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ABSTRACT  

As global air temperatures rise and precipitation events fluctuate as a result of climate 

change, environmental conditions for many freshwater fish are expected to change. Fish are 

particularly sensitive to climate change as their distributions and contaminant loads are 

influenced by water temperatures. My study focuses on two main objectives: (1) how the 

distributions of cisco (Coregonus artedii) may be altered by future climate change and (2) the 

role of climate and industrial emissions on fish mercury trends in Ontario. Data were obtained 

from multiple government and open sources. Future cisco occurrence models demonstrated a 

decline of 7-47% by 2070. Trend analysis and models of mercury levels in sport fish revealed 

increasing rates (0.2-0.4 ug/g/decade) within recent years, particularly influenced by changes in 

local climate. This period of rapid environmental change demands further investigation, to better 

inform fisheries management decisions and consumption advisories at various spatial and 

temporal scales. 
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GENERAL INTRODUCTION 

Over the two decades, anthropogenic-driven climate change has been rapidly altering our 

natural environments (IPCC, 2013). Mean global temperature has increased by 0.8°C since 1880, 

two-thirds of which occurred between 1979 to 2005 at a rate of 0.15-0.20°C per decade (IPCC, 

2013 Walther et al., 2002).  In North America, the frequency or intensity of heavy precipitation 

events has also likely increased (IPCC, 2013). Global temperatures are predicted to further 

increase between 2.0-4.0 °C and frequency of global precipitation events are expected to rise by 

the end of this century (IPCC, 2013). These increases in temperature and changes in precipitation 

events have major implications for ecosystem functioning including:  phenological deviations 

(Magnuson, 2002; Parmesan and Yohe, 2003; Burrows et al., 2011; Sharma and Magnuson, 

2014), extirpation of local species (Thomas et al., 2004), species range shifts (Rahel, 2002; 

Parmesan, 2006; Schindler, 2001; Heino et al., 2009), introduction of invasive species (Rahel, 

2002; Sharma et al., 2009), and even increased bioaccumulation rates of fish mercury (Hg) 

(Dijkstra et al., 2013; Pack et al., 2014).  

Climate change has been facilitating the movement of native and invasive species into 

new habitats (Sharma et al., 2009; Alofs et al., 2014). Range shifts of past, current and future 

distributions of fish due to climate change have been examined by, amongst others Chu et al., 

2005; Sharma et al., 2009; and Alofs et al., 2014. Hickling et al. (2006) reported that the mean 

northern range limit of 15 freshwater fishes in the United Kingdom shifted north between 33 and 

51 km over a 25 year period. Many Ontario fish species currently occur in lakes farther north 

than they did historically (Alofs et al., 2014). In particular, the distribution of coldwater fish has 

been a key indicator of how increases in water temperature may impact aquatic ecosystems. 

Cisco (Coregonus artedii) is an important coldwater forage fish and is a vital prey resource to 
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top predators such as lake trout (Salvelinus namaycush), northern pike (Esox lucius) and walleye 

(Sander vitreus) (Jacobson et al., 2010). Research by Sharma et al. (2011) and Fang et al. (2012) 

suggests that cisco populations will be vulnerable to changes in water temperature under climate 

change. Projections of cisco populations in Wisconsin and Minnesota have suggested that this 

species is at risk of extirpation within lakes vulnerable to both climate change and the invasive 

warmwater fish, rainbow smelt (Osmerus mordax) (Sharma et al., 2011; Fang et al., 2012). 

Shifting aquatic community structures due to climate change have several implications on 

fisheries both economically and ecologically. 

The influence of climate change on mercury (Hg) contamination in aquatic ecosystems is 

not currently well understood. Hg is a toxic, global pollutant that can have adverse implications 

for human health (Morel et al., 1998; Grimalt et al., 2010; UNEP, 2013). The primary pathway 

of human exposure to Hg is through fish consumption (UNEP, 2013). Despite declines in 

anthropogenic Hg emissions locally, fish Hg levels have recently begun increasing in Ontario 

(Monson et al., 2011; Tang et al., 2013; Gandhi et al., 2014), and this is correlated with 

temperature and precipitation. Temperature and precipitation have been linked to the transport, 

solubility and bioaccumulation of Hg in aquatic environments (Grimalt et al., 2010; Berg et al., 

2013). With increased precipitation and rising temperatures, we may expect to observe higher Hg 

levels in the food web, and thus our fish (Bodaly et al., 1993; Canário et al., 2007; Stern et al., 

2012). In order to understand how a global stressor such as climate change may impact fish Hg 

levels, and thus human health, we first need greater understanding of the relationship between 

fish Hg and climate at various temporal and spatial scales. 

This thesis has two main objectives: (1) To examine how the distributions of cisco 

(Coregonus artedii), an important coldwater forage fish, may be affected by climate change in 
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the future; (2) to investigate the influence of climate change and industrial emissions on fish Hg 

trends in native coolwater (walleye, Sander viteus; northern pike, Esox lucius) and warmwater 

(smallmouth bass, Micropterus dolomieu; largemouth bass, Micropterus salmoides) sport fishes 

in Ontario. With increasing water temperatures and precipitation events, climate change is 

predicted to limit the availability of preferred thermal habitat for cisco and increase the 

concentrations of Hg available for uptake by freshwater fish (Ficke et al., 2007). We hypothesize 

that (1) with warmer waters and reduced concentrations of dissolved oxygen, cisco may become 

extirpated from their current ranges (Ficke et al., 2007; Fang et al., 2012) and (2) fish Hg levels 

will rise in Ontario’s inland lakes (Canário et al., 2007; Stern et al., 2012; Dijkstra et al., 2013; 

Pack et al., 2014). We hope these studies help further inform future fish management strategies 

and fish advisories of changes that may occur to wildlife that live in multiple stressor 

environments. 

 

 

  



4 
 

 

CITATIONS FOR CHAPTERS SUBMITTED FOR PUBLICATION 

 

This thesis was written as a series of two manuscripts, in collaboration with co-authors from Dr. 

Sapna Sharma’s lab that have been submitted to journals for consideration for publication.  

The following is the citation list, including co-authorship from this thesis: 

 

Van Zuiden*, T.M., Chen*, M., Stefanoff, S., Lopez, L., & Sharma, S. 2015. Projected impacts 

of climate change on three freshwater fishes and potential novel competitive interactions. 

Diversity and Distributions. In Press. (Chapter 1). 
Note 1: * signifies co-first authors of this manuscript. 

Note 2: All walleye writing and analysis, smallmouth bass writing and analysis and smallmouth 

bass-walleye/walleye-cisco occurrence boxplots were completed by T.M. Van Zuiden, S. 

Stefanoff and L. Lopez respectively. These components of the manuscript were excluded 

for thesis purposes. 

 

Chen, M., Lopez, L., Bhavsar, S., & Sharma, S. 2015. What’s hot about mercury? Examining the 

influence of climate and emissions on fish mercury levels in Ontario. Will be submitted to 

Science of the Total Environment. (Chapter 2). 
Note 1: L. Lopez was responsible for obtaining all climate indices used in this study and running 

some of the historical/recent Sen’s slopes that examine fish Hg levels. 

 

 

  



5 
 

 

REFERENCES 

 

Alofs, K.M., Jackson, D.A., Lester, N.P. 2014. Ontario freshwater fishes demonstrate differing 

range-boundary shifts in a warming climate. Divers Distrib. 20: 123-136. 

 

Berg, T., Pfaffhuber, K.A., Cole, A.S., Engelsen, O., Steffen, A. 2013. Ten-year trends in 

atmospheric mercury concentrations, meterological effects and climate variables at Zeppelin, 

Ny-Alesund. Atmos.Chem.Phys. 13: 6575-6586.  

Bodaly, R.A., Rudd, J.W.M., Fudge, R.J.P., Kelly, C.A. 1993. Mercury concentrations in fish 

related to size of remote Canadian shield lakes. Can J Fish Aquat Sci. 50: 980–987. 

Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E. S., Brander, K. M., 

et al., 2011. The pace of shifting climate in marine and terrestrial 

ecosystems. Science. 334(6056): 652-655. 

 

Canário, J., Branco, V., Vale, C. Seasonal variation of monomethylmercury concentrations in 

surface sediments of the Tagus Estuary (Portugal). Environ Pollut. 148: 380–383. 

Chu, C., Mandrak, N.E., Minns, C.K., 2005. Potential impacts of climate change on the 

distributions of several common and rare freshwater fishes in Canada. Divers Distrib. 

11: 299-310. 

 

Dijkstra, J.A., Buckman, K.L., Ward, D., Evans, D.W., Dionne, M., et al., 2013. Experimental 

and Natural Warming Elevates Mercury Concentrations in Estuarine Fish. PLoS ONE. 8(3): 

e58401.  

