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Abstract

With the booming of deep learning in the recent decade, deep neural network has

achieved state-of-art performances on many machine learning tasks and has been ap-

plied to more and more research fields. Stock market prediction is an attractive research

topic since the successful prediction on the market’s future movement leads to signif-

icant profit. In this thesis, we investigate to combine the conventional stock analysis

techniques with the popular deep learning together and study the impact of deep neural

network on stock market prediction.

Traditional short term stock market predictions are usually based on the analysis of

historical market data, such as stock prices, moving averages or daily returns. Whereas

financial news also contains useful information on public companies and the market. In

this thesis we apply the popular word embedding methods and deep neural networks to

leverage financial news to predict stock price movements in the market. Experimental

results have shown that our proposed methods are simple but very effective, which can

significantly improve the stock prediction accuracy on a standard financial database over

the baseline system using only the historical price information.
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Chapter 1

Introduction

The concept of artificial neural network was introduced decades ago as a machine learn-

ing model. However, due to the limited training data available, as well as the limitation

of computational power back then, it was expensive and inefficient to implement this

technique into a real life application. Whereas other simpler machine learning models

such as support vector machine (SVM) and linear classifier was more popular in the

research of machine learning problems, and most of the state-of-art performance were

achieved by those simpler models.

Over the past few years, with the emergence of big data era, both researchers and the

businesses are looking to make use of the explosively growing data. Furthermore, the

computing power of modern systems has been significantly improved by the advance

in hardware development, especially with the aid of powerful graphic processing units

(GPU), the training time of neural network have been largely reduced thanks to GPU’s

fast computation among matrices or vectors. These changes created more possibilities

and opportunities of applying neural network in real life applications. In later 2000s, pro-

fessor Geoffrey Hinton’s publication of how to efficiently train a multilayer feed-forward

1
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neural network [12] has brought back the interest of neural networks to the community

of machine learning. After that, more and more studies have been published to show

that with a big amount of data and bigger neural network models, combining with the

computing power of modern GPUs, it is possible for neural networks to outperform

the simpler models and achieve state-of-art performance in many traditional machine

learning tasks. For example, in [4–7], it has been shown that by simply replacing the

linear model of parser in syntactic parsing problems with a fully connected feed-forward

network, a better performance could be achieved. These lead to the resurgence of neural

network with the term “deep learning”, where “deep” refers to the bigger number of

hidden layers in neural network’s architecture.

1.1 Motivations of this work

Financial data modelling is the problem of constructing an abstract representation of

the real world financial information. One of the most important purpose of this task is

to give people a predictive vision on the performance or valuations of certain asset base

on the available information, and help them to make financial decisions which eventually

generate profits. It has a wide range of applications in the business world, for examples,

accounting, corporate finance, investment banking and stock valuations. Stock market

is an attractive place for investor as it generates relatively higher returns comparing to

other conservative investments. However the volatility of stock market also makes it a

risky place to survive, for instance, figure 1.1 shows how price of a stock could drop or

raise nearly 10% in a single trading day. Therefore, being able to successively predict

the future movement of a company’s stock price can not only yield significant profit, but

also eliminate the potential lost for the investors.
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Figure 1.1: Illustration of the volatility of stock market.

Even though the well-known efficient markets hypothesis [16] suggest the movement in

stock market is not predictable, financial analysts have never stopped exploring new

method to counter this viewpoint, and it has been a long-lasting argument whether it is

possible to predict future stock prices only based on the past price information. With

the advent of information age, stock analysts have moved their interest into modern

computers and are looking forward to creating more accurate predictive methods that

rely on the advanced computing technologies.

Nowadays, one of the most prominent techniques is artificial neural network. Recently,

deep neural networks (DNNs) have achieved huge successes in many data modelling and

prediction tasks ranging from speech recognition, computer vision to natural language

processing. For examples, [2, 37, 39, 40] show significant improvements on the word-

error rate of speech-to-text transcription task, which was contributed by the effective and
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efficient modelling ability of a deeper neural network architecture as well as a large set of

training data; [3] proposed a large deep convolutional neural network for high-resolution

images’ classification problem and achieved a result that is relatively better then previous

state-of-art performance; moreover, [32, 38] presented a new recurrent neural network

based language model that the results have shown significant improvements on both

language modelling task as well as speech recognition problems comparing to the state-

of-art language model.

In addition to these experimental facts, artificial neural network has also been proven

to be powerful in theory. It was first showed in [10], that by using a discriminatory

activation function, such as the continuous sigmoidal functions, as nonlinearity, a multi-

layer feed-forward neural network with a single hidden layer containing finite number of

neurons could uniformly approximate any arbitrary continuous functions. Later in [11],

it has been established that it was the multilayer feed forward architecture of neural

network that gives it the ability of universally approximating arbitrary continuous func-

tions. That means as long as the neural network contains sufficient amount of hidden

units (the neurons), even with mild assumption on the activation function, it can ap-

proximate arbitrary continuous functions. Furthermore, [8] states that a simple neural

network could be use to learn a wide variety of problems if it is trained with appropriate

inputs.

Previous works have shown the impressive computational power of neural network in not

only the traditional machine learning tasks, but also the possibility of applying neural

networks as universal approximators into other new problems. In this thesis, we are

interested in applying this powerful deep learning method to the problem of financial

data modelling, in particular, to predict stock price movements.
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1.2 Related works

Financial institutions have started to support researches in financial forecasting using

neural networks decades ago. Many studies demonstrates the applicability of predicting

financial and economic time series either empirically or theoretically. For instances, [14]

conducted a review of a set of studies on how efficient are neural networks in varies type

of real-life tasks. The reviewed studies includes different types of business forecast and

prediction, for instance, stock price prediction, financial distress pattern recognition,

or bond rating. This review employs a set of criteria, called effectiveness of validation

and effectiveness of implementation, to evaluate the selected studies in order to verify

whether the proposed method is applicable to the targeted problem. It concludes that

neural networks with efficient implementation and well-defined validation process show

potential for business forecast, and neural networks have already outperformed other

simpler but well accepted models in some tasks. Moreover, there is research summa-

rizing general instructions on how to design such a neural network system for financial

forecasting; [13] discussed the general parameters of a neural network prediction system

and the difficulty of developing and tuning such system; base on the nature of economic

forecasting problem as well as the convention of neural network development, it proposed

a design procedure to provide an efficient way of constructing a neural network system

for financial market prediction.

Traditionally neural networks have been used to model stock data as time series for

the forecasting purpose. In a real financial market, there are many factors that could

be used as criteria to evaluate the performance of a forecasting system, such as stock

price of an individual company, return of a portfolio, or the price value of a market

index. Therefore different researches tried to establish their proposed model based on
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different evaluation standards. For example, [15] established a neural network that is

trained as a linear regression model to predict the next day’s closing price of a specific

stock. It used ten technical indicators to construct its input feature vectors. In this

work, the mean square error was used as the error function to train the network and

evaluate the final performance of the model. Whereas [16] proposed a neural network

system that predicts the optimal points to make market decision and output buy or

sell rather than forecasting the exact numerical price value of a stock. Moreover, this

work make predictions upon the market index of different stock exchanges, for example

Dow Jones Index, S&P 500, instead of a single stock’s closing price as in [15]. By using

only the historical price data as input to train the neural network, their experiments

generate significantly greater return comparing to the well known random walk model.

In addition to different evaluation standards used in the system, input selection is also

one of the important factors that could significantly impact the performance of neural

network prediction. For instance, [17] suggested that besides historical price data, there

is a strong relationship between future stock price and trading volume. Experiments

were conducted to discover the impact of volume on the future stock price in short-

term, mid-term, and long-term time frames. Using market index as evaluation criteria,

the results have shown that the long-term predictions with presence of trading volume

generate the best performance out of all three time frame horizons.

In these earlier studies, different combinations of forecasting targets and input features

are tested and results have shown that neural network could generate considerably good

predictive results, however due to the limited training data and computing power avail-

able back then, normally a small and shallow neural network was used to model the

market data, and the model was usually generalized on a small dataset which makes the

result less promising. In addition, only numerical market data were used to construct
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the feature vectors for neural networks, such as historical prices, trading volumes, etc,

in order to predict future stock yields and market returns. The behaviour of such mar-

ket data appears to be extremely volatile because of the nature of the market and the

existence of large amount of noise mixed in the original data, therefore the performance

on the system with use of such data is limited.

More recently, in the community of natural language processing (NLP), many methods

have been proposed to explore additional information (mainly online text data) for stock

forecasting, such as financial news and reports, twitters sentiments and microblogs. For

instances, [24] and [27] extracted NLP features from financial news that were collected

from the internet; [24] proposed to use semantic frame parsers to generalize from sen-

tences to scenarios to detect the (positive or negative) roles of specific companies, where

support vector machines with tree kernels were used as predictive models, whereas [27]

proposed to use various lexical and syntactic constraints to extract event features from

financial news for stock forecasting, where they have investigated both linear classifiers

and deep neural networks as predictive models. [18] conducted research that extracted

features from the 8k reports which were labeled with important financial events associ-

ated with the company, both events and market index informations were used as features

to train the Non-negative matrix factorization (NMF) model in their work. On the other

hand, [25] proposed a continuous Dirichlet Process Mixture model to learn the topic set

of Twitter messages, and the sentiment of the Twitter topics were used to make pre-

dictions on the stock market. [26] built a Semantic Stock Network base on Twitter

messages that models the semantic relationships among stocks; a vector autoregression

model was then introduced to predict the sentiment of the relationship as well as the

stock price movement. In addition, [28] leveraged the stock microblogs, which is a col-

lection of tweets that has been filtered to be just related to expert investor and stocks,
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and they defined the level of expertise of such microblogs in order to predict the stock

price; both supervised and unsupervised learning model were tested in they work.

These proposed methods with NLP features have shown that textual data could make

considerable impact on the predictive performance of stock forecasting tasks, however

few of these works applies the popular neural network model to learn the features, thus

in this thesis, we propose to use neural network as our predictive model to learn from the

financial news. Moreover, with the availability of fast GPU and large training dataset, we

would like to discovery how bigger datasets and deeper network architecture will impact

the predictive performance of the neural network approach. In addition, we propose

an approach to leverage both historical stock features and NLP features to establish a

machine learning system for stock price forecasting.

1.3 Goals of this thesis

A typical stock market predication method will likely predict the future value of a

stock, in particular, predicting the exact price value of it. Since neural network has

been proven to be good at classification problem rather then regression problem. We

decided to predict the moving direction the stock instead of the price value, so the DNN

will have outputs with the form of 1(price raise) or -1(price drop).

With the setup of this form of output, our main focus in this thesis is to construct a

model that will minimize the classification error, and generate as much prediction as

possible base on available data. We first use historical stock market data to construct

input features in our model and explore the impact of larger amount of training dataset

as well as bigger and deeper neural network architecture comparing to previous work.

Our experiments also benefits from GPU which significantly accelerates the training
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process. In addition to the historical data, we then propose to use the recent word

embedding methods [30, 41, 42] to select features from online financial news corpora,

and employ deep neural networks (DNNs) to predict the future stock movements based

on the extracted features. Our experiments will discover the predictive performance of

different combinations of features, and the goal is to find out the importance of different

features. In fact, our experimental result shows that the features derived from financial

news are very useful and they can significantly improve the predictive accuracy over

the baseline system that only relies on the historical price information. Moreover, we

propose a method called correlation matrix to extract the potential relationships among

stocks which is aiming for expand the prediction results produced by DNN.

1.4 Organizations of this thesis

The rest of the thesis is organized as follow. Chapter 2 will introduce the predictive

model we are using in this thesis: deep neural network, including the construction

of such model as well as the back-propagation training algorithm we use to train the

model. Chapter 3 first briefly introduces the concept of Natural Language Processing,

then explains the word embedding method in detail; we apply word embedding method

in our work to search for similar keywords from training corpora and we construct the

feature vectors from those keywords. Chapter 4 gives a background introduction of

financial modelling and some traditional stock price analysis methods, such as technical

analysis and fundamental analysis, which motivates the design of feature vectors in this

work. In Chapter 5 we described how to construct our baseline system which is using

the features purely extracted from the historical stock data. Then in chapter 6, we focus

on how to use word embedding method to extract different NLP features from financial
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news. Chapter 7 will present the correlation matrix method that take the output from

neural network and propagation them into a larger domain of stock collections in order to

further expand the prediction results. Then we show the experiment setups in chapter 8

and discuss the experimental results as well as the discoveries derived from those results.

Finally in chapter 9 we conclude our contributions as well as future steps.



Chapter 2

Deep Neural Networks

In this chapter, we will introduce the primary predictive model used in this thesis, deep

neural network. Which takes the input of features extracted from both historical price

information and online financial news to predict the stock price movements in the future

(either up or down).

Neural networks have been proven to be powerful predictive models. In general, it is

a model with fixed number of basis functions in which there are adaptive parameters.

The parameters are then adjusted during the process of training. There are several

different variants in terms of the structures of neural networks. For examples, the

conventional structured feed-forward network [38] is a model contains multiple fully

connected layers of perceptrons. Convolutional neural network (CNN) [39] is the network

with convolution and pooling structure that has been shown to be powerful in image

processing tasks such as object detections. Recurrent neural network (RNN) [32] is a

network with the structure that besides the full connections between adjacent layers,

there is also connections of the hidden unit itself, which forms a directed circle. This

form gives RNN the ability to store temporary states information and make it applicable

11
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Figure 2.1: An simple example of neural network with a single hidden layer. Each
circle represents a computing unit in the network. Each arrow represents the connection
between two units. The direction of arrow indicates that the input information is

propagated from input layer at the bottom to the output layer at the top.

for the problems that involve sequence processing with arbitrary input size, for instance,

RNNs have been proven to generate strong results in language modeling and machine

translate. The structure of neural network used in this thesis is a conventional multi-

layer perceptron with many hidden layers. We will explain the detailed information of

its structure in the following section.

2.1 Structure of feedforward neural network

The basic idea of the artificial neural network is inspired by human brain’s structure,

where there are billions of neurons that are connected by synapses to form the biological

neural network. Each neuron is a computing unit that process the incoming information

and pass the results to next connected neurons. Base on this structure, an artificial

neural network is also designed to be constructed by a set of computing units [43]. The
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computing units are further organized into different layers in the neural network. The

two layers at the end of this layered structure corresponding to the network’s inputs and

outputs. Usually, the bottom layer is called input layer, the layer at very top is called

output layer and all the layers in between are called hidden layers, in addition, the unit

belongs to a hidden layer is then named as a hidden unit. In the neural network, each

layer is fully connected to each other, meaning there are connections between each pair

of units in adjacent layers and there is no connection between two units that belong to

the same layer. An example of a neural network with a single hidden layer is shown in

figure 2.1. When propagating information, the input layer will take a series of inputs and

feed them to a set of hidden units that are connected to them through the connections

between inputs and the hidden units. The connections are adjustable parameters in

this model, and each connection is responsible for controlling the amount of effect the

corresponding input will pass to the connected hidden unit. Once the inputs reach the

hidden unit, they will be processed or thresholded by a non-linear activation function in

the unit to generate an output. Since the layers are fully connected to each other, the

outputs of one layer of hidden units will be further passed to the next layer of hidden

units and serve as a set of new inputs to the next layer. Therefore, the original inputs

act like a series of signals that will be propagation through the whole network until it

reaches the output layer and generate the final outputs of the network.

