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Abstract 

The last few decades have seen growing concerns about climate change caused by global 

warming, which is cause primarily by CO2 emissions. Thus, the reduction of these 

emissions has become critically important. One of the effective methods for achieving 

this goal is to shift towards green electricity energy resources and green vehicles in 

transportation. For these reasons, the goal of the work presented in this thesis was to 

address the challenges associated with the planning of plug-in electric vehicles (PEVs) 

parking lots in combination with renewable energy sources (RES) and battery energy 

storage systems (BESS) in power distribution networks.   

This thesis introduces a new planning technique that aims to minimize the overall 

capital and operational costs, taking into consideration the operational aspects of 

distribution networks, such as 1) coordinated PEV charging, 2) smart inverter control of 

renewable distributed generation (DG) units, and 3) smart scheduling of BESS. 

Moreover, a new model for the PEV coordinated charging demand is introduced in this 

work. Due to the complexity of the proposed planning approach, a combination between 

metaheuristic technique and deterministic optimization techniques have been utilized to 

manage both the planning and operational aspects respectively. 
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Chapter 1  

Introduction and Motivations 

Reducing greenhouse gas emissions have gained global interest over the last few decades. 

A key factor for reducing these emissions is shifting towards RES in electricity 

generation and low or zero-emission vehicles in transportation. Electrification of the 

transportation sector is currently the most viable option for reducing transportation 

emissions and the deployment of PEVs is thus predicted to rise dramatically in the next 

few decades [1]. Some countries put targets up to 7.9 M electric vehicles by 2030 [2], as 

reported by IEA (see Table 1-1). 

Current power grid structure is capable of accommodating low penetration levels of 

uncontrolled PEV charging (i.e. charging starts as soon as PEVs are plugged). However, 

looking to the future, the increasing use of PEVs will have a considerable impact on the 

demand for electricity and the development of future power grids. Recent studies showed 

that the rapid growth of PEVs along with the additional energy consumption likely to 

cause severe consequences on the existing grids [3-6]. Hence,  accommodating the extra 

load on the grid due to PEV charging will require: 1) upgrading the existing power 

distribution system infrastructure so that it can accommodate uncoordinated charging, 

and/or 2) integration of smart grid technologies to coordinate PEV charging via real-time 

monitoring and control (i.e. optimally scheduling of PEVs charging, where the battery 

pack of PEV acts as a controllable load) [7, 8]. 
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Table 1-1: Announced national PEV targets [2] 

Country Target [2] 

Ireland 2020: 230 000 

Canada 2018: 500 000 

United States 2015: 1 000 000 

France 2020: 2 000 000 

Spain 2020: 2 500 000 

United Kingdom 2030: 7 900 000 

 

Yet, supplying the extra load imposed by charging PEVs from conventional electricity 

generation resources will shift the emissions from the transportation to the electricity 

generation. To allay this concern, RES are expected to play an important role in 

supplying energy to the transportation sector [9, 10]. Levels of RES deployment have 

been rising satisfactorily due to government incentives and developing technology in this 

area [11, 12]. However, integrating large levels of renewable distributed generation (DG) 

into the grid is also challenging as the variable and unpredictable nature of wind and solar 

exposes the grid to stability issues and makes the investment planning of future power 

grids more complicated [13]. Despite these challenges, other considerations show 

promise. Storage systems (e.g. BESS) can be a critical component of grid stability and 

resiliency [14]. The grid integration of energy storage technologies would reduce the 

intermittency of RES, thus increasing their capacity factor [15]. Storage systems can also 

prevent wastage of excess renewable energy feeding into the grid at times when 

production is at a peak, but demand is low by effectively storing this energy [16]. In 
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addition, integrating BESS into existing grids could enable confident deployment of 

PEVs by ensuring a stable and consistent supply of the electricity vital to charge their 

batteries [17]. 

The combined integration and advancement of PEVs, RES, and BESS technologies has 

been recently gained interest in industry [18, 19]. This in turn introduces paradigm shift 

in distribution systems operation and planning. Due to the interesting and recent subject, 

numerous efforts have been spent on related research. Yet, most of the work in this area 

focused on optimal PEV coordination in real-time, without considering the planning 

aspects (i.e. the location and sizing of PEV charging stations along with RES and BESS), 

which has significant impacts on 1) the overall system performance, and 2) the 

effectiveness of the real-time coordination schemes. 

It is expected that PEVs will likely be concentrated in specific geographical areas, which 

if not properly managed, may have severe consequences on the electrical grid, such as 

feeders’ thermal limit violation, phase imbalance, transformer degradation, and fuse 

blowouts [20]. Planning the location and sizes of PEV parking lots in electrical 

distribution systems thus requires further study and analysis. 

Optimal allocation and sizing of such new technologies should be appropriately 

integrated in distribution networks investment planning studies in order to: 1) get the 

highest benefit from the environmental aspects, 2) bring economic benefits for the system 

operators and their stakeholders and, 3) enhance the system reliability, stability and 

resiliency.  
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Therefore, the work presented in this thesis proposes a new comprehensive framework 

for the planning studies of smart distribution systems including PEVs.  

Conventional planning studies are not tailored for accommodating new smart distribution 

systems planning studies, given that they rely on dedicated distribution systems with 

conventional loads, deterministic distributed generation units, and lack of two-way 

communications, which is anticipated to be the backbone of the smart grid.   

Therefore, the proposed framework integrates the key components of smart 

distribution system: renewable distributed generation, battery storage system, electrical 

vehicles, and two-way communication system. 

The proposed planning approach considers smart coordinated charging system, which 

utilizes real-time measurements from the electrical smart grid and coordinates the PEV 

charging under the smart grid paradigm.  

1.1  Research Objectives 

The aim of this research is to develop a comprehensive planning framework to allocate 

PEV parking lots in conjunction with RES and BESS taking into consideration different 

operational aspects. Toward this aim, the work presented in this thesis is divided into 

three main objectives, as depicted in Figure 1-1. A brief description of each objective is 

presented below in the following subsections.  
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Figure 1-1: Research objectives  

1.1.1 Objective (1): Optimal allocation of RES DG 

The goal of the first objective is to develop a planning approach for the optimal location 

and sizes of renewable DG units taking into consideration: 1) the uncertainty due to the 

intermittent nature of RES output power, and 2) the variability of conventional power 

loads. Toward this objective, probabilistic models for both RES and loads are developed 

and incorporated in the optimization problem. The developed optimization approach has 

been utilized to investigate the impacts of the distribution network technical constraints 

on the allocation process, to identify the most significant binding constraints.  

Chapter 5 

Optimal allocaiton and operation of PEV parking lots in conjunction with RES and BESS units  

Chapter 4 

Objective 2: Optimal allocation of RES and BESS units 

Chapter 3 

Objective 1: Optimal allocation of RES DG in distribution networks 
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1.1.2 Objective (2): Optimal allocation and operation of RES and BESS 

In the second objective, the task is to develop methodologies for optimal allocation of 

renewable DG in conjunction with BESS units in distribution networks taking in to 

consideration the operational aspects of these units. The operational aspects include: 1) 

controlling the smart inverter of the renewable DG units, and 2) optimal scheduling of 

BESS units to achieve minimum overall system costs. To that end, Monte Carlo 

Simulation has been used to develop virtual chronological scenarios of RES output 

power. 

1.1.3 Objective (3): Optimal allocation and operation of PEV parking lots 

The third objective aims to develop a comprehensive planning framework to allocate and 

size PEV parking lots in distribution networks. Smart coordination of the PEV charging 

is considered as the operating scheme of these PEV parking lots. Moreover, as a mean to 

facilitate the allocation, RES and BESS allocations are considered in the same planning 

approach. The RES and BESS should be optimally sized and scheduled to serve the PEV 

charging requirements. A new model is introduced to incorporate the smart PEV parking 

lots into the planning approach.  

1.2 Thesis outline  

The remainder of the thesis is organized as shown above in Figure 1-1. The details of 

each chapter are as follows:  
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 Chapter 2 provides a brief review of the background topics and associated 

literature pertinent to this research.  

 Chapter 3 presents the proposed approach for the optimal allocation of renewable 

DG along with related simulation results.  

 Chapter 4 describes the proposed planning approach for the renewable DG and 

BESS optimal allocation and operation.  

 Chapter 5 introduces the proposed planning method for PEV parking lots in 

conjunction with RES and BESS along with related models.  

 Chapter 6 concludes the research and offers suggestions for future work. 
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Chapter 2  

Background and literature review 

Chapter 1 provided a brief introduction to the research presented in this thesis, explaining 

the motivation behind the work and outlining the specific objectives. This chapter 

provides an introduction to the new components of smart distribution networks (i.e., RES, 

BESS, and PEV) and their modelling in the planning problem of future distribution 

networks. The introduction is followed by a discussion of previous research. Finally, the 

concluding remarks from previous research are highlighted. 

2.1 Background to RES 

Renewable energy is generated from sustainable resources that are naturally renewed 

within human life [21]. These resources include but not limited to flowing water, moving 

air, solar radiation, and geothermal. Other resources can be assumed renewable, such as 

biomass, as long as the rate of its consumption is lower than the rate of its production. 

Canada is a world leader in renewable energy resources. Ontario province has 34,780 

MW of installed generation with a supply mix as shown in Figure 2-1 as of June 2015 

[22]. RES presents about 34 % of the total installed capacity. 
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Figure 2-1: Ontario supply mix as of June 2015 [22] 

Hydroelectricity has the biggest share of the renewable energy production in Ontario, as 

shown in Figure 2-1. However, wind and solar RES are expected to have the highest 

growth rate in the next few years [21]. 

A brief overview of the available RES technologies can be explained as follows [23]: 

2.1.1 Hydroelectricity 

Electricity is generated through transforming the useful kinetic energy offered by moving 

water into electrical energy. Mainly, the moving water is directed to the rotating turbine 

blades; thus, producing a rotating mechanical energy. These turbines are in turn 

connected to electricity generators, which converts the mechanical energy into electric 

energy and supply it to the electric grid.  

Dams and gates are used to regulate the water volume and speed, which in turn regulates 

the amount of electricity generated. Hydroelectricity generation stations are highly  
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Figure 2-2: Installed Hydroelectric Capacity by Provinces (2010, in megawatts) [21] 

dependent on the geography and hydrography [21].  This is the reason for the province of 

Quebec to have the highest installed hydro capacity in Canada [21], as shown in Figure 

2-2. 

Canada has many rivers flowing from mountainous areas toward its three bordering 

oceans. In 2010, Canada had 529 hydroelectric stations with more than 75 thousand 

megawatts of installed capacity. These stations include 379 small hydroelectric facilities, 

that is, facilities with a nameplate capacity of 50 megawatts or less, and they together 

represent 3.5 thousand megawatts, which is about 2.7% of Canada’s installed capacity. A 

study by HEC Montréal (formerly known as: École des hautes études commerciales de 

Montréal) shows that by 2030, there is a potential in Canada for new hydroelectricity 

capacity installed of 29,000 MW [21]. 
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2.1.2 Bioenergy 

This RES relies on biological materials (solid, liquid, or gaseous) as a fuel, where the 

chemical stored energy is converted to electricity. The biomass fuel is combusted to 

produce heat, which can be used directly in industrial processes or to heat up steam, 

which is used to rotate a turbine and a generator to produce electricity. Industrial wood 

waste is the most important source of bioenergy in Canada [21].  

2.1.3 Geothermal Energy 

Geothermal energy is generated by earth stored heat. The geothermal energy can be 

harvested from natural underground steam, which in turn is used to generate electricity. 

Another approach is to use the temperature difference between ambient air temperature 

and the ground water for heating or cooling of buildings in order to save electricity. 

The highest potentials for geothermal energy harvesting are in British Columbia, 

Northwest Territories, Yukon, and Alberta, where highest underground temperatures are 

available. The most advanced geothermal power generation project in Canada is the 

South Meager project in British Columbia [21]. 

2.1.4 Wind Energy 

Kinetic energy in wind is one of the most promising RES. It can be easily used to rotate 

wind turbines, which in turns produce electricity. For thousands of years the kinetic 

energy in wind has been used for propelling sailing ships, pumping water, and powering 

factory machinery [23]. 
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The first wind turbine to produce electricity was built in 1891 by a Dane, Poul la Cour. 

Currently, many wind farms are located in high wind areas to produce efficient electric 

energy over the year. The wind turbines are characterized by long life time and low 

maintenance requirements. Wind turbines range from few kW and up to 8 MW (Vestas 

V164-8.0). 

There are excellent wind resource areas in Canada, which are mainly offshore and along 

coastlines [21]. Wind turbines installed capacity in Canada has increased rapidly in the 

recent years. Canada has 10,204 MW installed capacity in 2015 compared to 5,265 MW 

in 2011 and 23 MW in 1997. The provincial leaders in installed wind turbines capacity 

are Ontario, and Quebec, as shown in Figure 2-3. 

 

Figure 2-3: Canada’s installed wind turbines capacity as of June 2015 [24] 
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Figure 2-4: Horizontal axis wind turbines structure [23] 

The most popular wind turbine structure is the horizontal axis wind turbines. These wind 

turbines mainly consist of blades, generator, gear box, and tower as shown in Figure 2-4. 

2.1.4.1 Wind Power 

The wind energy that can be harvested depends on the sweep area of the turbine blades 

and the wind speed [23], as in (2-1). It is noteworthy that the wind output power is 

proportional to the square of the blades diameter as 𝐴𝑠 = (
𝜋

4
)𝐷2. Thus, doubling the 

diameter of the blades increases the power by four times. Moreover, the power is 

proportional to the cube of the wind speed, which means doubling the wind speed 

increases the power by eight times. 

 𝑃𝑤 =
1

2
 𝜌 𝐴𝑠𝑣𝑤

3  (2-1) 
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Figure 2-5: Wind power per unit area for 15
o
C and 1 atm [23] 

A typical wind power relation versus wind speed per unit sweep area is shown in Figure 

2-5. 

2.1.4.2 Impact of tower height 

Due to the fact that wind power is proportional to the cube of the wind speed, the height 

of the wind turbine is very important economic aspect in the wind turbine design and 

harvesting energy. As the tower height increases, the wind speed increases [23]. 