 

Fang, X., Jiang, L., Jacobson, P.C., Stefan, H.G., Alam, S.R., Pereira, D.L. 2012. Identifying 

cisco refuge lakes in Minnesota under future climate scenarios. T Am Fish Soc. 141: 1608-

1621. 

Ficke, A.D., Myrick, C.A., Hansen, L.J. 2007. Potential impacts of global climate change on 

freshwater fisheries. Rev Fish Biol Fisher. 17: 581-613. 

 

Gandhi, N., Tang, R.W.K., Bhavsar, S., Arhonditsis, G.B. 2014. Fish mercury levels appear to be 

increasing lately: a report from 40 years of monitoring in the province of Ontario, Canada. 

Environ Sci Technol. 48: 5404-5414. 

Grimalt JO, Catalan J, Fernandez P, Pina B, Munthe J. 2010. Distribution of persistent organic 

pollutants and mercury in freshwater ecosystems under changing climate conditions. In: 

Climate change impacts on freshwater ecosystems. Kernan, M. R., Battarbee, R. W., & Moss, 

B. (Eds.). Oxford: Wiley-Blackwell: 180-202. 

. 



6 
 

 

Heino, J., Virkkala, R., Toivonen, H. 2009. Climate change and freshwater biodiversity: detected 

patterns, future trends and adaptations in northern regions. Biol Rev. 84: 39–54. 

 

Hickling, R., Roy, D.B., Hill, J.K., Fox, R., Thomas, C.D. 2006. The distributions of a wide 

range of taxonomic groups are expanding polewards. Glob Change Biol. 12: 450–455. 

 

IPCC (Intergovernmental Panel on Climate Change) Fifth Assessment Report. 2013. Climate 

Change 2013: The Physical Science Basis. Available at: http://www.ipcc.ch/  

 

Jacobson, P.C., Stefan, H.G., Pereira, D.L. 2010. Coldwater fish oxythermal habitat in Minnesota 

lakes influence of total phosphorus, July air temperature, and relative depth. Can J Fish Aquat 

Sci. 67: 2002-2013. 

Magnuson, J.J. 2002. Signals from ice cover trends and variability. In: Fisheries in a Changing 

Climate. McGinn, N. A. (Ed.).  American Fisheries Society: 3-13. 

 

Monson, B. A.,Staples, D. F., Bhavsar, S. P., Holsen, T. M., Schrank, C. S., Moses, S. K., 

McGoldrick, D. J., Backus, S. M., Williams, K. A. 2011. Spatiotemporal Trends of Mercury 

in Walleye and Largemouth Bass from the Laurentian Great Lakes Region. Ecotoxicology. 20 

(7): 1555−1567. 

Morel, F. M., Kraepiel, A. M.,  Amyot, M. 1998. The chemical cycle and bioaccumulation of 

mercury. Annu Rev Ecol Syst. pp. 543-566. 

Pack, E.C., Kim, C.H., Lee, S.H. et al., 2014.  Effects of Environmental Temperature Change on 

Mercury Absorption in Aquatic Organisms with Respect to Climate Warming. J Toxicol & 

Environ Health. 77: 1477-1490. 

Parmesan, C., Yohe, G. 2003. A globally coherent fingerprint of climate change impacts across 

natural systems. Nature. 421: 37-42 

 

Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annu Rev 

Ecol Evol Syst. 37: 637–69. 

Rahel, F.J. 2002. Using current biogeographic limits to predict fish distributions following 

climate change.  American Fisheries Society Symposium. 32: 99-110. 

 

Schindler, D. 2001. The cumulative effects of climate warming and other human stresses on 

Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 58: 18-29. 

 

Sharma, S., Jackson, D.A., Minns, C.K. 2009. Quantifying the effects of climate change and the 

invasion of smallmouth bass on native lake trout populations across Canadian lakes. 

Ecography. 32: 517-525. 

 



7 
 

 

Sharma, S., Jackson, D.A., Minns, C.K., Shuter, B.J. 2007. Will northern fish populations be in 

hot water because of climate change? Glob Change Biol. 13: 2052-2064. 

 

Sharma, S., Magnuson, J.J. 2014 Oscillatory dynamics do not mask linear trends in the timing of 

ice breakup for Northern Hemisphere lakes from 1855 to 2004. Climatic change. 124: 835-

847. 

Sharma, S., Vander, Zanden, M.J., Magnuson, J.J., Lyons, J. 2011. Comparing climate change 

and species invasions as drivers of coldwater fish population extirpations. PLoS ONE. 6: 

e22906. 

Stern, G.A., Macdonald, R.W., Outridge, P.M., et al., 2012. How does climate change influence 

arctic mercury? Sci Total Environ. 414: 22–42. 

Tang, R. W. K., Johnston, T. A., Gunn, J. M., Bhavsar, S. P. 2013. Temporal Changes in 

Mercury Concentrations of Large-Bodied Fishes in the Boreal Shield Ecoregion of Northern 

Ontario, Canada. Sci Total Environ. 444: 409−416. 

 

Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., 

Erasmus, B.F.N., De Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van 

Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Philips, O.L., 

Williams, S.E. 2004. Extinction risk from climate change. Nature. 427: 145-148. 

 

UNEP (United Nations Environment Programme), 2013. Global Mercury Assessment 2013: 

Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, 

Geneva, Switzerland. 

Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.M., 

Hoegh-Guldberg, O., Bairlein, F. 2002. Ecological responses to recent climate change. 

Nature. 416: 389-395. 

  



8 
 

 

Chapter 1 

Panic at the cisco: Predicting the effects of climate change on cisco distributions in Ontario 

Miranda Chen and Sapna Sharma
 

Department of Biology, York University, Toronto ON. M3J 1P3, Canada.
 

Keywords: climate change, cisco, coldwater thermal guild, range shifts, biotic interactions 

Chapter 1 is part of a larger manuscript accepted by Diversity and Distributions for publication.  



9 
 

 

ABSTRACT 

Aim: As global air temperatures continue to rise in response to climate change, environmental 

conditions for many freshwater fish species will change.  Warming air temperatures may lead to 

warming lake temperatures, and subsequently, the availability of suitable thermal habitat space.  

Our objectives are to identify the response of a coldwater forage fish to climate change in 

Ontario. We focus on lakes in Ontario because it is a dynamic region that encapsulates the 

southern range extents of coldwater fish species. 

Location: Ontario, Canada 

Methods: Using lake morphology, water chemistry, climate and fish occurrence data for cisco 

(Coregonus artedii), we modelled the occurrence rates in 2050 and 2070 under 126 scenarios of 

climate change.   

Results: Cisco occurrence rates were predicted to decline by 8-37% (x̄ = 20%) by 2050 and 7-

47% (x̄ = 26%) by 2070.  

Main conclusions: These results highlight a unique response to climate change: range 

contraction for coldwater fish species. Alterations in distributions of this ecologically important 

fish species may lead to shifts in fish community structure and novel species interactions in 

Ontario lakes, exacerbating the vulnerability of native coldwater fish to climate change. 

  



10 
 

 

INTRODUCTION 

Climate change and biological invasions are two major threats to biodiversity (Sala et al., 

2000) and the interacting impacts of multiple environmental stressors may further increase 

vulnerability of ecosystems (Sala et al., 2000; Rahel and Olden 2008).  As climate warms, 

species have been observed to shift their range northwards, including the Australian Banksia 

flowers at rates of 5 km per decade (Fitzpatrick et al., 2008), voles in Yosemite National Park at 

elevation rates of 50 m per decade  (Mortiz et al., 2008), and marine commercial fishes, 

including cod, halibut, sole and herring (Mueter & Litzow, 2008).  As climate warms, invasive 

species have also moved northwards including deer (Lankester, 2010; Frelich et al., 2012) and 

warmwater sunfishes (Alofs et al., 2014). In the North American boreal forest, the most 

dominant herbivore, moose (Karns, 1997), are being replaced at their southern range extent by 

smaller deer due to the warmer climates in these regions and a brain worm that deer carry, which 

is lethal to moose (Lankester, 2010; Frelich et al., 2012). In freshwater systems, as global air 

temperatures rise, lake water temperatures are expected to also increase (Livingstone & Lotter, 

1998). Changing water temperatures can influence the distribution of fish across landscapes by 

altering their available thermal habitat space (Magnuson et al., 1990; Adrian et al., 2009) and 

may also eliminate barriers that have historically prevented warmwater invasive species from 

colonising these lakes (e.g. Vinebrooke et al., 2004; Rahel & Olden, 2008). The combination of 

climate change and invading warmwater sunfishes has been associated with large declines of 

cyprinids (Jackson & Mandrak, 2002), salmonids (Vander Zanden et al., 1999), and percids 

(Fayram et al., 2005) in northern lakes. 

