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Abstract 
   
 
Branched-chain Amino Acids (BCAAs) are known to have positive effects in metabolic 

health through weight management and muscle protein synthesis. However, elevated 

levels of BCAAs (particularly leucine) and their metabolites have also been implicated in 

the development of insulin resistance and type 2 diabetes mellitus (T2DM). This study 

examines the dose-dependent effect of leucine in the presence or absence of other amino 

acids on glucose transport in L6 rat myotubes. Here we report that leucine significantly 

suppresses insulin-stimulated glucose uptake in skeletal muscle cells and particularly at 

150 µM, there is a 75% reduction in insulin-mediated glucose transport (p<0.01).  

This occurs in parallel with increased activation of proteins involved in the 

mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway (p<0.05), 

which suggests a link between increased mTORC1 activity and insulin resistance. 

Interestingly, the suppressive effect of leucine on glucose transport disappears in the 

presence of other amino acids. We also illustrate that leucine’s metabolite, α-

ketoisocaproic acid (KIC) inhibits insulin-stimulated glucose uptake at 200 µM by 45% 

concurrent with increased activation of the mTORC1 pathway (p<0.05). Finally, siRNA 

knockdown of the branched-chain aminotransferase 2 mitochondrial (BCAT2) enzyme 

which catalyzes the reversible conversion of leucine to KIC, ameliorated the inhibitory 

effect of KIC on glucose transport (p<0.05), suggesting that the impairing effects of KIC 

on glucose transport occur through its conversion back to leucine. Taken together, our 

results show that in L6 myotubes, leucine and its metabolite significantly suppress 

insulin-mediated glucose transport. Moreover, modulating the activity of the BCAT2 

enzyme could be a new therapeutic approach in patients with high BCAA levels in 

conditions such obesity and T2DM.  
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1.0 Introduction 
 
      

     Diabetes is a major health concern in today’s world and its global burden is 

staggering. According to the International Diabetes Federation, approximately 1 in every 

12 people is diabetic with an estimated 387 million cases worldwide. Intriguingly, for 

every diabetic person, another person suffers from impaired glucose metabolism which 

increases their risk for other conditions such as heart disease and stroke 1.  

     T2DM accounts for about 90% of all cases of diabetes worldwide and its precursor is 

a condition known as insulin resistance which affects millions of people, particularly in 

Western societies2. It is one of the main causes of morbidity and mortality and a hallmark 

of chronic diseases such as obesity, T2DM, cardiovascular disease and metabolic 

syndrome.3,4 Nutrient overload is one of the main causes for the development of insulin 

resistance. Although high fat diets are generally considered to be the major cause of 

metabolic abnormalities, more recent evidence suggests that consumption of high protein 

diets is also associated with insulin resistance. 5–7 

     High protein diets are consistently used for weight management in obese individuals. 

They have been shown to have positive metabolic effects such as weight loss, increased 

basal metabolic rate, increased muscle mass and loss of fat mass.8–10 The underlying 

mechanisms for some of these positive effects are increased thermogenesis and prolonged 

feelings of satiety 10,11. It has been shown that BCAAs are the main components in high 

protein diets, which exert these beneficial effects. 6,8 Of the three BCAAs (leucine, 

isoleucine and valine), leucine has gained considerable attention due to its strong ability 

to activate mTORC1, the master regulator of cell growth, proliferation and protein 

synthesis. 12–15  



 
 

2 

     Despite their benefits, diets consisting of high levels of proteins have been shown to 

be implicated in the development of insulin resistance and T2DM.5,6,16 Increased 

circulating levels of BCAAs, specifically leucine, have been shown to be associated with 

hyperactivation of mTORC1, leading to the impairment of insulin signalling pathway and 

consequently the development of insulin resistance. In addition, elevated BCAA levels 

are frequently observed in human and rodent models of obesity 6,17.  Therefore, high 

protein/BCAA diets can act as a double-edged sword by demonstrating beneficial effects 

in the management of obesity while having the ability to negatively affect insulin 

sensitivity and ultimately cause insulin resistance and T2DM. 6  

     Since leucine is the most potent BCAA in activating the mTORC1 pathway 18,19, many 

studies have examined its effect on insulin signalling, however, current evidence is still 

inconclusive and many questions remain to be addressed. Moreover, the dose-dependent 

effect of leucine (within a range that is physiologically-relevant) on glucose transport and 

mTORC1 signalling has not yet been determined. In addition, since dietary protein 

contains amino acids other than BCAAs, it is essential to study the effect of a 

combination of amino acids on insulin signalling and mTORC1 pathway. It is also 

important to examine the mTORC1 pathway in response to specific metabolites of 

leucine, since the amino acid undergoes metabolic changes intracellularly that can affect 

the regulation of glucose transport and insulin signalling. Understanding the effect of 

leucine-mediated mTORC1 activation and glucose transport within skeletal muscle can 

be helpful in explaining the underlying mechanisms of BCAAs’ action in the 

development and progression of insulin resistance. This can ultimately help in the 

prevention and management of T2DM and reduce its burden.
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2.0 Literature Review 

 
2.1 Insulin Signalling Within Skeletal Muscle 

 
     Skeletal muscle comprises about 40-50% of the adult human body weight 20,21. Thus, 

it is the most abundant insulin-sensitive tissue mediating about 85% of all insulin-

stimulated glucose disposal under normal physiological conditions. 21,22 In humans, 

insulin-stimulated glucose transport into skeletal muscle is the key mechanism through 

which disposal of ingested glucose occurs. Insulin-mediated glucose transport requires 

tightly regulated, multistep processes involving crosstalk with other signalling pathways.   

 

2.1.1 Insulin Receptor and Insulin Receptor Substrates    

    Upon binding to the insulin receptor (IR) on the sarcolemma of skeletal muscle, insulin 

increases the tyrosine kinase activity of insulin receptor. The insulin receptor is a member 

of the large tyrosine kinase family of transmembrane signaling receptors and plays an 

important role in metabolic regulation and glucose homeostasis. The receptor is 

composed of two extracellular α subunits, each connected to a β subunit and linked to 

each other by disulfide bonds forming a heterotetramer. 23 When endogenous ligands 

such as insulin and insulin-like growth factor 1 (IGF-1) bind the α subunits, they cause 

autophosphorylation of the β subunits exclusively on tyrosine residues.24 This tyrosine 

phosphorylation mediates the interaction of insulin with its receptors. Upon its activation, 

the insulin receptor phosphorylates other proteins such as the insulin receptor substrates 

1/2 (IRS-1, 2,3,4). The four members of the IRS family differ in their subcellular 

localization, tissue distribution and their ability to bind to insulin receptors. In fact, IRS-1 
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plays a major role in insulin signaling within skeletal muscle, while IRS-2 appears to 

regulate hepatic insulin action. 25 

     As a main substrate of the IR, IRS-1 plays a major role in transmitting insulin-

dependent signals that propagate many biological processes such as cell growth and 

cellular uptake of glucose. 26 IRS proteins are composed of an N-terminal region 

containing a pleckstrin homology (PH) domain and a phosphotyrosine-binding (PTP) 

domain that work together to ensure proper substrate phosphorylation by the activated IR. 

The C-terminal part of the IRS proteins contains various tyrosine phosphorylation motifs 

that act as docking sites for multiple signalling molecules that express Src homology-2 

(SH-2) binding domains such as phosphatidylinositol-3-kinase (PI3K), phosphotyrosine 

phosphatase (SHP-2), non-catalytic region of tyrosine kinase adaptor protein 1 (Nck1), 

chicken tumor virus number 10 regulator of kinase (Crk) and growth factor receptor-

bound protein 2 (Grb-2). 25,26 The PH domain of IRS-1 plays a critical role in promoting 

the interaction of the protein with IR, thereby regulating the tyrosine phosphorylation of 

IRS-1.26 It has been shown that in addition to regulating IR-IRS1 interactions, the PH 

domain of IRS-1 also regulates the ability of the protein to signal to downstream targets 

such as PI3K. Therefore, impairing the function of the PH domain (ie. in insulin 

resistance states) could both inhibit tyrosine phosphorylation of IRS-1 by the IR and alter 

efficient signal transduction to downstream targets. 27 
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2.1.2 IRS-1/PI3K/Akt Pathway  

     The PI3K-Akt pathway is a key regulator of cell proliferation, growth, survival and 

glucose metabolism. Extensive evidence suggests that this pathway is frequently 

deregulated in various cancer types, making its components molecular targets in cancer.28 

The family of lipid kinases, PI3Ks, is known to regulate essential cellular processes such 

as cell survival, proliferation and differentiation. PI3Ks are divided into three classes 

based on their structure and substrate specificity. The most commonly studied are the 

class I enzymes that are activated directly by cell surface receptors. In the insulin 

signalling pathway, PI3Ks are the major downstream substrates of IRS-1 and play pivotal 

roles in insulin-mediated glucose transport and translocation of the glucose transporter 

type 4 (GLUT4) from intracellular vesicles to the plasma membrane. Class IA PI3Ks 

which are a subset of Class I PI3Ks, are heterodimers comprised of a p110 catalytic 

subunit and a p85 regulatory subunit. 29 The p85 regulatory subunit binds to IRS-1 and 

the p110 catalytic subunit interacts with and  phosphorylates phosphatidylinositol in the 

cell membrane.  

     Upon interaction of IRS-1 with the p85 regulatory subunit of PI3K, the IRS-1/PI3K 

complex is recruited to the cell membrane where PI3K catalyzes the conversion of 

phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate 

(PIP3). Then, PIP3 allows the recruitment and activation of other kinases such as 

phosphatidylinositol-dependent protein kinase 1 (PDK1) and Akt. Akt then becomes 

activated upon phosphorylation on Thr308 and Ser473 residues. (Figure 1) When Akt is 

active, it phosphorylates Akt Substrate of 160 kD (AS160) and facilitates the 

translocation of Glucose Transporter Type 4 (GLUT4), the protein responsible for 

insulin-stimulated glucose transport in skeletal muscle and adipose tissue, to the 

sarcolemma to allow glucose entry into the cell. 14,22,30  
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Akt, also known as protein kinase B, is a serine/threonine kinase which exists as three 

structurally similar isoforms: Akt1, Akt2 and Akt3 that are expressed in most tissues 29,31 

All three isoforms contain an N-terminal PH domain, a C-terminal regulatory domain and 

a central serine/threonine catalytic domain. Activation of Akt begins with its 

translocations to the plasma membrane facilitated by docking of PIP3 to the PH domain 

in the N-terminal region of Akt.29 This interaction results in a conformational change in 

Akt and exposes two important phosphorylation residues:Th308 and Ser473. In order to 

fully activate Akt, both amino acid residues must be phosphorylated. 29,31 

 

2.1.3 PI3K/Akt/mTOR Pathway 

    Once activated, Akt signalling can be propagated to many substrates including mTOR, 

a key regulator of protein translation. One of the well-studied substrates of Akt is the 

mammalian/mechanistic target of rapamycin complex 1 (mTORC1). Akt can activate 

mTORC1 by phosphorylating PRAS40 on T246 and TSC2 on multiple sites such as Ser 

939, Ser 1086 and T1422 and mitigating their inhibitory effect on mTORC129,32 Although 

mTORC1 is a downstream substrate of Akt, Akt itself can be activated by another mTOR 

complex, mTORC2 on S473 residues.31 The PI3K/Akt/mTOR pathway is constitutively 

activated in many cancer cell types and one of the involved mechanisms is the loss of 

tumor suppressor PTEN (phosphatase and tensin homolog). 28,29,31 As a lipid phosphatase, 

PTEN normally suppresses the activation of PI3K/Akt/mTOR pathway by removing a 

phosphate group from PIP3 and converting it to PIP2 , therefore, PTEN mutations or 

deletions are constantly observed in a variety of human cancers 33. Amplifications or 

mutations of PI3K and Akt are other mechanisms that lead to constitutive activation of 

this pathway.28,29,31  
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2.2 Insulin Resistance and T2DM 

     Type 2 diabetes mellitus (T2DM) is a growing health concern accounting for about 

90% of all cases of diabetes. In 2014, the WHO estimated the global prevalence of T2DM 

to be 9% among adults aged 18 years and older 2. T2DM is characterized by 

hyperglycemia as a result of either insufficient secretion of the hormone insulin, defects 

in insulin action or both. 4,34,35 Therefore, unlike in Type 1 diabetes mellitus (T1DM) 

where there is autoimmune destruction of β cells of the pancreas, in T2DM the body may 

produce insulin but it cannot effectively use it. T2DM is often preceded by a condition 

known as insulin resistance where peripheral target tissues such as liver, skeletal muscle 

and adipose tissue become unresponsive to the function of insulin, resulting in 

suppression of glucose uptake and metabolism. 3,4,35 Insulin is an essential hormone that 

regulates carbohydrate, fat and protein metabolism in the body and deregulation of its 

signalling is the hallmark of many complex metabolic and physiological disorders 

including obesity, cardiovascular disease and cancers. 5,6,16. Hence, it is crucial to 

understand the molecular mechanisms that regulate the development and pathogenesis of 

insulin resistance. In addition, since skeletal muscle is responsible for about 85% of 

postprandial glucose disposal and is the predominant site for insulin-stimulated glucose 

uptake, the study of insulin resistance in skeletal muscle is essential. 5,6 

 

2.3 Causes of Insulin Resistance 

2.3.1 Genetics 

     Genetic predisposition plays a major role in the development of insulin resistance and 

T2DM. Some of the early evidence came from classical experimental paradigms with 

twin, family and population studies. It was clearly demonstrated that the more closely two 

individuals were related, the more similar their glucose tolerance status. 35 Therefore, first 
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degree families of individuals with T2DM have a 3 times higher chance of developing the 

disease than individuals with no family history of the disease. Furthermore, the 

concordance rate of T2DM is significantly higher in monozygotic twins (70%) compared 

to dizygotic twins (20-30%).35–37 Individuals who have one parent with T2DM have a 

40% lifetime risk of developing the disease and those with both parents affected have a 

70% chance of developing the disease in during their lifetime 36.  

