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Abstract 

Trans-saccadic memory, the process by which the visual system maintains the 

spatial position and features of objects across eye movements, is thought to be a 

form of visual working memory (Irwin, 1991 ). It has been shown that TMS over 

the frontal and parietal eye fields degrades trans-saccadic memory of multiple 

object features (Prime et al., 2008, 2010). We used a similar TMS protocol to 

investigate whether dorsolateral prefrontal cortex (DLPFC) is also involved in 

trans-saccadic memory. We predicted that performance would be disrupted 

similarly during either fixation or saccades. Instead, we found both task and 

hemisphere-dependent effects. During fixation, TMS over left DLPFC produced 

inconsistent effects, whereas TMS over right DLPFC reduced performance, 

consistent with its known role in working memory (Goldman-Rakic, 1987). In 

contrast, TMS over both sides of DLPFC enhanced trans-saccadic memory, 

suggesting a dis-inhibition of trans-saccadic processing. These results suggest 

that visual working memory during fixation and trans-saccadic memory may 

be supported by different, but interacting, neural circuits. 



Introduction 

Constructing a unified visual percept from temporally and spatially 

discontinuous sensory input requires the integration of information across 

successive fixations that interact with a number of dynamic cognitive processes. 

As humans typically make around three ballistic eye movements, or saccades 

per second (Rayner, 1998), perception of the visual environment is compiled 

from discrete fixations when the eyes are stationary (Matin, 1974). Yet, despite 

the disjointed manner in which visual information is obtained, the clarity of our 

perceptual experience suggests a mechanism to maintain visual stability. 

Information about objects and their spatial position must be retained and 

integrated across saccades in order to uphold visual stability, a process referred 

to here as trans-saccadic memory (Irwin, 1996). Visual information is obtained as 

the eye is directed to different points in space and an internal representation of 

objects and scenes is created. 

The aim of this thesis is to contribute to a larger body of work concerning 

the neural mechanisms of trans-saccadic memory, by specifically investigating 

the role of the dorsolateral prefrontal cortex (DLPFC) using transcranial magnetic 

stimulation (TMS). 
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1. 1 Vision and spatial perception 

The retina is often referred to as the window to the brain in both a 

figurative and literal sense, due to its suitability for scientific inquiry and as the 

point of entry for visual stimuli. A significant portion of the brain is attributed to 

processing visual information, from encoding, to maintaining and manipulating 

information for goal-directed action, and a number of cortical structures are used 

to mediate these processes. Figure 1 (page 3) illustrates the regions of the brain 

associated with visual processing. 
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parietal cortex 

frontal cortex 

isual cortex 

Figure 1. Illustration of the human brain. Visual Information from the retina 
travels along two pathways, through the LGN or the SC to the visual cortex. 
Processing after V1 through VS continues along the ventral stream which 
projects to the temporal cortex and dorsal stream, which projects to the posterior 
parietal cortex. The dorsolateral prefrontal cortex (DLPFC) is shown here as part 
of the middle frontal gyrus, of the frontal cortex. 
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The retina is a thin (150-300µm) layer of tissue that lies on the interior 

surface o·f the eye (Leibovic, 1990). Light from the surrounding environment is 

projected onto photoreceptors of the retina through the combined refractive 

potential of the cornea and lens (Leibovic, 1990). Photoreceptors, consisting of 

rods and cones, are organized such that those responsible for detailed acuity and 

colour vision are most densely distributed in the fovea (Osterberg, 1935). 

Photoreceptors connect to retinal ganglion cells, whose axons leave the eye via 

the optic nerve and project to several different brain areas. Neural pathways for 

the perception of colour and form arise from two types of retinal ganglion cells, 

parasol and midget cells (Leventhal et al., 1981 ). Midget cells have small 

dentridic fields, high spatial density and are most sensitive to detail and colour, 

while parasol cells are much larger in size, have a small spatial density, and are 

most sensitive to motion. These cells travel primarily along two pathways, the 

geniculostriate pathway that extends from the eye, to the LGN, to the visual 

cortex (Perry, Oehler, & Gowey, 1984); and the tectopulvinar pathway, extending 

from the eye to the superior colliculus, and the pulvinar and lateral nucleus of the 

thalamus, before reaching the visual cortex (Hubel, LeVay, & Wiesel, 1975). 

The visual cortex consists of the primary visual cortex (V1 - or striate 

cortex), and extra-striate areas V2, V3, V4, and VS (Felleman & Van Essen, 

1991; Belliveau et al., 1991 ), organized hierarchically. At early stages within the 

occipital cortex, perception of visual imagery is decomposed into simple visual 
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features such as edges, orientation, colour and form (Hubel & Wiesel, 1959). At 

later stages, the temporal cortex combines these features along with those 

related to binocular disparity (V2; Livingstone & Hubel, 1988), and motion (V3 

and V5; Braddick & O'Brian, 2001; Kreiter & Singer, 1996) to construct complex 

scenes. 

Visual information is transferred to higher cortical areas, along two 

complimentary streams of processing: the ventral "what" stream which projects to 

the temporal cortex for object identification, and the dorsal "where" stream which 

projects to the posterior parietal cortex for spatial analysis and motor planning 

(Ungerleider & Mishkin, 1982). It is incorrect however, to view these divergent 

streams as independent of one another. The ventral and dorsal streams have 

reciprocal connections with one another, as well as feedback or re-entrant 

connections to early visual areas (Ungerleider & Haxby, 1994). 

The roles of the ventral and dorsal streams were revised by Milner & 

Goodale (1995), who instead of emphasizing the input characteristics of visual 

information (ie. object features, or spatial location), emphasized the output 

requirements of the two systems. In this case, information processing by the 

ventral stream is primarily utilized to facilitate perception. Neurons in the 

inferiortemporal cortex (IT) of the ventral stream are remarkably tolerant to 

variations (size, shape, position) of an object's appearance on the retina 

(Logothetis & Sheinberg, 1996). It has been suggested this is due to coupling 
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with the natural experiences of the subject, that the ventral stream is able to 

leverage prior knowledge to maintain feature stability (Li & DiCarlo, 2012). 

Functional magnetic resonance imaging adaptation (fMRla) paradigms have 

been used to elucidate ventral stream representations in humans, by showing a 

decrease in neuronal responses with repeated exposure to a given stimulus 

(Grill-Spector, Kushnir, Edelman, Avidan, ltzchak, & Malach, 1999). Lateral 

occipital (area LO) an area primarily concerned with object recognition, displays 

adaptation to repeated presentations of the same shape, even when the 

viewpoint is varied or size is altered (James, Humphrey, Gati, Servos, Menon, & 

Goodale, 2002; Grill-Spektor et al., 1999). Consistent with this notion, TMS 

studies using face, body, and object discrimination tasks, found site selective 

impairments when their corresponding cortical regions were targeted (Pritcher, 

Charles, Delvin, Walsh, & Duchaine, 2009). Here, TMS to areas responsible for 

processing faces (occipital face area, OFA), bodies (extrastriate body area, 

ESB), and objects (area LO), had no negative impact on performance for 

discrimination tasks outside their preferred category. Importantly, these adjacent 

areas show strong category preferences, lending support to the notion that the 

ventral stream has functionally segregate areas to perceive characteristics of the 

visual environment. 

The dorsal stream is involved in specialized processing of the spatial 

location of objects in the visual environment relative to the observer, to calculate 
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a motor plan and facilitate action (Goodale & Milner, 1992). Neuronal activity in 

the dorsal stream has been shown to represent both sensory related, and 

movement related activity (Mountcastle et al., 1975). In the primate brain, the 

intraparietal sulcus which delineates the superior and posterior regions of the 

parietal lobe supports spatial processing for a number of different modes of 

action, including: reaching (Scherberger & Andersen, 2007), grasping (Murata et 

al., 2000), and saccadic eye movements (Pierrot-Deseilligny & Muri, 1997). In 

humans, homologous regions for reaching movements have been identified using 

fMRI , as mlPS (Culham & Kanwisher, 2001; Prado, Clavagnier, Otzenberger, 

Scheiber, Perenin, 2005), and the medial region of the PPC (Connolly et al., 

2003; Vesia, Prime, Yan, Sergio & Crawford, 2010). Similarily, positron emission 

tomography imaging (PET) and fMRI has shown activation of dorsal stream 

regions anterior intraparietal sulcus (AIP) and inferior postcentral sulcus (IPS), 

when subjects imagined themselves grasping an object or were presented with 

images of graspable objects (Grafton et al., 1996; Culham, 2003). Therefore it is 

useful in the present context to view visual spatial processing conducted by the 

dorsal stream as a collection of sub-processes involved in generating action 

(Grill-Spektor & Malach, 2004). 
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1.2 Visual working memory 

Visual working memory can be described as a set of processes that 

maintain a representation of visual information in short-term storage, to be 

utilized for recall or additional processing (Baddeley, 1986). To view working 

memory as a system that represents this ability to maintain relevant information 

on-line for subsequent behaviour is a necessary but problematic generalization. 

There has yet to be a composite definition of the processes involved in working 

memory and how they relate to and interact with visual perception (Luck & 

Hollingworth, 2008). Lending to this perplexing notion are discrepancies in the 

limits of working memory, and inconsistent accounts of the processing domains 

involved (Brady, Konkle, & Alvarez, 2011 ). 

At least two general classes of models exist in an attempt to classify 

several converging areas of research of visual working memory. One approach, 

introduced by Miller, Galanter and Pribram (1960), and later adopted by 

Baddeley and Hitch (1974), views working memory as a storage system with a 

set of specialized buffers, controlled by a central executive. A schematic 

representation of this model is shown in Figure 2 (page 11 ). This model 

exercises two central views, one theoretical and one based on evidence from 

neurophysiology. The theoretical tenet emphasizes the functional contributions of 

a multi-component system: the phonological loop for maintaining speech-based 

information and visuospatial sketchpad for visual information (Baddeley & Hitch, 
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1974). Here, the central executive is responsible for allocating processing 

capabilities to the control and regulation of information within modality specific 

buffers (Kiss, Pisio, Francois & Schopflocher, 1998). The central executive 

resembles attention, but is also a limited capacity storage site in and of itself. The 

empirical tenet is rooted in the attention-base~ contribution of the prefrontal 

cortex, revealed by activity during memory delay periods (Goldman-Rakic, 1987). 

Baddeley and Wilson (1998) identified a dysexecutive syndrome that 

accompanied frontal cortex impairment, which presumably represents the locus 

of the central executive. Critics of Baddeley's model (including Baddeley himself) 

however, have attempted to rectify the notion that the central executive exists as 

a unitary structure of the frontal cortex (Parkin, 1998; Baddeley & Wilson, 1988; 

Baddeley, 1986). Instead, the central executive may be considered a set of 

processes, which engage different cortical regions, whose function has yet to be 

explicitly defined. 

Alternatively, working memory may be viewed not as a separate 

component system, but as an emergent property or the coordinated recruitment, 

of existing neural systems involved with sensory representation and action 

related functions (Postle, 2006). Here, the maintenance of visual information is 

achieved by areas of the occipital and parietal cortex, which support visual 

perception. The prefrontal cortex is not the actual substrate for storing visual 

information, but supports the sensory representation areas using attentional 
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processes (Curtis & D'Esposito, 2003; Postle, 2006). It has proven difficult to 

discern between these two approaches, as studies designed to investigate 

working memory often rely on a memory delay to isolate memory activity. It is 

conceivable that delay period activity could be representative of either of the 

aforementioned models of visual working memory. 
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Figure 2. Working memory system, as described by Baddeley & Hitch (1974). 
The central executive is the attentional controller, part of the frontal cortex. It is 
aided by two "fluid" subsiderary systems, the visuospatial sketchpad which holds 
visual information, and the phonological loop which holds speech-based 
information. The model was revised to include areas capable of including long­
term knowledge, or "crystallized" memory representations (last row, visual 
semantics, episodic LTM and language). (Image by Zimmer, 2008). 
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1.2a Psychophysics 

Visual working memory appears to have a capacity limit of 3-4 items 

(Irwin, 1991; Luck & Vogel, 1997), but may vary with across different 

experimental paradigms, and stimuli parameters (Brady, Konkle & Alvarez, 2011; 

Prime, Tsotsos, Keith & Crawford, 2007). Much of the research aimed at defining 

the capacity of this system examines the fidelity of the memory trace and the rate 

at which it becomes inaccessible, either decaying over time, or being interfered 

with by distracting stimuli. 

The study conducted by Luck and Vogel (1997) used a change detection 

task of features and conjunctions of features, and was the first to quantitatively 

apply the capacity restriction of visual working memory to 3-4 items. On a given 

trial, participants were presented with an array of coloured squares and were 

asked to remember them. After a delay of one second, the squares reappeared, 

either being the same as before, or with one switching to a different colour. 

