
Higher Order Recurrent Neural Network
for Language Modeling

Rohollah Soltani

a thesis submitted to
the faculty of graduate studies

in partial fulfilment of the requirements
for the degree of
Master of Science

graduate program in Electrical Engineering and Computer
Science

York University
Toronto, Ontorio

April, 2016

© Rohollah Soltani, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by YorkSpace

https://core.ac.uk/display/77106526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In this thesis, we study novel neural network structures to better model long term
dependency in sequential data. We propose to use more memory units to keep
track of more preceding states in recurrent neural networks (RNNs), which are all
recurrently fed to the hidden layers as feedback through different weighted paths.
By extending the popular recurrent structure in RNNs, we provide the models with
better short-term memory mechanism to learn long term dependency in sequences.
Analogous to digital filters in signal processing, we call these structures as higher
order RNNs (HORNNs). Similar to RNNs, HORNNs can also be learned using
the back-propagation through time method. HORNNs are generally applicable to
a variety of sequence modelling tasks. In this work, we have examined HORNNs
for the language modeling task using two popular data sets, namely the Penn
Treebank (PTB) and English text8 data sets. Experimental results have shown
that the proposed HORNNs yield the state-of-the-art performance on both data
sets, significantly outperforming the regular RNNs as well as the popular LSTMs.

ii

Acknowledgments

The past two years here at York University are the learning years of my life:
not only my machines learn, but I learned a lot more. I appreciate it so much!
This thesis would not have been possible without the support of many people.
Firstly, I would like to express my sincere gratitude to my supervisor Prof Hui
Jiang for the continuous support of my master study and related research, for his
patience, motivation, and immense knowledge. His guidance helped me in all the
time of research and writing of this thesis. I could not have imagined having a
better advisor and mentor for my master study.
I thank my fellow lab-mates and my friends in York University for the stimulating
discussions and for all the fun we have had in the last two years.
Last but not the least, I would like to express my very profound gratitude to my
family for supporting me spiritually throughout my years of study and my life in
general. This accomplishment would not have been possible without them. Thank
you.
Rohollah

iii

Contents

Abstract ii

Acknowledgments iii

Table of Contents iv

List of tables vii

List of figures viii

Abbreviations ix

1 Introduction 1
1.1 Overview and motivation . 1
1.2 Contributions and Outline of the Thesis 3

2 Neural Networks 6
2.1 Artificial neural networks . 6
2.2 Artificial neuron . 7
2.3 Feedforward Neural Networks . 10
2.4 Training Neural Networks . 13

3 Recurrent Neural Network 16
3.1 Recurrent Neural Network . 16

3.1.1 RNN Training . 19
3.2 Difficulties of training recurrent networks 21

3.2.1 Hierarchical recurrent neural network 22
3.2.2 Long short term memory 23
3.2.3 Gated recurrent unit . 25
3.2.4 Clock-work RNNs . 27

iv

3.2.5 Other Variants . 28

4 Language modeling 31
4.1 Introduction . 31
4.2 Evaluating Language Models: perplexity 32
4.3 N-gram . 33
4.4 Neural Language Model . 34

4.4.1 One hot representation 35
4.4.2 Word Embedding . 36
4.4.3 Feed forward neural network based language model 36
4.4.4 Recurrent neural network based language model 38

5 Higher Order Recurrent Neural Networks 40
5.1 Higher Order RNNs (HORNNs) 41

5.1.1 Higher Order RNNs Training 45
5.2 Pooling Functions for HORNNs 46

5.2.1 Max-based Pooling . 48
5.2.2 FOFE-based Pooling . 49
5.2.3 Gated HORNNs . 49

6 Experiments 52
6.1 Experimental setup . 53

6.1.1 learning rate . 53
6.1.2 Weight decay . 54
6.1.3 Momentum . 54
6.1.4 Mini-batch gradient descent 55
6.1.5 Max norm . 55
6.1.6 Weight Initialization . 56
6.1.7 Network architecture . 56

6.2 Language Modeling on PTB . 57
6.2.1 Effect of Orders in HORNNs 57
6.2.2 HORNNs Complexity . 58
6.2.3 Effect of forgetting factor in FOFE HORNN 59
6.2.4 Model Comparison on Penn TreeBank 59

6.3 Language Modeling on English Text8 61

7 Conclusion 63
7.1 Conclusion . 63
7.2 Future works . 64

v

bibliography 69

vi

List of Tables

6.1 Penn Treebank properties . 53
6.2 Perplexities on the PTB test set for various HORNNs 58
6.3 Time complexity of HORNN models 59
6.4 Perplexities on the PTB test set for various examined models. . . 61
6.5 Perplexities on the text8 test set for various models. 62

vii

Listing of figures

2.1 The artificial neuron or perceptron 8
2.2 Common Activation Functions . 10
2.3 Feedforward Neural Networks . 11

3.1 Recurrent neural network’s structure 18
3.2 Recurrent neural network unfolded in time 19
3.3 Back-propagation through time (BPTT) 20
3.4 Long short term memory block 25
3.5 Long short term memory . 26
3.6 Gated recurrent unit . 29
3.7 Clock-work RNN . 30

4.1 Forward neural network based language model 37
4.2 Recurrent neural network based language model 38

5.1 1st order and higher order RNN 42
5.2 Unfolding a 3rd-order HORNN 43
5.3 BPTT path for a 3rd-order HORNN 44
5.4 Gradient flow in 3rd-order HORNN 46
5.5 Pooling Functions for HORNNs 47
5.6 Gated Hghier Order RNN . 50

6.1 Forgetting factor’s effect on Perplexities of FOFE HORNN 60

viii

Abbreviations

NN Neural Network
FNN Feed forward Neural Network
RNN Recurrent Neural Network
HORNN Higher Order Recurrent Neural Network
LSTM Long Sort Term Memory
GRU Gated Recurrent Unit
CWRNN Clock work Recurrent Neural Network
BPTT Back propagation Through Time
FOFE Fixed-Size Ordinally Forgetting Encoding
PPL Perplexity

ix

If opportunity doesn’t knock, build a door.

Milton Berle

1
Introduction

1.1 Overview and motivation

In the recent resurgence of neural networks in deep learning, deep neural net-

works have achieved huge successes in various real-world applications, such as

speech recognition, computer vision and natural language processing. Deep neu-

ral networks (DNNs) with a deep architecture of multiple nonlinear layers are

1

an extremely expressive model that can learn complex features and patterns in

data. Each layer of DNNs learns some concepts and transfers them to the next

layer and the next layer may continue to extract more complicated features, and

finally the last layer generates the desirable output. From some early theoretical

work [1, 2], it is well known that neural networks may be used as the so-called

universal approximators to map from any fixed-size input to another fixed-size

output. Recently, more and more empirical results have demonstrated that the

deep structure in DNNs is not just powerful in theory but also can be reliably

learned in practice from a large amount of training data.

Sequential modeling is a challenging problem in machine learning, which has

been extensively studied in the past. Recently, many deep neural network based

models have been very successful in this area, as shown in various tasks such

as language modeling [3], sequence generation [4, 5], machine translation [6] and

speech recognition [7]. Among various neural network models, recurrent neural

networks (RNNs) are appealing for modeling sequential data because they can

capture long term dependency in sequential data using a simple mechanism of re-

current feedback [8]. RNNs can learn to model sequential data over an extended

period of time, then carry out rather complicated transformations on the sequen-

tial data. RNNs have been theoretically proved to be a turing complete machine

[9]. RNNs in principle can learn to map from one variable-length sequence to an-

other. When unfolded in time, RNNs are equivalent to very deep neural networks

that share model parameters and receive the input at each time step. The recur-

sion in the hidden layer of RNNs can act as an excellent memory mechanism for

2

the networks. In each time step, the learned recursion weights may decide what

information to discard and what information to keep in order to relay onwards

along time.

While RNNs are theoretically powerful, the learning of RNNs needs to use the

so-called back-propagation through time (BPTT) method [10] due to the internal

recurrent cycles. Unfortunately, in practice, it turns out to be rather difficult to

train RNNs to capture long-term dependency due to the fact that the gradients in

BPTT tend to either vanish or explode [11]. Many heuristic methods have been

proposed to solve these problems. For example, a simple method, called gradient

clipping, is used to avoid gradient explosion [3]. However, RNNs still suffer from

the vanishing gradient problem since the gradients decay gradually as they are

back-propagated through time. As a result, some new recurrent structures are

proposed, such as long short-term memory (LSTM) [12] and gated recurrent unit

(GRU) [13]. These models use some learnable gates to implement rather com-

plicated feedback structures, which ensure that some feedback paths can allow

the gradients to flow back in time effectively. These models have given promising

results in many practical applications, such as sequence modeling [4], language

modeling [14], hand-written character recognition [15], machine translation [13],

speech recognition [7].

