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Abstract

The goal of this dissertation is to prove two theorems related to a question posed

by Felix Hausdorff in 1907,1 regarding pantachies : maximal linearly ordered subsets

of the space of real-valued sequences partially ordered by eventual domination.

In Chapter 1, some terminology is defined, and Hausdorff’s question about pan-

tachies is explored. Some related work by other mathematicians is examined, both

preceding and following Hausdorff’s paper. In Chapter 2, relevant definitions and

results about forcing, gaps, and saturated linear orders are collected. Chapter 3

contains the complete proof of the first theorem, namely, the consistency of the

existence of a saturated Hausdorff pantachie in a model where the continuum hy-

pothesis (CH) fails. Finally, in Chapter 4, a different method is used to prove

a stronger result, namely, the consistency of the existence of a saturated Haus-

dorff pantachie in a model of Martin’s Axiom along with the negation of CH. The

appendix mentions a few related open questions and some partial answers.

1See [Hau05], page 165, question (α): is there a pantachie without (ω1, ω1)-gaps?
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1 Introduction

This chapter introduces a few basic definitions, as well as some historical back-

ground and motivations for studying pantachies and maximal saturated linear or-

ders. We focus on the motivations that are relevant to the two results presented

in this thesis: Theorem 3.0.1 and Theorem 4.0.3. For a more detailed history the

reader may wish to consult [Ste12].

1.1 A Brief History

The results of this thesis are based on a question posed in 1907 by Felix Hausdorff,

who was analyzing Paul du Bois-Reymond’s attempt to classify rates of conver-

gence (in the context of mathematical analysis). Not only do the motivations of

du Bois-Reymond find their roots in analysis, but this present work has some con-

nections with analysis, in particular, with the infinitesimal controversy that arose

in the development of calculus, especially in the sense that infinitesimals relate to

saturation of linear orders.
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In the 17th century, Gottfried Leibniz and Isaac Newton (independently) ad-

vanced the notion of infinitesimals, quantities which are like real numbers but in-

finitely small. More specifically, an infinitesimal is a positive number (greater than

0), but smaller than every (non-infinitesimal) positive real number; for example, an

infinitesimal is smaller than each of the numbers in the sequence {1/2, 1/3, 1/4, . . .}.

Although there are no real numbers with this property, the notion of an infinitesi-

mal was very useful as it enabled the development of many tools and applications in

calculus.2 Although they developed many useful tools using infinitesimals, neither

Newton nor Leibniz were able to make the notion of infinitesimals mathematically

precise. For this reason, the usage of infinitesimal quantities was criticized by other

mathematicians at the time, including Michel Rolle and Bishop George Berkeley.

Augmenting the set of real numbers by the inclusion of infinitesimals3 can be

understood as an attempt to obtain a greater degree of saturation in the linear

order of the real numbers. The reals enjoy the following density property: between

any two real numbers, there is another real number. This implies that between two

finite sets of reals A and B, where each member of A is less than each member of B,

there will always be a real number c that lies above all the members of A and below

2For example, an instantaneous rate of change or the slope of a curve at a given point could
be calculated with the use of infinitesimals, and the area of a region bounded by curves could be
calculated by adding the areas of rectangles with infinitesimally small widths.

3More precisely, augmenting by expanding to the so-called set of hyper-reals, which includes
all real numbers, infinitesimals, and any number that can be obtained with these by means of the
usual operations on real numbers.
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all the members of B. But, what happens if we allow at least one of the sets A or

B to be infinite? For example, if A is the singleton set consisting of the number 0,

and B is the infinite set consisting of the terms in the sequence 1/n (where n is any

positive integer), then there is no real number c that lies between A and B—but an

infinitesimal does fit into this slot. Nevertheless, in a sense, sequences that converge

to 0 (such as the 1/n sequence) approximate the idea of an infinitesimal: given any

positive (non-infinitesimal) real number greater than 0, all but finitely many terms

of the sequence are less than that given real number.

Thanks to the contributions of Augustin-Louis Cauchy and Karl Theodor Wil-

helm Weierstrass, calculus was formalized first without the formal need of infinites-

imals, but rather with the use of sequences and limits of sequences, via the well-

known (ε, δ)-definition of limits. In fact, Cauchy defined an important class of

sequences that can be used to formally define the set of real numbers. These so-

called Cauchy sequences are defined by the following condition: given any positve

real distance, no matter how small, all but a finite number of elements of the se-

quence are less than that given distance from each other. The real numbers are

the limits (or equivalence classes) of Cauchy sequences of rational numbers. In

other words, every Cauchy sequence should converge to a point, and the set of real

numbers are complete in the sense that every Cauchy sequence (even those whose

elements range over the real numbers) does have a real limit. This is another sort

3



of saturation property of the set of real numbers.

It was not until the 20th century that Abraham Robinson, making use of the

so-called Hyper-real numbers, was able to provide the first rigorous backing to

the intuition behind infinitesimals.The Hyper-reals can be developed using model

theory, or, via an ultrapower construction on sequences of real numbers with an

ultrafilter and its corresponding ideal.4 With this approach, one obtains a mathe-

matically precise set of numbers (the Hyper-reals) which includes all the reals and

the infinitesimals as well; in other words, the full saturation property needed for

infinitesimals is found in the Hyper-reals. However, there is still more to be said

about saturation in linear orders.

Hausdorff, in 1907, was analyzing du Bois-Reymond’s attempt to classify rates

of convergence of positive real-valued functions. Du Bois-Reymond defined an or-

dering on these functions based on the limit of the quotient of two functions from

this space, and he called this space of functions endowed with this ordering a pan-

tachie. His intention was to use his ordering to determine a “cut point” separating

convergence from divergence. One of the complications of du Bois Reymond’s ap-

proach is that his ordering was not linear—there are many pairs of functions that

are simply incomparable under the ordering. Hausdorff decided to pursue du Bois

Reymond’s work further, but with modifications. First, Hausdorff decided to re-

4The use of ideals on sequences of real numbers (such as the mod-finite ideal used in the present
work) continues to be a major topic of research in the set-theoretic study of the reals.
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strict consideration to functions with domain the natural numbers; in other words,

sequences of reals (or positive reals). Moreover, Hausdorff used a slightly simpler

ordering, namely, eventual domination (see Definition 2). Hausdorff knew that this

ordering was also not a linear ordering, but that one could restrict to a subset

that did form a linear order, and in fact, Hausdorff was interested in such linear

orders that were maximal, in the sense that no more sequences could be added to

the subset without destroying linearity. Hausdorff, borrowing du Bois-Reymond’s

terminology, called such a maximal linearly ordered subset of this space a pantachie.

Hausdorff was interested in the saturation properties of pantachies, which can

be interpreted as an alternate approach to the infinitesimal controversy.5 The

saturation properties of interest to Hausdorff involved the consideration of higher

orders of infinity. By Hausdorff’s time, the notion of different sizes or cardinalities

for infinite sets had already been defined by Georg Cantor. In particular, the

natural numbers, or sequences enumerated by the natural numbers, are said to

be countable, and these sets are provably of a smaller cardinality than sets which

cannot be put into one-to-one correspondence with the natural numbers, such as the

set of all real numbers. Sets which can be placed in a one-to-one correspondence

with the set of real numbers are said to have the same cardinality as the reals,

and that cardinality is called continuum. But is there an uncountable set with

5Pantachies are saturated for countable sets, which suffices to embed the reals and infinitesi-
mals.
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cardinality less than continuum, or is there not? The latter conjecture, namely,

that continuum is the smallest uncountable cardinality, is known as the continuum

hypothesis (CH). In Hausdorff’s time, CH was seen as an open question. It wasn’t

until 1963 that Paul Cohen showed that CH is independent of the usual, commonly

accepted axioms of set theory, known today as ZFC; there are models of the axioms

of ZFC where CH holds, and models where it fails. Hausdorff was able to obtain

saturation in his pantachies for up to countably infinite sets. More specifically, for

any countable (i.e., finite or countably infinite) subsets A and B of a pantachie

where each element of A is less than each element of B, there is some element c

in the pantachie that lies above all members of A and below all members of B.

