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Abstract 

The purpose of this paper was to situate a test for equality of group variances within the 

equivalence testing framework. Even though difference-based procedures are appropriate 

to answer questions about differences in some statistic (e.g., means, variances, etc.), these 

procedures are not appropriate to address questions related to variance homogeneity. 

Thus, if a researcher is interested in evaluating the similarity of group variances, it is 

more appropriate to use a procedure specifically designed to determine equivalence. A 

simulation study was used to compare newly developed equivalence-based tests to 

currently recommended difference-based variance homogeneity tests under data 

conditions common in psychological research. The results of this study provided 

evidence regarding the problems with assessing equality of variances with traditional 

difference-based tests. Most notably, traditional difference-based tests assess equality of 

variances from the wrong perspective, encouraging researchers to "accept" the null 

hypothesis. The results also demonstrated that the newly developed Levene-Wellek­

Welch test for equivalence of group variances using the absolute deviations from the 

median was the best-performing equivalence-based test statistic in terms of accurate Type 

I error rates and highest power for detecting equivalence across the conditions evaluated. 

In addition, the use of the Levene-Wellek-Welch median-based test was demonstrated 

with an applied example, and an R function was provided in order to facilitate use of this 

newly developed equivalence of group variances test. 
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Testing for Equivalence of Group Variances 

Heterogeneity of variances occurs when one or more groups of sample scores 

have a wider dispersion of scores than other groups. Researchers are becoming 

increasingly interested in the properties of their data aside from central tendency, such as 

dispersion or variability. For instance, van Raalte et al. (2011) were interested in whether 

there was more variability in life expectancy in lower-educated groups in Europe versus 

those with advanced degrees. Pahnke et al. (2010) were interested in the variability of 

sweating rates of males versus females in an Ironman competition. Salgado (1995) 

examined whether the variability in validity coefficients in self-report tests for a specific 

construct was equivalent to the variability in validity coefficients in psychomotor tests 

evaluated by an external rater of the same construct. Finally, a more well-known reason 

for assessing group differences in variability is to verify the homogeneity of variances 

assumption related to traditional parametric tests of mean differences (i.e., ANO VA F­

test; independent-samples /-test). Although the disciplines and research questions are 

varied, the fact remains that researchers need a valid test for assessing questions related to 

variability. More specifically, this paper addresses the need for a valid test of variance 

equivalence, or in other words, a test for homogeneity of variances. 

There has been substantial research on different tests that can be used to test for 

variance equivalence, including Levene's (1960) test, which is the default test in popular 

statistical software packages (e.g., SPSS). This paper discusses whether traditional tests 

of variance homogeneity address the problem of variance equality from the wrong 

perspective. More specifically, although popular tests of variance homogeneity evaluate 



the null hypothesis that the variances are equal, it can be the case that the research 

hypothesis (not the null hypothesis) relates to the equality of the variances. In order to 

test for variance homogeneity, the use of equivalence tests is recommended. If one uses 

equivalence-based procedures, the research hypothesis of variance equality is properly 

aligned with the alternate hypothesis, not the null hypothesis. 

2 

The purpose of this paper is to situate a test for equality of group variances within 

the equivalence testing framework. As discussed later, even though difference-based 

procedures are appropriate to answer questions about differences in some statistic (e.g., 

means, variances, etc.), these procedures are not appropriate to address questions related 

to homogeneity. The main goal of this paper is to compare newly developed tests for 

equivalence of group variances to currently recommended variance homogeneity tests 

under data conditions common in psychological research. A review of traditional 

variance homogeneity tests as well as equivalence testing is outlined before developing 

equivalence testing procedures for detecting variance homogeneity. 

Why Test for Equivalence of Variances? 

One of the most common reasons that researchers want to test for equivalence of 

group variances is to justify the use of tests that assume variance homogeneity in their 

primary analysis (e.g., to meet the assumptions required by an independent-samples t-test 

or a one-way ANOVA F-test). In this case, the researcher would like to find that the 

variances are equal across groups, and, if using a traditional test for homogeneity of 

variances, would like to "accept" the null hypothesis for these tests, 



H 0 : a 1
2 = aJ = ... =a;. In other words, the research hypothesis that the variances are 

equal is aligned with the null hypothesis rather than the alternate hypothesis. 

3 

It is important to note that it is not necessary to use a preliminary test of variance 

heteroscedasticity in order to justify the use of heteroscedastic procedures (e.g., Welch­

adjusted ANOVA) since these tests are generally effective regardless of whether 

variances are equal across groups. Many researchers have suggested abandoning non­

robust parametric procedures completely in favour of robust procedures that do not 

require the homogeneity of variances assumption (e.g., Wilcox, Charlin, & Thompson, 

1986; Zimmerman, 2004). Specifically, these researchers recommend universal use of 

robust procedures when researchers are interested in comparing the central tendency of 

groups. These researchers emphasize that testing for homogeneity of variances is 

unnecessary given that robust procedures do not require homogeneous variances. Indeed, 

even papers proposing new procedures for testing for homogeneity of variances assert 

that this testing procedure can be abandoned if all researchers simply used a robust test 

statistic (e.g., Keselman, Wilcox, Algina, Othman, & Fradette, 2008). However, 

researchers in psychology still widely use non-robust parametric procedures and need to 

screen for the assumptions associated with these tests. In addition, other research has 

shown that using a preliminary test to screen for homogeneity of variances and then 

deciding to use a traditional ANOV A or a robust version (i.e., adaptive tests) is 

comparable to just using a Welch ANOVA at the first stage in terms of power (Gastwirth, 

Gel, & Miao, 2009). 
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A more interesting reason for assessing equivalence of variances is that the 

primary research question is concerned with whether the dependent variable variability of 

multiple groups or conditions is similar. As Parra-Frutos (2009) discusses, researchers are 

becoming more interested in the properties of their data aside from central tendency, such 

as dispersion or variability. For instance, research questions concerning "uniformity" or 

"similarity" of groups are increasingly common, which encompasses questions about the 

comparability of the dispersion of scores between groups. Bryk and Raudenbush (1988) 

argue that the presence of heterogeneity of variance across groups can have important 

implications for the research conclusions. Specifically, the presence of heterogeneity of 

variances in an experimental study indicates the presence of an interaction between 

person characteristics and treatment group membership. In other words, heterogeneity of 

variances can indicate that individuals vary in their response to the treatment (assuming 

the treatment group was a fixed effect). This could be an important consideration for 

researchers, and valid tests for evaluating heterogeneity or homogeneity of variances 

(depending on the researcher's expectations) would be important to evaluate within an 

experimental design. Indeed, in more complex modeling procedures, comparing the 

variability associated with a particular effect (e.g., variability around the intercept or 

slope in a latent growth curve model) between different groups is a common research 

goal (e.g., there are no differences between the groups on the variability around the 

slope). 

Given these two reasons for testing for variance homogeneity, a valid test 

assessing equivalence of variances is quite relevant to the kinds of research questions 
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psychologists (and researchers in other disciplines) are interested in, and preliminary tests 

for homogeneity of variances are necessary if a researcher wants to justify the use of a 

non-robust test. However, as this paper argues, the currently available procedures are 

incorrectly assessing variance equality, so new procedures need to be developed and 

evaluated. 

Traditional Approaches to Testing for Variance Homogeneity 

In order to assess variance homogeneity, Levene ( 1960) proposed transforming 

the sample scores to the absolute deviations of the sample scores from the sample mean 

with ziJ = lxiJ -M1j , where XiJ is scores of the ith individual in thejth group, and then 

using a traditional ANOV A F-test on the z iJ to assess variance equality across groups. 

The null hypothesis for Levene's procedure is that the population variances of all J groups 

are equal, H 0 : a 1
2 = ai = ... =a~. The alternate hypothesis states that at least one group 

variance is not equal to at least one other. 

Since Levene's test was published, there have been numerous modifications 

proposed because the original version demonstrates some undesirable statistical 

properties, such as low power compared to other tests (especially when sample sizes are 

unequal), and non-robustness to non-normally distributed XiJ. For example, 

recommendations suggest that using the group median or trimmed mean, rather than the 

mean in Levene's test provides better Type I error control, even in asymmetric 

distributions (Brown & Forsythe, 1974; Keselman et al., 2008). There also has been an 

attempt to develop nonparametric procedures that evaluate variance homogeneity, such as 



rank-based Levene-type tests and bootstrapped versions of Levene's original test (e.g., 

Lim & Loh, 1996; Nordstokke & Zumbo, 2010). 

6 

Despite nearly 50 years of research, there does not seem to be a general consensus 

for a single test statistic for evaluating homogeneity of variances that works uniformly 

well across common data scenarios. Previous simulations studies (e.g., Conover, Johnson, 

& Johnson, 1981; Keselman, Games, & Clinch, 1979; Lim & Loh, 1996; Nordstokke & 

Zumbo, 2010) have made a wide range of recommendations regarding the optimal 

homogeneity of variance test that is also robust to non-normality. For instance, Conover 

et al. ( 1981) suggest that the original Levene test using the median is one of the best 

performing statistics across a wide range of analytic conditions. Lim and Loh ( 1996) 

similarly recommend the Levene test using the median, but suggest that a bootstrapped 

version improves the performance of this statistic. Nordstokke and Zumbo (20 I 0) 

recommended a rank-based Levene test as the most robust test statistic across many data 

conditions, and rank-based Levene tests were also recommended in the Conover study as 

having some desirable properties under certain conditions. Keselman et al. (1979) report 

that no single test could be uniformly recommended, as the performance of many 

variance homogeneity statistics depended on the analytic condition. They did suggest, 

however, that the original Levene using the median or the Levene using the median with 

a Welch adjustment might be the best choices. In a later study, Keselman et al. (2008) 

looked at trimmed-means strategies and suggested that the original Levene with trimmed 

means or the Levene using trimmed means with a Welch adjustment performed the best 

across the conditions evaluated (based on Type I error rates only). They further suggest, 



contrary to the Lim and Loh study, that bootstrapping was not necessary because 

satisfactory Type I error rates can be obtained without bootstrapping. 

Problems with Traditional Tests for Equivalence of Variances 

7 

Even though the results of previous simulation studies have found a number of 

homogeneity of variance tests to perform adequately under different data conditions, they 

are all fundamentally incorrect for the problem of determining the equality of population 

variances, in that these difference-based procedures aim to "accept" a point-null 

hypothesis regarding the exact equality of group variances. The probability of a Type I 

error when testing the null hypothesis, H 0 : a 1
2 = ai = ... =a;, is the chance of 

incorrectly concluding there is a difference between the variances when, in fact, there are 

no differences in the variances. Type I error rate control is protection against incorrectly 

identifying a difference among two or more variances when they are the same. However, 

if one fails to reject the null hypothesis, one cannot conclude that the variances are 

equivalent; failure to reject the null hypothesis, H 0 : a 1
2 = ai = ... =a; , only implies 

that there is not enough evidence to conclude that there is a difference among the 

variances. 

Another issue with traditional tests is that rejection or non-rejection of the null 

hypothesis of homogeneity of variance conveys very little about the potential similarity 

of the group variances in question. Specifically, the point-null hypothesis evaluated by 

difference-based homogeneity of variance tests is too specific and impractical for 

assessing the equivalence of the group variances. For instance, ifthere is a large sample 

size and a very minor difference among group variances, it is likely that a difference-
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based variance homogeneity test will reject the null hypothesis and declare the group 

variances different. However, small differences in the variances are usually expected, and 

thus the results of the traditional homogeneity of variance test and subsequent 

conclusions regarding the similarity of the group variances in this case could be 

impractical. Conversely, smaller sample sizes may result in very little power to detect 

important differences in the variances, resulting in inaccurate conclusions about the group 

variances. More generally, the power of difference-based procedures to detect equality of 

variances decreases (rather than increases) as sample size increases. This property is 

clearly incongruent with typical null hypothesis testing expectations. 

Equivalence Testing 

Equivalence tests are appropriate for a research question that deals with a lack of 

association. For example, a researcher may be interested in demonstrating that the means 

of groups are equivalent or that no relationship exists between two variables (e.g., 

Cribbie, Gruman, & Arpin-Cribbie, 2004; Goertzen & Cribbie, 2010; Robinson, 

Duursma, & Marshall, 2005; Rogers, Howard, & Vessey, 1993), or that the variances of 

two or more populations are equal (as proposed in the current study). A "complete lack of 

association" is unrealistic, as it is mathematically impossible for entities to be completely 

unrelated ifthe dependent variable is truly continuous (e.g., difference between the means 

is exactly zero, as with the traditional null hypothesis H0: µ 1 = µ1). Instead, with 

equivalence testing, a lack of association implies that the relationship is so small that it 

can be considered inconsequential or meaningless. For example, if a researcher was 
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interested in demonstrating that two population variances were equivalent, then the 

researcher must decide how large a difference in the variances can be considered 

inconsequential. This difference is defined a priori as the equivalence interval (-e, +e). In 

other words, an equivalence test assesses whether the relationship between two or more 

entities (e.g., difference between population variances) falls within a specified interval 

which defines an unimportant difference (e.g., - e ~ a 1
2 

- ai ~ e )1
• 

Specifying the equivalence interval is the most challenging aspect of equivalence 

testing because there are no concrete rules to help researchers choose the appropriate 

equivalence interval. The equivalence interval must be selected based on researchers' 

knowledge of their field, their expertise with the constructs and samples being used, and 

an understanding of how "meaningless" might be quantified for their particular research 

question. 

Equivalence testing was first introduced to psychology by Rogers and colleagues 

(1993). Since then, there have been numerous papers recommending its use in many data 

analytic situations common to psychological research (e.g., Cribbie et al., 2004; Seaman 

& Serlin, 1998). The most common procedure was developed by Schuirmann (1987) and 

involves testing the equivalence of two independent sample means. For detecting the 

equivalence of more than two means, simulation research (e.g., Cribbie, Arpin-Cribbie, & 

Gruman, 20 I 0) has recommended Wellek's (2003) one-way test of equivalence. Wellek's 

test simultaneously evaluates the equivalence of all J population means. The null 

1 Alternatively, equivalence tests could be used to assess the "similarity" of a particular value to a target 
value. 



hypothesis for a one-way equivalence test is that the difference among the means of the 

groups falls within an equivalence interval such that: 

where e is the equivalence limit and 

-

Ho : \J'2 ~ 82 

HI : \}12 < 82 

where n represents the mean sample size of the groups, M 1 represents the mean of the 

10 

jth group, X .. represents the average of the means for the J groups (i.e., the grand mean), 

and a2 represents the average within-group variance (assumed to be equal across groups). 