Participants were required to indicate whether the array was the same, or 

different than before. Subjects' performance declined steadily as the array 

increased above four objects. However, this does not indicate how well each 

item was retained; performance relied on the global representation of the items 

as a whole. To examine how individual object features are retained in visual 

working memory, Alvarez and Cavanagh (2004) manipulated the amount of 

feature information ascribed to a given stimulus. They found that there was a 
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trade-off in performance: when more information was attributed to a given object, 

the total number of objects successfully remembered was less. 

A commonly used method to study working memory capabilities is a visual 

search task, where the participant is required to search for a predefined target, 

amongst the presence of distracters (Hollingworth & Luck, 2009; Oh & Kim, 

2004). When coupled with manipulations of content in working memory, these 

tasks can provide insight into the processes involved in working memory and 

visual perception, and how closely they are related. In 2001, Woodman, Vogel 

and Luck found no detrimental effect on search ability, using a dual-task 

paradigm where participants were required to maintain zero, two, or four visual 

objects in working memory. The presence of these distracter items added a 

constant delay to visual search times irrespective of the set-size of the search 

array, indicating that working memory load did not slow the search process. 

When participants were required to remember a location in space however, 

reaction time increased as the number of items in the search array increased, 

indicating a reduction in search efficacy (Woodman & Luck, 2004). 

Another frequently used method is the delayed match-to-sample task, 

where an attribute of a given stimulus must be discriminated after a varying time 

interval. In these instances, the characteristic of a stimulus (such as size, 

contrast or orientation) may be used to test the subject's ability to remember 

specific stimulus dimensions, and provides a quantitative measure of working 
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memory capabilities by indicating the necessary threshold values for reliable 

preservation (Pasternak & Greenlee, 2005). In a series of experiments, 

Magnussen and colleagues examined the properties of visual short-term memory 

for spatial frequency (size) of simple visual patterns, by varying the interstimulus 

interval in a two-interval forced-choice paradigm (Magnussen et al., 1991 ). The 

results of the initial experiment revealed that subjects could successfully 

discriminate spatial frequencies for all interstimulus intervals tested (up to 30 

seconds). A second experiment attempted to replicate these findings after 

introducing a "memory masker" placed in the interstimulus interval, found that the 

perfect discrimination capabilities described above, could be disrupted. 

1.2b Neural mechanisms 

Further evidence for ventral and dorsal stream independence has been 

acquired through the use of visual working memory paradigms. Human 

neuroimaging studies have supported the perception for action view of the ventral 

and dorsal streams by illustrating their role in object identification, and object 

location (Thompson-Schill, Aguirre, D'Esposito, & Farah, 1999; Martin, Haxby, 

Lalonde, Wiggs, & Ungerleider, 1995; Thompson-Schill, 2003). Studies aimed to 

discern perception-related processing have found activity along the ventral 

stream (fusiform, right posterior inferior temporal cortex; PIT) associated with 

object size and colour (Chao & Martin, 2000; Kellenbach et al., 2005). Similarly, 
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areas of the dorsal stream including the posterior parietal cortex, superior parietal 

lobe and intraparietal sulcus, have been associated with spatial computations in 

working memory tasks (Corbetta & Shulman, 2002; Curtis, 2006; Rizzolatti & 

Matelli, 2003). 

The domain specific view of ventral and dorsal stream activity in working 

memory extends to the prefrontal cortex, an area thought to consolidate and 

integrate information from the ventral and dorsal processing streams (Miller & 

Cohen, 2001 ). Understanding the role of this region in visual working memory is 

important in understanding the implications of the aforementioned studies, and 

will be discussed further in section 1 .6a. 

1.3 Saccades 

The visual system is supported by saccadic eye movements, which orient 

the visual axis to different locations in space. Saccades are rapid rotations of the 

eye, which align objects in view to the high acuity fovea, for detailed visual 

analysis. Occurring at a rate of approximately three per second, saccadic eye 

movements are alternated with periods of fixation where the eyes are relatively 

stable. It is during these periods of retinal stability that visual processing occurs, 

making saccades the essential vehicle through which we experience our visual 

world. Research involving eye movements have spanned across scientific 

disciplines and incorporate a number of different experimental paradigms. First 
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introduced in the classical work by Buswell (1935), eye movement research is 

prevalent to this day, suggesting there are still pertinent questions to be 

answered. 

1.3a Behavioural aspects 

The metrics of a saccade are highly predictable. The term main sequence 

has been adopted to describe the relationship and regularities between duration, 

velocity, and magnitude of human saccadic eye movements (Bahill, Clark, & 

Stark, 1975). Trajectories are stereotyped, with duration and velocity increasing 

monotonically as the amplitude of a saccade increases (Dodge & Cline, 1901; 

Yarbus, 1956). Similarily, peak velocity increases with the size of the saccade, in 

a linear fashion for small saccades, and approaches a soft saturation limit for 

larger saccades (Westheimer, 1954). These regularities are upheld in all 

circumstances where saccades are made, including voluntary, reflexive, and 

memory-guided saccades (Bahill, Clark, & Stark, 1975). 

The total duration of a saccade following the presentation of a visual 

stimulus is on the order of 120-250 ms (Young, Zuber, & Stark, 1966). Duration 

increases with the size of the movement, and is estimated to be 100 ms for a 1 O 

degree saccade (Young, Zuber, & Stark, 1966). If the initial eye movement is off­

target, a second corrective saccade may be executed. A refractory period has 

been proposed to limit the number of saccades that can be generated within a 
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certain time. This is a contentious point however, as it has been shown that two 

saccades may occur without an intersaccadic interval using double-step stimuli 

(Aslin & Shea, 1987; Becker & Jurgens, 1979). Here, subjects exhibited a single 

curved saccade instead of two successive saccades, suggesting the saccade 

trajectory has been modified on-line. 

There are three general classes of experimental saccade paradigms that 

will be examined for our purposes here, namely, visually-guided, delayed or 

memory-guided, and anti-saccades. A visually-guided or reflexive saccade, 

perhaps replicates the most natural of experimental saccade types. Here, a 

visual stimulus is presented to the observer, and the subject is cued to make an 

eye movement to that location. The metrics of a visually guided saccade are well 

defined, and can be used to gauge the effects of saccade manipulation in other 

tasks. During memory-guided saccade tasks, a peripherally presented stimulus is 

cued prior to a delay period, which may last milliseconds, or several seconds 

long. This requires the participant to saccade to the remembered location of the 

target, after a temporal separation when the target is no longer visible. Evidence 

from non-human primates have shown that introducing a memory delay in 

saccade paradigms is accompanied by increases in saccade error and 

decreases in duration (Gnadt, Bracewell, & Andersen, 1991; Stanford & Sparks, 

1994). When visual feedback is provided, accuracy may be restored to baseline 

levels after a few days (Opris, Barborica, & Ferrera, 2005). 
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In the anti-saccade task, the saccade occurs in the direction opposite to 

the cued location, which requires the more reflexive response to be suppressed 

{Hallett, 1978). Anti-saccade tasks allow for the decoupling of stimulus encoding 

and response preparation since the participant is made aware of the trial type 

after the target has been presented {Munoz & Everling, 2004). Here, saccades 

display longer reaction times, durations and larger errors, indicative of the 

additional demands required with inhibiting the automatic saccade response 

{Amador, Schlag-Rey, & Schlag, 1998). As the complexity of a saccade 

increases, and additional cognitive demands are incorporated in the task, the 

saccade metrics may become more variable. Anti-saccade paradigms have been 

used in clinical studies to examine saccade patterns in patients with unilateral 

frontal lobe removal {Guitton, Buchtel, & Douglas, 1985). The majority of this 

population displayed difficulty in suppressing a saccade when the cue appeard in 

the visual field, as well as correcting this erratic saccade and generating the 

desired anti-saccade. A decrease in saccade latency in these initial erroneous 

saccades was observed, suggesting that the frontal regions that were ablated 

{dorsolateral and mesial cortex) generate saccades after a number of 

computations have already been calculated. This also provides evidence that the 

prefrontal cortex, particularly DLPFC is important in suppressing reflexive 

behaviour, which will be discussed in more detail below. 
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1.3b Neural mechanisms 

The critical neural regions involved in generating saccadic eye movements 

have been well established, and include the frontal and parietal cortices, basal 

ganglia, thalamus, superior colliculus, cerebellum and brainstem reticular 

formation (Wurtz & Goldberg, 1989; Bruce & Goldberg, 1985; Leigh & Zee, 1991; 

Munoz, 2002; Sparks 2002). The neural circuitry describing these regions is 

shown in Figure 3 (page 20). Visual input to the system is processed through 

several extrastriate areas, before reaching the lateral intraparietal area (LIP) in 

the posterior parietal cortex. Area LIP has considerable projections to the 

intermediate layers of the SC, and areas of the frontal cortex associated with eye 

movement generation, including the frontal eye fields (FEF), supplementary eye 

fields (SEF), and the dorsolateral prefrontal cortex. 

19 
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lateral view mec:Hal view 

Figure 3. Illustration of an inflated human brain (right hemisphere), showing the 
neural circuitry of saccadic eye movements. Visual information from the visual 
cortex travels to the lateral intraparietal area (LIP) of the parietal cortex. Area LIP 
projects to the SC, SEF and FEF. Medial structures on the lateral view of the 
brain are shown with dashed lines. 
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Both the SC and FEF are associated with a variety of signals relating to 

eye movement generation, perhaps most commonly, the execution of voluntary 

saccades (Mohler, Goldberg, & Wurtz, 1973; Bruce & Goldberg, 1985). The SC 

comprises the rostral portion of the midbrain, and is composed of seven layers 

that receive input and project to a number of visual and motor-related cortical 

areas (Gandhi & Katnani, 2011 ). To generate an accurate eye movement to a 

specific target, the precise location of the target position must be encoded - a 

task attributed to the SC (Glimcher & Sparks, 1992). SC has been shown to code 

visual targets in retinotopic, or eye-centered coordinates (Klier, Wang & 

Crawford, 2001; Desouza, Keith, Yan, Blohm, Wang & Crawford, 2011 ). 

Although there are a number of projections to motor-related areas, it is generally 

thought that the SC does not specify the motor plan needed to get to the desired 

location (Sparks & Gandhi, 2003). To distinguish between activity related to 

target selection and movement initiation, electrophysiological studies implement 

a delay period where the animal is required to respond only when the cue 

appears (Basso & Wurtz, 1998). Two important findings have emerged from the 

delay activity recorded from SC, before a saccade is initiated. First, in a study 

conducted by Glimcher and Sparks (1992), "prelude burst neurons" were 

identified that exhibited a build-up activity during the selection of a target and 

required metrics of the impending saccade, but was not associated with saccade 

initiation itself. Second, this build-up activity could be changed between one of 
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two targets selected for a given trial, consistent with activity associated for 

saccade preparation (Munoz & Wurtz, 1995). Similarily, Basso & Wurtz (1998) 

demonstrated that adding multiple distracter targets (ie. adding uncertainty about 

the required saccade) reduced delay activity before the saccade was made. 

These studies suggest that SC contains neurons that discriminate the target from 

distracters during delay period (or before a cue to make a saccade appears), and 

are involved in target selection, independent from the eye movement made. 

The frontal eye fields are another region delineated by its contribution to 

visual target selection and saccade generation. FEF was initially identified in the 

macaque monkey as a region of the prefrontal cortex where electrical stimulation 

incited saccadic eye movements (Robinson & Fuchs, 1969; Bruce & Goldberg, 

1985). Lesion studies in the monkey have shown that FEF ablation impairs 

saccade accuracy and distorts saccade latencies during memory-guided saccade 

tasks (Schiller & Chou, 1998; Deng et al., 1986). Humans with FEF damage 

show similar deficits during memory-guided saccade tasks yet are able to 

perform visually guided tasks without concern (Pierrot-Deseilligny et al., 1991 ). 

Imaging studies have shown increased FEF activity while making memory 

saccades, although some activity for visually guided, and anti-saccades persist 

as well (Anderson et al., 1994; O'Driscoll et al., 1995). 

The generality of FEF activity before making a saccade may indicate an 

allocation of attention to prospective visual targets. Studies that utilize a singleton 
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search task, have illustrated that initial neuronal activity does not discriminate 

between targets and distracters, but the later phase of activity does differentially 

distinguish the two stimuli categories (Schall & Haines, 1993). The same pattern 

of activity is demonstrated, even when an eye movement is withheld, that is the 

predictive activity in FEF is maintained even when there is no action (Sato et al., 

2003). 

Both SC and FEF show spatially selective, predictive activity in a number 

of experimental paradigms. Using a direction-discrimination task, SC neurons 

exhibited predictive prelude activity during target selection of two separate visual 

targets (Horowitz & Newsome, 2001 ). The target was selected by the degree of 

coherence of a random dot display, where increased coherence led to an 

increase of the predictive activity. Similarly, SC neurons have shown predictive 

activity caused by shifting the receptive field in response to a visual target 

(Walker, Fitzgibbon & Goldberg, 1995). Functional MRI evidence in humans have 

revealed FEF to be involved in a preparatory set of activation using an anti­

saccade task (Connolly et al., 2003; Desouza, Menon, & Everling, 2003). 

