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ABSTRACT 

 

In daily life, people frequently perform various aiming movements, such as reaching 

or making a saccade toward a cellphone. The early stage for executing such movements is to 

localize the target location precisely. A visual target can be represented and maintained in 

memory in two main reference frames: egocentric (body-fixed) or allocentric (world-fixed). 

However, the neural mechanisms for the allocentric spatial processing are poorly understood 

and for the Allo-Ego conversion are still unknown in humans. 

This thesis investigated the allocentric and egocentric mechanisms with a focus on 

target memory coding for reaching (study 1) and saccades (study 2) in healthy humans using 

event-related functional magnetic resonance imaging (fMRI) designs where the phase of 

memorized target representation was separated from the phase of motor planning and 

execution. I further examined neural substrates for Allo-Ego conversion of targets for reach 

in study 3 using different types of cues to specify reach target direction for two reach tasks 

before delay or response phases.  

I observed widely overlapping cortical areas in the egocentric and allocentric reach 

tasks as compared to the control, but higher activation in parietofrontal areas for the former, 

and higher activation in early visual areas for the latter. Further, directional selectivity in 

egocentric coordinates (target relative to gaze/midline) was observed in superior occipital 

and inferior occipital gyrus; on the other hand, directional selectivity in allocentric 

coordinates (target relative to a landmark) was revealed in inferior temporal gyrus and 

inferior occipital gyrus. These results indicate that different cortical mechanisms are involved 

in the representations of remembered reach targets. I found similar pattern of task-relevant 
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activation and egocentric directional selectivity in the saccade study. However, different 

areas from those observed in the reach study showed allocentric directional selectivity of 

remembered saccade targets including precuneus and midposterior intraparietal sulcus, 

suggesting effector-specific (eye vs. hand) neural mechanisms. In study 3, I identified four 

areas in parietal and frontal cortex, i.e., posterior precuneus, angular gyrus, supramarginal 

gyrus and medial frontal gyrus that are specifically involved in converting allocentric target 

coding to egocentric representation as soon as the final target location for reach is specified.  
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To perform an aiming movement at a remembered object, one must encode and 

maintain its location in memory. In principle, the location of an object in space can be 

represented in two main reference frames: egocentric and allocentric (Howard and 

Templeton, 1966; Vogeley and Fink, 2003). A reference frame can be defined as a means of 

representing the locations of objects in space (Klatzky, 1998). In the egocentric (body-fixed, 

viewer-fixed) frames, the locations of targets are coded relative to the axes (left-right, front-

back, up-down) of the observer’s body part, such as the eyes, head, or arm. On the other 

hand, in the allocentric (world-fixed, earth-fixed) frames where the world can be assumed to 

be stable, typically there are three orthogonal axes outside the viewer, one corresponding to 

the gravitational axis of the world and the other two in the horizontal directions along the 

current plane (Wexler, 2003; Coluccia et al., 2007). There are at least two types of allocentric 

coding of visual targets associated with allocentric frames: the location of a target 

represented relative to an external landmark in the scene where the origin and the set of axes 

are centered on the landmark (allocentric cue), and the target location of the subpart of an 

object represented relative to the object itself where the origin and the set of axes are 

centered on the intrinsic sides of the object (Marr and Nishihara, 1978; Humphreys, 1983; 

Deneve and Pouget, 2003; Wexler, 2003; Coluccia et al., 2007). The former is usually 

referred to allocentric representation / coding, whereas the latter is referred to object-centered 

representation / coding. 

Here I take an example close to a real situation to demonstrate the two types of spatial 

coding of a visual target: egocentric and allocentric. As illustrated in Figure 1.1, a person is 

sitting at his desk and reading a book; there are a laptop and a cup of coffee on his desk. He 

is reaching to the cup of coffee (the target). The location of the cup can be defined in 
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egocentric frames of reference, such as his eyes (gaze) and his hand. Alternatively, the cup 

can be represented in an allocentric frame of reference, e.g., relative to his laptop (an 

allocentric cue), independent of his eyes and hand orientation and position. Accordingly, as 

shown in Figure 1.1, the cup is located right of his gaze in the egocentric reference frame, but 

left of his laptop in the allocentric reference frame. It would be better to indicate that the 

book can be also used as an allocentric cue to represent the cup so that the cup is located to 

right of the book, similar to its egocentric direction in the eye-centered coordinates. In most 

natural cases, there are multiple objects in the scenes, and sometimes the target location in 

the egocentric reference frames is overlapping with that in the allocentric ones. It has been 

suggested that the two types of cue can be combined in a real-world environment, based on 

their reliability and stability (Byrne and Crawford, 2010).  

Likewise, a number of behavioral studies have shown that visual targets can be 

represented and maintained in memory for a delayed movement in egocentric (McIntyre et 

al., 1997; Henriques et al., 1998; Vindras and Viviani, 1998; Burnod et al., 1999; Pouget et 

al., 2002; Crawford et al., 2004; Lemay and Stelmach, 2005; Brouwer and Knill, 2007) and 

allocentric frames of reference (Goodale and Haffenden, 1998; Carrozzo et al., 2002; Obhi 

and Goodale, 2005; Chen et al., 2011). The next questions are how and where this egocentric 

or allocentric spatial coding is processed in the brain. Over the past years, neurophysiological 

studies and human neuroimaging studies have explored the neural mechanisms for egocentric 

target coding and motor planning (Andersen et al., 1993; Batista et al., 1999; Connolly et al., 

2000; DeSouza et al., 2000; Astafiev et al., 2003; Connolly et al., 2003; DeSouza et al., 

2003; Medendorp et al., 2003; Prado et al., 2005; Connolly et al., 2007; Fernandez-Ruiz et 
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al., 2007; Beurze et al., 2010). However, the neural substrates for allocentric coding of 

remembered targets for movements are essentially unknown.  

My doctoral dissertation focused on the neural mechanisms for the allocentric coding 

of reach and saccade targets, and distinguished between allocentric versus egocentric 

mechanisms. In addition, the brain areas involved in the conversion of allocenric to 

egocentric target representations for reaching were investigated as well. I completed three 

studies using functional magnetic resonance imaging (fMRI). 
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Figure 1.1 Demonstration of the two reference frames for target coding. As depicted in this 

example, a person is sitting at his desk and reading a book; there are a cup of coffee and a 

laptop on his desk. He is reaching to his cup. As shown here, the location of this cup 

(reaching target) can be represented right relative to his gaze, which is in an egocentric 

reference frame, or defined left relative to the laptop, which is in an allocentric reference 

frame where the laptop is used as an allocentric landmark.  
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1.1 Two visual streams 

To better understand the neural mechanisms for allocentric versus egocentric spatial 

coding, it is important to describe the two cortical visual streams, the ventral stream and the 

dorsal stream (Figure 1.2). The two streams arise from the early visual areas (V1), but the 

ventral stream projects to the infero-temporal cortex through areas V2, V3, V4, TE and TEO, 

whereas the dorsal stream terminates in the posterior parietal cortex via a number of routes 

involving areas V2, MT and MST (Ungerleider and Mishkin, 1982). 

In 1992 Milner and Goodale proposed a highly influential perception- action model 

for cortical visual processing related to these two streams (Goodale and Milner, 1992; Milner 

and Goodale, 1995, 2006, 2008). The important point in this model is that both streams 

process information about the property of objects including size, shape and spatial location, 

but they process visual information in different ways. According to this model, both streams 

can contribute to spatial coding of targets, but the dorsal stream computes the absolute 

metrics of the target in egocentric reference frames to perform a goal-directed movement that 

requires a moment-to-moment update. In contrast, the ventral stream must take into account 

the spatial relations between targets and the relevant allocentric visual cues, i.e., defining the 

target in allocentric reference frames that can be retained in memory over long time intervals 

(Goodale and Milner, 1992; Milner and Goodale, 1995, 2006, 2008).  Behavioral studies 

have looked at the rates of decay in these two types of spatial representations for arm 

movements (Elliott and Madalena, 1987; McIntyre et al., 1997; Hu et al., 1999; Bradshaw 

and Watt, 2002). The results showed that egocentric representations of targets degrade after a 

memory delay of 2 s. In comparison, the target location represented in allocentric reference  
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Figure 1.2 The two visual streams in the human brain. As illustrated in the left  hemisphere 

of the inflated brain, both dorsal and ventral streams arise from primary visual cortex (V1). 

The dorsal stream (green) projects to the posterior parietal cortex. The ventral stream (red) 

terminates in the infero-temporal cortex. 
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frames can be maintained over longer memory intervals (Krigolson and Heath, 2004; Obhi 

and Goodale, 2005; Hay and Redon, 2006; Chen et al., 2011), for example, a memory delay 

of 5 s (Hay and Redon, 2006), or even a longer time of 8.5 s (Chen et al., 2011). These 

results have suggested that the two visual streams process vsuospatial information in 

different ways, relying on a corresponding frame of reference.  

Further, in a recent neuropsychological study (Schenk, 2006) the patient (D.F.), who 

had an extensive bilateral lesion to the lateral occipital complex (LOC) in the ventral stream 

following anoxia (Milner et al., 1991), performed motor and perception tasks in two 

conditions (target-directed and allocentric). In the target-directed condition of the motor task, 

participants moved their finger from the starting point toward the target, thus the target was 

defined in egocentric coordinates. In contrast, in the allocentric condition of the motor task, a 

reference target was displayed along with the aiming target, and participants were instructed 

to move their finger from the starting point toward a location so that this position relative to 

the starting position matched the vector of the reference target to the aiming target. D.F.’s 

performance was as good as normal participants in the egocentric motor task, suggesting that 

the egocentric target coding is associated with the dorsal stream. However, D.F.’s 

performance in the allocentric motor task was obviously impaired as compared to the normal 

participants, suggesting that the allocentric target representation is associated with the ventral 

stream. Although the author also challenged that it would be allocentric-egocentric models 

rather than the perception-action model for visuospatial processing in the ventral and the 

dorsal stream, Milner and Goodale have addressed this issue and clarified the model in more 

detail in their review paper (Milner and Goodale, 2008). In particular, Milner and Goodale 

point out that the allocentric motor task in Schenk’s study was still testing spatial perception 
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since what D.F. did was to manually report her perceived position of the target relative to the 

reference point, similar to what she did in the allocentric perceptual task using a verbal 

report. As Milner and Goodale indicated, realizing the distinction between task and process is 

very important to understand the related mechanisms, for instance, performing an “action” 

task (like the allocentric “action” task in Schenk’s study) actually requires the process of 

vision for perception, not vision for action. Taken together, with respect to the spatial coding 

of targets, the critical point in the two visual systems theory is that egocentric and allocentric 

representations are associated with the dorsal and ventral streams, respectively. In the 

following sections, I will discuss evidence for egocentric and allocentric neural mechanisms 

for spatial coding from neurophysiological studies, and human neuroimaging and transcranial 

magnetic stimulation (TMS) studies. 

 

1.2 Egocentric visuomotor systems for reaching/pointing and saccades 

The visuomotor systems for egocentric reaching/pointing and saccades have been 

investigated in neurophysiology and human imaging studies (Andersen et al., 1993; Colby, 

1998; Batista et al., 1999; DeSouza et al., 2000; Sereno et al., 2001; Andersen and Buneo, 

2002; Munoz, 2002; Medendorp et al., 2003; Munoz and Everling, 2004; Medendorp et al., 

2005a; Prado et al., 2005; Schluppeck et al., 2005; Curtis and D'Esposito, 2006; Medendorp 

et al., 2006; Kastner et al., 2007; Van Pelt et al., 2010; Crawford et al., 2011; Gertz and 

Fiehler, 2015). The main brain areas involved in the two parietofrontal networks 

(reaching/pointing, saccades) in humans are shown in Figure 1.3. It has been indicated that 

posterior parietal cortex (PPC) plays a critical role in movement control (Andersen et al., 

1998; Batista et al., 1999; Medendorp et al., 2003; Crawford et al., 2004; Medendorp et al., 
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2005b). The PPC is situated between the visual cortex in the occipital lobe and the 

somatosensory cortex in the parietal lobe, which makes PPC able to receive visual and 

somatosensory input, and then send output to premotor and motor areas in the frontal lobe to 

generate movements. More specifically, PPC is anterior to the parieto-occipital sulcus (POS) 

and posterior to the postcentral sulcus (PCS). Anatomically, PPC is divided into the superior 

parietal lobule (SPL) and inferior parietal lobule (IPL) by the intraparietal sulcus (IPS) that 

ends posteriorly in the transverse occipital sulcus (TOS). IPL is segregated into two regions, 

supramarginal gyrus (SMG, anterior) and angular gyrus (AG, posterior) in humans. The 

medial component of the parietal lobe is precuneus, located anterior to POS. As illustrated in 

Figure 1.3, besides PPC, some other areas in the frontal lobe are also involved in the control 

of either reaching/pointing or saccades. Next, I will discuss the role of these brain areas in 

further detail. 

 

1.2.1. Neurophysiological studies of reaching/pointing movements 

Electrophysiological studies from monkeys have identified a number of effector-

related regions within IPS. For instance, the anterior intraparietal sulcus (AIP) encodes 

targets for grasping, the lateral intraparietal sulcus (LIP) encodes targets for saccades, and a 

more medial cluster, parietal reach region (PRR) encodes targets for reaching. PRR is 

situated more medial and posterior to LIP, and consists of medial intraparietal area (MIP) and 

V6A (within the superior parietal cortex near the junction of the dorsal POS). The premotor 

cortex in frontal lobe is divided into two main regions: dorsal premotor cortex (PMd) and 

ventral premotor cortex (PMv) (Barbas and Pandya, 1987; Kurata, 1991, 1994). PMd 

receives projection from SPL, including MIP, indicating its role in reach control, whereas 
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Figure 1.3. Egocentric visuomotor systems for reaching/pointing and saccades. The main 

brain areas are labeled on the left hemisphere of the human inflated brain. 
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PMv receives main projections from AIP, suggesting its function in grasping (Weinrich and 

Wise, 1982; Gentilucci et al., 1988; Kurata, 1994; Tanne-Gariepy et al., 2002). 

Areas PRR and PMd are interconnected in the parietofrontal egocentric reach 

network and involved in the spatial representation of reach goals and reach planning (Hartje 

and Ettlinger, 1973; Mountcastle et al., 1975; Seal and Commenges, 1985; Wise et al., 1986; 

Murata et al., 1996). Although they play a similar role in reach control, the way they process 

spatial information still differ to some extent. In particular, remembered reach targets are 

mainly encoded in gaze-centered coordinates in the PRR, which must be updated across eye 

movements to maintain the accurate spatial coding for the upcoming reaches (Duhamel et al., 

1992b; Batista et al., 1999). Further, it has been showed that hand position signals, even 

without vision (i.e., arising from proprioceptive signals), are also represented in gaze-

centered reference in PRR (Buneo et al., 2002) so that the hand-target comparison is carried 

out in PRR. This suggests that PRR plays a critical role in the early visuomotor 

transformation in gaze-centered coordinates for reach. In comparison, PMd encodes reach 

targets in a combination of eye-, hand- (Pesaran et al., 2006; Batista et al., 2007) and 

shoulder-centered coordinates (Fogassi et al., 1996; Scott et al., 1997; Kakei et al., 2003), 

suggesting a later visuomotor transformation for reach planning. During the late stage at the 

cortical level, primary motor cortex (M1) executes reach movements in muscle-centered 

coordinates and determines forces and torques for each set of muscles (Scott and Kalaska, 

1997; Sergio and Kalaska, 1998; Kakei et al., 1999; Sergio and Kalaska, 2003) (not 

discussed in this dissertation). The difference in egocentric reference frames between PRR, 

PMd and M1 possibly implicate the gradual spatial transformation of vision to motor for 
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reach control (Caminiti et al., 1991; Crammond and Kalaska, 1996; Kalaska et al., 1997; 

Sergio et al., 2005) 

  By using pro-reach (reaching directly to a cued target) and anti-reach tasks (reaching 

to the mirror location opposite to the cued target, also referred as an inferred target), the 

differences in the coding of spatial directional selectivity during planning and response 

phases between PRR and PMd are observed (Gail et al., 2009). In particular, PRR showed 

stronger directional selectivity to the pro-reach target than the inferred anti-reach target 

during reach planning, whereas PMd showed stronger activity to the inferred anti-reach 

target than the pro-reach target during reaches. This result suggests that PRR has a preference 

for encoding “automatic”, visual-relevant movement goals (pro-reach), but PMd is involved 

in representing “inferred” rule-based movement goals (anti-reach). A recent neurophysiology 

study further suggests the important role of PRR, not PMd, in spatial working memory 

relative to movement goals by testing synchronization patterns in each of the two areas 

(Chakrabarti et al., 2014).  

The findings from monkey neurophysiology studies have provided important insights 

into egocentric network for reach control. However, the fundamental question related to 

humans still remains. That is, are the identified egocentric reach network and its function in 

monkeys supported in humans? The development of advanced neuroimaging techniques, 

especially fMRI, and TMS has enabled researchers to address this question to some extent 

with various experimental designs.  
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1.2.2. Human neuroimaging and TMS studies of reaching/pointing movements 

In humans, a parietofrontal reach network (Fig. 1.3) including the connected regions 

of PPC and PMd has been showed to be involved in the coding of reach targets and motor 

planning (Medendorp et al., 2003; Prado et al., 2005; Beurze et al., 2007; Tomassini et al., 

2007; Busan et al., 2009; Lindner et al., 2010). A number of human imaging studies have 

revealed two distinct reach-related sub-regions in human PPC: one medial to intraparietal 

sulcus, along its anterior-posterior axis (midposterior IPS: mIPS) (DeSouza et al., 2000; 

Medendorp et al., 2003; Grefkes et al., 2004; Medendorp et al., 2005b; Prado et al., 2005; 

Hagler et al., 2007; Levy et al., 2007; Beurze et al., 2009), and the other further more medial-

posterior, within precuneus situated in superior parieto-occipital cortex (SPOC) (Astafiev et 

al., 2003; Connolly et al., 2003; Fernandez-Ruiz et al., 2007; Beurze et al., 2009; Filimon et 

al., 2009; Bernier and Grafton, 2010a; Cavina-Pratesi et al., 2010), which represent reach 

targets in gaze-centered reference frames with a contralateral left-right topography.  

Compared to monkey PPC, mIPs might be homologous to macaque MIP (Johnson et al., 

1996; Eskandar and Assad, 1999; Galletti et al., 2003; Pitzalis et al., 2006; Fattori et al., 

2009), whereas SPOC possibly be homologous to macaque V6A (Galletti et al., 2003; 

Pitzalis et al., 2006; Fattori et al., 2009). 

It has been reported that mIPS can be activated whether the target appeared in central 

or peripheral vision, whereas SPOC only responds to peripherally presented targets (Prado et 

al., 2005). Moreover, an fMRI study using left-right reversing prisms to dissociate the visual 

reach goal from physical reach direction showed that the reach goal, not motor commands is 

primarily encoded in SPOC, whereas AG is involved in the coding of reach direction 

(Fernandez-Ruiz et al., 2007). A TMS study further showed that mIPS as well as AG are 
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involved in the coding of reach direction (Vesia et al., 2010). Results from a recent fMRI 

study, where a pro-/anti-reach design was used to disentangle the location of reach goal from 

the location of a visual cue during movement planning, suggest that precuneus encodes the 

movement goal rather than the visual cue (Gertz and Fiehler, 2015). Taken together, these 

studies indicate a distinction between the coding of reach goals in the more medial region of 

PPC (precuneus, more specifically SPOC) and reach vector in the more lateral-anterior 

region (mIPS, AG). 

Previous human neuroimaging studies have shown that both IPS and PMd represent 

the reach goal and the selected effector (e.g., left vs. right arm) during reach planning with an 

interaction of the hemispheric lateralization between hand and visual hemifield (Medendorp 

et al., 2005b; Beurze et al., 2007). For example, higher activation was observed in left IPS 

when the right hand, as compared to the left hand, was used to point to the target presented in 

the right hemisphere (Medendorp et al., 2005b). On the other hand, although in general anti-

reaches recruited additional areas as compared to pro-reaches when the task did not separate 

the planning phase from execution (Connolly et al., 2000), both precuneus and PMd were 

involved in the planning of anti- and pro-reaches with no difference in activity strength 

between these two types of reaches during the planning period (Connolly et al., 2003; Gertz 

and Fiehler, 2015). 

 

1.2.3 Neurophysiological studies of saccadic eye movements 

The main cortical regions in the saccadic system include LIP, sometimes referred as 

the “parietal eye fields” (PEF), and other two in frontal cortex, frontal eye fields (FEF) and 

supplementary eye fields (SEF) (Gaymard et al., 1998; Schall and Thompson, 1999; Sparks 
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et al., 2001; Munoz, 2002). Area LIP projects directly to FEF and SEF, and FEF and SEF are 

interconnected. All these three cortical oculomotor areas show projections to the superior 

colliculus (SC) (not the topic in this dissertation) that generates the motor commands for 

saccadic eye movements (Wurtz and Albano, 1980; Sparks, 1986; Munoz, 2002). FEF 

corresponds to Brodmann’s area 8 and lies in the rostral bank of the arcuate sulcus in 

macaque monkeys (Bruce et al., 1985). SEF in the macaque monkey is defined as a discrete 

region of dorsomedial frontal cortex, just anterior the supplementary motor area (Schlag and 

Schlag-Rey, 1985, 1987). 

It has been shown that saccade targets are mainly represented in gaze-centered 

reference frames in monkey LIP, and the initial representations are spatially updated before 

and during intervening eye movements (Duhamel et al., 1992a; Colby et al., 1995; Duhamel 

et al., 1997; Gottlieb et al., 1998). Some other studies have shown that FEF uses gaze-

centered reference frames to encode saccade targets in head-fixed monkeys (Bruce et al., 

1985; Goldberg and Bruce, 1990; Schall, 1991). However, when saccades are made in a 

natural head-unrestricted condition, coexistence of eye- and head-fixed frames in FEF are 

reported, suggesting that FEF might be involved in complex reference frame transformation 

before the spatial information is sent to the SC to initiate saccade movements (Martinez-

Trujillo et al., 2004; Monteon et al., 2013). SEF can encode saccade target in gaze-centered 

(Russo and Bruce, 1996) or object-centered (Olson and Gettner, 1995, 1999; Olson and 

Tremblay, 2000) reference frames. It has been reported that SEF is involved in coding 

temporally ordered saccades, suggesting SEF plays an important role in motor programs for 

single and sequence saccades (Isoda and Tanji, 2002). 
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1.2.4 Human neuroimaging and TMS studies of saccadic eye movements 

Human studies using fMRI and TMS have revealed the parietofrontal network for 

saccadic eye movements, including human parietal eye field (hPEF, mIPS), SEF and FEF 

(Figure 1.3) (Sereno et al., 2001; Cornelissen et al., 2002; Pierrot-Deseilligny et al., 2003; 

Pierrot-Deseilligny et al., 2004). The hPEF (mIPS) is thought to be homologous to monkey 

LIP, but located medial to IPS (Muri et al., 1996).The FEF is located at the intersection of the 

precentral sulcus and the superior frontal sulcus (Paus, 1996).The SEF is located on the 

medial aspect of the superior frontal gyrus in the upper region of the paracentral sulcus 

(Grosbras et al., 1999).  

It has been shown that all the three cortical oculomotor areas encode saccade targets 

in gaze-centered reference frames during saccade planning (Van Pelt et al., 2010). However, 

only areas IPS and FEF showed a preference for contralateral left-right topography (Kastner 

et al., 2007; Van Pelt et al., 2010). Further, similar to activation observed in mIPS for reach, 

the spatial coding of saccade goals in mIPS is also updated after an eye movement 

(Medendorp et al., 2003; Medendorp et al., 2005a, 2006). It has been reported that the 

mechanisms of IPS and FEF involved in the coding of saccade targets in memory are 

different, i.e., the former is more related to sensory representations, but the latter is more tied 

to the selection and coding of saccade goals (Curtis and D'Esposito, 2006). Previous fMRI 

studies where the preparatory phase was isolated from execution found that FEF (DeSouza et 

al., 2003), not IPS (Connolly et al., 2002; DeSouza et al., 2003) is involved in preparatory 

set. Together with the result from Curtis and D’Esposito’s study, these findings suggest that 

IPS and FEF play a different role in the saccade generation, i.e., the former is closer to the 

sensory aspect and the latter is involved in preparatory set for intention and readiness to 
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perform a saccadic eye movement (Connolly et al., 2002). Some fMRI and TMS have shown 

that SEF is involved in saccade sequences, suggesting its specific role in motor programs for 

sequential saccades (Gagnon et al., 2002; Tobler and Muri, 2002; Pierrot-Deseilligny et al., 

2003). 

 

1.3 Allocentric mechanisms for spatial coding 

Previous behavioral studies have suggested that both egocentric and allocentric cues 

can be used to encode spatial locations of visual targets in memory (Goodale and Haffenden, 

1998; Henriques et al., 1998; Carrozzo et al., 2002; Crawford et al., 2004; Lemay and 

Stelmach, 2005; Hay and Redon, 2006). However, in contrast to egocentric coding, neutral 

substrates involved in allocentric coding for visuomotor control are much less studied. 

Instead, some human neuroimaging studies investigated allocentric coding of targets for 

spatial judgments (Fink et al., 1997; Honda et al., 1998; Fink et al., 2000; Galati et al., 2000; 

Committeri et al., 2004; Neggers et al., 2006; Zaehle et al., 2007). On the other hand, some 

neurophysiological studies have examined spatial coding of targets in object-centered 

reference frames for saccades (Olson and Gettner, 1995, 1996; Olson and Tremblay, 2000; 

Olson, 2003). I will discuss this topic in more detail in the following subsections. 

 

1.3.1 Behavioral/computational studies of allocentric vs. egocentric reach target coding 

It has been suggested that in normal conditions the brain likely uses both egocentric 

and allocentric cues to encode spatial locations of remembered reach targets on the basis of 

the relative weighting of the two cues determined by their reliability and stability (Byrne and 

Crawford, 2010). Some behavioral studies have indicated that this weighting seems to 
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depend on the proximity, number, and perhaps size of background objects (Diedrichsen et al., 

2004; Krigolson et al., 2007; Uchimura and Kitazawa, 2013; Fiehler et al., 2014). Other 

behavioural studies investigating the influence of visual landmarks on reach performance 

have shown that landmarks can improve reaching accuracy and precision in both real-time 

and delayed movements (Krigolson and Heath, 2004; Obhi and Goodale, 2005; Krigolson et 

al., 2007). On the other hand, it has been shown that reach target location is still represented 

and updated in a gaze-dependent egocentric reference frame for movements after a delay up 

to 12 s when allocentric cues are available, but with a combination of the two types of spatial 

information (Schutz et al., 2013). 