Our research focuses on how future changes in climate may modify distributions and 

potential future interactions of fish that prefer cold water (~15°C) habitats (Magnuson et al., 
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1990). Fish from this habitat guild are expected to respond differently to climate change than 

those found in other thermal guilds (e.g. Shuter et al., 2002; Chu et al., 2005).  Within the past 

30 years, sport fish in Ontario have shifted their range northwards by 12.5-17.5 kilometres per 

decade while baitfish have shifted southwards in response to a changing climate and species 

interactions (Alofs et al., 2014). Previous research has predicted that coldwater fish will decline 

from their current ranges and potentially shift their distributions northward under future 

scenarios of climate change (Sharma et al., 2011; Herb et al., 2014). We aim to predict the 

impacts of climate change on the coldwater forage fish cisco (Coregonus artedii). Alterations in 

coldwater fish species distributions resulting from climate change may facilitate changes in food 

web dynamics and ecosystem function with novel biotic interactions, leading to greater 

competition and predation pressures (Vander Zanden et al., 1999; Sharma et al., 2009). Non-

native species expansions, such as smallmouth bass in Ontario can also have devastating effects 

on native biota, trophic structure, and ecosystem processes (Vander Zanden et al., 1999; Jackson 

& Mandrak, 2002; Sharma et al., 2009). There are also potential economic consequences that 

may be associated with the expansion of non-native species into more northern waters, as 

Canada`s recreational and commercial fisheries are worth several billion dollars (Shuter et al., 

1998; Post et al., 2002; Dove-Thompson et al., 2011).  

Research objectives 

The overall goal of this study is to identify the differential response of an ecologically 

important coldwater forage fish to climate change and how distributional changes may alter the 

potential for biotic interactions.  We focus our study in the province of Ontario, an especially 

dynamic region that encapsulates the southern range extent of coldwater species. More 
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specifically, our first objective is to identify the important abiotic and climatic predictors of cisco 

occurrence in Ontario lakes.  

Our second objective is to develop a predictive model to forecast future occurrences of 

cisco in the years 2050 and 2070. We projected the occurrence of cisco under all 126 IPCC 

climate change scenarios in order to identify the likelihood of expansion or extirpation of this 

species by incorporating uncertainties in air temperature and precipitation from each climate 

model. We hypothesize that cisco populations will become extirpated from their southern extents 

in Ontario.  
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METHODS 

Background information on cisco 

Cisco are a coldwater forage species (preferred water temperature: 8-17°C) that are vital 

to the growth and success of many top predators (e.g. lake trout) in Canada and the northern 

United States (Matuszek et al., 1990; Scott & Crossman, 1998; Jacobson et al., 2010). As air 

temperatures increase under climate change, cisco distributions are predicted to shift northerly 

and decline from many of their southern extents (Jacobson et al., 2010; Sharma et al., 2011; 

Fang et al., 2012).  Increased mean annual air temperatures can lead to longer summer 

stratification periods and lower dissolved oxygen concentrations in the hypolimnion (Adrian et 

al., 2009).  Cisco prefer cold temperatures of the hypolimnion and become stressed as oxygen 

levels in this layer are depleted;  this forces them to move into warm waters that are unsuitable 

for growth, survival or reproduction (Aku et al., 1997; Ficke et al., 2007). 

Data acquisition: survey and climate data 

Historical data were obtained from the Ontario Ministry of Natural Resources (OMNR) 

Aquatic Habitat Inventory (AHI) for 9885 lakes between 1957 and 1986 (Dodge et al., 1985). 

The survey collected data on lake geography (latitude and longitude), morphology (i.e. mean 

depth, surface area), chemistry (i.e. secchi depth, pH) and climate variables (i.e. growing degree 

days). Additional data were also obtained from the OMNR Broad Scale Monitoring (BSM) 

Program for 722 lakes between 2008 and 2012 (Sandstrom et al., 2010).  Similar variables for 

lake geography, morphology, and chemistry data were included in this contemporary dataset. Of 

the 722 lakes, 605 overlapped with the AHI dataset which were subsequently updated to reflect 

more recent data. With 117 new lakes added from the BSM program, we compiled a dataset of 

10,001 Ontario lakes (Table S1).  A dataset comprised of 9736 lakes was resolved from the 
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10,001 as 265 lakes contained incomplete data.  Fish occurrence data on 134 fish species from 

the AHI and 100 species from the BSM were also provided. Surveys in the contemporary period 

were able to effectively sample for both large- and small-bodied fish with the use of a wider 

range of gillnet and trapnet mesh sizes, while historical data likely under-sampled smaller fish. 

Northern regions of Ontario and the Hudson Bay lowlands continue to be undersampled (Minns, 

1986; Sandstrom et al., 2010). 

Historical climate data and future climate change scenarios were obtained from the 

Intergovernmental Panel on Climate Change (IPCC) through the Worldclim database (see 

www.worldclim.org).  Historical climate data were represented as climate averages between 

1950-2000.Variables included total monthly precipitation, and monthly mean, minimum, and 

maximum air temperatures (Hijmans et al., 2005). Future climate scenarios for 2050 (average for 

2041-2060) and 2070 (average for 2061-2080) were also obtained from the latest IPCC 5 report 

(IPCC, 2013). Projected air temperature and precipitation values from 19 general circulation 

models (GCMs) under four greenhouse gas scenarios (representative concentration pathway 

(RCP) 2.6, 4.5, 6.0 and 8.5) were extracted for 2050 and 2070.  These air temperatures and 

precipitation values are interpolations of average monthly climate data between weather stations 

summarized on a 1 km
2
 spatial resolution grid (Hijmans et al., 2005).  Seasonal climate variables 

were also calculated to include in the matrix i.e. summer (June, July, and August) average mean 

temperatures. Eleven of the 19 GCMs projected future climate under all four RCPs for 2050 and 

2070, while the remaining GCMs predicted for only select scenarios. Each GCM is unique and 

calculates climate values based on various assumptions of atmosphere, ocean, sea-ice, and land 

components (Hijmans et al., 2005; Stocker et al., 2013; IPCC, 2013).The scenarios of future 

greenhouse gas concentrations (including RCP 2.6, 4.5, 6.0, and 8.5) represent a gradient where 

http://www.worldclim.org/
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RCP2.6 is the most conservative estimate of future greenhouse gas (GHG) emissions, projecting 

a decrease in overall emissions by 2100, while RCP 8.5 is the ‘business-as-usual’ scenario, 

which estimates continuous increases of GHG emissions through 2100 (van Vuuren & Riahi, 

2011; Moss et al., 2010; Rojeli et al., 2012). A total of 126 climate change scenarios were used 

to project cisco occurrence.  

Data analysis: cisco occurrence models 

We developed logistic regression models for cisco occurrence in Ontario lakes. We 

divided our combined AHI-BSM dataset (n=9736) into two random and independent subsets: 

80% of the dataset was retained for model training, 20% for model validation. Variables were 

assessed for normality using a Shapiro-Wilk test; surface area, maximum depth, mean depth and 

secchi depth data were log-transformed to meet the assumptions of normality. Multicollinearity 

was found to be low (r<0.7) among environmental predictor variables used in each species 

distribution model. To develop each species distribution model, a forward selection procedure 

with a dual-criterion (α = 0.05 and R
2

adj) was used to identify significant environmental predictor 

variables for cisco occurrence (Blanchet et al., 2008).  

We used Receiver Operating Characteristics (ROC) curves to identify thresholds (0 – 1) 

that maximize the sensitivity (percent of correctly predicted presences) and specificity (percent 

of correctly predicted absences) of each species distribution model. This procedure is 

recommended when species presences and absences are not equal within the data (Fielding & 

Bell, 1997; Sharma & Jackson, 2008). A Cohen’s Kappa statistic for each logistic model was 

also calculated to assess the model’s predictive power (Fielding & Bell, 1997). All analyses were 

performed in the R-language environment (R Development Core Team, 2012). Methodological 

framework spanning from data acquisition to analysis has also been provided (Fig. S2). 
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Cisco projections under climate change 

We predicted cisco occurrences under 126 future climate scenarios for the years 2050 and 

2070. We used all possible climate scenarios to incorporate the variability between GCMs and 

RCPs on fish projections. The probability of cisco occurrence was calculated for each lake by 

averaging the predicted species occurrence rates under each climate scenario for both 2050 and 

2070. Ordinary kriging was performed using ArcGIS 10.1 to illustrate the probability of each 

fish occurrence across the landscape of Ontario in 2050 and 2070 (ESRI, 2011) under 126 

scenarios of climate change.  Ordinary kriging is a smoothing process that interpolates the 

probability of cisco occurrence across landscapes.  The probability of occurrence for each pixel 

across Ontario’s landscape was calculated by averaging the probability of occurrence of the 

nearest 50 lakes. 
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RESULTS 

Cisco occurrence model 

Models found that cisco were predicted to occur more frequently in larger, deeper lakes, 

in cooler regions of Ontario (Table 1). Model validation yielded a classification success rate of 

80% was observed from this model (Table 2).  