1.2 Contributions and Outline of the Thesis

In this work, we explore an alternative method to learn recurrent neural networks

(RNNs) to model long term dependency in sequential data. We propose to use

3

more memory units to keep track of more preceding RNN states, which are all

recurrently fed to the hidden layers as feedback through different weighted paths.

Analogous to digital filters in signal processing, we call these new recurrent struc-

tures as higher order recurrent neural networks (HORNNs). At each time step,

the proposed HORNNs directly combine multiple preceding hidden states from

various history time steps, weighted by different matrices, to generate the feed-

back signal to each hidden layer. By aggregating more history information of the

RNN states, HORNNs are provided with better short-term memory mechanism

than the regular RNNs. Moreover, those direct connections to more previous

RNN states allow the gradients to flow back more smoothly in the BPTT learning

stage. All of these ensure that HORNNs can be more effectively learned to cap-

ture long term dependency. Similar to RNNs and LSTMs, the proposed HORNNs

are general enough for a variety of sequential modeling tasks. In this work, we

have evaluated HORNNs for the language modeling task on two popular data sets,

namely the Penn Treebank (PTB) and English text8 sets. Experimental results

have shown that HORNNs yield the state-of-the-art performance on both data

sets, significantly outperforming the regular RNNs as well as the popular LSTMs.

The remainder of this thesis is organized as follows. In chapter 2, we will review

the background in Neural Networks which is essential to understand the rest of the

thesis. In chapter 3, the recurrent neural network will be introduced. In chapter 4,

We will briefly review language modeling and neural network language modeling.

In chapter 5, we first present the key idea of higher order RNNs (HORNNs)

in detail, and then introduce several variant HORNN structures using different

4

pooling functions to generate the feedback signals. In chapter 6, we report and

discuss the experimental results on two language modeling tasks. Finally, we

conclude the thesis with our findings in chapter 7.

5

Anyone who stops learning is old, whether at 2 or

8. Anyone who keeps learning stays young. The

greatest thing in life is to keep your mind young.

Moshe Arens

2
Neural Networks

2.1 Artificial neural networks

Artificial neural networks (ANNs) were originally developed as math-

ematical models of the information processing abilities of biological brains [16].

The basic structure of an ANN is a network of small processing units, or nodes

6

(Artificial neuron), joined to each other by weighted connections. In terms of the

original biological model, the nodes represent neurons, and the connection weights

represent the strength of the synapses between the neurons. The network is acti-

vated by providing an input to some or all of the nodes, and this activation then

spreads throughout the network along the weighted connections. The electrical

activity of biological neurons typically follows a series of sharp ‘spikes’, and the

activation of an ANN node was originally intended to model the average ring rate

of these spikes. Many varieties of ANNs have appeared over the years, with widely

varying properties. One important distinction is between ANNs whose connec-

tions form cycles, and those whose connections are acyclic. ANNs with cycles are

referred to as feedback or recurrent, neural networks. ANNs without cycles are

referred to as feed-forward neural networks (FNNs).

2.2 Artificial neuron

The artificial neuron or perceptron [17] is a simple computational unit that mimics

the process of a biological neuron. However, it should be noted that the function-

ality of a biological neuron is highly complex and still unclear. Perceptron is just

a simple mathematical abstraction of how a biological neuron acts. Perceptron

has scalar inputs and outputs. Each input has an associated weight which can be

modified as the model training. The neuron multiplies each input by its weight,

and then sums them, applies a activation function to the result, and passes it to

its output.

Figure 2.1 shows a single neuron which consists of inputs, an activation func-

7

Figure 2.1: The artificial neuron or perceptron

tion and the output. The output of the neuron is computed by the following

function:

y = f
(∑

i
Wixi + bi

)
(2.1)

where xi is a scaler input, Wi is neuron weight and bi is bias. Let the inputs be

some n-dimensional vector x. The output is computed by the following function:

y = f (Wtx+ b) (2.2)

where f defines the activation function which can be any linear or non-linear

transformation. Currently there is not any good theory to define which activation

function is suitable in which conditions, and choosing the correct activation func-

tion for a given task is most of the time an empirical question. Few frequently

used activation functions are:

Linear : This activation function is an identity function which passes on the

8

input directly to the output.

f(a) = a (2.3)

Sigmoid (Sig): This activation function is an S-shaped function, transforming

each value x into the range [0; 1].

f(a) = sigm(a) = 1
1+ exp(a) (2.4)

Hyperbolic tangent (Tanh): This activation function is an S-shaped function,

transforming the values x into the range [-1; +1]

f(a) = tanh(a) = exp(a)− exp(−a)
exp(a) + exp(−a) (2.5)

Rectified linear units (ReLU): The rectifier activation function [18], is a very

simple activation function that is easy to work with and has been shown many

times to produce excellent results. The ReLU map all negative values into zero.

f(a) = Relu(a) = max(∅, a) (2.6)

A single neuron described above can solve any linearly separable problem.

more complex problem needs an structure of this neuron which will be described

in the next sections.

9

(a) Linear activation function (b) Sigmoid activation function

(c) Tanh activation function (d) Relu activation function

Figure 2.2: Common Activation Functions

2.3 Feedforward Neural Networks

Feedforward neural networks (FNNs) are a subset of ANNs whose nodes form

an acyclic graph where information moves only in one direction, from input to

output. A FNN consists of multiple layers with each layer being defined as a set

of neurons.

Feed forward networks has two or more layers of neurons. Layer is a group

of neurons receiving connections from the previous layer or the input. In FNNs

neurons inside a layer are not connected to each other. A standard FNN as shown

10

in Figure 2.3 consist of three kinds of layers, an input layer, one or more hidden

layers and an output layer.

Figure 2.3: Feedforward Neural Networks

-Input layer is the first layer of network and it does not receives any connections

from other units, but instead it holds network’s input vector as output of its units

and each input units is connected to every units in the hidden layer.

-Hidden layers can be considered as a projection of the input features onto

some other feature space in such way it learns some concepts and transfers them

to the next layer. Hidden layer is usually some nonlinear mapping of the input

or the previous hidden layer. When we have more than one hidden layer, each

hidden layer then is fully connected to the next hidden layer and the last hidden

layer is fully connected to output layer. Given input X, the output of the hidden

layer is defined as follows:

h = f (Whx+ b) (2.7)

11

where W is the weight matrix, b is the bias vector and f is the hidden layer

activation function.

-Output layer: Output layer is the last layer of the neural network and its

output is the output of the network. The number of units in the output layer and

its activation function depend on the task. Given the hidden layer activations

(new features), the output layer compute the output f(x) as follow:

y = o (Wouth+ b) (2.8)

where W is the weight matrix and b is the bias vector and o is the output

activation function.

When we deal with a multiclass classification problem with k classes, the con-

vention is to have K output units, and normalize the output activations with the

softmax function [19] which gives us a valid probability distribution over the k

classes. The softmax activation function is defined as follows:

softmax(xi) =
exp(xi)∑k
j=1 exp(xj)

(2.9)

The result is a vector of non-negative real numbers that sum to one, making

it a discrete probability distribution over k possible outcomes.

The universal approximation theorem [20] says that a three layer neural net-

work can approximate any continuous function provided enough number of hidden

units are used. However the number of required hidden units need to grow expo-

nentially as the complexity of the problem increases.

12

To give more expressive power to neural networks with relatively smaller num-

ber of hidden neurons, one obvious solution is to add more hidden layers which

results in a highly non-linear transformation. One should note that adding more

layers makes sense only if the hidden neurons have non-linear activation functions.

In case of linear neurons, multiple hidden layers can be replaced by an equivalent

single hidden layer with suitable weights and biases.

Since the output of an FNN depends only on the current input, and not on

any past or future inputs, FNNs are more suitable for pattern classification than

sequence labelling. We will discuss this point further in chapter 3.

All the weight in layers of neural network are the parameters of the model to

be learnt. In the next section, we will discuss an efficient algorithm for learning

these parameters.

2.4 Training Neural Networks

In the previous section, we described an artificial neuron and a network of neurons.

In this section, we will see how to train them efficiently. The goal of neural network

training is to optimize the weights in the network so that they cause the actual

output to be closer to the the target output, thereby minimizing the network’s

error and enable the neural network to correctly map arbitrary inputs to outputs.