Instructions to make either a saccade to, or away from a given target are given 

before a temporal delay is implemented. Activation during this gap period 

associated with the "readiness" or "intent" to make a saccade can be teased 

apart from the motor command itself. FEF exhibits preparatory activity before 
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saccade initiation (Connolly et al. 2003), and even before the spatial location of 

the target is revealed (Desouza, Menon, & Everling, 2003). 

Dorsolateral prefrontal cortex has direct connections to the 

aforementioned saccade generating regions (FEF, SEF), as well as motor and 

decision-making areas, such as the parietal eye fields (PEF), and the anterior 

cingulated cortex (ACC; Pierrot-Deseilligny, Muri, Nyffeler, & Milea, 2005). 

Patients with DLPFC ablations have exhibited difficulty inhibiting unwanted 

reflexive saccades, and increased errors when the target position must be held 

over a delay period, suggesting a role in the decisional and spatial memory 

processes of saccade generation (Pierrot-Deseilligny et al., 2005). These 

patients are able to make visually guided and smooth pursuit eye movements 

normally, adding further support to a more cognitive, decision making role of the 

structure during ongoing oculo-motor behaviour. 

The saccadic system exists to support exploration of the visual 

environment, and also acts as a window into cognitive control mechanisms. Not 

only do saccadic eye movements work to direct our line of vision to objects of 

interest, but they interact with our other facets of visual perception that allow for 

efficient comprehension and navigation of our surroundings. 
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1.4 Spatial updating of object locations for spatial vision and movement control 

Objects in the environment as well as spatial perception and body position 

of the observer are often in motion, raising the question of how perceptual 

information is constructed from successive fixations (Irwin, 1991 ). Several 

theories of visual cognition have emerged to attempt to explain how visual 

information obtained from separate glances can create a continuous percept of 

the surrounding environment. A longstanding assumption of visual perception 

outlined a detailed visual account of our surroundings being stored from one view 

to the next. This phenomenology motivated a surplus of theoretical work of visual 

perception, beginning with Herman Von Helmholtz in the nineteenth century. 

Helmholtz observed that despite movement of the eye and shifts in objects' 

retinal positions, the visual environment maintains a constant spatial 

arrangement. In contrast, during passive eye movement when the eye is gently 

pushed with ones finger, the visual environment is displaced. These observations 

led Helmholtz to propose that the distance and direction of the eye movement is 

calculated to infer the position of items in the visual world from one fixation to the 

next (Helmholtz, 1886). An internal copy of the metrics of the eye movement is 

used to remap spatial information and fuse contents from successive fixation 

points together. Now termed corollary discharge, or efference copy, these 

extraretinal signals are used to define object location in environmental 
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coordinates, rather than retinal coordinates (van Holst & Mittelstaedt, 1950; 

Sperry, 1950). 

As visual signals are encoded relative to the retina, representation of 

object location based on retinal disparity and eye position signals requires 

recurrent updating of the representation of spatial location in the brain (Hallett & 

Lightstone, 1976; Mays & Sparks, 1980). It has been proposed that this is 

mediated by saccade-specific mechanisms that remap visual information, where 

spatial representations of objects are maintained and updated based on 

predictive signals related to self-motion (Sommer & Wurtz, 2008; Crawford et al., 

2004). Here, a number of neurons have receptive fields that cover the location of 

a given stimulus or object in the visual environment. Before a saccade is initiated, 

a copy of the anticipated eye movement command causes the stored 

representation of the object to be shifted to the new retinal location. Now 

neuronal activity from the original receptive field is transferred to neurons whose 

receptive fields will encompass the new spatial location, occurring even before 

the saccade is made (Duhamel, Colby, & Goldberg, 1992; Nakamura & Colby, 

2002). 

Evidence from non-human primates have shown predictive remapping in 

neurons in areas associated with eye movements, such as lateral intraparietal 

sulcus (LIP; Duhamel et al., 1992), extrastriate visual areas (Nakamura & Colby, 

2002), frontal eye fields (Umeno & Goldberg, 1997) and superior colliculus 
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(Walker et al., 1995). Neuroimaging experiments have demonstrated remapping 

using remembered movement goals (Medendorp et al., 2003) and passively 

remembered stimuli (Merriam et al., 2003), in PPC neurons between the 

intraparietal sulci (IPS) on opposite hemispheres across saccades. TMS to the 

posterior region of IPS has been shown to disrupt spatial updating using a 

double-step saccade paradigm (Morris, 2007). It appears perceptual stability may 

be maintained, provided the brain compensates for motion of the eye by deriving 

a predictive representation of visual space. 

1.5 Perception of object features 

Perceiving the qualities of an object involves not only visual characteristics 

such as size, shape, texture or colour, but also the manner in which it fits into the 

surrounding schema. Early studies of disorder in the visual system, highlighted 

the complexity of perceiving object properties. Case studies conducted in single 

patient populations exhibited selective deficits in certain areas of visual 

processing, including: colour (Verrey, 1888), shape (Lissauer, 1890), and depth 

(Holmes 1918), support the view that different object features may be processed 

independently. 

Luck and Vogel (1997) conducted a series of experiments to examine the 

elemental aspects of feature memory, using variants of the sequential 

comparison procedure designed by Phillips (1974). Here, subjects view a delay-
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separated sample and test array, and are required to indicate whether the two 

arrays were identical, or whether they differed on a given feature, or conjunction 

of features. The authors' tested memory capacity for colour or orientation, or a 

combination of both. They found that accuracy was the same for colour or 

orientation with a set-size of up to four items. Interestingly, this level of accuracy 

held for the conjunction condition, where subjects were required to retain both 

colour and orientation. This finding suggests that individual features were 

integrated into a representation of the entire object. 

The process of object binding has been proposed as the mechanisms by 

which object features are wound into a cohesive whole (see Robertson, 2003 for 

a review). Treisman and colleagues (1980) elaborates this concept with a two­

stage process of feature integration with a focus on attention. Here, salient 

regions are selected for by integrating multiple object features, then objects are 

identified within those salient regions (Choi & Christensen, 2009). A bottom-up 

model of visual processing identifies salient regions based on object features, 

and saccadic eye movements are harnessed for higher-level processing (Choi & 

Christensen, 2009). 

The ability to detect and maintain the features and spatial location of an 

object is an essential hallmark of human behaviour. A number of routine actions 

depend on the capacity for quick and flexible action, for instance, identifying a 

potentially harmful or beneficial object, and making the decision to avoid or obtain 
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it (McAfoose & Baune, 2009). For this reason, visual processing is extremely 

adaptable and may be viewed as the product of two functions: object recognition 

and spatial cognition, or ventral and dorsal stream processing. How these 

aspects are woven together amidst continuously changing visual input (the 

position, size luminance of an object as you move through space) is an important 

area of contention. 

1.Sa Trans-saccadic memory of object features 

First defined experimentally as a form of spatiotopic memory, Hogben & di 

Lallo (1974) showed that the stable visual environment we experience is the 

result of a summation of images from successive fixations. This view of trans­

saccadic integration postulates that a memory image is complied across 

fixations, essentially stacking on top of each other (Jonides et al., 1982). 

However it is now largely accepted that detailed visual information is not fused 

across saccades in a point-to-point manner (Bridgeman & Mayer, 1983; Irwin, 

1991 ). If trans-saccadic integration relied on high-capacity, spatiotopic memory, 

stimulus displacements across saccades should be easily detected. In contrast, 

little or no detailed information may be retained across eye movements as under 

normal conditions, visual information is readily available (O'Regan & Levy­

Schoen, 1983, O'Regan, 1992). The visual environment itself acts as an external 

memory store from which we have continuous access. Evidence for this comes 
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from studies of change detection, where even obvious changes in two alternating 

visual scenes go unnoticed if there is disruption of the visual signal at the time of 

the change (Simons, 1996; O'Regan, 1998; Rensink et al., 2002). This suggests 

strict capacity limits for objects in the visual environment, where objects that are 

not directly attended to may escape our conscious awareness. 

Converging evidence indicates that trans-saccadic memory is supported 

by the visual working memory system originally identified by Phillips (1974). 

Visual working memory capacity for simple features without eye movements is 

typically estimated at three to four items (Irwin, 1991; Luck & Vogel, 1997). 

When a saccade is introduced visual features must be retained and updated 

relative to the new eye position, thus placing additional computational demands 

on simple short-term memory. In a series of experiments, Irwin (1991) elucidated 

two important properties of trans-saccadic memory, using delayed tasks where 

participants were required to identify a letter of a given sequence, after an eye 

movement was made. The first important finding identified a capacity limit of 3-4 

items, or the same as visual working memory. The second finding outlined an 

increase in accuracy for letters that were near the spatial location of saccade 

target. It has since been framed in the context of attention, that stimuli closer to 

the final eye position is accompanied by a covert shift of attention (Mathot & 

Theeuwes 2011; Kowler et al., 1995). Prime (2007), found that correctly cueing a 

spatial target also increased accuracy, lending further support to the attentional 
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benefit that convoys eye movements. It may be helpful to consider trans­

saccadic memory an extension of visual working memory that is capable of 

incorporating saccadic signals into its representation of visual information. 

1.Sb Trans-saccadic integration of features 

Trans-saccadic integration involves not only remapping visual information 

across saccades, but also integrating that information to form a complete 

perceptual representation. Several studies examining trans-saccadic integration 

have demonstrated remapping of object features. Hayhoe et al. (1998) showed 

that the spatial position of simple stimuli (dots) could be constructed to form a 

unified whole (acute or obtuse triangle). More recently, Prime et al (2006) 

demonstrated that subjects were able to integrate object orientation and spatial 

location across eye movements as well as they could during stable fixation, 

during a line bisection task. Here, subjects were required to remember and 

integrate information from two slanting lines and approximate where they would 

hypothetically intersect. 

Evidence from studies examining predictive remapping, suggest that 

unattended objects that remain stable in the periphery are not remapped 

(Gottlieb et al., 1998). Remapping has only been identified in cases using salient, 

attended objects. Perhaps it is not necessary to view each object within scene 

with such scrutiny. Visual perception of the global environment is subserved by 
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previous experience and knowledge of familiar and universal features of the 

world, to rapidly process and interpret a detailed scene. It would be inefficient to 

analyze each object within a scene, at every glance. Akin to Gestalt psychology, 

the objects within a scene are summated and work together to create what we 

perceive to be an integrated whole (the "gist" of a scene; Potter, 1976). 

Formulating the gist of a scene is an abstraction of visual features, and does not 

require point-to-point remapping in retinotopic coordinates (Melcher & Colby, 

2008). If an object is to be retained across a saccadic eye movement, it must be 

within the limits of the short-term memory store, and it must either posses a 

germane quality or be relevant to the task at hand. 

1.Sc Neural mechanisms 

If one is to consider the classification of trans-saccadic memory as an 

extension of the visual working memory system, the question arises of where in 

this system extra-retinal signals are being integrated. Remapping of object 

representations in retinotopic coordinates has been shown in area LIP, and FEF 

during saccades (Duhamel, Colby & Goldberg, 1992; Heiser & Colby, 2006; 

Umeno & Goldberg, 1997; Khayat, Spekreijse, & Roelfsema, 2004). Similarly, 

several areas have been implicated in remapping of object features in trans­

saccadic memory, including PPC and FEF (Prime et al., 2008, 2010), which will 

be discussed in section 1.7. 
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1.6 Frontal cortex and executive function 

The prefrontal cortex is (PFC) most elaborate in primates, indicative of a 

highly flexible repertoire of behaviour. It is comprised of a collection of interacting 

neocortical areas that send and receives projections from sensory and motor 

systems, and subcortical structures (Fuster, 1997). Executive function is 

considered to be central to PFC function, and is involved in regulating processes 

operating on the contents of working memory for goal-directed, purposeful action 

(Smith & Jonides, 1999). Executive function has been termed a multi-dimensional 

concept encompassing several cognitive control operations mediated by different 

underlying regions. The PFC may be viewed as the cognitive control mechanism 

by which neural network communication involved with executive function is 

orchestrated (Zanto et al., 2011 ). 

Miller and Cohen (2001) have outlined a theory of PFC function that 

envelops several aspects of cognitive control, and spans a distributed neural 

network. Here, the PFC guides control via top-down excitatory neurons, of areas 

where processing occurs (Herd, Banich, O'Reilly, 2006). This is illustrated by the 

Stroop effect (Stroop, 1935), where internal goals must suppress automatic 

responses. The Stroop task involves reading colour names aloud, as either the 

word itself, or the colour it is presented in. It requires subjects to selectively 

attend to one feature of the stimulus (ie. word, or colour). This becomes difficult 

during 'colour' trials as there is a tendency read the word automatically, rather 
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than state the colour it is printed in. This sense of internal conflict must first be 

suppressed, before the correct response can be calculated. It is this aspect of 

PFC function that is central to understanding the influence on cognitive control. 