We will now describe the main components of the neural network using more precise

mathematical notations, which includes: network’s input, feed-forward network function,

activation function and network’s output.
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2.1.1 Network’s Input

The input of a neural network is a vector with fixed size, for example, x = [x1, x2, ..., xN ],

where x is the input vector and N is the size of input vector. In figure 2.1, N also

represents the number of units in the input layer.

2.1.2 Feed-forward network function

The feed-forward function is the basic of neural network model and can be defined

as a series of functional transformations. First, assume the hidden layer connected to

the input layer has M hidden units. For each hidden unit j, the input vector x =

{x1, x2, ..., xN} will be transformed using the following linear combination:

aj =

N∑
i=1

w1
jixi + w1

j0

where j belongs to [1,M ]. w are the adjustable parameters that attached to each

connection between the input unit and the hidden unit, which is also called weights.

The superscript 1 of w indicates that the weights are corresponding to the connections

going toward the units in the first hidden layer. wji denotes the weights between input

unit i and hidden unit j. In addition, wj0 represents the bias similar to the bias term

in the basis function in linear regression. This bias can be simply represented as a

connection between the hidden unit and an additional input unit whose value is always

1. The result of this transformation is stored in aj which is known as activation.

Each one of the hidden units in the first hidden layer will receive an activation aj as

input, and further transform them using the nonlinear activation function g(x):

zj = g(aj)
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zj is the output of the hidden unit. It should be mention that g(x) is a function that is

differentiable, this is a really important property for the training stage of neural network

so that we can backpropagate the error.

Once the outputs flow through the first hidden layer and transform into output zj ,

zj becomes the input for the next hidden layer or output layer in the case there is

no more hidden layer. In this example, we assume there is only one hidden layer for

simplicity. Therefore zj will be fed to the output layer, and we further assume there are

K units in the output layer. The outputs of the previous hidden layer form a new vector

z = {z1, z2, ..., zM} which will be fed to the output layer as the input vector. This input

vector is again linearly combined to give the activation of output units:

ak =
M∑
j=1

w2
kjzj + w2

k0

where k belongs to [1,K]. The superscript of w2 indicates it is the weight corresponding

to the second layer of the connections in the neural network. Each ak will then trans-

formed using activation functions in the output unit to finally generate the output of

the neural network. The activation function in output unit is chosen depends on the

problems which neural networks are learning. In addition, it is usually different from

the ones used in the hidden unit. We will discuss the detail of output function shortly.

Now we can combine these previous transformations in each layer and stack them to-

gether to give the mathematical definition of a single hidden layer neural network:

NN(x,W) = f(
M∑
j=1

w2
kjg(

n∑
i=1

w1
jixi + w1

j0) + w2
k0))

where f is the output function. To make this form simpler, we can rewrite each layer’s
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linear combinations in a more compacted way. As we described earlier, the bias term in

each layer’s linear combination can be simply represented as an additional connection

coming from an input unit that is always equal to one. Therefore we can add an extra

element x0 into each layer’s input vector x and set the value of x0 to 1. Then the bias

term can be combined into the weight matrix in the corresponding layer. For example,

the linear combination of the first layer will be rewritten as:

aj =

N∑
i=0

w1
jixi

Therefore, if we move each layer’s bias term into their corresponding weights matrix,

the neural network’s function becomes:

NN(x,W) = f(
M∑
j=0

w2
kjg(

n∑
i=0

w1
jixi))

In this function, W is the vector that groups together all the weights and bias in each

layer, each element in W is a matrix contains the weights between two adjacent layers,

and the size of the weight matrix depends on the number of units in the connected

layers. From this mathematic form, we can see that the neural network model is a

simply a non-linear function that maps a set of input variables x to a set of output

variables. The forward propagation of input information through the whole network can

be represented as the evaluation of above function. In addition, W can also be viewed

as a set of adaptive parameters that controls the output of this function. Therefore, we

call W the parameter of the neural network, and a training algorithm for a network is

responsible for setting the values in W
¯

correctly such that the neural network will make

correct predictions.
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2.1.3 Activation function

The activation function is one of the most important component in the neural network,

which provides the non-linearity to the model. The choice of activation function can

considerably impact the performance of the neural network. First of all, the activation

function should be differentiable so that the overall neural network function is differ-

entiable and make it possible to run error back propagation algorithm, which will be

discuss in next section. Second, the activation function should be chosen as a non-linear

function which gives the neural network the ability to generalize on a large range of

functions. Figure 2.2 shows examples of two widely used activation functions.

One of the popular choices of activation function is sigmoid function. It is a “s” shape

function with the mathematic form:

sigmoid(a) =
1

1 + e−a

this form takes the real value input and transforms it into the range between 0 and 1.

The advantage of using sigmoid as the activation function is that it mimic the firing rate

of the human neuron, the output of 0 act as a not firing states in neuron and output

of 1 act as the firing states. However, one of the problems of using sigmoid activation

function is that when the input is too small or too big, the gradient of this function

approaches zero and the signals for error back propagation will vanish.

Another choice of activation function is rectified linear function or rectifier which takes

the form:

ReLU(a) = max(0, a)
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Figure 2.2: Two examples of activation functions.

It simply threshold the input at 0, output the input if it is greater than 0 and output

0 otherwise. The rectifier activation function becomes very popular in the recently few

years because of its simplicity which improves the training speed of the neural network

in a great deal. It also produces great results since the rectifier unit does not have the

vanishing gradient problem.
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2.1.4 Network’s output

The setup of neural network’s output layer depends on the problem it dealing with. If the

output has k dimensions, where k > 1, the network can be use for k-class classification

problem. If the network’s output only has one dimension, then this kind of network

can be used for regression problem. Moreover, the activation function in output layer

will also depend on the targeting problem. If the network is learning a set of data for

standard linear regression problem, the output activation function is simply the identity

of the incoming activation. If the neural network is used as a classifier that models the

probability distribution over the k possible output classes, the output activation function

is usually set to be the softmax function. For example, if the network is a classifier for

a k-class classification problem, then the output layer will have k units, whose output

activation function looks like:

softmax(ai) =
eai∑k
j=1 e

aj

where ai denotes the activation of i-th output unit. For the input vector a = {a1, a2, ..., ak},

the result of output layer after the softmax transformation is a vector of non-negative

real numbers that sum up to one. Each dimension in the result vector becomes a con-

ditional probability of the corresponding class, ie. yi = P (y = i|x), where x is the input

vector and yi is the i-th dimension in output vector.

In this thesis, we use a deep neural network with more than one hidden layer. Each hid-

den unit uses the rectified linear activation function, i.e., f(x) = max(0, x), to compute

the outputs in each hidden layer, which are in turn fed to the next layer as inputs. Since

we are predicting the moving directions of the stock, the output layer will have only two

units, standing for two classes of stock-up and stock-down. Within each output unit, the



20

softmax function is chosen to compute posterior probabilities for these two classes. Dif-

ferent depth of the network, as well as the size of each hidden layer, are tested in order

to get the best predictive performance, details of the experiment and tuning process will

be explained in chapter 8.

2.2 Training DNN

In order to train a neural network model, we use a method that retrieves the gradient

information from network’s output error, to minimize a loss function. In general, a

neural work training algorithm is an iterative function that repeatedly feed a set training

data into the network, compares the actual output with expected output and compute

the gradient information from the difference; and then adjust the network’s parameter

according to the gradient information in order to minimize the loss function.

2.2.1 Loss function

Before training neural network model, we need to define a loss function, or objective

function, that measures the progress of the training procedure. For example, a loss

function loss(y,y′), takes the input y which is network’s output vector contains pre-

dictive value for each output unit and y′ is the vector stores actual correct values of

the corresponding input samples. Such loss function will output the loss of predicting y

when the correct output should be y′. Therefore, a neural network training algorithm

is subject to minimize the value output by loss function given a set of input training

samples. A positive real value score will be assigned to each network output by loss

function according to the correct value, in the case the output is exactly the same as
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expected correct value, the loss function will assign zero, this is why we also call the

expect output value as target.

Similar with output activation function, the choice of loss function is also depends on the

type of problem the network is training for. If the neural network is use for regression

problem, one of the common choice is the sum-of-squares function with the form:

loss(y,y′) =
1

2

N∑
i=1

(yi − y′i)2

where N is size of the output vector, yi and y′i are the matched network output and target

output for i-th unit. This loss function basically sum up the absolute difference between

actual output and expect output. For the networks that dealing with classification

problem, we use cross entropy function with the form:

loss(y,y′) = −
N∑
i=1

y′i log(yi)

where N is the total number of available classes. y′ is the target probability distribution

of the input sample over N classes, it is a one-hot vector with the dimension corresponds

to correct class set to 1 and every other dimensions set to 0. y is the softmax output

vector with each dimension set to the predictive probability on each class. The value of

this loss function represents how much the predictive distribution y is differ from the

expected distribution y′.

To give a particular example, for the neural network established in our thesis, the output

layer has two units, each of which generates a probability of the associated class by

softmax function, so N = 2. Assuming the output vector y = {0.1, 0.9}, which indicates

the input training sample has 10% chance belongs to the class of “stock-up”, and 90%
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chance belongs to the class of “stock-down”. Also assume the correct class of the input is

“stock-up”, then the expected target output will be y′ = {1.0, 0.0}. So the loss function

is loss(y,y′) = −
2∑

i=1

y′i log(yi). Because y is the output of the network, y = NN(x,W).

Therefore the training algorithm’s goal is to adjust the weight matrix W subject to

minimize losscross−entropy.

2.2.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a common training algorithm for neural network. In

general, SGD algorithm takes the following inputs: a function f(x, θ), where θ is the ad-

justable parameter of f ; a training dataset includes the input samples X = x1,x2, ...,xn

and the corresponding outputs, or labels, Y = y1,y2, ...,yn; and a loss function. In

the case of training neural network, the input function f is the network’s feed forward

function and the adjustable parameters is the matrix of weights W. The goal of SGD is

to repeatedly set the parameter θ such that the value of loss function will be minimized

until the error of f converge.

In each iteration, the algorithm first randomly choose a sample input output pair {xi,yi}

from the training dataset, and feed xi to function f . Then it computes the value of loss

function by loss(f(xi, θ), yi), and get the gradient of the loss function with respect to

the parameter θ. Finally, it updates the parameter using the gradient information in

the following way:

θ = θ − η∇loss(f(xi, θ), yi)

where ∇loss(f(xi, θ), yi) denotes the gradient of loss function, and η is a term called

learning rate that use to scale the amount of gradient to be use to move the parameter.

The algorithm will constantly repeat the above iterations until the change of parameter
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θ does not considerably reduce the value of loss function anymore, which we called

converge.

In the last step of each iteration, the value of learning rate represents the pace of gradient

descent, it is a important attribute in the algorithm that should be set carefully because

if we set it too big, the pace of adjusting θ will be too large that the algorithm will

bounce around a local minimum of the loss function and never converge. This value

also should not be set to be too small since a small descent pace will slow down the

converge speed. Some methods are applied to dynamically set the learning rate which

give the algorithm better converge value. One method is to set the learning rate as a

function of time such that η = 0.9iη, where i is the number of iterations. This method

constantly reduces the value of learning rate with a ratio in every iteration so that at the

beginning of the algorithm the learning rate is big enough for the algorithm to effectively

reduce the value of loss function. With the increment of the iterations, the learning rate

dropped for the algorithm to move with small paces around the local minimum to find

the best converge point. Another method, which is applied in our experiment, is to use

a validation dataset that contains input and output pairs have not appear in the training

dataset and add one more validation step in each iteration of SGD. Every time after

the algorithm updates the parameter θ to θ′, we first feed the inputs from validation

dataset to the network with updated parameter θ′, and remember the validation error

between networks output and corresponding validation label using loss function. Then,

we compare the validation error in the current iteration and previous iteration to see

if we need to adjust the learning rate. In the case that the validation error is higher

than the one in the previous iteration, which means the learning rate is too high so

the algorithm made too much change on θ and missed the local minimum, we reduce

the learning rate with certain ratio and revert the parameter back to θ. The whole



24

iteration is then rerun with updated learning rate. In the case that validation error has

reduced comparing to the previous iteration, the learning rate remains unchanged and

the algorithm keeps moving forward.

One problem with the above SGD algorithm is that when computing the error in each

iteration, we only use a single training sample to estimate the overall loss across the

whole training dataset, which will be ambiguous. In addition, a real life training dataset

may contain many noise samples; hence, in an iteration using noise as input sample,

the network’s weights will be moved to a direction that is far alway from the correct

minimum point. To address this problem, a common workaround is to use N > 1

training samples instead of using only one in each iteration, which we called the mini-

batch SGD. In mini-batch SGD, we feed a set of N training samples to the function f

in every iteration, and then use the average gradient over the N samples’ loss function

to update θ:

θ = θ − η 1

N

N∑
i=1

∇loss(f(xi, θ), yi)

In this way, the SGD is estimating the error’s gradient over the N samples. The size of

the mini batch can change depends on different network setups. Using a mini batch with

a smaller size will accelerate the training speech, by providing a larger gradient in each

iteration, but the loss value will fluctuate heavily during the training process. While a

bigger size will provide a better estimation of the overall gradient across the training

dataset and, therefore, has a smoother descent of gradient. Moreover, a system with

mini batch method could also benefit from the parallel computing provided by modern

GPU, hence improve the training efficiency.

In terms of applying SGD in neural network training, the main challenge is to compute

the gradient of network’s loss function with respect to each layer’s weights. Usually, W
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is a big matrix in a deep neural network architecture, therefore computing the derivative

of the loss function with respect to W can be cumbersome. [19] provides a easy solution

called backpropagation algorithm to address this problem.

2.2.3 Error Backpropagation

Error backpropagation algorithm is an efficient technique to evaluate the gradient of a

loss function for a feed-forward neural network. The goal is to find out the derivative

of loss function with respect to the weight matrix, ie. ∂L
∂W , with L denotes the loss

function that takes the network’s output and the expected target as input. Recall that

the network’s output is calculated by the feed-forward function which has a nested

structure with many layers of linear combinations:

NN(x,W) = f(

M∑
j=0

w2
kjg(

n∑
i=0

w1
jixi))

The difficulty lies on the evaluation of the derivative with respect to the most inner

weight matrix that is “far away” from the loss function, because computing the deriva-

tive with respect to those matrices will require unfolding the entire nested structure.