A neural network can be thought of as a function g that maps from input x to

output y vectors. The performance of the neural network is measured by a function

called cost function. which calculates the deviation of the network output g(x)

from the true output y. To train the neural network first the cost function of the

13

model should be computed and it has to be minimized during training. Some of

the frequently used cost function are:

1: Squared error function

L = ∥g(x)− y∥2 =
∑

i
(g(xi)− yi)2 (2.10)

This is suitable when the output is a real value.

2: Negative log likelihood

L = −
N∑
i
ti log g(xi) (2.11)

Where ti refers to the target probability which is set to 1.0 for the desired

output of the neural network, and 0.0 for all the other ones. This is suitable when

the output is a probability distribution. In order to use this cost function, softmax

activation functions need to be used in output layer.

Given a cost function, the training proceeds by learning all model parameters

w (neurons weights in all layers) for the neural network so that the cost function

over the training data is minimized. One of the popular algorithms to do this is

the gradient descent method.

Using gradient decent the training process starts with a forward propagation

of the sample input through the neural network in order to generate a network

output. Then using the cost function the network’s error is computed and the

contribution of each network parameters w to the error is computed by taking

the gradient of the cost function with respect to the parameters. Finally the

14

parameters of the network is updated based on the gradient so that the training

proceeds towards a local minimum of the cost function.

Δw =
∂L
∂w (2.12)

wnew = wold − λΔw (2.13)

where λ is the learning rate. The learning rate determines the magnitude of

the step taken by gradient descent towards the local minimum. A larger learning

rate corresponds with a faster training and a smaller learning rate with a more

accurate training. Learning rate is one of the parameters that have to be chosen

experimentally to achieve the best training performance.

The cost function for a feed forward neural network with multiple layers is a

composition of several sub-functions and therefor deriving gradients with respect

to each parameter is difficult. To efficiently calculate the gradient, a technique is

introduced known as backpropagation algorithm for function compositions based

on the chain rule for derivatives [21]. The idea of backpropagation is simple. When

we train a neural network, we compute each layer output based on the input from

the previous layer. Doing this computation from input to the output layer is

known as forward propagation. Now we compute the gradient for the output

layer and backpropagate the gradients until the input layer using the chain rule.

This is computationally efficient.

15

The real problem is not whether machines think

but whether men do.

B. F. Skinner

3
Recurrent Neural Network

3.1 Recurrent Neural Network

Recurrent neural networks (RNNs) are a subclass of artificial neural network that

have at least one recurrent connection which make a loop in the network architec-

ture. This recurrent connection is inspired by the cyclical connectivity of neurons

in the brain uses iterative function loops to store information.

16

RNNs differ from FNNs due to their feedback loop, which allows information

to be passed from one step of the network to the next. Therefore the output

from each step is fed back to the network to affect the outcome of the next step

(see Figure 3.1). FNNs accept only one input at a time and it is assumed that all

inputs are independent of each other. However RNNs don’t have these constraints

and can learn to map from one variable-length sequence to another. In principle

FNNs makes a static model of the data given each new example, it can accurately

classify or cluster them. In contrast, RNNs makes a dynamic model of the data

that change over time and based on the context of the examples can accurately

classify them.

Human’s memories are also aware of the context and use previous states to

properly interpret new data. We don’t start thinking from scratch every second.

As you read this thesis, you understand each word based on your understanding of

previous words. You don’t throw everything away and start thinking from scratch

again. Your thoughts have persistence.

This simple mechanism of recurrent feedback in RNNs allows the network to

store an internal state and consequently process sequences of data and therefore

capture long term dependency in sequential data [8]. The recurrent connections

allow a ‘memory’ of previous inputs to persist in the network’s internal state,

which can then be used to influence the network output. Theoretically, recurrent

neural networks can store relevant information from previous time steps for an

arbitrarily long period of time, making it possible to learn long-term dependencies.

RNNs have been theoretically proved to be a turing complete machine [9]. When

17

(a) Recurrent neural network (b) one step unfolded Recurrent neural network

Figure 3.1: Recurrent neural network’s structure

unfolded in time, RNNs are equivalent to very deep neural networks that share

model parameters and receive the input at each time step (Figure 3.2). The

recursion in the hidden layer of RNNs can act as an excellent memory mechanism

for the networks. In each time step, the learned recursion weights may decide what

information to discard and what information to keep in order to relay onwards

along time.

The forward pass of an RNN is the same as that of an FNN with a single

hidden layer, except that activations arrive at the hidden layer from both the

current input and the hidden layer activations from the previous time step. At

each time step t, an RNN receives an input xt and previous hidden state ht−1 , the

state of the RNN is updated recursively as follows (as shown in Figure 3.1):

ht = f(Winxt +Whht−1) (3.1)

18

Figure 3.2: Recurrent neural network unfolded in time

where f(·) is an nonlinear activation function, such as sigmoid or rectified linear

units (ReLU), and Win is the weight matrix in the input layer and Wh is the state

to state recurrent weight matrix. Due to the recursion, this hidden layer may act

as a short-term memory of all previous input data.

Given the state of the RNN (the current activation signals in the hidden layer

ht), the RNN generates the output according to the following equation:

yt = g(Woutht) (3.2)

where g(·) denotes the softmax function and Wout is the weight matrix in the

output layer.

3.1.1 RNN Training

the standard backpropagation algorithm is not appropriate for networks that have

cycles in them. Fortunately, a recurrent neural network which is used for N time

19

steps can be seen as a deep feed-forward network with N hidden layers by unfolding

the network in time as shown in Figure 3.3. However, unlike a normal hidden layer,

each hidden layer also takes an input (the input into the neural network at that

time step). Thus, the network actually has N+1 different inputs: an initial hidden

state and N inputs, one per time step.

Figure 3.3: back-propagation through time (BPTT)

This deep feed-forward network now can be trained by the normal gradient

descent as discussed before. Errors are propagated recursively from each hidden

layer to its previous time step and the recurrent weight matrix is updated. This

20

method of learning RNN networks is referred to as back-propagation through time

(BPTT) [10].

The unfolding can be applied for as many time steps as many training examples

were already seen. However usually a few step is enough because the gradient

vanish as it back-propagate through time.

3.2 Difficulties of training recurrent networks

While RNNs are theoretically powerful unfortunately, in practice, it turns out to

be rather difficult to train RNNs to capture long-term dependency. It is due to

the fact that the gradients in the back-propagation process tend to either, decays

or blows up exponentially and do not reach earlier input signals [11]. Therefore

the influence of the given input on hidden layer and output layer will vanish or

explode as it cycles around the recurrent connection of the RNN. Many heuristic

methods have been proposed to solve these problems. It turned out that gradient

explosion can be avoided by a simple yet efficient method, called gradient clipping

[3]. The norm of the gradient of the cost respect to the parameters is computed.

If the gradient’s norm is greater than a predefined threshold t, the norm of the

gradient will be renormalized to be equal to t. Otherwise, it is leaved as it is.

However, RNNs still suffer from the vanishing gradient problem since the gradi-

ents decay gradually as they are back-propagated through time. This makes the

internal states of the RNNs focused only on short term patterns, practically ignor-

ing longer term dependencies. There are two reasons for this phenomena. First,

the derivation of standard activation functions like the sigmoid and tanh function

21

is close to zero almost everywhere. This issue has been partially solved in deep

neural networks by using the rectified linear units (ReLU) [22]. Second, as the

gradient is back-propagated through time, its magnitude is multiplied over and

over by the recurrent weight matrix. If the eigenvalues of this matrix are smaller

than one, the gradient will converge to zero exponentially. In practice, gradients

are usually close to zero after 5 – 10 steps of backpropagation. This makes it hard

for simple recurrent neural networks to learn tasks containing delays of more than

about 10 time-steps between relevant input and target [23].

As a result, some new recurrent structures are proposed, such as long short-

term memory (LSTM) [12] and gated recurrent unit (GRU) [13]. These models

use some learnable gates to implement rather complicated feedback structures,

which ensure that some feedback paths can allow the gradients to flow back in

time effectively. These models have yielded promising results in many practical

applications, such as sequence modeling [4], language modeling [14], hand-written

character recognition [15], machine translation [13], speech recognition [7].

