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Abstract

HIV/AIDS, a sexually transmitted diseases continues to affect the lives of millions
of individuals worldwide. This retrovirus targets CD4 T-cell populations, the main
driver of the immune system by using the chemokine co-receptor 5 (CCR5). Despite
the success of the highly active antiretroviral therapy in reconstituting the immune
system, HIV infected individuals still suffer from low CD4 T-cell counts. Recently,
researchers were able to highlight the success of immunotherapy in restoring the
CD4 T-cell count. To further, investigate such importance, our collaborators at
case Western University injected CCR5-down-modulated memory CD4 T-cells into
9 chronically infected HIV patients. Using a linear transitions from the naive to the
effector memory state, a non linear ordinary differential equation model was used to
model the experiment. Various data fitting techniques in Matlab Stan and Monolix
software were used to estimate the model parameters (proliferation, death, transition
and birth rates) before and after the initiation of the treatment to study the change

of the cell dynamics. Our fittings have indicated an increase in the memory stem
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and naive cell lifespan post-clinical trial. Using sensitivity analysis, we showed that
the naive cell birth rate from the thymus A, the memory stem cell proliferation
rate psr and the central memory cell death rate do played an important role in
restoring the CD4 T-cell count. A stochastic model for the CD4 T-cells population
was developed to examine if fluctuations from the stochastic simulation were able to
capture the experimental data measurements. The findings of this study indicates
the importance of looking further into how modified CD4 T-cells are able to restore
the T-cell counts which thereby decrease the HIV virus pool and help HIV patients
to maintain a low level of the virus and most importantly a high level of T-cell

count.

iii



Dedication

To my family; Hanaa, Ornella and Tony

v



Acknowledgements

I would like to express my great appreciation to everyone that has helped to make

this work possible.

First, I would like to express my very great appreciation to my supervisor
Dr. Jane Heffernan. I am grateful for her patience, motivation, support and her
willingness to spend the needed time throughout the past two years of my studies
to make this work possible. I was very fortunate to be one of her graduate student
and be able to learn a great amount of knowledge in disease modeling and to learn
the essential skills to become a better researcher and writer in the mathematical
modeling field. The opportunities she gave me through attending conferences and
summer schools was a valuable experience in helping me to get introduced to various
research. Last but not the least, I would also like to thank her for creating a healthy
environment to complete this work.

I would also like to thank my co-supervisor Dr. Georges Monette for his patience in



teaching me data fitting, a topic that was totally new to me when I first started
this project. His willingness to spend the needed amount of time to accomplish the
data fitting task was a great blessing.

I would also like to extend my thanks to all of my committee members Dr. Xin gao,
Dr. Seyed Moghadas and Dr Yi Sheng for the time they made to read my thesis,
attend my talks and provide me with their valuable comments.

My sincere thanks also goes to our collaborators Dr. Rafick Sekaly and his Lab at
Case Western University for sharing with us the data and allowing us to present it
in this thesis.

Finally, I would like to thank my family for their great support and encouragement

throughout the last two years.

vi



Table of Contents

Abstract ii
Dedication iv
Acknowledgements \
Table of Contents vii
List of Tables xi
List of Figures Xvi
Abbreviations xxii
1 Introduction 1
1.1 Basic Facts About the Immune System . . . . . .. ... ... ... 3
1.1.1 CD4 T-cells . . . . .. . 7

1.2 Human Immunodeficiency Virus-HIV . . . . .. .. ... ... ... 10

Vil



1.2.1 Pandemic . . . . . . . ..

1.2.2  Transmission and Progression . . . . . . ... .. ... ...
1.2.3 Structure . . . . ..o
1.24 Life-Cycle . . . . .. ...
1.2.5 Treatment . . . . . . . ... Lo
1.3 Modeling HIV and Immune system . . . . .. ... ... ... ...
1.3.1 Stochastic Modeling . . . .. ... ... ... ... .....
1.4 Experiment . . . . .. . ...
1.4.1 Data Description . . . . .. ... ... ... ... ... ...
1.5 Scope of Thesis . . . . . . . . .. ...
2 The Model
2.1 Introduction . . . . . . .. ...
2.2 Naive and Memory CD4 T-cell Dynamical Model . . . . ... ...
2.3 Stochastic Model . . . . . . . ...
2.3.1 Introduction . . . . . . ... oo
2.3.2  Continuous Time Markov Chain Model . . . . . . .. . ..

2.3.3 Implementation of the MCMC simulations using the Gillespie’s

Algorithm . . . . . . .. ...

3 Data Fitting Results

viii



3.1 Introduction . . . . . . . . . 50

3.2 Non Linear Mixed-effects models and software . . . . . . .. .. .. 51
3.3 DataFitting . . . . . . .. .. 54
3.3.1 Baseline Fit- Matlab . . . . . ... ... .. ... 55}
3.3.2 STAN Fitting results . . . . . .. ... ... ... ..... 56
3.3.3 Monolix Fitting Results . . . . . ... ... ... ... ... o7

3.4 Parameter identifiablity, Over-fitting issues and Algorithm Convergence 99

4 Sensitivity and Uncertainty Analysis 101
4.1 Introduction . . . . . . ... 101
4.2 Uncertainty Sensitivity Analysis: LHS and PRCC . . . .. . .. .. 102
4.3 Sensitivity Analysis . . . . ... L 103

4.3.1 Low Dose Cohort . . . . . . ... ... ... ... ...... 105
4.3.2 Medium Dose Cohort . . . . . . . ... ... ... ... .. 129
4.3.3 High Dose Cohort . . . . . . .. ... . ... ... ...... 153
4.3.4 Brief Summary . . ... ... Lo 177

5 Variability in CD4 T-cells population 187
5.1 Introduction . . . . . . .. ... 187
5.2 Stochastic Model . . . . . . . ... ... 187

6 Conclusion and Future Directions 207

X



6.0.1 Future Work . . . . . . . . . 210

7 Appendix 212

8 Bibliography 224



List of Tables

1.1

2.1

2.2

2.3

3.1

3.2

3.3

3.4

Information about the three cohorts. . . . . . ... ... ... ... 27
Variables used in systems of ODEs 2.1 and 2.2. . . . . . ... ... 38
Variables used in the systems of ODEs 2.1 and 2.2. . . . . . . . .. 39
Transition Events and their corresponding probabilities for the fifteen

possible outcomes for the 5 CD4 T-cell subsets. . . . . . ... ... 45

Baseline fit for the three cohorts obtained using Matlab. . . . . . . 55
Hierarchical Fit obtained from Stan software. 2000 iterations are used. 56
This table illustrates the fits obtained from the three fitting ap-
proaches with their AIC and standard error measurements for patient
103 . o 64
This table illustrates the fits obtained from the three fitting ap-
proaches with the AIC and standard error measurement values for

patient 102. . . . . . . . . L 68

X1



3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1

This table illustrates the fits obtained from the three fitting ap-

proaches with their AIC and standard error measurements for patient

This table illustrates the fits obtained from the three fitting ap-

proaches with their AIC and standard error measurements for patient

This table illustrates the fits obtained from the three fitting ap-

proaches with their AIC and standard error measurements for patient

This table illustrates the fits obtained from the three fitting ap-

proaches with their AIC and standard error measurements for patient

[llustrates the fits obtained from the three fitting approaches with
their AIC and standard error measurements. . . . . . . . . .. ...
[llustrates the fits obtained from the three fitting approaches with
their AIC and standard error measurements for patient 304.

[lustrates the fits obtained from the three fitting approaches with

their AIC and standard error measurements for patient 305.

[lustrates the data fitting results and the range used in the LHS for

pat 103. These values are the rates per day=1. . . . . . . . ... ..

xii

92

96



4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

[ustrates the data fitting results for pat 102 along with the PRCC
range. These values are the rates per day=1. . . . . . .. ... ...
Illustrates the data fitting results for pat 104. These values are the
rates per day™1. . . . . ..
[lustrates the data fitting results for pat 203 and the PRCC ranges.
These values are the rates per day=1. . . . . . .. ... .. ... ..
[lustrates the data fitting results for pat 201 and the PRCC ranges.
These values are the rates per day=1. . . . . . .. ... .. .. ...
Mlustrates the data fitting results for pat 302 and the LHs ranges.
These values are the rates per day=1. . . . . . .. ... ... ....
[lustrates the data fitting results for pat 305 and the LHS ranges.
These values are the rates per day=1. . . . . . .. .. .. ... ...
[llustrates the data fitting results for pat 303 and the LHS ranges.
These values are the rates per day=1. . . . . . .. ... ... .. ..
[lustrates the data fitting results for pat 304 and the LHs ranges.
These values are the rates per day=1. . . . . . . ... ... ... ..
Correlation between the model parameters and the CD4 T-cell popu-
lation. Where + = positive correlation and - = negative correlation

for low dose immuodiscordant patients 103 and 104. . . . . . . . . .

xi1ii



4.11

4.12

4.13

4.14

5.1

5.2

Correlation between the model parameters and the CD4 T-cell popu-
lation. Where + = positive correlation and - = negative correlation
for immunodiscordant high dose patients(303,304).. . . . . . . . ..
Correlation between the model parameters and the CD4 T-cell popu-
lation. Where + = positive correlation and - = negative correlation
for immunoconcordant Low dose(102) and high dose patient (305). .
Correlation between the 15 model parameters and the 5 T-cell subsets
along with the total number of T-cell for immunoconcordant medium
dose patients(201,302). . . . . ...
correlation between the 15 model parameters and the 5 T-cell subsets
along with the total number of T-cell for immunoconcordant medium

dose patient 203 . . . . . . ...

Low dose cohort’s steady state for each of the CD4 T-cell subsets
using the ODE and stochastic models. 300 runs are used in the
MCMC model. . . . . . ..
Medium dose cohort’s steady state for each of the CD4 T-cell subsets

using the ODE and stochastic models. 300 runs are used in the

MCMC model. . . . . . . .

Xiv

185

186



5.3 High dose cohort’s steady state for each of the CD4 T-cell subsets
using the ODE and stochastic models. 300 runs are used in the

MCMC model. . . . . . . .

XV



List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.1

Activation process of B and T-cells. . . . . . ... ... ... ...
The Transition of CD4 T-cells from naive to effector memory state.
Number of people Living with HIV by Region in 2014 . . . . . . . .
Structure of the HIV. . . . . . . . ... ... ...
HIV Viral Life-cycle. . . . . .. .. . ... ... ... ...
Number of Death and HIV positive individual in US from the period
before and After the introduction of HAART. . . . .. .. ... ..
Ratio of infused CCR5-down-modulated- CD4 T-cell subsets. . . . .
Naive and Memory CD4 T-cell count for the low and medium dose
cohorts. . . . . . ..

Naive and Memory CD4 T-cell count for the high dose cohort. . . .

Flow Diagram presenting the dynamics of the naive and memory

CD4 T-cell . . . . .

Xvi



2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

Flow Diagram presenting the dynamics of the down-modulated CCR5

naive and memory CD4 T-cell . . . . . . ... .. ... ... ...

Pat 103 Prediction vs Observation. . . . . . .. .. ... ... ...
Individual fits of the naive and memory CD4 T-cells for patient 103.
Observed vs prediction output for patient 102. . . . . . . . . . . ..
Individual fits for the naive and memory CD4 T-cells for patient 102.
Observed vs prediction output for patient 104. . . . . . . . . . . ..
Individual fits for the naive and memory CD4 T-cells for patient 104.
Observed vs Prediction output for patient 203. . . . . . . . .. . ..
Individual fits for the naive and memory CD4 T-cells for pat 203.
Observed vs Prediction output for patient 302. . . . . . . .. .. ..
Individual fits for the naive and memory CD4 T-cells for patient 302.
Individual fits for the 5 population of non modified CD4 T-cells for
patient 201. . . . . ..o
Observed vs prediction output for patient 201. . . . . . . . . . . ..
Individual fits for the naive and memory CD4 T-cells for pat 303.
Observed vs prediction observation for pat 303. . . . . .. ... ..
Individual fits for the naive and memory CD4 T-cells for patient 304.
Observed vs prediction for patient 304. . . . . . . . ... ... ...

Individual fits for the naive and memory CD4 T-cells for patient 305.

xvii

7

78

81

82

85

86

89

90

93

94



3.18 Observed vs prediction outputs for patient 305. . . . . .. ... ..

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Correlation between the N, STM T-cell and the 15 parameters over
200 days for pat 103. . . . .. ..o
Correlation between the CM and TM T-cell and the 15 parameters
over 200 days for pat 103. . . . . . . .. .. ...
Correlation between the EM and total CD4 T-cell and the 15 param-
eters over 200 days for pat 103. . . . . . . . . ... ... ... ..
Correlation between the N and STM T-cell and the 15 parameters
over 200 days for pat 102. . . . . . . . ... ... L.
Correlation between the CM and TM T-cell and the 15 parameters
over 200 days for pat 102. . . . . . . . ... L
Correlation between each the EM and total CD4 T-cell and the 15
parameters over 200 days for pat 102. . . . . . . .. ... ... ...
Correlation between the N and STM T-cell and the 15 parameters
over 200 days for pat 104. . . . . . . . ... ... ...
Correlation between the CM and TM T-cell and the 15 parameters
over 200 days for pat 104. . . . . . . . ... .. ...
Correlation between the EM and total CD4 T-cell and the 15 param-

eters over 200 days for pat 104. . . . . . . ... ...

Xviil



4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

Correlation between the N and STM T-cell and the 15 parameters
over 200 days for pat 203. . . . . . . ...
Correlation between the CM and TM T-cell and the 15 parameters
over 200 days for pat 203. . . . . . ...
Correlation between the EM and total CD4 T-cell and the 15 param-
eters over 200 days for pat 203. . . . . . .. ...
Correlation between the N and STM T-cell and the 15 parameters
over 200 days for pat 201. . . . . . .. ... ...
Correlation between the CM and TM T-cell and the 15 parameters
over 200 days for pat 201. . . . . . . ...
Correlation between the EM and total CD4 T-cell and the 15 param-
eters over 200 days for pat 201. . . . . . .. ...
Correlation between the N and STM T-cell and the 15 parameters
over 200 days for pat 302. . . . . . . ...
Correlation between the CM and TM T-cell and the 15 parameters
over 200 days for pat 302. . . . . ... ... ...
Correlation between the EM and total CD4 T-cell and the 15 param-
eters over 200 days for pat 302. . . . . ... ...
Correlation between the N and STM T-cell and the 15 parameters

over 200 days for pat 305. . . . .. ...

Xix



4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

Correlation between the CM and TM T-cell and the 15 parameters
over 200 days for pat 305. . . . . .. ...
Correlation between the EM and total CD4 T-cell and the 15 param-
eters over 200 days for pat 305. . . . . ... ..o L
Correlation between the N and STM T-cell subsets and the 15 pa-
rameters over 200 days for pat 303. . . . . ... ...
Correlation between the CM and TM T-cell subsets and the 15
parameters over 200 days for pat 303. . . . . ... ... ... ...
Correlation between the EM and total CD4 T-cell and the 15 param-
eters over 200 days for pat 303. . . . . . .. ...
Correlation between the N and STM T-cell and the 15 parameters
over 200 days for pat 304. . . . ... ..o
Correlation between the CM and TM T-cell and the 15 parameters
over 200 days for pat 304. . . . . . . ...
Correlation between the EM and total memory CD4 T-cell and the

15 parameters over 200 days for pat 304. . . . . .. ... ... ...

5.1 Error bar low dose cohort of the steady with experimental data points.192

5.2

5.3

10 stochastic realizations for low dose cohort. . . . . . . . . . . ..

10 stochastic realizations for low dose cohort. . . . . . . . .. . ..