Therefore, the deeper the neural network is, the harder to unfold the expression. The

error backpropagation algorithm simplifies the process of evaluating loss function’s gra-

dient by passing the local messages to propagate the network’s error backward through

the network during the evaluation of the derivative of the loss function.

For simplicity, we will explain the backpropagation algorithm using the example of

training a simple neural network with a single hidden layer, and a single sample is used

in each iteration of SGD. Hence the hardest part is to compute the derivative of loss

function with respect to the weight matrix corresponds to the connections between input
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layer and hidden layer. We now consider the derivative with respect to a single weight

wji, such that wji represents the weight associated with the connection from input unit

i to hidden unit j. To find out the derivative ∂L
∂wji

, we observe that the way loss function

L changes along with wji is through the activation of hidden layer:

aj =
∑
i

wjixi (2.1)

where xi is the inputs of the neural network. Also note the bias term has been absorbed

into the weight matrix by setting a constant input 1, so we do not need to take care of

it separately. This summed input of hidden unit j is then transformed by the activation

function g to further provide input to output unit:

zj = g(aj) (2.2)

Therefore we can apply the chain rule for computing the derivative of the composition

of two or more functions on the derivative of loss function with respect to wji:

∂L

∂wji
=
∂L

∂aj

∂aj
∂wji

(2.3)

On the right hand side of this equation, we can rewrite
∂aj
∂wji

using equation (2.1) so that:

∂aj
∂wji

= xi (2.4)

In addition, we denote the term:

δj ≡
∂L

∂aj
(2.5)
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where δ is commonly referred as error since this is the term contains the error gra-

dient information being propagated through the network during the evaluation of the

derivative of loss function. Here in particular, δj represents the error corresponds to the

weights connecting input and hidden unit.

After combining equations (2.4) and (2.5), equation (2.3) can be rewrite as:

∂L

∂wji
= δjxi (2.6)

The simplified equation evaluates the derivative of loss function by multiplying two terms

at two ends of the connection, respectively, associated with weight wji, where xi is the

value provided by the input end of the connection and δj is the value correspond to

the unit at the output end of the connection. Therefore the next step of evaluating the

required derivative is to compute the value of δj using the information in hidden layer

and output layer of the network, and then insert the result back to equation (2.6).

Again, in equation (2.5), we observe that the way L changes with aj is only through the

activation of output layer ak. Therefore we can also apply the chain rule on (2.5):

δj ≡
∂L

∂aj
=
∑
k

∂L

∂ak

∂ak
∂aj

(2.7)

note here we need to sum up k activations of output unit. For the reason that in the

feed forward network function, the output transformation of hidden unit j:

zj = g(aj) (2.8)

has been propagated to all k units in the output layer because of the fully connected

structure.
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With the similar simplification we did before, denoting δk ≡ ∂L
∂ak

and evaluate the deriva-

tive of ∂ak over ∂aj as
∑
k

∂ak
∂aj

= g′(aj)
∑
k

wkj , we finally get the back propagation

formula:

δj = g′(aj)
∑
k

wkjδk (2.9)

which evolves evaluation of two simpler derivatives, g′(aj) is just the derivative of the

activation function used for all hidden units; and δk is the derivative of loss function

with respect to the output units’ activation, this term depends on the choice of output

activation function and loss function. This equation shows that in a network with a single

layer of hidden units, the value of δ of a hidden unit can be computed by propagating

back the δ′s of all the proceeding output units connected to that hidden unit. The result

of δj can be plug back into equation (2.6) to get the required gradient. Such pipelining

of the derivatives with respect to a single layer of a matrix can be interpreted as a local

computation that pass through the entire network. For a network with deeper structure,

i.e. more than one hidden layer, we can recursively apply equation (2.9) to evaluate the

δ values of each hidden layer.

The overall procedure of error back propagation is illustrated in figure 2.3. To sum

up, the back propagation algorithm first takes the input vector and feed it through the

neural network to get the network output as well as the activation of all hidden units.

Then it computes the derivative of the loss function with respect to the output units’

activation δk. In the backpropagate stage, it backpropagates the δ’s, starting from δk,

to get all errors for every hidden unit in the network. At last, the algorithm inserts δ’s

back to equation (2.6) to evaluate the required gradients.



29

Figure 2.3: Overall procedure of error back propagation algorithm. Blue arrow indi-
cates the direction of feed forward networks flow from input layer to output layer. Red

arrows indicates the direction of backward error propagation.



Chapter 3

Word Embedding

In this chapter, we will discuss the concept of word embedding. Word embedding is

a technique that is derived from language modeling in the natural language process-

ing(NLP), it generates a distributed representation of words in a vocabulary. Such

representation maps the word into a vector space, and each of them is then represented

by a vector of real numbers. There are several advantages of this word embedding tech-

nique comparing to the traditional bag-of-word representation of words. For example,

the vector representation of words eliminated the common difficulty in NLP tasks which

is known as the curse of dimensionality. Another attracting property of this method

is that the vector representation preserves the similarity of the words in the natural

language, meaning the similar words should have similar embeddings. As we will show

in chapter 6, the property of similarity can help us find useful features from the financial

news corpus. There are several different methods of generating such word embeddings.

In this thesis, we are interested in the popular Skip-gram and Continuous bag-of-words

models, which are simplified from neural net language modeling.

30
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3.1 Language modeling

A language model is a model that estimates the probability distribution of words in

the vocabulary or a joint probability of a sentence. For instance, one task for lan-

guage modelling is to generate the probability of a sentence or a sequence of m words

(w1, w2, ..., wm), which can be written as the following term produced by chain rule:

P (w1, w2, ..., wm) =
∏
i

P (wi|w1, w2, ..., wi−1)

where P (wi|w1, w2, ..., wi−1) is the conditional probability of wi given the previous word

sequence is (w1, w2, ..., wi−1). In addition, a language model could be used to predict the

missing word in a sentence. Given a sentence “The cat sat on the mat.”, if we take alway

any word from the sentence, for instance, the last word “mat”, the language model can

predict the missing word by taking the remaining sequence “The cat sat on the” and

assign a probability to each of the words in the vocabulary.

The ability to estimate relative likelihood of sentence makes language modeling very

useful in natural language processing tasks. There are many applications base on it,

ranging from spelling correction, speech recognition, machine translation to part-of-

speech tagging and parsing. For instance, in speech recognition, the system needs to

translate a segment of acoustic input into a word sequence. The probability distribution

provided by a language model enables the speech recognition system to distinguish

the words or phrases that have similar pronunciation. Given two phrases with totally

different meaning: “I saw a van” and “eyes awe of an”, which are pronounced almost

the same, it is hard to decide which one is the correct translation using only the acoustic

model. With the aim of the language model, it would be shown that the probability

of the phrase ”I saw a van” appears in English is much higher than the probability of
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”eyes awe of an”. The generated probability of this two phrases can then provide useful

evidence to help the system to make a correct decision.

There are several types of language models, different language implements the term of

conditional probability P (wi|w1, w2, ..., wi−1) differently. An n-gram model is one of the

most traditional language model which is often used as a benchmark model for other

techniques. In this model, it simply counts the frequency of word or word sequence to

obtain the conditional probability. Moreover, it applies the Markov assumption which

assumes that the probability of a word only depends on the previous n words:

P (w1, w2, ..., wm) =
∏
i

P (wi|wi−n, ..., wi−1)

in which the conditional probability of wi is:

P (wi|wi−n, ..., wi−1) =
count(wi−n, ..., wi−1, wi)

count(wi−n, ..., wi−1)

Such approximation is usually “smoothed” by adding 1 to the nominator to handle the

situation that the unseen word sequences appear in the test dataset, which causes the

probability becomes zero.

The simplest case of n-gram model is the unigram, where n = 1 and the probability of

a word is just the frequency of itself:

P (w1, w2, ..., wm) =
∏
i

P (wi)

In addition, the n-gram model with n = 2 and n = 3 are called bigram and trigram

respectively.
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Even though such n-gram language model has been found to be useful in many NLP

applications as we mentioned before, it suffers from a fundamental problem: curse of

dimensionality. It is a phenomenon that with the increase of the dimensionality of data,

the volume of space increases so fast that the data become really sparse within the vector

space. In a statical language model such as n-gram model, as the training corpus of the

model becomes larger, the vocabulary of unique words appear in the corpus becomes

bigger, which leads to a task of modelling the probability of exponentially many of word

sequence, therefore the word sequence in the training corpus becomes sparse in the space

of vocabulary.

A neural net language model (NNLM) is proposed in [9] to alleviate such problem. In

a neural net language model, the probabilities are predicted using a neural network

instead of simply counting the frequency. As we discussed in the previous chapter, a

neural network can be used as a classifier that assigns the input sample a probability

of belonging to a specific output class. In an NNLM, the typical task is training a

neural network to generate the probability distribution over the words in a vocabulary:

P (wi|context), where context could be the previous n words before wi, in which the goal

is predicting the upcoming word; or context could be previous n words concatenated

with following n words of the missing word, in which the missing word in the middle of

a word sequence is predicted. The output of NNLM is, therefore, a V -dimension vector,

where V is the size of the vocabulary and i-th dimension of the vector correspond to

i-th word in the vocabulary. Each dimension of such vector then contains a probability

assigned to the corresponding word.

In a neural network trained for NNLM, an embedded layer is added before the input

layer to map the word in vocabulary into a distributed representation. Each word in the
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vocabulary is translated into a d-dimension vector, for example:

C(“cat”) = (0.2,−0.4, 0.7, ...) or C(“mat”) = (0.0, 0.6,−0.1, ...)

where C(·) is a function represented by a |V | × d matrix and each row of C is a vector

associated to a unique word. A sequence of such word vector is then either concatenated

together or summed up to an input vector for the network.

Such distributed representation has several remarkable properties. First of all, compar-

ing to the traditional one-hot representation of word feature (representing each word as

a unique dimension in a V dimensional space), the distributed representation embeds

each word into a much smaller d dimensional space which makes the resulting vector

much more dense, therefore reduces the impact of the fundamental curse of dimension-

ality problem. Second of all, such representation preserves the similarity information

between words; the words with similar meaning are close to each other in terms of the

cosine distance between the two corresponding vectors. This property also helps handle

the problem of appearance of unseen word sequence in the test dataset; for example, if

we change the word sequence “The wall is red” to “The wall is blue”, since similar word

will have similar vectors, the representation of these two sentence will be similar even

if the sequence “The wall is blue” has never appear in the training data before. More-

over, this distributed representation captures the semantic meanings between words. In

contract with similar words having similar vector, antonyms of word tend to have dis-

similar vectors and such similarity and dissimilarity can be expressed in terms of vector

arithmetic, for instance:

C(“queen”)− C(“women”) + C(“man”) ≈ C(“king”)
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Because of these advantage of such distributed representation of words, besides using

the neural net language model to produce actual probability, it is also common to use

the distributed representation encoded in the network’s embedded layers as the repre-

sentations of words and solve other NLP problems.

3.2 Learning distributed representation of words

In many tasks, the embedded layer is pre-trained in order to obtain a reliable embedding

function and then plugin to the neural net language model. [1] proposed two models

that learn a high-quality embedding function base on a large dataset in an efficient way.

As shown in figure 3.1, the architecture of these two models is similar to the feedforward

neural network with a layered structure.

The first model is called continuous bag-of-words model (CBOW). Roughly speaking, this

model takes a sequence of words with a certain window size and predicts the middle word

of the sequence. For example, as shown on the left hand side of figure 3.1, a sequence

of 5 words {xt−2, xt−1, xt, xt+1, xt+2} is use to construct the input and output vectors

for the model. The surrounding words {xt−2, xt−1, xt+1, xt+2}, which is also called the

context of xt, is use as input and the middle word wt is use as the output of the model.

Each of these input words is represented as a one-hot V -dimension vector where V is

the size of the vocabulary. The weight matrix between the input layer and hidden layer

is a V × d matrix that is shared by every input words. Since each of the input words is

represented by a vector with all dimensions set to zeros except the one dimension, which

corresponds to the position of the input word in the vocabulary, set to one; the linear

transformation from an input word to hidden layer is simply a linear projection. The

projection of each input word is then stacked together and averaged as the input vector
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Figure 3.1: Architecture of two models for learning high quality word embedding
proposed in [1]. Both models use the word sequece {xt−2, xt−1, xt, xt+1, xt+2} as an
example. CBOW takes {xt−2, xt−1, xt+1, xt+2} as input and predict the middle word
xt. Whereas skip-gram takes the middle word wt as input and predict the surrounding

context {xt−2, xt−1, xt+1, xt+2}.

to the hidden layer. The hidden layer contains d hidden units, but different from the

normal neural network’s hidden unit which contains a non-linear activation function,

the hidden unit in this model does not have any activation function. Therefore, the

output vector of hidden layer is simply as same as its input vector. The output layer

contains V output unit with softmax output function that will generate a probability

distribution over the words in the vocabulary. Therefore, the training objective of this

model is maximizing the log probability of word xt:

log p(xt|context)

where context is the surrounding words {xt−2, xt−1, xt+1, xt+2}, and p(xt|context) is the
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probability of middle word xt given the surrounding words. The name continuous bag-

of-word comes from the conventional bag-of-word model which also does not consider

the order of words within a sequence, and instead of 1 of k representation in bag-of-word,

this model embeds the continuous vector representations in the embedding function.

The second model is called continuous skip-gram model, shown on the right hand side

of figure 3.1, which is similar to CBOW but reverses the direction of prediction. Instead

of predicting the missing word in the middle of a word sequence, the skip-gram model

takes single word xt as input and predicts the previous and next words in a certain

distance. In the example of figure 3.1, the skip-gram model predict previous and next 2

words {xt−2, xt−1, xt+1, xt+2}. The input layer takes an one-hot representation of word

wt and, similar with CBOW, project it to the a hidden layer consist of hidden nodes

without any activation function. The output layer consist of 4 output vector each of

which is the one-hot encoded word in the vocabulary with half of them being the words

previous to xt and half of them following xt in a word sequence. Each output layer

has an associated d × V weight matrix. The training objective of skip-gram model is

maximize the log probability:

∑
−c≤i≤c,i 6=0

log p(xt+i|xt)

where c is the size of context window, and c = 2 in the example of figure 3.1; p(xt+i|xt)

is the probability of xt+i being the i-th word before xt if i < 0 or after xt if i > 0.

