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Abstract

Adaptive software systems are able to cope with changes in the environment by

self-adjusting their structure and behavior. Robustness refers to the ability of the

systems to deal with uncertainty, i.e. perturbations (e.g., Denial of Service attacks)

or not-modeled system dynamics (e.g., independent cloud applications hosted on the

same physical machine) that can affect the quality of the adaptation. To build robust

adaptive systems we need models that accurately describe the managed system and

methods for how to react to different types of change.

In this thesis we introduce techniques that will help an engineer design adap-

tive systems for web applications. We describe methods to accurately model web

applications deployed in cloud in such a way that it accounts for cloud variability

and to keep the model synchronized with the actual system at runtime. Using the

model, we present methods to optimize the deployed architecture at design- and

run-time, uncover bottlenecks and the workloads that saturate them, maintain the

service level objective by changing the quantity of available resources (for regular

operating conditions or during a Denial of Service attack). We validate the proposed

contributions on experiments performed on Amazon EC2 and simulators.

The types of applications that benefit the most from our contributions are web-

based information systems deployed in cloud.
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Chapter 1

Introduction

In the recent years there has been an explosion of applications and services that make

use of the Internet in one way or another; either applications located somewhere online,

which can be accessed by users through client software (e.g. a browser) or online

services invoked remotely by the user’s systems to enhance their functionality. In

either case, applications and services share one important characteristic: they have

a remote component hosted on an always-on system, that should be able to handle

multiple clients at the same time. Depending on factors like type of application and

its popularity, the number of clients can vary from a few hundreds or thousands per

month (e.g. personal homepages) to milions per day (e.g. Google search engine).

The applications themselves also increased in complexity and often reach points

where it becomes imposible for humans to manage them directly; either the skill

requirement is too high and there are not enough people capable to do the job, or the

application is very large with many components that puts it beyond human ability [1].

This complexity creates the need for better ways to manage an application, creates
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the need for adaptive systems (or autonomic systems1).

An adaptive system is a system capable to function properly, within parameters,

without human intervention. The system is capable to extract data from the en-

vironment where the web application resides (using a series of sensors), analyze it

(identify problems that might prevent the application to function optimally or within

parameters), create an adaptation plan (if necessary) and implement it. The web

application and the resources it uses become the managed resources, while the rest

of the system are part of the application manager.

The data extracted could include workload (e.g., the number of users getting ser-

vice, the distribution of the users among different functionalities offered), utilization

of various resources (e.g., CPU, memory, storage, bandwidth), the perceived user

experience (e.g., response time for a request, requests that result in error) and various

other metrics. The quantity of data can be very large, especially if we consider com-

plex web applications where each component (software and hardware) is monitored

separately. An adaptive system can start analyzing the data immediately when it

becomes available; this way the problems can be discovered when they appear and a

mitigation strategy can be deployed without delay.

To react to problems identified in data, the manager needs a good representation

of the web application. It needs to know the deployed topology, the characteristics

of each component, how these components interact and influence each other—it

needs an accurate model of the entire application. On the model, the manager can

evaluate different adaptation strategies in order to select best one (based on some

goal specified by an administrator); it can test suppositions (e.g., what would happen

if the workload will continue its current trend?); and it can use the model to uncover

1In this thesis we use the terms autonomic systems and adaptive systems interchangeably.
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saturated bottlenecks. The accuracy of the model is the determining factor in the

effectiveness of the manager.

Creating a model at the development time requires the developer to know the

deployed topology, the resources that will be used and how these resources interact

with each other, available networks and their characteristics. Also the developer needs

to specify what services are provided by the web application and which resources

are used by each service. Tuning the model (that can be done also at runtime)

means setting the model parameters with newest measured/estimated values: de-

mands for resources, quantity of the resources (clouds enable easy provisioning and

decommission), network delays, workloads.

The capacity to handle large quantities of data, the ability to use complex algo-

rithms to analyze the data in order to find problems and the small reaction time

when the problems appear, make autonomic systems appealing solutions to manage

complex systems.

Building adaptive systems is not a trivial task. The challenges start from the

design phase of a web application when the architect has to choose from many possible

architecture variants. That is a complex undertaking that requires deciding among the

various software architecture styles, their implementation technologies, hardware and

network layouts, economic and social factors and needs to consider all performance

requirements [2]. During the lifetime of the application, the operating conditions

can change, and the initial architecture needs to be updated. Each architecture

variant has its own bottlenecks. When a bottleneck becomes saturated, the overall

performance of the application suffers, so it’s important to know where the bottlenecks

are and what type of workload will saturate them; this information could be used in

3



deciding when and how an architecture needs to be updated.

Applications deployed in clouds are more challenging to manage than classic ap-

plications [3]. The difficulty derives from the multi-tenant nature of clouds, where on

the same hardware can coexist multiple unrelated applications. Multiple applications

running on the same hardware can influence each other despite the isolation that

cloud provides (or promises to provide), especially when one of them executes a

resource intensive task. This influence is perceived as a degradation in application’s

performance (and captured in the performance metrics), but the source of the extra

work remains unknown. In these conditions, one important question that arrises with

regards to modelling the application is how we can handle the cloud variability, so

the model remains accurate and useful during the lifetime of the application.

Despite major progress in the field, there are still substantial challenges in design-

ing and implementing self-adaptive systems. What is the optimal combination of

resources and their quantity that needs to be added/removed as part of the adaptation

strategy in the presence of a goal is such a challenge. For large systems with many

resources, answering this question still proves to be elusive. Limited efforts have

been invested in developing an engineering methodology and formal mathematical

foundations, which makes the development and the verification of the self-adaptive

systems tedious and time consuming. A systematic method would primarily enable

the automation in designing self-adaptive systems, but also the effective verification

of the automatic adaptation cycle. A design space methodology has been proposed

by Brun et al. [132] to guide the designer along several dimensions, including identi-

fication, observation and control. However, this effort is subject to the peculiarities

of individual interpretations and implementations.
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Control theory has been proposed as a foundation formalism. The control theory

is based on a formal model of the system, specified in a canonical form, from which

a controller (or Autonomic Manager) is synthesized based on the goals of the system.

Initial steps in using control theory as foundation for designing and implementing self-

adaptive systems have been studied before [133, 132]. But existing approaches assume

a static linear model of the system and a static controller. This static assumption

limits the efficiency of the controller because software systems are highly dynamic and

volatile; their models change at runtime and over time the controller may be based on

the wrong assumptions. The design and implementation of adaptive systems become

even harder for applications deployed in the cloud. The lack of transparency and

control on the environment adds to the uncertainty of the models and impedes the

design of the autonomic manager. As a result, most of the tools and frameworks

available in industry for designing autonomic systems [134, 135, 136] are simple rule-

based systems (“ON condition, DO action”) that leaves the practitioner to do all the

hard work in designing, implementing and verifying adaptive systems.

The popularity of web applications also means that the applications attract un-

wanted attention from malicious users. As more of the application’s components

are exposed on internet, the more vulnerable to attacks the application becomes

because each component has its own weaknesses that can be exploited [4, 5]. Also,

depending on the nature of the system, some components may be perceived as having

less importance and their security weaknesses may be left unattended, thus allowing

potential malicious users to use them as entry or attack points.

One type of attack that has seen an increase in both number of occurrences

and severity is the (Distributed) Denial of Service attack [6, 7, 8]. The attacker
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attempts to generate enough workload to saturate some resource, and render the

web application unresponsive, thus denying service to the legitimate users. As a

consequence, protecting the web applications against Denial of Service attacks is a

major concern for systems administrators.

Mitigating (D)DoS attacks has proved to be very difficult. Internet protocols

have been designed without built-in security features, relying on the good intentions

of all entities. This “good behaviour” assumption became more and more obsolete

as the Internet grew larger [9]. The lack of security in network protocols resulted in

difficulties in discriminating between legitimate traffic and malicious traffic because

the source of the attack cannot be reliably identified [5]. The availability of easy-to-

use tools for generating (D)DoS attacks [10] and heterogenity of devices connected

to Internet, each with its own weaknesses and vulnerabilities, only added to the

complexity of defending against attacks [5].

We propose a model-based method for engineering adaptive systems for web

applications deployed in clouds. The major contributions of this thesis are:

• a model-based method to explore the workload space in order to uncover and

saturate the bottlenecks of a deployed web application;

• a performance model for web applications deployed in clouds capable to handle

cloud variability;

• a robust adaptation architecture and method (Model Identification Adaptive

Control) capable to synthesize a controller at runtime that will provide the

adaptation strategy based on a goal;

• model-based adaptive architectures and algorithms focused on detecting DoS
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attacks at the web application level and mitigating them appropriately;

The remainder of the document is structured as following: Chapter 2 introduces

background concepts and reviews relevant work. In Chapter 3 we describe a model-

based method, called Software Performance for Autonomic Computing (SPAC), that

can make decisions regarding the selection of the best deployment architecture of a

web application. SPAC can be also used at runtime, as part of an autonomic manager,

to update the architecture of the web application in order to compensate for the

changing operating and environment conditions.In Chapter 4 we present a method

to test deployed web applications from a performance point of view, and uncover

bottlenecks. The method makes use of performance models to guide the search of

the workload mixes that saturate bottlenecks and then generates workloads against

the deployed web application to fine-tune the results of the model.

In Chapter 5 we present a model-based adaptive architecture and algorithm for

detecting Denial of Service attacks at the web application level and mitigating them.

Using a performance model to predict the impact of arriving requests, a decision

engine adaptively generates rules for filtering traffic and sending suspicious traffic

for further review.The results from Chapter 5 are further extended in Chapter 6. In

Chapter 6 we present a model-driven adaptive management mechanism which can

correctly scale a web application deployed in cloud, mitigate a DoS attack, or both,

based on an assessment of the business value of workload. This approach is enabled

by modifying a layered queuing network model previously used to model data centers

to also accurately predict short-term cloud behavior, despite cloud variability over

time.

In Chapter 7 we show how to implement a model identification adaptive controller
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(MIAC) using a combination of performance and control models. We show that our

approach can account for uncertainty and modelling errors and efficiently adapt a

cloud deployment.
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Chapter 2

Background and Related Work

In this chapter we introduce the relevant concepts an existing work along three

axis: the fundaments of building autonomic systems are presented in section 2.1; in

section 2.2 we present concepts about modelling web applications; and section 2.3

discusses Denial of Service attacks.

2.1 Autonomic Systems

Autonomic systems are systems capable to function properly within parameters

specified by Service Level Objective (SLO), without human intervention. These are

systems that are self-configuring, self-optimizing, self-healing and self-protecting (for

short, self-* systems). The term of autonomic computing was introduced by IBM

[53] and is used to describe such systems.

The four aspects of a self-managing system, as they have been identified in [54],

are:

• Self-Configuration. Autonomic systems should be able to configure themselves

9



based on some high-level requirements (that specify the desired result, and not

how it is accomplished [54]).

• Self-Optimization. Autonomic systems should be able to fine-tune their own

parameters. They should monitor their performance, experiment with different

values and learn optimal ones. Also, it is expected that these systems exist in

a dynamic environment, so the optimization should be a continous process.

• Self-Healing. Autonomic systems should be able to detect by themselves fail-

ures in hardware and software, diagnose the root source of such failures and

ultimatelly fix it. They could use advanced methods, algorithms and models

in their diagnosis efforts; coupled with a knowledge-base, a fix-plan should be

created and automatically implemented.

• Self-Protection. Autonomic systems should be able to protect themselves from

outside threats or failures from their own components.

Systems that contain these elements, at least to some dregree, exist for some

time. For example, the Windows operating system is capable to detect that core files

have been modified (maybe as a result of a virus activity) and then restores them to

the original version, thus providing self-healing. Streaming services like Netflix and

YouTube can detect network congestion and adapt the bitrate accordingly, increasing

or decresing the quality of the video the users see; thus incorporating self-optimization.

Architecturally, autonomic systems use the well-known Monitor-Analyze-Plan-

Execute (MAPE-k) loop sugested by IBM [53]. The loop has four major components

(see Figure 2.1) plus a knowledge base that stores information about the system, used

during the loop execution.
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Figure 2.1: The MAPE loop and it major components.

The MAPE-k loop is part of the management subsystem; the management is

responsible with trigeering loop iterations, integrate MAPE-k components with ea-

chother and marshaling data between them. The managed element can be any type

of resource (hardware or software).

The sensors are responsible to extract data about the system. Usually, each

sensor is responsible for data regarding one aspect of the system (or multiple aspects

that are closely related).

Monitor : This component is responsible for extracting information about the

system from the sensors. The data must be relevant to the adaptation strategy

that is employed and could include CPU utilization, response times, arrival rate,

throughput, memory, disk utilization, etc. In order to obtain such data, the sensors

must already be deployed on the managed system; these can be standard ones like
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those offered by SNMP [55], JMX, OS Performance Counters or can be custom

sensors, developed specifically for the monitored system. The monitoring component

can also do aggregation and consolidation of the metrics that come from multiple

sensors. This is specifically important for cloud-deployed systems that use multiple

virtual machines, geographically-spread on a large area.

Analyzer : The analyzer will receive the consolidated metrics from the monitor and

apply algorithms to evaluate the health of the system. This component is responsible

to determine if some corrective measures need to be taken to respond to changes in

the environment and prevent the system to break its Service Level Objective (SLO).

Also, optimization algorithms can decide that there is room for improvement. By

using some forecasting algorithms for the workload, the analyzer can detect which

bottlenecks will be saturated.

Planner : The planner is responsible for creating a set of actions that need to

be executed to solve the problems or to carry-on the optimizations identified by the

analyzer. For a cloud application, the actions include provisioning/decomisioning

resources (e.g. start/stop virtual machines), redirecting traffic, resize or migration of

the virtual machines, etc.

Executor : The action plan created by the planner will be implemented by the

executor. This component will handle all the details regarding communication with

the cloud providers, credentials management, communication with custom effectors,

reconfiguration of the software, etc. To implement the action plan, the executor

makes use of the effectors—components not part of the autonomic manager that can

execute specific actions. The effectors can be very diverse, just like the sensors, and

are closely tied to the managed system. The capabilities of an effector can vary from
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very simple like changing a parameter in a configuration file to more complex like

starting a new virtual machine.

Monitoring a live system is challenging because it involves decisions like what type

of data can be extracted and what data is useful, desigining and deploying custom

sensors, how often the sensors should be queried, how to handle missing data, etc.

In [56], the authors identify two types of monitoring for autonomic systems:

• Passive Monitoring that can be done using already-available tools (e.g. top

command in linux)

• Active Monitoring that require some modification of the monitored application

code (e.g. injecting probes into compiled Java code)

Another classification for monitoring types can be found in [57]:

• Continuous Monitoring that continuously extracts metrics

• Adaptive Monitoring that collects data only about a few selected features; if

problems are identified, the effort to collect more metrics is intensified and

focused on the features that show anomalies.

In order to gather information, the sensors must interact with the system and

use its resources. The monitoring component of the MAPE-k loop should take this

overhead into account and minimize it. In [58] a monitoring system, called QMON,

is introduced. QMON is capable to adapt the frequency of sensor’s interogations, the

quantity of data extracted based on some policies, aiming to minimize the overhead

while preserving the utility of extracted data. As Huebscher et al. [56] call it, QMON

is an autonomic monitor framework for autonomic systems.
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In model-based adaptive systems, the planner uses a model that expresses the

architecture and behaviour of the system. The planner component can select prebuilt

alternative plans or generate them on-the-fly, and then, iteratively, test them on the

model checking if the issue found by the analyzer is solved and ultimatelly select

the best. The model used by the planner provides great advantages because, under

the assumption that it is accurate, it can be used to check that the integrity of the

system is preserved when applying the action plan [59].

Building a model for the system is not a trivial task. The person who builds the

model needs to have an overall understanding of the system, its components and how

they interact. The granularity of the model components is not restricted: it can be

a virtual machine as a whole, an application running on the virtual machine, with

some authors going as deep as modeling each individual java class of the application

itself. The model designer must find the right balance between the level of details

(more detailed model, more accurate results) and time needed to compute the model

(more detailed model, more time necessary for computations).

2.2 Models

Web applications have become critical components in almost all business processes

and services, private or public. Because most of the web applications follow a three-

tier architecture, my work focuses on them.

In order to manage web applications, researchers have turned to models. A model

is a representation of the architecture or the behaviour of an application, and can be

used to make predictions, to test suppositions, or even to uncover errors and bugs

(when the expected results of the application differ from the observed ones, it can be
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because of bugs that exist in the application).

The researchers have used different types of models for web applications:

• Analytical Models. Analytical models capture the system structure and be-

haviour using mathematical equations. Their validity is established using math-

ematical tools (e.g. theorems and proofs). The best known analytical models

for web applications are the queuing network models.

• Empirical Models. Empirical models are built from observations and rely only

on the data. Their validity is asserted through experimentation and observation.

The two major techniques used to build empirical models are interpolation (find

a function that contains all the measured data points) and model fitting (find

a function as close as possible to all the measured data points; in this category

are include regression techniques).

• Simulation Model. The simulation models are computer programs that try to

mimic the behaviour of a system [11]. They are used to gather metrics or observe

the behaviour of the system in an artificial but close to reality experimental

environment.

2.2.1 Regression Models

Regression analysis is a statistical technique useful in investigating the relationship

between variables [12]. In their simplest form, regression methods attempt to find a

function that matches, as close as possible, a set of observed datapoints. It is impor-

tant to note that regression doesn’t expose a causal relation between the parameters

of the identified function and the result of the function. Regression simply states
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that there is a correlation between the parameters and the values of the function,

without saying anything about the nature of the corelation.

Linear regression is the simplest type of regression. It can be applied when there

is a suspicion that an observed value depends linearly on one or multiple parameters.

Formally, the linear regression problem is presented in Equation 2.1, where xi are

the independent variables (also called regressors), βi are coefficients, and y is the

dependent variable (also called response). The assumption is that y depends linearly

on xi.

y = β0 + β1x1 + β2x2 + · · · + βnxn + ε (2.1)

In real systems, y depends on other factors as well, possibly unknown, so it’s not

fully explained by the regressors. ε is designed to capture this error and noise; in

linear regression the error is assumed to be random and with mean 0.

Building a linear regression model, means finding the right values for the coeffi-

cients β.

The main advantage of linear regression is its simplicity; it is the first method to

be used in many problems. However, real-world problems are often complex and do

not fit in a linear model. Also, linear regression is very sensitive to outliers (outliers

are datapoints that are significantly different from other datapoints, and do not fit

in a pattern), and gives bad predictions if the regressors are not really independent.

Linear regression creates a global model, that should fit the entire data-space.

However, the relation between the regressor(s) and the response variable is often

complicated, and is very hard (even impossible sometimes) to build a linear model

that captures it over the entire domain. Breaking the domain into smaller divisions,
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it is possible to build different models that have a good-enough precision in their

respective division.

A regression tree uses a binary tree1 as a main support data structure, in which

the leaves represent divisions of the domain and each one has attached to it a simple

predictive model. All other nodes (non-leaves) are decision nodes that have attached

to them a boolean expression; when traversing the tree, if the boolean expression

evaluates to true then the path should continue with the left node, else the path

should continue to the right. The path ends with a leaf node; applying the model

associated with it should provide the estimated value of the dependent variable. Thus,

traversing a tree means making a guided search for the model that should be applied.

The main advantage of regression trees is that making predictions is very fast.

The tree is usually easy to undestand (while a complex linear regressive model can be

confusing). Also there are many algorithms in the literature, and implementations,

that can build reliable trees.

2.2.2 Queueing Network Models

In queuing theory, the user’s interaction with a hardware-software system is modeled

using classes of services (or simply classes or scenarios2). A class of service is a

service or a group of services that have similar statistical behavior and have similar

requirements. When a user begins interacting with a service, a user session is created,

and persists until the user logs out or becomes inactive3. The number of active users

1It is possible to create regression trees that are not binary, but it’s fairly trivial to transform
those trees into binary ones.

2In this thesis the terms classes of service, classes and scenarios are used interchangeably.
3In this thesis, a user has the following behaviour: makes a request to the web application, waits

for the reply (response time), reads and processes the reply (assimilated to the think time between
requests), then makes another request, etc.
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at some moment t is defined as N ; these users can be distributed among different

classes of services. The set of existing classes in the system is C, and contains m

classes. The number of users that receive service from class C ∈ C is noted with NC ,

thus N = NC1 +NC2 + · · ·+NCm . N is also called workload intensity or population

while combinations of NC are called workload mixes or population mixes.

Any software-hardware system can be described by two layers of queuing networks

[13, 14]. The first layer models the software resource contention, and the second layer

models the hardware contention.

Each resource has a demand (or service time, i.e. the time necessary for a single

user to get service from that resource) for each class. The service times (demands)

at the software layer are the response times of the hardware layer. Ideally, hardware

demand is based on measured values; however, this is impractical for CPUs because

of the overhead imposed by collecting such measurements.

Early work was done to analyze a system from a performance point of view in

[15, 16, 17, 18]. In [19, 20] the authors investigated the influence of workload mixes

on the performance of the system, how bottlenecks change with the workload mix

and when they become saturated.

Balbo et al. [19] showed analytical relations between the workload mixes and

utilization at the saturated bottlenecks as well as analytical expressions for asymptotic

(with saturated resources) response times, throughput, and utilization within the

saturation sectors. The results were presented for one queuing network layer consisting

of hardware resources.

Early work in finding bounds on response time and throughput for one dimension

of the workloads (one class) was done in [15, 16, 17, 18]. In [19] the authors showed
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that in multiple workload mixes, multiple-resources systems, changes in workload

mixes can change the system bottleneck; the points in the workload mix space

where the bottlenecks change are called crossover points, and the sub-spaces for

which the set of bottlenecks does not change are called saturation sectors. The

same authors, in the same paper, showed analytical relations between the workload

mixes and utilization at the saturated bottlenecks as well as analytical expressions

for asymptotic (with saturated resources) response times, throughput, and utilization

within the saturation sectors. The results were presented for one queuing network

layer consisting of hardware resources.

The results from [19] were extended to non-asymptotic conditions (non-saturated

resources) [20]. The authors used linear and non-linear programming methods for find-

ing maximum object utilization across all workload mixes. That technique involved

only the hardware bottlenecks.

There is no fully automatic method for building the structure of a performance

model, however, there are available tools that can help in building a structure of the

performance model [21]. Other papers, like [22, 23, 24], have shown how to build a

tracking filter and a predictive QNM such that the model’s outputs always match

those of the real system. Performance parameters like the service time, think times,

and the number of users can be accurately tracked and fed into a QNM.

Capacity planning of distributed and client-server software systems, particularly

for web applications, is a common application area; a popular approach is using

queuing models to model web applications at operational equilibrium [25, 26, 27]

which has led to the automatic construction of measurement-based performance

models [28, 29] or capacity calculators [30]. Others have tried to model the effect of
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application and server tuning parameters on performance using statistical inference,

hypothesis testing, and ranking (e.g. [31, 32]). Another approach automates the

detection of potential performance regressions by applying statistics on regression

testing repositories (such as Jiang in [33] and related earlier work). This has led to

an approach for identifying subsystems that show performance deviations in load

tests [34].

Tools have been developed to model and analyze a system from a performance

point of view [35, 21, 36]. In [35], the authors present a tool designed to model

software systems using layered queuing networks. The resources are grouped in

layers and the requests move from layer to layer to get service. Once the model is

solved, the output contains throughputs and utilizations for the software resources,

distributions for the service time, queuing delays, etc.

2.3 Denial of Service attacks

Denial of Service (DoS) attacks have increased in both volume and sophistication [8].

Attack targets include not only businesses and media outlets but also service providers

such as DNS, Web portals, etc. A sophisticated DoS attack can be mounted by attack-

ers without advanced technical skills. There are many advanced attacking toolkits

freely available on the Internet [37], including LOIC (low-orbit ion cannon) [38]. DoS

attacks are motivated by a variety of reasons (financial, political, ideological [39]), but

regardless of motivation, thet have similar impact: lost revenue, increased expenses,

lost customers, and reduced consumer trust.

Figure 2.2 shows a typical deployment architecture for a web application. There

are multiple web servers (or application servers) that handle user requests; each user
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is routed to a server by a load balancer. The web server interracts with the data

tier (querying, inserting or updating data in a database), creates a reply and sends

it back to the the user. Usually, the system is protected by a firewall that can filter

the incoming/outgoing traffic based on some rules set by an administrator.

. . .

Users

Hacker

Load Balancer

. . .

Web Servers

Database

Server

Dynamic

Firewall

Figure 2.2: A typical web application deployment architecture.

The work and resources necessary to handle one request can vary greatly. For

example, in case of a GPS application a user request to find the best route between

two locations will require a query to the database for the data regarding the street

layout in the area and the current traffic; then the data must be analyzed and a

route has to be computed. Such a request will require work from the database server

(extracting only the relevant data), network bandwidth (communication between the

database and web servers is handled by an internal network with limited capacity)

and also work on the web server (analyzing the data and computing the best route).

On the other hand, a user request for the (static) home page of the same application

will generate very little computation and no comunication with the data tier (hence
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no use of bandwith on the internal network). A user will require the same amount

of resources to generate either request, but that’s not true for handling them on the

targeted system.

An attacker’s objective will be to identify what type of requests generate the most

work, and then make enough requests so the targeted system becomes unresponsive,

preventing it to offer service to legitimate users. When a system is under attack,

it cannot accept new requests for service (and it simply rejects new users) or the

response time becomes so long that the system is virtually paralyzed.

A DoS attacker will send many repeated requests that require resources to gener-

ate replies. These requests may be low-level TCP requests or higher-level application

requests (like GET requests for web pages). The attacker discards the replies, mean-

ing it takes fewer resources to send requests than it does to send responses (this

problem is compounded when the target uses SSL; a recently released prototype tool

demonstrates a dangerous type of SSL DoS attack [40]). Even with this beneficial

ratio, the attacker may not be able to achieve denial of service with a single machine.

Distributed Denial of Service attacks harness the power of many distributed attackers

to attack a single target.

A Distibuted Denial of Service (DDoS) attack is a DoS type of attack where

the malicious traffic comes from multiple sources. Behind the attack can be a single

person that takes control over multiple computers or multiple people that synchronize

their attacks against the same target. This synchronization can be achieved using

emails, forum posts, and instant messages.

One of the main source of DDoS attacks is represented by botnets. A botnet is a

network of compromized machines under the control of single individual (or a group
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Figure 2.3: Distributed Denial of Service

of individuals), and is used for malicious purposes. Because of the large size, such

networks can do a lot of damage and generate significant losses to companies that

are targeted.

In case of DDoS, even a “small” botnet of 1000+ computers is enough to prevent

the victim computer to offer its services. For an average of 128KBit/s upload bandwith

(which, today, is available to most home computers), a botnet of 1000 computers

can generate 100MBit/s in traffic; that is more than most businesses can handle

(including corporations).

A typical setting of a DDoS attack is presented in Figure 2.3. The figure shows

all entities involved, organized in different levels. On the top layer is the attacker

that coordinates all the aspects of the attack. On the second level are the agents that

act as the Command and Control for the “zombies” (the computers in the botnet
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are “zombies”). An agent controlling a botnet, instructs the “zombies” to send the

requests to the victim, but the agent does not directly send requests to the victim.

On the third level are the “zombies”—these are the computers that directly generate

the traffic in order to overwhelm the victim.

A big weakness of a (D)DoS attack, from the attacker’s perspective, is that

the source(s) can be identified once the attack has been discovered. Identifying

the source can lead to deployment of mitigation techniques that filter the traffic

coming from compromized computers/networks; but also exposes the attacker to

legal consequences if law enforcement agencies are involved. A Reflective Denial of

Service (RDoS) attack addresses these problems.

In a RDoS type of attack, innocent third parties are used to launch and amplify

the attack. The attacker will spoof the source address in the TCP/IP packets with the

address of the victim, and then sends them to a third party computer, called reflector4.

The reflector will process the packet and then replies to the victim computer, because

this is the address that the reflector sees as the source. The victim will experience

the combined traffic from many reflectors, and will be unable to discriminate between

“good packets” and “bad packets”. Keeping the traffic low for each reflector prevents

the reflector to notice it is being used in a DoS attack. Using a very large number of

reflectors, the victim computer becomes overwhelmed and the diffuse nature of the

traffic prevents it to identify the source. An attacker can easily add more reflectors or

drop some of those in use, making very difficult for the victim to successfuly mitigate

the situation.

A Distributed Reflector Denial of Service (DRDoS) attack combines the charac-

teristics of both distributed attacks and reflective attacks. In this type of attacks the

4The reflector can be any server on internet that replies to the TCP/IP packets.
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attacker is in control of a botnet and instructs each “zombie” to send traffic to the

victim via third parties.