In a recent study by Chen et al. (2011), the time course of allocentric and egocentric 

decay, and allocentric-to-egocentric conversion were investigated. In particular, three delay 

intervals, short delay (2.5 s), medium delay (5.5 s) and long delay (8.5 s) were used in each 

of the three experimental conditions, Egocentric (reaching to the remembered target location 

after the variable delay), Allocentric (reaching to the remembered target location relative to 

the shifted landmarks which briefly re-appeared twice right after the variable delay) and 

Allo-to-ego conversion. The novelty of the design was the Allo-to-ego conversion condition 

where the shifted landmarks first re-appeared right before the variable delay, then again after 

the delay, just before response. In this situation, participants were free to convert allocentric 

coding into egocentric representation either early (during the variable delay after the first re-

appearance of the shifted landmark) or later (during response after the second re-appearance 

of the shifted landmark). Using such a design, the questions of when (early or late) 

allocentric representations are transformed to egocentric commands, and how the allocentric 

and egocentric coding degrade were examined. The results showed that memory of reach 
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target location encoded in egocentric reference frames continued to decay over the time 

course of 2.5-8.5 s, whereas memory of target location represented in allocentric reference 

frames remained relatively stable over the same time scale. Most importantly, despite the 

stable allocentric coding, they found early allo-to-ego conversion. i.e., the brain converts the 

allocentric representation into egocentric representation at the first possible opportunity.  

 

1.3.2 Neural mechanisms for allocentric coding 

 Some neuroimaging studies in humans have investigated allocentric mechanisms for 

target coding in spatial cognitive tasks (Fink et al., 1997; Honda et al., 1998; Fink et al., 

2000; Galati et al., 2000; Committeri et al., 2004; Neggers et al., 2006; Zaehle et al., 2007). 

Those studies demonstrated that allocentric spatial coding for judgments tasks requires an 

additional involvement of the ventral stream and/or the hippocampus. More specifically, the 

lateral occipital complex (LOC) in the ventral stream has shown more activity during 

allocentric as compared to egocentric spatial judgments in some of those studies (Honda et 

al., 1998; Committeri et al., 2004; Neggers et al., 2006; Zaehle et al., 2007). Consistent with 

those findings, another fMRI study in recognition task has indicated that the processing of 

visual information in the LOC would take place in an allocentric frame of reference 

(McKyton and Zohary, 2007). 

More recently, an fMRI study using the same experimental design as that in the 

previous neuropsychological study (Schenk, 2006) directly compared the neural mechanisms 

involved in the target coding for the two types of manual distance judgment tasks, the 

egocentric (target directed) versus the allocentric condition (Thaler and Goodale, 2011b). In 

brief, in the former, subjects just moved their hand from the starting position toward a target 
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location, whereas in the latter, they were instructed to move their hand to a location so that 

the distance between that location and the starting position matched that between the target 

location and the allocentric target. The result showed that LOC is essential for allocentric 

visual coding of targets in the allocentric task. Moreover, a contralateral preference for a 

target presented in the contralateral visual field was observed in LOC in the allocentric 

condition. However, in that design the target was not systematically manipulated to be 

presented to either the right or left with respect to the allocentric reference target. Instead, the 

target appeared along with the allocentric reference target in either the right or left visual 

field, thus the allocentric directional selectivity could not be examined. Moreover, as noted, 

unlike an actual reaching movement to the target represented relative to an allocentric cue, 

the manual movements using allocentric information in the Thaler and Goodale’s study 

(2011) are to copy or draw matched vectors using hands. Thus, it is possible that neural 

mechanisms for the allocentric target coding in this type of tasks is different from those for 

the actual reaching movements to the goal, which has not been explored yet. 

Regarding allocentric mechanisms involved in target coding for motor control, 

neurophysiological studies have examined target representation in object-centered reference 

frames for saccades (Olson and Gettner, 1995, 1996; Olson and Tremblay, 2000; Olson, 

2003). For example, in a study by Olson and Gettner (1995), monkey were trained to make a 

saccade to the right or left side of the target bar after a delay while neuron activity in 

supplementary eye field (SEF) was recorded. Their results showed that neurons in SEF were 

selective for a particular side of the object, suggesting that SEF is involved in object-centered 

coding of saccade targets. However, as discussed before, although object-centered 
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representation is non-egocentric, it is still different from the allocentric coding using an 

external landmark in the environment. 

In summary, although allocentric mechanisms for spatial coding of targets in 

cognitive tasks in humans and neural mechanisms for object-centered representations of 

saccade targets in primates have been examined, the allocentric cortical mechanisms for 

reach and saccades are still unknown. Investigating these mechanisms is very important to 

understand how and where the allocentric spatial information is used in the human brain for 

such arm and eye movements, and how the allocentric mechanisms are different from the 

egocentric mechanisms.  

 

1.4 Functional magnetic resonance imaging (fMRI)  

In order to identify the brain areas involved in a certain task so that the function of 

those areas can be investigated, the fMRI technique is crucial. In the early 1990s, researchers 

started to use MRI scanner to measure changes in the blood oxygenation of the brain over 

time rather than differences between tissues in structural MRI (Kwong et al., 1992; Ogawa et 

al., 1992). The advantages of this technique include that it is non-invasive, it has higher 

spatial resolution compared to other techniques such as magnetoencephalography (MEG) and 

electroencephalogram (EEG) and it can be used to various experimental tasks (Huettel et al., 

2008). Spatial resolution of an fMRI study refers to its ability to distinguish differences 

between nearby locations, and is measured by the size of voxels (three-dimensional volume 

element, usually around 3 mm in each dimension). 

The principle of fMRI is based on the relationship between neuronal activity and 

blood flow and oxygen consumption. Increased neuronal activity in a certain brain area leads 
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to an increased demand for oxygen with more blood flow supplied to that brain region. 

Oxygen is delivered to neurons by haemoglobin in capillary red blood cells. Haemoglobin is 

diamagnetic when oxygenated but paramagnetic when deoxygenated. This difference in 

magnetic properties gives rise to small differences in the MR signal of blood depending on 

the degree of oxygenation, known as blood oxygenation level dependent (BOLD) signal, 

which can be measured using MRI (Bandettini et al., 1992; Disbrow et al., 2000; Ances et 

al., 2008; Logothetis, 2008). The earlier fMRI studies used a blocked design where each 

experimental condition had a long block interval (10 - 30 s) because the magnitude of the 

BOLD change related to neuronal activity was still unknown at that time (Belliveau et al., 

1991; Kwong et al., 1992; Ogawa et al., 1992). For instance, a simplest blocked-design can 

be two blocks, one for an experimental condition, and one for the control condition with a 

block interval of 30 s. The result of BOLD signal contrast between these two conditions then 

is translated into activation map with a color code, which is displayed on an anatomical MRI 

image to visualize. The significant step of fMRI uses in research is the development of event-

related designs in the mid-1990s (Buckner et al., 1996; Dale and Buckner, 1997; Bandettini 

and Cox, 2000). Since then, this type of designs has been adopted in a wide of range of fMRI 

research fields to investigate the function of brain areas related to a specific event. Unlike 

blocked-designs, event-related designs measure transient changes in brain activity associated 

with discrete events, and the trials for experimental conditions can be presented in an 

unpredictable order. For instance, as seen in the following sections, I used an event-related 

design in my fMRI studies that included different phases (events) to allow me to examine the 

neural substrates involved in a certain time period (e.g., the delay phase in most of my 

studies). Based on the hypothesis of an experiment, some fMRI studies used a mixed design 
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where blocked and event-related approaches are combined so that each regular block 

includes different type of events whose order and timing can be randomized. 

The analysis performed in the most fMRI experiments is hypothesis-driven. That is, 

the researcher designs their experiments with certain hypotheses about what type of 

differences to be observed between the experimental conditions. Statistical analyses then are 

conducted on the collected fMRI data to determine if the expected differences exist, not due 

to chance. There are two main approaches used on the fMRI data analysis: voxelwise and 

region of interest (ROI) analysis. In the voxelwise analysis, the statistical comparison is 

performed between the experimental conditions on an individual-voxel basis, often 

throughout the entire brain so that the brain functions that have not discovered in previous 

research can be revealed. This is a powerful approach to identify areas involved in certain 

information process. ROI analysis, on the other hand, focuses on the function of previously 

identified brain region in a specific task. For instance, the fusiform face area (FFA) is a 

common ROI that responses more strongly to faces than non-face objects (Kanwisher et al., 

1997; Gauthier et al., 2000).In the fMRI studies of hand movements, grasping an object 

elicits higher activation in the defined ROI, aIPS, than reaching toward it by using knuckle 

(Culham et al., 2003; Cavina-Pratesi et al., 2007). When the ROI analysis is adopted, a 

localizer based on prior studies is used to identify the ROI, following by further analysis 

using independent experiments to test some new hypothesis related to that ROI. Therefore, 

the choice of using ROI analysis will depend on the purpose of the experiment, i.e., if the 

researcher is interested in investigating some unknown function in a given brain region. 

Since these two approaches have their own advantage and are not exclusive, sometimes they 

are combined in the analysis. 
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Over the past two decades, the fMRI technique has contributed greatly to understand 

human brain functions. As stated before, using fMRI has enabled researchers to identified 

functionally-specific brain areas in humans, such as PPC so that the similarities and 

differences of their functions between humans and macaque monkeys can be compared 

(Duncan and Owen, 2000; Culham and Kanwisher, 2001). However, knowing the limitations 

with fMRI is also important for researchers to properly design an fMRI study. First, the 

activation observed in fMRI data only can reflect neuronal activity, not a causal link. Second, 

although fMRI has high spatial resolution, its low temporal resolution (around seconds) will 

limit some use in studies where time as well as space is the considered elements. To 

overcome these limitations, some other techniques, such as TMS and MEG have been 

combined with fMRI in some research according to the experimental purpose (Paus et al., 

1997; Ruff et al., 2008). In addition, a combination of neuroimaging in monkeys and humans 

can benefit in better evaluating differences between human and monkey brains (Paus et al., 

1997; Logothetis et al., 1999; Orban et al., 2004; Ruff et al., 2008). 

 

1.5 Overall objectives 

As stated in previous sections, both egocentric and allocentric cues can be used to 

encode target location for aiming movements such as reaching and saccades, and the 

egocentric mechanisms have been relatively well-studies in human cortex. However, the 

allocentric cortical mechanisms are still not explored yet. My doctoral project overall was 

focused on the neural substrates involved in allocentric coding of remembered targets for two 

types of effector-specific movements, i.e., reaching (hand) and saccades (eye), and the 

cortical mechanisms for allocentric to egocentric conversion of remembered reach targets 
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using fMRI. The novel findings from this thesis provide more understanding of spatial 

coding in movements, especially how and where visual allocentric cues available in the 

external environment are used in processing the remembered goals for actions. 

Chapter Two: I investigated the brain areas involved in allocentric coding of 

remembered targets for reach, and directly compared the allocentic mechanisms versus 

egocentric mechanisms, which has not been studied before. I used an experimental paradigm 

consisting of three tasks (Ego reach, Allo reach and Color control) with an event-related 

fMRI design where the target memory was isolated from reach planning and execution, 

enabling me to examine the neural mechanisms for target memory in the two types of 

coordinates. In addition, I systematically manipulated the target location relative to an 

allocentric landmark as well as to the fixation point. This allowed me to further investigate 

the directional selectivity in allocentric as well as in egocentric reference frames. First, I 

hypothesized that brain areas involved in the coding of remembered targets for both reach 

tasks would elicit higher activation compared to the control task. Second, I expected that 

brain areas involved in egocentric target coding would show higher activation in the Ego 

reach task than the Allo reach task and vice versa. Further, I hypothesized that brain areas 

involved in egocentric directional selectivity would show a preference for contralateral target 

coding relative to gaze / midline, whereas allocentric directional selectivity (target location 

relative to landmark location) would be revealed by higher activation for target contralateral 

than ipsilateral to the landmark. 

Chapter Three: I used a similar experimental design to my first study (Chapter Two) 

to investigate and compare the allocentric neural mechanisms to egocentric ones for the 

coding of remembered targets for saccades. First, I expected a similar pattern of task-related 
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brain activity to the first study, i.e., higher activation in the two saccade tasks (Ego, Allo) 

than the Color control with different brain areas involved in egocentric versus allocentric 

target coding. Second, regarding the directional selectivity, if the cortical mechanisms for 

saccade target memory are similar to those for reach target memory, I expected the same 

brain areas as my first study showing directional specificity. Otherwise, different areas from 

those for reach target coding and/or from those for object-centered saccade target 

representations would be expected. 

Chapter Four: As we know, the allocentric coding of reach targets has to be converted 

to egocentric representations since reaching movements eventually are performed in 

egocentric coordinates using hands. It has been indicated that reach targets encoded in 

allocentric reference frames are converted to egocentric representations at the first possible 

opportunity, i.e., as early as the reach target location is specified (Chen et al., 2011). My third 

fMRI study aimed to examine the neural substrates for this early allocentric to egocentric 

conversion of reach target representation. The experimental paradigm included two 

allocentric reach tasks (Same cue and Different cue) in which the target location was initially 

coded relative to an allocentric landmark. A verbal cue then was used to inform that the 

landmark would re-appear at the same location as before for the Same cue task so that the 

final location of the reach target was provided for the early allo-ego conversion in the 

following delay phase. In comparison, later on before the response phase, a visual cue of the 

re-displayed landmark at a different location for the Different cue task would specify the 

target location for reach so that the allo-ego conversion would happen for the Different cue 

task during the response. First, I hypothesized that the early allo-ego conversion would occur 

during the delay in the Same cue task, but only during the response in the Different cue task. 
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Second, I hypothesized that areas involved in the allo-ego conversion would show higher 

activation for the Same cue versus the Different cue task in the delay, but a reverse pattern in 

the response. Finally, with a use of the two types of modalities (verbal and visual, which are 

closer to the natural environment) as the cue of early allo-ego conversion, I expected to 

identify the common brain areas for the allo-ego conversion of reach targets, regardless of 

the type of available cues and the time points. 

Overall, I used event-related fMRI designs in my doctoral project to answer the 

questions about allocentric mechanisms for the coding of target memory for reaches and 

saccades, and the cortical mechanisms for allo-ego conversion of target representation for 

reaching. My studies will provide insights into the understanding of neural mechanisms 

underlying spatial coding using allocentirc cues in healthy brain that will further be applied 

to patients with a lesion to only one of the two cortical substrates (allcentric or egocentric). 
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2.1 ABSTRACT 

The location of a remembered reach target can be encoded in egocentric and/or 

allocentric reference frames. Cortical mechanisms for egocentric reach are relatively well 

described, but the corresponding allocentric representations are essentially unknown. Here, 

we utilized an event-related fMRI design to distinguish human brain areas involved in these 

two types of representation. Our paradigm consisted of three tasks with identical stimulus 

display but different instructions: Egocentric reach (remember absolute target location), 

Allocentric reach (remember target location relative to a visual landmark) and a non-spatial 

control, Color report (report color of target). During the Delay phase (when only target 

location was specified) the Egocentric and Allocentric tasks elicited widely overlapping 

regions of cortical activity (relative to the control), but with higher activation in parieto-

frontal cortex for Egocentric task and higher activation in early visual cortex for Allocentric 

tasks. In addition, egocentric directional selectivity (target relative to gaze) was observed in 

the superior occipital gyrus (SOG) and the inferior occipital gyrus (IOG), whereas allocentric 

directional selectivity (target relative to a visual landmark) was observed in the inferior 

temporal gyrus (ITG) and IOG. During the Response phase (after movement direction had 

been specified either by re-appearance of the visual landmark or a pro/anti reach instruction), 

the parieto-frontal network resumed egocentric directional selectivity, showing higher 

activation for contralateral than ipsilateral reaches. These results show that allocentric and 

egocentric reach mechanisms use partially overlapping but different cortical substrates, and 

that directional specification is different for target memory versus reach response. 
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2.2 INTRODUCTION 

To reach for a remembered object one must maintain an internal spatial representation 

of its location, either relative to some egocentric (body-fixed) frame of reference, such as the 

eyes, head or shoulder, or some allocentric (world-fixed) frame of reference, such as a stable 

visual landmark (Bridgeman et al., 1997; Burnod et al., 1999; Carrozzo et al., 2002; Olson, 

2003; Crawford et al., 2011). Behavioral studies have investigated the influence of visual 

landmarks on reach (Krigolson and Heath, 2004; Obhi and Goodale, 2005; Krigolson et al., 

2007) and the interactions between egocentric and allocentric representations for memory-

guided targets (Byrne et al., 2010; Byrne and Crawford, 2010; Chen et al., 2011; Schutz et 

al., 2013). However, the cortical mechanisms for egocentric reach are still debated, and the 

neural mechanisms for allocentric reach are essentially unknown. 

Neuropsychological studies of vision and action suggest that egocentric coding is 

associated with parietal cortex (which is closely associated with frontal cortex), and 

allocentric coding is associated with temporal cortex (Goodale and Haffenden, 1998; Milner 

and Goodale, 2006; Schenk, 2006; Milner and Goodale, 2008).  Primate neurophysiological 

studies and human functional magnetic resonance imaging (fMRI) studies have investigated 

the neural substrates of egocentric reaching/pointing in considerable detail (Andersen et al., 

1993; Andersen et al., 1998; Batista et al., 1999; Connolly et al., 2000; DeSouza et al., 2000; 

Andersen and Buneo, 2002; Astafiev et al., 2003; Connolly et al., 2003; Medendorp et al., 

2003; Medendorp et al., 2005a; Prado et al., 2005; Fernandez-Ruiz et al., 2007; Beurze et al., 

2010). These studies have shown that posterior parietal cortex (PPC) and dorsal premotor 

cortex (PMd) are involved in egocentric representation of reach targets, with a contralateral 

left-right topography in human cortical areas such as midposterior intraparietal sulcus 
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(mIPS), and superior parieto-occipital cortex (SPOC) (Vesia and Crawford, 2012). In 

comparison, allocentric mechanisms have only been studied for spatial judgements in 

cognitive tasks (Fink et al., 2000; Galati et al., 2000; Committeri et al., 2004; Neggers et al., 

2006; Zaehle et al., 2007), saccade coding (Olson and Gettner, 1995; Olson and Tremblay, 

2000; Sabes et al., 2002; Olson, 2003), and manual distance judgements (Thaler and 

Goodale, 2011a). To our knowledge, the neural substrates for allocentric coding of reach 

targets (i.e., target direction relative to a visual landmark: allocentric directional selectivity) 

have never been studied or directly compared to egocentric mechanisms (i.e., target direction 

in an egocentric frame: egocentric directional selectivity).  

Here, we used an event-related fMRI paradigm to 1) explore brain regions involved 

in spatial coding of remembered reach targets in egocentric and allocentric frames of 

reference 2) establish which brain areas show directional selectivity when encoding target 

location in egocentric vs.  allocentric coordinates, and 3) compare this to egocentric 

directional selectivity during the response phase. The results showed that, although 

allocentric and egocentric mechanisms for reach target coding show considerable overlap, 

they differ in key areas, both from each other and from the cortical activity during the reach 

response.  
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2.3 MATERIALS AND METHODS 

 

Participants 

Thirteen right-handed participants (9 females and 4 males, aged 23-40 years) took 

part in this study and gave informed consent. All had normal or corrected to normal vision 

and had no known neuromuscular deficits.  This study was approved by the York Human 

Participants Review Subcommittee. 

 

Experimental stimuli and apparatus 

Visual stimuli consisted of dots of light produced by fiber optic cables that were 

embedded in a custom-built board mounted atop a platform.  The platform was placed above 

the abdomen of the participant and affixed to the scanner bed through notches. The height 

and tilt of the platform could be adjusted to allow participants to reach comfortably to the 

stimuli (Fig. 2.1 A). A computer controlled touch screen (Keytec Inc, dimensions 170 (h) × 

128 (v) mm) was attached on the custom-built board to allow the recording of reaching 

endpoints. An eye-tracking system (iView X) was used in conjunction with the MRI-

compatible Avotec Silent Vision system (RE-5701) to record gaze movements from the right 

eye during fMRI experiments.  

The head of the participant was slightly tilted (~20 deg) in order to allow direct 

viewing of the stimuli without using mirrors. The board was approximately perpendicular to 

the direction of gaze on the central fixation point and was placed about ~60 cm away from 

the eyes of the participants. The upper arm was strapped to the bed to avoid artifacts due to 

the motion of the shoulder and the head, therefore reaching consisted of movements of the 
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forearm and hand. A button pad was placed on the left side of the participant’s abdomen. The 

button pad was used as a response key for the Color report task as well as the starting 

position for the right hand for the Egocentric and Allocentric reach tasks (see Experimental 

paradigm and timing). Participants wore headphones to hear audio instructions about the 

upcoming trial. During the experiment, participants were in complete darkness with the only 

exception of dots of light that served as visual stimuli. The dots of light were bright enough 

to be seen by the participant but too dim to allow viewing of the workspace. The hand was 

never visible to subjects, even during reaching.   

Each dot of light had a diameter of 3mm and different colors were associated with 

different stimuli: yellow for the fixation dot, green or red for the target to be reached, blue for 

the visual landmark, and white for the mask. There were seven possible fixation points 

horizontally separated from each other by one degree, with the central one aligned to the 

participant’s body midline. The dots of light corresponding to targets and relative visual 

landmarks were located to the left and the right of the fixation point. They were also 

separated from each other by a visual angle of one degree. There were four dots on the left 

and four dots on the right of the fixation point. Since these dots could be red, green or blue, 

they could be used as a target or a visual landmark in different trials. This allowed us to have 

40 different combinations of target and visual landmark locations, in which the target could 

be located one or two visual degrees to the left or to the right of a visual landmark. Initial 

target and visual landmark were both presented either to the left or to the right of the fixation 

point. Therefore, the target could be displayed from one to nine visual degrees to the left or 

to the right of the initial fixation. The target presented to the right or left of the gaze was also 
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to the right or left of body midline (for instance: target right of gaze = target right of body 

midline, target left of gaze = target left of body midline). 

The mask consisted of 20 dots of light organized in two rows, one above and one 

below the targets. The location of each dot for the mask was aligned with the midpoint 

between dots serving as targets and visual landmarks. The purpose of having a mask was to 

avoid potential after effects created by the illumination of the target and the landmark in the 

dark. Since our analyses focused mainly on the Delay phase, it was critical that participants 

were using memory information to recruit the location of the target rather than exploiting the 

afterimage of the target for the upcoming reach.  

 

Experimental paradigm and timing 

We used an event-related design to investigate three main questions. First, we 

examined the cortical circuits involved in processing the location of a reach target in 

egocentric and allocentric coordinates during the memory delay. Second, we investigated the 

areas showing directional selectivity when encoding target location in an egocentric vs. an 

allocentric representation during the memory delay. Third, we examined the brain areas 

involved in processing the reach direction for action planning and execution.  

The paradigm included three tasks: Egocentric reach (Ego), Allocentric reach (Allo), 

and Color report (Color) (Fig. 2.1 B). In the Allocentric reach task, participants had to 

remember and later reach toward the location of the target relative to a visual landmark. The 

target and the landmark were initially presented together, then the landmark re-appeared at 

the same or at a different location (see Fig. 2.1 B and below for details). Since the landmark 

could re-appear to the left or right of the midline, the horizontal position of the reach could 
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not be predicted during the initial memory period (the Delay phase). In the Egocentric reach 

task, participants had to remember and reach toward the remembered location of the target, 

either at the location it initially appeared (pro-reach) or toward its mirror location in the 

opposite hemi-field (anti-reach). The anti-reach condition was included to equalize the 

motor aspects of the Ego and Allo tasks, i.e., in both cases the horizontal reach position could 

only be computed when the instruction to perform a reach or an anti-reach was given. 

Therefore, in both tasks the activation elicited during the Delay phase could only be related 

to the encoding horizontal target location, rather than reach planning (although other types of 

directionally non-specific motor preparation for a forward reach might occur during this 

phase). The Color report task served as a control and participants had to press a button one 

or two times depending on whether the target was green or red. 

Prior to each trial, a recorded voice instructed the participant about the upcoming 

task: “Reach to target” (in Egocentric reach tasks), “Reach relative to cue” (in Allocentric 

reach tasks), “Report target color” (in Color report tasks). Although the audio cue occurred 8 

s before presentation of the target, participants performed the actual movement upon the go 

instruction only at the end of the same trial.  

Each trial started with the presentation of a fixation point that participants were 

required to fixate throughout the experiment. After 2 s, a target was presented for 2 s along 

with a landmark. Depending on the initial instruction, after the target and landmark 

disappeared, participants had to remember the location of the target regardless of the 

landmark (Egocentric reach), the location of the target relative to the landmark (Allocentric 

reach) or the color of the target (Color report). After the brief presentation of target and 

landmark, the fixation point shifted to the centre and was followed by a 12 s delay during 
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which a mask appeared. By shifting the fixation point before the delay period, the possibility 

of using the fixation point as an allocentric cue in the Ego task was removed. In order to keep 

all tasks as similar as possible, the fixation shift was retained in the Allo and Color tasks as 

well. After the delay, the landmark re-appeared for 2 s either at its original location or at 

another location in the same or opposite hemifield relative to its first appearance. 