However, what about further saturation properties? What if A or B are infinite

sets that are not countable?

The best saturation property that could possibly be obtained would be satura-

tion for all sets A and B of size less than continuum. Thus, under CH, a pantachie

is already as saturated as possible. Hausdorff asked a question that he could not

answer, about the saturation properties of a pantachie in the absence of CH. Haus-

dorff’s question can be phrased as follows: are there pantachies that are saturated

for all sets A and B of size up to the first uncountable cardinality (if CH fails)?6 In

6Although this version uses modern language and might seem slightly more general than ques-
tion (α) on page 165 of [Hau05], Hausdorff’s own deductions culminating on page 141 of [Hau05]
show that the two versions of the question are equivalent.
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this thesis, we answer the latter question by producing a model of ZFC where CH

fails (in fact, continuum in this model can be arbitrarily large, so that there can

be any number of uncountable cardinalities less than continuum) and yet there is

a pantachie that is as saturated as possible. We then extend this result to a model

where CH still fails and another statement that is independent of the axioms of set

theory holds, namely, Martin’s Axiom (MA).7

1.2 More Background, Motivations, and Some Definitions

As mentioned in Section 1.1, the term pantachie was first introduced by Paul du

Bois-Reymond, who was interested in classifying rates of convergence (in the context

of mathematical analysis) into a hierarchy:

Definition 1. Let G = R(0,∞), the set of positive real functions, and let f, g ∈ G.

Define

• f < g iff limx→+∞ f(x)/g(x) = 0

• f > g iff limx→+∞ f(x)/g(x) = +∞

• f ∼ g iff limx→+∞ f(x)/g(x) ∈ (0,+∞)

7Martin’s Axiom implies that uncountable cardinalities less than continuum behave, in many
ways, like the smallest (countable) infinite cardinality.
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Du Bois-Reymond called (G,<) a pantachie.8 He considered a function f to

represent a larger infinity than a function g if f > g, and he considered f and

g to represent the same infinity if f ∼ g. Du Bois-Reymond wanted to find,

in this structure, a cut point separating convergence from divergence. One of

the difficulties in pursuing this approach, is that there are incomparable pairs of

functions under this ordering; in other words, there are pairs of functions f, g such

that each of the statements f < g, f > g, and f ∼ g fail. Thus, this ordering does

not produce a true hierarchy.

Felix Hausdorff continued this study, but with modifications. In his 1907 pa-

per entitled Investigations into Order Types9 (translated in [Hau05]), Hausdorff

explores various alternate definitions of the term pantachie. By the end of the pa-

per, he seems to have settled on a definition which makes use of eventual (strict)

domination:

Definition 2. Fix f, g ∈ ≤ωR, and suppose |f | = |g| = α.

• f ≤ g (i.e., g dominates f) if ∀k ∈ α, f(k) ≤ g(k);

• f < g (i.e., g strictly dominates f) if ∀k ∈ α, f(k) < g(k).

8The origin of the term “pantachie”, and the related adjective “pantachish”, are from the
Greek words for “everywhere.” See page 180 in [Kan07].

9In German, Untersuchungen über Ornungstypen. This paper includes the fourth and fifth parts
of a five part study Hausdorff began in his 1906 publication by the same title. The 1906 paper
contains the first three parts of the study, however, only the 1907 paper deals with pantachies.
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If α = ω, then

• f ≤∗ g (i.e., g eventually dominates f) if ∃m ∈ ω such that ∀k > m, f(k) ≤

g(k);

• f <∗ g (i.e., g eventually strictly dominates f) if ∃m ∈ ω such that ∀k > m,

f(k) < g(k).

• f =∗ g, i.e., f is eventually equal to or almost equal to g, if ∃m ∈ ω such that

∀k > m, f(k) = g(k).

Definition 3 (Hausdorff pantachie). Consider the set of real-valued ω-sequences,

ωR, partially ordered by <∗, eventual strict domination. A pantachie is any subset

of ωR that is a maximal linear order under <∗.10

Hausdorff was able to prove the existence of pantachies by simply using the well-

ordering principle.11 Analyzing the nature of pantachies led Hausdorff to consider

their saturation properties, which in turn leads to the question upon which the

results of this thesis are based. Before stating Hausdorff’s question precisely, we

collect some definitions:

10Actually, Hausdorff alternates between sequences of reals and sequences of positive reals, even
towards the end of his 1907 paper (see [Hau05]). For the purposes of this thesis, there is no need
to restrict to R+, although the theorems can be easily transferred to this restricted space, and to
other similar spaces.

11See page 138 of [Hau05].
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Definition 4. Let (P,<) be a partial order, and suppose X ⊆ P forms a linear

order with <. A cut in X is a pair (A,B) of subsets of X such that A < B (i.e.,

∀a ∈ A, ∀b ∈ B, a < b). A cut (A,B) is called a partition cut if A ∪ B = X. The

size of the cut (A,B) is max{|A|, |B|}. Given p ∈ P , we say p fills the cut (A,B)

iff A < p < B (i.e., A < {p} < B).

The notion of a cut is closely related to that of a gap (or pregap).

Definition 5. Let (P,<) be a partial order. A pregap in P is a pair of sequences

({aα : α < γ}, {bβ : β < δ}) from P , where γ, δ are ordinals and ∀α0 < α1 ∈ γ,

∀β0 < β1 ∈ δ, aα0 < aα1 < bβ1 < bβ0 . (The pair of indexing ordinals (γ, δ) is said

to be the type of this pregap, and the pregap is referred to as a (γ, δ)-pregap; if

γ = δ, the pregap is referred to as a γ-pregap.) A pregap is said to be filled if there

is some p ∈ P such that for any α ∈ γ, and any β ∈ δ, aα < p < bβ. A gap is a

pregap that is unfilled (i.e., not filled).

Definition 6. Let κ be any cardinal. A linear order (or partial order) (L,≺) is

κ-saturated if every cut (A,B) of size < κ can be filled, i.e., ∃r ∈ L such that

A ≺ r ≺ B. If |L| = κ and L is κ-saturated, we say L is a saturated linear

order of size κ. Furthermore, in the context of Hausdorff’s partial order (ωR, <∗),

a saturated linear order L ⊆ ωR of size c will be called simply a saturated linear

order.
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Apart from eventual (strict, or non-strict) domination, there are various other

related partial orderings which are studied in the literature.12 For example:

Definition 7. Let D ⊆ R; as usual, ωD denotes the set of functions from ω into

D.

1. The divergence ordering, ≺. Suppose D is unbounded. Let f, g ∈ ωD. Write

f ≺ g iff limn→∞ g(n)− f(n) =∞; i.e., g diverges from f .

2. Eventual non-strict domination without eventual equality, �∗. Let f, g ∈ ωD.

Write f �∗ g iff f ≤∗ g and {n : f(n) < g(n)} is infinite.

In the case of (ω2,�∗), a more common implementation is P(ω)/F in, or P(ω)

under inclusion mod finite, or (strict) almost containment.

Definition 8 (Strict almost containment). Let A,B ⊆ ω. Say A is almost con-

tained in B, and write A ⊆∗ B, iff A\B is finite. Say A is strictly almost contained

in B, and write A ⊂∗ B, iff A ⊆∗ B but not B ⊆∗ A; i.e., A \B is finite but B \A

is infinite.