Thus, it is clear that T2DM has a strong genetic component with 30-70% of the risk 

attributed to genetics and a large variety of genes involved. 38,39  

     To date, multiple candidate genes for T2DM have been identified in various 

populations worldwide. However, it is still not clear exactly how many genes are 

involved and how they affect the development of the condition. Candidate genes were 

selected and studied because of their involvement in insulin action, glucose metabolism, 

β cell function and other metabolic conditions affecting T2DM. So far, some of the most 

promising candidate genes are Peroxisome Proliferator-Activated Receptor Gamma 

(PPARγ), Transcription Factor 7-Like 2 (T-Cell Specific, HMG-Box) (TCF7L2), 

Potassium Channel, Inwardly Rectifying Subfamily J, Member 11 (KCNJ11), and 

Calcium-Activated Neutral Proteinase 10 (CAPN10).  

What makes the PPARγ a strong candidate gene is that it encodes the nuclear receptor 

PPARγ, a molecular target for thiazolidinedione which is a class of insulin-sensitizing 

drugs used to treat T2DM. 36 TCF7L2 shows one of the strongest associations with 

T2DM. It is involved in the Wnt/ β-canenin signalling pathway which works to increase 

insulin sensitivity and pancreatic islet development. High risk TCF7L2 genotype reduces 

insulin secretion, thereby, confirming the importance of TCF7L2 variants in β cell 

function. 38,39 KCNJ11 is part of the ATP-sensitive potassium channel with a major role 

in regulating the release of hormones insulin and glucagon, therefore, mutations in this 
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gene can affect insulin secretion.35–38 CAPN10 gene encodes ubiquitous, calcium-

dependent cysteine proteases. Calpain-10 is a protein encoded by the CAPN10 gene. It is 

an important protein in β cell function and emerging evidence suggests that it plays a role 

in facilitating GLUT4 translocation, therefore, variations in calpain-10 activity can 

modulate insulin secretion and enhance susceptibility to T2DM. 36–39 

     Maturity-onset diabetes of the young (MODY) is an uncommon type of diabetes that 

usually occurs before the age of 25 in less than 5% of all cases of T2DM. The 

pathophysiology of MODY involves mutations in transcription factor genes that are 

critical in β cell function. Molecular genetics studies have shown that there are at least six 

forms of MODY caused by various gene mutations. MODY1 is caused by mutations in 

hepatocyte nuclear factor-4α (HNF4A) while MODY2 results from glucokinase (GCK) 

gene mutations. Mutations in the hepatocyte nuclear factor-1α (HNF1A) gene result in 

MODY3 which is the most frequent cause of the disease. Finally, MODY5 and 6 are 

caused by mutations of the hepatocyte nuclear factor-1β (HNF1B) and neurogenic 

differentiation 1(NEUROD1) genes respectively.  

Even though genetic factors are a significant component of T2DM development, it is 

clear that environmental factors also play a major role in the progression of the disease. 

Two key environmental risk factors contributing to T2DM are obesity and a sedentary 

lifestyle (physical inactivity).      

 

2.3.2 Lack of Physical Activity and Obesity 

     The increasing cases of T2DM in recent years can be primarily explained by the 

dramatic growth in obesity rates worldwide. It has been estimated that up to about 80% of 

all new T2DM cases are attributed to obesity 40. Body fat distribution is another important 

factor in T2DM risk. The waist-to-hip ratio (WHR) which is a measure of abdominal 
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obesity, has a stronger association with T2DM than the standard measure of obesity, 

BMI.41 Physical inactivity is another major risk factor for T2DM. Regular physical 

activity not only maintains a healthy weight, but also improves glucose and fat 

metabolism which reduce T2DM risk.  

     There are two well-defined mechanisms of glucose uptake by muscle: one is insulin-

dependent which occurs at rest and post and postprandially and the other through 

exercise. 42 Epidemiological studies strongly support the effect of exercise in preventing 

obesity and T2DM. Moderate exercise such as brisk walking or cycling for  more than 30 

minutes per day has been shown to significantly lower the risk of T2DM 42–44. Studies 

have shown that even low intensity aerobic exercise is beneficial in enhancing skeletal 

muscle insulin-stimulated glucose disposal and GLUT4 protein content.43,45 Other studies 

have found that the effect of aerobic exercise on improving insulin signalling is dose and 

intensity-dependent. 41 A combination of aerobic and resistance training may be more 

effective in regulating glucose uptake than any of them alone. This is because resistance 

training results in increased muscle mass and can contribute to glucose uptake without 

modifying the muscle’s intrinsic ability to respond to insulin, whereas aerobic exercise 

enhances insulin’s action without altering muscle mass. 42  

     The key mechanisms responsible for the beneficial effects of physical activity on 

insulin sensitivity include enhancement of glucose transport mediated by increased 

expression of GLUT4 proteins and translocation of GLUT4 from intracellular vesicles to 

sarcolemma. 45–48 Other benefits of physical activity on insulin sensitivity include 

promotion of muscle vascularization and mitochondrial biogenesis. 41 Kennedy et. al. 49 

demonstrated that even a single bout of moderate intensity exercise is effective in 

promoting the translocation of GLUT4 to the plasma membrane in skeletal muscle of 

T2DM patients. Other studies have also found that contraction-mediated glucose 
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transport via increased GLUT4 translocation, involves AMPK activation and is insulin-

independent. 42,47,50 Despite the importance of physical activity in the prevention and 

treatment of insulin resistance and T2DM, nutrition has a more profound impact on 

regulation of insulin resistance since insulin is only secreted in response to nutrient 

availability.  

  

2.3.3 Nutrition 

    Food is an important regulator of insulin sensitivity and nutrient overload can trigger 

the progression of metabolic disorders such as T2DM and cardiovascular disease 4,15,51. 

Two key nutrients that have been the focus of research in studies of skeletal muscle 

glucose metabolism are lipid and protein. 

 

2.3.3.1 High Lipid Intake 

     High fat diets combined with a sedentary lifestyle are major contributing factors for 

the high prevalence of obesity and T2DM in Western lifestyle. Epidemiological evidence 

supports the effect of high fat diets in the development of obesity and other physiological 

complications. Such studies indicate a direct relationship between the amount of dietary 

fat consumed and the level of obesity. Overconsumption and weight gain associated with 

high fat diets have consistently been shown to be caused by the high caloric density and 

low satiety properties of such diets.52  

     The role of dietary fat in the development of T2DM has received clinical interest for 

many years. Many previous studies have established that fat-enriched diets significantly 

alter the composition of cell membrane phospholipids. 53 These cell membrane alterations 

have been shown to affect insulin binding and action, GLUT4 translocation and other 

cellular functions which are all membrane-mediated events. 53,54 Because of their close 
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contact with the lipid bilayer, membrane-associated events such as the coupling between 

transporters and receptors, are influenced by dietary fat. Several studies have examined 

the effect of increasing plasma fatty acid levels by infusion of lipid in humans and 

rodents and found an inhibitory effect on insulin-mediated activation of the IRS-

1/PI3K/Akt pathway in skeletal muscle.55,56 Other studies have found similar effects of 

high plasma free fatty acid levels on impairment of the IRS-1/PI3K/Akt activity and have 

attributed these effects mainly to defects in IRS-1 tyrosine phosphorylation and 

ultimately inhibition of insulin-induced glucose transport. 57 

     Therefore, rises in plasma free fatty acid concentrations result in the development of 

insulin resistance through inhibition of insulin-stimulated glucose transport. However, it 

is important to note that different types of fatty acids exert different effects on insulin 

signalling.  For instance, Harding et al. found diets with a higher polyunsaturated 

saturated fat (PUFA) to saturated fat ratio, reduced the risk of T2DM independent of age, 

sex, family history of T2DM, physical activity, protein intake and smoking status 58. The 

beneficial effects of n-3 PUFA have been shown to include reduction of serum lipids and 

lipoproteins, lowering blood pressure and impairment of platelet aggregation which are 

factors that help reduce the risk of T2DM. In animal studies, diets enriched with PUFA 

enhanced peripheral glucose utilization 59. Conversely, saturated fat and animal fat intake 

has been shown to be strongly associated with increased risk of T2DM. 53,58 This is 

because a greater saturated fatty acid content of membrane phospholipids has been 

reported to increase insulin resistance 53,54,60.  

     Trans fatty acids (TFAs) which are created through the transformation of PUFAs from 

their natural cis form to the trans form are abundant in processed foods in Western diets 

and have been shown to have implications in insulin resistance and T2DM 61. Salmerón et 

al. examined the effect of TFAs on the risk of T2DM in a large sample of women and 
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found a positive association 62. Their results were consistent with previous human and 

animal studies indicating adverse metabolic effects associated with TFAs intake on 

lipoprotein metabolism and insulin sensitivity. 61,63 It has been suggested that TFAs may 

reduce insulin sensitivity by promoting systemic inflammation as reflected by increased 

levels of inflammatory markers TNFα, IL-6, and C-reactive protein 61.   

 

2.3.3.2 High Protein Intake  

      High protein diets have frequently been used in the management of obesity. The 

Recommended Daily Allowance for protein is 0.8 g/kg of body weight, however, some 

studies suggest that consuming higher amounts of proteins produce positive metabolic 

effects. High protein diets have been shown to increase thermogenesis, energy 

expenditure, satiety and assist weight loss. 10 In particular, BCAAs have received more 

attention because of their anabolic effects on muscle and their anti-obesity effects. 

Studies suggest that diets high in BCAAs often have positive effects in weight 

management, glucose homeostasis and protein synthesis 6,64–66 . In addition, amino acids, 

particularly leucine, stimulate protein synthesis by promoting mTORC1 activity, leading 

to skeletal muscle anabolism and growth 12,14,67–69. The anabolic effect of amino acid 

intake on muscle is due to increased muscle protein synthesis 30,48,64,67,70. The major 

signalling factors involved in synthesis of proteins in skeletal muscle are mTORC1 and 

its two downstream substrates, ribosomal protein S6 kinase 1 (S6K1) and eukaryotic 

translation initiation factor 4E-binding protein 1 (4EBP-1) 12,70,71. Of all three BCAAs, 

leucine has been shown to be the most potent nutrient signal in activating 

mTORC113,14,68.  

     Consumption of dietary protein increases the secretion of insulin into the bloodstream 

which enhances the clearance of glucose from the blood. However, in the long term, high 
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intake of dietary protein is associated with a higher risk of T2DM in healthy individuals. 

72In obese individuals however, consumption of high protein diets might be helpful for 

improving insulin sensitivity in the presence of weight loss which has a significant 

beneficial effect on enhancing insulin sensitivity. Furthermore, in studies where obese or 

T2DM subjects consumed high protein diets without weight loss, the results are 

inconclusive, indicating the importance of weight loss in improving insulin sensitivity 

and glucose metabolism.72 

     In a study done by Linn et al. plasma insulin concentrations were found to be elevated 

not only by a single protein-rich meal but also by long term high protein intake in healthy 

non-obese individuals. 73 They found prolonged protein intake (for 6 months) was 

associated with increased fasting glucose production, increased gluconeogenesis and 

reduced insulin sensitivity. Other observational studies have also shown associations 

between long-term high protein intake and the risk for developing T2DM and metabolic 

syndrome 74.   

     Despite the beneficial anti-obesity effects associated with BCAA consumption, 

emerging evidence suggests elevated levels of circulating BCAAs may also be implicated 

in the development of insulin resistance and T2DM 5,6. Normal BCAA metabolism 

appears to be altered in insulin resistance, leading to high blood concentrations of 

BCAAs. One of the proposed mechanisms relating high levels of BCAAs to insulin 

resistance is the persistent activation of mTORC1/S6K1 pathway as a result of excess 

leucine levels, which subsequently causes an impairment of insulin signalling 6,75. 

 Hyper-phosphorylation of S6K1T389 due to amino acid overload results in a negative 

feedback loop leading to phosphorylation of IRS-1 on serine residues (Ser 612,307, 1101) 

rather than the normal tyrosine residues (Tyr 608, 628). 23,71 Serine phosphorylation of IRS-1 

impairs its function and inhibits further signalling to P13K/AKT pathway. 23, (Figure 2) As a 
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result, GLUT4 cannot be recruited to the plasma membrane, leading to impairment of 

glucose transport and the development of insulin resistance and T2DM. 14,71 The 

importance of persistent activation of the mTORC1/S6K1 pathway has been shown in 

animal studies with disruptions in S6K1 activity. For instance, Um et al. reported that 

S6K1-deficient mice are protected against obesity and insulin resistance, thereby, 

signifying the importance of S6K1 in negative regulation of insulin signalling. 76 

 

2.4 Molecular Mechanisms of Insulin Resistance 

2.4.1 Accumulation of Lipid Intermediates  

     Studies have consistently demonstrated that lipid-induced insulin resistance may 

result from accumulation of intracellular lipid metabolites which have deleterious effects 

on insulin-mediated IRS-1 tyrosine phosphorylation. 56 Specifically, intracellular lipid 

intermediates diacylglycerols (DAGs) and ceramides have been shown to be implicated 

in the pathogenesis of insulin resistance and T2DM. Ceramides are mainly membrane 

lipids and are the precursors for the formation of sphingomyelin, one of the primary lipids 

in the lipid bilayer. In rodent models, rises in hepatic and muscle ceramide content has 

been found to be associated with insulin resistance and can be toxic in certain cell types 

such as the pancreatic β cells and cardiomyocytes 77. The role of ceramides in insulin 

resistance came from observations that they inhibit insulin-stimulated glucose transport 

and they do so by inhibiting insulin-mediated activation of Akt 78.   