However, this depends on the friction that the air experiences when it moves across the 

earth’s surface. The smoother the surface, the faster the wind speeds can be at higher 

heights. The impact of the surface roughness can be expressed by the following formula 

[25]:  
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 𝑣2 = 𝑣1.(
ln (
ℎ2
𝑧0
)

ln (
ℎ1
𝑧0
)
)  (2-2) 

 

The roughness factor (𝑧0), which varies from 0.0002 to 1 [26], for different terrain 

descriptions is listed in Table 2-1. 

Table 2-1: Roughness factor for different terrains [26] 

Terrain Description 𝒛𝟎 (m) 

Open sea, fetch at least 5 km 0.0002 

Mud flats, snow; no vegetation, no obstacles  0.005 

Open flat terrain; grass, few isolated obstacles  0.03 

Low crops, occasional large obstacles  0.10 

High crops, scattered obstacles  0.25 

Parkland, bushes, numerous obstacles 0.50 

Normal large obstacle coverage (suburb, forest) 1.0 

City centre with high- and low-rise buildings ≥ 2.0 

2.1.4.3 Wind turbine output power 

The wind turbine output power characteristics as given in a manufacturer data sheet 

depend on four parameters: rated output power, cut-in speed, rated speed, and cut-out 

speed, as in (2-3). These characteristics are also illustrated in Figure 2-6. 

 𝑃𝑊𝑇(𝑣) =

{
 
 

 
 
0                                                   ∀ 0 ≤ 𝑣 < 𝑣𝑖𝑛                         

𝑃𝑊𝑇
𝑟𝑎𝑡𝑒𝑑 .(

𝑣 − 𝑣𝑖𝑛
𝑣𝑟𝑎𝑡𝑒𝑑− 𝑣𝑖𝑛

)             ∀ 𝑣𝑖𝑛 ≤ 𝑣 < 𝑣𝑟𝑎𝑡𝑒𝑑                 

𝑃𝑊𝑇
𝑟𝑎𝑡𝑒𝑑                                           ∀ 𝑣𝑟𝑎𝑡𝑒𝑑 ≤ 𝑣 < 𝑣𝑜𝑢𝑡               
0                                                   ∀ 𝑣𝑜𝑢𝑡 ≤ 𝑣                               

 
(2-3) 
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Figure 2-6: Wind turbine output power [27] 

2.1.4.4 Wind DG modeling for planning applications 

Due to the fact that RES are characterized by a high degree of uncertainty and variability, 

probabilistic methods are used to model these types of resources for the planning 

applications. On the other hand, for few minutes and up to few days operational 

applications, these resources can be forecasted using proper forecast methods. 

 For wind turbines, Weibull Probability density function (pdf) 𝑓𝑊𝐵(𝑣) is considered as 

the most commonly used pdf to represent the wind speed variability [28], and in 

consequence the wind turbines output power. The Weibull pdf formula [29] given in 

(2-4) defines the probability of wind speed to be equal to or less than a specific speed v.  

 𝑓𝑊𝐵(𝑣) =
𝑘

𝑐
(
𝑣

𝑐
)
𝑘−1

𝑒𝑥𝑝 (−(
𝑣

𝑐
)
𝑘

) (2-4) 
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The formula in (2-4) depends on two parameters to fit the pdf to the historical measured 

wind speeds. These parameters can be calculated using the average wind speeds and the 

standard deviation of the historical wind speed data [29], as in (2-5) to (2-8). 

 𝑘 = (
𝜎

�̅�
)
−1.086

 (2-5) 

 
𝑐 =

�̅�

𝛤(1 +
1
𝑘)

 (2-6) 

 �̅� =
∑ 𝑣(𝑢)
𝑁
𝑢=1

𝑁
 (2-7) 

 𝜎 = √
∑ (�̅� − 𝑣(𝑢))

2𝑁
𝑢=1

𝑁 − 1
 

(2-8) 

2.1.5 Solar Energy 

Solar energy is available as radiated heat and light from the sun. Solar energy can only be 

collected during the day light and are affected by clouds or other obstacles. 

Nowadays, two main technologies are used to convert the solar energy to usable energy 

[23]: 

 Solar collectors, which are used to heat water or air to be used in buildings. 

 Solar photovoltaic (PV) cells which converts solar irradiation directly to 

electricity. 

Recently, Canada installed capacity of solar energy has increased, although it is still 

relatively small compared to the size of the energy market (0.12 % of the total installed 
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electricity generation capacity, as shown in Figure 2-7)  However, with the reduction of 

the photovoltaic system prices, which has been reduced to one third in the last six years 

[30], the installed capacity of photovoltaic systems is expected to increase rapidly. This is 

also due to the incentives given by the Canadians government for RES installation, 

especially photovoltaic systems, which can sell their generated energy to the grid with up 

to 38.4 ¢/kWh, as shown in Table 2-2.  Moreover, Canada south regions have a great 

potential for solar energy generation, as shown in Figure 2-7. 

 

Figure 2-7: Annual Photovoltaic potential and solar resource maps of Canada [21] 

 



 

 19 

Table 2-2: FIT/microFIT price schedule [31] 

Renewable Fuel Project Size Price (¢/kWh) 

Solar (PV) (Rooftop) 

≤ 10 kW 38.4 

> 10 kW ≤ 100 kW 34.3 

> 100 kW ≤ 500 kW 31.6 

Solar (PV) (Non-Rooftop) 
≤ 10 kW 28.9 

> 10 kW ≤ 500 kW 27.5 

 

The photovoltaic potential is the amount of electricity in kWh that can be generated 

annually on the average lifetime of the typical photovoltaic system per kW installed 

capacity. The potential of solar energy is lower in coastal areas in Canada and is higher in 

the central areas. Despite this, installing solar panels on residential buildings roofs can 

meet about half the residential electricity demand in Canada [21]. 

Most of these RES are geographically dependent. However, solar energy is one of the 

most promising source of energy due to the fact that it can be implemented anywhere on 

earth. They have wide variety of sizes that range with few watts and up to MW. The solar 

panels can be placed on ground, or can be roof top. 

Besides solar panels, wind turbines currently are offered in the market with wide range of 

capacities that ranges from few kW and up to few MW for a single unit. Smaller units are 

available in roof mount structure. 
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2.1.5.1 Photovoltaic system structure 

An individual photovoltaic cell produces about 0.5 V. These cells are connected in series 

to form a module with higher voltage, e.g. 12-V module. Further, the modules are 

connected in series to increase the voltage and in parallel to increase their current. Thus, 

several modules can be connected in series and parallel to form the photovoltaic array 

with desired output voltage, current, and power, as shown in Figure 2-8. Further, the 

photovoltaic arrays are connected to DC/DC converter to boost their voltage and DC/AC 

converter to interface with the AC grid. 

 

Figure 2-8: Photovoltaic array structure [23] 

2.1.5.2 Photovoltaic system characteristics 

The photovoltaic array has unique I-V characteristics, depending on the types of cells, 

and the connection of the cells and modules. Typical I-V characteristics of a PV array are 

shown in Figure 2-9 at specific solar irradiance and ambient temperature conditions. 

Three distinct operating points on the PV system characteristics can be identified: 



 

 21 

 Short circuit current: this is the current that is delivered by the PV array at a zero 

terminal voltage, i.e. short circuit. 

 Open circuit voltage: this is the voltage generated at the terminals of the PV array 

when the terminal current is zero, i.e. open circuit. 

Maximum output power: this operating point lies near the knee of the I-V curve, 

where maximum power can be generated from the PV array at the same solar 

irradiance and ambient temperature conditions. This point is the most desirable 

operating point; therefore, maximum power point tracking (MPPT) techniques are 

used to track this point at any solar irradiance and ambient temperature. 

 

Figure 2-9: The I-V characteristics of a typical PV array [23] 
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2.1.5.3 PV system output power 

As mentioned before, the output power of the PV system depends on the PV modules 

characteristics, solar irradiance, and ambient temperature. The output power of a PV 

module assuming MPPT can be calculated using [28]: 

 𝑇𝑐𝑒𝑙𝑙 = 𝑇𝐴 + 𝑆𝐼𝑅 × (
𝑇𝑛𝑜𝑚 −20

0.8
) (2-9) 

 𝐼𝑃𝑉 = 𝑆𝐼𝑅  × (𝐼𝑠𝑐 +𝐾𝑖(𝑇𝑐𝑒𝑙𝑙 − 25)) (2-10) 

 𝑉𝑃𝑉 = 𝑉𝑂𝐶 − 𝐾𝑣𝑇𝑐𝑒𝑙𝑙 
(2-11) 

 𝑃𝑃𝑉 = 𝑁𝑐𝑒𝑙𝑙𝑠  × 𝐹𝐹 × 𝑉𝑃𝑉 × 𝐼𝑃𝑉  (2-12) 

 𝐹𝐹 =
𝑉𝑀𝑃𝑃 × 𝐼𝑀𝑃𝑃
𝑉𝑂𝐶 × 𝐼𝑆𝐶

 (2-13) 

2.1.5.4 PV DG modeling for planning applications 

Due to the intermittent nature of the PV panels output power, a probabilistic model is 

used to model these types of RES [28]. For a specific hour during the day, the solar 

irradiance is usually modeled with a Beta pdf, which best describes the solar irradiance 

behaviour. The Beta pdf can be given as [28]: 

𝐹𝐵𝑒𝑡𝑎(𝑆𝐼𝑅𝑅) = {
𝛤(𝛼 + 𝛽)

𝛤(𝛼)𝛤(𝛽)
 𝑆𝐼𝑅𝑅
(𝛼−1)

 (1 − 𝑆𝐼𝑅𝑅)
(𝛽−1)     ∀ 0 ≤ 𝑆𝐼𝑅𝑅 ≤ 1,𝛼 ≥ 0,𝛽 ≥ 0

0                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (2-14) 
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𝛽 = (1 − 𝜇𝐼𝑅𝑅) ×(
𝜇𝐼𝑅𝑅  (1− 𝜇𝐼𝑅𝑅)

𝜎𝐼𝑅𝑅
2

− 1) (2-15) 

𝛼 =
𝜇𝐼𝑅𝑅  𝛽

1 − 𝜇𝐼𝑅𝑅
  (2-16) 

2.2 Background to battery energy storage systems 

Several technologies are available as means of electrical energy storage system (ESS). 

Any energy storage system consists of two basic components: energy storage reservoir 

and a power conditioning circuit (PCC) [32].  The function of the PCC is to convert the 

energy from the grid to a form that can be stored in the storage system, and vice versa. 

The PCC can be a power electronics converter as in batteries or a motor-generator set as 

in pumped hydro [32, 33]. 

The available ESS technologies can be categorized according to their application, which 

varies from power quality, bridging power, and energy management purposes, which can 

be briefly explained as follows (also illustrated in Figure 2-10) [32-35]:   

 For power quality applications, the energy stored in the ESS is used to enhance 

the power quality of the power system, such as improving the voltage profile. 

These applications require responding time in the range of seconds or fraction of 

seconds. This can be achieved by flywheels, capacitors, and BESS technologies. 

 Bridging power applications are used to ensure continuity of the electricity supply 

whenever switching from one source of power to another occurs. This application 

requires respond time in the range of seconds and up to minutes. BES and 
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superconducting magnetic energy storage (SMES) technologies can be used for 

this purpose. 

 Energy management is used to reshape the energy consumption curves by storing 

energy during off-peak or low prices periods and using this energy during peak or 

high prices periods. BES, SMES, pumped hydro, and compressed air energy 

storage (CAES) technologies can be used for this application which has a time 

span of hours. 

 

Figure 2-10: ESS technologies classification according to the application [35] 

Each ESS technology has unique characteristics, which depends on the medium in which 

the energy is stored. The physics behind each energy storage technology and the 

advantages/disadvantages of each technology are described briefly as follows [32, 33, 36-

38]: 
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 SMES stores energy in the form of magnetic field, which is generated by current 

flowing in a superconducting coil, which is made of special alloy and maintained 

at very low temperature to reduce its resistance to be almost negligible. Although 

this technology has high efficiency and long life time, it is very expensive to 

implement. 

 Energy is stored in capacitors in the form of electrical field. Capacitors have high 

efficiency and long life time; however, they provide only short-term storage. 

Super capacitors are also available, which can store more energy for longer time 

periods; however, this technology is expensive compared to other ESS.  

 Batteries are the most popular ESS, which store energy in the electrochemical 

form. BESS has lower life time and lower efficiency (60-80 %) compared to other 

ESS. Several types of batteries are available based on the material used in 

manufacturing: LA, Na/S, Ni/Cad, and VR batteries. 

 Flywheel stores electrical energy in the form of kinetic energy in a rotating mass.  

Flywheels have fast response, good efficiency, and long life time; however, they 

can deliver energy for short time periods. 

 CAES stores energy in the form of compressed air. Further, the compressed air is 

used to produce electrical energy. it has moderate efficiency and life time. This 

technology is highly dependent on the geography and cannot be economical 

feasible except in special locations.  
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 Pumped hydro storage is widely used, where water is pumped to high altitudes 

and used to drive hydro-turbines and produce electricity when needed. This 

technology store the electrical energy in the form of potential energy stored in the 

pumped water.  This technology is geography dependent, and requires building 

dams. 

Therefore, each technology has its power ratings and response time, which determine the 

proper application for each ESS type. Figure 2-11 shows the comparison between 

different technologies as reported by Electricity Storage Association and shown in [32]. 

 

Figure 2-11: Power rating and discharge time for different ESS technologies  [32] 
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A recent project in Canada by Toronto Hydro was installed with rating of 500 

kW-250 kWh [39]. Ontario government also put a plan for a total of 50 MW of ESS to be 

installed by the end of 2016 [40].  

ESSs have very expensive capital costs. The installation cost of ESS has been reduced by 

50 % in the last decade, and is expected to decrease further to less than $600 /kW by 

2020, as shown in Figure 2-12.  

 

Figure 2-12: Historical and projected installation cost of ESS per kW [41] 

2.2.1 BESS modeling for planning applications 

The BESS in this work are assumed to be four quadrants, as shown in Figure 2-13. 

Technical limitations on the stored energy, state of charge (SOC) level, charge/discharge 

rates, and reactive power limits should be considered in the model. Thus, at any instant of  

$0

$200

$400

$600

$800

$1,000

$1,200

$1,400

$1,600

$1,800

2000 2005 2010 2015 2020

Year 

Price



 

 28 

  

Figure 2-13: Four quadrant BESS characteristics  

time, the active and reactive power produced or absorbed by the BESS should not exceed 

the capability limits given in Figure 2-13, i.e. 