Referred to as top-down excitatory biasing (TREB) by Herd and colleagues, 

excitatory PFC neurons contribute to groups of neurons engaged in task-relevant 

processing (2006). This increases activity for a task-relevant processing neuronal 

set, compared to task-irrelevant, or competing stimuli. This increase in activity is 

enough to enable a participant to "override" the habitual response of an otherwise 

dominant or more prepotent response, to complete the task at hand. 

Implementation of control involves modulating neural activity in accord 

with task demands, and biasing working memory processes such that the 

manipulation of task-relevant information is emphasized (Milham et al., 2002). It 

has been proposed that the dorsolateral portion of the prefrontal cortex (DLPFC) 

may work to allocate top-down attentional control mechanisms in accord with 

such task demands, by modulating neural activity within posterior regions 

(Milham et al., 2002). 

1.6a Dorsolateral prefrontal cortex 

The dorsolateral prefrontal cortex (DLPFC, Brodmann areas 9, 46) is 

located as part of the anterior portion of the middle frontal gyrus, shown in Figure 

1 (page 3). DLPFC shares reciprocal connections with motor regions (basal 
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ganglia, premotor area, supplementary motor area) and sensory regions 

(association areas, parietal cortex), making it well situated anatomically to 

harness cognitive control of sensory representations for action (MacDonald et al., 

2000). 

Although the DLPFC has been implicated in working memory systems, its 

specific role remains unclear. Evidence from non-human primates have shown 

sustained DLPFC activation during the delay period of delayed response tasks, 

which may be attributed to maintaining perceptual information (Funahashi, Bruce, 

& Goldman-Rakic, 1993; Sawaguchi & Yamane, 1999). Animals with prefrontal 

lesions experience deficits in delayed-response, memory guided saccade tasks 

that become progressively worse as the delay period is extended (Funahashi, et 

al., 1993). Additionally, a proportion of DLPFC neurons are tuned to the 

preparatory set, suggesting they are being utilized to link information maintained 

during the delay period to upcoming task related actions (Barone & Joseph, 

1989; Funahashi et al., 1993). Similarly, evidence in humans has shown that 

patients with DLPFC focal lesions are able to maintain spatial information in 

working memory, but show impairments when this information must be utilized in 

upcoming tasks (Ferreira-Texeira et al., 1998). Neuroimaging studies have 

shown increased DLPFC activity during delay periods in spatial memory tasks, 

relative to making simple perceptual judgments about the stimuli (McCarthy et al., 

1996; Smith et al., 1996). 
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The dorsolateral prefrontal cortex interacts with the saccade network in a 

number of ways. DLPFC is most commonly associated with reflexive saccade 

inhibition in anti-saccade tasks. DLPFC lesion or disruption result in longer 

reaction times during the anti-saccade task, as well as an increase in incorrect, 

initial saccades to the flashed target (Pierrot-Deseilligny et al., 1991; Nyffeler et 

al., 2007). In humans, DLPFC activation during the anti-saccade task is higher 

than that during prosaccades (Sweeny et al., 1996; Desouza et al., 2003). 

DLPFC is also involved in the spatial component during memory-guided 

saccades, where an internal representation must he maintained while the target 

is no longer visible (Pierrot-Deseilligny et al., 2003; Muri et al., 1996; Muri et al., 

2000). In the monkey with DLPFC ablated, errors in accuracy in memory-guided 

saccade tasks increase as the length of the delay period increases (Funahashi et 

al., 1993). Single-unit recordings have found spatially selective activity in DLPFC 

neurons, during stimulus presentation, and the delay period in memory-guided 

saccade tasks (Funahashi, Bruce, & Goldman-Rakic, 1983, 1990). The role of 

DLPFC in guiding oculomotor behaviour is highlighted by the fact that it has 

extensive connections to integral sensory and motor related areas (Fuster 1997, 

Petrides, 1994). DLPFC has reciprocal connections with PPC, acting to integrate 

sensory information for goal-oriented behaviour (Fuster, 1997; Quintana & 

Fuster, 1999). It is thought that DLPFC influences oculomotor behaviour through 
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top-down cognitive control mechanisms of the brain regions with which it is 

connected (Pierrot-Deseilligny et al., 2005). 

It is believed that DLPFC function is largely concerned with maintaining 

and utilizing sensory information to guide action. Variability in DLPFC activation 

across different imaging studies has suggested different functional roles for the 

area, depending on task requirements (Cieslik et al., 2012). Specifically, 

evidence for a topographic organization of DLFPC suggests the posterior region 

controls simple mappings of stimuli to action, while the anterior region dictates 

the relationship between behaviour and task demands (Taren et al., 2011; 

Christoff & Gabrieli, 2000). Here, information flow occurs along a hierarchy, from 

anterior to posterior regions. 

Damage to DLPFC can affect an array of both oculo-motor and cognitive 

behaviours. Patients with DLPFC lesions have reported increased errors in anti­

saccade and memory-guided saccade tasks and decreased anticipatory 

behaviour in conducting sequences of predictive saccades (Pierrot-Deseilligny et 

al., 2003). These deficits implicate DLPFC at each level of the decisional 

processes related to saccade behaviour: preparation, maintenance of pertinent 

information, and predicting future saccades. These processes are dynamic in 

nature, and must be able to be adapted to comply with current task demands. 

DLPFC is thought to support this aspect of flexible, goal-driven oculo-motor 

behaviour. Similarly, a number of cognitive impairments have been observed with 
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DLPFC lesions. Subjects have difficulty in tasks that require on-line maintenance 

or updating of information (working memory tasks, Stroop task, card-sorting 

tasks) and exhibited lower scores on tests that examine both general intelligence 

and executive function (Kimberg et al., 1993; Barbey & Farah, 2013). The 

diversity of performance deficits with seemingly distinct tasks highlights the 

complexity of DLPFC function, and solidifies the notion that DLPFC is a region 

associated in global control aspects of purposeful behaviour. 

Recall that visual processing occurs through two separate, but concurrent 

cortical streams, ventral and dorsal, that originate in primary visual cortex and 

take distinct paths through the parietal and occipital corticies. Previous work by 

Prime et al. (2007) has emphasized the importance of these complimentary 

processing streams in trans-saccadic memory, and has outlined four possible 

ways in which they may direct perception, outlined in Figure 4 (page 40). The 

first possibility postulates that the dorsal and ventral streams operate in complete 

independence of one another, but is unlikely if we adopt the view that successful 

integration across eye movements requires information from both streams. 

Alternatively, information from both streams may be integrated through feed­

forward pathways in areas of the prefrontal cortex, or through parallel 

connections en route. A fourth possibility proposes information about object's 

features from the ventral stream, and saccade-related remapping signals from 
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the dorsal stream, are merged in early visual areas through re-entrant feedback 

connections that send information back through the visual cortex. 

It is possible that the interaction between the dorsal and ventral streams in 

trans-saccadic integration is modulated by a common top-down control 

mechanism that works to allocate attention to pertinent visual information in the 

environment. DLPFC is known to play a role in harnessing cognitive control 

properties, and may be a useful candidate for examining trans-saccadic memory 

capacity. 
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Figure 4. Four possible explanations of how the ventral and dorsal visual 
streams may be involved in trans-saccadic memory. A. Illustrates the no­
interaction hypothesis. Visual information from the ventral and dorsal streams do 
not rely on binding. B. Visual information from the ventral and dorsal streams is 
integrated via feedforward connections to the frontal cortex. C. The ventral and 
dorsal streams exhibit parallel connections. D. Visual information may be 
integrated through re-entrant pathways to earlier visual areas. (Image by Prime et 
al., 2008). 
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1. 7 Previous studies conducted in this lab 

In 2007, Prime and colleagues conducted a series of experiments aimed 

to estimate the capacity of visual memory for two basic features: luminance and 

orientation. In both instances, participants were required to remember a single 

feature of a probe item, and compare it to a target item following a delay period of 

stable fixation, or an intervening eye movement. Results from both the fixation 

and saccade tasks indicate subjects were able to successfully retain up to 3-4 

items, after which performance gradually declined. To investigate the cortical 

mechanisms involved in trans-saccadic memory, Prime et al. applied TMS to 

PPC and FEF while subjects engaged in a multiple visual object memory task 

(shown in Figure 9 (page 57). Here, information about object features and spatial 

location must be retained and integrated with saccade signals somewhere within 

the visual system. In order to successfully perform the task, information stored in 

memory must be remapped according to an egocentric measure of saccade 

metrics. The investigators confirmed that subjects' were able to successfully 

retain at least 3 objects in both the fixation and saccade task. When TMS was 

applied over bilateral PPC and FEF, this memory capacity was reduced. 

The first of the aforementioned studies conducted by Prime (2008) 

investigated the role of PPC in trans-saccadic memory. The results, shown in 

Figure 5 (page 44) were two-fold. First, TMS to right PPC disrupted performance 

in both the fixation and saccade tasks, with greatest effects in the saccade task, 
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during TMS at the 200ms interval. Secondly, analysis of saccade metrics 

revealed that TMS did not significantly alter the saccade trajectory, and was 

therefore not a candidate for the decrements in performance that were reported. 

Instead, TMS during the saccade (at the 200ms interval) likely interfered with the 

efference copy of the eye movement associated with the saccade. A perceptual 

copy of the object properties and spatial location must be retained and integrated 

across an eye movement. If the TMS pulse is delivered near the moment this 

signal is being updated, then a disruption in the remapping process could occur. 

The second study conducted by Prime (2010) examined the role of FEF in trans­

saccadic memory. The same experimental design was implemented, and the 

results are shown in Figure 6 (page 45). TMS to both left and right FEF 

significantly reduced performance in the saccade task at 1 OOms in the left 

hemisphere, and 1 OOms and 200ms in the right. These placed the timing of TMS 

pulses before or during a saccadic eye movement, which was in-line with the 

previous findings demonstrated by the same group. However, in this study, there 

was also a reduction in performance during TMS to right FEF in the fixation task. 

At first glance, this may seem counterintuitive if we are to take an approach that 

considers a disruption in remapping mechanisms responsible for reducing the 

memory capacity probed in these studies. The authors' suggest that this not need 

be a point of contention. It is still the function of a spatial updating system to 

inform visual processing that the eyes are fixating. If TMS is injecting neural 
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noise into the system, it may have similar effects whether the eyes have moved 

zero, two, or ten degrees. 
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Figure 5. Results from Prime et al., 2008, TMS over PPC. The change in mean 
percent correct (TMS minus No-TMS baseline) for each TMS interval is shown for 
A. Right PPC B. Right M1 C. Right SHAM. The Fixation Task data is shown in 
the top panels, the Saccade Task data is shown in the bottom panels. Right PPC 
TMS displayed a significant reduction in performance at the 200ms time interval. 
M1 and SHAM TMS had no significant effect on performance. (Image taken from 
Prime et al., 2008). 
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Figure 6. Results from Prime et al., 2010, TMS over FEF. The change in mean 
percent correct (TMS minus No-TMS baseline) for each TMS interval is shown for 
A. Left FEF B. Right FEF C. Vertex, CZ. In the Fixation Task, performance was 
disrupted during right FEF TMS at the 1 OOms time interval. In the Saccade Task, 
performance was disrupted during both left and right FEF TMS at 200ms. TMS to 
control site CZ had no significant effect on performance. (Image taken from 
Prime et al., 2008). 
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The trans-saccadic memory task in these studies requires that the spatial 

location and feature information of an object are updated across a saccade. The 

disruption of this process by TMS to PPC and FEF suggests that TMS may be 

injecting neural noise into the spatial updating system, that each of these areas 

subserve. These areas are both part of the network for visual object memory, 

which originates in the ventral stream of visual processing, and project to the 

frontal cortex. Both PPC and FEF have connections to the frontal cortex, with 

direct projections to DLPFC specifically (Goldman-Rakic & Schwartz, 1982; Ruff 

et al., 2008). Recall from Figure 4 (page 40), the dorsal-ventral interactions 

mentioned, might differ depending on the requirements of the task at hand. The 

trans-saccadic memory task used here requires the features from multiple 

objects to be maintained, perhaps suggesting the use of higher order top-down 

control mechanisms of the frontal cortex (Miller & Cohen, 2001 ). 