The null hypothesis for this test is rejected if 'P 2 < 'P crit , where 

'P = ({_=!)F -
crit ;; J-l,N-J,a(nc 2

} 

where ~2 represents the noncentrality parameter. Wellek cautiously recommends 

adopting e = .25 for a strict equivalence criterion and e = .50 for a liberal equivalence 

criterion (discussed in more detail later). 

Traditional Variance Homogeneity Procedures Evaluated in the Current Study 

The current simulation study evaluated four traditional difference-based tests for 

homogeneity of variances, each of which is described below. 

Levene's (1960) original test for homogeneity of variances ("Lev _mean"). 

Although Levene's ( 1960) test was not recommended in the literature (e.g., Conover et 
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al., 1981; Lim & Loh, 1996), it is still regularly reported in popular statistical software 

programs, so it was included in this study. As mentioned previously, this test converts the 

sample scores,X;j, with ziJ =IXiJ -M11, whereM1 is thejth sample mean,}= 1, ... , J, and 

then uses the transformed scores, Zij, in the following ANOV A test statistic to assess 

variance homogeneity: 

F = (N-J) L ~=1n/z1 -z~y 
J -1 L ~=IL ~~1 (ziJ - z i )2 

where n1 is the sample size of the }th group, Z 1 is the mean of the ziJ for the }th group, and 

Z .. is the overall, grand mean for all Zij· Critical values for F can be obtained from the F-

distribution based on J - 1 and N - J degrees of freedom. 

Levene's test using the median ("Lev _mdn"). This modification of Levene's 

test, originally proposed by Brown and Forsythe (1974), was considered the best 

procedure in Conover et al.' s (1981) simulation study, in terms of most accurate Type I 

error rates. Thus, I included this procedure in the study. Instead of using thejth sample 

mean in the sample score transformation, this modification uses the transformation, 

zij = jx iJ - MDN1 j, where MDN 1 is thejth sample median. Again, the transformed scores 

are analyzed using an ANOVA F- test. 

Levene's original test with a Welch adjustment ("LevWelch_mean"). 

Welch's (1951) adjusted degrees of freedom procedure has been proposed as a solution to 

unequal variance issues in independent groups design procedures like Student's t-test and 

the ANOV A F-test. However, the Welch adjustment to the ANOV AF-test has relevance 
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to Levene's test for homogeneity of variances (and its modification), given that Levene's 

test uses the ANOVA F-test and also assumes homogeneity of variances (more 

specifically, the variances of absolute values of the deviation scores, ziJ). It seems 

illogical to have a test for homogeneity of variances that, itself, assumes homogeneity of 

variances. Thus, researchers have proposed using the Welch-adjusted statistic to test for 

homogeneity of variances (e.g., Keselman et al., 1979; Parra-Frutos, 2009; Wilcox et al., 

1986). 

The original one-way Welch-adjusted ANOVA F'-test is defined as: 

Levene test, one simply substitutes the transformed scores, z;
1 
= IX;

1 
- M

1
,, into the F' 

equation to assess homogeneity of variances (without requiring the homogeneity of 

variances assumption), so that the test statistic becomes: 
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n. -' :Lw.Z1 -
where w, = -f , Z .. = L 1 and Z j is the mean of the zy for the jth group. 

I S W 
~ j 

Levene's median-based test with Welch adjustment ("LevWelch_mdn"). This 

procedure uses the absolute deviations from the median, z iJ =IX iJ - MDN 1 I, to calculate 

the Welch ANOVA F'- test to assess homogeneity of variances (outlined previously), so 

that Z 1 is the mean of the ziJ for thejth group. Given that the Brown-Forsythe version of 

the procedure is most widely recommended in the literature, a Welch-version of this test 

was included in this study. 

It is important to remember that all of the difference-based tests discussed in this 

section test the null hypothesis that the population variances are equal, and rejection of 

this null hypothesis implies that the variances cannot be assumed equal. However, as 

discussed earlier, when the goal is to demonstrate that the population variances of the 

groups are equal, the alternate hypothesis, rather than the null hypothesis, should be 

expressed in terms of variance equality. 

Equivalence-Based Homogeneity of Variance Tests 

Given the fundamental problems with the traditional tests for homogeneity of 

variances, I developed an equivalence-based test for homogeneity of variances along with 

several modifications. The null hypothesis for a one-way equivalence test for 

homogeneity of variances is that the difference among the var,iances of the groups falls 

within an equivalence interval, 

Ho : \112• ~ £2 

HI : \112• < £2 
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where \J' 2
• represents the equivalence of group variances test statistic, defined shortly. 

Levene-Wellek test for equivalence of variances ("L W _mean"). This 

procedure is based on Wellek's (2003) original one-way equivalence test statistic, 

substituting Levene's original transformation in place of the raw scores. This new hybrid 

test statistic can be defined as: 

n J ( n . ){- -• )2 
'I'"=~~~ \Z;-ZJ 

s2 
zi 

LJ L:nj z .. 
· h L ' · · 1 .c. • Ix M I h z 1=

1 
i=I I) wit evene s ortgma trans1ormat1on, ziJ = iJ - 1 , sot at 1 = , 

nJ 

-· (L~-1 L~~I z ij) 
Z .. = J-

1 
,_ , and si

1 
is the variance of the transformed sample scores. 

"'""' n. £..JJ=I J 

As mentioned previously, both the original Levene test and Wellek's one-way test 

assume homogeneity of variances, which is an unreasonable assumption when these tests 

are used to evaluate homogeneity of variances. In addition, previous research on 

traditional difference-based homogeneity of variance tests have found that certain 

modifications of the original Levene test perform better. Thus, this study included three 

additional procedures based on modifications of this newly developed Levene-Wellek 

test, as described next. 

Levene-Wellek using the median ("L W _median"). This procedure is an 

adaptation of the Levene-Wellek test (defined above) using the absolute deviations from 
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the sample median instead of the absolute deviations from the sample mean (i.e., Brown-

Forsythe transformation of the sample scores; "LW _median"); 

Levene-Wellek-Welch ("LWW _mean"). This version of the procedure is based 

on the Levene-Wellek test on the mean, but including a Welch adjustment to test for 

equivalence of group variances without assuming homogeneity of variances. As 

discussed previously, the ANOVA test statistic used to evaluate variance homogeneity 

assumes that the variances (of the transformed scores) are homogeneous. Thus, 

researchers have suggested using a robust version of the A NOVA test statistic (i.e., the 

Welch-adjusted ANOVA). The new equivalence-based robust test statistic can be defined 

as 

where w . = ~1 2 , 2' .. = L wz12jt· I , n1· is the size oftheJth group, s: is the 
ZJ S w -J 

~ ~ 

variance of the transformed scores for the }th group, and ti is the mean of the 

transformed sample scores for each group (as defined previously). The test statistic is 

approximately distributed as F with J-1 numerator degrees of freedom and denominator 

degrees of freedom as: 
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Levene-Wellek-Welch using the median ("LWW _median"). The final novel 

procedure developed for this study uses the previously defined Levene-Wellek-Welch 

test, but instead of the original Levene transformation, this procedure uses the Brown­

Forsythe transformation of the absolute deviations of the sample scores from the median. 

The Equivalence Interval 

Wellek (2003) provides several broad recommendations in terms of selecting 

equivalence intervals. However, the nature of the research should be the determining 

factor in the selection of an appropriate equivalence interval. Indeed, Wellek and other 

equivalence testing researchers have cautioned that general recommendations or fixed 

general rules regarding the selection of an equivalence interval is not advisable, but 

should be a point of careful consideration that is specific to the individual study. Epsilon 

(c) can be described as the maximum difference in the variances that one would consider 

unimportant. In general, Wellek suggests that entities differing by no more than 10% are 

very similar, while differences of more than 20% are practically significant. Thus, a 10% 

difference would be a strict equivalence criterion ( £ = .25) and 20% would be a more 

liberal equivalence criterion(£= .50; see Wellek, 2003, pp. 16, 17, & 22 for details). 

Issues to Consider in Comparing Equivalence Tests and Difference Tests 

It is important to discuss some difficulties with comparing the results of 

difference-based tests to those of equivalence-based tests. The major issue is that these 

two types of tests evaluate different hypotheses. Difference-based tests evaluate a point­

null hypothesis that is very specific, and in the case of variance equality, quite 

impractical. For example, it is strictly impossible to find that variances are exactly equal, 
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if one uses enough decimal places. In addition, the research hypothesis regarding 

variance equality is aligned with the null hypothesis, rather than the alternate hypothesis, 

so the researcher's goal is to "accept" the null hypothesis. Equivalence-based tests 

evaluate the null hypothesis that the difference among the variances falls outside a pre­

specified equivalence interval. Thus, to determine that the variances are nearly 

equivalent, one wants to reject this null hypothesis and find instead that the difference 

among the variances falls within the equivalence interval. In this case, the research 

hypothesis is the alternate to the null hypothesis, which is congruent with normal null­

hypothesis testing procedures. However, comparisons could be made regarding the 

overall pattern of results for detecting homogeneity of variances between these two 

testing methods. The outcome in this study was the proportion of declarations of 

equivalence. In other words, what was the probability of detecting equivalence? This 

outcome was defined by the proportion of non-rejections of the null hypothesis in the 

difference-based tests and by the proportion of rejections of the null hypothesis for the 

equivalence-based tests. 

Method 

Monte Carlo simulations were used to compare the probability of declaring 

equivalence for the four difference-based tests for homogeneity of variances to that of the 

four novel equivalence-based tests for equality of variances. In addition, Type I error 

rates and power for the equivalence procedures were assessed and compared. The 

performance of the eight homogeneity of variance tests was evaluated with a normal 

population distribution shape as well as a positively skewed distribution (X2 with 3 
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degrees of freedom; see Figure 1) because previous research (e.g., Brown & Forsythe, 

1974; Keselman et al., 2008) has indicated that some homogeneity of variance tests are 

not robust under conditions of non-normality. In order to evaluate the Type I error rates 

of the equivalence-based procedures, the liberal bounds of± 0.5a (Bradley, 1978) were 

used. Therefore, with an alpha level of .05, a procedure was considered to have an 

accurate empirical Type I error rate in a specific condition if the rate fell between .025 

and .075. In each table, inaccurate Type I error rates are italicized, and the corresponding 

power rates for these conditions are also italicized since those power rates would also be 

inaccurate. The simulations were conducted with the open-source statistical software R 

(R Development Core Team, 2010). 

The definition of "power" is different for the equivalence-based tests compared to 

the difference-based tests because, as discussed previously, these two types of tests have 

different null hypotheses. Therefore, instead of determining the probability of rejecting a 

false null hypothesis, that is, "power" for any particular test, this study determined the 

"probability of finding equivalence" for both the equivalence-based and the difference­

based procedures. In other words, this study focused on the probability that a particular 

test declares the variances equivalent when they are in fact equivalent (where 

"equivalent" is defined by the null hypothesis for the difference-based tests and by the 

equivalence interval for the equivalence-based tests). Empirical Type I error rates for the 

equivalence-based tests were obtained by deriving the differences in the variances that 

matched the bounds of the equivalence interval (i.e., \J1 2 = c 2
) in conditions where the 

population variances differed across groups. 
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Several variables were manipulated in this study, including distribution shapes, 

balanced versus unbalanced designs (i.e., equal versus unequal group sizes), number of 

groups, sample sizes, variances, and pairings of unequal sample sizes with unequal 

variances. The conditions examined in this study can be found in Tables I and 2. For the 

equivalence-based tests, both of the recommended equivalence limits of£= .25 and£= 

.50 were used (Wellek, 2003). 

For the normally distributed conditions, n1 standard normal observations were 

generated for thejth group, where}= 1, ... , J, and the resulting values were multiplied 

by F so that the observations would have variances, rl1, as outlined in Table I. In 

order to examine the effects of positively skewed distributions on the performance of the 

test statistics, n1 observations were generated for each of the J groups from a x2 

distribution with 3 degrees of freedom. In order to ensure the observations from the x2 

distribution had the variances specified in Table 1, first the mean and variance of the 

distribution had to be set to 0 and 1, respectively. This was accomplished by subtracting 3 

(the degrees of freedom, which is equal to the mean of the x2 distribution) from the 

observations, which centers the distribution of scores at zero, and then dividing by vz;-3 

(the variance of the x2 distribution is 2df; in this case, df = 3, so dividing the observations 

by the square root of 2*3 sets the standard deviation to 1). The resulting values were then 

multiplied by fe, to produce a distribution of observations with the variances outlined 

in Table 1. 
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Once the observations were generated for each replication, the four difference­

based procedures and the four equivalence-based procedures were performed on the data 

of each replication. As discussed previously, to determine the probability of declaring 

equivalence for the difference-based tests, it was noted when the null hypothesis was not 

rejected. In order to determine the probability of declaring equivalence for the 

equivalence-based tests (i.e., power), it was noted when the null hypothesis was rejected. 

This process was repeated across 10,000 replications per condition to obtain the 

probability of declaring equivalence for each condition. 

Unbalanced designs, defined as unequal sample sizes, that are paired with unequal 

variances can affect Type I and Type II error control of ANOVA-type procedures 

(Keselman et al., 1998; Othman et al., 2004). Thus, the current study examined both 

positive and negative pairings of the variances and sample sizes. Positive pairing occurs 

when the largest group size is paired with the largest variance and the smallest group size 

is paired with the smallest variance. Negative pairing occurs when the largest group size 

is paired with the smallest variance and the smallest group size is paired with the largest 

variance. Previous research on the robustness of ANOVA-type procedures (Othman et 

al., 2004; Yin & Othman, 2009) has found that positive pairings result in conservative 

Type I error rates and negative pairings result in liberal Type I error rates. A procedure is 

considered liberal if its Type I error rate is greater than the nominal alpha level and 

considered conservative if its Type I error rate is less than the nominal alpha level. 