In both of these two models, the weight matrix between the input layer and the hidden

layer is the target we looking to learn since it contains all the embedding information

for the vocabulary. The training procedure is similar of what we have discussed in feed

forward neural network. First, the weight matrices are initialized using random real
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values. Then the word sequences are sampled from the training corpus to construct

input and expected output vectors, the input vectors are fed to the network to generate

actual predictive outputs. Finally, base on the predictive outputs and expected outputs,

the weights are adjusted using SGD and backpropagation algorithm.

Both CBOW and skip-gram model learn distributed representation of words efficiently by

removing the computation complexity generated by hidden layers. In addition to these

two models, [30] proposed an extension of the skip-gram model to not only extends the

representation power of skip-gram from vector of single words to vector of phrases but

also further reduces the training time.

In the basic skip-gram model, the output layer computes the probability of a context

word given a middle word by the softmax function:

p(xt+j |xt) =
exp(v′xt+j

>vxt)∑W
w=1 exp(v

′
w
>vxt)

where vx is the input vector of word x and v′x is the output vector of x, and W is the

total number of words in vocabulary. [30] suggest that it is impractical to compute the

exact value of softmax in the output layer for the reason that the expense of computation

is proportional to the size of vocabulary W . As the training corpus gets bigger, the size

of vocabulary increases, which lead to a long training time.

To address this problem, [30] proposed a simple yet powerful method called Nega-

tive sampling which is a simplified version of Noise Contrastive Extimation (NCE)[31].

Negative sampling redefines the following objective of training to replace the original

logP (xt+j |xt) term in the Skip-gram’s objective:

log σ(v′xt+j

>
vxt) +

k∑
i=1

Exi ∼ Pn(x)[log σ(−v′xi

>
vxi)]
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where σ(x) = 1
1+exp(−x) . The term on the right side represents the probability of k

negative samples xi, which are chose from the original samples, being in the context of

input word xt. Therefore this objective function is use to distinguish the target word

wt+j from the negative samples. And the such definition reduces the computational

complexity by computing the distance between the target word and only a subset of

the vocabulary. In the formula above, Pn(x) is the probability distribution over the

words in vocabulary, and [30] suggest that setting Pn(x) as 3/4rd power of the unigram

distribution of x gives the optimal result:

Pn(x) =
1

Z
×
(
count(x)

|text|

)3/4

where Z is a normalization constant.

In addition to Negative sampling, the extension of skip-gram proposed by [30] includes

another method called Subsampling that improves the accuracy of the representations

of rare words in the corpus and also produces a significant acceleration on the training

time. They states that in a large corpus, there are many words that are frequently

occurred but provides rather less information value comparing to the rare words, for

instance, “in”, “the”, and “a” are the words that occur hundreds of millions of times

in the corpus but the skip-gram benefit much less from such word because nearly every

word will appear next to them. Therefore, the Subsampling method is proposed to

discard each word xi in the training dataset with the probability defined as:

p(xi) = 1−

√
t

f(xi)

where f(xi) is the frequency of the word xi, and t is a threshold usually set to be around

10−5. Such method balances the effect of rare and frequent words in the vocabulary.



Chapter 4

Financial Modeling

Financial modeling is the study of developing a mathematical model which abstracts

the investment situations in real life. Such model is designed to represent and predict

the performance of an investment derivatives, in particular, determining the price of

an asset or evaluating the value of a company. There are different applications on

financial modelling, for example, corporate finance applications is focusing on building a

model that is base on the detailed information of a specific company or corporation, and

such models are aiming on evaluating the performance of a certain company within a

relatively long period; whereas quantitative finance typically aiming on development of

models that deal with the overall and continuous behaviour of the market or a portfolio.

One of the most important application of quantitative finance is the modeling of the

returns of different stocks which is also called “quantitative asset pricing”.

Obviously being able to predict the future price of different stocks will yield significant

profits to investors, however, there has been a debate on whether such task is achievable

because of the nature of the stock market. Efficient market hypothesis [16] and random

walk [36] are two of the most famous hypothesis which made the argument that it

40
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is impossible to predict a future price value of a specific stock. The efficient market

hypothesis established an assumption that the movement of stock price is set efficiently

in response to the available information as well as the rational expectation of the market.

It suggests that the effect of all public information about the market or a specific stock

have already been reflected on the price of the stocks. Moreover, the price of a stock is

always fair and should only be affected by the news. Thus, it is impossible to trade stocks

with knowing its future value in advance since the news itself is randomly published and

is immediately reflected on the stock price once it is revealed. With a close link to

efficient markets hypothesis, the random walk theory claims that the movement of stock

market price could be represented as a statistical process consists of a set of random

steps which is called a random walk, therefore the future price of a stock could not be

predicted by analyzing the historical price data.

Even though evidence have been provided to prove such hypothesis, there are also a

lot of facts exist that disagree with the statements made on those hypothesizes. For

example, one of the most famous investors Warrent Buffett has consistently made in-

vestments that “beat the market”, which, according to the definition of efficient market

hypothesis, is impossible. Moreover, researchers who do not believe in such hypothesis

also pointed out that certain market event, such as the stock market crash when Dow

Jones Industrial Average slumped over 20 percent in a single day, also shows that it

is possible for an investor to purchase undervalued stocks to gain significant profit. In

addition, other economists and investors have established experiments and research to

disputes such hypothesis and show that the stock market is predictable to some degree.

For instance, behavioral economists and psychologists argue that there are cognitive

biases in financial markets, such as overconfidence, overreaction, and information bias,

which leads to its imperfection. Those errors have been shown predictable and thus,
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whoever reasons correctly should be able to create profit by trading on the stocks that

have been undervalued because of other investors’ errors in reasoning.

Investors who believe the stock price is predictable have also been exploring technologies

to actually show how to model the historical data and forecast the future price informa-

tion. Traditionally there are two categories of methodologies: fundamental analysis and

technical analysis. On top of those traditional methodologies, researchers also conducted

experiments to takes advantage of modern computers and make predictions using the

artificial neural network.

4.1 Traditional stock market prediction

Fundamental analysis and technical analysis are two of the most widely used method-

ologies in the stock prediction industry. However, these two methods are analyzing the

stock market in two completely opposite ways.

As the name suggests, fundamental analysis is the examination of fundamental factors

of an investment asset. More specifically, the fundamental analysis considers all the

potential effects that will impact the financial situations of a company or the industry

or even the entire economy. For instance, the financial and management data of a

company, as well as the balance of supply and demand within an industry. All of such

financial aspects correlated to the business are concerned by fundamental analysts, from

which the analysts gain insight of the company that enables them to make predictions

on the company’s future performance.

In other words, fundamental analysis focuses on evaluating the economic well being of a

financial entity instead of the actual price value. Such well being of a company is defined
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as the intrinsic value of it. Intrinsic value is the ”real value”, or true value, a company

worth, which according to the assumption of fundamental analysis, usually differs from

the current price in the stock market. As a result, the gap between the true value and

the market value of a company is where a fundamental analysis can create investment

profit. This leads to the second major assumption of the fundamental analysis which

states that the true value of a stock will be reflected by the market in a long term. So

that if one estimates the intrinsic value of a company correctly and purchased the stock

with a price below the estimation, it will eventually raise to the true price and generate

returns.

In order to evaluate the intrinsic value of a company or a financial entity, fundamental

analysts employ a top-down approach starts from the analysis of the overall economy

down to the industry and finally to the specific company. The economy is the high-level

guideline of the industries and companies within it; industries and companies usually

benefit from the expansion of economy as much as they experiencing declines if the

economy falls. One of the most important factor, which is kept tracked by the funda-

mental analyst, when evaluating the economy is the interest rate; for the reason that

interest rate is an indicator of whether the central bank of a country tends to stimulate

the investment or saving. After analysis of the overall economy, the nature of each in-

dustry is considered to discover the more detailed trend, since different industry group

will behave differently within different economic environments. For instance, companies

in a technology industry are likely to yield more earnings in an expanding economy,

whereas the price of consumer businesses’ stock will have a more stable movement in a

shrinking economy. Then, the analysis breaks down to a specific company and a list of

criteria is reviewed, for example, a company’s business plan, the financial statement as

well as management. Such criteria are used to identify the competitiveness of company
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within its belonging industry sector. Lastly, these analyses over the top-down chain are

summed up together to give a fundamental evaluation of a company.

In contrast to fundamental analysis, a technical analyst focuses on statistical data gen-

erated in the market and takes no consideration of any of the factors a fundamental

analyst uses for evaluating a company. One essential principle guides the study of tech-

nical analysis is that the market price has already reflected all the information available

to the public, which agrees to the similar premise claimed in the efficient market hy-

pothesis. In addition, technical analysts believe that there is price trend [20] in the

market, meaning that the financial market tends to move in a particular direction, i.e.

moving up, down, or flat, within a certain period of time. Moreover, technical analysts

have explored that the price movement in the market tends to repeat itself since the

investors collectively tend to behave like their predecessors. Technical analysts believe

there are patterns in historical market data and prediction of future stock price can be

done base on such patterns. Therefore instead of studying a company’s intrinsic value,

technical analysis collects the past information of stock, such as price and volume, and

then search patterns among those statistical data in order to forecast future price.

There are many tools and techniques introduced by technical analyst to exploit certain

patterns or forms from the historical data. One of the earliest methods was charting, a

technique that plots the price or volume of stocks against time. Patterns that repeatedly

occur can then be identified from the charts, for example header and shoulders, cup with

handle or support and resistance. Such patterns are also called technical indicators,

which are used by technical analysts to identify the whether a stock is trending, the

possibility of the trend as well as the possible duration of the trend. On top of charting,

methods with the mathematical transformation of market data are also applied, for

example, moving average, or relative strength index.
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Both fundamental analysis and technical analysis have their own advantages as well as

disadvantages, fundamental focus on studying the intrinsic value a company in order to

forecast a long-term return, whereas technical analysis applies various tools and methods

to identify trends which purportedly allow investors to gain short-term profit. Although

these two methodologies are completely contrast to each other, they are often combined

together by professional investors to analyze the market.

4.2 Prediction with neural networks

With the development of modern computer technology, stock market analysts start to

evaluate market with the help of the software systems. In particular, artificial neural

network is one of the prominent technique with rapidly grown in popularity. ANN has

been shown to be an universal approximator because of its powerful generalization ability,

which is also the property that draws the attentions from stock market analysts. At the

beginning, similar with technical analysis, pure market data were used as the input for

the neural network, as technical analysts would like to benefit from the generalization

ability to learn the pattern from the market data. Since with theory claiming the

ability of universally matching any input-output pairs with appropriate network setting,

the factors employed in fundamental analysis with a good mathematical representation

could also be learned by a neural network.

Typically, there are two ways of applying neural networks to stock market prediction.

One is to use the neural network as a curve fitting tool to predict the actual future

value of time series data in the market, for instance, predicting the close price, lowest or

highest trading price in a target day. The predicted market figures are then combined

with certain trading strategy as a guideline to trigger the buy or sell action in the market.
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Another method is using neural network as a classifier to predict discrete signal in the

market, such method predicts either the most profitable action on a target date directly

(“buy”, “sell” or “hold”), or assigns a specific category to the target date and the output

will have the form of “up” and “down”. It has been shown in [21] that the classifier

approach generates more reliable predictive results comparing to the linear regression

approach since the neural network is better in classification problems.

Both of these two applications of neural networks involve complex design process since

there is a good amount of parameters in the system need to be fine tuned in order to

optimize the performance. For instance, the frequency of input data, i.e. either daily,

weekly, or monthly stock data should be used to construct the training data; or time

frame for the target date, how far should the prediction be made, 1-day, 2-days, or 5-days.

All of which are choices that affect the accuracy of predictions. These parameters need

to be tuned by experiments since they vary base on different nature of problems as well

as the size of training data. [13] proposed an eight-step procedure of designing a neural

network for forecasting financial time series data. The design procedure starts from the

preparation of training samples, which involves selection of features, data collection, and

preprocessing data. Selection of features is one of the most critical step in neural network

designing since good feature could significantly improve the accuracy of prediction; data

preprocessing includes feature transformation and scaling as good representations are

easier to learn and each feature has their own range of domain, thus, every dimension

of feature need to be scaled into a uniform domain, usually no raw data are directly fed

into the neural network. The prepared samples are then divided into three different sets:

training, testing and validation sets. The next stage of the designing procedure involves

setup of the network structure as well as the training parameters. Network structure

mainly refers to the number of hidden layers as well as the hidden units in each layer;
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whereas training parameters include the number of epoch required for training, the size

of mini-batch, learning rate in each epoch, weight decay or momentums, etc. The final

stage is the implementation of the overall design and train the system.



Chapter 5

Predicting with Historical Price

Data

One of the traditional and also widely used approach to analyze securities and make

investment decisions is technical analysis, which focuses on the past price movement in

the market in order to identify patterns that may suggest the direction of future price.

Technical analysis relies on a set of technical indicators that are computed from the

historical stock data. In the first part of this thesis, we construct our feature vectors using

such technical indicators that are extracted from the Centre for Research in Security

Prices (CRSP) database.

5.1 CRSP dataset

The historical stock price data used in this thesis are obtained from CRSP database

which is designed for academical research and educational use and have proven to be

highly accurate [22]. The CRSP stock files are developed by the Centre for Research
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in Security Prices (CRSP), Booth School of Business, University of Chicago. CRSP

database includes the daily, monthly and annually stock data as well as the market

index data from the major US exchanges, including New York Stock Exchange (NYSE),

NASDAQ and American Stock Exchange (AMEX). The original CRSP stock file was

developed to contain the monthly stock prices and returns of NYSE dating from 1925,

it then expand its coverage of NASDAQ and AMEX in 1962 and 1972.

Both individual security data and market index data are time series data, therefore,

each entry in the data is tagged with a date. CRSP uses a calendar contains only the

dates where a major US exchange is open for trading. The list of daily security data

is synchronized with the CRSP calendar in the way that the n-th security record is

associated with the n-th date in the CRSP calendar. CRSP stock files provide various

type of data for individual securities and market index ranging from the stock identifier,

numerical trading data, and other descriptors. Table 5.1 listed the descriptions of each

field we selected from CRSP database as well as a stock record example of “GOOGLE

INC” on 2006-01-03.

We download all available daily stock records from CRSP database during the period of

2006-01-03 to 2013-12-31, as same as the time frame of the financial news data we use

in this thesis [27]. The query returns the records of 10430 stocks from American major

stock markets. We then filter out all stocks that don’t have any related financial news

base on the preprocess described in section 6.1, since those stocks have fewer attentions

from the investors and are more likely to have missing data. After such filtering, we

keep about 5 million records of 3170 stocks as our final dataset.

