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Abstract: 

The maintenance of the mitochondrial pool is essential for the beneficial effects 

that are seen following an acute bout of contractile activity.  Mitochondrial quality 

control consists of two pathways, mitochondrial biogenesis and mitochondrial autophagy, 

termed mitophagy. However, the mechanisms and activation of mitophagy in skeletal 

muscle remain generally elusive. Specifically, we are interested in mitophagy that occurs 

during or immediately following exercise in skeletal muscle. Recently, transcription 

factor EB (TFEB) has been identified as a key player as the master regulator of lysosomal 

biogenesis. To identify the unknown role that TFEB plays in mitophagy, we utilized a 

cell culture model of skeletal muscle myotubes. We examined the transcription and 

activation of TFEB and its downstream targets following acute exercise and recovery and 

following chronic exercise. We found that TFEB is activated following exercise and that 

it plays an important role in the transcription of mitophagy genes.  
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1.0 Mitochondrial Turnover 

Mitochondria are essential organelles responsible for aerobic respiration in 

eukaryotic cells. The majority of the energy that eukaryotes rely on is obtained through 

the use of mitochondria, thus emphasizing the importance of these dynamic organelles. 

Due to the requirement for aerobic respiration, mitochondria are found in high abundance 

in oxidative tissues such as heart, kidney, and the brain (23, 87, 125). The inner 

mitochondrial membrane plays host to a collection of enzyme complexes termed the 

electron transport chain (ETC) that are the source of adenosine triphosphate (ATP) 

generation (16, 125). Mitochondria play an important role, it is essential that the 

mitochondrial pool in cells is healthy and is maintained. This is done through two 

antagonistic processes, mitochondrial biogenesis and mitochondrial autophagy. 

Mitochondrial biogenesis is the synthesis of mitochondria whereas the opposing pathway 

is the degradation of damaged mitochondria through macro-autophagy, hereafter known 

as mitophagy. In diseases where the maintenance of the mitochondrial pool is inhibited or 

limited, such as in Parkinson’s disease, Alzheimer’s disease or Pompe disease, the 

regulation of mitochondrial turnover is observed to be essential for whole body health (81, 

96, 103, 120). Small alterations in the functionality of the turnover pathways can have 

such a startling and drastic effect on the health of the cell and the organism.  

1.1 Mitochondrial Biogenesis  

Mitochondrial biogenesis is the creation of new mitochondria. The process of 

biogenesis involves the activation of the transcription of various nuclear genes encoding 
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mitochondrial proteins (NUGEMPS). Pathways that are triggered by numerous stimuli, 

including cell stress or environmental triggers, can activate mitochondrial biogenesis. 

Biogenesis pathways rely on the transcription and translation of genes encoded not only 

by the nuclear genome, but also by mitochondrial DNA (mtDNA). Expanding the 

mitochondrial network additionally augments enzymatic activity. Various stimuli can 

activate the cascades that will enhance the mitochondrial reticulum, and an important 

stimulus to note is contractile activity (39, 40). It has long been established that 

contractile activity induces aerobic metabolism and an increase in mitochondrial content 

(38, 122). The extent of the mitochondrial modifications is dependent on the type and 

length of contractile activity. During an acute bout of exercise, mitochondrial biogenesis 

will be initiated by putative signals that are activated by contractile activity such as 

cytosolic calcium levels, oxygen consumption, ROS production and ATP turnover (11, 

40). Following the activation of these pathways, signaling cascades will commence due 

to the phosphorylation of kinases such as calcium /calmodulin- dependent kinase 

(CaMK), p38 mitogen-activated protein kinase (MAPK) and AMP-activated protein 

kinase (AMPK). These kinases will inaugurate the activation and induction of 

mitochondrial biogenesis transcription factors and co-activators. Peroxisome-proliferator 

activated receptor gamma co-activator (PGC-1α) is a co activator involved in the 

activation of the transcription of many essential mitochondrial biogenesis genes (143).  
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1.1.1 Regulation of biogenesis: PGC-1α  

Mitochondrial biogenesis is dependent on the coordination of the expression of 

many nuclear and mitochondrial-encoded genes. PGC-1α is known as the master 

regulator of mitochondrial biogenesis, a member of the peroxisome proliferator activated 

receptor (PPAR) family (92, 144). First discovered for its transcriptional activation with 

thermogenesis, PGC-1α and its family of transcriptional co-activators are responsible for 

the assembly of macrocomplexes of the transcriptional machinery (92). PGC-1α co-

activates nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2), which can upregulate 

the transcription of mitochondrial transcription factor A (TFAM) (91, 136). TFAM plays 

an imperative role in mitochondrial biogenesis by regulating mitochondrial-encoded 

genes including the 13 subunits of the respiratory chain (48, 49). Several studies have 

examined the importance of PGC-1α in response to various external stimuli. Initially, 

PGC-1α was investigated with its relationship to mitochondrial biogenesis in response to 

cold (92). In skeletal muscles where PGC-1α mRNA was undetectable at ambient 

temperatures, cold exposure for 12 hours induced PGC-1α mRNA (77, 92). Furthermore, 

upregulation of PGC-1α is paralleled by an increase in ATP-synthase proteins and 

cytochrome-c oxidase subunits (92, 146). Following an acute bout of exercise, not only 

was PGC-1α transcription was significantly elevated, but downstream targets of PGC-1α 

were also increased significantly (2, 11, 77, 131). Early in vitro studies investigating the 

overexpression of PGC-1α found a dramatic 2-3 fold amplification in subunits of the 

respiratory chain components COX IV, COX II and cytochrome c, in addition to an 
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enhancement in respiratory capabilities (5, 143). Lin et al. explored the effects of PGC-

1α overexpression by utilizing PGC-1α transgenic mice and showed an increased drive 

for oxidative metabolism and mitochondrial gene expression in skeletal muscles (63). 

Specifically when discussing PGC-1α induction following contractile activity it is 

important to understand the mechanism in which the co-activator is stimulated (5). 

AMPK, an energy-sensitive kinase, in activated following the hydrolysis of ATP and the 

formation of AMP by myokinases resulting in AMP accumulation in cytosol. Increased 

levels of AMP will activate AMPK upstream of PGC-1α. Interestingly, AMPK acts on 

both the biogenesis and autophagy pathways in order to restore energy levels in the cell 

(64, 99, 102). These pathways have been demonstrated using in vitro methods that 

provided evidence that following contractile activity, the chemical activation of AMPK 

will cause PGC-1α induction (42). This important pathway drives the increases in 

mitochondrial quality through the activation of PGC-1α following exercise, or other 

various cellular stresses.  

1.2 Mitophagy  

Efficient removal of damaged or dysfunctional mitochondria in response to 

environmental or molecular cues is essential for maintaining an overall healthy pool of 

mitochondria. This mechanism is initiated by the selection of dysfunctional 

mitochondrion, differentiated by their decrease in membrane potential (ΔΨ) and an 

increase in reactive oxygen species (ROS) production (Fig. 1) (45, 72, 82, 116). There are 
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many known stimuli that can trigger this process of mitophagy, including hypoxia (147), 

ischemia (57, 115) and mtDNA damage (58). Mitophagy plays a crucial role in the health 

of the cell. When the process is dysfunctional or impaired, issues can result linked to 

apoptosis, cancer and many muscular and neurodegenerative disorders (3, 10, 29, 72). 

Until recently, autophagic processes were considered nonselective degradation pathway, 

however, recent studies have revealed that autophagy can selectively target and degrade 

nonfunctional organelles in the cell (79). Evidence specifically for mitochondrial 

targeting for degradation was demonstrated by Schweers et al. (2007) (105). Authors 

provided novel evidence of mitochondrial flagging for degradation when they observed 

extreme loss of erythroid cell mitochondria during the process of cell maturation (105). 

Physiological stimuli, such as cold and dietary restriction, have been shown to enhance 

mitochondrial turnover rate (3, 66, 87, 92). Following caloric restriction, mitochondria 

have been demonstrated to have a decreased membrane potential in addition to decreased 

oxygen consumption activating mitochondrial turnover (3, 66, 139). It is essential to 

recall that mitophagy should not be considered a catabolic process under the effects of 

stressors. Mitophagy and mitochondrial biogenesis can be stimulated by the same 

environmental effects, which in turn induces “quality control” (3). If the damaged 

mitochondria are not sequestered and degraded it is proposed that the organelle will 

produce damaging ROS and cause deleterious effects to the mtDNA, as well and the 

surrounding cell organelles (103).  
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1.2.1 Mitophagy pathways  

When a mitochondrion is damaged, it releases warning signals that alert the cell 

that the organelle is no longer functioning at its optimal state. One of the major pathways 

in mitophagy is PINK1/Parkin pathway; PTEN-induced putative kinase 1 (PINK1) and 

parkin E3 ubiquitin ligase work together to flag and target mitochondria for degradation. 

Extensive work has looked into the mechanisms of this important mitophagy pathway 

elucidating the way that PINK1 and parkin act to mediate the removal of the 

mitochondrion (32, 36, 80, 140). It has been proposed that PINK1 acts as a stress sensor. 

In normal functioning mitochondria, PINK1 will be imported and rapidly degraded by 

proteases (127, 137). However, in unhealthy mitochondria, the import system is 

compromised due to the depolarization of the organelle and PINK1 cannot be imported. 

PINK1 will then accumulate on the outer mitochondrial membrane, where it can be 

activated and stabilized by phosphorylation on multiple sites (Fig.1) (82, 137). Recent 

publications have strengthened this fact by demonstrating that one of the phosphorylation 

sites of PINK1 that activate and stabilize it is Thr257, which in turn, allows it to 

phosphorylate and activate the E3 ubiquitin ligase parkin on Ser65 (53). In addition to 

phosphorylating parkin, PINK1 will also phosphorylate and activate ubiquitin which can 

act to activate parkin as well (47, 55). Consequent to the activation of parkin, it has been 

demonstrated that parkin will go on to ubiquitinate various outer mitochondrial 

membrane proteins, such as Voltage-dependent anion channels (VDAC), Mitofusin 1/2 

(MFN1/2) (123), Mitochondrial RHO GTPase (Miro) (65), 70 kDa mitochondrial outer 
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membrane protein (TOM70) (81) and dynamin related protein-1 (DRP1) (138). Once 

these outer mitochondrial proteins are flagged, adaptor protein p62 can commence to tag 

the mitochondrion for sequestration and degradation. Following the flagging of the 

mitochondrion, optineurin, an autophagy receptor that contains an ubiquitin binding 

domain and an LC3-interacting region (LIR) will be activated and will facilitate the 

sequestering of damaged mitochondria (141). An autophagic vesicle will be formed 

following the lipidation of Microtubule-associated protein 1 light chain 3 (LC3I) to LC3II 

with the aid of several autophagy related genes (ATG) (83, 124). LC3II can commence 

the formation of the autophagosomal vesicle by binding with adaptor proteins, such as, 

p62, and guide the vesicle around the organelle. Once engulfed completely, the 

autophagosome will be transported to the lysosome where the autophagosome and the 

lysosome will fuse with the aid of lysosomal associated membrane proteins 1 and 2 

(LAMP1 and LAMP2) (21, 25). The lysosome can then degrade the contents of the 

autophagosome and the resulting amino acids can be recycled by the cell and used to 

create new organelles and proteins.  

Many pathways regulate mitochondrial clearance in order to ensure the effective 

removal of dysfunctional organelles. An additional pathway involved in the selective 

removal of mitochondria is BNIP and NIX selective flagging. BCL-2 related protein, 

NIX, and BNIP3 will localize to damaged mitochondria to tag the organelle for 

degradation (36, 140, 147). Initially only associated with cell death and apoptosis, these 

families of proteins also associate with LC3 family proteins to aid in the formation of 
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autophagosomal membrane (15, 86). Studies have demonstrated that NIX contains an 

LIR linear binding sequence, solidifying the suggestions that NIX can selectively flag 

mitochondria for degradation and aid in the autophagosomal recruitment (51, 115). In 

addition to the binding sequence, Novark et al. explored the relation of NIX and LC3 in 

cells treated with the mitochondrial uncoupler CCCP, and they discovered an enhanced 

co-localization of NIX and LC3 (86). This ability to bind to LC3 in combination with 

evidence of binding to damaged mitochondria plays an important role in identifying and 

flagging mitochondria for degradation.  

1.2.2 Mitophagy signaling 

Mitophagy can be initiated as a result of many cellular stressors that can activate 

pathways resulting in mitochondrial clearance to maintain the health of the cell. There are 

many stress sensors present in the cell that will activate cellular clearance pathways 

(139). It is well established that mitochondria are a main producer for ROS as a by 

product of respiration in the cells, it is also well known that ROS have the capability to 

cause oxidative damage to mitochondrial DNA, and potentially the nuclear DNA if the 

damaged organelle is not degraded (117, 145). Furthermore, if respiration is damaged or 

inhibited, ROS production of the mitochondrion will increase (130). Additionally, the 

decreased membrane potential of the mitochondrion will inhibit import of proteins into 

the organelle (59). Following inhibition of oxidative phosphorylation (OXPHOS) and 

dissipation of the mitochondrial membrane potential with CCCP, this treatment was 

demonstrated to inhibit nutrient sensing kinase mammalian target of rapamycin complex 
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1 (mTORC1) and initiate mitophagy (46, 59). Furthermore, AMPK has been identified as 

an inhibitor of mTORC1 to activate mitophagy pathways (50). Authors discovered that, 

following starvation, AMPK will inhibit mTORC1 leading to a UNC-51-like kinase 1 

(Ulk1)-AMPK interaction. This interaction will activate Ulk1 through phosphorylation 

and lead to induction of various mitophagy and autophagy pathways (7, 50, 62).  
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Figure 1: Mitochondria are an invaluable and essential organelle. In order to ensure an optimal 
quality of the mitochondria is maintained, cellular quality control pathways are activated to remove 
damaged or dysfunctional organelles. This process is termed mitophagy. When a mitochondrion is 
dysfunctional, the electron transport chain (ETC) will produce an excess of reactive oxygen species 
(ROS). Increased levels of ROS will contribute to oxidative damage of the mitochondrial DNA 
(mtDNA) and decrease the membrane potential (ΔΨ

m
). Normal functioning mitochondria will import 

PINK1 into the inner membrane where it is cleaved, yet when the membrane potential is 
compromised PINK1 is unable to be imported and accumulates on the outer mitochondrial membrane 
(OMM). Membrane bound PINK1 recruits and activates Parkin, an E3-ubiquitin ligase, to the OMM. 
Activated Parkin will flag the mitochondrion for degradation by ubiquiting OMM proteins such as 
MFN1 and VDAC. Following ubiquitination, adapter protein p62 will bind to ubiquitin while LC3-I is 
lipidated by various autophagy related genes (ATG) into LC3-II. LC3-II binds to p62 to aid in the 
elongation of the pre-autophagosomal membrane. The double membrane vesicle will be formed 
around the targeted mitochondria. Once fully engulfed, it will be transported to the lysosome where 
the autophagosome and lysosome will fuse, assisted by lysosomal membrane proteins 1 and 2 
(LAMP1 and LAMP2), and the contents can be degraded. Transcription factor EB (TFEB), known as 
the master regulator of lysosomal biogenesis is involved in the transcription of many genes involved 
in steps of mitophagy. TFEB is important for organelle targeting, vesicle formation, autophagosomal 
and lysosomal fusion and cargo degradation. Additionally, exercise has been established to activate 
the process of mitochondrial biogenesis, however the activation of mitophagy following exercise has 
not been fully investigated.  
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1.2.3 Pathology of dysfunctional mitophagy  

Pathologies characterized by dysfunctional aggregates due to improper mitophagy 

have long been established in the literature. Small alterations in any of the essential 

mitophagy proteins could lead to harmful and detrimental results. Parkinson’s disease 

patients have been recently demonstrated to be linked to irregular function or absence of 

PINK1 and parkin (72, 80, 82, 140). Mutations in Park2, the gene encoding parkin caused 

a significant increase in early onset Parkinson’s disease. Patients that possessed a 

mutation in park2 demonstrated swollen, damaged and dysfunctional mitochondria along 

with muscle loss revealing that parkin recruitment to the damaged mitochondria is 

essential for the maintenance of the mitochondrial pool and muscle health. Vincow et al., 

explored the parkin-PINK1 pathway by selectively knocking out parkin and PINK1 

separately in Drosophila and measuring basal mitophagy levels. Though mitophagy 

levels were not inhibited as greatly as in ATG7 knockout Drosophila, they were 

significantly impaired compared to levels of control flies (135).  

Another neurodegenerative disease that has been related to dysfunctions in 

mitophagy pathways is Alzheimer’s disease. This neurodegenerative condition is 

characterized by the extracellular deposition of amyloid β (Aβ). This accumulation over 

time leads to loss of synapses and neuronal death in the brain (41). Following this 

increase in Aβ deposition, the fragments disrupt mitochondrial activity leading to the 

characteristic features found in Alzheimer’s disease patients (24). Studies have unveiled 

the underlying mechanisms of these dysfunctional mitochondria utilizing a transgenic 
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mouse model overexpressing the mutant amyloid precursor. These authors found that, 

over time Aβ would build up in the mitochondria and caused a decrease in mitochondrial 

oxygen consumption and enzymatic activity of ETC complexes III and IV (12). Manczak 

et al., investigated further and found the mitochondria to produce significantly more ROS 

compared to the wild type controls (69). These studies, and many more, have emphasized 

the significance of mitochondrial functionality in healthy cells, and pinpoint targets for 

therapeutic interventions.  

An additional noteworthy disease that causes devastating effects due to defective 

mitophagy is Huntington’s disease. This disease is caused by a CAG repeat expansion in 

the huntington protein which leads to accumulation of intercellular protein aggregates. 

Recent evidence has shown that the mitochondria impairment caused with mutant 

huntingtons protein plays a key part in the pathology of the disease (8). It has been 

demonstrated that a mutation in the huntingtons protein will cause inhibition of PGC-1α 

transcription which in turn, causes a decrease in NUGEMPs leading to decreased 

mitochondrial function and neurodegeneration (14, 17). Huntingtons mice cross bred with 

PGC-1α KO mice showed an increase in neurodegeneration compared to huntingtons and 

control mice (20, 121). It is important to note that inducing the expression of PGC-1α has 

the ability to partially reverse the toxic effects caused by mutant huntingtons (129). 

Moreover, the importance of PGC-1α induction and its role in mitochondrial health are 

demonstrated to play an essential part in the mechanism driving this detrimental disease. 
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These examples of impaired autophagy and dysfunctional mitochondria prove the balance 

that is required for the maintenance of our cells.  

1.3 Exercise and mitophagy  

The beneficial health effects of exercise have been well documented in the 

literature. When engaging in physical, exercise many molecular signaling pathways are 

activated that will result in increases in mitochondrial content and quality. During 

contractile activity it is well known that mitochondria release ROS that can initiate 

mitochondrial turnover, mitochondrial biogenesis and mitophagy (4). If dysfunctional 

mitochondria are not removed efficiently via mitophagy, an accumulation of harmful 

organelles will result (54). Recent studies have demonstrated that mitophagy is initiated 

following an acute bout of exercise (5, 34, 37, 43, 44, 134). Studies from our laboratory 

and others, indicate exercise-induced increases in mitochondrially-localized mitophagy 

markers, p62, parkin and ubiquitin (43), demonstrating the initiation of mitophagy 

following exercise (133, 134). Furthermore, the impact of exercise on mitophagy 

activation can be observed following a recovery period. He et al. (2012), demonstrated a 

significant increase in GFP-LC3 puncta in both cardiac and skeletal muscles following a 

recovery period of 30 minutes to 110 minutes (37). This effect was mimicked by 

starvation, a well established autophagy stimulus (29, 37, 107, 110). Jamart et al. (2013) 

additionally investigated the additive effect of endurance exercise and starvation on 

autophagy. Following exercise, they discovered that in combination with starvation there 

was a greater initiation of autophagy markers LC3-II and p62 in the fasted and exercised 
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mice than mice in the exercised or nutrient deprived treatment groups alone (44). 

Additionally, fasted and exercised mice demonstrated and increase in pathways that are 

activated with exercise, such as an increase in phosphorylated form of p38 MAP kinase. 

However, there are many studies that emphasized essential pathways with mandatory 

players for the beneficial effects of exercise. Vainshtein et al. (2014) presented studies 

that observed that PGC-1α is required for the phenotypic adaptations and substrate 

utilization following exercise. PGC-1α is required for mitochondrial biogenesis, 

angiogenesis and metabolic adaptations following a bout of exercise (134). Furthermore, 

Grumati et al. determined that collagen VI deficient mice cannot achieve the beneficial 

adaptations of exercise due to their dystrophic phenotype. Interestingly, they indicated 

that the phenotype in combination with exercise caused detrimental effects to autophagy 

flux resulting in more muscle wasting and apoptosis (33, 34). In contrast, prolonged 

muscle disuse, such as denervation or prolonged inactivity, will also initiate mitophagy 

pathways. Denervation-induced mitophagy is marked by increases in mitochondrially-

localized p62, LC3-II, parkin and ubiquitin (133). Recall, that all these markers are 

essential steps in the selective degradation process.  