3.2.1 Hierarchical recurrent neural network

Hierarchical recurrent neural network proposed in [24] is one of the earliest papers

that attempt to improve RNNs to capture long term dependency in a better

way. It proposes to add linear time delayed connections to RNNs to improve the

gradient descent learning algorithm to find a better solution, eventually solving

the gradient vanishing problem. However, in this early work, the idea of multi-

resolution recurrent architectures has only been preliminarily examined for some

22

simple small-scale tasks. This work is somehow relevant to our work in this thesis

but the higher order RNNs proposed here differs in several aspects. Firstly, we

propose to use weighted connections in the structure, instead of simple multi-

resolution short-cut paths. This makes our models fall into the category of higher

order models. Secondly, we have proposed to use various pooling functions in

generating the feedback signals, which is critical in normalizing the dynamic ranges

of gradients flowing from various paths. Our experiments have shown that the

success of our models is largely attributed to this technique.

3.2.2 Long short term memory

The most successful approach to deal with vanishing gradients so far is to use

long short term memory (LSTM) model [12]. LSTM relies on a fairly sophisti-

cated structure made of gates to control flow of information to the hidden neurons.

As shown in Figure 3.4 There are three gates, i, f and o, controlling for input,

forget and output. They have the exact same equations, just with different pa-

rameter matrices. The gate values are in the range [0; 1] computed based on linear

combinations of the current input xt and the hidden layer’s previous states ht−1 ,

passed through a sigmoid activation function. The input gate controls how much

information about the new input should be written to the memory cell. While

the forget gate decides how much information from the memory cell should be

forgotten, and the output gate decides how much of the memory cell should be

revealed to the network. The output of the LSTM network will be computed as

follow:

23

Gates:

i = sigma(x×Wxi + ht−1 ×Whi)

o = sigma(x×Wxo + ht−1 ×Who)

f = sigma(x×Wxo + ht−1 ×Who)

Input activation:

g = tanh(x×Wxg + ht−1 ×Whg)

State update:

ct = ct−1 ⊙ f+ g⊙ i

ht = tanh(ct)⊙ o

Implementation view of the LSTM can be pictured like Figure 3.5. Here i,f

and o are the gates and g is a candidate hidden state. All of them are computed

based on the current input and the previous hidden state. ct is internal memory

of the network which is combination of the candidate hidden state g multiplied by

input gate i and previous internal memory state Ct−1 multiplied by the forget gate

f. therefor it is the combination of the amount of the memory we want to stay in

the network and the new candidate generated.

The input,output and forget gates allow LSTM memory cells to store and

24

Figure 3.4: Long short term memory block

retrieve information over long periods of time, thus avoiding the vanishing gradient

problem. For instance, as long as the input gate remains closed (has an activation

close to zero), the status of the cell will not be overwritten by the new inputs

arriving in the network, and can be made available to the network much later in

the sequence, by opening the output gate. The drawback of the LSTM is that it is

complicated and slow to learn. The complexity of this model makes the learning

very time consuming, and hard to scale for larger tasks.

3.2.3 Gated recurrent unit

The LSTM architecture is very effective, but also quite complicated. The com-

plexity of the system makes it hard to analyze, and also computationally expensive

to work with. The gated recurrent unit (GRU) [13] was recently introduced as

25

Figure 3.5: Long short term memory structure

an alternative to the LSTM. The GRU model is found to outperform the LSTM

on some language modeling and machine translation tasks. The GRU similar to

the LSTM, is based on a gating mechanism to learn long-term dependencies, but

with just two gates (reset gate and update gate) and without a separate internal

memory. The output of the GRU is computed as follow:

26

r = sigma(x×Wxr + ht−1 ×Whr)

z = sigma(x×Wxz + ht−1 ×Whz)

g = tanh(x×Wxg + (r⊙ ht−1)×Whg)

ht = z⊙ ht−1 + (1− z)⊙ g

As shown in figure 3.6 the reset gate (r) is used to control access to the previous

state and determined how to combine it with the input. The update gate (z) based

on an interpolation determine how much of the previous memory to keep in the

network.

3.2.4 Clock-work RNNs

Recently, clock-work RNNs [25] are proposed to address this problem as well,

which splits each hidden layer into several modules running at different clocks as

shown in Figure 3.7 . Each module receives signals from input and computes its

output at a predefined clock rate. Module is fully connected within but connec-

tions across modules are restricted. Nodes in one module are connected to other

module only if it is relatively faster. This mechanism allows slower modules to

focus on long-term, while faster modules focus on short-term information. Gated

feedback recurrent neural networks [26] attempt to implement a generalized ver-

sion of clock-work RNN using the gated feedback connection between layers of

stacked RNNs, allowing the model to adaptively adjust the connection between

27

consecutive hidden layers.

3.2.5 Other Variants

Some researchers explore simpler architectures to address this issue. One of these

approaches is to add a context layer to RNNs [27]. This layer is responsible

for capturing longer term dependencies in input data by making its weight matrix

close to identity. They observed that the recurrent connection of the RNN changes

largely at each time step, prohibiting it from remembering information over long

time periods. Therefore they proposed to add a slow-changing context layer to

the network, in this way, both short and longer dependency information can be

captured.

More recently, some short-cut skipping connections have been found useful in

learning very deep feed-forward neural networks as well, such as [28, 29, 30]. These

skipping connections between various layers of neural networks can improve the

flow of information in both forward and backward passes. Among them, highway

networks [31] introduce rather sophisticated skipping connections between layers,

controlled by some gated functions.

28

Figure 3.6: Gated recurrent unit structure

29

Figure 3.7: Clock-work RNN structure

30

without language, one cannot talk to people and

understand them, one cannot share their hopes

and aspirations, grasp their history, appreciate

their poetry, or savour their songs.

Nelson Mandela

4
Language modeling

4.1 Introduction

Language modeling is a fundamental task in many natural language processing

(NLP) applications such as machine translation [32], automatic speech recognition

[33] , response generation [34] and information retrieval [35].

31

A language model assign a probability distribution over a various linguistic

units, e.g., words that captures statistical regularities of natural language [36].

Thus syntactically and semantically reasonable sentences receive high probabili-

ties.

The goal of statistical language modeling is to predict the next word in textual

data given context; thus we are dealing with sequential data prediction problem

when constructing language models.

The probability of a sequence of symbols (usually words) is computed using a

chain rule as

P(w) =
N∑
i=1

P(wi | w1 · · ·w(i−1)) (4.1)

4.2 Evaluating Language Models: perplexity

To evaluate the performance of language models, an appropriate evaluation metric

is needed. The most commonly used measure for language models is perplexity

(PPL). The perplexity of a language model is calculated as the geometric average

of the inverse probability of the words on the test data: Calculation of the per-

plexity can be interpreted as evaluating how difficult it is for the language model

to predict the next word in a word sequence. The perplexity is a positive number.

The lower the perplexity, the better the model is at modeling unseen data.The

perplexity of a language model P is defined as

PPL = k

√√√√ k∏
i=1

1
P
(
wi | w(1···i−1)

) = 2−
1
k
∑k

i=1 log2 P(wi|w(1···i−1)) (4.2)

32

4.3 N-gram

The most frequently used language models are based on the count-based n-gram,

which are basically word co-occurrence frequencies. It intends to assign the prob-

ability distribution of a given word observed after a fixed number of previous

words. The maximum likelihood estimate of probability of word A in context H

is computed as

P(A | H) =
C(HA)

C(H)
(4.3)

Where h = w1,w2, · · · ,wk is called history or context and C(HA) denote the number

of times that the HA sequence of words has occurred in the data. The context H

can consist of several words, for the usual trigram models |H| = 2. For H = 0,

the model is called unigram, and it does not take into account history.

However, there is a severe problem in n-gram modeling caused by its frequency

counts. When confronted with words that have not been seen in the training

corpus in a particular context H, the probability becomes zero. This happens

because of the sparseness of data since the training corpus is always limited. In

this situation smoothing techniques need to be applied to address this issue. This

works by redistributing probabilities between seen and unseen (zero-frequency) n-

gram and assigning a small probability to all unseen n-grams. Detailed overview

of common smoothing techniques and empirical evaluation can be found in [37]

The most important factors that influence quality of the resulting n-gram

model is the choice of the order and of the smoothing technique. The most sig-

nificant advantages of models based on n-gram statistics are speed (probabilities

33

of n-grams are stored in precomputed tables), reliability coming from simplicity,

and generality (models can be applied to any domain or language effortlessly, as

long as there exists some training data). N-gram models are today still consid-

ered as state of the art not because there are no better techniques, but because

those better techniques are computationally much more complex, and provide just

marginal improvements, not critical for the success of given applications.