Cisco projections under future climate change scenarios 

Cisco were present in 23% (ncisco= 2257, ntotal= 9736) of lakes. By 2050 and 2070, cisco 

populations are projected to become extirpated from their southern and east-central range (Fig. 

1b, c). Increasing greenhouse gas emissions will further push cisco populations into northern 

regions of Ontario (Fig. S1).  Warming air temperatures correspond to a decline of cisco 

occurrence ranging from 8 to 37% (x̄ = 20%) by 2050, and a loss of up to 7 to 47% (x̄ = 26%) by 

2070 (Fig. 2). 
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DISCUSSION 

This study highlights the unique response of a fish species from a coldwater thermal guild 

to climate change in an especially sensitive region where these fishes are near their southern 

extent.  We forecasted how cisco, a coldwater forage fish, may undergo range contractions into 

the most northern regions of the province. We expect that fish distributions will change faster 

and at times, in unexpected directions than previously projected by older climate models (e.g. 

projections made using the IPCC 2001 data). For example, extreme scenario fish projections 

based on earlier climate models (e.g., Chu et al., 2005; Sharma et al., 2007) are now considered 

conservative estimates of fish distribution changes as greenhouse gas emissions continue to 

increase.  Even in the past 30 years, increases in mean annual air temperatures have been linked 

to northerly range shifts of warm- and coolwater sport fish species and southern range 

contractions of many baitfish at rates much faster than expected (Alofs et al., 2014).  Such 

drastic changes in projections for ecologically important coldwater forage fish will have 

implications for species interactions and community assembly for lakes in the future. 

Future cisco distribution and implications of climate change on biotic interactions 

We predict that by 2070, cisco will undergo a southern range contraction and will become 

extirpated from 80-100% of lakes in southern and central Ontario.  In recent studies it has been 

suggested that cisco are already becoming extirpated from their southern range as a result of 

climate change and the invasion of coldwater rainbow smelt (Sharma et al., 2011; Fang et 

al., 2012; Jiang et al., 2012).  On average, one fourth of cisco populations could be extirpated by 

2070 and remaining cisco populations could be forced into northern Ontario lakes. Cisco 

populations can only persist if well-oxygenated, cold-water habitat is available as they prefer 

larger, deeper lakes in cooler geographic regions. Well-oxygenated, coldwater habitat provides 
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suitable habitat refugia for cisco to grow and reproduce (Rudstam & Magnuson, 1985; Jacobson 

et al., 2010; Fang et al., 2012). In the late summer, however, these cold, well-oxygenated 

habitats become threatened, as insufficient dissolved oxygen concentrations in the hypolimnion 

decreases cisco survival. Cisco are then forced by this temperature-oxygen squeeze (Coutant, 

1985; Ficke et al., 2007), where the epilimnion becomes too warm and the hypolimnion becomes 

hypoxic, into unsuitable regions in the water column, resulting in reduced growth and higher 

summer kill rates (Becker, 1983; Aku et al., 1997). With climate change predicted to increase 

water temperatures and decrease hypolimnetic dissolved oxygen concentrations, late summer 

mortalities of cisco may be exacerbated, leading to devastating losses of cisco populations at the 

southern extents of their range (e.g., Jacobson et al., 2010; Sharma et al., 2011). 

Climate change is expected to impact individual fish populations directly through 

changes in temperature and precipitation. Changes in food web dynamics and ecosystem 

function may also be facilitated by climate change as it creates novel biotic interactions, leading 

to greater competition and predation pressures (Vander Zanden et al., 1999; Sharma et al., 2007). 

Non-native species invasions, such as smallmouth bass in Ontario, can have devastating 

consequences on native biota, trophic structure, and ecosystem processes (Shuter et al., 1980; 

Vander Zanden et al., 1999; Sharma et al., 2007). Smallmouth bass are voracious predators and 

have been found to decimate populations of small bodied fish (particularly minnows), resulting 

in homogenization of fish communities (Rahel, 2002; Sharma et al., 2007). Smallmouth bass are 

able to outcompete native top predators, such as lake trout and walleye, for energetically-

rewarding littoral prey fish (Vander Zanden et al., 1999; 2004).  As a result, bass decouple food 

web interactions between coldwater fish predators and their prey (Vander Zanden et al., 1999; 

2004; Tunney et al., 2014). When this occurs, alternate prey items must be available to buffer the 
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effect of bass competition. If pelagic food sources are available (e.g. cisco) then coldwater 

predators will be able to persist (Vander Zanden et al., 1999; Sharma et al., 2009).  If climate 

change eliminates this buffer, coldwater predators will be forced to feed primarily on 

zooplankton, leading to slower maturation rates and stunted growth (Vander Zanden et al., 

1999).  In Ontario, loss of cisco populations due to climate change would leave invaded lakes 

with no alternative prey sources to buffer the novel pressures of bass competition, resulting in 

loss of important top predator fish. Ultimately, changes in the distribution and subsequent 

interaction of cisco and other native and non-native fish species may result in altering trophic 

structure, resilience to changes in environmental conditions, and homogenization of fish 

communities under future climate change (Rahel, 2002; Tunney et al., 2014).  

Conclusion 

With climate change, as lakes warm and non-native fish invade new lakes, the persistence 

of native fish assemblages becomes threatened. The warming and colonisations can result in 

homogenised lake communities, which may decrease the profitability of certain fisheries (Rahel, 

2002; Jackson, 2002). Smallmouth bass represent a strong competitive pressure to native top 

predators, in both cool- (e.g. walleye) and coldwater (e.g. lake trout) fish guilds.  We project that 

the likelihood of invasion of smallmouth bass and extirpation of walleye and cisco are 

substantially reduced under conservative climate change scenarios and reduced greenhouse gas 

emissions (e.g., RCP 2.6).  Curbing greenhouse gas emissions is urgently needed to prevent the 

extirpation of important coldwater fish species from southern lakes and limit the invasion of 

warmwater predators into northern lakes.  
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TABLES 

Table 1:  Coefficients of significant (p<0.01) predictors for the logistic regression model for 

cisco populations. Mean conditions of environmental characteristics in lakes with fish present 

and absent. 

 
 

 

Table 2: Classification success, specificity, sensitivity and kappa statistic values of the 

predictive cisco occurrence model. 

  

 Selected Variables Model 

Coefficients 

Environmental 

characteristics with 

fish present 

Environmental 

Characteristics with 

fish absent 

Cisco Surface area (ha) 

 

1.62 1037.0 148.5 

 Mean depth (m) 

 

1.75 7.8 4.9 

 Mean annual air 

temperature (°C) 

-0.09 1.9 2.7 

 

 

Classification 

success (%) 

Specificity (%) Sensitivity (%) Kappa statistic 

Cisco 80 87 56 0.43 
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FIGURES 

 

Figure 1: Distributions of cisco (a) historically, (b) in 2050, and (c) in 2070 under 126 scenarios 

of climate change. 

 

 

 

Figure 2: Percent change in cisco occurrence as temperature changes under 126 climate change 

scenarios in 2050 and 2070.    
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SUPPORTING INFORMATION 

Table S1: Summary of geographic, environmental and climate variables of the lakes in our dataset. 

Variable Minimum Maximum Mean 

Latitude 42.1 55.3 47.6 

Longitude -95.1 -74.5 -83.6 

Surface area (ha) 

Perimeter (km) 

Lake elevation (m) 

0.1 

0.1 

42.0 

79771.6 

938.3 

875.0 

354.4 

14.0 

338.9 

Maximum depth (m) 0.2 213.5 17.0 

Mean depth (m) 0.1 47.5 5.6 

Secchi depth (m) 0.2 22 3.6 

pH  

Total dissolved solids (mg/L) 

Conductivity (uS/cm) 

Dissolved Oxygen (mg/L) 

Mean July air temperature (°C) 

4.0 

2.0 

3.0 

0.7 

14.1 

10.0 

1294.0 

1243.1 

15.4 

22.4 

7.4 

59.1 

86.8 

8.4 

17.8 

Mean August air temperature (°C) 12.9 21.6 16.4 

Mean annual air temperature (°C) -4.2 9.5 2.5 

July precipitation (mm) 55 106 82.2 

Mean summer precipitation (mm) 66.7 97.3 85.0 
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Figure S1: Probability of cisco occurrence for each greenhouse gas scenario in 2050 and 2070. 
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Figure S2: Methodological framework. Grey boxes indicate data or datasets; black boxes 

indicate data screening or analyses; and white boxes provide greater detail to the data analysis 

step above. Further details and description of steps can be found in the Methods section. 
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ABSTRACT 

Mercury (Hg) levels in top predator fish have been increasing throughout Ontario in 

recent decades. With the onset of climate change, it is important to understand the role of climate 

in fish Hg patterns. The objective of this study was to examine the relationship between local and 

large-scale climate factors and Hg emissions with Hg trends in native coolwater (walleye and 

northern pike) and warmwater (smallmouth bass and largemouth bass) predatory sport fishes 

during historical (1970-1992) and recent (1993-2014) time periods. The results suggest that over 

25% of secondary watersheds in Ontario shifted from historically declining to recently increasing 

fish Hg trends for all fishes studied. The recent Hg increases ranged between 0.0 to 0.20 

µg/g/decade; however, the findings were significant only for walleye and northern pike. A 

complex interplay of local climate, global climate drivers, and Hg emissions influenced fish Hg 

levels.  Although anthropogenic Hg emissions were correlated with fish Hg concentrations for 

mostly historical periods, local climate and global climate drivers were found to be important in 

recent years as temperatures and precipitation have more rapidly increased in Ontario. 