     The lipid second messenger DAG is produced upon activation of the phosphoinositide 

signalling pathway which plays important roles in cell signalling, lipid signalling and 

membrane trafficking 79. DAG is produced from PIP2 and is a physiological activator of 

protein kinase C (PKC) in addition to interacting with other signalling molecules such as 

small G proteins. Persistent activation of PKC has been shown to correlate with increased 
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serine phosphorylation of the insulin receptors, an effect that mediates insulin 

resistance.80,81 The effect of DAG on insulin resistance can be explained by genetic 

manipulations of the enzyme that acylates DAGs into triglycerides. Liu et al. examined 

the effect of overexpression of diacylglycerol acyltransferase (DGAT) in skeletal muscle 

of mice and found that these mice exhibit increased levels of triglycerides, reduced levels 

of ceramides and DAGs and improved muscle and whole-body insulin sensitivity 80. This 

finding recapitulates “the athlete’s paradox” phenomenon which refers to endurance 

athletes being very insulin-sensitive despite having high triglyceride contents 77. Liu el al. 

also found DGAT overexpression to attenuate DAG-mediated PKC activation and 

downstream c-Jun N-terminal kinase 1(JNK1) response. JNK1 is a a stress mediator 

protein kinase activated by various environmental stresses, inflammatory cytokines and 

growth factors. JNK1 phosphorylates IRS-1 on Ser307 residues and suppresses the 

insulin-induced IRS-1/PI3K pathway activation.80  

     Thus, accumulation of intracellular lipid intermediates such as DAG and ceramide in 

skeletal muscle and liver may be a common mechanism leading to impairment of insulin 

of signalling and insulin resistance.  

 

2.4.2 Chronic Inflammation 

    Chronic and low grade inflammation is associated with the pathogenesis of chronic 

diseases such as T2DM, atherosclerosis and cancer. Inflammation is a physiological 

process characterized by increased circulating levels of proinflammatory cytokines or 

elevated count of white blood cells. In general, inflammation is a protective mechanism 

required for initiating tissue repairing, healing wounds and battling infections in the body. 

However, overactivation of the inflammatory response has deleterious effects. In states of 
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obesity and T2DM, proinflammatory cytokines enter the bloodstream from adipose tissue 

and liver and cause systemic inflammation.  

     Early studies in T2DM patients observed lowering of blood glucose levels in response 

to the anti-inflammatory drug aspirin 82. In rodent models, an increase in the 

proinflammatory cytokine TNF-α, was also observed in the adipose tissue of 

obese/insulin-resistant mice, indicating an association with insulin resistance 83. More 

recent animal and human studies found elevated levels of inflammatory markers such as 

C reactive protein (CRP), plasminogen activator inhibitor-1 (PAI-1), interleukin 6 (IL-6) 

and other inflammation mediators in the plasma of obese patients and animals 83,84. TNF-

α has been shown to inhibit normal IRS-1 signalling 83. Other signalling molecules such 

as JNK1 (c-Jun N-terminal kinase) and IκB kinase β (IKKβ) have also been found to be 

elevated in the adipose tissue and liver of obese patients and their activation appears to 

involve TNF-α-mediated IRS-1 inhibition. 84  

     NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) is a protein 

complex involved in survival and cytokine production, therefore, it regulates many genes 

involved in inflammation. IKKβ is a central regulator of inflammatory responses and is 

the primary kinase mediating NF-κB activation.85 The IKKβ/NF-κB pathway is a key 

inflammation signaling pathway and is extensively studied in cancer and obesity. IKKβ 

inhibits insulin signaling by phosphorylating IRS-1 at multiple serine residues including 

Ser307 in adipocytes.84 The inhibitory effects of IKKβ on insulin signalling is supported 

by evidence from animal studies. Arkan et al. found that IKKβ knockout mice 

demonstrated improved insulin sensitivity and greater protection from high fat diet-

induced insulin resistance in both the liver and muscle. 86  

     Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor 

responsible for lipid synthesis and storage as well as regulation of cellular differentiation, 



 
 

18 

proliferation and metabolism.56,84 It regulates a number of genes involved in insulin 

signalling, including the ones that control the expression of TNF-α and other 

proinflammatory cytokines.87 Reduction of PPARγ has been shown to contribute to 

insulin resistance. It has been suggested that TNF-α inhibits the function of PPARγ which 

induces insulin resistance 84,87. Importantly, PPARγ agonists such as thiazolidinediones, 

can antagonize the synthesis of TNF-α or its action in adipocytes. 88 

 

2.4.3 Oxidative Stress 

     Oxidative stress results from the imbalance between the production of reactive 

oxygen species (ROS) in the body and their disposal. ROS is mainly produced in the 

mitochondria when fatty acids or glucose are oxidized to generate ATP or heat. 84 Even 

though ROS production is necessary for normal signal transduction in cells, its 

overproduction will cause oxidative stress. In conditions of obesity, excess levels of fatty 

acids and glucose in the mitochondria produce oxidative stress, since obesity is normally 

associated with hyperglycemia and hyperlipidemia. 84 ROS can also be induced by other 

factors such as hypoxia.  

     Oxidative stress has been reported to be closely associated with insulin resistance and 

T2DM. Under diabetic conditions, glucose toxicity occurs as a result of chronic 

hyperglycemia which impairs insulin biosynthesis and secretion.89 Production of ROS as 

a consequence of hyperglycemia has been shown to decrease insulin gene expression and 

secretion and ultimately β-cell dysfunction. Lipotoxicity is also involved in inhibition of 

β-cell function found in T2DM. Exposure of islets to free fatty acids has been shown to 

induce ROS and reduce insulin secretion and β-cell dysfunction.89 

     Furthermore, activation of the JNK pathway is also involved in pancreatic β-cell 

dysfunction observed in T2DM. This pathway is induced by many factors including 
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increased levels of free fatty acids, inflammatory cytokines, endoplasmic reticulum (ER) 

stress and ROS which are all involved in the development of T2DM. 89The JNK pathway 

has been reported to be involved in ROS-mediated reduction of insulin gene expression 

and its suppression can protect β-cell from ROS damage. 90 Previous studies also suggest 

that ROS can inhibit the IRS-1/PI3K pathway and thereby, disrupt insulin-mediated 

GLUT4 translocation in 3T3-L1 adipocytes. 91 The importance of ROS implication in 

T2DM is highlighted by animal studies in which ROS suppression in obese/ type-2 

diabetic mice was shown to rescue β-cell function and insulin sensitivity and lead to 

improved glucose tolerance.92  

 

2.4.4 mTORC1/S6K1 Pathway  

     Chronic activation of the mTORC1/S6K1 pathway is one of the mechanisms involved 

in the development of T2DM and other pathophysiological conditions such as obesity and 

cancer. Persistent activation of mTORC1 as a result of nutrient overload, results in 

phosphorylation and activation of S6K1 and subsequent serine phosphorylation of IRS-1 

which disrupts its normal activity and degrades the protein. This negative feedback loop 

has been shown to have profound implications in insulin resistance and T2DM. In-vivo 

studies further support the implication of S6K1/IRS-1 negative feedback loop in the 

pathogenesis of insulin resistance and T2DM, whereby S6K1-deficient mice show 

improved insulin sensitivity despite being on a chronic high fat diet.76 Therefore, the 

mTORC1/S6K1 pathway has major implications in the development of insulin resistance 

and T2DM.  
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2.5 Mammalian Target of Rapamycin (mTOR) 

    The mammalian/mechanistic target of rapamycin (mTOR), a 289-kD protein, is a 

serine/threonine protein kinase belonging to the family of PI3K-related kinases. 93 The 

mTOR signalling pathway integrates intracellular and extracellular signals and is a 

central regulator of cell growth, metabolism, proliferation, survival, protein synthesis and 

ribosome biogenesis. mTOR interacts with several other proteins to form two distinct 

complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) with 

different subunit compositions, cellular functions and type of regulation. 93–96 One 

distinguishing feature of the two complexes is that although the immunosuppressant drug, 

rapamycin, perturbs mTORC1 signalling, short-term treatment with rapamycin does not 

inhibit mTORC2 signalling. 94 Since mTOR is generally deregulated in states of obesity, 

T2DM and cancer, it is important to understand the processes involved in the mTOR 

signaling network. 

 

2.5.1 Mammalian Target of Rapamycin Complex 1 (mTORC1) 

     mTORC1 is comprised of five proteins: mTOR, the catalytic subunit of the complex, 

regulatory-associated protein of mTOR (Raptor), mammalian lethal with Sec13 

protein 8 (mLST8, also known as GbL), DEP-domain-containing mTOR-interacting 

protein (Deptor) and proline-rich AKT substrate 40 kDa (PRAS40). 14,94,97 It has been 

suggested that Raptor affects mTORC1 activity by regulating the complex assembly and 

recruiting mTOR substrates. Even though mLST8 is a positive regulators of mTORC1, its 

function in mTORC1 activity is still unclear as in-vivo deletion of this protein does not 

affect mTORC1 function 93,97. PRAS40 and Deptor are characterized as a negative 

regulator of mTORC1. When mTORC1 activity is reduced, PRAS40 and Deptor are 

recruited to the complex where they inhibit mTORC1. PRAS40 has been suggested to 
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regulate mTORC1 activity by directly inhibiting substrate biding. When mTORC1 

becomes activated, it directly phosphorylates PRAS40 and Deptor, thereby reducing their 

physical interaction with mTORC1.93,95  

 

2.5.2 Mammalian Target of Rapamycin Complex 2 (mTORC2) 

     Some of the proteins are common to mTORC1 and mTORC2. In addition to mTOR, 

mLST8 and Deptor, mTORC2 has three other components: rapamycin-insensitive 

companion of mTOR (Rictor), mammalian stress-activated protein kinase interacting 

protein (mSIN1) and protein observed with Rictor-1 (Protor-1). 93,94 Although mTORC2 

is not as well characterized as mTORC1, its components have been identified and 

studied. Rictor and mSIN1 have been shown to interact with and stabilize each other, 

forming the structural foundation of mTORC2. 98,99 Rictor also interacts with Proctor-1 

but the exact physiological function of this interaction is not yet clear. Similar to its effect 

in mTORC1, Deptor is a negative regulator of mTORC2 activity and it is the only 

endogenous inhibitor of mTORC2 so far. In contrast to what is observed with mTORC1, 

mLST8 is essential for mTORC2 function. This is supported by studies in which mLST8 

knockout significantly reduced the stability and activity of mTORC2. 97 

 

2.5.3 mTORC1 and Downstream Substrates 

     The focus of my thesis will be on mTORC1 since it is the prominent regulator of cell 

growth and metabolism and integrates anabolic signals from amino acids and growth 

factors. Protein synthesis, an anabolic process required for cell growth is by far the most 

well-known process controlled by mTORC1. mTORC1 positively regulates protein 

synthesis by phosphorylating its two downstream substrates: the eukaryotic translation 

initiation factor (eIF) 4E-binding protein 1 (4E-BP1) and p70 ribosomal S6 kinase 1 
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(S6K1). Phosphorylation of these proteins allows mRNA biogenesis and translation and 

promotes protein synthesis. 96,100  

 

2.5.3.1 Ribosomal Protein S6 Kinase-1 (S6K1) 

     S6K1 particularly regulates protein synthesis, ribosome biogenesis and insulin-

mediated anabolic responses. S6K1 belongs to the serine/threonine protein kinases 

family. Phosphorylation of S6K1 by mTORC1 occurs on the T389 residues. Activation of 

S6K1 by mTORC1 stimulates mRNA biogenesis, cap-dependent translation and 

elongation, and translation of ribosomal proteins through regulation of proteins such as 

the tumor suppressor programmed cell death 4 (PDCD4), ribosomal protein S6 and 

eukaryotic elongation factor 2 kinase (eEF2K). As a result, S6K1 promotes protein 

synthesis by enhancing the translational capacity of the cell. 100 

 

2.5.3.2 Eukaryotic translation initiation factor 4E-binding protein 1 (4E-

BP1) 

     4E-BP1 is involved in protein translation. Regulation of protein translation is 

controlled with ribosome recruitment at the 5’ end of an mRNA at the position of a start 

codon. A number of translation initiation factors facilitate ribosome binding to the 5’ end 

of an mRNA. There is a cap structure specific to the 5’ end of all nuclear-transcribed 

mRNAs which is specifically recognized by eukaryotic translation initiation factor 4E 

(eIF4E). eIF4E is one of the protein components of the trimeric complex known as eIF4F. 

The other two proteins are eIF4A, which is an RNA helicase and eukaryotic translation 

initiation factor 4G (eIF4G) and is a scaffolding molecule. eIF4E provides the essential 

interface between mRNA and the recruitment of eIF4A and eIF4G necessary for 

translation initiation. 4E-BP1 belongs to a family of translation repressor proteins and it 
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negatively regulates mRNA translation through its effect on eIF4E and eIF4G. 4E-BP1 

competes with eIF4G to bind to dorsal surface of eIF4E. When 4E-BP1 is in a 

hypophosphorylated state, it prevents the formation of the eIF4F complex by preventing 

the recruitment of eIF4G to the 5’ cap of mRNA. However, upon phosphorylation by 

mTORC1, a conformational alteration releases eIF4E, allowing it to recruit eIF4G to the 

5’ cap of mRNAs to allow cap-dependent translation. Thus, phosphorylation of 4E-BP1 

by mTORC1 inhibits the suppression of mRNA translation. 

 

2.6 Upstream Regulators of mTORC1  

2.6.1 Growth Factors  

         As mentioned earlier, mTORC1 is the better characterized form of the two mTOR 

complexes and it senses and integrates inputs from intracellular and extracellular cues 

such as growth factors, energy status, stress, oxygen and amino acids. 94 Activation of 

mTORC1 by insulin or insulin-like growth factor 1 (IGF-1) occurs via Akt. Activated 

Akt stimulates mTORC1 signalling by phosphorylating and inhibiting the tuberous 

sclerosis complex (TSC1/2).93,101 TSC1/2 inhibits the activity of mTORC1 by functioning 

as a GTPase-activating protein (GAP) towards the Ras homolog enriched in brain (Rheb) 

GTPase, which acts as an activator of mTORC1. 93,102,103 When Rheb is in its GTP-bound 

form, it directly interacts with mTORC1 resulting in strong stimulation of the kinase. 