 𝑃2 + 𝑄2  ≤ 𝑆𝑀𝐴𝑋
2  (2-17) 

where P and Q are the active and reactive powers produced or absorbed by the BESS and 

𝑆𝑀𝐴𝑋  is the maximum apparent power of the BESS in kVA. The value of 𝑆𝑀𝐴𝑋  in 

practical changes is based on the BESS temperature; however, for simplicity, the effect of 

temperature variation is ignored in this work. Moreover, the SOC at any instant of time 

shouldn’t reach below a minimum value according to the BESS specifications.  
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2.3 Background to Plug-in Electric vehicles 

The electric vehicle (EV) is a vehicle with a driving torque produced by an electric 

motor.  The source of the electric energy to this motor and how this energy is delivered 

define the type of the EV. Three types are currently available: hybrid electric vehicle   

(HEV), PEV, and fuel cell EV. A brief description of each type is given hereunder. 

 The HEV has a conventional fossil fuel engine, which provides the required 

electric energy to the driving motor. Although it has better fuel efficiency 

compared to conventional vehicles, the only source of energy is the fossil fuel. 

 The PEV is a vehicle with a higher-capacity battery that can restore its charge 

from an external electric power source. These vehicles may contain a 

conventional fossil fuel engine to extend the driving range or it may be pure EV. 

Some of these vehicles may restore the charge of the battery by swapping their 

batteries with another charged battery without the need to connect to an external 

electric power source. 

 The third type is the fuel cell EV. These vehicles are equipped with fuel cell 

technology which converts chemical energy stored in fuel (usually hydrogen) to 

electric energy, which is supplied to the motor. These vehicles are more expensive 

compared to PEV. Moreover, hydrogen fueling stations infrastructure requires 

massive investments. On the other hand, the electric power system is almost 

available everywhere. 
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PEV is the most popular type of EVs, due to its low running cost and the availability of 

charging outlets. However, still the capital cost of the battery pack system is a challenge. 

The sizes of the batteries of these vehicles are determined by the vehicles class (sedan, 

SUV, pick-up, …, etc.) and all electric range (AER) [3]. The AER is the total distance 

that the vehicle can be driven in pure electric mode, i.e. battery depletion mode. In this 

mode, the stored energy in the battery is used to power the electric motor [3]. On the 

other hand, when the PEV is equipped with a fossil fuel engine, it can be driven in battery 

sustained mode, where the fossil fuel engine is used to power the electric motor or the 

engine can be used directly to produce the driving torque [42].  

Several types of chargers are available to charge the PEV battery pack from an electric 

outlet ranging from 3.3 kW (can deliver 3.3 kWh in one hour to the PEV battery pack) 

and up to 100 kW. However, the most common charger is the 7 kW charger, which is 

also known as level two charger  [43].  

A typical PEV charger structure is shown in Figure 2-14. This charger performs two main 

tasks [44]: 

 Converts the AC voltage from the grid to DC voltage via AC/DC power 

electronics converter.  

 Controls the battery pack voltage and current via DC/DC converter. 

For a Li-ion battery, usually it is charged in constant-current mode via the DC/DC 

converter till it reach a high SOC, then the constant-voltage charging mode is used to 
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avoid overcharging the battery pack, which may destroy it. Typical charging 

characteristics of a Li-ion battery pack are shown in Figure 2-15. 

 

 

Figure 2-14:PEV battery charger structure [44] 

 

Figure 2-15: Li-ion battery characteristics [45] 

2.4  Literature review 

The work presented in this thesis focuses on optimal allocation of PEV parking 

lots in conjunction with RES and BESS units. This implies determining the optimal 

location and sizes of installation. Moreover, the work includes consideration of optimal 
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operating strategy of the allocated resources. A literature survey in the topic of research is 

presented below. 

2.4.1 Optimal allocation of RES 

Although RES are environmental friendly, the harvested power from them is 

characterized by highly uncertainty, as they depend on highly variable and uncertain 

quantities of wind speed and solar irradiance. Moreover, existing distribution networks 

are not designed to accommodate high penetration level of such generation [46]. 

Therefore, planning the location and sizes of renewable DG units is a complicated 

process, and should be performed as accurately as possible [46-48]. The optimal 

allocation of DG units is a very important topic, which gained high interest since early 

2000’s. Nowadays, the focus is to increase the intake of the distribution networks from 

the renewable DG units without jeopardizing the distribution system equipment.  

The optimal DG allocation algorithm presented in [46-52] were developed with 

the goal of improving the voltage profile and reducing power losses on radial topology; 

however the work presented in  [46-52] is based only on DG units with dispatchable 

output power and did not consider the intermittent nature of renewable based DGs output 

power. In [53], time-varying models for generation and loads are utilized for optimal DG 

allocation. However, modeling the renewable DG with one day of variable data is not 

sufficient to include the uncertainty associated with the output of such DG units. The 

work in [28] includes consideration of the uncertainty associated with renewable DG 

units, by using probabilistic models for both generation and loads. However, the work 
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does not study the effect of the binding constraints on the DG allocation and utilized only 

balanced systems, which does not reflect the practical case of distribution feeders, which 

are usually unbalanced systems. Moreover, the work assumed that all system customers 

have the same loading profile, which is not practical. In [54], the authors proposed a 

technique for optimal renewable DG units’ allocation, taking into consideration smart 

control schemes. In [27] and [43], the authors introduced a multi-objective DG allocation 

algorithm to allocate renewable and dispatchable DG units in distribution networks. 

However, the work only includes consideration of balanced distribution networks. Multi-

objective techniques for DG allocation are proposed in [55] and [56] to minimize losses 

and optimally allocate renewable DG units. In [57], the authors presented a DG allocation 

algorithm, which is based on Genetic Algorithm (GA). The proposed work in [57] can 

efficiently deal with distribution system topology changes in timely manner. However, 

the study did not include consideration of the uncertainty of renewable DG units’ output 

power; besides, the run time is not a burden in these types of planning problems. The 

work in [58] presents an optimal DG allocation method to enhance the reliability of 

microgrid systems. The work includes consideration of the uncertainty associated with 

renewable DG output power, through utilizing probabilistic models for wind speed and 

solar irradiance. However, the work only included consideration of balanced systems.  

The work in [46] to [58] focus on identifying the optimal location and sizes of DG 

units without studying the impacts of the binding constraints on the objective, where a 

change in these constraints might lead to increase of the DG intake with slight decrease in 
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the objective function, which can be preferred from the point of view of the distribution 

network operators (DNOs). Hence, a careful study of the effect of the binding constraints 

on the allocation of DG units is required. Moreover, most of the aforementioned studies 

assumed balanced distribution systems with same load profile for all customers, which do 

not reflect the practical situation of distribution systems [59].  

2.4.2 Optimal allocation of BESS 

The BESS allocation has been tackled in research to optimize several objectives, which 

include [36]:  

 Deferring the network upgrades 

 Peak demand shifting 

 Enhancing the power system reliability  

Several publications tackled the optimal operation of ESS, as in [60-62] in electricity 

markets.  Another work addressed minimizing the annual capital and operational costs of 

a system composed of generation and storage facilities, as in [66]. However, this work 

didn’t include consideration of the power network, i.e., the optimal location of the BESS 

was not considered.  

The work in [67] proposed methods to investigate the impacts of high penetration of 

energy storage on the electricity market. However, the presented work didn’t include a 

method to integrate an optimal operating strategy. Moreover, the work in [67] didn’t 

include consideration of the optimal location of BESS. 
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The authors in [63] proposed a two-stage methodology for optimal allocation of storage 

units in distribution networks to improve the system reliability through successful 

islanding operation, which results in reduced interruptions of the power supply. The work 

in [64] proposed optimal sizing and siting of BESS to optimize overall costs of operating 

the distribution networks in regulating price or locational marginal price mechanisms. In 

[65, 66], the authors proposed optimal allocation of BESS to optimize several objectives, 

which include voltage profile, and losses. A probabilistic based technique is proposed in 

[67] to optimally allocate BESS in distribution systems with high penetration of wind 

based DG units. The aim was to maximize the benefits for the DG owners and the grid 

operators. The work in [68] proposed an optimal allocation of BESS to defer system 

upgrades and minimize system losses. However, the work in [68] was based on heuristic 

approach and didn’t provide a complete mathematical model to the planning problem. 

2.4.3 PEV charging stations planning 

Although, PEV charging stations required to be carefully allocated in distribution 

networks, as these networks are not designed originally to accommodate this extra load, 

very few publication exist in the area of PEV charging stations allocation. As in [69], the 

authors proposed a technique to optimally allocate inductive charging stations and 

charging pads in distribution networks. However, the work included consideration of the 

EV traffic flows without considering the electrical system characteristics. In [70], a 

technique is proposed for allocation and energy scheduling of EV charging facilities, 

while implementing vehicle to grid (V2G) mechanism. However, similar to [69], the 
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work in [70] didn’t consider the electrical system characteristics. The work in [71] 

proposes a method to optimally allocate EV charging stations taking into consideration 

customers’ preferences into the location planning model. In [72], a multi-objective 

approach is used for optimal allocation of PEV charging stations while considering the 

traditional investment in network reinforcement as means of accommodating the PEV 

charging stations. A multi-stage approach is proposed in [73] to allocate PEV charging 

stations. The work includes consideration of several aspects, such as travel pattern, 

consumer behavior, road network, and grid limits. In [74], the authors proposed a method 

to optimally allocate PEV charging stations taking into consideration drivers’ trip model. 

A methodology based on GA is proposed in [75] for the optimal allocation of PEV 

charging stations to improve the system reliability.  

Some work included consideration of distribution system technical limits and grid 

impacts of allocating PEV charging stations, as in  [76, 77]. In [76], the authors included 

preferences of PEV owners, who are likely to spend more time in certain locations, such 

as restaurant, stores, and shopping malls. An approach is developed in [77] and [78] to 

allocate the PEV charging stations in order to minimize the trips for charging stations. 

The work in [79] considered optimal allocation of PEV charging stations based on 

game theory to maximize the social welfare. The methodology is proposed in [80] for 

optimal allocation of EV charging stations taking into consideration the AER range and 

the overall costs. The authors in [81] proposed an optimal allocation approach for PEV 

charging stations to minimize the overall costs.  
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In all previous work, the authors didn’t include the probabilistic nature of PEV 

consumption, renewable resources generation, and normal demand of the distribution 

system. 
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Chapter 3  

RES DG optimal allocation 

This chapter investigates the impacts of binding constraints of the planning algorithms on 

the optimal allocation and sizing of renewable based DG units in distribution networks. 

The planning algorithm under study depends on developing multi-state probabilistic 

models for the distribution system components and combining these models in one 

comprehensive model that describes all possible system states. Several technical 

constraints are taken into consideration, including maximum reverse power at the 

substation, maximum number of renewable DG connections, voltage technical limits, 

thermal limits of cables and overhead lines, and voltage unbalance. In this work, the 

renewable DG allocation binding constraints are studied, where the effect of these 

constraints on the objective function, also known as shadow price, is investigated. The 

123-bus unbalanced three phase IEEE test system has been utilized in a case study to 

show the effectiveness of the proposed algorithm. The renewable DG allocation problem 

is formulated as nonlinear mixed-integer programming and solved in general algebraic 

modeling system (GAMS) environment. 

3.1 Introduction 

The goal of the work presented in this chapter is to evaluate and quantify the impacts of 

the binding constraints on the optimal allocation and sizing of RES DG units with 

consideration of the following:  
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• Uncertainty due to the intermittent nature of renewable based DGs output power.  

• Load variation and customer sector type.  

• Unbalanced distribution networks. 

Figure 3-1 depicts a schematic diagram of the proposed study. As shown in the figure, the 

proposed study starts by modeling the distribution system, the loads, and the renewable 

DG units. The planning problem is then formulated, with an objective function of 

minimizing the cost of energy losses. The problem will be subjected to several system 

constraints in order to make sure that the normal operating practices of the distribution 

system are not violated. The most salient constraints will be investigated versus the DG 

intake and the objective variations. The renewable DG allocation problem is formulated 

as a probabilistic nonlinear mixed-integer programming. 

Control variable: DG sizes and locations

Objectives: minimize energy losses cost

Load models 

according to types

Renewable DG 

model using 

historical data

Distribution network model (line 

data, load rating and type)

Probabilistic model of DG generation 

and load demand

 

Figure 3-1:  A brief description of the DG allocation approach. 
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3.2 Modeling 

3.2.1 Renewable DG modeling 

In this section, the probabilistic model of photovoltaic (PV) is presented. The same 

technique used to model PV based DG can also be used to model wind based DG. 

However, for a specific time segment, the solar irradiance data usually have a bimodal 

distribution function (pdf) [28]. Therefore, the data for each time segment are divided 

into two groups, each with a unimodal distribution function described by Beta probability 

density function [82]. On the other hand, the wind speeds usually follow a Weibull 

distribution function [28].  

For this work, the solar irradiance for each hour of the day are modelled by Beta pdfs 

using six years of historical data from weather station located in Toronto, Ontario, 

Canada. The probabilistic model for the PV based DG units’ output power is described as 

follows [43]:   

 The entire year is divided into 12 months, and each month is being represented by a 

day within that month.   

 The day which is representing the month is further subdivided into 24 one-hour 

segments each referring to a particular hourly interval of the entire month.   

 The mean and standard deviation for each time segment are calculated utilizing the 

historical solar irradiance data.  
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 The Beta pdfs are generated for each hour using the mean and standard deviation for 

each segment.  

 To describe the random phenomenon of the irradiance data, a Beta pdf is utilized for 

each unimodal [82].  

 In order to integrate the output power of the PV modules as multistate, the 

continuous pdf of each is divided into a proper number of states, which is a trade-off 

between accuracy and computational time. 

 Then, the probability of each irradiance state is calculated.  

 Therefore, 24 pdfs (i.e., one pdf for each hour of the day hours) are developed for 

each month.  

 The corresponding output power of the PV modules in each state are calculated using 

PV module characteristics [28].  

