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Abstract

HIV/AIDS, a sexually transmitted diseases continues to affect the lives of millions

of individuals worldwide. This retrovirus targets CD4 T-cell populations, the main

driver of the immune system by using the chemokine co-receptor 5 (CCR5). Despite

the success of the highly active antiretroviral therapy in reconstituting the immune

system, HIV infected individuals still suffer from low CD4 T-cell counts. Recently,

researchers were able to highlight the success of immunotherapy in restoring the

CD4 T-cell count. To further, investigate such importance, our collaborators at

case Western University injected CCR5-down-modulated memory CD4 T-cells into

9 chronically infected HIV patients. Using a linear transitions from the naive to the

effector memory state, a non linear ordinary differential equation model was used to

model the experiment. Various data fitting techniques in Matlab Stan and Monolix

software were used to estimate the model parameters (proliferation, death, transition

and birth rates) before and after the initiation of the treatment to study the change

of the cell dynamics. Our fittings have indicated an increase in the memory stem
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and näıve cell lifespan post-clinical trial. Using sensitivity analysis, we showed that

the näıve cell birth rate from the thymus λ, the memory stem cell proliferation

rate pST and the central memory cell death rate dC played an important role in

restoring the CD4 T-cell count. A stochastic model for the CD4 T-cells population

was developed to examine if fluctuations from the stochastic simulation were able to

capture the experimental data measurements. The findings of this study indicates

the importance of looking further into how modified CD4 T-cells are able to restore

the T-cell counts which thereby decrease the HIV virus pool and help HIV patients

to maintain a low level of the virus and most importantly a high level of T-cell

count.
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3.13 Individual fits for the näıve and memory CD4 T-cells for pat 303. . 89

3.14 Observed vs prediction observation for pat 303. . . . . . . . . . . . 90
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1 Introduction

Mathematical Modeling of infectious disease has become a growing area in the

past two centuries. This is because infectious diseases are the number one cause of

human morbidity in the world [9]. This discipline has helped to gain insights about

the dynamics of infectious diseases on both population and in-host levels. Some of

the most important advantages of using mathematical models, its ability to analyze

and unfold unobserved dynamics experimentally.

Mathematical immunology studies the spread of the disease in the host by analyzing

the interaction between the immune cells and the pathogens. This field stemmed in

the early 1980’s with the emergence of the Human Immunodeficiency Virus(HIV)

pandemic [15]. One of the primary reasons for the success in this area is the ability

for researchers to collect experimental data and use it in the mathematical models

to draw important conclusions about the dynamics of the immune system, the virus

and the effect of vaccines and other drug treatments. Many great mathematicians

have elaborated on this area such as Perleson, Nowak and May and others [16,17,18].
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These models were mainly used to study the dynamics of the HIV and the immune

system in the presence of the virus in the body. Some of the most remarkable

findings that corrected our understanding about the HIV dynamics in the body of

chronically infected individuals were achieved by Georges et al [17] and Perleson et

al in 1995 [30]. Using experimental data measurements, they were able to show that

in the chronic infection stage, the CD4 T-cell count is constant as a result of an

interesting immune system dynamics where millions of the CD4 T-cells are being

killed but replaced daily by the thymus. However, a great amount of mathematicians

have and are applying these models to other diseases but not limited to: measles [19],

hepatitis B and C [21], flu [22] and HPV [20]. Besides studying disease dynamics,

mathematical immunology was used to study B and T-cells dynamics[23]. Most of

mathematical models used in epidemiology and immunology consisted of coupled

ordinary differential equations (ODEs). Despite the success of using ODE models,

many researchers have started using stochastic models due to its ability to account

for stochasticity in the disease dynamic unlike the deterministic models [14]. As

mentioned above, mathematical models have shed light on various processes in HIV

infection, including effective drug therapy regimens [25], activation of the immune

system [28], and latently infected cells [27]. Some researchers have focused on

studying the dynamic of memory CD4 T-cells in HIV infected individuals [24,26].

A recent clinical study by Sekaly et al at Case Western has determined that

2



introducing a dose of CCR5-down- modulated memory CD4 T-cells is able to induce

the activity of the immune cell in chronically infected HIV patients. Hence the work

of this thesis will focus on modeling this experimental trial in order to quantify the

resulting immune system dynamics after the introduction of such perturbation to

the CD4 T-cell population.

In the sections below, I will elaborate more about the immune system, disease, its

structure, transmission and progression to AIDS. In addition, I will present the

previous models used to study the HIV-immune system dynamics. Deterministic

and stochastic models are both considered. Later, I will describe the clinical trial

performed by our collaborators (Sekaly et al., 2013). Lastly, I will describe the

longitudinal data of the three cohorts that was obtained from the study [52].

1.1 Basic Facts About the Immune System

The immune system is among one of the most important systems in the human

bodies that sustains survival [5]. The understanding of its function began in the 19th

century and up to date some aspects of the immune system remains unclear [5]. The

immune system consists of a variety of cells, organs and tissues that work collectively

in order to fight any foreign organisms such as bacteria, viruses and fungus that

poses a threat to the host. The immune system distinct any foreign organisms by

identifying two patterns called Danger or Pathogen -Associated- molecular patterns,
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also known as DAMPs and PAMPs [5]. It is composed of two major responses;

the Innate and Adaptive response. These responses are distinguished based on

the components, activity, response time, duration and the ability to build memory

against a specific pathogen. As the Adaptive immune system is our main focus in

this paper, we will not be discussing the details about the Innate immune response.

Briefly, the innate immune response is mainly composed of macrophages, white blood

cells and natural killer cells. The innate immune responses is fast and unspecific as

these cells act directly on any pathogen once it is recognized. It is activated within

hours of the foreign pathogen’s discovery [1,5].

In many cases the innate immune response is enough to contain an infection, however

in some cases it gets overwhelmed by the rapid replication of some viruses as in

the case of HIV infection. In this case the acquired immune system gets activated.

It is known as acquired because this immunity is built from previous exposure to

pathogens (bacteria and viruses), vaccinations or maternal immunity. This response

could take days or weeks to be activated and it is known to be specific, where the

presence of Antigen Presenting cells (APCs) is required for activation. There exist

two types of adaptive immune systems responses; The humoral and cell-mediated

responses. Both are carried out by two classes of white blood cells also known as

lymphocytes [1]. The mediated immune system is composed of T-cells, which are

produced in the bone marrow and is responsible for killing infected cells. However
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these cells mature in the Thymus either to contribute to lymphocyte maturation

or kill infected cells [1]. There exist two types of T-cells; CD4 or helper T-cell and

CD8 or cytotoxic lymphocyte T-cells, depending on the receptor present on the cell

surface. Once activated by the antigen presented by the MHCII on the macrophage

cell surface, the helper T-cells are activated and produce cytokines. The cytokines

activate the B-cells and the production of CD8 T-cells that are responsible in killing

infected cells. The main focus of this thesis are the näıve and memory CD4 T-cell

population.

B-cells are produced and mature in the bone marrow. These cells compose the

humoral immune response where they bind to antigen to produce the right antibodies.

Later, these antibodies are used to kill free viruses and bacteria. The activation

process of the B and T-cells is illustrated in Figure 1.1.
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Figure 1.1: Activation process of B and T- cells.

In this figure the activation process of the T and B cells upon infection is

illustrated. First the macrophage engulfs the virus where the MHCII presents the

antigen on the macrophage cell surface. The näıve helper T-cells receptors binds to

the MHCII-Antigen complex. This step activates the helper T-cells and cytokines

are secreted. The secretion of the cytokines activates the B cells and produces CD8

or cytotoxic T-cell. The immune system is then activated.
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1.1.1 CD4 T-cells

One of the most important feature of the immune system is the ability to develop

memory against any pathogen. They are shown to have an imperative role in the

adaptive immune response to infectious disease [7]. These memory cells have been

the main focus of researchers when designing vaccines [3]. A study conducted by

(STEVEN M. SCHNITTMAN et al., 1990) showed the HIV-1 virus preferentially

infect memory CD4 T-cells subsets.

CD4 T-cells are divided into two kind of cells: memory and näıve [28]. After being

exposed to antigen, the näıve T-cells proliferate and differentiate to memory CD4 T-

cells if able to survive the contraction phase [7]. Memory CD4 T-cells are composed

of 4 subsets, where the näıve CD4 T-cells transition to the memory effector state

[6]. It is still not clear how the transition from the näıve to the memory effector

state occurs in the body. However, in this paper will follow the model proposed

by (Mahnke et al., 2013) and our experimental collaborator (Sekaly et al.) where

a linear transition from the näıve state to effector memory state is considered as

illustrated in Figure 1.2 below.

• Näıve cells: These cells are produced by the thymus. No Antigen and marker

of cellular, activation is expressed on the cell surface [5,6].
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• Memory stem cells: It is the first subsets of memory T-cells that expresses

stem like property with having a näıve phenotype. These cells cannot be made

by any other memory T cell subset [3]. It was found that these cells have

a higher rate of survival and proliferation compared to the näıve and other

subsets of memory T-cells [7].

• Central memory cells: These cells are produced by the stem memory cells.

They circulate primarily between the blood and lymphs.

• Transitional memory cells: It was shown to be located in the peripheral blood.

These cells have a higher proliferation rate than TCM cells [6].

• Effector memory cells: It was shown that these cells are short lived[8]. They

express effector phenotype such as cytokines secretion faster than the other

CD4 memory subsets. They move from the blood to peripheral tissues [8].
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Figure 1.2: The Transition of CD4 T-cells from näıve to effector memory state.

In this figure the transition from näıve to effector memory cells is illustrated.

Where the expression of CCR5 increases gradually moving from the näıve to the

effector state [7].
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1.2 Human Immunodeficiency Virus-HIV

1.2.1 Pandemic

HIV, is a sexually transmitted disease. The virus is classified as a Retrovirus

and belongs to the family of lentivirinae that is characterized by its long incubation

period. There exist two types of HIV : HIV-1 and HIV-2. Even though both of

these types will progress to the Acquired immunodeficiency syndrome(AIDS) stage,

each has its own origin, biological and molecular characterizations [4]. The first

HIV condition reported to the public in 1980,in New York and San Francisco in

the homosexual community where rare cancer cases such as Kaposi’s sacroma were

observed among young individuals. Few months later, the disease was reported in

the intravenous drug users communities as well as in hemophiliacs and heterosexuals

partners[4]. Soon HIV became a serious epidemic. Since the discovery of the first

case, at the end of 2014 approximately 36.9 million individuals are currently living

with HIV [2]. According to the WHO, since its discovery, AIDS-related disease

have caused the death of over 34 million people up to date[2]. The majority of

the affected individuals are from low income countries, where Sub-Saharan Africa

accounts for more than 70 percent of the cases as illustrated in Figure 1.3 [2]. Since

the discovery of the disease, a tremendous amount of research have focused on

better understanding the emergence, spread of the disease and most importantly
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its unique pathogencity with the intention of developing a potential vaccine or a cure.

Figure 1.3: Number of people Living with HIV by Region in 2014

This figure illustrates the proportion of reported HIV positive cases worldwide per

region. It is evident that Sub Saharan Africa account for more than 70 % of the

cases in the world. This figure was adapted from avert 2014 statistics, [32].
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1.2.2 Transmission and Progression

HIV transmission is sensitive to the amount of free virions and the degree of

contact upon exposure. It has been shown that the virus has a high concentration

of free virons in the blood stream and the genital fluids. Therefore, HIV can

only be transmitted by the exchange of blood or body fluids such as semen and

vaginal fluids from an infected individual. Sexual activities account for almost 75

percent of all new HIV cases [4]. In addition, HIV could be passed on by the use

of unsterile needles in cases of blood transfusion or drug users. A mother could

pass HIV to her fetus/baby during or after delivery as well as during breast feeding.

However the degree of transmission depends on the stage of the infection. Early

HIV phase yields a higher concentration of free virons in the breast milk which

leads to a higher chance of transmission [4]. As the saliva contains glycoproteins

and fibronectins it is thought to inhibit the cell to cell transfer of virus, saliva, tears

sweat and faeces have low virions level and cannot be a mode of HIV transmission [4].

1.2.3 Structure

HIV consists of an outer membrane which consists of two layers of lipids proteins;

gp120 and gp41, these lipid proteins are uniformly arranged into 72 knobs [4]. The
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Glycoprotein 120 is located on the outer membrane of the virus and gp41 is embedded

in the lipid matrix. As HIV is a retrovirus, it stores its two copies of ribonucleic acid,

also known as RNA, in the inner core used to encode the necessary viral proteins

for maturation. Along with the RNA, it contains three enzymes; reverse transcrip-

tase, integrase and protease which plays a primary role in the viral replication and

maturation process. In addition, it contains the protein of the last host cell that has

infected previously[4]. Figure 1.4 illustrates in more details the structure of the virus.
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Figure 1.4: Structure of the HIV.

HIV is a retrovirus where it contains 2 copies of RNA and 3 essential enzymes. An

outer membrane consisting of gp120 and gp 41. This virus uses the host cells such

as CD4 T-cell to replicate. This Figure was adapted from [34].
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1.2.4 Life-Cycle

Like any other virus, HIV needs a host cell in order to replicate. When HIV

succeed to enter the human body, its main target is to replicate by infecting one

kind of the immune system cells that has CD4 receptors on the surface. Figure 1.5

illustrates the 3 major steps of the replication process.

(1) Binding/ Fusion with the CD4-T cells

The first stage of the process is when the HIV binds itself to the CD4 T cells. This

is accomplished by the binding of the gp120 glycoprotein to the CD4 receptors.

Later, the transmembrane gp41 binds to the co-receptor CCR5 or CCRX4 present

on the CD4-T cells. This binding causes a conformational change which allows the

fusion of the cell-virus membranes. Once it is fused, the viral nucleocapside enters

the cells and releases the two copies of the RNA along with three enzymes essential

for the viral replication.

(2) Transcription and Translation

Once inside the cell, the reverse transcriptase begins the transcription of the single

stranded viral RNA into a double helix DNA. Later, the viral DNA enters the host

cell’s nucleus where it is integrated to its DNA by the integrase enzyme. Now the

virus genetic material are embedded in the CD4 T- cells DNA. Two possible events

could occur. First, if the infected CD4 T-cell is activated, proviral DNA will be
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transcribed into messenger RNA. Then the mRNA moves to the cytoplasm where it

is translated into essential viral proteins. Otherwise, if not activated, the infected

cells remains latent.

(3) Maturation and Budding

Once the mRNA is fully translated into viral proteins, the protease enzymes cleaves

the long strains of proteins. This is an essential step for the HIV maturation as

some of these proteins becomes enzymes and others turn into structural elements.

Once the viral elements are assembled, it buds off the cell and a new virus is created

and ready to infect other CD4 T-cells.
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Figure 1.5: HIV Viral Life-cycle.

HIV viral Life-cycle is divided into three major steps: First the binding and fusing

of the HIV and CD4 T-cell occurs. Once inside the virus begins its transcription

and translation process to embed a copy of the viral DNA into the host DNA. Once

the mRNA is translated, the virus buds and a new mature virus is released.This

figure was adapted from [57].
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1.2.5 Treatment

Since the emergence of HIV, various drugs have been introduced to target several

important steps in the virus infection life-cycle. These drugs are used to slow down

the progression to AIDS by making the viral load low enough to be considered

undetectable. As shown in Figure 1.6, the number of deaths associated with HIV

has decreased upon the introduction of the drugs in the early 1990’s. The decrease

in the number of death is associated with the increase of the number of people

living with HIV. However, these drugs are not equally available to all individuals

especially those infected in third world countries such as Africa. Below is the list of

different classes of antiretroviral drugs:

• Protease Inhibitor, also known as PI’s. This class of drugs inhibits the function

of the protease enzyme. This inhibition prevents the budding of the newly

made virions.

• Integrase Inhibitor, inhibits the function of the integrase enzyme so the viral

DNA is not integrated into the host cell’s DNA.

• Fusion inhibitor, these medication inhibits the the fusion between the virus

and the CD4 T-cells. However, this class of drugs have proven to be not very

effective in blocking the CD4 T-cell and preventing fusion.
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• Reverse transcriptase Inhibitor, prevents the viral RNA from being transcribed

into DNA. This will later stop the lifecycle as the virus does not have the

DNA to incorporate in the host cell and begin the replication process.

HAART ( Highly Active Anti-Retroviral Therapy), is a cocktail of 3 or more

of the drug classes mentioned above. The main reason behind this cocktail is to

reduce the emergence of mutated HIV types that are resistant to the drugs. Despite

the effort of the drugs, mutations are highly likely to occur in the infection lifetime

of a patient. However, we will not be considering the possible mutations throughout

this work.

As this is a lifetime therapy, these drugs have various health effects on the human

body, which leaves the patients in poor health conditions at times. Hence in this

work we are trying to understand the effectiveness of using the immunotherapy

approach in order to reconstitute the total CD4 T-cell count.
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Figure 1.6: Number of Death and HIV positive individual in US from the period

before and After the introduction of HAART.

The number of death and poeple living with HIV in US from 1981-2007. In this

graph it is shows that when the HAART was introduced the number of death

decreased and the number of people living with HIV increased as a result. This

figure was adapted from [35].
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1.3 Modeling HIV and Immune system

Since the discovery of the disease, a tremendous amount of research have focused

on better understanding the emergence, spread of the disease and most importantly

its unique pathogencity with the intention of developing a potential vaccine or

a cure. Over the past two decades, thousands of studies were published about

HIV/AIDS[29]. Many of those studies used statistical, deterministic and stochastic

mathematical models to study the disease dynamics [29]. These models have made

great advancements in better understanding epidemiological and immunological

aspects of the virus. Some of the most important early works were done by A.

Perelson and D. Ho. They used clinical data from HIV positive individuals to study

the dynamics of HIV and T-cells in the absence and presence of antiviral drug

therapies [30,31].

These studies have mainly focused on using ordinary differential equations to model

such dynamics. These compartmental models are used to examine the interactions

between several classes of populations to study and predict the changes in each of

the population size over a certain time period. This is accomplished by representing

the rate of change in these populations using ODEs. Any of the population size

could be estimated by solving these differential equations at a specific time point.

The basic ODE model for describing the HIV-immune system interaction is composed
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of three compartments; the uninfected T-cell, the infected T-cells and the free HIV

virions particles. This model was used in several papers such as [30,31,25]. Using

the basic model, researchers were able to draw some important conclusions about

the viral clearance rate, the lifespan of the infected T-cells and the viral production

rate from each infected cell [38,39]. The Basic model is illustrated in the system of

ODEs Eq’s 1.1, where λ is the birth rate of uninfected cell, d and a are the death

rates of the infected and uninfected immune cells respectively, k is the virus bud

rate and u is the virus clearing rate.

x′ = λ− dx− βxy (1.1)

y′ = βxy − ay

v′ = ky − uv

Still the simplicity of this basic model was not enough to study various important

dynamics such as the HIV mutation strains, the effect of the antiretroviral drug and

so on, so extensions to the basic model are formulated. These models were able to

better understand the role of the antiretroviral drug in blocking and slowing down

the HIV infection process [17,18]. This was achieved by adding extra parameters ε1

and ε to the basic model to illustrate the inhibition of both the reverse transcriptase

and protease inhibitors correspondingly. A factor of (1-ε1) and (1-ε) were multiplied
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to each of the β and k parameters respectively.

When a patient is on the antiretroviral cocktail therapy, the HIV viral load is

undetectable which could be ignored in the basic model. This assumption will allow

us to incorporate the dynamics of various T-cell subsets such as näıve and memory

as shown in [24,26].

1.3.1 Stochastic Modeling

Despite the simplicity and elegance of the ODE models, we cannot ignore the

fact that the human cell dynamics are not deterministic and are subject to random

fluctuations due to natural variability. Hence various mathematical modelers have

switched gears and started using stochastic models to describe the HIV-immune

system dynamics. One of the earliest stochastic models was developed by Merill’s

et al, where he was able to model aspects of the immune system response in the

presence of HIV using a branching process [40]. In addition, Perelson et al [39] were

able to estimate the probability that one virus could infect on average one CD4

T-cell. However, there aren’t many studies that modeled the dynamics of näıve and

memory CD4 T-cells subsets of chronically infected HIV patients. In this thesis,

we will be developing a stochastic model for the näıve and memory CD4 T-cells

so we are able to observe the variability in this model that can be a result from

the natural variability, experimental error measurements and uncertainty in the
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parameter estimations of the T-cell dynamics.

1.4 Experiment

Highly active antiretroviral therapy (HAART), does a fairly good job in keeping

a low HIV viral load in the body of infected individuals. Despite the great effort

from scientists to help in restoring the immune system in HIV positive individuals,

patients remain to have a low count of T-cells in the body.

As we have seen in the previous section, CCR5 is a major co-receptor for the entry

of the HIV virus into the CD4 T-cells. Our Collaborator, (Sekaly et al., 2013) at

Case Western, have designed an experiment to study the effects of the introduction

of CCR5-down-modulated memory CD4 T-cells into HIV positive patients. The

main intention of this experiment is to examine if the perturbation of the system

will result in any augmentation in the CD4 memory T-cell count and the activity of

the immune system.

Information about the 3 cohorts

In this study 9 chronically infected HIV patients participated in this study. Where

all of these patients were receiving a HAART drug therapy. Table 1 summarize the

infection state, age , ethnicity and drug dose infused. The mean age of the patients

was 49 ± 6.49 years and the mean period of the infection diagnosis is 20.77 ± 6.47

years.
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Injection of CCR5-down-modulated memory CD4 T-cells and its quan-

tification.