In summary, four novel equivalence-based procedures were evaluated in a 

simulation study based on Type I error rates and power across 384 conditions (12 sample 



size conditions x 2 group size conditions x 8 variance ratios x 2 distributions shapes). 

The difference-based procedures were evaluated based on the probability of declaring 

equivalence in 216 conditions (there are fewer conditions evaluated because the 

difference based tests were not subject to the same Type I error conditions as the 

equivalence procedures, such that the equivalence interval conditions did not apply). 

Difference-Based Procedures 

Normal Distributions. 

Results 
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When the population variances of the groups were exactly equal, this was a Type I 

error condition for the difference-based procedures. Therefore, the probability of 

declaring equivalence (i.e., "accepting" the null hypothesis) in this condition should have 

been approximately 1 - a (in this case, .95), regardless of sample size. Although in most 

cases the rates were close to .95, with positive and negative pairings of unequal sample 

sizes and variances and small sample sizes, the rates were sometimes too conservative or 

too liberal (see Tables 3 and 4). 

The 1.3: 1 variance ratio condition was a power condition for the difference-based 

tests, so the probability of declaring equivalence (i.e., failing to reject the point-null 

hypothesis) equals the Type II error rate. Thus, as expected, the probability of declaring 

equivalence decreased as sample sizes increased (see Tables 5 and 6). Specifically, for J 

= 2, the probability of declaring equivalence was between 85% and 95% when ii.= I 0, 

and decreased slightly to between 76% and 80% when ii.= 100. For J= 4, probability of 



declaring equivalence was highest for ii= 10, ranging between 86% and 98%, then 

slightly decreased to between 82% and 90% when ii= 100. 
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For the 2: 1 variance ratio condition, the difference-based tests had a very high 

probability of declaring equivalence at ii= 10. In the largest sample size conditions (ii = 

I 00), the probability of declaring equivalence was much lower and ranged between 11 % 

and 21 % in the equal sample size conditions (see Tables 7 and 8). It is important to note 

that the 2: 1 variance ratio in this condition meant the point-null hypothesis of the 

difference-based procedures was false, and thus these results were not unexpected. 

However, the backward nature of using difference-based tests for addressing questions of 

equivalence was apparent, as equivalence is found up to 97% of the time at small sample 

sizes, but this same difference in the variances was statistically different the majority of 

the time in the largest sample sizes. 

For a 6: 1 variance ratio and J = 2 (see Table 9) in the smallest sample size 

conditions, the probability of declaring equivalence was as high as 99% for the negative 

pairing conditions (specifically, for the Levene-Welch test using the median), and was as 

high as 57% in the equal sample size conditions. In the largest sample size conditions, as 

expected, the probability of declaring equivalence was zero. When J = 4 (see Table 10) in 

the smallest sample size conditions, the probability of declaring equivalence was as high 

as 85% in the negative pairing conditions, and was as high as 72% in equal sample size 

conditions. 

Positively Skewed Distributions (··J.2, 3 df). 
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As discussed previously, when the variances of the groups were exactly equal, 

this condition evaluated Type I error rates for the difference-based procedures. Therefore, 

the probability of declaring equivalence in this condition should have been approximately 

I - a (.95) for the difference-based procedures. As found in Tables 11 and 12, this result 

was obtained for most replications with the median-based tests, but the mean-based 

procedures demonstrated rates that were often very conservative. The rates across the 

procedures ranged from approximately 95% with the Levene test using the median, but 

were as low as 80% for the other procedures. Thus, the probability of declaring 

equivalence was less than what was found in the normally distributed conditions. Note 

that, as before, sample size did not impact the probability of declaring equivalence in this 

condition for the difference-based tests. 

For a 1.3: I variance ratio, the variances were slightly different, so the point null 

hypothesis for the difference-based tests was false. The probability of declaring 

equivalence (i.e., failing to reject the point-null hypothesis) decreased as sample sizes 

increased (see Tables 13 and 14), as expected. Specifically, for J= 2, the probability of 

declaring equivalence was between 78% and 97% when n = 10, and decreased to 

between 74% and 87% when ii= 100. For J= 4, the probability of declaring equivalence 

was highest for n = I 0, ranging between 73% and 96%, and remained somewhat 

unchanged at approximately 82% to 95% when n = 100. 

When there was a 2: 1 variance ratio, again, the point-null hypothesis for the 

difference-based procedures was false. Consequently, the probability of declaring 

equivalence (i.e., not rejecting the null hypothesis) decreased as sample sizes increased. 



In the smallest sample size conditions, the probability of declaring equivalence ranged 

from 64% to 97% (see Tables 15 and 16). In the largest sample size conditions, the 

probability of declaring equivalence ranged from 24% to 59%. 
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For a 6: 1 variance ratio, many false declarations of equivalence were observed for 

the difference-based procedures. In the smallest sample size condition (see Tables 17 and 

18), false declarations of equivalence occurred between 33% and 99% of the time. When 

ff = 25, false declarations of equivalence ranged from 9% to 50% across conditions. In 

the largest sample size conditions, the rate was approximately zero. 

Equivalence-Based Procedures 

Normal Distributions. 

Empirical Type I error rates. For J= 2 groups and E = .25, the Type I error rates 

for the equivalence procedures are in Table 19. All four equivalence-based procedures 

maintained the Type I error rates very close to the nominal level when the group sample 

sizes were equal, with error rates ranging from .0475 to .0557. When unequal variances 

and sample sizes were positively paired, the Type I error rates were acceptably close to 

the nominal level, ranging from .0387 to .0565. For negative pairings of sample sizes to 

variances, the Type I error rates for the largest sample size condition (ff= 100) ranged 

from .0437 to .0505. However, with small sample sizes in the negative pairing conditions, 

the Type I error rates for the Levene-Wellek tests were slightly liberal (e.g., .0847, 

.0762). The Levene-Wellek-Welch procedures were less affected by negative pairings 

and maintained the Type I error rates within the bounds of .025 and .075, with empirical 

Type I error rates ranging from .0464 to .0687. 
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For J = 2 groups and e = .50, the Type I error rates are in Table 20. The same 

pattern of results reported for the more strict equivalence criterion also holds for this 

more liberal equivalence criterion. When sample sizes were equal, the Type I error rates 

of all four equivalence-based procedures were close to the nominal level, ranging from 

.0357 to .0531. For positive pairing conditions, the Type I error rates were also very 

accurate, ranging from .0394 to .0552. However, forthe negative pairing conditions, the 

Type I error rates were too liberal at smaller sample sizes for the Levene-Wellek 

procedure using the median (e.g., .0886, .0759). The Levene-Wellek using the mean had 

better Type I error rates, ranging from .0306 in the largest sample size condition to .0686 

in the smallest sample size condition. The Levene-Wellek-Welch procedures (both mean 

and median) maintained the Type I error rates within the bounds of .025 to .075 in all 

conditions, but were also slightly more liberal when sample sizes were smaller. 

For J= 4 groups and e = .25, the empirical Type I error rates for all four 

equivalence procedures were acceptably close to the nominal level, within the bounds of 

.025 and .075 (see Table 21 ). This result occurred for equal sample size conditions as 

well as the positive pairing and negative pairing conditions. 

For J = 4 groups and e = .50, the Type I error rates (see Table 22) in the equal 

sample size conditions were maintained at the nominal level, ranging from .0381 to 

.0702. For the positive pairing conditions, the Levene-Wellek-Welch procedures had 

acceptable Type I error rates in all sample sizes, ranging from .0388 to .0523. However, 

both of the Levene-Wellek procedures (i.e., based on the mean and the median) had 

overly liberal Type I error rates at the highest sample size (i.e., .0824 and .0869). For the 
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negative pairing conditions, the Levene-Wellek-Welch using the median had a very 

liberal Type I error rate (i.e., .1014) at the smallest sample size condition (ff= 10). 

However, at the larger sample sizes in the negative pairing conditions, the Type I error 

rates were acceptable for the Levene-Wellek-Welch test using the median. The other 

three equivalence procedures maintained the Type I error rates within the bounds of .025 

to .075 in all of the negative pairing conditions. 

Power. When variances were exactly equal, the difference in the variances (equal 

to zero) fell within the equivalence interval, thus this was a power condition for the 

equivalence-based procedures. For J= 2 groups and a strict equivalence criterion (e = 

.25), power for all of the equivalence procedures was quite low at the smallest samples 

sizes, but increased to approximately 60% power at the largest sample size (See Table 

23 ). The same pattern was found when sample sizes were equal, and for positive and 

negative pairing conditions. There was a slight power advantage for the median-based 

equivalence procedures. When J = 4 and e = .25, a similar trend occurred, with low 

power in the smallest sample size condition and approximately 43% power in the largest 

sample size conditions (see Table 24). Again, there was a slight power advantage for the 

median-based equivalence tests. 

When variances were exactly equal and e = .50, power, as expected, improved. 

When J = 2, over 90% power for detecting equivalence was achieved when ff= 50, and 

reached nearly 100% in the largest sample size conditions. This result occurred for equal 

sample sizes as well as positive and negative pairing conditions (see Table 25). The same 

pattern of results was observed when J= 4 (see Table 26). 
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With a 1.3: 1 variance ratio and E = .25, the test statistic, \j/2
, was less than £2

; thus 

the differences in the variances was less than the equivalence interval. Thus, this 

condition also evaluated power for the equivalence procedures (i.e., probability of 

declaring equivalence when the variances were not meaningfully different). When J = 2 

and small sample sizes, power for the equivalence procedures was low, but increased as 

sample sizes increased, reaching approximately 35% (see Table 27). For J= 4 (see Table 

28), the same pattern of results was observed, with power reaching approximately 40% to 

43% in the largest sample size condition. 

For a 2: I variance ratio and E = .50, this difference in the variances was within the 

equivalence interval for the equivalence procedures, such that \j/2 < E; therefore, this 

condition was another test of the power of these procedures for the more liberal 

equivalence limit. For J = 2 and when sample sizes were equal, power was quite low at 

the smaller sample sizes, and increased to between 57% and 59% in the largest sample 

size condition (ii= 100). For the positive pairing condition, power in the largest sample 

size condition ranged from 54% to 62%. For the negative pairing condition at the largest 

sample size, power ranged between 52 and 67% (see Table 29). For J = 4, power was 

slightly lower than it was in the two group condition. In the largest sample size condition, 

power was approximately 41 % to 61 % (see Table 30). All four equivalence procedures 

had comparable power rates across all sample size and variance combinations. 

False declarations of equivalence. For a 6: 1 variance ratio, \j/2 was greater than 

c2
; thus, the differences in the variances exceeded the equivalence interval and the 

equivalence procedures should not reject the null hypothesis of variance heterogeneity. 
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This was also another evaluation of the Type I error rates of the equivalence procedures, 

given that the null hypothesis of variance heterogeneity was true in this condition. 

Specifically, the difference among the group variances exceeded the equivalence interval. 

Note, however, that the error rates in this variance ratio condition should be less than the 

Type I error rates obtained when the differences among the variances matched the bounds 

of the equivalence interval. When J = 2 groups and E = .25 (see Table 31 ), the probability 

of declaring equivalence for the equivalence-based procedures was zero in the larger 

sample size conditions. When J = 2 and E = .50 (see Table 32), the probability of 

declaring equivalence for the equivalence procedures was also zero in the largest sample 

size conditions. 

For J = 4 and E = .25, the probability of declaring equivalence when there was a 

6: I variance ratio, as desired, was very low and was zero in the highest sample size 

conditions (see Table 33). For J= 4 and E = .50, the probability of declaring equivalence 

was also low at small sample sizes and was zero in the larger sample size conditions. 

Positively Skewed Distributions (1.,2, 3 df). 

Empirical Type I error rates. For the equivalence tests when J = 2 and E = .25, 

both the Levene-Wellek using the median and Levene-Wellek-Welch using the median 

maintained the Type I error rates within the bound of .025 to .075. However, the mean­

based versions of these procedures had Type I error rates that were too liberal at the 

largest sample sizes for equal sample sizes conditions, and the positive pairing 

conditions. For the negative pairing conditions, the Levene-Wellek using the mean was 



the only procedure to have inaccurate Type I error rates, exceeding the nominal level 

(i.e., too liberal) at the larger sample sizes (see Table 35). 
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When J= 2 and E = .50, the Type I error rates for all of the equivalence 

procedures were accurate when sample sizes were equal. When unequal sample sizes 

were positively paired with the variances, the Levene-Wellek using the mean and the 

Levene-Wellek-Welch using the mean had Type I error rates that were too liberal at n = 

50. When variances were negatively paired with unequal sample sizes, the Levene­

Wellek using the mean had Type I error rates that were too liberal in some conditions, 

and the Levene-Wellek-Welch using the median had a Type I error rate that was slightly 

conservative at n = I 00. See Table 36. 

For J = 4 and E = .25, the Type I error rates were accurate across all conditions for 

the median-based Levene-Wellek and the median-based Levene-Wellek-Welch 

equivalence tests. However, the mean-based versions of these tests had inaccurate Type I 

error rates at the smallest sample size condition, ii= I 0, when sample sizes were equal or 

positively paired. See Table 3 7. 

For J= 4 and E = .50, all of the equivalence procedures, once again, maintained 

accurate Type I error rates when variances were negatively paired with unequal sample 

sizes. However, when variances were positively paired with the largest unequal sample 

size, ii= I 00, only the Levene-Wellek-Welch using the median had an accurate Type I 

error rate. Additionally, the mean-based Levene-Wellek-Welch test had a Type I error 

rate that was too conservative when ii = I 0 and positively paired with the variances. 