3.2.2 Load modeling 

The load in the distribution network under study is assumed to follow the three different 

load patterns [43]: residential, commercial, and industrial. Each type is modeled based on 

a defined number of states, depending on the desired accuracy, time scale, and speed of 

simulation, where the central centroid sorting process described in [83] is utilized to 

discretize the hourly load model. Each customer sector is assumed to follow same profile 

for each weekday and weekend in a specific month. This means that for each customer 
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sector, the load profile has 576 (12 month × 2 days × 24 hours) time segments, where 

each time segment has a unique pdf.    

3.2.3 Combined generation-load model 

This model describes all system states and their probabilities 𝕡(𝑡,𝑠) that correspond to 

different generation and load states. For the generation of this model, the year is divided 

into 12 months, and each month is modeled by two days: weekday and weekend. For 

each time segment of the 576, the probability of each combined state is then calculated as 

the convolution of all the probabilities associated with that state, as in (3-1). The 

probability of the occurrence of each state 𝑠 ∈ 𝒮𝑠𝑦𝑠  during any time segment is also 

evaluated, as in (3-2).  

 
𝕡(𝑡,𝑠) = 𝕡(𝑡,𝑠𝑃𝑉 ) × 𝕡(𝑡,𝑠𝑅 ) × 𝕡(𝑡,𝑠𝐶)  × 𝕡(𝑡,𝑠𝐼)  

(3-1) 

 
𝕡(𝑠) = (

1

576
)  ×∑ 𝕡(𝑡,𝑠)

576

𝑡=1

         ∀𝑠 ∈ 𝒮𝑠𝑦𝑠  (3-2) 

3.3 Problem formulation 

This section presents the DG allocation mixed integer nonlinear programming (MINLP) 

problem, which consists of the objective function and constraints, as follows: 

 min∑∑𝕡(𝑠) × 8760 ×  𝐶𝑘𝑊ℎ ×  𝑃𝑙𝑜𝑠𝑠 (𝑠,𝑝ℎ1)
𝑝ℎ1𝑠

 (3-3) 

 

𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨: 
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1) Power flow constraints  

 
𝑃𝑖𝑛𝑗 (𝑖,𝑝ℎ1,𝑠) = 𝑃𝐺 (𝑖,𝑝ℎ1,𝑠) − 𝑃𝐿(𝑖,𝑝ℎ1,𝑠)

= ∑ ∑ (𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ1)𝑉𝑚𝑎𝑔(𝑖 ,𝑝ℎ2)𝑌𝑚𝑎𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2) cos(𝑌𝑎𝑛𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2)

𝑝ℎ2 ∈ 𝒮𝑝ℎ (𝑗)
𝑏𝑢𝑠𝑗∈𝒮𝑏𝑢𝑠    

+ 𝑉𝑎𝑛𝑔(𝑖,𝑝ℎ2) −𝑉𝑎𝑛𝑔(𝑖,𝑝ℎ1) ))

−  (𝑉𝑚𝑎𝑔(𝑖 ,𝑝ℎ1)𝑉𝑚𝑎𝑔(𝑗,𝑝ℎ2)𝑌𝑚𝑎𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2) cos(𝑌𝑎𝑛𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2) +𝑉𝑎𝑛𝑔(𝑗,𝑝ℎ2)

− 𝑉𝑎𝑛𝑔(𝑖,𝑝ℎ1))) ∀𝑖 ∈ 𝒮𝑏𝑢𝑠, 𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠  

(3-4) 

 𝑄𝑖𝑛𝑗 (𝑖,𝑝ℎ1) = 𝑄𝐺(𝑖,𝑝ℎ1) − 𝑄𝐿(𝑖 ,𝑝ℎ1)

= ∑ ∑ (
𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ1)𝑉𝑚𝑎𝑔(𝑗,𝑝ℎ2)𝑌𝑚𝑎𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2)

sin(𝑌𝑎𝑛𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2) + 𝑉𝑎𝑛𝑔(𝑗,𝑝ℎ2) −𝑉𝑎𝑛𝑔(𝑖 ,𝑝ℎ1))
)

𝑝ℎ2 ∈ 𝒮𝑝ℎ(𝑗)
𝑏𝑢𝑠𝑗∈𝒮𝑏𝑢𝑠    

− (𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ1)𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ2)𝑌𝑚𝑎𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2) sin(𝑌𝑎𝑛𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2) + 𝑉𝑎𝑛𝑔(𝑖,𝑝ℎ2)

− 𝑉𝑎𝑛𝑔(𝑖,𝑝ℎ1) ))  ∀𝑖 ∈ 𝒮𝑏𝑢𝑠 , 𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠  

(3-5) 

2) Voltage technical limits 

The voltage of the system has to be kept within maximum and minimum limits, 

which are typically ± 5-6% dependent on the system voltage level. Moreover, the 

voltage unbalance has to be kept below the maximum allowable limit 

 
𝑉𝑚𝑖𝑛 ≤ 𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ1,𝑠) ≤ 𝑉𝑚𝑎𝑥  (3-6) 
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100 ×

𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ1,𝑠) −𝑉𝐴𝑉𝐺 (𝑖,𝑠)
𝑉𝐴𝑉𝐺 (𝑖,𝑠)

 ≤ 𝑈𝑉max (3-7) 

 𝑉𝐴𝑉𝐺 (𝑖,𝑠) = ∑𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ1,𝑠) /𝑁𝑝ℎ(𝑖)
𝑝ℎ1

 (3-8) 

3) Lines thermal limits 

The current flow in lines should not exceed the thermal capacity, as in (3-9). 

 𝐼𝑚𝑎𝑔(𝑙 ,𝑝ℎ1) ≤ 𝐼max(𝑙,𝑝ℎ1)  (3-9) 

 

4) Generated powers constraints 

It is assumed in this work that the renewable DG units operate at fixed power factor, 

which is assumed unity. Also, it is assumed that the total number of DG units installed in 

the system is limited to a maximum of  𝑁𝑀𝐴𝑋
𝑃𝑉 . 

 𝑃𝐺 (𝑖,𝑝ℎ1) = 0 ∀ 𝑖 ∈ 𝒮𝑛𝑜−𝐺𝐸𝑁  (3-10) 

 𝑄𝐺(𝑖,𝑝ℎ1) = 0 ∀ 𝑖 ∈ 𝒮𝑛𝑜−𝐺𝐸𝑁  (3-11) 

𝑃𝐺 (𝑖,𝑝ℎ1) = 𝑎(𝑖,𝑝ℎ1) × 𝒷(𝑖,𝑝ℎ1) × 𝑃𝑉𝑠𝑡𝑒𝑝  ∀ 𝑖 ∈ 𝒮𝑃𝑉  (3-12) 

𝑃𝐺(𝑖,𝑝ℎ1) ≤ 𝑃𝑉𝑀𝐴𝑋  ∀ 𝑖 ∈ 𝒮𝑃𝑉  (3-13) 

𝑄𝐺(𝑖,𝑝ℎ1) = 0∀ 𝑖 ∈ 𝒮𝑃𝑉  (3-14) 
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∑∑𝑎(𝑖,𝑝ℎ1)
𝑝ℎ1𝑖

≤ 𝑁𝑀𝐴𝑋
𝑃𝑉  (3-15) 

 

5) Reverse power flow limit 

According to the regulation of the distribution network operator, the reverse power 

flow at the substation should be limited to a maximum of 60% of the substation 

capacity [43]. 

 √𝑃𝐺 (𝑖=1,𝑝ℎ1)
2 +𝑄𝐺 (𝑖=1,𝑝ℎ1)

2 > 0.6 × 𝑘𝑉𝐴𝑆𝑆/3 (3-16) 

6) Losses constraints 

 𝑃𝑙𝑜𝑠𝑠 (𝑝ℎ1) =∑𝑃𝐺 (𝑖,𝑝ℎ1) − 𝑃𝐿(𝑖,𝑝ℎ1)
𝑖

 ∀𝑝ℎ1 (3-17) 

 𝑄𝑙𝑜𝑠𝑠 (𝑝ℎ1) = ∑𝑄𝐺(𝑖,𝑝ℎ1) −𝑄𝐿(𝑖,𝑝ℎ1)
𝑖

 ∀𝑝ℎ1 (3-18) 

 

3.4 Sample case study 

Consider the 123-bus IEEE test system under study in [84] which is unbalanced and 

contains a mix of residential, commercial and industrial customers being supplied from a 

common supply point, which is similar to the Canadian distribution as shown in Figure 

3-2. The load and lines data are available in appendix A [84] .  
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Choosing the candidate buses for the DG allocation is complicated techno-economic 

problem, which is out of the scope of the presented study. Thus, all system buses are 

assumed to be candidate buses for the proposed work. The probabilistic model presented 

here is utilized to model the PV based DG units output power. Twenty states are assumed 

to represent the PV module output, where the outcomes of the clustering process are 

shown in Table 3-1. Moreover, the load is assumed to be of three types: residential, 

commercial, and industrial. It is assumed that 10 states represent each type. The outcomes 

of the load clustering process are shown in Table 3-2. 

Table 3-1: PV based DG states as a percentage of capacity 

Generation 

state 

State as a percentage of 

DG capacity 

1 0.00% 

2 2.13% 

3 4.82% 

4 7.79% 

5 11.05% 

6 14.76% 

7 18.49% 

8 22.23% 

9 26.22% 

10 30.34% 

11 35.18% 

12 39.89% 

13 44.49% 

14 49.57% 

15 55.08% 

16 60.83% 

17 67.08% 

18 73.96% 

19 81.74% 

20 90.75% 
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Table 3-2 : Load states as a percentage of peak load 

Load state 
State as a percentage of peak load 

Residential Commercial Industrial 

1 37.45% 29.47% 2.90% 

2 43.74% 4.21% 6.60% 

3 49.75% 31.58% 25.00% 

4 55.27% 44.21% 30.00% 

5 61.87% 55.79% 44.00% 

6 66.96% 73.68% 53.50% 

7 72.48% 86.32% 60.00% 

8 78.57% 90.53% 62.00% 

9 84.60% 96.84% 75.00% 

10 100.00% 100.00% 100.00% 
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Figure 3-2: IEEE 123 node unbalanced test feeder [84] 

Here it is noteworthy that only PV based DG units are utilized in this work; however, 

other types of renewable DG units, such as wind turbines can be utilized in same manner.  

For each customer type, the system buses are assigned as follows: 

 Set of commercial customer buses: {2, 5, 7, 10, 15, 19, 22, 23, 25, 27, 33-35, 38-40, 

42, 48, 55, 57, 58, 69, 70, 75, 77, 79, 80, 81, 83, 85, 86, 88, 91, 93, 94, 96, 98, 100, 

104, 105, 106, 109, 110, 112, 113, 115, 119}; 

 Set of industrial customer buses: {52, 53, 54, 71, 72, 73, 82}; 

 The residential customer buses: All other buses. 
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Two cases are presented in this work representing base case, and optimal allocation. A 

detailed description of the results obtained in each case study is presented hereunder. 

3.4.1 The base case results 

For the base case, no DG units are considered. The price of energy is assumed to be 

0.05 $/kWh. The total expected annual cost of the system energy losses is found to be 

$6533.4. This value corresponds to 130,668.7 kWh annual losses. These losses represent 

almost 3.24 % of the total kWh delivered to the customers.  

3.4.2 DG allocation results 

In this case study, the PV based DG units are allocated in the system. The outcomes of 

the DG allocation are shown in Figure 3-3, where PVstep is set to 5 kW, and the 

maximum number of DG units NMAX
PV  is set to very large number. Table 3-3 shows the 

total Installed capacity in kW on each phase where the total connected PV capacity is 

found to be 2,115 kW on the three phases a, b and c.  
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Figure 3-3: The outcomes of the DG allocation 

 

Figure 3-4: Effect of varying the reverse power flow limit 
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Figure 3-5: Effect of varying the maximum number of DG units installed in the system 

 

Figure 3-6: Effect of varying the maximum DG capacity 

 
Table 3-3: Installed Capacities of DG units  

Bus 
Installed capacity in kW on each phase  

a b c 

Total (kW) 870 570 675 
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Moreover, the maximum allowable capacity per connection PVMAX is limited to 200 

kW. The corresponding total system losses are 66,492.6 kWh, which represents 49.11 % 

reduction in the system annual energy losses compared to the base case, which is very 

significant. 

Further, to investigate the effect of varying the reverse power limit in (3-16), this limit 

is changed gradually to investigate its effect on the optimal sizes of DG units and the 

annual energy losses. As shown in Figure 3-4, limiting the reverse power flow to more 

than 60 % does not have significant effect on the allocated capacity or the losses 

reduction. This is due to the fact that the PV panels output cease during night, where 

normal load is minimum and the reverse power flow is expected to be significant. These 

results are system dependent, and are different for another system and/or another DG 

type. On the other hand, for reverse power limits lower than 60%, the allocated capacity 

keeps reducing and the losses reduction as well. For no reverse power allowance (0 % 

reverse power flow limit), the total losses reduction is 56.16 % and the total allocated PV 

panels capacity is 1,260 kW on all three phases, which is almost 59 % less than the 

capacity allocated with 60 % reverse power flow limit. Also, the results show that the 

constraint in (3-16) is almost binding just below the 60 % reverse power flow limit. 

     Moreover, the number of DG units NMAX
PV  in (3-15) is reduced gradually to study its 

effect on the allocation problem. As shown in Figure 3-5, when NMAX
PV > 40 the 

constraint in (3-15) is not binding constraint and does not affect the losses or the installed 

capacity significantly. However, the slope of the increase in system losses gets steeper as 
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NMAX
PV  is reduced more. For example, when NMAX

PV  is reduced from 40 to 10, the reduction 

in the system losses is reduced from 49.11 % to 39.5 %. However, when NMAX
PV  is reduced 

from 10 to 3, the reduction in the system losses is reduced from 39.5 % to 26 %, where 

also (3-13) becomes binding. This can be noticed from the installed capacity, which is 

exactly 600 kW (3 × PVMAX). 

     Finally, the maximum capacity per PV based DG connection PVMAX is changed to 

investigate its effect on the problem outcomes. As shown in Figure 3-6, for PVMAX > 10 

kW, no significant change occurs in the losses or the total installed capacity. However, 

the reduction in losses and the total installed capacity are reduced at high rate when 

PVMAX is reduced below 10 kW. For example, when PVMAX is reduced from 10 kW to 5 

kW, the reduction in losses is reduced from 49 % to 39.8 %, respectively. 