As illustrated in Table 1.1, the nine HIV patients were separated into three groups

based on the injected dose of zinc finger nuclease (ZFN) driven CCR5-disrupted CD4

T-cells (SB-728-T). In order to measure the cells count for the 5 T-cell populations,

samples of Peripheral blood mononuclear cells (PBMCs) were collected from each

of the 9 patients at several time intervals. These PBMC were transduced by an

adenovirus encompassing a Zn Finger endonucleae that targets the CCR5 gene.

To identify each of the memory T-cell subsets, PBMCs were stained by different

cytometry panels(Sekaly et al., 2013). In this work, we defined the total CD4 T-cells

as the sum of the the five T-cell subsets unlike how it is quantified in the experiment.

The distribution of the injected CCR5-down-modulated memory CD4 T-cells is

illustrated in Figure 1.7 below.
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Figure 1.7: Ratio of infused CCR5-down-modulated- CD4 T-cell subsets.

In here the CD45RAlowROlow are considered as memory stem cells. These ratios

were adapted from the experimental study report by (Sekaly et al., 2013).
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ID Period of Inf.(years) Dose infused CD4 T-cell count at M0 CD4 T-cell count at M36

103 20 1x1010 188 -134.4 315-262.1

104 21 1x1010 261-205.4 455-378.7

102 25 1x1010 439-349 518-428.1

203 21 2x1010 294-227.7 617-4628

302 19 2x1010 413-279.6 606-468.7

201 30 2x1010 525-354 848-651.4

304 13 3x1010 306-215.6 757-444

303 28 3x1010 330-211.8 525-391.5

305 10 3x1010 480-347 340-271.8

Table 1.1: Information about the three cohorts.

This table illustrates the dose infused, infection period and the CD4 T-cell count at

baseline and after three years. The highlighted numbers are the T-cell count

defined by our collaborators Sekaly et al. and the non highlighted ones are simply

defined as the sum of the näıve and memory CD4 T-cells, which is what is used

throughout this work.
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1.4.1 Data Description

The analysis in this thesis uses an unbalanced longitudinal data obtained from

the clinical described above. Longitudinal data is defined as observations usually

taken from several individuals at various time points. At time t=0, the CCR5-down-

modulated memory CD4 T-cells were injected into the three cohorts with different

dosages as illustrated in Table 1.1. After the injection, the nine patients were

followed over three years and measurements of the näıve and memory CD4 T-cells

and their CCR5-down-modulated versions were taken at different time intervals for

each of the patients. Looking at the spaghetti plots in Figures 1.8 and 1.9, we can

make the following observations about the collected data :

• In total there are approximately 450 observations, where some of the missing

points could be due to patient inability to respect the follow up appointment,

or experimental error measurements.

• The down-modulated CCR5 CD4 T-cells have a very low count.

• The modified näıve CD4 T-cell sub-population data is sparse.

• Memory stem cell populations measurement are missing as these were not

determined from the total T-cell count in the laboratory until much later in

the experiment.
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• The näıve and central memory cell populations seem to increase in count in

most of the nine patients from its baseline value.

• The effector and transitional memory cells seem to increase or stabilize at a

value close to its baseline in most of the nine participants.

• The total number of the CD4 T-cell in here is not defined as the sum of all the

CD4 T-cell sub-populations due to the strict definition used in the experiment

protocol used in the laboratory.

When working with experimental data, it is important to draw some general obser-

vations before starting any analyses. These observations are usually important in

understanding what fitting routines are more suitable and why some would fail in

quantifying some parameters.

Figure 1.8 below presents the raw experimental data for each of the three cohorts:

Low (103, 104, 102), medium (203,201,302). Figure 1.9 illustrates the high dose co-

hort(304,305,303). In all of the three cohorts, the different cell counts are represented

by different colors where we have the the modified and its corresponding natural

cell subset on the same graph. The figure legend indicates each cell population and

the color where:

• N= näıve cell

• MN= modified näıve cell
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• ST = memory stem cell

• MST= Modified memory stem cell

• C= central memory cell

• MC= modified central memory cell

• T= Transitional memory cell

• MT= modified transitional memory cell

• E= effector memory cell

• ME= modified effectot memory cell

30



Figure 1.8: Näıve and Memory CD4 T-cell count for the low and medium dose

cohorts.
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Figure 1.9: Näıve and Memory CD4 T-cell count for the high dose cohort.

1.5 Scope of Thesis

Several studies have shown that memory CD4 T-cells are a major contributor

to the control of the HIV infection in the host [24]. In (Ostrowski et al, 1999), it

was shown that näıve and memory CD4 T-cells were infected by the HIV-1 virus in

vivo. Some researchers focused on studying the dynamics of the memory CD4 T-cell

population in HIV infected individuals [24,28]. Others have focused on studying

the importance of CD4 memory T-cells in the viral reservoir, as these memory cells

are latently infected which when activated can infect hundreds of cells. The role of
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these cells in relation to the progression to the AIDS condition is studied as well

[26,36].

Since CCR5 is a primary co-receptor for the entry of the HIV virus into the host

cells, and since the memory CD4 T-cells are primary HIV reservoir in the host [58],

our work will evaluate the effect of introducing CCR5-down-modulated memory

CD4 T-cells into HIV positive individuals, on the CD4 T-cell dynamic. The goal of

this thesis is to determine what immune system näıve or memory cells proliferation,

death, transition or birth rates are important in augmenting the memory T-cell

population, and if there exists a significant augmentation at all.

We will address this question by introducing deterministic, stochastic and statistical

models. My thesis is structured in following manner:

Chapter 2, I will present the deterministic and stochastic models used in this work.

The non-linear ordinary differential equation model was developed by considering a

linear transition model for the näıve and memory CD4 T-cell as suggested by our

immunologist[52]. Later, a stochastic model is developed to account for the T-cell

natural variability using the Gillespie Algorithm.

Chapter 3, I will present the fitting results obtained using various fitting pro-

cedures. Fitting routines were carried in Monolix software, Matlab programming

language and and Stan. We will present baseline fit (using only data points at time
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0) and fits carried after the injection of the CCR5-down-modulated memory CD4

T-cells.

Chapter 4, using an uncertainty sensitivity analysis technique, we will use the

Latin Hypercubic sampling, coded in Matlab, to study the importance of each of

the 15 model parameters, on each of the 5 subsets of CD4 T-cells using the Partial

Rank Correlation Coefficients. This correlation is evaluated continuously after the

treatment initiation over 200 days. Studying this correlation is important in order

to understand what cell functions (death, proliferation or transition) and population

size was affected by the experimental treatment.

Chapter 5 will be devoted to present the results and discussion about the

stochastic model that we developed. Stochastic simulations are used to study

variability in the cell dynamics by estimating the variance in the 5 CD4 memory

T-cells populations. This will allow us to further determine whether the observed

increase in the memory T-cell population in the laboratory is not lost in the variance

of the cell dynamics from the model.

Lastly, in Chapter 6, I will present the conclusion obtained from this work where

we determine which of the memory CD4 T-cell population functions was important

in augmenting the CD4 T-cell count. As well, I will present some new directions for

future research in this area.
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2 The Model

2.1 Introduction

The goal of this thesis is to model a new HIV treatment, and determine whether

natural fluctuations in CD4 T-cell count can include observed increases in CD4

T-cell count in patients. Before we introduce any analysis, the first step needed is to

develop a mathematical model that describes the dynamics of the näıve and memory

CD4 T-cells. In this chapter, first we will describe the deterministic model used in

this work. This model will be used in chapter 3 to estimate the model parameters

and in chapter 4 to perform an uncertainty and sensitivity analysis to study the

relative significance of each of the model parameters with respect to each of the

näıve and memory CD4 T-cell subsets. Second, a stochastic model is derived based

on the Gillespie Algorithm, which will be used in chapter 5 to study variability in

the näıve and memory CD4 T-cell populations. This is important to understand

the occurrence of random variation in the CD4 T-cell count in the body.
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2.2 Näıve and Memory CD4 T-cell Dynamical Model

In order to perform our parameter estimation, first we need to specify a mathe-

matical model that describes the dynamics of the näıve and memory CD4 T-cell

subsets. Our collaborators in Case Western University [52], proposed that memory

CD4 T-cell subsets have a linear transition. Using this assumption, we constructed

a system of ODE’s to describe the transition process from the näıve to the effector

memory state. The näıve and memory CD4 T-cell population is divided into 5

subsets, näıve (N), stem (ST), central (C), transitional (T), and effector (E), where

each of these populations have death, proliferation and transition rates. In addition,

the näıve cells have a birth rate as these cells are produced by the thymus. The

effector memory cells do not transition to any other subset, as this is a terminal

state. The following are some model assumptions made for the natural and CCR5

down-modulated memory CD4 T-cells.

• No backward transitions occur between the näıve an memory CD4 T-cell

subsets.

• The CCR5-down-modulated memory CD4 T-cells follow the same dynamics

presented for the natural CD4 T-cells.

• There is no interaction between the natural and injected modified memory

CD4 T-cells.
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• For model simplicity, and since the injected modified memory CD4 T-cells

have a very small population size, we will assume that they have the same

proliferation, death and transition rates as the natural ones.

• The modified näıve T-cells will not have a birth rate as these cells could not

be produced naturally by the thymus.

• We assume that the blood is a well mixed homogeneous environment.

Figures 2.1 and 2.2 illustrate a flow diagram that describes the dynamics of the

natural and CCR5-down-modulated memory CD4 T-cells respectively.

Parameters and variables used in both system of ODEs (Eq’s 2.1 and 2.2) and the

flow diagrams are described in Table 2.1 and 2.2 below.

Both natural and modified CD4 T-cells follow a linear transition from the näıve

to the effector terminal state. The model is described as follows:

• The thymus is producing λ natural näıve cells per day.

• The näıve cells have a death rate dN , a proliferation rate pN , and transition

to become memory stem cells with a rate φN .

• Memory stem cells have a death rate dST , a proliferation rate pST and transition

to become a central memory cell with a rate φST .
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Variables Definition

N CD4 näıve T-cell

ST CD4 memory stem T-cell

C CD4 central memory T-cell

T CD4 transitional memory T-cell

E CD4 effector memory T-cell

MN Down-modulated CCR5 CD4 näıve T-cell

MST Down-modulated CCR5 CD4 memory stem T-cell

MC Down-modulated CCR5 CD4 central memory T-cell

MT Down-modulated CCR5CD4 transitional memory T-cell

ME Down-modulated CCR5 CD4 effector memory T-cell

Table 2.1: Variables used in systems of ODEs 2.1 and 2.2.
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Param. Definition and units

λ Number of näıve cells produced by the thymus per day

pN proliferation rate of natural and down-modulated näıve CD4 T-cells per day−1

φN Transition rate of natural and down-modulated näıve CD4 T-cells per day−1

dN Death rate of natural and down-modulated näıve CD4 T-cells per day−1

pST Proliferation rate of natural and down-modulated stem memory CD4 T-cells per day−1

φST Transition rate of natural and down-modulated stem memory CD4 T-cells per day−1

dST Death rate of natural and down-modulated stem memory CD4 T-cells per day−1

pC Proliferation rate of natural and down-modulated central memory CD4 T-cells per day−1

φC Transition rate of natural and down-modulated central memory CD4 T-cells per day−1

dC Death rate of natural and down-modulated central memory CD4 T-cells per day−1

pT Proliferation rate of natural and down-modulated transitional memory CD4 T-cells per day−1

φT Transition rate of natural and down-modulated transitional memory CD4 T-cells per day−1

dT Death rate of natural and down-modulated transitional memory CD4 T-cells per day−1

pE Proliferation rate of natural and down-modulated effector memory CD4 T-cells per day−1

dE Death rate of natural and down-modulated effector memory CD4 T-cells per day−1

pterm Limiting factor for the proliferation rate

Table 2.2: Variables used in the systems of ODEs 2.1 and 2.2.
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Figure 2.1: Flow Diagram presenting the dynamics of the näıve and memory CD4

T-cell

Figure 2.2: Flow Diagram presenting the dynamics of the down-modulated CCR5

näıve and memory CD4 T-cell
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• Central memory cells have a death rate dC , a proliferation rate pC and

transition to become a transitional memory cell with a rate φC .

• Transitional memory cells have a death rate dT , a proliferation rate pT and

transition to become an effector memory cell with a rate φT .

• Effector memory cells have a death rate dE, a proliferation rate pE. This is a

terminal state.

Modified CD4 T-cell follow the same dynamic described above but näıve cells are

not produced by the thymus, so we do not have the λ term as shown in Figure 2.2.

The system of ODEs, Eq’s 2.1 and 2.2, represent the dynamics of the natural

näıve and memory CCR5 CD4 T-cell and down modulated CCR5 memory CD4

T-cell populations. The pterm in these equations represents a limiting factor as the

T-cells cannot proliferate infinitely. At maximum there is a 1000 T-cells in 1 µL of

plasma in the body of any healthy individual. So the proliferation rate of the CD4

T-cells is described by a logistic growth[54], So any subset of the CD4 T-cell can
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only generate with a chance 1-N+MN+ST+MST+C+MC+T+MT+E+ME
1000

N ′ = λ− dNN − φNN + pNptermN

ST ′ = φNN − dSTST − φSTST + pSTptermST

C ′ = φSTST − dCC − φCC + pCptermC

T ′ = φCC − dTT − φTT + pTptermT

E ′ = φTT − dEE + pEptermE (2.1)

MN ′ = −dNMN − φNMN + pNptermMN

MST ′ = φNMN − dSTMST − φSTMST + pSTptermMST

MC ′ = φSTMST − dCMC − φCMC + pCptermC

MT ′ = φCMC − dTMT − φTT + pTptermMT (2.2)

ME ′ = φTMT − dEME + pEptermME
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2.3 Stochastic Model

2.3.1 Introduction

As mentioned in chapter 1, in mathematical modeling there exist two types

of models that are widely used to study the dynamics of infectious disease at the

cellular and molecular scales; deterministic and stochastic models. Despite the

advantages of using deterministic models to describe biological phenomenons, in

a realistic world we know that human cells thrive in a Brownian world. The cell

motion in the body can be described as partly discreet and partly random. Hence,

the appropriate mathematical tools describing such motion are stochastic models

that can capture variability in the Brownian world [49].

2.3.2 Continuous Time Markov Chain Model

Using the deterministic model presented by Eq’s. 2.1 and 2.2, we develop a

stochastic model. Here, time, represented as t, is considered to be continuous where

t ∈ [1,∞) and variables are discrete.

Let N(t), ST(t), C(t), T(t), E(t) be random variables representing the number

of näıve, stem, central, transitional, and effector memory CD4 T-cells at time t,

respectively. These random variables are defined to be discrete and non-negative.

And, let the transition probabilities that represent the change in state of the 5 CD4
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T cells subsets be:

prob∆N(t) = i,∆ST (t) = k,∆C(t) = w,∆T (t) = v,∆E(t) = l (2.3)

Here we assume that the time step ∆t is sufficiently small that only one event can

occur at time t [49] i.e. each of the variables i, k, w,v and l can take only three

values +1, -1 , 0 to describe what event is taking place during the time interval ∆t.

Table 2.3 lists all the fifteen possible outcomes that could occur in one time step

∆t, their transition events and their corresponding transition probabilities. Note

that this stochastic model is based on Eq’s 2.1, as the modified memory CD4 T-cell

population size is very small and is not the main focus in this work.
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Reaction Events Transition Rate at Which

Each Event Occur

Transition Prob-

ability In Time

Interval [t,t+∆t]

1 Birth of näıve Cells N → N+1 λ λ ∆t

2 Death of N N → N-1 dN dN ∆t

3 N proliferation N → N+1 pN pterm pN pterm ∆t

4 Transition from N to STM N → N-1 and

STM → STM+1

φN φN ∆t

5 death of STM STM → STM-1 dST dST ∆t

6 proliferation of STM STM → STM+1 pSTpterm pSTpterm

7 transition of STM to CM STM→STM-1,

CM→CM+1

φST φST ∆t

8 death of CM CM →CM-1 dCM dCM ∆ t

9 CM proliferation CM →CM+1 pCMpterm pCMpterm ∆t

10 Transition from CM to TM CM→CM-1,

TM→TM+1

φCM φCM ∆t

11 Death of TM TM → TM-1 dTM dTM ∆t

12 Proliferation of TM TM → TM+1 pTMpterm cell3

13 Transition from TM to EM TM→TM-1,

EM→EM+1

φTM φTM ∆t

14 Death of EM EM → EM-1 dEM dEM ∆t

15 Proliferation of EM EM → EM+1 PEMpterm PEMpterm ∆t

Table 2.3: Transition Events and their corresponding probabilities for the fifteen

possible outcomes for the 5 CD4 T-cell subsets.
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The transition probabilities of the fifteen possible different state for the five

cell populations are presented below, where high order term are assumed to be 0 (

lim∆t→0
o(∆t)

∆t
=0). Equation 2.4 below, describes the Markov jump process, where

each event takes place at a particular rate given the current state of the system.

prob∆N(t) = i,∆ST (t) = k,∆C(t) = w,∆T (t) = v,∆E(t) = l| (2.4)

N(t), ST (t), C(t), T (t), E(t) =
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λ∆t+ o(∆t), (i, k, w, v, l) = (1, 0, 0, 0, 0)

dN∆t+ o(∆t), (i, k, w, v, l) = (−1, 0, 0, 0, 0)

pNpterm∆t+ o(∆t), (i, k, w, v, l) = (1, 0, 0, 0, 0)

φN∆t+ o(∆t), (i, k, w, v, l) = (−1, 1, 0, 0, 0)

dST∆t+ o(∆t), (i, k, w, v, l) = (0,−1, 0, 0, 0)

pSTpterm∆t+ o(∆t), (i, k, w, v, l) = (0, 1, 0, 0, 0)

φST∆t+ o(∆t), (i, k, w, v, l) = (0,−1, 1, 0, 0)

dC∆t+ o(∆t), (i, k, w, v, l) = (0, 0,−1, 0, 0)

pCpterm∆t+ o(∆t), (i, k, w, v, l) = (0, 0, 1, 0, 0)

φC∆t+ o(∆t), (i, k, w, v, l) = (0, 0,−1, 1, 0)

dT∆t+ o(∆t), (i, k, w, v, l) = (0, 0, 0,−1, 0)

pTpterm∆t+ o(∆t), (i, k, w, v, l) = (0, 0, 0, 1, 0)

φT∆t+ o(∆t), (i, k, w, v, l) = (0, 0, 0,−1, 1)

dE∆t+ o(∆t), (i, k, w, v, l) = (0, 0, 0, 0,−1)

pEpterm∆t+ o(∆t), (i, k, w, v, l) = (0, 0, 0, 0, 1)

1− (λ+ (dN + pNpterm+ φN)N(t) + (dST + pSTpterm+ φST )ST (t)+

(dC + pCpterm+ φC)C(t) + (dT + pTpterm+ φT )T (t) + (dE + pEpterm)E(t)),

(i, k, w, v, l) = (0, 0, 0, 0, 0)

o(∆t), Otherwise.
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2.3.3 Implementation of the MCMC simulations using the Gillespie’s

Algorithm

We implemented the stochastic simulations framework in matlab using the

Gillespie’s Direct algorithm [55].

In this method two uniformly distributed random variables defined in the interval

(0,1) are used in each iteration. The first random variable is used to simulate

the time step and the second is to select the event. Below is a description of the

Algorithm used.

• Label all possible events of birth, proliferation, death and transition for all

the five cell populations as E1, ...., En.

• Define the rate at which event occurs as R1 ... Rn.

• Generate two uniformly distributed random variables: RAND1 and RAND2

• the rate at which any event could occur is expressed as:

Rtotal =
n∑
i=1

Ri

• The time step between events is :

∆t= −log(RAND1)
Rtotal

• Set P = RAND2Rtot
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• Event P occurs if
p−1∑
i=1

Ri < P <

p−1∑
i=1

Ri

• Time t is now update as t t+ δt and the event P occurred.

• Return to step 2

In this algorithm, the transition rates are converted into probabilities where one

random event is selected at each time step. Once selected, the time step and the

number in each of the events is updated accordingly following the algorithm above

[49].
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3 Data Fitting Results

3.1 Introduction

The most important step in this work is the parameter estimation task. Using

the non-linear ODE model described by Eq’s 2.1 and 2.2, we will explore several

fitting routines using different software to estimate the model parameters. This

chapter is organized as follows:

• In section 3.2, we will introduce the use of the non linear mixed effect models

in fitting dynamical biological data using several software.

• In section 3.3, we will present the baseline fit obtained using Matlab, where

only data measurement at time 0 (before the infusion of the modified CD4

T-cells)is used.

• In section 3.4, we will present the data fitting obtained using Stan software

where a hierarchical technique is used to fit all the data measurements obtained

after the dose for the ten populations of cells.
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• In section 3.5, Monolix fitting results is presented, where a non linear mixed

effect approach is used. Model diagnostics for the three cohorts are achieved

using several statistical tests and outputs to compare the different fits obtained

in Monolix. Here data measurements after the dose are used.

• In the last section 3.6, parameter identifiablity and over fitting issues that

occurred in the fits are discussed.

3.2 Non Linear Mixed-effects models and software

We proposed a system of ODEs for this study. However, many of the ODE

parameters are unknown. Several statistical methods have been developed to

estimate model parameters from experimental data such as Bayesian estimation

and non linear mixed effect models [42]. Using non-linear ODE models made the

fitting task harder as many of them do not have an analytic solution [42].