XX



5.4

5.5

5.6

5.7

5.8

5.9

Error bar for medium dose cohort of the steady state of the MCMC

model . ..o 198
10 stochastic realization for the medium dose cohort. . . . . . . . . 199
10 stochastic realization for the medium dose cohort. . . . . . . .. 200

Error bar graph for high dose cohort of the steady state of the MCMC

model. . . .. 204
10 stochastic realization for the High dose cohort. . . . . . . . . .. 205
10 stochastic realization for the High dose cohort. . . . . . . . . .. 206

poel



Abbreviations

ODE
NLMEM
AIC

BIC
-2LL
HIV

S.E

CPU
AIDS
HAART

CCR5

MN

CM

Ordinary Differential Equations
Non Linear Mixed effect Model
Akiake Information Criterion
Bayesian Information Criterion
Log-likelihood

Human Immunodeficiency Virus
Standard Error

Central processing unit

Acquired Immunodeficiency Syndrome
Highly active antiretroviral therapy
C-C chemokine receptor type 5
Naive CD4 T-cell

Modified Naive CD4 T-cell

Central Memory CD4 T-cell

XX11



MCM

™

MTM

EM

MEM

SD

SEM

MCMC

STD

PRCC

LHS

Modified Central Memory CD4 T-cell
Transitional Memory CD4 T-cell
Modified Transitional Memory CD4 T-cell
Effector Memory CD4 T-cell

Modified Effector Memory CD4 T-cell
Standard deviation

Standard Error Over Mean

Markov Chain Monte Carlo

Sexually Transmitted Disease

Partial Rank Correlation Coefficient

Latin Hypercube Sampling

xxiil



1 Introduction

Mathematical Modeling of infectious disease has become a growing area in the
past two centuries. This is because infectious diseases are the number one cause of
human morbidity in the world [9]. This discipline has helped to gain insights about
the dynamics of infectious diseases on both population and in-host levels. Some of
the most important advantages of using mathematical models, its ability to analyze
and unfold unobserved dynamics experimentally.

Mathematical immunology studies the spread of the disease in the host by analyzing
the interaction between the immune cells and the pathogens. This field stemmed in
the early 1980’s with the emergence of the Human Immunodeficiency Virus(HIV)
pandemic [15]. One of the primary reasons for the success in this area is the ability
for researchers to collect experimental data and use it in the mathematical models
to draw important conclusions about the dynamics of the immune system, the virus
and the effect of vaccines and other drug treatments. Many great mathematicians

have elaborated on this area such as Perleson, Nowak and May and others [16,17,18].



These models were mainly used to study the dynamics of the HIV and the immune
system in the presence of the virus in the body. Some of the most remarkable
findings that corrected our understanding about the HIV dynamics in the body of
chronically infected individuals were achieved by Georges et al [17] and Perleson et
al in 1995 [30]. Using experimental data measurements, they were able to show that
in the chronic infection stage, the CD4 T-cell count is constant as a result of an
interesting immune system dynamics where millions of the CD4 T-cells are being
killed but replaced daily by the thymus. However, a great amount of mathematicians
have and are applying these models to other diseases but not limited to: measles [19],
hepatitis B and C [21], flu [22] and HPV [20]. Besides studying disease dynamics,
mathematical immunology was used to study B and T-cells dynamics[23]. Most of
mathematical models used in epidemiology and immunology consisted of coupled
ordinary differential equations (ODESs). Despite the success of using ODE models,
many researchers have started using stochastic models due to its ability to account
for stochasticity in the disease dynamic unlike the deterministic models [14]. As
mentioned above, mathematical models have shed light on various processes in HIV
infection, including effective drug therapy regimens [25], activation of the immune
system [28], and latently infected cells [27]. Some researchers have focused on
studying the dynamic of memory CD4 T-cells in HIV infected individuals [24,26].

A recent clinical study by Sekaly et al at Case Western has determined that



introducing a dose of CCR5-down- modulated memory CD4 T-cells is able to induce
the activity of the immune cell in chronically infected HIV patients. Hence the work
of this thesis will focus on modeling this experimental trial in order to quantify the
resulting immune system dynamics after the introduction of such perturbation to
the CD4 T-cell population.

In the sections below, I will elaborate more about the immune system, disease, its
structure, transmission and progression to AIDS. In addition, I will present the
previous models used to study the HIV-immune system dynamics. Deterministic
and stochastic models are both considered. Later, I will describe the clinical trial
performed by our collaborators (Sekaly et al., 2013). Lastly, I will describe the

longitudinal data of the three cohorts that was obtained from the study [52].

1.1 Basic Facts About the Immune System

The immune system is among one of the most important systems in the human
bodies that sustains survival [5]. The understanding of its function began in the 19th
century and up to date some aspects of the immune system remains unclear [5]. The
immune system consists of a variety of cells, organs and tissues that work collectively
in order to fight any foreign organisms such as bacteria, viruses and fungus that
poses a threat to the host. The immune system distinct any foreign organisms by

identifying two patterns called Danger or Pathogen -Associated- molecular patterns,
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also known as DAMPs and PAMPs [5]. It is composed of two major responses;
the Innate and Adaptive response. These responses are distinguished based on
the components, activity, response time, duration and the ability to build memory
against a specific pathogen. As the Adaptive immune system is our main focus in
this paper, we will not be discussing the details about the Innate immune response.
Briefly, the innate immune response is mainly composed of macrophages, white blood
cells and natural killer cells. The innate immune responses is fast and unspecific as
these cells act directly on any pathogen once it is recognized. It is activated within
hours of the foreign pathogen’s discovery [1,5].

In many cases the innate immune response is enough to contain an infection, however
in some cases it gets overwhelmed by the rapid replication of some viruses as in
the case of HIV infection. In this case the acquired immune system gets activated.
It is known as acquired because this immunity is built from previous exposure to
pathogens (bacteria and viruses), vaccinations or maternal immunity. This response
could take days or weeks to be activated and it is known to be specific, where the
presence of Antigen Presenting cells (APCs) is required for activation. There exist
two types of adaptive immune systems responses; The humoral and cell-mediated
responses. Both are carried out by two classes of white blood cells also known as
lymphocytes [1]. The mediated immune system is composed of T-cells, which are

produced in the bone marrow and is responsible for killing infected cells. However



these cells mature in the Thymus either to contribute to lymphocyte maturation
or kill infected cells [1]. There exist two types of T-cells; CD4 or helper T-cell and
CD8 or cytotoxic lymphocyte T-cells, depending on the receptor present on the cell
surface. Once activated by the antigen presented by the MHCII on the macrophage
cell surface, the helper T-cells are activated and produce cytokines. The cytokines
activate the B-cells and the production of CD8 T-cells that are responsible in killing
infected cells. The main focus of this thesis are the naive and memory CD4 T-cell
population.

B-cells are produced and mature in the bone marrow. These cells compose the
humoral immune response where they bind to antigen to produce the right antibodies.
Later, these antibodies are used to kill free viruses and bacteria. The activation

process of the B and T-cells is illustrated in Figure 1.1.



> Antigen presented on a
virus
/ The Macrophage
L‘ engulfs the virus
) > The lysosome
ole /digest the virus along

with the vacuole.
:_.'“} The MHC Il presents the anitigen on
N' the cell surface to activate the Th cells

Ot
> 71
ol

v @

The activated T cell releases oytokines
that will create more T cells clones and
activated B cells and CDB T cells

Figure 1.1: Activation process of B and T- cells.

In this figure the activation process of the T and B cells upon infection is

illustrated. First the macrophage engulfs the virus where the MHCII presents the
antigen on the macrophage cell surface. The naive helper T-cells receptors binds to
the MHCII-Antigen complex. This step activates the helper T-cells and cytokines
are secreted. The secretion of the cytokines activates the B cells and produces CDS8

or cytotoxic T-cell. The immune system is then activated.



1.1.1 CD4 T-cells

One of the most important feature of the immune system is the ability to develop
memory against any pathogen. They are shown to have an imperative role in the
adaptive immune response to infectious disease [7]. These memory cells have been
the main focus of researchers when designing vaccines [3]. A study conducted by
(STEVEN M. SCHNITTMAN et al., 1990) showed the HIV-1 virus preferentially
infect memory CD4 T-cells subsets.

CD4 T-cells are divided into two kind of cells: memory and naive [28]. After being
exposed to antigen, the naive T-cells proliferate and differentiate to memory CD4 T-
cells if able to survive the contraction phase [7]. Memory CD4 T-cells are composed
of 4 subsets, where the naive CD4 T-cells transition to the memory effector state
[6]. It is still not clear how the transition from the naive to the memory effector
state occurs in the body. However, in this paper will follow the model proposed
by (Mahnke et al., 2013) and our experimental collaborator (Sekaly et al.) where
a linear transition from the naive state to effector memory state is considered as

illustrated in Figure 1.2 below.

e Naive cells: These cells are produced by the thymus. No Antigen and marker

of cellular, activation is expressed on the cell surface [5,6].



e Memory stem cells: It is the first subsets of memory T-cells that expresses
stem like property with having a naive phenotype. These cells cannot be made
by any other memory T cell subset [3]. It was found that these cells have
a higher rate of survival and proliferation compared to the naive and other

subsets of memory T-cells [7].

e Central memory cells: These cells are produced by the stem memory cells.

They circulate primarily between the blood and lymphs.

e Transitional memory cells: It was shown to be located in the peripheral blood.

These cells have a higher proliferation rate than TCM cells [6].

e Effector memory cells: It was shown that these cells are short lived[8]. They
express effector phenotype such as cytokines secretion faster than the other

CD4 memory subsets. They move from the blood to peripheral tissues [8].
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Figure 1.2: The Transition of CD4 T-cells from naive to effector memory state.

In this figure the transition from naive to effector memory cells is illustrated.
Where the expression of CCR5 increases gradually moving from the naive to the

effector state [7].



1.2 Human Immunodeficiency Virus-HIV

1.2.1 Pandemic

HIV, is a sexually transmitted disease. The virus is classified as a Retrovirus
and belongs to the family of lentivirinae that is characterized by its long incubation
period. There exist two types of HIV : HIV-1 and HIV-2. Even though both of
these types will progress to the Acquired immunodeficiency syndrome(AIDS) stage,
each has its own origin, biological and molecular characterizations [4]. The first
HIV condition reported to the public in 1980,in New York and San Francisco in
the homosexual community where rare cancer cases such as Kaposi’'s sacroma were
observed among young individuals. Few months later, the disease was reported in
the intravenous drug users communities as well as in hemophiliacs and heterosexuals
partners[4]. Soon HIV became a serious epidemic. Since the discovery of the first
case, at the end of 2014 approximately 36.9 million individuals are currently living
with HIV [2]. According to the WHO, since its discovery, AIDS-related disease
have caused the death of over 34 million people up to date[2]. The majority of
the affected individuals are from low income countries, where Sub-Saharan Africa
accounts for more than 70 percent of the cases as illustrated in Figure 1.3 [2]. Since
the discovery of the disease, a tremendous amount of research have focused on

better understanding the emergence, spread of the disease and most importantly
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its unique pathogencity with the intention of developing a potential vaccine or a cure.

Number of people living with HIV worldwide

280,000
1,500,000 240,000
1,700,000
Sub-Saharan Africa
2,400,000

Asia & the Pacific

Western & Central Europe
and North America

5,000,000
Latin America
Eastern Europe & Central Asia

Middle East & North Africa

25,800,000 The Caribbean

Figure 1.3: Number of people Living with HIV by Region in 2014

This figure illustrates the proportion of reported HIV positive cases worldwide per
region. It is evident that Sub Saharan Africa account for more than 70 % of the

cases in the world. This figure was adapted from avert 2014 statistics, [32].
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1.2.2 Transmission and Progression

HIV transmission is sensitive to the amount of free virions and the degree of
contact upon exposure. It has been shown that the virus has a high concentration
of free virons in the blood stream and the genital fluids. Therefore, HIV can
only be transmitted by the exchange of blood or body fluids such as semen and
vaginal fluids from an infected individual. Sexual activities account for almost 75
percent of all new HIV cases [4]. In addition, HIV could be passed on by the use
of unsterile needles in cases of blood transfusion or drug users. A mother could
pass HIV to her fetus/baby during or after delivery as well as during breast feeding.
However the degree of transmission depends on the stage of the infection. Early
HIV phase yields a higher concentration of free virons in the breast milk which
leads to a higher chance of transmission [4]. As the saliva contains glycoproteins
and fibronectins it is thought to inhibit the cell to cell transfer of virus, saliva, tears

sweat and faeces have low virions level and cannot be a mode of HIV transmission [4].

1.2.3 Structure

HIV consists of an outer membrane which consists of two layers of lipids proteins;

gp120 and gp4l, these lipid proteins are uniformly arranged into 72 knobs [4]. The
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Glycoprotein 120 is located on the outer membrane of the virus and gp41 is embedded
in the lipid matrix. As HIV is a retrovirus, it stores its two copies of ribonucleic acid,
also known as RNA| in the inner core used to encode the necessary viral proteins
for maturation. Along with the RNA, it contains three enzymes; reverse transcrip-
tase, integrase and protease which plays a primary role in the viral replication and
maturation process. In addition, it contains the protein of the last host cell that has

infected previously[4]. Figure 1.4 illustrates in more details the structure of the virus.
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Figure 1.4: Structure of the HIV.

HIV is a retrovirus where it contains 2 copies of RNA and 3 essential enzymes. An
outer membrane consisting of gp120 and gp 41. This virus uses the host cells such

as CD4 T-cell to replicate. This Figure was adapted from [34].
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1.2.4 Life-Cycle

Like any other virus, HIV needs a host cell in order to replicate. When HIV
succeed to enter the human body, its main target is to replicate by infecting one
kind of the immune system cells that has CD4 receptors on the surface. Figure 1.5
illustrates the 3 major steps of the replication process.

(1) Binding/ Fusion with the CD4-T cells

The first stage of the process is when the HIV binds itself to the CD4 T cells. This
is accomplished by the binding of the gp120 glycoprotein to the CD4 receptors.
Later, the transmembrane gp41 binds to the co-receptor CCR5 or CCRX4 present
on the CD4-T cells. This binding causes a conformational change which allows the
fusion of the cell-virus membranes. Once it is fused, the viral nucleocapside enters
the cells and releases the two copies of the RNA along with three enzymes essential
for the viral replication.

(2) Transcription and Translation

Once inside the cell, the reverse transcriptase begins the transcription of the single
stranded viral RNA into a double helix DNA. Later, the viral DNA enters the host
cell’s nucleus where it is integrated to its DNA by the integrase enzyme. Now the
virus genetic material are embedded in the CD4 T- cells DNA. Two possible events

could occur. First, if the infected CD4 T-cell is activated, proviral DNA will be
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transcribed into messenger RNA. Then the mRNA moves to the cytoplasm where it
is translated into essential viral proteins. Otherwise, if not activated, the infected
cells remains latent.

(3) Maturation and Budding

Once the mRNA is fully translated into viral proteins, the protease enzymes cleaves
the long strains of proteins. This is an essential step for the HIV maturation as
some of these proteins becomes enzymes and others turn into structural elements.
Once the viral elements are assembled, it buds off the cell and a new virus is created

and ready to infect other CD4 T-cells.
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HIV Life Cycle and existing drug targets

Fusion ! Entry Inhibitor

Figure 1.5: HIV Viral Life-cycle.