The weak part of n-grams is slow adaptation rate when only limited amount of

in-domain data is available. The most important weakness is that the number of

possible n-grams increases exponentially with the length of the context, preventing

these models to effectively capture longer context patterns. This is especially

painful if large amounts of training data are available, as much of the patterns

from the training data cannot be effectively represented by n-grams and cannot

be thus discovered during training. The idea of using neural network based LMs

is based on this observation, and tries to overcome the exponential increase of

parameters by sharing parameters among similar events, no longer requiring exact

match of the history H.

4.4 Neural Language Model

Neural networks have been widely considered as the most promising technique for

language modeling after Bengio et. al. publish their feed forward neural network

language model(NNLM) [38]. Since then neural network based models are able

to get much better result than n-gram models even with small datasets. The

main advantage of NNLMs over n-grams is that history is no longer seen as exact

34

sequence of words, but rather as a projection of them into some lower dimensional

continuous space. This decreases significantly the number of parameters in the

model that have to be trained, resulting in automatic clustering of similar histories

and mapping discrete words into a continuous space where similar context are near

each other. The main drawback of these models is their computational complexity,

which usually make it hard to train these models on large training set, using the

full vocabulary.

4.4.1 One hot representation

The train and test data for modeling a language are sequence of words. To rep-

resent this word to the network a unique number is assigned to each word and

the representation of the word is a vector of mostly zeros with just a one in the

position of the word’s number. This technique assures the network get inputs

without any prior knowledge of the words and each word will be in equal distance

away from others words. Mathematically each word I in the vocabulary V is rep-

resented as a binary vector Xi whose i-th element is one and all other element are

set to zero.

Xi = [0000 · · · 0 1︸︷︷︸
i−th

000 · · · 00]

This representation is called one-hot representation and has been wildly used

in neural network language modeling.

35

4.4.2 Word Embedding

Next step in most of the NNLMs is building the embedding layer which project

the inputs to some low dimensional continuous space. Let us see what it means to

multiply the weight matrix with an one-hot vector. Since only one of the elements

of the one-hot vector is non-zero, all the rows of the matrix will be ignored except

for the row corresponding to the index of the non-zero element of the one-hot

vector. This row is multiplied by 1, which simply gives us the same row as the

result of this whole matrix–vector multiplication. In short, the multiplication of

the weight matrix with an one-hot vector is equivalent to slicing out a single row

from the matrix.

This view has two consequences. First, in practice, it will be much more effi-

cient computationally to implement this multiplication as a simple table look-up.

Second, from this perspective, we can see each row of the matrix as a continuous-

space representation of a corresponding word. Each row will be a vector repre-

sentation of the i-th word in the vocabulary V. This representation is often called

a word embedding and should reflect the underlying meaning of the word.

4.4.3 Feed forward neural network based language model

The original model of feed-forward neural network based language model pro-

posed by Bengio [38] , which are depicted in Figure 4.1 as follows: the input of

the feed forward NNLM is formed by using a fixed length history of previous n-1

words, where each of the previous n-1 words is encoded using one-hot representa-

tion, using embedding layer each word in the vocabulary is mapped by a shared

36

parameter matrix to a real-valued vector. Following the projection layer is the

hidden layer and After that is the softmax output layer with the size equal to the

size of full vocabulary. The output is the conditional probabilities of current word

given its previous n-1 words.

Figure 4.1: forward neural network based language model

Feed forward Neural Networks usually represent time explicitly with a fixed-

length window of the recent history. While this type of models work well in

practice, fixing the window size makes long-term dependency harder to learn and

can only be done at the cost of a linear increase in the number of parameters.

37

4.4.4 Recurrent neural network based language model

Language modeling achieve a bigger improvement when mikolov et. al. [3] pro-

posed to use recurrent neural networks in language modeling. The main difference

between the feed-forward and the recurrent architecture is in representation of the

history. While for feed-forward NNLM, the history is just previous several words,

for the recurrent model, the representation of history is learned from the data

during training. The hidden layer of RNN represents all previous history and not

just n-1 previous words, thus the model can theoretically represent long context

patterns. In simple recurrent networks, the state of the hidden layer at a given

time is conditioned on its previous state. This recursion allows the model to store

complex patterns for longer time periods.

(a) Recurrent neural network (b) Unfolded recurrent neural network

Figure 4.2: Recurrent neural network based language model

Figure 4.2 depicts the RNNLM architecture model. The input layer consists

of a vector xt that represents the one-hot representation of the current word and

38

of vector h(t− 1) that represents a copy of previous activated hidden layer h after

the network is trained, the output layer y(t) represents P
(
x(t+1)|xt, h(t−1)

)
.

39

Start by doing what’s necessary; then do what’s

possible; and suddenly you are doing the impos-

sible.

Francis of Assisi

5
Higher Order Recurrent Neural Networks

A recurrent neural network (RNN) is a type of neural network suitable

for modeling a sequence of arbitrary length. At each time step t, an RNN receives

an input xt, the state of the RNN is updated recursively as follows (as shown in

40

the left part of Figure 5.1):

ht = f(Winxt +Whht−1) (5.1)

where f(·) is an nonlinear activation function, such as sigmoid or rectified linear

(ReLU), and Win is the weight matrix in the input layer and Wh is the state to

state recurrent weight matrix. Due to the recursion, this hidden layer may act as

a short-term memory of all previous input data.

Given the state of the RNN, i.e., the current activation signals in the hidden

layer ht, the RNN generates the output according to the following equation:

yt = g(Woutht) (5.2)

where g(·) denotes the softmax function and Wout is the weight matrix in the out-

put layer. In principle, this model can be trained using the back-propagation

through time (BPTT) algorithm [10]. This model has been used widely in se-

quence modeling tasks like language modeling [3].

5.1 Higher Order RNNs (HORNNs)

RNNs are very deep in time and the hidden layer at each time step represents the

entire input history, which acts as a short-term memory mechanism. However,

due to the gradient vanishing problem in back-propagation, it turns out to be

very difficult to learn RNNs to model long-term dependency in sequential data.

In this work, we extend the standard RNN structure to better model long-

41

Figure 5.1: Comparison of model structures between an RNN (1st order) and a higher order RNN
(3rd order). The symbol z−1 denotes a time-delay unit (equivalent to a memory unit).

term dependency in sequential data. As shown in the right part of Figure 5.1,

instead of using only the previous RNN state as the feedback signal, we propose

to employ multiple memory units to generate the feedback signal at each time

step by directly combining multiple preceding RNN states in the past, where

these time-delayed RNN states go through separate feedback paths with different

weight matrices. Analogous to the filter structures used in signal processing, we

call this new recurrent structure as higher order RNNs, HORNNs in short. The

order of HORNNs depends on the number of memory units used for feedback. For

example, the model used in the right of Figure 5.1 is a 3rd-order HORNN. On the

other hand, regular RNNs may be viewed as 1st-order HORNNs.

In HORNNs, the feedback signal is generated by combining multiple preceding

RNN states. Therefore, the state of an N-th order HORNN is recursively updated

42

as follows:

ht = f
(
Winxt +

N∑
n=1

Whnht−n

)
(5.3)

where {Whn | n = 1, · · ·N} denotes the weight matrices used for various feed-

back paths.

Figure 5.2: Unfolding a 3rd-order HORNN

Similar to RNNs, HORNNs can also be unfolded in time to get rid of the recur-

rent cycles. As shown in Figure 5.2, we unfold a 3rd-order HORNN in time, which

clearly shows that each HORNN state is explicitly decided by the current input xt

and all previous 3 states in the past. This structure looks similar to the skipping

short-cut paths in deep neural networks but each path in HORNNs maintains a

learnable weight matrix. The new structure in HORNNs can significantly improve

the model capacity to capture long-term dependency in sequential data. At each

43

Figure 5.3: Illustration of all back-propagation paths in BPTT for a 3rd-order HORNN.

time step, by explicitly aggregating multiple preceding hidden activities, HORNNs

may derive a good representation of the history information in sequences, leading

to a significantly enhanced short-term memory mechanism [39].

During the back-propagation learning procedure, these skipping paths directly

connected to more previous hidden states of HORNNs may allow the gradients to

flow more easily back in time, which eventually leads to a more effective learning

of models to capture long term dependency in sequences. Therefore, this structure

may help to largely alleviate the notorious problem of vanishing gradients in the

RNN learning.