Hence, TSC1/2 negatively regulates mTORC1 by converting Rheb into its inactive GDP-

bound form. 93 Akt also regulates mTORC1 in a TSC1/2-independent manner by 

phosphorylating PRAS40 (an inhibitor of mTORC11) and dissociating it from raptor.  
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2.6.2 Stress 

     In addition to growth factors, many stress signals also act on mTORC1 through the 

TSC1/2 complex. The best characterized stress signals to date are DNA damage, low 

oxygen and low energy levels. The mTORC1 pathway directly senses low ATP levels 

through a mechanism involving AMPK. In response to hypoxia or low energy status, 

AMPK phosphorylates TSC1/2 and stimulates its GAP activity towards Rheb. 

Furthermore, AMPK phosphorylates raptor, leading to inhibition of mTORC1 through 

allosteric mechanisms. 94,96 Hypoxia also leads to low energy levels as a result of 

impaired mitochondrial respiration. Hypoxia stimulates the expression of regulated in 

development and DNA damage responses 1 (REDD1) gene, which suppresses mTORC1 

through a TSC1/2-dependent mechanism.95 It has been shown that in response to 

hypoxia, REDD1 inhibits the TSC2/14–3–3 interaction and mTORC1 activity 104. DNA 

damage can also negatively regulate mTORC1 activity through multiple mechanisms that 

involve p53-dependent upregulation of AMPK. 94 

 

2.6.3 Amino Acids 

     In addition to being the building blocks of proteins, amino acids, particularly leucine, 

are able to stimulate mTORC1 activity leading to increased muscle protein synthesis and 

decreased proteolysis. 30,64,70,105 The importance of amino acids in organismal growth and 

homeostasis was appreciated decades ago when early studies showed that rats deprived of 

leucine displayed significant weight loss, muscle waste and eventually death 106. It was 

also observed that amino acid deprivation results in rat liver autophagy (the process of 

cellular self-eating via lysosomal degradation).107 Leucine and arginine have been shown 

to be the most potent stimulators of mTORC1 activity among all the amino acids 94. In 

mammalian and yeast cell lines, withdrawal of amino acids from the culture media 
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significantly suppresses mTORC1 activity 108. When there are sufficient levels of amino 

acids in the cell, mTORC1 becomes active due to its lysosomal localization 109. Amino 

acid-dependent activation of mTORC1and its localization to the lysosome require the 

Rag GTPases.13,94,109,110 Rag proteins are the central regulators of amino acid signalling to 

mTORC1 because they regulate the subcellular localization of mTORC1 and its activity. 

In mammals there are four Rag proteins and they exist as heterodimers where RagA and 

RagB bind to either RagC or RagD 110. Amino acids control the nucleotide loading of the 

Rag proteins causing them to switch to an active conformation, which then bind and 

activate mTORC1. When the Rag proteins are in the RagA/B GTP, Rag C/D GDP form, they 

display maximum activity and binding to mTORC1 110. When active, the Rag GTPases 

recruit mTORC1 to the lysosomal surface where it directly interacts with Rheb to become 

activated. 93 On the lysosomal surface, the Rag GTPases dock on a complex called 

Ragulator. This complex is essential for amino acid-mediated activation of mTORC1 

similar to Rag GTPases because it recruits mTORC1 to the lysosome in response to 

amino acids. The localization of the Ragulator and the Rag GTPases on the lysosomal 

surface suggests an important role for this organelle in amino acid sensing by the 

mTORC1 pathway. Recently, a model of amino acid sensing has been proposed in which 

amino acids accumulate in the lysosomal lumen and initiate signaling through a 

mechanism requiring the vacuolar H+-adenoside triphosphate ATPase (v-ATPase). 13 

When v-ATPase subunits are depleted, amino acid-induced translocation of mTORC1 to 

the lysosomal surface and downstream signaling is blocked. The v-ATPase directly 

interacts with the Ragulator and provides a link between Rag GTPase and the v-ATPase 

on the lysosomal surface. Moreover, the mTORC1 pathway regulates the expression of v-

ATPase, suggesting that a feedback loop exists between mTORC1and lysosome 

function.13,111  
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     Another protein implicated in amino acid sensing by mTORC1 is the class 3 PI3K or 

the mammalian vacuolar protein sorting 34 homologue (hVPS34). Amino acids cause an 

increase in intracellular calcium levels which stimulate mTORC1 and hVps34 activation. 

This rise in intracellular calcium levels promotes the binding of calmodulin to hVps34.112 

     Interestingly, a recent study by Demetriades et al. found the TSC1/2 complex is also 

involved in the amino acid-mediated regulation of mTORC1, thereby placing this 

complex at the intersection of all signalling inputs to mTORC1109. They proposed a 

model in which TSC1/2 complex is part of the molecular machinery required for 

mTORC1 to respond to amino acid starvation. They found that TSC1/2 complex responds 

to amino acid starvation by changing its subcellular localization. They also showed that 

upon amino acid withdrawal, TSC2 is required for mTORC1 to be fully released from the 

lysosome. 109 

     Therefore, elevated levels of amino acids can result in hyperactivation of the 

mTORC1 pathway which can create an abnormal metabolic response and lead to the 

development of insulin resistance.   

 

2.7 Branched-chain Amino Acids (BCAAs) and Metabolic Health 

     BCAAs refer to the three essential amino acids: leucine, isoleucine and valine. These 

amino acids cannot be synthesized in the body, thus, they must be obtained through diet. 

BCAAs comprise a large part of dietary amino acids. The percentage of BCAAs in food 

sources varies between 20 and 25% of total protein content. 19 There is abundant evidence 

for the critical role of BCAAs in regulating the maintenance and growth of skeletal 

muscle by enhancing protein synthesis 64,67,113and inhibiting protein breakdown114. 

BCAAs also play important roles in attenuating exercise-induced muscle damage and 

delayed-onset muscle soreness114,115, lowering the loss of lean body mass during weight 
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loss116 and preserving and restoring muscle mass in patients with liver disease such as  

advanced cirrhosis 19. BCAAs and insulin are anabolic signals that affect the growth of 

energy-consuming tissues, mediated in part through their ability to activate the mTORC1 

pathway. Even though BCAAs are believed to improve many aspects of health, several 

lines of evidence suggest their implication in the development of insulin resistance and 

T2DM. Therefore, the idea that dietary BCAAs or their supplementation might be 

beneficial in preventing metabolic disorders is controversial.  

 

2.7.1 BCAA Metabolic Pathway 

     The metabolism of BCAAs involves two common steps. The first step occurs in most 

peripheral tissues except the liver. This step involves the reversible transamination of 

BCAAs and is catalyzed by the mitochondrial isoform of the enzyme branched-chain 

amino acid transferase (BCATm) encoded by the BCAT2 gene. In the transamination step 

catalyzed by BCATm, an α-amino group of BCAAs is transferred to α-ketoglutarate to 

form the three branched-chain ketoacids: α-ketoisocaproic acid (KIC), α-ketoisovaleric 

acid (KIV), and α-keto-β-methylvaleric acid (KMV). While BCATm is expressed in most 

non-neuronal tissues except the liver, the cytosolic isoform of the enzyme (BCATc) is 

expressed in the central nervous system and peripheral nerves.66  

The second step in BCAA catabolic pathway is the irreversible oxidative decarboxylation 

of the ketoacids catalyzed by the mitochondrial branched-chain α-ketoacid 

dehydrogenase complex (BCKDH) which yields the three CoA derivatives of BCAAs: 

propionyl-CoA, acetoacetate and acetyl-CoA.117,118 The metabolic pathway further 

continues and produces intermediates used in the TCA cycle. The BCKDH complex 

contains three enzymes: E1(branched-chain α-ketoacid decarboxylase), E2 (dihydrolipoyl 
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transacylase) and E3 (dihydrolipoyl dehydrogenase). Phosphorylation and 

dephosphorylation of the E1 α subunit regulates the activity of BCKDH complex. 5 

The first product of leucine catabolism, α-ketoisocaproicacid (KIC) has been the focus of 

research as there is some evidence for its involvement in mTORC1 activation and protein 

synthesis. Studies in primary adipocytes have shown KIC to be as effective as leucine in 

stimulating mTORC1signalling 70. However, this could be due to the conversion of KIC 

back to leucine, since the first reaction in leucine catabolism is reversible and therefore, 

increased leucine levels may account for increased stimulation of mTORC1 signalling in 

response to KIC treatment. 119 In fact, She et al. examined mTORC1 signalling in BCAT2 

knockout and wild-type mice to investigate the role of leucine metabolism in mTORC1 

signalling pathway 66. They observed increased phosphorylation of S6K1 and 4E-BP1 

only in the skeletal muscle of wild-type mice suggesting that conversion of leucine to 

KIC may not be essential for stimulating mTORC1 activity by leucine. Other studies 

have also reported that leucine is a direct-acting nutrient signal and its metabolism may 

not be required for mTORC1 activation in adipose tissue.18 Because current data is 

inconclusive, further research is needed to understand whether KIC can promote 

mTORC1 activation independently of leucine or if conversion of KIC back to leucine is 

required to promote mTORC1 activity. 

     Another metabolite of leucine β-hydroxy-β-methylbutyrate (HMB) has also been 

studied in the context of muscle protein turnover. HMB has been shown to stimulate 

protein synthesis and increase skeletal muscle hypertrophy via the mTORC1 pathway in 

rats 120. Furthermore, an in-vitro study by Girón et al., found that conversion of leucine to 

HMB is required for potent stimulation of mTORC1 and enhancing protein synthesis in 

L6 myotubes and that HMB is more effective than leucine in stimulating protein 

synthesis in skeletal muscle.121 HMB has also been reported to have anti-catabolic 



 
 

29 

effects, attenuate muscle proteolysis during exercise and increase muscle strength and 

performance.120,122 Even though a combination of HMB, resveratrol and metformin has 

been recently shown to improve insulin sensitivity in C2C12 muscle cells, the 

independent effect of HMB on insulin signalling has not yet been studied.123 Since, this 

particular metabolite of leucine is able to stimulate mTORC1 activity, it would be 

interesting to determine if and how it is implicated in the development of insulin 

resistance.    
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Fig 3. BCAA metabolic pathway. The three branched-chain amino acids, leucine, 
isoleucine, and valine are deaminated via the action of the branched-chain 
aminotransferase (BCAT2) enzyme. This step is reversible. The subsequent α-ketoacids 
then undergo oxidative decarboxylation via the action of the enzyme complex, branched-
chain ketoacid dehydrogenase (BCKD). This reaction yields the CoA derivatives of the 
decarboxylated ketoacids. The third step in BCAA catabolism is a dehydrogenation step 
that involve three individual enzymes, one for each of the CoA derivatives generated via 
the BCKD reaction. The remainder of the catabolic pathways for the three BCAAs 
diverges and generates substrates for the Krebs cycle.  
Figure adapted from “Branched-chain amino acids in metabolic signalling and insulin 
resistance”, by C.J. Lynch and S.H. Adams, 2014, Nature Reviews Endocrinology, 10, 
723–736. 
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2.7.2 The link between BCAAs, mTORC1 and Insulin Resistance- 

BCAA Paradox 

     As mentioned earlier, BCAAs have positive anabolic effects, however, paradoxically, 

they have been shown to be associated with obesity, insulin resistance and T2DM.6 A lot 

of the evidence comes from metabolomics studies. Metabolomics is the comprehensive 

measurement of processes involving the identification and quantification of cellular 

metabolites and is a widely used technique to study metabolic diseases. Metabolic 

profiling has provided new insight into the mechanisms that underlie the development of 

insulin resistance and T2DM.  

     Huffman et al. measured various metabolic intermediates (including acylcarnitines, 

amino acids and fatty acids) using mass spectrometry in obese individuals who are at risk 

of T2DM. They found elevated concentrations of these intermediates to be closely related 

to insulin resistance and impaired pancreatic response. 124 Other metabolomics studies 

observed similar findings. In a study done by Newgard et al., mass spectrometry 

techniques were used to analyze and compare plasma samples of lean and obese insulin-

resistant individuals. BCAAs and their metabolites C3 and C5 acylcarnitines, along with 

other amino acids such as glutamine and alanine were strongly correlated with the 

development of insulin resistance. 75 In addition, Suhre et al. found elevated levels of 

metabolic biomarkers of diabetes including sugar metabolites, ketone bodies and BCAAs 

using a multiplatform metabolomics approach in an epidemiological cohort. 125  

     Clinical studies also show positive correlations between increased BCAA levels and 

insulin resistance, HOMA index and HbA1 levels 5,126,127 Shah et al. examined plasma 

samples from 500 overweight/obese subjects at baseline and 6 months after weight loss. 

They used metabolic profiling of 60 metabolites and biochemical assays of ketones, 

insulin, glucose and non-essential fatty acids and found that a metabolite signature that 
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represents BCAA catabolism is associated with insulin resistance and can be improved 

with weight loss 128. Interestingly, Laferrère et al. compared the metabolic effects of two 

methods of weight loss: dietary intervention and gastric bypass surgery in two groups of 

obese type-2 diabetic individuals with identical weight loss. Using mass spectrometry 

metabolomics, they showed that the level of BCAAs and their related metabolites were 

reduced much more significantly after gastric bypass surgery than a dietary intervention 

program resulting in the same amount of weight loss. This indicates that the reduction in 

circulating BCAA levels, improvements in glucose tolerance and BCAA oxidation 

observed in these patients involve mechanisms other than weight loss. 129 Furthermore, 

longitudinal studies in different groups have indicated that increased circulating levels of 

BCAAs predict future insulin resistance and T2DM.7,130 Although such associations are 

repeatedly observed in human models, the mechanisms underlying the relationship 

between high blood BCAA levels and insulin resistance remain to be fully elucidated.  