Bayesian hierarchical framework estimation uses a prior distribution obtained from

the subject’s data to estimate the individual parameters. This method is able to

capture the within and between individual’s variability [43,42].

Non-linear mixed effect model(NLME) uses a hierarchical framework which take into

account the inner and intra individual variability. This method allow to perform

statistical analysis on unbalanced longitudinal data. It is widely used to fit clinical
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trials data in sociology, biology, psychology and many more [43]. Mixed effect

models were originally introduced in the pharmacokinetics studies [43]. For more

information the reader could refer to Phinero and Bates (2000).

Many software packages have been developed in the area of fitting experimental

data to biological models. In this section we will introduce some software such as

NONMEM, STAN, Monolix and Matlab.

• NONMEM developed by S.L. Beal and L.B Sheiner in 1980 is a very famous and

widely used statistical software package in the pharmacokinetics community.

It performs a population parameter estimation where the maximum likelihood

is estimated using several approximation techniques such as the Laplacian

and first order methods [45]. This software has various advantages. One of

the most important advantage, is the ability to use compartmental and ODE

based models, where several dosing methods could be considered. However,

this software has several pitfalls. For instance, the graphical are sub-optional

and the user needs to pair it with other software such as R and excel to output

some graphics. In addition, fits are sensitive to the initial prior guess [46]. For

further reference the reader could refer to Bates (2000).

• Stan is a statistical software package that estimates parameters using a

Bayesian approach. The user will have to write a Stan program in order
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to estimate the posterior distribution of the parameters as an initial estimates.

A hierarchical framework could be adopted in this case. Like any statistical

software, Stan has some limitations. For instance, the convergence time might

be very long. In addition, Stan does not allow the user to make inferences

about discrete parameters such as the case in mixture models [44].

• Monolix is a new statistical software package developed by Marc Lavielle and

implemented in Matlab, that models non linear mixed effect models [51]. It is

based on the Stochastic Approximation of the Expectation-Maximization,SEAM,

using a Monte Carlo Markov Chain (MCMC)iterative algorithm. This algo-

rithm is used to estimate the maximum likelihood estimator of the model

population parameters, where a simulated annealing version improves the

convergence of the model to a global maximum. The MCMC iterative method

uses the Metropolis- Hastings approach. One of the drawbacks of this software

package is its sensitivity to the initial guess provided when performing the fit

[50,51].

A more detailed explanation of the algorithm is presented in Appendix A.

• Matlab is a very famous mathematical software package that has a statistical

toolbox that consists of many statistical packages. Depending on the kind

of data, one may choose some linear and non linear least square methods
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functions such as lsqln, lsqnonlin and fminsearch. These functions works by

minimizing the distance between the ODE curve and the observations. The

second fitting option available in Matlab is to use a non linear mixed effect

method functions such as nlmefit and nlmefista. nlmefit uses the Likelehood

Maximization Expectation (LME) or Laplacian first order to estimate the

parameters. However, nlmefista use the SEAM algorithm to approximate the

model parameters [47].

Parameter estimations in this thesis are carried out using three different fitting

software; Monolix version 4.4, Matlab and Stan. In the next sections, we will

present the fitting results obtained from these three software. Model diagnostics and

goodness of fit were studied using the Akiake Information criterion (AIC), standard

error values (s.e) and other figure output such as individual fits and prediction vs

observations graphs.

3.3 Data Fitting

We first determine model parameter values at baseline, and then fit the model

to the data after the dose. This methodology will us to determine which parameters

are most affected by the dose of CCR5 down-modulated cells.
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3.3.1 Baseline Fit- Matlab

In order to better understand the effect of the injected CCR5-down-modulated

memory CD4 T-cell in each of the nine patients, we first performed a baseline fit

in Matlab using a hierarchical mixed model using a log-norm distribution for the

parameter’s mean. This approach allows one to fit all the nine patients to their

baseline count (data point at time 0) while allowing for inter patient variability.

We used a non-linear least square data fitting method. Table 3.1 summarizes the

results obtained for all the patients where we grouped them by the dose of injected

CCR5-down-modulated memory CD4 T-cells (high(yellow), medium (white), low

(gray)). The standard deviation and mean for the parameters is illustrated.

Pat λ dN dST dC dT dE φN φST φC φT pN pST pC pT pE

303 8.4457 .0096 0.0112 0.0033 0.0231 0.5151 0.0823 0.4648 0.1079 0.2479 0.0011 0.0110 0.0109 0.0215 0.0332

304 9.0864 0.0102 0.0110 0.0033 0.0231 0.3887 0.1709 0.4648 0.1075 0.2426 0.0011 0.0110 0.0109 0.0216 0.0332

305 10.5165 0.0114 0.0110 0.0033 0.0230 0.3215 0.0693 0.4648 0.1059 0.2333 0.0011 0.0110 0.0109 0.02179 0.0332

201 10.9220 0.0118 0.0110 0.0033 0.0232 0.4467 0.0746 0.4648 0.1022 0.2444 0.0011 0.0110 0.0110 0.0216 0.03320

203 9.1081 0.0102 0.0111 0.0033 0.0234 0.3750 0.1644 0.4648 0.1055 0.2493 0.0011 0.0110 0.01089 0.0215 0.0332

302 8.7649 0.0100 0.0111 0.0033 0.0232 0.2889 0.0497 0.4651 0.1107 0.2477 0.0011 0.0109 0.0108 0.0216 0.0332

102 9.1713 0.0104 0.0111 0.0033 0.0234 0.0909 0.2153 0.4636 0.1053 0.2478 0.00115 0.0110 0.0109 0.0216 0.0335

103 6.1309 0.0073 0.0111 0.0033 0.0232 0.4530 0.1558 0.4643 0.1071 0.2452 0.0011 0.0110 0.0109 0.0215 0.0331

104 7.6965 0.0089 0.0111 0.0033 0.0232 0.1297 0.2673 0.4673 0.1085 0.2495 0.0011 0.0109 0.01090 0.0216 0.0336

mean 8.9189 0.0100 0.0111 0.0033 0.0231 0.3388 0.1391 0.4648 0.1069 0.2453 0.0011 0.0110 0.0109 0.0216 0.0332

std 1.3756 0.00126 0.00085 0.00029 0.0017 0.1364 0.0702 0.0121 0.00405 0.0117 8.6456e-05 0.00074 0.00071 0.0015 0.0024

Table 3.1: Baseline fit for the three cohorts obtained using Matlab.
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3.3.2 STAN Fitting results

Dr. Georges Monette performed a parameter estimation in Stan. In the fit,

he used a hierarchical approach where all the patients are fit using an iterative

MCMC approach model using sampling and population variance. A more detailed

explanation about this fit is presented in Appendix B.

Table 3.2 shows the fit obtained for the nine patients.

Pat λ dN dST dC dT dE φN φST φC φT pN pST pC pT pE

303 10.2921 0.00936 0.0006 0.0804 0.0431 0.1 0.0986 0.1419 0.0196 0.0575 0.0078 0.0425 0 0.0007 0

304 8.3817 0.0092 0.0004 0.0467 0.0534 0.1 0.135 0.2234 0.0533 0.0466 0.00277 0.1237 0 0 0

305 11.2318 0.0511 0.0002 0.0658 0.0073 0.1 0.0492 0.2358 0.0342 0.1082 0.0003 0.1360 0 0.0155 0

201 19.3183 0 0.0058 0.0724 0.0571 0.1 0.1576 0.0984 0.0276 0.0429 0.05761 0.0042 0 0 0

203 6.9429 0.0080 0 0.0775 0.0249 0.1 0.1014 0.2243 0.02255 0.0780 0.0094 0.01243 0 0.0030 0

302 16.1964 0.0483 0.0083 0.0686 0.0015 0.1 0.0517 0.1024 0.0314 0.1341 0 0.0107 0 0.0356 0

102 7.4924 0.0028 0 0.07919 0 0.1 0.1171 02375 0.0281 0.188 0.02 0.1375 0 0.0880 0

103 2.7117 0.0136 0 0.0627 0 0.1 0.0973 0.3590 0.0373 0.1886 00109 0.2590 0 0.0887 0

104 6.47731 0.0012 0.0054 0.0744 0.0007 0.1 0.1401 0.1158 0.0256 0.1584 0.0413 0.0213 0 0.0590 0

Table 3.2: Hierarchical Fit obtained from Stan software. 2000 iterations are used.
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3.3.3 Monolix Fitting Results

A non-linear mixed effect approach was employed to estimate the model param-

eters. Using Monolix software, we have used 3 fitting approaches. In the first two

approaches, we used the data points provided for all ten cell populations. In the

third approach, we used the data points for the non-modified näıve and memory

CD4 T-cell only. The two main reasons behind ignoring the down-modulated CCR5

memory CD4 T-cell populations, is because of its small size and its short lifespan in

the body, which varies between three to five years on average [56].

When performing the fit, Monolix requires the user to specify an initial guess for

the fixed effect parameters. One of the good advantages this software provides, the

ability to check the initial fixed effect. First, we have started with the baseline

fit presented in Table 3.1 as an initial guess. Using the initial fixed effect tool,

the model parameters were altered sometimes where we minimized the distance

between the curve and the experimental data points by seeing the change of the

curve instantly to get a good initial guess [50,51].

• In the First approach, we used a stochastic approximation of the Fisher

Information Matrix. In here the Fisher Information Matrix is calculated using

the exact model. The experimental data measurements provided for all the

ten cell populations is used. Eq’s 2.1 and 2.2 are used. This fitting routine
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will be referred to as SNM throughout this work.

• In the second approach, we used a model linearization approach to estimate the

Fisher Information Matrix where the model is linearized and is approximated

by a Gaussian model. As well, the data points for all 10 cell populations is

used. So we have used Eq’s 2.1 and 2.2. This fitting routine will be denoted

as LNM throughout this work.

• In the third approach, we have only used the data points of the non-modified

näıve and memory CD4 T-cell. Eq’s 2.1 are used. For this approach we used

a model linearization to calculate the Fisher Information Matrix. This fitting

routine will be referred to as LN throughout this work.

3.3.3.1 A non-linear mixed effect model for the T-cell dynamical model

As described earlier, our dynamical model consists of ten populations of näıve

and memory CD4 T-cells for each of the nine patients. We present the concentration

for each of the compartment at time, t. This work considers time to be the only

dynamic variable in the model. In this fitting routine, we have used the same

individual based model for the observations from the nine patients independently.

The vector of observation at time tj is presented as yj where 1 < j < n. The model

is the distribution of the vector of observation yi represented as py(.;φ, t).
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A non-linear model is composed of fixed effect, random effect , residual error model

and a covariate model can be added if needed. Where the fixed effect and random

effect account for variability between and within individuals respectively. In this

study, age, sex and ethnicity were not taken into account, hence there was no need to

specify a covariate model. Having said that, we will have a 15 by 15 zero covariance

model, as we have 15 unknown parameters to be estimated.

Due to a limitation in the Monolix software package where different initial conditions

for each of the cell populations for each of the nine patients was not possible. Since

patients are independent and share no information, we decided to consider an

individual- based model where we fit the cell populations to patient separately.

This is a drawback, since they will be related through distribution showing the

inter-patient variation related over these parameter distributions. The Non-linear

mixed effect model which represents our set of ODE equations is represented as:

Yijl = xil(tij) + eij (3.1)

Where we have the following:

• i = 1....N = the ith individual.

• j = 1...ni = the time point.

• l= 5 or 10, which is the l’th number of compartment in the ODE model.
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• β= the fixed effect, b = the random effect and eij= residual error model.

As many non-linear ODEs do not have an analytic solution, Monolix uses a

numerical approximation technique to solve the ODEs. A non linear optimizing

method is commonly adopted to fit these types of ODE’s to experimental data. The

user has to determine the initial conditions for each of the cell populations or else

they are considered to be zero by the software. Hence, baseline measurements for

each of the cell population are used as initial conditions.

In order to perform a fit in Monolix, the user has to determine the distribution

for the parameters. Defined by the user, Monolix compares different paramater

distributions and chooses the best model based on the Akiake Information Criterion

(AIC), Bayesian Information Criterion (BIC) and -2 of the likelihoods (-2LL). For

our model, it was shown that the a log-normal distribution resulted with the smaller

AIC, BIC and -2LL values, where log(φi) = log(θ) + ηi. log(θ) represents the mean

value of the fixed effect parameters and ηi is the random effect to account for

inter-individual variability.

When performing data fitting, one cannot ignore the error that occurs when mea-

suring experimental data. Hence it is important that for any given data set, we

determine an error model that potentially estimates the distribution of the error in

the data measurements. The residual error model defines the conditional probability

distribution of the observations denoted by yij. Using the Akiake and Bayesian
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Information Criterion (AIC and BIC) and the Likelihood (-2LL ), Monolix proposed

that a constant error model best describes our model and data data, where eij = diεij

and εij is normally distributed ∼N(0,d2).

3.3.3.2 Akiake Information Criterion

To evaluate the difference between the three fitting techniques, I have used

the Akiake Information Criterion (AIC) and the standard errors to compare the

goodness of fit.

The AIC takes into account the number of parameters, data points and the likelihood,

with K and N being the number of parameters and data points respectively and is

defined by the equation below [50]:

AIC = −2loglm(y; θ) + 2K + ((2K(K + 1))/(N −K − 1)) (3.2)

In this section, the number of parameters(K=15), was the same for all the three

fits. What changed is the number of observations and cell populations used in the

model. Hence, having a smaller AIC indicates the most parsimonious model. In

addition, to asses the best and most efficient model, the central processing unit time

(CPU) and the standard error are used to asses the efficacy of the model [48]. The

standard error is calculated by taking the ratio between the standard deviation of

the estimated parameter and the estimated value for the parameter [48]. Besides
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the above statistical tests, we have used the plot for the individual fits to asses the

goodness of fit. Moreover, the observed vs prediction plots were used, where when

the data points are more aligned to the 45o degree line it indicates a better fit.

3.3.3.3 Parameter Estimation Results

In the subsections below, we will compare the three fitting routines for the three

cohorts. A table showing the three different fits along with the standard error, AIC

and CPU time are shown. In addition, I will present some of the plots obtained

by Monolix such as the individual fits and the observed vs’ predictions outputs to

get a better insight about the quality of the fits. The ODE model described by

Eq’s 2.1 and 2.2 were solved over 1080 days in all the fits. In the case where we

considered to fit the modified and non-modified memory and näıve CD4 T-cells,

we have indicated that the modified-cell dose was injected into the patients after

the measurement of their cell count at baseline at time 0. In all of the subsections

below, results for non- modified CD4 näıve and memory T-cell populations will be

presented, as these cell populations are the main interest of this work.

Patient 103- Low Dose

Table 3.3 below shows the parameter estimates for patient 103. When all the

experimental data points for the ten cell populations of cell were used, adopting a

stochastic approximation or model linearization to calculate the Fisher Information
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matrix, we obtained the same values. However, using the model linearization

approach, the software was able to calculate the s.e with the smaller CPU time.

When comparing both the s.e values and the AIC, we can see that the fitting routine

where only non-modified cell data points were used, resulted a better fit giving an

AIC of 262, almost half that of the other models. Parameter values from all fitting

exercises are somewhat similar in magnitude. A NaN value of the s.e means that

either the coefficient is 0 or the software was not able to capture the parameter.

Comparing the CPU time from all three fits, it is evident that when only the

non-modified cell data is used, the fitting exercise is less computationally expensive.

Looking at Figures 3.1, we can see that the model was not well fitted to the data as

most of the observations were not close to the 45opurple line. This further indicates

that the model prediction is not perfectly close to the experimental data points.

From Figure 3.2, we can make the following observation about the change in the

memory and näıve CD4 T-cell populations from the best fit model:

• The näıve cell population decreased.

• The memory stem cell population had a very small increase.

• The central, transitional and effector memory cell populations have increased.
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Param Lin-all s.e Stoch-all s.e Lin-non s.e

λ 5.83 9.5e+005 5.83 3.2 6.14 2.4e+007

pN 0.000855 1.6e+005 0.000855 NaN 0.000201 NaN

pST 0.0064 NaN 0.0064 NaN 0.0064 NaN

pC 0.09 5.7e+004 0.09 NaN 0.0821 1.6e+005

pT 0.0976 5.6e+005 0.0976 NaN 0.0639 6.8e+005

pE 0.483 8.2e+004 0.483 NaN 0.413 3.7e+006

φN 0.208 2.5e+004 0.208 0.066 0.217 2.7e+003

φST 0.426 1.1e+004 0.426 NaN 0.461 5.8e+003

φC 0.104 2.3e+003 0.104 0.031 0.117 4.2e+003

φT 0.319 1.7e+004 0.319 0.092 0.34 5.1e+005

dN 0.00565 4.9e+004 0.00565 0.084 0.006088 8.5e+005

dST 0.0105 5.6e+004 0.0105 NaN 0.00685 NaN

dC 0.00249 3.2e+004 0.00249 0.025 0.00564 1.2e+005

dT 0.0235 3e+005 0.0235 NaN 0.0327 NaN

dE 0.437 5.3e+004 0.437 0.065 0.498 2.5e+006

AIC 479.55 479.55 262.33

CPU (sec) 1.58e+003 7.37e+003 939

Table 3.3: This table illustrates the fits obtained from the three fitting approaches

with their AIC and standard error measurements for patient 103 .
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Figure 3.1: Pat 103 Prediction vs Observation.
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Figure 3.2: Individual fits of the näıve and memory CD4 T-cells for patient 103.
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Patient 102-Low Dose

Table 3.4 shows the parameter estimates for patient 102. Similar to the previous

patient, when all experimental data points for the ten cell populations are used, the

stochastic approximation and the model linearization routines used to calculate the

Fisher Information matrix resulted in similar parameter estimates. However, using

the model linearization approach, the standard error was calculated in a shorter

CPU time. Comparing both the s.e values and the AIC, we can see that the fitting

routine where only non-modified cell data points were used gave a better fit where

we had an AIC of 261. Parameter values from both fits are somewhat similar in

magnitude except for the number of näıve cells produced by the thy thymus daily;

λ. Looking at Figure 3.3, we can see that the model was not well fitted to the data

as most of the experimental data points did not lie on the 45opurple line, which

indicates that the model did not succeed in replicating the clinical trial. However,

the memory effector cell population seems to have a reasonable fit where the data

measurement lie on the 45o degree line.

From Figure 3.4, we can make the following observation about the change in the

memory and näıve CD4 T-cell populations:

• The näıve, memory stem cell, central and transitional cell populations have

increased from the baseline.
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• The effector memory cells have decreased in count.

Param Lin-all s.e Stoch-all s.e Lin-non s.e

λ 18.2 3.8e+006 18.2 14 13 1.9e+007

pN 0.0895 1e+006 0.0895 NaN 0.0871 4.4e+005

pST 0.159 1.3e+004 0.159 NaN 0.1 6.8e+005

pC 0.0511 8e+005 0.0511 NaN 0.0318 2.9e+005

pT 0.000167 NaN 0.000167 NaN 0.00181 NaN

pE 0.268 3.7e+003 0.268 NaN 0.19 1.7e+006

φN 0.227 1.6e+003 0.227 0.18 0.19 1.7e+006

φST 0.238 5e+004 0.238 0.2 0.235 3.7e+005

φC 0.0846 2.4e+005 0.0846 0.064 0.0963 3.4e+004

φT 0.319 1.7e+004 0.291 NaN 0.37 3.2e+005

dN 0.00489 NaN 0.00489 NaN 0.00715 NaN

dST 0.00196 5.1e+004 0.00196 NaN 0.00836 NaN

dC 0.00414 NaN 0.00414 2.5e+005 0.00474 NaN

dT 0.0408 9.9e+005 0.0408 0.23 0.0209 4.4e+005

dE 0.192 5.3e+004 0.192 0.032 0.316 9.6e+005

AIC 520.89 520.89 261.16

CPU(sec) 2.71e+003 2.76e+004 3.45e+003

Table 3.4: This table illustrates the fits obtained from the three fitting approaches

with the AIC and standard error measurement values for patient 102.
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Figure 3.3: Observed vs prediction output for patient 102.
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Figure 3.4: Individual fits for the näıve and memory CD4 T-cells for patient 102.
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Patient 104 - Low Dose

Table 3.5 below shows the parameter estimates for patient 104. Again, when all the

10 cell populations data points are used, the stochastic approximation and model

linearization approaches to calculate the Fisher Information matrix, result in similar

parameter estimates. However, using the model linearization approach, the software

was able to calculate the standard error. The fitting routine considering only non-

modified cell population data gave a better fit, with an AIC of 210. Parameter values

from all fits are similar in magnitude. Based on the CPU time, AIC and standard

error values, the fitting routine considering only non-modified cell observations

resulted in a better fit. Looking at Figure 3.5 , we can see that the model was not

well fitted to the data for the näıve, central memory and transitional memory cells.

However, observations for the stem and effector cells were well lined up with the

45o degree purple line in both the fits. The results from the individual fits in Figure

3.6 shows a good fit for the central, effector and memory stem cell populations.

From Figure 3.6, we can make the following observation about the change in the

memory and näıve CD4 T-cell populations:

• The näıve, central and memory stem cells have increased in count from the

baseline.

• The effector and transitional memory cells have decreased in count from the
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baseline.