1.3.1 Muscle cell culture model of exercise 

C2C12 cells are a murine muscle cell line that has been used for a wide-range of 

skeletal muscles studies, since differentiated myotubes have contractile elements that are 

found in skeletal muscle. When stimulated, C2C12 myotubes contract and can 

demonstrate similar adaptations to those found in exercising skeletal muscle (1, 30, 84). 
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Following electric pulse stimulation (EPS) it was shown that the resulting biochemical 

response was comparable to that of in vivo stimulation. In terms of excitation-induced 

contractile activity, C2C12 cells demonstrated comparable adaptations resulting in 

sarcomere formation, activation of kinases such as AMP kinase and MAP kinase 

cascades, and improved insulin responses (84) (30) (9). Furthermore, transcriptional 

activation that can be observed following acute or repeated bouts of exercise have been 

replicated in myotubes with EPS (9). Following contractile activity, comparable results to 

those observed in exercised mice were seen in the induction of mitochondrial regulators 

such as mitochondrial transcription factor A (TFAM), PGC-1α, nuclear respiratory factor 

2a (NRF2) and estrogen-related receptor α (ERRα) (9, 89). Previous work from our 

laboratory has also demonstrated that this method of in vitro stimulation is successful in 

activating mitochondrial biogenesis by demonstrating an increased enzymatic activity of 

cytochrome oxidase (COX) and an increase in mitochondrial markers, TFAM and 

COXIV (11, 78, 131). Therefore the use of C2C12 myotubes as an in vitro method to 

examine the effects of contractile activity on skeletal muscle has proven to be invaluable, 

and comparable to the effects that can be seen following exercise.  

2.0 TFEB 

2.1 Role of TFEB 

Microthalmia-transcription factor E (MiT/TFE) is a basic helix-loop-helix 

(bHLH) transcriptional subfamily of proteins known to bind to E-box sequences. This E-

box binding motif is similar to that of the Coordinated Lysosomal Expression and 
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Regulation (CLEAR) consensus sequence (104). The MiT/TFE transcription factor 

subfamily contains four members that control various lysosomal genes in addition to the 

other regulatory pathways they play a role in, including MITF, TFE3, TFEB and TFEC (98, 

104). Transcription factor EB (TFEB) is known as the master regulator of lysosomal 

biogenesis. The activation and role of TFEB are essential for the transcription of many 

downstream targets involved in cargo recognition, autophagosome formation, 

autophagosomal and lysosomal fusion and cargo degradation (112). TFEB specifically 

activates autophagy genes by upregulating the transcription of genes belonging to the 

CLEAR network genes that also regulate the process of autophagy (112). Members of the 

CLEAR network that are directly targeted by TFEB fall into five categories, including 

lysosomal hydrolases and accessory proteins, lysosomal membrane, lysosomal 

acidification, non-lysosomal proteins involved in lysosomal biogenesis and autophagy (88). 

Inactive TFEB is kept phosphorylated and sequestered in the cytosol under normal nutrient 

conditions (Fig. 2). However, following low nutrient conditions or cellular stress, TFEB 

can be dephosphorylated into its active form and translocated to the nucleus where it will 

upregulate these crucial genes required for lysosomal biogenesis. One interesting point is 

that the important genes regulated by TFEB do not significantly overlap with the genes 

regulated by FOXO3a, suggesting that they act in parallel to regulate autophagy pathways 

(101, 107).  

The protective and beneficial role that TFEB plays in regulating cell autophagy 

has been demonstrated in many studies. Adenoviral overexpression of TFEB in mice 
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caused protection against obesity and diabetes (111). Interestingly overexpression also 

allowed the mice to utilize their fat more effectively. Furthermore, the authors found that 

when knocking out PGC-1α, the effects of the overexpression of TFEB were inhibited. 

This emphasized the connection between the two transcriptional regulators through the 

autoregulatory feedback loop controlling PGC-1α and TFEB (67, 98, 111).  

2.1.1 Targets of TFEB  

The role of TFEB in lysosomal and autophagosomal regulation has been 

demonstrated to be well conserved throughout evolution. Authors have investigated the 

relationship between TFEB and its C. Elegans orthologue HLH-30 and discovered that 

this gene shares many of the essential roles that TFEB plays in mammals (28, 61). 

Furthermore, TFEB has also been shown to be conserved in Drosophila models (35). To 

date, more than 400 genes have been identified as direct targets of TFEB. Following 

TFEB activation through a starvation-induced autoregulatory feedback loop, multiple 

genes were demonstrated to be upregulated by TFEB. These were involved in ATPase 

pumps, proteases, lipid metabolism, membrane proteins, fusion proteins, lysosomal 

membrane proteins, and autophagy proteins (88, 111). Genes such as Cathepsin D, 

LAMP1, p62 where all shown to significantly increase with TFEB activation (104, 111, 

113). The activation of TFEB has been actively investigated following starvation. 

Following 24 hours of starvation, TFEB mRNA levels were significantly increased in the 

liver, muscle and kidney (111) (106). Moreover, TFEB overexpression exhibited 

beneficial effects through regulation of lipid catabolism under high fat diet condition, as 
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the lipid content of muscles and body weight were both rescued by the effects of TFEB 

overexpression. The contrary was seen with a TFEB knockout model (111).  

An essential gene that is regulated by TFEB activation is the mitochondrial 

biogenesis regulator PGC-1α. Following starvation, PGC-1α luciferase activity was 

increased significantly in addition to the increase seen with TFEB dose overexpression 

(111). Similar results have been exhibited with denervation-induced mitophagy, as a 

correlated increase in both PGC-1α and TFEB was observed following denervation (133). 

Likewise, recent studies have discovered GCN5-like protein 1 (GCN5L1), the controls 

both mitochondrial biogenesis and degradation through the interdependent regulation of 

both TFEB and PGC-1α (106). The investigators extensively demonstrated the role of 

GCN5L1 by investigating a GCN5L1 knockout model and observing that both TFEB and 

PGC-1α expression was increased, along with their downstream targets (106). However, 

when the GCN5L1 knockout model was paired with either silenced TFEB or PGC-1α, 

the expression of both TFEB and PGC-1α was also decreased, indicating that the two 

transcriptional proteins play a role in the regulation of each other. These results show that 

there is a link between the two master regulators of opposing processes, mitochondrial 

biogenesis and lysosomal biogenesis, emphasizing the quality control mechanisms that 

are required in stress responses.  
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Figure 2 : Transcription factor EB (TFEB) is known as the master regulator of lysosomal 
biogenesis. Under normal cellular conditions, TFEB is sequestered in the cytosol and inactive via 
phosphorylation by ERK2 or mTORC1. However, following conditions of low nutrients or 
cellular stress, mTORC1 and ERK2 release their inhibition on TFEB and it is dephosphorylated 
into its active form by calcinurin. TFEB translocations to the nucleus where it can upregulate 
many essential genes involved In autophagy. These include but are not limited to genes involved 
in vesicle formation and elongation, cargo recognition, autophagosomal and lysosomal fusion and 
cargo degradation. 

 

2.2 Activation and regulation of TFEB 

In order to completely understand a transcription factor it first is important to 

understand how it is regulated, and previously mentioned investigations have examined 

the external stimuli that can activate TFEB. Studies have shown that stimuli such as 
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starvation is one of the main activators of TFEB (75, 105, 109). It is now well known that 

TFEB is regulated through protein phosphorylation that regulates its localization in the 

cell. When inactive, the transcription factor will be phosphorylated and kept localized in 

the cytosol. However following activation through dephosphorylation, TFEB will be 

translocated to the nucleus. Once translocated, TFEB will be capable of upregulating a 

plethora of autophagy and lysosomal genes (Fig. 2). This, in turn, will increase the ability 

of the cell to respond to the need for degradation.  

2.2.1 Activators and inhibitors  

TFEB is a target of mTORC1, a nutrient sensitive kinase and the key negative 

regulator of TFEB. Considering that mTORC1 is deactivated following a bout of 

starvation, mTORC1 would no longer be able to phosphorylate and inhibit the activation 

of TFEB (109, 114). Once released of the selective inhibition of this nutrient sensitive 

kinase, TFEB can be dephosphorylated by calcineurin and it can translocate to the 

nucleus (75). Studies have solidified these mechanisms for TFEB deactivation by 

mTORC1. By inhibiting mTORC1 activity with various inhibitors such as, PP242 or 

Torin 1, researchers confirmed that mTORC1 had a inhibiting effect on the activation of 

TFEB (71, 149). Following inhibition of mTORC1 autophagy flux was significantly 

increased following starvation (149). mTORC1, a growth regulator, responds to amino 

acid levels in the cytosol. When amino acids are released from the lysosome they activate 

Rag GTPases. Rag proteins interact with a complex that contains MAPSP1, ROBLD3 

and c11orf59, combined in a complex which is defined as Ragulator (100). The Rag-
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Ragulator complex in turn will promote the translocation of mTORC1 to the lysosomal 

surface where it will be activated. This complete complex is sufficient to regulate the 

starvation-induced activation of TFEB (71, 114, 150). Lysosomal membrane proteins 

regulate the interactions of the lysosome with other cellular structures. One of these is the 

vacuolar H+-ATPase (v-ATPase) complex which is also involved in lysosomal 

acidification (88, 104). TFEB is recruited to the lysosome by the Rag complex and 

phosphorylated by the mTORC1 complex on Ser211 and Ser142 (71). Phosphorylated 

TFEB will bind with 14-3-3 protein that will prevent its nuclear translocation (71, 97). 

However, mTORC1 is not the only kinase involved in the regulation of TFEB, as 

extracellular signal-regulated kinase (ERK)2 and PKCβ are active in the regulation of the 

transcription factor (27, 112). ERK2 plays a similar role as mTORC1 and phosphorylates 

TFEB on Ser142. Furthermore, PKCβ acts in osteoclasts and is activated by nuclear 

factor κ-B ligand (RANKL), which is an important regulator of differentiation in 

osteoclasts. It acts to enhance transcriptional activity of TFEB through the 

phosphorylation of three serine residues (27). Recent studies have also indicated 

ZKSCAN3 as a regulator or TFEB activity. Studies showed that the silencing of 

ZKSCAN3 induced TFEB activity and the transcription of its downstream targets in 

addition to autophagic flux. The mechanisms of this inhibition of TFEB through 

ZKSCAN3 activation remains to be investigated further (18).  

Though studies have thoroughly investigated the inhibition of TFEB, pathways 

involved in TFEB activation and translocation to the nucleus have only recently been 
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studied. Mendia et at., discovered that the two serine sites involved in the inhibition of 

TFEB activity interact with calcineurin (73, 75). Additionally, energy-demanding states 

such as starvation and physical exercise promote TFEB translocation, which was 

diminished with the inhibition of calcineurin, indicating that TFEB activity is mediated 

by calcineurin. Furthermore, inhibition of mTORC1 in cells that have calcineurin 

silenced had significantly decreased TFEB translocation. Authors have also investigated 

the role of lysosomal Ca2+ release through mucolipin 1 (MCOLN1) and the activation of 

TFEB, and found that lysosomal calcium signaling plays an essential role in the 

activation of TFEB (75, 128). This provides novel insight into the regulation and 

activation of TFEB, and in turn, the regulation of lysosomal biogenesis and autophagy.  

2.2.2 TFEB and exercise  

The activation of TFEB following exercise has been scarcely investigated, but 

considering the well-documented activation of this protein following low nutrient 

condition and calcium increase, it would be logical to speculate that TFEB would be 

activated following exercise. Calcium levels are known to increase following acute 

contractile activity, and this signaling mechanism is essential for mitochondrial 

biogenesis (13, 70, 148). In combination with what is known about the pathways 

activated with exercise and what we appreciate about the activation of TFEB, it is 

reasonable to surmise that TFEB is activated with exercise. Recently, a study by Mendia 

et al. has investigated the role of TFEB following a bout of exercise (75). The authors 

investigated what signaling mechanisms are acting on TFEB to initiate its activation and 
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translocation following exercise. The investigators observed TFEB translocation to the 

nucleus following one bout of exhaustive exercise, and this effect was abolished with the 

inhibition of calcineurin (75). This is supported by the literature, it has been well 

documented that calcineurin activity is known to increase following exercise (68, 142).  

This knowledge that TFEB translocation can be activated by exercise is important in 

therapeutic studies, as well as to expand the network of knowledge about this incredible 

transcription factor. However, very little else is known about TFEB activation following 

exercise.  

2.3 Role of TFEB in lysosomal therapies  

Lysosomal storage disorders (LSD) are a collection of diseases that are 

characterized by the accumulation of waste products that cannot be degraded by the 

lysosomes. Investigation of the therapeutic approach for these diseases has been a 

growing problem due to the increasing prevalence of the diseases. One of these 

detrimental diseases, Pompe disease, is a metabolic myopathy caused by a deficiency in 

acid alpha-glucosidase (GAA). This enzyme is responsible for the breakdown of 

glycogen to glucose in the lysosomes. Patients with Pompe disease have an accumulation 

of glycogen in the lysosomes (56, 90). Furthermore, this build up of autophagic 

byproducts collect in skeletal muscle fibers causing hypertrophy (94, 95). Recent 

therapies for these storage disorder diseases involve enzyme replacement therapy (ERT), 

but a major issue in such diseases is that the therapy cannot reach the target tissues such 

as skeletal muscles (60, 132). The resistance that skeletal muscle has to ERT has been 
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speculated to be due to the mass of the tissue, the low density of receptors responsible for 

the uptake of GAA, and poor trafficking of GAA to the lysosomes inside the muscle 

tissue (6, 52, 93). Due to the impact that TFEB has had, the researchers sought to 

investigate its role as a therapeutic target for Pompe disease (74, 120). Authors have 

found that in vitro and in vivo TFEB induction was sufficient in inducing exocytosis 

driven lysosomal clearance that would improve the aggregation accumulation that is the 

driving muscular issue in Pompe disease (26, 120). These investigations of the 

therapeutic potential of TFEB in Pompe disease are novel and require more investigation 

before being applied to patients.  

Recent research involving TFEB has begun to look at more beneficial effects that 

the induction of the transcription factor can have. Studies have investigated Huntington’s 

disease in relation to TFEB. In combination with PGC-1α, a transcriptional co-activator 

that is inhibited by mutant huntington protein, these two transcriptional regulators can 

induce the removal of aggregates (129). The PGC-1α-induced induction of TFEB can 

eradicate protein aggregates in the brain of Huntington diseased mice (31, 111, 119, 129). 

This pathway is critical for understanding therapeutics for this disease. It is essential to 

note that PGC-1α activation of TFEB promotes protostasis, causing a balance between 

the pathways regulated by these transcriptional regulators (119).  

The important role of TFEB is emphasized in the increased examination of TFEB 

as a therapeutic target. Another neurodegenerative disease that has been investigated with 

TFEB regulation is spinal and bulbar muscular atrophy (SBMA). SBMA is caused by a 
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polygluatamine expansion of the androgen receptor gene product (polyQ-AR), which will 

result in a complete loss or alteration of protein function (22, 126). PolyQ-AR reduces 

protein turnover and autophagic flux in motor neurons (19). Furthermore, when 

investigating autophagy regulation in neurons, it was found that AR physically interacts 

with and co-activates TFEB, and in SBMA mice the activity of TFEB is inhibited by 

mutant AR (19, 118). This gives novel information regarding the large impact that TFEB 

has on the transcription of autophagy proteins through protein-protein interactions and 

activation. AR function is not completely known, but recent studies show that its 

dysfunction to have the ability to cause neurotoxicity (85). Further investigation of this 

pathway remains to be investigated as a potential use as a therapeutic target.  

3.0    Study Objectives 

Though much is known about the regulation and control of mitochondrial 

biogenesis, the opposing pathway, mitophagy, is more elusive in its understanding. 

Additionally research on TFEB is in its infancy, and its effects on skeletal muscle have 

not been thoroughly examined. Research in this area could provide new insight into 

mitochondrial-lysosomal interactions in response to exercise. Furthermore, it would be 

intriguing to see how this transcription factor is activated in response to contractile 

activity. It has well been established in various cell lines that TFEB is activated under 

stress conditions such as starvation (108, 111), but the roles of TFEB in skeletal muscle 

under the effects of exercise remains generally unknown. Therefore based on my 

literature review, the purposes of this thesis were: 1) to determine the effect of acute 
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contractile activity and recovery on short term TFEB activation and expression, 2) to 

determine how chronic contractile activity will induce adaptations of TFEB expression 

and its downstream targets, and 3) to clarify the pathways that TFEB is involved in by 

utilizing a TFEB overexpression model. These objectives will provide useful insight to 

the unknown roles of TFEB in skeletal muscle. 

Hypotheses 

 Recent previous studies have examined the effect of nutrient deprivation on 

TFEB. Activators of TFEB, such as, calcinerin are activated by exercise resulting in 

TFEB translocation and induction. However, the mechanisms are not completely clear. 

We hypothesize that TFEB will be activated following an acute bout of exercise and 

upregulate the transcription of various lysosomal biogenesis genes. Furthermore, we 

hypothesize that the adenoviral overexpression of TFEB will cause an abundance of 

protein and induce an increased transcripton of TFEB target genes and further increase 

their transcription following exercise. If TFEB is activated following one bout of acute 

contractile activity we hypothesize that following 4 days of chronic contractile activity 

there will be an increase in TFEB downstream targets.  
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Abstract: 

Skeletal muscle adaptations during exercise depend on a functional mitochondrial 

pool. Optimal mitochondria are regulated by two opposing processes, termed 

mitochondrial biogenesis and mitochondrial autophagy (mitophagy). A key mechanism in 

mitophagy is lysosomal biogenesis, and this process is under the control of transcription 

factor EB (TFEB). TFEB is known to be activated following starvation however, 

exercise-mediated TFEB activity in skeletal muscle has not been determined. To 

understand this, we employed both acute and chronic contractile activity of C2C12 

myotubes in cell culture. TFEB promoter activity and nuclear localization were 

upregulated following 2 and 5 hours of acute stimulation. The distal 400 bp region of the 

1600 bp promoter was responsible for the contractile activity-mediated increase in 

transcription. Adenoviral overexpression of TFEB caused marked increases in autophagy 

markers, LAMP2, LC3 and p62 and mitochondrial biogenesis markers, COXIV and 

PGC-1α under control conditions. Under the influence of acute contractile activity TFEB 

mRNA significantly decreased in a stimulation-dependent manner in the overexpressing 

cells. To analyze the long-term effects of exercise on lysosomal adaptations we utilized 

chronic contractile activity (CCA; 3 hours/day for 4 days), TFEB, TFE3 and p62 

demonstrated no alterations. However, LAMP2 was decreased by 42% and a 160% 

increase was observed in cathepsin D protein content. Our study indicated that TFEB 

transcription and localization are regulated by contractile activity, which could contribute 

to the coordinated biogenesis of both lysosomes and mitochondria. 
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Introduction: 

Regular exercise has been well documented to have many beneficial effects on 

physical health, including adaptations in oxidative capacity, metabolism and 

cardiovascular health (4). Furthermore, exercise has been demonstrated to protect against 

diabetes and various metabolic disorders (5). Skeletal muscle has the incredible ability to 

adapt to the energy demands presented by contractile activity. The alterations that are 

needed by skeletal muscle cells to respond to the metabolic shift require a remodeling of 

the mitochondrial network. The quality and quantity of the mitochondrial network is 

dependent on the intricate balance between two opposing pathways: mitochondrial 

biogenesis and mitochondrial degradation. Mitochondrial biogenesis is the expansion 

and synthesis of organelle network, a process that is largely regulated by the co-activator 

PGC-1α. The opposing pathway, degradation, is not completely understood. The 

selective degradation of mitochondria is termed mitophagy and this has been 

documented to increase following cellular stress, increased nutritional and energy 

demands, and various diseases such as cancer, neurodegenerative disorders and 

inflammatory disorders (1, 8, 10). The purpose of this pathway is the removal of 

dysfunctional or damaged mitochondria (15, 18, 39, 44).  

During mitophagy, an unhealthy mitochondrion will be separated from the 

mitochondrial network through fission. Due to the decreased oxidative capacity that the 

damaged mitochondrion possesses, normally imported proteins such as PINK1 will 
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accumulate on the outer mitochondrial membrane (17). PINK1 will recruit parkin to the 

mitochondria where it can ubiquitinate outer membrane proteins such as MFN1 and 

VDAC which will selectively tag the organelle for removal (14, 43). Targeted 

mitochondria are engulfed by a double membrane autophagosome, and transported to the 

lysosome for degradation. Recent publications have highlighted this process of 

mitophagy being activated following an acute bout of exercise (7, 11, 12). These studies 

suggest that the beneficial mitochondrial adaptations that are seen with long-term chronic 

exercise could be due, in part, to the mitophagy pathways activated immediately 

following a period of exercise (6).  