Subsequently, an auditory signal cued the participant to reach towards the instructed 

egocentric target location (audio: “Target”), the location opposite to the egocentric target 

location (audio: “Opposite”) or the allocentric target location (audio: “Reach”). In the Color 

report task participants were informed to press the button corresponding to the color of the 

previously presented target (audio: “Color”). Our paradigm consisted of five phases 

(Fixation point, Stimulus presentation, Delay, Landmark presentation, Response) (Fig. 2.1 

B). A gap of 16 s was inserted between each trial to allow the hemodynamic response to 

return to baseline. Each run consisted of 18 trials, and each task was repeated six times in a 

random order yielding a run time of ~ 12 min. Each participant performed six runs. Our 

design consisted of three factors: 3 Tasks (Ego, Allo, Color) x 2 Target relative to gaze (Left 

of Gaze: LG and Right of Gaze: RG) x 2 Target relative to landmark (Left of Landmark: LL 

and Right of Landmark: RL). This design gave rise to 12 conditions in total: Ego: LG:LL, 

Ego: LG:RL, Ego: RG:LL, Ego: RG:RL, Allo: LG:LL, Allo: LG:RL, Allo: RG:LL, Allo: 

RG:RL, Color: LG:LL, Color: LG:RL, Color: RG:LL, Color: RG:RL. The 12 conditions 

were counterbalanced in each run. The “Left of Gaze” and “Right of Gaze” conditions 

included targets located to the left or right of the fixation point regardless of their distance 

from it. Similarly, the “Left of Landmark” and “Right of Landmark” conditions included 

targets located to the left or right of a visual landmark regardless of their distance from it, 
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i.e., we did not include a target distance-from centre covariate in our GLM. For the purpose 

of the analyses, we collapsed target locations into “Left” and “Right” relative to either gaze 

or visual landmark. Participants were trained to perform the tasks one day prior to the 

scanning session.  

 

Behavioural recordings 

Following our fMRI experiments, we inspected eye and hand position data for every 

trial to ensure that subjects correctly followed all instructions. Errors in eye movements were 

defined as trials in which subjects made a saccade toward the target or the visual landmark, 

or were not able to maintain fixation during the delay phase. Errors in reaching movements 

were defined as trials in which the location of the reaching endpoint and the actual reach 

target location were on opposite sides relative to the midline on the touch screen. Trials that 

showed errors in eye and/or reach movements were modelled as confound predictors and 

excluded from further fMRI analyses (see Data analyses). All participants completed at least 

95 correct trials (88% of the total trials).  

In order to confirm that subjects actually used egocentric or allocentric visual 

information in the Ego or Allo task to encode target location as instructed, and to exclude the 

possibility that they simply reached toward the correct side of the screen midline, we 

performed a correlation analysis. First, we calculated the absolute distance between a 

subject's reaching response for a given trial and the screen midline, then we calculated the 

distance between the proper target location (whether egocentrically or allocentrically 

defined) and the screen midline. If subjects were attempting to reach to the correct location, 

as instructed, these two values should be well-correlated in both the Ego and Allo tasks.  
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Figure 2.1 Experimental setup and paradigm. A, Picture of the participant’s setup from a side 

view. B, Illustration of the experimental paradigm. The display of the visual targets is the 

same for the three tasks (Egocentric reach, Allocentric reach and Color report). The critical 

difference between the two reach tasks is the frame of the reference used by the participant to 

encode target location for the upcoming action. In the Egocentric reach task, target location is 

encoded relative to the self. In the Allocentric reach task, target location is encoded relative 

to the landmark. In the Color report task, target color, rather than location, is being 

remembered and reported. 
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The across-subject means of these correlation coefficients were 0.31 ± 0.04 for the Ego task 

and 0.45 ± 0.04 for the Allo task. We then applied Fisher’s r-to-z transformation to the 

individual subject correlation coefficients (r) so that we could use standard t-tests to compare 

the between-subjects means of z values to zero. If subjects were using the egocentric or 

allocentric spatial information for target coding, then these coefficients should have been 

significantly greater than zero. Standard t-tests showed that mean of correlation coefficient 

was significantly greater than zero in both tasks (pego = 0.00001, pallo = 0.000002). Thus, both 

target location and allocentric cue location influenced behavior. 

To further quantify participants’ performance, we calculated the absolute error (AE) 

and the variable error (VE) in the horizontal dimension for each participant and each reach 

task (Ego or Allo), respectively. The AE is the absolute value of the distance between the 

target position and the endpoint of a reach movement and represents the amount by which the 

target was missed. The VE was computed by taking the standard deviation of the constant 

reaching errors and represents the variability of reach endpoints around the average endpoint. 

The across-subject means of AE were 1.42 ± 0.09 cm for the Ego task and 1.48 ± 0.07 cm for 

the Allo task. The across-subject means of VE were 1.65 ± 0.08 cm for the Ego task and 1.63 

± 0.05 for the Allo task. 

 

Imaging parameters 

The experiment was conducted at the neuroimaging centre of York University with a 

3-T whole body MRI system (Siemens Magnetom TIM Trio, Erlangen, Germany). The 

posterior half of a 12-channel head coil (6 channels) was placed at the back of the head in 

conjunction with a 4-channel flex coil over the anterior part of the head (Fig. 2.1 A).  The 
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former was tilted at an angle of 20° to allow a reach-to-touch movement to the touch screen 

as well as the direct viewing of the stimuli. 

Functional data were acquired using an EPI (echo-planar imaging) sequence 

(repetition time [TR] = 2000 ms; echo time [TE] = 30 ms; flip angle [FA] = 90°; field of 

view [FOV] = 192 mm × 192 mm, matrix size = 64 × 64 leading to in-slice resolution of 3 

mm × 3 mm; slice thickness = 3.5 mm, no gap; 35 transverse slices angled at approximately 

25° covering the whole brain). The slices were collected in ascending and interleaved order. 

During each experimental session, a T1-weighted anatomical reference volume was acquired 

using a MPRAGE sequence (TR = 1900 ms; TE = 2.52 ms; inversion time TI = 900ms; FA = 

9°; FOV=256 mm× 256 mm× 192 mm, voxel size = 1 × 1 × 1 mm³). 

 

Preprocessing 

Data were analyzed using the Brain Voyager QX 2.2 software (Brain Innovation, 

Maastricht, the Netherlands). The first 2 volumes of each fMRI scan were discarded to avoid 

T1 saturation effects. For each run, slice scan time correction (cubic spline), temporal 

filtering (to remove frequencies < 2 cycles/run) and 3D motion correction (trilinear/sinc) 

were performed. The 3D motion correction was performed aligning each volume to the 

volume of the functional scan closest to the anatomical scan. Following inspection of the 3D 

motion correction parameters, we discarded runs showing abrupt head motion exceeding 1 

mm or 1°. The whole data set (six runs) of one participant was discarded from the analyses 

due to head motion exceeding our set threshold; therefore data from twelve participants were 

included in the group GLM. The functional runs were co-registered to the anatomical image. 

Functional data were then transformed into standard Talairach space, using the spatial 
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transformation parameters from each participant’s anatomical image. Functional data was 

spatially smoothed using a FWHM of 8mm.  

 

Data analyses 

For each participant, we used a GLM (general linear model) that included 21 

predictors in total. In particular, one predictor was used for the eye movement to the Fixation 

point (2 s or 1 volume). In the Stimulus presentation phase, we used one predictor for target-

landmark presentation and gaze shift (4 s or 2 volumes). In the Delay phase, we used 12 

predictors (12 s or 6 volumes), one for each experimental condition (see “Experimental 

paradigm and timing”). In the Landmark presentation phase, we used one predictor (2 s or 1 

volume). In the Response phase (4 s or 2 volumes), we considered two factors: 3 Tasks (Ego, 

Allo, Color) x 2 Target relative to gaze (Left of Gaze: LG and Right of Gaze: RG), which 

gave rise to six predictors: Ego Reach: LG, Ego Reach: RG, Allo Reach: LG, Allo Reach: 

RG, Color: LG, Color: RG. This allowed us to explore the brain areas involved in processing 

the direction of the movement during reach response. Each predictor was derived from a 

rectangular wave function convolved with a standard hemodynamic response function (HRF: 

Brain Voyager QX’s default double-gamma HRF). In addition, we added six motion 

correction parameters and errors made in eye and reach data as confound predictors. 

 

Voxelwise analyses 

We performed contrasts on beta weights (β) using a RFX (group random effects) 

GLM where percent signal change transformation had been performed. Our questions were 

aimed at exploring brain areas that encode the target location during the Delay phase prior to 
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the movement (See Fig. 2.2 for predictions). First, we expected that areas involved in coding 

of target location and/or motor preparation for reach during the Delay phase would show 

higher activity in the Egocentric and Allocentric reach tasks as opposed to the Color report 

task. This was tested with Contrast no. 1: [(Delay Ego + Delay Allo) > Delay Color], in 

which we collapsed the left and right locations of target relative to gaze and landmark in the 

Delay phase. Second, we hypothesized that areas involved in egocentric coding of target 

location would show higher activation for the Egocentric vs. Allocentric task.  In contrast, 

areas involved in allocentric coding of target location would show higher activation for the 

Allocentric vs. Egocentric task. Therefore, to further distinguish brain areas processing target 

location during the Delay phase in egocentric vs. allocentric coordinates, we performed 

Contrast no. 2: [Delay Ego > Delay Allo]. Third, we expected that egocentric directional 

selectivity (target location relative to gaze) would be revealed by higher activation for targets 

located to the left or to the right relative to the gaze. In order to explore areas showing 

egocentric directional selectivity, we performed Contrast no. 3: [Delay Ego (Target Right of 

Gaze) > Delay Ego (Target Left of Gaze)], in which we collapsed left and right target 

locations relative to landmark. Fourth, we expected that allocentric directional selectivity 

(target location relative to landmark) would be revealed by higher activation for target 

location to the left or to the right of the landmark. In order to investigate brain areas involved 

in allocentric directional selectivity, we performed Contrast no. 4: [Delay Allo (Target Right 

of Landmark) > Delay Allo (Target Left of Landmark)], in which we collapsed left and right 

target locations relative to gaze. Finally, we tested whether areas in the parieto-frontal 

network of each hemisphere are involved in processing the location of the target in the 

contralateral visual hemifield for reaching movements during the Response phase.  

44 
 



 

 

 

 

 

 

 

 

45 
 



Figure 2.2 Predicted BOLD signal changes based on our four contrasts during the delay 

phase. A, We expected that areas involved in reach target representation for Egocentric (Ego) 

and Allocentric (Allo) reach tasks would elicit higher activation as compared to the Color 

report (Color) task. B, Areas involved in coding reach target in egocentric coordinates would 

elicit higher activation in the Ego task as opposed to the Allo task and vice versa. We did not 

have any specific prediction about the level of activation in the Color task as compared to the 

Allo task for allocentric coding areas. C, We expected egocentric directional selectivity 

(target location relative to gaze) would be revealed by higher activation for target to the right 

vs. left of the gaze in the left hemisphere. D, We expected allocentric directional selectivity 

(target location relative to landmark location) would be revealed by higher activation for 

target to the right vs. left of the landmark in the left hemisphere. 
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This was tested by Contrast no. 5: [Reach (Target Right of Gaze) > Reach (Target Left of 

Gaze)] in Egocentric and Allocentric reach tasks, respectively. For this contrast, direction 

was defined according to the direction of the actual reach (i.e., reach direction relative to 

gaze). 

Activation maps for group voxelwise results were overlaid either on the inflated 

anatomical image of one representative participant (Fig. 2.3, 2.8) or on the average 

anatomical image from twelve participants (Fig. 2.4, 2.5, 2.6, 2.7). In order to correct for 

multiple comparisons, we performed a cluster threshold correction (Forman et al., 1995) 

using BrainVoyager’s cluster-level statistical threshold estimator plug-in. This algorithm 

uses Monte Carlo simulations (1000 iterations) to estimate the probability of a number of 

contiguous voxels being active purely due to chance while taking into consideration the 

average smoothness of the statistical maps. Areas that did not survive a cluster threshold 

correction were excluded from further analyses. The estimated minimum cluster size was 11 

voxels (3 mm3) for a total volume of 297mm3.  Subsequently, a Bonferroni correction was 

applied to paired-sample t-tests on β weights extracted from the areas that survived the 

cluster threshold correction. The Bonferroni correction was performed for three comparisons 

(corrected p = 0.0167) aimed at answering our main questions. The first group of 

comparisons performed on the results of Contrasts no. 1 and 2 was aimed at exploring 

differences between brain areas involved in egocentric and allocentric target coding. 

Therefore we performed the following comparisons: Ego vs. Color, Allo vs. Color, Ego vs. 

Allo. The second group of comparisons performed on the results of Contrasts no. 3 was 

aimed at investigating whether the coding of left and right target location relative to gaze was 

specific to the egocentric task or if it applied also to other tasks. Therefore we performed the 
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comparison RG vs. LG in Ego, Allo and Color tasks, respectively. The third group of 

comparisons performed on the results of Contrasts no. 4 was aimed at assessing whether the 

coding of target location relative to the landmark was specific to the allocentric task or it 

applied also to other tasks, therefore we performed the comparison RL vs. LL in Ego, Allo 

and Color tasks, respectively. The results on β weights are plotted in bar graphs in Figures 

2.3 - 2.7 to illustrate significant differences between conditions at the corrected p-value, 

unless specified (see Results). Results that are non-independent of the selection criteria are 

indicated in square brackets in the β weight plots. 

 

2.4 RESULTS 

The main purpose behind our experimental design was to compare cortical activity 

related to egocentric and allocentric reach coding during the Delay phase, illustrated in Fig. 

2.1 B. In this phase of our tasks, only target direction was specified (in Egocentric or 

Allocentric coordinates), while reach direction was specified only at the end of the Landmark 

presentation phase through the re-appearance of the landmark in the Allocentric reach task, 

or the pro/anti-reach instruction in the Egocentric reach task. We will begin with a detailed 

analysis of the Delay phase followed by a brief analysis of egocentric directional coding 

during the Response phase. 

 

Task-Related Activation during the Delay Phase 

We used Contrast no. 1 [(Delay Ego + Delay Allo) > Delay Color] to investigate the 

brain areas showing higher activation in the two experimental reach tasks (Ego, Allo) relative 

to the non-spatial control task (Color). The activation map for this contrast is shown on an 
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inflated cortical surface and the β weights are plotted in bar graphs (Fig. 2.3). The Talairach 

coordinates for the brain areas shown in Table 2.1. The activations shown by this contrast 

might be related to any aspect of target coding (not necessarily direction), cue location 

coding, and/or general motor preparation in anticipation of an oncoming reach movement.  

This contrast revealed activation in dorsal premotor cortex (PMd), midposterior 

intraparietal sulcus (mIPS) and superior parieto-occipital cortex (SPOC) bilaterally, middle 

frontal gyrus (MFG), inferior frontal gyrus (IFG), pre-supplementary motor area (PreSMA) 

and extrastriate cortex in the left hemisphere. Post hoc comparisons revealed higher 

activation for Ego vs. Color in all these areas. In particular, this pattern was revealed in 

bilateral PMd [LH: t (11) = 5.37 , p = 0.001 ; RH: t (11) = 4.82 , p = 0.001], mIPS [LH: t (11) 

= 4.29, p = 0.001; RH: t (11) = 4.34, p = 0.001], SPOC [LH: t (11) = 5.93, p = 0.001; RH: t 

(11) = 5.30, p = 0.001], left MFG [t (11) = 2.94, p = 0.013], IFG [t (11) = 2.84, p = 0.016], 

PreSMA [t (11) = 2.96, p = 0.013], and extrastriate cortex [t (11) = 4.61, p = 0.001]. In 

addition, some of these areas also showed higher activation for Allo vs. Color. In particular, 

we found this pattern in bilateral PMd [LH: t (11) = 4.23 , p = 0.001; RH: t (11) = 2.60, p = 

0.02], SPOC [LH: t (11) = 5.22, p = 0.001; RH: t (11) = 3.36, p = 0.006], left MFG [t (11) = 

3.11, p = 0.010], IFG [t (11) = 3.20, p = 0.008], PreSMA [t (11) = 3.26, p = 0.008], mIPS [t 

(11) = 2.92, p = 0.014] and extrastriate cortex [t (11) = 3.11, p = 0.010]. Moreover, the post 

hoc t-tests also revealed higher activation for Ego than Allo in bilateral SPOC [LH: t (11) = 

3.68, p = 0.004; RH: t (11) = 3.64, p = 0.004], right PMd [t (11) = 3.47, p = 0.005] and mIPS 

[t (11) =2.63, p = 0.02]. 

In summary, there was considerable overlap between areas showing higher activation 

in each of the two experimental reach tasks as opposed to the non-spatial control task. In 
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particular, these areas include bilateral PMd and SPOC, as well as left MFG, IFG, PreSMA, 

mIPS, and extrastriate cortex. Among these areas, bilateral SPOC, right PMd and mIPS also 

show higher activation for Ego vs. Allo tasks.  

In order to investigate possible additional areas showing higher activation for Ego vs. 

Allo tasks and vice versa, we used Contrast no. 2, in which we directly compared Ego and 

Allo activation in the Delay phase (Fig. 2.4).  The Talairach coordinates for the brain areas 

found with this contrast are shown in Table 2.2. The results confirmed higher activation for 

Ego vs. Allo tasks in bilateral SPOC, and PMd in the right hemisphere, and did not reveal 

any additional area with this pattern of activation. These ‘Egocentric’ areas also showed 

significantly higher activation in the Allocentric task versus the Color control task, 

suggesting that they were always active to some degree when a reach was being prepared. 

Several other areas in the early visual cortex showed higher activation for the Allo vs. Ego 

tasks (Fig. 2.5). In particular, we found bilateral lingual gyrus (LG) [LH: t (11) = 4.04, p = 

0.002; RH: t (11) = 3.75, p = 0.003], calcarine sulcus [LH: t (11) = 3.32, p = 0.007; RH: t 

(11) = 3.38, p = 0.006], and cuneus [LH: t (11) = 3.78, p = 0.003; RH: t (11) = 3.71, p = 

0.003]. In addition, these areas also showed higher activation for Color vs. Ego, including 

bilateral LG [LH: t (11) = 3.22, p = 0.008; RH: t (11) = 2.97, p = 0.013], calcarine sulcus 

[LH: t (11) = 3.21, p = 0.008; RH: t (11) = 3.78, p = 0.003], and cuneus [LH: t (11) = 3.45, p 

= 0.005; RH: t (11) = 3.57, p = 0.004] and no difference between Allo vs. Color tasks. This 

might be because early visual cortex was not selective for spatial memory in our experiment 

(see Discussion). 
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Figure 2.3 Voxelwise statistical map and activation levels for each area using Contrast no. 1. 

[(Delay Ego + Delay Allo) > Delay Color], Top panel: activation map displayed on the 

inflated brain of one representative participant. Bottom panel: The bar graphs indicate the β 

weights for the three tasks in each area. * Significant differences between two tasks for p < 

0.05. ^ Significant difference between two tasks for p < 0.05, uncorrected. Error bars are 

95% confidence intervals. 
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Table 2.1 Talairach coordinates and number of voxels for contrast no. 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain areas Talairach coordinates   No. of voxels 
 x y z    
[(Delay Ego + Delay Allo) > Delay Color]    
LH PMd -29 -4 50   992 
RH PMd  25 -6 50   943 
LH mIPS -32 -48 42   388 
RH mIPS  31 -48 42   917 
LH SPOC -18 -68 48   956 
RH SPOC  19 -65 48   867 
LH MFG -41  32 34   426 
LH IFG -41  13 10   693 
LH PreSMA -4  12 48   496 
LH Extrastriate Cortex -26 -75 26   628 
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In summary, these results demonstrate a parieto-frontal network involved in spatial 

memory of target for reaching movements. In particular, we show the presence of allocentric 

target representation in early visual areas in addition to an overlapping parieto-frontal circuit 

recruiting egocentric as well as allocentric target representation. In particular, while 

egocentric target coding preferentially relies on areas of the parieto-frontal network, such as 

PMd, mIPS, and SPOC, allocentric target coding preferentially relies on early visual cortex, 

such as LG, calcarine and cuneus. However, this coding was not discretely separate; in our 

task design, ‘Egocentric’ areas also showed activity in the Allocentric task, and ‘Allocentric’ 

areas also showed activity in the Color task. 

 

Egocentric Directional Selectivity: Target Location Relative to Gaze 

Next, we examined the directional selectivity revealed by cortical activation during 

the Delay phase with the use of Contrast no. 3 [Delay Ego (Target Right of Gaze) > Delay 

Ego (Target Left of Gaze)]. The Talairach coordinates of the brain areas are reported in Table 

2.3. As shown in Figure 2.6, this contrast revealed higher activation for right vs. left target 

location relative to the gaze in the left superior occipital gyrus (SOG) [t (11) = 3.00, p = 

0.012] and inferior occipital gyrus IOG [t (11) = 3.00, p = 0.012]. Neither area showed 

significant egocentric direction specificity in either the Allocentric or Color tasks, suggesting 

that the egocentric coding scheme in SOG and IOG was task-dependent. There was no active 

voxel showing higher activation for targets presented to the left as compared to the right of 

the gaze in the Egocentric reach task.  
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Figure 2.4 Voxelwise statistical map and activation levels for each area using Contrast no. 2 

[Delay Ego > Delay Allo]. Left panel: activation map overlaid on the averaged anatomical 

image from all 12 participants. Right panel: The bar graphs indicate the β weights for the 

three tasks in each area. [*] Significant difference non-independent of the criteria used to 

select the area. Other legends as in Figure 2.3. 
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Figure 2.5 Voxelwise statistical map and activation levels for each area using Contrast no.2 

[Delay Allo > Delay Ego]. Top panel: activation map overlaid on the averaged anatomical 

image from all 12 participants. Bottom panel: The bar graphs indicate the β weights for the 

three tasks in each area. Legends as in Figure 2.3. 
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Table 2.2 Talairach coordinates and number of voxels for contrast no. 2  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain areas Talairach coordinates   No. of voxels 
 x y z    
Delay Ego > Delay Allo    
RH PMd  25 -6 50   943 
LH SPOC -18 -68 48   956 
RH SPOC  19 -65 48   867 

Delay Allo > Delay Ego    
LH LG -6 -58 3   592 
RH LG  4 -57 3   785 
LH Calcarine -2 -79 3   736 
RH Calcarine  1 -77 3   857 
LH Cuneus -2 -87 20   869 
RH Cuneus  1 -86 20   586 
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To investigate whether there were additional areas showing egocentric directional 

selectivity in the Allocentric task, we ran the contrast [Delay Allo (Target Right of Gaze) > 

Delay Allo (Target Left of Gaze)]. This analysis revealed an additional area (data not shown) 

in the right calcarine sulcus that showed higher activation for right vs. left target location 

relative to gaze in Allo [t (11) = 3.05, p = 0.011]. However, this area also showed egocentric 

directional specificity in Color [t (11) = 3.15, p = 0.009], suggesting that the egocentric 

directional specificity observed in this area was not specific for reach tasks.  

 

Allocentric Directional Selectivity: Target Location Relative to Landmark 

The key element to the design of this study was that it allowed us to analyze the 

neural coding of reach targets relative to visual landmarks in the Allocentric reach task. To 

determine which brain regions were involved in allocentric directional selectivity of target 

location relative to the landmark, independent of other visual features, we performed 

Contrasts no. 4 [Delay Allo (Target Right of Landmark) > Delay Allo (Target Left of 

Landmark)]. The brain areas revealed by this contrast are shown in Figure 2.7. Talairach 

coordinates are shown in Table 2.3. 

 As illustrated in Figure 2.7 A, area IOG [t (11) = 4.07, p = 0.002] in the left 

hemisphere showed higher activation for target to the right vs. left of the landmark. In 

addition, inferior temporal gyrus (ITG) in the left hemisphere [LH: t (11) = 3.13, p = 0.009] 

showed higher activation for target to the left vs. right of the landmark (Fig. 2.7 B). These 

regions showed no significant allocentric coding during the Egocentric reach and Color 

report tasks, suggesting that these allocentric coding results are task specific. 
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Figure 2.6 Voxelwise statistical map and activation levels for each area using Contrast no.3 

Egocentric directional selectivity during delay. [Delay Ego: (Target Right of Gaze) > Delay 

Ego: (Target Left of Gaze)]. Left panel: activation map overlaid on the averaged anatomical 

image from all 12 participants. Right panel:  The bar graphs indicate the β weights for each 

condition in each area. Legends as in Figure 2.3. 
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To investigate whether there were additional areas showing allocentric directional 

selectivity in the egocentric task, we ran the contrast [Delay Ego (Target Right of Landmark) 

> Delay Ego (Target Left of Landmark)]. We found no significant active voxel for this 

contrast. 

To summarize, we found significant allocentric directional selectivity in ITG and 

IOG. These results suggest that temporal and early visual cortices are specifically involved in 

the allocentric coding of remembered target location in a task where allocentric landmark 

location is unpredictable. 

 

Reach Direction during Movement Response 

As noted above, we did not observe egocentric directional selectivity in parietal or 

frontal cortex during the Delay phase, unlike previous fMRI studies where reach direction 

could be planned during the delay phase (Medendorp et al., 2003; Medendorp et al., 2005b; 

Fernandez-Ruiz et al., 2007). This may have been because in our Delay phase, subjects could 

not yet plan the horizontal position of the actual reach. To test if this was the case, we 

performed Contrast no. 5 [Reach (Target Right of Gaze) > Reach (Target Left of Gaze)] 

during the Response phase, i.e., after reach direction was cued by either the reappearance of 

the landmark (Allo task) or the pro/anti instruction (Ego task). The hand was not visible to 

subjects during reach; therefore, these responses were not contaminated by visual feedback. 

The brain areas revealed by these contrasts are shown in Figure 2.8, and the Talairach 

coordinates are shown in Table 2.4. 
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Figure 2.7 Voxelwise statistical map and activation levels for each area using Contrast no.4 

Allocentric directional selectivity during delay. A, [Delay Allo (Target Right of Landmark) > 

Delay Allo (Target Left of Landmark)] B, [Delay Allo (Target Left of Landmark) > Delay 

Allo (Target Right of Landmark)]. Left panels: activation maps overlaid on the averaged 

anatomical image from all 12 participants. Right panels: The bar graphs indicate the β 

weights for each condition in each area. Legends as in Figure 2.3. 
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Table 2.3 Talairach coordinates and number of voxels for contrast nos. 3, 4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain areas Talairach coordinates   No. of voxels 
 x y z    
Delay Ego (Target Right of Gaze) > Delay Ego (Target Left of Gaze) 
LH SOG -12 -95 4   380 
LH IOG -16 -86 -11   422 

Delay Allo (Target Right of Landmark) > Delay Allo (Target Left of Landmark)  
LH IOG -40 -68 2   386 

Delay Allo (Target Left of Landmark) > Delay Allo (Target Right of Landmark) 
LH ITG -56 -52 -3   413 
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This analysis revealed contralateral egocentric directional selectivity, primarily in the 

left hemisphere, including several parieto-frontal areas that did not show directional 

selectivity during the Delay phase. As shown in Figure 2.8, there was higher activation for 

reaching movements to the right vs. left of gaze in the Ego task in left PMd, supplementary 

motor area (SMA), M1, S1, superior parietal lobe (SPL), extrastriate cortex and lateral 

occipital complex (LOC). In addition, precentral gyrus, pIPS, extrastriate cortex, LOC, 

calcarine and LG showed higher activation for movements to the right as opposed to the left 

of gaze in the Allo task. Only three regions in the right hemisphere showed directional 

selectivity (this time preferring movements left vs. right of gaze) in the Ego and Allo tasks, 

respectively. Specifically, this pattern was revealed in mIPS, angular gyrus (AG) and pIPS 

for the Ego task, while in SPL, calcarine and LG for the Allo task.  