Distinguishing the effects of climate-related parameters and emissions are increasingly crucial to 

assess how changing multiple environmental stressors may impact health of wildlife and humans 

consuming fish. 
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INTRODUCTION 

Mercury (Hg) is a toxic heavy metal that can bioaccumulate and biomagnify in the food 

web, and adversely impact humans through consumption of fish (Mergler et al., 2007; Grimalt et 

al., 2010). Fish Hg levels have been found to respond rapidly to changes in Hg concentrations 

within aquatic ecosystems (Harris et al., 2007a), making them effective bio-indicators of Hg 

contamination in food webs. By the 1970s, fish Hg levels in North America were substantially 

elevated due to industrial emissions, particularly those from coal-fired power plants (Downs et 

al., 1998). Though anthropogenic Hg emissions in North America have declined by 

approximately 75-90% between the 1970s and 2011 (Cain et al., 2007; Risk Management 

Strategy for Mercury, 2010), recent studies have found that fish Hg levels are again increasing in 

the Province of Ontario, Canada (Bhavsar et al., 2010; Monson et al., 2011; Tang et al., 2013; 

Gandhi et al., 2014).  This mismatch in the trends of Hg emissions and fish levels suggests that 

other factors are driving the Hg dynamics. 

Fish Hg levels can be influenced directly by lake size (Bodaly et al., 1993), lake acidity, 

hardness, DOC (Wren, 1989), food chain length (Cabana et al., 1994; Pouilly et al., 2013; 

Johnson et al., 2015), trophic position (Coelho et al., 2013), species, size, sex (Gewurtz et al., 

2011; Karimi et al., 2013) as well as indirectly by forest fires, precipitation and temperature 

(Bodaly et al., 1993; Coelho et al., 2013; Dijkstra et al., 2013; Pack et al., 2014).  The 

interactions of these factors can be complex, and become more complicated under climatic 

change (IPCC, 2013). The impacts of climate factors, such as increased temperatures, changes in 

precipitation, wind patterns or dust deposition, will change the distribution, mobility and uptake 

of Hg in freshwater ecosystems (Grimalt et al., 2010; Berg et al., 2013; Dijkstra et al., 2013; 

Evans et al., 2013).  
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Precipitation is one of the primary pathways through which elemental Hg enters lakes 

and watersheds, and influences the transport and distribution of Hg between systems (Outridge et 

al., 2008; Grimalt et al., 2010; Risch et al., 2012). Temperature influences the rates of 

transformation between chemical Hg species and rates of transport between systems (Grimalt et 

al., 2010; Pack et al., 2014). With increased precipitation and rising temperatures, we can expect 

higher MeHg content in the food web (Bodaly et al., 1993; Canário et al., 2007; Stern et al., 

2012).  

Fluctuations in air circulation patterns, or oscillations of large-scale climate drivers, can 

also influence local climate (Higgins et al., 2002; Li et al., 2013; Zhao et al., 2013; Evans et al., 

2013), local weather patterns, and even support the transport of Hg from distant sources, 

especially those from Asian industrial locations (Selin et al., 2007). For example, positive phases 

of El Niño Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) are associated 

with warmer winter temperatures (George et al., 2000; Bonsal and Shabbar et al., 2011) and 

below average winter precipitation in Ontario. Evans et al. (2013) found that the Pacific/North 

American Index (PNA) was important in explaining Hg levels in lake trout in Great Slave Lake, 

Northwest Territories, Canada.  Deposition of atmospheric Hg has historically been the greatest 

contributor to Hg in fish (Pacyna et al., 2006). Mercury is a global pollutant that can be 

transported long distances (Engstrom, 2007; Krabbenhoft and Sunderland, 2013). Deposition of 

Hg in Canada derived from trans-boundary sources now accounts for >95% of total Hg 

deposition (Risk Management Strategy for Mercury, 2010). Currently the role of Hg emissions in 

the current fish Hg narrative and climate change context is unclear.  

We investigate the relative influence of climate, large-scale climate drivers, and 

atmospheric Hg emissions on fish Hg levels in native coolwater (walleye, Sander viteus, WE; 
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northern pike, Esox lucius, NP) and warmwater (smallmouth bass, Micropterus dolomieu, SMB; 

largemouth bass, Micropterus salmoides, LMB) sport fishes in secondary watersheds of the 

Province of Ontario, Canada. Specifically, the objectives of this study are two-fold: (1) to 

examine how Hg levels in Ontario’s top predator fish have changed between historical and recent 

time periods at a secondary watershed level; and (2) to investigate how local climate, large-scale 

climate and local/global Hg emissions are potentially driving fish Hg trends over time. To our 

knowledge, this is the one of few studies exploring the changes in fish Hg levels across a 

landscape and the interacting multiple environmental stressors, including climate change and 

atmospheric pollution. This study is aimed at providing a framework to critically evaluate 

observed fish Hg trends under multiple stressors, and is expected to improve our understanding 

of how intricate processes can impact fish Hg levels and thereby health of fish as well as wildlife 

and humans consuming fish.  
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METHODS 

Data acquisition and screening 

Fish Hg measurements were obtained from the Ontario Ministry of Environment and 

Climate Change (MOECC) Fish Contaminant Monitoring Program. This program was 

implemented to issue fish consumption advisories based on measured contaminants in Ontario 

fish.  The program has collected Hg data since the 1970s from approximately 2,047 various 

lakes, reservoirs, rivers, creeks and streams. Fish samples were collected in partnership with the 

Ontario Ministry and Natural Resources and Forestry (MNRF) during late summer or early fall 

using a variety of methods, including gill netting, trap netting, electrofishing and angling. Total 

length, wet weight and sex (if possible) were recorded for each fish.  Skinless boneless dorsal 

fillets were taken and stored at -20°C. Mercury analysis using MOECC protocols were 

performed, including acid digestion and cold vapor flameless atomic absorption spectroscopy as 

described by Bhavsar et al. (2010) and Neff et al. (2012). We considered top predator fish 

because they often exhibit higher Hg levels than lower trophic level fish due to biomagnification. 

Mercury data for four sport fish—WE, NP, SMB, and LMB—were screened for further analysis. 

For this study, Hg measurements for only natural inland lakes were retained, while river, creek 

and stream data were omitted. The final Hg dataset consisted of 36,639 WE measurements from 

1,232 locations; 25,978 NP measurements from 1,313 locations; 11,879 SMB measurements 

from 652 locations; and 3,340 LMB measurements from 217 locations sampled between 1970 

and 2014.  

It is well-known that fish Hg concentrations increase with fish size (Gewurtz et al., 

2011).  To reliably assess changes in fish Hg concentrations over time, Hg levels were first 

standardised at 3 lengths for each species, representing small, medium, and large size categories, 
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using power series regressions (Supplementary Table S1; Gandhi et al., 2013). A total of 6159 

power series regressions, one for every combination of fish species, location and year, were 

conducted (2033 WE, 1901 NP, 972 SMB and 300 LMB). Standard lengths representing Small, 

medium and large size were selected for each fish species based on previous literature (Scott and 

Crossman, 1998; Gewurtz et al., 2011; Gandhi et al., 2013).  To avoid using over-extrapolated 

concentrations of Hg at the standard lengths, only sampling events within 15cm of the maximum 

and minimum lengths were considered. For example, to calculate the Hg concentration for a 

40cm walleye at each location and year, only sampling events with the smallest walleye length 

being no greater than 55cm and the largest length no less than 25cm were retained (Table S1). 

The final standard length dataset consisted of 6069 Hg concentration data points for all 

species/length/location/year, though only medium sized fish (50cm for WE, 60cm for NP, and 

30cm for SMB and LMB) were used for further analysis as this size provided the greatest 

abundance of observations per species. 