An important player in autophagy is transcription factor EB (TFEB), known for 

its role as the master regulator of lysosomal biogenesis. TFEB activity is regulated 

through phosphorylation (23, 27, 35), which retains the protein inactive and sequestered 

in the cytosol. Two kinases have been identified to date that inhibit TFEB activity, 

mTORC1 and ERK2, which phosphorylate TFEB on Ser211 and Ser142 respectively (22, 

27, 33). However, under conditions such as starvation or cellular stress, TFEB is 

dephosphorylated into its active form by calcineurin (23). In conditions of stress, 

calcineurin will be activated by elevations in cytosolic Ca2+. Since it is well known that 

calcium levels are elevated in muscle during contractile activity, it would be logical to 

expect the activation of TFEB following exercise. It has recently been shown that, 

following dephosphorylation, TFEB can translocate to the nucleus (23, 38). Nuclear 

translocation allows TFEB to upregulate the transcription of essential coordinated 
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lysosomal expression and regulation (CLEAR) genes such as LC3, SQSTM1 and 

LAMP1(30, 31, 33) 

The purpose of this study was to further document the effect of acute exercise on 

TFEB expression and activation, as well as to observe the adaptations of TFEB to chronic 

contractile activity. To facilitate this, an adenoviral overexpression model was utilized for 

mRNA analysis of the impact of TFEB activation with exercise. Activation of the 

transcription factor under various conditions was analyzed by promoter activity, as well 

as by using nuclear and cytosolic fractionations. In addition to this, mitophagy markers 

were investigated following acute and chronic stimulation to investigate the effect of 

contractile activity on mitophagy. Mitophagy is an essential process in the health and 

maintenance of muscle, and it is known to be activated by acute exercise (6, 42). Since 

TFEB is a major regulator of autophagy, we hypothesized that TFEB activation would 

play a role in contractile activity- induced mitophagy.  
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Methods: 

Cell culture- C2C12 murine skeletal muscle cells were proliferated on six-well 

culture dishes (Sarstedt, Montreal, QC, Canada or Biobasic Canada Inc., Markham, ON, 

Canada) coated with 0.1% gelatin in growth media (GM), Dulbecco's modified Eagle's 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-

streptomycin (P/S). At 80-95% confluency, differentiation into myotubes was induced by 

switching the medium to differentiation media (DM), DMEM supplemented with 5% 

heat-inactivated horse serum (HS) and 1% P/S. 

Stimulation of muscle cells- Lids from plastic six-well dishes (3.5-mm wells) were 

fitted with two platinum wire electrodes such that 2-cm lengths ran parallel to each other 

at opposite ends of the dish 2 cm apart. This protocol has previously been described in 

detail (3). Myotubes were subjected to electrical stimulation-induced contractile activity 

in a parallel circuit at a frequency of 5 Hz and an intensity of 11 V acutely for one bout 

of 2 or 5 hours of stimulation, with or without two hours of recovery. Differentiation 

medium (2 ml) was replenished 1 h prior to stimulation. Following this time, custom-

made lids with implanted electrodes replaced typical lids, and dishes were attached to the 

electrical stimulator unit. Each well was carefully inspected to ensure that the electrodes 

were submerged in the medium prior to the stimulation. Cells were collected for enzyme, 

protein, or RNA extractions immediately after the stimulation or recovery period. 

Chronic contractile activity (CCA) was achieved using the same preparation but with an 
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intensity of 9 V chronically for 3 h/day over 4 successive days, cells were harvested 21 

hours after last stimulation. Stimulation was performed at 37°C and 5% CO2 for all 

conditions.  

Cyclosporin A (CsA) treatment- Myotubes were differentiated in 6-well plates as 

supplemented with CsA (Sigma-C3662). Media was changed 30 minutes prior to 

stimulation, and the final concentration of CsA per well was 10nM. Myotubes were 

acutely stimulated for 5 hours and immediately following stimulation whole cell extracts 

were collected for nuclear and cytosolic fractionation and western blotting. 

Transfection experiments- Where indicated, the TFEB promoter containing either 

1200 or 1600 bp upstream of the transcription start site, or the 2190 bp PGC-1α 

promoter and PRL-CMV vector as a normalization control were transfected into C2C12 

cells cultured in 6-well plates. For transfection of the promoter sequence, C2C12 cells 

were grown as described previously, and the medium was switched to pre-transfection 

medium (DMEM and 10% FBS) when the cells were at 30% confluence. The following 

day, myoblasts were incubated with 2μg/well of TFEB or PGC-1α promoter DNA and 

10 μl of Lipofectamine 2000 for 6 h in 2 ml of DMEM. The medium was then changed 

back to DMEM supplemented with 5% HS and 1% P/S, and the cells were then 

differentiated, as described above. The differentiated cells were then subjected to 

stimulation, or kept as a control.  

Luciferase Reporter Assays- Following treatments, cell extracts containing 
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expressed luciferase enzyme were prepared using 1X passive lysis buffer supplemented 

with protease (Complete, Roche, 1169749801; Roche diagnostics, Basel, Switzerland) 

and phosphatase inhibitors (Cocktails 2 and 3 Sigma, P5726 and P0044). Luciferase 

activity was measured as an indicator of transcription using an EG&G Berthold (Lumat 

LB9507) luminometer, according to the manufacturers instructions. 

Nuclear and Cytosolic Fractionation- NE-PER extraction reagents (Pierce, 

Thermo Scientific #38835) were used to obtain cytoplasmic and nuclear fractions using 

modifications of the manufacturer's recommendations and differential centrifugation.  

Western Blotting- Total protein was isolated from C2C12 cells as described 

previously(9). Total protein extracts (30-80 μg) were separated on an SDS- 

polyacrylamide gel and transferred onto nitrocellulose membranes. Following the 

transfer, the membranes were blocked for 1 hour in 1X TBST containing 5% skim milk. 

The membranes were subsequently probed overnight at 4°C with antibodies that detected 

COXIV (1:750; Abcam, ab14744), LAMP2 (1:1000; Abcam ab13524), VDAC/porin 

(1:3000; Abcam), p-ERK1/2 (1:2500; Cell Signaling #9106S), Total-ERK1/2 (1:1000; 

Cell Signalling #9102), p-AMPK(1:3000; Cell Signalling #2535S), Total-AMPK(1:500; 

Cell Signalling #2532S), p-CamK-II(1:1000; Cell Signalling #3361S), p-p38(1:500; Cell 

Signalling #9211S), Total-p38(1:000; Cell Signalling #9212S), GAPDH(1:10000, 

Abcam), Aciculin(1:200, in house), COXI (1:500; Invitrogen ab14705), TFEB (1:500, 

MBS), YY1(1:500; Santa Cruz, sc7341), H2B(1:1000; Cell Signalling, #2934S), α-
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tubulin (1:10000; Calbiochem), Cathepsin D (1:1000; Santa Cruz, SC6486), TFE3 

(1:2000; Sigma, PA023881),  parkin (1:500; Santa Cruz, sc32282), LC3A/B (1:1000; 

Cell Signaling #2775) or  p62/SQSTM1 (1:5000; Sigma-Aldrich P0067). The 

membranes were washed 3X5 minutes with 1X TBST and incubated for 1 hour at room 

temperature with the appropriate secondary antibodies conjugated to horseradish 

peroxidase (Santa-Cruz Biotechnologies). Blots were visualized with enhanced 

chemilluminesence and were quantified using ImageJ software. 

Fluorescence microscopy- C2C12 cells were plated on glass cover slips on 6 well 

dishes (3.5 mm wells) coated with 0.1% gelatin. Cells were differentiated on the cover 

slips and electrically stimulated for 5 hours. Following treatment, cells were fixed to the 

coverslips with 4% paraformaldehyde in PBS and permeabilized with 0.3% Trition. Non-

specific binding was blocked with 5% normal goat serum in PBS. Slides were probed for 

1 hour at room temperature with primary antibodies specific for LAMP2 (1:500), 

VDAC/Porin (1:500), p62/ SQSTM1 (1:500) or TFEB(1:500). Subsequently, slides were 

treated with the appropriate Alexafluor secondary antibody (Life Technologies) for 1 

hour at room temperature. Lastly, slides were washed with DAPI nuclei staining (1:500) 

for 15 minutes. Mounted slides were visualized with an inverted Nikon Eclipse TE2000-

U fluorescent microscope equipped with 20X objective lens.  All representative images 

were taken at the same exposure per condition.  

RNA extraction and mRNA analysis- Total RNA was isolated from cultured 

C2C12 myotubes using TRIzol reagent (Invitrogen) according to manufacturer’s 
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instructions. RNA concentration and quality were assessed using spectrophotometry 

(NanoDrop 2000; Thermo Scientific).  The mRNA expression of COXI, COXIV, TFAM, 

PGC-1α, TFEB, LAMP-2, Cathepsin D, LC3B, p62 and Beclin-1 was quantified using 

StepONE Plus PCR System (Applied Biosystems, California, USA) and SYBR® Green 

Supermix (Quanta Biociences, MD, USA).  First-strand cDNA synthesis from 2 μg of 

total RNA was performed with primers using Superscript III transcriptase and Oligo(dt)20 

(Invitrogen) according to manufacturer’s instructions.  Forward and reverse primers 

(Table 1) were optimized to verify primer efficiency and dissociation melt curves were 

analyzed for primer specificity. All samples were run in duplicate.  Transcript levels were 

normalized to two housekeeping genes, GAPDH and β-Actin, and analyzed using the 

ΔΔCt method.  Statistical significance was calculated on 2^-ΔΔct values using two-way 

ANOVA and Tukey post hoc tests.   

Mitochondrial isolation- Mitochondria were isolated from myotubes in tissue 

culture using an adapted protocol (21) via differential centrifugation.  Briefly, myotubes 

were washed 2x in ice-cold PBS and scraped on ice using rubber policemen in 

mitochondrial isolation buffer (MIB; 10% 0.1 M Tris-MOPS, 1% EGTA-Tris, and 20% 

1 M sucrose, pH 7.4).  Cells were pelleted at a centrifugation speed of 600 g (Beckman 

JA25.5) for 10 minutes at 4°C and pellets were resuspended in 3 ml of MIB on ice. 

Suspensions were transferred to chilled 7ml glass potters and subjected to 

homogenization with an Elvehjem PTFE Tissue Grinder (Wheaton, NJ, USA) at 800 rpm 

for 30 strokes. Homogenates were transferred to fresh 1.5 ml eppendorf tubes and respun 



! 55 

at 10000 g.  The supernatant fractions were collected, the resulting mitochondrial 

fractions were resuspended in 100 μl of PBS supplemented with protease (Complete, 

Roche, 1169749801; Roche diagnostics, Basel, Switzerland) and phosphatase inhibitors 

(Cocktails 2 and 3 Sigma, P5726 and P0044) and transferred to 1.5 ml eppendorf tubes. 

Crude mitochondrial samples were used for protein analysis and western blotting.  

Infection of target cells- C2C12 mytoubes were differentiated in six well plates as 

described previously. On day 5 of differentiation, pre-made pAdEasy-TFEB virus and 

pAdEasy-GFP control virus were thawed at 37°C. Viral containers were spun down at 

1400rpm for 3 minutes to ensure all viral contents were off the lid. In a 50ml falcon tube, 

1ml of media was added per well for infection, as well as 10 MOI of viral stock. The viral 

mixture was made for the GFP control. For each 6-well plate, 3 wells were used as TFEB 

infected cells, and 3 wells were used as GFP control cells. Media was removed from the 

target cells and replaced with 1ml of viral mixture. Cells were incubated with the virus at 

37°C for 24 hours. Immediately following, the virus DM was removed from the target 

cells, myotubes were washed twice with DM, then media was replenished. Media was 

replenished each day for desired days of infection.   

Statistical Analysis- The means and standard errors were calculated for all measured 

values, and statistical significance between groups was determined by ANOVA or t-test 

where applicable with Tukey post-hoc tests (Graphpad, La Jolla, CA).  Results were 

considered statistically significant when p<0.05. 
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TABLE 1:  

 

 

 

 

 

 Primer (5’!3’) 

Gene Forward Reverse 

Maplc3b GCTTGCAGCTCAATGCTAAC CCTGCGAGGCATAAACCATGT 

LAMP2 GCTGAACAGCCAAATTA CTGAGCCATTAGCCAAATACA 

CatsD TTTGCAATGCTGTCGTACT AGCGACTGTGACTATGTGTGAG 

PGC-1α TTCCACCAAGAGCAAGTAT CGCTGTCCCATGAGGTATT 

TFEB AGCTCCAACCCGAGAAAGAGTTTG CGTTCAGGTGGCTGCTAGAC 

GAPDH AACACTGAGCATCTCCCTCA GTGGGTGCAGCGAACTTTAT 

Actb TGTGACGTTGACATCCGTAA GCTAGGAGCCAGAGCAGTAA 

Coxiv CTCCAACGAATGGAAGACAG TGACAACCTTCTTAGGGAAC 

Coxi CTAGCCGCAGGCATTACTAT TGCCCAAAGAATCAGAACAG 

TFAM GAAGGGAATGGGAAAGGTAGA AACAGGACATGGAAAGCAGAT 

Sqstm1 TGTGGTGGGAACTCGCTATAA CAGCGGCTATGAGAAGCTAT 
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Results: 

Kinase activation with acute contractile activity 

Acute contractile activity of myotubes was sufficient to activate kinases known to 

significantly increase following exercise. Phosphorylation of p44 (ERK1) and CamK 

increased 4.4- and 1.8-fold compared to control cells, respectively, immediately after 2 

hours of stimulation. Phosphorylation levels returned to control levels following 2 hours 

of recovery (Fig. 1A, 1D). AMPK and p38 also demonstrated trends to increase after 2 

hours of stimulation and 2 hours of recovery (Fig. 1C, 1E), but this was not observed for 

p42 (ERK2) (Fig. 1B). Similar trends were observed with 5 hours of stimulation. The 

phosphorylation of kinases Camk, p44 and p38 were increased (p<0.05) as a result of 

contractile activity (Figs. 2A, 2D, 2E), while two kinases, p42 and AMPK were not 

significantly altered with stimulation (Figs. 2B, 2C). 

TFEB promoter activity 

Similar to the documented literature, serum starvation for 4 or 6 hours tended to 

increase the luciferase activity of the TFEB 1600 bp pair promoter by 1.8-fold compared 

to control myotubes (Fig. 3A) (p=0.07). This tendency was not observed in cells 

transfected with TFEB 1200 bp promoter (Fig. 3A). In response to acute contractile 

activity, we first tested the response of the PGC-1α promoter, which we have shown to 

increase previously (47). Our data demonstrate that the acute stimulation protocol was 

effective, since PGC-1α promoter activity was upregulated by 1.6-fold (p<0.05) (Fig. 3B).  
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Figure 1: Acute contractile activity induces 
the phosphorylation of kinases. C2C12 
myotubes were subjected to 2 hours of acute 
stimulation followed by a 2 hour recovery 
period. A) p44; B) p42; C) AMPK; D) 
CamK; E) p38 (n=3-7). Data are expressed 
in arbitrary units (A.U ± SEM). *, p<0.05 
Control vs. Acute. 
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Figure 3: A) Cells transfected with TFEB 1200bp or 1600bp promoter 
construct were subjected to 4 hours of serum starvation. Cells  transfected 
with B) PGC-1α  promoter, C) TFEB 1200 bp promoter or D) the TFEB 1600 
bp promoter were subjected to  2 hours of acute stimulation or 2 hours of 
stimulation and  2 hours of recovery. Graphs represent luciferase activity, fold 
over PGL3-Basic empty vector (n=4-9, data are X ± SEM) *, p<0.05, Control 
vs. Acute. 
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Interestingly, myotubes transfected with the 1600 bp, but not 1200 bp TFEB promoter, 

demonstrated increased activity following 2 hours of contractile activity (Fig. 3C, 3D).  

TFEB Localization 

Using serum starvation as a positive control, we observed TFEB translocation to 

the nucleus following 6 hours of treatment (Fig. 4A). In response to contractile activity, 2 

hours of stimulation and recovery induced TFEB translocation to the nucleus (Fig. 4B). 

This trend was further amplified with 5 hours of stimulation (Fig. 4C). To examine 

whether this translocation was due to calcineurin dephosphorylation of TFEB, we used 

cyclosporin A, a well-established inhibitor of calcineurin. Cells treated with the DMSO 

vehicle exhibited a 2-fold increase in nuclear TFEB content following acute stimulation, 

however cyclosporin A treated cells demonstrated no contractile activity-induced TFEB 

translocation (Fig. 4D). Immunofluorescent staining of myotubes following 5 hours of 

acute stimulation supported the protein translocation data by demonstrating a potential 

increase in the co-localization of DAPI nuclear staining and TFEB (Fig. 5).  

TFEB overexpression  

To further examine the role of TFEB in muscle cells, adenoviral infection for 4 or 

7 days was utilized to overexpress the protein. Seven days of viral infection revealed a 

marked escalation of TFEB protein content, as expected, compared to GFP-infected cells 

(Fig. 6A). When these cells were stimulated to contract, an approximate 2-fold increase 
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in TFEB nuclear translocation was observed following 5 hours of acute stimulation and 

recovery (Fig. 6B, 6C). 
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A. B. 

Figure 4: The location of TFEB protein following A) 6 hours of serum starvation, B) 2 hours of 
stimulation and recovery or C) 5 hours of stimulation and recovery. D) Nuclear TFEB content change 
following 5 hours of stimulation with either Cyclosporin A (CsA) (10nM per well) or DMSO as a 
control. (A-C) Black bars represent nuclear TFEB content and white bars represent cytosolic TFEB 
content. D) Black bars are representative of control levels, white bars represent 5 hours of acute 
stimulation. Above graphs are representative western blots. YY1 or H2B and α-tubulin or GAPDH are 
used as nuclear and cytosolic loading controls, respectively (n=4-5, data are X ± SEM, ***, p<0.0005, 
interaction effect of fraction and stimulation). 
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Control                        Acute  

Figure 5: Fixed cell immunofluorescent microscopy of C2C12 myotubes co-
stained for DAPI and TFEB (20x magnification). Fully differentiated 
myotubes were acutely stimulated for 5 hours or left as control cells and then 
used immediately for staining. Merge is an overlay of TFEB and DAPI 
staining.    
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Figure 6: A) Representative TFEB blot of cells infected with either 
TFEB or GFP adenovirus, B, C) Representative blot and graphical 
representations of nuclear and cytosolic cellular fractions of TFEB 
overexpressing cells following 5 hours of acute stimulation and 
recovery normalized to nuclear and cytosolic loading controls, H2B and 
GAPDH, respectively. (n=4, data are X ± SEM).  
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To document the impact of TFEB on its potential downstream targets, as well as 

the effect of contractile activity, a shorter infection time (4 days) using either TFEB or 

GFP (control), was employed. Using GFP-infected control cells as a standard, mRNA 

levels of the mitochondrial biogenesis markers COXIV and COXI indicated trends to 

increase following 5 hours of acute contractile activity (Fig. 7A), however no change was 

observed in PGC-1α or TFAM mRNA levels. Furthermore, we observed no alterations 

following stimulation or recovery on the autophagy markers TFEB, LC3 LAMP2, 

Cathepsin D or Belcin 1 (Fig. 7B). However, p62 was significantly increased with acute 

stimulation and recovery (Fig. 7B).  

In TFEB overexpressing cells, the mRNA levels of mitochondrial biogenesis 

markers PGC-1α and COXIV were significantly increase by 5-6-fold in control, non-

stimulated cells (Fig. 7C). TFEB overexpression also produced significant increases in 

TFEB mRNA, as well as in the autophagy markers, LC3, LAMP2 and p62 (Fig. 7D). 

Contractile activity induced some intriguing trends. TFEB mRNA, though increased in 

control conditions, was significantly reduced following stimulation, and further decreased 

with 2 hours of recovery (Fig. 7D). LC3 and LAMP2 mRNAs displayed a similar pattern. 

PGC-1α and COXIV mRNAs, elevated under TFEB overexpression conditions, were not 

further changed by contractile activity and/or recovery (Fig. 7D). 
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Figure 7: Real Time PCR analysis of mRNA in cells overexpressing  adenoviral (A, B) GFP or 
(C, D) TFEB under control settings, following 5 hours of acute stimulation with or without 2 
hours of recovery.  A, B) Effect of stimulation and recovery on GFP infected cells A) autophagy 
mRNAs and B) mitochondrial biogenesis mRNAs. C, D) Effect of stimulation and recovery on 
TFEB overexpressing cells C) autophagy mRNAs and D) mitochondrial biogenesis mRNAs. 
Transcript levels are normalized to both β-Actin and GAPDH. (*,P < 0.05, **,P < 0.05,vs. 
Control levels of GFP cells of the transcript. †, P < 0.05, ††, P < 0.005 vs. Control levels of 
TFEB cells of the transcript. ¶ , p<0.05, ¶ ¶ , p<0.005 effect of stimulation).  
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Mitophagy activation with acute contractile activity 

Isolated mitochondria obtained from myotubes subjected to control conditions, or 

acute stimulation for 5 hours with or without 2 hours of recovery, were collected and 

probed for mitophagy markers. Mitochondrially-localized LC3-II increased significantly 

following stimulation and recovery (Fig. 8A, 8B). No alterations in mitochondrially-

localized parkin was observed (Fig. 8A, 8C). Western blotting for p62 localization on 

mitochondria revealed a tendency to increase with stimulation and recovery (Fig. 8A, 8D). 