In summary, during the Response phase, we found egocentric directional selectivity 

in occipital, parietal, and frontal cortex, with structures in both hemispheres showing a 

directional preference for reaches made to the contralateral side relative to gaze.  

 

 

 

 

 

 

 

 

 

65 
 



 

 

 
Figure 2.8 Voxelwise statistical map using Contrast no. 5 Egocentric directional selectivity 

during response. A, Reach (Target Right of Gaze) > Reach (Target Left of Gaze). Yellow, 

voxels activated in Ego task. Pink, voxels activated in Allo task. Orange, voxels activated in 

both tasks. B, Reach (Target Left of Gaze) > Reach (Target Right of Gaze). Green, voxels 

activated in Ego task. Blue, voxels activated in Allo task. 
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Table 2.4 Talairach coordinates and number of voxels for contrast no. 5 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain areas Talairach coordinates   No. of voxels 
 x y z    
Reach (Target Right of Gaze) > Reach (Target Left of Gaze) 
Ego task: 
LH PMd -22 -6 56   158 
LH SMA -4 -10 55   362 
LH M1 -33 -18 47   249 
LH S1 -38 -24 53   352 
LH SPL -39 -40 58   320 

Allo task: 
LH Precentral  
      Gyrus -49 -2 41   358 

LH pIPS -23 -68 32   318 
LH Calcarine -7 -86 7   164 
LH LG -9 -76 3   234 

Both tasks: 
LH Extrastriate 
      Cortex 

-21 -86 25   334 

LH LOC -45 -74 6   412 

Reach (Target Left of Gaze) > Reach (Target Right of Gaze) 
Ego task: 
RH mIPS 40 -54 41   244 
RH AG 35 -68 41   374 
RH pIPS 30 -73 41   386 

Allo task: 
RH SPL 27 -53 55   383 
RH Calcarine 11 -86 9   313 
RH LG 7 -72 3   457 
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2.5 DISCUSSION 

In this study, we employed an experimental design that distinguished between 

egocentric vs. allocentric coding of a reach target during the Delay phase, and temporally 

separated target location memory from motor planning by only cuing reach direction at the 

start of the Response phase. This distinguishes our experiment both from imaging studies 

that tested allocentric memory through some type of spatial judgement and from reach tasks 

where movement direction was cued from the beginning of each trial.  Further, our analysis 

discriminated between 1) cortical areas that were active during egocentric and allocentric 

target coding, 2) areas that were differentially active for egocentric versus allocentric target 

coding, and 3) areas that were spatially selective in either egocentric or allocentric 

coordinates. This analysis revealed widespread, partially overlapping patterns of cortical 

activation in the Delay phase with, most importantly, divergent occipital-temporal 

mechanisms for allocentric vs. egocentric target direction coding. Additional parieto-frontal 

mechanisms for reach direction coding emerged during the Response phase. We will 

consider each of these findings in detail. 

 

Egocentric vs. Allocentric Activation during the Delay Phase 

Numerous human imaging studies have implicated superior occipital-partietal-frontal 

cortex in reach and pointing planning (Astafiev et al., 2003; Connolly et al., 2003; 

Medendorp et al., 2003; Brown et al., 2004; Medendorp et al., 2005b; Medendorp et al., 

2005a; Prado et al., 2005; Brown et al., 2006; Fernandez-Ruiz et al., 2007; Beurze et al., 

2009; Cavina-Pratesi et al., 2010; Fabbri et al., 2012; Konen et al., 2013). Our study 
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generally agrees with their findings, but places a stronger emphasis on target coding during 

our Delay phase.  

Our Delay phase analysis revealed considerable overlap in extrastriate, parietal and 

frontal areas involved in both allocentric and egocentric coding of reach targets as compared 

to the non-spatial control task (Color).  However, bilateral SPOC and right PMd showed a 

preference for egocentric reach target coding, whereas early visual cortex (LG, calcarine and 

cuneus) showed a preference for allocentric reach target coding. This allocentric preference 

in early visual cortex might be because this type of task requires subjects to remember 

multiple visual stimuli, whereas subjects only have to remember one visual stimulus in an 

egocentric task. Further, early visual cortex also showed higher activation in the Color as 

compared to the Ego task, so it was not selective for spatial memory in our experiment. 

These results are consistent with imaging studies that have implicated occipital cortex in both 

spatial and feature-specific memory (Greenlee et al., 2000; Merriam et al., 2007; Harrison 

and Tong, 2009). 

Unlike previous neuroimaging studies of allocentric coding that involved perceptual 

judgments (Galati et al., 2000; Committeri et al., 2004; Neggers et al., 2006; Zaehle et al., 

2007) or manual judgements (Thaler and Goodale, 2011b), we did not find higher allocentric 

activation in lateral occipital complex (LOC) or posterior parietal cortex (PPC) in our Delay 

phase. This might be because our behavioral task separated the storage of target information 

during this phase from the response, whereas these processes were integrated in previous 

paradigms. Comparing across these studies suggests that the neural mechanisms used for 

allocentric coding are task-dependent. 
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Directional Coding during the Delay Phase 

Previous imaging studies demonstrated a preference for contralateral reach coding in 

gaze-centered coordinates in PPC (Medendorp et al. 2003, 2005; Fernandez-Ruiz et al., 

2007). Previous imaging studies of allocentric judgements did not specifically test for 

allocentric directional selectivity, i.e. target location relative to cue (Fink et al., 2000; Galati 

et al., 2000; Committeri et al., 2004; Neggers et al., 2006; Zaehle et al., 2007; Thaler and 

Goodale, 2011b). However, neurophysiological studies have shown that saccade-related 

responses in parieto-frontal neurons can code relative locations within an object (Olson and 

Gettner, 1995; Olson and Tremblay, 2000; Sabes et al., 2002; Olson, 2003). This analysis has 

not been done in a reach task. 

Here, during the Delay phase we found a preference for contralateral reach targets 

(relative to gaze/midline) in left IOG and SOG during the Egocentric task, whereas IOG and 

ITG coded target direction relative to a visual landmark in the Allocentric task. These 

responses may represent the cumulative population activity of neurons with directional 

modulations similar to those reported in the previous oculomotor studies (e.g. Olson 2003). 

The involvement of IOG in both egocentric and allocentric directional selectivity may 

indicate that these structures form a common hub for different types of visuospatial memory, 

whereas the differentiation of SOG for egocentric memory vs. ITG for allocentric memory is 

consistent with previous theories of functional specialization within the dorsal and ventral 

visual streams (Milner and Goodale, 1995; Schenk, 2006). Again, these findings suggest a 

degree of task-specificity not evident in previous perceptual studies (Merriam et al., 2007; 

Harrison and Tong, 2009). 
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As in a previous study (Committeri et al., 2004), ours defined target locations relative 

to a mobile reference point, and both studies observed allocentric-specific activation in 

ventro-lateral occipital-temporal cortex. In natural circumstances, egocentric and allocentric 

cues are stable and agree with each other. Thus, they can be optimally integrated for reach 

(Byrne and Crawford, 2010), which likely involves cooperative network connections 

between the areas described in the current study.  Finally, we employed an explicit allocentric 

task; different cortical mechanisms may be involved in tasks where allocentric information is 

implicit (Byrne and Crawford, 2010).  

 

Parieto-frontal Direction Selectivity in Delay vs. Response Phases 

We observed general activation of the parieto-frontal reach network in the Delay 

phase of both of our spatial tasks, presumably because our subjects were expecting to apply a 

rule-based visuomotor transformation upon the arrival of the subsequent go-signal for a reach 

movement (Hawkins et al., 2013). However, we were surprised that this activation was not 

directionally selective. This contradicts a study that reported ipsilateral direction preference 

in the monkey parietal reach region and PMd during a task very similar to our Egocentric 

task (Westendorff et al., 2010), but those responses may have been biased by lengthy training 

on the anti-reach task. Conversely, the lack of parieto-frontal direction selectivity in our 

Delay phase data appears to contradict studies that showed contralateral directional 

selectivity in PPC during the delay between viewing a target and reaching toward it  

(Medendorp et al., 2005a; Gail and Andersen, 2006). However, our subjects did not know 

what direction they would reach, relative to gaze/midline until the end of the Delay phase. 
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Thus, only target direction was coded in this phase, and our data suggest that this is not 

sufficient to evoke measureable parieto-frontal direction selectivity in the human.  

The latter conclusion suggests that additional motor signals are required to evoke 

parieto-frontal direction selectivity. To test this, we analyzed egocentric directional 

selectivity during our Response phase, after movement direction was specified. As predicted, 

directional selectivity re-appeared through most of the expected components of the human 

parieto-frontal reach network, including mIPS, SPL, AG, and PMd (Filimon, 2010; Vesia 

and Crawford, 2012). This data likely contained signals related to transformation of target 

memory into motor plans, commands, motor execution, and propriopceptive (but not visual) 

feedback.  However, comparing the current data to studies where planning was separated 

from motor execution suggests that the conversion of target coding into planning, or planning 

itself, is sufficient to produce directional tuning in parieto-frontal cortex (Medendorp et al., 

2005a; Gail and Andersen, 2006). 

 These conclusions are harder to reconcile with studies that showed spatial selectivity 

in PPC in the absence of any overt movement (Duhamel et al., 1992b; Colby et al., 1995; 

Merriam et al., 2003). It is possible that those subjects implicitly use motor imagery to help 

remember target location. Conversely, it is possible that in our Delay phase, parieto-frontal 

target signals were masked by directionally non-specific reach plans. Otherwise, our findings 

generally agree with the literature on movement planning in parieto-frontal cortex (Kalaska 

and Crammond, 1992; Kalaska et al., 1997; Kakei et al., 2001; Andersen and Buneo, 2002; 

Beurze et al., 2009; Filimon et al., 2009).  
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Asymmetry of Cortical Responses 

Overall, we found a greater propensity for left hemisphere activation (and 

concomitantly rightward target coding) in both the Delay and Response phases. This might 

be explained by interactions between hand lateralization and visual hemifield lateralization 

(Perenin and Vighetto, 1988; Rossetti et al., 2003; Medendorp et al., 2005b; Beurze et al., 

2007; Blangero et al., 2007; Vesia and Crawford, 2012). This has been shown before in 

parietal cortex (Fernandez-Ruiz et al., 2007), but is somewhat surprising that it also occurred 

in occipital cortex.  Possibly this reflects feedback of reach signals to these areas. For 

example, even though subjects could not see their hand in our task, they may have visualized 

it (Filimon et al., 2007).  It is also possible that this is related to attentional enhancement of 

visual stimuli near the hand (di Pellegrino and Frassinetti, 2000; Reed et al., 2006; Abrams et 

al., 2008). Taken together with our main result that occipital cortex encodes reach targets in 

both egocentric and allocentric coordinates, these results support the notion that occipital 

cortex plays a more important role in the guidance of action than often assumed (Pasternak 

and Greenlee, 2005).   
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3.1 ABSTRACT 

A remembered saccade target could be encoded in egocentric (body-centered) 

coordinates or relative to some allocentric (world-centered) cue. In comparison to egocentric 

mechanisms, very little is known about allocentric representation. Here, we used an event-

related fMRI design to identify brain areas supporting these two types of spatial coding for 

target memory during the Delay phase where only target location, not saccade direction, was 

specified. The paradigm included three tasks with identical display of visual stimuli but 

different auditory instructions: Allocentric saccade (remember target location relative to a 

visual landmark), Egocentric saccade (remember target location independent of the 

landmark), and a non-spatial control, Color report (report target color). During the Delay 

phase, the Egocentric and Allocentric tasks activated overlapping areas in posterior parietal 

cortex (PPC) and frontal cortex as compared to the control, but with higher activation in PPC 

for Egocentric coding and higher activation in temporal and occipital cortex for Allocentric 

coding. Egocentric directional selectivity (target relative to gaze fixation at midline) was 

observed in superior occipital gyrus and inferior occipital gyrus, whereas allocentric 

directional selectivity was observed in precuneus and midposterior intraparietal sulcus. 

During the Response phase after saccade direction was specified, the parietofrontal network 

in the left hemisphere showed higher activation for rightward than leftward saccades. Our 

results suggest that the cortical mechanisms for coding saccade target direction relative to an 

independent visual cue differ from purely egocentric mechanisms for target memory, from 

the mechanisms for other types of allocentric tasks, and from the directionally selective 

mechanisms for saccade planning and execution. 
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3.2 INTRODUCTION 

To explore and interact with the visual world, people make frequent saccades toward 

both visible and remembered targets (Enright, 1995; Rayner, 1998; Henderson and 

Hollingworth, 1999; Henderson et al., 1999; Land et al., 1999; Land and Hayhoe, 2001; 

Henderson, 2003; Bays and Husain, 2007; Rayner, 2009). In the absence of additional cues, 

visual movement targets can be encoded in memory with respect to egocentric (body-

centered) frames of reference, such as the eyes, head or body (Dassonville et al., 1995; 

Andersen, 1997; Karn et al., 1997; Colby, 1998; Henriques et al., 1998; Burnod et al., 1999; 

Cohen and Andersen, 2002). However, the addition of other stable visual stimuli provides 

potential cues for an allocentric (world-centered) frame of reference for coding target 

location (Carrozzo et al., 2002; Obhi and Goodale, 2005; Crawford et al., 2011; Tatler and 

Land, 2011; Sharika et al., 2014). These cues can be implicit, such as the influence of general 

background information on a memory-guided movement  (Mohrmann-Lendla and Fleischer, 

1991; Whitney et al., 2003; Uchimura and Kitazawa, 2013), or they can be explicit, such as 

the deliberate choice of remembering target location relative to another cue that is judged to 

be stable (Olson, 2003; Krigolson and Heath, 2004; Krigolson et al., 2007; Cordova et al., 

2012). Psychophysical studies in the reach system suggest that when both egocentric and 

allocentric cues are present, human subjects use an optimal combination of both, weighted 

through a combination of reliability and subjective judgements of cue stability (Byrne and 

Crawford, 2010). However, such studies cannot reveal the functional neuroanatomy of these 

systems. The goal of the current study was to compare human cortical mechanisms for 

egocentric coding of remembered saccade targets versus the explicit coding of a saccade 

target relative to a specified visual landmark. 
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The neural correlates of egocentric mechanisms are relatively well known, based on 

findings from both neurophysiological and human imaging studies. It has been shown that 

posterior parietal cortex (PPC), frontal eye field (FEF) and supplementary eye field (SEF) are 

involved in the coding of remembered saccadic targets and planning in egocentric reference 

frames (Colby, 1998; Sereno et al., 2001; Andersen and Buneo, 2002; Munoz, 2002; 

Medendorp et al., 2003; Munoz and Everling, 2004; Medendorp et al., 2005b; Medendorp et 

al., 2005a; Schluppeck et al., 2005; Curtis and D'Esposito, 2006; Kastner et al., 2007; Van 

Pelt et al., 2010; Crawford et al., 2011; Kravitz et al., 2011). Among these studies a 

contralateral left-right topography (i.e., egocentric directional selectivity: target direction in 

an egocentric frame) was shown in human midposterior intraparietal sulcus (mIPS) and FEF 

(Sereno et al., 2001; Medendorp et al., 2003; Medendorp et al., 2005b; Medendorp et al., 

2005a; Schluppeck et al., 2005; Curtis and D'Esposito, 2006; Kastner et al., 2007; Van Pelt et 

al., 2010). However, the egocentric mechanisms for saccade target memory were not directly 

investigated in those studies because there was no explicit separation between memory and 

movement planning / execution. 

In comparison to egocentric mechanisms, overall the allocentric mechanisms for 

saccade target coding are very little known. Some neurophysiological studies for object-

centered (target location relative to a part of the object itself) spatial coding of saccade 

targets revealed selective activity in SEF(Olson and Gettner, 1995, 1996; Olson and 

Tremblay, 2000; Olson, 2003). A recent fMRI study demonstrated that several areas in 

temporal and occipital cortex can explicitly code the direction of reach targets relative to an 

allocentric visual cue (Chen et al., 2014). Another recent fMRI study has identified regions 

of the human parietal and occipital cortex that are involved in an ‘automatic’ (task irrelevant) 
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allocentric coding of visual stimuli for judgment tasks, if the background cue is large enough 

(Uchimura et al., 2015). However, to our knowledge, the cortical mechanisms for the 

allocentric coding of memorized saccade targets (target location relative to another visual 

landmark) have not been investigated or directly compared with egocentric mechanisms, in 

terms of either general cortical activation patterns or the directional selectivity of specific 

areas.  

Based on the previous literature from reach and cognitive tasks, one might expect that 

egocentric and allocentric mechanisms for saccade target memory might have both shared 

and distinct cortical mechanisms (Galati et al., 2000; Zaehle et al., 2007; Thaler and Goodale, 

2011b; Chen et al., 2014). More specifically, one might expect the involvement of occipital 

cortex for the egocentric directional selectivity of saccade target memory as shown in a 

recent fMRI study for reach (Chen et al., 2014). If the cortical mechanisms for allocentric 

directional selectivity of saccade targets are similar to those in object-centered coordinates, 

one might expect higher activation in SEF, or other areas in frontal cortex as indicated in 

previous neurophysiological studies (Olson and Gettner, 1996; Olson and Tremblay, 2000). 

If the cortical mechanisms involved in the allocentric directional selectivity for the coding of 

saccade targets are similar to those for reach targets, one might expect an engagement of 

temporal cortex (Chen et al., 2014). However, if there are specific neural mechanisms 

involved in the allocentric directional selectivity for saccade targets relative to independent 

visual cues, i.e., effector-specific mechanisms, one might expect the activation of areas that 

differ from those involved in either the coding of allocentric reach targets or object-centered 

saccade targets.   
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To test these predictions, we used an event-related fMRI paradigm similar to our 

recent reach study (Chen et al., 2014) (1) to examine brain areas involved in spatial coding of 

remembered saccade targets in egocentric and allocentric frames of reference; (2) to 

investigate which brain areas show directional selectivity of remembered saccade targets in 

egocentric versus allocentric coordinates; (3) to compare egocentric directional selectivity for 

remembered saccade targets versus actual saccades during the motor response. Our results 

showed that cortical areas for the coding of remembered saccade targets in egocentric 

coordinates were different from those employed for coding in allocentric coordinates, in both 

general activation and direction specificity. The cortical areas showing egocentric directional 

selectivity during the delay phase differed from those during the response phase. The cortical 

areas showing allocentric directional selectivity of saccade target memory were different 

from those observed for reach targets and saccade targets represented in object-centered 

coordinates (Olson and Gettner, 1995; Olson and Tremblay, 2000; Chen et al., 2014), 

suggesting an effector- and coordinate-dependent mechanisms for allocentric coding of target 

direction. 
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3.3 MATERIALS AND METHODS 

 

Participants 

 Twelve right-handed participants (9 females and 3 males, aged 22-42 years) 

participated in this study and gave informed consent prior to the experiment. All had normal 

or corrected to normal vision and had no known neuromuscular deficits. We chose this 

number of subjects based on precedents set in similar studies of visuomotor control in 

healthy subjects (Cavina-Pratesi et al., 2007; Gallivan et al., 2011). The resulting dataset was 

sufficient to yield statistically significant results that survived corrections for multiple 

comparisons (see Results). This study was approved by the York Human Participants Review 

Subcommittee. 

 

Experimental apparatus and stimuli 

We used a same apparatus as that in a previous reach study (Chen et al. 2014). The 

visual stimuli of light dots produced by optic fibers were embedded in a custom-built board 

mounted atop a platform.  The platform was placed above the abdomen of the participant and 

affixed to the scanner bed. The board was approximately perpendicular to the direction of 

gaze on the central fixation point and was placed about ~60 cm away from the eyes of the 

participants. Participant’s head was slightly tilted to allow direct viewing of the stimuli 

without using mirrors. An eye-tracking system (iView X) was used in conjunction with the 

MRI-compatible Avotec Silent Vision system (RE-5701) to record gaze position from the 

right eye during fMRI experiments. A button pad was placed on the left side of the 

participant’s abdomen and used as a response key for the Color report task (see 
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Experimental paradigm and timing). Participants wore headphones to hear auditory 

instructions about the upcoming trial. During the experiment, participants were in complete 

darkness except for being able to see the visual stimuli. 

There were four types of stimuli each presented in a different color: yellow for the 

central fixation point, green or red for the saccade targets, blue for the visual landmarks, and 

white for the mask (Fig. 3.1). The dots of light corresponding to targets and relative visual 

landmarks were located to the left and the right of the central fixation point with a visual 

angle of four to seven degrees on each side, and being separated from each other by one 

visual degree. These dots could be red, green or blue, therefore they could be used as a target 

or a visual landmark in different trials. This allowed us to create 40 different combinations of 

target and visual landmark locations where the target could be located one or two visual 

degrees to the left or to the right of a visual landmark. Initial target and visual landmark were 

both displayed either to the left or to the right of the central fixation point. Since participants’ 

gaze and head positions were always aligned with their body midline, we used ‘midline’ as 

the zero point in a general egocentric coordinate system for the analyses of egocentric 

directional selectivity (i.e., target/saccade right of gaze = target/saccade right of midline, 

target/saccade left of gaze = target/saccade left of midline). 

The mask consisted of 20 dots of light displayed in two rows, one above and one 

below the targets. The location of each dot for the mask was aligned with the midpoint 

between two adjacent targets dots. The purpose of using a mask was to avoid potential after 

effects arising from the illumination of the target and the landmark in the dark. Since our 

analyses focused mainly on the Delay phase, it was critical to ensure that the recruitment of 
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target location for the upcoming saccade was resulting from memory rather than utilizing the 

afterimage of the target.  

 

Experimental paradigm and timing 

We employed an event-related design to investigate three main questions. First, we 

contrasted the neural substrates involved in the general processing saccade target location in 

allocentric versus egocentric frames of reference during the Delay phase. Second, we 

determined the brain areas showing directional selectivity of spatial coding of saccade targets 

in egocentric vs. allocentric coordinates during the same Delay phase. Third, we investigated 

the areas involved in processing saccade direction during the Response phase.  

The paradigm consisted of three tasks: Egocentric saccade (Ego), Allocentric saccade 

(Allo), and Color report (Color) (Fig. 3.1). In the Allocentric saccade task, participants had 

to remember and later make a saccade to the location of the target relative to a visual 

landmark. The saccade target and the additional landmark were initially presented together, 

then the landmark re-appeared at the same or at a different location (see Fig. 3.1 and below 

for details). The horizontal position of the saccade could not be planned during the memory 

period (i.e., the Delay phase) as the location of re-displayed landmark could not be predicted 

during this phase. In the Egocentric saccade task, participants had to remember and make a 

saccade to the remembered target, either at its initial location (pro-saccade), or at its mirror 

location in the opposite hemi-field (anti-saccade). The anti-saccade condition was used to 

equalize the motor aspects in the Ego and Allo tasks, i.e., so that in both tasks the horizontal 

saccade position could only be computed when the instruction to perform a saccade or an 

anti-saccade was given. Therefore, the activation observed during the Delay phase in both 
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tasks could only be related to the coding of horizontal target location, rather than saccade 

planning (although other types of directionally non-specific motor preparation for a forward 

saccade might exist during this phase). The Color report task was used as a non-spatial 

control where participants only reported the color of targets by pressing a button once or 

twice corresponding to the green or red saccade target. 

Our paradigm consisted of five phases (Fixation point, Target and Landmark 

presentation, Delay, Landmark presentation, Response) (Fig. 3.1). Prior to each trial, a 

recorded auditory instruction signalled the participant about the upcoming task: “Saccade 

relative to cue” (for Allocentric saccade tasks), “Saccade to target” (for Egocentric saccade 

tasks), “Report target color” (for Color report tasks).  Each trial started with the presentation 

of the central fixation for participants to fixate throughout the experiment. After 2 s, a target 

was presented along with a landmark for 2 s. Depending on the initial instruction, after the 

target and landmark disappeared, during the following 12 s Delay phase participants had to 

remember the location of the target relative to the landmark (Allocentric saccade), the 

location of the target regardless of the landmark (Egocentric saccade), or the color of the 

target (Color report). After the delay, the landmark re-appeared for 2 s either at its original 

location or at a novel location in the same or opposite hemifield of its first presentation. 

Subsequently, an auditory signal cued participants to saccade toward the allocentric target 

location (audio: “Saccade”), i.e., the target location relative to the re-presented landmark 

location for the Allocentric saccade task. In the Egocentric saccade task, participants were 

instructed to saccade toward the egocentric target location (audio: “Target” for pro-saccade), 

or the location opposite to the egocentric target location (audio: “Opposite” for anti-
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saccade). In the Color report task, participants indicated the color of the previously 

presented target by pressing the button (audio: “Color”). 

Each run contained 18 trials where each task was repeated six times in a random 

order.  An intertrial interval of 16 s was added between each trial to allow the hemodynamic 

response to return to baseline yielding a run time of approximately 12 min. Each participant 

was tested in six runs. In addition to the three tasks, we considered directional selectivity of 

remembered saccade targets in egocentric (Left and Right relative to midline) and allocentric 

coordinates (Left and Right relative to the visual landmark). This gave rise to three factors in 

our design: 3 Tasks (Ego, Allo, Color) x 2 Target locations relative to midline (Left of 

Midline: LM, Right of Midline: RM) x 2 Target locations relative to landmark (Left of 

Landmark: LL, Right of Landmark: RL). Therefore, there were 12 conditions in total: Ego: 

LM:LL, Ego: LM:RL, Ego: RM:LL, Ego: RM:RL, Allo: LM:LL, Allo: LM:RL, Allo: RM:LL, 

Allo: RM:RL, Color: LM:LL, Color: LM:RL, Color: RM:LL, Color: RM:RL. These 12 

conditions were counterbalanced in each run. Participants were trained to perform the tasks 

one day prior to scan. 