44

5.1.1 Higher Order RNNs Training

Obviously, HORNNs can be learned using the same BPTT algorithm as regular

RNNs, except that the error signals at each time step need to be back-propagated

to multiple feedback paths in the network. As shown in Figure 5.3, for a 3rd-order

HORNN, at each time step t, the error signal from the hidden layer ht will have

to be back-propagated into four different paths: i) the first one back to the input

layer, xt; ii) three more feedback paths leading to three different histories in time

scales, namely ht−1, ht−2 and ht−3. A higher order recurrent neural network which

is used for N time steps can be seen as a deep feed-forward network with N hidden

layers by unfolding the network in time as shown in figure 5.4.

Interestingly enough, if we use a fully-unfolded implementation for HORNNs

as in Figure 5.2, the overall computation complexity is comparable with regular

RNNs. Given a whole sequence, we may first simultaneously compute all hidden

activities (from xt to ht for all t). Secondly, we recursively update ht for all t using

Eq.(5.3). Finally, we use GPUs to compute all outputs together from the updated

hidden states (from ht to yt for all t) based on eq.(5.2). The backward pass in

learning can also be implemented in the same three-step procedure. Except the

recursive updates in the second step (this issue remains the same in regular RNNs),

all remaining computation steps can be formulated as large matrix multiplications.

As a result, the computation of HORNNs can be implemented fairly efficiently

using GPUs.

45

Figure 5.4: back-propagation flow in BPTT for a 3rd-order HORNN.

5.2 Pooling Functions for HORNNs

As discussed above, the shortcut paths in HORNNs may help the models to cap-

ture long-term dependency in sequential data. On the other hand, they may also

complicate the learning in a different way. Due to different numbers of hidden

layers along various paths, the signals flowing from different paths may vary dra-

matically in the dynamic range. For example, in the forward pass in Figure 5.2,

46

three different feedback signals from different time scales, e.g. ht−1, ht−2 and ht−3,

flow into the hidden layer to compute the new hidden state ht. The dynamic range

of these signals may vary dramatically from case to case. The situation may get

even worse in the backward pass during the BPTT learning. For example, in a

3rd-order HORNN in Figure 5.2, the node ht−3 may directly receive an error sig-

nal from the node ht. In some cases, it may get so strong as to overshadow other

error signals coming from closer neighbours of ht−1 and ht−2. This may impede the

learning of HORNNs, yielding slow convergence or even poor performance.

Figure 5.5: A pooling function is used to calibrate various feedback paths in HORNNs.

Here, we have proposed to use some pooling functions to calibrate the sig-

nals from different feedback paths before they are used to recursively generate a

new hidden state, as shown in Figure 5.5. In the following, we will investigate

three different choices for the pooling function in Figure 5.5, including max-based

pooling, FOFE-based pooling and gated pooling.

47

5.2.1 Max-based Pooling

Max-based pooling is a simple strategy that chooses the most responsive unit

(exhibiting the largest activation value) among various paths to transfer to the

hidden layer to generate the new hidden state. Many biological experiments have

shown that biological neuron networks tend to use a similar strategy in learning

and firing.

In this case, instead of using eq.(5.3), we use the following formula to update

the hidden state of HORNNs:

ht = f
(
Winxt +maxNn=1 (Whnht−n)

)
(5.4)

where maximization is performed element-wisely to choose the maximum value in

each dimension to feed to the hidden layer to generate the new hidden state. The

aim here is to capture the most relevant feature and map it to a fixed predefined

size.

The max pooling function is simple and biologically inspired. However, the

max pooling strategy also has some serious disadvantages. For example, it has no

forgetting mechanism and the signals may get stronger and stronger. Furthermore,

it loses the order information of the preceding histories since it only choose the

maximum values but it does not know where the maximum comes from.

48

5.2.2 FOFE-based Pooling

The so-called fixed-size ordinally-forgetting encoding (FOFE) method was pro-

posed in [40] to encode any variable-length sequence of data into a fixed-size

representation. In FOFE, a single forgetting factor α (0 < α < 1) is used to

encode the position information in sequences based on the idea of exponential

forgetting to derive invertible fixed-size representations. In this work, we borrow

this simple idea of exponential forgetting to calibrate all preceding histories using

a pre-selected forgetting factor as follows:

ht = f
(
Winxt +

N∑
n=1

αn ·Whnht−n

)
(5.5)

where the forgetting factor α is manually pre-selected between 0 < α < 1. The

above constant coefficients related to α play an important role in calibrating sig-

nals from different paths in both forward and backward passes of HORNNs since

they slightly underweight the older history over the recent one in an explicit way.

5.2.3 Gated HORNNs

In the section, we follow the ideas of the learnable gates in LSTMs [12] and

GRUs [13] as well as the recent soft-attention in [41]. Instead of using constant

coefficients derived from a forgetting factor, we may let the network automatically

determine the combination weights based on the current state and input. In this

case, we may use sigmoid gates to compute combination weights to regulate the

information flowing from various feedback paths. The sigmoid gates take the

49

current data and previous hidden state as input to decide how to weight all of the

precede hidden states. The gate function weights how the current hidden state is

generated based on all the previous time-steps of the hidden layer. This allows

the network to potentially remember information for a longer period of time.

Figure 5.6: Gated HORNNs use learnable gates to combine various feedback signals.

In a gated HORNN, the hidden state is recursively computed as follows:

ht = f
(
Winxt +

N∑
n=1

rn ⊙
(
Whnht−n

))
(5.6)

where ⊙ denotes element-wise multiplication of two equally-sized vectors, and the

gate signal rn is calculated as

rn = σ (Wg
1nxt +Wg

2nht−n) (5.7)

50

where σ(·) is the sigmoid function, and Wg
1n and Wg

2n denote two weight matrices

introduced for each gate.

Note that the computation complexity of gated HORNNs is comparable with

LSTMs and GRUs, significantly exceeding the other HORNN structures because

of the overhead from the gate functions in eq. (5.7).

51

Knowing is not enough; we must apply. Willing

is not enough; we must do.

Johann Wolfgang von Goethe

6
Experiments

In this section, we evaluate the proposed higher order RNNs (HORNNs) on sev-

eral language modeling tasks. A statistical language model (LM) is a probability

distribution over sequences of words in natural languages. Recently, neural net-

works have been successfully applied to language modeling [38, 42], yielding the

state-of-the-art performance. In language modeling tasks, it is quite important

52

Table 6.1: The sizes of the PTB and English text8 corpora are given in number of words.

Corpus train valid test
PTB 930K 74K 82K
text8 16.8M - 0.17M

to take advantage of the long-term dependency of natural languages. Therefore,

it is widely reported that RNN based LMs can outperform feedforward neural

networks in language modeling tasks. We have chosen two popular LM data sets,

namely the Penn Treebank (PTB) and English text8 sets, to compare our proposed

HORNNs with traditional n-gram LMs, RNN-based LMs and the state-of-the-art

performance obtained by LSTMs [4, 27], FOFE based feedforward NNs [40] and

memory networks [43]. Details of the two data sets can be found in Table 6.1.

6.1 Experimental setup

In our experiments, we use the mini-batch stochastic gradient decent (SGD) algo-

rithm to train all neural networks. The number of back-propagation through time

(BPTT) steps is set to 30 for all recurrent models. We have used the weight de-

cay, momentum and column normalization in our experiments to improve model

generalization. Detailed experimental setup has been describe in following section.

6.1.1 learning rate

The learning rate (LR) is a parameter that determines how much an updating step

influences the current value of the weights. Too large learning rates will prevent

the network from converging on an effective solution. Too small learning rates

53

will take very long time to converge. It is advised to have initial learning rates

range in [0,1] , then based on the network’s loss over time decrease it.

Δw =
∂L
∂w

wnew = wold − λΔw

where λ is the learning rate. In this work the initial learning rate was chosen

from [0.4, 0.5, 0.6, 0.7, 0.8, 0.9] and we halve the learning rate at the end of each

epoch if the cross entropy function on the validation set does not decrease.

6.1.2 Weight decay

Weight decay, by shrinking your coefficients toward zero, ensures that you find

a local optimum with small-magnitude parameters. This is usually crucial for

avoiding overfitting (although other kinds of constraints on the weights can work

too). As a side benefit, it can also make the model easier to optimize, by making

the objective function more convex:

wnew = wold − λΔw− λγwold

where γ is the weight decay factor.

6.1.3 Momentum

Momentum is a technique for speeding gradient descent by accumulating a velocity

vector in directions of reduction in the cost function [44]. Momentum is used

54

to diminish the fluctuations in weight changes over consecutive iteration and to

prevent the system from converging to a local minimum or saddle point:

Δw =
∂L
∂w

M = μM− λΔw

wnew = wold +M− λγwold

where μ is the momentum coefficient in the range of [0,1]. in my works, μ has

been set to 0.9.