Finally, the Levene-Wellek-Welch using the mean had a Type I error rate too liberal in 

the largest equal sample size condition. See Table 38. 
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Power. When variances were exactly equal, this was a power condition for the 

equivalence-based procedures because the combined difference in the variances was less 

than the equivalence interval. For J = 2 and E = .25, power was approximately 60% at the 

largest sample size (see Table 39). Thus, power for these procedures was not affected by 

the positive skewness of the group distributions. When J= 4 and E = .25 (see Table 40), 

power was 40% to 41 % for the median-based equivalence procedures and 25% to 26% 

for the mean-based counterparts in the largest sample size conditions. For J = 2 and £ = 

.50, the pattern was similar (and nearly identical to the results of our normally distributed 

groups) and reached over 99% power in the largest sample size condition (see Table 41). 

For J= 4 and E = 50 (see Table 42), power approached 99% for the median based­

procedures when variances were exactly equal. However, for the mean-based procedures, 

power was slightly lower, at approximately 95%. 

As evaluated with normally distributed groups, with a 1.3: I variance ratio and E = 

.25, the test statistic, '1'2 was less than E2
; therefore, the combined difference in the 

variances was less than the equivalence interval. Thus, this condition evaluated power for 

the equivalence procedures (i.e., probability of declaring equivalence when the variances 

were considered equivalent). When J = 2, power for the equivalence procedures was low 

at the small sample sizes, but increased as sample sizes increased, ranging from 37% to 

45% in the largest sample size conditions (see Table 43). For J= 4 (see Table 44), the 



same pattern of results was observed, with power ranging between 19% and 34% in the 

largest sample size conditions. 
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For a 2: 1 variance ratio and E = .50, the combined difference in the variances was 

less than the equivalence interval; thus, this condition also assessed power for the four 

equivalence procedures. When J = 2 and sample sizes were equal, the mean-based 

procedures had comparable power rates, reaching 68% at the largest sample size 

condition. The median-based procedures had higher power than their mean-based 

counterparts, reaching almost 85% in the largest sample size condition. When sample 

sizes were unequal and positively paired with the variances, again, the mean-based 

procedures had lower power than the median-based procedures. However, the Levene­

Wellek versions had slightly higher power than the Welch-adjusted versions. Conversely, 

when unequal sample sizes were negatively paired with the variances, the Welch-adjusted 

procedures had a power advantage, and the Levene-Wellek-Welch using the median had 

the highest power at approximately 89%. See Table 45. When J= 4, a similar pattern of 

results was obtained. When sample sizes were equal, the median-based procedures had 

the highest power at all sample sizes, reaching between 73% and 75% in the largest 

sample size condition. This power advantage for the median-based tests was also 

observed when unequal sample sizes were positively paired with variances (71 % to 82% 

at ii = 100), and when unequal sample sizes were negatively paired with variances (71 % 

to 84% at ii= I 00). See Table 46. 

False declarations of equivalence. When the variance ratio was 6: 1, the 

combined difference in the variances was greater than the equivalence interval so that \j/2 
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> E2
• Thus, any rejections of the null hypothesis were errors for this condition. As seen in 

Table 47 and 48 for E = .25, there were no false declarations of equivalence for the 

equivalence procedures in the largest sample size conditions. Additionally, the error rates 

for the smaller sample size conditions never exceeded the empirical Type I error rates 

reported previously in this study. This result was obtained for both J= 2 and J= 4. When 

E = .50, the error rates were fairly low when sample sizes were equal, or unequal sample 

sizes were positively paired with variance, and lowest when J = 4. The error rates were 

slightly higher for the negative pairing conditions, although they remained close to the 

empirical Type I error rates reported previously in this study. In the largest sample sizes 

conditions, the error rates across all conditions were at or nearly zero (see Tables 49 and 

50). 

Summary of Equivalence Procedures' Results 

Give the scope of the conditions covered in the current study, a summary of the 

empirical Type I error rates for the equivalence procedures is given in Table 51, and a 

summary of the power conditions is in Table 52. The new Levene-Wellek procedure 

based on the absolute deviations from the mean was the poorest performing procedure in 

terms of Type I error rates. The proposed Levene-Wellek-Welch test based on the 

absolute deviations from the median was the best performing procedure in terms of Type 

I error rates. With regard to power, when the distributions of the groups were normal, all 

four of the procedures had comparable power rates. When the distributions were 

positively skewed, the procedures based on the absolute deviations from the median had a 

power advantage, and the Levene-Wellek-Welch based on the absolute deviations from 
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the median had a slight power advantage over the non-Welch counterpart. These two 

procedures (the Levene-Wellek using the median and the Levene-Wellek-Welch using 

the median) had comparable power rates for the equal sample size conditions, but the 

median-based Levene-Wellek-Welch test had better power rates when unequal variances 

were positively paired or negatively paired with unequal sample sizes. It is also important 

to note that the Levene-Wellek using the median had more instances of inaccurate Type I 

error rates, which makes the corresponding power conditions less reliable2
• Therefore, the 

general conclusion from the current study is that the new Levene-Wellek-Welch 

procedure based on the absolute deviations from the median was the best performing test 

statistic for assessing homogeneity of variances across the conditions tested. An applied 

exam pie demonstrating use of th is procedure is presented next. 

Applied Example 

This section presents a demonstration of how to use the best-performing 

equivalence-based homogeneity of variance test (in terms of power and Type I error rate) 

using a substantive example from psychological research and contrasts these results to the 

performance of the original Levene median-based test using the same data. This 

comparison achieves two goals: 1) to demonstrate the use of the new equivalence-based 

homogeneity of variance procedure; and 2) to further highlight the fundamental flaws of 

the original Levene-type difference-based tests for homogeneity of variances. 

2 As noted previously, iitalicized values in the tables indicate inaccurate Type I error rates and 
corresponding inaccurate power rates. 
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Data were taken from Arpin-Cribbie, Irvine, and Ritvo (2011 ). Participants were 

randomly assigned to one of three groups: no treatment, general stress management, or 

cognitive behavioural therapy (CBT). Participants were measured on various outcomes at 

pre-test and again following the intervention 11 weeks later (posttest). The overall sample 

size was 83. Of interest was ensuring that the three randomly assigned groups did not 

differ on baseline measures in terms of central tendency, but also to ensure that the 

dispersion of scores within each group was comparable between groups. The original 

study looked at equivalence of the groups on all pre-test measures, but the current 

example just tests for the equivalence of variances on the baseline measure of the 

Perfectionism Cognitions Inventory (PCI; Flett et al., 1998) for the purpose of 

demonstration. Descriptive statistics for the three groups on this measure are in Table 53. 

The variances for the stress management group and the no treatment group were similar, 

but the CBT group variance was more than two times larger than the Stress Management 

group. A visual depiction of the spread of the scores for each group is in Figure 2 and 

shows that the spread of scores on the PCI measure was greater in the CBT group than in 

the stress management group. 

The original Levene test indicated that there were no statistically significant 

differences among the group variances, F = 2.50, p = .09. The Levene test using the 

median (i.e., the Brown-Forsythe modification of the Levene test) also indicated that 

there were no statistically significant differences in group variances, F = 2.10, p = .13. 

Next, the newly developed median-based Levene-Wellek-Welch equivalence test was 

used, setting an equivalence interval such that approximately 20% difference in the 
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variances was considered trivial (i.e., E = .50). This equivalence test found that the 

variances were not significantly equivalent ('Jl2*= 0.16) > ('Jl2* critical = .09). Thus, the 

difference-based tests found that the group variances were not different, but the 

equivalence test indicated that the group variances were not equivalent. The reason this 

occurred was discussed in the introduction: Because the sample sizes of the groups were 

relatively small, power to detect even non-trivial differences in the variances was 

reduced. Consequently, the difference-based procedures declared non-trivial differences 

between the group variances equivalent, whereas the equivalence test found that the 

difference in these group variances exceeded the pre-specified equivalence limit. In other 

words, if a researcher were to use the traditional difference-based procedure like the 

Levene test to evaluate the equality of the group variances, they would come to the wrong 

conclusion in this situation. Using the new equivalence-based procedure ensures that 

researchers who are evaluating variance equality have a valid test for assessing this 

problem, and will, therefore, reach accurate conclusions regarding the equality of their 

group variances. 

Discussion 

Results of the simulation study demonstrated the backward nature of the 

traditional difference-based procedure for assessing equality of group variances. 

Specifically, power for detecting equivalence was in the wrong direction such that 

increased sample sizes resulted in decreased power for detecting equivalence of the 

variances. Additionally, the simulation results helped demonstrate that the point-null 

hypothesis is impractical, which is important because small differences in the variances 
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are often inconsequential and are expected. Even though the difference-based tests often 

failed to reject the null hypothesis when there were small differences in the variances, this 

was because they were not performing correctly. As sample sizes increased, the chances 

of declaring small differences in the variances as important differences increased. 

Conversely, large and arguably important differences in the group variances were often 

declared equivalent by the difference-based tests when sample sizes were small. 

Given these problems with the traditional difference-based procedures, 

equivalence-based procedures are more appropriate if the research goal is to evaluate 

variance equality. Equivalence tests align the research hypothesis of variance equality 

with the alternate hypothesis, so that power to detect equivalence and reject the null 

hypothesis increases with sample size, as expected when using null-hypothesis testing 

procedures. Additionally, the use of an interval hypothesis, rather than a point-null 

hypothesis, allows researchers to dictate how much or little overlap in the variances 

might be important. In general, small differences in the variances are expected and 

usually are inconsequential, so a test designed to assess approximate equality is far more 

practical than tests that evaluate exact equivalence (i.e., zero difference among the group 

variances). However, no such procedures existed had been developed prior to this 

research. This study developed four procedures, combining existing procedures for 

variance equality and equivalence testing logic. 

Empirical Type I error rates for the equivalence procedures indicated the 

probability of that procedure rejecting the null hypothesis of variance heterogeneity when 

the null hypothesis was actually true. In other words, the differences in the variances 
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were at or outside the bounds of the equivalence interval. The current study found that 

when sample sizes were equal and the dependent variable was normally distributed, all of 

the new equivalence procedures maintained the Type I error rates close to the nominal 

level (i.e., within Bradley's ( 1978) liberal limits for robustness). In addition, positively 

paired unequal variances and sample sizes (i.e., largest variance paired with largest 

sample size) and negatively paired unequal variances and sample sizes (i.e., largest 

variance paired with smallest sample size) under normally distributed conditions had 

minimal effect on the Type I error rates of two versions of the Levene-Wellek-Welch 

tests (i.e., one version based on the absolute deviations from the mean and one version 

based on the absolute deviations from the median). There was a slight tendency for the 

mean-based procedures (i.e., the Levene-Wellek and the Levene-Wellek-Welch on the 

absolute deviations from the mean) to have Type I error rates that were more 

conservative than their median-based counterparts (i.e., the Levene-Wellek and the 

Levene-Wellek-Welch using the absolute deviations from the median). 

When the distribution of the dependent variable was positively skewed, in general 

the median-based equivalence procedures outperformed the mean-based versions of the 

tests in terms of Type I error rates. This finding was expected, as it is well-known that the 

median is a more accurate measure of central tendency than the mean for non-normally 

distributed data. 

Power for the equivalence procedures indicated the probability of rejecting the 

null hypothesis of variance heterogeneity when the null hypothesis was false in the 

population. As expected, power for all of the equivalence procedures was higher when 
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the equivalence limit was larger (i.e., power was higher when E = .50 than when E = .25), 

and power rates for all procedures increased as group sample sizes increased. In addition, 

power for all procedures wesa generally higher when J= 2 versus J= 4. Unequal sample 

sizes and positive or negative pairings of the sam pie sizes and unequal variances had little 

effect on power rates compared to the equal sample size conditions. 

Regarding the power rates of specific procedures, the two median-based 

procedures outperformed both of the mean-based equivalence procedures in most 

conditions. The Levene-Wellek-Welch using the median had a power advantage when 

sample sizes were unequal, but was comparable to, or outperformed by the Levene­

Wellek using the median when sample sizes were equal. Finally, in some conditions the 

Levene-Wellek using the median was outperformed by the Levene-Wellek-Welch using 

the mean in terms of power rates in normally distributed conditions. 

Based on the Type I error rates and power results, the median-based Levene­

Wellek-Welch equi_valence test was the most robust procedure across the conditions 

tested, with consistently higher power over the other procedures. Therefore, it is 

recommended to researchers who wish to assess equality of group variances. 

Limitations 

Although this study attempted to be as comprehensive as possible, there are many 

other conditions that could be tested to further evaluate the new equality of variances 

equivalence procedures. It is difficult to test every data scenario a researcher might 

encounter. However, the results supported the objectives of this study, in that the 

fundamental flaws of traditional difference-based tests were revealed, and the newly 



developed equivalence-based procedures were subjected to various data conditions to 

evaluate their robustness. In addition, the conditions selected for this study represent 

common data analytic conditions in psychology, and the pattern of results should 

generalize across other data scenarios. 
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A broader limitation of the current research concerns the ease of implementation 

of the recommended equivalence procedure. Typically, modern robust statistical 

procedures are not readily available at the time of development in the popular statistical 

software programs, such as SPSS and SAS. However, the open-source software program, 

R, allows researchers to implement their own user-generated functions. Thus, to address 

this limitation, a function for the Levene-Wellek-Welch procedure based on the absolute 

deviations from the median was developed for R to facilitate the use of this procedure, 

and can be found in Appendix A. 

Future Directions 

Future simulation research should expand on the data conditions tested in this 

study to further evaluate the newly developed procedures. For example, different 

distribution shapes, more group sizes, and different variance conditions and sample size 

to variance combinations should be evaluated. In addition, evaluating a trimmed means or 

boostrapped version of the Levene-Wellek-Welch equivalence test could be a useful 

extension of this research. 