 

Behavioral analysis 

Following our fMRI experiments, we inspected eye position data for every trial to 

ensure that participants correctly followed all instructions. Errors in eye movements were 

defined as trials in which participants made a saccade toward the target or the visual 

landmark, or were not able to maintain central fixation during the delay phase, or the location 

of the saccade endpoint was on the opposite side of the actual target location relative to the 

midline on the touch screen. Trials that showed those errors were modelled as confound 
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predictors and excluded from further fMRI analyses (see Data analyses). All participants 

completed at least 96 correct trials (89% of the total trials).  

In order to confirm that participants actually used egocentric or allocentric visual 

information in the corresponding task (Ego or Allo) to encode target location as instructed, 

and to exclude the possibility that they simply made saccades to the correct side of the screen 

midline, we performed a correlation analysis. First, we calculated the distance between a 

participant's saccade response for a given trial and the screen midline, then calculated the 

distance between the proper target location (whether egocentrically or allocentrically 

defined) and the screen midline. If participants made saccades toward the correct location, 

these two values should be well correlated in both Ego and Allo tasks. The across-subject 

means of these correlation coefficients were 0.85 ± 0.01 for the Ego task and 0.87 ± 0.01 for 

the Allo task. We then applied Fisher’s r-to-z transformation to the individual subject 

correlation coefficients (r) so that we could use standard t-tests to compare the between-

subjects means of z values to zero. If participants were using the egocentric or allocentric 

spatial information for target coding, then these coefficients should have been significantly 

greater than zero. Standard t-tests showed that mean of correlation coefficient was 

significantly greater than zero in both tasks (pego = 0.0000001, pallo = 0.0000001). The 

correlations were still significant (pego = 0.000003, pallo = 0.000004) when absolute values for 

the distance were used, showing that subjects also adjusted the amplitude of the saccades in 

response to different target amplitudes on each side. 

To further quantify participants’ performance, we calculated the absolute error (AE) 

and the variable error (VE) in the horizontal dimension for each participant in each saccade 

task (Ego or Allo), respectively. The AE is the absolute value of the distance between the 
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Figure 3.1. Experimental paradigm. The display of the visual stimuli is identical for the three 

tasks (Allocentric saccade, Egocentric saccade and Color report). The critical difference 

between the two saccade tasks is the reference frames used for the coding of target location 

for the upcoming saccade. In the Allocentric saccade task, target location is encoded relative 

to the landmark. In the Egocentric saccade task, target location is encoded relative to the self. 

In the Color report task, the color of the target, rather than location, is being remembered and 

reported.  
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target position and the endpoint of a saccadic movement and represents the amount by which 

the target was missed. The VE was computed by taking the standard deviation of the constant 

saccade errors and represents the variability of saccade endpoints around the average 

endpoint. The across-subject means of AE were 1.63 ± 0.07 cm for the Ego task and 1.58 ± 

0.06 cm for the Allo task. The across-subject means of VE were 1.75 ± 0.06 cm for the Ego 

task and 1.73 ± 0.05 for the Allo task. There was no significant difference for AE [t (11) = 

0.54, p = 0.60] and VE [t (11) = 0.39, p = 0.70] between the Ego and Allo tasks. 

 

Imaging parameters 

This study was conducted at the neuroimaging center at York University using a 3-T 

whole body MRI system (Siemens Magnetom TIM Trio, Erlangen, Germany). The posterior 

half of a 12-channel head coil (6 channels) was placed at the back of the head in conjunction 

with a 4-channel flex coil covering the anterior part of the head. The former was tilted at an 

angle of 20° to allow the direct viewing of the stimuli. 

Functional data were acquired using an EPI (echo-planar imaging) sequence 

(repetition time [TR] = 2000 ms; echo time [TE] = 30 ms; flip angle [FA] = 90°; field of 

view [FOV] = 192 mm × 192 mm, matrix size = 64 × 64 leading to in-slice resolution of 3 

mm × 3 mm; slice thickness = 3.5 mm, no gap; 35 transverse slices angled at approximately 

25° covering the whole brain). The slices were collected in ascending and interleaved order. 

During each experimental session, a T1-weighted anatomical reference volume was acquired 

using a MPRAGE sequence (TR = 1900 ms; TE = 2.52 ms; inversion time TI = 900ms; FA = 

9°; FOV=256 mm× 256 mm× 192 mm, voxel size = 1 × 1 × 1 mm³). 
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Preprocessing 

Data were analyzed using the Brain Voyager QX 2.2 software (Brain Innovation, 

Maastricht, the Netherlands). The first 2 volumes of each fMRI scan were discarded to avoid 

T1 saturation effects. For each functional run, slice scan time correction (cubic spline), 

temporal filtering (removing frequencies < 2 cycles/run) and 3D motion correction 

(trilinear/sinc) were performed. The 3D motion correction was performed aligning each 

volume to the volume of the functional scan closest to the anatomical scan. Following 

inspection of the 3D motion correction parameters, the runs showing abrupt head motion 

exceeding 1 mm or 1° were discarded. Two runs (one from each of two participants) were 

discarded from the analyses due to head motion exceeding our set threshold. The functional 

run closest to the anatomical image for each participant was co-registered to the anatomical 

image. Functional data were then mapped into standard Talairach space, using the spatial 

transformation parameters from each participant’s anatomical image. Subsequently, 

functional data was spatially smoothed using a FWHM of 8mm.  

 

Data analyses 

For each participant, we used a general linear model (GLM) including 22 predictors 

in total. In particular, we used one predictor for the Target and Landmark presentation phase 

(2 s or 1 volume). We used 12 predictors (12 s or 6 volumes), one for each experimental 

condition for the Delay phase, (see Experimental paradigm and timing). We used one 

predictor (2 s or 1 volume) for the Landmark presentation phase. There were two factors in 

the Response phase (2 s or 1 volume): 3 Tasks (Ego, Allo, Color) x 2 Saccade direction 

relative to midline (Left of Midline: LM, Right of Midline: RM). This resulted in six 
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predictors: Ego Saccade: LM, Ego Saccade: RM, Allo Saccade: LM, Allo Saccade: RM, 

Color: LM, Color: RM, thus allowing us to explore the brain areas involved in processing the 

saccade direction during response. We used one predictor for keeping eyes on the saccade 

target (6 s or 3 volumes) for the current response to ensure stable saccade performance, and 

one predictor for shifting gaze back to the central fixation point for the next trial (2 s or 1 

volume). Each predictor was derived from a rectangular wave function convolved with a 

standard hemodynamic response function (HRF), the Brain Voyager QX’s default double-

gamma HRF. In addition, we added six motion correction parameters and errors made in eye 

data as confound predictors. 

 

Voxelwise analyses 

We performed contrasts on beta weights (β) using a group random effects (RFX) 

GLM where percentage signal change transformation had been performed. Our study aimed 

to explore brain areas encoding the saccade target location during the Delay phase prior to 

the movement. First, we used Contrast no. 1: [(Delay Ego + Delay Allo) > Delay Color] to 

investigate areas involved in coding of target location for the Egocentric and Allocentric 

saccade tasks as compared to the Color report control task. We collapsed the target location 

left and right to midline and landmark in the Delay phase. Second, we performed Contrast 

no. 2: [Delay Ego > Delay Allo] to identify brain areas involved in processing target location 

in egocentric vs. allocentric coordinates during the Delay phase. Third, we performed 

Contrast no. 3: [Delay Ego (Target Right of Midline) > Delay Ego (Target Left of Midline)] 

to examine areas showing egocentric directional selectivity (target location relative to 

midline). We collapsed left and right target locations relative to landmark. Fourth, we 
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performed Contrast no. 4: [Delay Allo (Target Right of Landmark) > Delay Allo (Target Left 

of Landmark)] to investigate brain areas showing allocentric directional selectivity (target 

location relative to landmark). In this contrast, we collapsed left and right target locations 

relative to midline. Finally, we tested whether areas in the parieto-frontal saccade network 

show a preference for target location in the contralateral visual hemifield for movements 

during the Response phase. This was assessed by Contrast no. 5: [Saccade Right of Midline > 

Saccade Left of Midline] in Egocentric and Allocentric tasks, respectively, during the 

Response phase. For this contrast, direction was defined as saccade direction relative to 

midline. 

Activation maps for group voxelwise results were rendered either on the inflated 

anatomical image of one representative participant (Fig. 3.2, 3.7) or on the average 

anatomical MRI from twelve participants (Fig. 3.3, 3.4, 3.5, 3.6). In order to correct for 

multiple comparisons, we performed a cluster threshold correction (Forman et al., 1995) 

using BrainVoyager’s cluster-level statistical threshold estimator plug-in. This algorithm 

uses Monte Carlo simulations (1000 iterations) to estimate the probability of a number of 

contiguous voxels being active purely due to chance while taking into consideration the 

average smoothness of the statistical maps. Areas that did not survive a cluster threshold 

correction were excluded from further analyses. The estimated minimum cluster size was 28 

voxels (3 mm3) for a total volume of 756 mm3.  Subsequently, a Bonferroni correction was 

applied to paired-sample t-tests on β weights extracted from each area that survived the 

cluster threshold correction. The Bonferroni correction was performed for three comparisons 

(corrected p = 0.0167) aimed at answering our main questions. 
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For Contrasts no. 1 and 2, we performed the following comparisons on β weights: 

Ego vs. Color, Allo vs. Color, Ego vs. Allo to explore the difference of brain activity between 

tasks. For Contrasts no. 3, we performed three comparisons on β weights: RM vs. LM in Ego, 

Allo and Color tasks, respectively, to investigate whether the coding of left and right target 

location relative to midline was specific to the egocentric task or it also existed in other two 

tasks. For Contrasts no. 4, we performed three comparisons on β weights: RL vs. LL in Ego, 

Allo and Color tasks, respectively, to examine whether the coding of target location relative 

to the landmark was specific to the allocentric task or it also applied to other two tasks. For 

Contrasts no. 5, we performed three comparisons on β weights: Saccade RM vs. Saccade LM 

in Ego, Allo and Color tasks, respectively, to confirm that the coding of saccade direction 

relative to midline only emerged in the two saccade tasks, not in the Color control task. The 

results on β weights are plotted in bar graphs in Figures 3.2-3.7 to illustrate significant 

differences between conditions at the corrected p-value, unless specified (see Results). 

Results that are non-independent of the selection criteria are indicated in square brackets in 

the β weight plots. 

 

3.4 RESULTS 

The key question behind our design was to compare cortical activity involved in the 

coding of saccade targets in egocentric and allocenric coordinates during the Delay phase. As 

shown in Fig. 3.1, in this phase only target direction was specified (in Egocentric or 

Allocentric frames of reference), whereas saccade direction was informed only at the end of 

Landmark presentation phase through the re-presented landmark (Allocentric saccade), or 

the pro/anti-saccade instruction (Egocentric saccade). We performed a detailed analysis for 
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the Delay phase, followed by a brief analysis on saccade directional coding during the 

Response phase. Each of the figures (3.2 - 3.7) begins with a voxelwise analysis of whole 

brain activity, followed by further paired t-tests on β weights between conditions from each 

significant activity cluster. See Table 3.1 for a list of the cortical areas that were active in 

these analyses, and their acronyms. 

 

Task-Related Cortical Activation during the Delay Phase 

We performed Contrast no. 1 [(Delay Ego + Delay Allo) > Delay Color] to explore the brain 

areas showing higher activation in the two experimental saccade tasks (Ego, Allo), as 

opposed to the non-spatial control task (Color). Figure 3.2 shows the resulting activation 

map, superimposed on an inflated cortical surface, with the corresponding mean β weights 

for each task and area plotted beneath as bar graphs. The Talairach coordinates of these brain 

areas are reported in Table 3.2. Note that the activations revealed by this contrast might be 

related to any aspect of target coding, including landmark location coding, and/or general 

motor preparation with expectancy in an upcoming saccade, except target or movement 

direction (this is dealt with in subsequent sections).  

Compared to the Color report task, the Ego and Allo saccade tasks elicited higher 

activation in: bilateral frontal eye field (FEF), midposterior intraparietal sulcus (mIPS) and 

superior parieto-occipital cortex (SPOC) in the left hemisphere, anterior (amIPS) and 

posterior mIPS (pmIPS) in the right hemisphere (Fig. 3.2, upper panel).  Paired t-tests on β 

weights (Fig. 3.2, lower panels) indicated higher Ego vs. Color activation in these areas: 
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Table 3.1 Acronyms for brain areas from voxelwise analyses 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acronyms Names of brain areas 
aIOG anterior inferior occipital gyrus 
amIPS anterior midposterior intraparietal sulcus 
FEF frontal eye field  
IOG inferior occipital gyrus 
ITG inferior temporal gyrus 
LOtG lateral occipitotemporal gyrus 
MFG middle frontal gyrus 
mIPS midposterior intraparietal sulcus 
MOG middle occipital gyrus 
MTG middle temporal gyrus 
pIOG posterior inferior occipital gyrus 
pIPS posterior intraparietal sulcus 
pmIPs posterior midposterior intraparietal sulcus 
SEF supplementary eye field 
SMG supramarginal gyrus 
SOG superior occipital gyrus 
SPL superior parietal lobule 
SPOC superior parieto-occipital cortex 
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bilateral FEF [LH: t (11) = 5.33, p = 0.00024; RH: t (11) = 3.56, p = 0.0045], left mIPS [t (11) = 

2.95, p = 0.013], left SPOC [t (11) = 3.30, p = 0.0071], right amIPS [t (11) = 3.27, p = 0.0075] 

and right pmIPS [t (11) = 3.01, p = 0.012]. We also found higher activation for Allo vs. Color 

in some of these areas: bilateral FEF [LH: t (11) = 4.66, p = 0.00070; RH: t (11) = 2.76, p = 

0.018], left mIPS [t (11) = 4.17, p = 0.0016] and left SPOC [t (11) = 3.24, p = 0.0079]. In 

addition, the t-tests also indicated higher activation for Ego vs. Allo in right amIPS [t (11) 

=2.88, p = 0.015].  In summary, this analysis mostly revealed overlapping activation in the 

Ego and Allo saccade tasks in bilateral FEF, left mIPS and left SPOC, except that right 

amIPS showed higher activation for Ego vs. Allo tasks, and that right pmIPS showed higher 

activation for Ego vs. Color tasks.  

Subsequently, we used Contrast no. 2 to directly compare Ego and Allo activation 

during the Delay phase to explore the areas showing higher activation for Ego vs. Allo tasks 

and vice versa. The Talairach coordinates for these brain areas are reported in Table 3.3. 

Figure 3.3 shows the areas that showed significantly higher activation in the Ego task, 

overlaid on horizontal brain slices and with the corresponding β-weights for each area and 

task plotted beneath. These areas included right amIPS [t (11) =2.88, p = 0.015], and right 

supramarginal gyrus (SMG) [t (11) = 2.90, p = 0.014].  The comparison of β-weights for these 

regions showed that they were also significantly activated less for the Color Task [Ego vs. 

Color: right amIPS: t (11) = 3.27, p=0.0075, right SMG: t (11) = 2.43, p = 0.033]. This 

demonstrates that activation of amIPS and SMG showed specificity for the Ego task. 

 Figure 3.4 shows areas that showed significantly higher activation in the Allo task, 

using similar conventions to Figure 3.3 but showing the statistical map on both horizontal 

and sagittal brain slices. This analysis identified several areas in occipital cortex showing 
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Figure 3.2. Voxelwise statistical map and activation levels for each area using Contrast no.1. 

[(Delay Ego + Delay Allo) > Delay Color], Top panel: activation map rendered on the 

inflated brain of one representative participant. Bottom panel: bar graphs show the β weights 

for the three tasks in each area. [*] Significant difference between two tasks for p < 0.05, 

non-independent of the criteria used to select the area. [^] Significant difference between two 

tasks for p < 0.05, uncorrected, non-independent of the criteria used to select the area. Error 

bars indicate 95% confidence intervals.  
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Table 3.2 Talairach coordinates and number of voxels for contrast no. 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain areas Talairach coordinates   No. of voxels 
 x y z    
[(Delay Ego + Delay Allo) > Delay Color]    
LH FEF -24   -1 50   513 
RH FEF  28    3 50   508 
LH mIPS -40 -48 42   512 
RH amIPS  33 -37 39   353 
RH pmIPS  33 -57 39   392 
LH SPOC -18 -67 49   511 
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higher activation for the Allo vs. Ego tasks, including bilateral calcarine sulcus [LH: t (11) = 

3.64, p = 0.0039; RH: t (11) = 3.47, p = 0.0053] and cuneus [LH: t (11) = 3.74, p = 0.0032; RH: 

t (11) = 3.02, p = 0.012], and middle occipital gyrus (MOG) in the right hemisphere [t (11) 

=3.44, p = 0.0055]. However, our t-test analysis on β-weights (lower panels) showed that 

these occipital areas also showed higher activation for Color vs. Ego, including bilateral 

calcarine sulcus [LH: t (11) = 2.96, p = 0.013; RH: t (11) = 3.08, p = 0.010] and cuneus [LH: t 

(11) = 3.01, p = 0.012; RH: t (11) = 3.55, p = 0.0046], and right MOG [t (11) =3.15, p = 0.0093]. 

This suggests that general activation of early visual cortex was not specific to any one of the 

tasks in the current experiment. In addition, this analysis (Figure 3.4) revealed higher Allo 

activation in left inferior temporal gyrus (ITG) [t (11) =3.13, p = 0.0096]. This area also 

showed higher activation in the Allo than the Color task, but this did not reach significance [t 

(11) =1.61, p = 0.14]. 

To summarize, these results showed overlapping parieto-frontal areas for spatial 

memory of egocentric and allocentric target representation for saccades. In addition, the Ego 

task evoked higher activation in parieto-frontal areas such as amIPS and SMG. In contrast, 

the Allo task produced higher activation in temporal cortex (ITG) and early visual cortex 

areas such as calcarine and cuneus, although the latter areas also showed activity in the Color 

task. 

 

 

 

 

 

98 
 



 

 

 

 

 

 

 

 

 

 

Figure 3.3. Voxelwise statistical map and activation levels for each area using Contrast no. 2 

[Delay Ego > Delay Allo]. Top panel: activation map overlaid on the averaged anatomical 

image from all participants. Bottom panel: bar graphs show the β weights for the three tasks 

in each area. Legends as in Figure 3.2. 

 

 

 

 

99 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Voxelwise statistical map and activation levels for each area using Contrast no. 2 

[Delay Allo > Delay Ego]. Top panel: activation map overlaid on the averaged anatomical 

image from all participants. Bottom panel: bar graphs show the β weights for the three tasks 

in each area. Legends as in Figure 3.2. 

100 
 



Table 3.3 Talairach coordinates and number of voxels for contrast no. 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain areas Talairach coordinates   No. of voxels 
 x y z    
Delay Ego > Delay Allo    
RH amIPS  33 -37 39   353 
RH SMG  43 -49 48   431 
Delay Allo > Delay Ego    
LH ITG -45 -48  -8   400 
LH Calcarine   -4 -82   5   512 
RH Calcarine    5 -78   5   510 
LH Cuneus   -2 -84 10   730 
RH Cuneus    4 -67 10   323 
RH MOG                         46 -68   8   410 
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Egocentric Directional Selectivity: Target Location Relative to Midline during the Delay 

Phase 

We used Contrast no. 3 [Delay Ego (Target Right of Midline) > Delay Ego (Target 

Left of Midline)] to investigate areas showing egocentric directional selectivity during the 

Delay phase. The Talairach coordinates of these brain areas are reported in Table 3.4. We 

found no active voxels showing higher activation for right vs. left target location. However, 

as illustrated in Figure 3.5, areas superior occipital gyrus (SOG) [t (11) = 4.21, p = 0.0015] 

and inferior occipital gyrus (IOG) [t (11) = 3.92, p = 0.0024] in the right hemisphere showed 

higher activation for target to the left vs. right of midline. Analysis of the β-weights for SOG 

and IOG (Fig. 3.5, right column) showed no egocentric directional selectivity in either the 

Allo or Color tasks. To confirm that the egocentric directional selectivity described above 

was specific to the egocentric task throughout the brain, we performed a full-brain voxelwise 

contrast [Delay Allo (Target Right of Midline) > Delay Allo (Target Left of Midline)] during 

the Delay phase in the Allo task (not shown). There were no significantly active voxels for 

this contrast.  

In summary, we found significant egocentric directional selectivity in SOG and IOG 

during the Ego task, suggesting that these early visual areas are specifically involved in the 

egocentric coding of remembered target location for saccades. 
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Figure 3.5. Voxelwise statistical map and activation levels for each area using Contrast no. 3 

Egocentric directional selectivity during delay. [Delay Ego: (Target Left of Midline) > Delay 

Ego: (Target Right of Midline)], Left panel: activation map overlaid on the averaged 

anatomical image from all participants. Right panel:  bar graphs show the β weights for each 

condition in each area. Legends as in Figure 3.2. 
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Allocentric Directional Selectivity: Target Location Relative to Landmark during the 

Delay Phase 

The key point of this study was that our design allowed us to investigate neural 

substrates for the coding of saccade targets relative to a visual landmark in the Allocentric 

saccade task. We used Contrasts no. 4 [Delay Allo (Target Right of Landmark) > Delay Allo 

(Target Left of Landmark)] to identify the brain areas involved in allocentric directional 

selectivity (target location relative to landmark). Talairach coordinates of these brain areas 

are reported in Table 3.4. The results of this analysis are shown in Figure 3.6, with activation 

clusters superimposed on anatomical brain slices in the left column and the results of further 

t-test analysis of β weights on the right. This figure separates areas that show rightward (A) 

and leftward (B) allocentric tuning. 

As shown in Figure 3.6 A, this contrast revealed significantly higher rightward 

allocentric activation in bilateral precuneus [LH: t (11) = 4.33, p = 0.0012; RH: t (11) = 3.88, p 

= 0.0026] and left mIPS [t (11) = 3.66, p = 0.0037]. Our β weight comparisons (right column) 

revealed that in parietal cortex this directional selectivity was specific to the Allo task. This 

analysis also revealed higher leftward activation in the right calcarine sulcus (Fig. 3.6 B) for 

the Allo saccade task [t (11) = 3.28, p = 0.0074] as well as for the Ego saccade task [t (11) = 

2.95, p = 0.013]. 

In order to examine the task-specificity of allocentric directional selectivity 

throughout the brain, we performed voxelwise contrast [(Target Right of Landmark) > 

(Target Left of Landmark)] for the Egocentric task during the Delay phase. This confirmed 

left vs. right allocentric directional selectivity in right calcarine sulcus [t (11) = 2.95, p = 

0.013], and revealed additional occipital areas (not shown) with allocentric directional 
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selectivity in the Egocentric task. These included right vs. left allocentric tuning in bilateral 

IOG [LH: t (11) = 3.49, p = 0.0051; RH: t (11) = 3.23, p = 0.0080], and left vs. right allocentric 

tuning in the left calcarine sulcus [t (11) = 2.59, p = 0.025].  

In summary, precuneus and mIPS showed significant allocentric directional 

selectivity only for the Allocentric saccade task, suggesting that dorsal-medial PPC and 

middle IPS are specifically recruited for the allocentric coding of remembered saccade 

targets (see Discussion). Occipital areas also showed allocentric directional selectivity, but 

this was not task specific. 

 

Saccade Direction Coding during the Response Phase 

 As noted above, we did not observe egocentric directional selectivity in the parietal-

frontal saccade circuit during the Delay phase. The reason may be that unlike previous fMRI 

studies where saccade direction could be planned during memory delay (Medendorp et al., 

2005a; Kastner et al., 2007), participants in our study would not be able to plan the horizontal 

position of the actual saccade in the Delay phase until saccade direction was specified by 

either the reappearance of the landmark (Allo task) or the pro/anti instruction (Ego task) right 

before the Response phase. To confirm this, we performed Contrast no. 5 [Saccade Right of 

Midline > Saccade Left of Midline] in Egocentric and Allocentric saccade tasks, 

respectively, during the Response phase. The Talairach coordinates of brain areas were 

reported in Table 3.5. 
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Figure 3.6. Voxelwise activation maps and activation levels for each area using Contrast 

no.4 Allocentric directional selectivity during delay. (A) [Delay Allo (Target Right of 

Landmark) > Delay Allo (Target Left of Landmark)]. (B) [Delay Allo (Target Left of 

Landmark) > Delay Allo (Target Right of Landmark)]. Left panels: activation maps overlaid 

on the averaged anatomical image from all participants. Right panels: bar graphs show the β 

weights for each condition in each area. Legends as in Figure 3.2. 
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Table 3.4 Talairach coordinates and number of voxels for contrast nos. 3, 4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain areas Talairach coordinates   No. of voxels 
 x y z    
Delay Ego (Target Left of Midline) > Delay Ego (Target Right of Midline) 
RH SOG 16 -97    7   236 
RH IOG 16 -79 -13   467 

Delay Allo (Target Right of Landmark) > Delay Allo (Target Left of Landmark)  
LH precuneus -14 -68 36   247 
RH precuneus  10 -63 36   230 
LH mIPS -40 -36 36   472 

Delay Allo (Target Left of Landmark) > Delay Allo (Target Right of Landmark) 
RH calcarine    7 -78   8   360 
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As shown in Figure 3.7 (which superimposes activity clusters on an inflated brain in 

the upper row, and their task-specific β weights in the lower row), this analysis revealed 

contralateral egocentric directional selectivity, mainly in the left hemisphere. This includes 

several additional areas in the parieto-frontal network that did not show egocentric 

directional specificity during the Delay phase. In particular, we found higher activation for 

saccade toward right vs. left in left supplementary eye field (SEF) for both Egocentric [t (11) = 

3.24, p = 0.010] and Allocentric saccade tasks [t (11) = 3.05, p = 0.014], middle frontal gyrus 

(MFG) [t (11) = 4.52, p = 0.0014], FEF [t (11) = 3.59, p = 0.0059] and posterior IPS (pIPS) [t 

(11) = 4.00, p = 0.0031] for the Egocentric saccade task. In addition, there was higher 

activation for saccade toward right vs. left for the Allocentric saccade task in superior 

parietal lobule (SPL) [t (11) = 4.19, p = 0.0023], middle temporal gyrus (MTG) [t (11) = 3.74, p 

= 0.0046], lateral occipitotemporal gyrus (LOtG) [t (11) = 4.13, p = 0.0026], anterior (aIOG) 

[t (11) = 4.05, p = 0.0029] and posterior IOG (pIOG) [t (11) = 4.18, p = 0.0024] in the left 

hemisphere. Insula in the right hemisphere [t (11) = 3.85, p = 0.0039] showed higher 

activation for saccades to left vs. right in the Allocentric saccade task. 