     So far, two potential mechanisms have emerged that explain how BCAAs may 

contribute to the development of insulin resistance and T2DM. The first mechanism 

suggests that increasing levels of dietary BCAAs results in hyperactivation of the 

mTORC1 pathway which promotes insulin resistance through serine phosphorylation of 

IRS-1. The second mechanism proposes that excess BCAA levels are a biomarker of 

impaired BCAA metabolism, while these impairments could also result in accumulation 

of toxic BCAA metabolites that stimulate β‑cell mitochondrial dysfunction and stress 

signalling associated with insulin resistance and T2DM. 6 Therefore, BCAAs can have 

positive and negative consequences. They are beneficial in increasing muscle mass due to 

their highly anabolic effects, but can also exert negative effects on insulin signalling and 

cause insulin resistance.  Thus, further studies are needed to fully understand their 

mechanism of action and implication in insulin resistance and T2DM. 
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2.8 Rationale 

      Despite the growing research on the effect of high protein/leucine diets on mTORC1 

activation and implications in insulin resistance, current evidence on the exact molecular 

mechanism that mediates these effects still remains inconclusive. Although BCAAs and 

their metabolites have been shown to be implicated in the development of insulin 

resistance and T2DM 7,8,17, some studies suggest beneficial roles of high protein/BCAA 

levels in improving insulin sensitivity and glucose uptake in skeletal muscle 65,68,119,131–

133. Thus, it is imperative to understand how leucine and its metabolites regulate glucose 

transport and mTORC1/S6K1 signalling in skeletal muscle since it is the predominant 

tissue for insulin-induced glucose disposal. Most studies that have examined glucose 

transport and mTORC1 signalling in response to leucine treatment in skeletal muscle 

have tested supraphysiological concentrations of leucine, which do not correlate with 

normal physiological levels. Therefore, it is important to determine the effect of leucine 

in a concentration range that is more physiologically relevant. Furthermore, under normal 

circumstances, leucine is consumed along with other amino acids; therefore, it is also 

essential to understand the effect of leucine on glucose transport and mTORC1 signalling 

in the presence of other amino acids.  

Moreover, it is not exactly known whether the effects observed with leucine on glucose 

transport in-vitro are due to its intracellular catabolism. More specifically it is not known 

whether leucine metabolite KIC can independently regulate insulin sensitivity in L6 

myotubes.  
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2.9 Objective 

1) Examine the molecular mechanisms that mediate the effect of leucine supplementation 

on insulin-stimulated glucose uptake and mTORC1 pathway activation in L6 rat skeletal 

muscle cells. More specifically, determine whether leucine’s effect is dose-dependent, 

using physiologically relevant concentrations. 

2) Examine the dose-dependent effect of leucine on insulin-induced glucose uptake and 

mTORC1 signalling in the presence of other amino acids.  

3) Determine the effect of KIC treatment on insulin-stimulated glucose transport and 

mTORC1 signalling in L6 myotubes. 

4) Examine whether KIC-mediated regulation of glucose transport and mTORC1 activity 

is independent of its intracellular conversion to leucine  

 

3.0 Hypothesis 

      I hypothesize that leucine treatment will suppress insulin-stimulated glucose transport 

in skeletal muscle through increased activation of mTORC1/S6K1 signalling. I also 

hypothesize that KIC can exert similar effects on insulin-stimulated glucose uptake and 

mTORC1 signalling in L6 myotubes. Finally, I hypothesize that KIC-mediated regulation 

of insulin signalling and mTORC1 pathway is at least in part due to its intracellular 

conversion back to leucine.  
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Figure 1. General overview of insulin signalling pathway and proteins 
involved in glucose transport  
 
Insulin binds to the insulin receptor leading to activation of the receptor and thus tyrosine 
phosphorylation of the insulin receptor substrate 1 (IRS-1). This causes IRS-1 to interact with 
phosphatidylinositol-3-kinase (PI3K), facilitating the conversion of phosphatidylinositol-4, 5-
bisphosphate (PIP2) to phosphatidylinositol-3, 4, 5-triphosphate (PIP3). PIP3 then allows the 
recruitment of other kinases such as PDK1, which phosphorylates Akt. Upon its activation, Akt 
phosphorylates and inhibits Akt substrate of 160 kD (AS160), thereby allowing the translocation 
of GLUT4 to the plasma membrane and leading to glucose uptake into the cell. In addition, Akt 
activates mTORC1 by phosphorylating TSC1/2 and removing its inhibitory restraint on Rheb. 
Amino acids can directly activate mTORCl through the Ragulator complex on the lysosomal 
surface which acts as a docking site for Rag GTPases. When mTORC1 is recruited to the 
lysosomal membrane, it interacts with Rheb in its GTP-bound form and it becomes activated.  
Figure adapted from “Insulin resistance in the nervous system”, by B. Kim and E. L. Feldman, 
2012, Trends in Endocrinology and Metabolism, 23, 133-141.  
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Figure 2. Defective insulin signalling as a result of excess amino acid 
levels 
 
Amino acids (particularly leucine) are potent stimulators of mTORC1 activity. Thus, 
amino acid overload can result in hyperactivation of mTORC1, leading to the formation 
of a negative feedback loop from S6K1 to IRS-1. Phosphorylation of IRS-1 on serine 
residues instead of the normal tyrosine residues leads to inhibition of its function and its 
degradation. This defect in insulin signalling pathway can ultimately result in insulin 
resistance and inhibition of glucose uptake. 
Figure adapted from “Upstream of the mammalian target of rapamycin: do all roads pass 
through mTOR?”, by M. N. Corradetti and K. L. Guan, 2006, Oncogene, 25, 6347–6360. 
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Introduction 
 
     Type 2 diabetes mellitus (T2DM) is a global health concern and a major risk factor for 

morbidity and mortality. It is preceded by a condition known as insulin resistance which 

is characterized by a reduction in the body’s sensitivity to the hormone insulin. 4 Many 

factors can contribute to the development of insulin resistance and T2DM with nutrition 

being one of the major ones. In addition to high fat diets, high protein diets have recently 

been shown to be closely associated with the development of insulin resistance and 

T2DM.8  

     Branched-chain amino acid (BCCAs) are often used for their positive effects in 

metabolic health They have many positive effects such as regulation of body weight, 

muscle protein synthesis and glucose homeostasis.6 Therefore, BCAA supplementations 

are often used for weight loss in people with obesity. Among all three BCAAs, leucine 

has the strongest effect on muscle protein synthesis through the activation of the 

mammalian/mechanistic target of rapamycin complex 1 (mTORC1). Recently, studies 

have suggested that despite their beneficial effects, high concentrations of plasma 

BCAAs are associated with a higher risk of T2DM. This has been supported by studies in 

human and rodent models which found elevated level of circulating BCAAs and their 

metabolites in the plasma of insulin resistant/Type-2 diabetic subjects. Hyperactivation of 

the mTORC1 pathway and the subsequent impairment of normal insulin receptor 

substrate-1 (IRS-1) function has been shown as a mechanism contributing to the 

development of insulin resistance and T2DM.5–7,130 In contrast, other studies have shown 

benefits of BCAAs, particularly leucine, in stimulating glucose transport and improving 

insulin sensitivity in skeletal muscle. 68,119,132,133 Therefore, it is not exactly known how 

BCAAs may be involved in the development of insulin resistance and T2DM. The 

objectives of this study were to examine the dose-dependent effect of leucine on insulin-
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stimulated glucose uptake in the presence or absence of other amino acids in L6 skeletal 

muscle cells. We also examined how leucine metabolite, α-ketoisocaproic acid (KIC), 

affects glucose transport and mTORC1 signalling in control and in cells where BCAT2 

(branched-chain aminotransferase 2 mitochondrial) enzyme has been depleted. This 

enzyme catalyzes the reversible transamination of leucine to KIC. We found that leucine 

significantly impairs insulin-stimulated glucose transport, concurrent with increased 

mTORC1 activation, suggesting a link between impaired insulin signalling and mTORC1 

activity. KIC was also found to inhibit insulin-stimulated glucose transport through 

upregulation of mTORC1 activity. Interestingly, depleting the BCAT2 enzyme attenuates 

the inhibitory effect of KIC on insulin-induced glucose transport, suggesting that in fact it 

is the intracellular conversion of KIC to leucine which causes the impairment of glucose 

transport. Our results suggest that leucine and KIC impair insulin-stimulated glucose 

transport in L6 myotubes and therefore, may be implicated in the development of insulin 

resistance and T2DM. 
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5.0 Materials and Methods 
 
 
5.1 Reagents  

The growth medium (GM) used for cell growth was α- Modification of Eagle’s Medium 

(AMEM) purchased from Wisent (#310-010-CL), supplemented with 10% fetal bovine 

serum (FBS) (Gibco #26050-088) and 1% Antibiotic-Antimycotic (Wisent #450-115-

EL). Phosphate Buffered Saline (PBS) and Trypsin were also purchased from Wisent. 

The medium used for differentiation of cells (DM) consisted of AMEM, 1% antibiotic-

antimycotic and 2% horse serum (HS) (Gibco #26050088). RPMI 1640 (a medium free 

of amino acids and serum) was used as the starvation medium and was purchased from 

United States Biologicals (#R8999-04A). L-Leucine (#61-90-5) and Sodium 4-methyl-2-

oxovalerate (KIC) (#K0629) were purchased from Sigma Aldrich. RPMI 1640 without 

leucine (a medium containing all amino acids except leucine) was used for leucine dose-

dependent experiment in the presence of other amino acids and was purchased from 

United States Biologicals (#R8999-12). BCAT2 (#111-125) and scramble (negative 

control) siRNA (#S1452) oligosachharides were purchased from Sigma-Aldrich. 

Lipofectamine RNAiMAX was purchased from Life technologies (#13778-150). Opti-

MEM 1X Reduced Serum Medium was purchased from Life Technologies (#31985-070). 

Immobilon Western HRP chemiluminescence substrate was obtained from Fischer-

Scientific (#WBKLS0500). [3H]-2-deoxyglucose was purchased from Perkin Elmer 

(#NET549).   
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5.2 Cell Culture  

L6 rat skeletal muscle myoblasts were purchased from American Type Culture 

Collection. Cells cells were cultured in 10 cm plates with growth medium composed of 

AMEM supplemented with 10% FBS and 1% Antibiotic-Antimycotic and allowed to 

propagate at 37°C and 5% CO2 in a cell culture incubator until they reached ~ 80% 

confluency. Next, they were counted and seeded at a density of 2x105/well in either 6-

well plates for western blot experiments (described in section 3.5) or 105 cells/well for 

12-well plates for glucose transport (described in section 3.3). Cells were allowed to 

proliferate for 48 hours or until they became confluent. Following the incubation period, 

the medium was switched to DM every 48 hours and cells were allowed to differentiate 

into myotubes until D5 when the experiments were performed (Description below). 

 

5.3 Glucose Transport Assay 
 
     Glucose uptake assay, a measure of insulin action, was performed using radiolabeled 

2- deoxyglucose (2-DG). When 2-DG is taken up by glucose transporters, it is 

phosphorylated to 2-DG-6-phosphate (2-DG6P); however, it cannot be further 

metabolized and therefore accumulates in the cell. The addition of radiolabeled glucose 

([3H]-2-deoxyglucose) as the tracer to 2-DG in the transport solution allows for the entry 

of the radioactively tagged glucose into the cells along with normal 2-DG glucose. 134 

Therefore, we can measure the level of glucose uptake by determining the amount of 

radioactivity present in the cell.  

     On Day 5 of differentiation, myotubes were starved for 4 hours in RPMI (complete 

starvation medium, free of amino acids and serum). Following the starvation period, 

myotubes were treated with the first treatment, either RPMI (without amino acids and 

serum) or RPMI (containing all other amino acids except leucine) in which leucine was 
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added at various concentrations (150, 350, 600, 800 and 1800 μM) for 30 minutes. For 

the KIC experiment, following the 4 hr starvation, myotubes were treated with RPMI 

(free of amino acids and serum) containing two different concentrations of KIC (200 and 

400 μM) for 30 minutes. Subsequently, the incubation with leucine or KIC continued in 

the presence or absence of 100 nM of insulin for 20 minutes. The cells were then rinsed 

twice with HEPES (4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid) buffered 

saline, which is an organic chemical buffering agent. They were then incubated in 300 μL 

of transport solution (HEPES buffer, 10μM 2-deoxyglucose, 0.5 μCi/mL [3H]-2-

deoxyglucose) for 5 minutes at 37°. Following the 5-minute incubation period, the 

transport solution was removed and the cells were immediately rinsed with ice-cold stop 

solution (0.9% Saline) three times to stop the reaction and prevent any further glucose 

uptake. Subsequently, 1mL of 0.05M NaOH was added to each well and the cells were 

scraped and collected on ice. Samples were then stored at -20°C for further analysis. 

During analysis, 200 μL of each sample was used to conduct protein assay and the 

remaining 800 μL was added to 4-5 mL of Scintillation fluid (Ecolite+, MP Biomedicals 

#01882475) in liquid scintillation vials. The amount of radioactivity in each sample was 

counted using a Liquid Scintillation Counter (Tri-Carb Liquid Scintillation Counter). 