More broadly, future research should include discussions regarding the 

importance of examining the variances associated with one's data and the implications of 

homogeneity or heterogeneity of group variances. For example, Bryk and Raudenbush 
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( 1988) suggest that heterogeneity within groups can indicate the presence of an 

interaction between person characteristics and group membership. Alternatively, 

homogeneity of group variances in the presence of mean differences might indicate that, 

even though the groups may represent different populations, they do share similarities in 

composition that might be interesting to explore. However, discussions regarding 

variance homogeneity or heterogeneity from a theoretical perspective are not as popular 

in psychology as other disciplines. For example, Sagrestano, Heavey, and Christensen 

( 1998) argue that different perspectives in social psychology tend to focus on different 

aspects of variability. An individual differences approach focuses on between-group 

variability while neglecting within-group variability, whereas a social structural approach 

focuses on within-group variability but may neglect between-group differences. Future 

research might be focused on unifying these approaches, such that comparing the within­

group variability between groups becomes an important research consideration, thus, 

methodological support for these research goals will be needed. 

Finally, the equivalence-based tests for homogeneity of variances can be 

expanded to test the equivalence of variances among groups in more complex designs. 

For instance, instead of using nested chi-square procedures to evaluate the equivalence of 

the variance parameters across multiple groups in structural equation models or latent 

growth curve models, one could use equivalence-based procedures. 

Conclusions 

This study provided evidence to researchers regarding the problems with 

assessing equality of variances with difference-based tests. Most notably, difference-
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based tests assess equality of variances from the wrong perspective, encouraging 

researchers to "accept" the null hypothesis. However, null-hypothesis testing is not meant 

to be used in this way, and this misuse results in power for detecting equivalence to 

decrease as sample sizes increase. In addition, large differences in the variances are often 

declared equivalent when group sample sizes are small. Previous research in the 

equivalence testing literature recommends that researchers should not use a test 

developed to evaluate differences when the primary research question deals with 

equivalence. Thus, four novel equivalence procedures to assess equality of variances 

were proposed. Of these procedures, the Levene-Wellek-Welch equivalence of variances 

test based on the absolute deviations from the median was the best-performing test 

statistic in terms of accurate Type I error rates and highest power for detecting 

equivalence across the conditions evaluated. Therefore, researchers should evaluate 

hypotheses of equivalent variances using this median-based Levene-Wellek-Welch 

equivalence test. 
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Table 1. 

Distribution shapes and samples sizes for the simulation study 

/.., n1 (J=2) n1 (J=4) 

Normal 10, 10 10,10,10,10 

x2 (3 df) 5,15 5,8,12,15 

15,5 15,12,8,5 

25,25 25,25,25,25 

18,32 18,22,28,32 

32,18 32,28,22, 18 

50,50 50,50,50,50 

25,75 25,40,60,75 

75,25 75,60,40,25 

100, 100 100,100,100,100 

80,120 50,80, 120, 150 

120,80 150, 120,80,50 



Table 2. 

Equivalence intervals and population variances used in the simulation study. 

EI 

.25 

.50 

.25 

.50 

(j (J= 2) 

Normal Distribution 

I, l.72I 

I, I 

I, 6 

I, 1.3 

I, 3.1 

I, I 

I, 6 

I, 2 

x Distribution (3 df) 

I, 1.89 

I, I 

I, 6 

I, I .3 

I, 3.7 

I, I 

I, 6 

1, 2 

cr (J= 4) 

I, I .224, I .448, I .672 

I, I, I, I 

I, 3, 4, 6 

I, I. I, 1.2, 1.3 

I, I .642, 2.284, 2.926 

I, I, I, I 

I,3,4,6 

I, 1.33, 1.66, 2 

I, 1.28, 1.56, 1.84 

I,I,I,I 

I, 3, 4, 6 

I, I. I, 1.2, 1.3 

I, 1.85, 2.70, 3.55 

l,I,I,l 

I, 3, 4, 6 

I, 1.33, 1.66, 2 
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Table 3. 

Probability of declaring equivalence (1-a) for difference-based procedures; Normal 

distribution; J = 2; a/ = 1, 1 

nj Lev mean Lev mdn LevWelch mean LevWelch mdn 

Equal Sample Sizes 

10, 10 .9398 .9646 .9444 .9685 

25,25 .9246 .9583 .9432 .9589 

50,50 .9452 .9509 .9452 .9511 

100, 100 .9489 .9508 .9489 .9508 

Unequal Sample Sizes - Positive Pairings 

5, 15 .9404 .9770 .8881 .9348 

18, 32 .9444 .9576 .9412 .9536 

25, 75 .9466 .9532 .9375 .9474 

80, 120 .9522 .9557 .9518 .9544 

Unequal Sample Sizes - Negative Pairings 

15, 5 .9449 .9812 .8920 .9364 

32, 18 .9453 .9575 .9420 .9551 

75,25 .9512 .9588 .9436 .9517 

120,80 .9495 .9526 .9491 .9522 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; LevWelch_mean = Welch-version of Levene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 4. 

Probability of declaring equivalence (1-a) for difference-based procedures; Normal 

distribution; J = 4; a/ = 1, 1, 1, 1 

ni Lev mean Lev mdn LevWelch mean LevWelch mdn 

Equal Sample Sizes 

10, IO, 10, 10 .9326 .9666 .9263 .9580 

25,25,25,25 .9437 .9641 .9375 .9583 

50,50,50,50 .9473 .9574 .9449 .9557 

100, 100, 100, 100 .9440 .9493 .9427 .9469 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .9360 .9736 .8876 .9453 

18,22,28,32 .9448 .9615 .9371 .9551 

25,40,60, 75 .9450 .9559 .9381 .9491 

50, 80, 120, 150 .9488 .9527 .9433 .9480 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .9353 .9741 .8844 .9393 

32,28,22, 18 .9473 .9574 .9449 .9557 

75,60,40,25 .9477 .9581 .9344 .9477 

150, 120, 80, 50 .9490 .9546 .9443 .9500 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; LevWelch_mean =Welch-version of Levene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 5. 

Probability of declaring equivalence for difference-based procedures; Normal 

distribution; J = 2; a/ = 1, 1.3 

ni Lev mean Lev mdn LevWelch mean LevWelch mdn 

Equal Sample Sizes 

10, 10 .9282 .9564 .9326 .9595 

25,25 .9030 .9250 .9035 .9262 

50,50 .8622 .8764 .8626 .8766 

100, 100 .7778 .7876 .7779 .7877 

Unequal Sample Sizes - Positive Pairings 

5, 15 .9403 .9730 .8520 .9010 

18, 32 .9116 .9262 .8844 .9011 

25, 75 .8975 .9020 .8397 .8504 

80, 120 .7844 .7898 .7635 .7694 

Unequal Sample Sizes - Negative Pairings 

15, 5 .9199 .9723 .9114 .9548 

32, 18 .9078 .9292 .9308 .9524 

75,25 .8751 .8995 .9175 .9419 

120,80 .7708 .7826 .7908 .8030 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version of Levene's test 

using median; LevWelch_mean =Welch-version of Levene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 6. 

Probability of declaring equivalence for difference-based procedures; Normal 

distribution; J = 4; a/ = 1, 1.1, 1.2, 1.3 

ni Lev mean Lev mdn LevWelch mean LevWelch_mdn 

Equal Sample Sizes 

10, 10, 10, 10 .9249 .9659 .9195 .9591 

25,25,25,25 .9173 .9438 .9122 .9387 

50,50,50,50 .8912 .9060 .8899 .9053 

100, 100, 100, 100 .8301 .8422 .8310 .8418 

Unequal Sample Sizes - Positive Pairings 

_5, 8, 12, 15 .9389 .9757 .8610 .9247 

18,22,28,32 .9263 .9458 .8944 .9202 

25,40,60, 75 .9146 .9243 .8752 .8879 

50, 80, 120, 150 .8648 .8685 .8245 .8322 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .9182 .9696 .8990 .9529 

32, 28, 22, 18 .9201 .9463 .9317 .9546 

75,60,40,25 .8966 .9204 .9228 .9436 

150, 120, 80, 50 .8511 .8660 .8862 .9009 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; Lev Welch_ mean= Welch-version of Levene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 7. 

Probability of declaring equivalence for difference-based procedures; Normal 

distribution,· J = 2; a/ = 1, 2 

ni Lev mean Lev mdn LevWelch mean LevWelch mdn 

Equal Sample Sizes 

10, 10 .8498 .9012 .8599 .9112 

25,25 .6661 .7123 .6691 .7156 

50,50 .4020 .4250 .4030 .4267 

100, 100 .1104 .1162 .1104 .1163 

Unequal Sample Sizes - Positive Pairings 

5, 15 .9068 .9469 .7309 .8051 

18,32 .7043 .7334 .6148 .6507 

25, 75 .5530 .5606 .4137 .4310 

80, 120 .1229 .1273 .1037 .1087 

Unequal Sample Sizes - Negative Pairings 

15, 5 .8474 .9435 .9188 .9792 

32, 18 .6659 .7168 .7529 .8074 

75,25 .4909 .5381 .6396 .7035 

120,80 .1211 .1290 .1448 .1546 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; LevWelch_mean =Welch-version of Levene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 8. 

Probability of declaring equivalence for difference-based procedures; Normal 

distribution; J = 4; a/ = 1, 1.33, 1.66, 2 

nj Lev mean Lev mdn LevWelch mean LevWelch mdn 

Equal Sample Sizes 

10, 10, IO, 10 .8711 .9314 .8669 .9230 

25,25,25,25 .7560 .8138 .7508 .8054 

50,50,50,50 .5236 .5581 .5131 .5509 

100, 100, 100, 100 .1939 .2064 .1824 .1958 

Unequal Sample Sizes - Positive Pairings 

5,8,12,15 .9052 .9552 .7758 .8673 

18,22,28,32 .7705 .8170 .7032 .7500 

25,40,60, 75 .6257 .6481 .5121 .5375 

50, 80, 120, 150 .3040 .3127 .2233 .2318 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .8557 .9501 .8967 .9675 

32,28,22, 18 .7384 .7976 .7920 .8515 

75,60,40,25 .5383 .5904 .6253 .6847 

150, 120, 80, 50 .2166 .2400 .2675 .2976 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; Lev Welch_ mean= Welch-version of Levene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 9. 

Probability of declaring equivalence for difference-based procedures; Normal 

distribution; J = 2; a/ = 1, 6 

ni Lev mean Lev mdn LevWelch mean LevWelch mdn 

Equal Sample Sizes 

10, 10 .4024 .5305 .4351 .5728 

25,25 .0272 .0398 .0288 .0422 

50,50 .0001 .0001 .0001 .0001 

100, 100 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Positive Pairings 

5, 15 .6690 .7832 .2750 .3756 

18,32 .0473 .0608 .0188 .0235 

25, 75 .0014 .0016 .0000 .0000 

80, 120 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Negative Pairings 

15, 5 .4393 .6569 .8164 .9952 

32, 18 .0411 .0567 .0956 .1377 

75,25 .0028 .0036 .0140 .0215 

120,80 .0000 .0000 .0000 .0000 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; LevWelch_mean =Welch-version ofLevene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 10. 

Probability of declaring equivalence for difference-based procedures; Normal 

distribution; J = 4; a/ = 1, 3, 4, 6 

ni Lev mean Lev mdn LevWelch mean LevWelch mdn 

Equal Sample Sizes 

10, 10, 10, 10 .5569 .7216 .4756 .6316 

25,25,25,25 .0788 .1165 .0372 .0555 

50,50,50,50 .0004 .0004 .0001 .0001 

100, 100, 100, 100 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .7458 .8523 .3934 .5557 

18,22,28,32 .1366 .1826 .0424 .0580 

25,40,60, 75 .0122 .0146 .0007 .0013 

50, 80, 120, 150 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Negative Pairings 

15, 12,8,5 .4622 .7015 .6286 .8537 

32, 28, 22, 18 .0576 .0870 .0475 .0710 

75,60,40,25 .0004 .0007 .0006 .0008 

150, 120, 80, 50 .0000 .0000 .0000 .0000 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; LevWelch_mean =Welch-version ofLevene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 11. 

Probability of declaring equivalence (1-o.) for difference-based procedures;/ 

distribution (3 dj); J = 2; a/ = 1, 1 

Lev mean Lev mdn Lev Welch mean Lev Welch mdn 

10, 10 

25,25 

50,50 

100, 100 

5, 15 

18,32 

25, 75 

80, 120 

15, 5 

32, 18 

75,25 

120,80 

Equal Sample Sizes 

.8726 .9536 .8821 

.8820 .9531 .8840 

.8792 .9503 .8799 

.8872 .9504 .8873 

Unequal Sample Sizes - Positive Pairings 

.8764 .9698 .8185 

.8816 .9529 .8765 

.8909 .9553 .8744 

.8892 .9517 .8899 

Unequal Sample Sizes - Negative Pairings 

.8814 .9674 .8135 

.8841 .9522 .8771 

.8946 .9579 .8731 

.8875 .9508 .8858 

.9578 

.9545 

.9510 

.9507 

.9172 

.9473 

.9348 

.9491 

.9110 

.9456 

.9344 

.9502 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; LevWelch_mean =Welch-version ofLevene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 12. 

Probability of declaring equivalence (1-a) for difference-based procedures; I 

distribution (3 dj); J = 4; a/ = 1, 1, 1, 1 

ni Lev mean Lev mdn LevWelch mean LevWelch_mdn 

Equal Sample Sizes 

10, 10, 10, 10 .8178 .9562 .8056 .9357 

25,25,25,25 .8280 .9619 .8129 .9419 

50,50,50,50 .8355 .9529 .8242 .9388 

100, 100, 100, 100 .8355 .9535 .8297 .9469 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .8123 .9637 .7580 .9111 

18,22,28,32 .8307 .9566 .8079 .9303 

25,40,60, 75 .8407 .9575 .8135 .9306 

50, 80, 120, 150 .8436 .9536 .8219 .9374 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .8204 .9612 .7637 .9129 

32, 28, 22, 18 .8395 .9567 .8157 .9354 

75,60,40,25 .8380 .9549 .8059 .9240 

150, 120,80,50 .8396 .9521 .8183 .9336 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; LevWelch_mean =Welch-version of Levene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 13. 