6.1.4 Mini-batch gradient descent

When we are dealing with huge data, which is typical in most of the experiments

we have in language modeling task, using minibatch gradient descent is more ef-

fective. In mini-batch gradient descent we update the parameters after seeing a

mini-batch of training examples rather than a single example. This is computa-

tionally more efficient since it can exploit the available advancements in doing

fast matrix multiplications using GPUs. In our works, model update is conducted

using a mini-batch of 20 subsequences each of which is of 30 in length. .

6.1.5 Max norm

We also found that max-norm helped to further increase the performance of our

models[45, 46]. Max norm is constraining the norm of the incoming/outgoing

weight vector at each hidden unit to be upper bounded by a fixed constant c. Max

55

norm by fixing the L2 norm of the incoming/outgoing weights to each hidden unit

constraining the weight vector to lie inside a ball of fixed radius. if w represents the

weights vector, the neural network is optimized under the constraint ∥ w ∥2 ≤ c.

6.1.6 Weight Initialization

The optimization procedure may get stuck in a local minimum or a saddle point

due to the non-convexity of the loss function. Starting from different initial points

may lead to different results. Thus, it is preferred to run several restarts of the

training starting at different random initializations, and choosing the best one

based on a validation set. For the experiments in this work, All model parame-

ters (weight matrices in all layers) are randomly initialized based on a Gaussian

distribution with zero mean and standard deviation of 0.1.

6.1.7 Network architecture

We have used 400 nodes in each hidden layer for the PTB data set and 500 nodes

per hidden layer for the English text8 set. A hard clipping is set to 5.0 to avoid

gradient explosion during the BPTT learning. In the FOFE-based pooling func-

tion for HORNNs, we set the forgetting factor, α, to 0.6. In our experiments, we

do not use the dropout regularization [47] in all experiments since it significantly

slows down the training speed, not applicable to any larger corpora.

56

6.2 Language Modeling on PTB

One of the most widely used data sets for evaluating performance of the statistical

language models is the Penn Treebank portion of the WSJ corpus. The standard

Penn Treebank (PTB) corpus consists of about 1M words. The vocabulary size

is limited to 10k and all words outside the 10K vocabulary are mapped to the

<unk> token. The preprocessing method and the way to split data into train-

ing/validation/test sets are the same as [42]. The size of PTB is summarized in

Table 6.1. PTB is a relatively small text corpus. We first investigate various

model configurations for the HORNNs based on PTB and then compare the best

performance with other results reported on this task.

6.2.1 Effect of Orders in HORNNs

In the first experiment, we first investigate how the used orders in HORNNs

may affect the performance of language models (as measured by perplexity). We

have examined all different higher order model structures proposed in this paper,

including HORNNs and various pooling functions in HORNNs. The orders of

these examined models varies among 2, 3 and 4. We have listed the performance

of different models on PTB in Table 6.2. As we may see, we are able to achieve a

significant improvement in perplexity when using higher order RNNs for language

models on PTB, roughly 10-20 reduction in PPL over regular RNNs. We can see

that performance may improve slightly when the order is increased from 2 to 3

but no significant gain is observed when the order is further increased to 4. As a

result, we choose the 3rd-order HORNN structure for the following experiments.

57

Table 6.2: Perplexities on the PTB test set for various HORNNs are shown as a function of order
(2, 3, 4). Note the perplexity of a regular RNN (1st order) is 123, as reported in [42].

Models 2nd order 3rd order 4th order
HORNN 111 108 109
Max HORNN 110 109 108
FOFE HORNN 103 101 100
Gated HORNN 102 100 100

Among all different HORNN structures, we can see that FOFE-based pooling and

gated structures yield the best performance on PTB.

6.2.2 HORNNs Complexity

In language modeling, both input and output layers account for the major portion

of model parameters. Therefore, we do not significantly increase model size when

we go to higher order structures. For example, in Table 6.2, a regular RNN

contains about 8.3 millions of weights while a 3rd-order HORNN (the same for max

or FOFE pooling structures) has about 8.6 millions of weights. In comparison,

an LSTM model has about 9.3 millions of weights and a 3rd-order gated HORNN

has about 9.6 millions of weights.

As for the training speed, most HORNN models are only slightly slower than

regular RNNs. For example, one epoch of training on PTB running in one

NVIDIA’s TITAN X GPU takes about 80 seconds for an RNN, about 120 seconds

for a 3rd-order HORNN (the same for max or FOFE pooling structures). Simi-

larly, training of gated HORNNs is also slightly slower than LSTMs. For example,

one epoch on PTB takes about 200 seconds for an LSTM, and about 225 seconds

58

Table 6.3: Time complexity of HORNN models

Models second
RNN 80
LSTM 198
HORNN (3rd order) 121
Max HORNN (3rd order) 122
FOFE HORNN (3rd order) 120
Gated HORNN (3rd order) 225

for a 3rd-order gates HORNN.

6.2.3 Effect of forgetting factor in FOFE HORNN

In this experiment, we study the effect of the forgetting factor, α, on the perfor-

mance of FOFE-based pooling HORNNs. We have trained a number of 3rd-order

FOFE-based pooling HORNNs by using the same hyper-parameters except the

forgetting factor (α) varies between 0.2 and 0.9. The performance of these models

in perplexity is shown as a function of α in Figure 6.1. The results are consistent

with the finding in [40] that FOFE works the best when α lies between 0.5 and

0.7. Therefore, in our experiments, we always choose α = 0.6.

6.2.4 Model Comparison on Penn TreeBank

At last, we report the best performance of various HORNNs on the PTB test set

in Table 6.4. We compare our 3rd-order HORNNs with all other models reported

on this task, including RNN [42], stack RNN [48], deep RNN [48], FOFE-FNN

59

90

95

100

105

110

115

120

125

130

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
P
L

Alpha

Figure 6.1: Perplexities of 3rd-order FOFE HORNNs are shown as a function of forgetting factor α.

[40] and LSTM [4]. *

From the results in Table 6.4, we can see that our proposed higher order RNN

architectures significantly outperform all other baseline models reported on this

task[39]. Both FOFE-based pooling and gated HORNNs have achieved the state-

of-the-art performance, i.e., 100 in perplexity on this task. To the best of our

knowledge, this is the best reported performance on PTB under the same training

condition.
*All models in Table 6.4 do not use the dropout regularization, which is somehow equivalent

to data augmentation. In [47, 49], the proposed LSTM-LMs (word level or character level)
achieve lower perplexity but they both use the dropout regularization and much bigger models
and it takes days to train the models, which is not applicable to other larger tasks.

60

Table 6.4: Perplexities on the PTB test set for various examined models.

Models Test PPL
KN 5-gram [42] 141
RNN [42] 123
LSTM [4] 117
Stack RNN [48] 110
Deep RNN [48] 107
FOFE-FNN [40] 108
HORNN (3rd order) 108
Max HORNN (3rd order) 109
FOFE HORNN (3rd order) 101
Gated HORNN (3rd order) 100

6.3 Language Modeling on English Text8

In this experiment, we will evaluate our proposed HORNNs on a much larger

text corpus, namely the English text8 data set. The text8 data set contains

a preprocessed version of the first 100 million characters downloaded from the

Wikipedia website. We have used the same preprocessing method as [27] to process

the data set to generate the training and test sets. We have limited the vocabulary

size to about 44k by replacing all words occurring less than 10 times in the training

set with an <UNK> token. As shown in Table 6.1, the text8 set is about 20 times

larger than PTB in corpus size. The model training on text8 takes much longer to

finish. We have not tuned hyperparameters in this data set. We simply follow the

best setting used in PTB to train all HORNNs for the text8 data set. Meanwhile,

we also follow the same learning schedule used in [27]: We first initialize the

learning rate to 0.5 and run 5 epochs using this learning rate; After that, the

61

Table 6.5: Perplexities on the text8 test set for various models.

Models Test PPL
RNN [27] 184
LSTM [27] 156
SCRNN [27] 161
E2E Mem Net [43] 147
HORNN (3rd order) 172
Max HORNN (3rd order) 163
FOFE HORNN (3rd order) 154
Gated HORNN (3rd order) 144

learning rate is halved at the end of every epoch.