HIV viral Life-cycle is divided into three major steps: First the binding and fusing
of the HIV and CD4 T-cell occurs. Once inside the virus begins its transcription
and translation process to embed a copy of the viral DNA into the host DNA. Once
the mRNA is translated, the virus buds and a new mature virus is released.This

figure was adapted from [57].
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1.2.5 Treatment

Since the emergence of HIV, various drugs have been introduced to target several
important steps in the virus infection life-cycle. These drugs are used to slow down
the progression to AIDS by making the viral load low enough to be considered
undetectable. As shown in Figure 1.6, the number of deaths associated with HIV
has decreased upon the introduction of the drugs in the early 1990’s. The decrease
in the number of death is associated with the increase of the number of people
living with HIV. However, these drugs are not equally available to all individuals
especially those infected in third world countries such as Africa. Below is the list of

different classes of antiretroviral drugs:

e Protease Inhibitor, also known as PI's. This class of drugs inhibits the function
of the protease enzyme. This inhibition prevents the budding of the newly

made virions.

e Integrase Inhibitor, inhibits the function of the integrase enzyme so the viral

DNA is not integrated into the host cell’s DNA.

e Fusion inhibitor, these medication inhibits the the fusion between the virus
and the CD4 T-cells. However, this class of drugs have proven to be not very

effective in blocking the CD4 T-cell and preventing fusion.
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e Reverse transcriptase Inhibitor, prevents the viral RNA from being transcribed
into DNA. This will later stop the lifecycle as the virus does not have the

DNA to incorporate in the host cell and begin the replication process.

HAART ( Highly Active Anti-Retroviral Therapy), is a cocktail of 3 or more
of the drug classes mentioned above. The main reason behind this cocktail is to
reduce the emergence of mutated HIV types that are resistant to the drugs. Despite
the effort of the drugs, mutations are highly likely to occur in the infection lifetime
of a patient. However, we will not be considering the possible mutations throughout
this work.

As this is a lifetime therapy, these drugs have various health effects on the human
body, which leaves the patients in poor health conditions at times. Hence in this
work we are trying to understand the effectiveness of using the immunotherapy

approach in order to reconstitute the total CD4 T-cell count.
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With the Advent of HAART, More People
Are Living with HIV Infection (red) as Rates of
AIDS-Related Deaths Decline (blue)
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Figure 1.6: Number of Death and HIV positive individual in US from the period

before and After the introduction of HAART.

The number of death and poeple living with HIV in US from 1981-2007. In this
graph it is shows that when the HAART was introduced the number of death
decreased and the number of people living with HIV increased as a result. This

figure was adapted from [35]. %0



1.3 Modeling HIV and Immune system

Since the discovery of the disease, a tremendous amount of research have focused
on better understanding the emergence, spread of the disease and most importantly
its unique pathogencity with the intention of developing a potential vaccine or
a cure. Over the past two decades, thousands of studies were published about
HIV/AIDS[29]. Many of those studies used statistical, deterministic and stochastic
mathematical models to study the disease dynamics [29]. These models have made
great advancements in better understanding epidemiological and immunological
aspects of the virus. Some of the most important early works were done by A.
Perelson and D. Ho. They used clinical data from HIV positive individuals to study
the dynamics of HIV and T-cells in the absence and presence of antiviral drug
therapies [30,31].

These studies have mainly focused on using ordinary differential equations to model
such dynamics. These compartmental models are used to examine the interactions
between several classes of populations to study and predict the changes in each of
the population size over a certain time period. This is accomplished by representing
the rate of change in these populations using ODEs. Any of the population size
could be estimated by solving these differential equations at a specific time point.

The basic ODE model for describing the HIV-immune system interaction is composed
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of three compartments; the uninfected T-cell, the infected T-cells and the free HIV
virions particles. This model was used in several papers such as [30,31,25]. Using
the basic model, researchers were able to draw some important conclusions about
the viral clearance rate, the lifespan of the infected T-cells and the viral production
rate from each infected cell [38,39]. The Basic model is illustrated in the system of
ODEs Eq’s 1.1, where A is the birth rate of uninfected cell, d and a are the death
rates of the infected and uninfected immune cells respectively, k is the virus bud

rate and u is the virus clearing rate.

¥ =\ —dx — Bxy (1.1)
y = By —ay

v = ky —uv

Still the simplicity of this basic model was not enough to study various important
dynamics such as the HIV mutation strains, the effect of the antiretroviral drug and
so on, so extensions to the basic model are formulated. These models were able to
better understand the role of the antiretroviral drug in blocking and slowing down
the HIV infection process [17,18]. This was achieved by adding extra parameters ¢;
and € to the basic model to illustrate the inhibition of both the reverse transcriptase
and protease inhibitors correspondingly. A factor of (1-¢;) and (1-€) were multiplied
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to each of the 8 and k parameters respectively.

When a patient is on the antiretroviral cocktail therapy, the HIV viral load is
undetectable which could be ignored in the basic model. This assumption will allow
us to incorporate the dynamics of various T-cell subsets such as naive and memory

as shown in [24,26].

1.3.1 Stochastic Modeling

Despite the simplicity and elegance of the ODE models, we cannot ignore the
fact that the human cell dynamics are not deterministic and are subject to random
fluctuations due to natural variability. Hence various mathematical modelers have
switched gears and started using stochastic models to describe the HIV-immune
system dynamics. One of the earliest stochastic models was developed by Merill’s
et al, where he was able to model aspects of the immune system response in the
presence of HIV using a branching process [40]. In addition, Perelson et al [39] were
able to estimate the probability that one virus could infect on average one CD4
T-cell. However, there aren’t many studies that modeled the dynamics of naive and
memory CD4 T-cells subsets of chronically infected HIV patients. In this thesis,
we will be developing a stochastic model for the naive and memory CD4 T-cells
so we are able to observe the variability in this model that can be a result from

the natural variability, experimental error measurements and uncertainty in the
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parameter estimations of the T-cell dynamics.

1.4 Experiment

Highly active antiretroviral therapy (HAART), does a fairly good job in keeping
a low HIV viral load in the body of infected individuals. Despite the great effort
from scientists to help in restoring the immune system in HIV positive individuals,
patients remain to have a low count of T-cells in the body.
As we have seen in the previous section, CCR5 is a major co-receptor for the entry
of the HIV virus into the CD4 T-cells. Our Collaborator, (Sekaly et al., 2013) at
Case Western, have designed an experiment to study the effects of the introduction
of CCR5-down-modulated memory CD4 T-cells into HIV positive patients. The
main intention of this experiment is to examine if the perturbation of the system
will result in any augmentation in the CD4 memory T-cell count and the activity of
the immune system.
Information about the 3 cohorts
In this study 9 chronically infected HIV patients participated in this study. Where
all of these patients were receiving a HAART drug therapy. Table 1 summarize the
infection state, age , ethnicity and drug dose infused. The mean age of the patients
was 49 £ 6.49 years and the mean period of the infection diagnosis is 20.77 + 6.47

years.
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Injection of CCR5-down-modulated memory CD4 T-cells and its quan-
tification.
As illustrated in Table 1.1, the nine HIV patients were separated into three groups
based on the injected dose of zinc finger nuclease (ZFN) driven CCR5-disrupted CD4
T-cells (SB-728-T). In order to measure the cells count for the 5 T-cell populations,
samples of Peripheral blood mononuclear cells (PBMCs) were collected from each
of the 9 patients at several time intervals. These PBMC were transduced by an
adenovirus encompassing a Zn Finger endonucleae that targets the CCR5 gene.
To identify each of the memory T-cell subsets, PBMCs were stained by different
cytometry panels(Sekaly et al., 2013). In this work, we defined the total CD4 T-cells
as the sum of the the five T-cell subsets unlike how it is quantified in the experiment.
The distribution of the injected CCR5-down-modulated memory CD4 T-cells is

illustrated in Figure 1.7 below.
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Figure 1.7: Ratio of infused CCR5-down-modulated- CD4 T-cell subsets.

In here the CD45RAlowROlow are considered as memory stem cells. These ratios

were adapted from the experimental study report by (Sekaly et al., 2013).
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ID | Period of Inf.(years) | Dose infused | CD4 T-cell count at M0 | CD4 T-cell count at M36
103 20 1x1010 188 -134.4 315-262.1
104 21 1x10%0 261-205.4 455-378.7
102 25 1x1010 439-349 518-428.1
203 21 2x101° 294-227.7 617-4628
302 19 2x101° 413-279.6 606-468.7
201 30 2x101° 525-354 848-651.4
304 13 3x101° 306-215.6 757-444
303 28 3x101° 330-211.8 525-391.5
305 10 3x101° 480-347 340-271.8

This table illustrates the dose infused, infection period and the CD4 T-cell count at

Table 1.1:

Information about the three cohorts.

baseline and after three years. The highlighted numbers are the T-cell count

defined by our collaborators Sekaly et al. and the non highlighted ones are simply

defined as the sum of the naive and memory CD4 T-cells, which is what is used

throughout this work.
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1.4.1 Data Description

The analysis in this thesis uses an unbalanced longitudinal data obtained from
the clinical described above. Longitudinal data is defined as observations usually
taken from several individuals at various time points. At time t=0, the CCR5-down-
modulated memory CD4 T-cells were injected into the three cohorts with different
dosages as illustrated in Table 1.1. After the injection, the nine patients were
followed over three years and measurements of the naive and memory CD4 T-cells
and their CCR5-down-modulated versions were taken at different time intervals for
each of the patients. Looking at the spaghetti plots in Figures 1.8 and 1.9, we can

make the following observations about the collected data :

e In total there are approximately 450 observations, where some of the missing
points could be due to patient inability to respect the follow up appointment,

or experimental error measurements.

e The down-modulated CCR5 CD4 T-cells have a very low count.

e The modified naive CD4 T-cell sub-population data is sparse.

e Memory stem cell populations measurement are missing as these were not
determined from the total T-cell count in the laboratory until much later in

the experiment.
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e The naive and central memory cell populations seem to increase in count in

most of the nine patients from its baseline value.

e The effector and transitional memory cells seem to increase or stabilize at a

value close to its baseline in most of the nine participants.

e The total number of the CD4 T-cell in here is not defined as the sum of all the
CD4 T-cell sub-populations due to the strict definition used in the experiment

protocol used in the laboratory.

When working with experimental data, it is important to draw some general obser-
vations before starting any analyses. These observations are usually important in
understanding what fitting routines are more suitable and why some would fail in
quantifying some parameters.

Figure 1.8 below presents the raw experimental data for each of the three cohorts:
Low (103, 104, 102), medium (203,201,302). Figure 1.9 illustrates the high dose co-
hort(304,305,303). In all of the three cohorts, the different cell counts are represented
by different colors where we have the the modified and its corresponding natural
cell subset on the same graph. The figure legend indicates each cell population and

the color where:
e N= nalve cell

e MN= modified nalve cell
29



ST = memory stem cell

MST= Modified memory stem cell

C= central memory cell

MC= modified central memory cell

T= Transitional memory cell

MT= modified transitional memory cell

E= effector memory cell

ME= modified effectot memory cell
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Figure 1.8: Naive and Memory CD4 T-cell count for the

cohorts.
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Figure 1.9: Naive and Memory CD4 T-cell count for the high dose cohort.

1.5 Scope of Thesis

Several studies have shown that memory CD4 T-cells are a major contributor
to the control of the HIV infection in the host [24]. In (Ostrowski et al, 1999), it
was shown that naive and memory CD4 T-cells were infected by the HIV-1 virus in
vivo. Some researchers focused on studying the dynamics of the memory CD4 T-cell
population in HIV infected individuals [24,28]. Others have focused on studying
the importance of CD4 memory T-cells in the viral reservoir, as these memory cells

are latently infected which when activated can infect hundreds of cells. The role of

32



these cells in relation to the progression to the AIDS condition is studied as well
[26,36].

Since CCR5 is a primary co-receptor for the entry of the HIV virus into the host
cells, and since the memory CD4 T-cells are primary HIV reservoir in the host [58],
our work will evaluate the effect of introducing CCR5-down-modulated memory
CD4 T-cells into HIV positive individuals, on the CD4 T-cell dynamic. The goal of
this thesis is to determine what immune system naive or memory cells proliferation,
death, transition or birth rates are important in augmenting the memory T-cell
population, and if there exists a significant augmentation at all.

We will address this question by introducing deterministic, stochastic and statistical

models. My thesis is structured in following manner:

Chapter 2, I will present the deterministic and stochastic models used in this work.
The non-linear ordinary differential equation model was developed by considering a
linear transition model for the naive and memory CD4 T-cell as suggested by our
immunologist[52]. Later, a stochastic model is developed to account for the T-cell
natural variability using the Gillespie Algorithm.

Chapter 3, I will present the fitting results obtained using various fitting pro-
cedures. Fitting routines were carried in Monolix software, Matlab programming

language and and Stan. We will present baseline fit (using only data points at time
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0) and fits carried after the injection of the CCR5-down-modulated memory CD4
T-cells.

Chapter 4, using an uncertainty sensitivity analysis technique, we will use the
Latin Hypercubic sampling, coded in Matlab, to study the importance of each of
the 15 model parameters, on each of the 5 subsets of CD4 T-cells using the Partial
Rank Correlation Coefficients. This correlation is evaluated continuously after the
treatment initiation over 200 days. Studying this correlation is important in order
to understand what cell functions (death, proliferation or transition) and population
size was affected by the experimental treatment.

Chapter 5 will be devoted to present the results and discussion about the
stochastic model that we developed. Stochastic simulations are used to study
variability in the cell dynamics by estimating the variance in the 5 CD4 memory
T-cells populations. This will allow us to further determine whether the observed
increase in the memory T-cell population in the laboratory is not lost in the variance
of the cell dynamics from the model.

Lastly, in Chapter 6, I will present the conclusion obtained from this work where
we determine which of the memory CD4 T-cell population functions was important
in augmenting the CD4 T-cell count. As well, I will present some new directions for

future research in this area.
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2 The Model

2.1 Introduction

The goal of this thesis is to model a new HIV treatment, and determine whether
natural fluctuations in CD4 T-cell count can include observed increases in CD4
T-cell count in patients. Before we introduce any analysis, the first step needed is to
develop a mathematical model that describes the dynamics of the naive and memory
CD4 T-cells. In this chapter, first we will describe the deterministic model used in
this work. This model will be used in chapter 3 to estimate the model parameters
and in chapter 4 to perform an uncertainty and sensitivity analysis to study the
relative significance of each of the model parameters with respect to each of the
naive and memory CD4 T-cell subsets. Second, a stochastic model is derived based
on the Gillespie Algorithm, which will be used in chapter 5 to study variability in
the naive and memory CD4 T-cell populations. This is important to understand

the occurrence of random variation in the CD4 T-cell count in the body.
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2.2 Naive and Memory CD4 T-cell Dynamical Model

In order to perform our parameter estimation, first we need to specify a mathe-
matical model that describes the dynamics of the naive and memory CD4 T-cell
subsets. Our collaborators in Case Western University [52], proposed that memory
CD4 T-cell subsets have a linear transition. Using this assumption, we constructed
a system of ODE’s to describe the transition process from the naive to the effector
memory state. The naive and memory CD4 T-cell population is divided into 5
subsets, naive (N), stem (ST), central (C), transitional (T), and effector (E), where
each of these populations have death, proliferation and transition rates. In addition,
the naive cells have a birth rate as these cells are produced by the thymus. The
effector memory cells do not transition to any other subset, as this is a terminal
state. The following are some model assumptions made for the natural and CCR5

down-modulated memory CD4 T-cells.

e No backward transitions occur between the naive an memory CD4 T-cell

subsets.

e The CCR5-down-modulated memory CD4 T-cells follow the same dynamics

presented for the natural CD4 T-cells.

e There is no interaction between the natural and injected modified memory

CD4 T-cells.
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e For model simplicity, and since the injected modified memory CD4 T-cells
have a very small population size, we will assume that they have the same

proliferation, death and transition rates as the natural ones.

e The modified naive T-cells will not have a birth rate as these cells could not

be produced naturally by the thymus.

e We assume that the blood is a well mixed homogeneous environment.

Figures 2.1 and 2.2 illustrate a flow diagram that describes the dynamics of the
natural and CCRbH-down-modulated memory CD4 T-cells respectively.
Parameters and variables used in both system of ODEs (Eq’s 2.1 and 2.2) and the
flow diagrams are described in Table 2.1 and 2.2 below.