The distributed nature of DDoS (DRDoS), creates difficulties in mitigation. Cre-

ating rules to filter the traffic is not an easy task because the traffic comes from

multiple IPs, located in different networks. A skilled attacker, in control of a botnet,

could make his traffic look legitimate.

This has made some researchers claim that DDoS is not a security problem, but a

scalability one [41]. Attackers will attempt to make their own requests indistinguish-

able from the rest of the traffic, and thus defeat the detection mechanism. When

the discrimination between the “bad traffic” and “good traffic” cannot be made, the

only method to ensure service is to increase the quantity of resources. But this is a

very expensive solution, that puts it out of reach for the vast majority of companies

that have an online presence. In [41] the author argues that, considering the current

network architecture and protocols, the only sensible method to tackle DDoS is to

improve detection, which makes attackers adapt their attack strategy, which leads

to a new improved detection, and so on. He claims that the only way to break the

cycle is to design a new network architecture that is resistent to distributed denial

of service attacks. Any architecture that will treat DDoS as a security problem (as

do the current architectures and protocols) will simply make the current cycle of

“improve defense - improve attacks” to resurface.

Besides generating enough traffic to saturate some resource on the victim’s side,

the attacker can also take advantage of software bugs (in firmware and drivers for the

network devices, in operating systems’ implementation of various network protocols,

in applications that handle network traffic), exploit vulnerabilities in the design of
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network protocols and features, or simply exploit misconfigurations on victim systems.

DoS attacks which overload computer resources are known to be challenging to

defend. Some experts argue the only possible solution for this problem is to improve

security for all Internet hosts and prevent attackers from running DoS attacks [37].

An example of these source-end defence schemes is D-WARD [42]. Sachdeva et al. [43]

identify a number of problems with source-end defence, principal among them doubt

that such mechanisms will be widely implemented.

Researchers who agree with the challenge of defence at the source suggest defence

at the victim site. For example, Kargl suggests using available DoS protection

tools augmented with load monitoring tools to prevent clients (or attackers) from

consuming too much bandwidth [37]. Other examples include QoS regulation [44] and

cryptographic approaches [45]. Sachdeva et al. [43] also identified challenges when

defending from the victim network, including the computational expense of filtering

traffic, the possibility of the defence tools themselves being vulnerable to DDoS, and

incorrectly dropping legitimate traffic. While a variety of other approaches have

been suggested (e.g., [46, 47, 48, 49, 50]), the current state of the art does not fully

mitigate DoS attacks [51, 52].
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Chapter 3

A Performance Evaluation

Framework for Web Applications

Web applications have become critical infrastructures for both public and private

sectors running essential business processes and services. The topologies of such

systems span across two or more tiers and rely on industrial middleware [60].

This chapter introduces a framework to compare and rank software architectures

in the presence of complex performance requirements. The framework considers the

interest of different stakeholders (such as architects, end users, and system adminis-

trators) and the capabilities of the candidate architectures in terms of performance

and offers the decision-maker the necessary support to assess software architectures.

The framework can be used for the whole life cycle of a Web application; however,

the focus of this chapter is on the design and runtime phases. We use a rather broad

definition of software architecture as being a representation of “the structures of the

system which comprise the software components, the external visible properties of

those components and the interactions between them” [61]. A software architecture
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is a juncture for reasoning on how the system will fulfill some important functional

and quality attributes.

The proposed framework, called Software Performance for Autonomic Computing

(SPAC), takes as input the performance requirements, software architecture alter-

natives, a performance model of the system, and workloads. The output of the

framework is a list of ranked architecture alternatives and is obtained by:

1. solving the performance models associated with each architecture;

2. matching the actual performance metrics obtained from the solved models

against the performance requirements, and

3. aggregating the results of the matching.

The framework relies heavily on performance models. We introduce an archi-

tecture performance specification language, a solver, and an optimization technique

that quantifies a software architecture in terms of the performance attributes. The

performance of the architecture is measured across many use case scenarios and across

multiple workloads. Any workload has two dimensions, the workload intensity N (or

the number of users in the system) and the workload mix (the combination of users

in different scenarios).

This chapter extends the results from [62] in several ways (and this is where my

contributions over the original work lie):

• we introduce the performance specification language and the performance solver

OPERA

• we extend the framework to include support for runtime performance estimation
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• we extend the case study to evaluate the runtime performance rating and

ranking of runtime architectures.

Software Performance for Autonomic Computing offers a possible solution to the

design of adaptive software systems that adapt to changes in the workload. There

is an ongoing concern in the industry [1] that, with the increase in the number

of software systems, the future will find us with a shortage of skilled workers to

administer those systems. Therefore, the concept of autonomic computing is gaining

momentum. New frameworks are needed to automate most of the administrative

work; among those, heterogeneous workload management is essential. SPAC is also

based on multicriteria decision-making, a theory that bases its outcomes on many

attributes of the decision process [63].

The types of systems that can benefit from SPAC are Web-based systems,

information-based and transaction-based software applications, such as e-commerce,

insurance claim submission, Web banking, brokerage, and others. In these systems,

users log-in, alternates requests with think times and then log-out. In terms of per-

formance modeling, these systems are best described by closed performance models

[64].

The remainder of this chapter is organized as follows: Section 3.1 describes the

framework; Section 3.2 describes the performance tool used in our framework; Sec-

tion 3.3 presents a case study; related work can be found in Section 3.4 and a summary

and the conclusions are presented in Section 3.5.
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3.1 SPAC

3.1.1 Overview

Figure 3.1a shows the main components of the SPAC framework.

Figure 3.1: SPAC components (a) and SPAC in a feedback loop for autonomic systems
(b).

Architectures performance specifications capture the performance characteristics

of the software architectures. The performance characteristics are scenario based

and capture the call chain of software components, the middleware and the hardware

specifications. Section 3.2 will detail the language for performance specifications.

Performance Requirements are deduced by modeling the user perception with

regard to the performance behavior of the system. What we try to optimize is not
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an absolute value for response time but rather the user utility function.

Utility Function aggregates the performance of application scenarios in one scalar

score such that the alternative architectures can be compared and ranked.

Performance tool computes the performance characteristics of the architectures

under consideration. It parses the performance specifications and performance require-

ments and builds internal performance models and then solves them. Performance

models are abstractions of the architectures and capture the performance characteris-

tics in terms of input, output, queues, and waiting time in queues. The performance

model structure is derived from the architecture specifications while the quantitative

information is provided by the designer as the result of his/her previous experience or

estimation. In the on-line use of the framework, data of the model can be derived from

live monitoring of the deployed application. Delta architectures from the deployed

one can have their approximate performance model obtained through corresponding

changes to the deployed architecture model. A Performance Model Estimator can

enhance the accuracy of the performance model by compensating for measurement

and modeling errors.

The Decision Maker performs the Algorithm 3.1 to rank the architectures.

Algorithm 3.1: Decision Maker Algorithm
input : performance specifications of the architectures, performance requirements;
output : the list of ranked architectures and their scores.

1 Build a performance model for each architecture;
2 Using the performance model, evaluate the performance of each architecture;
3 Using a computed utility metric, rank all architectures;
4 Select the best architecture for deployment.

The output of the decision maker is an architecture that best satisfies the perfor-

mance requirements. If there is no such architecture, a reiteration of the process is
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triggered. An alternative option of the decision process is to provide a sorted list of

alternative architectures.

There are three software lifecycle phases in which SPAC framework can be applied

in the context of autonomic web systems:

1. The development phase. This phase analyzes candidate architectures; compares

their performance outputs against the performance requirements. The output

of this phase is an architecture that is implemented and deployed in production.

The activities in this phase involve manual activities supported by tools.

2. The runtime feedback loop is illustrated in Figure 3.1b. In this loop, an Au-

tonomic Manager analyzes the performance of the system, and based on a

performance model changes the architecture of the system based on predefined

algorithms. This loop is completely automated and the application is equipped

with sensors and effectors as well as with a Monitor, a Performance Model

Estimator and an Autonomic Manager.

3. The evolution phase connects the previous two phases. In this phase, informa-

tion collected at run-time, such as performance traces and workloads, is used

to enhance the design time information. Likewise, information from the design

time, such as the structure of a performance model, is propagated to runtime,

so that the runtime decisions are possible. This third phase involves manual

activities as well and is used when moving to a new version of the application.

The presence of the three phases has the goal of building homeostatic software

systems resilient to changes in workload. In general, a homeostatic system built by

man or evolved by the nature [65], has an excess of capacity which allows it to function
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normally when the environment changes are small. It is also equipped with feedback

mechanisms that change its internal state to cope with big variations in environment.

Applying SPAC at development time aims at building applications with an excess of

capacity to accommodate a large number of workloads (but not all workloads) with

minimal hardware infrastructure. At runtime, SPAC is used, for example, to optimize

the underlying infrastructure, by provisioning and un-provisioning the application

when the workload changes. Through provisioning, we add and remove replicas of

the software components and eventually hardware and operating system support.

3.1.2 Performance Requirements and Utility Function

This section introduces a user utility function derived from a user perception of the

performance behavior of the system.

Qualitative modeling of the user’s perception of the system response times has

been researched by the human-computer interaction community. For example, Geist

and others [66] suggested the introduction of user perception of system response times

in the design of computer systems. Human-computer interface (HCI) text books [67]

address the user perception of the response times and offer corrective solutions such

as “filling the interval”. These corrective solutions are implemented with hourglass,

incremental loading, hints and tips, etc.

Quantitative modeling of the user’s perception of the Quality of Service (QoS)

is extensively studied in Internet multimedia applications. Response time, jitters,

throughput, or transmission rates can be quantified with utility functions that mea-

sure how they affect the user satisfaction.

In information and transaction Web systems, the quantitative modeling of the user
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satisfaction with the performance is less studied. In this paper we use a performance

utility function based on the following observations: the user satisfaction depends on

performance of the task at hand and sometimes on the perceived workload.

User studies [68, 69] show that:

• Response times are expected to be appropriate to the task (or use case scenario1),

varying from tens of milliseconds for mouse movement to the order of tens of

seconds for more complex use case scenarios such as transactions. In other

words, users expect some scenarios to be a lot faster than others;

• Faster is not always better, though; a shorter response time leads to shorter

think time; therefore, the error rate increases with the rate of interaction.

A system faces a variety of workloads. Workloads are defined as the number of

users that interact with the system (workload intensity) and the user distribution

across different scenarios (workload mixes) or as per scenario arrival rate. Designers

or system administrators distinguish sometime between high and low workloads levels

[70], and aim at required response times for different workload intensities. These

design decisions have to do with different deployments of the architectures as well

as with user satisfaction. In the same time, user studies have shown [69] that users

are more tolerant when they know there are more people in the systems (as happen

during shopping hours or during winter holidays). Users are not that tolerant when

they expect fewer people in the system. It is therefore justified to define performance

requirements for different workload intensities.

1Although scenario has a broader meaning, in this context it can be assimilated to any web user
action like browsing, searching, data entry, etc.
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From the above observations we can conclude that the response time requirements

should be on scenario and workload intensity basis. Also, we can conclude that the

response time requirements per scenario C ∈ C should be expressed as an interval[
RC
Lo, R

C
Up

]
where 0 ≤ RC

Lo < RC
Up and C = {C1, C2, . . . , Cm} is the set of all scenarios.

The lower bound RC
Lo should be seen as a preferred response time; the upper bound

RC
Up as a maximum acceptable response time. For example, a performance require-

ment for a scenario C ∈ C may read like this: the response time should be greater

than 0.2 s and less than 2 s.

The degree to which an architecture A fulfills the performance requirements when

NC users are executing the scenario C, can be computed with a utility function

UtilityC,NC (A), which takes values in the range [0, 1] such that:

• It is 1 when the actual response time is less than the preferred response time;

• It is 0 when the actual response time is higher than maximum acceptable

response time;

• It is a strictly monotonic function that materializes the following rule: the

closer the actual response time is to the preferred response time, the closer the

value is to 1.

UtilityC,NC (A) =


1, if RC,Nc ≤ RC

Lo

RC
Up−R

C,NC

RC
Up−R

C
Lo

, if RC
Lo < RC,NC ≤ RC

Up

0, otherwise

(3.1)

An analytic expression of Utility is given by the equation 3.1, where RC,NC is the

actual response time for scenario C when NC users are executing it and the utility
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function is considered linear2 between RC
Lo and RC

Up.

Figure 3.2: User Utility per scenario C when NC users are executing scenario C, for an
architecture A.

A graphical representation of the utility function for an workload intensity of 100

users is shown in Figure 3.2, together with an example of actual response time RC,100.

The corresponding user utility in the light of this response time is 0.5.

3.1.3 Decision Maker

A decision maker matches the performance of architecture against the performance

criteria. The performance of the architecture is assessed with a performance tool

described later.

3.1.3.1 Performance Criteria for Evaluating Alternative Architectures

In SPAC framework, workloads are criteria used to assess an architecture, and the

number of workloads equals the number of criteria.

The architecture chosen at the development time has to achieve two main goals:

1. to accommodate many workload changes;

2It is expected that the user satisfaction is non-linear; for the simplicity of presentation, we
approximate it with a linear function.
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2. to allow reconfiguration at run-time (in other words, to allow for even more

architectural changes at run-time).

In this section, we will explore the first goal, how we can choose a robust architecture.

In Section 3.1.2 we defined the user satisfaction with regard to a response time of a

scenario for a workload N . Any workload has two dimensions, the workload intensity

N (or the number of users in the system) and the workload mix (the combination of

users in different scenarios).

Formally,

N = N1 +N2 + · · · +Nm (3.2)

where C = {C1, C2, . . . , Cm} is the set of all scenarios offered by the web application

and Ni is the number of users executing scenario Ci, ∀i = 1, . . . ,m.

Any N1, N2, . . . Nm combination satisfying equation 3.2 represents a workload

mix; workload mixes can also be expressed as ratios of users in every scenario and

total number of users, βi = Ni

N
,∀i = 1 . . .m.

In combinatorial analysis terms, the number of mixes in equation 3.2 is a permu-

tation that allows repetitions. If we consider the total number of customers N as a

string of N 1s, and the scenarios as bins separated by m− 1 0s, a total of N +m− 1

bits, then permutations of N +m− 1 yields the total number of mixes:

Number of workload mixes =

(
N +m− 1

m− 1

)
(3.3)

where N is the workload intensity (total number of users accessing the application)

and m = |C| is the total number of scenarios.

The direct consequence of the equation 3.3 is that there is not just one response
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time for a workload intensity N , but a very large number, one for each workload mix.

The number of workload mixes is huge and intractable when N and m are large. For

example, for N = 500 and m = 6 there are 2.6× 1011 workload mixes. However, the

maximum response time of each scenario over all workload mixes can be found in

a reasonable amount of time when the system is described by a performance model

[20]. Therefore, the meaning of the response time in the utility function 3.1 is that of

the maximum response time across all mixes. Figure 3.3 shows the utility functions

for scenario C ∈ C and two workload intensities, 100 and 500 users respectively.

Although every workload mix will yield a different response time, we are interested

in maximum response time over all mixes, namely maxβR
C,NC . The values of those

metrics yield a utility function 0.1 for 100 users and 0.5 for 500 users.

Figure 3.3: Response times of scenario C and utility functions for two workload levels.

To add to the complexity, although every performance requirement is defined for

an N , the workload intensity goes from 0 to N . The number of workloads implied

by a performance requirement is given by the equation 3.4:

TotalWorkloads =
N∑
i=1

(
N +m− 1

m− 1

)
(3.4)
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The decision to consider all workloads specified by 3.4 or just those present in the

performance requirements lies with the stakeholders and depends on the specifics of

the application. Workloads specified by 3.3 uncover the worst case response time and

therefore their utility functions can be more pessimistic than the reality. However, a

comprehensive characterization of the architecture’s scalability is better achieved by

considering the workloads in 3.4.

At runtime, the architectures are evaluated against individual workload mixes.

While at the development time it is better to select an architecture which is robust

to workload changes, therefore the architecture has a good performance over a large

spectrum of workload mixes and intensities, at run-time the goal is quickly adapt to

changes in the workload with minimum hardware requirements and with minimum

overhead.

Although all workloads are important, therefore each criterion is important, there

are situations when we should take into account the relative importance of the

workloads in the life cycle of the system. In SPAC, each criterion may be weighted

to reflect its importance or its probability of occurrence. Weights are expressed as

normalized real numbers between 0 and 1 and the sum of the weights should be 1.

The higher the weight, the more important is the criterion.

The need to weight workloads arises mainly from the Service Level Agreements

between the stakeholders. It also can reflect the designer estimation of criteria

importance or the measurement of workloads distribution on existent similar systems.
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3.1.3.2 Rating and ranking alternative architectures

Performance criteria are measurable by solving a performance model associated with

the application. The use of the performance models (as opposed to measuring directly

the application) is justified by the fact that the alternative architectures are too many

to implement and because evaluating each alternative to find the maximum response

time across all mixes requires less time. The degree in which each alternative satisfies

each criterion is calculated by using the response time given by the model as input

in the utility function 3.1. In the next section we look at a tool that estimates the

response time of the application and then how to calculate a preference metric used

to rank alternative architectures.

Preference metric. Another aspect to clarify is the aggregation of the weights,

criteria, and utility functions. The goal of the aggregation is to characterize each

alternative architecture by a unique measure, usually called Preference, which ag-

gregates the weights, criteria, and utilities. There are several aggregation methods

that stakeholders can use. The most used method in decision making is the Simple

Additive Weighting. It computes the Preference of an alternative architecture Aa as

a weighted sum: each term of the sum is the product of the weight of the criterion

(workload) wj and the utility of the alternative Aa in criterion j, UtilityC,j.

P (Aa) =
∑
C,j

wj × UtilityC,j(Aa); a = 1 . . . A; j = 1 . . . J (3.5)

The above method assumes there is a compensatory effect of the utilities with

regard to the user satisfaction. In other words, if an alternative architecture performs

poorly in one workload, this can be compensated by a higher utility in other workloads.

When there is no compensatory effect, the stakeholders can use a non-
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compensatory aggregation method such as maxmin. This method calculates the

Preference of each architecture as the weakest or minimum of their utilities (min).

The best alternative architecture is the one that has the maximum weakest utility

(max). The logic is that a chain is as strong as its weakest link. Analytically:

P (Aa) = minj,C
(
UtilityC,j(Aa)

)
, a = 1, . . . , A; j = 1, . . . , J (3.6)

The maxmin method 3.6 applies when criteria are all equally important. In the

case of weighted criteria, maxmin uses a weighted utility:

P (Aa) = minj,C
(
(1− wj)× UtilityC,j(Aa)

)
, a = 1, . . . , A; j = 1, . . . , J

The use of Simple Additive Weighting or maxmin depends on the class of the

software architecture being built and on the working of the performance requirements

within the Service Level Agreements (SLA). Simple Additive Weighting gives the

average performance behavior across all workloads, while the maxmin points to the

worst case scenario. The two methods can also be used in combination: use 3.6 to

eliminate all the architectures that have a Preference lower than a threshold, and

then use Simple Additive Weighting to rank the remaining architectures.

3.2 Performance Tool

To support SPAC we needed a versatile performance tool. We developed OPERA [36],

“Optimization, Performance Evaluation and Resource Allocation” tool that can be

used to assess the performance of information and transaction based web applications
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and feed the utility function 3.1. OPERA has a performance specification language,

PXL, and a corresponding model solver. In OPERA, the application logic is decoupled

from the middleware and from the deployment topology. Software components have

multiplicity levels (to count for threading and replicas) for horizontal or vertical scaling

and interact within scenario through synchronous and asynchronous calls. Software

components are deployed on hardware topologies made of nodes interconnected by

networks. Nodes have multiplicity levels to accommodate for clusters and multiple-

CPUs units and allow for easy reconfigurable topologies.

The tool models the application as a layer of two queuing network models, a

software and a hardware layer and a solver iterates between the two layers until a fix

point solution is reached.

CPU1

D1,C

CPU2

D2,C

NCS
Think
Time AS

Rs
1,C

DB

Rs
2,C

Software Queuing Network

s – software
c – class of service

Hardware Queuing Network

Figure 3.4: Software and hardware layers in a two tier web system

To illustrate the OPERA idea, let us consider a two tier system that is running

web applications (see Figure 3.4). The system has a web application software server

(AS) and a database software server (DB), each one running on dedicated hardware

(for simplicity reasons, we consider in this example only CPU1 and CPU2 as hardware

resources; for the “real” system other resources can be taken into account: memory,

disk, etc.). Also, let’s consider that we have an online store application with two
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scenarios (or classes of service3):

• browse – the user is browsing through the available items in the store;

• buy – the user decides to buy some items and add them in the shopping cart.

The system can be modeled with two queuing networks, one for the software

layer and another one for the hardware layer. The software layer has two queuing

centers (AS and DB) which queue requests when there are no more threads available,

non-critical sections where there are no queuing delays and a Think Time center used

to model the user think time between requests. Again, for simplicity of the example,

we didn’t consider other possible queuing centers like semaphores, critical sections,

etc.

Each resource has a demand associated, which is the time necessary to handle a

request at the resource, in a class of service. In our example, the demands for the

two CPUs for requests in class C ∈ browse, buy are D1,C and D2,C . At the software

layer the service times are the response times of the hardware layer (Rs
1,C and Rs

2,C),

which include the demand and waiting time at the hardware resources (we use the

superscript s to denote metrics that belong in the software layer).

The demands at the hardware layer can be measured or estimated (using Kalman

filters or particle filters). However, this cannot be done for the software layer. For the

software layer OPERA solves the model for the hardware layer, extracts the response

time and uses it as the demand.

After each iteration (one iteration means solving both layers once) OPERA checks

if the model is stable (the model is said to be stable if in two consecutive iterations

3A class of service is a scenario or a group of scenarios that have similar statistical behavior and
similar requirements. In this thesis we will use the term class to refer to a class of service.
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the queues at the resources change less than a given value). If the model is not stable,

the users will be redistributed in the two layers and a new iteration will start.

Outputs of the tool include: mean response time, utilization of resources and

throughput for each scenario for individual workload mixes, or maximum utilization

and response time across all workload mixes and for each scenario.

A formal definition of the model and algorithms used by one layer of the tool can

be found in [71].

3.2.1 Performance Specifications

OPERA allows to model the architecture of the system using the Performance Ex-

tensible Language (PXL). OPERA accepts as input a PXL file (which is a XML

document) which contains four sections:

• Deployment topology : describes the topology of the system; the nodes, clusters,

containers, middleware and networks—how they connect with each other and

what are their performance characteristics;

• Usage scenarios (classes): describes what happens when the users execute some

action (like click on the submit or search button on a web page);

• Workloads : describes some points of interests from the application (like the

number of users or important mixes);

• Performance requirements: describes some expectations from the application

(like response time).

By splitting the model in separate components gives flexibility in evaluating

different architectures. For example, a change in the deployment topology won’t
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affect the scenarios, etc. We detail each component of the model in the remainder of

the section.

Deployment Topology: The topology denotes the nodes and the network host-

ing the application, the clusters, containers and the middleware. Figure 3.5 shows

the topology of the system presented earlier.

Figure 3.5: A topology example.

All services run in containers that are grouped in clusters which reside in nodes.

The nodes are connected by a network.

In the PXL file, each element (node, cluster, container, network) is identified by

a name, which will be used later, in the description of scenarios.

The nodes, which represent hosts, have two ratio attributes: for disk and CPU.

These are real numbers that show the ratio between the CPU (disk) speeds of the

host on which the demands of the services were collected and the CPU (disk) speeds
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of this host. A ratio of 0.5 means that the CPU (disk) of the modeled system is two

times faster than the CPU (disk) of the system where the measurement was done.

The parallelism attributes are used to specify the multiplicity of the CPU (disk).

Each node can be a client or a server, as specified by the attribute type.

The number of threads that a container can use is specified using the attribute

parallelism for the tag container. If, for example, the web server can use 20 threads,

we set the value for the attribute parallelism to 20 (for WebContainer), and, when

the services are described, we specify that the “Web Server” runs in WebContainer

(see Figure 3.5).

For the Network tag, the following attributes can be used:

• connectsHosts – the name of the hosts connected by the network. The names

are separated by spaces;

• latency – the interval between the time a bit is sent and the time when this

bit is received at destination;

• overheadPerByte – the time required to transmit a byte.

Listing 3.1 shows, in PXL syntax, the topology from Figure 3.5.

Listing 3.1: The topology description, using PXL syntax.

1 <Node CPUParallelism="1" CPURatio="1" DiskParallelism="1"

2 DiskRatio="1" type="client" name="ClientHost"/>

3 <Node CPUParallelism="2" CPURatio="1" DiskParallelism="2"

4 DiskRatio="1" type="server" name="WebHost"/>

5 <Node CPUParallelism="1" CPURatio="1" DiskParallelism="1"

6 DiskRatio="1" type="server" name="DataHost"/>
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7 <Cluster name="ClientCluster">

8 <Container name="Client"

9 canMigrate="false" parallelism="1000"

10 runsOnNode="ClientHost" server="false"/>

11 </Cluster >

12 <Cluster name="WebCluster">

13 <Container name="WebContainer"

14 canMigrate="false" parallelism="20"

15 runsOnNode="WebHost" server="true"/>

16 </Cluster >

17 <Cluster name="DataCluster">

18 <Container name="DataContainer"

19 canMigrate="false" parallelism="150"

20 runsOnNode="DataHost" server="true"/>

21 </Cluster >

22 <Middlware name="http"

23 fixedOverheadReceive="0" overheadPerByteReceived="0"

24 fixedOverheadSend="0" overheadPerByteSent="0"/>

25 <Network connectsNodes="ClientHost WebHost DataHost"

26 latency="0" name="Internet" overheadPerByte="0"/>

Scenarios: Scenarios are triggered by user actions and denote traces through

the application. Scenarios can be derived from Use Cases, from Class diagrams, as

defined by UML, or by tracing the application using application profilers.

First the services will be described. This will connect the scenarios with the hosts

that will execute them. For example, in Listing 3.2 we are specifying that the service

WebServer runs inside the WebContainer (which has 20 threads) that resides inside

WebHost (which can use two CPUs).
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Each scenario is characterized by a name and set of calls for service (see Listing 3.2

for the description of the browse scenario introduced earlier). CPU and disk demands

are specified as real numbers, and represent the time required for CPU and disk,

respectively, to execute a single call. The number of bytes sent and received by the

calling service can be also be specified.

In our example (Listing 3.2) the user that executes scenario browse will generate

a request to the web server (the first call is from the Browser to the WebServer).

The web server will interrogate the database to extract the items to be displayed on

the web page (the second call from the WebServer to Database). In both these calls,

the number of bytes transmitted over the network is ignored (both attributes have

the value 0). A call can be synchronous or asynchronous and that is specified by the

attribute type.

Workload: In this section of the PXL file the maximum number of users and

the mixes of interest are specified. In the root tag, the kind attribute can be used to

specify for which kind of workload the application is optimized. The possible values

are:

• HL – High Population Level;

• ML – Medium Population Level;

• LL – Low Population level.

The tags that can be used in this section are:

• Users – the total number of users that the application should support. This

number is used for finding the worst response time and highest utilization across

all workload mixes;
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• WorkloadMixes – defines the number of users for each scenario (the workload

mixes are independent of the Users element described above). The workload

mixes can consider the system as a closed or open model. When the system is

considered as open, then the openModel attribute should be set to true. When

the system is modeled as a closed model, then the openModel attribute is set to

false. The value of the openModel attribute has implications on the meaning

of the Mix elements;

• Mix – defines the load of a given scenario by setting the load attribute. When

the system is modeled as an open system (openModel="true") then the load

attributes define the arrival rate in that scenario. When the system is modeled

as a closed system (openModel="false") then the load attributes define the

number of users in that scenario. In this latter case, the number of users is

complemented by the ThinkTime element;

• ThinkTime – Think times for each scenario. They denote the user idle time

between two requests in milliseconds. These values are considered in tandem

with the Users element defined above or with those WorkloadMixes that refer

to closed models.

Listing 3.2: Description of the scenario browse, using PXL syntax.

1 <Services >

2 <Service canMigrate="false" name="Browser"

3 runsInContainer="Client"/>

4 <Service canMigrate="false" name="WebServer"

5 runsInContainer="WebContainer"/>

6 <Service canMigrate="false" name="Database"
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7 runsInContainer="DataContainer"/>

8 </Services >

9 <Scenario name="browse" triggeredByService="Browser">

10 <Call bytesReceived="0" bytesSent="0" callee="WebServer"

11 caller="Browser" invocations="1" type="s">

12 <Demand CPUDemand="41.3207" DiskDemand="0.3423" />

13 </Call>

14 <Call bytesReceived="0" bytesSent="0" callee="Database"

15 caller="WebServer" invocations="1" type="s">

16 <Demand CPUDemand="11.7812" DiskDemand="1.2432" />

17 </Call>

18 </Scenario >

Listing 3.3 shows an example of the workloads section for the system introduced

earlier. We are interested in how the system will behave when there are 100 concurrent

users; 70 of them execute the scenario browse and 30 execute buy (note that this is

not an open model). The average think time for the first scenario is 3000 milliseconds

and for the second is 1000 milliseconds.