In order to access and search among the stock records easier and faster, we created a

MySQL database to store all this records and identify each stock using the PERMNO
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field since this is the permanent code that assigned to a stock discard the change of

company name. For example, “APPLE COMPUTER INC” has changed its name to

“APPLE INC” on 2007-01-11, and we use the PERMNO code of this company to clarify

such name change event and collect all records associated to the same company. In

addition, using such stock identifier help us to group the stock records and preprocess

the data on the company base before constructing the feature vectors.

5.2 Preprocessing

Typically, raw dataset requires cleanup and preprocess before use. According to table

5.1, there are several special values defined for each field indicate missing data or special

meaning of data. Therefore as the first stage of preprocessing, we handle all such special

values from the original dataset. First we mark all missing or unavailable field in each

record as NULL so that after we construct the feature vector samples, any sample with

NULL value could be easily identified and removed. In the close prices field, since

negative value means a substitute value of the unavailable closing price, we simply

remove the negative sign and keep the absolute value in that field.

In the raw dataset, each field has their own domain range of values, and different com-

pany also have different value range in the same field. Therefore, before extracting

features from the raw dataset, it is helpful to normalize the values in each field into a

uniformed scale for a better generalization performance in a machine learning task. We

first normalize each field in the company level by grouping the stock records using the

PERMNO field described in the previous section. Then for each numerical field listed

in table 5.1 excluding PERMNO, Date, and Company name, we preform the following
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Field name Description Example

PERMNO Stock identifier, CRSP’s unique and perma-
nent issue identification number.

90319

Date Date of the record with format
“YYYY-MM-DD”.

2006-01-03

Company name Full name of the company GOOGLE INC

Close price Closing price of the trading day. If the clos-
ing price is not available on any given trading
day, the number in the price field has a nega-
tive sign to indicate that it is a bid/ask average
and not an actual closing price. If neither clos-
ing price nor bid/ask average is available on a
date, this field is set to zero.

435.23

Open price Open price on that trading day. 422.52

Ask high Highest trading price during the day, or the
closing ask price on days when the closing price
is not available, set to zero if this field is not
available.

435.67

Bid low Lowest trading price during the day, or the
closing bid price on days when the closing price
is not available. set to zero if this field is not
available.

418.22

Number of trades Total number of trades made during the day,
set to 99 if not available.

70118

Holding period
return

The change in total value of an investment in
this stock over previous trading day, calculated
as p(t)

p(t′) − 1 where p(t) is the closing price on

day t and t′ is the trading day before t.

0.04910

Market value
weighted return

Return calculated base on market index of
NASDAQ, AMEX and NYSE. Market index
is the aggregated value produced by combin-
ing stocks in one stock market that intended
to represent the entire stock market. Value-
weighted market index is computed base on
stock prices that are weighted by on their value
in the market.

0.01641

Market equal
weighted return

Similar with Market value weighted return ex-
cept the market index is computed base on
equal weighted stock value in the market

0.01098

S&P index return Return on the Standard & Poor’s Composite
index.

0.01643

Table 5.1: List of fields in each daily security record queried from CRSP database.
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normalization, first calculate the mean value of the field:

means(f) =
1

n

∑
d

fs(d)

, where f is the field name, the subscript s indicates that the corresponding field is

associated with the stock with PERMNO s, fs(d) denotes the value of field f of company

s on trading day d, therefore
∑
d

fs(d) is the sum of all available values in field f

associated with the stock s, and n is the total number of records belong to the stock.

We then calculate the standard deviation of each field by:

stds(f) =
√
E[(fs(d)−means(f))2]

, where E denotes the expected value. Finally, we normalize the field by calculating the

standard score:

zs =
fs(d)−means(f)

stds(f)

On thing should be mentioned is that before the training of neural network, we typically

separate the original dataset into three different blocks, i.e. training set, validation set,

and test set where training set represents the available data for training a predictive

model like DNN, validation and test set represents the unseen data to the system.

Therefore, the mean and variance should only be computed from the training set since

the data in validation set and test set is not accessible in a real life system. In this thesis,

since we are predicting time series data, the original dataset is divided base on the Date

field in each record. For instance, all the records between 2006 and 2011 are used as

training data, records from the year 2012 are used as validation data and records from

the year 2013 are used as test data. Thus for each company, the mean and standard
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deviation for each field is computed base on the records between 2006 and 2011, and the

data from 2012 to 2013 is normalized by the mean and standard deviation of data from

2006 to 2011.

The process described above normalizes the raw dataset on company bases. After stack

the feature vectors of all the company together, each dimension of the overall feature

vector will be normalized again using the same method.

5.3 Constructing feature vectors

After cleaning up and normalizing the raw dataset from CRSP, feature vectors could be

constructed from the preprocessed dataset and use for deep neural network training later

on. We extract three types of features from the dataset to form the samples of historical

stock data: (1) original fields provided by CRSP stock files; (2) technical indicators

derived from the original fields; (3) first and second order differences of all dimensions.

5.3.1 Original fields

Each of the fields listed in table 5.1 (with the exception of PERMNO, date, and company

name) contains useful information represent the behavior of individual stocks as well as

the market during a period of times. The first block of our feature vector is constructed

directly from the normalized value of the fields from the following list:

F = {Close price, Open price, Ask high, Bid low, Number of trades, Holding period

return, Market value weighted return, Market equal weighted return, S&P index return

}
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Similar with normalizing the raw dataset, we construct the feature vectors on company

base before stack each company’s feature vectors together to form the entire set of

samples. First, each group of stock records with the same PERMNO code are sorted by

their date. A list of N continuous trading days’ records can be concatenated together

on each field to form a feature vector. In this thesis, we concatenate 5 day’s record

together. For instance, the part of closing price in the feature vector will have the form

of:

Fcloseprice = (Pt−4, Pt−3, Pt−2, Pt−1, Pt)

where Pm denotes the closing price on date m. The overall feature vector of the original

fields will have the form of:

F = (Fcloseprice, Fopenprice, . . . , FS&Pindexreturn)

where Ff name is 5 continuous days’ value of field f name.

5.3.2 Technical indicators

The second block of the feature is inspired by the technical analysis discussed in chapter

4. We compute two types of technical indicators, which are widely used by the technical

analyst, from our original dataset: exponential moving average (EMA) and relative

strength index (RSI). These two features are also computed on the company base and

normalized after combining all company’s samples.

EMA A moving average is used to smooth out the short-term bouncing and highlights

the long-term moving trend of a time series data. Figure 5.1 shows an example of EMA

of GOOGLE INC’s close price during a window of 100 trading days between 2006-01-03



55

and 2006-05-25. We compute EMA on closing price and open price for each stock. Using

close price of a single stock as an example, we compute the moving average of close price

on day i as:

EMAi = α× Pi + (1− α)× EMAi−1

where Pi is the close price on day i. α is the decrease factor that exponentially decreases

the impact of older close price have on the current EMAi, we adopt the common method

and set it as 2
N+1 in which N is the total number of available close price in the dataset.

Since the above computation of EMA is a recursive computation, we set the base case of

EMA1, the EMA of first day’s close price, as the average close price of the first 5 days

in the time series. After computing the EMA for both close price and open price, we

concatenate 5 day’s EMA together like we did for the original fields so that the feature

vector of EMA will have the form:

EMA = (EMAt−4, EMAt−3, EMAt−2, EMAt−1, EMAt)

RSI The relative strength index is a technical indicator developed by J. Welles Wilder

[23], it is a momentum oscillator that measures the velocity and magnitude of the price

movement. RSI is a value between 0 and 100 that is use as an indicator of price turning

point, such that exceeding a certain neutral region indicates the change of price moving

direction is upcoming. Figure 5.2 shows an example of RSI of Google’s close price. After

the RSI value grows higher than the upper bound 70, it becomes a strong indicator of a

price drop. Oppositely, if the RSI drops lower than 30, it indicates a price raise is likely

to happen. We compute RSI of close price base on the following computations. First
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Figure 5.1: Example of exponential moving average of Google’s close price during
2006-01-03 and 2006-05-25. The fluctuation in original data is smooth out in EMA.

calculate the upward change U and downward change D:

U =


Pt − Pt−1 if Pt > Pt−1

0 otherwise

D =


0 if Pt >= Pt−1

Pt−1 − Pt otherwise

where Pt is the close price on day t. Then the RSI is computed as follow:

RSI = 100− 100

1 + EMA(U)
EMA(D)
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Figure 5.2: Example of relative strength index of Google’s close price. The region
between 30 and 70 is typically the neutral region. RSI higher then 70 indicates an
overbought of the stock and price drop is about to happen, whereas RSI lower then 30

indicates an oversold of the stock and price raise is about to happen.

where EMA(U) and EMA(D) are the exponential moving averages of upward change

and downward change respectively.

5.3.3 1st and 2nd order differences

In addition to the previous two feature vectors, we also compute first and second order

differences of each field in F. Using close price as example, the first order difference is

computed as follow:

∆Fcloseprice = (Pt−4, Pt−3, Pt−2, Pt−1)− (Pt−5, Pt−4, Pt−3, Pt−2)
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And the second order difference is calculated by taking the difference between two ad-

jacent values in each ∆Fcloseprice:

∆∆Fcloseprice = (∆F2,∆F3,∆F4)− (∆F1,∆F2,∆F3)

We compute such first and second order differences for every fields in F and append

them to the previous two feature vectors together to get the final sample:

(F,∆F,∆∆F,EMA,RSI)

5.4 Labeling

The final step of feature extraction is labeling the samples. Since the missing or unavail-

able data from original CRSP dataset are marked as NULL in the data preprocessing

stage, we first remove all samples with NULL value in any dimension of the feature

vectors. For the remaining samples, each of them is constructed by a set of features

from trading day t − 4 to t, and we set the predicting target of each sample to be the

price moving direction on the day after t. Therefore we use the holding period return

value on day t + 1 to label each sample. Samples with day t + 1’s return value greater

than zero will be label as “price up” and “price down” otherwise.



Chapter 6

Financial News Data

In addition to the technical analysis, which studies the pattern from pure market data,

investors also use a wide variety of public available information to make their invest-

ment decisions. One of the most easy-to-access public available information is financial

news. Financial news usually contains useful information of the market such as the

financial report of a public company, analysis of the market or a set of specific stocks

from professional investment organizations, or a news describing a remarkable event of

the market or a company, etc. These financial articles not only indicate a company’s

potential value but also reflects the investors’ confidence of the stock market. Therefore,

the information from the financial articles would have certain impacts on the purchasing

intention of investors as well as the market movements. The goal of the second part

of this thesis is to extract useful features from the financial news and learn from these

features in order to catch the trend of stock’s future moving direction.

The financial news data used in this thesis are provided by [27] which contains 106,521

articles from Reuters and 447,145 from Bloomberg. The news articles were published in

the time period from October 2006 to December 2013.

59
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6.1 Data preprocessing

Before extracting fixed-size feature vectors that are suitable to DNNs from financial

news corpora, we need to preprocess the text data in order to find out all the related

stocks for each financial news. Each financial news data entry has a title field, a body

field, and a date of publication field as shown in table 6.1. First, for all financial articles,

their body field is split into sentences. Next, each of these sentences needs to be labelled

with its related stock. To do this, we first obtain a set of all company names from

CRSP database [22] mentioned in the previous chapter. Since the company name of

stocks from CRSP database are full company with all kinds of suffixes (such as “INC”,

“CORP”, “LTD”, “PLC”, “LLC”, etc.), and such suffixes are usually omitted in the

financial news, for instance, the company with name “Microsoft Corp” in CRSP stock

file is usually referred as “Microsoft” in the financial news. Therefore, in order to get

as much available samples as possible from the raw news content, we trim off all such

kind of suffices from the company names before we match them with the sentences.

Nevertheless, we also select a list of companies that should keep their suffixes since such

company name without suffix is a common word that will appear in a lot of irrelevant

news, for example, companies with name “Express Inc” and “Unit Corp” without their

suffixes will appear in many common sentences. We only keep those sentences that

mention at least one public company. Each sentence is then labelled by the publication

date of the original article and the mentioned stock name. It is possible that multiple

stocks are mentioned in the same sentence. In this case, this sentence is labelled several

times for each mentioned stock. We then group these sentences by the publication

dates and the underlying stock names to form the samples. Each sample contains a list

of sentences that were published on the same date and mentioned the same stock or
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Field name Example

Date 2006-11-01

Title Apple pushes Oricon to quit PC music downloads

Body TOKYO (Reuters) - Oricon on Wednesday announced its
exit from Japan’s PC music download market, becoming the
first victim among local players to the surging popularity of
Apple Computer Inc.’s iTunes music store . . .

Table 6.1: An example of financial news data entry.

company. Moreover, each sample is labelled as positive (“price-up”) or negative (“price-

down”) based on its stock’s closing price on next trading day consulted from the CRSP

financial database [22].

In the following sections, we will introduce our method to extract three types of features

from the samples.

6.2 Bag of keywords feature

Bag-of-words(BoW) model is a common model in Nature Language Processing(NLP)

that represents the text data, either a document or a sentence, as a bag of words appear

in the data and use the frequency of each word as features; such features are used to train

a classifier afterwards. In this thesis, the goal is to train a classifier to classify the input

text into two categories: one indicates the probability of stock price drop, and the other

one indicates the probability of stock price raise. Since the corpora of financial news

used in this chapter contains more than 10 thousand words, which requires a feature

vector with 10 thousand dimensions to represent the whole corpora if all of them are

included in the vocabulary of the BoW model. Therefore, instead of using all words in

the corpora as features, a Bag of keywords (BoK) are selected to form the feature vector.
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The word embedding method in [1, 30] is used to select a list of words that have strong

effect on the stock price. With the word embedding method, we use a small set of seed

words that have obvious impact on the stock prices and then search through the vector

representation of words to get a list of words that are “close” to these seed words.

We first compute the vector representations for all words occurring in the training set

using the popular word2vec method 1. Then, we manually select a small set of seed

words base on two criteria: 1) the words frequently occurred in the title and content of

financial articles; 2) the financial article with title or content containing such seed words

describe a significant price change event of a stock. Following is a set of nine seed words

we selected using these criteria:

{surge, rise, shrink, jump, drop, fall, plunge, gain, slump}

Next, we will repeat an iterative searching process to collect other useful keywords. In

each iteration, we compute the cosine distance between other words occur in the training

set and the seed words. The cosine distance represents the similarity between two words

in the word vector model. For example, based on the pre-calculated word vectors, we

have found other words, such as rebound, decline, tumble, slowdown, climb, rally, weak,

pullback, downtrend, boost, which are very close to at least one of the seed words. And

the top 10 most similar words are chosen and will be added back into the set of seed

words at the end of each iteration. And the updated seed words will be used to repeat

the searching process again to find another top 10 most similar words, the size of the

seed words will keep increasing as we repeat the searching. In this way, we have searched

all words occurring in the training set and kept the top 1,000 words (including the nine

1https://code.google.com/p/word2vec/
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seed words) that are close to each other as the keywords for our prediction task. The

complete list of 1000 keywords are shown in Appendix A.