Remark 1. For the actual forcing constructions in this thesis, we work with Haus-

dorff’s partial order restricted to the rationals: (ωQ, <∗). It would not be difficult

to transfer the definitions and results to other related spaces, such as:

12Cf. [Far96] (about embedding posets into ωω), which focuses on eventual (non-strict) dom-
ination in ωω; cf. [Sch93] (about gaps in ωω), which compares various related partial orderings;
and cf. [BLT08] (about bounds on the continuum based on work of Godel), which makes use of
eventual (non-strict) domination in ω(R+).
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• (ω(Q+), <∗);

• ({f ∈ ωω : f is not bounded},≺);

• ({f ∈ ωω : f is not eventually 0},�∗); and

• ({A ⊆ ω : A is infinite and co-infinite},⊂∗).

Note that all of these posets are free from endpoints; in fact, each is ω1-saturated

(cf. Theorem 1 from [Sch93], page 443).

Returning to [Hau05], it is interesting to note that Hausdorff realized that a

pantachie would always be ω1-saturated.13 Furthermore, he argued that under the

continuum hypothesis, all pantachies contain (ω1, ω1)-gaps. (Cf. Theorems 2.1.4

and 2.1.5.) Of course, it was Hausdorff himself who first produced a construction

(with no additional assumptions beyond the usual axioms of set theory, known

today as ZFC) of an (ω1, ω1)-gap, published first in 1909, in the context of eventual

domination, and then again in 1936, this time within P(ω) under the inclusion mod

finite ordering.14

Towards the end of his 1907 Investigations into Order Types, Hausdorff poses

several questions that he cannot answer, the first of which is labelled (α):

13See Hausdorff’s deductions, culminating in line (K). on page 141 of [Hau05]; see also the
definition of H-type immediately preceding line (K). Of course, Hausdorff does not use the modern
terminology.

14See [Hau05], pages 271-301 and 305-316.
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Question 1. [Hausdorff’s Question (α)] Is there a pantachie without (ω1, ω1)-

gaps?15

Under CH, the answer to this question is “no”, by Theorems 2.1.4 and 2.1.5.

It turns out that Hausdorff’s question is independent of ZFC, and so answering

Hausdorff’s question, in modern terms, amounts to showing that consistently there

is a pantachie without (ω1, ω1)-gaps:

Theorem 1.2.1. Con(ZFC + ¬CH + ∃ a pantachie with no (ω1, ω1)-gaps)

In Chapter 3 of this thesis, based on the work of Richard Laver in [Lav79], a

ccc forcing extension is presented where continuum can be essentially as large as

desired, and there is a pantachie which contains no (κ, λ)-gaps for any κ, λ < c.

This shows Con(ZFC + ¬CH + ∃ a maximal saturated linear order in (ωR, <∗)),

and Theorem 1.2.1 is an immediate corollary, which in turn answers Hausdorff’s

Question (α), as described above.

In [Lav79], rather than the partial order (ωR, <∗), Laver was considering the

space of sequences of natural numbers, ωω, under eventual domination, and under

divergence.16 The existence of a saturated linear order of size continuum in (ωω,≺)

is independent of ZFC: since (ωω,≺) embeds every linear order of size ≤ ω1, under

15See the question labelled (α) on page 165 of [Hau05]. The precise phrasing of the question, as
translated into English by J.M. Plotkin, is as follows: “Is there a pantachie without ΩΩ∗-gaps?”
Of course, Ω is alternate notation for ω1.

16Note that ∀f, g ∈ ωω, f ≺ g ⇒ f �∗ g. So a linearly ordered subset in (ωω,≺) is automatically
a linearly ordered subset in (ωω,�∗).
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CH, we do have such a saturated linear order; on the other hand, Laver produces

a model with a saturated linear order of size c in (ωω,≺) without CH. The latter

model was constructed for the purpose of answering the following question:

Question 2. Without CH, which linear orders of size ≤ c are embeddable in

(ωω,�∗)?17

Laver’s goal was to prove:

Proposition 1.2.2. Con(¬CH + (ωω,�∗) embeds every linear order of size c)18

The difficulty in trying to embed (inductively) linear orders of size ω2 into

ωω (under the eventual domination ordering or the divergence ordering) is the

possibility of creating a Hausdorff-type gap, i.e., an (ω1, ω1)-gap which cannot be

filled in any extension preserving ω1. Laver’s approach, in order to circumvent this

difficulty, was to use a finite-support ccc iterated forcing construction (of length κ,

17Robert M. Solovay raised this question in connection to his work with W. Hugh Woodin
on homomorphisms of Banach Algebras; in particular, with regard to the question of automatic
continuity: Given X a compact space, let C(X) denote the space of real-valued functions with
domain X, continuous (with the sup norm). Suppose A is a commutative Banach algebra, and
H : C(X) −→ A is a homomorphism. Under what conditions is H automatically continuous? It
turns out that CH =⇒ there is a discontinuous homomorphism, while PFA (the Proper Forcing
Axiom) =⇒ there are no discontinuous homomorphisms. The non-existence of a saturated linear
order in ωω under PFA is important here. The reader might wish to consult [TF95] and [DW87]
for more details.

18A number of related facts were already known to Laver at that time: 2ω can be arbitrarily
large with ω2 not embeddable in ωω; assuming Martin’s Axiom (MA), ωω embeds every well-
ordering and converse well-ordering of size ≤ c, and ωω embeds every linear ordering of size < c.
On the other hand, Kenneth Kunen had shown Con(MA + ∃ linear order of size c not embeddable
in ωω).
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where κ > ω1 is a regular cardinal and 2<κ = κ), and generically add at each stage

α a function fα. By bookkeeping, all possible cuts of size < κ are enumerated as

{Cα : α < κ}, and fα fills the cut Cα. The resulting set {fα : α < κ} is a saturated

linear order of size κ = 2ω in the final forcing extension.

Given that Laver obtained a saturated linear order (of size c > ω1) in (ωω,≺),

the following question arises:

Question 3. Can we obtain a maximal saturated linear order of size c > ω1 in

(ωω,≺), or rather, in (ωQ, <∗)?

Switching from Laver’s partial order to Hausdorff’s partial order (or rather, to

the related partial order (ωQ, <∗)) is not difficult. Then, by careful bookkeeping

and exploiting genericity, we show that Laver’s method can produce such a maximal

saturated linear order. In fact, we show that this saturated linear order is maximal

in (ωR, <∗), thus answering Question 1 (Hausdorff’s Question (α)) — as described

above, producing such a model shows that the existence of a Hausdorff pantachie

with no ω1-gaps is independent of ZFC.

To explore Hausdorff’s question further, we consider whether it is possible to

have a maximal saturated linear order of size c > ω1 in a model of Martin’s Axiom19

— in other words, a model containing a pantachie with no (ω1, ω1)-gaps, which in

addition satisfies Martin’s Axiom. Background and motivation for this extension is

19The statement of Martin’s Axiom can be found in Chapter 2, Definition 24.
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provided by work of James Baumgartner, Kenneth Kunen, and Hugh Woodin, as

explained below.

In [Bau84], Baumgartner presents various applications of the Proper Forcing

Axiom (PFA).20 In particular, Baumgartner expands on work of Kunen about

gap-filling partial orders,21 and presents the following results, in the context of

(P(ω),⊂∗):

Theorem 1.2.3. Assume PFA. If κ ≤ λ are regular infinite cardinals and (A,B)

is a (κ, λ∗)-gap, then either κ = ω and λ ≥ ω2 or κ = λ = ω1.