Both natural and modified CD4 T-cells follow a linear transition from the naive

to the effector terminal state. The model is described as follows:

e The thymus is producing A natural naive cells per day.

e The naive cells have a death rate dy, a proliferation rate py, and transition

to become memory stem cells with a rate ¢y.

e Memory stem cells have a death rate dgr, a proliferation rate psr and transition

to become a central memory cell with a rate ¢gr.
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Variables Definition

N CD4 naive T-cell

ST CD4 memory stem T-cell

C CD4 central memory T-cell

T CD4 transitional memory T-cell

E CD4 effector memory T-cell

MN Down-modulated CCR5 CD4 naive T-cell
MST Down-modulated CCR5 CD4 memory stem T-cell
MC Down-modulated CCR5 CD4 central memory T-cell
MT Down-modulated CCR5CD4 transitional memory T-cell
ME Down-modulated CCR5 CD4 effector memory T-cell

Table 2.1: Variables used in systems of ODEs 2.1 and 2.2.
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Param.

Definition and units

A Number of naive cells produced by the thymus per day

125 proliferation rate of natural and down-modulated naive CD4 T-cells per day~—1

N Transition rate of natural and down-modulated naive CD4 T-cells per day~1

dy Death rate of natural and down-modulated naive CD4 T-cells per day~1

DsT Proliferation rate of natural and down-modulated stem memory CD4 T-cells per day~1

dsT Transition rate of natural and down-modulated stem memory CD4 T-cells per day~1

dsr Death rate of natural and down-modulated stem memory CD4 T-cells per day~1

Pc Proliferation rate of natural and down-modulated central memory CD4 T-cells per day~1

oc Transition rate of natural and down-modulated central memory CD4 T-cells per day~1

de Death rate of natural and down-modulated central memory CD4 T-cells per day~1

pr Proliferation rate of natural and down-modulated transitional memory CD4 T-cells per day~1

or Transition rate of natural and down-modulated transitional memory CD4 T-cells per day~1

dr Death rate of natural and down-modulated transitional memory CD4 T-cells per day™1

PE Proliferation rate of natural and down-modulated effector memory CD4 T-cells per day~1

dp Death rate of natural and down-modulated effector memory CD4 T-cells per day~1
pterm Limiting factor for the proliferation rate

Table 2.2: Variables used in the systems of ODEs 2.1 and 2.2.
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Pn Pst Pc pPr Pe

Figure 2.1: Flow Diagram presenting the dynamics of the naive and memory CD4

T-cell

Pn Pst Pc Pr Pe

Figure 2.2: Flow Diagram presenting the dynamics of the down-modulated CCR5

naive and memory CD4 T-cell
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e Central memory cells have a death rate do, a proliferation rate pc and

transition to become a transitional memory cell with a rate ¢¢.

e Transitional memory cells have a death rate dr, a proliferation rate pr and

transition to become an effector memory cell with a rate ¢r.

e Effector memory cells have a death rate dg, a proliferation rate pg. This is a

terminal state.

Modified CD4 T-cell follow the same dynamic described above but naive cells are
not produced by the thymus, so we do not have the A term as shown in Figure 2.2.

The system of ODEs, Eq’s 2.1 and 2.2, represent the dynamics of the natural
naive and memory CCR5 CD4 T-cell and down modulated CCR5 memory CD4
T-cell populations. The pterm in these equations represents a limiting factor as the
T-cells cannot proliferate infinitely. At maximum there is a 1000 T-cells in 1 pL of
plasma in the body of any healthy individual. So the proliferation rate of the CD4

T-cells is described by a logistic growth[54], So any subset of the CD4 T-cell can
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1- NAMNASTHMSTAHC+MCATH+MTH+E+ME

only generate with a chance 500

N =X —dyN — ¢y N + pyptermN

ST = ¢§yN — dgp ST — ¢s57ST + psrptermST
C" = ¢psp ST — dcC — ¢cC + peptermC
T = ¢cC — drT — ¢7T + prptermT

E' = ¢rT — dgFE + ppptermE (2.1)

MN'= —dyMN — ¢y MN + pyptermM N
MST' = ¢y MN — dgpMST — ¢opMST + psrptermMST
MC' = ¢pgrMST — dc MC — ¢pcMC + peptermC
MT' = ¢cMC — drMT — ¢rT + prptermMT (2.2)

ME' = ¢7MT — dgMFE + ppptermME
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2.3 Stochastic Model

2.3.1 Introduction

As mentioned in chapter 1, in mathematical modeling there exist two types
of models that are widely used to study the dynamics of infectious disease at the
cellular and molecular scales; deterministic and stochastic models. Despite the
advantages of using deterministic models to describe biological phenomenons, in
a realistic world we know that human cells thrive in a Brownian world. The cell
motion in the body can be described as partly discreet and partly random. Hence,
the appropriate mathematical tools describing such motion are stochastic models

that can capture variability in the Brownian world [49].

2.3.2 Continuous Time Markov Chain Model

Using the deterministic model presented by Eq’s. 2.1 and 2.2, we develop a
stochastic model. Here, time, represented as t, is considered to be continuous where
t € [1,00) and variables are discrete.

Let N(t), ST(t), C(t), T(t), E(t) be random variables representing the number
of naive, stem, central, transitional, and effector memory CD4 T-cells at time t,
respectively. These random variables are defined to be discrete and non-negative.

And, let the transition probabilities that represent the change in state of the 5 CD4
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T cells subsets be:

probAN(t) =i, AST(t) = k, AC(t) = w, AT(t) = v, AE(t) = (2.3)

Here we assume that the time step At is sufficiently small that only one event can
occur at time t [49] i.e. each of the variables i, k, w,v and 1 can take only three
values +1, -1 , 0 to describe what event is taking place during the time interval At.
Table 2.3 lists all the fifteen possible outcomes that could occur in one time step
At, their transition events and their corresponding transition probabilities. Note
that this stochastic model is based on Eq’s 2.1, as the modified memory CD4 T-cell

population size is very small and is not the main focus in this work.
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Reaction Events Transition Rate at Which | Transition Prob-
Each Event Occur | ability In Time
Interval [t,t+At]
1 Birth of naive Cells N — N+1 A A AL
2 Death of N N — N-1 dy dy At
3 N proliferation N — N+1 pN pterm py pterm At
4 Transition from N to STM | N — N-1 and | ¢n on At
STM — STM+1
5 death of STM STM — STM-1 | dgr dst At
6 proliferation of STM STM — STM+1 | psrpterm psrpterm
7 transition of STM to CM | STM—STM-1, osT osT At
CM—CM+1
8 death of CM CM —CM-1 deyv dey At
9 CM proliferation CM —CM+1 Peypterm pempterm At
10 Transition from CM to TM | CM—CM-1, bcm don At
TM—TM+1
11 Death of TM ™ — TM-1 dry dry At
12 Proliferation of TM T™™ — TM+1 prapterm cell3
13 Transition from TM to EM | TM—TM-1, drm orm At
EM—EM+1
14 Death of EM EM — EM-1 dpn dey At
15 Proliferation of EM EM — EM+1 Pgppterm Pgypterm At
Table 2.3: Transition Events and their corresponding probabilities for the fifteen

possible outcomes for the 5 CD4 T-cell subsets.
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The transition probabilities of the fifteen possible different state for the five
cell populations are presented below, where high order term are assumed to be 0 (
limas—so O(TAtt):O). Equation 2.4 below, describes the Markov jump process, where

each event takes place at a particular rate given the current state of the system.

probAN (t) =i, AST(t) = k, AC(t) = w,AT(t) = v, AE(t) =] (2.4)

N(t),ST(t),C(t),T(t), E(t) =
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AAt + o(At), (i, k, w,v,1) = (1,0,0,0,0)

dnAt + o(At), (i, k,w,v,1) = (=1,0,0,0,0)

pnptermAt + o(At), (i, k,w,v,l) = (1,0,0,0,0)

ONAL + o(At), (i, k,w,v,l) = (—1,1,0,0,0)

dsTAt + o(At), (i, k,w,v,l) = (0,—1,0,0,0)

psTptermAt + o(At), (i, k,w,v,l) = (0,1,0,0,0)

osTAt + o(At), (i, k,w,v, 1) = (0,—1,1,0,0)

de At + o(AL), (i, k,w, v,1) = (0,0, —1,0,0)

poptermAt + o(At), (i, k,w,v,l) = (0,0,1,0,0)

doAt + o(At), (i, k,w,v,l) = (0,0,—1,1,0)

dr At + o(At), (i, k,w,v,l) = (0,0,0,—1,0)

prptermAt + o(At), (i, k,w,v,1) = (0,0,0,1,0)

oAt + o(Al), (i, k,w,v,1) = (0,0,0,—1,1)

dpAt + o(At), (i, k,w,v,l) = (0,0,0,0,—1)

peptermAt + o(At), (i, k,w,v,l) = (0,0,0,0,1)

1 — (A + (dy + pypterm + on)N(t) + (dst + psrpterm + ¢sr) ST (t)+
(do + pepterm + ¢o)C(t) + (dr + prpterm + ¢r)T(t) + (dg + pepterm)E(t)),
(2, k,w,v,l) = (0,0,0,0,0)

o(At), Otherwise.
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2.3.3 Implementation of the MCMC simulations using the Gillespie’s

Algorithm

We implemented the stochastic simulations framework in matlab using the
Gillespie’s Direct algorithm [55].
In this method two uniformly distributed random variables defined in the interval
(0,1) are used in each iteration. The first random variable is used to simulate
the time step and the second is to select the event. Below is a description of the

Algorithm used.

e Label all possible events of birth, proliferation, death and transition for all

the five cell populations as E, ...., E,.

Define the rate at which event occurs as Ry ... R,,.

Generate two uniformly distributed random variables: RAN D; and RAN D,

the rate at which any event could occur is expressed as:

n
Rtotal = § Rz
=1

The time step between events is :

_ —log(RANDz)
At_ Riotal

e Set P = RANDQRtOt
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e Event P occurs if
p—1 p—1
> Ri<P<) R
i=1 i=1
e Time t is now update as t t+ dt and the event P occurred.

e Return to step 2

In this algorithm, the transition rates are converted into probabilities where one
random event is selected at each time step. Once selected, the time step and the
number in each of the events is updated accordingly following the algorithm above

[49].
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3 Data Fitting Results

3.1 Introduction

The most important step in this work is the parameter estimation task. Using
the non-linear ODE model described by Eq’s 2.1 and 2.2, we will explore several
fitting routines using different software to estimate the model parameters. This

chapter is organized as follows:

e In section 3.2, we will introduce the use of the non linear mixed effect models

in fitting dynamical biological data using several software.

e In section 3.3, we will present the baseline fit obtained using Matlab, where
only data measurement at time 0 (before the infusion of the modified CD4

T-cells)is used.

e In section 3.4, we will present the data fitting obtained using Stan software
where a hierarchical technique is used to fit all the data measurements obtained

after the dose for the ten populations of cells.
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e In section 3.5, Monolix fitting results is presented, where a non linear mixed
effect approach is used. Model diagnostics for the three cohorts are achieved
using several statistical tests and outputs to compare the different fits obtained

in Monolix. Here data measurements after the dose are used.

e In the last section 3.6, parameter identifiablity and over fitting issues that

occurred in the fits are discussed.

3.2 Non Linear Mixed-effects models and software

We proposed a system of ODEs for this study. However, many of the ODE
parameters are unknown. Several statistical methods have been developed to
estimate model parameters from experimental data such as Bayesian estimation
and non linear mixed effect models [42]. Using non-linear ODE models made the
fitting task harder as many of them do not have an analytic solution [42].
Bayesian hierarchical framework estimation uses a prior distribution obtained from
the subject’s data to estimate the individual parameters. This method is able to
capture the within and between individual’s variability [43,42].

Non-linear mixed effect model(NLME) uses a hierarchical framework which take into
account the inner and intra individual variability. This method allow to perform

statistical analysis on unbalanced longitudinal data. It is widely used to fit clinical
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trials data in sociology, biology, psychology and many more [43]. Mixed effect
models were originally introduced in the pharmacokinetics studies [43]. For more
information the reader could refer to Phinero and Bates (2000).

Many software packages have been developed in the area of fitting experimental

data to biological models. In this section we will introduce some software such as

NONMEM, STAN, Monolix and Matlab.

e NONMEM developed by S.L. Beal and L.B Sheiner in 1980 is a very famous and
widely used statistical software package in the pharmacokinetics community.
It performs a population parameter estimation where the maximum likelihood
is estimated using several approximation techniques such as the Laplacian
and first order methods [45]. This software has various advantages. One of
the most important advantage, is the ability to use compartmental and ODE
based models, where several dosing methods could be considered. However,
this software has several pitfalls. For instance, the graphical are sub-optional
and the user needs to pair it with other software such as R and excel to output
some graphics. In addition, fits are sensitive to the initial prior guess [46]. For

further reference the reader could refer to Bates (2000).

e Stan is a statistical software package that estimates parameters using a

Bayesian approach. The user will have to write a Stan program in order

52



to estimate the posterior distribution of the parameters as an initial estimates.
A hierarchical framework could be adopted in this case. Like any statistical
software, Stan has some limitations. For instance, the convergence time might
be very long. In addition, Stan does not allow the user to make inferences

about discrete parameters such as the case in mixture models [44].

Monolix is a new statistical software package developed by Marc Lavielle and
implemented in Matlab, that models non linear mixed effect models [51]. It is
based on the Stochastic Approximation of the Expectation-Maximization,SEAM,
using a Monte Carlo Markov Chain (MCMC)iterative algorithm. This algo-
rithm is used to estimate the maximum likelihood estimator of the model
population parameters, where a simulated annealing version improves the
convergence of the model to a global maximum. The MCMC iterative method
uses the Metropolis- Hastings approach. One of the drawbacks of this software
package is its sensitivity to the initial guess provided when performing the fit
[50,51].

A more detailed explanation of the algorithm is presented in Appendix A.

Matlab is a very famous mathematical software package that has a statistical
toolbox that consists of many statistical packages. Depending on the kind

of data, one may choose some linear and non linear least square methods
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functions such as Isqln, Isqnonlin and fminsearch. These functions works by
minimizing the distance between the ODE curve and the observations. The
second fitting option available in Matlab is to use a non linear mixed effect
method functions such as nlmefit and nlmefista. nlmefit uses the Likelehood
Maximization Expectation (LME) or Laplacian first order to estimate the
parameters. However, nlmefista use the SEAM algorithm to approximate the

model parameters [47].

Parameter estimations in this thesis are carried out using three different fitting
software; Monolix version 4.4, Matlab and Stan. In the next sections, we will
present the fitting results obtained from these three software. Model diagnostics and
goodness of fit were studied using the Akiake Information criterion (AIC), standard
error values (s.e) and other figure output such as individual fits and prediction vs

observations graphs.

3.3 Data Fitting

We first determine model parameter values at baseline, and then fit the model
to the data after the dose. This methodology will us to determine which parameters

are most affected by the dose of CCR5 down-modulated cells.
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3.3.1 Baseline Fit- Matlab

In order to better understand the effect of the injected CCR5-down-modulated

memory CD4 T-cell in each of the nine patients, we first performed a baseline fit

in Matlab using a hierarchical mixed model using a log-norm distribution for the

parameter’s mean. This approach allows one to fit all the nine patients to their

baseline count (data point at time 0) while allowing for inter patient variability.

We used a non-linear least square data fitting method. Table 3.1 summarizes the

results obtained for all the patients where we grouped them by the dose of injected

CCR5-down-modulated memory CD4 T-cells (high(yellow), medium (white), low

(gray)). The standard deviation and mean for the parameters is illustrated.