Listing 3.3: Workload for scenarios browse and buy.

1 <Workloads kind="ML">

2 <Users >100</Users >

3 <WorkloadMixes openModel="false">

4 <Mix load="70" scenario="browse"/>

5 <Mix load="30" scenario="buy"/>

6 </WorkloadMixes >

7 <ThinkTimes >

8 <ThinkTime time="3000" scenario="browse"/>

9 <ThinkTime time="1000" scenario="buy"/>
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10 </ThinkTimes >

11 </Workloads >

Requirements: The requirements section allows users to add to OPERA some

expectations for the system. Currently only response time is accepted. For each

scenario, a lower (minResponseTime) and an upper (maxResponseTime) value of the

targeted response time can be specified. The values are real numbers, greater than

zero. The tool will optimize the distribution of the services that can migrate so it

reaches the lower value for each scenario. An example can be seen in Listing 3.4.

Listing 3.4: The requirements section of a PXL file.

1 <Requirements >

2 <ResponseTime maxResponseTime="100000" minResponseTime="100"

3 scenario="browse"/>

4 <ResponseTime maxResponseTime="100000" minResponseTime="100"

5 scenario="buy"/>

6 </Requirements >

3.2.2 Discussion: How OPERA supports different architec-

ture types

The specification language PXL and the OPERA tool support the design, deploy-

ment and runtime architectures [72], as follows. The XML elements Services and

Scenarios allow the designer to define the architecture components and connections,

respectively. The granularity of the service is at the latitude of the architect, and

it can range from a programming language class to an entire application. Calls
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are generic connections; they can be synchronous or asynchronous method calls or

message passing. Well known qualitative performance principles such as locality,

parallelism, and sharing [73] can be used to define alternative architectures. Other

qualitative principles such as modifiability, security, can lead to even more architec-

tures. Choosing one architecture over another is a decision that can be based on

SPAC.

In the implementation and deployment phase of the software system life cycle,

in the process of capacity planning, when it comes to architecture decisions, the

architects have to decide, among other things, if the scalability can be better accom-

plished by a vertical or a horizontal architecture [2]. In this phase, multiple replicas

of software entities are created, on different computers (horizontal) or on the same

computer (vertical). PXL supports that by providing containers and multiplicity

levels for those containers. The Middleware and Clusters XML elements of PXL

allow the architect to define multiple deployment architectures.

At run time, there are still predefined architectures to choose from when adapting

the system to face an increase in workload or to adapt to new business needs. Self-

tuning, self-balancing and self-provisioning [1] are 3 facets of autonomic computing,

which explore many software architectures before deciding which one satisfies the user

requirements. A model based self-provisioning architecture which includes SPAC is

shown in Figure 3.1. An Autonomic Manager monitors the performance metrics of an

application and the workload through a Monitor. With the collected data, a perfor-

mance model is tuned by a Model Estimator. Based on the prediction of the model,

different alternatives are evaluated using SPAC and the application is provisioned

by adding or removing instances of replicable software and hardware components.
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PXL support for autonomic run time changes is exemplified by multiplicity levels on

nodes and clusters.

3.3 Case Study

The purpose of this section is two-fold: (a) to illustrate the application of SPAC

framework and the associated tool OPERA in selecting the architectures at develop-

ment and runtime and (b) to validate that the proposed framework selects the most

appropriate architecture with regard to performance requirements and architecture

characteristics. The section assumes that the performance models of architectures

are accurate. Proving that accurate models can indeed be built is beyond the scope

of this chapter; they have been covered in [74, 75], and will further be covered in

Chapter 4.

Figure 3.6: Two runtime architectures for Broker Application Pattern.
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At development time, we consider two architectures: A1 and A2 (Figure 3.6).

They were obtained following the industrial practice presented in [72]: we consider a

self-serve business pattern, one of its corresponding application patterns, namely the

Broker application pattern, and further on, two of the possible architectures. A self-

serve business pattern (Figure 3.6a) establishes a channel of communication between

a user and a business. Examples of applications that fit this pattern include insur-

ance claim submission, Web banking, brokerage, and others. Application patterns

represent the partitioning of the application logic and data together with the styles of

interaction between the logic tiers. In the broker architecture shown in Figure 3.6b,

the Broker component determines the nature of the client (or protocol) the request

is coming from and then dispatches the request to the corresponding Application.

The communication between the Broker and Application components is synchronous.

The Broker Architecture is further realized by two deployment architectures, A1 and

A2, shown in Figure 3.6c and Figure 3.6d. In the architecture A1, both Web and

Application servers are between the two firewalls (Demilitarized Zone, DMZ), while

in the second architecture A2, only the Web server is in the DMZ, the Application

server being placed within the company domain.

The performance requirements are as follows: the application is supposed to

support up to 1000 users concurrently and three scenarios. The performance require-

ments are specified for three workload intensities: 250, 500 and 1000 users. The

maximum response times for scenarios 1 and 3, for the three workload intensities

and across all workload mixes, have to be within the intervals [200, 400], [400, 600]

and [1000, 6000] ms, respectively. The lower and upper values of the intervals corre-

spond to the Rc
Lo and Rc

Up described in Section 2.1 For the scenario 2, the maximum
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response times for the three workload intensities have to be within the intervals [300,

500], [500, 700] and [1000, 6000] ms, respectively.

3.3.1 Development-time decisions

Figure 3.7 shows the response time (in milliseconds) for the two architectures, when

users execute the three scenarios. Using OPERA tool, seven workload mixes were

found as being the worst and we used them to find how architectures A1 and A2

would behave under load. With red lines (with no decoration) is the response time

when architecture A1 was used, and with blue lines (decorated with squares) when A2

was used. Solid, dashed and dotted lines represent scenarios 1, 2 and 3, respectively.

The response times are average values.

From the plots, it can be seen that A1 has lower response time when the workload

intensity is low. Increasing the number of users, we notice that the performance of

A1 deteriorates fast, while architecture A2 is able to service users and keeping the

response time very low. Through a visual inspection of the graphs, we can conclude

that A2 is a better deployment architecture if we care more about higher workloads.

SPAC method should select A2 as well.

SPAC results are explained next. Table 3.1 shows the actual response times

of the two architectures A1 and A2, in three scenarios of requests, when deployed

on the same hardware topology. The results were obtained with performance tool

OPERA. The specification file PXL has the structure exemplified in Section 3.2

and the data obtained in an off line identification phase. The three columns groups

correspond to the three workload intensities and show the maximum response times

across all workload mixes for each scenario 1, 2 and 3. The architecture A1 has better
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Figure 3.7: The response times for the worst mixes.

response times at lower workloads (250 users), because the communication overhead

of A2 between the Web server and the application server is having an impact on the

overall response. At higher loads (1000 users), the communication overhead becomes
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insignificant compared with the queuing delays, and therefore the architecture A2

provides better response times.

N 250 500 1000
Scenario 1 2 3 1 2 3 1 2 3

A1 105 106 117 154 119 221 4231 385 4990
A2 312 397 148 320 404 159 1282 500 374

Table 3.1: Per scenario response times (in milliseconds) for two design
architectures and three workloads.

Table 3.2 shows the utility functions computed with the relation 3.1 for the

performance requirements of this particular case study. The workloads are weighted

to count for their relative importance. The sum of the weights is 1 and the weights

are distributed across the three workloads. Since for this particular application the

scalability is very important, the highest workloads have higher weights.

N 250 500 1000
Scenario 1 2 3 1 2 3 1 2 3
Weight 0.10 0.10 0.10 0.30 0.30 0.30 0.60 0.60 0.60

A1 1.00 1.00 1.00 1.00 1.00 1.00 0.35 1.00 0.20
A2 0.44 0.51 1.00 1.00 1.00 1.00 0.94 1.00 1.00

Table 3.2: Utility functions for two design time architectures and three
workloads.

The preferences for A1 and A2, calculated by using the Simple Additive Weighted

given by equation 3.5, are 2.13 and 2.86, respectively, which tells us quantitatively,

that architecture A2 is better than A1.

If we consider the maxmin aggregation given by 3.6, we find that the preferences

are 0.20 and 0.44 respectively (they are given by the workload 1000 and 250 users,

respectively). Based on this quantitative measure, the architecture A2 is better than

architecture A1.
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Given that both metrics above recommend the architecture A2, the conclusion

is clear: A2 is the architecture of choice to be implemented and this matches the

conclusion drawn by visual inspecting the performance of the two architectures

(Figure 3.7).

Architecture A2 will guarantee a good response time across a large range of

workloads. However, if the workload intensity goes above 1000 users, then the

response time might deteriorate. In the reminder of the section, we show how SPAC

can help the provisioning decisions at runtime.

3.3.2 Runtime decisions

For runtime experiments, we used the framework shown in Figure 3.8 which is the

implementation of the design from Figure 3.1. The autonomic manager will use

OPERA as the modeling tool. The monitor component of the framework will use

JMX [76] and SNMP [55] agents to extract relevant metrics from the distributed

system. Using these metrics, the autonomic manager will update the model. To

eliminate the noise from the measured metrics, we used Kalman Filters [77].

Figure 3.8: The framework used in experiments.

At workload intensities just above 1000 users, the response time deteriorates due
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to the saturated bottlenecks at application and data servers, respectively. To cope

with this increase in the workload, in a usual provisioning scenario, a provisioning

autonomic manager will add replicas to the application server or to data server or

to both. Table 3.3 and Table 3.4 show two runtime architectures (A21 and A22),

their response times and the utility functions. Three predicted workload mixes are

considered. The mixes are (250, 250, 1000), (250, 1000, 250) and (1000, 250, 250).

They have the same response time requirements for high workloads, [1000 6000] ms.

The response time, at runtime, are calculated for individual workload mixes.

N 250 250 1000 250 1000 250 1000 250 250
Scenario 1 2 3 1 2 3 1 2 3

A21 607 1267 1443 754 1686 944 356 445 205
A22 3479 2183 2821 1798 1251 1414 4104 2512 3314

Table 3.3: Per scenario response times for two runtime architectures
and three workload-mixes.

N 250 250 1000 250 1000 250 1000 250 250
Scenario 1 2 3 1 2 3 1 2 3
Weight 0.10 0.10 0.10 0.30 0.30 0.30 0.60 0.60 0.60

A21 1.00 0.95 1.00 1.00 0.86 1.00 1.00 1.00 1.00
A22 0.50 0.76 0.64 0.84 0.95 0.92 0.38 0.70 0.54

Table 3.4: Utility functions for two runtime architectures and three
workload mixes.

A21 and A22 are variations of the architecture A2 depicted in Figure 3.6d: A21

has 2 replicas of the Application Server while A22 has 2 replicas of the Data Server.

The assumption is that the Autonomic Manager only has one computer available

that it can provision either Application Server or Data Server.

The preferences for A21 and A22, calculated by using the Simple Additive

Weighted given by Equation 3.5, are 2.9 and 1.9. The maxmin values for the two
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architectures are 0.86 and 0.38 respectively. Both metrics suggest architecture A21

is by far the best choice.

Next, we wanted to see what are the worst mixes, in terms of response time, when

the number of users is 1500. We used the OPERA tool to find the bottlenecks in

architectures A21 and A22 and then we computed the workload mixes.

OPERA found that there are seven bottlenecks which give us the workload mixes:

(1500, 0, 0), (0, 1500, 0), (0, 0, 1500), (614, 886, 0), (170, 1330, 0) (0, 667, 833)

and (0, 1000, 500). The response time for each is shown in Table 3.5. In Table 3.6

are shown the utility functions when the response time requirements is set to [1000,

6000].

N 1500 0 0 0 1500 0 0 0 1500 614 886 0
Scenario 1 2 3 1 2 3 1 2 3 1 2 3

A21 350 - - - 2986 - - - 1782 450 788 -
A22 4672 - - - 553 - - - 2934 2389 1560 -

N 170 1330 0 0 667 833 0 1000 500
Scenario 1 2 3 1 2 3 1 2 3

A21 986 2412 - - 1352 741 - 2065 1155
A22 711 669 - - 1511 1816 - 1079 1161

Table 3.5: Response times for 1500 users on two runtime architectures.

We notice that when all of the users are executing scenario 1, A22 has very poor

results, compared with A21 (see first workload mix in Table 3.5). Also, A22 has poor

results when users favor scenario 3; but if users start to shift toward scenario 2, the

performance of A22 improves until provides better results than A21 (see workload

mixes 2 and 5 in Table 3.5).

The preferences calculated for A21 and A22 architectures, using Simple Additive

Weight and equal weight for all mixes, are 1.40 and 1.34 respectively, which makes
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N 1500 0 0 0 1500 0 0 0 1500 614 886 0
Scenario 1 2 3 1 2 3 1 2 3 1 2 3

A21 1 - - - 0.60 - - - 0.84 1 1 -
A22 0.27 - - - 1 - - - 0.61 0.72 0.89 -

N 170 1330 0 0 667 833 0 1000 500
Scenario 1 2 3 1 2 3 1 2 3

A21 1 0.72 - - 0.93 1 - 0.79 0.97
A22 1 1 - - 0.90 0.84 - 0.98 0.97

Table 3.6: Utility functions for 1500 users on two runtime architectures.

A21 better than A22. However, by analyzing the usage pattern of the system and

switching between the architectures at runtime the performance of the system can

be improved.

Figure 3.9 shows the response times and utility functions for architecture A21

when there are only two scenarios. The X0Y plane represents the workload mix for

those scenarios, while on the 0Z axis is the response time (Figure 3.9a and Figure 3.9c)

and the utility function (Figure 3.9b and Figure 3.9d). In subfigure (a) and (c) it

can be seen that when the number of users increases, the response time will increase

(for displaying purposes, we put a limit on the response time shown). To compute

the utility, we require that the response time be in interval [300, 400] for the first

scenario and [400, 500] for the second one. Subfigures (b) and (d) contain the plot

of the utility, and can be seen that when the response time increases, the utility

decreases (note that the X0Y plane is rotated 180 degrees in (b) and (d)).

For a workload intensity of 250 users, for architecture A21, the model found that

the highest response time for scenario 1 is generated by the mix 〈250, 0〉 (shown with

a blue diamond in Figure 3.9a). Similarly, mixes 〈500, 0〉 and 〈1, 999〉 have the highest

response time for workload intensities of 500 and 1000 users (shown in Figure 3.9a
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Figure 3.9: Response times and utility functions for architecture A21 when there are only
two scenarios.

with a red square and a black dot, respectively).

For scenario 2, mixes 〈0, 250〉, 〈0, 500〉 and 〈0, 1000〉 have the highest response

time (see the blue diamond, red square and black dot in Figure 3.9c).

Similarly, Figure 3.9b and Figure 3.9d have these workload mixes marked with

blue diamonds, red squares and black dots.
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3.4 Related Work

There are several interrelated methodologies—all proposed by the Software Engineer-

ing Institute—for analyzing and ordering architectures according to quality attributes

and stakeholders’ assessments. Software Architecture Analysis Method (SAAM) [61]

defines key architecture quality attributes such as performance, modifiability, and

availability. Architecture Tradeoff Analysis Method (ATAM) [78] takes SAAM further

and offers a methodology on how to assess the implications of architectural decisions

with regard to SAAM’s attributes. ATAM’s declared goal is not to offer quantitative

methods for assessing the quality attributes; it rather focuses on the methodology of

eliciting stakeholders’ assessments of the attributes for use case, growth or exploratory

scenarios. More recently, Cost Benefit Analysis Method [79, 80] offers an economic

method to quantify architectures in terms of benefit per dollar. Our proposed frame-

work is quantitative and although it uses economic decision methods, it applies to

performance. Also, our method looks at complex performance requirements.

Deciding the architecture of a distributed system has been a design decision so

far. However, recent research has been done in architecture changes at runtime. For

example, in [81], Kramer and Magee proposed a layered reference architecture for

self-managed systems. The architecture has been inspired by robotics application;

nevertheless, it is broadly applicable. The architecture has three layers: Component

Control, Change Management, and Goal Management. Component Control supports

the ability to add, remove, and reconnect components. A review of the current state

of the art in runtime adaptation is presented in [82]. Previous work in self-managing

systems highlights planning and policies as the two main adaptation mechanisms.

Policies describe how the systems should be modified when certain conditions have
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been met (a system that uses policies to make architectural changes is presented

in [83]) and planning involves generation of a sequence of actions that need to be

executed in order to achieve a goal. Sykes et al. present in [84] a three layer model

that uses planning for adaptable software architecture. SPAC proposes a quantitative

methodology that can be applied to one control level.

There are other authors that make use of models to when a change in architecture

of a system is required. A very complex model is [85]; the authors propose a model

that has full information about all the components (java classes) in the application.

This approach might prove to be too complex and unfeasible to implement, even

though the accuracy of it is high.

Some authors propose a multi-model framework [86, 87, 88, 89], each model

designed to capture different characteristics of the underlying system, like how it

behaves under low workloads and high workloads. Unlike these approaches, we work

with a dynamic model that is changed and updated every time new data from the

monitored system becomes available. This way, our framework is capable to capture

characteristics of the system under heavy load and low load. Also, by capturing

utilization scenarios in the model, we manage to obtain high accurate performance

data that can be used to make architectural change decisions.

3.5 Conclusions

We presented a framework for analyzing and evaluating the performance of software

architectures. The framework begins with identifying the performance requirements

of the software systems. These requirements have to account for different scenarios,

upper and lower values of the response times, and the multitude of workloads a
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software system might face.

A utility function was also defined. It takes into account the upper and lower

values of the required response time and the actual response time, and calculates

the user satisfaction as a value between 0 and 1. The workloads and the associated

performance requirements are criteria for evaluating the software architecture. The

actual response time of that architecture, obtained by solving a performance model, is

matched against the performance requirements by the utility function, and tells how

well the criteria are satisfied. By weighting the criteria to reflect their importance in

the life cycle of the software architecture, an aggregated utility function is computed

across all criteria. Two or more software architectures can therefore be compared by

using these aggregated utilities.

Two aggregation methods inspired by economic models were used to calculate a

unique score for each architecture: Simple Additive Weighting and Maxmin. Simple

Additive Weighting gives the average performance behavior across all workloads,

while the Maxmin points to the worst case behavior.

To respond well to heterogeneous workloads, an application should work like a

homeostatic system: to be able to function well within a range of perturbation and,

when the perturbations are out of range, to deploy feedback mechanisms to adapt

to the perturbations. Following the above principles, SPAC can be used to deploy a

software architecture that respond well to a variety of workloads. At runtime, when

the workloads are exceeding the expectation, autonomic managers can pull more

resources from a pool and adjust the capacity of the application accordingly. We

showed trough a case study how the framework can applied.

Threats to the validity of the approach includes inaccurate performance models
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and inaccurate performance requirements. The first refer to inadequate structure

and data for the model while the latter to incomplete Service Level Agreements. In

that case, the deployment architecture might not be the best choice; however the

second level of adaptation, the runtime autonomic control can scale the application

based on accurate models.
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Chapter 4

Autonomic Load-Testing

Framework

Performance testing is fundamental in assessing the performance of software compo-

nents as well as of an entire software system. A major goal of performance testing

is to uncover functional and performance problems under load and the root cause of

those problems. Functional problems are often bugs, deadlocks and memory manage-

ment bugs, buffer overflows. Performance problems often refer to high response time

or low throughput under load.

In practice, the testing is done under operational conditions, that is, the testing

is typically based on the expected usage of the system once is deployed and on the

expected workload. The workload consists of the types of usage scenarios and the

rate of these scenarios. A performance test usually lasts for several hours or even a

few days and only tests a limited number of workloads. The major drawback of this

approach is that expected usage and scenario rates are hard to predict. As a result,

many workloads that the system will face remain uncovered by the stress test.
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In this chapter we propose an autonomic framework that explores the workload

space and searches for points in this space that cause the worst case behaviour

for software and hardware components of the system. It is generally known that

the performance of a software system is influenced by the hardware and software

bottlenecks. Bottlenecks are those resources where the requests are queued and

delayed because the processing capacity limits of that resource. When those limits

are reached, we say that the bottlenecks are saturated. Consider for example a web

based application in which a web server has 100 threads available. When there are

more than 100 pending requests, the server is a saturated bottleneck because it has

reached its capacity. If the requests keep coming, they will be buffered in a waiting

queue that will eventually reach its limits as well. In a software system, there are

many bottlenecks and, more importantly, those bottlenecks change as the workload

changes.

Finding the workloads that cause the bottlenecks to change is a challenging but

rewarding problem. We propose an autonomic load stress testing framework that

drives the workloads towards the points that create the bottlenecks and eventually

saturate them. We also show that the software performance metrics reach their

maximum or minimum for those workloads that cause some bottlenecks to reach

their capacity or policy limits. The method uses an analytical representation of the

software system, a two-layer queuing model that captures the hardware and software

contention for resources. The model is automatically tuned, using on-line estimators

that find the model parameters. The overall testing method is autonomic, based

on a feedback loop that generates workloads according to the outputs of the model,

monitors the software system under test, extract metrics, analyzes the effects of each
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workload and plans the new workloads based on the results of the analysis.

The type of software systems that would benefit the most from the proposed

method are web based transactional systems. To model the interaction of users with

such systems, we define classes of services, or classes in short. A class is a service or a

group of services that have similar statistical behavior and have similar requirements.

When a user begins interacting with a service, a user session is created. The session

will be maintained active until the user logs out or when he is inactive for a specified

period of time. If we define N as the number of active users at some moment t, these

users can use different classes of services. If we have C classes and Nc is the number

of users in class C, then N = N1 +N2 + · · ·+NC . N is also called workload intensity

or population while combinations of Nc are called workload mixes or population mixes.

The main contributions of the work presented in this chapter are:

• we present an adaptive framework for performance testing of transactional

systems

• we present a method to explore the workload space in order to uncover and

saturate the bottlenecks

• we design a case study to evaluate the validity of the proposed method.

The remainder of the paper is organized as follows. Section 4.1 presents the

theoretical foundations of the testing method. Section 4.2 describes the general

testing framework and introduces the testing algorithm. A case study is presented in

Section 4.3, related work is described in Section 4.4, and the conclusions are presented

in Section 4.5.
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4.1 Performance Stress Space

This section introduces the stress space, defined as the multidimensional domain

that can be covered by the software performance metrics. To start with, a software-

hardware system can be described by two layers of queuing networks [13, 14]. The

first layer models the software resource contention, and the second layer models the

hardware contention.

To illustrate the idea, consider a web based system with two tiers, an application

software server (AS) and database software (DB) server (see Figure 3.4). Each server

runs on its dedicated hardware, CPU1 and CPU2 computers respectively. Consider

also that we have two classes of service. The hardware layer can be seen as a queuing

network with two queues (for simplicity of presentation, we only consider the CPUs

of the servers in this example) and with the demands (or service times) for class C

being D1,C and D2,C respectively, C ∈ {1, 2}. The software layer has two queuing

centres, the processes AS and DB, which queue requests whenever there are no

threads available. (Besides queuing for threads, the requests can queue for critical

sections, semaphores, etc. Those can be represented as queuing centres as well.)

The software layer also has non-critical sections (NCS) where there are no queuing

delays and a Think Time centre that models the user think time between requests.

The service times (demands) at the software layer are the response times of the

hardware layers. In our case they are Rs
1,c and Rs

2,c, and they include the demand and

the waiting time at the hardware layer (we use the upper script s to denote software

metrics that belong to the software layer).
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4.1.1 Utilization Constraints

In multiuser, transactional systems, a hardware bottleneck is a device (CPU, disk,

network) that has the potential to saturate if enough users access the system. In

general, the device with the highest demand is the bottleneck. However, when there

are many classes of requests with different demands at each device, then the situation

becomes more complex. When the workload mix changes, the bottleneck in the

system can change as well and there may be many simultaneous bottlenecks in the

system at a given time.

To find all the hardware bottlenecks in the system, let’s assume that the workload

intensity is high enough to make the potential bottlenecks saturate. Workload mixes

yield per class utilization at each resource; the sum of per class utilizations equals the

total utilization of that resource. Total utilization of resource Ki is a linear function

of per class utilizations and has to be less that physical capacity or policy constraints

[20]:

UK =
∑
∀C∈C

DK,C

DKr,C

UKr,C < bK , ∀K ∈ K (4.1)

or exact the physical capacity or policy constraints:

UK =
∑
∀C∈C

DK,C

DKr,C

UKr,C = bK , ∀K ∈ K (4.2)

where 0 ≤ UKr,C ≤ bK , ∀C ∈ C; C and K are the sets of classes and resources; Kr ∈ K

is a reference resource shared by all classes of request1; UK is the total utilization of

resource K; UKr,C is the utilization of resource Kr by requests of class C, and DK,C

is the demand of the resource K in class C. bK is the utilization limit for resource

1The existence of a resource shared by all classes simplifies the analysis; the results presented in
this thesis are valid without this assumption.

71



K; for example, the maximum utilization of a single CPU device is 1, the utilization

of a dual core CPU is 2, etc.

For the example described in Figure 3.4, if device 1 (CPU1) is the shared device

(Kr) and if we represent the inequation (4.1) in the reference device utilization

space, we obtain the diagram of Figure 4.1a, where each segment represents one of

the equations (4.2). The stress space is within the area AFDC. The coordinates

(U1,1, U1,2) of the points F, D, C can be found by solving the system of equalities

(4.2). The coordinates are those values for which one or more equations reach the

limits bK . On segment FD, device 1 is the bottleneck and on segment DC device 2 is

the bottleneck. Note that we cannot drive the system out of the performance stress

area because we either would exceed the capacity limits or violate policy constraints.

(a) Hardware. (b) Hardware and software.

Figure 4.1: Constraints on the stress space.

4.1.2 Software Constraints

We can extend the above discussion for the software layer. Consider 1 . . . L software

queues at the software layer.
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Since the software layer is a normal queuing network (separable queuing network,

a subset of general networks of queues, where assumptions like Flow Ballance Assump-

tion hold [17]), we can apply the general queuing laws. Thus, using the utilization

law [17], the utilization of a software resource L in class C is:

U s
L,C = Xs

C ×Rs
L,C , L ∈ L, C ∈ C (4.3)

where L denotes the set of all software resources in the distributed system and C the

set of all classes of services. The total utilization of a software resource L is:

U s
L =

∑
C∈C

Xs
C ×Rs

L,C (4.4)

Assuming that there exists a hardware resource Kr shared by all classes (for

example a shared web server’s CPU), we can express the utilization of resource Kr

in class C ∈ C:

UKr,C = XC ×DKr,C (4.5)

The throughput at the both hardware layers must be the same, at steady state

both layers process the same number of requests/seconds, therefore XC = Xs
C . By

replacing Xs
C in (4.3) with the one from (4.5) and performing some simple algebraic

operations, we can express the utilization of any software resource L in class C as a

function of utilization of hardware resource Kr in the same class C:

U s
L,C = UKr,C

Rs
L,C

DKr,C

, ∀L ∈ L, ∀C ∈ C (4.6)
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Thus, using resource Kr as reference, we can rewrite (4.4) as:

U s
L =

∑
C∈C

UKr,C

Rs
L,C

DKr,C

. (4.7)

The utilization of each software contention centre L is limited by the capacity or

policy constraints bL, and that can be expressed as:

U s
L =

∑
C∈C

UKr,C

Rs
L,C

DKr,C

< bL, ∀L ∈ L (4.8)

and equation (4.2) can be rewritten as:

U s
L =

∑
C∈C

UKr,C

Rs
L,C

DKr,C

= bL, ∀L ∈ L (4.9)

where 0 ≤ U s
L,C ≤ bL, ∀C ∈ C.

These equations are non-linear because the terms Rs
L,C depend non-linearly on

UKr,C [18], i.e Rs
L,C = h(UKr,C), where h is a non-linear function. The function h is

the queuing network at the hardware layer. Rs
L,C can be computed by solving the

hardware queuing network model.

For the example described in Figure 3.4, if device 1 (CPU1) is the shared device

Kr and if we represent the equation (4.9) in the reference device utilization space,

then we obtain the diagram of Figure 4.1b. The stress space is within the area

AHIDC and is certainly different than when we consider only hardware resources.

The coordinates (U1,1, U1,2) of the points H, I, G, J and the corresponding segments

can be found by solving the equation 4.3. The coordinates are those values for which

one or more equations reach the limits bL. Note that some of the points are outside
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of the stress area, they cannot be reached. By taking into account the software

constraints, the bottlenecks will evolve as follows: on segment HI, software entity

AS is the bottleneck, on segment ID the hardware device 1 is the bottleneck and on

segment DC device 2 is the bottleneck. Note that we cannot drive the system out of

the stress area because either we would exceed the capacity limits or we violate policy

constraints. Therefore, software entity DB is never saturated, although it comes very

close.