This corresponded with an increase in the co-localization of the mitochondrial target 

VDAC with p62 revealed by an increase in puncta using immunofluorescent staining 

immediately following 5 hours of stimulation compared to control cells (Fig. 9A). This 

trend was not observed when investigating the co-localization of VDAC and LAMP2 

through immunofluorescent staining (Fig. 9B).  

Effect of chronic contractile activity (CCA)  

CCA successfully induced mitochondrial biogenesis, resulting in 2.3- and 2.2-fold 

increases (p<0.05) of cytochrome c oxidase subunits I and IV (COXI and COXIV) 

protein levels, respectively (Fig. 10A, 10B). To examine TFEB expression, cells were 

transfected with the 1200bp or 1600 bp TFEB promoter sequence and subjected to CCA. 

No effect of CCA was observed on the TFEB promoter activity (Fig. 11A, 11B). TFEB, 

TFE3 and p62 protein also exhibited no changes following 4 days of stimulation (Fig. 

12A, 12B). However, the lysosomal marker cathepsin D was increased by 1.5-fold 
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(p<0.05) with CCA, while LAMP2 was significantly reduced by 42% with CCA (Fig. 

12A, 12B).  
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Figure 11: Cells transfected with A) the TFEB 1200 bp promoter, B) the 
TFEB 1600 bp promoter where subjected to 4 days of 3h/day chronic 
contractile activity (CCA) followed by 21 hours of recovery prior to 
collection. Graphs represent luciferase activity, fold over PGL3-Basic empty 
vector. There was no difference observed between treatments, (n=5-6, data are 
X ± SEM) 
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Discussion: 

Autophagy is an important and protective cellular maintenance pathway that is 

essential for muscle health. The value of this pathway is emphasized when the cellular 

stress is increased, as in exercising muscle. TFEB, as the documented master regulator of 

lysosomal biogenesis, controls the expression of multiple genes within the autophagy-

lysosomal pathway. The overall objective of this study was to examine the activation and 

expression of TFEB and its downstream targets following acute or chronic exercise. 

Several studies have now documented that mitophagy is activated following a bout of 

exercise (12, 19, 42). However, only one study has demonstrated that TFEB is activated 

with exercise (24). Therefore, through the utilization of various cell culture 

investigations, we sought to elucidate the effect of contractile activity on TFEB 

expression, and on mitophagy. We hypothesized that TFEB would be activated following 

contractile activity and that it would upregulate the transcription of its downstream 

targets. Furthermore, we also surmised that following chronic contractile activity, there 

would be adaptations in TFEB and its downstream genes.  

TFEB activation has been thoroughly investigated following serum starvation in 

cell culture (32, 33, 35). Thus, we used this treatment as a positive control for our 

findings, and we demonstrated that TFEB translocates to the nucleus with 6 hours of 

starvation. In addition, similar to the results of others (31, 48), we found that starvation 

increased TFEB transcription, as revealed by the transfection of myotubes with the TFEB 
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1600 bp promoter. The 1200 bp promoter did not respond to serum starvation. Similarly, 

contractile activity impacted only the 1600 bp promoter activity, while the 1200 bp 

promoter remained unaffected. Thus, these data suggest that the 400 bp segment which 

distinguishes these two promoter constructs is responsible for the differences in response 

to both starvation, as well as contractile activity. Investigation the promoter sequence 

unveiled a high concentration of putative transcription binding sites in the 400 bp region 

differentiating these two sequences. Putative sites included those that bind PPARα, 

GATA-1, Sp1, p53, myogenin and NF-κB. Confirmation of the functionality of these 

transcription factor binding sites on specific regions of the promoter will require a series 

of DNA binding ChIP assays. Interestingly, increased promoter activity coincided with 

trends seen in TFEB mRNA following acute contractile activity and recovery, as 

indicated with our mock GFP-infected cells. This tendency for an increase in TFEB 

mRNA coincided with contractile activity-induced increases in mitochondrial biogenesis 

marker mRNAs, such as, COXI and COXIV, as we have shown previously (28, 42), 

indicative that the stimulation paradigm was successful.  

We then analyzed the impact of acute contractile activity on TFEB activation, 

measured by TFEB localization. TFEB translocation from the cytosol to the nucleus was 

increased with both 2 and 5 hours of acute contractile activity. TFEB translocation could 

be indicative of a decrease in TFEB inhibitor activity, or by increases in TFEB activator 

influences. TFEB is inhibited via phosphorylation by mTORC1 or ERK2 (13, 26, 27, 34, 

35), and activated by the calcium-sensitive phosphatase calcineurin (23). To confirm the 
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activation of TFEB by calcineurin, we inhibited calcineurin activity with cyclosporin A. 

This drug completely inhibited TFEB translocation to the nucleus during contractile 

activity, suggesting an important role for calcineurin in the activity of TFEB during 

muscle contractions.  

To further examine the role that TFEB plays in regulating its downstream target 

genes during and after an acute bout of exercise, we utilized an adenoviral overexpression 

model. Adenoviral infection resulted in large increases in TFEB protein in both the 

cytosolic and nuclear components. As predicted, TFEB overexpression alone resulted in 

the upregulation of mRNAs encoding the autophagy markers, LC3, LAMP2 and p62 (33, 

34), but had no effect on cathepsin D. However, there was a substantial increase observed 

in the mRNA encoding the master regulator of mitochondrial biogenesis, PGC-1α, in 

addition to its downstream target COXIV. This suggests that the influence of TFEB as a 

regulator of lysosomal synthesis may be extended to mitochondrial biogenesis as well. 

Interestingly, in the TFEB overexpressing cells, an acute bout of contractile activity 

resulted in a significant decrease in TFEB mRNA, with a further decrease following a 

two-hour recovery period. This decrease was not observed in mock-infected cells. Thus, 

the TFEB overexpression model allows us the interpretation that contractile activity, in 

combination with excessive TFEB levels induces a decrease in TFEB mRNA levels, 

potentially via a decrease in transcription, or an increase in mRNA degradation. This 

result requires further investigation, suggesting that TFEB plays a role in controlling its 

own mRNA expression. A similar pattern was observed for LC3 and LAMP2. These 
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mRNAs were significantly increased following TFEB overexpression, however the levels 

were decreased with contractile activity. In contrast, p62 mRNA levels were increased 

with TFEB overexpression, and were further upregulated with contractile activity, 

indicative of a greater transcriptional drive for autophagy (11, 12, 19, 42). These 

divergent mRNA response suggest that these patterns are specific to the transcript, and 

not a result of non-specific mRNA degradation brought about by contractile activity.  

Our data also provide further support for the mounting evidence which support the 

activation of mitophagy following a bout of exercise (6, 42). Our findings demonstrate 

that immediately following an acute bout of contractile activity, LC3-II is recruited to the 

mitochondria. Furthermore, a recovery period significantly increased the amount of LC3-

II localized to the mitochondria, suggestive of continued mitophagy induction. We also 

noted that there was a trend for p62 to increase its localization to the mitochondria, in 

addition to LC3-II. These data suggest that signals generated during contractile activity 

(Fig. 1) are likely to serve to activate the autophagy pathway to flag specific 

mitochondrial segments for degradation and removal (41, 45).  

Induction of the autophagic process has been documented to be essential for the 

benefits achieved from long-term chronic exercise (19). To examine the impact of 

chronic exercise on autophagy markers and TFEB expression, we chronically stimulated 

myotubes for four days to induce mitochondrial adaptations which are typical of regularly 

exercised muscle (20, 40). Following the 4 days stimulation and 21 hours recovery CCA 
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protocol, both TFEB promoter, as well as TFEB protein levels were found to be similar 

to control levels, while mitochondrial markers and cathepsin D were markedly elevated. 

It has been previously documented that various cathepsins increase in quantity and 

activity following exercise (2, 25, 29). Our results on p62 are also consistent with other 

studies analyzing exercise adaptations on autophagy which have observed no alterations 

in p62 protein content (19, 36, 37). The lack of change in p62 protein after 4 days of 

chronic stimulation demonstrates that autophagy is functioning, since an increase in p62 

protein would be symptomatic of a dysfunctional pathway, or of autophagic build-up. 

Interestingly, LAMP2 protein content was severely decreased as a result of CCA. This 

has been demonstrated previously following a recovery period after a moderate bout of 

exercise (16). However, this essential lysosomal protein has scarcely been examined in 

context of exercise adaptations. Wohlgemuth et al. (2010) examined the alterations in 

LAMP2 mRNA with ageing, caloric restriction and life long exercise. These authors 

found that, although LAMP2 mRNA declined as a result of ageing compared to young 

animals, it was significantly increased with caloric restriction, and further increased in 

combination with exercise (46). However, there is much more examination that needs to 

be done as the pathways of autophagy remains generally unknown.  

In summary, the present study has demonstrated that exercise, in the form of acute 

contractile activity, can activate TFEB transcription as well as its localization to the 

nucleus. The role of TFEB is important for long-term adaptation of lysosomes and 

lysosomal function, and it may also be important for mitochondrial biogenesis. Our 
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results also indicate that TFEB overexpression could act on its own transcript levels to 

decrease the over-abundance of TFEB mRNA present following contractile activity. 

Though further work needs to be done to elaborate on the many roles that TFEB plays, 

this study has shed some light on the part that TFEB plays in response to exercise
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FUTURE WORK 

 In this study we show that TFEB responds to contractile activity by activating and 

translocating to the nucleus. It would be interesting to examine the activation of 

mitophagy that is dependent on TFEB. To answer this, TFEB could be silenced with the 

use of shRNA. Additionally, halting the autophagosome and lysosomal fusion with 

baflomycin A would allow for a measure of autophagy flux. Following this inhibition of 

autophagy and silencing of TFEB, we would chronically stimulate the cells to observe 

how much of the mitophagy pathways is dependent on TFEB activation and upregulation 

of it downstream targets. Furthermore, using this method, it would be interesting to 

analyze downstream target genes to examine if there are any compensatory mechanisms 

that have overlapping roles with the master regulator of lysosomal biogenesis.  

 We obtained interesting results concerning overexpressed TFEB mRNA levels in 

response to contractile activity. Some future work in regard to this would be to examine if 

the endogenous or exogenous TFEB, or both, are decreasing in response to exercise. If 

TFEB levels are demonstrating a decrease as a reaction to acute contractile activity, then 

it could provide novel insight into the autoregulatory pathway of TFEB. Adenoviral 

TFEB is GFP tagged and therefore through western blotting we could assess the levels of 

exogenous TFEB following contractile activity and recovery.   

 Further investigations remain to be done on lysosomal adaptations following 

chronic contractile activity. Many papers in the literature examining adaptations 
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following exercise are concerned with the autophagosomal pathway, and not the 

adaptations of lysosomal machinery (36, 37, 46). In our study we note that Cathepsin D 

levels are raised, accompanied with a decrease in LAMP2 protein following CCA. If this 

were a result of adaptations in the lysosome, we could utilize a tandem fluorescent-tagged 

LC3 to observe the functionality of lysosomes following chronic exercise and potential 

adaptations
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Table 1A Individual values and Statistical analysis p-44 kinase western quantification  

N Control  Acute  
Acute 
+Recovery  

1 0.593762 0.704117 0.395528 

2 0.168865 0.521097 0.398746 

3 0.278891 1.972107 0.795919 

4 0.06718 0.397177 0.41175 

5 0.075221 0.189769 0.615285 

6 0.108223 1.075855 0.514859 

7 0.656131 0.913855 0.833479 

Average  0.278324714 0.824853857 0.566509429 

Std. Dev 0.247987843 0.588812143 0.18720667 
Std. 
Error  0.470061309 0.648318259 0.248724031 

     

 

 

 

 

Tukey's 
multiple 
comparisons 
test Mean Diff. 

95% CI of 
diff. Significant? Summary 

Control vs. 
Acute -0.5465 

-1.071 to -
0.02216 Yes * 

Control vs. 
Acute+ 
Recovery -0.2882 

-0.8126 to 
0.2362 No ns 

Acute vs. 
Acute+ 
Recovery 0.2583 

-0.2660 to 
0.7827 No ns 

 

One-way ANOVA 
summary 

 F 3.541 
P value 0.05 
P value summary ns 
Are differences among 
means statistically 
significant? (P < 0.05) no 
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Table 1B Individual values and Statistical analysis p-38  kinase western quantification  

N Control  Acute  
Acute 
+Recovery  

1 0.071377 0.587715 0.425587 

2 0.518297 0.545101 0.586465 

3 0.22114 0.419732 0.315909 

4 0.130479 0.93369 1.00915 

5 0.188374 0.575888 2.177332 

Average  0.2259334 0.6124252 0.9028886 

Std. Dev 0.173139671 0.191585392 0.759602401 

Std. Error  0.364255711 0.244813784 0.799409387 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One-way ANOVA 
summary 

 
F 

2.688 

P value 
0.1085 

P value summary 
ns 

Are differences among 
means statistically 
significant? (P < 0.05) 

No 
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Table 1C Individual values and Statistical analysis CamK kinase western quantification  

N Control  Acute  
Acute 
+Recovery  

1 0.894713 2.070499 1.4594 

2 1.052291 1.594078 1.180135 

3 0.857188 1.458613 0.981092 

Average  0.934730667 1.70773 1.206875667 

Std. Dev 0.103524661 0.321385597 0.240272623 
Std. Error  0.107078079 0.245932999 0.218712207 

 

One-way ANOVA summary 
 F 8.057 

P value 0.02 
P value summary * 

Are differences among means 
statistically significant? (P < 0.05) Yes 

 

Tukey's multiple 
comparisons test Mean Diff. 

95% CI of 
diff. Significant? Summary 

Control vs. Acute  -0.773 
-1.372 to -

0.1736 Yes * 
Control vs. 
Acute+Recovery -0.2721 

-0.8715 to 
0.3273 No ns 

Acute vs. 
Acute+Recovery 0.5009 

-0.09855 to 
1.100 No ns 
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Table 1D Individual values and Statistical analysis AMPK  kinase western quantification  

N Control  Acute  
Acute 
+Recovery  

1 0.445202 0.663757 0.842799 

2 0.562307 0.85757 0.568272 

3 0.790585 1.321425 0.644742 

4 0.521326 0.684622 1.005104 

5 0.612414 0.914311 0.961524 

6 1.056866 1.32801 0.29069 

7 0.261742 0.429396 0.264636 

Average  0.607206 0.885584429 0.653966714 

Std. Dev 0.255222472 0.337887704 0.301253925 

Std. Error  0.327529848 0.359052043 0.372524545 

 

One-way ANOVA 
summary 

 F 1.728 
P value 0.2058 
P value summary ns 

Are differences among 
means statistically 
significant? (P < 0.05) No 
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Table 1E Individual values and Statistical analysis p-42 kinase western quantification  

N Control  Acute  
Acute 
+Recovery  

1 1.316398 1.12081 1.138547 

2 0.693588 1.045773 1.203962 

3 0.997958 1.318885 1.121405 

Average  1.002648 1.161822667 1.154638 

Std. Dev 0.311431487 0.141099505 0.043567244 

Std. Error  0.311019969 0.130904799 0.040544987 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One-way ANOVA 
summary 

 F 0.6123 
P value 0.5728 
P value summary ns 
Are differences among 
means statistically 
significant? (P < 0.05) No 
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Table 2A. Individual values and Statistical analysis 5 hours stimulation western blot for p-44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Control  Acute  Acute+Recovery  

1 
0.194074 0.623001 0 

2 
0.329702 0.645426 0.206111 

3 
0.171314 0.521897 0.594043 

4 
0 1.120794 0.288464 

Average 
0.1737725 0.72778 0.272155 

Std. Dev. 
0.117184775 0.231629356 0.213487717 

Std. Error 
0.281112829 0.271514914 0.409227805 

ANOVA summary 
 F 6.961 

P value 0.0149 
P value summary * 
Are differences among means 
statistically significant? (P < 0.05) Yes 

Tukey's multiple comparisons 
test Mean Diff. 95% CI of diff. Significant? Summary 

Control vs. Acute  
-0.5540 -0.9964 to -0.1116 Yes * 

Control vs. Acute +Recovery 
-0.09838 -0.5407 to 0.3440 No ns 

Acute vs. Acute +Recovery 
0.4556 0.01327 to 0.8980 Yes * 
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Table 2B. Individual values and Statistical analysis 5 hours stimulation western blot for p-p42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA summary 
 F 0.6538 

P value 0.5431 
P value summary ns 
Are differences among means 
statistically significant? (P < 0.05) No 

 
Control  Acute  Acute+Recovery  

1 
0.394121 0.716859 0.12947 

2 
0.707449 0.95876 0.509263 

3 
0.602481 1.007309 0.590488 

4 
0.202331 1.105908 2.812534 

Average 
0.4765955 0.947209 1.010439 

Std. Dev. 
0.194398789 0.143171166 1.054892055 

Std. Error 
0.281590881 0.147106768 1.049428912 
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Table 2C. Individual values and Statistical analysis 5 hours stimulation western blot for p-AMPK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA summary 
 F 0.1207 

P value 0.8878 
P value summary ns 
Are differences among means 
statistically significant? (P < 0.05) No 

 
Control  Acute  Acute+Recovery  

1 
0.385131 0.656583 0.643913 

2 
0.394078 0.417549 0 

3 
1.096307 1.047269 0.988801 

4 
0.791351 1.067405 1.657514 

Average 
0.66671675 0.797202 0.822557 

Std. Dev. 
0.297365054 0.273611618 0.598603365 

Std. Error 
0.364182646 0.306443547 0.660018567 
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Table 2D. Individual values and Statistical analysis 5 hours stimulation western blot for p-CAMK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA summary 
 F 4.343 

P value 0.0478 
P value summary * 
Are differences among means 
statistically significant? (P < 0.05) Yes 

 
Control  Acute  Acute+Recovery  

1 
0 3.889847 0 

2 
0 2.29934 0 

3 
0.955187 1.342403 1.508649 

4 
0 1.405455 1.27841 

Average 
0.23879675 2.234261 0.696765 

Std. Dev. 
0.413608104 1.028047951 0.701503647 

Std. Error 
0.846398399 0.687775015 0.840401555 

Tukey's multiple comparisons 
test Mean Diff. 95% CI of diff. Significant? Summary 

Control vs. Acute  -1.707 -3.488 to 0.07506 No ns 

Control vs. Acute +Recovery -0.1691 -1.951 to 1.613 No ns 

Acute vs. Acute +Recovery 1.537 -0.2442 to 3.319 No ns 
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Table 2E. Individual values and Statistical analysis 5 hours stimulation western blot for p-P38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Control  Acute  Acute+Recovery  

1 
0.641502 1.598721 1.150089 

2 
0.389759 1.179306 1.857017 

3 
0.372638 1.755433 2.601992 

4 
0.065344 1.117883 0.325631 

Average 
0.36731075 1.412836 1.483682 

Std. Dev. 
0.204265185 0.270859498 0.842965404 

Std. Error 
0.337036963 0.227875813 0.692052912 

ANOVA summary 
 F 4.259 

P value 0.0499 
P value summary * 
Are differences among means 
statistically significant? (P < 0.05) Yes 

Tukey's multiple comparisons 
test Mean Diff. 95% CI of diff. Significant? Summary 

Control vs. Acute  
-1.046 -2.241 to 0.1504 No ns 

Control vs. Acute +Recovery 
-1.116 -2.312 to 0.07959 No ns 

Acute vs. Acute +Recovery 
-0.07085 -1.267 to 1.125 No ns 
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Table 3A: Individual values and Statistical analysis TFEB 1200 and TFEB 1600 Luciferase activity 
following 4 hours starvation. 
 

  Control Starved 

n TFEB 1200  TFEB 1600  TFEB 1200  TFEB 1600  

1 2.549756 2.066257 1.162701 1.888261 

2 1.46021 5.099775 6.318415 5.414047 

3 5.421218 6.294776 2.79602 8.015032 

4 2.711568 2.153658 2.944525 8.230788 

5 5.144786 2.456094 1.144682 5.752306 
Average  3.457507437 3.614111986 2.873268526 5.860086801 

Std. Dev 1.553879172 1.747165705 1.886485019 2.291287189 

Std. Error  0.835671679 0.91903763 1.112923347 0.946515003 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unpaired t test TFEB 1200  

P value 
0.8967 

P value summary 
ns 

Significantly different? (P 
< 0.05) 

No 

One- or two-tailed P 
value? 