%)

Pat A dy dsy ‘ do ‘ dp ‘ dg oN osr dc or PN ‘ pst pc pr PE

303 | 8.4457 0096 0.0112  0.0033 0.0231 0.5151 | 0.0823 | 0.4648 | 0.1079 | 0.2479 0.0011 0.0110 | 0.0109 | 0.0215 | 0.0332
304 | 9.0864 | 0.0102 | 0.0110 0.0033 0.0231 0.3887 | 0.1709 | 0.4648 | 0.1075 | 0.2426 0.0011 0.0110 | 0.0109 | 0.0216 | 0.0332
305 | 10.5165 | 0.0114 | 0.0110  0.0033 0.0230 0.3215 | 0.0693 | 0.4648 | 0.1059 | 0.2333 0.0011 0.0110 | 0.0109 | 0.02179 | 0.0332
201 | 10.9220 | 0.0118 | 0.0110 | 0.0033 | 0.0232 | 0.4467 | 0.0746 | 0.4648 | 0.1022 | 0.2444 0.0011 0.0110 | 0.0110 | 0.0216 | 0.03320
203 9.1081 | 0.0102 | 0.0111 | 0.0033 | 0.0234 | 0.3750 | 0.1644 | 0.4648 | 0.1055 | 0.2493 0.0011 0.0110 | 0.01089 | 0.0215 | 0.0332
302 | 8.7649 | 0.0100 | 0.0111 | 0.0033 | 0.0232 | 0.2889 | 0.0497 | 0.4651 | 0.1107 | 0.2477 0.0011 0.0109 | 0.0108 | 0.0216 | 0.0332
102 | 9.1713 | 0.0104 | 0.0111  0.0033 0.0234 0.0909 | 0.2153 | 0.4636 | 0.1053 | 0.2478 | 0.00115 0.0110 | 0.0109 | 0.0216 | 0.0335
103 | 6.1309 | 0.0073 | 0.0111  0.0033 0.0232 0.4530 | 0.1558 | 0.4643 | 0.1071 | 0.2452 0.0011 0.0110 | 0.0109 | 0.0215 | 0.0331
104 | 7.6965 | 0.0089 | 0.0111  0.0033 0.0232 0.1297 | 0.2673 | 0.4673 | 0.1085 | 0.2495 0.0011 0.0109 | 0.01090 | 0.0216 | 0.0336
mean | 8.9189 | 0.0100 | 0.0111 | 0.0033 | 0.0231 | 0.3388 | 0.1391 | 0.4648 | 0.1069 | 0.2453 0.0011 0.0110 | 0.0109 | 0.0216 | 0.0332
std 1.3756 | 0.00126 | 0.00085 | 0.00029 | 0.0017 | 0.1364 | 0.0702 | 0.0121 | 0.00405 | 0.0117 | 8.6456e-05 | 0.00074 | 0.00071 | 0.0015 | 0.0024

Table 3.1: Baseline fit for the three cohorts obtained using Matlab.




3.3.2 STAN Fitting results

Dr.

Georges Monette performed a parameter estimation in Stan. In the fit,

he used a hierarchical approach where all the patients are fit using an iterative

MCMC approach model using sampling and population variance. A more detailed

explanation about this fit is presented in Appendix B.

Table 3.2 shows the fit obtained for the nine patients.

Pat A dy dst dc dr | dg | ¢n st dc or PN pst | pPc| Pr | DPE
303 | 10.2021 | 0.00936 0.0006 | 0.0804 | 0.0431 | 0.1 | 0.0986 | 0.1419 | 0.0196 | 0.0575 | 0.0078 | 0.0425 0 | 0.0007 | 0
304 | 8.3817 | 0.0092 0.0004 | 0.0467 | 0.0534 | 0.1 | 0.135 | 0.2234 | 0.0533 | 0.0466 | 0.00277 | 0.1237 0 | 0 | 0O
305 | 11.2318 | 0.0511  0.0002 | 0.0658 | 0.0073 | 0.1 | 0.0492 | 0.2358 | 0.0342 | 0.1082 | 0.0003 | 0.1360 0 | 0.0155 | 0
201 | 19.3183 | 0 | 0.0058 | 0.0724 | 0.0571 | 0.1 | 0.1576 | 0.0984 | 0.0276 | 0.0429 | 0.05761 | 0.0042 | 0 | 0 | 0
203 | 6.9429 | 0.0030 | 0 | 0.0775 | 0.0249 | 0.1 | 0.1014 | 0.2243 | 0.02255 | 0.0780 | 0.0094 | 0.01243 | 0 | 0.0030 | 0
302 | 16.1964 | 0.0483 | 0.0083 | 0.0686 | 0.0015 | 0.1 | 0.0517 | 0.1024 | 0.0314 | 0.1341 | 0 0.0107 | 0 |0.0356 | 0
102 | 7.4924 | 0.0028 0 [0.07919| 0 |0.1|0.1171 | 02375 | 0.0281 | 0.188 | 0.02 | 0.1375 0 | 0.0880 | 0
103 | 27117 | 00136 0 | 0.0627 | 0 |0.1|0.0973 | 0.3590 | 0.0373 | 0.1886 | 00109 | 0.2590 0 | 0.0887 | O
104 | 647731 | 0.0012 0.0054 | 0.0744 | 0.0007 | 0.1 | 0.1401 | 0.1158 | 0.0256 | 0.1584 | 0.0413 | 0.0213 0 | 0.0590 | 0
Table 3.2: Hierarchical Fit obtained from Stan software. 2000 iterations are used.
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3.3.3 Monolix Fitting Results

A non-linear mixed effect approach was employed to estimate the model param-
eters. Using Monolix software, we have used 3 fitting approaches. In the first two
approaches, we used the data points provided for all ten cell populations. In the
third approach, we used the data points for the non-modified naive and memory
CD4 T-cell only. The two main reasons behind ignoring the down-modulated CCR5
memory CD4 T-cell populations, is because of its small size and its short lifespan in
the body, which varies between three to five years on average [56].

When performing the fit, Monolix requires the user to specify an initial guess for
the fixed effect parameters. One of the good advantages this software provides, the
ability to check the initial fixed effect. First, we have started with the baseline
fit presented in Table 3.1 as an initial guess. Using the initial fixed effect tool,
the model parameters were altered sometimes where we minimized the distance
between the curve and the experimental data points by seeing the change of the

curve instantly to get a good initial guess [50,51].

e In the First approach, we used a stochastic approximation of the Fisher
Information Matrix. In here the Fisher Information Matrix is calculated using
the exact model. The experimental data measurements provided for all the

ten cell populations is used. Eq’s 2.1 and 2.2 are used. This fitting routine

57



will be referred to as SNM throughout this work.

e In the second approach, we used a model linearization approach to estimate the
Fisher Information Matrix where the model is linearized and is approximated
by a Gaussian model. As well, the data points for all 10 cell populations is
used. So we have used Eq’s 2.1 and 2.2. This fitting routine will be denoted

as LNM throughout this work.

e In the third approach, we have only used the data points of the non-modified
naive and memory CD4 T-cell. Eq’s 2.1 are used. For this approach we used
a model linearization to calculate the Fisher Information Matrix. This fitting

routine will be referred to as LN throughout this work.

3.3.3.1 A non-linear mixed effect model for the T-cell dynamical model

As described earlier, our dynamical model consists of ten populations of naive
and memory CD4 T-cells for each of the nine patients. We present the concentration
for each of the compartment at time, t. This work considers time to be the only
dynamic variable in the model. In this fitting routine, we have used the same
individual based model for the observations from the nine patients independently.
The vector of observation at time ¢; is presented as y; where 1 < j < n. The model

is the distribution of the vector of observation y; represented as p,(.; ¢,1).
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A non-linear model is composed of fixed effect, random effect , residual error model
and a covariate model can be added if needed. Where the fixed effect and random
effect account for variability between and within individuals respectively. In this
study, age, sex and ethnicity were not taken into account, hence there was no need to
specify a covariate model. Having said that, we will have a 15 by 15 zero covariance
model, as we have 15 unknown parameters to be estimated.

Due to a limitation in the Monolix software package where different initial conditions
for each of the cell populations for each of the nine patients was not possible. Since
patients are independent and share no information, we decided to consider an
individual- based model where we fit the cell populations to patient separately.
This is a drawback, since they will be related through distribution showing the
inter-patient variation related over these parameter distributions. The Non-linear

mixed effect model which represents our set of ODE equations is represented as:

Yiin = za(ti;) + eij (3.1)

Where we have the following:

e ;= 1....N = the ith individual.

e j = 1...n; = the time point.

e 1= 5 or 10, which is the I'th number of compartment in the ODE model.
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o (= the fixed effect, b = the random effect and e;;= residual error model.

As many non-linear ODEs do not have an analytic solution, Monolix uses a
numerical approximation technique to solve the ODEs. A non linear optimizing
method is commonly adopted to fit these types of ODE’s to experimental data. The
user has to determine the initial conditions for each of the cell populations or else
they are considered to be zero by the software. Hence, baseline measurements for
each of the cell population are used as initial conditions.

In order to perform a fit in Monolix, the user has to determine the distribution
for the parameters. Defined by the user, Monolix compares different paramater
distributions and chooses the best model based on the Akiake Information Criterion
(AIC), Bayesian Information Criterion (BIC) and -2 of the likelihoods (-2LL). For
our model, it was shown that the a log-normal distribution resulted with the smaller
AIC, BIC and -2LL values, where log(¢;) = log(6) + n;. log(#) represents the mean
value of the fixed effect parameters and 7; is the random effect to account for
inter-individual variability.

When performing data fitting, one cannot ignore the error that occurs when mea-
suring experimental data. Hence it is important that for any given data set, we
determine an error model that potentially estimates the distribution of the error in
the data measurements. The residual error model defines the conditional probability

distribution of the observations denoted by ;;. Using the Akiake and Bayesian
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Information Criterion (AIC and BIC) and the Likelihood (-2LL ), Monolix proposed
that a constant error model best describes our model and data data, where e;; = d;€;;

and €;; is normally distributed ~N(0,d?).

3.3.3.2 Akiake Information Criterion

To evaluate the difference between the three fitting techniques, I have used
the Akiake Information Criterion (AIC) and the standard errors to compare the
goodness of fit.

The AIC takes into account the number of parameters, data points and the likelihood,
with K and N being the number of parameters and data points respectively and is

defined by the equation below [50]:
AIC = —2logl,,,(y;0) + 2K + (2K(K +1))/(N — K — 1)) (3.2)

In this section, the number of parameters(K=15), was the same for all the three
fits. What changed is the number of observations and cell populations used in the
model. Hence, having a smaller AIC indicates the most parsimonious model. In
addition, to asses the best and most efficient model, the central processing unit time
(CPU) and the standard error are used to asses the efficacy of the model [48]. The
standard error is calculated by taking the ratio between the standard deviation of

the estimated parameter and the estimated value for the parameter [48]. Besides
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the above statistical tests, we have used the plot for the individual fits to asses the
goodness of fit. Moreover, the observed vs prediction plots were used, where when

the data points are more aligned to the 45° degree line it indicates a better fit.

3.3.3.3 Parameter Estimation Results

In the subsections below, we will compare the three fitting routines for the three
cohorts. A table showing the three different fits along with the standard error, AIC
and CPU time are shown. In addition, I will present some of the plots obtained
by Monolix such as the individual fits and the observed vs’ predictions outputs to
get a better insight about the quality of the fits. The ODE model described by
Eq’s 2.1 and 2.2 were solved over 1080 days in all the fits. In the case where we
considered to fit the modified and non-modified memory and naive CD4 T-cells,
we have indicated that the modified-cell dose was injected into the patients after
the measurement of their cell count at baseline at time 0. In all of the subsections
below, results for non- modified CD4 naive and memory T-cell populations will be
presented, as these cell populations are the main interest of this work.

Patient 103- Low Dose
Table 3.3 below shows the parameter estimates for patient 103. When all the
experimental data points for the ten cell populations of cell were used, adopting a

stochastic approximation or model linearization to calculate the Fisher Information
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matrix, we obtained the same values. However, using the model linearization
approach, the software was able to calculate the s.e with the smaller CPU time.
When comparing both the s.e values and the AIC, we can see that the fitting routine
where only non-modified cell data points were used, resulted a better fit giving an
AIC of 262, almost half that of the other models. Parameter values from all fitting
exercises are somewhat similar in magnitude. A NaN value of the s.e means that
either the coefficient is 0 or the software was not able to capture the parameter.

Comparing the CPU time from all three fits, it is evident that when only the
non-modified cell data is used, the fitting exercise is less computationally expensive.
Looking at Figures 3.1, we can see that the model was not well fitted to the data as
most of the observations were not close to the 45°purple line. This further indicates
that the model prediction is not perfectly close to the experimental data points.

From Figure 3.2, we can make the following observation about the change in the

memory and naive CD4 T-cell populations from the best fit model:

e The naive cell population decreased.

e The memory stem cell population had a very small increase.

e The central, transitional and effector memory cell populations have increased.
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Param Lin-all s.e Stoch-all | s.e | Lin-non s.e
A 5.83 9.5e+-005 5.83 3.2 6.14 2.4e+007
DN 0.000855 | 1.6e+005 | 0.000855 | NaN | 0.000201 NaN
psT 0.0064 NaN 0.0064 NaN | 0.0064 NaN
pe 0.09 5.7e+004 0.09 NaN | 0.0821 | 1.6e+005
pr 0.0976 5.6e+-005 0.0976 NaN | 0.0639 | 6.8e4+005
PE 0.483 8.2e+004 0.483 NaN 0.413 3.7e+006
ON 0.208 2.5e+-004 0.208 0.066 0.217 | 2.7e+003
Pst 0.426 1.1e+004 0.426 NaN 0.461 5.8e+003
oc 0.104 2.3e+003 0.104 0.031 0.117 | 4.2e4+003
or 0.319 1.7e4+004 0.319 0.092 0.34 5.1e+005
dn 0.00565 | 4.9e+004 | 0.00565 | 0.084 | 0.006088 | 8.5e4005
dsr 0.0105 5.6e+004 0.0105 NaN | 0.00685 NaN
de 0.00249 | 3.2e+004 | 0.00249 | 0.025 | 0.00564 | 1.2e4005
dr 0.0235 3e+005 0.0235 NaN | 0.0327 NaN
dg 0.437 5.3e+004 0.437 0.065 0.498 2.5e+006
AIC 479.55 479.55 262.33
CPU (sec) | 1.58e+003 7.37e+003 939

Table 3.3: This table illustrates the fits obtained from the three fitting approaches

with their AIC and standard error measurements for patient 103 .
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Patient 102-Low Dose

Table 3.4 shows the parameter estimates for patient 102. Similar to the previous
patient, when all experimental data points for the ten cell populations are used, the
stochastic approximation and the model linearization routines used to calculate the
Fisher Information matrix resulted in similar parameter estimates. However, using
the model linearization approach, the standard error was calculated in a shorter
CPU time. Comparing both the s.e values and the AIC, we can see that the fitting
routine where only non-modified cell data points were used gave a better fit where
we had an AIC of 261. Parameter values from both fits are somewhat similar in
magnitude except for the number of naive cells produced by the thy thymus daily;
A. Looking at Figure 3.3, we can see that the model was not well fitted to the data
as most of the experimental data points did not lie on the 45°purple line, which
indicates that the model did not succeed in replicating the clinical trial. However,
the memory effector cell population seems to have a reasonable fit where the data
measurement lie on the 45° degree line.

From Figure 3.4, we can make the following observation about the change in the

memory and naive CD4 T-cell populations:

e The naive, memory stem cell, central and transitional cell populations have

increased from the baseline.
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e The effector memory cells have decreased in count.