Param Lin-all s.e Stoch-all s.e Lin-non s.e

λ 9.44 2.4e+007 9.44 9.5 8.73 2.6e+005

pN 0.000226 7.2e+002 0.000226 NaN 1.97e-005 65

pST 0.00417 2.3e+003 0.00551 NaN 0.00551 6.3e+003

pC 0.00365 1.9e+0053 0.0511 NaN 0.00365 NaN

pT 0.00335 2.1e+004 0.00335 NaN 0.00181 NaN

pE 0.00486 4.8e+003 0.00486 NaN 0.0139 6.9e+003

φN 0.135 3.7e+003 0.135 0.13 0.125 2.9e+003

φST 0.0759 .8e+003 0.0759 0.048 0.0679 8.8e+002

φC 0.0827 4.2e+003 0.0827 0.095 0.0715 2.4e+003

φT 0.368 5.9e+0034 0.368 0.47 0.32 8.6e+003

dN 0.0034 3.5e+005 0.0034 0.024 0.00261 1.1e+003

dST 0.0054 5e+003 0.0054 0.034 0.00836 NaN

dC 0.0827 4.2e+003 0.00435 0.056 0.0715 2.4e+003

dT 0.0187 3.8e+003 0.0188 NaN 0.0188 1.3e+004

dE 0.527 9.4e+003 0.527 0.68 0.475 1.2e+004

AIC 383.08 385.08 210.41

CPU (sec) 4.27e+003 1.78e+004 1.47e+003

Table 3.5: This table illustrates the fits obtained from the three fitting approaches

with their AIC and standard error measurements for patient 104.
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Figure 3.5: Observed vs prediction output for patient 104.
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Figure 3.6: Individual fits for the näıve and memory CD4 T-cells for patient 104.
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Patient 203- Medium Dose

Looking at Table 3.6, we can observe that when using all the 10 population of

cells, Both the stochastic and model linearization approaches resulted in similar

parameter estimates. However, the standard error values were obtainable using the

linearization method with a faster CPU time. When the modified cell population

observations are ignored, the AIC value of 268.61 is smaller compared to the AIC of

the other two fits. Figure 3.7 we can see that the both of the fitting routines behaved

similarly where the points are not aligned with the 45o purple line except for the

memory stem cell population. This indicates that the model does not appropriately

fit the data very well. And this is evident in the individual fit Figure 3.8 where the

model curve does not pass through all the data points like in the memory stem cell

fit. The LN fitting routine, seems to pass through the data point better than the

LNM method. The zero values for the proliferation rates indicates that these cells

have increased to a level that cannot proliferate further.

Looking at Figure 3.8, we can draw the following observations about the dynamics

of the five CD4 T-cell subsets.

• The näıve, memory stem cell and central memory cells increased in size.

• The transitional and effector cells exhibit no change.
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Param Lin-all s.e Stoch-all s.e Lin-non s.e

λ 14.6 1.1e+004 14.6 2.8 10.6 4.1e+005

pN 8.88e-007 31 8.88e-007 NaN 0.159 4.2e+004

pST 0.000107 2.4e+002 0.000107 0.00043 0.132 5.6e+005

pC 0.000641 13 0.000641 0.0021 0.000514 9.3e+004

pT 0.000305 53 0.000305 NaN 0.00117 1e+005

pE 0.332 62 0.332 0.075 0.0221 7e+003

φN 0.209 35 0.209 0.047 0.251 7.1e+003

φST 0.714 19 0.714 0.05 0.337 2.2e+005

φC 0.0862 15 0.0862 0.019 0.145 5.4e+003

φT 0.355 2.4e+002 0.355 0.09 0.638 3.2e+003

dN 9.98e-007 1.1e+002 9.98e-007 0.0017 0.000576 2.4e+004

dST 5.86e-009 6.9 5.86e-009 NaN 1.12e-005 5.9e+005

dC 0.00872 14 0.00872 0.018 5.98e-005 1.5e+005

dT 0.0407 2.6e+002 0.0407 0.038 0.00224 4.4e+004

dE 0.599 3.3e+002 0.599 0.085 0.9 1e+002

AIC 499.67 499.67 268.61

CPU (sec) 1.35e+003 2.36e+004 890

Table 3.6: This table illustrates the fits obtained from the three fitting approaches

with their AIC and standard error measurements for patient 203.

76



Figure 3.7: Observed vs Prediction output for patient 203.
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Figure 3.8: Individual fits for the näıve and memory CD4 T-cells for pat 203.
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Patient 302 - Medium Dose

Table 3.7 shows the parameter estimates for patient 302. Again, when using all the

10 cell populations experimental data points are used, the stochastic approximation

and model linearization approaches to calculate the Fisher Information matrix, result

in similar parameter estimates. However, using the model linearization approach,

the software was able to calculate the standard error with a shorter CPU time. The

s.e values and the AIC value of 268 are smaller when using only non modified cell

data points.

Figures 3.9, shows that the model is not well fitted to most of the cell populations,as

the points and the spline line does not align with the 45o purple line. However,

the third approach, where only the non modified cells observations are used, the

model was able to better fit the memory stem cell population which is evident as

the observations and the spline line were closer to the purple line.

From Figure 3.10, we can make the following observation about the change in the

memory and näıve CD4 T-cell populations:

• The näıve, memory stem and central have increased from the baseline.

• The effector and transitional memory cells have exhibit no change.
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Param Lin-all s.e Stoch-all s.e Lin-non s.e

λ 13.8 1.8e+006 13.8 NaN 13.6 6.1e+005

pN 0.173 3.3e+004 0.173 NaN 0.189 5.7e+003

pST 0.112 5.1e+004 0.112 NaN 0.0914 6.3e+004

pC 0.000947 2.7e+004 0.000947 NaN 0.00649 1.2e+004

pT 0.0472 5.3e+004 0.0472 0.4 0.00575 6.1e+003

pE 0.846 1.7e+004 0.846 NaN 0.274 8.6e+004

φN 0.144 1.7e+003 0.144 0.01 0.191 3.8e+002

φST 0.366 1.2e+004 0.366 0.081 0.459 3.7e+004

φC 0.277 3.1e+003 0.277 0.027 0.325 3.3e+002

φT 0.599 6.1e+002 0.599 0.16 0.832 1.3e+004

dN 5.78e-015 0.0042 5.78e-015 2.8e-010 0.000541 9.6e+002

dST 0.000387 3.4e+004 0.000387 NaN 0.00057 7.4e+004

dC 0.0449 3.8e+003 0.0449 NaN 0.106 2.8e+004

dT 0.266 1e+004 0.266 NaN 0.19 1e+004

dE 0.772 6.5e+003 0.772 0.13 0.796 4.1e+004

AIC 605.15 605.15 304.25

CPU (sec) 1.43e+003 7.44e+003 950

Table 3.7: This table illustrates the fits obtained from the three fitting approaches

with their AIC and standard error measurements for patient 302.
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Figure 3.9: Observed vs Prediction output for patient 302.
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Figure 3.10: Individual fits for the näıve and memory CD4 T-cells for patient 302.
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Patient 201 - Medium Dose

Table 3.8 lists the three parameter fit approaches for patient 201. When all the

10 cell populations data observations are used, the model linearization was able to

capture a better fit than the stochastic approach with a sorter CPU time and a

slightly smaller AIC value 627.80.Comparing both column 1 and column 5, the fit

in column 5 had a smaller AIC value of 314, and smaller CPU time. The goodness

of fit is evident when looking at the individual fits in Figure 3.11 as the ODE curve

was closer to the data points.

Figure 3.12, shows that when using the non modified observations only, the spline

and the observations were most of the time closer to the purple 45o line.

From Figure 3.11, the näıve and memory CD4 T-cells subsets have increased from

the baseline.
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Param Lin-all s.e Stoch-all s.e Lin-non s.e

λ 24.9 7.3e+002 15.9 4.2 20.4 1.1e+002

pN 1.03e-010 6 3.87e-012 NaN 1e-015 0.00096

pST 1.01e-010 9.5 1.75e-010 1.5e-007 0.528 1e+003

pC 0.0444 36 0.11 NaN 2.77e-014 0.026

pT 0.916 25 7.67e-007 NaN 5.96e-015 0.017

pE 1.46e-010 7.8 0.903 NaN 2.88e-013 0.54

φN 0.119 3.8 0.0754 0.02 0.0942 87

φST 0.567 16 0.285 0.12 0.0958 91

φC 0.0704 1.2 0.0231 0.0071 0.0912 5.3e+002

φT 0.125 6.4 0.101 0.029 0.262 1.1e+002

dN 3.45e-005 2 2.39e-014 NaN 0.00297 86

dST 6.46e-012 0.78 1.76e-011 NaN 0.000293 35

dC 5.34e-010 8.6 4.93e-013 8.1e-009 3.67e-005 6e+002

dT 4.03e-011 9.2 6.54e-005 NaN 0.0711 1.9e+003

dE 0.277 15 1.01e-005 NaN 0.617 2.5e+002

AIC 627.80 633.85 314.78

CPU(sec) 1.8e+003 3.03e+004 1e+003

Table 3.8: This table illustrates the fits obtained from the three fitting approaches

with their AIC and standard error measurements for patient 201.
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Figure 3.11: Individual fits for the 5 population of non modified CD4 T-cells for

patient 201.
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Figure 3.12: Observed vs prediction output for patient 201.
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Patient 303- High Dose

Table 3.9 shows the parameter estimates for patient 303. Again, when all the

10 cell populations data points are used, both model linearization and stochastic

approximation approaches to calculate the Fisher Information Matrix gave similar

parameters estimates. However, the model linearization method was less compu-

tationally expensive and s.e were obtainable. The AIC value when using only

non-modified cell population data points, the AIC value of 291.08 is half of that

other two fits, indicating it is a better fit. This result is also evident in the individual

fits Figure 3.13 as the ODE curve passes through most of the data points except for

the central memory cell population.

Figure 3.14, Shows that when using the non modified observations only, the spline

and the observations were laying on closer to the purple 45o line. From Figure 3.13,

we can see that all the cell populations have increased from the baseline except for

the central memory cell which decreased in size according to the model predictions.
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Param Lin-all s.e Stoch-all s.e Lin-non s.e

λ 32.5 2.6e+002 32.5 14 10.8 2.6e+002

pN 8.67e-034 NaN 8.67e-034 NaN 0.0119 6.3

pST 0.991 15 0.991 NaN 0.0112 1.9e+002

pC 2.17e-056 NaN 2.17e-056 NaN 0.00737 1.3e+003

pT 0.00736 13 0.00736 NaN 0.27 1.1e+003

pE 3.38e-012 0.075 3.38e-012 5.6e-008 0.0232 1.4e+003

φN 0.304 2.5 0.304 0.13 0.102 30

φST 0.628 2.6 0.628 0.18 0.118 16

φC 0.0803 0.68 0.0803 0.032 0.096 2e+002

φT 0.397 0.93 0.397 0.16 0.247 9.9e+002

dN 6.6e-053 NaN 6.6e-053 NaN 0.00559 27

dST 4.62e-077 NaN 4.62e-077 NaN 0.00538 1.2e+002

dC 0.333 2.4 0.333 0.1 0.444 1.1e+003

dT 1.85e-030 NaN 1.85e-030 NaN 0.018 49

dE 0.705 1.7 0.705 0.29 0.499 2.9e+003

AIC 681.23 681.23 293.08

CPU (sec) 4.74e+003 2.37e+004 2.18e+003

Table 3.9: Illustrates the fits obtained from the three fitting approaches with their

AIC and standard error measurements.
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Figure 3.13: Individual fits for the näıve and memory CD4 T-cells for pat 303.
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Figure 3.14: Observed vs prediction observation for pat 303.

90



Patient 304 - High Dose

Table 3.10 shows the parameter estimates for patient 304. Again, using all the 10

cell populations data points in the fit, both the model linearization and stochastic

approximation approaches in calculating the Fisher Information Matrix, result in

similar parameter estimates and AIC values with having a smaller CPU using the

model linearization approach. Considering only the non-modified cell populations

the AIC value of 208.82 indicates it is a better fit. However, when looking at Figure

3.15, we can observe that both fits(LN and LNM) result in similar individual fits.

Figure 3.16, Shows that when using the non modified observations only, the spline

and the observations were most of the time closer to the 45o purple line, indicating

that our model was able to replicate the clinical study. From Figure 2.15, it is

evident that all the cell populations have increased from the baseline.
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Param Lin-all s.e Stoch-all s.e Lin-non s.e

λ 48.2 1.9e+004 48.2 15 14.3 7.4e+003

pN 6.57e-013 17 6.57e-013 2e-009 0.224 52

pST 4.84e-011 6.1e+002 4.84e-011 NaN 0.672 1.8e+002

pC 8.4e-013 18 8.4e-013 NaN 3.74e-014 0.11

pT 4.09e-011 2.3e+002 4.09e-011 NaN 1.87e-016 0.00031

pE 3.38e-012 0.075 1.69e-010 4.4e-007 0.0232 1.4e+003

φN 0.304 2.5 0.532 0.18 0.266 52

φST 0.628 2.6 0.981 0.022 0.618 1.4e+002

φC 0.0803 0.68 0.265 0.083 0.266 27

φT 0.491 1.4e+002 0.491 0.31 0.399 41

dN 7.29e-012 32 7.29e-012 1.6e-008 9.99e-017 0.00024

dST 1.93e-012 69 1.93e-012 7.6e-009 2.08e-023 NaN

dC 1.08e-010 1.3e+002 1.08e-010 NaN 0.444 1.1e+003

dT 7.3e-006 2.8e+002 7.3e-006 NaN 1.94e-019 NaN

dE 0.996 1.9e+002 0.996 0.0042 0.997 1e+002

AIC 364.49 364.49 208.82

CPU(sec) 4.28e+003 1.56e+004 2.84e+003

Table 3.10: Illustrates the fits obtained from the three fitting approaches with their

AIC and standard error measurements for patient 304.
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Figure 3.15: Individual fits for the näıve and memory CD4 T-cells for patient 304.
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Figure 3.16: Observed vs prediction for patient 304.
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Patient 305- High Dose

Table 3.11 shows the parameter estimates for patient 305. Similar to the patients

above, fits obtained from using both a stochastic approximation or model lineariza-

tion to calculate the Fisher Information Matrix had similar parameter values. Using

When only non-modified cell populations the AIC value of 232.66 is the smallest

compared to all the other fits.

The three fitting routines results in having a zero value for the memory stem cell

death rate dST . This indicates that the death rate of the memory stem cell became

negligible after the treatment. When the first two fitting routines failed to estimate

the proliferation rates for most of the cell populations, the third one was able to do

so. Looking at Figure 3.17, we can see that the näıve, central and effector cells had

a good fit where the ODE curve passed through most of the data points. Figures

3.18 shows that the näıve and effector cell data points are closer to the 45o purple

line which means that the fit for these population was good. From Figure 3.17 we

can conclude the following:

• The näıve and transitional memory cells decreased in cell count.

• The memory stem and effector cells increased in count.

• The transitional memory cell exhibit no change.
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Param Lin-all s.e Stoch-all s.e Lin-non s.e

λ 12.56407 61 12.56407 8.5 8.96240 1.1e+006

pN 0 0.064 0 7.5e-011 0.07369 6.2e+004

pST 0 0.29 0 2.2e-010 0.00396 7e+004

pC 0 0.022 0 5.6e-011 0 0.039

pT 0 0.21 0 6.6e-010 0.00141 5.7e+005

pE 0.08672 4.1 0.08672 0.16 0.02939 1.3e+006

φN 0.13401 0.77 0.13401 0.075 0.13602 1.3e+003

φST 0.51269 3.8 0.51269 0.58 0.48367 4.8e+004

φC 0.12176 1.5 0.12176 0.06 0.12000 2.3e+005

φT 0.31359 4.8 0.31359 0.31 0.32529 9.1e+005

dN 0 0.21 0 2.1e-010 0.00918 3.2e+004

dST 0 0.8 0 1.9e-009 0 0.046

dC 0.00082 2 0.8 0.00082 0.00148 2.3e+005

dT 0.01461 8.4 0.01461 0.16 0.01267 1.4e+006

dE 0.31986 6.1 0.31986 0.3 0.31500 1.7e+006

AIC 450.60 448.60 232.66

CPU(sec) 4.13e+003 1.56e+004 2.48e+003

Table 3.11: Illustrates the fits obtained from the three fitting approaches with their

AIC and standard error measurements for patient 305.
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Figure 3.17: Individual fits for the näıve and memory CD4 T-cells for patient 305.
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Figure 3.18: Observed vs prediction outputs for patient 305.
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3.4 Parameter identifiablity, Over-fitting issues and Algo-

rithm Convergence

One of the most common problems in complex biological models is that some

parameters cannot be estimated by fitting the simplest proposed model. Using all

the fitting routines in Monolix and Stan, we have faced several fitting problems

where even if the parameters were identifiable they were not properly estimated and

some parameters were not identifiable using the clinical data measurements.

When fitting the observations to our dynamical model, we had some parameters

that were not identifiable such as the proliferation rates in some patients. This was

evident in both the fits done in Monolix and Stan. These fitting issues could be a

result of the assumptions we made when describing the transition from the näıve to

the effector memory state as linear. In addition, in some cell populations for some

patients, we had the over fitting issue where the number of unknown parameters

exceeded the number of observations. The model specification was evident in the

prediction vs observed Figures (3.3,3.5,3.7,3.9,3.12,3.14,3.16,3.17) where the spline

and the data points were not always aligned with the 45o line. This indicates that

the model was not able to successfully replicate the clinical study.

An additional complication includes the fact that the fitting algorithm may get

stuck in a local minimum or maximum rather than the global one. And, as we have
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no prior knowledge about the parameters, it was challenging to give a closest initial

guess in order to get a better fit.

In conclusion, we have seen that using the model linearization of the Fisher Informa-

tion Matrix to calculate the standard error was the most suitable method. Restricting

our model to the non-modified näıve and memory CD4 T-cell, the model was able

to capture the data more successfully as it resulted in having smaller AIC values.

As well, the observed vs prediction graphs showed that when ignoring the modi-

fied cell population, the data points were closer to the 45o line, indicating a better fit.
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4 Sensitivity and Uncertainty Analysis

4.1 Introduction

In chapter 3, we have presented several parameter estimation results using

various fitting techniques. It is of interest to determine which parameters most

affect the T-cell count at different observation points. We now use sensitivity and

uncertainty analysis to determine such importance. In this chapter, using both

Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficient values

(PRCC), we will explore the effect of each of the fifteen model parameters on the

five näıve and memory CD4 T-cells along with the total CD4 T-cell counts over 200

days after the initiation of the treatment for each of the three cohorts. This chapter

is organized as follow:

• In section 3.1 we will introduce the LHS and PRCC concepts.

• In section 3.2, we will present the observed changes in the proliferation, death

and transition rates from baseline. Moreover, we will investigate the relative
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significance of each of the model parameters in relation to each of the näıve

and memory CD4 T-cell population size using the PRCC values.

4.2 Uncertainty Sensitivity Analysis: LHS and PRCC

LHS

Latin Hypercube Sampling, first proposed by Mckay in 1979, is a statistical sampling

method that belongs to the Monte Carlo class of sampling method [41]. It is a

stratified sampling without replacement techniques. Using a sample size N, the

algorithm partitions the random parameter distributions into N equally probability

intervals independently. A Latin Hypercube Sampling matrix is generated that

consists of N rows and k columns, where k is the number of parameters and N is

the number of run or simulations[41].

Partial Rank Correlation Coefficient- PRCC and Sensitivity Analysis

The PRCC is a correlation coefficient in statistics, known to measure the strength

of the linear association between a given input xj and an output y. It is defined by

the ratio between the covariance of xjy and sqrt of the product of the variance of

xj and y as illustrated in the equation below:

CC =
COV (xjy)√
V ar(xj)V ar(y)

(4.1)

The PRCC value vary between -1 and +1, where -1 indicating a strong negative
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correlation and the +1 a strong positive correlation. Any correlation less than

+0.5 and greater than -0.5 is assumed to be a non significant correlation [41]. A

positive correlation indicates that as we increase the model parameter the output will

increase and similarly a negative indicates that as we increase the model parameter

the output will decrease. Combining both of the PRCC and LHS, we are able

to draw some conclusions about the significance of some unknown parameters on

specific model outputs.

4.3 Sensitivity Analysis

In Chapter 3, results of the parameter estimations, have presented the fits

obtained before the initiation of the treatment (at baseline), and the ones obtained

after the initiation of treatment. The best two fits obtained from the Monolix and

the fit obtained from the Stan software will be used in this section, in order to

highlight any significant changes in the parameter values. This will better inform us

how the perturbation by the CCR5-down-modulated memory CD4 T-cell affected

any of the five näıve and memory CD4 T-cell sub-populations behaviors (birth,

death, proliferation and transition). Later, using the PRCC values obtained by the

sensitivity analysis, we analyze the correlation between the model parameters and

each of the näıve, memory stem, central, transitional, effector and total memory

CD4 T-cells using the deterministic model given by the Eq’s 2.1 and 2.2. In this
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work, we will explore the time dependent significance of the fifteen model parameters

on the five näıve and memory CD4 T-cell subsets count over the course of 200

days. We have picked 200 days for these simulations as we have seen that the

system populations reach a steady state approximately 80 days post initiation of

the clinical trial. The PRCC variables are the fifteen model parameters and the

output are the näıve, stem, central, transitional, effector and total memory CD4

T-cells. Throughout this work, we defined the total count for the näıve and memory

CD4 T-cells as the sum of all the five sub-populations at time, t.