In particular, PFA ⇒ there are no (c, c∗)-gaps. This also leads to the following

result:

Theorem 1.2.4. PFA =⇒ there is a linear ordering of size c which is not em-

beddable in (P(ω),⊂∗).

Thus, under PFA, there are no (c, c∗)-gaps, and no saturated linear order of size

continuum in (P(ω),⊂∗) (nor in related partial orders). In fact, Kunen had already

shown Con(MA + ¬∃(c, c∗)-gap). On the other hand, another result of Kunen’s is

Con(MA + ∃(c, c∗)-gap). So, a natural question arises:

Question 4. Is there a model of MA where there is a saturated linear order (in

(P(ω),⊂∗), or any of the related partial orders)?

20The statement of the Proper Forcing Axiom can be found in Chapter 2, Definition 27.

21See Definition 28 for an explanation of the Kunen forcing notion for filling a cut (or gap).

16



In his doctoral thesis [Woo84], Woodin provides a positive answer to this ques-

tion. The next question is:

Question 5. Is there a model of MA along with a maximal saturated linear order

in (ωQ, <∗)?

We answer Question 5 affirmatively in Chapter 4. In fact, we produce a model

of MA along with a saturated linear order that is maximal in the unrestricted

Hausdorff partial order, (ωR, <∗). This result extends our answer to Hausdorff’s

question (α), since the model produced satisfies Martin’s Axiom and includes a

Hausdorff pantachie with no ω1-gaps.

Woodin’s argument does not directly lend itself to obtaining this extended re-

sult, since Woodin’s approach produces a saturated linear order which is necessarily

not maximal. Woodin’s approach involves an iterated forcing construction of length

ω2 · ω2. A partial suborder of (ωω,�∗) is recursively constructed by generically fill-

ing all the gaps22 that arise as the partial suborder emerges through the course of

the recursive construction of the forcing.

In addition, through the course of the iterated forcing construction, Woodin

recursively defines a function which embeds the saturated linear order of eventually

alternating sequences23 into the partial suborder of (ωω,�∗).

22Woodin uses a variation of Kunen’s gap-filling forcing notion. Cf. Definition 28.

23Call s ∈ ω22 eventually alternating if there exists γ < ω2 such that for each β > γ, s(β) = 0 iff
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To be more precise, Woodin defines T (ω2) = {s ∈ ≤ω22 : |s| = ω2 ⇒ s is

eventually alternating}, and recursively defines an embedding ϕ : T (ω2) −→ ωω×ωω

such that for all s, t ∈ T (ω2):

1. s <lex t⇒ gs �∗ fs �∗ gt �∗ ft; and

2. t ⊆ s⇒ gt �∗ gs �∗ fs �∗ ft.

Here, gs denotes the first component of ϕ(s) while fs denotes the second compo-

nent of ϕ(s). The embedding of both the tree ordering and lexicographic ordering

of T (ω2) is important in Woodin’s construction to ensure all appropriate gaps are

filled through ccc forcing. The saturated linear order is embedded recursively by

the first component of ϕ. In other words, the embedding is into the first copy of

ωω; i.e., the image is a collection of “g-functions.” So all the functions obtained

from the second component of ϕ (i.e., the “f -functions”) are not in the image of

the saturated linear order. In other words, by the nature of Woodin’s construction,

the range of the embedding function excludes c-many elements that are linearly

ordered with the image of the saturated linear order.24

Although Woodin’s argument does not directly lend itself to obtaining maxi-

mality, it is by combining many of the clever ideas introduced by Woodin, Laver

β is even. It is not hard to see that as long as 2<ω2 = ω2, which Woodin assumes, the collection
of eventually alternating sequences is a saturated linear order of size ω2 under the lexicographic
ordering. Cf. Lemma 2.1.1.

24See pages 31 to 47 of [Woo84] for more details. Note that Woodin only considers the case
where c = ω2 in the final forcing extension.
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and Kunen in a strategic manner that we are able to construct the appropriate

model.
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2 Basic Definitions and Facts

In this chapter we collect some important general definitions, notation and results

that are related to (and many are needed for) the work in Chapters 3 and 4. Some

of our definitions here come from [Kun80]. For more definitions and related results,

the reader may also wish to consult [Kun11], [JW96], and [JW97].

2.1 Gaps and Saturated Linear Orders

The definitions of cuts, partition cuts, pregaps, gaps and saturated linear orders

can be found in Chapter 1 (see Definitions 4, 5 and 6).

Note that a pregap is automatically a cut. Conversely, it’s easy to find a pregap

that is equivalent to any given cut, in the following sense:

Definition 9. Suppose (F ,G) and (F ′,G ′) are cuts in (ωQ, <∗). Say (F ,G) and

(F ′,G ′) are equivalent, and write (F ,G) ∼= (F ′,G ′), if F , F ′ are mutually cofinal,

and G, G ′ are mutually coinitial; i.e., given any f ∈ F , g ∈ G there is some f ′ ∈ F ′,

g′ ∈ G ′ such that f <∗ f ′, g′ <∗ g, and for each f ′ ∈ F ′, g′ ∈ G ′ there is some
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f ∈ F , g ∈ G such that f ′ <∗ f , g <∗ g′.

Definition 10. Given a cut (L,R) in some linear order X, we say a pregap (F,G)

in X represents the cut (L,R) if (F,G) ∼= (L,R).

Note that if two regular pregaps (i.e., two pregaps indexed by regular cardinals)

represent the same cut, then the two pregaps must have the same type.

Definition 11. The type of a cut is defined to be the type of any regular pregap

that represents it. If the type of a cut is (γ, γ), we refer to it as a γ-cut.

Remark 2. Note that two gaps are equivalent iff they represent the same partition

cut.

Definition 12. Let (X,<) be a linear order, let (A,B) and (C,D) be distinct

partition cuts in X. We say that the cut (A,B) is to the left of the cut (C,D),

and we write (A,B) < (C,D), iff A ⊂ C. Note that this defines a linear ordering

on the collection of partition cuts of X.

Definition 13. Let L be a linear order and let A be any subset of L. Let

LeftPartL(A) = {r ∈ L : ∃a ∈ A, r ≤ a}. (This is the downward closure of

A within L that makes A into the left side of a partition cut in L; the right side of

the partition cut would be L \ LeftPartL(A).)

As suggested in Definition 13, a cut can always be extended to a partition cut.

To see this, let (A,B) be a cut in a linear order L. Let A′ = LeftPartL(A), let
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B′ = L \LeftPartL(A). Note that A ⊆ A′, B ⊆ B′, and (A′, B′) is a partition cut

in L.

We now prove three important facts about saturated linear orders.

Fact 1. Every saturated linear order of size κ contains an isomorphic copy of each

linear order of size ≤ κ.

Proof. Let (S,<) be a saturated linear order of size κ, and let (X,<) be any linear

order of size λ ≤ κ. Fix an arbitrary enumeration X = {xα : α < λ}, and for each

α < λ, let Xα = {xβ : β ≤ α}.

We define the sequence (fα)α<λ by recursion such that ∀α < λ:

1. ∀β < α, fβ ⊆ fα, and

2. fα : Xα −→ S is order-preserving

Fix β ∈ λ and let f̄β =
⋃
η<β fη. Let A = {xα : xα < xβ, α < β}, and let

B = {xα : xα > xβ, α < β}. Let A′ = f̄β[A], and let B′ = f̄β[B]. Then (A′, B′) is

a cut in S of size < λ ≤ κ. Since S is a saturated linear order of size κ, there is a

y ∈ S such that A′ < y < B′. Let fβ = f̄β ∪ {(xβ, y)}.

Having defined the sequence of functions (fα)α<λ, let f =
⋃
α<λ fα. So f :

X −→ S is an embedding.