Since the way we repeat the searching process collects a set of words that are close to

each other, no matter what set of seed words are used at the start point, as soon as they

are chosen using the criteria described before, the resulting keywords set will be similar.

Finally, a list of 1000 keywords is constructed. And using the indexes of the list, each

sample is represented by a 1000-dimension vector, where each dimension of the vector

refers to the frequency of the corresponding keyword in the list (which is also the his-

togram representation). Since it is possible that some keywords appear more frequently

than others, which will vanish the effect of other less frequent but useful keywords; it is

common in text classification tasks to weigh terms by term frequency inverse document

frequency or TF-IDF schemes instead of using term frequencies to avoid such case.

TF-IDF is a numerical statistic that is intended to reflect how important a word is to

a sample in the training set. Term frequency is simply the number of times a term

or word occurs in the sample. And Inverse document frequency is a factor that use to

diminish the weight of a term occurs too frequently in the overall training set. There

are several variants of TF and IDF weight. In the case of term frequency, which denotes

as TF (w, s), we use the simplest choice which is the number of times a word w occurs

in a sample s:

TF (w, s) = |{w ∈ s}|

For inverse document frequency, we use the form:

IDF (w, S) = log
N

|{s ∈ S : w ∈ s}|
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where S is the training set of samples, N is the total number of samples in the training

set, and |{s ∈ S : w ∈ s}| represents the number of samples where the keywords w

appears. The TF-IDF score is then calculated by multiplying these two terms:

TF-IDF(w, s, S) = TF (w, s) ∗ IDF (w, S)

Base on this TF-IDF score, a 1000-dimension feature vector, called bag-of-keywords or

BoK, is generated for each sample. Each dimension of the BoK vector is the TF-IDF

score computed for each selected keyword from the whole training corpus.

6.3 Polarity score feature

As well as including BoK feature vector to indicate the level of impact a financial news

will have on the movement of stock price. We also want to extract feature that measures

to which direction will the keyword affect the stock price move, i.e. either up or down,

and by how much will the keyword affect it.

6.3.1 Pointwise mutual information

We further compute so-called polarity scores [33, 34] to measure how each keyword is

related to stock movements. To compute such polarity score, we apply the concept

of pointwise mutual information (PMI). PMI is a measure of relationship between two

outcomes of random variables, for instance X and Y , and it is defined using the formula:

PMI(x, y) = log
P (x, y)

P (x)P (y)
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where P (x, y) is the joint probability of X=x and Y=y, and P (x), P (y) is the proba-

bility of x and probability of y respectively. In the case of this thesis, PMI can be used

to measure the relationship between a keyword and the category of positive or negative

article. Therefore in the formula above, the outcome x could be replaced by the occur-

rence of a keyword w and y could be replaced by a category, i.e. either pos or nag. And

the PMI of a pair of keyword w and a positive category can be computed as:

PMI(w, pos) = log
freq(w,pos)

N

freq(w)
N × freq(pos)

N

where freq(w, pos) denotes the frequency of the keyword w occurring in all positive sam-

ples, N denotes the total number of samples in the training set, and therefore
freq(w,pos)

N

denotes the probability of keyword w being in a positive article. Similarly, freq(w) de-

notes the total number of keyword w occurring in the whole training set, and
freq(w)

N

denotes the probability of keyword being w; and freq(pos) denotes the total number of

positive samples in the training set, and
freq(pos)

N denotes the probability of an article

being labeled as positive. By cancelling out the N ′s, the formula can be simplified to:

PMI(w, pos) = log
freq(w, pos)×N

freq(w)× freq(pos)

Then we can compute the PMI of a pair of keyword w and negative financial articles in

the same way:

PMI(w, nag) = log
freq(w, nag)×N

freq(w)× freq(nag)

Furthermore, we calculate the polarity score for each keyword w as:

PS(w) = PMI(w, pos)− PMI(w, neg).
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Obviously, the above polarity score PS(w) measures how (either positively or negatively)

each keyword is related to stock movements and by how much. Therefore, a keyword will

have a positive polarity score if it has a strong relationship with the positive articles,

oppositely, the polarity score will be negative if it has a strong relationship with the

negative articles.

6.3.2 Assigning polarity score

Since it is possible that one sentence could include multiple stock names, a keyword’s

polarity score in one sentence could have a different effect on the stocks mentioned in

the same sentence, depending on the grammatical relation between the keyword and the

stock name. Therefore, we need to decide how each keyword applies to a target stock

in each sentence. To do this, we first use the Stanford parser [29] to generate a typed

dependency parse that retrieves the grammatical relation between each two words in the

sentence. Then, we use the grammatical relation to determine whether a stock name in

the sentence is subject or not. If the target stock is not the subject of the keyword in

the sentence, we assume the keyword is oppositely related to the underlying stock. As

a result, we need to flip the sign of the polarity score. Otherwise, if the target stock is

the subject of the keyword, we keep the keyword’s polarity score as it is. For example,

the sentence:

“Apple slipped behind Samsung and Microsoft in a 2013 customer experience

survey from Forrester Research”

will be used in three samples, i.e. one labeled by Apple’s stock price, one labeled by

Samsung’s stock price and the other one labeled by Microsoft’s stock price. For all

these three samples, the word slipped will be identified as the keyword base on the
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Figure 6.1: Parsing result of the example “Apple slipped behind Samsung and Mi-
crosoft in a 2013 customer experience survey from Forrester Research”.

previous BoK feature. Then the whole sentence is passed to Stanford Parser to produce

typed dependency. Based on the parsing result shown in figure 6.1, the grammatical

relation between Apple and slipped is nsubj which means nominal subject; such relation

indicates Apple is the subject of keyword “slipped”. While Samsung and Microsoft have

a nmod relation (nominal modifiers) with “slipped” which indicate these two words are

not subjects. Therefore, if this sentence is used as a sample for Apple, which is labeled

by Apple’s stock price, the above polarity score of “slipped” is directly used. However, if

this sentence is used as a sample for Samsung or Microsoft, the polarity score of “slipped”

is flipped by multiplying −1.

Finally, the resultant polarity scores are multiplied to the TF-IDF scores to generate

another 1000-dimension feature vector for each sample.
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Date
News Title

2007-01-09 Investors dump RIM as Apple launches iPhone.

2007-01-09 FACTBOX-Key facts on Apple’s new iPhone.

2007-01-09 Apple introduces svelte multimedia iPhone.

2007-01-09 Apple unveils iPhone.

2007-01-09 Apple rolls out much-anticipated iPhone.

2007-01-09 Apple shares up after Jobs introduces mobile phone.

Table 6.2: List of news title published on 2007-01-09.

6.4 Category tag feature

During the preprocess of the financial news data, we discovered that certain type of

events are frequently described in the financial news, and the stock price will change

significantly after the publication of such financial news. For example, table 6.2 shows

a list of news published on 2007-01-09 related to Apple Inc. The titles show that this

news is describing the same event which is the announcement of Apple’s new product

iPhone. After the publication of this news, the stock price of Apple jumped from 92.57

per share on 2007-01-09 to 97.00 per share on the next day 2007-01-10. This is the type

of new-product event we defined in this research.

In order to discover the impact of such specific event on the stock price, we further define

a list of categories that may indicate a specific event or activity of a public company,

which we call as category tags. In this thesis, we define the following ten categories:

• new-product

• acquisition
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• price-rise

• price-drop

• law-suit

• fiscal-report

• investment

• bankrupt

• government

• analyst-highlights

We then use this list of category tags to create a new feature vector. Each category is

first manually assigned with a few words that are closely related to the category. For

example, we have chosen released, publish, presented, unveil as a list of seed words for the

category new-product, which indicates the company’s announcement of new products.

Similarly, we use the above word embedding model to automatically expand the above

word list by searching for more words that have closer cosine distances with the selected

seed words. In this work, we choose the top 100 words and assign them to each category,

the complete list of category tags are shown in Appendix B.

After we have collected all keywords for each category, for each sample, we count the

total number of occurrences of all words under each category, and then we take the

logarithm to obtain a feature vector as

V = (logN1, logN2, logN3, ..., logNc)
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where Nc denotes the total number of times the words in category c appear in a sample.

In the case where Nc is zero, it is replaced by a large negative number, for example -99

in this work.



Chapter 7

Correlation Matrix

One limitation of the method discussed in the previous chapter is the amount of predic-

tion could be made. Since the feature vectors we discussed in the previous chapter are

mainly retrieved from financial news, the number of stock movement could be predicted

in a day is restricted by the number of stocks mentioned in that day’s financial news.

There are a large number of stocks trading in the market every day whereas we normally

can only find a fraction of them mentioned in the daily financial news. Hence, for each

date, the neural network model could only predict the stocks mentioned in the financial

news on that date.

Our next goal is to make use of the prediction results produced by the DNN model

and predict the stock prices that are not directly mentioned in any daily financial news.

During the study of the historical stock data, we found that the prices of some stock

are highly related to each other. It means there could be a certain strong relationship

between two stocks, or even a group of stocks, that the prices of related stocks tend to

move to the same direction. Figure 7.1 shows an example of such cases, the stock of two

71
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Figure 7.1: An example shows a pair of stocks which are highly related to each other.
The two graphs above plot the closing price of ”CISCO SYSTEM INC” and ”BUCKLE

INC” during the period of 2006-01-03 to 2013-12-31.

companies ”Cisco System Inc.” and ”Buckle Inc.” are listed for trading during the same

period of time, during which the price trend of these two stock are very similar.

In this chapter, we propose a new method to predict more stocks that may not be directly

mentioned in the financial news, which we call the unseen stocks. Here we propose to

use a stock correlation graph, shown in Figure 7.2, to predict those unseen stocks. The

stock correlation graph is an undirected graph, where each node represents a stock and

the edge between two nodes represents the correlation between these two stocks. For

example, if some stocks in the graph are mentioned in the news on a particular day, we

first make the prediction to those stocks using the methods introduced in the previous

chapters. Afterwards, the predictions are propagated along the edges in the graph to

generate predictions for those unseen stocks.
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Figure 7.2: Illustration of a part of correlation graph which contains 11 stocks. The
symbol in the circle are the ticker name of the stock. The value along the edges are the

correlation score of the two stocks connected by that edge.

7.1 Building the graph

We choose the top 5,000 stocks that satisfy the following two criteria from the CRSP

database [22] to construct the correlation graph. First, the stock has, at least, one

year’s trading records during the period between 2006 and 2012, this criteria is used to

make sure that the stock is active enough in the stock market. Second, the stock has

available closing price data in the year of 2013, which will be used as the test set in our

experiment, this criteria is used to make sure that the stock will have labeled data to

test the performance of our method.

At each time, any two stocks in the collection are selected to align their closing prices

based on the related dates (between 2006/01/01 - 2012/12/31), and we only keep the

stock pairs that have at least 252 days’(number of trading days in one year) of overlap

trading period. Then we first calculate the covariance, which is a measurement of how
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much two random variables change together, of the two stocks. For two stocks A and

B, the covariance of them is calculated as:

cov(A,B) =
1

n

n∑
i=1

(Ai −E[A])(Bi −E[B])

where n is the total number of days A and B both have closing price available in the

database, Ai and Bi are the day i’s closing price of stock A and B respectively; E[A]

denotes the expected value(or average value) of the close price of stock A. Then we

calculate the correlation coefficient by:

P (A,B) =
cov(A,B)√

cov(A,A)× cov(B,B)

Where cov(A,A) and cov(B,B) are just covariance of the stock A and B themselves.

The result value of P (A,B) is between −1 and 1, the greater this value is, the more

likely the two stock will move to the same direction whereas the smaller the value is,

the more likely the two stocks will move to the opposite directions. The computed

correlation coefficient is attached to the edge connecting these two stocks in the graph,

indicating their price correlation. The correlation coefficients are calculated for every

pair of stocks with over one year’s overlapping on the trading period from the collection

of 5,000 stocks. After calculating the correlation coefficient for all eligible stock pairs,

we only keep the edges with an absolute correlation value greater than 0.8, all other

edges are considered to be unreliable and pruned from the graph, a tiny fraction of the

correlation graph is shown in Figure 7.2.

In this work, we represent such correlation graph by a 5000-by-5000 matrix, in which

the index of row and column corresponding to a stock in the collection. Each element in

this matrix is used to store the correlation coefficient value of two connected stock, for
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example, the value in i-th row and j-th column of the matrix is set to be the correlation

between the i-th and j-th stock in the collection. Obviously, this matrix will be a

symmetric matrix since both the index of row and column in the matrix represents the

same set of stocks.

7.2 Predict unseen stocks

In order to predict price movements of stocks that are not mentioned in the financial

news, we take the prediction results of those stocks that are mentioned in a financial

new from the DNN outputs and use the outputs as signals to propagation through the

correlation graph.

We first construct a 5000-dimension vector x. Each dimension corresponds to one stock

in the correlation graph. The value of each dimension in this vector will be set to

indicate the probability of price moving up or down. For the dimensions corresponding

to stocks that have been mentioned in the financial news, we set the value by using the

prediction output of DNN. Since the DNN outputs of each sample are the probabilities

of two categories, i.e. stock price moving up or down, we first take the maximum value

out of these two probabilities; and then distinguish the associated category by adding a

negative sign on the value if it is the probability of price moving down. We set zeros for

all other dimensions corresponding to unseen stocks. Then, the above graph propagation

process can be mathematically represented as a matrix multiplication:

x′ = Ax



76

where A is the correlation matrix denoting all correlation weights in the graph. Of

course, the graph propagation, i.e. matrix multiplication, may be repeated for several

times:

x(n) = Anx

where n is the number of times the signal got propagated through the matrix. The

prediction x(n) will eventually converge. After it converges, we put a threshold on each

dimension and only keep the dimensions with highest absolute probability values. And

the kept values in each dimension gave us another set of predictions of the stocks from

the collection, where a positive value represents the probability of price moving up and

a negative value represents the probability of price moving down.



Chapter 8

Experiments

The experiments are divided into two parts. The first part is designed to discover how

different features will impact the performance of predictions on stock price movement,

therefore, we train a deep neural network to learn the price and financial news features

that are developed in Chapters 5 and 6, then the prediction results generated by learn-

ing different combinations of features are compared to explore the best combination of

features. The second part is designed to show how we can make use of the correlation

among stocks to further expand the results generated from the first part of the experi-

ments; we take the prediction output from the first part and propagate them through the

correlation matrix to make predictions on the stocks that are unseen from the original

samples.