In summary, during the Response phase, contralateral egocentric directional 

selectivity emerged in occipital, parietal, temporal, and frontal cortex, primarily in the left 

hemisphere (with the exception of insular cortex).  
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Figure 3.7. Voxelwise activation maps and activation levels for each area using Contrast 

no.5 Egocentric directional selectivity during response. Top panel: activation maps rendered 

on the inflated brain of one representative participant. (A) Saccade Right of Midline > 

Saccade Left of Midline. Yellow, voxels activated in the Ego task. Pink, voxels activated in 

the Allo task. Orange, voxels activated in both tasks. (B) Saccade Left of Midline > Saccade 

Right of Midline. Green, voxels activated in the Allo task. Bottom panel: bar graphs show 

the β weights for each condition in each area. Legends as in Figure 3.2. 
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Table 3.5 Talairach coordinates and number of voxels for contrast no. 5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain areas Talairach coordinates  No. of voxels 
 x y z   
Saccade Right of Midline > Saccade Left of Midline   
Both tasks:      
LH SEF   -5    6  62  440 

Ego task:      
LH FEF -24   -6  58  396 
LH MFG -40    9  47  319 
LH pIPS -30 -65  32  343 

Allo task:      
LH SPL -24 -65  54  394 
LH LOtG -33 -69 -11  392 
LH aIOG -47 -60   -1  498 
LH pIOG -47 -75   -2  441 

Saccade Left of Midline > Saccade Right of Midline   
Allo task:      
RH Insula  31  25    8  462 
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3.5 DISCUSSION 

In this study, we utilized an event-related fMRI design to discriminate between 

egocentric versus allocentric coding of remembered saccade targets during a Delay phase 

that was temporally and spatially separated (by a pro/anti saccade instruction or a re-

presented landmark) from saccade planning and execution (during the Response phase). This 

design differed from saccade tasks where saccade direction was instructed from the 

beginning of the task. Thus our analysis could focus on the Delay phase to distinguish 

between cortical areas 1) that were differentially activated for egocentric versus allocentric 

target coding, or 2) that showed directional selectivity in either egocentric or allocentric 

coordinates. Since our design included explicit instructions for two different spatial tasks 

(Ego and Allo), it will allow us to contrast areas involved in explicit spatial coding versus 

areas involved in implicit spatial coding (Uchimura et al., 2015).  

Our results showed partially overlapping patterns of cortical activation in the 

egocentric and allocentric saccade tasks during the Delay phase. Most importantly, different 

cortical mechanisms for directional coding of remembered saccade targets, i.e. occipital areas 

for egocentric directional selectivity vs. parietal areas for allocentric directional selectivity, 

were observed during the Delay phase. Egocentric saccade direction selectivity only 

appeared in parieto-frontal cortex during the Response phase, after movement direction was 

specified.  

 

Explicit vs. Implicit Use of Allocentric Cues 

Consistent with previous studies (Krigolson and Heath, 2004; Obhi and Goodale, 

2005; Krigolson et al., 2007; Chen et al., 2014), here we showed that humans were able to 
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explicitly aim movements toward a location defined relative to a specific allocentric cue. In 

other situations, allocentric background information was used implicitly (Whitney et al., 

2003; Chen et al., 2011; Uchimura and Kitazawa, 2013), although in these cases motor 

behavior seemed to only partially weighted toward the allocentric cue (Byrne and Crawford 

2010). In particular, this weighting seemed to depend on the proximity, number, and perhaps 

size of background objects (Diedrichsen et al., 2004; Krigolson et al., 2007; Uchimura and 

Kitazawa, 2013; Fiehler et al., 2014).  

Recently, in an fMRI study that used a non-spatial shape judgement task (that most 

closely resembles our Color control task as opposed to our saccade tasks), Uchimura et al. 

(2015) found adaptation effects for allocentric stimulus location in precuneus and MOG. 

These modulations disappeared when the allocentric cue was reduced to a size comparable to 

the cue that was used in the current study. It is difficult to directly compare this study with 

ours because of task differences (perceptual judgement vs. saccade response), but there are 

some common elements. In the current study, MOG showed higher activation in the Color 

and Allo tasks than in the Ego task, but did not show allocentric directional selectivity. 

Several other areas (including precuneus) did show allocentric directional selectivity in the 

explicit Allo task, none of these showed implicit allocentric directional selectivity in the 

Color task. Comparing the results of these two studies suggests that similar (or overlapping) 

cortical networks are partially activated during implicit allocentric coding (to a degree 

depending on the salience of the cue), and fully activated (independent of cue salience) in 

tasks that require explicitly allocentric coding. This could explain why cue proximity, 

number, and size have different influences on allocentric coding, depending on the task. 
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Egocentric vs. Allocentric Cortical Activation during the Delay Phase 

 In most previous fMRI studies of egocentric coding for saccades, movement direction 

was instructed from the beginning of each trial (Connolly et al., 2002; Medendorp et al., 

2003; Schluppeck et al., 2005; Medendorp et al., 2006; Van Pelt et al., 2010). As noted 

above, our study differed in that participants did not know which way they would saccade 

until the Response phase, enabling us to focus our analysis on remembered target coding 

during the Delay phase.  

We found overlapping areas in parietal and frontal cortex in the two saccade tasks 

(Ego, Allo) as opposed to the non-spatial control task (Color) during the Delay phase. 

However, right amIPS and SMG were preferentially involved in egocentric saccade target 

coding. Area mIPS is thought to correspond to the human parietal eye fields (Muri et al., 

1996; Sereno et al., 2001; Medendorp et al., 2003; Koyama et al., 2004; Pierrot-Deseilligny 

et al., 2004; Medendorp et al., 2005b; Hagler et al., 2007; Merriam et al., 2007; Vesia et al., 

2010) and to correspond to monkey lateral intraparietal cortex (Andersen and Buneo, 2002; 

Culham et al., 2006; Vesia and Crawford, 2012), whereas SMG is thought to be involved in 

spatial memory (Moscovitch et al., 1995; Salmon et al., 1996; Faillenot et al., 1997; Silk et 

al., 2010). 

 In contrast, temporal cortex (ITG) and occipital cortex (calcarine, cuneus and MOG) 

were preferentially involved in allocentric saccade target coding. Although these occipital 

areas also showed higher activation in the Color as compared to the Ego saccade task, ITG 

only showed higher activation in the Allo vs. Ego saccades, suggesting temporal cortex was 

selective for spatial memory of allocentric saccade targets in our study. Temporal cortex has 

previously been implicated in allocentric coding in neuropsychological studies (Milner and 
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Goodale, 2006; Schenk, 2006), whereas occipital cortex (calcarine, cuneus, and MOG) is 

generally thought to be involved in stimulus-feature processing and visual working memory 

(Greenlee et al., 2000; Harrison and Tong, 2009). 

 

Directional Selectivity for Saccade Target Coding during the Delay Phase 

Previous neuroimaging studies indicated that human mIPS and FEF preferentially 

code contralateral saccade targets in egocentric coordinates (Medendorp et al., 2003; 

Medendorp et al., 2005a; Curtis and D'Esposito, 2006; Kastner et al., 2007). However, the 

design of those studies may have conflated saccade target memory and planning. Previous 

neurophysiological studies have shown that neurons in lateral intraparietal sulcus (LIP) and 

SEF can code saccade target location within an object relative to other parts of the same 

object (object-centered coordinates), with a weaker signal in the former (Sabes et al., 2002; 

Olson, 2003).  But to our knowledge, the cortical mechanisms for spatial selectivity of 

saccade target memory in egocentric and allocentric (target relative to a separate visual 

landmark) reference frames have not been studied before the current investigation. 

In the present study, during the Delay phase a preference for contralateral saccade 

targets relative to midline was observed in right SOG and IOG in the Ego task (note again 

that gaze, head, and body coordinates were aligned with midline; we made no attempt to 

distinguish between these egocentric frames in this experiment). Similar brain areas in 

occipital cortex for the egocentric directional selectivity of reach target memory were 

reported in our previous reach study (Chen et al., 2014), which used a similar design except 

for details of the fixation requirements, timing, and of course the effector used for the final 

action. We did not do a direct statistical comparison of the data from these two studies 
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because of these minor design differences and because different pools of participants were 

employed.   

In comparison, we found allocentric directional selectivity (target location relative to 

the landmark) in bilateral precuneus and left mIPS. The involvement of PPC areas in 

allocentric directional selectivity of saccade targets is consistent with the suggestion of non-

retinal representation of target location for saccades in PPC from neurophysiological (Galletti 

et al., 1993; Thier and Andersen, 1996; Mullette-Gillman et al., 2005) and human imaging 

studies (Pertzov et al., 2011). For instance, Pertizov et al. (2011) indicated that the multiple 

reference frames in mIPS for saccade target coding could be head-centered, body-centered, 

or even allocentric coordinates. However, that study did not distinguish between non-retinal 

and allocentric frames of reference. Alternatively, it may be that a single egocentric frame 

(such as gaze-centered coordinates) was used to code the relative locations of the cue and 

target in these areas, and that this is the underlying mechanism for solving our allocentric 

task (Filimon, 2015).  

In contrast to our previous study (i.e. rather than observed allocentric directional 

selectivity in inferior occipital and inferior temporal gyrus for reach targets), we found 

precuneus and mIPS showing direction specificity for saccade targets in allocentric 

coordinates. This difference might have something to do with the speed and frequency of 

saccades relative to relatively sluggish reaches, perhaps requiring a more direct link between 

allocentric and egocentric coding mechanisms (Crowe et al., 2008). Unlike previous 

neurophysiological studies showing object-centered saccade target coding in SEF (Olson and 

Gettner, 1995, 1996; Olson and Tremblay, 2000), we did not observe allocentric directional 

specificity in SEF in our study. This could reflect the difference between the two non-
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egocentric reference frames used in these studies (independent allocentric cue vs. object-

centered), thus suggest the divergent neural mechanisms related to each of them for the 

coding of saccade target direction relative to an external landmark versus to a part of the 

object itself. 

 

Direction Selectivity in Delay versus Response Phases 

It is important to point out that the spatial details of saccade planning and execution 

could only occur in our Response phase after movement direction was specified by re-

appearance of the landmark in the Allo task and by providing a pro/anti-saccade auditory cue 

in the Ego task right before the Response phase. This would explain why, unlike previous 

fMRI studies showing contralateral directional selectivity in parietal and frontal cortex for 

saccades (Medendorp et al., 2003; Kastner et al., 2007), we did not observe any egocentric 

directional selectivity in the parieto-frontal network during our Delay phase. As expected, we 

found directional selectivity contralateral to the direction of saccades in several parietal and 

frontal areas in the left hemisphere, such as SEF in both Ego and Allo tasks, FEF and pIPS in 

the Ego task and SPL in the Allo task. However, we were somewhat surprised by the 

additional recruitment of left occipital and temporal areas for directional selectivity of 

rightward saccades in the Allo task. These areas are not normally associated with control of 

saccades. This might reflect the greater degree of task complexity, and/or the maintenance of 

allocentric coding mechanisms during the Response phase. Likewise, we were somewhat 

surprised to find that only the right insula showed directional selectivity of leftward saccades 

in the Allo task. This directionally selective activation might be related to a role of right 

insula in more complex saccade tasks, like the Allo task in our study (Blurton et al., 2012). 
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We observed a similar pattern of contralateral directional selectivity for saccades to 

that for reaches during the Response phase, with more areas in the left hemisphere (Chen et 

al. 2014). This is easier to explain for reaches as interactions between visual directional 

selectivity and contralateral hand specificity (Perenin and Vighetto, 1988; Rossetti et al., 

2003; Medendorp et al., 2005b; Beurze et al., 2007; Blangero et al., 2007; Vesia and 

Crawford, 2012), but hemispheric specialization for saccadic eye movements is still debated 

(Pierrot-Deseilligny et al., 1991; Muri et al., 2000; Leff et al., 2001; Muri et al., 2002; Yang 

and Kapoula, 2004). However, it has been suggested that saccade-related hemispheric 

asymmetry in PPC could be influenced by factors such as latency and dynamics (Yang and 

Kapoula, 2004; Vergilino-Perez et al., 2012).  

In summary, other than the few exceptions noted above, the cortical activation 

observed during the Response phase was generally consistent with previous fMRI literature 

on egocentric movement selectivity for saccades and the ways this differs from reach 

direction selectivity (Beurze et al., 2007; Fernandez-Ruiz et al., 2007; Busan et al., 2009; 

Chen et al., 2014). This difference is in accordance with effector specificity for reach versus 

saccade planning and execution (Medendorp et al., 2005b; Connolly et al., 2007; Beurze et 

al., 2009; Vesia et al., 2010). Likewise, as noted above we found some detailed differences 

between directional selectivity for saccade and reach target memory in our current and 

previous studies (Chen et al. 2014). But the important common message from both our 

studies is that egocentric and allocentric target coding mechanisms differ, both from each 

other and from the cortical mechanisms used for the planning and execution of movements.  
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4.1 ABSTRACT 

Targets for goal-directed action can be encoded in allocentric coordinates (relative to 

another visual landmark), but it is not known how these are converted into egocentric 

commands for action. Here, we investigated this using a novel event-related fMRI paradigm, 

based on our previous behavioral finding that the Allocentric to Egocentric (Allo-Ego) 

conversion for reach is done at the first possible opportunity. Participants were asked to 

remember (and eventually reach toward) the location of a briefly presented target relative to 

another visual landmark. After a 1st memory delay, participants were forewarned if the 

landmark would reappear at the same location, (potentially allowing them to plan a reach 

during the 2nd delay), or at a different location where they had to wait for the end of the 2nd 

delay to see the final landmark location, and then reach toward the remembered target 

location. As predicted, participants showed landmark-centered directional selectivity in 

occipital-temporal cortex during the first memory delay, only developed egocentric 

directional selectivity in occipital-parietal cortex during the second delay for the “same” task, 

and after the second delay for the “different” task. We then compared cortical activation 

between these two tasks at the times when the Allo-Ego conversion must have occurred, and 

found common activation in right precuneus, right supramarginal gyrus, left angular gyrus, 

and right mid-frontal gyrus. These results confirm that the brain converts allocentric codes to 

egocentric plans at the first possible opportunity, and identify the four most likely candidate 

sites specific to the Allo-Ego transformation for reaches. 
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4.2 INTRODUCTION 

Various studies of spatial cognition have emphasized that visual locations can be 

specified in either egocentric (Ego: body-fixed) or allocentric (Allo: world-fixed) frames of 

reference (Philbeck et al., 1997; Galati et al., 2000; Schmidt et al., 2003; Burgess et al., 2004; 

Mou et al., 2006; Zaehle et al., 2007). Previous neuropsychological studies have suggested 

that allocentric and egocentric target representation is associated with the ventral and dorsal 

visual streams, respectively (Milner and Goodale, 2006; Schenk, 2006; Milner and Goodale, 

2008). However, in many cases, transformations must occur between these two types of 

spatial coding (Burgess, 2006; Byrne and Becker, 2008). In particular, in order to aim a 

movement toward an allocentrically defined target, this information must be transformed into 

egocentric commands for motion of one body segment relative to another (Chen et al., 2011; 

Crawford et al., 2011; Chen et al., 2014). To our knowledge, the neural mechanisms for such 

an “Allo-Ego” transformation are completely unknown at this time. 

It has been shown that the location of visual reach targets can be represented in either 

egocentric (McIntyre et al., 1997; Henriques et al., 1998; McIntyre et al., 1998; Pouget et al., 

2002; Lemay and Stelmach, 2005), or allocentric frames of reference (Goodale and 

Haffenden, 1998; Carrozzo et al., 2002; Obhi and Goodale, 2005). Human neuroimaging 

studies investigating the neural substrates of egocentric reach plan have shown the 

recruitment of a parietofrontal network that includes superior parietal-occipital cortex 

(SPOC), midposterior intraparietal sulcus (mIPS) and dorsal premotor cortex (PMd) (Beurze 

et al., 2010; Vesia and Crawford, 2012), and a preference for contralateral left-right reach 

coding in posterior parietal cortex (PPC) (Medendorp et al., 2003; Medendorp et al., 2005b; 

Fernandez-Ruiz et al., 2007; Chen et al., 2014). Further, a recent fMRI study indicated 
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different cortical mechanisms for allocentric versus egocentric coding of remembered reach 

targets, including areas of temporal and occipital cortex that code the location of a reach 

target relative to an independent visual cue (Chen et al., 2014). While this study confirmed 

that egocentric cortical reach codes arose after the cue was used to specify reach direction, it 

could not show where this Allo-Ego transformation occurred.  

Behavioral studies have shown that allocentric representations are more stable than 

egocentric representations (Krigolson and Heath, 2004; Heath, 2005; Obhi and Goodale, 

2005; Hay and Redon, 2006; Krigolson et al., 2007). However, behavioral work has further 

shown that paradoxically the brain performs the conversion from allocentric to egocentric 

representations at the first possible opportunity for reach movements in the absence of visual 

feedback (Chen et al., 2011). These behavioral findings could not show where or how the 

brain computes the Allo-Ego conversion.  In order to answer this question, we designed the 

current study, which is aimed at identifying the neural mechanisms of Allo-Ego conversion 

for reach. 

The goal of the present study was (1) to confirm “first possible” hypothesis of Allo-

Ego conversion for reach targets in a situation where either a visual or a verbal cue is 

available for this conversion, and (2) to investigate the brain areas involved in this 

conversion. We used an event-related fMRI paradigm where – based on our previous 

behavioral study (Chen et al., 2011) – the Allo-Ego conversion should be expected during the 

delay phase in our “Same cue’ task, but only during the later response phase in our “Different 

cue”  task (see Figure 4.1 for details). The brain imaging results of this study confirmed and 

extended our previous behavioral results by showing, at the neural level, that  (after a period 

of allocentric coding) egocentric coding arose at the first opportunity (in the second delay for 
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the Same cue task and in the response for the Different cue task). More importantly, multiple 

comparisons between these two tasks narrowed down four specific candidate areas in PPC 

and frontal cortex for the Allo-Ego conversion, independent of the time of conversion or 

modality of available cues (verbal or visual).  

 

4.3 MATERIALS AND METHODS 

 

Participants 

Twelve right-handed participants (8 females and 4 males, aged 24-42 years) 

participated in this study and gave informed consent prior to the experiment. All had normal 

or corrected to normal vision and had no known neuromuscular deficits.  This size subject 

pool was chosen based on previous fMRI studies of visuomotor control in healthy subjects 

(Cavina-Pratesi et al., 2007; Gallivan et al., 2011) and proved sufficient to provide 

statistically significant results that survived corrections for multiple comparisons (see 

Results). This study was approved by the York Human Participants Review Subcommittee. 

 

Experimental apparatus and stimuli 

We used the same apparatus as that for our previous reach study on allocentric 

coordinates for remembered reach targets (Chen et al., 2014). In brief, visual stimuli of light 

dots produced by optic fibers were embedded in a custom-built board mounted atop a 

platform.  The platform was placed above the abdomen of the participant and affixed to the 

bed of the scanner. The board was approximately perpendicular to the direction of gaze on 

the central fixation point and was placed about ~60 cm away from the eyes of the 
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participants. A computer controlled touch screen (Keytec Inc, dimensions 170 (h) × 128 (v) 

mm) was attached on the custom-built board to allow the recording of reaching endpoints.  

Participant’s upper arm was strapped to the bed to avoid artifacts due to the motion of the 

shoulder and the head, therefore the reaching movements were performed by the forearm and 

hand. Participant’s head was slightly tilted to allow direct viewing of the stimuli without 

using mirrors. An eye-tracking system (iView X) was used in conjunction with the MRI-

compatible Avotec Silent Vision system (RE-5701) to record gaze position from the right eye 

during fMRI experiments. Participants wore headphones to hear verbal instructions about the 

reach task to be performed. During the experiment, participants were in complete darkness 

except for dots of lights corresponding to the visual stimuli, which were dim enough to 

prevent the illumination of the workspace. 

There were four types of stimuli each presented in a different color: yellow for the 

central fixation point, red for the reach targets, blue for the visual landmarks, and white for 

the mask (Figure 4.1 A). The dots of light corresponding to the targets and the relative visual 

landmarks were located to the left and the right of the central fixation point with a visual 

angle of four to seven degrees on each side, and were separated from each other by one 

visual degree. These dots could be red or blue, therefore they could be used as a target or a 

visual landmark in different trials. This allowed us to create 20 different combinations of 

target and visual landmark locations where the target could be located one or two visual 

degrees to the left or to the right of a visual landmark. Since participants’ gaze and head 

positions were always aligned with their body midline, we used “midline” as the zero point 

in a general egocentric coordinate system for the analyses of egocentric directional selectivity 

(i.e., target right of gaze = target right of midline, target left of gaze = target left of midline). 
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The mask consisted of 20 dots of light displayed in two rows, one above and one 

below the targets. The location of each dot for the mask was aligned with the midpoint 

between two adjacent target dots. The purpose of using a mask was to avoid potential after 

effects arising from the illumination of the target and the landmark in the dark. 

 

Experimental paradigm and predictions 

The paradigm consisted of two allocentric reach tasks (Same cue and Different cue), 

in which an allocentric cue was initially used to encode target location for reach. We 

employed an event-related design to identify the brain areas involved in the Allo-Ego 

conversion that we have previously observed behaviorally (Chen et al., 2011).  To do this, we 

designed a paradigm that prompted the participants to perform this conversion at one of two 

different stages of the trial, depending on the task instruction. Each participant was tested in 

five runs. Each run included 16 trials and each task was repeated eight times in a randomized 

order.  An inter-trial interval of 14 s was added between each trial to allow the hemodynamic 

response to return to baseline and yield a run time of approximately 11 min.  

As illustrated in Figure 4.1 A, the paradigm consisted of seven phases (fixation point, 

target and landmark presentation, first delay, audio instruction, second delay, landmark 

presentation, response). Each trial started with the presentation of the central fixation that 

participants fixated throughout each run. After 2 s, a target was presented along with an 

allocentric landmark for 2 s, followed by a 6-s delay phase. After the first delay phase, a 

verbal instruction, either “Same cue”, or “Different cue” indicated whether the landmark 

would re-appear at the same location or at a different location. This was followed by a 10-s 

second delay phase. In the Same cue and Different Cue tasks during the first delay, 
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participants could encode the target in allocentric coordinates (target direction relative to the 

landmark) as observed in in our previous study (Chen et al., 2014), but no egocentric 

directional selectivity, as the  movement direction was not specified yet. 

Once the verbal cue was given, the Same cue instruction implicitly informed 

participants that at the end of the trial they were reaching toward the same target location 

indicated in the target and landmark presentation phase. This allowed participants to 

immediately convert the allocentrically-defined target location into an egocentric 

representation (specifying reach direction and amplitude) during the second delay phase 

(Chen et al., 2011). In contrast, the Different cue instruction indicated that the landmark was 

re-displayed at a new location after the second delay, so that the Allo-Ego conversion could 

be processed only then. This part of the design led to our first two predictions during the 

second delay (Figure 4.1 B). First, areas involved in the Allo-Ego conversion would be more 

active in the Same Cue task than the Different cue task in the second delay, as the Same but 

not the Different cue task allowed the conversion of the Allocentric target into an Egocentric 

representation (see “Voxelwise Analysis” below for details of these tests).  Second, as a 

result of this conversion, contralateral directional selectivity would appear in brain areas 

involved in egocentric coding in the Same Cue task (Medendorp et al., 2003; Medendorp et 

al., 2005; Fernandez-Ruiz et al., 2007; Chen et al., 2014), but not in the Different Cue task, as 

the movement direction was explicit in the Same but not in the Different Cue task. 

After the second delay, the landmark re-appeared for 2 s at a novel location in the 

same or opposite hemifield of its first presentation in the Different cue task, or at its original 

location in the Same cue task. During the following response phase, participants reached 

toward the remembered target location relative to the re-displayed allocentric landmark. 
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Therefore, the Allo-Ego conversion for the Different cue task could only occur in the 

response phase. We made two more predictions for the response phase (Figure 4.1 C): areas 

directly involved in producing the Allo-Ego conversion would now be more active in the 

Different Cue task (because the cue for this conversion was now present in this task) than in 

the Same cue task (as the conversion had happened earlier, see Figure 4.1C, right panel), and 

as a result egocentric cortical directional selectivity should now be present in both the Same 

and Different Cue tasks (because the Allo-Ego conversion had now occurred in both tasks, 

see Figure 4.1C, left panel). Therefore, we further predicted that cortical areas that passed 

both Allo-Ego comparisons (Figures 4.1 B, C right panels) would be the best candidates for 

the conversion, i.e., independent of the timing and nature of the cue (verbal before the second 

delay, visual before the response). 

In summary, we made the following predictions: an early Allo-Ego conversion in the 

Same Cue task producing egocentric coding in the second delay (Figure 4.1B), and a late 

Allo-Ego conversion in Different Cue task (Figure 4.1C) with egocentric directional coding 

in the final response phase for the Different Cue task and with continued egocentric coding in 

the Same Cue task (Figure 4.1C, left panel). These were tested as follows in Results.  