We used 10000 bins to run the LHS code in Matlab for all of the nine patients.In

this work we will consider that any PRCC values smaller than 0.5 or bigger than

-0.5 is said to be not significant[41]. A positive correlation indicates that the model

variables and the output have a proportional relationship. This means that as

we increase the parameter value the output will increase. A negative correlation

indicates that the model parameter and the output have an inverse proportional

relationship. This indicates that an increase in the parameter will yield to a decrease

in the output. Throughout this chapter, we will be using the symbols to refer to

each of the fifteen parameters as illustrated in Table 2.2.

104



4.3.1 Low Dose Cohort

The low dose cohort represents the three patients that received a single infusion

of autologous CCR5-modified (SB-728-T) 1.0 x 1010 cells. All of the baseline

measurements are measured seven days prior to the infusion of the CCR5 modified

T-cells. The three patients had a mixed range of CD4 T-cell at baseline that varied

between low, medium and high levels.

4.3.1.1 Patient 103

At baseline, this patient had the lowest count of 188 CD4 T-cell per µL. Looking

at table 4.1 we can note the following observations about each of the five sub-

population behaviors:

• The number of näıve CD4 T-cells λ produced by the thymus decreased.

• The proliferation rates for the central memory pC and transitional memory pT

increased. The proliferation rate of the effector memory cells pE has increased

by one order of magnitude.

• The transition rates for all of the cells remained the same except for the

transition rate of the transitional memory cell φT that had a slight increase.
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• The death rates for the näıve dN and stem memory cells dST have decreased

by one order of magnitude. This means that their lifespans have increased

considerably by 100 days.

• The death rates for the central memory dC , transitional memory dT and

effector memory dE cells have increased slightly.

As for the sensitivity analysis obtained over 200 days we observe the followings from

Figures 4.1, 4.2 and 4.3:

Näıve Cell:

In Figures 4.1, we can see that although the thymic production rate λ has a signif-

icant effect soon after the treatment, but this effect started to fade 20 days post

treatment. The proliferation rate of the näıve cell pN , has a significant positive

correlation with the näıve cell population. However, the transition rate φN has a

negative correlation, where if the näıve cells transition to the memory stem cell

in a higher rate the number of the näıve cell will decrease. These findings are

expected as we had a decrease in the death rate dN , thus the proliferation rate pN is

able to exhibit a positive correlation that results in an increase in the näıve cell count.

Memory Stem cell
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The näıve cell proliferation rate pN has a positive correlation with the memory stem

cell count. This could be explained by the fact that as the number of the näıve cell

increase, a higher number of näıve cells are going to transition to the memory stem

cell state. The transition rate of the transitional memory cell φST has a positive

correlation. Moreover, for the first 20 days post treatment, the effector memory cell

death rate dE had a positive correlation with the memory stem cell count. This

result could indicate a possible transition between the effector, transitional memory

cell and the memory stem cells. Finally the transition rate of the memory stem

cell population φST has a negative correlation with the stem cell population count

which is an expected correlation as the more the cells leave the memory stem state

its population count will decrease.

Central Memory Cell

The central memory cells had similar results to the memory stem cell population

where the näıve proliferation rate pN had a positive correlation. This could indicate

a possible backward transition between the memory stem and central memory cells.

Similarly to the above cell populations, the transition rate of central memory cells

phiC has a negative correlation with the central memory population count.

Transitional Memory cell
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Consistent with the results of memory stem and central memory cells, proliferation

of näıve cells pN is positively correlated with transitional cell population. Similarly

the transition rate of the transitional memory cell population φT is negatively

correlated with its cell population which indicates that the more the cells are leaving

the transition state the lower the population count is becoming.

Effector Memory cell

Similarly, the effector cells were positively correlated with the näıve cell proliferation

rate pN . As for the first 50 days post injection of the down-modulated memory CD4

CCR5 cells, both the transition rates of the transitional memory φT and central

memory cells φC have a positive correlation with the effector memory cell population.

This indicates that the transitional and central memory cells play an important role

in increasing the effector memory cells population count. Lastly, the death rate of

the effector memory cell dE has a significant negative correlation with the effector

memory cell count. This result is consistent with the parameter estimation as the

effector memory cell death rate increased after the initiation of the clinical trial in

this patient.

Total näıve an memory CD4 T-cell

The total number of näıve and memory CD4 T-cells were negatively correlated

with the näıve cell transition rate φN and positively correlated with the näıve cell
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proliferation rate pN and the effector memory cell death rate dE. This indicates that

for patient 103, the näıve cell population plays an important role in the reconstitution

of the total CD4 T-cell. Furthermore, an increase in the effector memory cell death

dE can indicate a possible increase in their activity against the HIV virus.

Parameters Baseline Non-modified T-cell SATN fit Min-Max

λ 9.171294443 6.13933 2.7117 2.7117-9.1712

pN 0.001154901 0.000201 0.0109 0.000201-0.0109

pST 0.011031316 0.00640 0.2590 0.0064-0.2590

pC 0.010900323 0.08209 0 0-0.09

pT 0.021644028 0.06390 0.0887 0.021644-0.0976

pE 0.033551917 0.41340 0 0-0.483

φN 0.215314186 0.21732 0.0973 0.0973-.21732

φST 0.463596696 0.46060 0.3590 0.3590-0.46359

φC 0.105280147 0.11722 0.0373 0.0373-0.117

φT 0.247796071 0.33989 0.1886 0.18866-0.33989

dN 0.01040803 0.00608 0.0136 0.00565-0.0136

dST 0.01108572 0.00685 0 0-0.011085

dC 0.003333333 0.00564 0.0627 0.00249-0.0627

dT 0.023361168 0.03274 0 0-0.03274

dE 0.375021515 0.49776 0.1 0.1-0.49776

Table 4.1: Illustrates the data fitting results and the range used in the LHS for pat

103. These values are the rates per day−1.
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Figure 4.1: Correlation between the N, STM T-cell and the 15 parameters over 200

days for pat 103.
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Figure 4.2: Correlation between the CM and TM T-cell and the 15 parameters over

200 days for pat 103.
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Figure 4.3: Correlation between the EM and total CD4 T-cell and the 15 parameters

over 200 days for pat 103.

112



4.3.1.2 Patient 102

At baseline, this patient had a somewhat high count of 439 CD4 T-cell per µL.

Looking at Table 4.2 we can note the following observations about each of the five

sub-population behaviors:

• The number of näıve CD4 T-cells produced by the thymus λ increased.

• The proliferation rates for the näıve pN , memory stem pST and effector memory

cells pE increased by one order of magnitude.

• The proliferation rates for the transitional memory cell pT decreased by one

order of magnitude.

• The transition rate of the central memory cells φC decreased by one order of

magnitude.

• The transition rate of the memory stem cell φST increased by half its value.

• The death rates for the näıve dN and stem memory celldST decreased by one

order of magnitude. This indicates that their lifespan increased by 100 days

considerably.

• The death rate for the effector memory cell dE increased by one order of

magnitude.
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As for the sensitivity analysis obtained over 200 days we observe the followings from

Figure 4.4 and 4.5 and 4.6:

Näıve Cell:

The sensitivity analysis agrees well with the parameters estimations results presented

in Table 4.2. The parameters λ and pN have a positive correlation with the number

of näıve cell population. The transition rate of the näıve cell φN has a negative

correlation.

Memory Stem cell

While the näıve cell thymic production rate λ, and both the memory stem pST and

näıve cell proliferation pN rates are positively correlated with the memory stem cell

population, the transition rate φST has a negative correlation. This indicates that

the näıve cells play an important role in the memory stem cell population.

Central Memory Cell

The importance of the näıve cell production rate from the thymus λ continues

to exhibit a positive correlation with the central memory cell population in this

patient. The proliferation rate for the näıve pN and memory stem cell pST started

to display a positive correlation with the central memory cell population about 30

days post injection of the clinical trial. This could be justified by the delayed effect
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of the modified memory CD4 T-cell, as before the treatment patient 102 had a low

proliferation rates for the näıve pN and memory stem cell populations pST . Both

the death and transition rates for the central memory cells dC , φC have a negative

effect on the central memory cell count.

Transitional Memory cell

Similar to the näıve cell production rate λ, along with the näıve and memory stem

cell proliferation rates pN and pST have a positive effect on the transitional cell

population count. Moreover, the transition rate of the central memory cell φC has a

positive correlation as well, indicating the importance of the central memory count

in replenishing the transitional memory cell population, which explains the negative

correlation between the central memory cell death rate dC and the transitional

memory cell population. Finally, as the proliferation rate pT decreased after the

infusion of the modified memory CD4 T-cells, the transition rate of the transitional

cell φT displayed a negative correlation with the transitional memory cell population.

Effector Memory cell

The importance of the näıve, memory stem and central memory cells persist as well

in the effector memory cell count. This is shown by the positive correlation of the

näıve cell production rate λ, the central memory cell transition rate φC and prolif-
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eration of both the näıve pN and memory stem pST cell with the effector memory

cell population. In addition to the above positive correlations, the importance of

the central memory cells is evident in the negative correlation between the central

memory death rate dC and the effector memory cell population. These observations

indicate that the central memory, näıve and memory stem cell play an important

role in the effector memory cell population. As the death rate of the effector memory

cell dE has a significant increase, its negative correlation with the effector memory

population is also observed.

Total näıve an memory CD4 T-cell

The important effect of the näıve and memory stem cells on the replenishment of

the total number of CD4 T-cell is apparent by the positive correlation of the näıve

cell production rate λ, along with the proliferation rates of both the näıve pN and

memory stem cell pST . This justifies the negative correlation between the transition

rates of the memory stem cell φST , näıve cell φN and the central memory cell φC

with the total number of CD4 T-cells. Lastly, the death rate of the central memory

cell dC was negatively correlated with the total number of CD4 T-cell illustrating

the importance of the central memory cell. These results indicates that the memory

stem cell, central memory and näıve cell play an important role in increasing the

total number of CD4 T-cell population.
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Parameters Baseline Non-modified T-cell SATN fit max-min

λ 9.171294443 13 7.4924 7.4924-18.2

pN 0.001154901 0.087105 0.0200 0.0011549-0.0871

pST 0.011004862 0.10033 0.1375 0.01100-0.159

pC 0.010980541 0.03179 0 0-0.0511

pT 0.021644028 0.0018056 0.0880 0.000167-0.0880

pE 0.033551917 0.18993 0 0-0.268

φN 0.215314186 0.19645 0.1171 0.1171-0.227

φST 0.463596696 0.23481 0.2375 0.235-0.463596696

φC 0.105280147 0.096345 0.0281 0.0281-0.10528

φT 0.247796071 0.36969 0.1880 0.1880-0.319

dN 0.01040803 0.0071514 0.0028 0.0028-0.010408

dST 0.01108572 0.004742 0 0-0.011085

dC 0.003333333 0.004742 0.0719 0.00333-0.0719

dT 0.023195675 0.020894 0 0-0.0408

dE 0.09096808 0.31554 0.1 0.0909-0.31554

Table 4.2: Illustrates the data fitting results for pat 102 along with the PRCC range.

These values are the rates per day−1.

117



Figure 4.4: Correlation between the N and STM T-cell and the 15 parameters over

200 days for pat 102.
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Figure 4.5: Correlation between the CM and TM T-cell and the 15 parameters over

200 days for pat 102.
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Figure 4.6: Correlation between each the EM and total CD4 T-cell and the 15

parameters over 200 days for pat 102.
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4.3.1.3 Patient 104

At baseline, this patient had a low count of 261 CD4 T-cell per µL. Looking

at Table 4.3 we can note the following observations about each of the five sub-

population behaviors:

• The number of näıve CD4 T-cells produced by the thymus λ slightly increased.

• The proliferation rates for the näıve pN , memory stem pST and central memory

cells pC have decreased.

• The transition rates for the näıve φN , memory stem φSTand central memory

cells φC decreased by one or two order of magnitude.

• The death rate for the memory stem cell dST decreased by one order of

magnitude. In addition, the death rates for both the näıve pN and transitional

memory cells pT slightly decreased.

• The central memory dC and effector memory cells dE have a doubled death

rate from baseline.

As for the sensitivity analysis obtained over 200 days we observe the following from

Figure 4.7, 4.8 and 4.9:
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Näıve Cell:

While the thymic production rate λ has a positive correlation with the näıve cell

population, the näıve cell transition rate φN has a negative correlation.

Memory Stem cell

Whereas the thymic production rate λ and the memory stem cell proliferation pST

rate both display a positive correlation with the memory stem cell population, the

transition rate of the stem cell φST had a negative correlation. As the memory stem

cell death rate dST decreased by one order magnitude after the initiation of the

clinical trial, it was expected that a negative correlation with the memory stem cell

population would be observed.

Central Memory Cell

The significant effect of the thymic production rate λ on the central memory cell

population is not detected as the PRCC value is 0.4 indicating a trivial positive

correlation. This is due to the low increase in λ. The proliferation rate of the central

memory cell pC and the transitional cell transition rate φT both display a positive

correlation with the central cell population. The death rate of the central memory

cell dC have a negative correlation with the central memory cell as the death rate

increased after the initiation of the treatment.
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Transitional Memory cell

Proliferation rates of both the transitional memory pT and central memory cell pC

were positively correlated with the the transitional cell population. The central

memory death rate dC is shown to have a negative correlation with the transitional

cell population. However, as the death rate of the transitional cell dT did not exhibit

any change after the initiation of the treatment it did not have any significant

negative correlation with the transitional memory cell population. In addition, the

transition rate of the transitional cell φT displays a negative correlation with the

transition cell population.

Effector Memory cell

Both the central dC and effector memory cells dE death rates have a significant

negative correlation with the effector memory cell population as these rates increased

after the introduction of the down modulated CCR5 CD4 T-cells. The proliferation

rates of both the central memory pC and transitional memory pT cell display a

positive correlation with the effector cell population. These results highlight the

importance of both the transitional and central memory cells on the reconstitution

of the effector memory cell population.
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Total näıve an memory CD4 T-cell

The central memory cell population is shown to play an important role in most of

the memory CD4 T-cell populations as illustrated above. Hence, it is expected that

we continue to observe such importance in the total number of CD4 T-cell. The

sensitivity analysis highlights the importance of the central memory cell population

on the reconstitution of the CD4 T-cell where the proliferation rate of the central

memory cell pC is positively correlated with the total number of CD4 T-cell and

the central memory cell death rate dC has a negative correlation.
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Parameters Baseline Non-modified T-cell SATN fit max-min

λ 7.696589511 8.73264 6.4731 6.4731-9.44

pN 0.001155414 0 0.0413 0-0.0413

pST 0.010973075 0.00551 0.0213 0.004171-0.0213

pC 0.051117 0.0036500 0 0-0.05117

pT 0.021644028 0.00181 0.0590 0.00181-0.0590

pE 0.033596587 0.01390 0 0-0.03359

φN 0.267280553 0.12537 0.1401 0.125-0.26728

φST 0.467331743 0.00679 0.1158 0.00679-0.467331

φC 0.105280147 0.07149 0.0256 0.0256-0.10258

φT 0.249489254 0.32044 0.1584

dN 0.008914073 0.00261 0.0012 0.0012-0.008914

dST 0.01108572 0.00836 0.0054 0.0054-0.011085

dC 0.003333333 0.0715 0.0744 0.003333-0.0744

dT 0.023187029 0.01873 0.0007 0.0007-0.01873

dE 0.288952838 0.47502 0.1 0.1-0.47502

Table 4.3: Illustrates the data fitting results for pat 104. These values are the rates

per day−1.
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Figure 4.7: Correlation between the N and STM T-cell and the 15 parameters over

200 days for pat 104.

126



Figure 4.8: Correlation between the CM and TM T-cell and the 15 parameters over

200 days for pat 104.
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Figure 4.9: Correlation between the EM and total CD4 T-cell and the 15 parameters

over 200 days for pat 104.
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4.3.2 Medium Dose Cohort

The Medium dose cohort represents the three patients that received a single

infusion of autologous CCR5-modified (SB-728-T) 2.0 x 1010 cells. All of the baseline

measurement are measured seven days prior to the infusion of the CCR5 modified

T-cells.

4.3.2.1 Patient 203

At baseline, this patient had a low count of 294 CD4 T-cell per µL. Looking

at Table 4.4 we can note the following observations about each of the five sub-

population behaviors:

• The number of näıve CD4 T-cells produced by the thymus λ did not have a

large increase.

• While the proliferation rates for the näıve pN and memory stem pST increased

by at least one order of magnitude, the proliferation for the rest of the memory

CD4 T-cell subsets decreased.

• The transition rate for the transitional memory cell φT has a significant

increase.
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• The death rate for the näıve dN , memory stem cell dST , central dC and

transitional memory cells dT have a very significant decrease.

• The effector memory cell death rate dE doubled.

As for the sensitivity analysis obtained over 200 days we observe the followings from

Figure 4.7 and 4.8:

Näıve Cell:

Similar to patient 104, the näıve cell population was positively correlated with the

näıve cell production rate λ and negatively correlated with the näıve cell transition

rate φN . It is important to mention that patients 104 and 203 have similar baseline

count of the CD4 T-cell before they received the experimental treatment. As the

death of the näıve cell dN did not experience any significant change after the initia-

tion of the clinical trial, in the sensitivity analysis we observed that it did not have

any significant correlation rate with the näıve cell population.

Memory Stem cell

The näıve cell production rate λ display a positive correlation with the stem cell

population. The transition rate of the näıve cell φN has a positive correlation only

for the first 30 days post treatment. This observation could be justified by the fact
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that the transition rate of the näıve cell population did not exhibit any significant

increase post treatment. The memory stem cell transition rate φST is negatively

correlated with its cell count. The death rate of the memory stem cell dST did not

show any negative correlation as this rate decreased notably from baseline.

Central Memory Cell

The näıve cell production rate λ maintains its positive correlation even with the

central memory cell population. Similarly both the transition rates for the näıve

φN and memory stem cell φST were only positively correlated for 30 days post

treatment. This is a valid observation as both of those transition rates did not

have any significant increase from the baseline. The transition rate of the central

memory cell φC had a negative correlation with its population. The death rate

dC did not express any negative effect as it decreased after the introduction of

the down modulated CCR5 CD4 T-cells. The transitional and effector memory

population have similar results to the central memory cells. However, the death

rate of the effector memory cell dE showed a strong negative correlation with the

effector memory cell population as this rate increased notably after the infusion of

the modified CD4 T-cell.

Total näıve an memory CD4 T-cell
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As a result of the above observations, only the production rate of the näıve cell by

the thymus λ has a positive effect on the reconstitution of the total number of CD4

T-cell. The transition rates for central memory φC and näıve cells φN had a strong

negative correlation with the total CD4 T-cell count. This indicates that the central

memory and näıve cell population are the main sub-populations that contribute

to the total CD4 T-cells in this patient. Even though patients 203 and 104 had a

similar CD4 T-cell count at baseline, both had different outcomes when it came to

the importance of the central memory and näıve cell on the reconstitution of the

total number of CD4 T-cell. While for patient 104, who had half of the modified CD4

T-cell dose compared to patient 203, the central memory cell played an important

role in the total CD4 T-cell, as the proliferation rate for the central memory cellpC

was very small. However, this patient had a significantly higher increase compared

to the one from the low dose cohort. This indicates the importance of having a

higher dose of modified CD4 T-cell injected.
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Parameters Baseline Non-modified T-cell SATN fit max-min

λ 9.108148985 10.6 6.94229 6.94229-10.28664

pN 0.0011482771 0.159 0.0094 0-0.18386

pST 0.011020353 0.132 0.1243 0-0.1243

pC 0.010895753 0.000514 0 0-0.01089

pT 0.021563362 0.00117 0.0030 0-0.144

pE 0.033205325 0.0221 0 0-0.033205

φN 0.164397745 0.251 0.1041 0.1041-0.251

φST 0.464899662 0.337 0.2243 0.2243-0.751

φC 0.105562369 0.145 0.0225 0.0225-0.145

φT 0.249269451 0.638 0.0780 0.07801-0.638

dN 0.010241378 0.000576 0.0080 0.000576-0.10241

dST 0.011141735 0 0 0-0.011141

dC 0.003333333 0 0.0775 0-0.0775

dT 0.023361168 0.00224 0.0249 0.00224-0.0667

dE 0.375021515 0.0221 0.1 0.1-0.0221

Table 4.4: Illustrates the data fitting results for pat 203 and the PRCC ranges.

These values are the rates per day−1.
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Figure 4.10: Correlation between the N and STM T-cell and the 15 parameters over

200 days for pat 203.
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Figure 4.11: Correlation between the CM and TM T-cell and the 15 parameters

over 200 days for pat 203.

135



Figure 4.12: Correlation between the EM and total CD4 T-cell and the 15 parameters

over 200 days for pat 203.
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4.3.2.2 Patient 201

At baseline, this patient had the highest count of 525 CD4 T-cell per µL com-

pared to the other eight patients. Looking at Table 4.5 we can note the following

observations about each of the five sub-population behaviors:

• The number of näıve CD4 T-cells produced by the thymus,λ doubled in count.

• The proliferation rates for the näıve pN , central memory pC , transitional

memory pT and effector memory cells pE decreased.

• The proliferation rates for the memory stem cell pST increased by one order

of magnitude.

• The transition rates for the memory stem φST and central memory cells φC

decreased by one order of magnitude.

• The death rate of the näıve dN , memory stem dST and central memory cells

dC decreased by one order of magnitude.

• The death rate of the effector memory dE and transitional memory cells dT

increased.