Climate and emissions variables were obtained from multiple open access data sources 

(Table S2). Climate variables were split into three main categories: (1) local climate, (2) large-

scale climate drivers, and (3) Hg emissions. Local climate variables included mean monthly 

precipitation (Precip) and average daily temperature (Temp) and were obtained from the 

Climatic Research Unit (CRU, see http://www.cru.uea.ac.uk/). A total of 9 global climate indices 

were also obtained: El Nino Southern Oscillation index (ENSO), Tropical/ Northern Hemisphere 

pattern (TNH), Polar/Eurasian pattern (PE), West Pacific pattern (WP), total Sunspot number 

(SunTOT), group Sunspot number (SunGN), North-Atlantic Oscillation index (NAO), Pacific 

Decadal Oscillation index (PDO) and North Pacific index (NP). Lastly, global and Canadian Hg 

emissions were acquired from Muntean et al. (2014), the European Monitoring and Evaluation 

http://www.cru.uea.ac.uk/
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Programme (EMEP) and Environment Canada.  We also included a lag of 1 year for all climate 

and emissions variables as it has been suggested that it takes within a year for bioaccumulation 

of Hg to reach top predator fish (Harris et al., 2007). 

The purpose of our study was to examine the relationships between climate and fish Hg 

levels at a landscape scale across all years between 1970-2013.  As such, we also used a 

watershed approach and divided Ontario into its secondary watersheds. Data for the Ontario 

watersheds was obtained from the MNRF metadata website (see www.ontario.ca/data).    

Data analysis 

Non-parametric Kruskal-Wallis (KW) tests were performed in order to assess if fish Hg 

concentrations were significantly different among lakes within the same secondary watershed. 

The KW tests were conducted among standard length fish Hg levels of the same species within a 

5-year time period (e.g., lakes in secondary watershed A from 1970-1974). If fish Hg 

concentrations were not statistically different at significance p=0.05, they were merged to obtain 

watershed-specific standard length fish Hg concentrations to examine temporal and spatial 

trends. Only those cases with were more than 2 observations for each fish species/size/time 

period were considered.  

 

Temporal trend analysis 

A nonparametric Sen’s slope estimate was performed to assess fish Hg trends for 

the historical (1970-1992) and recent (1993-2014) time periods for each secondary watershed. 

These time periods were chosen because fish Hg trends for Ontario’s inland lakes as well as 

Great Lakes region changed sometime between the late 1980s and early 1990s (Bhavsar et al., 

2010; Tang et al., 2013; Gandhi et al., 2014). Trends were also calculated for 1-year lag periods. 

http://www.ontario.ca/data
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Sen’s slopes are able to perform well with missing values and are suitable for data that are not 

normally distributed.  Sen’s slopes were calculated using the MAKESENS (Mann-Kendall test 

for trend and Sen’s slope estimates) Microsoft Excel Template (Salmi et al., 2002).  

 

Correlation analysis with climate and emissions variables  

Spearman’s rank correlations were used to quantify the relationship between fish Hg 

levels and all climate and Hg emission variables for the historical, recent and 1-year lag time-

periods for each species and watershed. To ensure that correlations between fish Hg and climate 

variables were not masked by trends in the local climate data, residuals of fish Hg and local 

climate variables (mean daily temperature and monthly precipitation) were used. All analyses 

were performed in the R-language environment (R Development Core Team, 2012) and mapped 

using ArcGIS software (ESRI, 2011). The data acquisition and analysis workflow framework is 

summarised in Fig. 1. 
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RESULTS 

For each species and standard length, fish Hg levels within a secondary watershed and 5-

year time period were not significantly different (p>0.05). As such, it was deemed appropriate to 

conduct fish Hg trend analysis at the secondary watershed level.   

Historical and recent fish Hg trend analysis 

 Fish Hg levels for the two coolwater species (WE and NP) decreased during the 

historical period (Fig. 2a,c), but increased in the recent decades (Fig.2b, d). Between 1970 and 

1992, 68% of the secondary watersheds experienced declines in fish Hg.  More specifically, Hg 

levels in WE in the south-west Ontario decreased significantly (p<0.05) at the 0.20-0.70 

µg/g/decade (Fig. 2a). In contrast, for the recent time period (1993-2014), 57% of the secondary 

watersheds experienced increases in fish Hg.  Hg levels in western Ontario WE increased at 

0.20-0.40 µg/g/decade (Fig. 2b). Between the time periods, 26% of the watersheds switched 

from decreasing to increasing Hg levels.   

Similar to WE, 71% of the watersheds experienced declines in NP Hg with significant 

(p<0.1) declines in northern, western, and east-central Ontario at 0.10-0.70 µg/g/decade (Fig. 

2c). In the recent time period, 52% of the secondary watersheds showed increasing NP Hg, with 

the Hg levels in western Ontario NP increasing at 0.20-0.30 µg/g/decade. About 32% of the 

watersheds switched from historically decreasing to recently increasing NP Hg levels. 

The warmwater predatory fishes (SMB and LMB) are currently restricted to southern and 

south-central Ontario (Fig. 2e,g) and have been expanding their range northwards during the 

time period of this study in response to warming temperatures (Alofs et al., 2014). Historically, 

SMB Hg concentrations either remain unchanged or decreased (0.0-0.20 µg/g/decade), whereas 
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LMB Hg levels generally increased (0.0-0.10 µg/g/decade; Fig. 2g). Between 1993 and 2014, 

SMB Hg levels increased in 53% of the watersheds at 0.0-0.20 µg/g/decade (Fig. 2f).  Similarly, 

LMB Hg levels increased in 50% of the watersheds at 0.0-0.20 µg/g/decade (Fig. 2h). 

Approximately 38% of the watersheds with SMB and 30% of the watersheds with LMB 

switched from decreasing to increasing Hg levels in the recent time period.  

Correlations for 1-year lag fish mercury and climate/emissions variables 

 Spearman correlations of fish Hg and climate/emissions variables at a lag of 1-year 

suggested that not a single variable alone was driving the patterns in fish Hg levels, but rather a 

complex interplay between local climate, large-scale climate drivers, and emission patterns 

explained fish Hg levels (Fig. 3). Cross-correlations for medium WE Hg levels (Fig.3a) revealed 

that most local climate and large-scale climate indices have weak correlations (r=±0.1) both 

historically and recently.  Historical WE Hg levels were higher with positive correlations with El 

Niño Southern Oscillations (ENSO) (r=0.3), global (r=-0.3) and Canadian Hg emissions (r=0.3), 

although in recent decades these relationships becomes closer to zero. Recent WE Hg levels 

were correlated more pronouncedly with Sunspot count (r=0.2) and North Atlantic Oscillations 

(NAO) (r=0.2). 

Correlations between fish Hg and climate/emission variables changed most drastically 

between periods for NP.  The strongest correlations historically for NP Hg concentrations were 

with Tropical/Northern Hemisphere (TNH) patterns (r=-0.4), global (r=-0.3) and Canadian Hg 

emissions (r=0.3). Though global Hg emission remained correlated in recent periods, it was the 

local climate variables, average monthly precipitation (r=0.3) and average daily temperature 

(r=0.2), which came out as more strongly correlated. 
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Median correlations for SMB and LMB Hg levels epitomized the complex interplay 

between climate and emission on fish Hg trends. Historically, SMB Hg levels were correlated 

with local climate variables mean monthly precipitation (r=0.2) and average daily temperature 

(r=0.2), the climate indices ENSO (r=0.3) and TNH (r=-0.25), as well as global (r=-0.4) and 

Canadian Hg emissions (r=0.45). Correlations with recent SMB Hg levels maintained similar 

correlations between variables, with the addition of Sunspot count (r=-0.2). Historical LMB Hg 

levels had the strongest correlations with average monthly precipitation (r=0.45), mean daily 

temperature (r=-0.5), ENSO (r=0.4) and TNH (r=0.2). Recent correlations only included 

precipitation (r=0.3), TNH (r=0.2), Sunspot count (r=0.2). None of the Hg emissions had strong 

correlations with LMB Hg levels. 

Though the median correlations presented were often not significant (p>0.05), secondary 

watersheds with greater fish Hg observations in the south-central regions of Ontario did contain 

significant correlations. 
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DISCUSSION 

The results indicated that Hg levels in Ontario’s sport fishes are increasing in the past two 

decades despite continued reductions in local and regional (North American) Hg emissions over 

the same time period.  These results are consistent with other studies on this topic (Monson et al., 

2011; Tang et al., 2013; Gandhi et al., 2014). Gandhi et al. (2014) reported that the Ontario NP 

and WE Hg levels increased at 0.01-0.27 µg/g/decade between 1995 and 2012. For the boreal 

shield lakes in northern Ontario, Tang et al. (2013) found significant increases in rates of Hg 

bioaccumulation for WE and mean Hg concentration for NP between historical (1974-1981) and 

recent (2005-2010) time periods. Studies conducted for WE and LMB in Minnesota lakes 

demonstrated nonlinear Hg trends, with shifting upward Hg patterns in the early 1990s (Monson 

et al., 2011). Though these studies often attribute the increase in fish Hg levels to multiple 

factors, such as global Hg emissions or climate change, the influence of climate on fish Hg levels 

is still unclear.  