To confirm that there was allocentric coding of remembered target location, and that 

there was no egocentric directional selectivity of reach direction during the first delay, we 

tested allocentric target directional specificity (Left and Right relative to landmark) and 

egocentric reach directional selectivity (Left and Right reach relative to midline). This gave 

rise to three factors in the first delay phase: 2 Tasks (Same cue, Different cue) x 2 Reach 

direction relative to midline (Left of Midline: LM, Right of Midline: RM) x 2 Target direction 

relative to landmark (Left of Landmark: LL, Right of Landmark: RL). Therefore, there were 8 
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conditions in total: First delay: Same cue: LM:LL, First delay Same cue: LM:LR, First delay 

Same cue: RM:LL, First delay Same cue: RM:LR, First delay: Different cue: LM:LL, First 

delay Different cue: LM:LR, First delay Different cue: RM:LL, First delay Different cue: 

RM:LR. In order to test the Allo-Ego conversion we examined egocentric directional 

selectivity of reach direction (Left and Right reach relative to midline) in the second delay 

phase and response phase, respectively. This gave rise to two factors in each of these two 

phases: 2 Tasks (Same cue, Different cue) x 2 Reach direction relative to midline (Left of 

Midline: LM, Right of Midline: RM). Therefore, there were 8 conditions in total: 4 for Second 

delay (Second delay: Same cue: LM, Second delay: Same cue: RM, Second delay: Different 

cue: LM, Second delay: Different cue: RM), and 4 for Response (Response: Same cue: LM, 

Response: Same cue: RM, Response: Different cue: LM, Response: Different cue: RM). 

These conditions were counterbalanced in each run. Participants were trained to perform the 

tasks one day prior to scan. 

 

Behavioral analysis 

Following our fMRI experiments, we inspected eye position data for every trial to 

ensure that participants fixated the central fixation. Errors in eye position were defined as 

trials in which participants made a saccade toward the target or the visual landmark, or were 

not able to maintain central fixation. Errors in reaching performance were defined as trials in 

which the location of the reaching endpoint and the actual reach target location were on 

opposite sides relative to the midline on the touch screen. Trials that showed errors in eye 

and/or reach were modeled as confound predictors and excluded from further fMRI analyses 
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(see Data analyses). All participants completed at least 72 correct trials (90% of the total 

trials). 

In order to confirm that participants actually used allocentric visual information to 

encode target location, and to exclude the possibility that they simply reached to the correct 

side of the screen midline, we performed a correlation analysis between the correct target 

location and the corresponding reaching endpoint for each of the two tasks. First, we 

calculated the distance between a participant's reach response for a given trial and the screen 

midline. Second, we calculated the distance between the reach target location and the screen 

midline. If participants reached to the correct location, these two values should be well 

correlated in both Same cue and Different cue tasks. The across-subject means of these 

signed correlation coefficients were 0.89 ± 0.01 for the Same cue task and 0.91 ± 0.01 for the 

Different cue task. We then applied Fisher’s r-to-z transformation to the individual subject 

correlation coefficients (r) so that we could use standard t-tests to compare the between-

subjects means of z values to zero. Standard t-tests showed that mean of correlation 

coefficient was significantly greater than zero in both tasks (psame cue = 0.0000001, pdifferent cue 

= 0.0000001) indicating that participants performed well when reaching to the targets. The 

correlations were still significant (psame cue = 0.0000004, pdifferent cue = 0.0000004) when 

absolute values for the distance were used, showing that amplitude of reach performance was 

also modulated. 

To further quantify participants’ performance, we calculated the absolute error (AE) 

and the variable error (VE) in the horizontal dimension for each participant in each task 

(Same cue or Different cue), respectively. The AE was the absolute value of the distance 
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Figure 4.1 Experimental paradigm and predicted BOLD signal changes during the second 

delay and response phases. A, Illustration of the experimental paradigm. The displayed visual 

stimuli are the same for the two tasks: Same cue and Different cue. The critical difference 

between the two tasks is the early opportunity where the allocentric to egocentric conversion 

occurs. In the Same cue task the Allo-Ego conversion happens during the Second delay 

following a verbal cue; in contrast, in the Different cue task this conversion emerges during 

the Response following a visual cue of re-presented landmark at a new location.  B, 

Predictions for second delay. We expected that egocentric directional selectivity (reaches 

relative to midline) would be revealed by higher activation for contralateral than ipsilateral 

reaches in the Same cue task (left panel), and that areas involved in the Allo-Ego conversion 

would elicit higher activation in the Same cue task compared to the Different cue task during 

second delay (right panel). C, Predictions for response. We expected that egocentric 

directional selectivity (reaches relative to midline) would be revealed by higher activation for 

contralateral than ipsilateral reaches in both Different cue and Same cue tasks (left panel), 

and a reversed pattern of BOLD signal changes between the two tasks during response, i.e., 

higher activity in the Different cue task compared to the Same cue task (right panel). 
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between the reach target location and the endpoint of a reach movement, representing the 

amount by which the target was missed. The VE was calculated by taking the standard 

deviation of the constant reach errors, representing the variability of reach endpoints around 

the average endpoint. The across-subject means of AE were 1.29 ± 0.08 cm for the Same cue 

task and 1.41 ± 0.08 cm for the Different cue task. The across-subject means of VE were 1.30 

± 0.08 cm for the Same cue task and 1.32 ± 0.07 for the Different cue task. There was no 

significant difference between the errors in these two tasks [AE: t (11) = 1.71, p = 0.11; VE: t 

(11) = 0.30, p = 0.77]. 

 

Imaging parameters 

This study was conducted at the neuroimaging center at York University using a 3-T 

whole body MRI system (Siemens Magnetom TIM Trio, Erlangen, Germany). The posterior 

half of a 12-channel head coil (6 channels) was placed at the back of the head in conjunction 

with a 4-channel flex coil covering the anterior part of the head. The former was tilted at an 

angle of 20° to allow a reach-to-touch movement to the touch screen as well as the direct 

viewing of the stimuli. 

Functional data were acquired using an EPI (echo-planar imaging) sequence 

(repetition time [TR] = 2000 ms; echo time [TE] = 30 ms; flip angle [FA] = 90°; field of 

view [FOV] = 192 mm × 192 mm, matrix size = 64 × 64 leading to in-slice resolution of 3 

mm × 3 mm; slice thickness = 3.5 mm, no gap; 35 transverse slices angled at approximately 

25° covering the whole brain). The slices were collected in ascending and interleaved order. 

During each experimental session, a T1-weighted anatomical reference volume was acquired 
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using a MPRAGE sequence (TR = 1900 ms; TE = 2.52 ms; inversion time TI = 900ms; FA = 

9°; FOV=256 mm× 256 mm× 192 mm, voxel size = 1 × 1 × 1 mm³). 

 

Preprocessing 

Data were analyzed using the Brain Voyager QX 2.2 software (Brain Innovation, 

Maastricht, the Netherlands). The first 2 volumes of each fMRI scan were discarded to avoid 

T1 saturation effects. For each functional run, slice scan time correction (cubic spline), 

temporal filtering (removing frequencies < 2 cycles/run) and 3D motion correction 

(trilinear/sinc) were performed. The 3D motion correction was performed aligning each 

volume to the volume of the functional scan closest to the anatomical scan. Following 

inspection of the 3D motion correction parameters, the runs showing abrupt head motion 

exceeding 1 mm or 1° were discarded. Four runs (one from each of four participants) were 

discarded from the analyses due to head motion exceeding our set threshold. The six motion 

correction parameters were added to our general linear model (GLM) as predictors of no 

interest. The functional run closest to the anatomical image for each participant was co-

registered to the anatomical image. Functional data were then mapped into standard 

Talairach space, using the spatial transformation parameters from each participant’s 

anatomical image. Subsequently, functional data was spatially smoothed using a FWHM of 

8mm.  

 

Data analyses 

For each participant, we used a GLM that included 19 predictors. Specifically, one 

predictor was used for the Target and Landmark presentation phase (2 s or 1 volume). In the 
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First delay phase, we used 8 predictors (6 s or 3 volumes), one for each experimental 

condition (see “Experimental paradigm and predictors”). In the Verbal instruction phase, we 

used one predictor (2 s or 1 volume). In the Second Delay phase, we used 4 predictors (10 s 

or 5 volumes), one for each experimental condition (see “Experimental paradigm and 

predictors”). In the Landmark presentation phase, we used one predictor (2 s or 1 volume). 

In the Response phase, we used 4 predictors, (4 s or 2 volumes), one for each experimental 

condition (see “Experimental paradigm and predictors”).  Each predictor was derived from a 

rectangular wave function convolved with a standard hemodynamic response function 

(HRF), the Brain Voyager QX’s default double-gamma HRF. In addition, we added six 

motion correction parameters and errors made in eye and reach data as confound predictors. 

 

Voxelwise analyses 

We performed contrasts on beta weights (β) using a group random effects (RFX) 

GLM where percentage signal change transformation had been performed. As described 

above, our questions were aimed at exploring brain areas involved in converting allocentric 

coding of remembered targets into egocentric representation for reaching movements during 

the second delay and response phases. Before examining these questions we performed three 

comparisons in the first delay phase to confirm some assumptions about our data. First, we 

directly compared the two tasks using Contrast no. 1 [First delay: (Same cue > Different 

cue)] to confirm that there was no difference yet in the Same cue vs. Different cue trials as 

expected here since these instructions were not yet given. We also performed directional 

contrasts from our previous study (Chen et al., 2014) to confirm a lack of egocentric reach 

plans using Contrast no. 2: [First delay: (Reach Right of Midline > Reach Left of Midline)], 
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as expected during allocentric memory before reach direction was specified, and to confirm 

allocentric target coding using Contrast 3: [First delay:(Target Left of Landmark > Target 

right of Landmark)]. 

Subsequently, we tested our hypothesis that the Allo-Ego conversion occurred in the 

second delay phase in the Same cue task, but only during the response phase in the Different 

cue task in the present study (Figure 4.1 B, C, left panels). As described above, this was 

confirmed by examining the first appearance of directional selectivity in brain areas known 

to encode contralateral reach targets in egocentric coordinates (here, reach relative to 

midline). In particular, we performed Contrast no. 4: [Second delay: (Reach Right of Midline 

> Reach Left of Midline)], and Contrast no. 5: [Response: (Reach Right of Midline > Reach 

Left of Midline)] on each of the two tasks.  

Finally, we investigated the brain areas involved in the conversion of allocentric to 

egocentric target representation for reach. As illustrated in Figure 4.1 B and C (right panels), 

we hypothesized that areas that process the Allo-Ego conversion would show higher 

activation for the Same cue task versus the Different cue task in the second delay phase after 

the audio cue. In addition, there would be higher activation for the Different cue task as 

compared to the Same cue task in the response phase after the visual cue of re-displayed 

landmark. These hypotheses were tested by Contrast no. 6: [Second delay: (Same cue > 

Different cue)], and Contrast no. 7: [Response: (Different cue > Same cue)].  

Both contrasts 6 and 7 were aimed at identifying regions involved in the Allo-Ego 

conversion. However, these conversions occurred at different times within the trial and were 

prompted by different type of cues (verbal instruction vs. visual presentation). As a result 

these contrasts could also contain activity related to the sensory modality (visual or verbal) 
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that was used for the instructions. Therefore, to identify the specific areas involved in the 

Allo-Ego conversion of target representations, regardless of the order or type of available 

cues we performed Contrast no. 8: a conjunction between Contrast 6 and Contrast 7.  

Activation maps for group voxelwise results are overlaid on the average anatomical 

MRI from twelve participants. In order to correct for multiple comparisons, we performed a 

cluster threshold correction (Forman et al., 1995) using BrainVoyager’s cluster-level 

statistical threshold estimator plug-in. This algorithm uses Monte Carlo simulations (1000 

iterations) to estimate the probability of a number of contiguous voxels being active purely 

due to chance while taking into consideration the average smoothness of the statistical maps. 

Areas that did not survive a cluster threshold correction were excluded from further analyses. 

The estimated minimum cluster size was 16 voxels (3 mm3) for a total volume of 432 mm3 

for Contrast nos. 4 and 5, and 26 voxels (3 mm3) for a total volume of 702 mm3 for Contrast 

nos. 3, 6 and 7. From each area, we extracted β weights from each individual participant to 

perform further comparisons using paired-sample t-tests.  

 

Statistical Analyses 

We first performed one comparison of LL vs. RL on the result of Contrast no. 3 to 

confirm allocentric coding of reach targets in the first delay phase for both tasks. The second 

comparisons on the results of Contrast nos. 4 and 5 were aimed at testing whether the 

egocentric reach directional selectivity (reach relative to midline) only occurred in the task 

where the allocentric coding of remembered targets could be converted to egocentric 

representations. Therefore, we performed the following two comparisons: Same cue: RM vs. 

LM, Different cue: RM vs. LM in the second delay and response phase, respectively. 
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Subsequently, a Bonferroni correction was applied to these two comparisons (corrected p = 

0.025). The last comparisons on the results of Contrast nos. 6 and 7 was aimed at 

investigating brain areas involved in the All-Ego conversion by showing activation 

differences between the two tasks. Therefore, we performed one comparison of Same cue vs. 

Different cue. The results on β weights are plotted in bar graphs in Figures 4.2 - 4.6 to 

illustrate significant differences between conditions or tasks at the corrected p-value, unless 

specified (see Results). In the β weight plots, square brackets were used to indicate that 

results were non-independent of the selection criteria. The time course data from each of the 

identified brain areas that were specifically involved in Allo-Ego conversion were shown in 

line graphs in Figure 4.7 B.  

 

4.4 RESULTS 

We had two main purposes for our experimental design. First, we wanted to examine 

whether the behavioral result showing that the brain performs an Allo-Ego conversion at the 

first possible opportunity was also reflected in neural activity (Chen et al., 2011). We did so 

by identifying the first appearance of egocentric coding in reach areas after the presentation 

of an allocentrically coded target. Second, we wanted to identify the brain areas that were 

directly involved in this conversion. Our design employed two different cues for an Allo-Ego 

conversion at two different times, an audio cue (right before the second delay phase, only 

valid after the Same cue instruction) or a visual cue (right before the response phase, valid in 

the Different cue task). After confirming the presence of allocentric coding in the first delay 

phase, we analyzed egocentric reach directional selectivity in the second delay and response 

phases to confirm the occurrence of Allo-Ego conversion at the first opportunity, and then 

138 
 



made comparisons between the two tasks to investigate cortical mechanisms for this 

conversion. The cortical areas along with their corresponding acronyms identified by these 

contrasts are listed in Table 4.1. 

 

Brain Activation during the First Delay Phase 

 During the first delay phase, there should be no difference between the Same cue and 

Different cue tasks because these cues had not yet been given. Similarly, there should be no 

egocentric reach-direction selectivity because the subjects did not yet know which direction 

they were going to reach. Our voxelwise analyses confirmed that during this phase, there was 

no active voxel when the two tasks were compared using Contrast no. 1 [Frist delay: (Same 

cue > Different cue), and no significant egocentric reach coding revealed by Contrast no. 2 

[First delay: (Reach Right of Midline > Reach Left of Midline)]. However, one should expect 

allocentric coding of target direction during the first delay in both tasks, similar to what we 

observed in the memory delay of our previous experiment (Chen et al., 2014). We confirmed 

this by using Contrast no. 3: [First delay: (Target Left of Landmark > Target Right of 

Landmark)], in which we collapsed data from both the left and right reach target locations 

relative to midline and both Same cue and Different cue tasks. As illustrated in Figure 4.2, 

areas right ITG (t (11) =7.06, p = 0.00002) and left IOG (t (11) =4.26, p = 0.001) showed higher 

activation for reach targets to left versus right of the landmark. The Talairach coordinates of 

the brain areas are reported in Table 4.2. This is generally consistent with our previous result 

in reach study (Chen et al., 2014), and it confirms the original allocentric coding in this 

phase. Having confirmed these assumptions, we then examined the novel hypotheses in this 

study.   
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Table 4.1 Acronyms for brain areas from voxelwise analyses 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acronyms Names of brain areas 
AG angular gyrus  
aMTG anterior middle temporal gyrus  
aPrecuneus anterior precuneus 
IFG inferior frontal gyrus  
IOG inferior occipital gyrus 
ITG inferior temporal gyrus 
LG lingual gyrus 
MFG middle frontal gyrus 
pIPS posterior intraparietal sulcus 
LOtG lateral occipitotemporal gyrus 
MFG middle frontal gyrus 
mIPS midposterior intraparietal sulcus 
MOG middle occipital gyrus  
PMd dorsal premotor cortex 
pMTG posterior middle temporal gyrus 
pIOG posterior inferior occipital gyrus 
pIPS posterior intraparietal sulcus 
Pre-SMA presupplementary motor area 
SMG supramarginal gyrus 
SOG superior occipital gyrus 
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Figure 4.2 Voxelwise statistical map and activation levels for each area using Contrast no.3. 

[First delay: (Target Left of Landmark > Target Right of Landmark)], Left panel, activation 

map overlaid on the averaged anatomical image from all participants. Right panel, bar graphs 

show the β weights for the two conditions in each area. * Significant difference between two 

conditions for p < 0.05, [  ] non-independent of the criteria used to select the area. Error bars 

indicate 95% confidence intervals.  
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Allo-Ego Conversion: First Appearance of Egocentric Directional Selectivity 

Based on our previous psychophysical study, we predicted that egocentric reach 

coding would first appear in the second delay of our paradigm in the Same cue task , and 

would first appear in the response phase of our Different cue task. We tested these 

predictions using Contrast no. 4 [Second delay: (Reach Right of Midline > Reach Left of 

Midline)] (Figure 4.3) and Contrast no. 5 [Response: (Reach Right of Midline > Reach Left 

of Midline)] (Figure 4.4 A and B) for each task. The Talairach coordinates of these brain 

areas are reported in Table 4.2.  

As shown in Figure 4.3, during the second delay, Contrast no. 4 revealed contralateral 

reach directional selectivity in left posterior intraparietal sulcus (pIPS) (t (11) =4.61, p = 

0.001), superior occipital gyrus (SOG) (t (11) =3.78, p = 0.003), middle occipital gyrus 

(MOG) (t (11) =3.97, p = 0.002) and inferior occipital gyrus (IOG) (t (11) =3.55, p = 0.005) in 

the Same cue task. Egocentric directional selectivity was not observed in the right 

hemisphere (not shown). In addition, significant egocentric direction specificity was never 

observed during the second delay in the Different cue task. These findings confirm the 

predictions shown in Figure 4.1 B, left panel. 

In contrast, as predicted in Figure 4.1 C, left panel, egocentric directional selectivity 

was observed in both tasks during the response phase using Contrast no. 5 (Figure 4.4 A, B). 

In particular, as shown in Figure 4.4 A, areas Precuneus (Different cue: t (11) =5.66, p = 

0.0001; Same cue: t (11) =3.91, p = 0.002), cuneus (Different cue: t (11) =3.69, p = 0.004; Same 

cue: t (11) =4.14, p = 0.002), calcarine (Different cue: t (11) =3.49, p = 0.005; Same cue: t (11) 

=4.79, p = 0.0006), lingual gyrus (LG) (Different cue: t (11) =4.23, p = 0.001; Same cue: t (11) 

=7.47, p = 0.00001), SOG (Different cue: t (11) =2.82, p = 0.016; Same cue: t (11) =4.74, p = 
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0.0006), MOG (Different cue: t (11) =3.30, p = 0.007; Same cue: t (11) =6.81, p = 0.00003) and 

IOG (Different cue: t (11) =2.97, p = 0.013; Same cue: t (11) =3.84, p = 0.003) in the left 

hemisphere showed higher activation for reaches made to the right versus left of midline for 

the both tasks, except left pIPS showed this pattern in the Different cue task only (t (11) =3.20, 

p = 0.008). Similarly, as illustrated in Figure 4.4 B, calcarine (Different cue: t (11) =3.72, p = 

0.003; Same cue: t (11) =5.31, p = 0.0003) and LG (Different cue: t (11) =3.11, p = 0.01; Same 

cue: t (11) =4.04, p = 0.002) in the right hemisphere showed higher activation for reaches to 

the left versus right of midline in both tasks, except right pPrecuneus showed this activity 

pattern in the Same cue task only (t (11) =3.60, p = 0.004).  

In summary, contralateral reach directional selectivity was observed in occipital-

parietal areas at the first appearance of a cue to the egocentric location of the allocentrically-

defined target for reaches; in the second delay for the Same cue task, and in the response 

phase for the Different cue task. This confirmed that allocentric to egocentric conversion of 

reach target occurred as soon as possible, consistent with previous psychophysical study 

(Chen et al., 2011). Further, our results suggested that this Allo-Ego conversion could arise 

with use of a verbal or a visual cue, as shown in our Same cue task during the second delay 

phase and in our Different cue task during the response phase. We next tried to identify the 

areas of the brain that might be directly involved in producing this conversion. 
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Figure 4.3 Voxelwise statistical map and activation levels for each area using Contrast no.3. 

[First delay: (Target Left of Landmark > Target Right of Landmark)], Left panel, activation 

map overlaid on the averaged anatomical image from all participants. Right panel, bar graphs 

show the β weights for the two conditions in each area. Legends as in Figures 4.2. 
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Figure 4.4 Voxelwise statistical map and activation levels for each area using Contrast no. 5. 

A, [Response: (Reach Right of Midline > Reach Left of Midline)]. Top panel, activation map 

overlaid on the averaged anatomical image from all participants. Pink represents voxels 

activated in the Same cue task. Yellow represents voxels activated in the Different cue task. 

Orange represents voxels activated in both tasks. Bottom panel, bar graphs show the β 

weights for each condition in each area. B, [Response: (Reach Left of Midline > Reach Right 

of Midline)]. Left panel, activation map overlaid on the averaged anatomical image from all 

participants. Blue represents voxels activated in the Same cue task. Light green represents 

voxels activated in the Different cue task. Dark green represents voxels activated in both 

tasks. Right panel, bar graphs show the β weights for each condition in each area. Legends as 

in Figures 4.2. 
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Table 4.2 Talairach coordinates and number of voxels for contrast nos. 3, 4, 5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain areas Talairach coordinates   No. of voxels 
 x y  z    
Contrast no. 3 
First delay: Target Left of Landmark > Target Right of Landmark 
Both tasks:       
RH ITG 47 -4 19   288 
LH IOG -31 -89 -13   423 

Contrast no. 4 
Second delay: Reach Right of Midline > Reach Left of Midline 
Same cue task:       
LH pIPS -29 -64  37   430 
LH SOG -25 -87  18   512 
LH MOG -25 -85 4   383 
LH IOG -25 -73 -12   500 

Contrast no. 5 
Response: Reach Right of Midline > Reach Left of Midline 
Both tasks: 
LH Precuneus -8 -81  39   488 
LH Cuneus -9 -86  25   514 
LH Calcarine -5 -88    7   459 
LH LG -10 -75 -11   512 
LH SOG -25 -80 20   283 
LH MOG -32 -77 4   510 
LH IOG -25 -73 -12   250 

Different cue task:       
LH pIPS -32 -67 30   428 

Response: Reach Left of Midline > Reach Right of Midline 
Both tasks: 
RH Calcarine 7 -75  5   506 
RH LG 10 -70 -8   404 

Same cue task:       
RH pPrecuneus 8 -71 50   467 
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Allo-Ego Conversion during the Second Delay Phase 

To investigate brain areas involved in the Allo- Ego conversion during second delay, 

we used Contrast no. 6 [Second delay: (Same cue > Different cue)] to directly compare 

activations of the Same cue task versus the Different cue task. The areas revealed by this 

contrast would be related to converting allocentric coding to egocentric representation in the 

Same cue task where subjects could anticipate they would reach to the original target 

location.  

The brain areas revealed by this contrast are shown on horizontal and sagittal slices 

and the β weights are plotted in bar graphs (Figure 4.5). The Talairach coordinates of these 

brain areas are reported in Table 4.3. In particular, we found higher activation for Same cue 

versus Different cue in bilateral anterior Precuneus (aPrecuneus) (LH: t (11) =3.64, p = 0.004; 

RH: t (11) =3.72, p = 0.003), left angular gyrus (AG) (t (11) =3.38, p = 0.006) and inferior 

frontal gyrus (IFG) (t (11) =3.65, p = 0.004), right posterior Precuneus (pPrecuneus) (t (11) 

=2.69, p = 0.02), supramarginal gyrus (SMG) (t (11) =2.66, p = 0.022), middle frontal gyrus 

(MFG) (t (11) =3.32, p = 0.007), anterior middle temporal gyrus (aMTG) (t (11) =5.21, p = 

0.0003) and posterior middle temporal gyrus (pMTG) (t (11) =2.73, p = 0.02).  

In summary, we found several areas in posterior parietal cortex and a few areas in 

frontal and temporal cortex showing higher activation in the Same cue task than the Different 

cue task during the second delay phase when the verbal instruction for the former task had 

signaled the egocentric location of the allocentrically-defined target. These became our first 

set of candidate areas for the Allo-Ego conversion, based on a relatively early verbal cue 

before a memory/planning phase. 
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Figure 4.5 Voxelwise statistical map and activation levels for each area using Contrast no. 6. 

[Second delay: (Same cue > Different cue)], Top panel, activation map overlaid on the 

averaged anatomical image from all participants. Bottom panel, bar graphs show the β 

weights for the two tasks in each area. Legends as in Figures 4.2. 
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Allo-Ego Conversion during the Response Phase 

Next, we examined the areas that would process the Allo-Ego conversion of target 

representation in the Different cue task during the response phase where the final target 

location for reach was indicated by using the visual cue of re-displayed allocentric landmark. 

We used Contrast no. 7 [Response: (Different cue > Same cue)], in which activation in the 

Different cue task was directly compared to that in the Same cue task. The activation map is 

shown on the horizontal slices and the β weights are plotted in bar graphs (Figure 4.6). The 

Talairach coordinates of these brain areas are reported in Table 4.3.  

This contrast revealed areas showing higher activation for Different cue versus Same 

cue in bilateral pPrecuneus (LH: t (11) =5.05, p = 0.0004; RH: t (11) =3.93, p = 0.002), dorsal 

premotor cortex (PMd) (LH: t (11) =3.05, p = 0.011; RH: t (11) =3.61, p = 0.004) and 

presupplementary motor area (Pre-SMA) (LH: t (11) =2.92, p = 0.014; RH: t (11) =2.90, p = 

0.014), left AG (t (11) =2.77, p = 0.018), right SMG (t (11) =3.39, p = 0.006) and MFG (t (11) 

=3.10, p = 0.01). 