3.5 Discussions and conclusions 

In this chapter, the optimal RES DG allocation problem is studied to quantify the 

impacts of binding constraints on the planning process of distribution systems. To that 

end, a probabilistic nonlinear mixed-integer planning problem is formulated. The 

generation and demand are individually modeled in probabilistic manner; then, different 

models are combined to generate a comprehensive multi-state probabilistic model that 

describes all possible system states. PV based DG units are considered in this work as the 

most promising renewable DG. The type of customers and unbalanced system, which 

reflect the practical situation of the grid, are modeled in the presented planning problem. 
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The study shows that optimal allocation of renewable DG units is very significant 

regarding energy losses reduction. Further, different aspects are studied regarding the 

effect of varying some of the salient constraints on the outcomes of the planning problem. 

By studying the effect of the reverse power flow limit at the substation, the 60 % limit 

imposed by Hydro One in Ontario, Canada is enough to reach the maximum possible 

intake of PV based DG units, as increasing this limit further does not result in significant 

increase in the total optimal allocated capacity in the system. Moreover, the maximum 

number of renewable DG units installed in the system has significant effect if reduced 

below certain limit, where this constraint becomes binding constraint. This limit is totally 

system dependent and can be extracted by varying the maximum number of DG units 

while keeping the other technical limits fixed. Furthermore, varying the maximum 

installed individual DG capacity also has significant effect on the DG allocation problem 

outcomes if reduced below certain threshold. Based on the outcomes and the analysis 

provided in this chapter, it is recommended to study the effect of the three studied 

technical limits on the outcomes of the allocation problem, as they have significant effect 

on the DG intake and the cost function reduction. Some of these technical constraints 

may be enhanced while the DG intake and the reduction in the cost of system losses are 

not affected, such as reducing the reverse power flow limit at the substation. 
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Chapter 4  

RES and BESS optimal allocation in smart 

distribution power grid 

The previous chapter focuses on optimal allocation of RES in distribution networks based 

on analytical probabilistic models. Chapter 4 extends the developed algorithm in the 

previous chapter to develop an approach for optimal allocation of RES and BESS units in 

distribution systems. 

4.1 Introduction 

The massive deployment of RES and BESS has gained significant interest in distribution 

networks, which creates a great challenge for distribution network investment planners 

and stakeholders. Toward this, an optimization problem formulation has been developed 

to determine the optimal locations and capacities of RES and BESS units in distribution 

systems. The objective of the proposed planning aims to minimize the overall capital and 

operational costs. For the purpose of accuracy, smart inverter control of  renewable DG 

units and smart scheduling of BESS have been taken into consideration. The planning 

problem of determining the optimal location and sizes of RES and BESS units is 

formulated as MINLP. 
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4.2 Modeling 

In this section the modeling of the system components (i.e. normal load, BESS, and 

RES) will be discussed. The previous chapter presented only the optimal allocation of 

renewable DG units in distribution networks, where an analytical probabilistic approach 

has been used to model RES and loads. However, due to the involvement of BESS, where 

the energy stored at any time segment is related to the energy stored in the previous time 

segment, chronological probabilistic models should be utilized in this work. Accordingly, 

a Monte Carlo simulation (MCS) is used in this chapter for modelling the distribution 

system components instead of analytical probabilistic models 

4.2.1 Normal load modeling 

The normal load model is assumed to follow the reliability test system (RTS) load 

pattern [85], where uncertainty of -5% to +5% is added as a uniform distribution to 

generate random scenarios of normal load. 

4.2.2 RES generated output power modeling 

RES output power should be modeled with proper pdf. The work in this thesis focuses 

on PV based RES, which are modeled using Beta pdf. However, the same model can be 

applied for wind based renewable DG units, where Weibull pdf is more suitable to fit the 

wind speed data [28]. The available historical data of solar irradiance for 6 years are 

clustered into four seasons, where each season is modeled as 24 hours. Thus, the model 

consists of 96 time segments. For each hour, proper pdf parameters are calculated, which 
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in this case Beta pdf. Then, MCS is used to generate a number of virtual scenarios, which 

mimic the history for the solar irradiance as shown in Figure 4-1. Finally, the simulated 

values of solar irradiance and average monthly temperatures are converted into output 

power based on the characteristics of the PV panels as discussed in 2.1.5.3. 
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Figure 4-1: Generating virtual scenarios of 

RES generation 
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4.2.3 Battery energy storage systems  

The BESS in this work is assumed to be four quadrants, as explained previously in 2.2.1 

and shown in Figure 2-13. For simplicity, the BESS is modeled as a constant power 

demand or generation at any instant of time. Further, technical limitations on the stored 

energy, SOC level, charge/discharge rates, and reactive power limits are considered. The 

BESS receives two reference signals for active and reactive powers, which represent the 

decision variable of the optimal operating schedule of the BESS. The reference signals 

are different in the operation time horizon (i.e. from one hour to another) based on the 

system state. The detailed model is incorporated in the optimization problem formulation 

present below. 

4.3 Problem formulation 

This section presents the mathematical formulation of the proposed optimization-

planning problem. The objective function of the planning problem including 

consideration of 1) the capital and operating cost of the new technologies (RES, BESS), 

2) the cost of energy losses and consumed energy by normal load and BESS, and 3) the 

profit of selling energy from RES. The objective function is represented as follows:  

 

min
Ω
∑𝕡(𝑠)  × ( 𝐶𝑃𝑉 − 𝐺𝑃𝑉(𝑠) +𝐶𝐵𝐸𝑆 +𝐶𝐿𝑜𝑠𝑠 (𝑠) + 𝐶𝑐𝑜𝑛𝑠(𝑠)) 

𝑠

 (4-1) 

where,  
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𝐶𝑃𝑉 =∑𝐶𝑃𝑉/𝑘𝑊  𝑃𝑃𝑉_𝐶𝐴𝑃(𝑖,𝑝ℎ1)  /𝐿𝑉

𝑖

 (4-2) 

𝐺𝑃𝑉(𝑠) = 𝐺𝑃𝑉/𝑘𝑊ℎ∑∑((𝑁𝑊𝐷/𝑁𝑡𝑜𝑡) ∑ ∑𝑃𝑃𝑉(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)
ℎ𝑑∈𝒲𝒟𝑝ℎ1𝑖

+ (𝑁𝑊𝐸/𝑁𝑡𝑜𝑡) ∑ ∑𝑃𝑃𝑉(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)
ℎ𝑑∈𝒲ℰ

) 

(4-3) 

𝐶𝐵𝐸𝑆 = ∑∑(𝐶𝐵𝐸𝑆/𝑘𝑊 𝑃𝐵𝐸𝑆_𝑘𝑊(𝑖,𝑝ℎ1) /𝐿𝑉 + (𝐶𝐵𝐸𝑆𝑂𝑀+𝐶𝐵𝐸𝑆
𝑘𝑊ℎ

 )𝑃𝐵𝐸𝑆_𝑘𝑊ℎ(𝑖,𝑝ℎ1) /𝐿𝑉)

𝑝ℎ1𝑖

 (4-4) 

𝐶𝐿𝑜𝑠𝑠(𝑠) +𝐶𝑐𝑜𝑛𝑠(𝑠)

= (𝐶𝑔𝑟𝑖𝑑/𝑘𝑊ℎ

/𝐿𝑉) ((𝑁𝑊𝐷/𝑁𝑡𝑜𝑡) ∑ ∑𝑃𝑔𝑟𝑖𝑑(ℎ,𝑑,𝑠)
ℎ𝑑∈𝒲𝒟

+ (𝑁𝑊𝐸/𝑁𝑡𝑜𝑡) ∑ ∑𝑃𝑔𝑟𝑖𝑑(ℎ,𝑑,𝑠)
ℎ𝑑∈𝒲ℰ

) 

 

(4-5) 

𝐿𝑉 =
(1 + 𝑟′)𝐿𝑇− 1

𝑟′(1+ 𝑟′)𝐿𝑇
 (4-6) 

𝑟′ =
𝑟 − 𝑓

1+ 𝑓
 (4-7) 

 

As shown in (4-1), the objective function of the planning problem depends on the 

decision variable set 𝛺, which contains the decision variables of installing the RES and 

BESS units , as well as,  the decision variables of the operation scheduling including the 

active and reactive power absorbed/delivered by BESS and the active and reactive power 



 

 60 

generated/curtailed by RES. Here it is worth noting that all the capital costs ($) are 

annualized or levelized ($/yr) by assuming that the capital investments are borrowed and 

paid annually with a fixed amount ($/yr). The costs of the system equipment are 

annualized as shown in (4-2) to (4-7) where the fixed capital costs are divided by the 

levelized cost (LV), which is expressed in terms of the interest rate (r), inflation rate (f), 

and lifetime of the equipment (LT) [23] .The objective function is subject to the 

following: 

1) Power flow constraints  
𝑃𝑖𝑛𝑗(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) = 𝑃𝐺 (𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) −𝑃𝐿 (𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)

= ∑ ∑ (𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ2,ℎ,𝑑,𝑠)𝑌𝑚𝑎𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2) cos(𝑌𝑎𝑛𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2)

𝑝ℎ2 ∈ 𝒮𝑝ℎ(𝑗)
𝑏𝑢𝑠𝑗∈𝒮𝑏𝑢𝑠   

+𝑉𝑎𝑛𝑔(𝑖,𝑝ℎ2,ℎ,𝑑,𝑠) − 𝑉𝑎𝑛𝑔(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)))

− (𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)𝑉𝑚𝑎𝑔(𝑗,𝑝ℎ2,ℎ,𝑑,𝑠)𝑌𝑚𝑎𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2) cos(𝑌𝑎𝑛𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2)+ 𝑉𝑎𝑛𝑔(𝑗,𝑝ℎ2,ℎ,𝑑,𝑠)

−𝑉𝑎𝑛𝑔(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠))) ∀𝑖 ∈ 𝒮𝑏𝑢𝑠,𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠 , ℎ,𝑑, 𝑠 

(4-8) 

𝑄𝑖𝑛𝑗(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) = 𝑄𝐺(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) −𝑄𝐿(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)

= ∑ ∑ (
𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)𝑉𝑚𝑎𝑔(𝑗,𝑝ℎ2,ℎ,𝑑,𝑠)𝑌𝑚𝑎𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2)

sin(𝑌𝑎𝑛𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2)+ 𝑉𝑎𝑛𝑔(𝑗,𝑝ℎ2,ℎ,𝑑,𝑠) − 𝑉𝑎𝑛𝑔(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠))
)

𝑝ℎ2 ∈ 𝒮𝑝ℎ(𝑗)
𝑏𝑢𝑠𝑗∈𝒮𝑏𝑢𝑠   

− (𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)𝑉𝑚𝑎𝑔(𝑖,𝑝ℎ2,ℎ,𝑑,𝑠)𝑌𝑚𝑎𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2) sin(𝑌𝑎𝑛𝑔(𝑖,𝑗,𝑝ℎ1,𝑝ℎ2) +𝑉𝑎𝑛𝑔(𝑖,𝑝ℎ2,ℎ,𝑑,𝑠)

−𝑉𝑎𝑛𝑔(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)))  ∀𝑖 ∈ 𝒮𝑏𝑢𝑠,𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠 ,ℎ,𝑑, 𝑠 

(4-9) 

𝑃𝐺(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) = 𝑃𝑔−𝐵𝐸𝑆(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) + 𝑃𝑃𝑉(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)       ∀𝑖 ∈ 𝒮𝑏𝑢𝑠,𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠 ,ℎ, 𝑑, 𝑠 (4-10) 

𝑄𝐺(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) = 𝑄𝑔−𝐵𝐸𝑆(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) +𝑄𝑃𝑉(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)       ∀𝑖 ∈ 𝒮𝑏𝑢𝑠,𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠 ,ℎ,𝑑, 𝑠 (4-11) 
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2) Voltage technical limits 

The voltage of the system has to be kept within maximum and minimum limits, which are 

typically ± 5-6% dependent on the system voltage level.  

 𝑉𝑚𝑖𝑛 ≤ 𝑉(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) ≤ 𝑉𝑚𝑎𝑥     ∀𝑖 ∈ 𝒮𝑏𝑢𝑠, 𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠 , ℎ, 𝑑, 𝑠 (4-12) 

3) Lines thermal limits 

 𝐼(𝑖,𝑗,𝑝ℎ1,ℎ,𝑑,𝑠) ≤ 𝐼𝑀𝐴𝑋(𝑖,𝑗,𝑝ℎ1,𝑑)   ∀𝑖 ∈ 𝒮𝑏𝑢𝑠, 𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠 , ℎ, 𝑑, 𝑠 (4-13) 

4) Discrete size of DER constraints 

𝑃𝐵𝐸𝑆_𝑘𝑊(𝑖,𝑝ℎ1) = 𝒶𝐵𝐸𝑆(𝑖,𝑝ℎ1)× 𝒷𝐵𝐸𝑆1(𝑖,𝑝ℎ1) × 𝑃𝐵𝐸𝑆−𝑘𝑊
𝑆𝑡𝑒𝑝

   ∀𝑖 ∈ 𝒮𝑏𝑢𝑠,𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠  (4-14) 

𝑃𝐵𝐸𝑆_𝑘𝑊ℎ(𝑖,𝑝ℎ1) = 𝒶𝐵𝐸𝑆(𝑖,𝑝ℎ1)× 𝒷𝐵𝐸𝑆2(𝑖,𝑝ℎ1) × 𝑃𝐵𝐸𝑆−𝑘𝑊ℎ
𝑆𝑡𝑒𝑝

   ∀𝑖 ∈ 𝒮𝑏𝑢𝑠,𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠  (4-15) 

𝑃𝑃𝑉_𝐶𝐴𝑃(𝑖,𝑝ℎ1) = 𝒶𝑃𝑉(𝑖,𝑝ℎ1)× 𝒷𝑃𝑉(𝑖,𝑝ℎ1) × 𝑃𝑃𝑉
𝑆𝑡𝑒𝑝

   ∀𝑖 ∈ 𝒮𝑏𝑢𝑠,𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠  (4-16) 

5) Candidate bus constraints 

 𝒶𝐵𝐸𝑆1(𝑖,𝑝ℎ1) ,𝒷𝐵𝐸𝑆1(𝑖,𝑝ℎ1),𝒶𝐵𝐸𝑆2(𝑖,𝑝ℎ1) ,𝒷𝐵𝐸𝑆2(𝑖,𝑝ℎ1) = 0  ∀𝑖 ∈ ℐ𝐵𝐸𝑆, 𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠  

(4-17) 

 𝒶𝑃𝑉(𝑖,𝑝ℎ1) ,𝒷𝑃𝑉(𝑖,𝑝ℎ1) = 0     ∀𝑖 ∈ ℐ𝑃𝑉  𝑝ℎ1 ∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠

 
(4-18) 

6) RES operational constraints 

𝑃𝑃𝑉(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠) = 𝑋𝑃−𝑃𝑉(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠)  × 𝑃𝑃𝑉_𝐶𝐴𝑃(𝑖,𝑝ℎ1) × 𝑃𝑃𝑉(𝑑,ℎ,𝑠)
𝑀𝐶𝑆       ∀𝑖, 𝑝ℎ1

∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠 , 𝑑, ℎ, 𝑠 

(4-19) 

𝑄𝑃𝑉(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠) = 𝑋𝑄−𝑃𝑉(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠)  ×𝑃𝑃𝑉(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠) ×tan(cos
−1(𝑝𝑓𝑃𝑉))   ∀𝑖, 𝑝ℎ1

∈ 𝒮𝑝ℎ(𝑖)
𝑏𝑢𝑠 , 𝑑, ℎ, 𝑠 

(4-20) 

7) Reverse power flow limit 



 

 62 

According to the regulation of the distribution network operator, the reverse power flow 

at the substation should be limited to a maximum of 60% of the substation capacity [28]. 