Probability of declaring equivalence for difference-based procedures;/ distribution (3 

dj) · J = 2 · u~ = 1 1 3 I I j I • 

nj Lev mean Lev mdn LevWelch mean LevWelch mdn 

Equal Sample Sizes 

10, 10 .8644 .9480 .8754 .9532 

25,25 .8460 .9349 .8491 .9366 

50,50 .8210 .9075 .8218 .9081 

100, 100 .7597 .8561 .7598 .8563 

Unequal Sample Sizes - Positive Pairings 

5, 15 .8929 .9717 .7774 .8830 

18, 32 .8626 .9403 .8260 .9035 

25, 75 .8545 .9329 .7754 .8556 

80, 120 .7671 .8616 .7437 .8338 

Unequal Sample Sizes - Negative Pairings 

15, 5 .8664 .9638 .8528 .9431 

32, 18 .8434 .9245 .8704 .9498 

75,25 .8252 .9084 .8599 .9463 

120,80 .7530 .8483 .7755 .8727 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; LevWelch_mean =Welch-version ofLevene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 14. 

Probability of declaring equivalence for difference-based procedures; I distribution (3 

dj); J = 4; a/ = 1, 1.1, 1.2, 1.3 

ni Lev mean Lev mdn LevWelch mean Lev Welch mdn 

Equal Sample Sizes 

10, 10, 10, 10 .8138 .9552 .8017 .9356 

25,25,25,25 .8039 .9457 .7856 .9240 

50,50,50,50 .8355 .9529 .8242 .9388 

100, 100, 100, 100 .8355 .9535 .8297 .9469 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .8266 .9646 .7299 .8943 

18,22,28,32 .8178 .9499 .7631 .9026 

25,40,60, 75 .8407 .9575 .8135 .9306 

50, 80, 120, 150 .8436 .9536 .8219 .9374 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .8026 .9581 .7812 .9278 

32,28,22, 18 .7965 .9388 .8034 .9358 

75,60,40,25 .8380 .9549 .8059 .9240 

150, 120,80,50 .8396 .9521 .8183 .9336 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; LevWelch_mean =Welch-version of Levene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 15. 

Probability of declaring equivalence for difference-based procedures; i distribution (3 

dj)' J = 2 · a'l- = 1 2 I I j I 

ni Lev mean Lev mdn LevWelch mean LevWelch mdn 

Equal Sample Sizes 

10, 10 .8030 .9090 .8175 .9205 

25,25 .6740 .8080 .6797 .8127 

50,50 .4998 .6267 .5009 .6292 

100, 100 .2476 .3345 .2480 .3349 

Unequal Sample Sizes - Positive Pairings 

5, 15 .8731 .9568 .6770 .8122 

18, 32 .7205 .8455 .6375 .7515 

25, 75 .5991 .7453 .4663 .5672 

80, 120 .2631 .3738 .2366 .3275 

Unequal Sample Sizes - Negative Pairings 

15, 5 .7930 .9342 .8704 .9712 

32, 18 .6783 .8006 .7556 .8854 

75,25 .5552 .6742 .6758 .8280 

120,80 .2516 .3426 .2779 .3896 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; LevWelch_mean =Welch-version of Levene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 16. 

Probability of declaring equivalence for difference-based procedures; x2 distribution (3 

dj); J = 4; a/ = 1, 1.33, 1.66, 2 

ni Lev mean Lev mdn LevWelch mean LevWelch mdn 

Equal Sample Sizes 

10, 10, 10, 10 .7640 .9300 .7523 .9068 

25,25,25,25 .6768 .8746 .6560 .8451 

50,50,50,50 .5210 .7394 .5067 .7105 

100, 100, 100, 100 .2860 .4673 .2750 .4464 

Unequal Sample Sizes - Positive Pairings 

5,8, 12, 15 .8044 .9516 .6437 .8359 
r' 

18,22,28,32 .7070 .8877 .6186 .7963 

25,40,60, 75 .6142 .8184 .4845 .6590 

50, 80, 120, 150 .3869 .5949 .2982 .4537 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .7253 .9336 .7932 .9492 

32, 28, 22, 18 .6560 .8567 .6940 .8761 

75,60,40,25 .5252 .7419 .6097 .8244 

150, 120,80,50 .3119 .4997 .3695 .5852 

Note: Lev _mean= Levene's original mean-based test; Lev _mdn =Brown-Forsythe version of Levene's test 

using median; LevWelch_mean =Welch-version of Levene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 17. 

Probability of declaring equivalence for difference-based procedures; x2 distribution (3 

dj) . J = 2. (J~ = 1 6 
I I } I 

ni Lev mean Lev mdn LevWelch mean LevWelch mdn 

Equal Sample Sizes 

10, 10 .4672 .6840 .4982 .7190 

25,25 .1093 .1938 .1125 .2019 

50, 50 .0051 .0107 .0052 .0109 

100, 100 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Positive Pairings 

5, 15 .6877 .8774 .3307 .5036 

18,32 .1446 .2644 .0916 .1473 

25, 75 .0302 .0622 .0114 .0190 

80, 120 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Negative Pairings 

15, 5 .4874 .7259 .8154 .9909 

32, 18 .1160 .1856 .1961 .3599 

75,25 .0234 .0374 .0640 .1383 

120,80 .0000 .0000 .0000 .0000 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; LevWelch_mean =Welch-version ofLevene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 18. 

Probability of declaring equivalence for difference-based procedures; x2 distribution (3 

dj); J = 4; a/ = 1, 3, 4, 6 

ni Lev mean Lev mdn LevWelch mean LevWelch mdn 

Equal Sample Sizes 

10, 10, 10, 10 .5150 .8037 .4544 .7129 

25,25,25,25 .1582 .3780 .1098 .2441 

50,50,50,50 .0119 .0442 .0075 .0218 

100, 100, 100, 100 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .6825 .9047 .3623 .6049 

18,22,28,32 .2387 .4988 .1203 .2430 

25,40,60, 75 .0671 .1834 .0244 .0518 

50, 80, 120, 150 .0007 .0041 .0001 .0007 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .4431 .7770 .6080 .8863 

32, 28, 22, 18 .1257 .3168 .1302 .2848 

75,60,40,25 .0085 .0263 .0099 .0305 

150, 120, 80, 50 .0000 .0001 .0000 .0001 

Note: Lev_mean = Levene's original mean-based test; Lev_mdn =Brown-Forsythe version ofLevene's test 

using median; LevWelch_mean =Welch-version of Levene's original mean-based test; LevWelch_mdn = 

Welch version of the Levene test based on median 
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Table 19. 

Type I error rates/or equivalence procedures; Normal distribution; J = 2; E ~ .25; 

a/ = 1, 1.721 (t/; 2 = e2
) 

ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10 .0475 .0551 .0475 .0551 

25,25 .0531 .0557 .0531 .0557 

50,50 .0485 .0509 .0485 .0509 

100, 100 .0516 .0521 .0516 .0521 

Unequal Sample Sizes - Positive Pairings 

5, 15 .0387 .0431 .0402 .0518 

18,32 .0450 .0466 .0458 .0478 

25, 75 .0565 .0522 .0497 .0484 

80, 120 .0511 .0511 .0518 .0531 

Unequal Sample Sizes - Negative Pairings 

15, 5 .0463 .0585 .0483 .0687 

32, 18 .0556 .0603 .0533 .0590 

75,25 .0762 .0847 .0551 .0617 

120,80 .0505 .0527 .0437 .0464 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 20. 

Type I error rates for equivalence procedures; Normal distribution; J = 2; E ~ .SO; 

a/ = 1, 3.1 (t/J 2 = E2
) 

ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, IO .0450 .0531 .0450 .0531 

25,25 .0423 .0467 .0423 .0467 

50,50 .0376 .0434 .0375 .0431 

100, 100 .0358 .0423 .0357 .0420 

Unequal Sample Sizes - Positive Pairings 

5, 15 .0394 .0390 .0409 .0459 

18,32 .0404 .0424 .0439 .0477 

25, 75 .0543 .0552 .0463 .0495 

80, 120 .0444 .0488 .0405 .0440 

Unequal Sample Sizes - Negative Pairings 

15, 5 .0686 .0886 .0485 .0736 

32, 18 .0612 .0720 .0445 .0527 

75,25 .0628 .0759 .0346 .0443 

120,80 .0306 .0349 .0304 .0350 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 21. 

Type I error rates for equivalence procedures; Normal distribution; J = 4; E ~ .25; 

a/ = 1, 1.224, 1.448, 1.672 (t/J 2 = e2
) 

. ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10, 10, 10 .0429 .0606 .0437 .0611 

25,25,25,25 .0466 .0571 .0503 .0601 

50,50,50,50 .0461 .0497 .0479 .0525 

100, 100, 100, 100 .0490 .0520 .0523 .0547 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0386 .0503 .0378 .0535 

18,22,28,32 .0463 .0517 .0449 .0513 

25,40,60, 75 .0524 .0551 .0455 .0488 

50, 80, 120, 150 .0624 .0623 .0476 .0490 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0403 .0629 .0443 .0749 

32, 28, 22, 18 .0483 .0575 .0516 .0620 

75,60,40,25 .0478 .0591 .0503 .0615 

150, 120,80,50 .0558 .0605 .0554 .0605 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 22. 

Type I error rates for equivalence procedures; Normal distribution; J = 4; e ~ .SO; 

o/ = 1, 1.642, 2.284, 2.926 (t/J 2 = e2
) 

nj LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10, 10, 10 .0421 .0590 .0495 .0702 

25,25,25,25 .0407 .0511 .0525 .0675 

50,50,50,50 .0381 .0456 .0536 .0627 

100, 100, 100, 100 .0394 .0441 .0533 .0608 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0434 .0515 .0388 .0518 

18,22,28,32 .0448 .0514 .0493 .0541 

25,40,60, 75 .0622 .0641 .0492 .0521 

50, 80, 120, 150 .0824 .0869 .0488 .0523 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0445 .0738 .0511 .1014 

32,28,22, 18 .0409 .0507 .0559 .0736 

75,60,40,25 .0350 .0448 .0536 .0695 

150, 120,80,50 .0259 .0324 .0510 .0610 

Note: L W _mean = Levene-Wellek test based on the mean; L W _median = Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 23. 

Probability of declaring equivalence (power) for equivalence procedrues; Normal 

distribution; J = 2; E ~ .25; a/ = 1, 1 (t/J2 < E2) 

ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10 .0661 .0719 .0661 .0720 

25,25 .1048 .1118 .1048 .1118 

50,50 .2254 .2308 .2254 .2308 

100, 100 .5938 .6010 .5938 .6009 

Unequal Sample Sizes - Positive Pairings 

5, 15 .0512 .0622 .0569 .0780 

18,32 .1111 .1163 .1152 .1224 

25, 75 .1923 .1952 .2207 .2302 

80, 120 .5970 .6060 .6047 .6142 

Unequal Sample Sizes - Negative Pairings 

15, 5 .0551 .0623 .0614 .0785 

32, 18 .1049 .1110 .1099 .1158 

75,25 .1937 .1989 .2203 .2292 

120,80 .5985 .6047 .6068 .6141 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 24. 

Probability of declaring equivalence (power) for equivalence procedures; Normal 

distribution; J = 4; e ~ .25; a/ = 1, 1, 1, 1 (t/1 2 < e2) 

ni LW mean LW median LWW mean LWW_median 

Equal Sample Sizes 

10, 10, IO, IO .0553 .0765 .0544 .0750 

25,25,25,25 .0935 .1094 .0935 .1103 

50,50,50,50 .1776 .1874 .1758 .1868 

100, 100, 100, 100 .4188 .4309 .4181 .4299 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0500 .0659 .0537 .0826 

18,22,28,32 .0893 .1024 .0916 .1068 

25,40,60, 75 .1583 .1705 .1693 .1847 

50, 80, 120, 150 .3973 .4080 .4204 .4329 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0447 .0671 .0484 .0795 

32, 28, 22, 18 .0908 .1057 .0930 .1075 

75,60,40,25 .1633 .1740 .1736 .1887 

150, 120, 80,50 .4013 .4153 .4214 .4366 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 



70 

Table 25. 

Probability of declaring equivalence (power) for equivalence procedures; Normal 

distribution; J = 2; E ~ .SO; a/ = 1, 1 (t/J2 < E2) 

ni LW mean LW median LWW mean LWW_median 

Equal Sample Sizes 

10, 10 .1571 .1767 .1575 .1767 

25,25 .5936 .6241 .5936 .6240 

50,50 .9369 .9447 .9368 .9446 

100, 100 .9990 .9992 .9990 .9992 

Unequal Sample Sizes - Positive Pairings 

5, 15 .1250 .1498 .1413 .1893 

18,32 .5739 .5977 .5880 .6161 

25, 75 .8901 .8987 .9177 .9284 

80, 120 .9991 .9992 .9991 .9994 

Unequal Sample Sizes - Negative Pairings 

15, 5 .1322 .1518 .1498 .1948 

32, 18 .5625 .5894 .5773 .6064 

75,25 .8880 .8967 .9216 .9330 

120,80 .9986 .9988 .9988 .9989 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 26. 

Probability of declaring equivalence (power) for equivalence procedures; Normal 

distribution; J = 4; E ~ .SO; a/ = 1, 1, 1, 1 (t/J 2 < c2
) 

nj LW mean LW median LWW mean LWW_median 

Equal Sample Sizes 

10, 10, 10, 10 .1323 .1762 .1319 .1776 

25,25,25,25 .3978 .4442 .3928 .4387 

50,50,50,50 .8174 .8362 .8098 .8314 

100, 100, 100, 100 .9925 .9937 .9900 .9914 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .1035 .1501 .1075 .1729 

18,22,28,32 .3946 .4379 .3910 .4404 

25,40,60, 75 .7986 .8199 .8036 .8273 

50, 80, 120, 150 .9908 .9919 .9898 .9909 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .1095 .1554 .1131 .1761 

32,28,22, 18 .3905 .4377 .3906 .4375 

75,60,40,25 .7924 .8159 .7953 .8196 

150, 120,80,50 .9904 .9921 .9897 .9908 

Note: L W _mean = Levene-W el I ek test based on the mean; L W _median = Levene-W el lek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 27. 