Before running the experiments, we need to divide the data we have into three separate

sets: training set, validation set and test set. A training set is used to generate input

samples for training the neural network. The validation set is a set of unseen data that

is exclusive from the training set and is used to monitor the generalization performance

of the DNN model and adjust learning rate during network training, validation set could
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be used to eliminate the overfitting problem. A test set is another set of unseen data

exclusive from both validation set and training set to test the final performance of the

trained network. We divide both historical price data and financial news data into three

sets base on their associated timestamp. We use data between 2006-10-01 and 2012-12-

31 as the training set, data between 2013-01-01 and 2013-06-15 as the validation dataset

and data between 2013-06-16 and 2013-12-31 are used as the test dataset.

8.1 Stock Prediction using DNNs

In the first part of experiments, we use DNNs to predict stock’s price movement based

on a variety of features, namely producing a polar prediction of the price movement on

next day (either price-up or price-down).

We first conduct a set of experiments with combinations of different network architec-

tures and parameters in order to find the optimal setup for the network. In these first

set of experiments, we use the price features introduced in Chapter 5 as our inputs.

Moreover, the best result obtained in these experiments will be used as our baseline

result in the next experiments. The performance of the neural network is measured by

the error rate, which is calculated by counting the differences between the predicted

category and the actual labelled category.

We mainly focus on tuning 4 types of parameters for the network: (a) input timeframe,

which is the number of days’ historical data we add in the input samples; (b) DNN

structure, which is the architecture of deep neural network that varies in the number

of hidden layers as well as the number of hidden nodes in each layer; (c) learning rate,

the constant factor we use when updating the weights of the network during training;

(d) mini-batch size, which is the number of samples we feed into the network at once.
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Tables 8.1, 8.2, 8.3 and 8.4 list some of the experimental results base on each of the

parameters. In these experiments, we used the maximum of 50 epochs to train the

network. Validation dataset is used to monitor the performance of the trained network

in each epoch and adjusts the learning rate accordingly in order to reduce overfitting. In

each epoch, using cross entropy as a validation criteria, after the network’s weights has

been updated by back propagation algorithm, we test the performance of the updated

network by feed the samples in validation dataset to the network; if the result cross

entropy is too much higher (10%) that the one produced by the network trained in

previous epoch, we discard the current epoch by reverting the updated weight and

reduce the learning rate and retrain the network. The training process is finished if the

learning rate has been reduced too small or all 50 epochs have been finished. Base on

the experimental results, we select the network with 5 days’ input timeframe, 3 layers of

1024 hidden units structure, learning rate 0.005 and 200 mini-batch size as the optimal

network, which will be used as our network system for the following experiments.

input timeframe DNN structure learning rate mini-batch size error rate

20 days [1024 1024 1024] 0.005 200 50.09%

14 days [1024 1024 1024] 0.005 200 48.96%

7 days [1024 1024 1024] 0.005 200 48.23%

5 days [1024 1024 1024] 0.005 200 47.64%

4 days [1024 1024 1024] 0.005 200 48.09%

3 days [1024 1024 1024] 0.005 200 48.45%

2 days [1024 1024 1024] 0.005 200 50.25%

Table 8.1: Experiments on different input timeframes. We show that given other
parameter unchanged, the input samples containing 5 days’ data generates the best

performance.

After we have selected the optimal network setups, we run another set of the experiments

to test the different combinations of feature vectors to find the features that have the
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input timeframe DNN structure learning rate mini-batch size error rate

5 days [500] 0.005 200 50.00%

5 days [1024] 0.005 200 50.01%

5 days [1024 1024] 0.005 200 48.79%

5 days [1024 1024 1024] 0.005 200 47.64%

5 days [1024 1024 1024 1024] 0.005 200 47.64%

5 days [1024 1024 1024 1024 1024] 0.005 200 47.62%

Table 8.2: Experiments on different DNN structures. Number of elements in the
square brackets represent the number of hidden layers used in the neural networks, the
value of each element denotes the number of hidden units in the corresponding hidden
layer. Even though the networks with 3, 4 or 5 layers of 1024 hidden units generates
almost the same performance, we choose the structure of 3 layers as the optimal one as

it has the least computational cost.

input timeframe DNN structure learning rate mini-batch size error rate

5 days [1024 1024 1024] 0.01 200 49.89%

5 days [1024 1024 1024] 0.005 200 47.64%

5 days [1024 1024 1024] 0.001 200 47.64%

5 days [1024 1024 1024] 0.0008 200 48.00%

Table 8.3: Experiments on different learning rates. We show that with validation,
network with learning rate set to 0.005 produces the best performance and converge

fast.

input timeframe DNN structure learning rate mini-batch size error rate

5 days [1024 1024 1024] 0.005 100 48.89%

5 days [1024 1024 1024] 0.005 200 47.64%

5 days [1024 1024 1024] 0.005 1000 47.92%

Table 8.4: Experiments on different mini-batch size.

most significant contributions to predictive accuracy. Base on the results from the

previous sets of experiments, we use the historical price features alone to create the

baseline. Various features derived from the financial news described in Chapter 6 are

added on top of it. As shown in Table 8.5, the features derived from financial news can

significantly improve the prediction accuracy and we have obtained the best performance
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(an error rate of 43.13%) by using all the features discussed in Chapters 5 and 6 .

In addition, we also compare our proposed feature with the structured events feature

proposed in [27]. We extracted the structured event features from our data and Table

8.5 shows that our proposed features produce better performance in predicting a pool

of individual stock prices.

feature combination error rate

random guess 50.23%

price 47.64%

price + BoK 46.02%

price + BoK + PS 43.96%

price + BOK + CT 45.86%

price + PS 45.00%

price + CT 46.10%

price + PS +CT 46.03%

price + BoK + PS + CT 43.13%

structured events [27] 44.79%

Table 8.5: Stock prediction error rates on the test set.

In order to test the significance of our results, we applied the McNemar’s Test [44],

which is a statistical test used on paired nominal data. McNemar’s test is applied on a

2-by-2 contingency table (shown in table 8.6), which tabulates the outcomes of two tests

on a sample of n subjects. In McNemar’s test, it defines a null hypothesis stats that the

marginal probabilities in the contingency table are the same, i.e. pa + pb = pa + pc and

pc + pd = pb + pd. Whereas an alternative hypothesis is defined such that the marginal

probabilities are not the same. In addition, McNemar test statistic is defined as:

χ2 =
(b− c)2

b+ c
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Figure 8.1: Probability density function of Chi-squared distribution. k denotes the
degree of freedom.

with the assumption that the null hypothesis is true. χ2 has a chi-squared distribution

(shown in figure 8.1) with 1 degree of freedom. If χ2 is extreme in the distribution,

the test will reject the null hypothesis and show that the marginal probabilities are

significantly different from each other in favour of the alternative hypothesis. The level

of extremeness of χ2 is measured by a p-value with respect to a significance level α

(traditionally set to 0.05 or 0.001). In our case, the p-value is the probability of the

variable greater then the computed χ2 in the chi-square distribution, i.e. P (x > χ2).

Test 2 positive Test 2 negative Row total

Test 1 positive a b a + b

Test 1 negative c d c + d

Column total a + c b + d n

Table 8.6: 2 x 2 contingency table applied in McNemar’s test.

In our experiments, we test the significance of different models by comparing the result

of different feature combinations with the result of random classifier (the results are

generated by random guess). In particular, we define the null hypothesis as follow: the

predictive performances of the DNN models with different input feature combinations
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would be the same as the random classifier. For each feature combination’s result listed

in table 8.5, we created the 2x2 contingency table with the results generated by the

random classifier. For example table 8.7 shows the 2x2 contingency table of the results

from random classifier and the DNN model with only price data. Each cell in the table

shows the matched results count of these two classifier; for instance, the top left cell

shows the number of results predicted correctly by both of the random classifier and

DNN model with price input feature. The McNemar test statistic χ2 value computed

using this table is 10.90 which has a p-value 0.00096. After constructing such 2x2

contingency table for each DNN model with different feature combinations, we compute

their χ2 and p-value, results are shown in table 8.8. The p-values shown in table 8.8 are

significantly lower than the typical α value of 0.001, which provides a strong evidence

to reject the null hypothesis of random guess.

DNN w/ price correct DNN w/ price wrong Row total

Random guess correct 2,860 2,609 5,469

Random guess wrong 2,853 2,589 5,480

Column total 5,713 5,198 10,911

Table 8.7: 2 x 2 contingency table of the results from random classifier and the DNN
model with price data.

8.2 Predict Unseen Stocks via Correlation

In the first part of the experiments, since the number of samples are restricted by the

available financial news related to the stock. On each trading day, only the stocks with

financial news published on the previous day will be predicted. Therefore in the second

part of the experiments, we take the predictions produced by the neural networks and
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feature combination error rate χ2 p-value

random guess 50.23% n/a n/a

price 47.64% 10.90 0.00096

price + BoK 46.02% 36.09 1.88× 10−9

price + BoK + PS 43.96% 78.81 6.83× 10−19

price + BOK + CT 45.86% 36.09 1.88× 10−9

price + PS 45.00% 55.19 1.09× 10−13

price + CT 46.10% 38.94 4.37× 10−10

price + PS +CT 46.03% 36.09 1.88× 10−9

price + BoK + PS + CT 43.13% 99.52 1.94× 10−23

structured events [27] 44.79% 60.70 6.64× 10−15

Table 8.8: Results of the McNemar’s Test of our models.

make another set of predictions on the stocks that do not have any related financial

news using the correlation matrix.

Here we group all outputs from DNNs based on the dates of all samples on the test

set. For each date, we create a vector x based on the DNN prediction results for all

observed stocks and zeros for all unseen stocks, as described in Chapter 7. Then, the

vector is propagated through the correlation graph to generate another set of stock

movement prediction. We may apply a threshold on the propagated vector to prune

all low-confidence predictions. The remaining ones may be used to predict some stocks

unseen on the test set. The prediction of all unseen stocks is compared with the actual

stock movement on next day.

Experimental results are shown in Figure 8.2, where the left y-axis denotes the prediction

accuracy and the right y-axis denotes the percentage of stocks predicated out of all 5000

per day under each pruning threshold. For example, using a large threshold (0.9), we

may predict with an accuracy of 52.44% on 354 extra unseen stocks per day, in addition
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Figure 8.2: Predict unseen stocks via correlation

to predicting only 110 stocks per day on the test set.



Chapter 9

Conclusions

In this thesis, we proposed a model to predict the moving direction of future stock prices

using the deep learning techniques. With the deep neural network as our predictive

model, we mainly leverage two types of input features: one is the price features computed

from historical market data; the other one is natural language features extracted from

online financial new based on the popular word embedding method. Our experiments

tested different combinations of input features and have shown that the financial news

is very useful in stock prediction and the features from news can significantly improve

the prediction accuracy on a standard financial data set. Moreover, we proposed a

correlation matrix which makes use of the underlying relationships among stocks to

expand our predictive results.

However, being able to predict the moving direction of stock prices does not equal to

beating the market. On one hand, a certain type of trading strategy is required to

combine with the predictive results in order to make the real profit out of it; on the

other hand, the amount of price change is also another important factor that is used

to compute the return of investments. Therefore, the development of a set of trading

86
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strategy or a system that predicts the value of price change could be the future direction

of this research.



Bibliography

[1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. In Proceedings of Workshop at ICLR, 2013.

[2] Frank Seide, Gang Li, and Dong Yu. Conversational speech transcription using

context-dependent deep neural networks. In Interspeech 2011. International Speech

Communication Association, August 2011. URL http://research.microsoft.

com/apps/pubs/default.aspx?id=153169.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet

classification with deep convolutional neural networks. In F. Pereira,

C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances

in Neural Information Processing Systems 25, pages 1097–1105. Cur-

ran Associates, Inc., 2012. URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf.

[4] Danqi Chen and Christopher Manning. A fast and accurate dependency parser

using neural networks. In Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages 740–750, Doha, Qatar, October

2014. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/D14-1082.

88

http://research.microsoft.com/apps/pubs/default.aspx?id=153169
http://research.microsoft.com/apps/pubs/default.aspx?id=153169
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://www.aclweb.org/anthology/D14-1082
http://www.aclweb.org/anthology/D14-1082


89

[5] Wenzhe Pei, Tao Ge, and Baobao Chang. An effective neural network model

for graph-based dependency parsing. In Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), pages 313–

322, Beijing, China, July 2015. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/P15-1031.

[6] Greg Durrett and Dan Klein. Neural crf parsing. In Proceedings of the 53rd An-

nual Meeting of the Association for Computational Linguistics and the 7th Interna-

tional Joint Conference on Natural Language Processing (Volume 1: Long Papers),

pages 302–312, Beijing, China, July 2015. Association for Computational Linguis-

tics. URL http://www.aclweb.org/anthology/P15-1030.