Rate of glucose transport was expressed per μg of protein. (See Appendix A and B) 

 

5.4 siRNA Gene Silencing 

L6 myoblasts were plated in 6-well plates at a density of 2x105 cells/ well. After 48 hours, 

medium was shifted to DM. On day 3 of differentiation, myotubes 

were transfected with 50 nM of BCAT2 siRNA or 50 nM of scramble siRNA (negative 

control) using Lipofectamine RNAiMAX reagent according to the manufacturer’s 

instructions (Life technologies). Lipofectamine RNAiMAX reagent was diluted in Opti-
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MEM medium. BCAT2 siRNA and the scramble siRNA were diluted in Opti-MEM 

medium. Next diluted siRNAs were added to diluted Lipofectamine RNAiMAX reagent 

in 1:1 ratio and were allowed to incubate for 5 minutes at room temperature. Finally, 250 

µL of the siRNA-lipid complex was added to respective wells containing 1mL of 

antibiotics-free a-MEM with 2% HS. Twenty four hours following transfection, 1mL of 

a-MEM containing 2% HS and 1% Ab-Am was added to each well. On day 5 of 

differentiation (48 hours following transfection) some cells were harvested to test the 

efficiency of the BCAT2 knockdown using immunoblot analysis. The remaining wells 

were either used for glucose transport assay (refer to section 5.3) or western blot analysis 

(refer to section 5.5). (See Appendix A and C) 

 

5.5 Cell Harvesting for Western Blot Analysis 

     Following the treatments, cells were rinsed with PBS. Then 100 μL of lysis buffer 

[1mM EDTA, 2% sodium dodecyl sulphate (SDS), 25 mM Tris-HCL pH 7.5, 10μL/mL 

protease inhibitor (Sigma Aldrich #P8340), 10μL/mL phosphatase inhibitor (Sigma 

Aldrich # P5726) and 1mM DTT (Research Organics #2190D-A101X) was added to each 

well of the 6-well plate. The cells were then scraped and transferred into 1.5 mL 

Eppendorf tubes using a 1mL Syringe. Repeated aspiration and expulsion was used to 

ensure breakdown of the cell lysate. Cells were stored at -20°C for further analysis. 

 

5.6 Protein Assay and Western Blot Analysis 

The Pierce BCA Protein Assay Kit (Thermo Scientific #23225) was used to determine 

protein concentration. The KC4 plate reader software (Bio-Tek Instruments Inc.) was 

used to obtain an absorbance reading of each well at a wavelength of 550 nanometers. A 

standard curve was used to estimate the volume required to load 25 μg of protein into one 
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well of a polyacrylamide gel. Equal amounts of protein were loaded into each well of the 

gel. The proteins were separated on 10% SDS-polyacrylamide gel electrophoresis (SDS-

PAGE). Following gel electrophoresis, they were transferred onto polyvinylidene 

difluoride (PVDF) membranes. Next, membranes were incubated for one hour in 5% 

non-fat milk in Tris Buffered Saline with Tween (TBST) at room temperature to block 

non-specific antigen binding. Subsequently, they were quickly rinsed 3 times with TBST 

for 5 minutes and then incubated overnight at 4°C with the desired primary antibody.  

Primary antibodies: ph-S6K1Th389 1:1000 dilution (Cell Signalling #9205), ph-IRS-1Ser612 

1: 1000 dilution (Cell Signalling #3203), ph-S6 Ser 235/236 1:1000 dilution (Cell Signalling 

# 4858), Gamma-Tubulin 1:10000 dilution (Sigma Aldrich #T6557). BCAT2 1:1000 

dilution (Sigma Aldrich #111-125).  

 Following the overnight incubation in primary antibody, membranes were quickly rinsed 

2 times and 3 times for 5 minutes each with TBST and then incubated in secondary 

antibody for three hours at room temperature.  

Secondary Antibodies: Anti-rabbit (CST # 7074) and Anti-mouse (CST #7076) 

antibodies were used with the dilution of 1:10000. Subsequently, membranes were rinsed 

again 3 times for 5minutes each with TBST before HRP chemical luminescent substrate 

was applied to them. Kodak molecular imaging system was used for signal visualization 

and the images were quantified with Carestream molecular imaging software (version 5 

.0.3.33) 

 

 

 

 

 



 
 

45 

4.7 Graphical Representations of Glucose Transport and Western Blots 

Glucose transport data is normalized to the control group with no amino acid, KIC or 

insulin (CTL-insulin). This was done by dividing the amount of [3H]-2-deoxyglucose 

(pmol) transported into cells in each well by the concentration of protein found in each 

well (µg). The glucose transport value (pmol/µg) was then expressed as percentage of 

glucose transport in myotubes that were not treated with amino acid, KIC or insulin. 

Western blots for ph-S6K1, ph-IRS-1 and ph-Akt were normalized to the control group 

which was not treated with amino acid or KIC, but treated with insulin (CTL+ins)   

 

4.8 Statistical Analysis  

Statistical analyses were performed using GraphPad Prism 5 software. Data presented 

here are means ± SEM. One-way analysis of variance (ANOVA) was used and Tukey’s 

post-hoc tests were done to measure statistically significant differences among means. 

Two-tailed T-tests were also performed to measure difference between two groups (ie. 

+ins vs –ins). Significance was determined as p <0.05. Bars with different letters are 

significantly different. Letters shared among groups indicate they are not significantly 

different. 
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6.0 Results 
 
 
The effect of leucine on glucose transport in the presence of other amino 

acids  

 
Since dietary proteins contain amino acids other than leucine, we sought to determine 

how the presence of other amino acids (medium composition) affects insulin-stimulated 

glucose uptake in L6 cells. We tested the dose-dependent effect of leucine in a medium 

that contains all the other amino acids but leucine. Since most studies in the literature 

have worked with supraphysiological concentrations of leucine, we chose to work with 

concentrations that are within a physiologically relevant range (0-1600 µM). In the 

presence of other amino acids, leucine does not significantly alter insulin-stimulated or 

basal glucose transport levels relative to control. The insulin effect within the control 

group was 100%, while for other concentrations of leucine it ranged from 24-48%, 

suggesting that in the presence of other amino acids, the effect of insulin becomes weaker 

since basal glucose uptake is higher compared to control (Fig 4) 

  

The effect of medium composition (presence of other amino acids) on 

leucine-mediated stimulation of mTORC1 

 
To determine how the presence of other amino acids affects leucine-mediated stimulation 

of mTORC1 signalling and examine if the effects observed with glucose transport are 

mediated through mTORC1 activation, we examined the phosphorylation levels of 

proteins involved in the mTORC1 pathway. Leucine treatment in a medium containing all 

other amino acids significantly promotes basal and insulin-stimulated phosphorylation of 

S6K1T389 at all concentrations tested relative to control (p <0.05). Insulin-stimulated 

levels of ph-S6K1T389 are increased by about 40-65% relative to control while basal 



 
 

47 

levels are higher by about 2.5-4 fold compared to control. Interestingly, within the control 

group, insulin caused a 9X increase in ph-S6K1T389 levels, while in the treatment groups 

the insulin effect ranged from 1.5-3 folds. Insulin-stimulated and basal phosphorylation 

of IRS-1Ser612 also show a trend for a dose-dependent increase relative to control, although 

non-significantly. Insulin caused a 3X increase in ph-IRS-1Ser612 in the control group, 

whereas within the other treatment groups, the effect of insulin ranged from 80-140%. 

Therefore, leucine promotes basal and insulin-stimulated phosphorylation of mTORC1 

pathway proteins and more importantly, in the presence of other amino acids, basal levels 

of ph-S6K1T389 and IRS-1Ser612 are higher relative to control (Fig 5) 

 

The effect of leucine alone on glucose uptake in L6 myotubes 

 
To determine whether leucine, independent of other amino acids, can regulate glucose 

transport, we examined the dose-response effect of leucine at 150, 350, 600, 800 and 

1600 μM. There is an overall inhibitory effect of leucine treatment (at all concentrations) 

on insulin-stimulated glucose transport relative to control (p<0.05). However, the effect is 

stronger at 150 μM, where there is a 75% reduction in insulin-stimulated glucose 

transport relative to control (p <0.01). We did not observe a significant difference in basal 

levels of glucose uptake across all treatments. The insulin effect within the control group 

was 110% while in the treatment groups it ranged from 40-70%, indicating that in the 

presence of leucine, the effect of insulin on glucose transport is less evident. It appears 

that the inhibitory effect of leucine on insulin-induced glucose uptake becomes less 

pronounced at higher concentrations, suggesting that there might be a positive shift in 

glucose uptake levels in response to leucine and insulin at concentrations much higher 

than physiological levels.  (Fig 6) 
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Dose-dependent effect of leucine on mTORC1 activation in L6 myotubes 

 
To understand whether leucine-mediated suppression of glucose transport occurs via 

increased mTORC1 pathway activation and whether its effects are dose-dependent, we 

treated myotubes with various concentrations of leucine (150, 350, 600, 800 or 1600 μM) 

and then examined mTORC1 signalling. Leucine in the presence of insulin, stimulates 

mTORC1 activation in a dose-dependent manner. This is observed by the significant 

upregulation of S6K1T389 phosphorylation with increasing leucine concentrations 

(p<0.05). Interestingly, the basal levels of ph- S6K1T389 are barely detectable, suggesting 

that the combined effect of leucine and insulin on mTORC1 activation is much more 

potent than leucine alone. This is expected since both leucine and insulin are powerful 

signaling inputs that activate mTORC1. Furthermore, there is a trend for a non-significant 

upregulation in insulin-stimulated ph-IRS-1Ser612 levels, while basal levels are barely 

detectable. Overall, our results demonstrate that leucine impairs insulin signalling 

through increasing mTORC1 activation. (Fig 7) 

 

Basal Glucose Uptake is Higher in the Presence of Other Amino Acids 

 
Since basal levels of glucose uptake appeared to be higher in our first experiment carried 

out in the presence of other amino acids (Fig 3), compared to our second experiment 

where the role of leucine alone on glucose transport was examined (Fig 5), we used these 

data to compare basal glucose uptake levels in a medium without amino acids versus a 

medium that contains all amino acids. When a combination of amino acids is present in 

the medium, basal glucose uptake rate is significantly higher compared to when there are 

no amino acids in the medium. Insulin-stimulated glucose transport is also higher in the 

presence of all amino acids, although non-significantly. Interestingly, in the presence of a 
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combination of amino acids, insulin increases glucose uptake by about 90%, while in the 

absence of amino acids, the effect of insulin is 120%. Therefore, the magnitude of insulin 

effect is smaller in the presence of amino acids, meaning that the basal levels are already 

so high, such that the availability of insulin will not significantly alter glucose uptake 

levels. These results demonstrate that an amino acid mixture enhances basal glucose 

uptake levels in skeletal muscle cells, particularly in the absence of insulin, indicating 

there might be pathways other than the PI3K-Akt signalling pathway involved in amino 

acid-mediated glucose transport. (Fig 8) 

 
The effect of KIC on glucose transport and insulin signalling in L6 

myotubes  
 
Since KIC is a metabolite of leucine and it has been shown to be involved in mTORC1 

pathway activation, we were interested in examining whether it has a similar effect to 

leucine on glucose transport. Furthermore, the role of KIC in insulin-stimulated glucose 

transport has not been examined in a physiologically-relevant concentration range. We 

tested the effect of KIC treatment on insulin-stimulated glucose transport at 200 and 400 

μM in L6 cells to mimic upper-range physiological levels and to see if there is a dose-

dependent effect. Supplementation with 200 μM of KIC suppresses insulin-mediated 

glucose transport by 45% (p<0.05). It also causes a non-significant suppression of basal 

glucose transport at this concentration. The magnitude of insulin effect within the control 

group is similar to the treatment groups (55-60%). (Fig 9) 

 
 
 
 
 
 
 
 



 
 

50 

Treatment with KIC results in activation of mTORC1/S6K1 pathway 

 
To determine whether the effect of KIC on glucose transport is associated with changes 

in the mTORC1 pathway activity, phosphorylation of three major proteins involved in the 

mTORC1 pathway were examined: S6K1T389, IRS-1Ser612 and Akt Ser473. We chose to 

examine Akt activity because growth factor-mediated activation of mTORC1 occurs via 

Akt 14,94. Moreover, we tested the effect of KIC on mTORC1 signalling at two different 

concentrations, 200 and 400 μM to try to mimic upper-range physiological levels and to 

see if there is a dose-dependent effect. KIC treatment at 200 μM significantly stimulates 

mTORC1 activity as shown by a 125% increase in ph-S6K1T389 and a 55% increase in 

ph-IRS-1Ser612 levels. Supplementation with KIC at 400μM also caused a non-significant 

upregulation in ph-S6K1T389 and ph-IRS-1Ser612  levels. However, KIC treatment did not 

significantly modulate phosphorylation level of Akt Ser473 possibly because Akt activation 

is dependent on the insulin-mediated PI3K pathway rather than KIC-mediated mTORC1 

activation, therefore, the presence of KIC in the medium may mask the full effect of 

insulin on Akt activation. Our results suggest that leucine metabolite KIC, can also 

stimulate mTORC1 activity similar to leucine. (Fig 10) 

 

KIC-mediated regulation of glucose transport involves mTORC1 

 
Since suppression of glucose transport by KIC occurred in parallel with increased 

mTORC1 activity, I examined whether rapamycin, a specific inhibitor of mTORC1, 

could ameliorate the KIC-mediated suppression of glucose transport. As shown before, 

200 μM of KIC suppressed insulin-stimulated glucose transport by 40%. (p <0.05) 

However, co-incubation of 50 nM of rapamycin and 200μM of KIC reversed the 

inhibitory effect of KIC on glucose transport (p <0.05). The magnitude of insulin effect is 
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higher in the control group where insulin increased glucose uptake by 75% while in the 

treatment groups the effect of insulin ranged from 30-45%. These results demonstrate the 

involvement of mTORC1 in KIC-mediated regulation of glucose transport and that 

inhibition of mTORC1 reverses the negative effects of KIC on glucose transport. (Fig 11) 

 

The effect of rapamycin on KIC-mediated regulation of mTORC1 

 

To link the effect of rapamycin on KIC-induced suppression of insulin-stimulated glucose 

transport to mTORC1, we measured ph-S6K1T389, ph-S6Ser235/236 and ph-IRS-1Ser612 levels. 