In mathematical programming terms ([90]), the points B, C, D, E, F, H, I, G, J

in Figures 4.1a and 4.1b are called extreme points. Extreme points are those points

in the solution space where UK = bK or U s
L = bL, for some hardware or software

resource K or L. The domain delimited by the most interior constrains (like AHIDC

in Figure 4.1a) is our feasible stress space. In mathematical programming terms, a

linear function will reach the maximum or minimum in the extreme points of its

feasible space. A non-linear function will reach its extreme values on the boundary of

the feasible space. Therefore, the maximum (or minimum) of any performance stress

metric (response time, throughput, buffer length, utilization, number of threads, etc.)

is achieved on the boundary of the feasible stress space. It turns out that if we

can explore the boundary, then we can find the maximum or the minimum of those

metrics.

4.1.3 Workload Stress Vectors

Since we know how to analytically compute the feasible stress space boundary, in-

cluding the extreme points, we need a mechanism to reach those boundaries on the

real system. Unfortunately, we cannot drive utilization directly. On the real system
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we stress the system by generating the workloads, i.e. by accessing the URLs and by

synthetically generating a number of users for each request type.

Note that neither N nor NC are directly visible in (4.1) and (4.8), but they are

directly involved in producing per class utilizations UKr,c. Our hypothesis is that it is

possible to find NC , when N is known, by using the solutions of equations (4.2) and

(4.9). We rely on an early result, established for the asymptotic case for one layer

hardware queuing networks in [91]. Our conjecture is that, if a solution of equation

(4.2) and/or (4.9) is U∗Kr,C
, then the workload mix that yields that solution can be

approximated as:

β∗i =
NC

N
= U∗Kr,C . (4.10)

The vectors β∗ = 〈β∗1 , . . . , β∗|C|〉 are workload stress vectors and are found by

solving the equations (4.2) and (4.9) and computing all per class utilizations using

(4.6). Figure 4.2 shows the stress vectors in the space of N1 and N2 (dashed lines),

the number of users in class 1 and 2 respectively. On the dashed lines the ratio of

users remains constant. When the software and hardware entities do not saturate,

there is one bottleneck on each sector (Figure 4.2a). When the entities saturate,

then we can have multiple saturation devices for a range of population mixes. For

example, both WS server process and the CPU of Application Server are bottlenecks

on the segment EE’ in Figure 4.2b.

4.2 The Autonomic Testing Framework

Figure 4.3 shows the proposed framework for autonomic performance testing. The

framework will drive the system along the workload stress vectors until a performance
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Figure 4.2: Bottlenecks in population mix space, N = N1+N2. As population mix changes,
the bottleneck shifts.

stress goal is reached. A stress goal is target performance metric threshold, such as

a software or hardware utilization value, a target response time or throughput for a

class of request, etc.

Figure 4.3: Autonomic performance stress testing.

An autonomic test controller runs the performance stress algorithm that will be

presented later. In a nutshell, at each iteration it simulates a number of users that
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simultaneously access the system/component that is tested. Based on current state

of the system and on the stress goals, a new workload will be computed and generated.

Basically, the algorithm drives the system along the feasible stress test boundary or

along the stress vectors.

During the test, the system is continuously monitored by a performance monitor

and performance data is extracted. Data includes CPU utilization, CPU time, disk

utilization, disk time, waiting time (which includes time waiting in critical sections,

thread pools, connection pools), throughput, etc. Also, the monitor component will

extract information about the workload that generated the data and information

about the system. The monitored data is filtered through an estimator for error

correction and noise removal. Estimators, like Kalman filters [77], have been proven

to be very effective in estimating the demands [75] and we have used those in our

implementation.

The performance data is passed to the performance model made of two queuing

network layers. The model has 3 main functions: (a) it computes the RK,C (see

Figure 3.4); (b) provides the equations and solutions for the load stress vectors (4.10)

and (c) is used by the workload generator in lieu of real system to navigate along the

stress vectors.

4.2.1 The Autonomic Test Controller

This section presents in detail the algorithm run by the autonomic test controller.

After the classes of service are defined, the framework will use a model to make

estimations about the number of users required and the classes they should execute

in order to reach the stress goal (for example, utilization or response time above a
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specified threshold).

By solving equations (4.2) and (4.9) and then using (4.10) we can compute the

workload stress vector β. Now the goal becomes finding the total number of users N

that will drive the system on the feasible space boundary along the stress vectors.

We have developed the Stress Algorithm that will find the number of users and

their mix that will first reach the stress goal. That will guarantee that beyond that

number, we either go beyond the policy constraints (when they limit the feasible

space) or we are guaranteed we stay on the boundary of feasible space.

After solving equations (4.2) and (4.9) and getting the system bottlenecks, the

algorithm has two loops:

• in the first loop (Model loop in Figure 4.3) the number of users to reach the

boundary of the feasible space on each stress vector and saturate a bottleneck

is computed on the model;

• in the second loop (Work Generator loop in Figure 4.3) the algorithm works

with the real system, submitting requests and measuring the performance. This

loop is initialized with the values from the first loop and corrects the eventual

errors inherent in working with a model instead of the real system.

Both loops follow similar feedback ideas: having an extreme point p and the total

number of users N , the workload stress vector is computed by using relations (4.10);

then the performance metric corresponding to the stress goal for this workload mix

is determined, either by solving the model (Model loop), or by generating workload

and measuring the performance metric on the real system (Work Generator loop).

This performance metric is compared with the target value. If the stopping condition

is not met, the framework will use a hill-climbing strategy to find a new value
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Algorithm 4.1: Stress Algorithm – algorithm to find the number of users that
will bring the performance metric of a resource K ∈ K ∪ L at a target value
PMK .
input :N – the initial number of users
input :PMK – the targeted performance metric for resource K ∈ K ∪ L
input : err – accepted error

1 Tune the model by measuring and adjusting the service demands for each class;
2 Find all extreme points by solving the equations (4.2) and (4.9);
3 Compute the workload stress vectors, by using (4.10);
4 foreach stress vector p ∈ P do
5 pme,K ← −1; // estimated performance metric

6 pmm,K ← −1; // measured performance metric

7 Tune the model for stress vector p and N users;
// Stop when the estimated performance metric is within err% from

the target performance metric

8 while
∣∣∣1− pme,K

PMK

∣∣∣ > err do

9 Compute 〈N1, N2, . . . , N|C|〉 for N and p;

10 Solve model for 〈N1, N2, . . . , N|C|〉;
11 Update pme,K with the estimated value;

12 if
∣∣∣1− pme,K

PMK

∣∣∣ > err then

13 Update N using a hill climbing strategy;

14 Generate workload and measure the metrics;
15 Update pmm,K with the value measured;

16 if
∣∣∣1− pme,K

pmm,K

∣∣∣ > err then

17 go to line 7;

18 while
∣∣∣1− pmm,K

PMK

∣∣∣ > err do

19 Compute 〈N1, N2, . . . , N|C|〉 for N and p;

20 Generate workload and measure the metrics;
21 Update pmm,K with the value measured;

22 if
∣∣∣1− pmm,K

PMK

∣∣∣ > err then

23 Update N using a hill climbing strategy;

for N and a new iteration will start. In our algorithm we stop each loop when

the predicted/measured performance metric is within err% from the target value.

However, other conditions can be used, such as the performance metric is with at
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most err% above the target or a combination of multiple resources’ metrics.

In the first step (line 1) the algorithm tunes the two-layer model. In essence it

estimates the demands DK,C for hardware resources. The demands are important for

the system of equations (4.2) and (4.9). For most infrastructures, per class service

times or demands are hard or costly to measure. We estimate those values by using

Kalman filter as illustrated by the Model Tuning Algorithm.

Algorithm 4.2: Model Tuning Algorithm – estimate the demands for each
resources in each class.
input :N – the number of users
input : err – the accepted error
output :D – demands matrix, of size |C| × |K ∪ L|

1 for i← 1 to |C| do
2 N← 〈0, 0, . . . , 0〉;
3 Ni ← N ;
4 Generate workload;
5 foreach K ∈ K ∪ L do

6 while
∣∣∣1− pme,K

pmm,K

∣∣∣ > err do

7 Solve model;
8 Update pme,K with the model estimated value;
9 Update pmm,K with the measured value;

10 if
∣∣∣1− pme,K

pmm,K

∣∣∣ > err then

11 Estimate service demands using Kalman filters;
12 Update model with the estimated service demands;

13 Update DCi,K with the last value estimated by Kalman filters;

In order to get the demands for a class, we generate workload by considering that

all users will be in that class and no user will access other classes (line 2). Then, for

each resource we execute a loop to find the correct value for demand: we solve the

model to extract the estimated value and also measure the performance metric—if

the two values are close enough (again, our criterion is that the estimated value is

within err% from the measured value, but other criteria can be used) then we accept

the demand found by the Kalman filter, else we move to the next iteration.
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4.3 Experiments

We tested our framework on a a web application deployed over cluster with three Win-

dows XP machines: one Database Server (MySQL) and two Web Servers (Tomcat).

Also we had on a machine a Workload Balancer (Apache) to distribute the incoming

web requests to the two web servers. Figure 4.4 shows our deployed testing framework

that is a materialization of the logical structure presented earlier in Figure 4.3. The

purpose of the experiments is to show that our framework find the points in workload

space that cause the worst case behaviour by investigating on the real system only a

very small fraction of the total number of workload mixes.

On each machine we had installed monitoring tools to be able to measure the

performance metrics: Windows XP SNMP agents, JMX and Windows Performance

Counters. The workload generator and the analysis of the performance data was on

a separate machine.

Workload balancer

Web 
servers

Database 
Server Workload 

generator 

Monitor 

Figure 4.4: The cluster used for experiments.
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On the cluster we have installed a typical 3-tier application–an online store–with

3 main scenarios:

• browse – the user is browsing through the available items in the store. Also

the user will be able to specify how many items he wants to have in a single

page (which is a parameter for the scenario);

• buy – the user decides to buy some items and add them in the shopping cart;

• pay – the user goes to checkout and pays for the content of the shopping cart;

The two-layer model of the application is the one represented in Figure 3.4, earlier

in this chapter. At the software layer, we have the two software queuing centres, the

Web Servers and the Database. The load balancer is not represented in this particular

example as a queuing centre because it is performant enough not to queue requests

(however, in a general case it should be represented). Therefore, L = 〈Web,Data〉.

The hardware layer is made of two queuing centres K = 〈CPUweb, CPUdata〉.

The application was modeled with Apera tool [21], developed by one of the

authors.

Initially, we have 3 classes of requests, represented by the 3 scenarios, C =

{browse, buy, pay}.

4.3.1 Classes of Service

In general, the number of classes is equal with the number of scenario because, most of

the times, the performance metrics are not significantly influenced by the arguments

values and we can consider that a scenario is a single class of service. Alternatively, we

can consider each scenario with the maximum argument for stress testing or average
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argument for performance testing. However, there are situations when we need to

split a scenario in more classes. In our testing framework, we probe each scenario

with randomly generated arguments and we measure the resulting stress goal metric,

for example CPU utilization2 is measured. The scenarios that have a high variance

in the performance metrics (utilization in our example) are most likely to provide

significant improvements if they are split. The other scenarios will generate a single

class.

When enough samples have been gathered, we can split the utilization interval in

subintervals and for each such subinterval we will determine the corresponding range

for scenario parameters. Each such range will generate a class of service.

A user executing the scenario browse will send a request to a web server, that will

generate a request to a database server to select a number of items from database.

The result will be sent back to the web server that will create a web page containing

all the selected items. The number of items to be displayed will be specified as a

parameter to the scenario.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

U
til

iz
at

io
n 

(%
)

Number of Items to Display

Database Server

Web Server

Figure 4.5: The CPU utilization on the web server and database server when the browse

scenario is executed.

2Any other performance metric can be used: throughput, disk utilization, etc.
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Figure 4.5 shows the measured CPU utilization on the web server and database

server when the parameter goes from 0 to 100,000. We see that the CPU utilization

at the web server increases fast at first (for values lower than 20,000) and then slows

down.

The CPU utilization at the database server follows a similar pattern, although

the maximum value is lower than 15%.

Because the web server CPU utilization grows faster and get closer to 100% we will

use it to split the scenario into four classes (first class for utilization between 0 and

25%, second class for utilization between 25% and 50%, etc.). For that, considering

that the utilization follows a logarithmic shape, we can do regression. Table 4.1

summarizes the ranges for the parameter corresponding to the four classes of service.

Scenario Range

browse 0 0 - 2,855
browse 1 2,856 - 11,752
browse 2 11,753 - 48,370
browse 3 48,371 - 100,000

Table 4.1: The ranges of the parameter when the scenario is split in four classes.

Finding the right number of classes to split a scenario is a hard problem on it’s

own. If we have too many classes, the accuracy of the algorithm will increase, but so

does the complexity. Too few classes, and the model will be solved very fast at the

expense of precision.

4.3.2 Results

Once we decided the number of classes of services, we run the testing algorithm.

At the first step it estimates the demands for each class of service using the Model
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Tuning Algorithm (Table 4.2 shows the values found when the model is calibrated

for CPU utilization).

CPUweb CPUdata

buy 5.38 5.60
pay 5.17 5.60
browse 0 41.32 11.78
browse 1 192.84 39.91
browse 2 769.29 153.20
browse 3 1,961.82 372.30

Table 4.2: The values for demands for each scenario found using Kalman filters (millisec-
onds).

We run the framework for 3 stress goals: (a) hardware utilization, (b) web con-

tainer number threads and (c) response time for each scenario.

The hardware utilization stress goal. This goal aims at performance of the system

when a hardware resource runs at a threshold utilization. This can be maximum uti-

lization 100%, if reachable, or less than that (to resemble the operational conditions).

When the system reaches the target conditions, performance metrics are collected

and analyzed. For illustration purposes, we set the target utilization at 50% and

want to find the number of users for each stress vector that will yield that utilization.

The stress algorithm found 22 bottlenecks in the system (the workload stress

vectors are shown in Table 4.3). Each one is a vector of six values, each value

representing the proportion of the users that have to access that scenario in order to

saturate the bottleneck. The order of the scenarios considered is 〈buy, pay, browse

0, browse 1, browse 2, browse 3〉.

For each stress vector, the first loop of the stress algorithm uses the model to

find the number of users N that will bring the utilization at the specified threshold
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# Workload stress vectors

1 〈 1, 0, 0, 0, 0, 0 〉
2 〈 0, 1, 0, 0, 0, 0 〉
3 〈 0, 0, 1, 0, 0, 0 〉
4 〈 0, 0, 0, 1, 0, 0 〉
5 〈 0, 0, 0, 0, 1, 0 〉
6 〈 0, 0, 0, 0, 0, 1 〉
7 〈 0.947, 0, 0.053, 0, 0, 0 〉
8 〈 0.985, 0, 0.015, 0, 0, 0 〉
9 〈 0.952, 0, 0, 0.048, 0, 0 〉

10 〈 0.990, 0, 0, 0.010, 0, 0 〉
11 〈 0.952, 0, 0, 0, 0.048, 0 〉
12 〈 0.991, 0, 0, 0, 0.009, 0 〉
13 〈 0.953, 0, 0, 0, 0, 0.047 〉
14 〈 0.991, 0, 0, 0, 0, 0.009 〉
15 〈 0, 0.896, 0.104, 0, 0, 0 〉
16 〈 0, 0.970, 0.030, 0, 0, 0 〉
17 〈 0, 0.905, 0, 0.095, 0, 0 〉
18 〈 0, 0.980, 0, 0.020, 0, 0 〉
19 〈 0, 0.906, 0, 0, 0.094, 0 〉
20 〈 0, 0.981, 0, 0, 0.019, 0 〉
21 〈 0, 0.907, 0, 0, 0, 0.093 〉
22 〈 0, 0.982, 0, 0, 0, 0.018 〉

Table 4.3: The workload stress vectors found.

(50% in our experiments). Then the workload generator will simulate N users and

measure the metrics. If the measured and the estimated metric values are not close

(in our experiments, within 10% from each other) a new calibration of the model is

performed and then the first loop is executed again. If the two values are close, N is

finely tuned by the second loop which sends requests to the real system.

From Table 4.4, we can see that the number of users computed by the first loop

(column Usr (e)) using only the model was very close to the actual number found by

the second loop (column Usr (m)). Therefore very few workloads were used against

the real system (column Mx.). For this particular example the hill climbing method of

the second loop tried less than 10 workloads for each stress vector, with the exception
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of the 20th vector.

When we limit the number of threads on the web server to 5 (thus creating

software queues), we see that most of the times the number of users required to bring

the CPU utilization above the 50% threshold is less, as shown in Table 4.4b.

What we can infer from Table 4.4 is that the 50% utilization can be reached for

a variety of workloads. For example, in Table 4.4a, if we go along the stress vector 1,

the utilization is reached for 282 users. Along the vector 6, the same utilization is

reached for 3 users. This certainly shows a very big limitation of the system when

the workloads are shifted toward the class 6. Similar conclusions can be drawn for

the case illustrated in Table 4.4b.

Software utilization goal. We run the algorithm again, targeting the software

utilization of the web server. We set the maximum number of threads to handle

requests on the web server to 5. The stress goal for the algorithm is 50% utilization of

the container, meaning the use of at most 2.5 threads on average. When calibrated for

this goal, the model found only 6 stress vectors, each one having all users executing

a single scenario. The results are summarized in Table 4.5a.

We notice that the numbers predicted by the model (first loop of the algorithm)

was not as accurate as in the hardware utilization case. Nevertheless, the second loop

was were able to find the correct number (column Usr (m)). Because the model had

to be re-calibrated several times, the number of generated workloads (column Mx.)

is higher for some stress vectors. However, the total number of workloads generated

was 43, which is significantly lower than trying all possible workloads.

Similar to hardware utilization, there is a large range of workloads that use 50%

of the threads. This shows the pitfalls of not exploring the whole space, the web
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Str. Mx. Usr Usr
vec. (e) (m)

1 3 281 282
2 10 265 275
3 4 70 72
4 2 16 16
5 4 5 5
6 6 3 3
7 9 236 252
8 10 270 279
9 4 211 213

10 5 264 266
11 7 98 96
12 4 244 245
13 9 59 54
14 3 190 190
15 3 248 249
16 3 257 258
17 6 138 142
18 6 236 238
19 6 53 53
20 12 196 180
21 6 29 27
22 8 136 142

(a) Only hardware
queues.

Str. Mx. Usr Usr
vec. (e) (m)

1 6 258 261
2 4 249 248
3 7 62 70
4 2 16 17
5 2 6 6
6 3 3 3
7 4 237 239
8 4 254 256
9 3 204 204

10 5 245 247
11 2 88 88
12 5 239 239
13 2 54 54
14 4 180 179
15 3 232 233
16 4 242 244
17 8 136 131
18 9 227 234
19 5 42 42
20 4 188 187
21 6 30 31
22 8 147 142

(b) Hardware and soft-
ware queues.

Table 4.4: The users number that will bring the CPU utilization (on web server or database
server) above 50%.

container can saturate with very few users, if they come in class 6.

The response time goal. In the last experiment, we wanted to see the maximum

number of users that will ensure that the response time for requests on each scenario

does not exceed a certain value. Because the demands for classes vary greatly, we

chose a different target value for each class. Our threshold vector is 〈50, 50, 100,

500, 1500, 5000〉 for the classes 〈buy, pay, browse 0, browse 1, browse 2, browse

3〉 (the times are expressed in milliseconds). Tuning the model for this goal gave us
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Str. Mx. Usr Usr
vec. (e) (m)

1 12 316 144
2 13 196 144
3 11 52 69
4 3 20 22
5 2 10 10
6 2 7 8

(a) Web container
utilization.

Str. Mx. Usr Usr
vec. (e) (m)

1 9 185 171
2 13 233 170
3 9 98 93
4 4 28 27
5 2 9 9
6 2 8 8
7 15 149 119
8 15 111 87
9 15 20 107

10 2 3 3
11 3 36 36
12 3 45 45
13 7 17 14
14 4 31 33
15 11 2 9
16 5 30 30

(b) Response times.

Table 4.5: The number of users found when the performance metric is web container
utilization and response time for each class.

16 workload stress vectors. The results are shown in Table 4.5b.

Although the model was not as accurate as for hardware utilization, being nec-

essary several re-tunnes, each stress vector required at most 15 workloads to be

investigated (column Mx.) before the number of users is found (column Usr (m)).

Usually the more accurate is the model, fewer workloads need to be generated.

We also noticed that for the stress vector 10 (which is 〈0, 0.224, 0.776, 0, 0,

0〉—22.4% of the users execute scenario pay and 77.6% execute browse 0) there are

necessary only 3 users to get a the response time greater than our threshold. If all

users execute pay (stress vector 2) there are necessary 170 users, and it all of them

execute browse 0 (stress vector 3), then 93 users are required. The stress vector 10
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shows the dramatic effect that the combination of the scenarios have.

Again, we notice that the total number of tested workloads, 119, is much lower

than the size of the search space.

4.3.3 Complexity of the algorithm

The workload mix space is combinatorial in size. The number of total workload mixes

when there are N users and C classes is given by the formula [71]:

MixesN,C =

(
N + C − 1

C − 1

)
(4.11)

The number of classes is known from the begining, but the number of users is not, so

we would have to consider that N goes from 0 to Nmax, where Nmax is the maximum

value we allow for N . Thus the total number of mixes is:

Mixes =
Nmax∑
N=1

(
N + C − 1

C − 1

)
(4.12)

Table 4.6 shows this combinatorial explossion:

Nmax C MixesNmax,C Total Mixes

200 1 1 200
200 2 201 20 300
200 3 20 301 1 373 700
200 4 1 373 701 70 058 750
200 5 70 058 751 2 872 408 790
200 6 2 872 408 791 98 619 368 490

Table 4.6: The size of the workload mix space.

Exploring exhaustively the workload mix space is unfeasible. Our algorithm
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explores just a small fraction, without needing Nmax, and finds the minimum number

of users that will bring the targeted metric value above the specified treshold.

To better understand how the algorithm explores the workload mix space, lets

consider only two classes: buy and browse 0. Figure 4.6 shows how the CPU

Utilization (for web and database server), Web Container Utilization and Response

Time (for each class) change with the workload mix. The utilizations are shown as

percentages, and the response time is expressed in miliseconds. On each plot the

threshold is shown as a plane parallel with the X0Y plane, that intersects the Z-axis

at 50 in Figures 4.6a, 4.6b, 4.6c and 4.6d and 100 in Figure 4.6e (the target was 50%

utilization for CPU and web container, 50 ms response time for scenario buy and

100 ms response time for scenario browse 0).

The model found 4 bottlenecks and the stress vectors are shown with blue lines

on the plots. The algorithm investigates only mixes on these lines. In the picture

it can be seen that one of these lines will intersect the treshold plane in a point

with minimum users among all other intersection points (it is always the vector that

follows the Y -axis).

In our experiments, the framework was able to find the intersection point for

one stress vector after less than 20 workload mixes were tried. That means our

framework can find the overall minimum number of users with less than 80 workload

mixes, which is a very low value compared with the size of the search space (20,300

for 2 clases and 200 maximum users).
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(e) Response time for browse 0.

Figure 4.6: On Z-axis is the CPU utilization on the servers (a and b), web container
utilization (c) and the response time of the two classes of service (d and e) when there are
N1 users in the class buy (X-axis) and N2 users in the class browse 0 (Y -axis).
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4.4 Related Work

Transactional systems in the context of autonomic computing have been modeled by

several authors as regression models or Queuing Network Models (QNM). Dynamic

regression models have been described in [92, 93]. Queuing Network Models were

described in [94] as predictive models.

Early work in finding bounds on response time and throughput for one dimension

of the workloads (one class) was done in [15, 16, 17, 18]. In [91] the authors showed

that in multiple workload mixes, multiple resources systems, changes in workload

mixes can change the system bottleneck; the points in the workload mix space

where the bottlenecks change are called crossover points, and the sub-spaces for

which the set of bottlenecks does not change are called saturation sectors. The

same authors, in the same paper, showed analytical relations between the workload

mixes and utilization at the saturated bottlenecks as well as analytical expressions

for asymptotic (with saturated resources) response times, throughput, and utilization

within the saturation sectors. The results were presented for one queuing network

layer consisting of hardware resources. In this paper, we considered two layers with

the emphasis on the software layer. Moreover, our approach is defined in the context

or performance testing.

The paper [20] extended the results from [91] to non-asymptotic conditions (non-

saturated resources), and used linear and non-linear programming methods for finding

maximum object utilization across all workload mixes. That technique involved

only the hardware bottlenecks. In our current approach, we consider the software

bottlenecks and we combine the model search for worst case behaviour with a search

on the real system.
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There is no fully automatic method for building the structure of a performance

model, however, there are available tools that can help in building a structure of the

performance model [21]. Recent papers, like [22, 23, 24], have shown how to build

a tracking filter and a predictive QNM such that the model’s outputs always match

those of the real system. Performance parameters like the service time, think times,

and the number of users can be accurately tracked and fed into a QNM. In our

approach, we estimate the demands on the hardware layer using a method similar to

[24]

To the best of our knowledge, there is no performance model driven testing

approach similar the one presented in this paper. Although there are many model

driven performance activities, they do not refer to testing. Many researchers have

targeted capacity planning of distributed and client-server software systems and

specially the web based ones [25, 95, 26]. Amongst those, many approaches have

used the widely recognized queuing models to model web applications at operational

equilibrium [25, 26, 27] which has resulted in automated building of measurement

based performance models [28, 29] or capacity calculators [30]. Others have tried

to model the effect of application and server tuning parameters on performance

using statistical inference, hypothesis testing and ranking (e.g. [31, 32]). In a rather

different approach some have tried to automate the detection of potential performance

regressions, by applying statistics on regression testing repositories [96, 33, 97]. This

had enabled developers to identify subsystems that show performance deviations in

load tests [98].

All these approaches have contributed to designing scalable systems, building

on-demand performance management systems [99, 100, 101] and performance aware
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software systems [102].

In this paper our focus was on model driven testing and on finding a method that

drives the system towards a target state where performance metrics of interests can

be collected. The model is fundamental in analysing the feasible stress space and in

driving the system towards the saturation points.

4.5 Conclusions

This paper presented an autonomic performance testing method for stress testing

web software systems. The systems are modeled with a two-layer Queuing Network

Model. The model is used to find the software and hardware bottlenecks in the

system and to give a hint about workloads that will saturate them. These hints are

used as initial workloads on the real system and then in a feedback loop that guides

the system towards a stress goal.

The workloads are characterized by workload intensity, which is the total number

of users, and by the workload mix, which is ratio of users in each class of service. By

extracting the switching points from the model, we are able to compute the stress

vectors that yield a bottleneck change. Applying a hill-climbing strategy for workload

intensity along the stress vectors, we are able to reach the stress goal.

We applied the method to find the workload intensity and workload mix that

yields target software and hardware utilization limits or a target response time. The

results show that the algorithm is capable to reach the target goal with a small

number of iterations and therefore testcases.

Future work includes extending the framework to include more target goals, vali-

date it on large scale software systems and address functional problems uncovered
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by stress testing.
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Chapter 5

Mitigating DoS Attacks Using

Performance Model-Driven

Adaptive Algorithms

DoS1 attacks have increased in both volume and sophistication [8]. Attack targets

include not only businesses and media outlets but also service providers such as

DNS, Web portals, etc. A sophisticated DoS attack can be mounted by attackers

without advanced technical skills. There are many advanced attacking toolkits freely

available on the Internet [37], including LOIC (low-orbit ion cannon) [38]. It has been

used to launch attacks on government sites, the RIAA and MPAA (recording and

movie industry associations), and more through coordinated efforts such as Operation

Payback [38] and Operation MegaUpload. DoS attacks are motivated by a variety of

reasons (financial, political, ideological [39]), but regardless of motivation have similar

1A distributed denial of service (DDOS) attack is a subtype of DoS attacks; the more general
term is used throughout this paper.
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impact: lost revenue, increased expenses, lost customers, and reduced consumer trust.

In this chapter we propose a model-based adaptive architecture and algorithm

focused on detecting DoS attacks at the web application level and mitigating them

appropriately. A Dynamic Firewall component is added to the standard web applica-

tion stack; all requests are routed through this firewall. Arriving HTTP[S] requests

first encounter a reverse proxy2, which processes requests based on a set of rules.

A decision engine uses a performance model of the application, statistical anomaly

detection, and monitoring data from the application to adaptively create, update,

and remove rules based on the presence or absence of an attack. Based on the rules,

requests are labelled as suspicious or regular. Regular traffic proceeds to the web

application as usual, while suspicious traffic is forwarded to an Analyzer component

which challenges the end user to verify they are legitimate (for example, using a

CAPTCHA test as in [103]).