[7] David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. Structured training

for neural network transition-based parsing. In Proceedings of the 53rd Annual Meet-

ing of the Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), pages 323–

333, Beijing, China, July 2015. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/P15-1032.
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Appendix A

Bag of Keywords Features

abandon abates abating absence accelerate

accelerated accelerates accelerateshtml accelerating acceleration

accelerations accumulated achieve add adjust

advance advanced advances advanceshtml advancing

affect affection aftermath albeit aldershot

allaying amid amidst anaemic anchoring

anemic anomalies appreciable appreciate appreciated

appreciates appreciating appreciation approximate automatic

awhile backdrop backlash backstop backwash

balloon ballooned ballooning bask battering

batters bear bearishness beat beating

beats blanket bleak blip blossomed

bolster bolstering boost boosting bounceback

breakout bring budget bull bullishly

buoy buoyant buoying buoys calamity

calibrating calibration calming calms carve

catalyst cause caution cautiousness cbo

centerpiece centimes challenges changes chaos

cheer chokes choppy climb climbed

climbing climbs clinch cloth clouded

cncpiyoy come comeback complacency concernhtml

conditions conflagration conflicting confounding consequent

considerably constrain constraint constrict context

continuation contracted contracting contraction contractions

contrasting contribute converge converging convulsing

cooldown cooled cooling cools coolshtml

correction countering cratering credits crimp

crimped crimping crimps crippling crises
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crisis cspe culmination cumulative curb

curbed curbing curtail curtailed cut

cutback cutbacks cuts cycle damp

damped dampen dampened dampener damping

damps danger darkening debase debasement

debilitating decarbonization decelerate decelerated decelerates

decelerating deceleration decent decline declinehtml

declines declineshtml declining decrease decreased

decreases decreasing deepened deepening deepens

defend deficit deficithtml deficits deflate

deluge dent dented denting dents

depreciate depreciated depreciates depreciating depress

depressed depressing derail derailing derecho

deservedly destocking deteriorating deterioration dethrone

devaluation devalue devalued devaluing differ

differing difficulties dig diminished diminution

dimmer dimming dims dip dipped

disappear disappointment discernible discourage disincentive

disinflation disinflationary dislocation dislocations displace

disruption disruptions dissipate distortion distortions

diverge diverged divergent diverging dnipro

dollar dollarhtml downdraft downdrafts downshift

downtrend downturn downturns draconian dramatic

drift drifts drive drop drophtml

dropped dropping drops droughts durables

dwindling dynamism earningshtml ease eased

eases easeshtml ebbed ebbing ebbs

eclipsing elevated eliminate emergence emission

emulate enacting enacts encouragement endure

enhance ensued entitlement entitlements envelops

equaling equilibrium erase erased erases

erode eroded erodes eroding eru

escalations euphoria evaporate exacted exceed

exceeding exceeds excitement expand expanding

expansion expansions explicit extend extends

fade fades fading fall fallhtml

falling falloff falls fallshtml falter

faltered faltering falters faltershtml fear

febrile feeble fell fillip finish

fiscal fitful fizzle fizzling flagging

flailing fluctuate fluctuates flurry forestalling

formulating fortify fragile fragilities fragility

fragmentation fragmented franchtml freefall freighthtml

frenzy frontal froth frustratingly fueling

fumble fundamentals gain gained gaining

gains gap gdp gdphtml generally
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generate get go goldilocks grab

gradual gradually greenback grow growing

grows growth grudging gyrate gyrations

hamper hampering headwind headwinds heals

healthy heightens hiatus hiccup hikes

hinder hindering hindrance hitless hits

hitting hollowing huge humility hurt

hurting hydrofluorocarbon hysteria ichimoku igniting

illiquidity imbalances impediment imperiling impetus

imploded implosion import importance improve

improvement improving impulse incipient increase

increased increases increasing infinfy inflates

inflation inklings inr instability intensification

intensifies intensifying ipmfg jolt jolting

jump jumped jumping jumps keying

knock lack lackluster languish laps

laughs leadhtml leaguehtml leapfrog lessen

letdown lethargic lift limiting lingering

loonie lost lull lurching mainstay

maintain makeover marginally markedly market

mask matching materialization measurable meet

melt midst mindlessly mire miss

missed misses mistiming moderate moderated

moderately moderating moderation modernize modest

modestly momentary momentum mongering morphed

morphing motherwell motivation mounting multiply

mushroom mushroomed muted mutualization mutualized

narrow narrowing nationalistic neckline needing

negativity negligible nervousness noises nonagricultural

nonchalance nondurable nondurables nonfood nonfuel

nosedive noticeable noticeably numeric numerical

olympiacos onslaught opportunity outpace outpaces

outperformance outstrip outstrips outturn outweighing

overbought overshadowing overshadows overshoot overshooting

overshot oversized overstates overtake overtakes

overtaking overtook overvaluation overwhelms pace

panic paralleling parameter pare pared

pares patchy pattern penciling perceptible

peripheries persist persistence petered petering

phenomenon picture plausibility pleasant plummet

plummeted plummeting plunge plunged plunges

plunging positive pouch precarious precipitating

pressurehtml propel prospectshtml pull pullback

pulling pulls pummeling quicken quickened

quickening quickens raft rainfalls rainforests

raising rallied rallies rallieshtml rally
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rallyhtml rallying rangebound rapid rat

rationality ravages reaccelerate reacceleration reach

react rebalancing rebasing rebound reboundhtml

rebounding recalibrate recede recession recessions

reconfirms recoveries recovery reduce reducing

reduction reductions reigniting reinforce reinvigorate

relapse relatively reminiscent rename reprieve

resilience resiliency resilient respectable respite

restrain restrained restrains restrict resulting

resurgence resurgent retarding retest retesting

retracement retreat retreated retreating retreats

retreatshtml revalue reverberate reverses revitalize

revival revive revives ricocheted rippled

ripples rise rises rising risks

robust robustness rocketing room rose

rout routhtml routs ruinous runaway

safeguard sagging sank sapped sapping

saps scorches see seemingly seeped

seesawing selloff selloffs sentiments sequester

sequesters sequestration severe shackle shake

shaky shave shock shocks shortage

shortfall shortfalls shrink shrinkage shrinking

shrinks shuddered shutout sideways significant

sink sinks skid skids skyrocket

skyrocketed skyrocketing slash slew slid

slide slides sliding slight slightly

slip slippage slipped slipping slips

slipshtml slow slowdown slowdowns slowed

slower slowhtml slowing slows slowshtml

sluggish sluggishness slump slumped slumphtml

slumping slumps snap snapped snapping

snaps snowballed snuffed snuffing soar

soared soaring soars softened softening

softness solace solid solidity somewhat

sparking spasm spate spawned spending

spike spikes spiking spillovers spiraled

spiraling spiralling spite splintering spluttering

spores spur spurred spurring spurt

sputtering sputters stabilization stabilize stabilized

stabilizes stabilizing stable stagnant stagnate

stagnated stagnates stagnating stagnation stalling

stalls stallshtml sterner stimulate stimulating

stoked stoking strains strangle streak

streakhtml streaks strength strengthen strengthened

strengthening strengthens strengthenshtml stresses strong

stronger stumble stunning stunting stuttering
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stutters subdued subpar subsector subsectors

subside subsidies subsidy substantial sudden

supercommittee supplant supplementary surge surged

surges surging surpass surpassed surpassing

surplus surpluses surprise sustain sustainable

sustained swell swelling swells swingeing

swoon swooned swooning sympathy tailspin

tailwind take tanked target tariff

tariffs temper tempered tempering temporary

temptation tenuous tepid thawing threaten

threatening thresholds throes throw tightness

timidity tmnochng topped topping tops

touching trail trailing trajectories trajectory

transformation translate trend trendline trendlines

trickled trims tucpiy tumble tumbled

tumblehtml tumbles tumbleshtml tumbling tumult

turbulence turmoil turn turnaround unaffordable

unanticipated uncertain uncertainties uncertainty uncontrollable

undermine undermining underpin underpricing undershoot

undershooting undertones uneven unevenness unleashing

unsettles unsettling unspectacular unstable unsteady

upheaval upheavals upswing uptick upticks

uptrend upturn upward usbodefn utd

valuationshtml vanish varied various vat

versus victoryhtml vitality volatilities vols

vulnerabilities vulnerability vulnerable waiver wake

wane waned wanes waneshtml waning

warning wastage wasteful wave weak

weaken weakened weakenhtml weakening weakens

weakenshtml weaker weakness weathering wetness

whipsaw whipsawing wholesaling widen widening

widens winhtml winning winshtml wither

withstanding withstands wobble wobbles wobbling

worries worsen worsened worsening worsens



Appendix B

Category Tag Features

B.1 Category: new-product

abandons abolish add adopt adopted

allow amend announce announced announces

approve assessment begin clarify commence

complete conclude consider continue decide

defer delay detailed devise discuss

dominancehtml enable enact expedite facilitate

file finalize formulate implement implementing

incorporate initiate introduce introduced introduces

introducing invite macroprudential oblige omts

outline outlined outlines outlining overhaul

overhauled overhauling overhauls plan postpone

propose publication publish published pursue

readies reconsider rejuvenate release released

releases releasing reopen report reshape

resubmit resume revamp revamping review

revise revisit revive rt schedule

scrapped seek shelve shelved simplify

start submit submitted suspend take

techhtml undertake unveil unveiled unveiling

unveils update updated updates updating

B.2 Category: acquisition
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accumulate acquire acquired acquires acquiring

acquisition add advertise align amass

approve atacadao bid broaden buy

buying collaborate collect combine compete

complement consolidate contribute convertible cooperate

create develop dispose disposed disposes

disposing distribute divest divested divesting

divestment divests donate enable exchangeable

exploring freedompop inspect integrate integrating

ious liquidate ltn merge merges

merging modernize noncore offer offers

offload offloading option outperform owning

proceed promissory purchase purchases rebuild

recapitalize receive redeem refinance refinanced

refund reinvest renegotiate reorganize reorganizing

repaid repay repaying repayments reposition

reschedule resell restructure restructured sale

sell shedding simplify spinoff sterilizes

stick streamline streamlining subordinated takeover

transfer underperform underwrite unload unloading

B.3 Category: price-rise

advanced advances advancing beating bleak

blew blowing blows bolstering boosting

brighter buoyant caught climb climbed

climbing climbs cloudy comeback continued

curbing decent deteriorated deteriorates emergence

expansion flurry gained gains gloomy

growth healthy high higher highest

highs improved improves improving increasing

intensification jump jumped jumping jumps

lackluster midst missing moderating peak

peaked peaking peaks rally rallying

rebound rebounding record recovering recovery

resilient resurgence retreated retreating revival

rise rises rising robust rocketing

rose rosy skyrocketing slew soar

soaring softer solid spate spiking

spiraled spiraling spiralling stabilizes stagnates

strengthening strong stronger strongest surge

surged surges surging surpassing tearing

threatening topping trailing trough turnaround
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B.4 Category: price-drop

correction decelerated decelerating deceleration decline

declines deepening depress depressed deteriorating

digit digits diminished diminishes diminishing

dip drop dropped dropping drops

eroded erodes eroding fade fall

falling falls fell fluctuate hover

hovered hulled hurting lackluster less

lessened lessens level low lower

lowering lowest lows moderated moderating

more outweighs plummet plunge plunge

plunged plunges plunging plunging pullback

quickened rather recession record recovery

reduces relapse relapsing retreat retreated

selloff shock sink slid slide

slide sliding slip slipped slowdown

slowed slowing sluggish slump slumped

slumping slumps softer spike stabilizing

stagnation subdued triple tumble tumbled

tumbles tumbling unchanged undermines weak

weakening weaker weakest weakness whammy

worse

B.5 Category: law-suit

accusing activevideo affidavit allegations allege

alleged alleges alleging applewhite arbitrator

arraigned arthrex asserted bailiff beiswenger

blower bratz case cases claim

claimed claiming claims complaint complaints

condatis contended copyright cordance counterclaim

counterclaims countersued countersuit criminal declaratory

defamation defendant defrauded dismissed document

documents earthgrains ecuadoreans explanatory fbi

filed filing fuhu guilty hoeffner

idna indictment indictments infringement infringements

infringers infringing innovatio invalidation ivi

jury kiobel kolon lawsuit lawsuits

leadscope libel listing lodged macrosolve

mattel melendres meritless mga ntp

nuvasive obscenity patent petition plaintiffs

presentation proceedings prosecutors prospectus racketeering
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rambus retaliated righthaven schelsky sherley

slander spansion streeteasy sued suit

suits summonses superseding unsealed unsigned

B.6 Category: fiscal-report

accelerated adjusted advance amortization anniversary

annual annualized beats capping chinabondcomcn

chinamoneycomcn companywide consecutive csoi decline

declines decrease depreciation distributable drop

during earnings ebidta ebit ebitda

eighth erased erasing estimated exceeding

extended extending fifth finisher first

following fourth gain impairments its

jump krooni litai longest loss

losses losshtml margins marked marking

matching milion misses monthly net

ninth operating pared pares paring

plunge posted posting posts pretax

profit profits pula purchases quadruples

quarter quarterly rallies rally reported

restated retreat revenue reversing saartotl

second seventh sixth slide slump

snapping steepest straight third thirteenth

totalled trails trimming triples unadjusted

unaudited undistributed unrepeated website weekly

writedown yearly

B.7 Category: investment

accumulated acquire acquired acquires acquiring

add allocate allocated allocates allocating

allocation allocations allotted amass amassed

amassing assets assist attract attracted

attracting birr borrow borrowed bought

budgeted build buy buys cater

combine complement concentrated consume create

deploy develop devote disbursed dispose

distribute divest earmarked earn earned

encourage entice facilities financings funds

generate handle holds install interested
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invest invested investing investment investments

invests leftover loaned lure luring

managed manages merge netted offer

offload operate oversees owns parters

portfolio portfolios poured prospered purchase

purchased racked raise recycle redeem

refurbish repay save sell sells

sold specializes spend spends spent

stakes swapped tap unload utilize

B.8 Category: bankrupt

abitibibowater accentia acln adjudicating adjudication

allowing ambac americanwest arcapita atterbury

awal bankrupt bankruptcy banning berkline

bicent briefs broadlane broadsign capmark

chapter choicepoint cit clarendon clarita

clearlake cocopah complaint conservation consummates

dbsi dynegy earthrenew ebg enforcement

enforcing environmental eyecare filed forbids

frivolous giddens gsc gtech hpht

hydril insolvency involuntary laws lawsuit

liquidating liquidation liquidator lodged madoff

mandating maxam mechanisms motions ordinances

outlawing outlaws palmdale petition petitioners

petitions picard pittsburg prepackaged procedures

prohibit prohibiting prohibits protection protections

protocols qvt regulations reorganization required

requires requiring restructuring roomstore safeguards

safety sanctioning shoppes statutes townsends

tremont tridimension tronox trustee unconstitutionally

unlawful unsealed vertis zeneca zoning

B.9 Category: government

abhisit admin agcy agency austerityhtml

bailouthtml ballot barack biacora boiko

borissov bouh bush cash clinton

congress deductions dejan directorate discord

donilon electable election elections elshad

geithner geospatial goverment government governor
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grishanin gwede hillary ideological ilmars

inst jugnauth kissinger legislation leon

levies madeleine massimov meles minister

minster muhyiddin muni municipal najib

nasirov nhlanhla nijkamp obama outgoing

panetta parliamentary participant pjescic plouffe

pluralism political pravind president presidential

reagan referendum republicans republicanshtml rodham

roosevelt rousseff rovnaq runoff secretary

secular shinawatra shinseki shouguo stepshtml

suthep tax taxes tempore termpittayapaisith

thaksin thaugsuban tpa treasury undersecretary

valcke vat vice vote votes

wafa watchdog yingluck yoobamrung zeljko

B.10 Category: analyst-highlights

acknowledge acknowledged address addressing affect

alienate allaying amid articulate clarify

confront contradict define defuse demonstrate

demonstrates depict describe desires determinants

diminish discuss downplayed echoed embrace

embraces emphasize emphasized enhance ensure

exaggerate explain exploit expose fueling

grasp heightening highlight highlighted however

humanize ignore illuminate illustrate illustrates

imply instigate intensified interpret maintain

marginalize militarily motivate nonetheless object

observe offend overcome overestimate possess

prove provoke recognize reflect reflects

reignited reigniting reinforce reinforced reinforces

reiterate relate resist reveal shortcomings

showing signal solve sparked stoking

strengthen stressing suggest suggested suggesting

suggests tackle tempering underestimate underline

underlined underlines underlining undermine undermined

undermines underscore underscored underscores underscoring
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