Because the training is very time-consuming, we have only evaluated 3rd-order

HORNNs on the text8 data set. The perplexities of various HORNNs are sum-

marized in Table 6.5. We have compared our HORNNs with all other baseline

models reported on this task, including RNN [27], LSTM [27], SCRNN [27] and

end-to-end memory networks [43]. Results have shown that all HORNN models

work pretty well in this data set except the normal HORNN significantly un-

derperforms the other three models. Among them, the gated HORNN model

has achieved the best performance, i.e., 144 in perplexity on this task, which is

slightly better than the recent result obtained by end-to-end memory networks

(using a rather complicated structure). To the best of our knowledge, this is the

best performance reported on this task [39].

62

7
Conclusion

7.1 Conclusion

In this thesis, we have proposed some new structures for recurrent neural networks,

called as higher order RNNs (HORNNs). In these structures, we use more memory

units to keep track of more preceding RNN states, which are all fed along various

feedback paths to the hidden layer to generate the feedback signals. In this way,

63

we may enhance the model to capture long term dependency in sequential data.

Moreover, we have proposed to use several types of pooling functions to calibrate

multiple feedback paths. Experiments have shown that the pooling technique

plays a critical role in learning higher order RNNs effectively. In this work, we

have examined HORNNs for the language modeling task using two popular data

sets, namely the Penn Treebank (PTB) and text8 sets. Experimental results have

shown that the proposed higher order RNNs yield the state-of-the-art performance

on both data sets, significantly outperforming the regular RNNs as well as the

popular LSTMs.

7.2 Future works

As the future work, we are going to use bigger data sets like the Google’s Billion-

word language modeling dataset[50] for making a better language model. We will

also continue to explore HORNNs for other sequential modeling tasks, such as

speech recognition, sequence-to-sequence modeling and so on.

64

References

[1] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

[2] Kurt Hornik. Approximation capabilities of multilayer feedforward net-
works. Neural networks, 4(2):251–257, 1991.

[3] Tomáš Mikolov. Statistical Language Models based on Neural Networks. PhD
thesis, Brno University of Technology, 2012.

[4] Alex Graves. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850, 2013.

[5] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text
with recurrent neural networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 1017–1024, 2011.

[6] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112, 2014.

[7] Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recog-
nition with deep recurrent neural networks. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, pages 6645–
6649. IEEE, 2013.

[8] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–
211, 1990.

[9] Hava T Siegelmann and Eduardo D Sontag. On the computational power of
neural nets. Journal of computer and system sciences, 50(1):132–150, 1995.

[10] Paul J Werbos. Backpropagation through time: what it does and how to
do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

65

[11] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term
dependencies with gradient descent is difficult. Neural Networks, IEEE
Transactions on, 5(2):157–166, 1994.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[13] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. Proceedings of EMNLP, 2014.

[14] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural net-
works for language modeling. In INTERSPEECH, pages 194–197, 2012.

[15] Marcus Liwicki, Alex Graves, and Horst Bunke. Neural networks for hand-
writing recognition. In Computational intelligence paradigms in advanced
pattern classification, pages 5–24. Springer, 2012.

[16] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas imma-
nent in nervous activity. Bulletin of mathematical biology, 52(1-2):99–115,
1990.

[17] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton
Project Para. Cornell Aeronautical Laboratory, 1957.

[18] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier
neural networks. In International Conference on Artificial Intelligence and
Statistics, pages 315–323, 2011.

[19] John S Bridle. Probabilistic interpretation of feedforward classification net-
work outputs, with relationships to statistical pattern recognition. In Neu-
rocomputing, pages 227–236. Springer, 1990.

[20] Kurt Hornik. Approximation capabilities of multilayer feedforward net-
works. Neural networks, 4(2):251–257, 1991.

[21] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. Cognitive modeling, 5(3):1,
1988.

66

[22] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference
on Machine Learning (ICML-10), pages 807–814, 2010.

[23] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber.
Gradient flow in recurrent nets: the difficulty of learning long-term depen-
dencies, 2001.

[24] Salah El Hihi and Yoshua Bengio. Hierarchical recurrent neural networks
for long-term dependencies. In NIPS, pages 493–499. Citeseer, 1995.

[25] Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A
clockwork rnn. In Proceedings of International Conference on Machine
Learning (ICML), 2014.

[26] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio.
Gated feedback recurrent neural networks. In Proceedings of International
Conference on Machine Learning (ICML), 2015.

[27] Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, and
Marc’Aurelio Ranzato. Learning longer memory in recurrent neural net-
works. arXiv preprint arXiv:1412.7753, 2014.

[28] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[29] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and
Zhuowen Tu. Deeply-supervised nets. arXiv preprint arXiv:1409.5185, 2014.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. arXiv preprint arXiv:1512.03385, 2015.

[31] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway
networks. In Advances in neural information processing systems, 2015.

[32] Philipp Koehn. Statistical machine translation. Cambridge University Press,
2009.

67

[33] Andreas Stolcke, Noah Coccaro, Rebecca Bates, Paul Taylor, Carol Van Ess-
Dykema, Klaus Ries, Elizabeth Shriberg, Daniel Jurafsky, Rachel Martin,
and Marie Meteer. Dialogue act modeling for automatic tagging and recog-
nition of conversational speech. Computational linguistics, 26(3):339–373,
2000.

[34] Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng
Ji, Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. A neu-
ral network approach to context-sensitive generation of conversational re-
sponses. arXiv preprint arXiv:1506.06714, 2015.

[35] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. In-
troduction to information retrieval, volume 1. Cambridge university press
Cambridge, 2008.

[36] Roni Rosenfeld. Two decades of statistical language modeling: Where do
we go from here? 2000.

[37] Stanley F Chen and Joshua Goodman. An empirical study of smoothing
techniques for language modeling. In Proceedings of the 34th annual meeting
on Association for Computational Linguistics, pages 310–318. Association
for Computational Linguistics, 1996.

[38] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic
language model. Journal of Machine Learning Research, 3:1137–1155, 2003.

[39] Rohollah Soltani and Hui Jiang. Higher order recurrent neural network. In
Submitted to International Conference on Machine Learning (ICML), 2016.

[40] Shiliang Zhang, Hui Jiang, Mingbin Xu, Junfeng Hou, and Lirong Dai. The
fixed-size ordinally-forgetting encoding method for neural network language
models. Volume 2: Short Papers, page 495, 2015.

[41] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[42] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Honza Černockỳ,
and Sanjeev Khudanpur. Extensions of recurrent neural network language
model. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on, pages 5528–5531. IEEE, 2011.

68

[43] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end mem-
ory networks. In Advances in Neural Information Processing Systems, pages
2431–2439, 2015.

[44] Boris T Polyak. Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics, 4
(5):1–17, 1964.

[45] Marius Pachitariu and Maneesh Sahani. Regularization and nonlineari-
ties for neural language models: when are they needed? arXiv preprint
arXiv:1301.5650, 2013.

[46] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[47] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329, 2014.

[48] Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio.
How to construct deep recurrent neural networks. In Proceedings of ICLR,
2014.

[49] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush.
Character-aware neural language models. arXiv preprint arXiv:1508.06615,
2015.

[50] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants,
Phillipp Koehn, and Tony Robinson. One billion word benchmark for
measuring progress in statistical language modeling. arXiv preprint
arXiv:1312.3005, 2013.

69

	Abstract
	Acknowledgments
	Table of Contents
	List of tables
	List of figures
	Abbreviations
	Introduction
	Overview and motivation
	Contributions and Outline of the Thesis

	Neural Networks
	Artificial neural networks
	Artificial neuron
	Feedforward Neural Networks
	Training Neural Networks

	Recurrent Neural Network
	Recurrent Neural Network
	RNN Training

	Difficulties of training recurrent networks
	Hierarchical recurrent neural network
	Long short term memory
	Gated recurrent unit
	Clock-work RNNs
	Other Variants

	Language modeling
	Introduction
	Evaluating Language Models: perplexity
	N-gram
	Neural Language Model
	One hot representation
	Word Embedding
	Feed forward neural network based language model
	Recurrent neural network based language model

	Higher Order Recurrent Neural Networks
	Higher Order RNNs (HORNNs)
	Higher Order RNNs Training

	Pooling Functions for HORNNs
	Max-based Pooling
	FOFE-based Pooling
	Gated HORNNs

	Experiments
	Experimental setup
	learning rate
	Weight decay
	Momentum
	Mini-batch gradient descent
	Max norm
	Weight Initialization
	Network architecture

	Language Modeling on PTB
	Effect of Orders in HORNNs
	HORNNs Complexity
	Effect of forgetting factor in FOFE HORNN
	Model Comparison on Penn TreeBank

	Language Modeling on English Text8

	Conclusion
	Conclusion
	Future works

	bibliography