The major contributions in this work are:

• We introduce a model-based adaptive architecture and algorithm focused on

detecting DoS attacks at the web application level and mitigating them appro-

priately.

• We describe a hybrid approach to detect the beginning of a DoS attack com-

bining a model-based adaptive algorithm and statistical anomaly detection.

• We present an experiment demonstrating the strength of this hybrid approach

compared to the previous approach, which relied only on statistical anomaly

detection. This extended approach is less sensitive to tuning, and is also capable

2A reverse proxy is a type of proxy that retrieves the resources from the server in behalf of the
client.
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of detecting a type of complex DoS attack that our previous approach could

not detect correctly.

• We design experiments comparing more complex statistical anomaly detection

approaches, empirically demonstrating that a carefully tuned statistical model

could be as effective as our approach in constrained situations, but was sensitive

to tuning and could not protect against an unknown attack.

Our adaptive model-based approach is based on mathematical queuing theory

and creates an abstract view of the application (rather than relying on an externally-

defined baseline) and was able to detect unknown attacks.

This approach improves on the state-of-the-art in several key dimensions. The

adaptive architecture is a novel approach to detecting and mitigating DoS attacks. In

particular, using a combination of application performance modeling with statistical

anomaly detection to establish a set of filtering rules is novel. Iteratively fine-tuning

those rules using application- and system-level performance metrics synchronized

with the performance model, is also novel; the use of performance models allows

us to leverage existing work on constructing performance models. Detecting DoS

attacks using a performance model enables the prediction and prevention of appli-

cation overloading in simulation, rather than waiting for the overload to occur and

responding. Prediction also allows for more precisely timed removal of filters, limiting

the impact on legitimate traffic. Defining a DoS attack as any traffic that exceeds

the application’s ability to handle it is a straightforward definition that allows us to

leverage capacity planning work to address this problem. Moreover, filtering traffic

using application-level knowledge at the granularity of individual use case scenarios

is more granular than typical mitigation approaches. This also reduces the impact
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on legitimate traffic.

To validate this approach, we implemented the Dynamic Firewall and monitored

the traffic to a multi-tier J2EE web application. We monitored the request arrival

rate (both suspicious and regular), the response time, and the CPU utilization in

regular conditions and attack conditions. The attack conditions were both emulated

by a workload generator and created realistically using LOIC. We found that under

both attack conditions, our approach adapted to block the DoS traffic, restoring

response times to expected values within seconds.

To demonstrate the importance of the performance model, we conducted a series

of experiments where the rules were generated using various statistical anomaly detec-

tion approaches without a performance model. We show the advantage of predictive

modelling, the sensitivity of the statistical anomaly approach to the chosen metrics

and the construction of the model of “normal” behavior, and that the performance

model increases our ability to detect a broader variety of DoS attacks.

The remainder of this chapter is organized as follows. Section 5.1 reviews relevant

work. Section 5.2 introduces our adaptive architecture and algorithm. Experiments

that showcase the usefulness of this approach compared to anomaly detection are

presented in Section 5.3, and the results are discussed in Section 5.4. Section 5.5

concludes the chapter.

5.1 Related work

We begin with an introduction to DoS attacks and describe some established methods

for DoS mitigation. The approach presented in this paper constructs a performance

model; while a full review is out of scope for this paper, Section 5.1.2 briefly introduces
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some established achievements in performance modeling.

5.1.1 DoS attacks and existing mitigation approaches

A DoS attacker will send many repeated requests that require resources to generate

replies. These requests may be low-level TCP requests or higher-level application

requests (like GET requests for web pages). The attacker discards the replies, mean-

ing it takes fewer resources to send requests than it does to send responses (this

problem is compounded when the target uses SSL; a recently released prototype tool

demonstrates a dangerous type of SSL DoS attack [40]). Even with this beneficial

ratio, the attacker may not be able to achieve denial of service with a single machine.

Distributed Denial of Service attacks harness the power of many distributed attackers

to attack a single target; this paper includes DDoS attacks in the term DoS.

The most common DoS attack is a network type of attack. The usual defence is to

deploy firewalls and intrusion detection and prevention systems. Firewall rules that

implement ingress and egress filtering prevent spoofing attacks that originate on the

local network and also prevent incoming traffic from impacting the local network. This

impairs the ability of local computers to participate in DoS attacks [37]. Firewalls

can also stop TCP-related DoS attacks such as SYN-Floods by implementation of

SYN cookies.

DoS attacks which overload computer resources are known to be challenging to

defend. Some experts argue the only possible solution for this problem is to improve

security for all Internet hosts and prevent attackers from running DoS attacks [37].

An example of these source-end defence schemes is D-WARD [42]. Sachdeva et al. [43]

identify a number of problems with source-end defence, principal among them doubt
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that such mechanisms will be widely implemented.

Researchers who agree with the challenge of defence at the source suggest defence

at the victim site. For example, Kargl suggests using available DoS protection

tools augmented with load monitoring tools to prevent clients (or attackers) from

consuming too much bandwidth [37]. Other examples include QoS regulation [44] and

cryptographic approaches [45]. Sachdeva et al. [43] also identified challenges when

defending from the victim network, including the computational expense of filtering

traffic, the possibility of the defence tools themselves being vulnerable to DDoS, and

incorrectly dropping legitimate traffic. While a variety of other approaches have

been suggested (e.g., [46, 47, 48, 49, 50]), the current state of the art does not fully

mitigate DoS attacks [51, 104].

5.1.2 Performance Models

The use of performance models for detecting DoS attacks, as proposed by this paper,

is a novel approach. We propose to use a performance model to analyze the incoming

traffic and detecting traffic that moves the system toward its saturation point versus

traffic that can be handled without overloading the system.

Any hardware-software system can be modeled by two layers of queuing networks

[13, 14]: one that describes the software resources and the other one for the hardware

resources. This way, the system becomes a network of resources. Each class of service

has a demand for each resource, which is the time that resource is needed to complete

a single user request.

In multiuser, transactional systems, a bottleneck is a resource (software or hard-

ware) that has the potential to saturate if enough users access the system. In general,
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the resource with the highest demand is the bottleneck. However, when there are

many classes of requests with different demands at each resource, the situation be-

comes more complex. A change in the workload mix (how users are split among

the types of service available) may change the bottleneck, or there may be multiple

simultaneous bottlenecks. When a bottleneck saturates, the overall performance of

the system degrades quickly, and the system may appear unresponsive.

Early work was done to analyze a system from a performance point of view in

[15, 16, 17, 18]. In [91, 20] the authors investigated the influence of workload mixes

on the performance of the system, how bottlenecks change with the workload mix

and when they become saturated. A method to uncover the worst workload mix and

the minimum population required to saturate a system is presented in [105].

Some of the parameters for the model cannot always be measured and other meth-

ods are required to find the correct values. Also, the monitored data can contain noise

that needs to be removed. In previous papers [22, 23, 24] the authors investigated

how filters, like Kalman filters [77], can be effectively used with a predictive queuing

network model (QNM) so that the model’s outputs always match those of the real

system. Performance parameters like the service time, think times, and the number

of users can be accurately tracked and fed into a QNM.

Capacity planning of distributed and client-server software systems, particularly

for web applications, is a common application area; a popular approach is using

queuing models to model web applications at operational equilibrium [25, 26, 27]

which has led to the automatic construction of measurement-based performance

models [28, 29] or capacity calculators [30]. Others have tried to model the effect of

application and server tuning parameters on performance using statistical inference,
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hypothesis testing, and ranking (e.g. [31, 32]). Another approach automates the

detection of potential performance regressions by applying statistics on regression

testing repositories (such as Jiang in [33] and related earlier work). This has led to

an approach for identifying subsystems that show performance deviations in load

tests [98].

Tools have been developed to model and analyze a system from a performance

point of view [35, 21, 36]. In [35], the authors present a tool designed to model

software systems using layered queuing networks. The resources are grouped in

layers and the requests move from layer to layer to get service. Once the model is

solved, the output contains throughputs and utilizations for the software resources,

distributions for the service time, queuing delays, etc.

5.1.3 The Optimization Performance Evaluation and Re-

source Allocator (OPERA)

One example of a queuing network model is OPERA [71], the model used in our

approach, which uses layered queuing to build a model of both the hardware and

software resources of an application and then reasons about the performance of that

application in different environments. Given a description of a system (an application

and how it is deployed), and a candidate workload to various components of that

system, OPERA can predict the utilization of resources (like CPU and disk), response

time of requests to each component, and throughput. This section provides a high-

level overview of the approach and its capabilities; a formal specification of the model

and algorithms is in [71].

The system is described in terms of topology (nodes that have resources and
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perform work, the organization and groupings of the nodes, and the network that

connects the nodes) and the users’ interactions with it (services are offered by the

system and accessed by users, requests move among various services, services are

grouped in classes of service). The topology is defined in PXL, an XML-based

domain specific language3.

From this description, OPERA will build two queuing networks – one for the

hardware layer (that includes hardware resources) and one for the software layer (that

includes software resources, software resources grouped into containers, and threads).

Resources are queuing centers; when a new request arrives to a resource that is not

available (the CPU is busy, or the container has all threads in use, etc.), the request

is put in a queue and will wait for the resource to become available. The queues are

handled on first come, first served basis.

Each resource, either hardware or software, has a demand associated with it. The

demand is the time (measured in milliseconds or seconds) necessary for that resource

to handle a single request. Since requests in each class of service require varying

amounts of work from resources, the demands must specified for each class of requests

and for each resource (e.g. expected CPU time, expected IO time).

For hardware resources the demands can be either measured (using profiling

tools) or estimated (using Kalman filters). For a software resource, the demand is

the response time from the hardware layer. OPERA will solve the model for the

hardware layer, extract the response times and input them into the software model

as demands, and then solve the model for the software layer.

The output from OPERA includes estimates for response time, throughput, and

3A detailed specification for the PXL file can be found in [106, 36]. The tool is available online
at http://www.ceraslabs.com/technologies/opera.
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resource utilization. These estimates can be compared to measured values and, in case

they do not match, a Kalman filter adjusts the model demands (see Section 5.2.2.3)

to ensure the model’s output is synchronized with that of the real system.

5.2 Adaptive DoS Mitigation

This section describes our novel approach to detecting and mitigating attacks on

HTTP web applications4. We consider the term web application to mean all re-

sources required to run the user-facing components, most commonly HTTP servers,

application servers, and database servers.

To protect an application, we deploy an application-aware Dynamic Firewall

to process all incoming requests based on an adaptively managed set of rules. All

requests are determined to be either regular traffic and forwarded to the application,

or suspicious traffic that is forwarded to an Analyzer component which performs

a challenge-response test (e.g. a CAPTCHA [103]) to determine whether or not

the suspicious traffic is from a legitimate user and should therefore be sent to the

application. Requests are analyzed with high granularity; requests are grouped into

classes of requests that represent a usage scenario (for example, “browsing an online

catalog”, or “checking out”). A class of requests is considered suspicious if it would

(or does) cause the web application to be overloaded.

Figure 5.1 shows the complete architecture. The Dynamic Firewall is responsible

for deciding if the requests to a particular scenario would overload the web application

and creating rules to identify and handle these requests (Decision Engine), and for

4To simplify the presentation, our discussion will refer only to HTTP, but the general approach
is also applicable to HTTPS requests with appropriate certificate management.

107



processing incoming traffic in accordance with these rules (Reverse Proxy). The Re-

verse Proxy is a simple context-aware http request router, which redirects legitimate

requests to the Web Application and suspicious requests to the Analyzer. Proxy

routing is rule-based; the same philosophy as a regular firewall, except that the rules

are modified autonomically at runtime by the Decision Engine. The Decision Engine

implements an adaptive system, using a two-pronged approach (both a performance

model for prediction and statistical Anomaly Detection (AD)) to make decisions, as

described in Section 5.2.2. The Analyzer tests the legitimacy of suspicious traffic

caught by the rules, using a test to differentiate between human and automated

agents (e.g., a CAPTCHA) (Section 5.2.3). First, Section 5.2.1 provides an overview

of how incoming requests are processed.

Dynamic Firewall

Analyzer

Reverse
Proxy

Decision
Engine

Web
Application

Regular

traffic

Regular traffic

Suspicious traffic

Performance Monitoring Data

(feedback)

Incoming

traffic

Outgoing

traffic

Challenge

Response

Figure 5.1: DoS detection and mitigation architecture.

5.2.1 Request Processing Overview

Adaptive mitigation of DoS attacks requires an understanding of the baseline behavior

of the system under normal, no-attack situations. The Dynamic Firewall creates this
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understanding by monitoring the application under normal load (either once deployed

or based on development test cases in controlled conditions). Using the gathered

measurements, a web application performance profile (WAPP) is calculated based

on aggregated metrics about response time, request arrival rate, CPU utilization, etc.

The contents and format of this profile are established per-application based on which

measurements best capture the normal behavior of the system. The WAPP profile

can be constructed automatically, with the permissible ranges of values hand-tuned

by an administrator to establish the possible ranges of the performance metrics.

Given this understanding of the base performance of the web application, adaptive

DoS attack mitigation requires the correct processing of application requests in three

distinct contexts: stable, under attack, and post-attack.

Stable: The Decision Engine monitors application and OS performance metrics,

constantly synchronizing the performance model with the current state of the sys-

tem. It also analyzes the state of the web application; if it is statistically similar

to the baseline constructed previously, the traffic is considered regular. Note that a

previously-detected DoS attack may still be proceeding, but the rules created when

the attack was detected are preventing that traffic from reaching the web applica-

tion. The Decision Engine monitors existing rules; each iteration of the adaptation

loop tests what would happen if individual rules were removed; if stability would be

maintained, the rule can be removed.

Figure 5.2 shows a sequence diagram for requests arriving while the web appli-

cation is experiencing regular traffic. When a request is received, the reverse proxy

passes it to the Decision Engine which configures filtering rules (the rules are similar

to a standard firewall). The rules relevant to the request are processed by the reverse
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proxy, which forwards the request to the web application or to the Analyzer based

on the rules.

Client
Reverse
Proxy

Decision
Engine

Web
App

HttpRequest()

onRequest()

FilterUrl()

HttpRequest()

Figure 5.2: Sequence diagram for handling regular traffic.

Under Attack: When the Decision Engine identifies a class of application requests

or an application component is under attack, it triggers the creation of new protection

rules for the Reverse Proxy. To generate the new protection rules, the traffic collected

by the Decision Engine is simulated in the performance model to predict its outcome

on the web application. All traffic that is predicted to cause performance degradation

is marked as suspicious and corresponding protection rules are added to the proxy (in

our proof-of-concept implementation a rule is a regular expression that matches the

requested URL, but of course a more robust representation is required in practice.).

Suspicious requests are redirected to the Analyzer for further assessment; typical

DoS attack tools are not concerned with the response from the server, and so will

not follow redirect requests. This means that the majority of DoS attack traffic will
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be stopped at the Reverse Proxy.

Post Attack: The Decision Engine detects that the DoS attack is over when all

incoming traffic could be handled by the web application, and responds by removing

the rules currently diverting traffic to the Analyzer.

5.2.2 Decision Engine

DoS attacks often succeed when they overload bottlenecked resources, so the decision

engine must detect traffic that has the potential to saturate the system. The Decision

Engine implements an adaptive loop to manage the detection and mitigation decision-

making, including monitoring the performance metrics from the application and

the servers, identifying attack traffic based on statistical anomaly detection and a

predictive performance model, using the performance model to predict behavior under

given traffic conditions and making decisions accordingly, and creating rules to filter

requests as they arrive. Figure 5.3 provides a conceptual overview of the adaptive

loop in the decision engine and its place in the overall adaptive system.

The performance goals are target performance metrics, such as utilization values,

response time, or throughput for a class of request, etc. Those values are derived

from the WAPP.

The system is continuously monitored by a performance monitor. Data includes

CPU utilization, CPU time, disk utilization, disk time, waiting time (which includes

time waiting in critical sections, thread pools, connection pools), and throughput.

The monitor also collects information on the workload (e.g. arrival rate for each

class of service) and the system. The collected data is filtered through an estimator

for error correction and noise removal. Estimators, such as Kalman filters [77], have
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been proven effective in estimating demand [75].

Decision Engine loop
Protection loop

Decision
Controller

Request
Filter Rules

System
under protection

MonitorPerformance
Model

Kalman
Filter

Performance goals Incoming requests

Figure 5.3: Overview of the key components of the Decision Engine.

The performance data is passed to the performance model, which consists of two

queuing network layers. The main function of the model is to predict performance

indicators if currently filtered traffic were allowed in addition to currently arriving

requests. This decision is made at the scenario level (recall a scenario is a class of

application requests). For modeling we are using OPERA [36], which is an updated

version of the solver APERA [21] developed by one of the authors.

The decision controller constructs the rules used by the Reverse Proxy. At each

iteration it predicts whether incoming requests would overload the protected web

application. Based on the current state of the web application and the performance

goals, a new class of requests may be filtered or allowed (filtered traffic is redirected

to the Analyzer). In each iteration, the controller tries to minimize the number

of classes of filtered requests. The controller relies on the performance monitor for

information about the monitored environment and on the performance model for

predictions.
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The controller creates a filtering rule for requests to a scenario when it detects

one of the following conditions:

1. The web application will be unable to support incoming traffic based on an

estimation from the performance model; or

2. The nature or volume of the requests deviates significantly from the WAPP,

and system performance indicators are deviating from predefined thresholds

(statistical anomaly detection).

This process allows rapid reaction to prevent system overloading. Our DoS detec-

tion process utilizes both a performance model (1) and statistical anomaly detection

(2) to create rules, and then iteratively fine-tunes them using the performance model.

The performance-model driven aspect is very efficient as long as the performance

model is synchronized with the web application. Synchronization is lost when the

theoretical model deviates from the actual application, which occurs due to the

general representation of the application as a LQN rather than a heavily tuned

simulation: precision is exchanged for general applicability. The detection and repair

of lost synchronization is discussed in 5.2.2.3. In contrast, the statistical anomaly

detection does not require synchronization with the web application, but its detection

capabilities are significantly dependent on the selected measures (e.g. CPU utilization,

memory allocation) and the constructed WAPP. Due to these limitations, the AD

may not be able to detect traffic that would overload the web application. Filtering

based on the combination of the performance model and the statistical anomaly

detection improves our ability to prevent the system from overloading.

The algorithms for creating and removing rules, and the algorithm for tuning the

model and ensuring synchronization, are described in the following subsections.
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5.2.2.1 Filtering Rule Construction Algorithm

As mentioned, the controller tries to detect DDoS attacks using the performance

model; when the model is not synchronized, and statistical anomalies are detected,

the AD also creates filtering rules. The approach used for AD is based on [107];

the filter construction algorithm when using the performance model is shown in

Algorithm 5.1.

Algorithm 5.1: Filter Construction Algorithm – algorithm that finds a set
of scenarios C which if filtered would bring the performance metrics to an
acceptable level.

input :L(u) – the vector that contains the current load on each non-filtered scenario;
input :PMm – the vector of measured performance metrics;
input : err – the accepted error for the model estimations;
input :C(u) – the set of all unfiltered scenarios (classes of traffic);
output :C – a set of unfiltered scenarios, C ⊆ C(u), that should be filtered.

1 C← ∅;
2 if C(u) = ∅ then
3 return C;

4 Use OPERA to compute the estimated performance metrics, PMe, for the load L(u);

5 if
∣∣∣1− PMe

PMm

∣∣∣ > err then

6 Tune the model for load L(u);
7 Compute PMe with the updated model;

8 L← L(u);
9 pme ← PMe;

10 while C(u) 6= ∅ and ( pme are not acceptable) do
11 Ctmp ← null;

12 foreach scenario C ∈ C(u) do
13 Use OPERA to compute the estimated performance metrics pmC

e for load

L− {L(u)
C };

14 if pmC
e < pme then

15 Ctmp ← C;

16 pme ← pmC
e ;

17 C← C ∪ {Ctmp};
18 C(u) ← C(u) − {Ctmp};
19 L← L− {L(u)

C };
20 return C;
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It first verifies that the model is synchronized with the system, by checking the

estimated values of the metrics for the workload L(u) against the measured values

(line 5). If they are not close, the model is adjusted using Kalman filters. The Kalman

filter will estimate new values for the model parameters (service demands) such as

the model-predicted performance metrics (CPU utilizations, throughput, response

times) match those measured [22, 23, 24].

The main loop (line 10) checks the effect of filtering each scenario on the per-

formance of the system (using the model), and selects the scenario that provides

the highest increase in performance (line 14). When all have been investigated, the

selected scenario is added to the list C of classes of service to be filtered (line 17).

The loop ends when there are no more unfiltered scenarios or when the estimated

performance metrics are within acceptable values.

Once a set of classes that should be filtered has been identified, the corresponding

rules are added to the Dynamic Firewall. In our experiments, each class can be

identified by a regular expression matching the requested URL. Adding a rule to

filter the requests belonging to a class translates into adding the regular expression

to the firewall. For each request, the firewall will check the URL against the rules,

and, if a match is found, the request is marked as suspicious. However, more complex

firewall rules can be added.

5.2.2.2 Filtering Rule Removal Algorithm

The second role of the controller is to fine-tune filters or remove them when an attack

appears to be over. The filter removing algorithm is shown in Algorithm 5.2.

Again, the algorithm verifies the model is synchronized with the system (line 5),
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Algorithm 5.2: Filter Removal Algorithm – algorithm to identify existing
scenario filters C that can be unfiltered without overloading the system.

input :L(u) – the vector that contains the current load on each unfiltered scenario;
input :L(b) – the vector that contains the current load on each filtered scenario;
input :PMm – the vector of measured performance metrics;
input : err – the accepted error for the model estimations;
input :C(b) – the set of all filtered scenarios;
output :C – a set of filtered scenarios, C ⊆ C(b), that are safe to unfilter.

1 C← ∅;
2 if C(b) = ∅ then
3 return C;

4 Use OPERA to compute the estimated performance metrics, PMe, for the load L(u);

5 if
∣∣∣1− PMe

PMm

∣∣∣ > err then

6 Tune the model for load L(u);
7 Compute PMe with the updated model;

8 L← L(u);

9 while C(b) 6= ∅ do
10 Ctmp ← null;
11 pme ← null;

12 foreach scenario C ∈ C(b) do
13 Use OPERA to compute the estimated performance metrics pmC

e for load

L ∪ {L(b)
C };

14 if ( pme = null ) or ( pmC
e < pme ) then

15 Ctmp ← C;

16 pme ← pmC
e ;

17 if ( pme 6= null ) and ( pme are acceptable) then
18 C← C ∪ {Ctmp};
19 C(b) ← C(b) − {Ctmp};
20 L← L ∪ {L(b)

C };
21 L(b) ← L(b) − {L(b)

C };
22 else
23 return C;

24 return C;

using the specified workload, and tunes it using a Kalman filter if it is not (line 6).

The main loop (line 9) tries to remove filters. For each filtered scenario, it estimates

the performance of the system if the scenario were unfiltered. The scenario with the

smallest impact on performance is selected (line 14) as a candidate for removal. After
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all scenarios have been evaluated, the algorithm checks if the estimated performance

metrics when the filter is removed are within acceptable values (line 17). If the test

succeeds, the scenario is added to the list C of scenarios to be unfiltered. The traffic

for this scenario is taken into consideration for the next iteration of the main loop.

The main loop exits when no scenario is found to be a viable candidate for removal

(line 23) or when all scenarios are unfiltered.

Algorithm 5.3: Model Tuning Algorithm – algorithm that estimates new de-
mands, when the model goes out of sync with the monitored system.
input :M – the performance model used to estimate performance metrics;
input :PMm – the vector of measured performance metrics;
input :L – the vector that contains the current workload that generated PMm;
input :Din – the vector that contains the current demands for resources;
input : err – the accepted error for the model estimations;
input :max – the maximum number of iterations;
output :D – a vector with demands such that the estimated and measured performance

metrics are close to each other.

1 Initialize the Kalman Filter;
2 D ← Din;
3 Use model M to compute the estimated performance metrics, PMe, for L and D;
4 Initialize the Kalman Filter sensitivity matrix H with zeroes;

5 while
∣∣∣1− PMe

PMm

∣∣∣ > err and max not reached do

6 Update Kalman Filter sensitivity matrix, H, for model M when using demands D and
workload L;

7 D ← KalmanFilterEstimate(H,D,PMe, PMm);
8 Use model M to compute the new estimated performance metrics, PMe, for workload L

and new demands D;

9 return D;

5.2.2.3 Tuning the model

When the predicted values from OPERA and those measured by the performance

monitor are sufficiently dissimilar (a tuneable parameter), the model is considered

desynchronized from the monitored system and new demands for resources are nec-

essary. To find new demands we use Kalman Filters, which are known to be effec-
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tive [22, 23, 24].

The algorithm, shown in Algorithm 5.3, is an iterative one. Each itera-

tion executes the algorithm presented in [23] to estimate the demands (function

KalmanFilterEstimate). We briefly summarize the algorithm here; [23] contains a

comprehensive formal description of Kalman Filters and an analysis of their perfor-

mance.

Initialization of the Kalman Filter (line 1) for the computations that will follow

begins with setting the internal matrices to their initial values. The sensitivity

matrix H contains the sensitivity of observations (measured metrics) to parameters

(demands). If we consider that the model, M , is a function of demands and workloads

that produces a vector of performance metrics, then

H =
∂M

∂D

When this algorithm finishes, a vector with new values for demands is found and

these values will be used by the model until a new synchronization is required.

5.2.3 Analyzer

Suspicious traffic is redirected to the Analyzer, which is responsible for making the

final decision. Our approach is inspired by the process presented by [103]: it presents a

CAPTCHA test that must be passed before the request is identified as legitimate. The

test is required for each request, to prevent the attacker from passing the CAPTCHA

test and then triggering an automatic attack. A pre-filter drops all requests believed

to have malicious intent; requests are considered malicious when a request from the

same source has failed or not answered the CAPTCHA within a pre-defined time
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period. The sequence diagram for the Analyzer when the request is not malicious is

shown in Figure 5.4.

Once an end-user has successfully solved the CAPTCHA, they are temporarily

whitelisted for a configurable length of a time at a configurable rate of requests. This

limits user frustration at solving CAPTCHAs while preventing an attacker from

solving a single CAPTCHA and then launching an automated attack.

The redirection process is a straightforward HTTP redirect (status code 302),

which for page load requests will be handled transparently by the user’s client (web

browser). Asychronous requests that use HTTP as a transport layer (e.g. AJAX) can

be handled differently. For example, when returning the page with the CAPTCHA

query, a special header can be included, then client-side scripting used to detect the

presence of this header and prompt the user to enter the CAPTCHA answer.

5.3 Experiments

In this section, we present experiments showing the successful mitigation of DoS

attacks (Section 5.3.2) and demonstrating the benefits of using a performance model

in DoS mitigation (Section 5.3.3). We begin with the experimental setup.

5.3.1 Experiment Environment

In all experiments we have used a bookstore application that we have developed

using J2EE technology. The bookstore application emulates an e-commerce web

application with the following usage scenarios:

• marketing – browse reviews and articles;
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Figure 5.4: Sequence diagram for traffic redirected to the Analyzer.

• product selection – search the store catalog and compare product features;

• buy – add items to the shopping cart;

• pay – proceed to checkout the shopping cart;

• inventory – inventory management such as buy/return items from/to the

supplier; and
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Figure 5.5: The cluster used for experiments.

• auto bundles – upselling / discounting system.

Each scenario performs a different mix of select, insert, and delete SQL commands.

We deployed bookstore to three Windows XP machines: one database server (MySQL)

and two application servers (Tomcat). A fourth machine hosted a workload balancer

(Apache 2) to distribute the incoming web requests to the application servers. Fig-

ure 5.5 shows our deployment architecture. Once deployed, we gathered data under

regular conditions to establish the WAPP. The profile for this application was based

on CPU utilization of the web host and database host (expected to be between 0

and 70%), and on the response time of the application (established per scenario; for

some scenarios 5 second response time is normal, while others are expected to be as

low as 1 second).

Between the users and the web application, we deployed a DoS mitigation imple-

mentation. The primary focus of the experiments is our Dynamic Firewall implemen-

tation, but we deploy three other implementations for comparison purposes:

• Dynamic Firewall – as described in this paper, using a two-layer queuing
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Figure 5.6: Experiment with emulated DoS attack, using the performance model.

network performance model combined with a Kalman filter to establish filtering

rules (with a statistical anomaly detection approach running in parallel), and

iteratively fine-tuning these rules based on the same performance model.

• Dynamic Firewall (Original) – like the Dynamic Firewall, but with the

rules initially created by statistical anomaly detection only (from [108]).