As expected, rapamycin significantly inhibited phosphorylation of ph-S6K1T389, ph-IRS-1 

Ser612, and ph-S6Ser235/236 (p<0.05). KIC-mediated stimulation of mTORC1 activity is 

inhibited in the presence of rapamycin, as shown by the reduced phosphorylation levels 

of IRS- Ser612 and S6Ser235/236 in the presence of rapamycin. We did not observe ph-

S6K1T389 levels in in the co-incubation of rapamycin and KIC. This could be due to the 

particularly strong inhibition of rapamycin on phosphorylation of S6K1 such that even 

the presence of insulin and KIC was not sufficient to activate S6K1. (Fig 12) 
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KIC-mediated suppression of glucose transport is due to its intracellular 

conversion to leucine 
 

Since the first step in the catabolism of leucine to its metabolite KIC, is reversible, one 

could speculate that the KIC-mediated inhibition of insulin-stimulated glucose transport 

is because KIC is being converted to leucine and that these negative effects are caused by 

leucine and not KIC. To our knowledge, the effect of KIC itself on insulin-stimulated 

glucose transport in L6 myotubes has not been examined. Therefore, we used an siRNA 

gene silencing technique to knockdown the BCAT2 enzyme that catalyzes the reversible 

conversion of leucine to KIC. By doing this, we aimed to “block” the intracellular 

conversion of KIC to leucine and then examine whether KIC can independently regulate 

glucose transport and mTORC1 activation in skeletal muscle cells. We knocked down the 

BCAT2 enzyme in our L6 cells and then supplemented them with KIC in the presence or 

absence of insulin. Depletion of the BCAT2 enzyme, attenuates the KIC-mediated 

suppression of insulin-induced glucose transport (p<0.05), indicating the observed effects 

are due to the conversion of KIC back to leucine. The magnitude of insulin effect in all 

treatment groups was similar to control, ranging from 45% to 60%. Therefore, it appears 

that KIC cannot independently regulate glucose transport in L6 myotubes and that its 

effects are mainly caused by its reversible conversion to leucine. (Fig 13 A)  

The efficiency of BCAT2 knockdown is demonstrated in Fig 13 B. 

 
 

 

 

 



 
 

53 

The effect of BCAT2 knockdown on KIC-mediated regulation of 

mTORC1 pathway 

 
We observed that the inhibitory effect of KIC on glucose transport is due to its 

intracellular conversion to leucine. Now, we wanted to determine whether KIC-mediated 

regulation of the mTORC1 pathway also depends on its conversion to leucine. We 

knocked down the BCAT2 enzyme and then examined the effect of KIC supplementation 

on mTORC1 pathway activation. Interestingly, we observed that depleting the BCAT2 

enzyme significantly suppresses the KIC-mediated activation of mTORC1 (p<0.05) as 

shown by the phosphorylation levels of S6K1T389, IRS-1S612 and AktS473. This further 

supports the notion that conversion of KIC to leucine is required for its regulation of 

insulin signalling and mTORC1 activation. (Fig 14)  
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7.0 Figures  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4. Glucose uptake rate in response to different leucine concentrations in the 
presence of other amino acids  
 
L6 myoblasts were differentiated until day 5. On D5, they were starved for 4 hours in RPMI 
(without amino acids and serum). They were then incubated in a medium that contained all amino 
acids except leucine and then supplemented with different [leucine] for 30 minutes. Finally, the 
myotubes were incubated for another 20 minutes in the presence or absence of 100 nM of insulin. 
Glucose uptake assay was then performed. Rate of glucose transport is expressed as % CTL (no 
amino acids or insulin). Mean ± SEM; n=3 independent experiments with 3-6 replicates per 
treatment within each experiment. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5. Leucine-mediated activation of mTORC1 in the presence of other amino acids 
 
Graphical representation and western blot analysis of a) ph-S6K1T389, b) ph-IRS1 Ser612 and 
gamma tubulin. L6 myoblasts were differentiated until D5. On D5, they were starved for 4 hours 
in RPMI (without amino acids and serum). They were then incubated in a medium that contained 
all amino acids except leucine and then supplemented with different [leucine] for 30 minutes, 
followed by a 20-minute incubation in the presence or absence of 100 nM of insulin. Lastly, 
samples were harvested for immunoblot analysis. Data is presented as % CTL (no amino acids 
+ins). Mean ± SEM; n=3 independent experiments with 3-6 replicates per treatment within each 
experiment (p <0.05). 
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Fig 6. Leucine impairs insulin-stimulated glucose transport in L6 myotubes 
 
L6 myoblasts were differentiated for 5 days. On D5, they were starved for 4 hours in RPMI 
(without amino acids and serum) and then treated with different leucine concentrations for 30 
minutes. They were then incubated in the presence or absence of 100 nM of insulin for 20 
minutes. Glucose uptake assay was then performed. Rate of transport is expressed per μg of 
protein. Rate of glucose transport is expressed as % CTL (no amino acids or insulin). Mean ± 
SEM; n=4 independent experiments with 3-6 replicates per treatment within each experiment.  
(p< 0.05).  “a” significantly different from “b” (p<0.01). 
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a)  
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Fig 7. Leucine impairs glucose transport via upregulation of mTORC1 activity 
 
Graphical representation and western blot analysis of a) ph-S6K1 T389, b) ph-IRS1 S612 and gamma 
tubulin. L6 myoblasts were differentiated until day 5. On D5, following 4 hours of starvation in 
RPMI (without amino acids and serum), they were incubated with various leucine concentrations 
for 30 minutes. They were then incubated in the presence or absence of 100 nM of insulin for 20 
minutes. Lastly, samples were harvested for immunoblot analysis. Data is expressed as % CTL 
(no amino acids +insulin). Mean ± SEM; n=3 independent experiments with 3-6 replicates per 
treatment within each experiment. Bars with different letters are significantly different (p<0.05).  
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a)                                                                           b) 

 
      

 
 
Fig 8. An amino acid mixture enhances basal glucose uptake rate and ph-S6K1T389 

levels in L6 myotubes 
 
Derived from data in Figure 3 and Figure 5.  
L6 myoblasts were differentiated for 5 days. On D5, they were starved for 4 hours in RPMI 
(without amino acids and serum) and then incubated in a medium that contained either all amino 
acids, or no amino acids at all for 30 minutes. They were then incubated in the presence or 
absence of 100 nM of insulin for 20 minutes. Glucose uptake assay was then performed. Rate of 
transport is expressed per μg of protein. Mean ± SEM; n=3 independent experiments with 3-6 
replicates per treatment within each experiment. Bars with different letters are significantly 
different (p < 0.05).   
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Fig 9. Supplementation with 200μM of KIC significantly suppresses insulin-
stimulated glucose uptake in L6 cells  
 
L6 myoblasts were differentiated until day 5. On D5, following 4 hours of starvation in RPMI 
(without amino acids and serum), they were treated with 200 or 400 μM of KIC for 30 minutes. 
They were then further incubated in the presence or absence of 100 nM of insulin for 20 minutes. 
Glucose uptake assay was then performed. Rate of transport is expressed per μg of protein. Rate 
of glucose transport is expressed as % CTL (no amino acids or insulin). Mean ± SEM; n=4 
independent experiments with 3-6 replicates per treatment within each experiment. Bars with 
different letters are significantly different (p <0.05). 
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Fig 10. The role of KIC in mTORC1/S6K1 pathway activation  
 
Graphical representation and western blot analysis of a) ph-S6K1T389, b) ph-IRS-1 Ser612, c) ph-
Akt Ser473 and gamma tubulin. L6 myoblasts were differentiated until D5. On D5, following 4 
hours of starvation in RPMI (free of amino acids and serum), myotubes were incubated with 
different [KIC] for 30 minutes. They were then incubated in the presence or absence of 100 nM 
of insulin for 20 minutes. Samples were then harvested for immunoblot analysis. Data is 
expressed as % CTL (no KIC +insulin). Mean ± SEM; n=3 independent experiments with 3-6 
replicates per treatment within each experiment. Bars with different letters are significantly 
different (p< 0.05).  
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Fig 11. KIC-mediated suppression of glucose transport involves mTORC1 
 
L6 myoblasts were differentiated until day 5. On D5, following 4 hours of starvation in RPMI 
(free of amino acids and serum), myotubes were supplement with either KIC, KIC plus 50 nM of 
rapamycin, or 50 nM of rapamycin for 30 minutes. They were then incubated in the presence or 
absence of 100 nM of insulin for another 20 minutes. Glucose uptake assay was then performed 
to determine the level of glucose uptake. Rate of glucose transport is expressed as % CTL (no 
KIC or insulin). Mean ± SEM; n=3 independent experiments with 3-6 replicates per treatment 
within each experiment. Bars with different letters are significantly different (p<0.05).  
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Fig 12. The effect of rapamycin on KIC-mediated activation of mTORC1 
 
Graphical representation and western blot analysis of a) ph-S6K1T389 and b) ph-IRS-1 Ser612, c) ph-
S6Ser235/236 and gamma tubulin. L6 myoblasts were differentiated until day 5. On D5, following 4 
hours of starvation in RPMI (free of amino acids and serum), myotubes were supplement with 
either 200µM of KIC alone, 200µM KIC plus 50 nM of rapamycin, or 50 nM of rapamycin for 30 
minutes. They were then incubated in the presence or absence of 100 nM of insulin for 20 
minutes. Samples were then harvested for immunoblot analysis. Data is expressed as % CTL (no 
KIC +insulin). Mean ± SEM; n=3 independent experiments with 3-6 replicates per treatment 
within each experiment. Bars with different letters are significantly different (p< 0.05).  

a) 

 

b) 
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a)   

 
 
 
 
 
 
 
 
 
 
 
 
    b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 13. BCAT2 knockdown attenuates the inhibitory effect of KIC on glucose 
transport 
 
L6 myoblasts were differentiated until day 3. On D3, they were transfected with siRNA targeting 
the BCAT2 enzyme or scramble siRNA. They were then allowed to differentiate further until day 
5. On D5, samples were either harvested for immunoblot analysis a) or b) following 4 hours of 
starvation in RPMI (free of amino acids and serum), myotubes were supplement with or without 
200 µM KIC for 30 minutes. They were then incubated in the presence or absence of 100 nM of 
insulin for another 20 minutes. Glucose uptake assay was then performed. Rate of glucose 
transport is expressed as % CTL (SCR siRNA, no KIC, no insulin). Mean ± SEM; n=3 
independent experiments with 3-6 replicates per treatment within each experiment. Bars with 
different letters are significantly different (p<0.05).  
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Fig 14. The effect of BCAT2 knockdown on KIC-mediated regulation of mTORC1  
 
Graphical representation and western blot analysis of a) ph-S6K1T389, b) ph-IRS-1 Ser612, c) ph-
Akt Ser473 and gamma tubulin. L6 myoblasts were differentiated until D3. On D3, they were 
transfected with siRNA targeting the BCAT2 enzyme or scramble siRNA. They were then 
allowed to differentiate further until day 5. On D5, following 4 hours of starvation in RPMI (free 
of amino acids and serum), myotubes were supplement with or without 200 µM of KIC for 30 
minutes, followed by another 20-min incubation in the presence or absence of 100 nM of insulin. 
Samples were then harvested for immunoblot analysis. Data is expressed as % CTL (no KIC 
+insulin). Mean ± SEM; n=3 independent experiments with 3-6 replicates per treatment within 
each experiment. Bars with different letters are significantly different (p<0.05).  

a) b) 

c) 
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8.0 Discussion  
 
 

     We used an in-vitro model to examine the effect of leucine and its metabolite KIC on 

insulin-stimulated glucose transport. My first experiment was examining the effect of 

different leucine concentrations on glucose uptake and mTORC1 activation in the 

presence of other amino acids. This is because most dietary proteins that people consume 

for weight loss or building muscle mass contain other amino acids in addition to leucine. 

Thus, we sought to determine how the availability of other amino acids affects leucine’s 

regulation of glucose uptake and mTORC1 signalling. In a medium that contains all other 

amino acids except leucine, supplementation with various leucine concentrations does not 

alter glucose transport rates in L6 myotubes. This may be due to a possible stimulatory 

response in glucose uptake associated with the presence of a combination of amino acids 

rather than just one (ie. leucine).  

     Although the exact mechanisms are unknown, some in-vivo studies suggest that a 

combination of all amino acids may result in greater endogenous insulin secretion and 

greater GLUT4 translocation to the plasma membrane as a result of increased 

phosphorylation of AS160.132,133 AS160 is an inhibitor of GLUT4 translocation, however, 

once phosphorylated by Akt, its inhibitory effect on GLUT4 translocation is removed, 

resulting in the recruitment of GLUT4 from intracellular storage pools to the plasma 

membrane. In addition, a mixture of amino acids that contains isoleucine and arginine has 

been shown to increase glucose uptake levels. 133  

     Furthermore, studies that show amino acid mixtures improve glucose transport have 

worked with concentrations from 2.5 to10 mM which are way beyond physiological 

levels 135. When looking at mTORC1 activation, the availability of other amino acids 

caused a significant stimulation in phosphorylation of S6K1T389 in response to various 
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leucine concentrations. We also observed a dose-dependent but non-significant increase 

in ph-IRS-1Ser612 levels. Moreover, in the presence of other amino acids, basal glucose 

uptake levels were higher compared to control, which is why the magnitude of insulin 

effect was not as strong as the control group. 

     A number of studies have observed elevated levels of BCAAs in obese/insulin-

resistant individuals75,124,126, therefore, it is important to investigate their in-vitro effect in 

skeletal muscle. Since leucine is the strongest BCAA in activating mTORC1 and the 

effects of high protein diets on insulin resistance occur, at least in part through the 

mTORC1/S6K1 pathway, I examined the effect of various concentrations of leucine on 

glucose transport and mTORC1 signalling in skeletal muscle cells. This was to determine 

whether leucine in the absence of other amino acids can regulate glucose transport dose-

dependently. We found that leucine significantly impairs insulin-stimulated glucose 

transport in L6 cells (p<0.05) and this inhibition is particularly more significant at 150 

μM (p<0.01). Interestingly, we observed a more significant reduction in glucose uptake in 

response to 150 μM leucine compared to higher levels. This could possibly be due to a 

dual mechanism associated with leucine’s action such that at lower concentrations (closer 

to physiological levels) it can impair insulin-stimulated glucose uptake, however, as you 

increase the concentration, its effect gradually shifts to a more positive side and 

stimulates glucose uptake due to unknown mechanism. This could be explained by the 

stronger synergistic effect of leucine and insulin at higher leucine concentrations. It may 

also be due to either increased expression of GLUT4 proteins or redistribution of the 

GLUT4 vesicles to the plasma membrane in response to high leucine levels.  