Two-tailed 

t, df 
t=0.1340 df=8 

Unpaired t test TFEB 1600  

P value 
0.0789 

P value summary 
ns 

Significantly different? (P 
< 0.05) 

No 

One- or two-tailed P 
value? 

Two-tailed 

t, df 
t=2.013 df=8 
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Table 3B. Individual values and Statistical analysis for PGC-1α acute luciferase activity  

N Control  Acute  Acute 
+Recovery  

1 2.291693 3.98788 3.51478 
2 2.274057 3.10659 3.080477 
3 2.4744 6.114063 2.263047 
4 2.609477 3.87165 2.341885 
5 2.12922 4.747927 2.226393 
6 1.669398 1.58822 2.215397 
7 1.461197 1.855363 1.750037 
8 1.725403 1.58822 1.468689 
9 1.484488 2.759499 1.386157 

Average  2.013259 3.291046 2.249651 
Std. Dev 0.38892 1.381723 0.625009 
Std. Error  0.274101 0.761648 0.416705 

 

 

 

 

 

Tukey's 
multiple 
comparisons 
test Mean Diff. 

95% CI of 
diff. Significant? Summary 

Control vs. 
Acute -1.278 

-2.467 to -
0.08810 Yes * 

Control vs. 
Acute+ 
Recovery -0.2364 

-1.426 to 
0.9533 No ns 

Acute vs. 
Acute+ 
Recovery 1.041 

-0.1483 to 
2.231 No ns 

 

One-way ANOVA summary 
 

F 
4.073 

P value 
0.0300 

P value summary 
* 

Are differences among means 
statistically significant? (P < 0.05) 

Yes 
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Table 3C. Individual values and Statistical analysis for TFEB 1200 acute luciferase activity  

N Control  Acute  Acute 
+Recovery  

1 1.3789 4.47459 3.31075 

2 9.467917 6.91045 3.49795 

3 5.337527 4.37872 3.34581 

4 1.378899897 9.467916 5.337529 
5 4.474587363 6.910456 4.378714 
6 3.310753327 3.497946 3.345809 

Average  4.2247641 5.94001 3.86943 

Std. 
Dev 2.76359086 2.03627 0.75423 

Std. 
Error  1.34453625 0.83549 0.38342 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One-way ANOVA summary 
 

F 
1.489 

P value 
0.2572 

P value summary 
ns 

Are differences among means 
statistically significant? (P < 
0.05) 

No 
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Table 3D. Individual values and Statistical analysis for TFEB 1600 acute luciferase activity 

N Control  Acute  Acute+Recovery  

1 0.925943 12.85239 7.435615 

2 4.84641 17.1473 5.711336 

3 4.749111 4.67643 4.265276 

4  3.000315 12.91322 8.705215 

Average  3.380445 11.89734 6.529361 

Std. Dev 1.596197 4.517957 1.684554 

Std. Error  0.86816 1.309837 0.659249 
 

 

 

 

 

 

 

 

 

 

One-way ANOVA summary 
 F 0.0181 

P value * 
P value summary Yes 
Are differences among means 
statistically significant? (P < 
0.05) 0.5898 

Tukey's multiple comparisons 
test Mean Diff. 95% CI of diff. Significant? Summary 

Control vs. Acute  -8.517 -15.20 to -1.832 Yes * 

Control vs. Acute +Recovery -3.149 -9.834 to 3.536 No ns 

Acute vs. Acute +Recovery 5.368 -1.317 to 12.05 No ns 
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Table 4A.i Individual values and Statistical analysis for 6 hour starvation nuclear and cytosolic western 
protein 

A.U. Control  Starved 

n Nuclear Cytosolic Nuclear Cytosolic 

1 
0.109404 2.032143 0.242523 2.15952 

2 
0.001921 0.475147 3.182567 0.495454 

3 
0.767936 0.902534 1.109008 0.868081 

4 
0.834045 0.206141 0.460372 0.169094 

Average  0.428326 0.903991 1.248618 0.923037 

Std. Dev 0.375325 0.697071 1.161164 0.755508 

Std. 
Error  

0.573483 0.733153 1.039151 0.786374 

 

% Control    Starved   

n Nuclear Cytosolic Nuclear Cytosolic 

1 
5.108624 94.89138 10.09654 89.90346 

2 
0.402619 99.59738 86.52932 13.47068 

3 
45.97125 54.02875 56.09298 43.90702 

4 
80.18232 19.81768 73.13693 26.86307 

Average  32.9162 67.0838 56.46394 43.53606 

Std. Dev 32.53811 32.53811 28.86169 28.86169 

Std. 
Error  

5.671363 3.97268 3.840928 4.374186 

 

 

 

 

 

 



! 105 

Table 4A. ii Individual values and Statistical analysis for 6 hour starvation  nuclear and cytosolic western 
protein 

Summary of Two- way 
ANOVA 

Source of 
Variation P value 

P value 
summary Significant? 

Interaction 
0.0565 ns No 

Stimulation 
> 0.9999 ns No 

Fractionation 
0.0308 * Yes 

 

Tukey's multiple comparisons test 
Significant? Summary 

Control :Nuclear vs. Control :Cytosol Yes * 

Control :Nuclear vs. Starved 6:Nuclear No ns 
Control :Nuclear vs. Starved 6:Cytosol No ns 

Control :Cytosol vs. Starved 6:Nuclear No ns 
Control :Cytosol vs. Starved 6:Cytosol No ns 

Starved 6:Nuclear vs. Starved 6:Cytosol No ns 
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Table 4B.i Individual values and Statistical analysis for 2 hour stimulation nuclear and cytosolic western 
protein 

2 HOUR A.U. Control  Acute  Acute+ Recovery  

n Nuclear Cytosolic Nuclear Cytosolic Nuclear Cytosolic 

1 0.195 0.093 1.506 0.163 0.980 0.035 

2 0.0124 0.252 1.306 0.340 0.259 0.300 

3 1.074 0.096 1.888 0.100 0.997 0.118 

4 0.963 0.070 1.541 0.154 2.036 0.038 

5 0.676 0.327 1.789 0.718 1.046 0.492 

Average  0.584 0.167 1.606 0.295 1.064 0.197 

Std. Dev 0.466 0.114 0.233 0.253 0.633 0.197 

Std. Error  0.610 0.279 0.184 0.466 0.614 0.444 

       

2 HOUR (%) Control  Acute  Acute + Recovery 

n Nuclear Cytocolic Nuclear Cytocolic Nuclear Cytocolic 

1 67.588 32.411 90.216 9.783795 96.480 3.519 

2 4.691 95.308 79.340 20.65918 46.317 53.682 

3 91.788 8.211 94.964 5.035862 89.415 10.584 

4 93.176 6.823 90.896 9.103112 98.146 1.853 

5 67.412 32.587 71.346 28.65302 67.997 32.002 

Average  64.931 35.068 85.353 14.6469938 79.671 20.328 

Std. Dev 35.920 35.920 9.734 9.73491570 22.178 22.178 

Std. Error  4.457 6.065 1.053 2.54365347 2.484 4.919 
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Table 4B.ii Individual values and Statistical analysis for 5 hour stimulation  nuclear and cytosolic western 
protein 

Summary of Two- way ANOVA 

Source of Variation P value 
P value 

summary Significant? 

Interaction 
0.1909 ns No 

Stimulation 
> 0.9999 ns No 

Fractionation 
< 0.0001 **** Yes 

 

Tukey's multiple comparisons test Significant? Summary 

Control :Nucleus vs. Control :Cytosol 
No ns 

Control :Nucleus vs. Acute 5h:Nucleus  
No ns 

Control :Nucleus vs. Acute 5h:Cytosol 
No ns 

Control :Nucleus vs. Acute+ Recovery:Nucleus  
No ns 

Control :Nucleus vs. Acute+ Recovery:Cytosol 
No ns 

Control :Cytosol vs. Acute 5h:Nucleus  
No ns 

Control :Cytosol vs. Acute 5h:Cytosol 
No ns 

Control :Cytosol vs. Acute+ Recovery:Nucleus  
No ns 

Control :Cytosol vs. Acute+ Recovery:Cytosol 
No ns 

Acute 5h:Nucleus vs. Acute 5h:Cytosol 
Yes ** 

Acute 5h:Nucleus vs. Acute+ Recovery:Nucleus  
No ns 

Acute 5h:Nucleus vs. Acute+ Recovery:Cytosol 
Yes ** 

Acute 5h:Cytosol vs. Acute+ Recovery:Nucleus  
Yes ** 

Acute 5h:Cytosol vs. Acute+ Recovery:Cytosol 
No ns 

Acute+ Recovery:Nucleus vs. Acute+ 
Recovery:Cytosol 

Yes * 
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Table 4C. i Individual values and Statistical analysis for 5 hour stimulation  nuclear and cytosolic western 
protein 

5 HOUR 
A.U. Control  Acute  Acute+ Recovery  

n Nuclear Cytosolic Nuclear Cytosolic Nuclear Cytosolic 

1 0.107 0.145 0.830 0.115 0.144 0.047 

2 1.010 0.573 4.204 1.325 5.548 1.945 

3 4.610 1.369 7.963 0.752 1.186 0.3504 

4 1.561 0.431 1.189 0.318 0.734 3.621 

5 0.762 0.482 1.433 0.466 1.281 0.254 

Average  1.610 0.600 3.124 0.595 1.779 1.244 

Std. Dev 1.756 0.458 3.018 0.4694 2.154 1.529 

Std. Error  1.383 0.592 1.707 0.6081 1.615 1.370 

       
5 HOUR 
(%) Control  Acute  Acute +Recovery 

n Nuclear Cytosolic Nuclear Cytosolic Nuclear Cytosolic 

1 42.660 57.339 87.775 12.224 75.051 24.948 

2 63.813 36.186 76.031 23.968 74.038 25.961 

3 77.097 22.902 91.361 8.638 77.196 22.803 

4 78.347 21.652 78.889 21.110 16.863 83.136 

5 61.251 38.748 75.448 24.551 83.409 16.590 

Average  64.634 35.365 81.901 18.098 65.311 34.688 

Std. Dev 14.477 14.477 7.231 7.231 27.326 27.326 

Std. Error  1.800 2.434 0.799 1.699 3.381 4.639 
 

 

 

 

 



! 109 

Table 4C. ii Individual values and Statistical analysis for 5 hour stimulation  nuclear and cytosolic western 
protein 

Summary of Two- way ANOVA 
Source of 
Variation P value 

P value 
summary Significant? 

Interaction 0.0009 *** Yes 

Stimulation > 0.9999 ns No 

Fractionation < 0.0001 **** Yes 
 

Tukey's multiple comparisons test Significant? Summary 

Control :Nucleus vs. Control :Cytosol 
No ns 

Control :Nucleus vs. Acute 5h:Nucleus  
No ns 

Control :Nucleus vs. Acute 5h:Cytosol 
Yes ** 

Control :Nucleus vs. Acute+ Recovery:Nucleus  
No ns 

Control :Nucleus vs. Acute+ Recovery:Cytosol 
No ns 

Control :Cytosol vs. Acute 5h:Nucleus  
Yes ** 

Control :Cytosol vs. Acute 5h:Cytosol 
No ns 

Control :Cytosol vs. Acute+ Recovery:Nucleus  
No ns 

Control :Cytosol vs. Acute+ Recovery:Cytosol 
No ns 

Acute 5h:Nucleus vs. Acute 5h:Cytosol 
Yes *** 

Acute 5h:Nucleus vs. Acute+ Recovery:Nucleus  
No ns 

Acute 5h:Nucleus vs. Acute+ Recovery:Cytosol 
Yes ** 

Acute 5h:Cytosol vs. Acute+ Recovery:Nucleus  
Yes ** 

Acute 5h:Cytosol vs. Acute+ Recovery:Cytosol 
No ns 

Acute+ Recovery:Nucleus vs. Acute+ 
Recovery:Cytosol 

No ns 

 

 

 

 



! 110 

Table 4D: Individual values and Statistical analysis for myotubes treated with Cyclosporin A or DMSO 

 
Cyclosporin A DMSO 

A.U. Control  Acute  Control Acute 

n Nuclear Cytosolic Nuclear Cytosolic Nuclear Cytosolic Nuclear Cytosolic 

1 1.521 0.347 2.072 0.471 0.182 0.261 2.352 0.478 
2 0.310 0.241 0.190 0.279 0.216 0.416 0.241 0.490 
3 0.113 0.394 0.206 0.773 0.193 0.440 1.025 1.586 
4 0.209 0.282 0.153 1.240 0.143 0.550 1.862 0.890 

Average  0.538 0.316 0.655 0.691 0.183 0.417 1.370 0.861 

Std. Dev 0.571 0.058 0.818 0.362 0.026 0.103 0.806 0.450 

Std. 
Error  0.778 0.104 1.010 0.436 0.061 0.159 0.688 0.485 

 

 
Cyclosporin A DMSO 

Δ% Change Control  Acute  Control Acute 

n Nuclear Nuclear Nuclear Nuclear 

1 100 100.0611 100 202.106 
2 100 49.49043 100 112.7844 
3 100 93.98918 100 128.6953 
4 100 73.16716 100 327.3711 

Average  100 79.177 100 192.739 

Std. Dev 0 19.8303 0 84.717 

Std. Error  0 2.22858 0 6.10219 
 

 

 

 

 

 

 

One-way ANOVA summary 
 

F 
0.9363 

P value 
0.4534 

P value summary 
ns 

Are differences among means 
statistically significant? (P < 
0.05) 

No 
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Table 6A.i Individual values and Statistical analysis for TFEB overexpressing cells stimulated for 5 hours. 

A.U Control  Acute  Acute+ Recovery  

n Nuclear Cytosolic Nuclear Cytosolic Nuclear Cytosolic 

1 
0.373 5.836 1.253 7.523 1.114 3.970 

2 
0.741 4.12 0.853 3.905 1.181 3.090 

3 
0.868 0.348 1.989 0.602 2.375 0.164 

4 
2.790 1.443 1.802 0.351 2.041 0.982 

Average  
1.193 2.938 1.474 3.095 1.678 2.051 

Std. Dev 
0.939 2.16 0.449 2.915 0.543 1.538 

Std. Error  
0.860 1.263 0.369 1.657 0.419 1.073 

       

% Control  Acute  Acute+ Recovery  

n Nuclear Cytocolic Nuclear Cytocolic Nuclear Cytocolic 

1 
6.018 93.981 14.285 85.714 21.917 78.082 

2 
15.23 84.763 17.92576 82.074 27.659 72.340 

3 
71.40 28.599 76.74535 23.254 93.518 6.481 

4 
65.913 34.086 83.67853 16.321 67.512 32.487 

Average  
39.64 60.357 48.15877 51.841 52.651 47.348 

Std. Dev 
29.261 29.261 32.17251 32.172 29.411 29.411 

Std. Error  
4.647 3.7664 4.636041 4.468 4.053 4.274 
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Table 6A. ii Individual values and Statistical analysis for TFEB overexpressing cells stimulated for 5 hours. 

Fold 
Change 

Control  
  

Acute  
  Acute+ Recovery  

n Nuclear Cytocolic Nuclear Cytocolic Nuclear Cytocolic 

1 
1 1 3.354 1.288 2.981 0.680 

2 
1 1 1.149 0.946 1.592 0.748 

3 
1 1 2.289 1.731 2.733 0.473 

4 
1 1 0.645 0.243 0.73 0.680 

Average  
1 1 1.859 1.052 2.009 0.645 

Std. Dev 
0 0 1.048 0.543 0.905 0.103 

Std. Error  
0 0 0.768 0.530 0.638 0.128 

 

Summary of Two- way ANOVA 
Source of 
Variation P value 

P value 
summary Significant? 

Interaction 
0.7403 ns No 

Stimulation 
0.9109 ns No 

Fractionation 
0.1329 ns No 
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Table 7A i. Individual values and Statistical analysis for TFEB mRNA normalized to 2 house-keeping 
genes.  
 

N GFP  TFEB  

  Control Acute  Acute+ 
Recovery  Control Acute  Acute+ 

Recovery  

1 0.00196 0.00593 0.00281 0.00619 0.00122 0.00173 

2 0.00203 0.00179 0.00153 0.0073 0.0013 0.00147 

3 0.00133 0.00087 0.00114 0.00468 0.00164 0.00073 

4 0.00241 0.00169 0.0014 0.00387 0.00149 0.00026 

5 0.00385 0.00146 0.00154 0.00287 0.000001 0.00178 

6 0.00067 0.00146 0.00228 0.00056 0.00341 0.00314 

7 0.00024 0.0009 0.00122 0.00063 0.0006 0.00004 

8 0.00221 0.00115 0.0031 0.00362 0.00164 0.00007 

9 0.00044 0.00226 0.002257 0.0015 0.00121 0.00007 

Average  0.0016822 0.001945 0.0019196 0.0034688 0.0013901 0.0010322 

Std. Dev 0.0010758 0.001468 0.0006743 0.0022233 0.0008716 0.0010112 

Std. Error  0.026309 0.033301 0.0153916 0.0377491 0.023378 0.0314766 

 

Two-way ANOVA 

Source of Variation P value 
P value 

summary Significant? 

Interaction 0.012 * Yes 

Stimulation 0.0517 ns No 

Overexpression 0.7655 ns No 
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Table 7A ii. Individual values and Statistical analysis for TFEB mRNA normalized to 2 house keeping 
genes 

Tukey's multiple comparisons test Significant? Summary 

control :GFP vs. control :TFEB  Yes * 

control :GFP vs. Acute :GFP  No ns 

control :GFP vs. Acute :TFEB  No ns 

control :GFP vs. Acute +Recovery:GFP  No ns 

control :GFP vs. Acute +Recovery:TFEB  No ns 

control :TFEB vs. Acute :GFP  No ns 

control :TFEB vs. Acute :TFEB  Yes * 

control :TFEB vs. Acute +Recovery:GFP  No ns 

control :TFEB vs. Acute +Recovery:TFEB  Yes ** 

Acute :GFP vs. Acute :TFEB  No ns 

Acute :GFP vs. Acute +Recovery:GFP  No ns 

Acute :GFP vs. Acute +Recovery:TFEB  No ns 

Acute :TFEB vs. Acute +Recovery:GFP  No ns 

Acute :TFEB vs. Acute +Recovery:TFEB  No ns 
Acute +Recovery:GFP vs. Acute 
+Recovery:TFEB  No ns 
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Table 7B i. Individual values and Statistical analysis for PGC-1α  mRNA normalized to 2 house keeping 
genes.  
 

N GFP   
  

TFEB   
  

  Control Acute  Acute+ 
Recovery  Control Acute  Acute+ 

Recovery  

1 0.000411 0.0010516 0.00073903 0.0026484 0.0024704 0.0028845 

2 0.000572 0.0008216 0.0002927 0.0043421 0.0055477 0.0042833 

3 0.00077 0.00063 0.0006 0.24639 0.09892 0.02949 

4 0.00075 0.00084 0.0004 0.08029 0.07092 0.08511 

5 0.00152 0.00082 0.00041 0.00849 0.00044 0.02105 

6 0.00038 0.00042 0.00088 0.00126 0.00103 0.00318 

7 0.0015 0.00085 0.00031 0.00155 0.00182 0.00113 

8 0.08724 0.0467 0.18723 0.1332 0.07991 0.13389 

9 0.03603 0.04091 0.03456 0.10635 0.04875 0.03725 

Average  0.0143526 0.0103381 0.0250468 0.0649467 0.0344231 0.0353631 

Std. Dev 0.0280106 0.0179415 0.0583148 0.0805166 0.0379383 0.0430163 

Std. 
Error  0.233806 0.1764563 0.3684700 0.3159415 0.2044811 0.2287487 

 

Two-way ANOVA 

Source of Variation P value 
P value 

summary Significant? 

Interaction 0.4994 ns No 

Stimulation 0.6081 ns No 

Overexpression 0.0499 * Yes 
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Table 7B ii. Individual values and Statistical analysis for PGC-1α mRNA normalized to 2 house keeping 
genes.  

Tukey's multiple comparisons test Significant? Summary 

control :GFP vs. control :TFEB  No ns 

control :GFP vs. Acute :GFP  No ns 

control :GFP vs. Acute :TFEB  No ns 

control :GFP vs. Acute +Recovery:GFP  No ns 

control :GFP vs. Acute +Recovery:TFEB  No ns 

control :TFEB vs. Acute :GFP  No ns 

control :TFEB vs. Acute :TFEB  No ns 

control :TFEB vs. Acute +Recovery:GFP  No ns 

control :TFEB vs. Acute +Recovery:TFEB  No ns 

Acute :GFP vs. Acute :TFEB  No ns 

Acute :GFP vs. Acute +Recovery:GFP  No ns 

Acute :GFP vs. Acute +Recovery:TFEB  No ns 

Acute :TFEB vs. Acute +Recovery:GFP  No ns 

Acute :TFEB vs. Acute +Recovery:TFEB  No ns 
Acute +Recovery:GFP vs. Acute 
+Recovery:TFEB  No ns 
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Table 7C.i Individual values and Statistical analysis for LC3 mRNA normalized to 2 house keeping genes.  
 