• AD-CPU – using statistical Anomaly Detection to establish a set of filtering

rules then iteratively fine-tuning the rules based on CPU utilization measure-
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ments.

• AD-CPUAR – using statistical Anomaly Detection as above, then fine-tuning

based on a combination of both CPU utilization and Arrival Rate measures.

To validate our approach, we conducted a series of experiments where we used

a popular DoS attack tool (LOIC) to launch denial-of-service attacks on our sam-

ple web application5. We employed the four DoS mitigation implementations and

monitored the response of each implementation to the incoming requests for the

six web application scenarios. The evaluation is focused on the key contribution of

this work, namely the decision-making on arriving traffic; therefore, while traffic is

redirected to an Analyzer component, that component is not explicitly included in

these experiments.

To assess the efficacy of our approach, we monitor the request arrival rate and

CPU utilization metrics. The desired behavior is that traffic to the attacked scenarios

entirely redirected to the Analyzer for the duration of the attack, and a reduced impact

on CPU Utilization for both the database and web servers. For each experiment,

there are time periods of regular traffic and time periods with an ongoing DoS attack

(noted in the figures with varied backgrounds). We tracked response time (green,

solid line on right y-axis), arrival rate of requests that are unfiltered (blue, dashed

line on left y-axis), and arrival rate of requests that are redirected to the Analyzer

and its CAPTCHA test (red, dotted line on left y-axis).

5In some experiments, we use a workload generator that mimics the behavior of LOIC
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5.3.2 Efficacy of Adaptive DoS Attack Mitigation

We first examine the efficacy of our Dynamic Firewall approach in mitigating DoS

attacks.

Experiment 1. This experiment demonstrates the efficacy of the complete Dynamic

Firewall solution in two contexts. In the first context, a workload generator simulated

three attacks: one attacking the marketing scenario, then a second attack on the

marketing scenario that overlaps with the third attack on the product selection

scenario. In the second context, the LOIC was used to launch a similar attack. The

expected outcome is that the model-based adaptive algorithm effectively detects and

mitigates the attacks targeting the web application, for both the artificial and the

“real” attack.

Results: The results of Experiment 1 for the first context are shown in Figure 5.6 (with

the three metrics for each of the scenarios in Figures 5.6b-g). The results show that

traffic to the attacked scenarios is detected and redirected for further analysis. There

is a momentary jump in incoming traffic requests before the attack is detected, then a

consistently large number of filtered requests. When the attack ends, the mitigation

rules are removed and normal traffic resumes. For all of the scenarios, response time

jumps quickly in the seconds before the attack is detected and mitigated. Response

time quickly returns to normal once the mitigation action is implemented. Figure 5.6a

shows the CPU utilization on the application servers and the database. There are

three spikes which correspond to the DoS attacks. Normal load was restored after the

malicious traffic was filtered; based on the performance model, the filter removing

algorithm first removed the filter for the marketing scenario and then for product

selection.
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The results for the second context, the LOIC attack, are similar (Figure 5.7): the

mitigations successfully limited the impact of the DoS attack on the web application.

We note in passing that minimal differences were seen between the LOIC tool and

the emulation using a workload generator.
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Figure 5.7: Experiment with LOIC, using the performance model.
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Figure 5.8: Experiment with emulated DoS attack, without the performance model (using
AD-CPU).

5.3.3 Importance of the Performance Model

There are several elements to our effective DoS mitigation approach, the most im-

portant being the performance model. To demonstrate its importance to the overall

solution, we conducted a series of experiments with and without the performance

model to examine the benefits over approaches that employ statistics about the be-

havior of the web application. In general, approaches that rely on behavior statistics

are a) often difficult to generalize to address different variations of DoS attacks, and
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Figure 5.9: Experiment with emulated DoS attack, showing anomaly detection tuned using
CPU utilization and Arrival Rate (AD-CPUAR) performing similarly to when a performance
model is used.

b) utilize historical information, which leaves them vulnerable when new behavior is

encountered.

In Experiment 2, we show how the mitigation fails when a statistical model that

considers CPU Utilization (AD-CPU) is used to create filters. In Experiment 3,

we show that manual tuning effort with the statistical model used in Experiment 2

(adding an additional metric, arrival rate, to create AD-CPUAR) can improve its
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Figure 5.10: Experiment emulating an advanced DoS attack (no mitigation).

performance, to the point where it successfully mitigates attacks of the style used

in Experiments 1-3. Experiment 4 shows how an attack of a more advanced style

is not detected by either of the statistical anomaly detection approaches, while the

performance model successfully mitigates the attack without additional tuning.

Experiment 2. In this experiment, we examine the impact of the performance model

on the overall solution by employing the same approach to mitigating DoS attacks,

except that the decision to remove rules is made based on statistical anomaly detection
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Figure 5.11: CPU Utilization of the web application during an advanced DoS attack for
four mitigation approaches.

using CPU utilization metrics (AD-CPU) instead of the complete performance model.

We emulated a single DoS attack on one scenario, marketing. We expect a similar

ability to detect the start of an attack, but impaired ability to identify the end of an

attack.

Results: Figure 5.8 shows the results, again showing the three metrics for each usage

scenario. The algorithm is shown repeatedly filtering and resuming suspicious traffic.

Without the performance model, traffic is detected as returning to normal prematurely

because the algorithm cannot predict the influence of currently filtered traffic on the

overall system performance. Although only one scenario (marketing) is targeted,

all of the scenarios experience substantially degraded performance with response

times degraded by an order of magnitude. The CPU utilization plot (Figure 5.8a)

shows that the application servers reached 100% utilization, a sign of being badly

overloaded.
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Figure 5.12: Details of DoS mitigation during an advanced attack, for the Dynamic
Firewall using a performance model.

Experiment 3. We extended the statistical anomaly approach from Experiment 2 by

adding a second metric; because the effectiveness of the statistical approach depends

on the selection of metrics, we used our knowledge of the deficiencies identified in

the previous experiment and used a combination of CPU utilization and request

arrival rate (AD-CPUAR). We used the same three-attack model: one attack on the

marketing scenario, then a second attack on the marketing scenario that overlaps

with the third attack on the product selection scenario. The request arrival rate
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Figure 5.13: Details of DoS mitigation during an advanced attack, when no performance
model is used (AD-CPUAR).

was measured at the reverse proxy before the filtering rules were applied, which allows

the statistical model to incorporate some information about what would happen if the

filtering rules were removed. We expect this incorporation of very basic prediction

will be sufficient to address this style of DoS attack, and so expect results similar to

Experiment 1.

Results: Figure 5.9 shows the correct behavior, namely the filtering of traffic to the

affected scenario while the remaining scenarios were unaffected. We have demon-
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strated the ability to tune a statistical model to correctly respond to this type of

DoS attack.

Experiment 4. This experiment demonstrates the non-generality of the behavior-

based statistical models, where the same statistical approach may successfully mit-

igate several DoS attacks while failing to mitigate others. We tested four ap-

proaches: Dynamic Firewall (the approach in this paper), Dynamic Firewall (Original,

from [108]), AD-CPU, and AD-CPUAR. We consider an advanced DoS attack that

loads multiple scenarios with traffic that could be handled individually, but not col-

lectively: no individual scenario is overloaded. To simulate this case, we coordinated

three traffic generators. In the pre-attack phase, the traffic was increased to the

marketing scenario, then returned to normal levels. Then, we increased traffic to

the product selection scenario. After returning traffic to normal, traffic to the

inventory scenario was increased and returned to normal. Finally, an attack was

launched on all three scenarios simultaneously.

Results: The behavior of the application with no DoS mitigation deployed is shown

in Figure 5.10 as a baseline. The three spikes from the pre-attack phase are visible,

but the web application did not significantly deviate from the WAPP and was able to

process the load. When the attack launched, the traffic levels peaked simultaneously,

and the application server could no longer handle the load: we see all scenarios

impacted by the overload, with high response times and high CPU utilization.

To compare an overview of the results for each of the four approaches, consider

the CPU utilization graphs in Figure 5.11. Only Dynamic Firewall shows CPU

Utilization within acceptable ranges; the details of the Dynamic Firewall experiment

run are shown in Figure 5.12. Using the performance model, it was able to detect
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scenarios that would cause application overload and redirects their traffic through

the Analyzer. Two of the scenarios were filtered (marketing and product selection),

which was estimated to be sufficient to meet desired performance levels. We then see

that the system adapted the redirection rules during the attack; during the iterative

fine-tuning, it was estimated that a scenario’s traffic could be unfiltered without

impacting performance beyond acceptable levels, and the product selection traffic

was unfiltered. This experiment demonstrates how the defense mechanism protects

the web application while reducing user inconvenience.

The only other approach to take any action at all in response to the attack is

shown in Figure 5.13, where we see all scenarios (even those not under attack) being

repeatedly filtered and unfiltered. We discuss possible explanations in the Discussion

section.

5.4 Discussion

Experiment 1 demonstrated our ability to mitigate DoS attacks, both those emulated

by a workload generator and those using the LOIC.

An interesting observation from our results is that under normal conditions, arrival

rate decreases as the response time increases (see Figure 5.6b), while under attack

conditions the arrival rate and response time increase together (see Figure 5.6d).

Higher response time yields more “think time” from the user, because the time in

between two requests includes the waiting time for the reply. This is a natural

behaviour when the requests are sent by human operators. However an attacker will

typically send requests regardless of the response from the web server.

One of the main advantages of our approach is that while some scenarios are
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redirected through the Analyzer, the rest are functioning normally, with a response

time on the order of tens of milliseconds. Another observation is that the restoration

is done smoothly, without oscillations or churn, which indicates the filters were not

removed prematurely.

In the Dynamic Firewall, the performance model works in tandem with statistical

anomaly detection. Experiments 2 and 3 examined what would happen if statistical

anomaly detection (a common approach to DoS attack detection) was asked to

function without the performance model. We demonstrated two types of statistical

anomaly detection (AD-CPU and AD-CPUAR), one where rules were fine-tuned

based on CPU utilization (i.e. it was safe to stop filtering traffic once CPU utilization

was low enough) and another based on CPU Utilization and Arrival Rate (i.e. once

CPU utilization was low enough and arrival rate had decreased, it was safe to stop

filtering some traffic). The latter approach was effective at mitigating one type of DoS

attack due to an improved ability to detect the end of an attack, but proved ineffective

otherwise. These experiments also demonstrated the importance of selecting the

correct metrics for statistical anomaly detection, and correctly tuning the thresholds

and metrics.

Experiment 4 tested all four approaches, showing that only the approach described

in this paper was capable of detecting and mitigating this type of DoS attack. How-

ever, the behavior of all four approaches merits further examination. The Dynamic

Firewall (Original) and AD-CPU methods did not detect the DoS attack. Since both

methods detect DoS attacks based on threshold models for each scenario, neither

could detect a DoS attack on a combination of scenarios. This shows the disadvan-

tages of using statistical anomaly detection to establish filtering rules, as models are
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sensitive to tuning and parameterization, and may successfully detect some DoS at-

tacks but not others. The basic issue is that statistical anomaly detection is based on

an established baseline of application behavior, which is captured by an application

under certain conditions. Generalization of statistical models of behavior for complex

web applications is still an open question.

The Dynamic Firewall successfully detects the more advanced DoS attack (Fig-

ure 5.12) due to the generality of the performance model. The performance model

allows us to estimate application reaction to specific input, which enables the predic-

tion of application performance degradation before the degradation actually occurs.

This predictive element is what is required to detect DoS attacks and mitigate without

negative impacts.

The AD-CPUAR approach successfully detected that application is undergoing

a DoS attack (Figure 5.13), but only after application performance was already

degraded. It was unable to identify the malicious traffic accurately, and therefore was

constantly changing the filtering rules, filtering and unfiltering scenarios whether they

were under attack or not. This explains the rapid cycling of CPU utilization between

0 and 100%, as traffic is filtered and unfiltered repeatedly. This is a common issue

with approaches that are not capable of prediction; the statistical anomaly detection

relies on only historical and current information. By making use of historical, current,

and estimated future information, the performance-model driven approach is able to

respond smoothly.

All experiments demonstrate the clear advantages of using the performance model

for detecting the beginning and end of DoS attacks, and the potential for using an

adaptive algorithm for optimizing rules on the fly.
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Threats to Validity

The experiments conducted used realistic web applications and an actual DoS attack

tool. However, with only several experiments using the complete approach there is

room for additional validation.

The accuracy of the performance model is an important factor in the accuracy of

this mitigation approach.

A false positive is when traffic is detected as an attack incorrectly. Because our

approach does not block traffic outright but instead forwards to a CAPTCHA test,

that traffic is not lost. However, the test may be annoying to users. There were no

false positives in our experiments.

A false negative is when malicious traffic is not detected. In our approach, attacks

are only detected when the performance of the application suffers; any malicious traffic

that does not have a negative impact will not be detected, but is by definition not

a true DoS attack. As our approach filters types of traffic until the application’s

performance is acceptable, false negatives will not impact the application.

Rather than blocking traffic outright, our approach relies on the use of a test

only human users will pass (e.g a CAPTCHA). For our focus of user-facing web

applications, this is sufficient to avoid dropping legitimate traffic outright. An exten-

sion to this work would consider similar tests to differentiate legitimate automated

traffic from malicious automated traffic, for example pre-shared keys or other trust

negotiation mechanisms.

This approach is intended to address a popular type of DoS attack, a “fast”

application-aware attack where the traffic levels increase sharply. This may not be

the best approach to mitigate “slow” application-aware attacks where the traffic
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increases gradually over time; we have not evaluated the performance for this type of

attack. As mentioned, we assume existing techniques are in place to defend against

attacks not at the application level.

When we compare the effectiveness of our approach to an identical approach that

excludes the performance model, we use a threshold model that considers selected

performance metrics when making decisions. The selection of metrics used — in our

case, CPU utilization or combination of arrival rate, but potentially also including

response time, arrival rate, throughput, etc. — will impact the behavior of the system.

However, regardless of the metrics chosen, they describe only the current state.

Because they are not capable of prediction, there is an inherent disadvantage to using

only threshold models when compared to our combined threshold and performance

model approach. Though threshold models may perform as well as our combined

approach on certain cases, these models would not work as well across a variety of

cases and scenarios.

A DoS attack on one scenario does have an impact on the performance metrics

of the other scenarios, before the attack is mitigated. Because the performance of a

scenario is a factor in creating filtering rules, this may result in incorrectly filtered

traffic to scenarios not under attack. This traffic will have to go to the Analyzer and

the legitimate users will need to pass a CAPTCHA test.

5.5 Conclusions

We have demonstrated an adaptive architecture, an algorithm, and an implementation

that effectively detects and mitigates application-aware DoS attacks. The approach,

using a performance model and predicting the impact of traffic to create filters to
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shape that impact until it is at a level the web application can handle, was able

to restore normal response times to a web application that was experiencing a DoS

attack. It did so efficiently at a use case scenario level of granularity that reduced

the impact on legitimate traffic.
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Chapter 6

Model-Driven Elasticity DoS

Attack Mitigation in Cloud

Environments

The use of software-defined infrastructure enables the addition or removal of resources

(computation, storage, networking, etc.) to or from a deployed web application at

run-time in response to changes in workload or in the environment. Central to

this elasticity is the use of mechanisms that autonomically decide when to make

these changes. Many approaches have been proposed and tested (see for example

a recent survey [109]), including reactive approaches that establish thresholds or

elasticity policies which determine when changes will be made (e.g., [110, 111, 112,

113]) and proactive approaches that attempt to anticipate future requirements using

techniques like queuing models [114, 115], simulation-generated state machines [116],

or reinforcement learning [117]. The focus is typically on meeting a desired service

level by ensuring provisioned resources are sufficient to handle a workload, perhaps
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while minimizing the total infrastructure cost [115].

The typical assumption of elasticity mechanisms is that all traffic arriving at the

application is desirable. This is not always the case. For example, an application-level

denial of service (DoS) attack has many of the same characteristics of an increase

in legitimate visitors, especially a low-and-slow DoS attack [118], but represents

undesirable load on the application. Such attacks are increasing in volume and

sophistication [8], due in part to freely available tools [37, 38]. A common response

to a denial-of-service attack at the application layer is to add resources to ensure

the service remains available (e.g. [37, 44, 48]), which resembles elasticity. However,

deploying sufficient resources to handle a major DoS attack is expensive [43], with

little return on investment. Another example is a cost of service attack, where the

goal is not to deny service but to increase the cost of offering a service [119, 120]; or

heavy traffic from an online community (the so-called Slashdot Effect) that does not

generate revenue.

In this chapter, we propose, implement, and evaluate a unified approach to en-

abling elasticity and mitigating DoS attacks. Rather than view DoS attempts as

malicious traffic (in contrast to legitimate traffic), or even an evolved definition of

“any workload beyond our capacity” [121], we define DoS traffic to be any segment of

workload we cannot handle while still providing value to the organization. This per-

spective offers the opportunity to view self-management as a business decision based

on a cost-benefit analysis of adding resources: if there is benefit (e.g. increased sales,

ad impressions, profit, brand reputation, etc.) that exceeds the expected cost, then

add resources; otherwise, manage the traffic. Workload is regarded not as malicious

or legitimate, but rather as either (potentially) undesirable or desirable.
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We describe three primary contributions of this work:

• an adaptive management algorithm for choosing which portions of a workload

need additional resources and which portions represent undesirable traffic and

should be mitigated;

• adapting a layered queuing network (LQN) model to cloud environments to

enable proactive cost-benefit analysis of workload; and

• an implementation and a series of experiments to evaluate this approach in the

Amazon EC2 IaaS cloud environment.

Our algorithm examines portions of the workload and assesses whether incoming

traffic is desirable or undesirable. This decision is based on a runtime software quality

metric called the cloud efficiency metric [120], which at its most basic calculates the

total cost of the software-defined infrastructure and calculates the ratio to the revenue

generated by incoming traffic (though in the general case, value can be defined very

broadly). Traffic considered undesirable is handled as described in previous chapter,

where instead of being discarded it is forwarded to a checkpoint. At this checkpoint,

a challenge is issued and the user is asked to verify that they are a legitimate (and

valuable!) visitor (for example, using a CAPTCHA test as in [103]). The management

is completely autonomic; this avoids the known problems with the complexity of

manually tuning threshold-based elasticity rules [110].

Estimating the cost-benefit potential requires a proactive approach that takes

measurements from the deployed infrastructure and makes short-term predictions.

Our overall approach does not prescribe which mechanism should be used; we have

chosen to illustrate our approach using a LQN model solver called OPERA. We
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describe the challenges in using OPERA to predict cloud behavior in practice. We

present experimental results demonstrating how OPERA diverges from reality over

time due to the unpredictable variability of cloud services [122], describe the modifi-

cations required to account for unexplained delays, and a second set of results that

demonstrate with the modifications the LQN remained synchronized with the actual

performance of the real cloud system.

We implemented our algorithm (§6.3), deployed a sample e-commerce application

protected with our updated protection/elasticity autonomic manager, and tested

response to a several attack scenarios: DoS alone, increase in customer traffic alone,

and both combined (the common case where a site becomes more popular but also

attracts negative attention). Our results (§6.4) show that the application is protected

from all forms of surging traffic by adding servers or mitigating undesirable traffic, as

appropriate. We also identify a limitation of our approach: the reaction time is slow

enough that a temporary backlog of requests can be created, which skews calculations

and leads to the temporary mitigation of desirable traffic until the model recovers.

We present an example of this limitation.

6.1 Methodology

The goal of our approach is to treat desirable traffic (which generates business value)

differently than undesirable traffic (which consumes resources disproportionate to the

value created). This novel broad view of elasticity better reflects business objectives,

while also addressing issues that have historically been dealt with separately. To

achieve this goal, the autonomic manager must be capable of differentiating between

the two, and adding or removing resources to ensure desirable traffic encounters
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sufficient quality of service without over-spending, while routing undesirable traffic

through an additional checkpoint. In this section, we introduce an algorithm for an

adaptive manager with these capabilities.

The overall model of the approach resembles a standard feedback-loop, with an

adaptive manager accepting monitoring data, using a predictive model to inform

decision-making, and executing decisions autonomically using a deployment compo-

nent capable of adding and removing resources. The managed system is a standard

three-tier web application.

The behavior of the adaptive manager is described in Algorithm 6.1. At each iter-

ation, a new set of metrics is observed from the managed system and its environment,

including current workload, current performance, and current deployment informa-

tion (which includes any ongoing traffic redirection or scaling activities). Some of

this information is provided for each distinct class of traffic. For example, traffic

accessing features related to browsing an e-commerce catalog might be grouped into

a single class of traffic; similarly, features related to the checkout process might get

their own class. These classes (sometimes called usage scenarios) allow traffic to be

treated more granularly than simply looking at overall traffic to the application. A

class of traffic corresponds to classes of services used in Layered Queuing models

(§6.2.1).

Included in the set of performance metrics is the current cost efficiency (CE) [120],

a runtime software quality metric that captures the ratio of the benefit derived from

the application to the cost of offering the application:

CE =
application benefit function

infrastructure cost function
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Algorithm 6.1: Decision Algorithm – The algorithm used by the adaptive
manager to choose appropriate actions for the managed system.
input :Cu – the set of unaltered traffic classes;
input :Cf – the set of all classes of traffic redirected to a checkpoint;
input :Lu – the vector of current load on unaltered classes of traffic;
input :Lf – the vector of current load on each class of traffic redirected to a checkpoint;
input :Mm – the vector of measured performance metrics;
input : svrcur – the number of current web servers;
input : svrmax – the maximum number of web servers that can be allowed to run;
input : err – the accepted error for the model estimations;
output :A – the deployment plan.

1 Use LQM to compute the estimated performance metrics, Me, for the load Lu;

2 while
∣∣∣1− Me

Mm

∣∣∣ > err do

3 D ← Kalman(Mm, Lu, LQM );
4 Me ← LQM(D, Lu);

5 svrce ← the maximum number of servers that can be added and still be cost effective;
6 A← {do nothing};
7 if Mm violates SLOs then
8 svr ← min(svrmax, svrcur + svrce);
9 n← CalculateServersToAdd(Lu, Mm, svrcur, svr);

10 if n > 0 then
11 A← {add n web servers};
12 else
13 C← TrafficClassesToRedirect(Lu, Mm, err, Cu);
14 A← {redirect traffic classes C};

15 else
16 set in the model the number of web servers to svrcur + svrce;

17 C← TrafficClassesToRestore(Lu, Lf , Mm, err, Cf );
18 if C 6= ∅ then
19 svr ← svrcur − 1;
20 Ctmp ← ∅;
21 while Ctmp 6= C do
22 svr ← svr + 1;
23 set in the model the number of web servers to svr;

24 Ctmp ← TrafficClassesToRestore(Lu, Lf , Mm, err, Cf );

25 if svr − svrcur > 0 then
26 A← {add svr − svrcur web servers} ∪ {stop redirecting traffic classes C};
27 else
28 A← {stop redirecting traffic classes C};

29 else
30 n← CalculateServersToRemove(Lu, Mm, svrcur);
31 if n > 0 then
32 A← {remove n web servers};

33 return A
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Due to size constraints, the details of the cost efficiency metrics are not included in

this paper, but the reader can find an in-depth presentation in [120]. To summarize,

the cost function must capture the real cost of offering a given application on

the cloud for the given period (e.g., per hour). This function excludes other costs

related to the application, e.g. the cost of development, the cost of goods sold, and

customer support. It is not a measure of overall profitability; rather, it captures

current infrastructure costs. The benefit function must capture the benefit the

application provides to the organization. Typically, organizations have mechanisms

for assessing this benefit at least at the macro-level. The benefit may come from

many sources: revenue, advertising, brand awareness, customer satisfaction, number

of repeat customers, or any number of business-specific metrics. For example, a

denial of service attack on an e-commerce website would reduce the value of incoming

traffic (as fewer visitors would be able to make purchases), which would reduce the

overall cost efficiency. If an adaptive manager were in use and were to add additional

resources to handle the DoS traffic, the current value would be maintained, but the

cost would increase: the overall effect would be the same.

OPERA is used to estimate a set of performance metrics (CPU utilization, re-

sponse time, throughput), which are compared to the measured set of performance

metrics to ensure the model is still synchronized with the system (line 2; if not, it is

re-tuned using Kalman filters [24]).

On line 7, we test compliance with service-level objectives (SLOs); if any measured

performance metrics are non-compliant (perhaps due to a decrease in cost efficiency,

or an increase in response time), a remedial action must be taken (logic regarding cool-

down times to avoid thrashing is omitted for clarity). The remedial action is chosen
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from two options (adding servers because the traffic has value or redirecting traffic to

a checkpoint because it does not). To decide on which action is appropriate, we call a

function which uses the predictive model to estimate the impact of adding one or more

web servers, up to a maximum cap on the number of servers. If adding web servers

is estimated to bring performance metrics in compliance with the SLO, this solution

is executed and the chosen number of servers is added (line 9). Performance metrics

include the cost efficiency metric, which means that if additional traffic does not add

business value, adding servers will increase the cost and therefore lower cost efficiency.

In this case the approach will be rejected and 0 will be returned. The algorithm

will then consider redirecting some traffic to a checkpoint instead. The algorithm

considers each class of traffic separately. For example, it might be appropriate to

redirect the traffic of users who access only free services, while preserving the traffic

of those who pay a monthly subscription fee. Or we might give priority to the class

of traffic that includes the actual checkout process, versus the customer discussion

forums. The function TrafficClassesToRedirect determines which class of traffic

should be redirected. The complete definition is provided in [121], but conceptually

the LQN model is used to produce a set of performance metric estimates based

on blocking various classes of traffic. The set returned consists of the classes that

produce the best performance metrics (including cost efficiency). Traffic to these

classes are redirected to a checkpoint for verification of legitimacy; this checkpoint

also serves as a speedbump for legitimate traffic.

In contrast, if measured performance complies with the SLOs, the algorithm

checks to see if we can restore classes of traffic (or if we could restore classes of traffic

if we added additional servers, line 17) or if we can reduce the number of servers.
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The model is used to predict performance measures (including cost efficiency) under

each possible action. If the model estimates that performance metrics would remain

in compliance with the SLO after restoring traffic classes, these classes are restored;

similarly for removing one or more servers (line 30). It is important to note that

servers can be removed even while traffic is being redirected; the elasticity function

is focused on the desirable traffic, not on overall traffic. The number of servers to

remove is calculated as the largest possible reduction before the model estimates

SLOs would be violated.

The algorithm will terminate returning a set of actions (which may be a null set),

specifying which traffic classes to redirect (or restore) and specifying the number of

servers to add (or remove).

This general approach allows an administrator to specify their expected SLOs, to

define a benefit function, and to define classes of traffic; however, they are not expected

to write procedural rules or detailed policies. The adaptive manager is responsible for

deciding both what action to take (managing traffic or adding/removing resources)

and the magnitude of that action (how much traffic to manage, how many resources

to add/remove). The inclusion of a general cost efficiency metric allows the adaptive

manager to make decisions that reflect business objectives, rather than going to great

expense to handle large amounts of traffic.
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Figure 6.1: Software and hardware layers in a LQN of a 2-tier web system.

6.2 A Layered Queuing Network for Cloud Envi-

ronments

A layered queuing network model (LQN) is at the heart of our methodology. While

our algorithm is general, we implement it using a particular layered queuing network

(named OPERA) which we have used successfully to model transactional web appli-

cations deployed on hardware infrastructure. In the process of validating its accuracy

in cloud environments, we found that over time it diverged from reality, and that for

some values (such as modeled response time) it was consistently below the actual

values. This section describes using a LQN to model an application on the cloud.

6.2.1 Previous model

For a transactional web application such as those examined in this paper, the user

interaction with the system is modeled using classes of services (or simply classes),

a service or a group of services that have similar statistical behavior and have similar

requirements. When a user begins interacting with a service, a user session is created,

and persists until the user logs out or becomes inactive. We define N as the number
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of active users at some moment t; these users can be distributed among different

classes of services. For a system with C classes, we define Nc as the number of users

in class C, thus N = N1 + N2 + · · · + NC . N is also called workload intensity or

population while combinations of Nc are called workload mixes or population mixes.

Any software-hardware system can be described by two layers of queuing networks

[13, 14]. The first layer models the software resource contention, and the second layer

models the hardware contention. To illustrate the idea, consider a web based system

with two software tiers, a web application server (WS) and database (DB) server

(see Figure 6.1). Each server runs on dedicated hardware, which for the purpose of

this illustration we will limit to CPUs only (CPU1 and CPU2 respectively). The

hardware layer can be seen as a queuing network with two queues, one for each

hardware resource. The software layer also has two queues, one for the WS process

and another for the DB process, which queue requests waiting for an available thread

(or for critical sections, semaphores, etc.). The software layer also has a Think Time

centre that models the delay between requests that replicate how to model how long

a user waits before sending their next request.