1.8 Present study 

This project serves to determine whether the dorsolateral prefrontal cortex 

(DLPFC) plays a functional role in maintaining visual details in trans-saccadic 

memory, and allows for direct comparison to other cortical areas identified by 

Prime et al. (2008; 2010), by using the same experimental design. Using MRI­

guided transcranial magnetic stimulation (TMS) to establish a causal role of 

DLPFC in trans-saccadic memory will elucidate the nature of ventral and dorsal 
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stream processing outlined in Figure 4b (Page 40). It was hypothesized that if 

DLPFC (in particular right DLPFC) is concerned with spatial working memory in 

general, performance in both the fixation and saccade task would be similarly 

affected, ie. TMS over DLPFC would reduce performance in both tasks. If 

however, TMS over DLPFC produces differential effects during saccades as 

observed in PPC and FEF, this could suggest a unique role for DLPFC in trans­

saccadic memory. 
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2. Methods 

2. 1 Subjects 

Ethical considerations were approved by the York Human Participants 

Review Subcommittee. All subjects had normal or correct-to-normal visual acuity, 

with no known contraindications to TMS. Pilot, and experimental sessions (2 or 3 

sessions, approximately 2 hours each) were conducted on different days at least 

one week apart in order to minimize fatigue and TMS exposure. Eighteen 

subjects were recruited for participation in this study, after providing informed 

written consent. Seven subjects were excluded after psychophysical pilot data 

was collected, due to insufficient baseline performance. Three more subjects 

were excluded after TMS experiments for erroneous eye movements (see section 

2.5 for details). A total of eight subjects were included in the final analysis (5 

males, 3 females; mean age = 25.6). 

2.2 Apparatus 

Subjects were seated in a dark room with their head immobilized by a 

personalized dental impression bar. The customized experimental set-up is 

shown in Figure 7 (page 50). A computer system of three personal computers 

was used for stimulus presentation and data recording. Visual stimuli were 

presented using a video projector that back-projected onto a display screen (1.9 

X 1.4m, spanning 124.5° visual angle horizontally by 108.9° visual angle 
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vertically). Subjects sat 50cm in front of the screen, at 114cm eye-level. The 

experimental set-up was constructed to allow for the compatibility of the 

Brainsight and TMS system, and the display screen. Brainsight (Rogue 

Research, Montreal, Canada) co-registers scalp topography with MRI-based 

localization methods using an ultrasound based TMS-MRI system and software. 

Single-pulse TMS was administered using a Magstim 200 magnetic stimulator 

(Magstim, Whitland, UK) and a 70mm figure-eight coil. Right eye-position was 

monitored using an eye-tracking system mounted on the set-up (Applied Science 

Laboratories, Bedford, MA). Two-dimensional eye position was recorded at a 

sampling rate of 500 Hz using Eye/ink (SR Research, Mississauga, Ontario, 

Canada), and analyzed off-line. 
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Figure 7. Representation of customized experimental set-up. A. The stimuli is 
back projected on a large display screen. B. The Brainsight system consists of a 
computer system and position sensor. The subject wears goggles with a tracking 
device. C. The Mag-stim TMS coil generates single-pulse TMS at 60%. 
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2.3 Localization of brain sites and TMS protocol 

Each subject underwent anatomical MRI scanning at Sherman Health 

Science Research Centre, York University, prior to participation in the study. 

Stimulation sites (left and right DLPFC) were based on a T 1 weighted three­

dimensional MPRAGE sequence scan of the entire head with an isotropic 1 mm3 

voxel (TR = 1900 ms, TE = 2.52 ms, 1 mm slice thickness, 256 x 256 matrix). To 

localize left and right DLPFC, stereotaxic coordinates (left DLPFC: x = -35, y = 

30, z = 38; right DLPFC: x = 35, y = 30, z = 38) were selected based on a 

comprehensive review of 128 imaging studies that identified activation foci for 

DLPFC (Fitzgerald et al., 2006, Talairach & Tournoux, 1988). Figure 8 (page 53) 

illustrates the stimulation sites for a representative subject. After identifying the 

anatomical location of left and right DLPFC, standardized stereotaxic space is 

translated to each subjects' native space (Fitzgerald et al., 2006), and marked at 

the correct stimulation location in Brainsight. Single-pulse TMS was administered 

at 60% fixed stimulation intensity. We chose a fixed stimulation output rather than 

tune the stimulation intensity to subjects' own motor threshold, as there is little 

evidence that cortical excitability correlates with motor thresholds outside of the 

motor cortex (Robertson, Theoret, & Pascual-Leone, 2003; Bermpohl et al., 

2005). However, for comparison resting motor thresholds (AMT) were obtained 

from each subject, by stimulating left motor area (M1 ). This region was 

anatomically localized, and confirmed when a visible contraction of the first finger 
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of the right hand was observed. The RMT was defined as the lowest stimulation 

output required to illicit this movement. The average RMT for all subjects was (M 

= 52 SD =+/- 2.6). For each session, the TMS coil was placed tangentially 

against the scalp with the handle pointed backwards, in an antero-lateral 

position. This coil orientation was deemed the most effective in inducing a TMS 

effect in the prefrontal cortex (Hill, Davey & Kennard, 2000; Coubard & Kapoula, 

2006). A control site was included to yield estimates of non-specific effects of 

TMS, the vertex of the head (electroencephalography coordinate, CZ). 

Custom software triggered magnetic pulses at 1 OOms, 200ms, and 300ms 

following the onset of the saccade go-signal for the TMS trials, and at equivalent 

times in the fixation task. With respect to the normal latency distribution of 

saccades, this places the TMS pulse timing just before, during or after the 

saccade. The three discrete stimulation times were chosen on the basis of 

previous findings that isolated the effect of TMS at different times in different 

brain regions in a similar experimental design (Prime et al., 2008; 2010). 
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Figure 8. Location of left and right DLPFC for one representative subject, in 
Brainsight. The location is based on stereotaxic coordinates (left DLPFC: x = -35, 
y = 30, z = 38; right DLPFC: x = 35, y = 30, z = 38). From these coordinates, the 
middle portion of the anterior first third of the middle frontal gyrus was marked for 
each subject. The sagittal, coronal, and transverse sections of a T1-weighted 
MRI are shown here. 
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2.4 Experimental procedure 

The task was the same used by Prime et al. (2007, 2008, 2010) illustrated 

in Figure 9 (page 57). In the control condition (fixation task) subjects fixate on a 

cross randomly presented at one of 29 possible spatial locations on the screen, 

within the display area spanning 18° X 18°. The target-display is briefly presented 

(1 OOms) consisting of a lone target, or a target plus a random number of 

distracters (1-3). The total set-size of the target display ranged from one to four 

items. The target and distracter items were randomly presented in the display 

area, without overlapping with one another or the fixation cross. When distracters 

are included in the target display, subjects do not know which item is the target, 

and thus are required to remember the details of as many items as possible. The 

targets and distracters consist of gabor patches 2.8° in diameter, with alternating 

black and white bars. Orientation is randomly selected from five possible starting 

orientations (25°, 35°, 45°, 55°, 65°), and rotated 10° clockwise or 

counterclockwise from the initial position. 

Next, a mask (a uniform white field) was flashed (150ms) to reduce the 

possibility of visual after effects following the target-display. The fixation cross 

was then re-presented at the same initial location. TMS pulses are time-locked to 

the onset of the reappearance of the fixation cross and occur at 1 OOms, 200ms 

and 300ms. TMS trials were randomly intermingled with no-TMS trials. 
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After re-fixating at the fixation cross and a following a brief delay (750ms), 

a probe was presented ( 1 OOms) at the same spatial location as the target. The 

probe resembled the target, except that it had made a 10° rotation either 

clockwise or counterclockwise from its original position. This difference 

corresponds to the average discrimination threshold for 80% correct responses 

across subjects when comparing the orientation of two targets, as shown by 

Prime at al. (2007). 

Subjects were required to indicate with their dominant hand whether the 

orientation of lines on the target had rotated clockwise (right mouseclick), or 

counterclockwise (left mouseclick) relative to the original target. This creates a 

baseline performance from which to compare our trans-saccadic data. In the 

saccade task, subjects were required to make an eye movement to a new fixation 

cross location, following the appearance of the first mask. The location of the 

second fixation cross was randomly selected. Here, subjects are required to 

compare probe orientation to the original, pre-saccadic target. This requires 

subjects to update the location of the target, relative to retinal position. This trans­

saccadic data was compared with data where the targets and probes are 

presented within a single fixation. 

Each experimental session began with a calibration sequence and 

practice block. Each trial type (0-3 distracters, No TMS, TMS at 1 OOms, 200ms, 
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300ms conditions) was repeated 16 times for left DLPFC, right DLPFC, and 

control site CZ. A total of at least 2,688 trials were performed per subject. 

Before commencing the experimental sessions, subjects underwent 

behavioural pilot testing to ensure they were able to achieve -80% accuracy with 

zero and one distracter. In total, 18 subjects were tested. Seven of these were 

deemed to exhibit insufficient performance, and were not asked to continue. 

Initially, subjects were tested using a set-size of up to 7 items. The results 

showed that performance reached chance level (-50%) after a set-size of four 

items, so the number of distracter conditions were reduced. The final analysis 

included only the trials where the set-size was from one to four items. 
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Secude condition 

New fixation appears, 
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at 100. 200 or 900ms !" 

Target display tOOms 

TMS pulses administered 
at 100, 200 or 300ms 
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~1 
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Figure 9. The experimental paradigm created by Prime et al. (2007). In both the 
fixation and saccade task, trials begin with a fixation period at one of 29 random 
spatial locations. A target and distracters (0-3) then appear, followed by a mask. 
In fixation trials, the fixation cross re-appears at the same spatial location. In 
saccade trials, the fixation cross re-appears at a randomly selected, new 
location. Subjects were required to make an eye movement to the new location. 
The probe is presented at the same spatial location as the target, but has made a 
10° rotation clockwise, or counterclockwise. The subject is required to indicate 
whether the probe has rotated clockwise or counterclockwise from its original 
position. 
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2.5 Data analysis 

The main experimental results for mean change correct responses will be 

examined using separate repeated measures ANOVAs to compare each of the 

three TMS time intervals to their No-TMS baseline. 

To examine the magnitude of this effect of TMS, separate repeated 

measures ANOVAs will be conducted for: 1) baseline No-TMS data 2) TMS 

minus No-TMS data for each site independently 3) TMS minus No-TMS data, 

comparing each site 4) TMS minus No-TMS data, comparing between tasks. 

Where a significant main effect is found, post-hoc Tukey's test will be performed 

to correct for multiple comparisons. 

2.6 Eye data analysis 

Custom software was used to mark the eye position in all trials using 

Human Browser (Matlab, The MathWorks Inc., Natick, MA, USA). Each trial was 

inspected manually, to verify the validity of the eye position. For the fixation 

condition, a trial was considered valid (ie. kept for analysis) if the subject 

maintained stable fixation between two critical (1 OOms) windows, as shown in 

Figure 10 (page 60), when the targets and probe were visible, and if no saccade 

greater than 2° occurred during the trial. For the saccade condition, trials were 

considered valid if the subject maintained stable fixation between the same two 

critical time windows, and a saccade, greater than 2° occurred sometime during 
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the memory delay (after the appearance of the second fixation point, and before 

the probe was presented). These criterions were chosen to avoid throwing away 

too many trials. With TMS to the frontal cortex, some subjects experienced a 

small degree of muscle twitching around the face and eye. On occasion, this 

would translate into blinking or microsaccades that were not associated with the 

actual eye movement itself. Three subjects were excluded on the basis of 

erroneous eye movements. The criteria described above resulted in less than five 

percent (5%) of trials per subject to be omitted from the final analysis, of the 

remaining eight subjects. 

59 



e------
7 

6 

5 

eye (V) 
4 •••••••••••••••••••••••• 

eye (H) 
3 •••......•......••••••••• 

2 "9· •1 
1 I .,., 

0 
O· 1 

TMS at 100, 200, or 300ms 
after the appearance of the 
second fixation :point 

<l>f r········ 
"C : 
ftj : 

M ~ 
«I : 

I 
I a 

Time (seconds) 
2 3 

Figure 10. Schematic of an example trial in the saccade task. The new fixation 
point appears 2 degrees vertically of the original position. The subject is required 
to make a saccade to the new location. The dotted lines show the vertical and 
horizontal position of the right eye. In both the fixation and saccade conditions, a 
trial is considered valid if fixation is maintained during the target and probe 
presentation windows (with other criteria described above). 
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3. Results 

3. 1 Baseline performance - No TMS 

Baseline performance, the No-TMS trials in both the fixation task and 

saccade task, is shown averaged across all subjects (n = 8) in Figure 11 (page 

62). Here, the percentage of correct responses is shown for each set-size, from 

one (the target is presented alone) to four (target plus three distracters). 

Performance without distracters (ie. a solitary target) begins at 86.5% in the 

fixation task and 79.5% in the saccade task, and declines steadily with the 

addition of one, two, or three distracters. In the saccade task performance 

declined more rapidly with the addition of one distracter, with a 17.5% drop in 

performance, compared to a 3.5% drop in the fixation task. 