N GFP TFEB 

  Control Acute  Acute+ 
Recovery  Control Acute  Acute+ 

Recovery  

1 0.07167 0.05075 0.05834 0.29381 0.11586 0.13585 

2 0.04615 0.06044 0.10795 0.24354 0.06976 0.02949 

3 0.04235 0.05113 0.03978 0.08029 0.07092 0.08511 

4 0.09297 0.11637 0.13212 0.08258 0.07299 0.08138 

5 0.02666 0.11828 0.04027 0.00944 0.12217 0.08419 

6 0.04078 0.04309 0.04763 0.12068 0.04902 0.04411 

7 0.08724 0.0467 0.16928 0.1332 0.07991 0.13389 

8 0.03603 0.04091 0.03456 0.10635 0.04875 0.03725 

Average  0.055481 0.06595 0.078741 0.133736 0.07867 0.0789087 

Std. Dev 0.023347 0.03016 0.0477412 0.0862585 0.02555 0.0382856 

Std. Error  0.099120 0.11747 0.1701346 0.235872 0.09109 0.13629289 

 

Two-way ANOVA 

Source of Variation P value 
P value 

summary Significant? 

Interaction 0.0736 ns No 

Stimulation 0.4429 ns No 

Overexpression 0.0426 * Yes 
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Table 7C.ii Individual values and Statistical analysis for LC3 mRNA normalized to 2 house-keeping genes.  

Tukey's multiple comparisons test Significant? Summary 

control :GFP vs. control :TFEB  Yes * 

control :GFP vs. Acute :GFP  No ns 

control :GFP vs. Acute :TFEB  No ns 

control :GFP vs. Acute +Recovery:GFP  No ns 

control :GFP vs. Acute +Recovery:TFEB  No ns 

control :TFEB vs. Acute :GFP  No ns 

control :TFEB vs. Acute :TFEB  No ns 

control :TFEB vs. Acute +Recovery:GFP  No ns 

control :TFEB vs. Acute +Recovery:TFEB  No ns 

Acute :GFP vs. Acute :TFEB  No ns 

Acute :GFP vs. Acute +Recovery:GFP  No ns 

Acute :GFP vs. Acute +Recovery:TFEB  No ns 

Acute :TFEB vs. Acute +Recovery:GFP  No ns 

Acute :TFEB vs. Acute +Recovery:TFEB  No ns 
Acute +Recovery:GFP vs. Acute 
+Recovery:TFEB  No ns 
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Table 7D.i Individual values and Statistical analysis for LAMP2 mRNA normalized to 2 house-keeping 
genes.  
 

N GFP TFEB 

  Control Acute  Acute+ 
Recovery  Control Acute  Acute+ 

Recovery  

1 0.10647 0.06165 0.07526 0.24518 0.1514 0.10954 

2 0.08105 0.07515 0.1243 0.17552 0.10624 0.05322 

3 0.08758 0.11478 0.08736 0.14906 0.15915 0.15045 

4 0.1194 0.07019 0.03306 0.10212 0.10899 0.05906 

5 0.13633 0.07634 0.2562 0.19913 0.11929 0.15767 

6 0.06433 0.08573 0.06583 0.15995 0.0778 0.04827 

Average  0.099193333 0.08064 0.107001667 0.171826667 0.120478333 0.096368333 

Std. Dev 0.024220836 0.016881451 0.072012938 0.044079889 0.027716456 0.045503395 

Std. Error  0.076903815 0.059447627 0.220148262 0.106339647 0.079851525 0.146580645 

 

Two-way ANOVA 

Source of Variation P value 
P value 

summary Significant? 

Interaction 0.1047 ns No 

Stimulation 0.1302 ns No 

Overexpression 0.0367 * Yes 
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Table 7D.ii Individual values and Statistical analysis for LAMP2 mRNA normalized to 2 house-keeping 
genes.  

Tukey's multiple comparisons test Significant? Summary 

control :GFP vs. control :TFEB  No ns 

control :GFP vs. Acute :GFP  No ns 

control :GFP vs. Acute :TFEB  No ns 

control :GFP vs. Acute +Recovery:GFP  No ns 

control :GFP vs. Acute +Recovery:TFEB  No ns 

control :TFEB vs. Acute :GFP  Yes * 

control :TFEB vs. Acute :TFEB  No ns 

control :TFEB vs. Acute +Recovery:GFP  No ns 

control :TFEB vs. Acute +Recovery:TFEB  No ns 

Acute :GFP vs. Acute :TFEB  No ns 

Acute :GFP vs. Acute +Recovery:GFP  No ns 

Acute :GFP vs. Acute +Recovery:TFEB  No ns 

Acute :TFEB vs. Acute +Recovery:GFP  No ns 

Acute :TFEB vs. Acute +Recovery:TFEB  No ns 
Acute +Recovery:GFP vs. Acute 
+Recovery:TFEB  No ns 
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Table 7E.i Individual values and Statistical analysis for Cathepsin D mRNA normalized to 2 house-
keeping genes.  
 

N GFP   
  

TFEB   
  

  Control Acute  Acute+ 
Recovery  Control Acute  Acute+ 

Recovery  

1 0.11945 0.16174 0.11208 0.08669 0.12588 0.15055 

2 0.0573 0.03902 0.00194 0.11837 0.13067 0.12018 

3 0.03945 0.03667 0.06135 0.08037 0.03872 0.0209 

4 0.02076 0.03387 0.03106 0.05808 0.02791 0.08351 

5 0.05308 0.03 0.02985 0.05813 0.00202 0.07678 

6 0.04535 0.04866 0.01914 0.03725 0.05466 0.02365 

7 0.06852 0.02908 0.19495 0.07975 0.05913 0.04113 

8 0.01466 0.02304 0.01545 0.06192 0.02404 0.01164 

Average  0.05232125 0.05026 0.0582275 0.07257 0.05787875 0.0660425 

Std. Dev 0.030460593 0.042734641 0.060901836 0.022882322 0.043967469 0.047312826 

Std. 
Error  

0.133167823 0.190620157 0.252386612 0.084941815 0.182756106 0.184105658 

 

Two-way ANOVA 

Source of Variation P value 
P value 

summary Significant? 

Interaction 0.9064 ns No 

Stimulation 0.8444 ns No 

Overexpression 0.3766 ns No 
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Table 7F.i Individual values and Statistical analysis for p62 mRNA normalized to 2 house keeping genes.  
 

N GFP   
  

TFEB   
  

  Control Acute  Acute+ 
Recovery  Control Acute  Acute+ 

Recovery  

1 0.35741 1.06036 1.35647 0.31973 0.54783 1.16356 

2 0.11803 0.26007 0.32775 0.27364 0.224 0.41124 

3 0.144 0.34903 0.66704 0.45373 0.34699 0.11331 

4 0.10543 0.42213 0.27595 0.27635 0.45339 0.7145 

5 0.25641 0.49977 0.49731 0.15272 0.33614 0.40096 

6 0.06065 0.57498 0.33424 0.02481 0.54016 0.78738 

7 0.19776 0.28829 0.19075 0.18847 0.40441 0.16348 

8 0.23333 0.27452 0.96498 0.40099 0.50673 0.45562 

9 0.09271 0.25413 0.25437 0.36301 0.29535 0.20079 

Average  0.17397 0.442586667 0.540984444 0.272605556 0.406111111 0.490093333 

Std. Dev 0.089880159 0.243240909 0.369060946 0.125853254 0.107620443 0.323175983 

Std. 
Error  

0.215489767 0.365626323 0.501771167 0.241044428 0.168877714 0.461636012 

 

Two-way ANOVA 

Source of Variation P value 
P value 

summary Significant? 

Interaction 0.6175 ns No 

Stimulation 0.0034 ** Yes 

Overexpression 0.9563 ns No 
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Table 7F.ii Individual values and Statistical analysis for p62 mRNA normalized to 2 house-keeping genes.  

Tukey's multiple comparisons test Significant? Summary 

control :GFP vs. control :TFEB  No ns 

control :GFP vs. Acute :GFP  No ns 

control :GFP vs. Acute :TFEB  No ns 

control :GFP vs. Acute +Recovery:GFP  Yes * 

control :GFP vs. Acute +Recovery:TFEB  No ns 

control :TFEB vs. Acute :GFP  No ns 

control :TFEB vs. Acute :TFEB  No ns 

control :TFEB vs. Acute +Recovery:GFP  No ns 

control :TFEB vs. Acute +Recovery:TFEB  No ns 

Acute :GFP vs. Acute :TFEB  No ns 

Acute :GFP vs. Acute +Recovery:GFP  No ns 

Acute :GFP vs. Acute +Recovery:TFEB  No ns 

Acute :TFEB vs. Acute +Recovery:GFP  No ns 

Acute :TFEB vs. Acute +Recovery:TFEB  No ns 
Acute +Recovery:GFP vs. Acute 
+Recovery:TFEB  No ns 
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Table 7G.i Individual values and Statistical analysis forBeclin1 mRNA normalized to 2 house keeping 
genes.  
 

N GFP   
  

TFEB   
  

  Control Acute  Acute+ 
Recovery  Control Acute  Acute+ 

Recovery  

1 0.05626 0.05374 0.05434 0.05159 0.03134 0.05147 

2 0.02084 0.02122 0.02005 0.03993 0.02122 0.02808 

3 0.03523 0.0191 0.02187 0.03004 0.02602 0.02216 

4 0.02084 0.02929 0.02005 0.03993 0.02122 0.02808 

5 0.0436 0.00269 0.02181 0.04054 0.03691 0.0185 

6 0.04687 0.01533 0.0833 0.04875 0.03371 0.04547 

Average  0.037273333 0.023561667 0.036903333 0.041796667 0.028403333 0.032293333 

Std. Dev 0.013145977 0.015664835 0.024078232 0.0069645 0.006028114 0.012040307 

Std. 
Error  

0.068091635 0.102052304 0.125340608 0.03406584 0.035768175 0.067000974 

 

Two-way ANOVA 

Source of Variation P value 
P value 

summary Significant? 

Interaction 0.7062 ns No 

Stimulation 0.1178 ns No 

Overexpression 0.7636 ns No 
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Table 7H.i Individual values and Statistical analysis for COXIV mRNA normalized to 2 house keeping 
genes.  
 

N GFP   
  

TFEB   
  

  Control Acute  Acute+ 
Recovery  Control Acute  Acute+ 

Recovery  

1 0.00009 0.00009 0.00012 0.00122 0.00182 0.00155 

2 0.00006 0.00006 0.00006 0.00138 0.00118 0.00093 

3 0.00005 0.00011 0.00008 0.00008 0.0001 0.00011 

4 0.00004 0.00003 0.00005 0.00007 0.00004 0.00022 

5 0.00007 0.00022 0.00005 0.00026 0.00029 0.00019 

6 0 0.00008 0.00001 0.00002 0.00003 0.00004 

7 0.00001 0.00004 0.00006 0.00008 0.00008 0.00002 

8 0.00005 0.00001 0.00011 0.00007 0.00006 0.00009 

9 0.00002 0.00002 0.00004 0.00006 0.00002 0.00004 

Average  4.33333E-05 7.33333E-05 6.44444E-05 0.00036 0.000402222 0.000354444 

Std. Dev 2.74874E-05 6.07362E-05 3.2356E-05 0.000507784 0.000610624 0.000499447 

Std. Error  0.004175631 0.007092463 0.004030535 0.026762559 0.030446745 0.02652864 

 

Two-way ANOVA 

Source of Variation P value 
P value 

summary Significant? 

Interaction 0.9893 ns No 

Stimulation 0.9616 ns No 

Overexpression 0.0071 ** Yes 
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Table 7H.ii Individual values and Statistical analysis for COXIV mRNA normalized to 2 house-keeping 
genes.  

Tukey's multiple comparisons test Significant? Summary 

control :GFP vs. control :TFEB  No ns 

control :GFP vs. Acute :GFP  No ns 

control :GFP vs. Acute :TFEB  No ns 

control :GFP vs. Acute +Recovery:GFP  No ns 

control :GFP vs. Acute +Recovery:TFEB  No ns 

control :TFEB vs. Acute :GFP  No ns 

control :TFEB vs. Acute :TFEB  No ns 

control :TFEB vs. Acute +Recovery:GFP  No ns 

control :TFEB vs. Acute +Recovery:TFEB  No ns 

Acute :GFP vs. Acute :TFEB  No ns 

Acute :GFP vs. Acute +Recovery:GFP  No ns 

Acute :GFP vs. Acute +Recovery:TFEB  No ns 

Acute :TFEB vs. Acute +Recovery:GFP  No ns 

Acute :TFEB vs. Acute +Recovery:TFEB  No ns 
Acute +Recovery:GFP vs. Acute 
+Recovery:TFEB  No ns 
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Table 7I.i Individual values and Statistical analysis for TFAM mRNA normalized to 2 house-keeping 
genes.  
 

N GFP   
  

TFEB   
  

  Control Acute  Acute+ 
Recovery  Control Acute  Acute+ 

Recovery  

1 13.40949 20.74752 26.38791 20.0545 9.934547 14.27524 

2 10.1679 7.27935 11.26818 10.8374 9.46316 16.50878 

3 10.27735 12.0427 8.06171 6.06398 11.24283 3.97576 

4 27.45993 21.47282 21.50016 28.43396 47.59775 27.42714 

5 3.32084 3.89213 2.61161 8.32227 5.38123 2.27817 

6 7.28573 3.13856 24.61038 7.98224 9.58838 26.35582 

7 4.22671 6.54478 6.01759 14.05121 4.11123 4.39605 

8 23.14417 28.9434 14.4419 20.59801 18.82661 28.20892 

9 18.82062 15.64407 10.89742 24.22522 54.63768 19.5544 

Average  13.12363778 13.30059222 13.97742889 15.61875444 18.97593522 15.88669778 

Std. 
Dev 

7.920765493 8.483291246 7.945998266 7.534637542 17.69159497 9.832795255 

Std. 
Error  

2.186452455 2.326102714 2.125371341 1.906510347 4.061303016 2.466949045 

 

Two-way ANOVA 

Source of Variation P value 
P value 

summary Significant? 

Interaction 0.8625 ns No 

Stimulation 0.8891 ns No 

Overexpression 0.2742 ns No 
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Table 7J.i Individual values and Statistical analysis for COXI mRNA normalized to 2 house-keeping genes.  
 

N GFP   
  

TFEB   
  

  Control Acute  Acute+ 
Recovery  Control Acute  Acute+ 

Recovery  

1 0.00661 0.00316 0.00538 0.0062 0.00422 0.00549 

2 0.00473 0.00619 0.00351 0.00521 0.00439 0.00633 

3 0.004 0.00311 0.01522 0.00935 0.00706 0.0053 

4 0.00363 0.00595 0.0061 0.01048 0.00554 0.00429 

5 0.0065 0.00723 0.00494 0.00833 0.00797 0.01057 

6 0.00343 0.00402 0.00401 0.00486 0.01456 0.00286 

Average  0.004816667 0.004943333 0.006526667 0.007405 0.00729 0.005806667 

Std. 
Dev 

0.001294548 0.001591139 0.00397958 0.002115079 0.003518181 0.002391071 

Std. 
Error  

0.018652841 0.022630705 0.049259671 0.024578989 0.041205431 0.031378277 

 

Two-way ANOVA 

Source of Variation P value 
P value 

summary Significant? 

Interaction 0.3160 ns No 

Stimulation 0.9987 ns No 

Overexpression 0.1592 ns No 
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Table 8A Individual values and Statistical analysis mitochondrially localized LC3-II  

N Control  Acute  
Acute 
+Recovery  

1 0.693973 1.604757 1.474145 

2 1.205252 0.662646 1.050846 

3 0.913662 1.450247 1.303137 

4 0.054958 0.681033 1.72535 

5 0.455277 0.410845 0.947366 

6 0.247681 1.287544 1.474081 

7 0.807477 1.018719 0.362031 

8 0.526879 0.514323 1.802923 

Average  0.613145 0.953764 1.267485 

Std. Dev 0.346897 0.423219 0.44049 
Std. 
Error  0.443016 0.433356 0.391259 

     

 

 

 

 

Tukey's multiple 
comparisons test 

Mean 
Diff. 

95% CI of 
diff. Significant? Summary 

Control vs. Acute -0.3406 
-0.8871 to 

0.2058 No ns 
Control vs. Acute+ 
Recovery -0.6543 

-1.201 to -
0.1079 Yes * 

Acute vs. Acute+ 
Recovery -0.3137 

-0.8602 to 
0.2327 No ns 

 

 

One-way ANOVA 
summary 

 F 4.558 
P value 0.0227 
P value summary * 
Are differences among 
means statistically 
significant? (P < 0.05) Yes 



! 130 

Table 8B Individual values and Statistical analysis of mitochondrially localized parkin protein western 

quantification  

N Control  Acute  
Acute 
+Recovery  

1 0.086618 0.288794 0.325482 

2 0.324255 0.238848 0.380359 

3 0.687951 0.486451 0.265719 

4 0.238972 0.820984 0.574694 

5 0.741185 0.413806 0.415388 

6 0.307565 0.31673 0.110678 

Average  0.397758 0.427602 0.345387 

Std. Dev 0.237246 0.193903 0.141737 
Std. 
Error  0.376174 0.296528 0.241174 

     

 

 

 

 

 

 

 

 

 

One-way ANOVA 
summary 

 F 0.2280 
P value 0.7989 
P value summary ns 
Are differences among 
means statistically 
significant? (P < 0.05) No 
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Table 8C Individual values and Statistical analysis of mitochondrially localized p62 western quantification  

N Control  Acute  
Acute 
+Recovery  

1 0.620442 2.071336 1.843363 

2 1.221621 0.467775 1.092925 

3 0.783616 1.051727 1.039273 

4 0.797234 3.06757 2.019679 

5 1.843486 1.953277 1.224917 

6 1.255279 1.792917 4.110478 

7 1.504935 1.70728 1.199217 

8 1.342031 1.132347 2.035166 

Average  1.171081 1.655529 1.820627 

Std. Dev 0.386579 0.735359 0.949386 
Std. 
Error  0.357228 0.571519 0.70361 

     

 

 

 

 

 

 

 

 

 

One-way ANOVA 
summary 

 F 1.504 
P value 0.2452 
P value summary ns 
Are differences among 
means statistically 
significant? (P < 0.05) No 
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Table 10A. Individual values and Statistical analysis COXI protein 

N Control  CCA 

1 0.056865 0.154491 

2 0.058413 0.160894 

3 0.089102 0.129041 

4 0.055382 0.182876 

Average  0.0649405 0.1568255 

Std. Dev 0.016155133 0.022155583 

Std. Error  0.063394667 0.055946747 

 

Unpaired t test 
 P value 0.0005 

P value summary *** 

Significantly different? 
(P < 0.05) Yes 

One- or two-tailed P 
value? Two-tailed 

t, df 
t=6.702 

df=6 
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Table 10B. Individual values and Statistical analysis COXIV protein 

 

 

Unpaired t test 
 P value 0.0295 

P value summary * 

Significantly different? 
(P < 0.05) Yes 

One- or two-tailed P 
value? Two-tailed 

t, df 
t=2.344 

df=20 
 

 

 

 

 

N Control  CCA 
1 0.091465 0.255763 

2 0.116663 0.575949 

3 0.20215 0.281975 

4 0.179249 0.301646 

5 0.364593 0.441338 

6 0.116858 0.634604 

7 0.236096 0.214426 

8 0.248062 0.198714 

9 0.265848 0.376002 

10 0.516502 0.23168 

11 0.183582 0.642975 

Average  0.229188 0.377733818 

Std. Dev 0.123362939 0.170164088 

Std. Error  0.25768478 0.276869411 
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Table 11A. Individual values and Statistical analysis for TFEB 1600 CCA luciferase activity 

N Control  CCA 

1 0.294824 1.008306 
2 2.623907 2.146718 
3 4.374097 3.34662 
4 3.129966 4.446995 
5 2.915718 4.086627 

Average  2.667702 3.007053 

Std. Dev 1.212398 1.161133 
Std. Error  0.742295 0.669594 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unpaired t test 
 P value 0.7217 

P value summary ns 

Significantly 
different? (P < 0.05) No 

One- or two-tailed P 
value? Two-tailed 
t, df t=0.3691 df=8 
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Table 11B. Individual values and Statistical analysis for TFEB 1600 CCA luciferase activity 

N Control  CCA 

1 8.190119 3.141117 
2 5.577174 3.90545 
3 4.116815 11.53044 
4 4.715042 2.957354 
5 4.084034 8.448678 
6 4.251262 4.439026 

Average  5.155741 5.737010833 

Std. Dev 1.45059049 3.173365641 

Std. Error  0.63885056 1.324882245 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unpaired t test 
 P value 0.7173 

