357 4.191 0.92 
15.141 2.3249 3.398 0.56 
18.027 1.2151 1.767 0.29 
19.713 395.2777 229.826 94.82 
25.945 1.0656 1.273 0.26 
35.193 3.7732 2.57 0.91 

 

Figure 8.13. Preparative HPLC chromatogram of 3COP 7 with MeCN (3%) plus TFA (0.05%) as an 

elution solvent at 10 ml/min flow rate for 50 minutes: Preparative RP-HPLC (Phenomenex), 

C18 with 250 mm × 21.2 mm ID and 10 μm pore size 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

2.677 0.8971 12.226 0.36 
8.895 249.2342 473.943 99.64 

 

Figure 8.14.  Analytical HPLC chromatogram of 3COP 7 with 3% of MeCN:water (60:40) plus TFA 

(0.05%) as an elution solvent at 10 ml/min flow rate: Analytical RP-HPLC (Phenomenex), C18 

with 250 mm × 4.60 mm ID and 10 μm pore size 
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8.1.8 Preparative HPLC and analytical HPLC of TAT  

 

 

 

 

 

 

 

 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

18.243 5.4387 11.66 0.8 
30.876 212.0514 146.898 31.21 

31.94 375.2773 520.296 55.23 
33.288 86.6549 47.511 12.75 

 

Figure 8.15. Preparative HPLC chromatogram of TAT with the gradient of MeCN (0-20%) plus TFA 

(0.05%) as an elution solvent at 10 ml/min flow rate for 60 min: Preparative RP-HPLC 

(Phenomenex), C18 with 250 mm × 21.2 mm ID and 10 μm pore size 

 

 

 

 

 

 

 

Ret.Time (min) Area (mAU*min) Height (mAU) Rel.Area (%) 

21.73 1.5041 7.601 1.27 
22.534 116.876 284.337 98.73 

 
Figure 8.16.  Analytical HPLC chromatogram of TAT with 0-20% gradient of MeCN:water (60:40) plus 

TFA (0.05%) as an elution solvent at 10 ml/min flow rate for 40 minutes: Analytical RP-

HPLC (Phenomenex), C18 with 250 mm × 4.60 mm ID and 10 μm pore size 
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8.2 1H NMR of purified oligopeptides 
 
8.2.1 1H NMR of purified 2COP 1 
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Figure 8.17.  1H NMR spectra of 2COP 1 
 
 
1H NMR δ (ppm) (D2O:H2O = 1:9): 4.61 (t, J = 5.23Hz, 1H, -CO-CH-N-), 4.36-4.24 (m, 9H, -CO-CH-N-), 2.98 

(t, J = 6.99 Hz, 20H, CH-C3H6-CH2-NH2, -CH2-SH), 1.79-1.66 (m, 32H, CH-CH2-CH2-CH2-CH2-NH2, CH-

CH2-CH2-CH2-CH2-NH2), 1.45-1.42 (m, 16H, CH-CH2-CH2-CH2-CH2-NH2) 

 
 
 
 
 
 
 
 
 
 
 

 311



8.2.2 1H NMR of purified 2COP 2 
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Figure 8.18.  1H NMR spectra of 2COP 2 
 
 
1H NMR δ (ppm) (D2O:H2O = 1:9): 8.63-8.61 (m, 4H, Im, -N=CH-NH-), 7.32-7.27 (m, 4H, Im, -C-CH-N-), 

4.69-4.63 (m, 4H, -CO-CH-N-), 4.54 (t, 1H, J = 5.73 Hz,-CO-CH-N-), 4.35 (t, J = 5.73 Hz, 1H, -CO-CH-N-), 

4.33-4.21 (m, 4H, -CO-CH-N-), 3.21-3.10 (m, 10H, -NH-CH-CH2-,-CH2-SH), 3.07-2.92 (m, 10H, CH-C3H6-

CH2-NH2, -CH2-SH), 1.74-1.66 (m, 16H, CH-CH2-CH2-CH2-CH2-NH2, CH-CH2-CH2-CH2-CH2-NH2), 1.45-1.38 

(m, 8H, CH-CH2-CH2-CH2-CH2-NH2) 
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8.2.3 1H NMR of purified 2COP 3 
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Figure 8.19.  1H NMR spectra of 2COP 3 
 
 
1H NMR δ (ppm) (D2O:H2O = 1:9): 8.63-8.62 (m, 4H, Im, -N=CH-NH-), 7.31-7.26 (m, 4H, Im, -C-CH-N-), 

4.67-4.64 (m, 4H, -CO-CH-N-), 4.49 (t, 1H, J = 5.59 Hz,-CO-CH-N-), 4.34-4.21 (m, 5H, -CO-CH-N-), 3.25-

3.10 (m, 10H, -NH-CH-CH2-, -CH2-SH), 3.08-2.89 (m, 10H, CH-C3H6-CH2-NH2, -CH2-SH), 1.77-1.65 (m, 16H, 

CH-CH2-CH2-CH2-CH2-NH2, CH-CH2-CH2-CH2-CH2-NH2), 1.45-1.35 (m, 8H, CH-CH2-CH2-CH2-CH2-NH2) 
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8.2.4 1H NMR of purified 2COP 4 
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Figure 8.20.  1H NMR spectra of 2COP 4 
 
 
1H NMR δ (ppm) (D2O:H2O = 1:9): 8.64-8.62 (m, 4H, im, -N=CH-NH-), 7.32-7.28 (m, 4H, im, -C-CH-N-), 