∑∑(𝑃𝐺(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) −𝑃𝐿(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠))

𝑝ℎ1𝑖≠1

≤ 𝑃𝑀𝐴𝑋
𝑅𝑒𝑣     ∀ℎ,𝑑, 𝑠    (4-21) 

8) BESS operation constraints 

As mentioned in the previous section, the BESS receives two reference signals: 𝑃𝑔−𝐵𝐴𝑇  

and 𝑄𝑔−𝐵𝐴𝑇 . The constraint in (4-22) relates the stored energy in any time segment to the 

stored energy in the previous time segment. The constraint in (4-23) limits the stored 

energy to the maximum kWh capacity of the BESS. The delivered or absorbed active 

power at any time segment is related to the charging/discharging decisions as in (4-24). 

Other technical limitations are introduced in (4-25) to (4-27). 

 

𝐸𝐵𝐴𝑇(𝑖,𝑝ℎ1,ℎ+1,𝑑,𝑠) = 𝐸𝐵𝐴𝑇(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) +𝑋𝑃−𝐵𝐴𝑇(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)  × 𝑃𝐵𝐴𝑇−𝑀𝐴𝑋(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)  ∀𝑖

∈ ℐ𝐵𝐸𝑆 , 𝑝ℎ1 
(4-22) 

 𝐸𝐵𝐴𝑇(𝑖,𝑝ℎ1,ℎ,𝑑) ≤ 𝐸𝐵𝐴𝑇−𝑀𝐴𝑋(𝑖,𝑝ℎ1)  ∀𝑖 ∈ ℐ𝐵𝐸𝑆, 𝑝ℎ1 (4-23) 

 𝑃𝑔−𝐵𝐴𝑇(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) = 𝑋𝑃−𝐵𝐴𝑇(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) ×
𝑃𝐵𝐴𝑇−𝑀𝐴𝑋(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)

𝐸𝑓𝑓𝐵𝐴𝑇(𝑖)
∀𝑖 ∈ 𝐼𝐵𝐴𝑇 , 𝑝ℎ1 (4-24) 

 𝐸𝐵𝐴𝑇(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) ≥ 0.01 × 𝑆𝑂𝐶𝐵𝐴𝑇−𝑀𝐼𝑁(𝑖,𝑝ℎ1)× 𝐸𝐵𝐴𝑇−𝑀𝐴𝑋(𝑖,𝑝ℎ1) ∀𝑖 ∈ ℐ𝐵𝐸𝑆 , 𝑝ℎ1 (4-25) 

 𝑃2𝑔−𝐵𝐴𝑇(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) +𝑄
2
𝑔−𝐵𝐴𝑇(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)  ≤  𝑃

2
𝐵𝐴𝑇−𝑀𝐴𝑋(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) (4-26) 
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 𝑄𝑔−𝐵𝐴𝑇(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) = 𝑋𝑄−𝐵𝐴𝑇(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) × 𝑄𝐵𝐴𝑇−𝑀𝐴𝑋(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) (4-27) 

4.4 Sample case study and discussions 

The proposed planning framework is tested using the 38-bus distribution system shown in 

Figure 4-2 [86]. Although the problem formulation is based on unbalanced three phase 

system, the approach is applied to a balanced system for simplicity and to facilitate 

analyzing the results. The system contains a mix of residential, commercial and industrial 

customers being supplied from a common supply point. The system data are given in 

appendix B and type of customers are given in [86]. The total system peak load is 4.37 

MVA. The interest rate and the inflation rate are assumed to be 5% and 1% respectively. 

For the RES, in this case PV, the capital cost is 3,500 $/kW [87] and the lifetime is 20 

years. The step size is assumed to be 5 kW. The LA batteries, as one of the most cost 

effective storage technologies, are used in this case study. The parameters of LA batteries 

are given in Table 4-1 [32]. It is worth noting that candidate PV bus locations are 

determined by detailed techno-economic planning analysis, which are outside the scope 

of the presented work and assumed to be inputs to this study. Therefore, all the system 

buses are assumed to be candidate for the PV and BESS connections. 

 Table 4-2 shows a description of several case studies that have been conducted as 

a means of evaluating the merits of the proposed planning framework.  
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Figure 4-2: The 38-bus distribution test system 

Table 4-1: Data of LA battery [32] 

Power capital cost 175 $/kW 

Energy capital cost 305 $/kWhr 

Annual operation and maintenance cost 15 $/kW 

Round-trip efficiency 75% 

Life-time 3200 cycles 

Maximum battery size 1000 kW – 1000 

kWhr 
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Table 4-2: Description of the conducted case studies  

Case Description Case Description 

A Base case B PV DG allocation 

C BESS allocation D PV DG and BESS allocation 

 

Table 4-3 shows the detailed simulation results of the cost of consumed energy and 

losses, the expenses of installations for PVs, and BESSs, and the profits achieved for the 

installations in each case study. Table 4-4 presents the optimal number, sizes and 

locations of the installed PVs, and BESS for each case study. As shown in Table 4-3, the 

total annual cost of the energy purchased from the grid in the base case (A), where no 

allocation is performed, is $1.320 M. This energy is the sum of the energy consumed by 

normal load customers and the energy dissipated as losses with contributions of 97.4 % 

and 2.6 % respectively. In case B, where only the allocation of PV is considered, it is 

assumed that the generated energy is sold to the grid at a fixed rate, which represents the 

incentives from the government to reduce the greenhouse gas emissions. The allocated 

capacity varies depending on the tariff at which the generated energy is sold. As shown in 

Figure 4-3, the profit of installing PV in the system is negative up to around 14.1 ₵/kWh. 

However, for a tariff above 12.5 ₵/kWh, the sum of the savings in the cost of energy 

losses and the negative profit is positive; thus, the planning problem starts allocating PV 

units in the system although the cost of installation is higher than the profit of selling 

energy to the grid. In this work, the feed-in-tariff (FIT) program in Ontario, Canada, is 
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used as a reference for a 27.5 ₵/kWh [31]. The total allocated capacity in this case is 4 

MW, which represents the maximum allowable allocated capacity of DG units in the 

system. The allocation results in 30.4 % reduction in the annual energy losses and 53.8 % 

reduction in the cost of energy losses. This is due to the reduction of the losses in periods 

of high price. As shown in Table 4-3, the annual profit of selling energy to the grid is 

90.8 % higher than the annualized installation cost of the PV. The net expenses to run the 

system are 72 % lower than the base case. 

In case C, the allocation of the BESS resulted in a saving of 20.9 % in the cost of 

energy losses, and an annual profit of $51,457 due to price differences of energy from 

peak to off-peak periods. The net expenses to run the system are 1.6 % lower than the 

base case. The allocated BESS is at bus 31 with a capacity of 200 kW and 875 kWh. As 

shown in Figure 4-3, which shows one scenario of BESS charging/discharging schedule, 

The BESS starts charging when the prices are low till 8:00 am. Then, when the energy 

prices gets higher, it starts discharging from 8:00 am till 11:00 am and holds the stored 

energy till the prices drop at 12:00 noon. Case D considers allocating both PV and BESS. 

The total allocated capacity of PV is found to be 3,165 kW. On the other hand, one BESS 

unit is allocated at bus 38 with capacity of 625 kW and 3500 kWh. The reduction in the 

cost of energy loss is 77.8 %, which is very high due to smart scheduling of the BESS 

unit. Compared to the base case, the net expenses are 75.9 % lower. 
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Figure 4-3: PV DG allocation saving and profit 

 

 

 

 

 

 

 

 

 

-$20,000
-$10,000

$0
$10,000
$20,000
$30,000
$40,000
$50,000
$60,000
$70,000

12 12.5 13 13.5 14 14.5 15 15.5

Tarrif of selling clean energy  
(₵/kWh) 

Saving in cost of energy loss ($)
Net profit of selling PV generation ($)



 

 68 

 

Table 4-3: Cost related results 

Case A B C D 

C
o
n

su
m

e

d
 e

n
er

g
y

 

($) 1,286,360 1,286,360 1,286,360 1,286,360 

(%)* 0.00% 0.00% 0.00% 0.00% 

E
n

er
g
y

 

lo
ss

 

($) 33,880 15,655 26,800 7,511 

(%)* 0.00% -53.79% -20.90% -77.83% 

E
x
p

en
se

s 

($
) 

RES  0 1,026,543 

 

1,026,543 

BESS  0 0 37,519 143,397 

P
ro

fi
t 

($
) 

RES  0 1,959,130 0 1,959,130 

BESS  0 0 51,457 187,252 

N
et

 

E
x
p

en
se

s 

 

($) 
1,320,240 

 

369,428 

 

1,299,222 

 

317,429 

 

* Percentage increase from base case 
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Table 4-4: Technical results 

Case A B C D 

L
o

ss
e
s 

(MWh) 427 297 663 959 

(%)
*
 0.00% -30.44% 55.27% 124.59% 
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 a

ll
o

c
a

ti
o

n
 

Bus − 
5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18, 21, 22, 24, 25, 26, 27, 28, 29, 

30, 31, 32, 33, 34, 37 
− 

4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 20, 
23, 24, 25, 26, 29, 30, 31, 32, 38 

(kW) − 

5, 150, 125, 30, 75, 115, 190, 190, 
275, 120, 180, 130, 155, 15, 35, 160, 
335, 30, 20, 30, 110, 600, 275, 545, 

85, 5, 15 

− 
90, 20, 215, 25, 75, 80, 165, 160, 125, 
120, 130, 50, 25, 565, 505, 55, 125, 

505, 60, 50, 30 

B
E

S
S

 

a
ll

o
c
a

ti
o

n
 

Bus − − 31 38 

(kW) − − 200 625 

(kWh) − − 875 3500 
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Figure 4-4: Energy prices and stored energy for a scenario from case C 
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4.5 Conclusions 

This chapter presents a planning approach to allocate RES and BESS units in distribution 

networks. The presented approach can help the distribution companies and investors to 

optimize their investments. The proposed planning approach includes smart scheduling of 

the BESS units, and smart control of PV inverters. The planning problem is defined as 

MINLP, which is solved using deterministic optimization tool. Simulation results on a 

typical distribution system demonstrate that significant profit can be achieved by 

allocating BESS units in addition to renewable DG units. Although the results are entirely 

system dependent, the proposed method is generalizable and can be applied to any 

distribution network. 



 

 72 

Chapter 5  

PEV charging stations optimal allocation in 

smart power distribution grid 

In this chapter, the previous work in chapter 4 is extended to include PEV parking lots 

allocation in conjunction with RES and BESS optimal allocation. 

5.1 Introduction 

This chapter presents the core of this thesis, which is presented by a conceptual 

framework and a methodology for optimal sizing and siting of grid-interfaced PEV 

chargers in parking lots in combination with RES and BESS in distribution networks. 

Unlike previous works, the proposed framework is more comprehensive, where the 

planning problems of PEVS, RES, and BESS all are combined together.  To that end, a 

MINLP optimization planning problem formulation has been developed. The objective of 

the developed optimization problem is to achieve the minimum cost and maximum 

efficiency for local distribution companies and their stakeholders. The formulated 

problem accounts for the uncertainty due to the intermittent nature of RES output power 

and PEV charging load. In this regard, a new modeling for PEVs charging demand is 

proposed. Moreover, compared with previous works, the proposed framework is more 

accurate, where optimal operation scheduling of PEVs, RES and BESS has been 

incorporated in the formulated planning problem. Due to its complexity, the global 

optimization-planning problem has been split into two nested layers (sub-problems); 



 

 73 

namely exterior and interior. The exterior layer represents the installation problem and it 

contains the solution space of the number, location and sizes of PEVs, RES and BESS; 

while, the interior layer determines the operation schedules of PEVs charging, RES and 

BESS for each candidate solution in the exterior layer. A combination between 

metaheuristic and deterministic optimization techniques has been utilized to solve the 

exterior and interior problems concurrently.  

5.2 Modeling 

In this section the modeling of the PEV demand is discussed. The normal load, BESS, 

and RES models are the same as in chapter 4. 

Unlike previous models, which adopted rigid charging schedules for coordinated PEV 

charging, the proposed model utilizes historical data to generate virtual scenarios of 

vehicles arrivals and departures. These scenarios are later converted to energy 

consumption during the planning problem. 

Since, each type of parking lots (residential, commercial down town, commercial 

commute, etc.) has unique arrival rates and parking durations, a generalized model is 

developed in this section, which utilizes MCS to generate virtual scenarios for PEV 

arrivals and parking durations. The output of this model can be described as virtual 

scenarios of PEVs charging, which are further translated to power consumption from the 

grid in the optimization process. Here it is worth noting that the power demand of PEVs 

depends on the charging mode of operation (i.e. uncoordinated or coordinated/scheduled) 

considered in the planning problem.  
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To generate this model, two major variables have to be considered, which affect the 

PEV coordinated load model in a parking lot; they are arrival rate and parking duration. 