P value summary ns 

Significantly 
different? (P < 0.05) No 

One- or two-tailed P 
value? Two-tailed 
t, df t=0.3725 df=10 
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Table 12A. Individual values and Statistical analysis TFE3 protein following CCA 

N Control  CCA 

1 0.952324 1.672928 
2 0.469158 0.604159 
3 0.421579 1.569987 
4 0.44039 1.04987 
5 0.983758 0.762327 
6 0.44515 0.522196 
7 0.9042 0.892735 
8 1.243896 0.819786 
9 1.067329 1.414164 

10 0.918967 0.870842 
Average  0.7846751 1.0178994 

Std. Dev 0.292581113 0.380876895 

Std. Error  0.330294507 0.37751325 
 

 

 

 

 

 

 

 

 

 

Unpaired t test 
 P value 0.1624 

P value summary ns 

Significantly different? (P 
< 0.05) No 

One- or two-tailed P 
value? Two-tailed 

t, df 
t=1w457 

df=18 



! 137 

Table 12B. Individual values and Statistical analysis LAMP2 protein following CCA 

N Control  CCA 

1 0.130089 0.082427 
2 0.220888 0.119624 
3 0.242375 0.137011 
4 0.234966 0.146607 
5 0.171294 0.078014 
6 0.16518 0.079688 
7 0.204802 0.117669 
8 0.172468 0.135714 

Average  0.19275775 0.11209425 

Std. Dev 0.036640234 0.026337749 

Std. Error  0.08345499 0.078665985 

 

 

 

 

 

 

 

 

 

Unpaired t test 
 P value 0.0003 

P value summary *** 

Significantly different? (P 
< 0.05) Yes 

One- or two-tailed P 
value? Two-tailed 

t, df 
t=4.730 

df=14 
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Table 12C. Individual values and Statistical analysis Cathepsin D protein following CCA 

N Control  CCA 

1 1.337699 1.576306 
2 0.884884 1.814647 
3 0.711641 0.753558 
4 0.660919 2.142446 
5 0.857317 0.65289 
6 0.482329 1.116006 
7 0.669598 1.716608 
8 0.434762 0.776689 
9 0.607611 0.667147 

10 0.430875 0.489096 
Average  0.7077635 1.1705393 

Std. Dev 0.258122258 0.560357914 

Std. Error  0.306818381 0.517931721 
 

 

 

 

 

 

 

 

 

Unpaired t test 
 P value 0.0372 

P value summary * 

Significantly different? (P 
< 0.05) Yes 

One- or two-tailed P 
value? Two-tailed 

t, df 
t=2.250 

df=18 



! 139 

Table 12D. Individual values and Statistical analysis TFEB protein following CCA 

N Control  CCA 

1 8.21495 7.217974 
2 5.74466 4.970937 
3 3.103243 4.120976 
4 5.654345 0.478674 
5 2.863863 1.42975 
6 5.41607 6.06683 
7 2.084202 3.696795 

Average  4.725904714 3.997419429 

Std. Dev 1.986686129 2.225896458 

Std. Error  0.913874963 1.113307408 
 

 

 

 

 

 

 

 

 

 

 

 

Unpaired t test 
 P value 0.5609 

P value summary ns 

Significantly different? (P 
< 0.05) No 

One- or two-tailed P 
value? Two-tailed 

t, df 
t=0.5981 

df=12 
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Table 12E. Individual values and Statistical analysis p62 protein following CCA 

N Control  CCA 

1 0.623701 0.938962 
2 0.487353 1.372978 
3 0.696203 0.81526 
4 0.90806 0.706373 
5 0.661342 1.969013 
6 0.547491 0.271092 
7 0.504697 0.679594 
8 0.740899 0.923717 
9 0.817431 0.757569 

10 0.868857 0.819758 
11 0.951268 1.157317 
12 1.025526 1.212533 

Average  0.736069 0.968681 
Std. Dev 0.171927 0.407366 
Std. Error  0.200394 0.413899 

 

 

 

 

 

 

 

 

 

 

Unpaired t test 
 P value 0.0950 

P value summary ns 

Significantly different? (P 
< 0.05) No 

One- or two-tailed P 
value? Two-tailed 

t, df 
t=1.745 

df=22 
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Table S1A. Individual values and Statistical analysis for 4 hour starvation  nuclear and cytosolic western 
protein 

A.U. Control Acute  

n Nuclear Cytosolic Nuclear Cytosolic 

1 
2.373583 0.052872 0.064638 0.013266 

2 
0.003209 0.776923 0.021371 0.5319 

3 
0.514495 3.217424 2.312765 1.15151 

Average  0.963762 1.349073 0.799591 0.565558 

Std. Dev 0.882057 1.172415 0.926752 0.402957 

Std. 
Error  

0.898487 1.009401 1.036405 0.535822 

 

% Control    Acute    

n Nuclear Cytosolic Nuclear Cytosolic 

1 
97.82101 2.178993 82.97119 17.02881 

2 
0.411361 99.58864 3.862642 96.13736 

3 
13.78633 86.21367 66.76044 33.23956 

Average  37.33957 62.66043 51.19809 48.80191 

Std. Dev 37.33782 37.33782 29.5481 29.5481 

Std. 
Error  

6.110326 4.716852 4.12955 4.229715 

 

Summary of Two- way 
ANOVA 

Source of 
Variation P value 

P value 
summary Significant? 

Interaction 
0.6278 ns No 

Stimulation 
> 0.9999 ns No 

Fractionation 
0.6877 ns No 
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Figure S1: Graphical representations of nuclear and cytosolic cellular fractions of 
starved C2C12 cells demonstrated the trend of TFEB translocation from the cytosol to the 
nucleus following A, 4 hours of serum starvation with HBSS (n=3; X ± SEM) and the 
corresponding. Western blots that represent the translocation of TFEB. GAPDH and H2B 
were used as cytosolic and nuclear loading controls respectively. 
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APPENDIX C 

LABORATORY METHODS AND PROTOCOLS 
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CELL CULTURE 

Cells 

C2C12 murine skeletal muscle cells (ATCC, CRL-1772) 
 

Materials 

1. Dulbecco’s Modified Eagle’s Medium (DMEM; Sigma D-5796/500ml) 
2. Fetal Bovine Serum (FBS; Fisher Scientifitc SH3039603C/500ml) 

a. Aliquoted into 50ml sterile conical tubes and stored at -20°C 
3. Penicillin/Streptomycin (P/S; Invitrogen 15140-122/100ml) 

a. Sterile aliquots of 6mls and stored at -20°C) 
4. Horse Serum (HS; Invitrogen 16050-114/1000ml) 

a. Aliquoted into 50ml sterile conical tubes and stored at -20°C 
b. Heat-inactivated for 30 minutes at 56.0°C 

5.  0.25% Trypsin-EDTA (1x), phenol red (Invitrogen 25200-072/500ml) 
a. Sterile aliquots of 30mls stored at -20°C 

6. Dulbecco’s Phosphate Buffered Saline (PBS; Sigma D-8537/500ml) 
7. 15ml conical tubes, sterile (BD Falcon 352097) 
8. 50ml conical tubes, sterile (BD Falcon 352098) 
9. 175cm2 canted/vented tissue cultured flasks (BD Falcon 353112) 
10. 6-well sterile tissue culture dish (Sarstedt 83.1839.300) 
11. Gelatin (Sigma G1890) 

a. 0.1% solution autoclaved for sterilization 
 

Procedure 

1. Allow myoblasts to proliferate in 175cm2 flask with growth medium (GM; 
DMEM supplemented with 10% FBS and 1% P/S) until 70% confluent. 

2. Prepare six 6-well dishes for plating by coating the bottom surface with 0.1% 
gelatin and allow to fully dry in laminar flow hood.  

3. Pre-heat GM, trypsin and PBS in 37°C water bath for 30 minutes prior to use. 
4. Discard old GM from tissue culture flask and wash with 10mls of PBS to rinse off 

remaining GM.  
5. Apply 5mls of trypsin in the flask and place in the incubator at 37°C for 3 minutes. 
6. Remove flask from incubator and gently knock sides of the flask to ensure cells 

are lifted from flask bottom. Remove trypsin with cells and place into a sterile 
15ml conical tube.  

7. Rinse flask with 5mls GM and add to sterile 15ml conical tube containing the 
cells. 

8. Spin tube for 3 minutes at 1400rpm at room temperature. 
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9. Discard the supernatant and add 1ml of GM for resuspension with 1ml pipette.  
10. Add 3mls of GM to resuspended cell mixture for a total volume of 4mls.  
11. Fill each well of tissue culture dishes with 2mls of GM and add 100µl of cell 

mixture to each well.  
12. Rotate plate in a circular motion for 30secs and subsequently place into 37°C 

incubator overnight. 
13. The following day remove GM from cells and replace with differentiation 

medium (DM; DMEM supplemented with 5% heat-inactivated HS and 1% P/S) 
once myoblasts are 90-95% confluent. 

14. Refresh DM every other day. Mature myotubes will form after five days and be 
ready for contractile activity.  
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CYCLOSPORIN A TREATMENT OF C2C12 MYOTUBES 

C2C12 skeletal muscle cells were proliferated on 6-well plates.   Cells were 
allowed to reach 80% confluence and GM was switched to DM.   DM was supplemented 
daily for 4d to achieve differentiated myotubes. Cyclosporin A (CsA) (Sigma-C3662) 
was dissolved in (DMSO) to achieve a stock 1mM solution.  

On day four of differentiation, media was switched to 10nM CsA or DMSO 30 
minutes pre stimulation.  Cells were exposed to CsA +control, CsA + Stimulation, 
Vehicle + control,  Vehicle + Stimulation.  Immediately following stimulation whole cell 
extracts were collected for nuclear and cytosolic fractionation and western blotting.  
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ELECTRICAL STIMULATION OF MYOTUBES IN CULTURE 

Cells 

1. C2C12 murine skeletal muscle cells, differentiated into mature myotubes 
Materials 

1. Electrical Stimulator 
Gange bipolar output (+/- amplitude adjustable using one knob) 

Output voltage range = 0 to +/- 30V 

Maximum output current = 1A 

Adjustable output pulse duration from 0.001 to 0.1secs (10-1kHz) 

Adjustable output pulse repetition from 0.0005 to 0.01secs (100-2kHz) 

Adjustable polarity duration range from 1 to 100secs (0.01 to 1Hz) 

Polarity duration range = time duration for the output “pulse burst” to be positive 
before switching to a similar negative (amplitude) pulse burst. Positive and 
negative duration are of equal value except for the amplitude.  

2. 6-well sterile plastic culture dishes (Sarstedt 83.1839.300 OR Biobasic SP41117) 
with lids modified for implantation of platinum electrode wires (see image below). 
Bottom of plates should be coated with sterile 0.1% gelatin.  

Procedure 

1. Before each bout of stimulation, electrodes are cleaned with 70% ethanol and 
placed in the laminar flow hood for 30mins under UV light for sterilization.  

2. DM is refreshed 30mins prior to stimulation protocol. 
3. Differentiated myotubes are stimulated in a parallel circuit (four 6-well dishes at 

once) at 5Hz, 9V for 3 hours in 2mls of DM.  
4. Once the 3 hours is complete, DM should be refreshed once again.  
5. The cells are allowed to rest for 21 hours until the next bout of stimulation. The 

total protocol lasts for 4 days and 21 hours and cells are harvested following the 
last 21 hour rest period.  
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A) Electrical Stimulator    B) Modified six-well plate lid 
 

 

 

 

 

Voltage 

Voltage is constant and accurate in the 6-well plates.  When set at 9v the true output is 
8.5v. 

There is a positive train and negative train consisting of 5 repetitions each at a frequency 
of 5Hz. 

 

Current 

The current across a 6-well plate with 3mls and 2mls of media is 37mA and 20mA 
respectively. 

When 6 plates (3mls) are attached to the stimulator the current is 130mA. 

When 5 plates (3mls) are attached to the stimulator the current is 105mA. 

When there is more contact between the wires and the media there is more current, 
therefore if the wires are pushed down it makes a considerable difference than if they are 
up or just touching the media. 

 

Resistance 

The resistance across a 6-well plate with 3mls and 2mls of media is 12 KΩ and 350KΩ 
respectively (direction of measurement makes no difference, see below). 

The resistance in a 10cm plate with 15mls seems to be more confusing in one direction it 
is 1.6MΩ and the other direction it is 700KΩ.  Both of these are not constant and seem to 
change with time in an opposite manner… Jim says it seems to act as a semiconductor … 
needs to be measured again. 
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WESTERN BLOT PROCEDURE 

Part A: Protein Extraction 
Reagents 

1. 5X Passive Lysis Buffer diluted in ddH20 to 1X (Promega E194A) 
2. Phosphate Buffered Saline (PBS; Sigma D-8537) 
3. Protease Inhibtors (Complete, Roche, 1169749801; Roche diagnostics, Basel, 

Switzerland) 
4. Phosphatase Inhibitors (Cocktails 2 and 3 Sigma, P5726 and P0044) 

 

Procedure 

1. Prepare fresh lysis buffer with protease and phosphatase inhibitors. 
2. Remove media and wash cells 3X with 2mls of ice-cold PBS. Aspirate last wash. 
3. Add 150µl of freshly prepared lysis buffer containing protease and phosphatase 

inhibitors into wells. Scrape the wells with a rubber cell scraper and place cell 
lysate into an eppendorf. Place eppendorf on ice. If required, combine multiple 
wells with a total of 150µl to increase final protein concentration. 

4. Vortex sample briefly and place in liquid nitrogen. Thaw sample in water bath set 
to 37°C for 2 minutes. Repeat step four 2X for a total of 3 freeze-thaw cycles.  

5. Spin the samples at 4°C for 5 minutes at 16.1rcf.  
6. Collect the supernatant and place into a newly labeled eppendorf tube.  
7. Measure the total protein concentration using the Bradford Assay.  
8. Store samples at -80°C. 
9. Remove the supernate and add it to a new-labelled eppendorf tube. 
10. Freeze samples at -80ºC for protein quantification using the Bradford assay. 

 
Part B: SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) – Bio-Rad Mini 
Protein System 

Reagents: 

• Acrylamide/Bis-Acrylamide, 30% Solution 37.5:1 (BioShop 10.502) 
o Store at 4°C 

• Under Tris Buffer 
o 1M Tris-HCl, pH 8.8 (60.5g/500ml) 
o Store at 4°C 

• Over Tris Buffer 
o 1M Tris-HCl, pH 6.8 (12.1g/100ml) 
o Bromophenol Blue (for colour) 
o Store at 4°C 
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• Ammonium Persulfate (APS) 
o 10% (w/v) APS in ddH20 (1g/10ml) 
o Store at 4°C 

• Sodium Dodecyl Sulfate (SDS) 
o 10% (w/v) in ddH20 (1g/10ml) 
o Store at room temperature 

• TEMED (Sigma T-9281) 
• Electrophoresis Buffer, pH 8.3 (10L) 

o 25mM Tris 30.34g, 192mM Glycine 144g, 0.1% SDS 10g 
o Volume to 10L with ddH20 
o Store at room temperature 

• 2 x Lysis Buffer 
• tert-Amyl alcohol ReagentPlus, 99% (Sigma 152463) 

Procedure: 

1. Prepare Mini-Protean gel caster system: 
1. Assemble glass plates as shown below:  

 
 

2. Check the seal by adding a small volume of ddH20 then pour off and let dry.  
3. Make a mark 2 cm below the top edge of the short plate. This will indicate 

how high to fill the separating gel. 
4. Prepare separating gels: 
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Mini Protean 3 Bio-Rad System volumes 

Separating Gel 8 % 10 % 12 % 15 % 18 % 

Acrylamide 2.7 ml 3.3 ml 4.0 ml 5.0 ml 6.0 ml 

Water 4.1 ml 3.5 ml 2.8 mL 1.8 ml 0.8 ml 

Under Tris 3.0 ml 3.0 ml 3.0 ml 3.0 ml 3.0 ml 

SDS 100 μl 100 μl 100 μl 100 μl 100 μl 

APS 100 μl 100 μl 100 μl 100 μl 100 μl 

TEMED 10 μl 10 μl 10 μl 10 μl 10 μl 

 
1. Mix the contents of the separating gel without TEMED.  
2. Add TEMED. Briefly stir. Immediately, pour the contents between the 

short and spacing plates until the volume reaches 2 cm from the top 
edge of the short plate 

3. Coat the top surface of the gel solution with tert-Amyl alcohol to 
remove any bubbles. 

4. Allow 10 - 30 minutes for gel polymerization.  
5. Remove tert-Amyl alcohol by pouring it off and remove any 

remainder with a scrap piece of Whatman paper. 
5. Prepare stacking gel: 

1. For a single mini gel use the following volumes: 
 

Stacking Gel (3% 
Acrylamide) 1 Mini Gel 

Acrylamide 250 μL 
Water 1.875 mL 
Above Tris buffer 312.5 μL 
SDS 25 μL 
APS 25 μL 
TEMED 10 μL 

 
2. Mix the contents of the stacking gel without adding TEMED. Stir.  
3. Add TEMED. Stir and pour the stacking gel on top of the polymerized 

separating gel.  
4. Immediately, add the appropriate comb for desired number of wells 

and thickness of spacer plate. 
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5. Allow 10 - 30 minutes for gel polymerization. 
6. Gels may be used immediately or stored in a wet sealed container at 

4ºC.  
6. Prepare samples: 

1. Warm block heater to 95ºC.  
2. Pipette the appropriate volume of each sample into a new eppendorf. 

This volume is determined by the protein concentration assessed using 
the Bradford assay and the required amount of protein required for 
the detection of the desired protein. 

3. Add an equal amount of 2X Lysis Buffer supplemented with 5% B-
Mercaptoethanol. Add 5 μL of Sample Dye to each sample. 

4. Briefly spin each sample to bring volume to the bottom of the 
eppendorf. 

5. Incubate each sample at 95ºC for 5 minutes in the heating block to 
denature the proteins.  

6. Briefly spin again to return volume to the bottom of the eppendorf. 
 

7. Assemble Mini-Protean electrophoresis rack: 
1. See images below: 

 
 

2. If you are only running one gel a plastic rectangular pseudo plate must 
be clamped on the other side of the caster.  

3. Fill the middle chamber of the electrophoresis apparatus with 
Electrophoresis Buffer. Fill the outer chamber with Electrophoresis 
Buffer, until the level is approximately 2 cm above the bottom of the 
gels.  

4. Slowly remove the comb using both hands (one on each side) by 
pulling the comb straight upwards.  

5. Fix any wells that are deformed using a pipette tip.  
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6. Clean out the wells using a pipette tip and Electrophoresis Buffer. 
7. Apply 10 μL of protein ladder to the first well.  
8. Withdraw the entire volume of the sample using a gel-loading tip. 

Inject the solution slowly into the bottom of the well.  
 

8. Gel Electrophoresis: 
1. After all samples are loaded, immediately, place the lid on the gel 

chamber. 
2. Place the positive and negative leads into the power supply. 
3. Use a power supply to apply a constant voltage of 120V across the gel. 

for 60 – 120 minutes until sufficient separation has been achieved as 
indicated by the protein ladder. 

4. Prepare for electrotransfer of proteins from the gel to nitrocellulose 
membrane.  

Part C: Western Blotting and Immunodetection 

Reagents: 

• Transfer Buffer 
o 0.025M Tris-HCl pH 8.3   12.14g 
o 0.15M Glycine    45.05g 
o 20% Methanol   800ml 
o Make 4L with ddH20 
o Store at 4°C 

• Ponceau S stain 
o 0.1% (w/v) Ponceau S  
o 0.5% (v/v) Acetic Acid 
o Store at room temperature 

• Wash Buffer 
o Tris-HCl pH 7.5    12g 
o NaCl    58.5g 
o 0.1% Tween   10ml 
o Store at room temperature 

• Blocking Buffer 
o 5% (w/v) skim milk power in Wash Buffer 

• Enhanced Chemiluminescence Fluid (ECL; Santa Cruz - SC-2048) 
• Film Developer and Fixer 

Procedure: 

9. Transfer Procedure 
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1. Using a paper cutter cut 6 pieces of Whatman paper per gel. Each 
piece should measure 8.5 cm x 6 cm. Wearing gloves cut an 8.5cm x 6 
cm piece of nitrocellulose membrane (GE Healthcare RPN303D). 
Soak Whatman paper and nitrocellulose membrane in Transfer Buffer 
until use. 

2. Remove electrophoresis plates from chamber and separate the plates. 
3. Remove stacking gel 
4. Assemble Whatman paper, nitrocellulose membrane and gel as shown 

below, ensuring that the gel and membrane are orientated so that the 
gel is closer to the black surface and the membrane closer to the white 
plastic clamp. 

 
5. Close the cassette and place in the transfer chamber with the black side 

of the cassette facing the negative electrode (black side) of the 
chamber.  

6. Place an ice pack and magnetic stir bar in the chamber. 
7. Place the chamber in a Tupperware container. Place the container on 

top of a magnetic stir plate. Turn on the stir plate and ensure the 
magnetic stir bar is spinning. 