Param Lin-all s.e Stoch-all s.e Lin-non s.e
A 18.2 3.8¢4-006 18.2 14 13 1.9e+007
DN 0.0895 1le++006 0.0895 NaN 0.0871 4.4e+005
psT 0.159 1.3e+-004 0.159 NaN 0.1 6.8e+005
28, 0.0511 8e+005 0.0511 NaN 0.0318 2.9e+4-005
Dr 0.000167 NaN 0.000167 NaN 0.00181 NaN
DE 0.268 3.7e+003 0.268 NaN 0.19 1.7e+006
oN 0.227 1.6e4-003 0.227 0.18 0.19 1.7e+006
Osr 0.238 5e+004 0.238 0.2 0.235 3.7e+005
oc 0.0846 2.4e4005 0.0846 0.064 0.0963 3.4e+004
or 0.319 1.7e+004 0.291 NaN 0.37 3.2e+005
dn 0.00489 NaN 0.00489 NaN 0.00715 NaN
dsr 0.00196 | 5.1e+004 | 0.00196 NaN 0.00836 NaN
de 0.00414 NaN 0.00414 | 2.5e+005 | 0.00474 NaN
dr 0.0408 9.9e+-005 0.0408 0.23 0.0209 4.4e+005
dg 0.192 5.3e+004 0.192 0.032 0.316 9.6e+005
AIC 520.89 520.89 261.16
CPU(sec) | 2.71e+003 2.76e+004 3.45e+003

Table 3.4: This table illustrates the fits obtained from the three fitting approaches

with the AIC and standard error measurement values for patient 102.
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Patient 104 - Low Dose

Table 3.5 below shows the parameter estimates for patient 104. Again, when all the
10 cell populations data points are used, the stochastic approximation and model
linearization approaches to calculate the Fisher Information matrix, result in similar
parameter estimates. However, using the model linearization approach, the software
was able to calculate the standard error. The fitting routine considering only non-
modified cell population data gave a better fit, with an AIC of 210. Parameter values
from all fits are similar in magnitude. Based on the CPU time, AIC and standard
error values, the fitting routine considering only non-modified cell observations
resulted in a better fit. Looking at Figure 3.5 , we can see that the model was not
well fitted to the data for the naive, central memory and transitional memory cells.
However, observations for the stem and effector cells were well lined up with the
45° degree purple line in both the fits. The results from the individual fits in Figure
3.6 shows a good fit for the central, effector and memory stem cell populations.

From Figure 3.6, we can make the following observation about the change in the

memory and naive CD4 T-cell populations:

e The naive, central and memory stem cells have increased in count from the

baseline.

e The effector and transitional memory cells have decreased in count from the
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baseline.

Param Lin-all s.e Stoch-all | s.e Lin-non s.e
A 9.44 2.4e4-007 9.44 9.5 8.73 2.6e+005
DN 0.000226 | 7.2e4+002 | 0.000226 | NaN | 1.97e-005 65
PsT 0.00417 2.3e+003 0.00551 | NaN | 0.00551 | 6.3e4+003
Pc 0.00365 | 1.9e4-0053 0.0511 NaN | 0.00365 NaN
pr 0.00335 2.1e+004 0.00335 | NaN | 0.00181 NaN
DE 0.00486 4.8e+003 0.00486 | NaN 0.0139 6.9e+003
ON 0.135 3.7e4003 0.135 0.13 0.125 2.9e+003
bst 0.0759 .8e+003 0.0759 0.048 0.0679 8.8e+002
oc 0.0827 4.2e4+003 0.0827 0.095 0.0715 2.4e+003
Or 0.368 5.9e+0034 0.368 0.47 0.32 8.6e+003
dn 0.0034 3.5e4-005 0.0034 0.024 | 0.00261 | 1.1e4+003
dsr 0.0054 5e+003 0.0054 0.034 | 0.00836 NaN
do 0.0827 4.2e+003 0.00435 | 0.056 0.0715 2.4e+003
dr 0.0187 3.8e4-003 0.0188 NaN 0.0188 1.3e+-004
di 0.527 9.4e4-003 0.527 0.68 0.475 1.2e+004
AIC 383.08 385.08 210.41
CPU (sec) | 4.27e+003 1.78e+004 1.47e+003

Table 3.5: This table illustrates the fits obtained from the three fitting approaches

with their AIC and standard error measurements for patient 104.
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Figure 3.6: Individual fits for the naive and memory CD4 T-cells for patient 104.
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Patient 203- Medium Dose

Looking at Table 3.6, we can observe that when using all the 10 population of
cells, Both the stochastic and model linearization approaches resulted in similar
parameter estimates. However, the standard error values were obtainable using the
linearization method with a faster CPU time. When the modified cell population
observations are ignored, the AIC value of 268.61 is smaller compared to the AIC of
the other two fits. Figure 3.7 we can see that the both of the fitting routines behaved
similarly where the points are not aligned with the 45° purple line except for the
memory stem cell population. This indicates that the model does not appropriately
fit the data very well. And this is evident in the individual fit Figure 3.8 where the
model curve does not pass through all the data points like in the memory stem cell
fit. The LN fitting routine, seems to pass through the data point better than the
LNM method. The zero values for the proliferation rates indicates that these cells
have increased to a level that cannot proliferate further.

Looking at Figure 3.8, we can draw the following observations about the dynamics

of the five CD4 T-cell subsets.

e The naive, memory stem cell and central memory cells increased in size.

e The transitional and effector cells exhibit no change.
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Param Lin-all s.e Stoch-all s.e Lin-non s.e

A 14.6 1.1e+004 14.6 2.8 10.6 4.1e+005
PN 8.88e-007 31 8.88e-007 NaN 0.159 4.2e4004
DST 0.000107 | 2.4e+002 | 0.000107 | 0.00043 0.132 5.6e+005
pe 0.000641 13 0.000641 | 0.0021 | 0.000514 | 9.3e4004
pr 0.000305 53 0.000305 NaN 0.00117 | 1e+005
DE 0.332 62 0.332 0.075 0.0221 Te+003
ON 0.209 35 0.209 0.047 0.251 7.1e4+003
bst 0.714 19 0.714 0.05 0.337 2.2e+005
o 0.0862 15 0.0862 0.019 0.145 5.4e+003
Or 0.355 2.4e4-002 0.355 0.09 0.638 3.2e4003
dn 9.98e-007 | 1.1e+002 | 9.98e-007 | 0.0017 | 0.000576 | 2.4e+004
dst 5.86e-009 6.9 5.86e-009 NaN | 1.12e-005 | 5.9e+005
do 0.00872 14 0.00872 0.018 | 5.98e-005 | 1.5e+005
dr 0.0407 2.6e4-002 0.0407 0.038 0.00224 | 4.4e+004
dp 0.599 3.3e+002 0.599 0.085 0.9 le+002
AIC 499.67 499.67 268.61

CPU (sec) | 1.35e+003 2.36e+004 890

Table 3.6: This table illustrates the fits obtained from the three fitting approaches

with their AIC and standard error measurements for patient 203.
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Patient 302 - Medium Dose

Table 3.7 shows the parameter estimates for patient 302. Again, when using all the
10 cell populations experimental data points are used, the stochastic approximation
and model linearization approaches to calculate the Fisher Information matrix, result
in similar parameter estimates. However, using the model linearization approach,
the software was able to calculate the standard error with a shorter CPU time. The
s.e values and the AIC value of 268 are smaller when using only non modified cell
data points.

Figures 3.9, shows that the model is not well fitted to most of the cell populations,as
the points and the spline line does not align with the 45° purple line. However,
the third approach, where only the non modified cells observations are used, the
model was able to better fit the memory stem cell population which is evident as
the observations and the spline line were closer to the purple line.

From Figure 3.10, we can make the following observation about the change in the

memory and naive CD4 T-cell populations:

e The naive, memory stem and central have increased from the baseline.

e The effector and transitional memory cells have exhibit no change.
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Param Lin-all s.e Stoch-all s.e Lin-non s.e
A 13.8 1.8e+006 13.8 NaN 13.6 6.1e+005
PN 0.173 3.3e+004 0.173 NaN 0.189 5.7e+003
st 0.112 5.1e4-004 0.112 NaN 0.0914 | 6.3e+004
e 0.000947 | 2.7e+004 | 0.000947 NaN 0.00649 | 1.2e+004
pr 0.0472 5.3e+004 0.0472 0.4 0.00575 | 6.1e4+003
DE 0.846 1.7e+004 0.846 NaN 0.274 | 8.6e+004
ON 0.144 1.7e+003 0.144 0.01 0.191 3.8e+002
bst 0.366 1.2e+004 0.366 0.081 0.459 | 3.7e+004
o 0.277 3.1e+003 0.277 0.027 0.325 | 3.3e+002
Or 0.599 6.1e4-002 0.599 0.16 0.832 1.3e+004
dn 5.78e-015 0.0042 5.78e-015 | 2.8e-010 | 0.000541 | 9.6e+002
dst 0.000387 | 3.4e+004 | 0.000387 NaN 0.00057 | 7.4e+004
de 0.0449 3.8e+-003 0.0449 NaN 0.106 2.8e+004
dr 0.266 le-+004 0.266 NaN 0.19 le+004
dp 0.772 6.5e+003 0.772 0.13 0.796 | 4.1e4+004
AIC 605.15 605.15 304.25
CPU (sec) | 1.43e+003 7.44e4-003 950

Table 3.7: This table illustrates the fits obtained from the three fitting approaches

with their AIC and standard error measurements for patient 302.
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Figure 3.10: Individual fits for the naive and memory CD4 T-cells for patient 302.
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Patient 201 - Medium Dose

Table 3.8 lists the three parameter fit approaches for patient 201. When all the
10 cell populations data observations are used, the model linearization was able to
capture a better fit than the stochastic approach with a sorter CPU time and a
slightly smaller AIC value 627.80.Comparing both column 1 and column 5, the fit
in column 5 had a smaller AIC value of 314, and smaller CPU time. The goodness
of fit is evident when looking at the individual fits in Figure 3.11 as the ODE curve
was closer to the data points.

Figure 3.12, shows that when using the non modified observations only, the spline
and the observations were most of the time closer to the purple 45° line.

From Figure 3.11, the naive and memory CD4 T-cells subsets have increased from

the baseline.
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Param Lin-all s.e Stoch-all s.e Lin-non s.e

A 24.9 7.3e+002 15.9 4.2 20.4 1.1e+002
PN 1.03e-010 6 3.87e-012 NaN le-015 0.00096

DSt 1.01e-010 9.5 1.75e-010 | 1.5e-007 0.528 1le+003

e 0.0444 36 0.11 NaN 2.77e-014 0.026
pr 0.916 25 7.67e-007 NaN 5.96e-015 0.017
PE 1.46e-010 7.8 0.903 NaN 2.88e-013 0.54
oN 0.119 3.8 0.0754 0.02 0.0942 87
osT 0.567 16 0.285 0.12 0.0958 91

oc 0.0704 1.2 0.0231 0.0071 0.0912 | 5.3e+002
or 0.125 6.4 0.101 0.029 0.262 1.1e4-002
dn 3.45e-005 2 2.39e-014 NaN 0.00297 86
dst 6.46e-012 0.78 1.76e-011 NaN 0.000293 35

de 5.34e-010 8.6 4.93e-013 | 8.1e-009 | 3.67e-005 | 6e+002

dr 4.03e-011 9.2 6.54¢-005 NaN 0.0711 | 1.9e+003

dg 0.277 15 1.01e-005 NaN 0.617 2.5e+002
AIC 627.80 633.85 314.78
CPU(sec) | 1.8e+003 3.03e+004 1e+003

Table 3.8: This table illustrates the fits obtained from the three fitting approaches

with their AIC and standard error measurements for patient 201.
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Patient 303- High Dose

Table 3.9 shows the parameter estimates for patient 303. Again, when all the
10 cell populations data points are used, both model linearization and stochastic
approximation approaches to calculate the Fisher Information Matrix gave similar
parameters estimates. However, the model linearization method was less compu-
tationally expensive and s.e were obtainable. The AIC value when using only
non-modified cell population data points, the AIC value of 291.08 is half of that
other two fits, indicating it is a better fit. This result is also evident in the individual
fits Figure 3.13 as the ODE curve passes through most of the data points except for
the central memory cell population.

Figure 3.14, Shows that when using the non modified observations only, the spline
and the observations were laying on closer to the purple 45° line. From Figure 3.13,
we can see that all the cell populations have increased from the baseline except for

the central memory cell which decreased in size according to the model predictions.
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Param Lin-all s.e Stoch-all s.e Lin-non s.e
A 32.5 2.6e-+002 32.5 14 10.8 2.6e-+002
DN 8.67e-034 NaN 8.67e-034 NaN 0.0119 6.3
psT 0.991 15 0.991 NaN 0.0112 | 1.9e+002
pe 2.17e-056 NaN 2.17e-056 NaN 0.00737 1.3e4-003
pr 0.00736 13 0.00736 NaN 0.27 1.1e4-003
PE 3.38¢-012 | 0.075 | 3.38e-012 | 5.6e-008 | 0.0232 | 1.4e4+003
ON 0.304 2.5 0.304 0.13 0.102 30
OsT 0.628 2.6 0.628 0.18 0.118 16
bc 0.0803 0.68 0.0803 0.032 0.096 24002
o1 0.397 0.93 0.397 0.16 0.247 | 9.9¢4+002
dy 6.6e-053 NaN 6.6e-053 NaN 0.00559 27
dst 4.62e-077 NaN 4.62e-077 NaN 0.00538 1.2e4-002
de 0.333 2.4 0.333 0.1 0.444 | 1.1e+003
dr 1.85e-030 NaN 1.85e-030 NaN 0.018 49
dg 0.705 1.7 0.705 0.29 0.499 2.9e+003
AIC 681.23 681.23 293.08
CPU (sec) | 4.74e+003 2.37e+004 2.18e+003
Table 3.9: Illustrates the fits obtained from the three fitting approaches with their

AIC and standard error measurements.
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Patient 304 - High Dose
Table 3.10 shows the parameter estimates for patient 304. Again, using all the 10
cell populations data points in the fit, both the model linearization and stochastic
approximation approaches in calculating the Fisher Information Matrix, result in
similar parameter estimates and AIC values with having a smaller CPU using the
model linearization approach. Considering only the non-modified cell populations
the AIC value of 208.82 indicates it is a better fit. However, when looking at Figure
3.15, we can observe that both fits(LN and LNM) result in similar individual fits.
Figure 3.16, Shows that when using the non modified observations only, the spline
and the observations were most of the time closer to the 45° purple line, indicating
that our model was able to replicate the clinical study. From Figure 2.15, it is

evident that all the cell populations have increased from the baseline.
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Param Lin-all s.e Stoch-all s.e Lin-non s.e
A 48.2 1.9e+004 48.2 15 14.3 7.4e+003
DN 6.57e-013 17 6.57e-013 | 2e-009 0.224 52
DST 4.84e-011 | 6.1e+002 | 4.84¢-011 NaN 0.672 1.8e+002
Pe 8.4e-013 18 8.4e-013 NaN 3.74e-014 0.11
pr 4.09e-011 | 2.3e+002 | 4.09e-011 NaN 1.87e-016 | 0.00031
DE 3.38e-012 0.075 1.69e-010 | 4.4e-007 0.0232 1.4e+003
oN 0.304 2.5 0.532 0.18 0.266 52
st 0.628 2.6 0.981 0.022 0.618 1.4e4-002
o 0.0803 0.68 0.265 0.083 0.266 27
or 0.491 1.4e+002 0.491 0.31 0.399 41
dn 7.29e-012 32 7.29e-012 | 1.6e-008 | 9.99e-017 | 0.00024
dst 1.93e-012 69 1.93e-012 | 7.6e-009 | 2.08e-023 NaN
de 1.08e-010 | 1.3e+002 | 1.08e-010 NaN 0.444 1.1e+003
dr 7.3e-006 | 2.8e+002 | 7.3e-006 NaN 1.94e-019 NaN
dg 0.996 1.9e4-002 0.996 0.0042 0.997 le++002
AIC 364.49 364.49 208.82
CPU(sec) | 4.28e+003 1.56e4-004 2.84e+003