Each resource has a demand (or service time, i.e. the time necessary for a single

user to get service from that resource) for each class. If in this example there are two

classes of service, there will be four demands for the hardware layer: each class will

have a demand for each CPU. The service times (demands) at the software layer are

the response times of the hardware layer. In our case, for class C, they are Rs
1,C and

Rs
2,C , and they include the demand and the waiting time at the hardware layer (we

use the upper script s to denote software metrics that belong to the software layer).

Ideally, hardware demand is based on measured values; however, this is impractical
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for CPUs because of the overhead imposed by collecting such measurements. In our

approach the CPU demands are estimated using Kalman filters. Once the model is

created, it is iteratively tuned, also using Kalman filters.

This model has been used to inform a variety of adaptive systems, including

implementing elasticity policies [115] and mitigating DoS attacks [121, 123]. In

earlier work, Zheng et al. [24] present a method for tuning model parameters for a

web application. Properly tuned models have been shown to accurately estimate

performance metrics [24].

6.2.2 OPERA in the Cloud

Despite the proven track record of this model, when we switched from modelling

a private data center to modelling the public cloud (Amazon AWS EC2), we no-

ticed significant differences between the model’s estimates and the actual observed

performance metrics.
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Figure 6.2: Observed versus estimated values for 2 key performance metrics, showing the
marketing scenario only.
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To illustrate the issue, we deployed a sample web application (see §6.4) and

generated an increasing workload to a single class of service, marketing scenario.

Figure 6.2 shows the measured and modeled response time (right Y-axis) and through-

put (left Y-axis) when the workload is increased. The picture shows that the model

is well-synchronized with the system for throughput, but not for the response time;

the measured response time is almost three times the estimated one. As the work-

load increases, the synchronization procedure manages to tune the model for the

throughput, but does not improve the accuracy of predicted response time.

Figure 6.3 shows the CPU utilization for the database server and the application

server, both observed and predicted. The distance between the observed and predicted

values is noticeable, and diverges further as workload increases, demonstrating that

this metric is also not synchronized between the model and reality.
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Figure 6.3: The CPU utilization for the marketing scenario; the model is not sychronized
with observed measurements.

LQN models are well-established approaches to predicting the performance of

web applications; after ruling out measurement errors, we concluded our particular
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model is missing an unknown factor related to the known variance in EC2 [122, 124].

In order to improve the estimated metrics and reduce the modelling error overall, we

added a “cloud delay centre” designed to capture all the undocumented work or delay.

The cloud delay queue is shared by all classes of traffic, it has no limit, it exists at

the software level, and it is the first queue encountered by incoming requests.

Following this change, we again tested synchronization and obtained substantially

better results §6.4. The modified LQN is used throughout the remainder of this paper

to make decisions about workload, to inform adaptive systems, and to implement

elasticity policies; it demonstrated close alignment with measured values throughout

this process. Other approaches that use LQN models to predict cloud behavior but

do not validate their models against an actual cloud (e.g. [125],[126]) may wish to

adopt a similar solution.

6.3 Implementation

We have implemented our adaptive management algorithm to manage applications

deployed to the Amazon EC2 public cloud infrastructure, using a framework that

can automatically deploy a topology in EC2 by launching all instances required

(application servers, database, load balancer), install the required software on each

machine (e.g. Tomcat and all dependencies, the web application and its libraries,

etc.), and configure each application (for example, add the application servers to

the load balancer). The framework provides an API that accepts requests to modify

the deployed topology – for example, if the request is to horizontally scale the web

tier, the framework can launch an instance for the application server, install all

required software, and add the new server to the load balancer. The framework is
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general enough to allow us to install and configure any type of application in a linux

environment, once the deployer provides installation and management scripts.

Our implementation uses Amazon CloudWatch detailed monitoring to acquire

performance metrics from the deployed instances. As discussed in [124], these metrics

are delayed by one minute from when they are recorded. Our implementation runs the

main algorithm, and acquires Cloudwatch metrics, once per minute. The arrival rate,

throughput, and response time for each class of traffic are acquired from a reverse

proxy on the load balancer at the same time1. This reverse proxy monitors incoming

requests and assigns them to the appropriate traffic class (based on the URL); the

classification rules can be modified at runtime if necessary. The administrator of an

application is responsible for defining their traffic classes based on their business logic.

Measuring response time at the load balancer allows us to focus on the component

of user-experienced response time that we can control. While end-to-end response

time will be higher and more variable, adapting to slow user connections is outside

the scope of this paper.

6.4 Experiments

To evaluate the contributions of this paper, we performed a set of experiments. The

first examines our modified LQN to assess its ability to synchronize with the managed

application so its estimates have predictive value. Experiments 2-4 examine a sample

web application.

1Initially, our framework used SNMP and JMX on the deployed VMs and application servers;
however, these monitoring tools did not capture performance metrics for individual classes of traffic.
Additionally, some values are measured incorrectly (such as CPU utilization) when running on a
virtual machine in a cloud environment.
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In all experiments we have used a bookstore application that we have developed

using Java EE, which emulates an e-commerce web application. We defined six

classes of traffic: marketing (browsing reviews and articles); product selection

(searching the store catalog, product comparisons); buy (add to cart); pay (complete

checkout); inventory (inventory tracking); and auto bundle (an upselling / dis-

counting system). The workload used is generated randomly by a workload generator

using an unevenly weighted mix of the 6 classes. Each class of traffic has a different

performance impact on the deployed application.

Each experiment starts with a deployed topology, with a single application server

in the web tier. The web tier is scaled horizontally by adding and removing resources.

The traffic filtering approach described in [121] is used to refer undesirable traffic to

a captcha to serve as the checkpoint.

6.4.1 Experiment 1: Synchronizing the model with public

cloud resources

To verify the ability of our LQN to synchronize with reality in a cloud environment, we

generated a constant workload and compared the estimated performance metrics to

actual measurements at each sampling interval (Figure 6.4). We generated workload

for all scenarios, though not all are shown due to space constraints. At each iteration

or sampling interval, we measure the arrival rate for each scenario. We feed this

workload into the model, and then solve the model to calculate the estimated metrics.

If the error between measured and estimated values exceeds a specified threshold

(10% in our case), we run the Kalman filters on the model in order to find more

accurate values for the model parameters (this process is called tuning the model).
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At t = 0, the estimated CPU utilization numbers (Figure 6.4a) for the database

server are almost double the measured values. Within 25-50 iterations, the Kalman

filter settles on accurate model parameters, and the difference between measured and

estimated values was around 1%. Importantly, once synchronization is achieved, it

is not lost. Before we added the Cloud Delay Center, this synchronization was never

achieved.
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Figure 6.4: Experiment #1. Comparing estimated values to measured values for a
selection of traffic classes for consistent workload.
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In plots 6.4b-6.4g, we show the measured response time (green line, using right Y-

axis) and measured throughput (blue line, using left Y-axis) for two classes of traffic.

After some initial error, the estimated values and measured values also remain within

several percentage points, even through peaks and valleys.

We conclude from this data that the modified LQN has addressed the challenges

of modelling a cloud environment by treating the variability of the cloud as a delay

center in an LQN, and modifying the demand on that delay center using Kalman

filters to account for unpredictable variability.

6.4.2 Experiment 2: Elasticity in the public cloud

This experiment examines the adaptive management algorithm’s ability to provide

elasticity when overall traffic increases and decreases. We use a simplified cost metric

to calculate the cost of our EC2 deployment, and use the volume of the pay class

of traffic as our benefit function. This is roughly analogous to prioritizing checkout

activity over other activities. Application-level DoS attacks are not expected to

generate traffic to this traffic class, because reaching the checkout page usually

requires user interaction, a valid account, and valid credit card numbers2. The

workload mix remained constant over the experiment, and therefore so did the cost

efficiency metric.

Figure 6.5 shows the measurements obtained during this experiment. The work-

load generated for each scenario is captured (approximately) as the arrival rate (blue

line in figures 6.5b–6.5g, on the left Y-axis). We started with a baseline workload;

at iteration 50, we increased the workload. The adaptive manager added a new

2Of course, our focus is the general approach and not optimal selection of the benefit function.
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Figure 6.5: Experiment #2. Increasing and decreasing the workload resulted in the
addition/removal of servers, while maintaining key performance metrics at acceptable levels.

web server (purple line in figure 6.5a, on the right Y-axis). When the workload is

increased, there is a brief spike in the CPU utilization metric for the web servers

(red line in figure 6.5a, on the left Y-axis), but also on the response time for each

scenario (green line in figures 6.5b–6.5g, on right Y-axis). This violated the SLO, and

caused the addition of a server because the cost efficiency metric remained within an

acceptable range.

After workload increases at iteration 120 and again at 190, again a new server
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is added each time. Notice that after adding new servers, the CPU utilization for

the web servers and the response time for the various classes of traffic have about

the same values as before. This suggests that the number of servers added each time

(estimated using the model) was appropriate to maintain SLOs.

At iteration 220, we dropped the workload sharply. The algorithm decided that

two web servers could be safely removed. Again, the performance metrics remained

acceptable following this removal.

The spikes in some of the measurements are largely due to delays in actuated new

servers, leading to some backlog of requests and temporarily higher response times

(off the graph, in some cases).

6.4.3 Experiment 3: Elasticity while mitigating DoS attacks

This experiment tests one of our key contributions: achieving elasticity to maintain

SLOs for our desirable traffic, while detecting and redirecting undesirable traffic. To

emulate a DoS attack, we dramatically increased the volume of traffic generated to

one (or more) of the traffic classes. Our measurements from this experiment are

shown in Figure 6.6.

At iteration 4, we increase the workload across all traffic classes, and a new virtual

machine is added. Performance degrades across all performance metrics in all classes,

including the average CPU utilization. However, the addition of the new server

restores performance metrics to acceptable levels.

At iteration 15 a first attack starts on a URL in the traffic class marketing. The

arrival rate abruptly jumps from around 1.5 requests per second to close to 100

requests per second. The degradation in performance is immediate. Our algorithm

158



Legend

Web Servers Count

CPU Utilization for database server

CPU Utilization for web servers

CPU Utilization Plot

Arrival Rate Blocked

Arrival Rate Unblocked

Response Time

Scenario Plots

0
10
20
30
40
50
60
70
80
90

100

20 40 60 80 100 120 140 160 180 200

0

1

2

3

4

5

C
P
U

U
ti
li
z
a
ti
o
n

(%
)

N
o
o
f
w
e
b

se
rv

e
rs

Time

CPU Web

CPU DB

Web Servers

(a) CPU Utilization

0.00

10.00

20.00

30.00

40.00

50.00

60.00

20 40 60 80 100 120 140 160 180 200

0

100

200

300

400

500

R
e
q
./
s

M
il
li
se
c
o
n
d
s

Time

(b) buy

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

20 40 60 80 100 120 140 160 180 200

0

100

200

300

400

500

R
e
q
./
s

M
il
li
se
c
o
n
d
s

Time

(c) auto bundles

0.00

20.00

40.00

60.00

80.00

100.00

120.00

20 40 60 80 100 120 140 160 180 200

0

100

200

300

400

500

R
e
q
./
s

M
il
li
se
c
o
n
d
s

Time

(d) marketing

0.00

5.00

10.00

15.00

20.00

25.00

30.00

20 40 60 80 100 120 140 160 180 200

0

200

400

600

800

1000

1200

1400

R
e
q
./
s

M
il
li
se
c
o
n
d
s

Time

(e) product selection

0.00

0.50

1.00

1.50

2.00

2.50

20 40 60 80 100 120 140 160 180 200

0

500

1000

1500

2000

2500

R
e
q
./
s

M
il
li
se
c
o
n
d
s

Time

(f) inventory

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

20 40 60 80 100 120 140 160 180 200

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

R
e
q
./
s

M
il
li
se
c
o
n
d
s

Time

(g) pay

Figure 6.6: Experiment #3. Overlapping DoS attacks on two traffic classes; the algo-
rithm mitigated these attacks while adjusting the number of VMs for the remaining workload.

provides the new metrics and workload levels to the LQN. The algorithm contem-

plates adding additional servers, but the increased cost is not offset by an increase in

benefit, as the marketing traffic class does not generate revenue directly, and does not

contribute to the benefit function. It instead determines it is necessary to redirect

some traffic classes to a checkpoint and, after solving the model for various possible

redirection schemes, determines (correctly) that the best course of action is to filter

the requests on marketing.
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A few iterations later (iteration 27), we emulated a second simultaneous attack

on the product selection traffic class. Using a similar process, the algorithm once

again identified the scenario under attack and redirected traffic to a checkpoint.

While these two attacks continued, the workload to the other classes increased

for unrelated reasons. We can see response time (particularly for inventory and

pay) increase. Once an SLO is violated, the algorithm decides two servers will be

necessary to handle the continuing increase in desirable traffic (see purple line in

figure 6.6a). This decision appears to be the correct one, as all performance metrics

return to satisfactory levels (without being over provisioned).

At iteration 97, the first DoS attack (on marketing) is stopped, and the algorithm

stops redirecting traffic for that class of traffic. By iteration 120, the temporary

increase in desirable traffic also resides, and at iteration 130 a web server is removed

leaving the web cluster with three machines. Note there is still an ongoing DoS attack,

and removing resources is counter-intuitive, but again the performance metrics suggest

this was the correct decision as they are maintained at acceptable levels. When the

second attack finishes, and the last redirection is halted, the system performance

metrics stay within the SLOs. We do see an increase in some response times and had

the experiment continued we expect the algorithm may have added an additional

server.

This experiment shows that our algorithm is able to assure the elasticity of the

web application and make good decisions to achieve SLOs and maintain cost efficiency

even while the application is under one or more attacks.
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6.4.4 Experiment 4: A limitation of the implementation

The previous experiments demonstrated the strength of our approach and our algo-

rithm. However, there is a limitation: the reaction time is slower than is sometimes

required to respond appropriately. This problem can be addressed by adding a statis-

tical model that responds rapidly using a heuristic (as in [121]). The measurements

from this experiment are shown in Figure 6.7.
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Figure 6.7: Experiment #4. A DoS attack causes overcorrection due to a slow reaction,
and additional classes are blocked.

When the first DoS attack starts on marketing, the system identified the problem
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and started redirecting traffic. At iteration 67, a second attack causes a severe and

rapid degradation of performance metrics across all traffic classes and servers. Due

to delays between iterations, the system is unprotected and the internal queues are

filled. Our algorithm analyses the data and decides that two more classes need to be

protected: buy and auto bundle. The decision is correct in that it restores SLOs,

but of course incorrect since no malicious traffic is targeting these classes.

When the scenario under attack is resource-intensive, it will take multiple itera-

tions to process the backlog of DoS requests that made it through before we started

directing traffic. Although traffic to inventory and pay is not redirected, there is

a significant drop in the arrival rate and an increase in response time. The drop in

arrival rate is normal behaviour, because normal users will not make a new request

to the server until they receive the response from their previous request.

6.5 Related Work

There are many approaches in achieving elasticity. Companies such as Amazon, Azure,

RightScale, and Rackspace offer pre-defined rule-based autoscalers. The application

owners manually define rules (often threshold based) for triggering scaling out/in

actions. Then, at runtime, the autoscalers monitor the application performance

metrics and evaluate them against the rules. When a rule condition becomes true, the

system executes the rule’s action such as adding or removing VM. Some researchers

argue that specifying good threshold based rules is a challenging task [110, 127].

A potential weakness of pre-defined rule system is the thrashing effect when the

system constantly adds or removes VM due to a fast changing workload. To address

this problem, Iqbal et al. [128] combine rule-based scaling with statistical predictive
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models. Xiong et al. [129] demonstrated that an application analytic model could be

used as an efficient method to identify the relationship between a number of required

servers, workload and QoS.

Many researchers have designed and developed elastic algorithms without consid-

ering the cost factor; however, Han et al. [130] propose an elastic algorithm which

considers both the cost and performance. An elastic algorithm will identify the

application tier to scale in order to resolve the QoS issue while keeping the overall

deployment cost as low as possible. A queuing analytic performance model is utilized

for identification of the inefficient application tier.

The main weakness of the above approaches is that all user requests are considered

desirable to the application owner. This may not be true in actual deployment

environments. Many researchers and practitioners agree that DoS attacks are one of

the biggest threats in the today’s security landscape. Our novel approach distinguishes

between desirable and undesirable traffic using cost efficiency metrics that consider

not only the cost of the infrastructure, but also the business value of the workload.

6.6 Conclusion

This paper presented a model-driven adaptive management architecture and algo-

rithm to scale a web application, mitigate a DoS attack, or both, based on an assess-

ment of the business value of workload. The business value is measured through an

efficiency metric as a ratio between the revenue and cost. The approach is enabled by

a layered queuing network model previously used to model data centers but adapted

for cloud. The model accurately predicts short-term cloud behavior, despite cloud

variability over time. We evaluated our approach on Amazon EC2 and demonstrate
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the ability to horizontally scale a sample web application in response to an increase

in legitimate traffic while mitigating multiple DoS attacks, achieving the established

performance goal. We also showed the limitation of the approach which can be

overcome through further work.
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Chapter 7

Model Identification Adaptive

Control for Software Systems

The growth in software complexity and the increase in its operational and evolution

cost has led to the need for self-managing or autonomic systems [131], and later to the

field of self-adaptive software systems. In essence, a self-adaptive system senses the

changes in the operating conditions and in the environment and adjusts its structure

and behavior to meet its goals in the presence of those changes. A reference MAPE

architecture [131], that consists of Monitoring, Analysis, Planning and Execution

components, allows the design and the implementation of an Autonomic Manager

that manages the software system.

Despite major progress in the field, there are still substantial challenges in design-

ing and implementing self-adaptive systems. Limited efforts have been invested in

developing an engineering methodology and formal mathematical foundations, which

makes the development and the verification of the self-adaptive systems tedious and

time consuming. A systematic method would primarily enable the automation in
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designing self-adaptive systems, but also the effective verification of the automatic

adaptation cycle. A design space methodology has been proposed by Brun et al. [132]

to guide the designer along several dimensions, including identification, observation

and control. However, this effort is subject to the peculiarities of individual interpre-

tations and implementations.

Control theory has been proposed as a foundation formalism. The control theory

is based on a formal model of the system, specified in a canonical form, from which a

controller (or Autonomic Manager1) is synthesized based on the goals of the system.

Initial steps in using control theory as foundation for designing and implementing self-

adaptive systems have been studied in [133] for web control and memory management

or in [132] for admission control. These approaches assume a static linear model

of the system and a static controller. This static assumption limits the efficiency

of the controller because software systems are highly dynamic and volatile; their

models change at runtime and over time the controller may be based on the wrong

assumptions. The design and implementation of adaptive systems become even

harder for applications deployed in the cloud. The lack of transparency and control

on the environment adds to the uncertainty of the models and impedes the design

of the autonomic manager. As a result, most of the tools and frameworks available

in industry for designing autonomic systems [134, 135, 136] are simple rule-based

systems (“ON condition, DO action”) that leaves the practitioner to do all the hard

work in designing, implementing and verifying adaptive systems.

In this chapter, we propose a robust adaptation architecture and method: model

identification adaptive control, MIAC. MIAC identifies the non-linear model of the

1The terms “controller” and “Autonomic or Adaptive Manager” will be used interchangeably
hereinafter.
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software system at runtime and then, dynamically, synthesizes the controller based

on that model and the goals of the application. The model is a layered queuing

model (LQM) that captures the quantitative relationships between different software

and hardware components. The model is based on two layers of queues and is a

type of a model known to software performance engineers. We focus on performance

and cost, two important qualities of the software deployed in cloud but the method

can be extended to any quantifiable property of the software. The non-linear LQM

is then linearized around different operational points, to obtain a control theoretic

model. The structure of the control theoretic model is different than the LQM and

captures the causality among the control points (things we can automatically change

at runtime) and the goals of the system. The control model is then used to study

the properties of the system and to synthesize and tune a runtime controller for the

software system.

This chapter makes four distinct contributions towards the advancement of the

domain of self-adaptive software systems on the cloud.

• We introduce the model identification adaptive controller (MIAC). To the best

of our knowledge, the proposed blend of software specific performance models

and control theoretic approach is original.

• We create the mathematical apparatus that comes along with the MIAC archi-

tecture. This enables a degree of formalization that allows us, on one hand,

to easily and systematically design controllers of different purposes by exper-

imenting with their parameters (inputs, outputs etc.). On the other hand, it

also allows us to easily verify the effectiveness of the controller.

• The third contribution is the ability of the controller to provide multi-
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dimensional adaptation strategies. In practice, this means that the adaptive

manager is able to control a number of the system’s outputs (e.g. response time

and throughput), monitor a number of the system’s state metrics (e.g. CPU

and memory consumption, disk I/O etc.) and, eventually provide a complex

adaptation strategy by simultaneously changing a number of the system’s con-

figuration parameters (e.g. number of threads and servers, network bandwidth

etc.).

• The final contribution is specifically on the linearization of the LQM model.

Conventional methods linearize LQM once in the beginning and then retain

the same linear model throughout the system’s lifecycle. However, due to the

nature of software, the linear model is bound to become outdated, in which

case the error in prediction would become exaggerated and the adaptive system

would often fail. In our method, the novelty is that we linearize multiple times ;

when the error of the linear model exceeds a particular threshold, we relineariaze

and calibrate the controller accordingly.

The remainder of the chapter is organized as follows: Section 7.1 introduces the

background and related work. Section 7.2 presents the proposed architecture and

the proposed method. Section 7.3 presents the experimental results that validate our

approach. The conclusions are presented in Section 7.4.

7.1 Background and Related Work

Adaptive systems have got a great deal of attention lately and there have been several

road map books [137, 138] that identify the importance of feedback loops and their
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design. At the conceptual level, the feedback loops follows MAPE architecture [139],

but at the implementation levels there are many variations. A prevalent one is based

on control theory [132] and has been used for some time. Hellerstein et al. [92]

introduced several case studies where control theory has been used for controlling

the threading level, memory allocation or buffer pool sharing in commercial products

such as IBM Lotus Notes and IBM DB2. Other researchers and practitioners have

published results on control theory for computer power control [140], thread and

web cluster management [141], admission control, video compression [142]. In the

above examples, authors used feedback loops to control quantitative metrics from

the categories of performance, cost, energy, and availability. Controllers are static,

created and tested at design time. Our method builds and tunes the controller at

runtime and as far as we know this is the first attempt in the realm of software.

Control theory approaches revolve around three main stages for designing and

analyzing a feedback loop: defining a linear and static model of the controlled system,

analyzing the properties of the model, designing a static controller. Defining the model

starts with identifying the outputs that need to be controlled, y; the commands, u,

that can control the outputs of the system; and the internal state variables, x (x can

be seen as a link between u and y). Although the performance in software is more

accurately modeled with non-linear models, many authors use linear models due to

their simplicity. For example [92, 143, 144, 142, 145] use linear models. Because

the models are linear and valid only around the linearization point, the controller

designed based on the linear model will likely be valid around that linearization point

as well and will not reject a large spectrum of perturbations. This is a well known

problem in the control of non-linear systems and often control switch approaches [146]
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are employed to switch between many statically designed controllers. In this paper

we consider the system non-linear, represent it with a non-linear model and then

linearize it at runtime, around the operational points. In this case, the system is

modelled as series of linear models and controllers.

One of the most important reasons for having a model is to study the properties

of the system it models and then to design the controller. In control theory, the

significant properties are stability, controllability, observability. Stability is probably

the the main raison d’tre of control theory. In simple terms, stability means that for

bound inputs (commands), the system will produce bound state and output values.

Examples of stability studies in control of software and computing systems have been

presented in [92, 145]. Observability is the property of the model that allows finding, or

at least estimating, the internal state variables of a system from the output variables.

This property is important from pragmatic point of view. In a real system, it is

impossible, hard or impractical to measure all state variables. On the other hand, the

commands and outputs are easier to measure. Examples of how to use observability

and how estimate software performance parameters for applications deployed across

multi-tiers and using Kalman filters are presented in [147]. Other authors have

used other techniques to estimated runtime model parameters [148, 149] on the

same assumption that the system was observable. The concept of controllability (or

reachability) describes the possibility of driving the system to a desired state, i.e. to

bring its internal state variables to certain values [131]. This property ensure that

we can design a controller. We use the concept of observability in our paper when we

estimate the performance model in cloud. In this aspect we extend [147] for cloud

environment. Our goal is to achieve controllability across a large design space and
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for any model and controller we design and to make the system stable. Although

one can synthesize empirical controllers [150, 136], we follow classic control theory

to build optimal controllers [137, 151].

Models can be composed, that is, if they are connected in series, parallel or

through a feedback loop, a resultant composed model can be computed from the

individual models. If the models are linear, then the resultant model is linear, too. In

[152], the authors showed, on web service performance case studies, how web services

models can be composed in series and in parallel. It is interesting to note that by

composing web service models, the properties of the individual models (stability,

controllability, observability) are not necessary transferred to the composed model.

In this paper, we use the composition of linear models when analyzing the properties

of the feedback loop.

7.2 Model identification adaptive controller

For the purpose of this paper, we consider the software system as grey box, as

shown in Figure 7.1. This implies that while we don’t know all details about the

internal structure of the deployed software system, we have access to its internal

state variables (x). State in the context of cloud-deployed software may refer to

performance measurements, usually gathered by a monitoring system, such as CPU

or memory consumption, disk I/O, and so on. In addition to the state, the model

representing the system also includes outputs (y) that need to be controlled and the

commands (u) that can control the outputs of the system). The outputs of the system

refer to the observable and measurable results of the system’s execution, for example

its response time, deployment cost, throughput, availability etc., and upon which we
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can understand whether the system operates normally or not. The outputs are usually

captured in the system’s Service Level Agreement (SLA). The commands refer to any

adaptive and corrective actions we may take to rectify abnormal situations and bring

the system back to healthy operation levels. These actions may include changing

the bandwidth, the number of web or database servers in the cloud topology, or the

number of corresponding threads in the deployed application. Finally, we have the

perturbations (p), corresponding to changes in the environment that are unknown

and uncontrollable.

Figure 7.1: State feedback control.

Assuming we have a software system model in place, along with the controllability

property, it is suggested that if we wanted to keep y at a predefined value yr (the goal),

we can do that by computing a command u (feed-forward control). In practice, this

is not possible for two main reasons: (a) the model is an inaccurate representation

of the real system, (b) there are perturbations, p, that affect the system. A feedback

loop implies adding a new software component, a Controller (or Adaptive Manager),

that is fed back with state information x from the system.

The controller and the feedback will compensate for modelling errors and for per-

turbations. The controller can also stabilize unstable systems and achieve additional
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quality control criteria. The main difficulty for the above architecture is identifying

the model and then synthesizing the controller that compensates for perturbations

and achieves the goals.

The method we propose here is based on control theory, more specifically on

synthesizing a controller, using linear quadratic regulators [153] (LQR), based on a

model of the system. Given a system, LQR takes as inputs an objective function and

the state of the system and computes/optimizes the inputs u in the system. LQR is

a static regulator, so we extend this methodology to deal with dynamic time variant

non-linear models that better characterize software systems. The following sections

present the general methodology and architecture and then present the design of the

controller.

7.2.1 Overview

To deal with the uncertainty, we propose a runtime model identification adaptive

controller. Its architecture is illustrated in Figure 7.2. The flow of data and control

is further presented in Algorithm 7.1. The algorithm requires as input three sets X ,

Y and U . X contains the names for the system parameters that are to be monitored

and will represent the state of the system. Y contains the outputs of the system,

which will determine whether the system operates normally or not. U contains the set

of resources or parameters, e.g. number of threads or servers, which we can change to

bring the system back to a healthy state. Sets X , Y and U are nominal sets, meaning

they only specify what is to be included, based on which the actual measurement

vectors x, y, u are generated. Apart from these three sets, the algorithm requires as

input the original non-linear model, LQM0, so that we know how the performance
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of the system is modelled and based on what parameters.

Figure 7.2: Model Identification Adaptive Control Architecture.

Algorithm 7.1: Model Identification Adaptive Controller (MIAC)
input :X – the set of system state parameters to be monitored;

Y – the set of system outputs
U – the set of possible commands
LQM0 – the original non-linear model

1 while TRUE do
2 Extract current state → [xc, yc, uc];
3 if linear model not accurate then
4 if non-linear model not accurate then
5 Rebuild non-linear model → LQM ;

6 Set [xop, yop, uop] = [xc, yc, uc];
7 Linearize LQM → [A,B,C,D];
8 Design optimal controller for linear model → [K, kr];

9 Controller produces adaptive commands → ∆u ;

In step 1 of the algorithm, and illustrated in Figure 7.1, it can be seen that the

monitoring and control of the system by MIAC is a closed loop. In step 2, we extract

the current state of the system. Vector xc includes measurements for the system’s

current state as they come from a monitoring service, vector yc contains the current

measurements for the system’s outputs and vector uc is the current configuration of

the system, in terms, for example, of the software configuring parameters and the
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cloud resources of the deploying topology. In step 3, we check whether the current

linear model is still accurate. If not, then, we activate the upper loop of Figure 7.1.