8. Fill the chamber completely with cold Transfer Buffer. Place lid on the 
chamber and connect the leads to a power supply.  

9. Turn on the power supply and apply a constant voltage of 120V for 1.5 
hours. This can vary depending on the size of the protein of interest. 

10. Removal of nitrocellulose membrane: 
1. Turn off the power supply and disconnect leads from the power supply. 
2. Remove the cassette from the chamber.  
3. While wearing gloves, carefully dispose of the Whatman paper and gel. 
4. Gently place the nitrocellulose membrane in a plastic dish and apply 

Ponceau S stain for 5 minutes.  
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5. Drain off the remaining Ponceau S and save for reuse. 
6. Rinse the membrane 3-5x with ddH2O to reduce the red background. 

Wrap membrane in saran wrap and scan. 
7. Cut the membrane while protein bands are still visible at the desired 

molecular weight. 
8. Rotate membrane at room temperature in Wash Buffer until remaining 

Ponceau S stain has been removed (~5 minutes). 
9. Incubate membrane for 1 hour with rotation in Blocking Buffer at 

room temperature.   
11. Immunodetection 

1. Primary Antibody Incubation 
i. Wrap a flat piece of glass in parafilm. Place the glass in a 

Pyrex dish. Arrange balls of wet tissue around the dish and 
cover the entire dish with saran wrap. 

ii. Place the dish in a 4ºC fridge and level. 
iii. Place nitrocellulose membrane strips face up on the flat 

parafilm surface. 
iv. Dilute the primary antibody raised against the protein of 

interest in Blocking Buffer. Gently apply ~1-1.5 mL of diluted 
antibody overtop of the appropriate membrane strip. 

v. Specific antibody dilutions used in this study are listed at the 
end of this protocol. 

2. Secondary Antibody Incubation 
i. Wash the blots in Wash Buffer with gentle rotation for 5 

minutes 3X. 
ii. Incubate the blots as described in step 3.a with the following 

changes. Incubate the blots for 1 hour with a secondary 
antibody raised against the species and specific 
immunoglobulin molecule of the primary antibody. Incubate at 
room temperature. 

3. Following the incubation, wash the membrane 3X for 5 minutes with 
Wash Buffer. 

12. Enhanced Chemiluminescence Detection 
Note: Complete the following steps in a dark room sufficient for 

photographic film developing. 
1. Mix ECL fluids “A” and “B” in a 1:1 ratio in a small plastic box. 
2. Place blots facedown in the small plastic box and place on a level 

surface. Some swirling may be required to ensure equal coverage. 
3. Following 2 minutes, remove blots and place face down on clean Kim 

wipes to remove excess ECL fluid. 
4. Place membrane strips on clean overhead transparency film and 

remove any bubbles. 
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5. Turn off any lights. 
6. Place membrane strips face up in a film cassette.  
7. Momentarily cover the strips with cardboard while cutting pieces of 

film to the approximate size of the membrane strips. 
8. Remove the film and apply film overtop of the membrane strips. Do 

not move the film once it has been placed on top of the membrane. 
9. Close the cassette and expose the film for the desired time.  
10. After the exposure time, remove the film and place the cassette aside. 
11. Attach the film to a film hanger and dip 5-6x in film developing 

solution. 
12. Hold the film up to a red light. When bands become apparent, 

immediately submerge the film in water and then in the film fixing 
solution for a minimum of 30 seconds. 

13. Following 30 seconds in the fixing solution, the film can then be 
submerged in water and attached to butterfly binder clips to dry. They 
are no longer light sensitive. 
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LUCIFERASE ASSAY 

Part A: Cell Transfection 
1. C2C12 cells are grown to 30% confluent DM was replaced with pre-transfection 

media (DMEM+ 10% FBS) 6 hours prior to transfection. 
2. DNA was allotted into falcon tube 1 containing minimal DMEM, the volume of 

DNA was dependant on the concentration of DNA and desired final volume.  
3. Lipofectamine 2000 (Life Technologies 11668019) reagent is deposited into a 

separate falcon tube 1a containing DMEM.  
4. Leave both falcon tubes for 5 minutes, following which pour tube 1 into tube 1a 

gently and let sit for 20 minutes. 
5. Following the incubation, change media on 6 well plates to minimal DMEM and 

pipette 500μl of DNA mix into each well. 
6. Incubate at 37°C for 6 hours. 
7. Following incubation remove media, wash twice with GM and change to desired 

media.  
Part B: Cell treatment 

1. Transfected cells were differentiated for 4 days (as explained previously)  
2. On day 4 of differentiation myotubes were stimulated acutely or chronically.  
3. Following stimulation cells were scraped with PBS and lysed as explained above.  

Part C: Luciferase measurment 
1. Thaw out the luciferase assay’s substrate on ice or in the fridge (keep the reaction 

substrate on ice at all time) 
2. Turn on the luminometer at least 1 hour prior of the measurement 
3. Prepare the luminometer as follow: 

a. Wash the inlet:  
To wash inlet 1 (front inlet) 

Choose “others” ! “oper. function” ! “reagent” ! “others” ! 
“wash” ! “Inj1” ! check the # of wash is 5 ! insert 
“luminometer tube into the chamber ! “enter”  ! “repeat wash” 
! “exit” 

To wash inlet 2 (back inlet) 

Repeat the same step as before but choose “Inj2”  

(make sure there is enough water in the bottle) 

b. Manual unload:  
To unload inlet 1 
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Choose “others” ! “oper. function” ! “reagent” ! “others” ! 
“manual unload” ! “Inj1” ! repeat pressing “Inj1” 3 – 5 times 

To wash inlet 2 

Repeat the same step as before but choose “Inj2”  

(make sure you see bubbles coming out from the inlet) 

c. Prime the inlet:  
Prior to priming the inlets, take the inlet out from the “water” bottle and 
wipe them dry with Kim Wipe.  Then, put the inlet into the FFL and rLUC 
substrates respectively. (put the front inlet into the FFL substrate & the 
back inlet into the rLuc substrate) 

To prime inlet 1 

Choose “others” ! “oper. function” ! “reagent” ! “prime” ! 
“Inj1” ! insert “luminometer tube into the chamber ! “enter” 

To prime inlet 2 

Repeat the same step as before but choose “Inj2”  

4. Put enough “luminometer” tube (Sarstet No 55.475) on the tube rack 
5. Select protocol # 6 from the menu and follow the instructions for measurement 
6. Transfer 20μl of the lysate to the bottom of the “luminometer” tube right before 

you are ready to measure and do a duplicate measurement for each sample 
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RNA EXTRACTION FROM CELLS 

Reagents: 

• TRIZol® Reagent 
• 24:1 Chloroform:Isoamylalcohol 

o 24 parts Chlorofom 
o 1 part Isoamylalcohol 

• 100% Isopropanol 
• 75% Ethanol 
• DEPC ddH2O 

Procedure: 

1.Cell Culture: 
1. Grow cells in 6 well plate 
2. Pour off the medium. Wash each plate with 5 ml of ice-cold Phosphate 

Buffered Saline (PBS), remove all of the PBS. 
3. Add 400 ul of PBS to plate and gently scrape with a rubber policeman. 
4. Transfer to Eppendorf. 
5. Spin the cells at 1400 RPM for 3 minutes. Remove all supernate. 

Resuspend in 2 mLs DPBS. 
6. Spin the cells at for 3 min at 1400 RPM in a microcentrifuge. Discard the 

supernate with a Pasteur pipette. 
7. Flash freeze and store at -80 until ready to continue 

2.RNA Isolation 
1. Add 1ml TRIZOL.  Vortex thoroughly until pellet is completely disrupted. 
2. Add 200 μL of 24:1 chloroform:isoamlyalcohol. 
3. Shake vigorously for 15 seconds and leave @ room temperature for 5 

minutes. 
4. Spin at 14000 g for 15 minutes at 4oC. 
5. Transfer the upper phase carefully to a new eppendorf tube.  Add 500 μL 

of 100% isopropanol and briefly shake. 
6. Incubate at room temperature for 30 minutes. 
7. Spin at 14000 g for 10 minutes at 4oC. 
8. Remove supernatant. Add 500 μL of 75% EtOH and wash the RNA pellet 

with gentle pipetting. 
9. Spin at 14000 g for 1 minute at 4oC. 
10. Carefully, remove supernatant and air dry the RNA pellet. 
11. Resuspend the pellet in 50 μL of DEPC ddH2O. 
12. Heat RNA samples at 65oC for 10 minutes. 

3.Quantify RNA 
1. Use a spectrophotometer to measure the absorbance at 260 nm. 
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2. Freeze and store at -80oC. 

Part C: Reverse Transcriptase 
Reagents: 

• Oligo(dt) 20 
• 10 mM dNTP 

o asd 
• DEPC ddH2O 
• Master Mix (per sample) 

o 8 μL of 5x Buffer 
o 2 μL of 0.1 M Dithiothreitol (DTT) 
o 2 μL of RNAse Out 

• Superscript III 

Procedure: 

1. Combine 2 μL of Oligo(dt) 20, 2 μL of 10 mM dNTP, and 4 μg of Sample 
RNA in a sterile 0.5 mL sterile eppendorf. Bring the volume to 26 μL with 
DEPC ddH2O. 

2. Heat the eppendorf at 65ºC for 5 minutes, followed by 1 minute at 4ºC in a 
thermocycler. 

3. Make the Master Mix. 
4. After the eppendorfs have been heated, add 12 μL of the Master Mix and 2 μL 

of Supercript III RT. 
5. Incubate the eppendorf for 50 minutes at 55ºC, followed by 15 minutes at 

70ºC. 
6. Store samples at -20ºC. 

Part D: Quantitative Polymerase Chain Reaction (qPCR) Procedure  
Reagents: 

• Sterile Water (MultiCell)  
• Master Mix (per sample and per gene of interest) 

o Table 2 (COX IV, COXI, TFAM, LAMP2, LC3, β-Actin, Beclin1, 
p62) 

" 12.5 μL of PerfeCTa® SYBR® Green SuperMix with ROX™  
" 1.25 μL of 20 μM Forward Primer 
" 1.25 μL of 20 μM Reverse Primer 
" 8 μL of Sterile water 

o Table 3 (TFEB, PGC-1α, Cathepsin D, GAPDH) 
" 12.5 μL of PerfeCTa® SYBR® Green SuperMix with ROX™  
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" 0.625 μL of 20 μM Forward Primer 
" 0.625 μL of 20 μM Reverse Primer 
" 9.25 μL of Sterile water 

 

Procedure: 

1. Biochemical Assay 
1. Autoclave qPCR microtube strips and pipette tips. Sterilize pipettes 

with EtOH for use. 
2. Dilute gDNA or cDNA Samples appropriately with Sterile water 

(MultiCell) for the gene of interest: 
i. cDNA for all assessments are diluted 1:40 to obtain a 2.5 

ng/μL stock. 
3. Create appropriate Master Mixes as determined during optimization. 

Always use a housekeeping gene to correct for difference in total 
cDNA amount. 

4. Add 2 μL of each diluted cDNA sample in triplicate to microtube 
strips. 

5. Add 23 μL of Master Mix to all wells. 
6. Close wells and place in Applied Biosystems StepOne Plus qPCR 

machine. 
7. Set the StepOne Plus application for a reaction volume of 25 μL, 

SYBR® Green Technology, Normal (~2.5 hour) Reaction Speed, and 
Include a Melt Curve Analysis. 

2.  ∆∆Ct Analysis 
1. After the run is complete. Confirm that the automatically determined 

thresholds are in the exponential amplification phase for each gene of 
interest. Export all data to an Excel spread sheet. 

2. Obtain the cycle number where the sample’s amplification plot crosses 
the defined threshold (i.e. the Ct value). 

3. Average the two closest Ct values. 
4. To determine the ∆Ct take the difference between the Ct value of the 

gene of interest and the Ct value of your housekeeping gene. Raise this 
to the power of two (i.e. 2∆Ct) and use this to compare differences in 
gene expression. 

5. To determine find the fold change in the gene expression from your 
control samples take the ∆Ct of each sample and subtract the ∆Ct of 
the control sample. Use these values (∆∆Ct) to generate a graph of 
gene expression relative to your control condition 
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NUCLEAR AND CYTOSOLIC FRACTIONATION FROM CELLS 

 

Reagents 

1. NE-PER® Nuclear and Cytoplasmic Extraction Kit (Fisher Scientific PI78833) 
a. Contains three buffers CER I, CER II and NER 

2. PBS (Sigma D-8537) 
3. Protease Inhibtors (Complete, Roche, 1169749801; Roche diagnostics, Basel, 

Switzerland) 
4. Phosphatase Inhibitors (Cocktails 2 and 3 Sigma, P5726 and P0044) 

 
Method: 
Cell Culture Preparation 

1. Scrape cells with rubber policeman in ice-cold PBS and combine multiple wells. 
Place into a labelled eppendorf. 

2. Pellet by centrifugation at 500 x g for 2-3 minutes. 
3. Use a pipette to carefully remove and discard the supernatant, leaving the cell 

pellet as dry as possible. 
4. Add ice-cold CER I to the cell pellet (table 1).  
 

Table 1. Reagent volumes for different packed cell volumes. 

Packed Cell Volume (μl) CER I (μl) CER II (μl) NER (μl) 
10 
20 
50 
100 

100 
200 
500 

1,000 

5.5 
11 

27.5 
55 

50 
100 
250 
500 

 

Cytoplasmic and Nuclear Protein Extraction 

Note: Scale this protocol depending on the cell pellet volume (Table 1). Maintain the 
volume ratio of CER I: CER II: NER reagents at 200:11:100 μl, respectively. 

 

1. Vortex the tube vigorously on the highest setting for 15 seconds to fully suspend 
the cell pellet. Incubate the tube on ice for 10 minutes. 

2. Add ice-cold CER II to the tube.  
3. Vortex the tube for 5 seconds on the highest setting. Incubate tube on ice for 1 

minute. 
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4. Vortex the tube for 5 seconds on the highest setting. Centrifuge the tube for 10 
minutes at maximum speed in a microcentrifuge (~16,000 x g). 

5. Immediately transfer the supernatant (cytoplasmic extract) to a clean pre-chilled 
pre-labelled eppendorf tube. Place this tube on ice until use or storage. 

6. Wash remaining pellet (DO NOT RESUSPEND) with PBS 3X and remove PBS 
with a pipette after brief centrifugation to sediment the pellet.  

7. Suspend the insoluble (pellet) fraction produced in Step 4, which contains nuclei, 
in ice-cold NER. 

8. Vortex on the highest setting for 15 seconds. Place the sample on ice and continue 
vortexing for 15 seconds every 10 minutes, for a total of 40 minutes. 

9. Centrifuge the tube at maximum speed (~16,000 x g) in a microcentrifuge for 10 
minutes. 

10. Immediately transfer the supernatant (nuclear extract) fraction to a clean pre-
chilled tube. Place on ice. 

11. Store extracts at -80ºC until use. 
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 MITOCHONDRIAL ISOLATION FROM C2C12 MYOTUBES 

 

Adapated from: Frezza C, Cipolat S, Scorrano L. Nature Protocols 2007;2(2):287-95. 

Materials 

1. Cold PBS (Sigma D-8537) 
2. Cell Scraper 
3. Mitochondrial Isolation tubes 
4. Teflon Pestle 
5. Glass Potter 

 

Mitchondrial Isolation Buffer (MIB) 

1. 10ml of 0.1M Tris-MOPS 
a. Dissolve 6.05g of Tris in 250ml of ddH20 pH to 7.4 using MOPS powder. 
b. Volume up to 500ml. 
c. Store at 4ºC. 

2. 1ml of 0.1M EGTA/Tris 
a. Dissolve 19.05g of EGTA in 250ml of ddH20 pH to 7.4 using Tris 

powder/HCl. 
b. Volume up to 500ml. 
c. Store at 4ºC. 

3. 20ml of 1M sucrose 
a. Dissolve 171.65g of sucrose in 500ml of ddH20. Stir until fully dissolved. 
b. Aliquot into 20ml volumes in sterile conical tubes.  
c. Store at -20ºC. 

4. Volume up to 100ml with ddH20.  
5. pH to 7.4. 
6. Store at 4ºC. 

 

Method 

1. Wash cells with cold PBS.  
2. Add 200µl of PBS per well and scrape cells. Combine multiple wells (at least six 

from 6-well plates) and place in mitochondrial isolation tubes.  
3. Centrifuge the cells at 600g for 10 minutes at 4ºC. 
4. Pre-cool Teflon pestle and glass potter on ice.  
5. Discard the supernate and resuspend the cells in 3mls of ice-cold MIB.  
6. Transfer cell solution to glass potter.  
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7. Homogenize the cells using Teflon pestle at 1600rpm for 30 strokes in the glass 
potter. DO NOT USE A GLASS PESTLE, IT WILL DESTROY THE 
MITOCHONDRIA! 

8. Transfer the homogenate from the glass potter to mitochondrial isolation tube. 
9. Centrifuge at 600g for 10 minutes at 4ºC. 
10. Collect the supernate (contains mitochondria and cytosol) and place into a second 

clean pre-chilled mitochondrial isolation tube.  
11. Centrifuge the supernate at 7000g for 10 minutes at 4ºC. 
12. Discard the supernate and the resultant pellet is the mitochondria. 
13. Gently wash and resuspend the pellet with 200µl of MIB. 
14. Transfer mitochondrial solution to a 1.5ml eppendorf. 
15. Spin in a microcentrifuge at 7000g for 10 minutes at 4ºC. 
16. Discard the supernate and resuspend the mitochondrial pellet with 50-100µl of 

MIB depending on mitochondrial yield.  
 

 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
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ADENOVIRAL INFECTION OF C2C12 CELLS 

 

Primary Viral Stock 

1. Linearize 12.5µg of pAdEasy-Tfeb plasmid with PacI endonuclease, purify with a 
Qiagen column, and store @ -20oC 

2. Add 700µl of Solution III (MBS) to 10ml of the viral-growth media (GM), and 
warm it up @ 37oC water bath 

3. Add 10µl of stock chloroquine (25mM) to 10ml of the viral-GM, & store it @ 4oC 
until 30 minutes before use 

4. Aspirate viral growth media from the 175mm2 flasks of AD293 cells, replace it 
with 10ml MBS-viral-GM, & put it back @ 37oC incubator 

5. After 20 minutes, add 200µl of ddH2O to the pAdEasy-Tfeb 
6. Add 62.5µl of Solution I follow by 625µl of Solution II to DNA, tap to mix & 

incubate @ room temp for 10 minutes 
7. Gently add DNA mix to cells & incubate @ 37oC for 3 hours 
8. Remove MBS-viral-GM + DNA mix with 10ml pipette and discard in bleach 
9. Replace media with 10ml chloroquine supplemented viral-GM & incubate @ 

37oC for 6 hours 
10. Remove chloroquine supplemented viral-GM with 10ml pipette and discard in 

bleach 
11. Replace media with 10ml viral-GM & incubate @ 37oC for 7 – 10 days 
12. Replenish media when needed until signs of cytopathogenic effect 
13. Cells were trypsinized, collected in a 15ml Falcon tube, and washed once with 

PBS 
14. Resuspend cell pellet with 1x volume of PBS and aliquot into screw-cap 

cryotubes 
15. Subject the cell suspension to four rounds of freeze/thaw by alternating the tubes 

between the liquid nitrogen bath and the 37°C water bath, vortexing briefly after 
each thaw 

16. Collect cellular debris by microcentrifugation at 12,000 × g for 10 minutes at 
room temperature 

17. Transfer the supernatant (primary virus stock) to a fresh screw-cap cryotubes.  
Sotre viral stocks @ -80oC 

 
 
Secondary (and beyond) Viral Stock 
 

1. Use 5-50µl of 1o viral stock to infect each 175mm2 flasks AD293 cells 
2. Repeat steps 12 to 17 from the “Primary Viral Stock” to harvest the subsequent 

viruses 
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Infection of target cells 
 

1. C2C12 skeletal muscle cells were proliferated on 6-well plates.   Cells were 
allowed to reach 80% confluence and GM was switched to DM.   DM was 
supplemented daily for 4d to achieve differentiated myotubes. 

2. Thaw pAdEasy-TFEB (Quaternary virus) and p-AdEasy-GFP (Tertiary virus), 
spin down at 1400rpm for 3 minute  

3. In a falcon tube mix 1 ml DM/well and 10 MOI of viral stock/well of pAdEasy-
TFEB, in a separate tube mix 1 ml DM/well and 10 MOI of viral stock/well of 
pAdEasy-GFP 

4. Remove media from target cells and apply 1ml of virus mix to each well 
5. Incubate at 37°C for 24 hours 
6. Following incubation, remove virus into a falcon tube containing bleach. Wash 

cells twice with DM and replenish 2ml per well 
7. Replenish media daily for desired days of infection  

!
!
!
!
!
!
!
!
!
!
!
!
!
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!
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