Fact 2. Fix κ any cardinal, and suppose L, R are both saturated linear orders of

size κ. Then L and R are order-isomorphic.
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Proof. Fix enumerations L = {lα : α < κ} and R = {rα : α < κ}. By simultaneous

recursion, the sequences of functions (fα)α<κ, (gα)α<κ and the sequences of sets

(Xα)α<κ and (Yα)α<κ are defined such that for each α < κ:

1. fα : Xα −→ Yα and gα : Yα −→ Xα are order-preserving;

2. ∀β < α, Xβ ⊆ Xα ⊆ L, Yβ ⊆ Yα ⊆ R, fβ ⊆ fα, and gβ ⊆ gα;

3. f−1
α = gα.

To begin, let X0 = {l0}, and let f0(l0) = r0. Let Y0 = {r0}, and let g0(r0) = l0.

Next, suppose fα, gα, Xα, and Yα have been defined for all α < β, where β < κ

is a limit ordinal. Let fβ =
⋃
α<β fα, let gβ =

⋃
α<β gα, let Xβ =

⋃
α<βXα, and let

Yβ =
⋃
α<β Yα.

Finally, fix β < κ, and suppose fα, gα, Xα, and Yα have been defined for all

α ≤ β. Let X̄β+1 = Xβ ∪{lγ}, where γ = min{γ̄ < κ : lγ̄ /∈ Xβ}. Let A = {l ∈ Xβ :

l < lγ}, and let B = {l ∈ Xβ : l > lγ}. Let A′ = fβ[A], and let B′ = fβ[B]. Find

r̄ ∈ R such that A′ < r̄ < B′. Let Ȳβ+1 = Yβ∪{r̄}. Let f̄β+1 = fβ∪{(lγ, r̄)}, and let

ḡβ+1 = gβ ∪ {(r̄, lγ)}. Let δ = min{δ̄ < κ : rδ̄ ∈ R \ Ȳβ+1}. Let Yβ+1 = Ȳβ+1 ∪ {rδ}.

Let C = {r ∈ Ȳβ+1 : r < rδ}, and let D = {r ∈ Ȳβ+1 : r > rδ}. Let C ′ = ḡβ+1[C],

and let D′ = ḡβ+1[D]. Find l̄ ∈ L such that C ′ < l̄ < D′. Let Xβ+1 = X̄β+1 ∪ {l̄}.

Let fβ+1 = f̄β+1 ∪ {(l̄, rδ)}, and let gβ+1 = ḡβ+1 ∪ {(rδ, l̄)}.
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Having completed the recursive definitions, let f =
⋃
α<κ fα. It is straightfor-

ward to see that f : L −→ R is an order-isomorphism.

Fact 3. Let κ be an infinite cardinal. There exists a saturated linear order of size

κ iff κ is regular and 2<κ = κ.

Proof. The proof of this fact follows from the three lemmas below.

Lemma 2.1.1. Let κ be an infinite cardinal. If κ is regular and 2<κ = κ, then

there exists a saturated linear order of size κ.

Proof. Fix any set A of size κ, and an enumeration A = {aα : α < κ}. Since κ is

regular, (2<κ)<κ = 2<κ, and so:

|[A]<κ × [A]<κ| = κ<κ = (2<κ)<κ = 2<κ = κ

It follows that the set C = {(C,D) : C,D ⊆ A, |C|, |D| < κ, and C ∩D = ∅} is

of size κ. Fix an enumeration {(Cα, Dα) : α < κ} of C such that each pair from C

occurs cofinally often in the enumeration.

For each β < κ, let Aβ = {aα : α < β}. The increasing sequence of orderings

(≺α)α<κ is defined by recursion such that, for each α < κ:

1. (Aα,≺α) is a linear order, and

2. ∀β < α, ≺β⊆≺α.
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Fix α < κ. If α is a limit ordinal, let≺α=
⋃
β<α ≺β. If α = β+1, look at the pair

(Cβ, Dβ). If (Cβ, Dβ) is not a cut in (Aβ,≺β), extend ≺β to ≺α by letting Aβ ≺α aβ.

Otherwise, if (Cβ, Dβ) is a cut in (Aβ,≺β), let C ′β = LeftPart(Aβ ,≺β)(Cβ) and let

D′β = Aβ \ LeftPart(Aβ ,≺β)(Cβ). Extend ≺β to ≺α such that C ′β ≺α aβ ≺α D′β.

Let ≺=
⋃
α<κ ≺α. To see that (A,≺) is a saturated linear order of size κ,

fix any cut (E∗, F ∗) in A of size < κ. Let E = {α < κ : aα ∈ E∗}, and let

F = {α < κ : aα ∈ F ∗}. Since |E|, |F | < κ and κ is regular, E ∪ F is bounded in

κ. Find α > sup(E ∪ F ) such that (Cα, Dα) = (E∗, F ∗). So (Cα, Dα) is a cut in

Aα, and aα fills this cut.

Lemma 2.1.2. Let κ be an infinite cardinal. If there exists a saturated linear order

of size κ, then κ is regular.

Proof. Suppose (X,≺) is a saturated linear order of size κ, and suppose instead

that cf(κ) = λ < κ. Let X = {xδ : δ < κ}.

Fix a strictly increasing sequence (βα)α<λ cofinal in κ. Define, for each α < λ,

Xβα = {xδ : δ < βα}; note that

X =
⋃
α<λ

Xβα

Define a sequence (yα)α<λ by recursion: for each α < λ, choose yα filling the

cut (Xβα ∪ {yδ : δ < α}, ∅).
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Next, fix y∗ ∈ X filling the cut ({yα : α < λ}, ∅). Find α < λ such that

y∗ ∈ Xβα ; but Xβα ≺ yα ≺ y∗, a contradiction.

Lemma 2.1.3. Let κ be an infinite cardinal. If there exists a saturated linear order

of size κ, then 2<κ = κ.

Proof. Suppose R is a saturated linear order of size κ, and suppose instead 2<κ > κ.

(Note that by Lemma 2.1.2, κ is regular.) Let

λ = min{λ′ < κ : 2λ
′
> κ}

Let X = <λ2, ordered by ≺, where ≺ is the lexicographic ordering:

Definition 14. ∀s, t ∈ ≤λ2, define s ≺ t iff either

1. dom(s) < dom(t) and ∀α ∈ dom(s), s(α) = t(α); or

2. ∃α ∈ dom(s) ∩ dom(t) such that s(α) 6= t(α), and s(ᾱ) < t(ᾱ), where ᾱ =

min{α : s(α) 6= t(α)}.

Let A = {f ∈ λ2 : f is not eventually constant}. Note that |A| = 2λ > κ.

Definition 15. For each f ∈ A, define:

• l(f) = {s ∈ X : dom(s) = α + 1, (∀β < α, s(β) = f(β)), and s(α) < f(α)},

and
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• r(f) = {s ∈ X : dom(s) = α + 1, (∀β < α, s(β) = f(β)), and s(α) > f(α)}.

Note that for each f ∈ A, (l(f), r(f)) is a cut of size λ in (X,≺).

Definition 16. Given two cuts (A0, A1), (B0, B1) in a linear order (L,<), we say

(A0, A1), (B0, B1) are compatible, and we write (A0, A1) 6⊥ (B0, B1), iff (A0 ∪

B0, A1 ∪ B1) is a cut in (L,<). We say (A0, A1), (B0, B1) are incompatible and

we write (A0, A1) ⊥ (B0, B1) iff the two cuts are not compatible (i.e., iff ∃x ∈

A0 ∪B0, y ∈ A1 ∪B1) such that y < x).