     Moreover, there is some discrepancy between our results and some previous findings 

in the literature. For instance, a recent study by Liu et al. examined the dose-dependent 

effect of leucine on glucose uptake in C2C12 skeletal muscle cells 68. They tested various 
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leucine concentrations (0 to 8 mM) and found that leucine facilitated insulin-stimulated 

glucose uptake, particularly at 2 mM. Nishitani et al. also suggested a stimulatory effect 

of leucine on glucose uptake, particularly at high concentrations (2-3 mM) under insulin-

free conditions 119. However, these studies examined the effect of leucine at 

supraphysiological concentrations which many not be relevant to normal physiological 

conditions. The physiological concentration of leucine in rodents is around 140-150 μM 

17 and in humans it is in the range of 100-150 μM 136–138, therefore, it would not be 

physiologically appropriate to test such high concentrations of leucine (2-8 mM) as these 

studies did. Therefore, results from different studies may vary depending on many factors 

such as experimental procedures and concentration of leucine tested. Thus, further studies 

need to be done to fully elucidate the mechanism of leucine’s action in insulin signalling 

and glucose uptake in skeletal muscle.  

     Interestingly we found that the rate of basal glucose uptake is significantly higher in a 

medium containing all amino acids, compared to one that does not. As mentioned earlier, 

there are certain amino acids in the mixture that can stimulate glucose uptake even in the 

absence of insulin, such as isoleucine and arginine133, therefore, even in the absence of 

insulin, a mixture of amino acids can stimulate glucose transport. 

     Next we determined whether suppression of glucose uptake by leucine occurs via 

mTORC1. We observed a trend for a dose-dependent upregulation in mTORC1 as shown 

by increased phosphorylation of S6K1T389. This is consistent with previous findings in the 

literature showing increased activation of mTORC1 with leucine treatment 22, although no 

studies have examined the dose-dependent effect of leucine on phosphorylation of 

mTORC1 proteins in a physiologically-relevant range. This is an important question 

because the effect of leucine on mTORC1 signalling may be dose-dependent. Serine 

phosphorylation of IRS-1 was also increased in response to leucine treatment, although 
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non-significantly. Thus, our results suggest that leucine promotes mTORC1/S6K1 

activation and increases abnormal IRS-1 function as a result of S6K1-mediated negative 

feedback loop on IRS-1.  

   Next we sought to determine how the first product of leucine’s catabolism (KIC) affects 

glucose uptake and mTORC1 activation. As mentioned before, previous studies have 

shown KIC to be involved in mTORC1 signalling 139, however, its effects on glucose 

transport have not been elucidated. Therefore, we were interested to examine the role of 

KIC in insulin –stimulated glucose transport in L6 cells. Since it is possible that leucine 

exerts its effects through metabolic changes such as its conversion to KIC, we sought to 

examine whether KIC by itself can regulate glucose transport. Our results suggest that 

KIC functions in a similar manner to leucine in glucose transport and mTORC1 

signalling. We observed a significant reduction in insulin-induced glucose uptake with 

200 uM of KIC treatment. Nishitani et. al 119 compared the effect of 2 mM of KIC and 

leucine on glucose uptake in the soleus muscle of rats. They found KIC was able to 

promote glucose uptake at 2 mM, although its effect was weaker than leucine. However, 

once again, they used supraphysiological levels of KIC (1-8 mM), which makes their 

findings questionable and it may not be applicable to normal physiological conditions. 

This is because the physiological concentration of KIC is around 30-35 uM136,137,140, 

therefore, it would not be logical to test such high concentrations of KIC as Nishitani et 

al. did. We also observed an upregulation in ph-S6K1T389 , ph-IRS-1S612 and p-AktS473 

levels which suggest increased mTORC1 activity. Therefore, KIC suppresses insulin-

stimulated glucose transport in L6 myotubes concurrent with increased mTORC1 

activation and therefore, can be implicated in the development of insulin resistance.  

     Since we observed a reduction in insulin-stimulated glucose uptake in response to 200 

uM of KIC and this effect was associated with increased mTORC1 activity, we were 
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interested to determine if the effects were specifically mTORC1-dependent. Because in 

our previous experiment, 200 uM of KIC treatment caused a more significant reduction in 

insulin-induced glucose uptake, we chose 200 uM as our testing concentration in this 

experiment. As observed before, KIC significantly suppressed insulin-mediated glucose 

uptake (p<0.05). Interestingly, the addition of rapamycin to KIC ameliorated the 

inhibitory effect of KIC on glucose transport (p<0.05), indicting the specific involvement 

of mTORC1 in KIC-mediated regulation of glucose transport. We next examined the 

effect of KIC and rapamycin on KIC-mediated regulation of mTORC1 activation. Co-

incubation of KIC with rapamycin, suppressed the KIC-induced phosphorylation of IRS-

1Ser612, S6K1T389 and S6Ser235/236, indicating that the effect of KIC on insulin signalling is 

mTORC1-dependent. In the presence of KIC and rapamycin, ph-S6k1T389 levels were not 

detectable at all. This could possibly be due to the specifically strong inhibition of 

rapamycin on phosphorylation of S6K1 such that even the presence of insulin and KIC 

was not sufficient to activate S6K1.  

     Our next question was to determine whether KIC can by itself regulate glucose 

transport and mTORC1 signalling in L6 myotubes, or if the effects we observed are due 

to the intracellular conversion of KIC to leucine. This is because the first step in leucine 

metabolism, catalyzed by the BCAT2 enzyme, is reversible and KIC can be converted 

back to leucine intracellularly. When we knocked down the BCAT2 enzyme and 

supplemented the cells with KIC, we found that in the scramble condition (control), KIC 

suppressed insulin-stimulated glucose transport as expected; however, in the knockdown 

condition, KIC-mediated suppression of insulin-induced glucose transport was abolished.         

To our knowledge, the effect of the BCAT2 enzyme in KIC-mediated regulation of 

glucose transport in L6 skeletal muscle cells has not been studied. She et al. examined the 

effect of whole body BCAT2 knockout in mice and found that disruption of BCAT2 
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leads to improved insulin sensitivity in mice despite elevated BCAA levels, indicating an 

important role for BCAT2 in the development of insulin resistance and T2DM 66. Our 

results indicate that negative effects associated with KIC treatment on insulin-stimulated 

glucose transport are due to the intracellular conversion of KIC to leucine and that in fact, 

it is leucine which impairs insulin signalling.  

     Finally, we probed the effect of BCAT2 knockdown on KIC-mediated regulation of 

mTORC1 signalling. Unfortunately, we did not observe a strong stimulation of ph-

S6K1T389 and ph-IRS-1S612 levels in response to KIC treatment in our scramble condition. 

This could be due to the high level of cell death and cell toxicity associated with siRNA 

gene silencing which could diminish or mask the effect of KIC on activation of 

mTORC1. However, interestingly, we found that BCAT2 knockdown significantly 

suppresses KIC-mediated mTORC1 activation as shown by ph-S6K1T389 and ph-IRS-

1S612 levels in the knockdown condition. These results further support our findings that 

KIC-mediated regulation of glucose transport and mTORC1/S6K1 activation occur 

through the reversible conversion of KIC to leucine. Therefore, targeting this enzyme 

could be a new therapeutic approach in the treatment of insulin resistance and T2DM.  

     In conclusion, my results demonstrate that leucine can impair insulin-stimulated 

glucose transport in skeletal muscle through a negative feedback mechanism involving 

increased mTORC1/S6K1 activation which leads to insulin resistance. The inhibitory 

effect of leucine on glucose transport disappears in a mixture of other amino acids, 

possibly due to the presence of amino acids such as isoleucine and arginine which 

stimulate glucose uptake. Similar to leucine, its metabolite, KIC can also impair insulin-

induced glucose transport concurrent with increased mTORC1 activation in rat skeletal 

muscle cells. Our novel findings indicate that diminishing the activity of the BCAT2 

enzyme reverses the KIC-mediated suppression of glucose transport, supporting the 
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notion that KIC exerts its effects through its intracellular conversion to leucine. This 

indicates that altering BCAA metabolism may be a new strategy in certain pathological 

conditions such as T2DM. Even though BCAA supplementation may be beneficial in 

overweight/obese individuals for weight management, excess levels could lead to the 

development of insulin resistance via persistent mTORC1 activation and loss of normal 

IRS-1 function.  

     Some of the limitations of my study include the lack of examining total protein levels 

of S6K1, IRS-1 and Akt. However, since the measures we were interested in examining 

were not likely to modulate total protein levels, we used gamma tubulin as our loading 

control to normalize our protein levels. Furthermore, to determine whether leucine-

mediated regulation of glucose transport is completely mTORC1 dependent, I could have 

used the mTORC1 inhibitor, rapamycin in my treatments. This would allow us to find out 

if leucine-mediated regulation of glucose uptake involves other mechanisms. Also, to 

further support our findings in the BCAT2 experiments, we could have used other 

methods to abolish the activity of the enzyme, such as specific inhibitor of BCAT2.  
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9.0 Future Directions 

Even though my results have shown some novel findings with regards to the effect of 

KIC on glucose transport and mTORC1 activation, further studies are needed to fully 

examine KIC-mediated regulation of insulin signalling. Some future work could include:    

 

1. Knocking down the BCAT2 enzyme and supplementing the cells with leucine to 

confirm our findings that leucine and not its metabolite, mediates the negative 

effects observed with glucose transport and mTORC1 activation 

2. Examining the role of another downstream metabolite of leucine (HMB) on 

glucose transport and mTORC1 signalling and comparing its effect to KIC. This 

is because HMB has been shown to stimulate protein synthesis via mTORC1 and 

therefore, could possibly be implicated in insulin resistance and T2DM. 

2. Examining the effect of markers of inflammation on leucine/KIC regulation of 

glucose transport since inflammation can lead to the development of insulin resistance  
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11.0 Appendix 
 
 
 
 
A) Experiment Outline: 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 

Myotubes were starved for 4h in serum and amino acid-free medium. They were then 

incubated in an amino acid-free medium to which leucine was added at various 

concentrations for 30 minutes. Following this, the cells were incubated with or without 

insulin for 20 minutes and harvested for either western blot analysis or glucose transport 

assay.  
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B) Glucose Transport Assay 
 
 
Solutions 
 
Hepes Buffer Saline:  

• 140 mM NaCl 
• 20 mM Hepes-Na, pH 7.4 
• 5 mM KCl 
• 2.5 mM MgSO4  
• 1.0 mM CaCl2 

 
Stop Solution:  

• 0.9% NaCl (Saline) 
 
2-DG Stock Solution: 

• 10 mM 2-Deoxy-D-Glucose in Hepes buffer 
 

Transport Solution (TS): 
• Prepare in Hepes buffer 
• 10 µM 2-Dexocy-Glucose 
• 0.5 µCi/mL 3H 2-Deoxy-Glucose 

 
 
Procedures  
 

1. On the designated radioactive bench in the lab, wash cells two times with Hepes 

Buffered Saline (HBS) at room temperature and aspirate any remaining buffer 

2. Add 300 µl of of Transport Solution (TS) per well for a 12-well plate.  

3. Incubate the plates for 5 minutes at 37°. Be sure to not exceed this time.  

4. Aspirate away the Transport Solution (TS) quickly and wash the wells thoroughly 

three times with ice-cold Stop Solution (0.9% Saline). Aspirate to dryness. 

5. While on ice, add 1.0 mL of 0.05N NaOH to each well in the plate.  

6. Scrape the cells and transfer 0.8 mL of the contents into plastic Scintillation vials 

already filled with 4-5 mL of Scintillation fluid.  

7. Transfer the remaining contents into 1.5 mL Eppendorf tubes (to be used for 

protein assay).  
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8. Count the amount of radioactivity in each vial using the Scintillation counter and 

measure the amount of radioactivity in each sample.  

 
C) RNAi Gene Silencing 
 
 
Materials 

• Opti-MEM (Life technologies: cat # 31985-070) 

• Lipofectamine RNAiMAX reagent (Life technologies: cat #13778-150) 

• siRNA scramble and BCAT2 (Sigma Aldrich) 

• Growth Medium (GM) without antibiotics (AMEM (Wisent Inc. Cat # 310-010-

CL) supplemented with 10% FBS (Cat # 12484-028)) 

• Growth Medium (GM) with antibiotics (AMEM (Wisent Inc. Cat # 310-010-CL) 

supplemented with 10% FBS (Cat # 12484-028) and 1% Ab-Am (Wisent Inc. Cat 

# 450-115-EL)) 

• 15 ml polypropylene conical tubes (BD Falcon Ref #372096) 

• 6 well plates (Cellstar: cat # 657160) 
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Procedures:  

1. In the cell culture hood, prepare three 15 ml tubes and label as Optimum, “A”, 

“B” and “C”  

   A Lipofectamine+ Opti-MEM 

   B BCAT2 siRNA+Opti-MEM 

         C Scramble siRNA+Opti-MEM 

2. Pour Optimum solution into the designated 15 ml-Optimum tube (without 

touching the mouth of the bottle). 

3. Add 120 µl of Opti-MEM +5 µl of Lipofectamine to tube “A”. 

4. Add 2-3 µl of BCAT2 siRNA and 122-123 µl of Opti-MEM to tube “B”. 

5. Add 2-3 µl of scramble siRNA and 122-123 µl of Opti-MEM to tube “C”. 

6. Add mix “A” to mix “B” in 1:1 ratio. (For example, 125 µl of “A” + 125 µl of 

“B”.  

7. Wait at least 5 minutes. 

8. While waiting, add 1 mL/well of GM without antibiotics, and add cells to each 

well. 

9. Add 250 µl/well of diluted mixture to each well. 

10. Following 24 hours, add 1 mL/well of GM (with antibiotics). 
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