The proposed model utilizes practical historical data of arrival rates and parking durations 

of conventional vehicles in several parking lots in Toronto, Ontario, Canada. These data 

are made available through Toronto Parking Authority. However, due to the lack of PEVs 

charging data, the required charging energy and charging rates limits are assumed to 

follow standard uniform distribution between minimum and maximum values. These two 

values are chosen based on the available PEVs in the market [1]. The proposed PEV 

model is illustrated in Figure 5-1, and can be described as follows: 

Step 1: Each season of the year is modeled with two days: weekend (or holiday), and 

weekday. Consequently, the historical data is clustered into seasons, and each season data 

is clustered into weekday or weekend. 

Step 2: The arrival rates in each of the 24 hours of the eight days (4 seasons × 2 days) 

representing the year are extracted from the historical data. Different types of pdfs are 

used to fit the arrival data. For instance, the arrival rates of the PEVs to a parking lot 

located in downtown Toronto are found to be modelled as Gaussian distribution. 

Therefore, for each of the eight days representing the year, there are 48 parameters (24 h 

× 2 parameters), i.e. mean and variance, are calculated from the historical data of the 

arrival rates. 
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Step3: For each hour of the 192 hours (24 h × 8 days) representing the year, the inverse 

of the Gaussian distribution of each cumulative distribution function (cdf) is used to 

generate Ns virtual scenarios of PEV arrivals, as in (1). 

𝐴(𝑑,ℎ,𝑠) = 𝐶𝐷𝐹𝐴(𝑑,ℎ)
−1 (𝑈(𝑠))          ∀𝑑,ℎ, 𝑠 ≤ 𝑁𝑠 (5-1) 

Step 4: Virtual parking durations are generated for all vehicles in all scenarios for hour 

ℎ in day 𝑑, as follows: 

𝑇(𝑑,ℎ,𝑣) = 𝐶𝐷𝐹𝑇(𝑑,ℎ)
−1 (𝑈(𝑣))          ∀𝑑,ℎ,≤ 𝑁𝑉𝐻(ℎ) (5-2) 

Step 5: As stated before, due to the lack of PEVs charging data, the numbers of PEVs 

arriving each hour for different scenarios are assigned random required charging energy 

and charging rate limit values according to uniform standard distribution. Hence, the 

parking duration, required charging energy, and charging rate, are defined for each PEV 

arrives to the parking lot in any scenario 𝑠.  
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Figure 5-1: Proposed PEV arrival rate modeling 

5.3 Problem formulation 

This section presents the mathematical formulation of the optimization-planning problem. 

The objective function of the planning problem including consideration of 1) the capital 

and operating cost of the new technologies (PEVs, PV, BESS), 2) the cost of energy 
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losses and consumed energy by normal load, PEVs, and BESS, and 3) the profit of selling 

energy from PV. The objective function is represented as follows:  

min
Ω1,Ω2

∑𝕡(𝑠)  × ( 𝐶𝑃𝑉−𝐺𝑃𝑉(𝑠) + 𝐶𝐵𝐸𝑆+𝐶𝐸𝑉 +𝐶𝐿𝑜𝑠𝑠(𝑠)+ 𝐶𝑐𝑜𝑛𝑠(𝑠)) 

𝑠

 (5-3) 

where, all costs are as in (4-2) to (4-7) and   

𝐶𝐸𝑉 = 𝐶𝐸𝑉_𝐶𝐻 𝑁𝐸𝑉_𝐶𝐻(𝑖)  /𝐿𝑉 
(5-4) 

 

As shown in (5-3), the objective function of the planning problem depends on two 

decision variable sets (𝛺1 and 𝛺2). The set 𝛺1 contains the decision variables of the 

installation problem, i.e. 𝛺1 = { 𝒶𝐵𝐸𝑆   ,𝒶𝑃𝑉 , 𝒷𝐵𝐸𝑆1𝒷𝐵𝐸𝑆2 , 𝒷𝐸𝑉 , 𝒷𝑃𝑉  } . On the other hand, 

the set 𝛺2 contains the decision variables of the operation scheduling including the active 

power consumed by PEVs, the active and reactive power absorbed/delivered by BESS 

and the active and reactive power generated/curtailed by PVs, i.e.  

𝛺2 = { 𝑋𝑃−𝐵𝐴𝑇 , 𝑋𝑄−𝐵𝐴𝑇 , 𝑋𝑃−𝑃𝑉, 𝑋𝑄−𝑃𝑉 , 𝑋𝐸𝑉 } . The objective function is subject to the 

same constraints in chapter 4, except for these changes or additions: 

1) Power flow constraints  

The power flow constraints are the same as in chapter 4. However, the demand on each 

bus includes the PEV consumption, i.e. 

𝑃𝐿(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) = 𝑃𝑁𝐿(𝑖,𝑝ℎ1,ℎ,𝑑,𝑠) + 𝑃𝑃𝐸𝑉 (𝑖,𝑝ℎ1,ℎ,𝑑,𝑠)   ∀𝑖, 𝑝ℎ1, ℎ, 𝑑, 𝑠 (5-5) 

2) Candidate bus constraints 
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 𝒷𝐸𝑉(𝑖) = 0     ∀𝑖 ∈ ℐ𝐸𝑉      
(5-6) 

3) PEV operational constraints:   

Based on the number of charging stations, i.e. 𝒷𝐸𝑉 (𝑖),  the PEV demand  can be expressed 

in terms of the charging decision of vehicles 𝑣 (𝑋𝐸𝑉(𝑖,𝑑,ℎ,𝑠,𝑣)) as in (5-7) and (5-8). The 

maximum allowable rate of charge for each vehicle 𝑣 is formulated as a function of the 

SOC as in (5-9). The total energy delivered for each vehicle is evaluated as in (5-10) and 

(5-11). The constraints in (5-12) relate the SOC of each vehicle 𝑣 to the SOC in the 

previous time step. 

 𝑃𝑃𝐸𝑉(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠) =  ∑
𝑋𝐸𝑉(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)  𝑃𝐶𝐻(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)

𝜂𝐶𝐻 
  𝑣

 (5-7) 

 𝑃𝐶𝐻(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣) = {
𝑃𝐶𝐻(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)
𝑚𝑎𝑥       ∀𝑃𝐶𝐻(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)

𝑚𝑎𝑥 ≤ 𝑃𝐶𝐻(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)
𝑐𝑎𝑝𝑐𝑖𝑡𝑦

𝑃𝐶𝐻(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)
𝑐𝑎𝑝𝑐𝑖𝑡𝑦

      ∀𝑃𝐶𝐻(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)
𝑚𝑎𝑥 > 𝑃𝐶𝐻(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)

𝑐𝑎𝑝𝑐𝑖𝑡𝑦  (5-8) 

 𝑃𝐶𝐻(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)
𝑚𝑎𝑥 = 𝑓(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)

𝐶𝐻 (𝑆𝑂𝐶(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)) (5-9) 

 𝐸𝐷(𝑖,𝑝ℎ1 ,𝑑,𝑠,𝑣) = 𝐸𝐵𝐴𝑇(𝑖,𝑝ℎ1 ,𝑑,𝑠,𝑣)∑(𝑆𝑂𝐶(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)− 𝑆𝑂𝐶(𝑖,𝑝ℎ1 ,𝑑,ℎ−1,𝑠,𝑣))/100
ℎ

 (5-10) 

 𝐸𝐷(𝑖,𝑝ℎ1,𝑑,𝑠,𝑣) = 𝐸𝑅𝐸𝑄(𝑖,𝑝ℎ1,𝑑,𝑠,𝑣)  (5-11) 

 𝑆𝑂𝐶(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣) = 𝑆𝑂𝐶(𝑖,𝑝ℎ1,𝑑,ℎ−1,𝑠,𝑣) +100 ×
𝑋𝐸𝑉(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)  𝑃𝐶𝐻(𝑖,𝑝ℎ1,𝑑,ℎ,𝑠,𝑣)

𝑚𝑎𝑥  

𝐸𝐵𝐴𝑇(𝑖,𝑝ℎ1,𝑑,𝑠,𝑣)
 (5-12) 
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5.4 PROBLEM SOLUTION 

The formulation described in the previous section is a mixed integer nonlinear 

programming MINLP problem. To lower its complexity, the problem is split into two 

nested parts i.e. exterior and interior. The exterior and interior parts represent the 

installation and operation-scheduling problems, which are controlled by the decision 

variable sets, 𝛺1 and 𝛺2, respectively. Figure 5-2 shows a flowchart that summarizes the 

proposed solution mechanism of the formulated planning problem. As shown in the 

figure, a combination between metaheuristic technique and deterministic technique has 

been utilized to manage exterior and interior parts concurrently. The GA toolbox under 

the Matlab® environment is used as the metaheuristic technique, which governs the 

exterior part by determining the decision variable set 𝛺1. As depicted in the figure, the 

interior NLP problem describing the operation scheduling is solved for an initial 

population of 𝛺1 using a powerful commercial optimization software (GAMS 

environment) for each hour of the 8 days representing the year, and for each possible 

scenario s.  The solution of the interior part yields the set of decision variables for the 

operation scheduling, i.e. 𝛺2. Then, based on 𝛺1 and 𝛺2, the total capital and operational 

costs are calculated for each scenario. 
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Figure 5-2: Proposed planning algorithm structure 
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The fitness of each individual, i.e. 𝛺1, is defined as the overall expected costs or the 

overall system annualized costs. The overall annualized costs consist of the capital and 

operating costs of PEV charging stations, PVs, and BESS and the cost of purchasing 

energy from the grid, which includes the energy losses and consumed energy.  Based on 

the fitness of each individual in the population, the stopping criterion is checked. If the 

stopping criterion is met, the approach terminates and the best individual is stored. If the 

stopping criterion is not met, the parents are selected through choosing elite child(s), 

crossover, and mutation. Then, a fitness proportionate selection is used to produce the 

new population of 𝛺1 

5.5 Sample case study and discussions 

The proposed planning framework is tested using the 38-bus distribution system 

described in 4.4 and shown in Figure 4-2. All the information in 4.4 about the RES and 

BESS units is utilized in this work. The interest rate and the inflation rate are assumed to 

be 5% and 1% respectively [32]. The PEV chargers rating utilized in this study are 208-

240Volt AC - 7.2kW 30Amp [43]. The price for a single pedestal charger is assumed to 

be $2,000 and the labour, permits, and material is$2,000 per charger. The installation cost 

for a single or double pedestal charger is assumed to be 1,000$.  The PEV battery ratings 

are normally distributed between a minimum of 24 kWh to a maximum of 65 kWh. The 

PEV charging price is assumed to be flat at 0.35 $/kWhr. All the system buses are 

assumed to be candidate for the PV and BESS connections. However, for the PEV 
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charging stations busses 29 to 38 are only assumed as candidate buses arbitrary to reflect 

the locations of possible PEV chargers installation. Table II shows a description of a 

number of case studies were conducted as a means of evaluating the merits of the 

proposed planning framework. Table 5-1 shows the detailed simulation results of the cost 

of consumed energy and losses, the expenses of installations for PEVs, PVs, and BESSs, 

and the profits achieved for the installations in each case study.   

Table 5-1: Description of the conducted case studies  

Case Description Case Description 

A Base case B PV DG allocation 

C BESS allocation D PV DG and BESS allocation 

E PEV stations allocation F PEV stations and PV DG allocation 

G PEV stations and BESS allocation H PEV stations, PV  DG, and BESS allocation 

 

Table 4-3 and Table 4-4 present the total annual cost and the optimal number, sizes and 

locations of the installed PVs, and BESS for cases A, B, C, and D. These results are also 

presented in Table 5-2 and Table 5-3, in addition to cases E, F, G, and H. 

For the PEV stations allocation in case E, since it is extra load, the planning problem will 

only allocate these stations if the profit is higher than the sum of the cost of installation 

and the increase in the energy losses. The maximum allowable PEV charging stations in 

the system are 2.5 MW, which represents 285 chargers of level 2. The price of charging 

PEVs is assumed to be the base energy price plus a fixed profit to cover the capital costs, 
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operating costs, and cost of increased energy loss. For a fixed profit up to 3.25 ₵/kWh, 

the planning problem doesn’t allocate any chargers. For a fixed profit of 4 ₵/kWh, the 

planning problem allocated 285 chargers, as shown in Table 5-2, where the cost of energy 

purchased from the grid and consumed by the customers is increased by 14.96 % and the 

energy loss is increased by 20.9 %. The total expenses to run the system are 2.6 % lower 

than the base case. 

For case F, the PV units’ installations are allowed to support PEV charging stations. As 

shown in Table 5-3, a total capacity of 4,000 kW of PV is installed in the system, which 

reduces the cost of energy loss by 48.8 % compared to case E, and 35.3 % compared to 

the base case. The net expenses are 74.7 % less than the base case. In case G, the 

planning problem allocates BESS to support the PEV charging stations. Although, the 

allocated capacity of BESS is 3,000 kW and 5,000 kWh, the cost of energy loss are still 

18.8 % higher than the base case, but 1.8 % lower than case E. The net expenses are 18.1 

% lower than the base case. For case H, the PV and BESS installation is allowed to 

support the PEV charging stations. However, the results show only PV allocated in the 

system, same as case F.  This is due to two reasons. 1) The fact that the PV generation 

pattern fits PEV charging pattern in commercial lots, while residential PEV charging 

patterns can easily be shifted to low normal demand period at night, which doesn’t need 

support from BESS units. 2) The incentives from governments for clean energy from PV 

give superiority for PV allocation in the system compared with much lower profit for 

allocating BESS units. 