Table 3.10: Illustrates the fits obtained from the three fitting approaches with their

AIC and standard error measurements for patient 304.
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Patient 305- High Dose
Table 3.11 shows the parameter estimates for patient 305. Similar to the patients
above, fits obtained from using both a stochastic approximation or model lineariza-
tion to calculate the Fisher Information Matrix had similar parameter values. Using
When only non-modified cell populations the AIC value of 232.66 is the smallest
compared to all the other fits.
The three fitting routines results in having a zero value for the memory stem cell
death rate dgp. This indicates that the death rate of the memory stem cell became
negligible after the treatment. When the first two fitting routines failed to estimate
the proliferation rates for most of the cell populations, the third one was able to do
so. Looking at Figure 3.17, we can see that the naive, central and effector cells had
a good fit where the ODE curve passed through most of the data points. Figures
3.18 shows that the naive and effector cell data points are closer to the 45° purple
line which means that the fit for these population was good. From Figure 3.17 we

can conclude the following:

e The naive and transitional memory cells decreased in cell count.

e The memory stem and effector cells increased in count.

e The transitional memory cell exhibit no change.
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Param Lin-all s.e | Stoch-all s.e Lin-non s.e

A 12.56407 61 12.56407 8.5 8.96240 | 1.1e+006
DN 0 0.064 0 7.5e-011 | 0.07369 | 6.2e+004
st 0 0.29 0 2.2¢-010 | 0.00396 Te+004
Pe 0 0.022 0 5.6e-011 0 0.039
pr 0 0.21 0 6.6e-010 | 0.00141 | 5.7e+005
DE 0.08672 4.1 0.08672 0.16 0.02939 | 1.3e+006
oN 0.13401 0.77 0.13401 0.075 0.13602 | 1.3e+003
st 0.51269 3.8 0.51269 0.58 0.48367 | 4.8e4-004
o 0.12176 1.5 0.12176 0.06 0.12000 | 2.3e4+005
or 0.31359 4.8 0.31359 0.31 0.32529 | 9.1e+005
dn 0 0.21 0 2.1e-010 | 0.00918 | 3.2e+004
dst 0 0.8 0 1.9e-009 0 0.046
de 0.00082 2 0.8 0.00082 | 0.00148 | 2.3e4+005
dr 0.01461 8.4 0.01461 0.16 0.01267 | 1.4e+006
dg 0.31986 6.1 0.31986 0.3 0.31500 | 1.7e4-006
AIC 450.60 448.60 232.66

CPU(sec) | 4.13e4+003 1.56e+004 2.48¢+003

Table 3.11: Illustrates the fits obtained from the three fitting approaches with their

AIC and standard error measurements for patient 305.
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Figure 3.17: Individual fits for the naive and memory CD4 T-cells for patient 305.
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3.4 Parameter identifiablity, Over-fitting issues and Algo-

rithm Convergence

One of the most common problems in complex biological models is that some
parameters cannot be estimated by fitting the simplest proposed model. Using all
the fitting routines in Monolix and Stan, we have faced several fitting problems
where even if the parameters were identifiable they were not properly estimated and
some parameters were not identifiable using the clinical data measurements.
When fitting the observations to our dynamical model, we had some parameters
that were not identifiable such as the proliferation rates in some patients. This was
evident in both the fits done in Monolix and Stan. These fitting issues could be a
result of the assumptions we made when describing the transition from the naive to
the effector memory state as linear. In addition, in some cell populations for some
patients, we had the over fitting issue where the number of unknown parameters
exceeded the number of observations. The model specification was evident in the
prediction vs observed Figures (3.3,3.5,3.7,3.9,3.12,3.14,3.16,3.17) where the spline
and the data points were not always aligned with the 45° line. This indicates that
the model was not able to successfully replicate the clinical study.

An additional complication includes the fact that the fitting algorithm may get

stuck in a local minimum or maximum rather than the global one. And, as we have
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no prior knowledge about the parameters, it was challenging to give a closest initial
guess in order to get a better fit.

In conclusion, we have seen that using the model linearization of the Fisher Informa-
tion Matrix to calculate the standard error was the most suitable method. Restricting
our model to the non-modified naive and memory CD4 T-cell, the model was able
to capture the data more successfully as it resulted in having smaller AIC values.
As well, the observed vs prediction graphs showed that when ignoring the modi-

fied cell population, the data points were closer to the 45° line, indicating a better fit.
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4 Sensitivity and Uncertainty Analysis

4.1 Introduction

In chapter 3, we have presented several parameter estimation results using
various fitting techniques. It is of interest to determine which parameters most
affect the T-cell count at different observation points. We now use sensitivity and
uncertainty analysis to determine such importance. In this chapter, using both
Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficient values
(PRCC), we will explore the effect of each of the fifteen model parameters on the
five naive and memory CD4 T-cells along with the total CD4 T-cell counts over 200
days after the initiation of the treatment for each of the three cohorts. This chapter

is organized as follow:
e In section 3.1 we will introduce the LHS and PRCC concepts.

e In section 3.2, we will present the observed changes in the proliferation, death

and transition rates from baseline. Moreover, we will investigate the relative
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significance of each of the model parameters in relation to each of the naive

and memory CD4 T-cell population size using the PRCC values.

4.2 Uncertainty Sensitivity Analysis: LHS and PRCC

LHS
Latin Hypercube Sampling, first proposed by Mckay in 1979, is a statistical sampling
method that belongs to the Monte Carlo class of sampling method [41]. It is a
stratified sampling without replacement techniques. Using a sample size N, the
algorithm partitions the random parameter distributions into N equally probability
intervals independently. A Latin Hypercube Sampling matrix is generated that
consists of N rows and k columns, where k is the number of parameters and N is
the number of run or simulations[41].

Partial Rank Correlation Coefficient- PRCC and Sensitivity Analysis
The PRCC is a correlation coefficient in statistics, known to measure the strength
of the linear association between a given input z; and an output y. It is defined by
the ratio between the covariance of z;y and sqrt of the product of the variance of

x; and y as illustrated in the equation below:

_ COV(xyy)
\/Var(wj)Var(y)

ccC (4.1)

The PRCC value vary between -1 and +1, where -1 indicating a strong negative
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correlation and the +1 a strong positive correlation. Any correlation less than
+0.5 and greater than -0.5 is assumed to be a non significant correlation [41]. A
positive correlation indicates that as we increase the model parameter the output will
increase and similarly a negative indicates that as we increase the model parameter
the output will decrease. Combining both of the PRCC and LHS, we are able
to draw some conclusions about the significance of some unknown parameters on

specific model outputs.

4.3 Sensitivity Analysis

In Chapter 3, results of the parameter estimations, have presented the fits
obtained before the initiation of the treatment (at baseline), and the ones obtained
after the initiation of treatment. The best two fits obtained from the Monolix and
the fit obtained from the Stan software will be used in this section, in order to
highlight any significant changes in the parameter values. This will better inform us
how the perturbation by the CCR5-down-modulated memory CD4 T-cell affected
any of the five naive and memory CD4 T-cell sub-populations behaviors (birth,
death, proliferation and transition). Later, using the PRCC values obtained by the
sensitivity analysis, we analyze the correlation between the model parameters and
each of the naive, memory stem, central, transitional, effector and total memory

CD4 T-cells using the deterministic model given by the Eq’s 2.1 and 2.2. In this
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work, we will explore the time dependent significance of the fifteen model parameters
on the five naive and memory CD4 T-cell subsets count over the course of 200
days. We have picked 200 days for these simulations as we have seen that the
system populations reach a steady state approximately 80 days post initiation of
the clinical trial. The PRCC variables are the fifteen model parameters and the
output are the naive, stem, central, transitional, effector and total memory CD4
T-cells. Throughout this work, we defined the total count for the naive and memory
CD4 T-cells as the sum of all the five sub-populations at time, t.

We used 10000 bins to run the LHS code in Matlab for all of the nine patients.In
this work we will consider that any PRCC values smaller than 0.5 or bigger than
-0.5 is said to be not significant[41]. A positive correlation indicates that the model
variables and the output have a proportional relationship. This means that as
we increase the parameter value the output will increase. A negative correlation
indicates that the model parameter and the output have an inverse proportional
relationship. This indicates that an increase in the parameter will yield to a decrease
in the output. Throughout this chapter, we will be using the symbols to refer to

each of the fifteen parameters as illustrated in Table 2.2.
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4.3.1 Low Dose Cohort

The low dose cohort represents the three patients that received a single infusion
of autologous CCR5-modified (SB-728-T) 1.0 x 10' cells. All of the baseline
measurements are measured seven days prior to the infusion of the CCR5 modified
T-cells. The three patients had a mixed range of CD4 T-cell at baseline that varied

between low, medium and high levels.

4.3.1.1 Patient 103

At baseline, this patient had the lowest count of 188 CD4 T-cell per uL. Looking
at table 4.1 we can note the following observations about each of the five sub-

population behaviors:

e The number of naive CD4 T-cells A produced by the thymus decreased.

e The proliferation rates for the central memory pc and transitional memory pr
increased. The proliferation rate of the effector memory cells pg has increased

by one order of magnitude.

e The transition rates for all of the cells remained the same except for the

transition rate of the transitional memory cell ¢ that had a slight increase.
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e The death rates for the naive dy and stem memory cells dgr have decreased
by one order of magnitude. This means that their lifespans have increased

considerably by 100 days.

e The death rates for the central memory do, transitional memory dr and

effector memory dg cells have increased slightly.

As for the sensitivity analysis obtained over 200 days we observe the followings from

Figures 4.1, 4.2 and 4.3:

Naive Cell:
In Figures 4.1, we can see that although the thymic production rate A has a signif-
icant effect soon after the treatment, but this effect started to fade 20 days post
treatment. The proliferation rate of the naive cell py, has a significant positive
correlation with the naive cell population. However, the transition rate ¢y has a
negative correlation, where if the naive cells transition to the memory stem cell
in a higher rate the number of the naive cell will decrease. These findings are
expected as we had a decrease in the death rate dy, thus the proliferation rate py is

able to exhibit a positive correlation that results in an increase in the naive cell count.

Memory Stem cell
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The naive cell proliferation rate py has a positive correlation with the memory stem
cell count. This could be explained by the fact that as the number of the naive cell
increase, a higher number of naive cells are going to transition to the memory stem
cell state. The transition rate of the transitional memory cell ¢gr has a positive
correlation. Moreover, for the first 20 days post treatment, the effector memory cell
death rate dg had a positive correlation with the memory stem cell count. This
result could indicate a possible transition between the effector, transitional memory
cell and the memory stem cells. Finally the transition rate of the memory stem
cell population ¢gr has a negative correlation with the stem cell population count
which is an expected correlation as the more the cells leave the memory stem state

its population count will decrease.

Central Memory Cell
The central memory cells had similar results to the memory stem cell population
where the naive proliferation rate py had a positive correlation. This could indicate
a possible backward transition between the memory stem and central memory cells.
Similarly to the above cell populations, the transition rate of central memory cells

phic has a negative correlation with the central memory population count.

Transitional Memory cell
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Consistent with the results of memory stem and central memory cells, proliferation
of naive cells py is positively correlated with transitional cell population. Similarly
the transition rate of the transitional memory cell population ¢ is negatively
correlated with its cell population which indicates that the more the cells are leaving
the transition state the lower the population count is becoming.
Effector Memory cell

Similarly, the effector cells were positively correlated with the naive cell proliferation
rate py. As for the first 50 days post injection of the down-modulated memory CD4
CCR5 cells, both the transition rates of the transitional memory ¢r and central
memory cells ¢c have a positive correlation with the effector memory cell population.
This indicates that the transitional and central memory cells play an important role
in increasing the effector memory cells population count. Lastly, the death rate of
the effector memory cell dg has a significant negative correlation with the effector
memory cell count. This result is consistent with the parameter estimation as the
effector memory cell death rate increased after the initiation of the clinical trial in

this patient.

Total naive an memory CD4 T-cell
The total number of naive and memory CD4 T-cells were negatively correlated

with the naive cell transition rate ¢ and positively correlated with the naive cell
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proliferation rate py and the effector memory cell death rate dg. This indicates that
for patient 103, the naive cell population plays an important role in the reconstitution
of the total CD4 T-cell. Furthermore, an increase in the effector memory cell death

dg can indicate a possible increase in their activity against the HIV virus.

Parameters | Baseline | Non-modified T-cell | SATN fit Min-Max
A 9.171294443 6.13933 2.7117 2.7117-9.1712
DN 0.001154901 0.000201 0.0109 0.000201-0.0109
pst 0.011031316 0.00640 0.2590 0.0064-0.2590
pc 0.010900323 0.08209 0 0-0.09
pr 0.021644028 0.06390 0.0887 0.021644-0.0976
PE 0.033551917 0.41340 0 0-0.483
ON 0.215314186 0.21732 0.0973 0.0973-.21732
bsT 0.463596696 0.46060 0.3590 0.3590-0.46359
oc 0.105280147 0.11722 0.0373 0.0373-0.117
or 0.247796071 0.33989 0.1886 0.18866-0.33989
dn 0.01040803 0.00608 0.0136 0.00565-0.0136
dsr 0.01108572 0.00685 0 0-0.011085
de 0.003333333 0.00564 0.0627 0.00249-0.0627
dr 0.023361168 0.03274 0 0-0.03274
dp 0.375021515 0.49776 0.1 0.1-0.49776

Table 4.1: Ilustrates the data fitting results and the range used in the LHS for pat

103. These values are the rates per day~1.
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4.3.1.2 Patient 102

At baseline, this patient had a somewhat high count of 439 CD4 T-cell per uL.
Looking at Table 4.2 we can note the following observations about each of the five

sub-population behaviors:

e The number of naive CD4 T-cells produced by the thymus A increased.

e The proliferation rates for the naive py, memory stem pgr and effector memory

cells pg increased by one order of magnitude.

e The proliferation rates for the transitional memory cell pr decreased by one

order of magnitude.

e The transition rate of the central memory cells ¢ decreased by one order of

magnitude.

e The transition rate of the memory stem cell ¢gr increased by half its value.

e The death rates for the naive dy and stem memory celldsr decreased by one
order of magnitude. This indicates that their lifespan increased by 100 days

considerably.

e The death rate for the effector memory cell dg increased by one order of

magnitude.
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As for the sensitivity analysis obtained over 200 days we observe the followings from
Figure 4.4 and 4.5 and 4.6:

Naive Cell:

The sensitivity analysis agrees well with the parameters estimations results presented
in Table 4.2. The parameters A and py have a positive correlation with the number
of naive cell population. The transition rate of the naive cell ¢ has a negative

correlation.

Memory Stem cell
While the naive cell thymic production rate A, and both the memory stem pgr and
naive cell proliferation py rates are positively correlated with the memory stem cell
population, the transition rate ¢gr has a negative correlation. This indicates that

the naive cells play an important role in the memory stem cell population.

Central Memory Cell
The importance of the naive cell production rate from the thymus A continues
to exhibit a positive correlation with the central memory cell population in this
patient. The proliferation rate for the naive py and memory stem cell pgr started
to display a positive correlation with the central memory cell population about 30

days post injection of the clinical trial. This could be justified by the delayed effect
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of the modified memory CD4 T-cell, as before the treatment patient 102 had a low
proliferation rates for the naive py and memory stem cell populations psr. Both
the death and transition rates for the central memory cells d¢, ¢ have a negative

effect on the central memory cell count.