As for the sensitivity analysis obtained over 200 days we observe the followings from
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Figure 4.13, 4.14 and 4.15:

Näıve Cell:

Similar to patient 203, the production rate of the näıve cell from the thymus λ had

a positive correlation with the näıve cell population. Only the näıve cell transition

rate φN had negative correlation on the näıve cell population count. The death rate

dN did not have any effect as it decreased significantly after the treatment initiation.

Memory Stem cell

The näıve cell production rate λ started to show a significant effect on the memory

stem cell count about 50 days post treatment. The näıve cell transition rate φN had

a positive correlation with the memory stem cell population for only about 50 days

post treatment. This is because the näıve cell transition rate did not increase by

much after the initiation of the clinical study. The memory stem cell proliferation

rate pST showed a negative correlation with the memory stem population. Death rate

of the memory stem cell dST did not show any negative correlation as it decreased

notably after the introduction of the down-modulated CCR5 CD4 T-cells.

Central Memory Cell

Likewise, the central memory cells show a similar result to patient 203 where the
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transition rates of both the näıve φN and memory stem φST cells had a positive

correlation with the central memory cell count for about 20 and 50 days respectively.

In addition, the central memory cell transition rate φC exhibits a negative correlation.

Death rate of the central memory cell dC did not show any negative correlation as it

did have a significant decrease after the introduction of the down-modulated CCR5

CD4 T-cells as shown in the parameter estimation results.

Transitional Memory cell

The central memory cell death rate dC and the transition rate of the transitional

memory cell φT both had a negative correlation with the transitional memory cell

population. In addition, the näıve cell production rate from the thymus λ along

with the transition rate of the central memory cell φC were positively correlated

with the transitional memory cell population. This indicates the importance of the

central memory cell on the transitional memory cell population.

Effector Memory cell

While the näıve cell production rate λ, started to show a significant positive correla-

tion (PRCC greater than 0.5) about 80 days post injection of the treatment, the

significant positive correlation of the transitional memory cell started to decrease

about 80 days post treatment. The transition rates for both the näıve φN and central

139



memory cell φC had a strong positive correlation with the effector memory cell

count. The death rate of the näıve cell dN started to exhibit a negative correlation

with the effector cell population 30 days post treatment initiation. These results

indicates that the näıve and central memory cells play a very important role in the

reconstitution of the effector memory cell population.

Total näıve an memory CD4 T-cell

The sensitivity analysis results carried on the total number of CD4 T-cell for patient

201 emphasizes the importance of the näıve and central memory cell populations

on the reconstitution of the total CD4 T-cell count. This was illustrated in the

negative correlation between the central memory cell death rate dC and the näıve

cell transition rate φN on the total CD4 T-cell count. In addition the näıve cell

production rate λ had a positive correlation on the total CD4 T-cell count. It is

essential to mention that this patient had the highest count of the total CD4 T-cell

after three years post treatment between all the nine patients.
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Parameters Baseline Non-modified T-cell SATN fit min-max

λ 10.92205104 20.36874 19.3183 10.92205-24.9

pN 0.001137926 0 0.0576 0-0.0576

pST 0.011052071 0.52791 0.0012 0-0.52791

pC 0.011060716 0 0 0-0.044

pT 0.021671103 0 0.0155 0-0.916

pE 0.033205324 0 0 0-0.0332

φN 0.074641585 0.09417 0.1576 0.0746-0.1576

φST 0.464899665 0.09583 0.0984 0.09583-0.567

φC 0.102277319 0.09125 0.0276 0.0271-0.102227

φT 0.244401048 0.26178 0.0429 0.0429-0.262

dN 0.011824865 0.00297 0 0-0.01182

dST 0.011087322 0.00029 0.0058 0-0.01108

dC 0.003333333 0.00004 0.0724 0.00004-0.0724

dT 0.023222656 0.07113 0.0571 0-0.07113

dE 0.44672007 0.61700 0.1 0-0.617

Table 4.5: Illustrates the data fitting results for pat 201 and the PRCC ranges.

These values are the rates per day−1.
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Figure 4.13: Correlation between the N and STM T-cell and the 15 parameters over

200 days for pat 201.
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Figure 4.14: Correlation between the CM and TM T-cell and the 15 parameters

over 200 days for pat 201.
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Figure 4.15: Correlation between the EM and total CD4 T-cell and the 15 parameters

over 200 days for pat 201.
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4.3.2.3 Patient 302

At baseline, this patient had a high count of 413 CD4 T-cell per µL. Looking

at Table 4.6 we can note the following observations about each of the five sub-

population behaviors:

• The number of näıve CD4 T-cells produced by the thymus λ had a slight

increase.

• The proliferation rates for the näıve pN and memory stem cell pST increased

by one order of magnitude.

• The transition rate for the näıve φN and transitional memory cell φT increased.

• The death rate of the näıve dN , stem memory dST , central memory dC and

transitional memory dT cells decreased.

• The death rate of the effector memory cells dE increased.

As for the sensitivity analysis obtained over 200 days we observe the followings from

Figure 4.16, 4.17 and 4.18:

näıve Cell:

Similar to patient 201, while λ had a strong positive correlation with the näıve cell
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population, the transition rate of the näıve cell φN has a negative correlation. The

death rate dN did not exhibit any negative correlation as this rate decreased after

the injection of the down-modulated CCR5 CD4 T-cell.

Memory Stem cell

Similar to patient 201, the memory stem population is positively correlated with

λ, and for the first 30 days post treatment the näıve cell transition rate φN shows

a significant positive effect on the memory stem cell population. The stem cell

transition rates φST and death rate dST both have a negative correlation on the

stem memory cell count.

Central Memory Cell

The näıve cell production rate λ started to have a positive correlation on the central

memory cell population at about twenty days post treatment initiation. While the

memory stem cell transition rate φC has a positive correlation with the central

memory cell, the death rate of the memory stem cell dST has a negative correlation.

This indicates the importance of the memory stem cell on the central cell popula-

tion. In addition, the transition rate for the central memory cell φC is negatively

correlated. This is an expected result as the higher the transition rate the more the

cells are leaving the central state. Lastly, the transition rate of the näıve φN cell has
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a positive correlation with the central memory cell for only 30 days post treatment

initiation.

Transitional Memory cell

The transitional memory cell population has an equivalent result to the central cell,

where the näıve and memory stem cell have an important effect on the reconstitution

of the transitional memory cell. This finding is evident as the sensitivity analysis

revealed that the rate λ and the memory stem cell proliferation rate pST both have

a positive correlation with the transitional memory cell population and the memory

stem cell death rate dST is negatively correlated. Moreover, as the previous memory

sub-populations, the transition rate of the transitional memory cell φT has a negative

correlation with the transitional memory cell population.

Effector Memory cell

The näıve and transitional cells have a positive correlation with the effector memory

cell population where the näıve cell production rate λ and stem cell transition rate

φST are strongly positively correlated with the effector memory population. In

addition, the effector memory proliferation pE rate has a very significant effect on

increasing the effector population count. The näıve and central memory transition

rates, φN and φC , have positive correlations with the effector memory cell popula-
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tions for about 30 days post treatment. This is a likely result to be observed as

both types of cells do not have a long lifespan compared to the memory stem cell.

Lastly, the death rate of the effector dE and memory stem cell dST have a negative

correlation with the effector memory population.

Total näıve an memory CD4 T-cell

From the observations drawn above, it is evident that the näıve cell production rate

by the thymus λ plays an important role in increasing the total number of CD4

T-cell. Moreover, the transition rates for the näıve φN and transitional memory

cells φT had a negative effect on the total CD4 T-cell count. The importance of the

stem cell population continues to be evident where its death rate dST has a negative

effect on the increase of he CD4 T-cell population. This concludes that both the

näıve and memory stem cells both are important in the reconstitution of the total

CD4 T-cell count for patient 302.
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Parameters Baseline Non-modified T-cell SATN fit min-max

λ 8.764999372 13.6 16.1964 8.76499-16.1964

pN 0.001154028 0.189 0 0-0.189

pST 0.01097524 0.0914 0.0107 0.0107- 0.0914

pC 0.010877232 0.106 0 0-0.106

pT 0.021672918 0.00575 0.0356 0-0.0356

pE 0.033205325 0.274 0 0-0.0.274

φN 0.049752123 0.191 0.0517 0.0497-0.191

φST 0.465153919 0.459 0.1024 0.102-0.459

φC 0.110786451 0.325 0.0314 0.0314-0.325

φT 0.247755424 0.832 0.1341 0.1341-0.0.832

dN 0.010007563 0.000541 0.0483 0-0.0483

dST 0.011147981 0.00057 0.0083 0-0.01147

dC 0.003333333 0.106 0.686 0-0.686

dT 0.023187029 0.19 0.0015 0.00052-0.19

dE 0.288952838 0.796 0.1 0.1-0.796

Table 4.6: Illustrates the data fitting results for pat 302 and the LHs ranges. These

values are the rates per day−1.
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Figure 4.16: Correlation between the N and STM T-cell and the 15 parameters over

200 days for pat 302.
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Figure 4.17: Correlation between the CM and TM T-cell and the 15 parameters

over 200 days for pat 302.
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Figure 4.18: Correlation between the EM and total CD4 T-cell and the 15 parameters

over 200 days for pat 302.
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4.3.3 High Dose Cohort

The high dose cohort represents the three patients that received a single infusion

of autologous CCR5-modified (SB-728-T) 3.0 x 1010 cells. All of the baseline

measurements are measured seven days prior to the infusion of the CCR5 modified

T-cells. The three patients had a range of high to medium CD4 T-cell count at

baseline.

4.3.3.1 Patient 305

At baseline, this patient has a somewhat high count of 480 CD4 T-cell per µL.

Looking at table 4.7 we can note the following observations about each of the five

sub-population behaviors:

• The number of näıve CD4 T-cells produced by the thymus λ slightly decreased.

• The proliferation rate for the näıve cell pN has increased by one order of

magnitude.

• The proliferation rates for the memory stem pST , central memory pC , transi-

tional memory pT and effector memory cells pE decreased.

• The transition rates for all of the five subsets remained somewhat constant.
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• The death rate of the näıve dN and memory stem cells pST decreased. However,

the death rate for the transitional memory pT and effector memory cells pE

remained constant.

As for the sensitivity analysis obtained over 200 days we observe the followings

from Figure 4.19, 4.20 and 4.21:

Näıve Cell:

Similar to most of the patients, the näıve cell production rate λ has a positive

correlation with the the näıve cell population. Only the näıve cell transition rate

φN has a negative correlation on the näıve cell population count. The death rate dN

did not have any effect as it decreased significantly after the treatment initiation.

Memory Stem cell

The näıve cell production rate λ continues to have a positive effect on the mem-

ory stem cell population count. The transition rate of the näıve cell φN displays

a positive correlation with the memory stem count only for about 30 days post

treatment initiation. This is a result of the decrease in the transition rate for the

näıve cell after the treatment as illustrated in the Table 4.7. The transition rate of

the memory stem cell φST is negatively correlated with its population.
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Central Memory Cell

Similarly to the memory stem cell, the näıve cell production rate by the thymus

λ continues to exhibit a positive correlation with the central memory cell count.

Moreover, the transition rates of the näıve φN and memory stem cells φST both have

a positive correlation with the central memory population for about 30 and 20 days

post treatment initiation respectively. The death and transition rates of the central

memory cell, dC and φC have a negative effect on the central memory cell popula-

tion count as these rates did not exhibit a decrease after the start of the clinical trial.

Transitional Memory cell

The central memory cell death rate dC and the transition rate of the transitional

memory cell φT both have a negative effect on the transitional memory cell popula-

tion count. In addition, the näıve cell production rate from the thymus λ along with

the transition rate of the central memory cell φC are positively correlated with the

transitional memory cell population. This highlights the importance of the central

memory cell on the transitional cell population. The näıve cell transition rate φN

has a positive correlation with the transitional memory cell population for about 50

days post treatment.

Effector Memory cell
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The importance of the central memory cell continues to be observed in the effector

memory population, where the central memory death rate dC has a negative corre-

lation with the effector memory population and the central memory transition rate

φC has a positive correlation. In addition, the näıve cell production rate λ has a

positive correlation. Similarly to the transitional cell population, the transition rate

for the näıve φN , and transitional memory φT cells have a positive correlation for

about 50 days post treatment. The death rate of the effector memory cell dE has a

negative correlation as this value increased significantly after the initiation of the

experimental treatment.

Total näıve an memory CD4 T-cell

The sensitivity analysis performed on the total CD4 T-cell count highlights the

importance of the central cell on the reconstitution of the CD4 T-cell, where the

death and transition rates of the central memory cells, dC and φC , both have a

negative correlation with the total CD4 T-cell count. The näıve cell population as

well has some effect on the total CD4 T-cell count where the production rate λ has

a positive effect and the transition rate φN has a negative correlation with the CD4

T-cell count. These results illustrates that for patient 305, the central memory and

näıve cells played an important role in the reconstitution of the total CD4 T-cell

count population.
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Parameters Baseline Non-modified T-cell SATN fit min-max

λ 10.51654578 8.96240 11.2318 8.96240-12.56407

pN 0.001136919 0.07369 0.0003 0-0.07369

pST 0.011035824 0.00396 0.1360 0.00396-0.1360

pC 0.010987609 0 0 0-0.010987609

pT 0.021796329 0.00141 0.0155 0-0.021796

pE 0.033211285 0.02939 0 0-0.033211285

φN 0.215314186 0.13602 0.0492 0.0492-0.215314

φST 0.464899665 0.48367 0.2358 0.2358-0.51269

φC 0.105961431 0.12000 0.0342 0.0342-0.1200

φT 0.233399786 0.32529 0.1082 0.182-0.3259

dN 0.011498048 0.00918 0.0511 0-0.0511

dST 0.011057469 0 0.0002 0-0.011057

dC 0.003333333 0.00148 0.0658 0.00082-0.0658

dT 0.023025425 0.01267 0.0073 0.0073-0.023025

dE 0.321528667 0.31500 0.1 0.1-0.32152

Table 4.7: Illustrates the data fitting results for pat 305 and the LHS ranges. These

values are the rates per day−1.
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Figure 4.19: Correlation between the N and STM T-cell and the 15 parameters over

200 days for pat 305.
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Figure 4.20: Correlation between the CM and TM T-cell and the 15 parameters

over 200 days for pat 305.
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Figure 4.21: Correlation between the EM and total CD4 T-cell and the 15 parameters

over 200 days for pat 305.
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4.3.3.2 Patient 303

At baseline, this patient had a somewhat medium level of CD4 T-cell count of

330 cells per µL. Looking at Table 4.8 we can note the following observations about

each of the five sub-population behaviors:

• The number of näıve CD4 T-cells produced by the thymus λ slightly increased.

• The proliferation rates for the näıve pN and transitional memory cell pT

increased by one order of magnitude.

• The proliferation rate for the central memory cell pC decreased by one order

of magnitude.

• The transition rate for the näıve cell φN increased by one order of magnitude.

• The transition rate for both the memory stem φST and central memory cells

phiC decreased.

• The death rates of the näıve dN , transitional memory dT and memory stem

cell dST decreased.

• The death rate of the central memory cell dC increased by one order of

magnitude.
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As for the sensitivity analysis obtained over 200 days we observe the followings

from Figures 4.22, 4.23 and 4.24:

Näıve Cell:

Similar to patient 303, the näıve cell production rate λ has a positive correlation

with the näıve dell population and the näıve transition rate φN has a negative

correlation. The death rate dN did not have any effect as it decreased significantly

after the treatment initiation.

Memory Stem cell

The memory stem cell proliferation rate PST has a strong positive correlation with

the memory stem cell population. However, unlike the previous patients, the thymic

production rate of näıve cell λ did not have a strong positive correlation on the

memory stem cell population. This could be explained by the fact that the näıve cell

death rate dN and production rate λ did not have a significant change from baseline.

The central memory death rate dc has a weak positive effect on the memory stem

cell population and the transition rate of the memory stem cell φST has a negative

correlation.

Central Memory Cell

The importance of the memory stem is still noticeable in the central memory popu-
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lation where its proliferation rate pST has a very strong positive correlation with

the central memory cell count. The näıve cell birth rate λ continues to exhibit a

weak positive correlation. the central memory cell death and transition rates, dC

and φC both are negatively correlated with the central cell population. This could

be a result of the increase in the central memory death rate dC after the initiation

of the treatment as shown in Table 4.8.

Transitional Memory cell

The memory stem cell continue to maintain its importance in the transitional

memory population, where its proliferation rate pST is strongly positively corre-

lated with the transitional memory cell population. In addition, while the central

memory cell death rate dC has a negative correlation with the transitional memory

cell populations, transition rate φC is positively correlated. This highlights the

importance of both the memory stem and central CD4 T-cells on the reconstitu-

tion of the effector memory cell. The näıve cell production rate by the thymus

λ does not exhibit a very strong positive effect. Lastly, the transition rate of the

transitional cell φT has a negative correlation with the transitional memory cell count.

Effector Memory cell

While the effector memory cells have similar results to the transitional cells when it
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comes to the importance of the central and memory stem cell, the transition rate of

the transitional memory cell φT is positively correlated with the effector memory

cell population. This is an expected result as the more cells are transitioning from

the transitional memory to effector memory state, the effector memory population

is exhibiting an increase in its count.

Total näıve an memory CD4 T-cell

It is expected to observe that the memory stem and central cell will play an impor-

tant role in the reconstitution of the total CD4 T-cell count. The memory stem

cell proliferation rate pST and the näıve cell production λ both have a positive

correlation on the total memory CD4 T-cell count. This indicates as we increase

these model parameters, the total CD4 T-cell population will increase. In addition,

the death rate of the central memory cell dC and the transition rate of the memory

stem cell φST are both negatively correlated with the total CD4 T-cell count. These

results indicates that the memory stem cell population have a very important role

in increasing or maintaining a high level of CD4 T-cell count in patient 303.
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Parameters Baseline Non-modified T-cell SATN fit min-max

λ 8.445704953 10.75440 10.2921 8.44570-32.5

pN 0.001153966 0.01191 0.0078 0-0.01191

pST 0.011042777 0.01122 0.0425 0.01104-0.991

pC 0.010995681 0.00737 0 0-0.010995

pT 0.021578612 0.27041 0.0007 0.00

pE 0.033205325 0.02316 0 0-0.03320

φN 0.082314245 0.10208 0.0986 0.0823-0.304

φST 0.464899661 0.11758 0.1419 0.11758-0.628

φC 0.107979023 0.09603 0.0196 0.0196-0.096

φT 0.247968152 0.24667 0.0575 0.0575-0.397

dN 0.009633584 0.00559 0.0093 0-0.0093

dST 0.011193147 0.00538 0.0006 0-0.01119314

dC 0.003333333 0.44393 0.0804 0.00333-0.44393

dT 0.023148944 0.01795 0.0431 0-0.0431

dE 0.515148304 0.49886 0.1 0.1-0.705

Table 4.8: Illustrates the data fitting results for pat 303 and the LHS ranges. These

values are the rates per day−1.
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Figure 4.22: Correlation between the N and STM T-cell subsets and the 15 parame-

ters over 200 days for pat 303.
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Figure 4.23: Correlation between the CM and TM T-cell subsets and the 15

parameters over 200 days for pat 303.
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Figure 4.24: Correlation between the EM and total CD4 T-cell and the 15 parameters

over 200 days for pat 303.
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4.3.3.3 Patient 304

At baseline, this patient had a somewhat medium level of CD4 T-cell count of

306 cells per µL. Looking at Table 4.9 we can note the following observations about

each of the five sub-population behaviors:

• The number of näıve CD4 T-cells produced by the thymus λ increased.

• The proliferation rates for the näıve pN and memory stem cell pST increased

by at least one order of magnitude.

• The proliferation rates for the central memory pC , transitional memory pT

and effector memory cells pE decreased.

• The transition rate for all the four subsets of cell increased.

• The death rate of the effector memory dE and central memory cells dC

increased.

• The death rate for the näıve dN , transitional memory dT and memory stem

cell dST decreased.

As for the sensitivity analysis obtained over 200 days we observe the following

from Figures 4.25, 4.26 and 4.27:
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näıve Cell:

While the näıve cell production rate λ is positively correlated with the näıve cell

count, the transition rate of the näıve cell φN has a negative correlation. The same

results were observed in both patients 305 and 303 from the same cohort. The death

rate dN did not have any effect as it decreased significantly after the treatment

initiation.

Memory Stem cell

The näıve cell production rate λ has a strong positive correlation with memory stem

cell population. As the transition rate of the memory stem φST cell had an increase

after the introduction of the down modulated CCR5 CD4 T-cells, it showed to have

a negative correlation with the memory stem population. The transition rates of

the näıve cell φN has a positive correlation with the memory stem cell population

for about 30 days post treatment initiation.

Central Memory Cell

Similar to the näıve and memory stem cell, the näıve cell production rate λ has a

positive correlation with the central memory cell population. While the transition

rate of the central memory cell φC has a negative correlation with the central

memory cell, the transition rate of the memory stem φST is positively correlated for
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about 40 days post treatment.

Transitional Memory cell

As The transitional memory cell has a positive correlation with the näıve cell pro-

duction rate λ, the transition rates for both the central memory and näıve cells,

φC and φN , both have a significant positive correlation for the first 40 days. The

death rate of the transitional cell dT along with the transition rate φT are negatively

correlated with the transitional memory cell count.

Effector Memory cell

The importance of the näıve and transitional cell are evident in the effector cell

population, as the näıve production rate by the thymus λ and the transitional cell

transition rate φT both have a strong positive correlation with the effector memory

population. Both the death rate for the transitional and effector memory cells, dE

and dT , are negatively correlated with the effector memory cell population.