Claim 1. For each f 6= g ∈ A, (l(f), r(f)) ⊥ (l(g), r(g)).

Proof. Fix f ≺ g ∈ A. Let ᾱ = min{α : f(α) 6= g(α)}; so f(ᾱ) = 0, g(ᾱ) = 1.

Define t̄ ∈ ᾱ+12 by t̄ = g � (ᾱ + 1). So t̄ ∈ r(f). Let γ̄ = min{γ > ᾱ : g(γ) = 1}.

Define s̄ ∈ γ̄+12 by:

s̄(β) =


g(β), if β < γ̄,

0 if β = γ̄.

So s̄ ∈ l(g). Since s̄ � (ᾱ + 1) = t̄, t̄ < s̄.

So each element f ∈ A determines a distinct cut in X; in other words, there

are |A| = 2λ > κ many incompatible cuts of size < κ in X. But |X| = 2<λ ≤ κ,

by choice of λ. Thus, since R is a saturated linear order of size κ, by Fact 1, there

must be a copy X ′ of X in R. But then there are > κ-many distinct cuts of size
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< κ in X ′ ⊆ R, each of which must be filled by a distinct element of R, of which

there are only κ-many.

This section concludes with two theorems relating saturated linear orders and

c.

Theorem 2.1.4. Under CH, every pantachie is a saturated linear order.

Proof. Let L be a maximal linear order in (ωR, <∗). Suppose that (A,B) is an

unfilled cut in L of size < c = ω1. Note that any such cut is fillable in (ωR, <∗) (cf.

Theorem 1 from [Sch93], page 443), so suppose b ∈ ωR fills (A,B). Since (A,B) is

unfilled in L, b /∈ L. But (L∪{b}, <∗) is a linear order, contrary to the maximality

of L.

Theorem 2.1.5. Every saturated linear order contains a (c, c)-gap.

Proof. Let (X,<) be a saturated linear order of size c. Fix an enumeration X =

{xα : α < c}. The sequences A = {aα : α < c} and B = {bα : α < c} are defined by

recursion, along with the auxiliary sets Āα and B̄α for each α < c.

To begin, choose any a0 ∈ X. If x0 ≤ a0, let Ā0 = {a0, x0} and let B0 = ∅.

Otherwise, let Ā0 = {a0} and let B0 = {x0}. Choose b0 filling the cut (Ā0, B0), and

let B̄0 = B0 ∪ {b0}.

Next, suppose aα, bα, Āα, B̄α have been defined. If ∃a ∈ Āα such that xα+1 ≤ a,

let Aα+1 = Āα ∪ {xα+1} and let Bα+1 = B̄α. Otherwise, let Aα+1 = Āα, and let
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Bα+1 = B̄α ∪ {xα+1}. Choose aα+1 filling (Aα+1, Bα+1), and let Āα+1 = Aα+1 ∪

{aα+1}; choose bα+1 filling (Āα+1, Bα+1), and let B̄α+1 = Bα+1 ∪ {bα+1}.

Finally, suppose δ is a limit ordinal and aα, bα, Āα, B̄α have been defined for

all α < δ. Let Aδ =
⋃
α<δ Āα ∪ {xα : α ≤ δ, ∃β < δ such that xα ≤ aβ}, and let

Bδ =
⋃
α<δ B̄α ∪ {xα : α ≤ δ, ∀β < δ, aβ < xα}. Choose aδ filling the cut (Aδ, Bδ),

and let Āδ = Aδ ∪ {aδ}; choose bδ filling the cut (Āδ, Bδ), and let B̄δ = Bδ ∪ {bδ}.

Clearly, (A,B) is a pregap of type (c, c). To see that (A,B) is a gap in (X,<),

suppose instead xβ ∈ X fills (A,B). But then xβ fills (Āβ, B̄β); so either xβ < aβ+1

or bβ+1 < xβ, each of which contradicts the fact that xβ fills (A,B).

2.2 Forcing

It is assumed that the reader is familiar with forcing, so we have not included the

definitions of basic forcing terminology in this section, such as the notion of P-names

in general (where P is a partial order). However, for the reader’s convenience, we do

record certain definitions that are used in the subsequent chapters, including nice

names, P-names for partial orders, and other notions relating to iterated forcing.

These definitions come from [Kun80], and the reader is referred there for more

background.

Throughout this section, M denotes a countable transitive model (ctm) for ZFC.
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Definition 17 (Nice Names). Given a P-name σ, a nice name for a subset of σ is

a P-name τ of the form
⋃
{{π} ×Aπ : π ∈ dom(σ)}, where each Aπ is an antichain

in P.

Definition 18 (Name for a partially ordered set). Given P a p.o. (partially ordered

set) in M , a P-name for a p.o. (in M) is a triple of P-names 〈π,≤π,1π〉 ∈M such

that 1π ∈ dom(π) and

1P P (1π ∈ π) ∧ (≤π is a partial order on π with largest element 1π).

We’ll often write just π for 〈π,≤π,1π〉.

Definition 19. If P is a p.o. in M and π is a P-name for a p.o. (in M), then P ∗ π

is the p.o. with base set

{(p, τ) : p ∈ P ∧ τ ∈ dom(π) and p  τ ∈ π},

with ordering defined by

(p, τ) ≤ (q, σ)⇔ p ≤P q and p  τ ≤π σ.

Note that 1P∗π = (1P,1π). Define i : P −→ P ∗ π by i(p) = (p,1π).25

Definition 20. In the above notation, if G is P-generic over M and H ⊆ πG, then

G ∗H = {(p, τ) ∈ P ∗ π : p ∈ G ∧ τG ∈ H}.

25Note that the notation Q̇ is often used for a P-name for a partial order, rather than π.
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Remark 3. If H above is πG-generic over M [G], then G∗H is P∗π-generic over M .

Finally, we come to Kunen’s definition of a (finite support) iterated forcing

construction.

Definition 21 (Iterated Forcing Construction). Suppose α is any ordinal. An α-

stage iterated forcing construction (with finite supports), or an α-IFC for short, is

an object (in M) of the form:

({Pξ : ξ ≤ α}, {πξ : ξ < α})

which satisfies the following:

• For each ξ ≤ α, Pξ is a p.o. (in M), and for each ξ < α, πξ is a Pξ-name for

a p.o. (in M).

• Elements p of Pξ are sequences 〈ρµ : µ < ξ〉 of length ξ such that each ρµ ∈

dom(πµ). We also write p(µ) = ρµ.

• If p ∈ Pη and ξ < η, then p � ξ ∈ Pξ.

For each p ∈ Pξ, define supp(p) = {µ < ξ : p(µ) 6= 1πµ}. The following conditions

must also be satisfied:

1. Basis. P0 = {∅}.

2. Successors.
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• If p = 〈ρµ : µ ≤ ξ〉, then p ∈ Pξ+1 iff p � ξ ∈ Pξ, ρξ ∈ dom(πξ), and

p � ξ  ρξ ∈ πξ.

• If p, p′ ∈ Pξ+1, then p ≤ p′ iff p � ξ ≤ p′ � ξ and p � ξ  p(ξ) ≤ p′(ξ).

3. Limits.

• If η ≤ α is a limit ordinal and p = 〈ρµ : µ < η〉, then p ∈ Pη iff ∀ξ < η,

p � ξ ∈ Pξ, and supp(p) is finite.

• If p, p′ ∈ Pη, then p ≤ p′ iff ∀ξ < η, p � ξ ≤ p′ � ξ.

Remark 4. Note that for each ξ, once πξ is defined, Pξ+1 is determined, and Pξ+1

is isomorphic to Pξ ∗ πξ. For η a limit ordinal (including the case η = α), Pη is

determined uniquely once the πξ (for ξ < η) are defined.