In summary, this result demonstrated that several areas in a parietofrontal network 

showed higher activation in the Different cue task than the Same cue task during the response 

phase, after the egocentric location for a reach movement was specified by the visual 

presentation of the new allocentric landmark. These became our second set of candidate areas 

for the Allo-Ego conversion, based on a relatively late visual cue before motor execution. 

This comparison had an additional advantage over the previous comparison: since egocentric 

coding was established in both Same / Different instructions, the different activations 

observed here should not be due to overall differences in the amount of egocentric activation. 
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Figure 4.6 Voxelwise statistical map and activation levels for each area using Contrast no. 7. 

[Response: (Different cue > Same cue)], Top panel, activation map overlaid on the averaged 

anatomical image from all participants. Bottom panel, bar graphs show the β weights for the 

two tasks in each area. Legends as in Figures 4.2. 
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Table 4.3 Talairach coordinates and number of voxels for contrast nos. 6, 7  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain areas Talairach coordinates    
    x y  z   No. of voxels 
Contrast no. 6 
Second delay: Same cue > Different cue 
LH aPrecuneus   -5 -46  47   506 
RH aPrecuneus    3 -52  47   507 
LH AG -38 -56  48   502 
LH IFG -47   27  27   512 
RH pPrecuneus    2 -69  42   431 
RH SMG  47 -48  48   292 
RH MFG  37  32  27   506 
RH aMTG  62   -5 -18   501 
RH pMTG  62 -32   -5   319 

Contrast no. 7 
Response: Different cue > Same cue 
LH Pre-SMA   -2    8  52   510 
RH Pre-SMA    1    7  52   454 
LH PMd -26   -3  53   491 
RH PMd  25   -3  53   510 
LH pPrecuneus -10 -72  43   498 
RH pPrecuneus    3 -52  47   506 
LH AG -31 -70  40   350 
RH SMG  41 -44  42   511 
RH MFG  37  32  27   418 
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Specific Brain Areas for Allocentric to Egocentric Conversion of Reach Target 

Representations 

 Contrasts nos. 6 and 7 should include areas involved in the Ego-Allo conversion, but 

might also include other types of activity such as auditory processing and egocentric target 

memory (contrast 6 from second delay) and residual visual processing (contrast 7 from the 

response phase). In addition, differences might arise simply from the timing of these two 

contrasts relative to initial target presentation and final motor execution. To filter out these 

extraneous elements and focus on the common areas involved in Allo-Ego conversion, we 

used Contrast no. 8, a conjunction analysis between Contrast nos. 6 and 7.  

As shown in Figure 4.7 A, our conjunction analysis revealed four areas in PPC and 

frontal cortex, including right pPrecuneus and SMG, left AG and MFG. To illustrate the 

change of activation related to remembered target representations through the three phases 

(first delay, second delay, response) between the two tasks, we plotted time course data from 

each of the four areas in Figure 4.7 B. These four specific “conversion” areas showed a 

consistent pattern of activation change. First, all four areas showed a trimodal activation 

pattern: during the first delay following target presentation, during the second delay 

following the task instruction (same/different), and during the response following the final 

cue presentation / go signal. In each case, the peak response occurred during the response 

phase, suggesting a link to behavior. Importantly, there was no activation difference between 

the two tasks during first delay (as should be expected because the tasks did not different at 

this point), but we found higher activation in the Same cue task than the Different cue task 

during the second delay, and then a reverse pattern during the response (as expected for 
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Figure 4.7 Voxelwise statistical map and time courses for each area using Contrast no. 8, a 

conjunction between contrast nos. 6 and 7. Top panel, activation map overlaid on the 

averaged anatomical image from all participants. Bottom panel, time course data in line 

graphs show averaged % BSC for the two tasks from each area. 
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areas that met the criteria imposed by our conjunction analysis). However, the time courses 

additionally confirmed that these instruction-related differences always initiated 4-6 seconds 

after the relevant verbal or visual instruction (provided in the gaps between the three phases), 

as expected for an instruction-related response when one accounts for sensory, cognitive, and 

hemodynamic delays. In other words, these four areas were clearly task-related and their 

task-dependent responses occurred at times consistent with our hypotheses for sites involved 

in the Allo-Ego conversion. 

In summary, we identified four areas – pPrecuneus, AG, SMG and MFG – that were 

specifically involved in the conversion of allocentric to egocentric target representations for 

reach at the first opportunity. This suggests that specific areas of PPC and frontal cortex are 

involved in converting allocentrically-defined target locations into the egocentric 

representations for targets and/or reach plans. 

 

4.5 DISCUSSION 

In the present study, we used an fMRI design to investigate the brain areas involved 

in allocentric to egocentric conversion of reach target representations, and tested when this 

happens in response to different sensory / cognitive cues. First, our data confirmed the 

original allocentric representations of reach targets in IOG and ITG during the first delay in 

accordance with our previous finding (Chen et al., 2014). Second, our results confirmed the 

early Allo-Ego conversion observed in our previous psychophysical study (Chen et al., 

2011), by showing that egocentric reach directional selectivity arises within the brain at the 

first opportunity, regardless of the nature of the cue that triggers this event. Most importantly, 

we identified four specific areas in PPC and frontal cortex involved in converting allocentric 
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coding of target location to egocentric representation. These findings are graphically 

summarized in Figure 8, which compares the cortical areas involved in allocentric directional 

selectivity, Allo-Ego conversion, and egocentric reach direction selectivity, during the three 

major phases of our event-related design.  

 

Egocentric Reach Directional Selectivity in the Second Delay and Response Phases 

Previous human imaging studies have indicated egocentric directional selectivity of 

reach coding in PPC (Medendorp et al., 2003; Medendorp et al., 2005b; Fernandez-Ruiz et 

al., 2007; Beurze et al., 2009; Bernier and Grafton, 2010b; Chen et al., 2014), and target 

coding in occipital cortex (Chen et al., 2014). A psychophysical study has shown that 

conversion of allocentric to egocentric representation happens as soon as possible (Chen et 

al., 2011). To test this early conversion, we first confirmed the unique presence of allocentric 

coding in our first delay phases similar to that observed in our previous fMRI study (Chen et 

al., 2014), and then performed analysis of egocentric reach directional selectivity in both 

tasks during the second delay and response phase, respectively. We found that left pIPS, 

SOG, MOG and IOG showed a preference for contralateral reach direction (relative to 

gaze/midline) during the second delay in the Same cue task where a verbal instruction 

(“Same cue”) had indicated  the location of re-displayed visual landmark, allowing the 

subject to infer the future location of the target location. In addition, egocentric directional 

selectivity was observed in Precuneus, pIPS, cuneus, calcarine, LG, SOG, MOG and IOG 

during the response phase in the Different cue task where the visual cue of re-presented 

landmark provided the final target location for reach. The results in the response phase 
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Figure 4.8 Summary of cortical areas displayed on the inflated brain of one representative 

participant. Blue represents areas showing allocentric coding from Contrast no. 3 (Figure 

4.2). Red represents areas involved in Allo-Ego conversion from Contrast no. 8 (Figure 4.7). 

Green represents areas showing egocentric reach directional selectivity from Contrast no. 4 

and 5 (Figures 4.3, 4.4). Brown illustrates the overlapping area between red and green. 
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showed overlapping areas for egocentric reach directional selectivity in both tasks, 

suggesting that those areas could be involved in reach target representation and/or the early 

aspects of reach planning in egocentric coordinates. These two functions could not be 

disentangled with the current design; a comparison with previous studies shows overlap with 

occipital-parietal areas thought to be involved in both of these processes (Astafiev et al., 

2003; Beurze et al., 2007; Fernandez-Ruiz et al., 2007; Chen et al., 2014). Our results further 

demonstrated that either visual information or spatial information inferred from a verbal cue 

could be used as a cue to process the early conversion of allocentric to egocentric 

representations. 

 

Specific Areas Involved in the Allo-Ego Conversion  

 By using a conjunction analysis between Contrast no. 6 (second delay phase) and 

Contrast no. 7 (response phase), we were able to identify the specific areas most likely to be 

involved in converting allocentric coding to egocentric representation at the first opportunity 

regardless of the tasks and available cues. We found four areas, three in PPC (pPrecuneus, 

AG and SMG) and one in lateral frontal cortex (MFG).  

Regarding the role played by PPC in reach planning and control, a number of human 

imaging studies have focused on the two distinct subregions, medial intraparietal sulcus 

(mIPS) and superior parieto-occipital cortex (SPOC) (Medendorp et al., 2003; Grefkes et al., 

2004; Prado et al., 2005; Beurze et al., 2007; Levy et al., 2007; Beurze et al., 2009). The 

SPOC is a special area situated more medial-posterior within Precuneus. A recent human 

neuroimaging study showed that Precuneus was involved in coding of motor goal for reach 

and could play a different role than SPOC (Gertz and Fiehler, 2015). Our results further 
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showed that Precuneus, not SPOC, is involved in converting reach targets encoded in 

allocentric coordinates into egocentric representation as soon as the reach target location was 

provided. This is consistent with the complexity of the Precuneus functions from previous 

studies such as automatically coding allocentric targets in large background coordinates 

(Uchimura et al., 2015) and processing spatial information for motor imagery (Cavanna and 

Trimble, 2006). It has been demonstrated that AG plays an important role in planning 

reaches with the specific effector (contralateral hand) (Fernandez-Ruiz et al., 2007; Koch et 

al., 2008; Vesia et al., 2010). Another area in the inferior parietal lobule, SMG is relatively 

less characterized in human reach. Previous studies using Transcranial Magnetic Stimulation 

(TMS) and fMRI demonstrated that SMG is involved in planning a goal-oriented hand 

movement with no effect on movement execution (Tunik et al., 2008), and processing a 

salient target for a target-detection response (Menon et al., 1997). Our finding of SMG in the 

Allo-Ego conversion could be related to the early stage of converting the relevant reach 

target encoded in allocentric coordinates into egocentric coding for the later stage of 

movement control. Unlike the well-studied PPC in reach planning, only a few studies have 

shown the function of lateral frontal cortex in processing relevant information for action 

(Tanji and Hoshi, 2008). Our findings indicate that right MFG is involved in the Allo-Ego 

conversion of targets for reach movements. 

Taken together, by directly comparing the Same cue task to the Different cue task, we 

found three areas in PPC, one in the dorsomedial region (Precuneus), two (AG, SMG) in 

inferior parietal lobule, and one in lateral frontal cortex (MFG), that are related to allocentric 

to egocentric conversion of target representation. Note that this is different from the typical 

parieto-frontal network for reach planning and execution found in previous studies (Andersen 
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et al., 1993; Andersen et al., 1998; Batista et al., 1999; Connolly et al., 2007). This finding 

provides further insight into the different roles played by subdivisions of  the PPC and frontal 

cortex in spatial coding and transformation for reach control. 

 

Additional Task-Specific Activity in the Second Delay and Response Phases 

In addition to the four areas described above, several other areas emerged in our 

comparisons between the Same / Different cue tasks including aPrecuneus, IFG and MTG 

during the second delay, and PMd and Pre-SMA during the response, further suggesting that 

these areas could play multiple roles in the current reach task rather than converting 

allocentric coding to egocentric representation of targets for reaching movements. For 

example, during the second delay the higher activation observed in MTG could be related to 

its role in working memory (Olson et al., 2006a; Olson et al., 2006b; Axmacher et al., 2007; 

Ezzyat and Olson, 2008).  Indeed, in our paradigm participants had to remember the 

converted egocentric information. Higher activation observed in IFG could be related to its 

involvement in orienting attention to visual targets (Japee et al., 2015), which might have 

occurred in the second delay phase for the Same cue task where Allo-Ego conversion of 

target representation took place. On the other hand, the higher activity revealed in PMd and 

Pre-SMA could be associated with their role in reaching plan and execution during the 

response phase (Kawashima et al., 1994; Van Oostende et al., 1997; Lee et al., 1999; Hoshi 

and Tanji, 2000; Toni et al., 2001; Hoshi and Tanji, 2006; Batista et al., 2007), suggesting 

that the Allo-Ego conversion and motor planning co-exist in the Different cue task. 

Interestingly, we found little directional selectivity in frontal cortex during the response 

phase of this task (and our previous allocentric reach task), compared to a purely egocentric 
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reach task (Chen et al., 2014). This suggests that the early use of allocentric codes also has an 

influence on the spatial coding of reach execution, even after the Ego-Allo conversion. 

In conclusion, our results confirmed that the original allocentric representations of 

reach targets are converted into egocentric plan at the first possible opportunity, and that this 

conversion could occur when either a visual or a verbal instruction is used as the cue for the 

Allo-Ego conversion. More importantly, our results implicate four specific areas in PPC and 

frontal cortex involved in the Allo-Ego conversion for reach, regardless of the timing of this 

conversion within the task or the instruction modality.  
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5.1 Summary 

My fMRI studies are the first to investigate neural mechanisms for allocentric coding 

of target memory for reaches and saccades, and directly compare allocentric vs. egocentric 

mechanisms. In addition, the neural substrates involved in allo-to-ego conversion of reach 

target representation are first examined. The results showed that different cortical substrates 

are involved in allocentric vs. egocentric target memory for saccadic (Chapter three) as well 

as reaching movements (Chapter two). Moreover, allocentric neural substrates for the 

remembered target coding for reaches and saccades are different, suggesting the effector-

dependent (hand vs. eye) mechanisms for allocentric coding. Results from the third study 

(Chapter four) identified four brain areas, three in PPC and one in frontal cortex, that are 

specifically involved in converting allocentrically-defined reach targets within the ventral 

stream to egocentric plans at the first possible opportunity. Taken together, my findings are 

in general consistent with the theories of functional specialization related to the dorsal and 

ventral visual streams, indicating that both streams are involved in spatial coding for 

movements, but in different ways. The dorsal stream mostly relies on egocentric reference 

frames, whereas the ventral stream is more related to the allocentric reference frames for 

spatial processing. 

 These findings will help to explain what is going on in the brain for spatial coding 

during aiming movements, especially encoding target location in allocentric reference 

frames, which can further contribute to clinical applications. For instance, if the "egocentric" 

brain areas are damaged by a stroke, the “allocentric areas” might still be able to 

accommodate action. In these patients, rehabilitation therapies designed to enhance the use of 

allocentric information could reinforce recovery. Moreover, strategies developed to enhance 
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allocentric reliance might be useful for normal elderly with degraded egocentric function 

during normal ageing. 

 

5.2 Distinction between allocentric coding in aiming movements and spatial navigation   

 Overall, the main goal of my studies was to investigate neural substrates involved in 

encoding remembered target location for two types of aiming movements, reaching and 

saccades. There is another common movement, navigating in the environment, where spatial 

coding, especially in allocentric coordinates must be needed. For instance one finds his way 

to drive a car to a supermarket via paths with different buildings on it. How our brain is 

processing the spatial information when navigating has become an interesting topic for 

researchers, especially the allocentric navigation, which has been investigated in laboratory 

using virtual environments along with some neuroimaging techniques in humans (Burgess et 

al., 2002; Shelton and Gabrieli, 2002; Rosenbaum et al., 2004; Epstein, 2008; Ekstrom et al., 

2014; Robin et al., 2014). It was first proposed by Tolman (1948) that the brain creates a 

cognitive map of the environment for navigation such that the positions of objects in it are 

represented relative to each other on the map allocentrically. In general, this theory has been 

accepted by following studies showing medial temporal lobe (MTL), including hippocampus, 

parahippocampal cortex and entorhinal cortex, and retrosplenial cortex, involved in 

allocentric memory for navigation (Maguire, 1997; Maguire et al., 1997; Aguirre et al., 1998; 

Epstein and Kanwisher, 1998). Subsequent research has a more focus on the role of 

hippocampus in allocentric memory for spatial navigation by testing normal humans or 

patients with selective damage to it (Astur et al., 2002; Kumaran and Maguire, 2005; 
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Maguire et al., 2006; Bartsch et al., 2010; Goodrich-Hunsaker et al., 2010; Maguire and 

Mullally, 2013). 

Compared to the results for spatial navigation, I did not find hippocampus or other 

brain areas in MTL showing allocentric coding of remembered target location for reaches 

and saccades. This would reflect the differences in allocentric neural mechanisms for spatial 

navigation where a cognitive map for a large-scale space is constructed (Ekstrom et al., 2014) 

versus the location of one target represented relative to a specified landmark for aiming 

movements (e.g., reaches, saccades), as investigated in my studies. This is consistent with the 

implications that the involvement of MTL, or particularly hippocampus in allocentric 

memory of spatial coding are spatial scale-dependent (Wolbers and Wiener, 2014). 

 

5.3 Comparison to other senses for spatial coding  

 In my studies, I focused on the neural mechanisms for processing visuospatial 

information of targets for reaching and saccadic eye movements. As we know, in the real 

world there are multiple sensory modalities such as vision, audition and smell available to 

receive spatial information. Evidence from electrophysiological studies has indicated some 

classic higher-order cortical areas that are involved in multisensory integration including 

intraparietal sulcus and superior temporal sulcus (Ghazanfar and Schroeder, 2006; Simon, 

2008). Among those, the spatial integration of visual-auditory information takes places in 

eye-centered reference frames in posterior parietal cortex (PPC) as well as superior colliculus 

(Andersen, 1997; Stein and Stanford, 2008), followed by further coordinate transformations 

to head- or should-centered frames for motor response (Cohen and Anderson, 2004). 
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Although neural mechanisms for visuospatial coding have been widely studies, those for 

auditory spatial coding are much less investigated, especially for allocentric representation. 

 Results from neurophysiological studies suggest that multiple reference frames such 

as eye-, head-centered and allocentric may be used in auditory spatial coding in PPC 

(Andersen et al., 1999). In particular, lateral intraparietal area (LIP) encodes and maintains 

auditory stimuli in eye-centered coordinates for saccadic movements (Stricanne et al., 1996); 

on the other hand, parietal reach region (PRR) is responsible for the spatial coding of 

auditory targets in eye-centered coordinates for reaching movements (Cohen and Andersen, 

2000). Taken together, the results have suggested that neurons in PPC represent target 

location in eye-centered reference frames, regardless of the modality of sensory stimuli (i.e., 

visual or auditory). By employing neuroimaging, electroencephalography or 

magnetoencephalography techniques, several recent studies have investigated the neural 

mechanisms underlying the auditory spatial coding in humans (Maeder et al., 2001; Zimmer 

et al., 2006; Lewald et al., 2008; Altmann et al., 2009; Getzmann and Lewald, 2010; Lewald 

and Getzmann, 2011). Results from those studies have suggested that PPC, anterior and 

posterior temporal cortex, dorsolateral prefrontal cortex and inferior frontal cortex are 

involved in human auditory spatial coding. Other neuroimaging studies in humans have 

showed overlapping areas such as intraparietal sulcus (IPS) and frontal cortex, involved in 

auditory and visual spatial coding for motion discrimination tasks (Lewis et al., 2000), target 

selection tasks (Jiang and Kanwisher, 2003) and audiospatial working-memory tasks (Tark 

and Curtis, 2009). To my knowledge, there is no research investigating the neural 

mechanisms for auditory spatial processing of targets in allocentric reference frames as well 

as the directional selectivity in egocentric reference frames. However, based on the results 
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from my studies for spatial specificity of visual targets in the two reference frames and the 

literature reviewed above, I would expect similar neural substrates for encoding auditory 

target location to those for the coding of visual targets. There might be some brain areas 

specifically involved in auditory spatial coding, such as the posterior and lateral superior 

temporal lobe (Deouell et al., 2006; Altmann et al., 2012). 

 

5.4 Subcortical mechanisms for saccade target coding  

Neurophysiological studies have shown that besides cortical regions including lateral 

intraparietal sulcus (LIP), supplementary (SEF) and frontal eye fields (FEF), subcortical 

structures, such as superior colliculus (SC) and basal ganglia, also play critical roles in the 

egocentric saccadic system (Munoz, 2002). The functions and structures of SC in nonhuman 

primates for the control of eye movements have been well studied. The SC encodes saccade 

target location in an eye-centered reference frame (Klier et al., 2001), and the remembered 

target location is continuously updated across intervening eye movements (Dash et al., 2014). 

The structure of SC consists of superficial and intermediate layers. The former contains 

visual neurons that receive visual inputs directly from retina and visual cortices (Schiller and 

Malpeli, 1977; Pollack and Hickey, 1979; Fries and Distel, 1983; Rodieck and Watanabe, 

1993; Abel et al., 1997); the latter receives inputs from cortical regions such as FEF and LIP 

as well as other subcortical regions such as substantia nigra of basal ganglia (Astruc, 1971; 

Leichnetz et al., 1981; Lynch et al., 1985; Hikosaka et al., 2000). There are two types of 

visuomovement neurons in the intermediate layers, buildup and burst, which have different 

functions in the control of saccade movements (Munoz and Wurtz, 1995). In particular, the 

buildup neurons have the characteristics of predictive response, i.e., discharge continuously 

170 
 



from stimulus onset to saccade initiation, suggesting their role in the process of saccade 

preparation (Basso and Wurtz, 1998; Horwitz and Newsome, 2001); in contrast, the burst 

neurons show strong activity before and during saccade generation, suggesting their 

involvement in saccade execution (Basso and Wurtz, 1998; McPeek and Keller, 2002).  

 In comparison to the neurophysiological studies, much less is known about the 

functions of SC in humans. The factors that have limited the use of functional brain imaging 

techniques to investigate the human SC include its small size, deep location and the noise 

arising from vascular structures close to it (Poncelet et al., 1992; Guimaraes et al., 1998). 

Recently, a few fMRI studies observed saccade-related activity in human SC in visual search 

tasks (Himmelbach et al., 2007) and in centrifugal saccade tasks (Krebs et al., 2010). 

Further, an fMRI study aiming at investigating the response of human SC associated with the 

saccade preparatory revealed increased activation in SC during saccade preparation and 

execution, which is consistent with the characteristics of visuomovement neurons in the 

intermediate layer of the nonhuman primate SC (Furlan et al., 2015). Based on the literature,  

I did not expect to observe activity in SC during the delay phase of my saccade study (study 

2). The reason is that the final location of the target for a saccade was not provided during the 

delay so that no saccade preparation could be made. However, activity in SC would be 

observed during the response phase. The reason for the absence of activation in SC could be 

related to the used head coil, the positioned slices and the applied sequence for image 

acquisition in my study where only the images of cortical areas were ensured. 
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5.5 Additional considerations about allocentric coding and allo-to-ego conversion 

 In my experimental designs, I used a landmark as the allocentric cue and gave 

participants a clear instruction to ensure that the target location was represented relative to 

the allocentric cue (i.e., in the allocentric reference frames) in the allocentric tasks. In 

addition, I analyzed participants’ behavior performance, which further confirmed the coding 

of target location in the allocentric coordinates in the allocentric tasks. Therefore, I believe 

that my allocentric tasks are allocentric, i.e., the distance and the direction of the target with 

respect to the allocentric cue had to be taken into account for the representation of the target 

location in the allocentric tasks. Recently, it is argued that allocentric coding may depend on 

egocentric reference frames (Filimon, 2015). I do not agree with Fillimon in that spatial 

relationships between the target and the allocentric cue had to be computed in the allocentric 

conditions, even though it could be possible to use egocentric comparison of the two stimuli. 

However, there was no egocentric directional selectivity observed in the allocentric tasks of 

my studies, suggesting allocentric coding was independent of egocentric reference frames, at 

least in my designs. The literature from behavioral, neuropsychological and neuroimaging 

studies have also provided evidence supporting different neural mechanisms related to the 

two reference frames (egocentric, allocentric) as well as both frames existing for target 

coding (Culham et al., 2003; Krigolson and Heath, 2004; Hay and Redon, 2006; Schenk, 

2006; Zaehle et al., 2007; Chen et al., 2011; Thaler and Goodale, 2011b). It has been 

indicated that in real situations where egocentric and allocentric cues are available, the brain 

can combine the two cues for target coding, based on the relative weighting between them 

(Byrne and Crawford, 2010). 
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 In my third study, I identified specific areas involved in the early allo-to-ego 

conversion of remembered reach targets by investigating egocentric directional selectivity at 

gaze-centered reference frames. Of course, there are other types of egocentric frames of 

reference such as head, should and hand. In order to perform reaching movements, eye-head-

hand transformations are needed (Crawford et al., 2004; Crawford et al., 2011). Based on the 

goal of my third study, I did not attempt to differentiate those egocentric reference frames, 

instead focused on the earlier stage of converted egocentric target representations in the 

common gaze-centered coordinates. As suggested, the position of the hand is represented in 

gaze-centered reference frames in PPC, even when it is not visible, thus the hand-target 

comparison occurs in gaze-centered coordinates within PPC as well (Buneo et al., 2002). The 

identified three areas (precuneus, AG and SMG) within PPC for the allo-to-ego conversion 

of reach target representations are generally consistent with this suggestion. Except for those 

common areas in PPC during both delay and response phases, observed activity in other 

frontal regions, for instance dorsal premotor area (PMd) during the response phase is 

accordance with the function of PMd for encoding reach plans at shoulder-centered 

coordinates (Caminiti et al., 1991; Johnson et al., 1996; Shen and Alexander, 1997). 

 

5.6 Future directions 

 Following the finding of four specific areas in parietal and frontal cortex for the 

conversion of allocentric to egocentric reach target representation, immediate questions are 

whether the four areas play a similar or a different role in the early Allo-Ego conversion, and 

how these areas are interconnected and coordinated. Future investigations can be performed 

by using TMS over each of these areas with a well designed experimental paradigm to 
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determine their role in the allocentric to egocentric conversion of reach target 

representations, or by combining TMS with the technique of diffusion tensor imaging (DTI) 

to examine the functional interconnections among these regions.  

  In addition, as shown in my saccade study, the cortical mechanisms for the  

allocentric coding of saccade target memory are different from those for reach target memory 

(from the first study), suggesting effector-dependent allocentric mechanisms for reaches 

versus saccades. Therefore, another intriguing question is whether the brain also uses 

different neural mechanisms for Allo-Ego conversion of saccade target representations as 

compared to reach target representations. To answer this question, future studies can use a 

similar behavioural paradigm to that for the reach study (Chen et al., 2011) to test if the early 

Allo-Ego conversion also happens for saccadic eye movements. An fMRI design similar to 

that in my third study then can be employed to further investigate the underlying neural 

mechanisms. 
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