In step 4, we check if our non-linear model is still in sync. The reason for this check

is that if we have to redefine our linear model, it has to be based on an accurate

non-linear model. If the non-linear model is out of sync, then, in step 5, we rebuild

an LQM , using the parameters from LQM0. The details of this step are outlined in

Section 7.2.2. Having established that we need to redefine our linear model, in step

7, we set a new operational point [xop, yop, uop] (further definition at Section 7.2.3),

which is the current state of the system as extracted in step 2. In step 8, the LQM is

linearize, a process which is detailed in Section 7.2.3. Based on the linear model, in

step 9, we design an optimal controller, as described in Section 7.2.4. The controller

is now ready to operate in the lower loop of Figure 7.1. By monitoring the deployed

system and comparing its behavior against a set of goals yr, in step 11, the controller

can issue a set of commands u to rectify any problematic situations.

7.2.2 Non-linear performance models in clouds and their

identification

In our previous work, we have shown that performance of software systems deployed in

clouds is highly non-linear [108, 105]. In this section, we will reiterate and summarize

our previous findings to better illustrate and motivate the construction of the non-

linear model of LQM .

Consider a three-tier application, such as the one depicted in Figure 7.3, deployed

in cloud (e.g., Amazon EC2). Such an application has one or more database servers,

a set of worker application servers (or web servers) and a load balancer to distribute
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the user requests among the workers.

Figure 7.3: A typical three-tier application.

Performance of such applications is in general modelled as a layered queuing

model (LQM), with one layer representing the software and one layer modelling

the hardware. Mathematically y(t) = LQM(w, u, x), where y is the output, w is

workload and x is the vector state that can represent all the intrinsic relationships

between software elements. In general, given a software application deployed on an

infrastructure, building a structure of the LQM model and then tuning its parameters

at runtime is feasible and accurate.

Figure 7.4 shows how the response time of the application server depends on the

number of users accessing the system. The data has been gathered by repeatedly

generating requests for the same URL simulating a linearly increasing number of

users. The web application has been deployed on a cluster with a single application

server (Tomcat) and a single database server (MySQL). The plot shows that when

there are approximately 30 users, the response time starts to increase abruptly; this

is due to the CPU for the application server that is close to saturation point.
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For these experiments, we have modelled the response time (i.e. the output y of

the system) as an LQM over the number of users (the workload w). The estimates

of the model are shown with dashed line in the plot from Figure 7.4. As it can be

seen, the model estimates the measurements for the two metrics almost perfectly

(less than 1% of error in average).

When the operational conditions change (a change in the topology, the workload

intensity or the structure of the workload), the model becomes outdated and need to

be retuned. In the case of our model, this tuning happens with the use of Kalman

filters [121]. Prebuilding all the models at the design time is infeasible because of the

large number of possible changes and combinations of changes. Therefore, runtime

retuning of the model is more efficient and, therefore, preferable. The retuning phase

and the overall rebuilding of the LQM occurs in step 5 of Algorithm 7.1.

Figure 7.4: Response time when the deployed topology contains only one application server.

In order to examine the effect of change, we repeated the experiment, using

two application servers and keeping everything else the same (Figure 7.5). This

deployment is able to handle up to 60 users while maintaining a response time
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under 500 milliseconds. At around 60 users the average CPU utilization of the two

application servers is close to 100% and this results in a sharp degradation of the

response time. By constantly tuning the model with Kalman filters, we were able

to always have very accurate estimations of the performance metrics (dashed line in

Figure 7.5).

Figure 7.5: Response time when the deployed topology contains two application servers.

7.2.2.1 Modelling under uncertainties

When an application is deployed on the cloud, the cloud’s management system usually

has to perform extra work to maintain and coordinate the deployment. Although

this extra work is reflected in the measured performance metrics, its source cannot

always be identified [122, 154] and, thus, it is considered an uncertainty.

There could be two types of uncertainties that can affect the accuracy of the

application model in cloud and therefore the efficiency of the controller: parametric

uncertainties and unmodelled dynamics. The parametric uncertainties refer to both

parameters of the model (such as service times, number or probabilities of calls
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between different components of the software, communication delays, etc.) or the

intensity and mix of the workloads. The unmodelled dynamics refer to structural

deficiencies of the model, that is missing components and queues that we have not

knowledge of. The latter are very important in cloud where we do not have complete

knowledge of the deployment environment.

To account for unmodelled dynamics, we add two sub-models to the application

model as seen in Figure 7.6: a serial sub-model, made of a queuing centre, ∆s, and

a parallel sub-model, made of another queuing centre, ∆p. The serial model ∆s will

account for the delays in the application requests processing, due to additional proxies

in the cloud. The parallel model ∆p, will account for speed ups at higher loads, due

to possible caching or heterogeneity of the cloud resources. The parameters of those

queuing centres, such as service times and visit probabilities (for the parallel model)

are unknown at the design time and they will be identified at runtime together with

other parameters of the model. As a result, the architecture of the LQM model will

consider the model for the deployed application in the cloud, as well as these two

additional queuing centres. To deal with the parameter uncertainities, we identify

the LQM parameters at runtime, using Kalman filters [121]

Figure 7.6: Modelling structural uncertainties
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Finally, to deal with workload uncertainties, we design a robust controller. Instead

of focusing on a single possible adaptive action, we consider a vector of available

commands u that have the advantage of being able to adjust the application and

its deployment over large variations of workload. We discus the design of such a

controller in details in the following sections.

7.2.3 Linearizing and discretizing the models

In general, a controller can be designed based on a linear model of the software system.

We can extract such a linear model, if we observe the behavior of the system around

an operational point [xop, yop, uop]. If we focus closely to the operational point, we

can linearly approximate the system’s behavior from the non-linear model. We can

take points close to the operational point by applying the corresponding deltas (i.e.

small differences) from the following equations2:


y(t) = ya(t)− yop

x(t) = xa(t)− xop

u(t) = ua(t)− uop

where a denotes actual values and op denotes values at the operational point.

Using these equations to find points close to the operational point, we can define

a discrete-time linear system described by:


x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(7.1)

2We consider to be working in discrete time.
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where A, B, C and D are matrices; y, u and x are vectors. When the matrices are

constant in time, the system described by Equation 7.1 is a linear time invariant

(LTI).

Although there is a number of available linearization techniques, in the context of

this work, we use linear regression. First, we select an operating point (OP) and we

take a number of measurements around OP from the LQM. Then, using regression

we obtain the linear model around the OP. Given that linear regression is simple and

efficient, we chose it in order to create models that may be valid for points further

than OP. Other linearization techniques focus too much around OP. In our case, we

can afford to sacrifice some of the accuracy, since according to our method the linear

model will at some point have to be updated around a new OP.

7.2.4 Designing the controller

As it has already been mentioned, a feedback controller can compensate both for

modelling errors and for perturbations. The feedback can be taken from the state

variables (state feedback) or from the output (output feedback). The state feedback is

the most effective, since assumes an understanding of inner workings and dependencies

of the software system. Output feedback is more practical since output variables

are easier to measure. The controller can vary from a simple constant matrix to a

complex set of differential (or discrete) equations and can be synthesized to achieve

some design goal, such as: stability of the entire system, perturbations rejection

across wide ranges (robust control), or optimization. While the controller design

goals can be diverse, there are standard design techniques that have well defined

procedures and solutions and they are applied a wide range of domains, including
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software control.

In our work, we employ design for optimization and the Linear Quadratic Reg-

ulator (LQR) technique to design a feedback controller. In design for optimization,

a set of weighted goals are captured in an objective function. Most commonly, the

goals are defined as a performance index across the state and command variables

in form of a quadratic function (Equation 7.2 [131]), with the objective of finding

the command u that minimizes this quadratic function subject to the system in

Equation 7.1. The weight matrices Q1 and Q2 penalize the state variations or the

cost of adaptive commands, respectively. The construction of the weight matrices

depend on the domain on which we apply the controller.

J =
∞∑
0

xTQxx+ uTQuu (7.2)

An optimal feedback controller will find the u that minimizes J . The optimization

problem has the following solution [131]:

u = −Kx+ kryr (7.3)

where x is the system’s state as defined earlier, yr is the goal for the output, K is

the feedback gain matrix and kr is steady-state factor.

The feedback gain matrix guarantees that the system will remain stable, in the

form of y = 0, meaning that the output of the system will remain close to the

operational point (ya(t) = yop). Since our goal is to bring, in fact, the output towards

its desired state (i.e. y = yr), we need another factor, which is kr.
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K is calculated with LQR as:

K = −Q−12 BTPx

where P ∈ Rn×n is a positive definite, symmetric matrix that satisfies the Riccati

equation [131]:

PA+ ATP − PBQ−12 BTP +Q1 = 0

Based on K, we can calculate kr by solving the following equation [131]:

1 = C(A−BK)−1Bkr (7.4)

Eventually, the set of commands issued to the system to adapt itself is given by:

ua(t) = uop + u

In the context of our work, we have already defined x, u and yr. Q1 is the penalty

matrix for any deviations in the system’s performance from the normal or desired

state. Q2 is practically the cost of the resources in the cloud or reconfiguring the

parameters of the deployed software. Variations within the two matrices indicate a

difference in the significant of parameters. For example, we may deem a performance

metric more important than another if the cost for a deviation of the former is higher

than that of the latter. Equivalently, we may be more inclined to employ one resource

over another if its cost is lower. Eventually, the combination of the two matrices will

dictate our adaptation strategy. For example, if we know that a particular resource

is more capable in handling a state parameter, which we deem important (i.e. high
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cost for deviation), we may overlook the resource’s potential high cost in order to

adjust the system to its healthy state.

A significant advantage that feedback controllers offer is that they can give us

an optimal, in terms of efficiency and effectiveness, set of adaptive actions both

automatically and fast. Alternatively, we would have to simulate and evaluate every

possible combination of states and adaptive actions (i.e. x and u), probably over

multiple dimensions, in terms of performance parameters and types of resources,

before we can find the optimal adjustment.

7.3 Experimental studies

To validate the feedback controller designed in the previous section and illustrated by

Figure 7.2 and its effectiveness in taking adaptive actions according to Algorithm 7.1,

we have conducted a series of experiments. We deployed a bookstore application,

developed using J2EE technology, on multiple Linux (Ubuntu) virtual machines,

hosted on Amazon EC2. The application performs various SQL commands (select,

insert, update). In the initial topology, the database server (MySql) was deployed

on one instance, the web application server (Tomcat) was deployed on two instances,

while a fourth instance was acting as a load balancer (Apache 2) to distribute the

incoming web requests between the application servers. The deployment closely

resembles the architecture from Figure 7.3. To automate the deployment process and

management of the topology (adding/removing instances, changing configuration of

instances, monitoring the instances), we have used the Hogna platform [155].

For this particular deployment, we have already commented on the non-linear

relationship between the workload and CPU utilization and response time, regardless
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Figure 7.7: Response time (milliseconds) as a function of number of threads, with constant
workload.

of the underlying topology, i.e. whether we have one web server (Figure 7.4) or

two (Figure 7.5). In addition, Figure 7.7 shows that non-linearity also holds in a

multidimensional model with respect to the number of available threads and servers.

As input to our algorithm and in order to design the controller, we need to define

the set of commands U , the set of monitored state parameters X and the set of

controlled system outputs Y. We define the command points for our system as

U = [Sd, Td, Sw, Tw], where Td is the number of threads for database servers and Tw

for web servers; Sd is the number of database servers and Sw is the number of web

servers. The state vector, x, contains the response time of the web application, the

same as the output vector, x (see Equation 7.1). For the rest of our experiments,
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(a) Without re-linearization. (b) With re-linearization.

Figure 7.8: Behaviour of the system when the goal for Response Time was set to 1000 ms.

when we refer to specific values of these vectors, we will note them with their lower

case representation, i.e. u, x and y.

We construct a Layered Queuing Model (LQM) using the OPERA tool [36] to

track the behavior of the system. When the LQM becomes inaccurate, we apply a

retuning procedure based on Kalman filters that will calculate the model parameters,

so that the model matches the measured metrics.

To linearize the LQM, we have used the LinearRegression function from the

package optim [156] in Octave to calculate the matrices A and B from Equation 7.1.

We have also chosen C = [1] and D = 0. The reason for this is because we

picked response time to represent both the state and the output of the system. From

Equation 7.1, we have that y(t) = Cx(t) + Du(t). Given that y = x, it is derived

that C = [1] and D = 0.

For the linear-quadratic regulator (LQR), we have used the implementation offered

by Octave’s package control [157]. The parameters for the lqr function were the
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matrices A and B identified during linearization and the following weight matrices

Q1 and Q2:

Q1 = [1] Q2 =



100 000 0 0 0

0 1 000 0 0

0 0 100 000 0

0 0 0 1 500


(7.5)

The lqr function calculated the matrix K as discussed in Section 7.2.4. To

calculate kr, we assumed that all of its four components were equal and applied the

Equation 7.4:

kr =
1

b1 + b2 + b3 + b4
×



1

1

1

1


× (1− (A−BK))

where bi are the components of B:

B =

[
b1 b2 b3 b4

]

K and kr form our controller, and allow us to calculate a command by applying

the Equation 7.3.

For the first experiment (Figure 7.8), we have set the goal for the response time

to be 1000 ms. As for the workload, we start with 18000 users, linearly increasing

up to 23000 and then linearly decreasing again up to 18000 users. Figure 7.8a shows
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the behaviour of the system when using a conventional LQM, liniarized only at

the beginning of the experiment, thus creating only one controller (K and Kr from

Equation 7.3), while Figure 7.8b shows the behaviour when the LQM is relinearized

every time its error (difference between the measured response time and the estimated

one using the linear model) exceeds the threshold of 100 ms.

The experiment shows that when we linearize often (we have built 31 linear

models for the whole duration of the experiment), we manage to stabilize the system

and maintain the response time close to the desired value. Also, the value of J

(Equation 7.2) in this case was approximately 21× 106, which is significantly smaller

than the value obtained with a single linearization: 17× 109. Considering that the

goal of the controller is to minimize J , this shows that multiple linearization is a

significantly better model. Figure 7.8a shows that the controller fails to maintain the

response time close to the goal when the workload fluctuates.

Running more experiments with different goals (at 300 ms, 500 ms and 700 ms)

produced similar results: the relinearization of the LQM model enabled the con-

troller(s) to maintain a response time close to the desired goal, while doing a single

linearization at the beginning of the experiment generated poor results.

In the second experiment, we wanted to evaluate the behaviour of the system

in the presence of irregular workload, i.e., when the workload suddenly increases or

decreases non-monotonically. The results are summarized in Figure 7.9. The bottom

plot shows the the shape of the workload. The goal for the response time in this

experiment was set to 700 ms and as it can be seen in the Figure, the controller is

able to stabilize the system around this goal. In fact, the controller helps the system

achieve an average response time of 703 ms (standard deviation of 73.37).
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Figure 7.9: Behaviour of the system when the goal for Response Time was set to 700 ms,
and the workload increasing/decreasing suddenly.

In order to evaluate the influence of the weight matrices Q1 and Q2 on the
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behaviour of the controller, we have set an experiment with the following matrices:

Q1 = [1] Q2 =



1 000 0 0 0

0 100 000 0 0

0 0 1 500 0

0 0 0 100 000


(7.6)

We set the response time goal to be 700 ms, and then increased the workload

linearly and then decreased it, also linearly. In Figure 7.10a is shown the behaviour

of the system when the matrices from Equation 7.5 (prefer to add servers) are used,

while Figure 7.10b shows the results for matrices from Equation 7.6 (prefer to add

threads).

(a) Using the Q1 and Q2 from Equa-
tion 7.5.

(b) Using the Q1 and Q2 from Equa-
tion 7.6.

Figure 7.10: The effect of the weight matrices Q1 and Q2 on the behaviour of the controller.

In both situations, the system was stable and the goal has been maintained. Using

the matrices from Equation 7.5, the value for J (Equation 7.2) was approximately

27× 107; the utilization of the weights from Equation 7.6 resulted in a value for J of
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almost half, in the range of 14× 107.

Figure 7.11 shows the error of the linear model with respect to the LQM. During

the experiment, the workload has been kept constant, and we varied only number of

web servers. Also, the number of threads and database servers were constant. The

green line is the response time as estimated with the LQM. The non-linear model has

been linearized at the begining of the experiment, when there were 100 web servers.

Then we started removing servers, one at a time. The blue line shows the response

time estimated using the linear model generated at the begining, while the red line

shows the response time when the LQM is linearized as often as necessary. When

we are left with only 75 web servers, the linear model diverges too much from the

LQM, and a re-linearization is triggered (see that the red and blue lines diverge, sign

that a new linear model has been built). This new linear model is valid when the

topology has between 75 to 55 web servers and a new linearization is required at 55.

By linearizing often, we maintain a linear model that closely matches the non-linear

one. Note that the red line follows the green one, while the blue line (estimations

done with the original linear model) diverges significantly.

Each background color in the plot shows the range of validity of a linear model. A

change in the background color signals that a new linearization has been performed.

Also, note that as the response time grows faster, re-linearization frequency increases.

7.3.1 Quality of control parameters

When the goal of the controller is the optimization, the quality of control is judged

by how close to global optimum the controllers bring the system. In case of a robust

control, the quality is measured by the insensitivity to changes in the managed
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Figure 7.11: The errors of the linear model.

element and environment and high tolerance to perturbations.

Figure 7.12: Quality metrics of an autonomic system

Many controller goals can be reduced to setpoint control (like the one in Fig-

ure 7.12) and, in this case, the quality of control can be measured with several
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metrics: rise time, overshooting, settling time, steady error [158, 159]. Figure 7.12

illustrates the behavior of the response time of the web service cluster from the first

experiment when perturbed by a workload change. The figure actually shows the be-

ginning of the experiment until the controller was able to stabilize its behavior. Let’s

assume that response time is setpoint to the horizontal continuous line in Figure 7.12

representing the goal of 1000 ms. The perturbation in workload, that affects the sys-

tem at the origin of the time axis, starts to increase the response time of the system

(rise time). A good controller will compute a command u (the number of database

and web servers and threads in the cluster) that will bring the response time back

to normal in a short time (rise time) by increasing the number of resources in the

cluster. Very likely, the system will become over-provisioned, but the overshooting

must be small since it can affect other attributes (like cost). There will be some

oscillations around the setpoint value, but after a time (settling time), preferably

short, the response will stabilize. In Figure 7.12, there is also an example of unstable

scenario, where the once-linearized controller cannot reach the target response time.

7.3.2 Threats to Validity

The effectiveness of the proposed method depends on the accuracy of the LQM

performance model. In some circumstances, the LQM may take longer to synchronize

with the deployed system in the cloud, and this may impede the linearization process

and by extension the effectiveness of the controller.

Our approach assumes that the system is controllable. When the system is

controllable (the rank of the matrix [A AB A2B · · · An−1B] is n, where n is the

size of matrix A), the Linear Quadratic Regulator will build the controller successfully.
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In our experiments, the system was controllable, as the matrices A and B produced

by the linearization satisfy the controllability condition for all linearization points.

In future work, we are planning to investigate conditions, in which matrices A and

B are uncontrollable for software systems, and propose guidelines for avoiding such

situations when designing adaptive system. Currently, if such a condition arises, we

recommend changing sets X , for state and U for commands, if matrices A and B are

uncontrollable.

As far as our experiments are concerned, there a few threats to validity. The

application domain of the proposed methodology is supposed to be cloud environ-

ment and multi-tier transactional applications. However, as it can be seen from our

experiments, having to deploy dozens or hundreds of virtual machines in a public

cloud can be extremely costly. For this reason, to validate at scale, we relied on some

experiments on simulations, which may affect the validity and more importantly

the generalization of our experiments. Nevertheless, our simulations are based on

realistic settings including the web application, the underlying infrastructure and

the behavior of the whole deployment. In the future, we plan to perform additional

experiments on real deployments. The validity of our results may also be affected by

the assumptions we made on the structure of the model, for example, how we decided

on the parameters of x, y and u and how we defined the weight matrices Q. In the

context of our experiments, we believe that these parameters were defined realistically

and within reason, but we plan to expand on them and perform sensitivity test to

investigate how their definition affects the results.
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7.4 Conclusions

In this work, we proposed a model identification adaptive controller as a manage-

ment system to monitor and maintain applications on cloud environments. Our

experiments have shown that the use of control theory in an Adaptive Manager for

cloud applications performs exceptionally well and can produce a robust and effective

controller. Additionally, the mathematical background of control theory allows us to

systematically design and verify such adaptive management systems. Our method

is capable on operating on a multidimensional level both with respect to the goals

that are to be achieved, as well as the adaptive actions. The proposed controller

performs better than previous methods thanks to the concept of multilinearization,

which allows the controller to readjust itself in order to better monitor the system

and produce more efficient adaptive actions. In the future, we plan to evaluate more

multidimensional controllers with respect to the goals and study their performance

in a real cloud setting. Moreover, we plan to perform extensive sensitivity tests

concerning the construction parameters of the controller.
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Chapter 8

Conclusions

The complexity of the software systems has increased significantly over the last years

and it reached levels that makes it challenging to manage them. For applications

deployed in cloud, the management is even more difficult because of the resource

sharing environment, that results in unrelated applications influencing each other.

Model based autonomic managers are becoming an attractive solution to handle

the complexity and the highly dynamic environment where the applications reside.

The autonomic managers can react to change (in environment, in workload, in

utilization patterns) much faster than a human operator can.

In this thesis, we have addressed several major research questions related to

engineering adaptive systems for web applications: (1) what are the bottlenecks in

a web application and what type of workload will saturate them, (2) how to model

a web application deployed in cloud and handle the cloud variability so the model

stays accurate and useful, (3) how to find the resource types and quantities that need

to be added / removed so the goal can be maintained, (4) and how to use models in

order to protect web applications against Denial of Service attacks which is a major
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threat on today’s Internet.

We have presented autonomic systems that can make decisions regarding deploy-

ment and management of web applications at various stages of their life: at design

time when the best achitecture (based on the Service License Agreement) is selected,

after deployment when the bottlenecks and worst workload mixes are uncovered, and

at runtime when the application is subject to normal fluctuations in usage patterns

but also a target for malicious traffic. All methods and algorithms we have devel-

oped make use of an autonomic manager, and incorporate performance models that

capture the essence of the managed web application.

The major original contributions we propose are:

A. a model-based method to explore the workload space in order to uncover and

saturate the bottlenecks of a deployed web application;

B. a performance model for web applications deployed in clouds capable to handle

cloud variability;

C. a robust adaptation architecture and method (Model Identification Adaptive

Control) capable to synthesize a controller at runtime that will provide the

adaptation strategy based on a goal;

D. model-based adaptive architectures and algorithms focused on detecting DoS

attacks at the web application level and mitigating them appropriately;

Specifficaly, in contribution (A) (Chapter 4) we show how to efficiently uncover

the bottlenecks and workloads that saturates them. The method uses an analytical

representation of the software system, a two-layer queuing model that captures the

hardware and software contention for resources.
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The model is used to uncover the existing bottlenecks in the system and provides

hints about the workloads that will saturate them. Using a feedback loop to guide

the system towards a stress goal, we find the exact workloads that will overload

it. The model is automatically tuned, using on-line estimators that finds the model

parameters.

The workloads are characterized by workload intensity, which is the total number

of users, and by the workload mix, which is ratio of users in each class of service. By

extracting the switching points from the model, we are able to compute the stress

vectors that yield a bottleneck change. Applying a hill-climbing strategy for workload

intensity along the stress vectors, we are able to reach the stress goal.

We applied the method to find the workload intensity and workload mix that

yields target software and hardware utilization limits or a target response time. The

results show that the algorithm is capable to reach the target goal with a small

number of iterations and therefore testcases.

In contribution (B) (Chapter 6) we present experimental results demonstrating

how the model diverges from reality over time due to the unpredictable variability of

cloud services, describe the modifications required to account for unexplained delays,

and we present a second set of results to show that, after the modifications, the model

remained synchronized with the actual performance of the real cloud system.

Specifically, we introduce a new resource in the model, a “cloud delay centre”,

designed to capture all the undocumented work or delay. The cloud delay queue is

shared by all classes of traffic, it has no limit, it exists at the software level, and it

is the first queue encountered by incoming requests. The rationale for this is that

any undocumented work is not related to the web application itself, but to the cloud
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environment and should affect all classes equally.

The validation tests were executed in real-world conditions, on Amazon EC2,

giving a greater confidence in the results.

In contribution (C) (Chapter 7) we show how control theory can be used by

an autonomic manager. We described the details for implementation of a model

identification adaptive controller (MIAC) using a combination of performance and

control models. We show that our approach can account for uncertainty and modelling

errors and efficiently adapt a cloud deployment.

Our experiments have shown that the use of control theory in an Adaptive Manager

for cloud applications performs exceptionally well and can produce a robust and

effective controller. Additionally, the mathematical background of control theory

allows us to systematically design and verify such adaptive management systems.

The proposed method is capable on operating on a multi-dimensional level both

with respect to the goals that are to be achieved, as well as the adaptive actions.

The controller performs better than previous methods thanks to the concept of

multilinearization, which allows the controller to readjust itself in order to better

monitor the system and produce more efficient adaptive actions. In the future, we

plan to evaluate more multidimensional controllers with respect to the goals and

study their performance in a real cloud setting.

In contribution (D) (Chapters 5 and 6) we introduce a novel adaptive archi-

tecture to detecting and mitigating (D)DoS attacks. We show how we can use a

combination of application performance modeling with statistical anomaly detec-

tion to establish a set of filtering rules, then how to iteratively fine-tune them using

application- and system-level performance metrics synchronized with the performance
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model.

The approach is enabled by a layered queuing network model adapted for cloud

as described in contribution (B). The model accurately predicts short-term cloud

behavior, despite cloud variability over time. We evaluated our approach on Amazon

EC2 and demonstrate the ability to horizontally scale a sample web application in

response to an increase in legitimate traffic while mitigating multiple DoS attacks,

achieving the established performance goal.

8.1 Limitations and Future Work

In all contributions stated above one of the most important factors is the accuracy of

the model. The model has a direct impact to the quality of the results of the methods

presented. An inacurate model will lead to poor identification of the bottlenecks and

workloads that saturate them (contribution (A)), creation of a wrong controller that

should drive the adaptation strategy (contribution (C)) and improper classification

of malicious traffic (contribution (D)).

In order to preserve the accuracy of the model we use a procedure to re-synchronize

the model with the system. In some circumstances, the LQM may take longer to

synchronize, and this may result in longer reaction times of the autonomic manager.

In contribution (C) (Chapter 7) we assume that the system is controllable. In

our experiments the system was controllable. In future work, we are planning to

investigate conditions that make a system uncrollable and propose guidelines for

avoiding such situations when designing adaptive system.

Also, since some of the experiments relied on simulations, future work will include

validation of the proposed method for systems deployed on cloud that run under
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realistic conditions.

In contribution (D) (Chapters 5 and 6) the goal was to protect a web applica-

tion from (D)DoS attacks by accurately discriminate between desirable traffic and

undesirable traffic.

The experiments show that in certain situations, the mitigation strategy is filtering

segments of non-malicious traffic (altough the misidentified traffic is quickly restored).

The decision is correct in that it restores SLOs, but of course incorrect since it doen’t

involve malicious traffic. This is a limitation that we will address in the future work.

A false positive is when traffic is detected as an attack incorrectly. Because our

approach does not block traffic outright but instead forwards to a CAPTCHA test,

that traffic is not lost. However, the test may be annoying to users. There were no

false positives in our experiments.

A false negative is when malicious traffic is not detected. In our approach, attacks

are only detected when the performance of the application suffers; any malicious traffic

that does not have a negative impact will not be detected, but is by definition not

a true DoS attack. As our approach filters types of traffic until the applications

performance is acceptable, false negatives will not impact the application.

Rather than blocking traffic outright, our approach relies on the use of a test

only human users will pass (e.g., a CAPTCHA). For our focus of user-facing web

applications, this is sufficient to avoid dropping legitimate traffic outright. An exten-

sion to this work would consider similar tests to differentiate legitimate automated

traffic from malicious automated traffic, for example pre-shared keys or other trust

negotiation mechanisms.

This approach is intended to address a popular type of DoS attack, a “fast”
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application-aware attack where the traffic levels increase sharply. This may not be

the best approach to mitigate “slow” application-aware attacks where the traffic

increases gradually over time; we have not evaluated the performance for this type of

attack. As mentioned, we assume existing techniques are in place to defend against

attacks not at the application level.
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