Transitional Memory cell
Similar to the naive cell production rate A, along with the naive and memory stem
cell proliferation rates py and pgr have a positive effect on the transitional cell
population count. Moreover, the transition rate of the central memory cell ¢¢ has a
positive correlation as well, indicating the importance of the central memory count
in replenishing the transitional memory cell population, which explains the negative
correlation between the central memory cell death rate do and the transitional
memory cell population. Finally, as the proliferation rate pr decreased after the
infusion of the modified memory CD4 T-cells, the transition rate of the transitional

cell ¢r displayed a negative correlation with the transitional memory cell population.

Effector Memory cell
The importance of the naive, memory stem and central memory cells persist as well
in the effector memory cell count. This is shown by the positive correlation of the

naive cell production rate A, the central memory cell transition rate ¢ and prolif-
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eration of both the naive py and memory stem pgr cell with the effector memory
cell population. In addition to the above positive correlations, the importance of
the central memory cells is evident in the negative correlation between the central
memory death rate dc and the effector memory cell population. These observations
indicate that the central memory, naive and memory stem cell play an important
role in the effector memory cell population. As the death rate of the effector memory
cell dg has a significant increase, its negative correlation with the effector memory

population is also observed.

Total naive an memory CD4 T-cell
The important effect of the naive and memory stem cells on the replenishment of
the total number of CD4 T-cell is apparent by the positive correlation of the naive
cell production rate A, along with the proliferation rates of both the naive py and
memory stem cell pgr. This justifies the negative correlation between the transition
rates of the memory stem cell ¢gr, naive cell ¢ and the central memory cell ¢¢
with the total number of CD4 T-cells. Lastly, the death rate of the central memory
cell do was negatively correlated with the total number of CD4 T-cell illustrating
the importance of the central memory cell. These results indicates that the memory
stem cell, central memory and naive cell play an important role in increasing the

total number of CD4 T-cell population.

116



Parameters | Baseline | Non-modified T-cell | SATN fit max-min
A 9.171294443 13 7.4924 7.4924-18.2

DN 0.001154901 0.087105 0.0200 0.0011549-0.0871
psT 0.011004862 0.10033 0.1375 0.01100-0.159
28, 0.010980541 0.03179 0 0-0.0511
pr 0.021644028 0.0018056 0.0880 0.000167-0.0880
DE 0.033551917 0.18993 0 0-0.268
ON 0.215314186 0.19645 0.1171 0.1171-0.227
¢sr 0.463596696 0.23481 0.2375 0.235-0.463596696
oc 0.105280147 0.096345 0.0281 0.0281-0.10528
or 0.247796071 0.36969 0.1880 0.1880-0.319
dn 0.01040803 0.0071514 0.0028 0.0028-0.010408
dsr 0.01108572 0.004742 0 0-0.011085
de 0.003333333 0.004742 0.0719 0.00333-0.0719
dr 0.023195675 0.020894 0 0-0.0408
dp 0.09096808 0.31554 0.1 0.0909-0.31554

Table 4.2: Illustrates the data fitting results for pat 102 along with the PRCC range.

These values are the rates per day~1.
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4.3.1.3 Patient 104

At baseline, this patient had a low count of 261 CD4 T-cell per uL. Looking
at Table 4.3 we can note the following observations about each of the five sub-

population behaviors:

e The number of naive CD4 T-cells produced by the thymus A slightly increased.

e The proliferation rates for the naive py, memory stem pgr and central memory

cells pc have decreased.

e The transition rates for the naive ¢y, memory stem ¢grand central memory

cells oo decreased by one or two order of magnitude.

e The death rate for the memory stem cell dgr decreased by one order of
magnitude. In addition, the death rates for both the naive py and transitional

memory cells pr slightly decreased.

e The central memory d¢c and effector memory cells dg have a doubled death

rate from baseline.

As for the sensitivity analysis obtained over 200 days we observe the following from

Figure 4.7, 4.8 and 4.9:
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Naive Cell:
While the thymic production rate A has a positive correlation with the naive cell

population, the naive cell transition rate ¢ has a negative correlation.

Memory Stem cell
Whereas the thymic production rate A and the memory stem cell proliferation pgr
rate both display a positive correlation with the memory stem cell population, the
transition rate of the stem cell ¢s7 had a negative correlation. As the memory stem
cell death rate dgr decreased by one order magnitude after the initiation of the
clinical trial, it was expected that a negative correlation with the memory stem cell

population would be observed.

Central Memory Cell
The significant effect of the thymic production rate A\ on the central memory cell
population is not detected as the PRCC value is 0.4 indicating a trivial positive
correlation. This is due to the low increase in A. The proliferation rate of the central
memory cell po and the transitional cell transition rate ¢ both display a positive
correlation with the central cell population. The death rate of the central memory
cell do have a negative correlation with the central memory cell as the death rate

increased after the initiation of the treatment.
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Transitional Memory cell
Proliferation rates of both the transitional memory py and central memory cell pe
were positively correlated with the the transitional cell population. The central
memory death rate d¢ is shown to have a negative correlation with the transitional
cell population. However, as the death rate of the transitional cell dr did not exhibit
any change after the initiation of the treatment it did not have any significant
negative correlation with the transitional memory cell population. In addition, the
transition rate of the transitional cell ¢ displays a negative correlation with the

transition cell population.

Effector Memory cell
Both the central do and effector memory cells dg death rates have a significant
negative correlation with the effector memory cell population as these rates increased
after the introduction of the down modulated CCR5 CD4 T-cells. The proliferation
rates of both the central memory pc and transitional memory pr cell display a
positive correlation with the effector cell population. These results highlight the
importance of both the transitional and central memory cells on the reconstitution

of the effector memory cell population.
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Total naive an memory CD4 T-cell
The central memory cell population is shown to play an important role in most of
the memory CD4 T-cell populations as illustrated above. Hence, it is expected that
we continue to observe such importance in the total number of CD4 T-cell. The
sensitivity analysis highlights the importance of the central memory cell population
on the reconstitution of the CD4 T-cell where the proliferation rate of the central
memory cell po is positively correlated with the total number of CD4 T-cell and

the central memory cell death rate do has a negative correlation.
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Parameters | Baseline | Non-modified T-cell | SATN fit max-min
A 7.696589511 8.73264 6.4731 6.4731-9.44

DN 0.001155414 0 0.0413 0-0.0413
PsT 0.010973075 0.00551 0.0213 0.004171-0.0213
P 0.051117 0.0036500 0 0-0.05117
pr 0.021644028 0.00181 0.0590 0.00181-0.0590
PE 0.033596587 0.01390 0 0-0.03359
ON 0.267280553 0.12537 0.1401 0.125-0.26728
bsT 0.467331743 0.00679 0.1158 0.00679-0.467331
oc 0.105280147 0.07149 0.0256 0.0256-0.10258
or 0.249489254 0.32044 0.1584
dn 0.008914073 0.00261 0.0012 0.0012-0.008914
dsr 0.01108572 0.00836 0.0054 0.0054-0.011085
de 0.003333333 0.0715 0.0744 0.003333-0.0744
dr 0.023187029 0.01873 0.0007 0.0007-0.01873
dg 0.288952838 0.47502 0.1 0.1-0.47502

Table 4.3: Illustrates the data fitting results for pat 104. These values are the rates

per day~1.
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4.3.2 Medium Dose Cohort

The Medium dose cohort represents the three patients that received a single
infusion of autologous CCR5-modified (SB-728-T) 2.0 x 10'° cells. All of the baseline
measurement, are measured seven days prior to the infusion of the CCR5 modified

T-cells.

4.3.2.1 Patient 203

At baseline, this patient had a low count of 294 CD4 T-cell per pL. Looking
at Table 4.4 we can note the following observations about each of the five sub-

population behaviors:

e The number of naive CD4 T-cells produced by the thymus A did not have a

large increase.

e While the proliferation rates for the naive py and memory stem pgr increased
by at least one order of magnitude, the proliferation for the rest of the memory

CD4 T-cell subsets decreased.

e The transition rate for the transitional memory cell ¢ has a significant

increase.
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e The death rate for the naive dy, memory stem cell dsT', central de and

transitional memory cells dp have a very significant decrease.

e The effector memory cell death rate dg doubled.

As for the sensitivity analysis obtained over 200 days we observe the followings from

Figure 4.7 and 4.8:

Naive Cell:
Similar to patient 104, the naive cell population was positively correlated with the
naive cell production rate A and negatively correlated with the naive cell transition
rate ¢n. It is important to mention that patients 104 and 203 have similar baseline
count of the CD4 T-cell before they received the experimental treatment. As the
death of the naive cell dy did not experience any significant change after the initia-
tion of the clinical trial, in the sensitivity analysis we observed that it did not have

any significant correlation rate with the naive cell population.

Memory Stem cell
The naive cell production rate A display a positive correlation with the stem cell
population. The transition rate of the naive cell ¢ has a positive correlation only

for the first 30 days post treatment. This observation could be justified by the fact
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that the transition rate of the naive cell population did not exhibit any significant
increase post treatment. The memory stem cell transition rate ¢gr is negatively
correlated with its cell count. The death rate of the memory stem cell dg7 did not

show any negative correlation as this rate decreased notably from baseline.

Central Memory Cell
The naive cell production rate A\ maintains its positive correlation even with the
central memory cell population. Similarly both the transition rates for the naive
¢n and memory stem cell ¢pgr were only positively correlated for 30 days post
treatment. This is a valid observation as both of those transition rates did not
have any significant increase from the baseline. The transition rate of the central
memory cell oo had a negative correlation with its population. The death rate
dc did not express any negative effect as it decreased after the introduction of
the down modulated CCR5 CD4 T-cells. The transitional and effector memory
population have similar results to the central memory cells. However, the death
rate of the effector memory cell dg showed a strong negative correlation with the

effector memory cell population as this rate increased notably after the infusion of

the modified CD4 T-cell.

Total naive an memory CD4 T-cell
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As a result of the above observations, only the production rate of the naive cell by
the thymus A has a positive effect on the reconstitution of the total number of CD4
T-cell. The transition rates for central memory ¢c and naive cells ¢ had a strong
negative correlation with the total CD4 T-cell count. This indicates that the central
memory and naive cell population are the main sub-populations that contribute
to the total CD4 T-cells in this patient. Even though patients 203 and 104 had a
similar CD4 T-cell count at baseline, both had different outcomes when it came to
the importance of the central memory and naive cell on the reconstitution of the
total number of CD4 T-cell. While for patient 104, who had half of the modified CD4
T-cell dose compared to patient 203, the central memory cell played an important
role in the total CD4 T-cell, as the proliferation rate for the central memory cellpa
was very small. However, this patient had a significantly higher increase compared
to the one from the low dose cohort. This indicates the importance of having a

higher dose of modified CD4 T-cell injected.
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Parameters Baseline Non-modified T-cell | SATN fit max-min
A 9.108148985 10.6 6.94229 | 6.94229-10.28664

DN 0.0011482771 0.159 0.0094 0-0.18386
Dst 0.011020353 0.132 0.1243 0-0.1243
P 0.010895753 0.000514 0 0-0.01089
pr 0.021563362 0.00117 0.0030 0-0.144
PE 0.033205325 0.0221 0 0-0.033205
oON 0.164397745 0.251 0.1041 0.1041-0.251
dsT 0.464899662 0.337 0.2243 0.2243-0.751
oc 0.105562369 0.145 0.0225 0.0225-0.145
or 0.249269451 0.638 0.0780 0.07801-0.638
dn 0.010241378 0.000576 0.0080 0.000576-0.10241
dsr 0.011141735 0 0 0-0.011141
de 0.003333333 0 0.0775 0-0.0775
dr 0.023361168 0.00224 0.0249 0.00224-0.0667
dg 0.375021515 0.0221 0.1 0.1-0.0221

Table 4.4: Tllustrates the data fitting results for pat 203 and the PRCC ranges.

These values are the rates per day~1.
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Figure 4.10: Correlation between the N and STM T-cell and the 15 parameters over

200 days for pat 203.
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Central Memory Cell
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Figure 4.11: Correlation between the CM and TM T-cell and the 15 parameters

over 200 days for pat 203.
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4.3.2.2 Patient 201

At baseline, this patient had the highest count of 525 CD4 T-cell per uL com-
pared to the other eight patients. Looking at Table 4.5 we can note the following

observations about each of the five sub-population behaviors:

e The number of naive CD4 T-cells produced by the thymus,\ doubled in count.

e The proliferation rates for the naive py, central memory p¢o, transitional

memory pr and effector memory cells pr decreased.

e The proliferation rates for the memory stem cell pgr increased by one order

of magnitude.

e The transition rates for the memory stem ¢gr and central memory cells ¢¢

decreased by one order of magnitude.

e The death rate of the naive dy, memory stem dgr and central memory cells

d¢ decreased by one order of magnitude.

e The death rate of the effector memory dg and transitional memory cells dp

increased.

As for the sensitivity analysis obtained over 200 days we observe the followings from

137



Figure 4.13, 4.14 and 4.15:

Naive Cell:
Similar to patient 203, the production rate of the naive cell from the thymus A had
a positive correlation with the naive cell population. Only the naive cell transition
rate ¢ had negative correlation on the naive cell population count. The death rate

dy did not have any effect as it decreased significantly after the treatment initiation.

Memory Stem cell
The naive cell production rate A\ started to show a significant effect on the memory
stem cell count about 50 days post treatment. The naive cell transition rate ¢ 5 had
a positive correlation with the memory stem cell population for only about 50 days
post treatment. This is because the naive cell transition rate did not increase by
much after the initiation of the clinical study. The memory stem cell proliferation
rate psr showed a negative correlation with the memory stem population. Death rate
of the memory stem cell dgr did not show any negative correlation as it decreased

notably after the introduction of the down-modulated CCR5 CD4 T-cells.

Central Memory Cell

Likewise, the central memory cells show a similar result to patient 203 where the
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transition rates of both the naive ¢y and memory stem ¢gr cells had a positive
correlation with the central memory cell count for about 20 and 50 days respectively.
In addition, the central memory cell transition rate ¢ exhibits a negative correlation.
Death rate of the central memory cell d¢ did not show any negative correlation as it
did have a significant decrease after the introduction of the down-modulated CCR5

CD4 T-cells as shown in the parameter estimation results.

Transitional Memory cell
The central memory cell death rate do and the transition rate of the transitional
memory cell ¢ both had a negative correlation with the transitional memory cell
population. In addition, the naive cell production rate from the thymus A\ along
with the transition rate of the central memory cell ¢ were positively correlated
with the transitional memory cell population. This indicates the importance of the

central memory cell on the transitional memory cell population.

Effector Memory cell
While the naive cell production rate A, started to show a significant positive correla-
tion (PRCC greater than 0.5) about 80 days post injection of the treatment, the
significant positive correlation of the transitional memory cell started to decrease

about 80 days post treatment. The transition rates for both the naive ¢y and central

139



memory cell ¢¢ had a strong positive correlation with the effector memory cell
count. The death rate of the naive cell dy started to exhibit a negative correlation
with the effector cell population 30 days post treatment initiation. These results
indicates that the naive and central memory cells play a very important role in the

reconstitution of the effector memory cell population.

Total naive an memory CD4 T-cell
The sensitivity analysis results carried on the total number of CD4 T-cell for patient
201 emphasizes the importance of the naive and central memory cell populations
on the reconstitution of the total CD4 T-cell count. This was illustrated in the
negative correlation between the central memory cell death rate d- and the naive
cell transition rate ¢ on the total CD4 T-cell count. In addition the naive cell
production rate A had a positive correlation on the total CD4 T-cell count. It is
essential to mention that this patient had the highest count of the total CD4 T-cell

after three years post treatment between all the nine patients.
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Parameters | Baseline | Non-modified T-cell | SATN fit min-max
A 10.92205104 20.36874 19.31