Definition 22. In the notation of Definition 21, let ξ < η ≤ α. Define iξη : Pξ → Pη

by letting iξη(p) = p′, where for each β ∈ η, p′(β) = p(β) if β < ξ and p′(β) = 1πβ

otherwise. Given a Pη-generic over M filter G, let Gξη = i−1
ξη (G). Sometimes we

write simply Gξ if the context permits, or the more informal G ∩ Pξ.

Definition 23. Given p.o.’s P and Q and a function i : P −→ Q, define, by

recursion over P-names τ ,

i∗(τ) = {〈i∗(σ), i(p)〉 : 〈σ, p〉 ∈ τ}

Remark 5. Referring to Definition 22, we have the following:
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• For each τ ∈MPξ , τ [i−1
ξη (G)] = i∗(τ)[G].

• Given a formula ϕ(x1, . . . , xn) which is absolute for transitive models of ZFC,

p Pξ “ϕ(τ1, . . . , τn)” iff i(p) Pη “ϕ(i∗(τ1), . . . , i∗(τn)).”

For the reader’s convenience, we record the statement of two important forcing

axioms.

Definition 24 (Martin’s Axiom (MA)). Fix a cardinal κ. MA(κ) is the statement:

Whenever (P,≤) is a non-empty ccc partial order and D is a family of ≤ κ dense

subsets of P, then there is a filter G in P such that ∀D ∈ D, G ∩ D 6= ∅. MA

is the statement ∀κ < 2ω, MA(κ). MA[σ-centered] (respectively, MA[σ-linked]) is

the statement MA except with “ccc” replaced by “σ-centered” (respectively, “σ-

linked”).

Definition 25 (Closed, Unbounded, Stationary). Fix A any set, and λ a regular

cardinal. Fix C ⊆ [A]<λ. C is said to be unbounded in [A]<λ if (∀x ∈ [A]<λ)(∃y ∈

C)(x ⊆ y). C is said to be closed in [A]<λ if for every increasing sequence (xα)α<µ

of length µ < λ from C,
⋃
{xα : α < µ} ∈ C. A set S ⊆ [A]<λ is called stationary

in [A]<λ if S meets all closed unbounded sets in [A]<λ.

Definition 26 (Proper Partial Orders). A partial order P is proper if for every

uncountable set X, and for every stationary set S ⊆ [X]<ω1 , S is still stationary in

the forcing extension by P.
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Definition 27 (Proper Forcing Axiom (PFA)). PFA is the statement: Whenever

(P,≤) is a non-empty proper partial order and D is a family of ≤ ω1 dense subsets

of P, then there is a filter G in P such that ∀D ∈ D, G ∩D 6= ∅.
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3 A Saturated Pantachie and ¬CH

This chapter features an iterated forcing construction similar to [Lav79] to obtain

a saturated linear order in Hausdorff’s partial order restricted to the rationals,

(ωQ, <∗) , with c > ω1. We then show that in this forcing extension, the saturated

linear order is in fact maximal in Hausdorff’s (unrestricted) partial order, (ωR, <∗),

and thus is a Hausdorff pantachie with no ω1-gaps. This answers Hausdorff’s ques-

tion (α) from 1907 (see page 165 from [Hau05]), as described in Chapter 1. In other

words, we prove the following:

Theorem 3.0.1. Con(ZFC + ∃ a maximal saturated linear order of size c ≥ ω2 in

(ωR, <∗)).

3.1 The Kunen Partial Order

Definition 28. Fix γ an ordinal, and for each α < γ, let hα ∈ ωQ such that

Lγ = {hα : α < γ} is linearly ordered by <∗. Suppose further that (A∗, B∗) is a

partition cut in Lγ, and let A = {α : hα ∈ A∗}, B = {α : hα ∈ B∗}. Define:
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• K(A,B) = {(L,R, s) | L ∈ [A]<ω, R ∈ [B]<ω, s ∈ <ωQ,∀k ≥ |s|,∀α ∈ L, β ∈

R, hα(k) < hβ(k)}.26

When A and B are clear from the context, we write simply K rather than K(A,B).

Define a partial ordering on K by (L′, R′, s′) ≤ (L,R, s) iff

(i) L ⊆ L′, R ⊆ R′, s ⊆ s′; and

(ii) ∀k ∈ |s′| \ |s|, ∀α ∈ L, β ∈ R, hα(k) < s′(k) < hβ(k).27

Under this ordering, call K the Kunen forcing for filling the cut (A∗, B∗).

Fact 4. In the notation of Definition 28, K is a partial order.

Proof. It’s easy to show reflexivity and symmetry, so we turn to transitivity. Fix

(L′′, R′′, s′′) ≤ (L′, R′, s′) ≤ (L,R, s). Fix k ∈ |s′′| \ |s|, α ∈ L and β ∈ R. If

k < |s′|, then hα(k) < s′′(k) < hβ(k) since (L′, R′, s′) ≤ (L,R, s) and s′′(k) = s′(k).

If k ≥ |s′′|, then hα(k) < s′′(k) < hβ(k) since (L′′, R′′, s′′) ≤ (L′, R′, s′), L ⊆ L′ and

R ⊆ R′.

Let (A∗, B∗) be a partition cut, and let K = K(A∗, B∗). Forcing with K adds

a function which fills the cut. More precisely:

26It would be easy to define instead K(A∗, B∗) and thus have no need for the indexing. However,
for our purposes there will normally be such an indexing, which is convenient especially in the
forcing constructions. Nevertheless, we occasionally write K(A∗, B∗) instead of K(A,B).

27More precisely, we should say ∀k ∈ |s′|\|s|: ∀α ∈ L, hα(k) < s′(k) and ∀β ∈ R, s′(k) < hβ(k);
this version correctly covers the case when one of L or R is empty.
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Fact 5. Suppose M is any countable transitive model for ZFC. Working in M , fix

γ̄ an ordinal, and for each α < γ̄, let hα ∈ ωQ such that Lγ̄ = {hα : α < γ̄} is

linearly ordered by <∗. Suppose further that (A∗, B∗) is a partition cut in Lγ̄, and

let A = {α : hα ∈ A∗}, B = {α : hα ∈ B∗}. Let K = K(A,B), let G be any

K-generic over M filter, and let hγ̄ = hG =
⋃
{sp : p ∈ G}. Then

(a) hγ̄ : ω −→ Q

(b) A∗ <∗ hγ̄ <
∗ B∗.

Proof. For each n ∈ ω, let Dn = {(L,R, s) ∈ K : n ∈ |s|}; for each β ∈ A, let Eβ =

{(L,R, s) ∈ K : β ∈ L}, and for each β ∈ B, let Jβ = {(L,R, s) ∈ K : β ∈ R}.

The following claim will aid in showing that these sets are dense.

Claim 2. ∀n ∈ ω, ∀p = (L,R, s) ∈ K, if n ≥ |s| then ∃s′ ⊇ s such that |s′| = n

and p′ = (L,R, s′) ≤ p.

Proof. Fix n and p = (L,R, s) such that n ≥ |s|. Define s′ ∈ nω by

s′(k) =


s(k), if k < |s|

max{hγ(k):γ∈L}+min{hδ(k):δ∈R}
2

otherwise.

It’s easy to see that p′ = (L,R, s′) ≤ p.

To see that Dn is dense (for each n) is now immediate: fix n, and fix p =

(L,R, s) ∈ Q. If n ∈ dom(s), then p ∈ Dn; otherwise, use Claim 2 to get p′ =
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(L,R, s′) ≤ p with |s′| = n+ 1; in particular, n ∈ dom(s′) so p′ ∈ Dn.