 

 84 

 

Table 5-2: Cost related results 

Case A B C D E F G H 

C
o
n

su
m

ed
 

en
er

g
y
  

($) 1,286,360 1,286,360 1,286,360 1,286,360 1,467,436 1,478,122 1,600,843 1,478,122 

 (% )
*
 0.00% 0.00% 0.00% 0.00% 14.08% 14.91% 24.45% 14.91% 

E
n

er
g
y

 

 l
o
ss

 

($) 33,880 15,655 26,800 7,511 40,980 21,914 40,250 21,914 

 (% )
*
 0.00% -53.79% -20.90% -77.83% 20.96% -35.32% 18.80% -35.32% 

E
x
p

en
se

s 
($

) 

RES 0 1,026,543 

 

1,026,543 0 1,026,543 0 1,026,543 

BESS 0 0 37,519 143,397 0 0 257,683 0 

EV  

chargers 
0 0 0 0 162,092 162,092 162,092 162,092 

P
ro

fi
t 

 

($
) 

RES 0 1,959,130 0 1,959,130 0 1,959,130 0 1,959,130 

BESS 0 0 51,457 187,252 0 0 461,441 0 

EV  

chargers 
0 0 0 0 384,315 395,001 517,722 395,001 

N
et

 

E
x
p

en
se

s 

 

($) 1,320,240 369,428 1,299,222 317,429 1,286,193 333,587 1,081,705 334,540 

* Percentage increase from base case 
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Table 5-3: Technical results 

Case A B C D E F G H 

L
o

ss
e
s (MWh) 427 297 663 959 738 369 1042 369 

(% )
*
 0.00% -30.44% 55.27% 124.59% 72.83% -13.58% 144.03% -13.58% 

R
E

S
 a

ll
o

c
a

ti
o

n
 

Bus − 

5, 6, 8, 9, 10, 

11, 12, 13, 14, 

15, 16, 17, 18, 

21, 22, 24, 25, 

26, 27, 28, 29, 

30, 31, 32, 33, 

34, 37 

− 

4, 5, 6, 7, 10, 

11, 12, 13, 16, 

17, 18, 20, 23, 

24, 25, 26, 29, 

30, 31, 32, 38 

− 

6, 7, 8, 9, 

10, 11, 12, 

13, 14, 15, 

16, 17, 18, 

22, 24, 25, 

26, 27, 28, 

29, 30, 31, 

32, 33, 34, 

38 

− 

6, 7, 8, 9, 10, 

11, 12, 13, 

14, 15, 16, 

17, 18, 22, 

24, 25, 26, 

27, 28, 29, 

30, 31, 32, 

33, 34, 38 

(kW) − 

5, 150, 125, 30, 

75, 115, 190, 

190, 275, 120, 

180, 130, 155, 

15, 35, 160, 

335, 30, 20, 30, 

110, 600, 275, 

545, 85, 5, 15 

− 

90, 20, 215, 

25, 75, 80, 

165, 160, 125, 

120, 130, 50, 

25, 565, 505, 

55, 125, 505, 

60, 50, 30 

− 

115, 20, 

115, 15, 60, 

80, 80, 120, 

200, 100, 

105, 100, 

150, 25, 

130, 225, 

30, 15, 30, 

610, 560, 

185, 390, 

85, 395, 75 

− 

115, 20, 110, 

15, 60, 80, 

80, 120, 200, 

102, 105, 

100, 150, 25, 

130, 225, 30, 

15, 30, 610, 

560, 185, 

385, 85, 395, 

75 

B
E

S
S

 a
ll

o
c
a

ti
o

n
 

Bus − − 31 38 − − 35 − 

(kW) − − 200 625 − − 3000 − 

(kWh) − − 875 3500 − − 5000 − 

E
V

 c
h

a
r
g

e
r
s 

a
ll

o
c
a

ti
o

n
 Bus − − − − 

29, 34, 

35, 38 
29, 34, 38 

30, 35, 

36, 38 
29, 34, 38 

Number  

 
− − − − 

55, 

100, 

30, 100 

85, 100, 100 
15, 100, 

70, 100 
85, 100, 100 
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5.6 Conclusions 

This chapter presents a smart planning approach to accommodate PEV charging load in 

distribution networks. The presented approach can help the distribution companies and 

investors to optimize their investments. The planning method utilizes probabilistic 

approaches to optimally allocate PEV charging stations, PV units and BESS systems to 

maximize the profit of the system operators and investors. The proposed approach 

includes smart coordination of the PEV charging process, smart scheduling of the BESS 

units, and smart control of PV inverters. The planning problem is defined as MINLP, 

which is solved using, a combination between GA and deterministic optimization tool 

due to the problem complexity. Simulation results on a typical distribution system 

demonstrate that significant profit can be achieved by allocating PV units to support the 

PEV charging stations. On the other hand, the results proved that BESS units do not 

present significant support for PEV charging stations, either for commercial charging 

stations or residential charging stations. Although the results are entirely system 

dependent, the proposed method is generalizable and can be applied to any distribution 

network. 
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Chapter 6  

Concluding remarks 

6.1 Summary and Conclusions 

The research in this thesis presents new approaches to optimally allocate PEV charging 

parking lots in conjunction with RES and BESS units in distribution networks under the 

smart grid paradigm.  

The objective of the proposed planning aims to minimize the overall capital and 

operational costs. The operational costs include consideration of 1) coordinated PEV 

charging, 2) smart inverter control of renewable DG units, and 3) smart scheduling of 

BESS.  

The research presented in this thesis is developed on three main stages presented in 

chapters 3, 4, and 5. 

In chapter 3, an approach to optimally allocate RES DG is developed taking into 

consideration the uncertainty due to the intermittent nature of RES DG output power. The 

work also investigates the impacts of the technical constraints on the allocation process, 

to identify the most significant binding constraints. It is concluded in this chapter that 

constraints such as maximum number of DG units and maximum reverse power flow 

were found to be very significant to the results of the allocation process; however, 

beyond certain limit, the improvement is negligible. 
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In chapter 4, the developed approach in chapter 3 is extended to include consideration of 

BESS units. Chronological probabilistic models based on MCS are used in this work to 

encounter for the BESS characteristics. Simulation results on a typical distribution system 

demonstrate that significant profit can be achieved by allocating BESS units in addition 

to renewable DG units.  

Chapter 5 presents a smart planning approach, which utilizes probabilistic approaches to 

optimally allocate PEV charging stations, PV units and BESS systems to maximize the 

profit of the system operators and investors. The proposed approach includes smart 

coordination of the PEV charging process, smart scheduling of the BESS units, and smart 

control of PV inverters. Due to the complexity of the proposed problem, it is split into 

two nested parts i.e. exterior and interior. The exterior and interior parts represent the 

installation and operation-scheduling problems respectively. Further, a combination 

between metaheuristic technique and deterministic technique has been utilized to manage 

exterior and interior parts concurrently.  

Moreover, a new model for the PEV coordinated charging demand is introduced in this 

thesis, which is based on developing all possible scenarios during a calendar year of PEV 

arrivals and PEV requirements. Further, this model is converted to energy consumption 

model during the optimization process based on the optimal schedule of PEV charging 

and the technical limits of the distribution network. Simulation results on a typical 

distribution system demonstrate that significant profit can be achieved by allocating PV 
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units to support the PEV charging stations; on the other hand, the results proved that 

BESS units do not present significant support for PEV charging stations.  

The main contribution of this thesis is the development of a new approach to allocate 

PEV smart charging stations in distribution networks in conjunction with RES and BESS. 

Moreover, as a by-product, a new probabilistic model for the PEV demand in smart grid 

is developed. 

6.2 Directions for Future Work 

In continuation of this research, the following subjects are suggested for future work: 

• Investigating the benefits that can be offered by discharging of PEVs under the smart 

grids. 

• Developing planning approaches to allocate PEV charging stations in microgrid 

systems. 
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Appendix A 

The 123-bus test system load data 

Table A.1 123-bus test system data [84] 

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-4 Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-4 

 

Model kW kVAr kW kVAr kW kVAr 

 

Model kW kVAr kW kVAr kW kVAr 

1 Y-PQ 40 20 0 0 0 0 59 Y-PQ 0 0 20 10 0 0 

2 Y-PQ 0 0 20 10 0 0 60 Y-PQ 20 10 0 0 0 0 

4 Y-PR 0 0 0 0 40 20 62 Y-Z 0 0 0 0 40 20 

5 Y-I 0 0 0 0 20 10 63 Y-PQ 40 20 0 0 0 0 

6 Y-Z 0 0 0 0 40 20 64 Y-I 0 0 75 35 0 0 

7 Y-PQ 20 10 0 0 0 0 65 D-Z 35 25 35 25 70 50 

9 Y-PQ 40 20 0 0 0 0 66 Y-PQ 0 0 0 0 75 35 

10 Y-I 20 10 0 0 0 0 68 Y-PQ 20 10 0 0 0 0 

11 Y-Z 40 20 0 0 0 0 69 Y-PQ 40 20 0 0 0 0 

12 Y-PQ 0 0 20 10 0 0 70 Y-PQ 20 10 0 0 0 0 

16 Y-PQ 0 0 0 0 40 20 71 Y-PQ 40 20 0 0 0 0 

17 Y-PQ 0 0 0 0 20 10 73 Y-PQ 0 0 0 0 40 20 

19 Y-PQ 40 20 0 0 0 0 74 Y-Z 0 0 0 0 40 20 

20 Y-I 40 20 0 0 0 0 75 Y-PQ 0 0 0 0 40 20 

22 Y-Z 0 0 40 20 0 0 76 D-I 105 80 70 50 70 50 

24 Y-PQ 0 0 0 0 40 20 77 Y-PQ 0 0 40 20 0 0 

28 Y-I 40 20 0 0 0 0 79 Y-Z 40 20 0 0 0 0 

29 Y-Z 40 20 0 0 0 0 80 Y-PQ 0 0 40 20 0 0 

30 Y-PQ 0 0 0 0 40 20 82 Y-PQ 40 20 0 0 0 0 

31 Y-PQ 0 0 0 0 20 10 83 Y-PQ 0 0 0 0 20 10 

32 Y-PQ 0 0 0 0 20 10 84 Y-PQ 0 0 0 0 20 10 

33 Y-I 40 20 0 0 0 0 85 Y-PQ 0 0 0 0 40 20 

34 Y-Z 0 0 0 0 40 20 86 Y-PQ 0 0 20 10 0 0 

35 D-PQ 40 20 0 0 0 0 87 Y-PQ 0 0 40 20 0 0 

37 Y-Z 40 20 0 0 0 0 88 Y-PQ 40 20 0 0 0 0 

38 Y-I 0 0 20 10 0 0 90 Y-I 0 0 40 20 0 0 

39 Y-PQ 0 0 20 10 0 0 92 Y-PQ 0 0 0 0 40 20 

41 Y-PQ 0 0 0 0 20 10 94 Y-PQ 40 20 0 0 0 0 

42 Y-PQ 20 10 0 0 0 0 95 Y-PQ 0 0 20 10 0 0 

43 Y-Z 0 0 40 20 0 0 96 Y-PQ 0 0 20 10 0 0 

45 Y-I 20 10 0 0 0 0 98 Y-PQ 40 20 0 0 0 0 

46 Y-PQ 20 10 0 0 0 0 99 Y-PQ 0 0 40 20 0 0 

47 Y-I 35 25 35 25 35 25 100 Y-Z 0 0 0 0 40 20 

48 Y-Z 70 50 70 50 70 50 102 Y-PQ 0 0 0 0 20 10 

49 Y-PQ 35 25 70 50 35 20 103 Y-PQ 0 0 0 0 40 20 

50 Y-PQ 0 0 0 0 40 20 104 Y-PQ 0 0 0 0 40 20 

51 Y-PQ 20 10 0 0 0 0 106 Y-PQ 0 0 40 20 0 0 

52 Y-PQ 40 20 0 0 0 0 107 Y-PQ 0 0 40 20 0 0 

53 Y-PQ 40 20 0 0 0 0 109 Y-PQ 40 20 0 0 0 0 

55 Y-Z 20 10 0 0 0 0 111 Y-PQ 20 10 0 0 0 0 

56 Y-PQ 0 0 20 10 0 0 112 Y-I 20 10 0 0 0 0 

58 Y-I 0 0 20 10 0 0 113 Y-Z 40 20 0 0 0 0 

        
114 Y-PQ 20 10 0 0 0 0 

        
Total 

 
760 410 375 225 520 285 
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Appendix B 

The 38-bus test system data 

Table B.2 38-bus test system data [86] 

F T Ln Line impedance in pu 
To node - load 

P Q 

1 2 1 0.000574+0.000293j 0.1 0.06 

2 3 6 0.00307+0.001564j 0.09 0.04 

3 4 11 0.002279+0.001161j 0.12 0.08 

4 5 12 0.002373+0.001209j 0.06 0.03 

5 6 13 0.0051+0.004402j 0.06 0.02 

6 7 22 0.001166+0.003853j 0.2 0.1 

7 8 23 0.00443+0.001464j 0.2 0.1 

8 9 25 0.006413+0.004608j 0.06 0.02 

9 10 27 0.006501+0.004608j 0.06 0.02 

10 11 28 0.001224+0.000405j 0.045 0.03 

11 12 29 0.002331+0.000771j 0.06 0.035 

12 13 31 0.009141+0.007192j 0.06 0.035 

13 14 32 0.003372+0.004439j 0.12 0.08 

14 15 33 0.00368+0.003275j 0.06 0.01 

15 16 34 0.004647+0.003394j 0.06 0.02 

16 17 35 0.008026+0.010716j 0.06 0.02 

17 18 36 0.004558+0.003574j 0.09 0.04 

2 19 2 0.001021+0.000974j 0.09 0.04 

19 20 3 0.009366+0.00844j 0.09 0.04 

20 21 4 0.00255+0.002979j 0.09 0.04 

21 22 5 0.004414+0.005836j 0.09 0.04 

3 23 7 0.002809+0.00192j 0.09 0.05 

23 24 8 0.005592+0.004415j 0.42 0.2 

24 25 9 0.005579+0.004366j 0.42 0.2 

6 26 14 0.001264+0.000644j 0.06 0.025 

26 27 15 0.00177+0.000901j 0.06 0.025 

27 28 16 0.006594+0.005814j 0.06 0.02 

28 29 17 0.005007+0.004362j 0.12 0.07 

29 30 18 0.00316+0.00161j 0.2 0.6 

30 31 19 0.006067+0.005996j 0.15 0.07 

31 32 20 0.001933+0.002253j 0.21 0.1 

32 33 21 0.002123+0.003301j 0.06 0.04 

8 34 24 0.012453+0.012453j 0 0 

9 35 26 0.012453+0.012453j 0 0 

12 36 30 0.012453+0.012453j 0 0 

18 37 37 0.003113+0.003113j 0 0 
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