Probability of declaring equivalence (power) for equivalence procedures; Normal 

distribution; J = 2, E ~ .25; a/ = 1, 1.3 (t/J 2 < t:2
) 

ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10 .0594 .0675 .0594 .0675 

25,25 .0889 .0956 .0889 .0957 

50,50 .1537 .1556 .1537 .1556 

100, 100 .3412 .3466 .3412 .3466 

Unequal Sample Sizes - Positive Pairings 

5, 15 .0480 .0528 .0542 .0665 

18,32 .0865 .0897 .0893 .0921 

25, 75 .1453 .1449 .1625 .1640 

80, 120 .3389 .3423 .3395 .3425 

Unequal Sample Sizes - Negative Pairings 

15, 5 .0489 .0636 .0571 .0828 

32, 18 .0910 .0972 .0969 .1030 

75,25 .1554 .1641 .1840 .1986 

120,80 .3403 .3488 .3543 .3635 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 28. 

Probability of declaring equivalence (power) for equivalence procedures; Normal 

distribution; J = 4; E ~ .25; a/ = 1, 1.1, 1.2, 1.3 (t/J2 < e2
) 

ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10, 10, 10 .0528 .0765 .0544 .0750 

25,25,25,25 .0935 .1094 .0935 .1103 

50,50,50,50 .1776 .1874 .1758 .1868 

100, 100, 100, 100 .4188 .4309 .4181 .4299 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0500 .0659 .0537 .0826 

18,22,28,32 .0893 .1024 .0916 .1068 

25,40,60, 75 .1583 .1705 .1693 .1847 

50, 80, 120, 150 .3973 .4080 .4204 .4329 

Unequal Sample Sizes - Negative Pairings 

15, 12,8,5 .0447 .0671 .0484 .0795 

32, 28, 22, 18 .0908 .1057 .0930 .1075 

75,60,40,25 .1633 .1740 .1736 .1887 

150, 120,80,50 .4013 .4153 .4214 .4366 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek-

Welch test based on the median 
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Table 29. 

Probability of declaring equivalence (power) for equivalence procedures; Normal 

distribution; J = 2; E ~ .SO; o/ = 1, 2 (l/J 2 < E2
) 

nj LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10 .1011 .1137 .1014 .1138 

25,25 .2222 .2409 .2222 .2409 

50,50 .3607 .3835 .3604 .3831 

100, 100 .5709 .5900 .5696 .5890 

Unequal Sample Sizes - Positive Pairings 

5, 15 .0823 .0846 .0875 .1018 

18, 32 .2156 .2218 .2084 .2157 

25, 75 .3848 .3891 .3683 .3837 

80, 120 .6059 .6218 .5410 .5574 

Unequal Sample Sizes - Negative Pairings 

15, 5 .0985 .1295 .1159 .1710 

32, 18 .2413 .2674 .2698 .3018 

75,25 .3725 .4068 .5643 .6296 

120,80 .5291 .5518 .6426 .6673 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 30. 

Probability of declaring equivalence (power) for equivalence procedures; Normal 

distribution; J = 4; E ~ .SO; a/ = 1, 1.33, 1.66, 2 (t/J 2 < c2
) 

ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10, 10, 10 .0792 .1103 .0771 .1102 

25,25,25,25 .1644 .1929 .1644 .1912 

50,50,50,50 .2764 .3098 .2645 .2932 

100, 100, 100, 100 .4873 .5098 .4556 .4783 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0706 .0950 .0674 .1007 

18,22,28,32 .1646 .1824 .1523 .1730 

25,40,60, 75 .2984 .3098 .2713 .2875 

50, 80, 120, 150 .5436 .5514 .4917 .5053 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0715 .1160 .0845 .1508 

32, 28, 22, 18 .1523 .1826 .1696 .2057 

75,60,40,25 .2728 .3076 .3542 .4058 

150, 120,80,50 .4141 .4484 .5723 .6103 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek-

Welch test based on the median 
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Table 31. 

Probability of declaring equivalence for equivalence procedures; Normal distribution; 

J = 2; E ~ .25; a/ = 1, 6 (t/J 2 > c2
) 

ni 

10, 10 

25,25 

50,50 

100, 100 

5, 15 

18,32 

25, 75 

80, 120 

15, 5 

32, 18 

75,25 

120,80 

LW mean LW median LWW mean 

Equal Sample Sizes 

.0030 .0033 .0030 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

Unequal Sample Sizes - Positive Pairings 

.0024 .0013 .0022 

.0000 .0000 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

Unequal Sample Sizes - Negative Pairings 

.0111 .0151 .0130 

.0000 .0001 .0000 

.0000 .0000 .0000 

.0000 .0000 .0000 

LWW_median 

.0033 

.0000 

.0000 

.0000 

.0014 

.0000 

.0000 

.0000 

.0199 

.0001 

.0000 

.0000 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 32. 

Probability of declaring equivalence for equivalence procedures; Normal distribution; 

J = 2; E ~ .50; a/ = 1, 6 (t/J2 > c2
) 

ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10 .0087 .0090 .0087 .0090 

25,25 .0006 .0007 .0006 .0007 

50,50 .0002 .0003 .0002 .0003 

100, 100 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Positive Pairings 

5, 15 .0064 .0065 .0064 .0075 

18,32 .0011 .0012 .0008 .0011 

25, 75 .0002 .0004 .0001 .0001 

80, 120 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Negative Pairings 

15, 5 .0273 .0385 .0336 .0548 

32, 18 .0032 .0038 .0040 .0052 

75,25 .0017 .0022 .0076 .0117 

120,80 .0000 .0000 .0000 .0000 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 33. 

Probability of declaring equivalence for equivalence procedures; Normal distribution; 

J = 4; E ~ .25; a/ = 1, 3, 4, 6 (t/J 2 > e2
) 

ni LW mean LW median LWW mean LWW_median 

Equal Sample Sizes 

10, 10, 10, 10 .0018 .0032 .0018 .0026 

25,25,25,25 .0000 .0000 .0000 .0000 

50,50,50, 50 .0000 .0000 .0000 .0000 

100, 100, 100, 100 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0018 .0019 .0015 .0023 

18,22,28,32 .0000 .0000 .0000 .0000 

25,40,60, 75 .0000 .0000 .0000 .0000 

50, 80, 120, 150 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0018 .0040 .0024 .0059 

32, 28, 22, 18 .0001 .0000 .0001 .0000 

75,60,40,25 .0000 .0000 .0000 .0000 

150, 120,80,50 .0000 .0000 .0000 .0000 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 34. 

Probability of declaring equivalence for equivalence procedures; Normal distribution; 

J = 4; E ~ .SO; a/ = 1, 3, 4, 6 (t/J2 > E2) 

nj LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10, 10, IO .0040 .0086 .0034 .0078 

25,25,25,25 .0005 .0006 .0004 .0006 

50,50,50,50 .0001 .0001 .0000 .0000 

I 00, 100, 100, I 00 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0080 .0092 .0056 .0090 

18,22,28,32 .0014 .0016 .0006 .0007 

25,40,60, 75 .0002 .0003 .0001 .0001 

50, 80, 120, 150 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0057 .0118 .0077 .0191 

32,28,22, 18 .0003 .0005 .0004 .0006 

75,60,40,25 .0000 .0000 .0000 .0000 

150, 120, 80, 50 .0000 .0000 .0000 .0000 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 35. 

Type I error rates for equivalence procedures;/ distribution (3 dj); J = 2; E ~ .25; 

a/ = 1, 1.89 (t/J 2 = E 2
) 

ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10 .0396 .0509 .0396 .0509 

25,25 .0531 .0479 .0532 .0479 

50,50 .0645 .0456 .0645 .0456 

100, 100 .0818 .0450 .0818 .0450 

Unequal Sample Sizes - Positive Pairings 

5, 15 .0289 .0374 .0302 .0456 

18,32 .0440 .0471 .0455 .0485 

25, 75 .0619 .0459 .0609 .0475 

80, 120 .0796 .0469 .0841 .0502 

Unequal Sample Sizes - Negative Pairings 

15, 5 .0376 .0477 .0372 .0540 

32, 18 .0549 .0552 .0498 .0522 

75,25 .0801 .0644 .0535 .0509 

120,80 .0843 .0496 .0724 .0428 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; L WW_ mean = Levene-Wellek-Welch test based on the mean; L WW_ median = Levene-Wellek­

Welch test based on the median 
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Table 36. 

Type I error rates/or equivalence procedures,·/ distribution (3 dj); J = 2; E ~ .SO; 

a/ = l, 3.7 (t/J 2 = E
2

) 

ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10 .0518 .0449 .0518 .0449 

25,25 .0622 .0387 .0622 .0387 

50,50 .0566 .0297 .0564 .0297 

100, 100 .0614 .0308 .0609 .0307 

Unequal Sample Sizes - Positive Pairings 

5, 15 .0392 .0293 .0437 .0402 

18,32 .0637 .0374 .0750 .0445 

25, 75 .0859 .0441 .0859 .0520 

80, 120 .0738 .0380 .0719 .0406 

Unequal Sample Sizes - Negative Pairings 

15, 5 .0650 .0677 .0448 .0564 

32, 18 .0779 .0499 .0552 .0337 

75,25 .0934 .0673 .0486 .0258 

120,80 .0529 .0289 .0487 .0237 

Note: L W _mean = Levene-Wellek test based on the mean; L W _median = Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 37. 

Type I error rates for equivalence procedures; I distribution (3 dj); J = 4; E ~ .25; 

(Jl = 1, 1.28, 1.56,. 1.84 (t/J 2 = E 2
) 

nj LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10, 10, 10 .0222 .0433 .0228 .0431 

25,25,25,25 .0347 .0530 .0338 .0524 

50,50,50,50 .0417 .0479 .0441 .0504 

100, 100, 100, 100 .0502 .0477 .0548 .0522 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0200 .0380 .0182 .0402 

18,22,28,32 .0320 .0514 .0312 .0474 

25,40,60, 75 .0431 .0476 .0358 .0431 

50, 80, 120, 150 .0596 .0531 .0479 .0470 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0228 .0489 .0225 .0560 

32, 28, 22, 18 .0305 .0512 .0314 .0483 

75,60,40,25 .0434 .0550 .0431 .0522 

150, 120, 80, 50 .0572 .0549 .0562 .0523 

Note: L W _mean = Levene-Wellek test based on the mean; L W _median = Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 38. 

Type I error rates for equivalence procedures; I distribution (3 dj); J = 4; E ~ .SO; 

a/ = 1, 1.85, 2.70, 3.55 (t/J2 = c2
) 

n· J 
LW mean LW median LWW_mean LWW_median 

Equal Sample Sizes 

10, 10, 10, 10 .0246 .0397 .0311 .0475 

25,25,25,25 .0427 .0426 .0605 .0580 

50,50,50,50 .0442 .0343 .0698 .0548 

100, I 00, 100, 100 .0520· .0359 .0850 .0609 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0228. .0362 .0196 .0356 

18,22,28,32 .. 0454 .0442 .0519 . .0483 

25,40,60, 75 .0723 .0530 .0664 .0510 

50, 80, 120, 150 .1113 .0802 .0814 .0630 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0256 .. 0489 .0309. .0643 

32,28,22, 18 .0369 .0376 .0551 .0536 

75,60,40,25 .0401 .0340 .0678 .0610 

150, 120, 80, 50. .0330 .0223 .0716 .0514 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek-

Welch test based on the median 
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Table 39. 

Probability of declaring equivalence (power) for equivalence procedures; I distribution 

(3 dj); J = 2; E ~ .25; a/ = 1, 1 (t/J2 < e2
) 

10, 10 

25,25 

50,50 

100, 100 

5, 15 

18,32 

25, 75 

80, 120 

15, 5 

32, 18 

75,25 

120,80 

ni LW mean 

.0474 

.0806 

.1736 

.5130 

LW median 

Equal Sample Sizes 

.0666 

.1115 

.2176 

.6039 

LWW mean 

.0475 

.0807 

.1736 

.5130 

Unequal Sample Sizes - Positive Pairings 

.0382 .0553 .0411 

.0809 .0992 .0834 

.1530 .1910 .1750 

.5031 .6008 .5116 

Unequal Sample Sizes - Negative Pairings 

.0415 .0535 .0454 

.0809 .1034 .0856 

.1606 .1988 .1808 

.5026 .5978 .5100 

LWW median 

.0667 

.1117 

.2176 

.6039 

.0683 

.1038 

.2211 

.6100 

.0643 

.1061 

.2249 

.6077 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 40. 

Probability of declaring equivalence (power) for equivalence procedures; x2 distribution 

(3 dj}; J = 4; E ~ .25; a/ = 1, 1, 1, 1 (t/J2 < E2) 

nj LW mean LW median LWW mean LWW_median 

Equal Sample Sizes 

10, IO, 10, 10 .0257 .0591 .0246 .0547 

25,25,25,25 .0501 .0964 .0470 .0901 

50,50,50,50 .1069 .1848 .1045 .1791 

100, 100, 100, 100 .2644 .4170 .2610 .4085 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0217 .0548 .0232 .0599 

18,22,28,32 .0479 .0916 .0455 .0911 

25,40,60, 75 .0910 .1640 .0947 .1695 

50, 80, 120, 150 .2485 .4037 .2587 .4175 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0248 .0556 .0230 .0602 

32, 28, 22, 18 .0479 .0953 .0465 .0947 

75,60,40,25 .0947 .1702 .1007 .1776 

150, 120, 80, 50 .2486 .3955 .2538 .4105 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 



86 

Table 41. 