Total näıve an memory CD4 T-cell

In the sensitivity analysis results obtained for the total number of CD4 T-cell, the

importance of the näıve cell population is evident where the näıve production rate λ

is the only parameter that has a positive effect on the total T-cell count. In addition,
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the transition rates for both the näıve and central memory cells, φN and φC , both

have a negative effect on the total CD4 T-cell count. The sensitivity analysis results

indicates that for patient 304 the näıve and central memory cells play an important

role in the reconstituting the total CD4 T-cell count as seen in both patients 303

and 305.
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Parameters Baseline Non-modified T-cell SATN fit min-max

λ 9.086416508 14.34899 8.3187 8.3187-48.2

pN 0.001154028 0.22369 0.0227 0-0.22369

pST 0.01097524 0.67151 0.1237 0-0.67151

pC 0.010877232 0 0 0-0.010877

pT 0.021672918 0 0 0-0.02167

pE 0.033205325 0.0232 0 0-0.0333205

φN 0.049752123 0.26594 0.1135 0.04975-0.304

φST 0.465153919 0.61831 0.2234 0.2234-0.61831

φC 0.110786451 0.26555 0.0533 0.0533-0.2655

φT 0.247755424 0.39893 0.0466 0.0466-0.491

dN 0.010007563 0 0.0092 0-0.010007563

dST 0.011147981 0 0.0004 0-0.0111479

dC 0.003333333 0.44 0.0467 0-0.44

dT 0.023187029 0 0.0534 0-0.0534

dE 0.288952838 0.99672 0.1 0.1-0.99672

Table 4.9: Illustrates the data fitting results for pat 304 and the LHs ranges. These

values are the rates per day−1.
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Figure 4.25: Correlation between the N and STM T-cell and the 15 parameters over

200 days for pat 304.
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Figure 4.26: Correlation between the CM and TM T-cell and the 15 parameters

over 200 days for pat 304.
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Figure 4.27: Correlation between the EM and total memory CD4 T-cell and the 15

parameters over 200 days for pat 304.
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4.3.4 Brief Summary

In this section we will summarize the results that we have presented in this

chapter. First we will summarize the interesting changes in some model parameters

by comparing the fits obtained at baseline and after the injection of the CCR5-

down-modulated memory CD4 T-cells, we have seen that the death rate of the

memory stem cells dST and the näıve cell dN have always decreased in magnitude

and for some patients it was 0. This finding further indicates that the injection

of the CCR5-down-modulated memory CC4 T-cells has succeeded in increasing

the lifespan of the näıve and memory stem cell subset population in all the three

HIV positive cohorts. In addition, patients who are categorized under the imm-

nunodiscordant group where the CD4 T-cell count is < 350 [31] and received a

low dose of the CCR5-down-modulated CD4 T-cells injection had a decrease or

no change in the naive cell production rate λ which was seen in patients 103 and

104. However, when immunodiscordant patients(203,304,303) received a higher

dose of the injection double or triple of the low dose cohorts, they experienced an

increase in the naive cell production λ as seen in patients 203, 304 and 303. As

for the immunoconcordant individuals, patients with CD4 T-cell count > 400 [31],

no matter what the injection dose was they experience an increase in the naive

cell production λ. The central memory cell death rate dC have increased in all
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immunodiscordant patients(103,104,203,303,304) along with two of the low and

medium dose cohorts that are immunoconcordant which had < 500 cells/µL. When

an immunoconcordant medium dose cohort patient had > 500 cell/µL and a high

dose immunoconcordant patients(305), the death rate of the central memory cells

dC decreased. The death rate of the transitional memory cell dT have increased in

low dose immunodiscordant individuals along with the immunoconcordant medium

dose cohort(201,302). However, it decreased in immunodiscordant medium and

high dose cohort(203,303,304) and high dose immunoconcordant individual (305).

The effector memory cell death rate dE, decreased in immunoconcordant high dose

cohort(305) and in immunodiscordant high and medium dose cohort(303,304,203).

dE increased in all low dose cohort(102,103,104) and immunoconcordant medium

dose cohort(201,302). As for the memoy stem cell proliferation rates pST , immun-

odiscordant low dose cohort(103,104) and immunoconcordant high dose cohort(305)

experienced a decrease. It is important to note that patient 305 is the only patient

who experienced a decrease in the total CD4 T-cell count 3 years after the treatment.

The immunodiscordant medium and high dose cohort (203,303,304) along with the

immunoconcordant low and medium dose cohort(102,201,302) have expereinced an

increase in the memory stem cell proliferation 3 years after the treatment initiation.

As for the uncertainty and sensitivity analysis results we obtained the following

result summary which can be summarized in the Tables 4.10, 4.11, 4.12,4.13 and

178



4.14 below:

• The näıve cell production rate λ had a positive correlation with all the näıve

and memory CD4 T-cells in all immunoconcordant individuals no matter what

the injected dose of the CCR5-down-modulated memory CD4 T-cells was along

with the high and medium dose immunodiscordant individuals(203,303,304).

However, the immunodiscordant low dose individuals did not experience that

significant importance of the näıve cell production rate λ on the näıve and

memory CD4 T-cell populations (patients 103 and 104).

• The proliferation rate of the central memory cell pC had a positive correlation

on the CD4 T-cell sub-populations when immunodiscordant low dose patients

did not have an increase in their näıve production rate after the treatment as

for pat. 104. In addition, immunoconcordant low dose pat 102 transitional

memory CD4 T-cell population had a positive correlation with the central

memory cell population. This further indicates that the central memory

cell proliferation rate was more important in low dose immunodiscordant

individuals that did not experience an increase in the näıve cell production

rate λ.

• The proliferation rates for memory stem cell pST and näıve cells pN had a pos-

itive correlation withe the CD4 T-cell subsets for low dose immunodsicordant
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and immunoconcordant individuals(102,103). Moreover, memory stem cell

proliferation rate pST had a positive correlation with the CD4 T-cell subsets

of high dose immunodiscordant individual 303. As for the immunodiscordant

low dose patient 104 where the näıve and memory stem cell proliferation rates

along with the näıve cell production rate λ did not play an important role,

the proliferation of the central memory cell pC had a positive correlation with

the CD4 T-cell sub-populations.

• The central memory death rate dC was negatively correlated with the CD4

T-cell population of the low dose immudiscordant and immunoconcordant

individuals(102,103,104). In addition we observed the same effect in all

immunoconcordant individuals regardless of the injected dose of CCR5-down-

modulated memory CD4 T-cell except for medium dose patient 302.

• The death rate of the memory stem cell population had a negative correla-

tion on the CD4 T-cell subsets only in the medium dose immunoconcordant

individual 302.

• The transition rate of the central memory cell φC had a negative correlation

on the total CD4 T-cell count and a positive correlation with the effector

and transitional memory CD4 T-cells in all high dose cohorts despite their

CD4 T-cell levels. In addition the same was observed in immunodisocrdant
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medium dose cohort patient 203. The näıve cell transition rate φN had a

negative correlation with the total CD4 T-cell count in medium and low

dose immunodiscordant individuals and one immunoconcordant high dose

individual that experienced a decrease in the total CD4 T-cell count after

three years as illustrated in table 1.1 in Chapter 1.

Now comparing the patients according to the injected CCR5-down-modulated

memory CD4 T-cells we can draw the following conclusions:

• For the low dose cohort, when the patient had a fairly high CD4 T-cell count

at baseline, at the end of the treatment the patient experienced a small amount

of increase in the Total CD4 T-cell count. The näıve and memory stem cells

played an important role in this increase. However, when the patient had a

fairly low amount of CD4 T-cell at baseline, after the reinstatement the count

of CD4 T-cell almost doubled. In these patients we observed two important

points. If the patients had an increase in the number of näıve cell after the

treatment, the näıve cells were the only population that played an important

role in this increase. But when the number of näıve did not have any significant

change, the central memory cell is the population that played an important

role in the increase of the T-cell count.

• For the medium dose cohort, when the patient had a low CD4 T-cell count
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at baseline, the näıve and central memory cell played an important role in

increasing the total CD4 T-cell count by more than double the count. When

having a somewhat high baseline count(400-500) at baseline, the patients

experience an increase by a 1.5 factor where the memory stem cell and näıve

cells played an important role in the CD4 T-cell count increase. However,

it is important to note that when the number of näıve cell produced by the

thymus did not have a significant increase from baseline value, the memory

stem played an important role. But when the number of näıve cell produced

by the thymus had a significant increase the näıve and central memory cells

played an important role in the reconstitution of the CD4 T-cell count as the

low dose cohort. These patients experienced a higher increase in their CD4

T-cell count compared to the other two cohorts.

• For the high dose cohort, the patient who experienced the most significant

increase in the CD4 T-cell was due to an increase in the näıve cell production

rate λ and a decrease in the memory central cell population. When the näıve

cell production did not have any increase, the memory stem cell was the

population that contributed to the increase in the total CD4 T-cell. However,

when one of the patients had a decrease in the production rate of the näıve

cell, the total number of CD4 T-cell at the end the three years decreased

significantly. This points out the importance of the näıve cell which was
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evident in all the three cohorts. This last result supports previous finding

where researchers found that the CD4 T-cells are highly resistant to the HIV

infection [53].

Parameters N103 N104 S103 S104 C103 C104 T103 T104 E103 E104 TOT103 TOT104

λ + + +

pN + + + + + +

pST + + + + + + +

pC + + + + + +

pT + +

pE +

φN - - -

φST - -

φC - - + -

φT - - +

dC - - - - - - - -

dE + - - +

Table 4.10: Correlation between the model parameters and the CD4 T-cell popu-

lation. Where + = positive correlation and - = negative correlation for low dose

immuodiscordant patients 103 and 104.
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Parameters N304 N303 S304 S303 C304 C303 T304 T303 E304 E303 TOT304 TOT303

λ + + + + + + + + + + + +

pST + + + + +

φN - - -

φST - - -

φC - + + -

φT - - +

dC + - - - -

dT - -

dE -

Table 4.11: Correlation between the model parameters and the CD4 T-cell popula-

tion. Where + = positive correlation and - = negative correlation for immunodis-

cordant high dose patients(303,304).

184



Parameters N102 S102 C102 T102 E102 TOT102 N305 S305 C305 T305 E305 TOT305

λ + + + + + + + + + + + +

pN + + + + + +

pST + + + + + +

pC +

φN - - - -

φST - -

φC - - - - + + -

φT - - -

dC - - - - - - - -

dE - -

Table 4.12: Correlation between the model parameters and the CD4 T-cell population.

Where + = positive correlation and - = negative correlation for immunoconcordant

Low dose(102) and high dose patient (305).
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Parameters N201 N302 S201 S302 C201 C302 T201 T302 E201 E302 TOT201 TOT302

λ + + + + + + + + + + + +

pE +

φN - - + - -

φST - - + +

φC - - + +

φT - - + -

dST - - - - -

dC - - - -

dE -

Table 4.13: Correlation between the 15 model parameters and the 5 T-cell sub-

sets along with the total number of T-cell for immunoconcordant medium dose

patients(201,302).

Parameters N203 S203 C203 T203 E203 TOT203

λ + + + + + +

φN - -

φST -

φC - -

φT - -

Table 4.14: correlation between the 15 model parameters and the 5 T-cell subsets

along with the total number of T-cell for immunoconcordant medium dose patient

203
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5 Variability in CD4 T-cells population

5.1 Introduction

In addition to parameter uncertainty, model variability is an important matter

to address when modeling in host biological phenomenon. As our main focus in

this work is the dynamics of the memory and näıve CD4 T-cells, it is important to

address the natural variability that arises from the stochastic nature of the T-cells

in the body in each of the nine patients.

5.2 Stochastic Model

In the previous chapter, we presented our stochastic model that we derived

using the Gillespie’s algorithm. In this section we will compare the results of the

steady state obtained by both the deterministic model Eq’s 2.1 and the stochastic

model Eq’s 2.4. Using a stochastic model will allow us to estimate the natural

variability in the näıve and memory CD4 T-cell model that could not be captured in
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a deterministic setting. To compare the ODE and stochastic model, we will simulate

the five T-cell subsets along with the total number of CD4 T-cell in a single µL

of plasma. We will be using the parameter estimates obtained from the baseline

fit in Matlab (section 3.3.1), Stan fit (3.3.2) and the best fit from Monolix. This

methodology will allow us to further investigate to what extent each of the fit can

capture the data measurements by the fluctuations that arise from the stochastic

model. Later, we will calculate the steady state value of the five cell subsets using

both the ODE(Eq’s 2,1) and MCMC(Eq’s 2.4), along with the standard error of

the mean. The standard error of the mean, SEM, will be obtained by dividing the

standard error by the square root of the number of runs performed in the stochastic

model. The results for each of the three cohorts is represented separately.

In Tables 5.1, 5.2 and 5.3 it was shown that for each of the parameter estimates,

the steady state values obtained from both the ODE and MCMC were similar with

a small SEM.

Low Dose Cohort

In Table 5.1, it was shown that for the three patients, the näıve cell steady state

after the initiation of the treatment was the same as the steady state achieved at

baseline. This indicates that the näıve cell did not increase in count in the low dose
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cohort. As for the memory stem cell, patients 103 and 102 did not have an increase

in the stem cell count. However, patient 104 showed a significant increase where

the data value was in 1 standard deviation with the steady state obtained from the

parameter estimation in Monolix. The central memory cell population estimated

count by the ODE and stochastic model using the Monolix parameter fit was in

close proximity to the real data value at 36 months post treatment for all the three

patients which indicated an increase from the baseline value. Patient 104 and 103

steady state value was in close proximity to the steady state given by the baseline fit.

This indicates that this population of cell did not exhibit any significance increase.

However, patient 102 steady state value was closer to the parameter fit obtained

from Monolix. For this patient the transitional memory cell steady state increased

from the baseline value. In patient 104, the effector memory data measurement at

36 months, was closer in value to the steady state obtained by the MCMC model

using Stan fitting results which resulted in a decrease in the population from the

baseline value. Patient 103 and 102 data measurements at 1080 days was closer to

the steady state calculated using the MCMC from the fitting obtained in Monolix.

As for the total number of CD4 T-cell, all of the patients had an increase from the

baseline value where the Monolix estimation using the MCMC model was closer to

the data measurement at 36 months.

From Table 5.1, we can conclude that the patient that had the most significant

189



increase in the total number of CD4 T-cell from baseline is the one that had an

increase in the memory stem cell population as a result of the experimental treatment.

This was evident in patient 104 where the baseline for the total number of T-cell

was 261 cell per µL that increased to 455 cell per µL three years post-treatment.

This again highlights the importance of the memory stem cell population.

Figure 5.1 shows that most of the CD4 T-cell population for the three patients were

in at least 1 standard deviation from the steady state calculated from the MCMC

model using the Monolix data fitting values. This indicates that our stochastic

model was able to capture the dynamics of the CD4 T-cell. In addition, a realization

of the stochastic model (Figure 5.2) using the Monolix fit (LN) shows how the

fluctuations of our model was able to capture the data measurements for all the

three patients. However, the Total CD4 T-cell data measurement was not captured,

this is because we defined the total CD4 T-cell by simply adding the five T-cell

subsets differently measured unlike how our collaborator measured those cells.
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Näıve Memory stem Central memory Transitional memory Effector memory Total CD4 T-cell

102 Baseline ODE 40.77 18.8 86.23 34.45 129.7 310.8

MCMC 40.6417 18.63455 86.1430 35.7022 130.5261 311.6530

±SEM 0.3686 0.2396 0.5207 0.3406 0.6820 0.9460

102-MON ODE 79.98 80.39 219.8 54.34 89.3 523.6

MCMC 80.7210 80.1730 216.8873 53.5757 88.9752 520.3506

±SEM 0.5734 0.60255 1.1515 0.4781 0.6274 1.7880

102 STAN ODE 70.25 56.44 133 28.68 53.42 341.4

MCMC 69.8927 55.9081 134.6426 29.4694 54.7132 344.6428

±SEM 0.5158 0.5657 0.9534 0.3652 0.6331 1.5329

Val. at 36 months 51.6 28.4 197.6 48.2 102.3 518

104 Baseline ODE 27.98 15.89 71.89 30.53 73.68 220.2

MCMC 27.4404 15.5202 68.8210 30.3845 73.022 215.1937

±SEM 0.30686 0.2308 0.5779 0.3419 0.5881 1.1155

104 MON ODE 67.8813 119.9 104.7 22.79 15.38 331.2

MCMC 67.8813 116.8126 103.2355 22.8445 15.3936 326.2180

±SEM 0.4862 0.8149 0.7338 0.2989 0.2561 1.51126

104 STAN ODE 58.11 77.01 89.24 18.54 29.32 270.3

MCMC 57.8486 77.4645 88.9932 17.9478 28.9492 271.2814

±SEM 0.4869 0.6107 06717 0.2717 0.3962 1.2750

Val. at 36 months 76.7 119.3 124.6 30.6 27.5 455

103 Baseline ODE 37.8 12.64 58 24.86 14.35 147.6

MCMC 37.3896 12.7074 56.3290 24.1237 14.1110 144.6629

±SEM 0.3434 0.1981 0.4422 0.2848 02194 0.7199

103-MON ODE 27.51 12.92 98.36 35.58 65.8 240.10

MCMC 28.4891 13.2551 101.6508 36.9183 68.2782 248.5790

±SEM 0.3206 0.2152 0.7425 0.4233 0.7867 1.2938

103-STAN ODE 26.63 17.98 64.52 20.96 39.61 169.7

MCMC 26.3436 18.1230 63.8209 19.7328 38.0755 166.0909

±SEM 0.3111 0.3786 0.7337 0.3553 0.4916 1.2115

Val. at 36 months 38 9.6 81.9 28.6 104 315

Table 5.1: Low dose cohort’s steady state for each of the CD4 T-cell subsets using

the ODE and stochastic models. 300 runs are used in the MCMC model.
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Figure 5.1: Error bar low dose cohort of the steady with experimental data points.
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Figure 5.2: 10 stochastic realizations for low dose cohort.
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Figure 5.3: 10 stochastic realizations for low dose cohort.
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Medium Dose Cohort

Looking at Table 5.2 and Figures 5.3 and 5.4 we observe the observation below :

In patient 203, the data measurements for the six population of cells at 36 months

post-treatment was in close proximity to the steady state obtained in the MCMC

by using data estimates from Monolix. The memory stem cell along with the näıve

and central memory cells showed a significant increase from baseline. The total

number of CD4 T-cell have increased form 294 to 617 cells per µL. The importance

of the memory stem, central memory and näıve cells play an essential role in the

reconstitution of the CD4 cell count in this patient. It is important to note that

the increase in the total CD4 T-cell count was one time an a half greater than the

patients from low dose with similar baseline count for the total CD4 T-cell.

As for patient 302, the data measurements for the memory stem, transitional memory

and effector memory were in at least one to two standard deviation from the steady

state calculated by the MCMC model as shown in Figure 3.3. However, the MCMC

model for patient 201, showed a small variability between the estimated steady state

and the data measurements after three years, indicating that the MCMC model

does a fairly good job in describing the dynamics of the CD4 T-cell for patient

201. All of the three patients had an increase in their total CD4 T-cell populations.

Figure 5.4 shows how the stochastic model suing the Monolix parameter estimates

was able to capture all the data measurements. This further indicates the validity of
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our model and the importance of using stochastic models to capture variably within

and between individuals.
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Näıve Memory stem Central memory Transitional memory Effector memory Total CD4 T-cell

203 Baseline ODE 52.42 18.44 85.43 35.26 25.18 216.7

MCMC 52.9382 18.3199 85.2483 35.0252 25.4318 216.9625

±SEM 5.4730 0.3026 0.6717 0.4101 0.36628 1.0479

203-MON ODE 70.66 69.55 162.4 36.95 26.68 366.2

MCMC 71.6534 70.8923 165.0647 37.2156 26.9858 371.8109

±SEM 0.7155 0.7410 1.0988 0.4539 0.37901 1.8823

203 STAN ODE 68.14 34.74 124.7 36.01 67.91 329.5

MCMC 68.7948 36.2339 128.4525 36.2193 68.2193 337.7407

±SEM 0.61518 0.5812 1.13985 0.50911 0.6505 1.75928

Val. at 36 months 108.7 70.7 202.5 46.7 34.2 617

302 Baseline ODE 148.7 15.79 69.03 29.92 27.94 291.4

MCMC 148.2785 16.0114 68.4546 30.0212 28.16658 290.9211

±SEM 0.8061 0.29998 0.608 0.4186 0.4044 1.15965

302 MON ODE 70.55 69.47 162.3 36.93 26.65 365.9

MCMC 70.535 69.4977 158.6232 36.6385 26.1904 361.4967

±SEM 0.7976 0.7311 1.11157 0.45113 0.36911 1.8087

302 STAN ODE 162 81.35 11.62 3.353 4.506 262.9

MCMC 161.317 81.1099 11.4666 3.0770 4.6135 262.4085

±SEM 0.4869 0.6107 0.6717 0.2717 0.3962 1.2750

Val. at 36 months 236 42 98.8 39.9 51.7 606

201 Baseline ODE 127.5 20.32 96.46 39.06 22.53 305.8

MCMC 127.5483 20.4968 97.3861 39.3882 23.032 307.8527

±SEM 0.81034 0.3337 0.7566 0.4511 0.3394 1.3010

201-MON ODE 210 297.9 313.11 85.87 36.4 943.3

MCMC 209.5010 299.0.79 311.4175 85.0449 36.2554 941.2943

±SEM 0.9630 1.429 1.5924 0.6943 0.451135 2.630

201-STAN ODE 140.5 213.4 210.1 61.24 26.25 651.5

MCMC 139.5236 211.5900 207.9940 61.9867 26.2680 647.2886

±SEM 0.7608 1.1228 1.2247 0.5133 0.4030 2.3122

Val. at 36 months 176.7 143.8 248.9 54.8 27.2 848

Table 5.2: Medium dose cohort’s steady state for each of the CD4 T-cell subsets

using the ODE and stochastic models. 300 runs are used in the MCMC model.
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Figure 5.4: Error bar for medium dose cohort of the steady state of the MCMC

model
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Figure 5.5: 10 stochastic realization for the medium dose cohort.
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Figure 5.6: 10 stochastic realization for the medium dose cohort.
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High Dose Cohort

Looking at Table 5.3 and Figures 5.5 and 5.6 we observe the observations below.