Historically, local climate variables were not strongly correlated with Hg levels in the 

coolwater predatory fishes (WE and NP), but more pronounced in the warmwater fishes (SMB 

and LMB). In contrast, local climate variables had generally stronger correlations to fish Hg in 

the recent time periods. Interestingly, the stronger correlations with temperature and precipitation 

in the recent periods coincide with climate change (i.e., increases in temperatures and changes in 

precipitation). This suggests that the local climate change related variables that historically did 

not influence coolwater fish Hg may now be relevant and may further exacerbate fish Hg trends 

in warmwater fish.  

In recent years, mean monthly precipitation was found to be positively correlated with Hg 

levels in NP and LMB. Increased precipitation may facilitate increased Hg loading to aquatic 
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environments through (1) greater runoff from a watershed, and thus re-mobilization as a result of 

soil erosion, and (2) direct deposition (Risch et al., 2012; Wiener et al., 2012). Interestingly, we 

observed a negative correlation between temperature and Hg concentrations in all fish, 

particularly SMB. Though we expected a positive correlation (Bodaly et al., 1993; Canário et al., 

2007; Stern et al., 2012), this relationship may be attributed to possible changes in prey 

consumption with warmer waters. Freshwater fish subjected to warmer waters often have 

increased metabolism, and thus consume more resources (Pörtner et al., 2007; Wang et al., 

2007). An increase in dietary intake may or may not lead to increased fish Hg levels 

(MacCrimmon et al., 1983; Simoneau et al., 2005; Karimi et al., 2007). As Hg is 

bioaccumulative, fish size and age are positively correlated with Hg level (Gewurtz et al., 2011). 

At a given age, faster growing fish have generally lower Hg concentrations due to growth 

dilution (Simoneau et al., 2005; Karimi et al., 2007).  

 Global climate drivers were correlated with fish Hg levels in all fish species throughout 

the study period across Ontario. These large-scale climate drivers are important in regulating 

local climate patterns (Bonsal and Shabbar, 2011). For example, coolwater WE and warmwater 

SMB and LMB Hg levels were positively correlated with ENSO Index.  ENSO is known to 

influence the winter temperatures and total precipitation in Ontario, particularly the Great Lakes 

regions, with positive phases (El Niño) associated with cooler temperatures and higher 

precipitation (Shabbar and Khandekar, 1995; Mirza, 2004; Bonsal and Shabbar et al., 2011; Yu 

et al., 2015).  Hg levels in WE were correlated with the NAO and Hg levels in SMB and LMB 

were correlated with the NP indices. The NAO has been found to influence temperatures over 

northeastern regions of the country (Bonson and Shabbar, 2011), while the NP index can 

enhance precipitation and surface air temperature in coastal and south-central regions of Canada 
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(Linkin and Nigam, 2015).  Sunspot count was also correlated to changes in recent fish Hg 

levels. Then sunspot cycle corresponds to solar magnetic activity which is often linked to air and 

sea surface temperatures in the Northern Hemisphere (Eddy, 1976; Reid, 1987; Friis-Christensen 

and Lassen, 1991). The mechanism that these large-scale climate drivers may impact fish Hg 

levels would be through the subsequent changes in local climate. Studies that have examined fish 

Hg trends against global climate drivers often find significant links between them (French et al., 

2006; Evans et al., 2013).  For example, French et al. (2006) determined that oscillations of total 

Hg concentrations in chinook salmon from the Bay of Quinte were associated with cooling La 

Niña trajectories and thus summer air temperatures. In our study, we show that global climate 

drivers, through their influence on local temperatures and precipitation, are linked to Hg levels in 

all four Ontario predator fishes considered in this study.    

The recent slowdown or reversal of decreasing fish Hg trends may also be attributed to 

decreases in local Hg emissions and increases in global Hg emissions. Historically, Canadian Hg 

emissions were positively correlated with WE, NP and SMB Hg levels in Ontario. Over the last 

few decades, the U.S., Canadian and Ontario Hg emissions have declined due to stricter 

government regulations (Environment Canada, 2015). Though these changes are expected to 

prompt fish Hg declines, we find they are still increasing. For NP and SMB, global Hg emissions 

were correlated to fish Hg levels for both the historical as well as recent times. This suggests that 

contributions from global emissions may play a larger role in driving fish Hg trends than local 

emissions. It is likely that the decline in local emissions had an impact on the historical decreases 

of fish Hg trends, however, current rises of Hg levels are driven by the global emissions through 

transboundary transport (Monson, 2009; Monson et al., 2011; Tang et al., 2013; Gandhi et al., 
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2014). Hg emissions, both local and global, are likely to remain significant determinants of fish 

Hg levels, among many other factors.  

Climate change will neither act uniformly across the globe (Sala et al., 2000), nor will its 

impacts be felt simply with increased temperatures and precipitation frequency. Similarly, Hg 

contamination will not be driven only by direct and indirect pathways related to climate and 

emissions. Other environmental stressors such as invasive species may cause an antagonistic or 

synergistic response to changes in Hg levels. However, many of the other stressors may be 

directly or indirectly related to the climate change. With increasing temperatures and 

precipitation events under the climate change, the threat of invasive species also rises (Parmesan 

and Yohe, 2003; Sharma et al., 2007; Heino et al., 2009). The introduction of a non-indigenous 

species to the environment has many consequences, ranging from new competition to predation 

to changes in the food chain length. Often when trophic structures in aquatic systems are altered, 

they impact the levels of Hg in top predators (Hrabik et al., 1998; MacIssac, 1996; Vander 

Zanden and Rasmussen, 1996). The lengthening of food chains has been positively correlated 

with increases bioaccumulation of toxic contaminants in fish (Cabana et al., 1994; Vander 

Zanden and Rasmussen, 1996).  

Rennie et al. (2010) proposed that the establishment of an invasive invertebrate predator 

species Bythotrephes in Ontario inland lakes lengthen aquatic food chains and thus increased fish 

Hg concentrations. The majority of Ontario lakes that contain invasive fish species, such as 

rainbow smelt (Osmerus mordax) or SMB, generally have higher fish Hg levels than those 

without invasive fish species (Vander Zanden et al., 2003). With a warming climate, warmwater 

invasive fish populations, such as SMB, may expand into neighbouring waterbodies, disrupting 

the native aquatic biota (Sharma et al., 2007). SMB has been found to force top predators such as 
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lake trout into lower trophic positions (Vander Zanden et al., 1999; Vander Zanden et al., 2004). 

Species at lower trophic level are expected to have reduced Hg concentrations due to lower Hg 

biomagnification (Cabana et al., 1994; Lavoie et al., 2010). A recent study, however, suggests 

that this depends on the resources consumed. Johnson et al. (2015) developed simulations to 

assess how WE Hg concentrations would change under an altered diet. Their models suggested 

that WE consuming invertebrates may not only experience low growth but also contain high Hg 

levels, whereas WE that prey on fish may have higher growth efficiency and 85% lower Hg 

concentrations (Johnson et al., 2015). When lower trophic position prey, such as invertebrates, 

contain higher Hg levels than prey fish, the implications of invasive species on native fish Hg 

dynamics becomes more complex.  

Predicting how and why fish Hg levels have been changing in recent years requires 

further understanding of the underlying ecological processes and relative influence of 

environmental and climatic variables impacting Hg levels. Since Hg levels are driven by a 

complex interplay of multiple factors, with drivers that operate through synergistic and 

antagonistic feedback loops, it has been challenging to forecast changes in Hg particularly under 

a changing climate. In the Laurentian Great Lakes, for example, it has been found that fish Hg 

levels have been decreasing in Lakes Ontario and Huron but increasing in Lake Erie due to 

factors such as recycling of historical releases and changes in food web structures (Bhavsar et 

al., 2010). For inland lakes, Hg levels in Ontario top predator fish have been increasing in recent 

years (Gandhi et al., 2014), particularly in northern Ontario. Gandhi et al. (2014) discussed how 

factors, such as Hg emissions from Asian countries, climate change, invasive species, and acidity 

of a lake, could be contributing such fish Hg increases. With all these variables contributing to 

Hg levels, we need further understanding of (1) how Hg concentrations vary with Hg deposition, 
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methylation, and uptake by living organisms; (2) the relationship between methylation rates and 

climatic factors; and (3) the key processes related to cycling of Hg and global transport (UNEP 

2013). 