Probability of declaring equivalence (power) for equivalence procedures; i distribution 

(3 dj); J = 2; E ~ .SO; a/ = 1, 1 (t/J2 < t: 2
) 

10, 10 

25,25 

50,50 

100, 100 

5, 15 

18,32 

25, 75 

80, 120 

15, 5 

32, 18 

75,25 

120,80 

nj LW mean 

.1259 

.4853 

.8657 

.9911 

LW median 

Equal Sample Sizes 

.1660 

.6009 

.9377 

.9993 

LWW mean 

.1259 

.4853 

.8655 

.9910 

Unequal Sample Sizes - Positive Pairings 

.1009 .1359 .1096 

.4774 .5848 .4865 

.7965 .8914 .8336 

.9908 .9988 .9913 

Unequal Sample Sizes - Negative Pairings 

.1057 .1388 .1152 

.4696 .5733 .4809 

.8081 .8983 .8431 

.9926 .9990 .9921 

LWW median 

.1662 

.6009 

.9375 

.9993 

.1691 

.5977 

.9103 

.9987 

.1687 

.5874 

.9169 

.9990 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 42. 

Probability of declaring equivalence (power) for equivalence procedures; x2 distribution 

(3 dj); J= 4; E ~.SO; a/= 1, 1, 1, 1 (t/J2 < E2) 

ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10, 10, 10 .0608 .1334 .0599 .1277 

25,25,25,25 .2470 .4308 .2346 .4057 

50,50,50,50 .6364 .8264 .6200 .8039 

100, 100, 100, 100 .9584 .9949 .9517 .9909 

Unequal Sample Sizes - Positive Pairings 

5,8, 12, 15 .0529 .1205 .0524 .1288 

18,22,28,32 .2457 .4182 .2334 .3944 

25,40,60, 75 .6094 .8097 .6024 .7895 

50, 80, 120, 150 .9495 .9928 .9432 .9880 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0543 .1243 .0530 .1267 

32, 28, 22, 18 .2433 .4026 .2345 .3905 

75,60,40,25 .6195 .8137 .6098 .7890 

150, 120, 80, 50 .9533 .9937 .9431 .9865 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 43. 

Probability of declaring equivalence (power) for equivalence procedures;/ distribution 

(3 dj); J = 2; E ~ .25; a/ = 1, 1.3 (t/J2 < E2) 

nj LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10 .0476 .0648 .0476 .0648 

25,25 .0749 .0984 .0750 .0984 

50,50 .1540 .1825 .1540 .1825 

100, 100 .3654 .4353 .3654 .4353 

Unequal Sample Sizes - Positive Pairings 

5, 15 .0374 .0495 .0407 .0605 

18,32 .0716 .0881 .0741 .0913 

25, 75 .1305 .1560 .1455 .1805 

80, 120 .3691 .4341 .3705 .4383 

Unequal Sample Sizes - Negative Pairings 

15, 5 .0396 .0561 .0432 .0677 

32, 18 .0757 .0925 .0773 .0977 

75,25 .1403 .1722 .1584 .1997 

120,80 .3686 .4371 .3795 .4517 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; L WW_ mean = Levene-Wellek-Welch test based on the mean; L WW_ median = Levene-Wellek­

Welch test based on the median 
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Table 44. 

Probability of declaring equivalence (power) for equivalence procedures; x2 distribution 

(3 dj); J = 4; E ~ .25; a/ = 1, 1.1, 1.2, 1.3 (t/J2 < c2
) 

nj LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10, 10, 10 .0254 .0632 .0266 .0598 

25,25,25,25 .0477 .0942 .0473 .0899 

50,50,50,50 .0838 .1526 .0836 .1456 

100, 100, 100, 100 .1910 .3132 .1862 .3080 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0218 .0522 .0214 .0514 

18,22,28,32 .0445 .0855 .0434 .0842 

25,40,60, 75 .0743 .1388 .0762 .1411 

50, 80, 120, 150 .1906 .3038 .1932 .3003 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0225 .0584 .0213 .0617 

32,28,22, 18 .0434 .0845 .0435 .0861 

75,60,40,25 .0822 .1525 .0862 .1637 

150, 120, 80, 50 .1916 .3111 .2070 .3401 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek-

Welch test based on the median 
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Table 45. 

Probability of declaring equivalence (power) for equivalence procedures;/ distribution 

(3 dj); J = 2; E ~ .SO; a/ = 1, 2 (1/J 2 < E
2

) 

ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

I 0, I 0 .0961 .1232 .0963 .1233 

25,25 .2827 .3431 .2827 .3431 

50,50 .4688 .5840 .4683 .5831 

100, 100 .6830 .8462 .6819 .8445 

Unequal Sample Sizes - Positive Pairings 

5, 15 .0776 .0945 .0834 .1176 

18, 32 .2762 .3349 .2708 .3281 

25, 75 .4590 .5753 .4318 .5267 

80, 120 .7064 .8690 .6433 .8069 

Unequal Sample Sizes - Negative Pairings 

15, 5 .0980 .1357 .1065 .1626 

32, 18 .2948 .3631 .3136 .3998 

75,25 .4524 .5513 .6150 .7662 

120, 80 .6416 .8096 .7321 .8898 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 46. 

Probability of declaring equivalence (power) for equivalence procedures; I distribution 

(3 dj); J = 4; E ~ .SO; a/ = 1, 1.33, 1.66, 2 (l/J2 < e2
) 

ni LW mean LW_median LWW mean LWW median 

Equal Sample Sizes 

10, 10, 10, 10 .0467 .1082 .0458 .1017 

25,25,25,25 .1388 .2448 .1350 .2341 

50,50,50,50 .3100 .4887 .2975 .4657 

I 00, 100, 100, 100 .5558 .7512 .5185 .7397 

Unequal Sample Sizes - Positive Pairings 

5,8, 12, 15 .0402 .0884 .0361 .0863 

18,22,28,32 .1444 .2545 .1329 .2252 

25,40,60, 75 .3378 .5150 .2889 .4361 

50, 80, 120, 150 .6027 .8190 .5201 .7116 

Unequal Sample Sizes - Negative Pairings 

15,12,8,5 .0493 .1103 .0503 .1268 

32, 28, 22, 18 .1385 .2485 .1432 .2649 

75,60,40,25 .2973 .4634 .3616 .5708 

150, 120, 80, 50 .5018 .7195 .6407 .8414 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; L WW_ mean = Levene-Wellek-Welch test based on the mean; L WW_ median = Levene-Wellek-

Welch test based on the median 
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Table 47. 

Probability of declaring equivalence for equivalence procedures; I distribution (3 dj); 

J = 2; E ~ .25; a/ = 1, 6 (t/J 2 > E
2

) 

10, 10 

25,25 

50,50 

100, 100 

5, 15 

18,32 

25, 75 

80, 120 

15, 5 

32, 18 

75,25 

120,80 

LW mean LW median LWW mean 

Equal Sample Sizes 

.0116 .0115 .0117 

.0015 .0015 .0015 

.0000 .0000 .0000 

.0000 .0000 .0000 

Unequal Sample Sizes - Positive Pairings 

.0067 .0070 .0071 

.0015 .0010 .0015 

.0000 .0000 .0000 

.0000 .0000 .0000 

Unequal Sample Sizes - Negative Pairings 

.0190 .0243 .0209 

.0032 .0020 .0034 

.0009 .0007 .0010 

.0000 .0000 .0000 

LWW inedian 

.0115 

.0015 

.0000 

.0000 

.0088 

.0010 

.0000 

.0000 

.0311 

.0021 

.0008 

.0000 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 48. 

Probability of declaring equivalence for equivalence procedures;! distribution (3 dj); 

J = 4; E ~ .25; a/ = 1, 3, 4, 6 (t/J 2 > c2
) 

ni LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

10, 10, 10, 10 .0055 .0100 .0054 .0089 

25,25,25,25 .0002 .0005 .0002 .0003 

50,50,50,50 .0000 .0000 .0000 .0000 

100, 100, 100, 100 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0053 .0105 .0054 .0116 

18,22,28,32 .0008 .0010 .0006 .0008 

25,40,60, 75 .0003 .0002 .0002 .0002 

50, 80, 120, 150 .0000 .0000 .0000 .0000 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0054 .0122 .0048 .0150 

32,28,22, 18 .0007 .0009 .0007 .0007 

75,60,40,25 .0000 .0000 .0000 .0000 

150, 120,80,50 .0000 .0000 .0000 .0000 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 49. 

Probability of declaring equivalence for equivalence procedures; I distribution (3 dj),· 

J = 2; E ~ .SO; a/ = 1, 6 (l/J 2 > c2
) 

ni LW mean LW_median LWW mean LWW median 

Equal Sample Sizes 

I 0, 10 .0261 .0294 .0261 .0294 

25,25 .0145 .0146 .0145 .0146 

50,50 .0048 .0082 .0048 .0081 

100, l 00 .0017 .0038 .0017 .0038 

Unequal Sample Sizes - Positive Pairings 

5, 15 .0203 .0239 .0228 .0297 

18,32 .0135 .0152 .0135 .0149 

25, 75 .0I01 .0188 .0087 .0136 

80, 120 .0021 .0108 .0011 .0047 

Unequal Sample Sizes - Negative Pairings 

15, 5 .0452 .0638 .0507 .0799 

32, 18 .0194 .0236 .0220 .0280 

75,25 .0124 .0201 .0405 .0912 

120,80 .0010 .0037 .0036 .0158 

Note: L W _mean = Levene-Wellek test based on the mean; L W _median = Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 
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Table 50. 

Probability of declaring equivalence for equivalence procedures; i distribution (3 dj}; 

J = 4; E ~ .SO; a/ = 1, 3, 4, 6 (t/J2 > E2
) 

nj LW mean LW median LWW mean LWW median 

Equal Sample Sizes 

I 0, 10, IO, 10 .0124 .0259 .0117 .0222 

25,25,25,25 .0063 .0124 .0054 .0094 

50,50,50,50 .0013 .0047 .0012 .0027 

100, 100, 100, 100 .0003 .0026 .0003 .0006 

Unequal Sample Sizes - Positive Pairings 

5, 8, 12, 15 .0117 .0243 .0107 .0227 

18,22,28,32 .0072 .0145 .0048 .0099 

25,40,60, 75 .0099 .0261 .0054 .0133 

50, 80, 120, 150 .0059 .0281 .0018 .0068 

Unequal Sample Sizes - Negative Pairings 

15, 12, 8, 5 .0138 .0281 .0149 .0394 

32, 28, 22, 18 .0047 .0102 .0051 .0103 

75,60,40,25 .0015 .0037 .0024 .0062 

150, 120, 80, 50 .0002 .0010 .0003 .0008 

Note: LW _mean= Levene-Wellek test based on the mean; LW _median= Levene-Wellek test based on the 

median; LWW _mean= Levene-Wellek-Welch test based on the mean; LWW _median= Levene-Wellek­

Welch test based on the median 



Table 51. 

Type I error rates summary: Minimum and maximum empirical Type I error rates and 

number of times the Type I error rates exceeded the bounds of.025 - .075 for the 

equivalence procedures over the 96 null conditions. 

Test 

Levene-Wei lek 
mean 

Levene-W el lek 
median 

Levene-Wellek-
Welch mean 

Levene-Wellek-
Welch median 

Minimum 
Empirical 

Type I Error 
Rate 

.0200 

.0223 

.0182 

.0237 

Maximum 
Empirical 

Type I Error 
Rate 

.1113 

.0886 

.0859 

.1014 

Number of Times 
Type I Error Rate 

Exceeded the 
Bounds of .025-.075 

12 

6 

9 

2 

96 
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Table 52. 

Power summary: Proportion of conditions (out of 192 conditions) in which a specific 

equivalence procedure had the highest power, including ties (i.e., conditions where the 

null hypothesis was false). 

Proportion Proportion Proportion 
Test had Test had Test had 

Highest Power Highest Power Highest Power Proportion 
in Equal in Positive in Positive of Ties 

Sample Size Pairing Pairing (out of the 
Conditions Conditions Conditions 192 

Test (out of 64) (out of 64) (out of64) conditions)* 

Levene-Wei lek 0% 0% 0% 0% 
mean 

Levene-Wei lek 85.9% 34.4% 10.9% 9.4% 
median 

Levene-W el lek- 0% 0% 0% 0% 
Welch mean 

Levene-Wellek- 42.2% 65.6% 90.6% 9.4% 
Welch median 

* 18 ties total out of the 192 power conditions, and 17 of those ties were in an equal sample size condition. 
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Table 53. 

Descriptive statistics for the three groups on The Perfectionism Cognitions Inventory at 

pre-test for the applied example, N = 83. 

Group 

CBT 

Stress 

No Treatment 

Mean 

66.14 

68.83 

69.75 

Median 

65 

68 

74 

Variance 

241.79 

110.79 

156.28 

N 

30 

29 

24 
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Figure 1. Histogram illustrating the shape of a chi-square distribution with 3 degrees of 

freedom. 
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Appendix A 

Equiv_vars<-function(x, group, eps, alpha=.05, na.rm=TRUE, ... ) { 

dV<-X 
gr <- as.factor(group) 
medians <- tapply(dv, gr, median) 
n <- tapply(dv, gr, length) 
resp.median <- abs(dv - medians[gr]) 
ngroup<-length(group) 
alpha<-.05 
eps<-eps 
vars<-(tapply(dv, gr, var)) 

## Equivalence test for Equivalence of variances ## 

LWW_md<-oneway.test(resp.median-gr)$statistic*((ngroup-l)/(mean(n))) 

crit_LWW_md<-((ngroup-1)/((mean(n))*qf(p=alpha, dfl=ngroup-1, 
df2=oneway.test(resp.median-gr)$parameter[2], 
ncp=(mean(n))*epsA2))) 

101 

ifelse (LWW_md <= crit_LWW_md, decis_equiv<-"The null hypothesis that 
the differences vetween the group variances falls outside the 
equivalence interval can be rejected.", decis_equiv<-"The null 
hypothesis that the differences between the group variances falls 
outside of the equivalence interval cannot be rejected") 

## summary ## 
titlel<-"Variances of the Groups" 
title2<-"Equivalence Based Equality of variances Test" 
stats_equiv<-c(eps,LWW_md,crit_LWW_md,decis_equiv) 
names(stats_equiv)<-c("Equivalence Interval", "Equivalence Test 

statistic", "critical value", "Decision") 

out<-list (titlel, vars, title2, stats_equiv) 
out 

} 
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