In patient 305, the data measurements for the six population of cells at 36 months

post-treatment was in close proximity to the steady state obtained in the MCMC

by using data estimates from Monolix. The number of central memory, näıve and

transitional memory cells decreased as shown in Figure 5.5 which led to a decrease

in the total number of CD4 T-cell. The MCMC model was able to capture the CD4

T-cell dynamic for this patient. This further validates the goodness of our model.

Patient 303 CD4 T-cell population confirmed the validity of our MCMC model

where most of the data measurement where within the standard deviation bar at

the steady state as shown in Figure 5.5. This patient did not show a significant

increase in all of the memory cell count which led to having a very small increase in

the total number of CD4 T-cell.

As for patient 304, the data measurements for all of the CD4 T-cell subsets were

in at least one to two standard deviation from the steady state calculated by the

MCMC model as shown in Figure 5.5. Similarly, as this patient did not experience

an increase in their memory stem and transitional memory, it did not result with an

increase in the total CD4 T-cell count. Nevertheless, this patient was not followed

for a period of three years hence we are not able to firmly understand the effect of the

clinical trial on their CD4 T-cell count. Figure 5.6 further shows that fluctuations
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from our stochastic model are able to capture the data measurements. However, as

the previous patients, the CD4 T-cell memory is not well captured as the definition

between the model and the experimental data of the total CD4 T-cell varies. this

indicates that our model underestimates the experimental data measurements for

the the total number of CD4 T-cell.

202



Näıve Memory stem Central memory Transitional memory Effector memory Total CD4 T-cell

304 Baseline ODE 50.41 18.44 83.86 36.23 24.25 213.2

MCMC 50.8774 18.7154 83.9669 36.3757 23.8453 213.7767

±SEM 0.03258 0.0217 0.0511 0.0315 0.258 0.0804

304-MON ODE 104.3 119.7 104.5 69.63 28.23 425.8

MCMC 106.5673 119.3142 104.5175 70.1099 27.9563 428.4660

±SEM 0.92936 1.083 0.8993 0.67025 0.4052 2.1189

304 STAN ODE 97.43 97.51 179.7 122.1 43.98 540.4

MCMC 96.2795 99.3641 179.0027 122.8336 44.1077 541.5196

±SEM 0.6986 1.190 1.13987 0.98446 0.5126 2.69107

Val. at 36 months 114.5 NaN 203.8 84.4 41.8 757

303 Baseline ODE 92.75 16.33 73.81 31.32 15.86 230.1

MCMC 92.3040 1.7585 75.2461 31.2035 16.0882 231.6068

±SEM 0.0452 0.0213 0.0477 0.0261 0.0187 0.0806

303 MON ODE 108.6 96.56 21.14 30.15 14.91 271.4

MCMC 109.2415 94.0503 21.7402 31.2544 15.3950 271.6823

±SEM 0.05176 0.06091 0.0239 0.0513 0.0274 0.1034

303 STAN ODE 100.1 86.06 122.1 23.88 13.74 345.5

MCMC 99.7113 84.3362 121.2785 22.3015 13.3420 341.0045

±SEM 0.0547 0.0548 0.0628 0.0251 0.0176 0.1091

Val. at 36 months 129.2 64.4 147.7 30.4 19.8 525

305 Baseline ODE 131.4 19.45 88.91 39.03 30.51 309.3

MCMC 132.0991 18.9786 88.2353 38.5513 30.2379 308.0919

±SEM 0.0509 0.0221 0.0471 0.0301 0.0289 0.0871

305-MON ODE 95.02 26.85 107.21 38.14 42.07 309.2

MCMC 95.9471 27.1896 107.2144 38.1235 42.2247 310.6977

±SEM 0.0559 0.0278 0.0528 0.0322 0.0354 0.1074

305-STAN ODE 112.2 39.03 91.95 30.04 32.49 305.7

MCMC 113.1999 39.5414 91.0155 29.7937 32.0592 305.5785

±SEM 0.0481 0.0434 0.0592 0.0271 0.0269 0.1035

Val. at 36 months 65.5 27.9 88.4 35.9 54.1 340

Table 5.3: High dose cohort’s steady state for each of the CD4 T-cell subsets using

the ODE and stochastic models. 300 runs are used in the MCMC model.
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Figure 5.7: Error bar graph for high dose cohort of the steady state of the MCMC

model. 204



Figure 5.8: 10 stochastic realization for the High dose cohort.
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Figure 5.9: 10 stochastic realization for the High dose cohort.
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6 Conclusion and Future Directions

In mathematical biology, the main purpose of mathematical models is to gather

the proper information and analysis with the aim of informing medical researchers

and health care professionals about the efficacy of a drug.

Highly active antiretroviral therapy (HAART) have been used to suppress and

prevent the HIV replication with the aim of delaying and slowing down the disease

progression. However one of the main drawbacks and challenges of the HAART are

the toxicity and the emergence of the drug-resistant strains of the virus as HAART

is a life long therapy. Due to these facts and the nature of this virus, researchers

have switched their focus from making a vaccine to using immunotherapy. HIV

immunotherapy is used to boost and utilize the body’s own immune system in order

to suppress the HIV progression. The success of this approach remains unclear to

the scientific community.

This thesis focused on investigating the effect of the insertion of the CCR5-down-

modulated memory CD4 T-cell on reconstituting the immune CD4 T-cell population
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in nine different chronically infected HIV patients. The key challenge in analyzing

the effect of such study, is to build a sufficiently exact model that describes the

immune system dynamics and estimating important biological parameters from the

experimental data.

In Chapter 2, we have introduced a deterministic model using an ODE set of

equations to describe the inward and outward flow within and between the 5 CD4

T-cell sub-populations. Later, a stochastic model was developed using the Gillespie

algorithm.

In chapter 3, we have showed several fitting routines used to estimate the model

parameters. The best fit model was chosen based on some statistical criterion such

as the AIC and the standard error. Plots for the individual fits and the observed vs

prediction graphs were used to asses the goodness of the fits. Parameter identifiablity

and over-fitting issues were addressed. It is important to mention that some of the

proliferation rates were 0, indicating that the number of CD4T-cell have increased

to a maximum capacity that proliferation cannot take place. This further indicates

the positive effect of the treatment. In addition, we observed that the death rates

for the stem cell was 0 for a lot of patients, indicating that the stem memory are

having an increase in their lifespan. This further points out the importance of such

cell populations.

In Chapter 4, in order to highlight the change in the fifteen biological parameters
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( birth, death, proliferation and transition), after the initiation of the treatment

we compared the estimation of the best fitted model to the baseline. We realized

that the näıve cell and memory stem lifespan have increased in all the nine patients.

In addition, the näıve cell production rate λ increased in all immunoconcordant

patients despite the infused dose but increase only in immundiscordant patients

that received a medium and high dose of CCR5-down-modulated memory CD4

T-cells. However, λ decreased for all low dose immunodicordant individuals. Further,

using the uncertainty sensitivity analysis techniques, we studied the importance of

these model parameters to each of the 5 sub-population and the total CD4 T-cell

populations. From these results we are able to conclude that the most important

cell populations were the näıve, memory stem and central memory cells. This was

evident by observing the positive effect of the thymic production rate λ, memory

stem cell and central memory cell proliferation rates pST and pC along with the

negative correlation with the näıve, memory stem and central memory death rates

dN , dST and dC . In addition, the medium dose cohort experienced on average a

higher significant increase in the total number of CD4 T-cell. In a nutshell, from

this experiment we were able to show that not just the näıve cell are important

in reconstitution the CD4 T-cell memory as proven in previous studies, but when

infusing the CCR5-down-modulated memory CD4 T-cells, the central memory and

memory stem cells had an essential role in this reconstitution.
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Moreover, in Chapter 5, our MCMC simulations have shown a great agreement

with the empirical data measurements which indicate the model and the parameter

estimation obtained using Monolix describes to a good extent the dynamics of the

CD4 T-cell in chronically infected HIV patients. This validates the conclusions

we obtained in chapter 4 about the importance of some of the näıve and memory

CD4 T-cell populations. Further more, the stochastic fluctuations were shown to

successfully capture all the experimental data points.

6.0.1 Future Work

As this work showed that the näıve, memory stem cell and central memory cell

played an important role in the CD4 T-cell reconstitution, future work could focus

on further investigating these types of CD4 T-cell. Moreover, as an extension for

this work, we can include the integrated viral DNA in our CD4 T-cell dynamical

model. This will allow us to further understand the HIV reservoir in the nine patient

so we are able to better understand the change in behavior for these sub-populations

after the initiation of the treatment. In this work we considered a linear CD4 T-cell

model. However, it was shown that backward transitions between the memory stem,

central and transitional memory cells is possible. This might be able to help us

get a more realistic insight about the real dynamics of the CD4 T-cell and the

virus in chronically infected HIV patients. This step is our future direction to
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further elaborate on in collaboration with Dr. Sekaly et al. Laboratory at Case

Western University. Moreover, when fitting the data, we have faced several issues

that affected the goodness of our results. We are planning to elaborate on this area

considering the following issues, with possible collaboration with Dr. Giles Hooker

at Cornell University.

• Allow some backward transition between the memory stem , central, transi-

tional and effector memory cells. This will allow us to capture hidden dynamics

that the current model was not able to do so. This issue was evident when

trying to estimate some of the proliferation and transition rates for these cells

in most of the patients.

• Perform a multiple imputation to better deal with the missing points.

• Have more observations per cell population for all of the three cohorts.

• Consider a hierarchical mixed approach allowing us to better understand

variability within and between individuals to better understand the effect of

injecting CCR5-down-modulated memory CD4 T-cell on the three different

cohorts.
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7 Appendix

Appendix A

Monolix: SEAM Algorithm- A Simulated Annealing version

This section is a summary of the algorithm presented in (Lavielle, 2015) [50].

The Stochastic approximation expectation-maximization also known as the

SEAM which computes an estimate to maximum likelihood (ML).It is divided into

two simulation stages:

1. The first stage is to get a neighboring solution through only few iteration from the

initial values that was given by the user in the software. In this stage a simulated

annealing is preferred to be used in to reduce the simulation time if the given initial

values are far from the real solution.

2. The second stage is when the occurrence of the convergence to the located

maximum in a deterministic behavior similar to the gradient algorithm.

Before presenting the SEAM algorithm it is important to describe the EM algorithm
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that is used in the SEAM algorithm.

First we will consider a general model where we have a vector of parameters θ, set

of observations y= yi, unobserved parameters sets z = zi, where 1 6 i 6 N and z

is normally distributed. The maximum likelihood estimator of θ is given by the

following formula:

Ly(θ) = p(y; θ) =

∫
p(y, z; θ)dz (7.1)

with p(y,z;θ) being the joint distribution.

As zi is unobserved, the EM algorithm replaces it by its conditional expectation,

where θEMk−1 gets updates at each iteration step k to θEMk−1 given an initial value θ0 by

the following steps:

• E-step Where the expectation is evaluated by :

QEM
k (θ) = E(logp(y, z : θ)|y; θEMk−1) (7.2)

• M-step In this step the expectation calculated in the E-step is maximized:

θEMk = argθmaxQ
EM
k (θ). (7.3)

As we are dealing with a non linear mixed effect model, the expectation cannot

be quantified explicitly using the EM algorithm as the observations y and the

parameters z are nonlinear. However, this problem can be solved by using a Monte

Carlo approximation using a large number of independent simulations of z. In the
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SEAM algorithm a single simulation of z is used.

The iterative steps of the SEAM algorithm are:

• The simulation step For i= 1....N, draw zki from the conditional distribution

given by p(zi| yi;θk−1), where zi are the individual parameters, yi are the obser-

vations given by a data set. Monolix uses a Hasting Metropolis-Hastings(MH)

algorithm to simulate the individual parameters with a limiting distribution

p(zi|;µk−1, ωk−1).

• Stochastic Approximation In this step will updateQk in the following way:

Qk = Qk−1 + γk(logp(y, z
k; θ) (7.4)

such that γk being a decreasing sequence of positive numbers with γ1=1.This

indicates that the stochastic approximation has no memory of previous ap-

proximations.

• Maximization step In this step we will update θk − 1 using the M-step in

the EM algorithm where:

θk = argθmaxQk(θ) (7.5)

Calculation of the Fisher Information Matrix

The observed Fisher Information Matrix also known as FIM, is defined as the
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measurement of the amount of information that an observable random variable posses

about an unknown parameter which depends on a specific probability distribution.

it is expressed as a function of θ where :

Iy(θ) = −∂2
θLLy(θ) (7.6)

Where LLy is the log-likelihood defined in equation 2.1 as :

LLy = l(y; θ) = log(p(y; θ)). (7.7)

As it was mentioned above, due to the complexity of some models, the likelihood

does not have a closed from solution which often suggests that the observed FIM

cannot have a closed form solution either. Hence it will be approximated using the

following methods:

• Stochastic approximation Using a Monte Carlo procedure based on Louis’

formula(louis 1982), Kuhn and Lavielle estimated the FIM using the following

formula:

∂2
θ l(y; θ) = E(∂2l(y, z, θ)|y; θ) + cov(∂θl(y, z, θ)|y; θ)) (7.8)

Where:

∂2
θ l(y;θ) is the conditional expectation that is calculated using an MH Monte

Carlo method.
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cov(∂θ l (y,z,θ)|y; θ))= E((∂θ l(y,z;θ))(∂θl(y,z;θ))t|y; θ) -E((∂θ l(y,z;θ))|y; θ) E

((∂θ l(y,z;θ))|y; θ)t

In here it is important to mention that the MH algorithm used for the SEAM,

the sequence of estimated parameters θk is remained fix at the estimated

maximum likelihood θ̂.

• Model Linearization Consider the following model:

yij = f(tij, zi) + g(tij, zi)εij (7.9)

Where f is the structural model, g is the residual error model and εi is the

standardized residual error.

In this fit, we have used a constant error model (in both the stochastic and

linearization methods) g= a so

yi = fj + aεj (7.10)

The error model selection was based on the BIC and AIC information. The

model is linearized around the predicted vector of parameters z̃i in the following

way:

yij = f(tij, z̃i) + ∂zf(tij, z̃i)(zi − z̃i) + g(tij, z̃i)εij (7.11)

= f(tij, z̃i) + ∂zf(tij, z̃i)(zpop − z̃i) + g(tij, z̃i)εij + ∂zf(tij, z̃i)ηi.
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Where the marginal distribution of the observation vector defined as yij

is approximated using a Normal Distribution with the following mean and

standard deviation:

µi = f(ti, z̃i) + ∂zf(ti, z̃i)(zpop − z̃i) (7.12)

Γ = ∂zf(ti, z̃i)ω∂zf(ti, z̃i)
t + g(ti, z̃i)Σig(ti, z̃i)

t (7.13)

The model selection is based on the Bayesian Information Criterion also known as

the BIC where a minimum BIC indicates a better model if the BIC is defined as:

BIC = −2LLy(ẑ) + log(n)d. (7.14)

Where n is the number of observation and d is the dimension.
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Appendix B

Stan Fit

This is based on a communication from Georges Monette (2015), the author of this

section.

Six fitted models

Working out a model using linearization as suggested by Giles Hooker(2015) has

been very helpful in clearly revealing the large differences in information available

for different portions of the parameter space. We will refer to the five types of cells

by number: 1, 2,..,5. The model has 15 independent parameters.

• λi the rate of autonomous production (per microlitre) of type 1, (Naive cells).

• τi i=1..4, the probability per day that a cell of type transforms into a cell of

type I+1.

• δi i=1..5, the probability per day of death for a cell of type i.

• βi i=1..5, the probability per day that a cell of type replicates.

let θi denote the net depletion probability per day for a cell of type i :

θi = δi+τi - βi, i= 1..4

θ5= δ5- β5

The stationary expectation for the density per microlitre of each type of cell is:
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µ1 = λ
θ1

µ2 = λτ1
θ1θ2

= µ1
τ1
θ2

µ3 = λτ1τ2
θ1θ2θ3

= µ2
τ2
θ3

µ4 = λτ1τ2τ3
θ1θ2θ3θ4

= µ3
τ3
θ4

µ5 = λτ1τ2τ3τ4
θ1θ2θ3θ4θ5

= µ4
τ4
θ5

Let the sampling volume be n microlitres and the sampling fraction φ= n
V

,

where V is the total body blood volume in microlitres (approximately 5 litres).

Different transformations of the 15 dimensional parameter space are estimable

with very different orders of precision. The transformations for which there is the

most information are those that are functions of µi i=1..5. For example, the µ′s

themselves or the four ratios: ρi = µi+1

µi
= τi

θi+1
, i=1..4.

The variance of estimates of µi is approximately µi
n

for a stable process.

The next set of parameter functions is that involving θi, or, combining θi with

µi, e.g :λ and τi. The relative variances of estimators of these parameters compared

with µ is φ−1, considerably larger than those for µ. Thus the standard errors would

be in the order of 2000 times greater. There is an intuitive explanation for this. Let

Yt1 and Yt2 represent vectors in R5 consisting of the total body cell counts at two

times t1 and t2. Let Xt1 and Xt2 be the vectors of densities per microliter obtained
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by counting cells in a sample of n microlitres at each time if we could observe Yt1

and Yt1 . The stationary expectation of Yt1 and Yt2 and would allow us to estimate

µ with considerable precision. The exact precision depends on the parameters and

would be smaller if the process is close to the stationary boundary. For a relatively

stable process the precision is relatively large with standard error of the order
√

u
u
.

The distribution of Yt1 given Yt2 would provide information with a similar order

of precision on θ and observing additional values of provides information on the

conditional variance of the process which allows the separate identification of δ and

β with a lower precision than that available for µ and θ. However, with our data we

don’t have the full body cell count available but only samples assumed to be well

mixed Poisson samples.

Assuming a stable process, the variance of a relatively small sample will be

primarily due to sampling and the variance of estimates of µi will be approximately

µi
n

. To estimate the θi parameters we need to use the conditional distribution from

one time to the next. We would have a good estimate of θi from Yt1 and Yt2 but,

using Xt1 and Xt2 instead introduces variance in both the response and the predictor

of the conditional distribution. The result is to increase variance by a factor of φ−1

relative to the variance for the estimation of µ. Finally there is less information

(with relative variance of order greater than φ−2) for βi versus δi, i.e. estimating the
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separate contributions to depletion contritubed by the partly cancelling components

of birth versus death. Altogether, this means that, assuming the model is valid,

different values in the full 15 dimensional parameter space will produce dynamics for

the full body cell counts whose sample would be substantially equivalent to those

observed, as long as the µ parameters of the 15 dimensional parameters are similar.

One can generate sets of nearly equivalent parameters by inverting the transforma-

tion from the 15 dimensional parameter space to µ . Taking estimated values of µ ,

one can first choose a range of reasonable values for θ which leads to values for λ

and τ .

λ= θi µi.

τ1= φi+1µi+1

µi
= ρi i =1..4.

From:

θi = δi + τi - βi , i=1..4

θ5 = δ5 - β5

We see that the θ and τ determine the net death rate:

δi- βi = vi= θi-τi

δ5- β5 = v5= θ5

Since δi ≥ 0, and βi ≥ 0 and since the variance of the population process is

monotonic in δi + βi , the choice of δi and βi that satisfies non-negativity and
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minimizes variance of the population process is :

δi = vi and βi = 0, if v1 ≤ 0,

δi = 0 and βi = - vi, if v1 ≥ 0,

The remaining 5 degrees of freedom allow adding the same quantity to both

δ and β. This does not affect marginal expectations but increases the marginal

variance. Letting αi ≥ 0, i=1..5 denote the additional quantity, we have:

δi = αi + vi , βi= αi, if vi > 0

δi = αi , βi= αi- vi, if vi ≤ 0

The parameters µ1 and ρi are estimated using MCMC and using a selection

of values for θi (0.01, 0.05 and 0.10) and α1 (0.0 and 0.1). The tables show the

distribution between individuals with means mu1 − mean, ratio − mean[i] and

standard deviations mu1 − sd and ratio − sd[i]. Also shown are the individual

estimates for λ, birth[i], death[i] and tran[i], as well as an estimate pop-var which

is an estimate of the population variation contribution to variance. In every case

pop-var is verified to be very small in comparison with sampling variance. The

model also uses a parameter for overdispersion: to what extent is the observed

variance smaller or larger than expected if the true sampling volume is 1 microlitre.

The estimate of the parameter is close to 0.10 which has a number of possible
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interpretations that are not mutually exclusive:

• the effective sample count might be based on less than a microlitre, e.g. 0.1

microlitres

• the model is inadequate on the variation from time to time does not reflect a

relatively stable state of the model
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