Conclusions 

Recent decades have been marked with increasing fish Hg levels in some regions; 

however, identifying the factors that contribute the most to changes in fish Hg levels has been 

complex. Drivers of the recent fish Hg changes are different from historical periods, as 

temperature and precipitation are emerging as important factors influencing fish Hg trends for 

different species. Changes in local climate, large-scale climate drivers, and Hg emissions are not 

only important in predicting these trends, but also complicated and interlinked in producing 

direct and indirect impact on fish Hg levels.  With rising temperatures, altered precipitation 

events, changing global climate indices and rising global Hg emissions, predicting how and why 

fish Hg will change in the next few decades will be both vital and challenging.  Monitoring 

programs need to be designed carefully to distinguish the effects of various factors 

simultaneously influencing Hg concentrations in fish and wildlife. An improved understanding 

of how climate-related parameters impact the processes related to bioavailability and uptake of 

Hg by fish is necessary to make informed advisory and future preventative responses.  
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FIGURES 

 

Figure 1: Method framework. Grey boxes indicate data or datasets; black boxes indicate data 

screening or analyses; and white boxes provide detail on the data analysis. Refer the Methods 

section for details. 
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Figure 2: Fish Hg trends for walleye (a,b), northern pike (c,d), smallmouth bass (e,f), and 

largemouth bass (g,h) in each secondary watershed for the historical (1970-1992) and recent 

(1993-2014) periods estimated using Sen’s Slope. The number for each watershed represents the 

number of lakes. Extreme values are binned into the upper and lower ends of the scale so the 

variation is not lost. White watersheds indicate insufficient data for the trend analysis. 
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Figure 3: Boxplots of correlations between 1-year lag fish Hg levels and climate/emission 

variables for the historical (1970-1992; grey) and recent (1993-2014; white) periods for (a) 

walleye, (b) northern pike, (c) smallmouth bass and (d) largemouth bass. Precip: average 

monthly precipitation; Temp: mean daily temperature; ENSO: El Nino Southern Oscillation 

index; TNH: Tropical/ Northern Hemisphere pattern; PE: Polar/Eurasian pattern; WP: West 

Pacific pattern; SunTOT: total Sunspot number; SumGN: group Sunspot number; NAO: North 

Atlantic Oscillation index; PDO: Pacific Decadal Oscillation index; NP: North Pacific index; 

Glo.em: Global Hg Emissions; Can.em: Canadian Hg Emissions. 
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SUPPORTING INFORMATION 

Table S1: Selected fish lengths to standardize Hg levels for walleye, northern pike, smallmouth 

bass and largemouth bass in Ontario. To avoid overly extrapolated Hg levels, only sites/years 

with Hg data for fish lengths between the minimum and maximum lengths were considered. 

Fish species Small (cm) Medium (cm) Large (cm) 

Walleye 40 50 60 

Min length (+15) <55 <65 <75 

Max length (-15) >25 >35 >45 

Northern pike 45 60 70 

Min length (+15) <60 <75 <85 

Max length (-15) >30 >45 >55 

Smallmouth bass 20 30 40 

Min length (+15) <35 <45 <55 

Max length (-15) >5 >15 >25 

Largemouth bass 20 30 40 

Min length (+15) <35 <45 <55 

Max length (-15) >5 >15 >25 
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Table S2: The record length, source and type of long-term climate indices data acquired for 

temporal analysis. 

Climate variables Record length Source Type of data 

Average Monthly 

Precipitation (mm) 

1901-2013 CRU Annual 

Average daily 

Temperature (°C) 

1901-2013 CRU Annual  

El Nino Southern 

Oscillation Index 

(ENSO) 

1876-2013 National Climate Centre, 

Australia  

Monthly 

North Atlantic 

Oscillation Index (NAO) 

1865-2013 NOAA Monthly/Annual 

Pacific  Decadal 

Oscillation Index (PDO) 

1948-2013 NOAA Monthly 

Tropical Northern 

Hemisphere Oscillations 

(TNH) 

1950-2015 NOAA  Average of 

DJF/Monthly 

North Pacific Index (NP) 1899-2014 NOAA Average of 

NDJFM/Monthly 

Western Pacific Index 

(WP) 

1950-2015 NOAA Monthly 

Polar/ Eurasia 

Oscillations (PE) 

1950-2015 NOAA  Monthly 

Total Sunspot Numbers 1700-2015 

 
SILSO Annual 

Total Sunspot Group 

Number 

1610-2015 SILSO Annual 

Global Hg Emissions 

(tonnes) 

1970-2010 Muntean et al., 2014 Annual 

Canadian Hg Emissions 

(tonnes) 

1970-2013 EMEP and Environment 

Canada 

Annual 

 

 

 

 

 

  

CRU = Climatic Research Unit 

NOAA = National Oceanic and Atmospheric Administration 

EMEP = European Monitoring and Evaluation Programme  

SILSO = Sunspot Index and Long-term Solar Observations 
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GENERAL CONCLUSIONS 

Global stressors, such as climate change and mercury contaminants, prompt regional 

responses in our freshwater fish populations. Climate change has been found to significantly 

impact the distribution of many fish species in Ontario and facilitate the introduction of non-

native species into novel systems (Chu et al., 2005; Sharma et al., 2009; Alofs et al., 2014). 

Together, native species are vulnerable to extirpation without mitigation of climate change or 

management strategies in place. In addition, climate change may also facilitate greater 

availability of Hg into our aquatic ecosystems. With warming temperatures and changes to 

precipitation, fish Hg levels may increase, and become hazardous for human consumption. The 

influences of climate- and emission-driven fish Hg trends are not well understood. Further 

understanding of how fish may respond under global stressors such as climate change is integral 

to maintain healthy aquatic ecosystems and human health. 

Coldwater fish species are particularly vulnerable to the impacts of climate change. These 

predictions were supported in our study, as cisco ranges were found to contract by approximately 

388 km from their southern extents in Ontario, resulting in a decline of cisco occurrence ranging 

from 8-37% (x̄ = 20%) by 2050, and up to a 7-47% (x̄ = 26%) decline by 2070. All climate 

change scenarios pointed to a decline in cisco populations in southern Ontario with minimal 

shifts northward, suggesting that water temperatures may be warming at a faster rate than these 

fish can respond. Along with the increased distribution of invasive species, such as rainbow 

smelt, these important forage prey fish may be further at risk to be extirpated in their native 

habitats (Jacobson et al., 2010; Sharma et al., 2011). Fisheries and conservation managers must 

examine and integrate these predictive models into their decisions by appropriately triaging 
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which lakes best protect cisco from extirpation and ultimately help to maintain the ecological 

health of Ontario lakes.  

Despite the decreases in local Hg emissions, fish Hg levels in Ontario’s top predator fish 

were found to be increasing in the past two decades (Tang et al., 2013; Gandhi et al., 2014). 

Though these were significant only for walleye and northern pike, these recent increases ranged 

between 0 to 0.20 ug/g/decade. As the non-native warmwater fish move northward, however, 

these Hg levels in all of our fish may change in response to a new competitor. For each fish 

species, we found that ˃25% of Ontario’s secondary watersheds shifted from historically 

declining fish Hg trends to recent increasing patterns and ≥50% of watersheds contained 

increasing fish Hg trends between 1993 and 2014. Complex combinations of local climate, 

global climate drivers, and Hg emissions influence fish Hg levels.  Although industrial Hg 

emissions were correlated with fish Hg concentrations for both historical and recent periods, 

global climate drivers and local climate were found to be important more so in recent years as 

temperatures and precipitation has increased in Ontario.  Differentiating the effects of climate 

and emissions on fish Hg levels is critical to assess how changing environmental stressors may 

impact the health of our ecosystems, wildlife and the human consumption of fish. 

Inferences of multiple regression models are built upon correlations (Mac Nally, 2002). 

As we know, correlations do not prove there is a direct causal link between the variables being 

examined. The presence of significant (p<0.05) correlations in models developed between the 

response variable (i.e. cisco occurrence or fish Hg concentrations) and predictors variables (i.e. 

abiotic and biotic variables), can however imply an unresolved causal structure (Shipley, 2002). 

Regression models must be used in combination with other forms of evidence to support the 

proposed casual structure. For example, Westoby and Wright (2006) suggest that correlations 
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between plant functional traits using scatterplots must be supplemented with cost-benefit 

modelling and field experiments. In this study, tests for multicollinearity between variables or 

use of a duel-criterion selection procedure were implemented for the purpose of building 

accurate, conservative models (Mac Nally, 2002; Blanchet et al. 2008). Researchers who have 

examined the direct links though micro- and mesocosm experimentation (Harris et al., 2007; 

Dijkstra et al., 2013; Pack et al., 2014) and in statistical approaches, such as step-wise selection 

techniques or hierarchal partitioning (Mac Nally 2000; 2002), continue to support the 

interpretations of multiple regression models. When many lines of evidence reveal a consistent 

story, we can be more confident in an interpretation.  

The response of aquatic species to changes in climate is complex. Global stressors such 

as climate change and mercury contamination can have severe implications on our natural 

environment, even threatening human health. Aquatic species today live in a multiple stressor 

environment, where freshwater fish populations are vulnerable to warming temperatures, forcing 

them to move or perish in the lakes they remain, and potentially causing the levels of Hg in our 

fish to rise. Consistent, wide-spread, and long-term monitoring programs are vital to 

understanding spatial and temporal trends in fish distributions and Hg trends under a changing 

climate.  
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