4.69-4.63 (m, 4H, -CO-CH-N-), 4.53 (t, 1H, J = 5.66 Hz,-CO-CH-N-), 4.35 (m, 1H, -CO-CH-N-), 4.33-4.27 (m, 

4H, -CO-CH-N-), 3.26-3.03 (m, 10H, -NH-CH-CH2-,-CH2-SH), 2.98-2.90 (m, 10 H, CH-C3H6-CH2-NH2, -CH2-

SH), 1.76-1.65 (m, 32H, CH-CH2-CH2-CH2-CH2-NH2, CH-CH2-CH2-CH2-CH2-NH2), 1.43-1.35 (m, 8H, CH-

CH2-CH2-CH2-CH2-NH2) 
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8.2.5 1H NMR of purified 2COP 5 
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Figure 8.21.  1H NMR spectra of 2COP 5 
 
 
1H NMR δ (ppm) (D2O:H2O = 1:9): 8.64-8.63 (m, 4H, Im, -N=CH-NH-), 7.34-7.30 (m, 4H, Im, -C-CH-N-), 

4.69-4.63 (m, 4H, -CO-CH-N-), 4.55 (t, 1H, J = 5.62 Hz,-CO-CH-N-), 4.33-4.24 (m, 5H, -CO-CH-N-), 3.22-

3.07 (m, 10H, -NH-CH-CH2-, -CH2-SH), 3.01-2.94 (m, 10 H, CH-C3H6-CH2-NH2, -CH2-SH), 1.74-1.64 (m, 

16H, -CH-CH2-CH2-CH2-CH2-NH2, -CH-CH2-CH2-CH2-CH2-NH2), 1.45-1.38 (m, 8H, -CH-CH2-CH2-CH2-CH2-

NH2) 
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8.2.6 1H NMR of purified 2COP 6 
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Figure 8.22.  1H NMR spectra of 2COP 6 
 
 
1H NMR δ (ppm) (D2O): 8.64-8.63 (m, 8H, Im, -N=CH-NH-), 7.28-726 (m, 8H, Im, -C-CH-N-), 4.73-4.63 (m, 

8H, -CO-CH-N-), 4.45 (t, 1H, J = 5.38 Hz,-CO-CH-N-), 4.17 (t, J = 5.37 Hz, 1H, -CO-CH-N-), 3.00-2.84 (m, 

20H, -NH-CH-CH2-, -CH2-SH) 
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8.2.7 1H NMR of purified 3COP 7 
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Figure 8.23.  1H NMR spectra of 3COP 7 
 
 
1H NMR δ (ppm) (D2O:H2O = 1:9): 4.54-4.49 (m, 2H, -CO-CH-N-), 4.36-4.31 (m, 4H, -CO-CH-N-), 3.13-2.90 

(m, 14H, CH-C3H6-CH2-NH2, -CH2-SH), 1.81-1.66 (m, 16H, CH-CH2-CH2-CH2-CH2-NH2, CH-CH2-CH2-CH2-

CH2-NH2), 1.45-1.42 (m, 8H, CH-CH2-CH2-CH2-CH2-NH) 
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8.2.8 1H NMR of purified TAT 
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Figure 8.24.  1H NMR spectra of TAT 
 

1H NMR δ (ppm) (D2O:H2O=1:9):  8.78 (d, J = 6.41 Hz, 1H, -CH-CO-NH-), 8.48 (m, 9H, -CH-CO-NH-), 7.52 

(m, 4H, -CH-CH2-CH2-CH2-NH2), 7.18-7.16 (m, 6H, -CH-CH2-CH2-CH2-NH-CNH-NH2, -N-CH-CH2-NH2,), 

4.34-4.24 (m, 4H, -CO-CH-N-), 3.20-3.16 (m, 12H, -CH-CH2-CH2-CH2-NH-CNH-NH2), 3.10 (dq, 2H, J = 17.42 

Hz, 5.50 Hz, -N-CH-CH2-SH), 3.04-2.98 (m, 6H, -CH-CH2-CH2-CH2-CH2-NH2, -N-CH-CH2-SH), 2.34 (t, J = 

8.14 Hz, 2H, -CH-CH2-CH2-CO-NH2), 2.06-1.92 (m, 2H, -CH-CH2-CH2-CO-NH2), 1.82-1.61 (m, 32H, CH-

CH2-CH2-CH2-CH2-NH2, -CH-CH2-CH2-CH2-NH-CNH-NH2), 1.44-1.36 (m, 4H, CH-CH2-CH2-CH2-CH2-NH2) 

 

 318



8.3   Samples of 1H NMR spectra at different pH in NMR titration 
experiments of 2COPs 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.25. 1H NMR spectra of Hε of 2COP 1 at pH 2.88, 10.37 and 12.75 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.26. 1H NMR spectra of H5 and H6 of 2COP 5 at pH 2.64, 5.84 and 7.55 
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Figure 8.27. 1H NMR spectra of H5 and H6 of 2COP 6 at pH 3.04, 5.54 and 7.00 
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8.4 Samples of GPC chromatograms in oxidative polymerization  
experiments 
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Figure 8.28.  Comparison of the chromatogram of the oxidative polymerization of 2COP 1 at 30 mM   

concentration incubated at ambient for 48 hr analyzed by GPC 
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Figure 8.29.  Comparison of the chromatogram of the oxidative polymerization of 2COP 1 at 60 mM 

concentration incubated at ambient for 48 hr analyzed by GPC 
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Figure 8.30.  Comparison of the chromatogram of the oxidative polymerization of 2COP 1 at 18 mM 

concentration incubated at a) ambient and b) 40°C for 72 hr analyzed by GPC 
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