Baseline performance was evaluated using a two-way repeated measures 

ANOVA (task X set-size). This analysis revealed a significant difference in 

performance for task (F 1,1 = 12.48; P = 0.01) and set-size (F 3,7 = 27.07; P = 

0.001 ). Performance dropped off fairly rapidly when distracters were added, and 

performance in the saccade task was lower than in the fixation task. 
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Figure 11. No TMS baseline performance in both the fixation task (solid black) 
and saccade task (dotted black). Performance is indicated as the percent correct 
response, as a function of set-size. Overall, better performance, or a higher 
percent correct responses, was exhibited in the fixation task. 
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3.2 TMS and saccade timing 

Figure 12 (page 64) illustrates the frequency of saccade latency, for No­

TMS and TMS trials in the saccade task. Discrete 20ms bins were created from 

0-400 ms to illustrate the frequency of saccade initiation. The largest proportions 

of trials were initiated between 200-240ms. Mean latency for saccades in the 

TMS conditions were 223.61 (+/- 52.78) for left DLPFC and 221.27 (+/- 48.40) for 

right DLPFC. This confirms the 200ms TMS pulse coincides closely with saccade 

onset, while 1 OOms and 300ms occur just before, and after the eye movement is 

made. 
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Figure 12. Frequency distribution of saccade latency. Discrete bins show the 
number of trials within each time slot, in 20ms increments. TMS trials are shown 
in black, No-TMS trials are shown in blue. The largest proportion of saccades are 
initiated between 200ms and 240ms. 
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3.3 TMS to left and right DLPFC and CZ 

Figure 13 (page 68) shows the main results for mean percentage correct 

responses. The fixation task is shown in the left column, the saccade task is 

shown in the right column. The three sites are shown by row, beginning with the 

control site CZ on top, left DLPFC in the middle, and right DLPFC on the bottom. 

The four TMS conditions are shown in different colours: No-TMS in black, and 

1 OOms, 200ms, 300ms TMS intervals in grey, blue and red, respectively. Similar 

tothe No-TMS baseline data described above, performance declined as the 

number of distracters was increased. The control site CZ exhibited the least 

amount of variability between No-TMS and the three TMS intervals, that is, the 

lines most closely overlap. The variability in performance between No-TMS and 

TMS trials was larger for each of the experimental sites, left and right DLPFC, 

and revealed a different pattern between the two tasks. Generally, performance 

in the fixation task is inhibited by TMS, the No-TMS curve is higher than the three 

TMS time intervals. In the saccade task, performance is enhanced with TMS, the 

No-TMS curve is lower than each of the three TMS intervals. This is an 

interesting finding, one that that is explored further in the discussion section 

(section 4). The statistical relationship between these overall trends in 

performance are described below. 

Separate repeated-measures ANOV As were conducted to compare the 

baseline No-TMS condition with each TMS time interval (1 OOms, 200ms, 300ms). 
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In the fixation task, no significant differences were found for left DLPFC 

comparing No-TMS to TMS at 100ms (F 1,1 = 0.87; P= 0.38), 200ms (F 1,1 = 

1.70; P= 0.23), or 300ms (F 1,1=0.54; P= 0.49). When comparing baseline No­

TMS to the three TMS intervals for right DLPFC, a significant difference was 

found for 1 OOms (F 1,1 = 20.01; P = 0.003), but not 200 (F 1,1 = 2.48; P = 0.16), or 

300 (F 1,1 = 0.43; P = 0.53). No significant differences were found between No­

TMS and TMS at 100 (F 1,1 = 0.03; P = 0.86), 200 (F 1,1 = 0.26; P = 0.62), or 300 

(F 1,1 = 0.03; P = 0.87) for the control site, CZ. 

The same analysis comparing baseline No-TMS to each of the three TMS 

intervals (1 OOms, 200ms, 300ms) was conducted for the saccade task. For left 

DLPFC TMS, a significant difference in performance was observed for the 200ms 

interval (F 1,7 = 7.66; P = 0.03) compared to No-TMS, but not 1 OOms (F 1,1 = 0.95; 

P = 0.36), or 300ms (F 1,1 = 2.44; P = 0.16). For right DLPFC TMS, a significant 

difference in performance was found for the 300ms interval (F 1,1 = 6.64; P = 

0.04, but not 1 OOms (F 1,1 = 1.66; P = 0.24), or 200ms (F 1,1 = 0.39; P = 0.55). 

Just as in the fixation task, no significant differences in performance were found 

for CZ between No-TMS trials and TMS at the 1 OOms (F 1,1 = 0.45; P = 0.53), 

200ms (F 1,1 = 0.04; P = 0.85), or 300ms (F 1,1 = 0.03; P = 0.91) interval. 

Taken together, these results suggest there are differences in 

performance both between left and right DLPFC, and between tasks. There are 
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different patterns emerging from each of the two tasks, namely, suppression 

effects in the fixation task, and enhancement effects in the saccade task. 

67 



Rxatlon Task Saccade Task 
100 

~ 
90 

BO BO 
0 ~ ., 

70 ~ . ...,. "'t-~- .; 70 N 
~· "--~ -·· : 

BO -rn-- NoTMS BO 
IOOnlll 

50 -rn-- 200me 50 
---(·)-- 300ma 

- 2 3 4 2 3 
'# 100 100 ._,,,, 

! 90 90 r 
(I) 

BO BO ~ 
8 

70 
0 .... 70 r c '1J 

~ so so (!J 
I. 50 

3 4 3 

90 90 ::0 a· 
BO BO ~ 
70 70 0 r 
60 60 '1J 

50 50 (!J 

3 4 2 3 4 

Set-size 

Figure 13. Results of average performance for No-TMS and TMS conditions. 
The fixation task and saccade task for the control site CZ (top panels), left 
(middle panels) and right (bottom panels) DLPFC. Mean percentage correct is 
plotted across all subjects (n = 8), for each set-size (0-3). The No-TMS data 
curve is plotted in black, while each of the three TMS intervals are plotted in grey 
(1 OOms), blue (200ms), and red (300ms). Error bars represent the standard error 
of the mean. 
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3.4 Magnitude of the TMS effect 

Figure 14 (page 74) represents the magnitude of the TMS effect for each 

of the three TMS intervals (1 OOms, 200ms, 300ms). Here, the percent change 

correct is calculated by subtracting the No-TMS baseline data from each of the 

three TMS time intervals, for each site. A positive value indicates a facilitation of 

performance with TMS, a negative value indicates performance suppression. For 

simplification, the data is plotted for 1 OOms, 200ms, 300ms TMS intervals, after 

collapsing for set-size. 

As expected, control site CZ subtractions showed values closest to zero, 

meaning TMS had little effect on performance. The subtractions for the 

experimental sites, left and right DLPFC showed a larger TMS effect, with 

differences across each of the two tasks. In the fixation task, negative values 

were exhibited during right DLPFC TMS in a consistent manner. TMS inhibited 

performance during each of the three TMS intervals. During left DLPFC TMS, 

performance was inhibited during TMS at 200ms, but facilitated during TMS at 

1 OOms and 300ms. A consistent trend is visible in the saccade task, in that for 

both left and right DLPFC, each of the three TMS time intervals are positive 

values. This demonstrates that TMS to DLPFC facilitated performance when an 

eye movement was required. 

69 



TMS minus No-TMS data for each site independently 

Each of the three TMS time intervals were compared to each other, within 

each site, for the fixation task and saccade task independently. This comparison 

was intended to highlight the temporal differences in TMS effects, for each site. 

In the fixation task, comparisons of the mean change correct for the three 

TMS intervals yielded the following findings. There was a significant difference in 

performance for the three TMS intervals for left DLPFC TMS (F2,1 = 5.35; P = 

0.02). Post-hoc Tukey tests indicated that accuracy for the 200ms interval was 

significantly lower than 1 OOms (P = 0.047), but not 300ms (P = 0.09), and no 

difference was found between 1 OOms and 300ms (P = 1.00). There were no 

significant differences between the three TMS time intervals for right DLPFC (F2,7 

= 1.56; P = 0.24), or the control site CZ (F2,1 = 0.07; P = 0.93). In the saccade 

task, there were no significant differences in percent change correct for the three 

TMS time intervals for left DLPFC (F2, 1=1.69; P = 0.22), right DLPFC (F2,7 = 

1.68; P = 0.22), or control site CZ (F2,1 = 0.45; P = 0.65). 

The limited number of significant statistics here should not be taken as 

meaningless. The three TMS intervals generally exhibit a similar direction of 

effect (ie. negative or positive), within each individual site. Only in the case of the 

left DLPFC during fixation trials, do the three TMS time intervals fall in different 

directions. The similarity of the pattern in the remaining three experimental 

conditions provided the rationale for additional analyses to be conducted, 
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namely, comparisons of the three TMS intervals between sites, and between 

tasks. 

TMS minus No-TMS data comparing each site 

A second comparison of the mean change correct values was conducted 

for each TMS interval, this time comparing between the experimental sites: left 

and right DLPFC. For example, left DLPFC TMS at 1 OOms was compared to 

right DLPFC TMS at 1 OOms, in the fixation task. These comparisons were 

conducted to examine if there were differences in the TMS effect, between the 

two hemispheres. 

A repeated measures ANOVA was conducted to compare the percent 

change correct performance, between the left and right DLPFC for each of the 

three TMS intervals. In the fixation task, there was a significant difference in 

performance for TMS at 1 OOms, (F1,1 = 6.20; P = 0.04), but not at 200ms (F1,1 = 

0.04; P = 0.84), or 300ms (F1,1 = 1.1 O; P = 0.33). In the saccade task, there was 

no significant difference in performance between left and right DLPFC at the 

1 OOms (F1,1 = 0.09; P = 0.78), 200ms (F1.7 = 2.70; P = 0.14), or 300ms (F1,1 = 

0.58; P = 0.47) intervals. 

Again, this comparison failed to yield many significant results, as the 

pattern across the two experimental sites (within task), were so similar. The 

significant difference in the fixation task at the 1 OOms TMS interval was the result 
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of the directional difference of the percent change correct, ie. positive for left 

DLPFC and negative for right DLPFC. The possible explanations for hemispheric 

differences in the TMS effect will be explored further in the discussion section. 

TMS minus No-TMS data comparing between tasks 

The most striking effect in the magnitude of the TMS effect illustrated in 

Figure 14 (page 74), is the difference in performance in the fixation and saccade 

task. Our original hypothesis stated a similar effect would be found in both tasks, 

that TMS would likely inhibit performance. The difference in the TMS effect in the 

fixation and saccade tasks was surprising, particularly due to the facilitatory 

effects that were observed in the saccade task. The possible interpretations of 

this finding will be explored in more detail in the discussion section. 

A repeated measures ANOVA was conducted to compare performance 

between the fixation task and the saccade task, for each of the three TMS time 

intervals. For left DLPFC TMS, there was a significant difference between tasks 

for the 200ms interval (F1,1 = 7.22; P = 0.03), but not 1 OOms (F1,1 = 0.001; P = 

0.97), or 300ms (F1,1 = 0.33; P = 0.59). For right DLPFC TMS, there was a 

significant difference in performance between tasks at the 1 OOms interval (F1,7 = 

8.08; P = 0.02), and 300ms (F1,1 = 8.56; P = 0.02), but not 200ms (F1,1 = 1.47; 

p =0.27). 
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These contrasts confirm the overall trend for performance suppression in 

the fixation task and performance enhancement in the saccade task. Subjects' 

ability to perform the task without TMS was better for fixation than saccade trials, 

but with the addition of TMS, the proportion of correct responses was altered in 

different ways. During saccade trials, baseline performance drops rapidly with the 

addition of even one distracter. When TMS is applied at 1 OOms, 200ms, or 

300ms, the drop in performance is less drastic. It appears there is a quality of 

TMS that is unique to the saccade condition in the trans-saccadic memory task. 

Possible interpretations of this finding will be explored in the discussion (section 

4). 
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Figure 14. Magnitude of the TMS effect. The percent change correct is 
calculated as the difference of each of the three TMS time intervals from their 
respective No-TMS baseline, collapsed across set-size. The fixation task and 
saccade task data are shown for the control site CZ (top panels), left (middle 
panels) and right (bottom panels) DLPFC. Positive numbers represent a greater 
percentage correct and negative values represent a lesser percentage correct 
compared to the No-TMS baseline. 
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TMS minus No-TMS data with CZ subtracted 

Figure 15 (page 77) illustrates the percent change correct for left and right 

DLPFC, after subtracting the CZ data. The same repeated measures ANOVAs 

were conducted as above (for time, site, and task). As the CZ data displayed no 

significant differences between TMS and No-TMS (ie. the percent change correct 

was close to zero), the comparisons here are similar to those listed above. In the 

fixation task, there was a significant difference in performance for the three TMS 

intervals for left DLPFC TMS (F2,1 = 4.38; P = 0.03). Pairwise comparisons 

revealed that performance during TMS at the 200ms was significantly lower than 

1 OOms (P = 0.05), but not 300ms (P = 0.11 ). The effect of TMS time intervals for 

right DLPFC was not significant (F2,1 = 1.58; P = 0.24). In the saccade task, 

there were no significant differences in percent change correct for the three TMS 

time intervals for left DLPFC (F2, 1 = 1.44; P = 0.27), or right DLPFC (F2,1 = 1.26; 

p =0.31). 

Paired-samples t-tests were conducted to compare performance during 

left and right DLPFC TMS for each time interval. In the fixation task, there was a 

significant difference between left and right DLPFC TMS at 1 OOms (t (7) = 2.50; P 

= 0.04), but not 200ms (t (7) = 0.29; P = 0.84), or 300ms (t (7) = 1.07; P = 0.33). In 

the saccade task, there were no significant differences between left and right 

DLPFC TMS at 100ms (t(7) = -0.30; P= 0.78), 200ms (t(7) = 1.66; P= 0.14), or 

300ms (t (7) = -0.76; P= 0.47). For the between task comparison, there were no 
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significant differences found for left DLPFC TMS at 1 OOms {t (7) = 0.48; P = 0.64), 

200ms (t (7) = -2.18; P = 0.07), or 300ms (t (7) = -0.45; P = 0.67). Similarly, there 

were no significant differences found for right DLPFC TMS at 1 OOms (t (7) = -

1.41; P = 0.20), 200ms (t (7) = -1.15; P = 0.29), or 300ms (t (7) = -1.46; P = 0.19). 
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3.5 Effects of TMS on saccade metrics 

The saccade metrics were examined in order to assess whether TMS had 

an effect on the amplitude and latency of the saccade, or whether gaze position 

or the visual hemifield of the target contributed to performance. No differences 

were found between TMS trials and No-TMS trials for saccade amplitude for left 

(t (15) = 1.32; P = 0.44) or right (t c1s) = 1.68; P = 0.62) DLPFC. Similarly, no 

differences were found for average saccade latency for left (t (15) = 1.73; P = 

0.28) or right (t (15) = 1.1 O; P = 0.50) DLPFC TMS, compared to the No-TMS 

baseline. 

The visual field effect of TMS was also examined separately for both the 

fixation and saccade conditions. For the fixation task, no differences within either 

the left hemisphere: target presented in the left visual field (t (7) = -1.5; P = 0.19), 

target presented in the right visual field (t (7) = 2.08; P = 0.45), or the right 

hemisphere: target presented in the left visual field (t (7) = -0.82; P = 0.09), target 

presented in the right visual field (t (7) = -0.41; P = 0.70). For the saccade task, 

no differences within either the left hemisphere: target presented in the left visual 

field (t (7) = 0.05; P = 0.96), target presented in the right visual field (t (7) = -0.27; 

P = 0.80), or the right hemisphere: target presented in the left visual field (t (7) = 

0.67; P = 0.525), target presented in the right visual field (t (7) = -0.59; P = 0.58). 

Finally, saccade accuracy was assessed by calculating the mean saccade 

error, illustrated in Figure 16 (page 80). Saccade error is defined by the distance 
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in horizontal and vertical coordinates between the saccade target (second 

fixation cross) and the post-saccadic eye position (saccade end-point). There 

were no statistical differences found in saccade error between left DLPFC TMS 

and No-TMS trials (t (15) = -0.43; P= 0.66), or right DLPFC TMS and No-TMS 

trials (t (15) = -0.50; P = 0.62). 

As a result of these findings, we can conclude that TMS did not have any 

effect on the eye movement. Therefore, the results of the trans-saccadic 

memory task that were observed are not likely due to motor factors surrounding 

the saccade, rather a putative processing mechanism of the visual system. 
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Figure 16. Saccade accuracy for right DLPFC. Each data point represents the 
mean saccade error for No-TMS (in red) and TMS trials (in blue) for one 
representative subject. Confidence ellipses are shown with the means centered. 
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3.6 Summary of TMS results 

In an attempt to synthesize the TMS results, the percent change correct 

for each of the three TMS intervals were combined for each site, and each task. 

This is shown in Figure 17 (page 82). This clearly illustrates the difference in 

performance between the fixation and saccade task, for the experimental sites. 

A two-way repeated measures ANOVA (site X task) was conducted, revealing a 

significant difference in performance between left and right DLPFC (F 1,1 = 5.48; 

P= 0.05) but not task (F 1,1=1.68; P= 0.24). The interaction was not significant 

(F 1,1 = 0.59; P = 0.47). 

T-tests were utilized to examine the differences between tasks within each 

hemisphere. There was no significant difference within left DLPFC (t (7) = -1.35; 

P = 0.22). However, right DLPFC did exhibit a significant difference between 

performance in the fixation and saccade tasks (t (7) = -2.42; P = 0.04). Right 

DLPFC plays a dominant role in spatial working memory, so the juxtaposition 

between performance in the two tasks is an interesting point which will be 

discussed below. 
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Figure 17. The percent change correct for left and right DLPFC, with each of the 
three TMS intervals in the fixation and saccade task combined. Right DLPFC 
exhibits a significant difference in performance for fixation and saccade trials. 
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4. Discussion 

4. 1 General Discussion 

The main findings in this study are as follows. TMS over the control site 

CZ yielded no significant effect on performance during either the fixation or 

saccade task. However, TMS over left and right DLPFC had differential effects on 

performance during each of the two tasks, and at different TMS time intervals. 

Performance was significantly disrupted in the fixation task, when TMS was 

applied over right DLPFC at 1 OOms. In the saccade task, TMS over left DLPFC at 

200ms, and right DLPFC at 300ms significantly improved performance. Overall, 

there was a general trend for TMS during the fixation task to produce 

performance deficits, while TMS during the saccade task facilitated performance. 

When the three TMS time intervals were pooled, right DLPFC showed a 

significant difference between the suppression and facilitation effect in the 

fixation and saccade tasks, respectively. 

It has previously been hypothesized that trans-saccadic memory is a 

special case of visual working memory (Irwin, 1996), with the addition of signals 

related to spatial updating during saccades (Prime et al., 2008, 201 O; Melcher & 

Colby, 2008). Based on this, and the assumption that DLPFC is an area involved 

in general working memory (Miller & Cohen, 2001 ), we hypothesised that 

performance would be suppressed with TMS in both the fixation and saccade 

tasks in a similar manner. Clearly the results did not agree with this hypothesis, 
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so the root assumption of this hypothesis, particularly the neural mechanism for 

trans-saccadic memory, needs to be re-evaluated. 

4.2 Potential mechanisms of TMS action in this experiment 

Before interpreting the results with respect to the trans-saccadic 

integration literature, I will re-consider the mechanisms of action for single-pulse 

TMS. Single-pulse TMS has been known to produce enhancement effects during 

stimulation to certain cortical areas, and under certain task parameters (see 

Luber & Lisanby, 2013 for a review). TMS to motor and visual cortex can produce 

muscle twitches and phosphenes, indicative of increasing the excitability of 

targeted neural populations (Barker et al., 1985). TMS has also been shown to 

facilitate performance during tasks related to motor learning (Butefisch et al., 

2004), spatial working memory (Yamanaka et al., 2009), and visual awareness 

(Gosbras & Paus, 2003). Conditions under which TMS has facilitated 

performance (usually reduced RTs) vary considerably, but researchers have 

begun to converge on an understanding of how this may occur (Hamidi, Tononi & 

Postle, 2008; Kahn et al., 2005; Kirschen et al., 2006). One possibility is dis­

inhibition of a given cognitive region. If there are two brain areas with a reciprocal 

inhibitory influence on each other, then disruption of one area via the application 

of TMS can result in hyperactivity of the second region (Theoret et al., 2003; 

Hamidi, Tononi & Postle, 2008). These studies lend support to the notion that 

84 



the view of TMS as a 'virtual lesion' is an incomplete one. TMS may suppress or 

facilitate physiological processing, which can alter both local states and that of 

the network. 

TMS has also been described as injecting noise into the system, by 

inducing neural activity that is uncorrelated with cortical processing in a given 

region or network (Harris, Clifford & Miniussi, 2008). Here, the cortical signal that 

is associated with a given cognitive function is not reduced, but is masked by the 

increase in 'other' signals, or background noise. Recently, Fertonani et al. (2011) 

have made claims that this neural noise may serve a different function. They 

suggest that repeated stimulation (tRNS, random noise stimulation) can support 

temporal summation of neural activity, and may thwart homeostatic mechanisms 

of ion channels by providing a 'constant' electrical state, allowing membrane 

responses to return to resting state. An alternative hypothesis is outlined as a 

form of stochastic resonance. Adding neural noise into a non-linear system (such 

as the brain), can enhance the detection of sub-threshold, or weak stimuli, or 

enhance the information content of a neuronal signal (eg. action potentials; Moss, 

Ward & Sannita, 2004). It is still unclear however, exactly how TMS affects 

underlying neural populations. In the case of the trans-saccadic memory task 

used in our study, if noise were responsible for masking the memory signal in 

DLPFC, the results would be in line with our original hypothesis, that TMS would 

inhibit performance on a spatial memory task. If however, the noise produced by 
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TMS could enhance neural signal detection, the results could be quite different. 

By enhancing the memory signal, or top-down executive control system of 

DLPFC, performance on a spatial memory task might be improved. The addition 

of neural noise could also boost other sub-threshold signals that would otherwise 

go unnoticed, or reduce noise to relevant signals. 

4.3 Comparing current results to previous PPG, FEF TMS experiments 

Overall, we observed different TMS effects than that of Prime et al. (2008, 

2010). In both of the previous studies, TMS over PPC and FEF inhibited 

performance in both the fixation and saccade task, with a greater effect in the 

saccade task. This effect was more prominent in the right hemisphere. In the 

current study, we observed consistent suppression of performance in the fixation 

task and facilitation of performance in the saccade task, during right DLPFC 

stimulation. We did not observe the consistent suppression of performance that 

Prime et al.(2008, 2010) reported, across tasks. 

The time-specific effects we found were somewhat different than that of 

the previous PPC and FEF papers. Both of the previous studies demonstrated 

the greatest TMS effect at the 200ms interval. This is not surprising, given the 

role of these structures in spatial remapping and the temporal characteristics of 

saccades. The TMS effect was greatest when the pulse most closely coincided 

with that of the saccade. In the case of TMS to DLPFC, there were no such time-
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specific effects; that is TMS affected performance at all three TMS time intervals. 

In the saccade task, performance with TMS was the highest during the 

200ms and 300ms interval. This could support the notion that TMS to DLPFC dis­

inhibits the remapping network, and updated information is used by the fixation 

system to abolish old information. This may facilitate performance at the later 

TMS time intervals. 

A key question raised by the present study is the difference in 

performance between the fixation and saccade tasks, and why these results 

fundamentally differ from the PPC and FEF study results. There are several 

possibilities for this finding, which will be discussed below. 

4.4 Hemispheric asymmetry 

It is not uncommon for TMS to produce different results for corresponding 

sites in the left and right hemispheres (Maeda, 2000; Yamanaka, 2009). For 

example, Prime et al. (2008) only found suppression of trans-saccadic memory 

during TMS over right PPC. We observed consistent suppression in performance 

during right DLPFC TMS in the fixation task across each of the three TMS 

intervals. This is consistent with known asymmetries of DLPFC function, with left 

hemisphere activity related to verbal and non-spatial working memory, and right 

hemisphere activity related to spatial working memory (D'Esposito et al., 1998; 

Muri et al., 2000). We observed less asymmetry in saccade task. Performance 
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for each of the three TMS intervals was consistently enhanced. Left DLPFC 

displayed similar results, but was not consistent across each of the three TMS 

intervals. This suggests a more complex relationship between DLPFC and trans­

saccadic memory, which will be considered below. 

4.5 Working memory vs. TSM 

Our results suggest that visual working memory (fixation task) and trans­

saccadic memory (saccade task) may not share the same cortical mechanisms. 

Previous work has drawn from similarities between visual working memory and 

trans-saccadic memory such as capacity (Luck & Vogel, 1997; Irwin, 1991) and 

representation ie. object-based rather than feature based (Irwin & Andrews, 

1996), to infer that the two systems may be comprised of the same cortical 

network (Hollingworth, Richard & Luck, 2008). While it may be true that visual 

working memory and trans-saccadic memory exhibit similar properties, the 

manner by which they process information may be different. 

The role of DLPFC in visual working memory has been well established 

(Miller & Cohen, 2001 ). This is further evidenced by the results of the current 

experiment, where TMS to right DLPFC disrupts performance on a visuo-spatial 

memory task. DLFPC is necessary for simple working memory during fixation, 

but when an eye movement is required, information may be shifted to other 

regions of the brain, as observed during spatial updating tasks (Medendorp et al. 

88 



2003; Merriam et al. 2003). In addition to those studies (which used memory of 

point stimuli) the trans-saccadic memory task utilized in this study requires that 

the spatial location of the target is updated in order to successfully discriminate 

the change in orientation of the probe. It is well established that both FEF and 

PPC are involved in updating this memory signal, which poses the question of 

how DLPFC may influence perceptual processing incurred by these two regions 

(Duhamel et al., 1992; Umeno & Goldberg, 1997). It is known that DLPFC has 

direct connections to both areas, but what is the significance? 

DLPFC has anatomical and functional connections with parietal (PEF) and 

frontal regions (FEF, SEF) responsible for triggering intentional, reflexive, and 

memory-guided-saccades (Pierrot-Deseilligny et al., 1997), and sends extensive 

projections directly to SC (Goldman & Nauta, 1976; Johnson & Everling, 2006). 

DLPFC is thought to be essential in suppressing automatic responses during 

anti-saccade tasks and preparing predictive saccades (Pierrot-Deseilligny et al., 

2005) and saccade sequences (Fujii & Graybiel, 2003), suggesting a decisional 

role in oculo-motor behaviour (Pierrot-Deseilligny et al., 2005). Disruption of 

DLPFC does not affect saccade metrics during visually-guided saccades and 

impairments during memory-guided tasks are not attributed to sensory or motor 

deficits (Pierrot-Deseilligny et al. 1991; Coubard & Kapoula, 2006). DLPFC likely 

functions as a modulator for saccade generation, via direct efferent connections 

to FEF and SC (Boxer et al., 2006). 
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Thus, while DLPFC has some influence over saccade generation, it is 

likely not required for remapping the eye movement signal. Consistent with this, 

our results failed to show any disruption of remapping during TMS over either 

side of DLPFC. Indeed, we even observed a significant facilitation. The following 

sections consider how this may have occurred and what this might mean for 

understanding the neural mechanisms of trans-saccadic memory. 

4. 6 TMS facilitation during the saccade task 

We propose that the facilitation of working memory during TMS over 

DLPFC occurred through a process of dis-inhibition (Fierro, 2006; Cash et al., 

2009). More specifically, we propose here that other areas of the brain involved 

in trans-saccadic memory are not only involved in driving the remapping of 

remembered stimuli (Prime et al. 2008, 201 O; Melcher & Colby, 2008), but are 

also involved in the transient storage of this memory around the time of a 

saccade. During trials in the saccade task, TMS to DLPFC may affect the 

inhibitory inputs from DLPFC to the remapping network, resulting in a transient 

redistribution of visual information to areas associated with updating visual 

information. This could lead to improved performance during TMS in the saccade 

task by shifting cognitive processing from DLPFC to the remapping network. 

During saccades, this network would bear the brunt of the processing load, 
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rendering DLPFC less critical until the stored and updated information is re­

transferred to the fixational memory system (Miller & Cohen, 2001 ). 

TMS to DLPFC during saccades may facilitate remapping by effectively 

wiping out old fixation information in retinal coordinates that is no longer relevant 

for the new eye position. Around the time of a saccade, perceptual changes 

occur as visual information undergo spatial transformations (Hamker et al., 

2011 ). Several lines of study have emerged to account for the transfer of 

information across a saccade, by examining changes in perception in light of the 

functional requirements for space constancy. Studies of psychophysics have 

shown that stimuli flashed shortly before or during a saccade are erroneously 

localized in the visual field, appearing displaced (Matin, Pearce & Pola, 1970; 

Honda, 1989, Morrone, Ross & Burr, 1997). A saccade can distort estimations on 

a temporal scale, where the separation of two peri-saccadic flashes is 

systematically underestimated, or the perceived order may be switched (Morrone 

et al., 2005). During stable fixation, object displacement in the visual environment 

is easily detectable; during a saccade however, displacement can go unnoticed 

(Burr et al., 1982). Saccades can cause significant shifts or suppression of 

perceptual processing with varying consequences that the visual system must 

resolve. We propose here that during saccades, TMS to DLPFC facilitates 

remapping by aiding the transfer of updated information to the fixation system, by 

helping to erase old information. 
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Visual information stored in fixed retinal coordinates is spatially invalid 

after a saccade. This can be corrected by remapping the retinal information into 

the appropriate position for the new eye position (Duhamel et al., 1992; 

Nakamura & Colby, 2002). This process must incorporate erasing or 'dumping' 

the original information, so that is does not interfere or compete with the 

remapped information. Such dumping could occur through the same signals that 

cause suppression of signals during saccades. For example, Sommer and Wurtz 

(2006) observed suppression of visual memory signals in cells in the frontal eye 

fields during saccades. In principle, TMS over DLPFC could enhance this 

process by helping to wipe clean irrelevant information in the fixation visual 

memory system. 

4. 7 Putative mechanisms for trans-saccadic memory 

In order for subjects to perform the trans-saccadic memory task 

successfully, the spatial location and feature information of an object must be 

integrated with saccade-related signals within the visual system. In previous 

studies that used the same experimental task, it was shown that both FEF and 

PPC were involved in this process (Prime et al., 2008, 2010). 

The results with TMS to DLPFC are more complex. DLPFC is involved 

with a number of functions related to perceptual processing including spatial 

working memory, executive function, and top-down control (Miller & Cohen, 
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2001 ). We propose that during stable fixation the role of right DLPFC in spatial 

working memory is crucial, evidenced by the consistent suppression of 

performance during TMS. However, as suggested in the previous section, when 

an eye movement is necessitated right DLPFC is no longer an essential 

processing area, as the memory signal is transferred to areas associated with the 

remapping network, and then transferred back into the fixational memory system 

after the saccade. This possibility is outlined in Figure 18 (page 96). 

What is this feature remapping network? There are several possibilities, 

which could include areas involved in both driving the remapping and/or the 

transient storage of the remapped signals. Both PPC and FEF are involved in 

processing for visual feature memory, with different contributions emerging at 

temporal and functional scales (Muggleton et al., 2011; Corbetta & Shulman, 

2002). Using TMS to illustrate the time course of visual processing has shown 

that FEF disruption occurs earlier (40-80ms) than PPC disruption (120-160ms; 

Ashbridge et al., 1997; Kalla et al., 2008). In line with these temporal dynamics, 

FEF has demonstrated target discrimination independent of saccade planning, 

and may modulate extrastriate cortex target activity (Juan et al., 2004; Moore et 

al., 2003). PPC has been implicated in feature binding and spatial localization, 

consistent with a role in coordinate transformations and updating spatial 

information across eye movements (Treisman, 1996; van Donkelaar & Muri, 

2002). Feature information (shape) has been found in area LIP of the monkey, 
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suggesting the PPC may be doing more than reconciling spatial information, and 

could affect visual feature storage as well (Sereno & Maunsell, 1998). 

The early visual cortex (EVC) is another region that could be involved in 

trans-saccadic updating of visual feature memory. Spatial remapping has been 

observed in EVC (areas V1, V2, V3A), and the nature of such experiments 

suggests a close involvement with saccade related areas that provide access to 

CD signals (Merriam, Genovese, & Colby, 2003; Nakamura & Colby, 2002; 

Umeno & Goldberg, 1997; Ghandi et al., 1999; Desouza et al., 2002). EVC 

receives re-entrant projections from higher-up visual processing pathways, 

making it a good candidate for integrating feature information with spatial 

updating signals (Prime et al., 2006; Moore et al., 1998). Recently, a study 

conducted by Malik et al. (in press), showed that TMS to EVC disrupted feature 

memory in a trans-saccadic integration task. Here, performance discriminating 

orientation change of a single object was degraded when a saccade caused a 

shift in visual hemifield bringing the EVC target site into the 'remapped' space. 

Finally, Dunkley et al. (in press) have reported preliminary evidence for an 

area involved in trans-saccadic memory of visual orientation in posterior 

supramarginal gyrus in the inferior parietal lobule. If this is correct, then the study 

conducted by Prime et al. (2008), which involved TMS just posterior to this site, 

may have disrupted both saccade updating signals (as they proposed) and trans­

saccadic storage. 

94 



Thus, it is likely that visual feature storage and information transfer occurs 

across a distributed network, which functions both to retain spatial information 

and uphold space constancy. Both PPC and FEF are likely involved in this 

network, and other contributing cortical regions are still being identified. 
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lllter81 view 

medilal view 

Figure 18. Possible mechanisms for visual perception during trans-saccadic 
memory. During trials in the fixation task DLPFC, an area responsible for spatial 
working memory, is important for processing visual information. During trials in 
the saccade task, processing is shifted to areas responsible for remapping visual 
information (indicated in blue). Dotted lines represent subcortical structures, 
illustrated in the medial view. 
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5. Conclusions 

The work of Prime et al. (2008, 2010) demonstrated that single-pulse TMS 

to the PPC and FEF disrupts performance on a trans-saccadic memory task. The 

authors summate their findings in the context of trans-saccadic perception which 

reflects a two-stage process where stored representations in visual working 

memory are integrated with spatial updating processes that remap memory 

representations during an eye movement (Melcher & Colby, 2008; Prime et al., 

2011). Reduced accuracy associated with TMS to PPC and FEF, may be 

attributed to a compromised efferent copy signal related to the saccade. 

Results of the current study are more complex than that of Prime et al. 

(2008, 2010). We found an overall trend for both performance suppression and 

facilitation, during the fixation and saccade task, respectively. The differences in 

performance in these two tasks suggest that the role of DLPFC in processing 

spatial working memory changes when the requirements of the task are altered. 

Our original hypothesis stated that DLPFC, in particular right DLPFC, would be 

equally important for both visual working memory (fixation task) and trans­

saccadic memory (saccade task). Our data does not fully support this hypothesis. 

Right DLPFC does show consistent suppression of performance in the fixation 

task, but shows a different effect during the saccade task. The facilitated 

performance exhibited during right DLPFC TMS in the saccade task, could 

indicate that this particular cortical area is not critical for trans-saccadic 
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integration. With TMS, facilitations in performance may suggest a dis-inhibition of 

trans-saccadic processing, and thus aiding the transfer of updated information to 

the fixation system by helping to erase old information. Studies conducted by 

Prime et al. (2008, 2010) support the view that working memory and trans­

saccadic memory comprise similar cortical networks. The data presented here 

may draw a distinction between these two cortical networks. Here, the different 

TMS effects, and different memory load capabilities (significant differences 

between baseline performance in the two tasks), suggest that working memory 

and trans-saccadic memory may operate in a unique fashion. 

The results of this project build upon the work previously conducted by 

Prime et al (2008, 2010) and contribute to the understanding of trans-saccadic 

memory and DLPFC function. We propose that there may not be a single 

network for trans-saccadic integration, and that visual working memory and trans­

saccadic memory may involve distinct, interacting cortical mechanisms. Based 

on the data of the current experiment, the current working model of trans­

saccadic memory should be revised in a manner that is consistent with the 

previous PPC and FEF papers (Prime et al., 2008, 2010). The current data also 

necessitates further research in the future. 

Recall from Figure 4 (page 40), the four-panel prediction of how trans­

saccadic memory may involve the ventral and dorsal visual processing streams. 

We have shown that it is not likely that visual processing for trans-saccadic 
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memory occurs via feed-forward connections to DLPFC (Figure 4b). It would be 

useful however to examine this process using fMRI or concurrent fMRl-TMS to 

validate our results. Using the same, or similar event-related task design, fMRI 

could be used to examine whether the behavioural effects of TMS to DLPFC is 

correlated with an increase in BOLD (blood-oxygen level dependent) in areas of 

the remapping network. 

Recent evidence has implicated other areas involved in working memory, 

including the medial temporal lobe (Jeneson et al., 2012) and the hippocampus 

(Baddeley, 2011 ). It could be useful to examine these regions in an attempt to 

localize the memory component of trans-saccadic memory. Also still to test, are 

the bottom-up processing influences of early visual areas and automatic visual 

integration. V1 neurons have exhibited long latency responses that have been 

associated with top-down cognitive processing by higher visual areas (Motter, 

1994; Hupe et al., 1998). These effects likely are mediated by recurrent feedback 

to early visual cortex. This illustrates the re-entrant hypothesis outline in Figure 

4d (page 40), where signals from the visual processing streams are integrated 

through re-entrant pathways to earlier visual areas. Whether early visual areas 

play a role in integrating visual information from higher cortical areas and are 

involved in trans-saccadic memory beyond simple image processing remains to 

be formally tested. This could provide insight to the cortical mechanisms 

necessary for successful visual integration across eye movements, and 
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consolidate both the results presented here and that of Prime et al., (2008, 201 O) 

into a coherent model of trans-saccadic memory. 
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