Next, fix β ∈ A. To see that Eβ is dense, fix p = (L,R, s) ∈ K, and let

L′ = L ∪ {β}. Find n > |s| s.t. ∀k ≥ n, ∀γ ∈ L′, ∀δ ∈ R, hγ(k) < hδ(k). Claim

2 gives us p′ = (L,R, s′) ≤ p such that |s′| = n + 1. So (L′, R, s′) ∈ Eβ and

(L′, R, s′) ≤ p′ ≤ p.

Finally, fix δ ∈ B. To see that Jδ is dense, fix p = (L,R, s) ∈ K, and let

R′ = R ∪ {δ}. Find n > |s| s.t. ∀k ≥ n, ∀γ ∈ L, ∀δ ∈ R′, hγ(k) < hδ(k).

Using Claim 2 yet again, we get p′ = (L,R, s′) ≤ p such that |s′| = n + 1. So

(L,R′, s′) ∈ Jδ and (L,R′, s′) ≤ p′ ≤ p.

For part (a) now, fix any n ∈ ω and find p = (L,R, s) ∈ G ∩ Dn. So n ∈

dom(s) ⊆ dom(hγ̄).

For (b), first fix β ∈ A. Find p = (L,R, s) ∈ G ∩ Eβ; so β ∈ L. Let n0 = |s|.

Fix k ≥ n0, and fix q ∈ G∩Dk. Find r ∈ G s.t. r ≤ p, q. So hγ̄(k) = sr(k) > hβ(k).

Next, fix δ ∈ B and find p ∈ G ∩ Jδ; so δ ∈ Rp. Let n0 = |sp|. Fix k ≥ n0, and

fix q ∈ G ∩Dk. Find r ∈ G s.t. r ≤ p, q. So hγ̄(k) = sr(k) < hδ(k).

3.2 An Enumeration of Potential Cut-Names

Fix a countable transitive model M for ZFC, and in M , fix κ, a regular uncountable

cardinal such that 2<κ = κ. In the next section, we will be defining a finite-support
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iterated forcing construction of length κ that will yield the p.o. P = Pκ needed for

the proof of Theorem 3.0.1. In the course of this iteration, we will be defining, for

each α < κ, a name for a cut (A∗α, B
∗
α) that will be filled, and we want to make

sure that every possible cut in the saturated linear order of the forcing extension is

filled cofinally often through the course of the iterated forcing construction.

We begin with some notation.

Notation. Given any ordinal α, let Xα = [α]<ω × [α]<ω × <ωQ. Note that for each

α, |Xα| = max{|α|, ω}.

Definition 29. For each α ≤ κ, and each p ∈ Πβ<αXβ, define the support of p as

supp(p) = {β < α : p(β) 6= (∅, ∅, ∅)}.

Definition 30. For α ≤ κ, let Pα = {p ∈ Πβ<αXβ : supp(p) is finite}, and let

P = Pκ.

Definition 31. Let K = {{(α, p) : α ∈ λ, p ∈ Aα} : λ < κ, and (Aα)α<λ is a

λ-sequence of elements from [P ]≤ω}.

In other words, S ∈ K iff there is some λ < κ and some λ-sequence (Aα)α<λ of

countable subsets of P such that S = {(α, p) : α ∈ λ, p ∈ Aα}. As will be seen in

Section 3.3, the set K serves as a set of “potential nice names for cuts”.

Given any S ∈ K, we want to be able to recover the associated ordinal λ, and

for each α < λ, the countable set Aα.
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Definition 32. The rank of S is defined as rank(S) =
⋃

dom(S). Letting λ =

rank(S), define, for any α < λ, Aα(S) =
⋃
{p : (α, p) ∈ S}. Note that λ < κ, and

〈Aα(S)〉α<λ ∈ λ([P ]≤ω).

We would also like to find the maximal ordinal that occurs in the support of

any element from any of the countable sets Aα.

Definition 33. Define A(S) =
⋃
α<λAα(S), and let top(S) = sup{max(supp(p)) :

p ∈ A(S)}. Note that top(S) < κ.

It isn’t too hard to see that |P | = κ (cf. Lemma 3.8.1); hence, by our assump-

tions on κ, |[P ]≤ω| = κ≤ω ≤ κ<κ = (2<κ)<κ = 2<κ = κ. This calculation is the

main ingredient needed to see that |K| = κ.

Fact 6. There is an enumeration C = {Cα : α < κ} of K where each mem-

ber of K is enumerated cofinally often, and for each α < κ, either Cα = ∅ or

top(Cα), rank(Cα) < α.

Proof. To see that such an enumeration is possible, begin with a bijection g : κ→

K× κ. Define h : κ→ K by setting, for each α < κ,

h(α) =



S if g(α) = (S, δ) for some (unique) δ, and

rank(S), top(S) < α

∅ otherwise
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Claim 3. Each S ∈ K is mapped to cofinally often by h; i.e., |h−1(S)| = κ.

Proof. Fix S ∈ K. Choose β < κ such that each of rank(S) and top(S) are less

than β. For each δ ∈ κ, let αδ = g−1(S, δ). Since {αδ : δ ∈ κ} is of size κ, the sets

Z = {αδ > β : δ ∈ κ} and Y = {δ ∈ κ : αδ > β} are each of size κ. Note that for

each δ ∈ Y , g(αδ) = (S, δ) and rank(S), top(S) < β < αδ; it follows that for each

αδ ∈ Z, h(αδ) = S.

For each α < κ, let Cα = h(α).

Fix an enumeration C = {Cα : α < κ} of K as in Fact 6. This enumeration C

will be used throughout this chapter.

3.3 The Iterated Forcing Construction

The desired partial order is obtained through a κ-length finite-support iterated

forcing over M , using the somewhat standard notation ({Pα : α ≤ κ}, {Q̇α : α <

κ}). By simultaneous recursion, and making use of the canonical names Ġα for

the generics on the Pα, and the associated names Hα = {t ∈ Q̇α : (∃p ∈ Ġα)

p ∗ t ∈ Ġα+1} for the generics on the Q̇α, we define {Q̇α : α < κ}, {Lα : α < κ},

{(Aα, Bα) : α < κ}, and {hα : α < κ} such that for all α < κ, Lα = {hβ : β < α}

is a linear order in (ωQ, <∗).
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For α < κ, look first at Cα, the αth member of the enumeration C of K from

the previous section (see Fact 6). Either Cα = ∅ or rank(Cα), top(Cα) < α. In the

latter case, we can define, for each p ∈ A(Cα), a corresponding p′ ∈ Pα by setting,

for each β < α, p′(β) equal to the check name for p(β), i.e., p′(β) = (p(β))ˇ.

Define A′α = {(β̌, p′) : (β, p) ∈ Cα}.

If Cα = ∅ or if A′α does not name a subset of α, let (Aα, Bα) name the pair of

index sets (∅, α) for a trivial partition cut. On the other hand, if A′α does name

a subset of α, let (A′α)∗ be the name for the corresponding subset of Lα (i.e., the

subset indexed by A′α), let Aα be the index set for LeftPartLα(A′α)∗, and let Bα

be the index set for Lα \ LeftPartLα(A′α)∗.

Let Q̇α = K(Aα, Bα), the Kunen forcing for filling the cut (A∗α, B
∗
α).

Let hα =
⋃
p∈Hα sp, the generic function that fills this cut.

Having completed the definition of the forcing construction, we let P = Pκ.

Also, fix now and for the rest of this chapter a filter G ⊆ P that is P-generic over

M .

We next prove three lemmas that will show that P has the ccc. These three

lemmas, and their proofs, are adapted from [Lav79].

3.4 The Uniformity Lemma

We begin with some definitions:
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Remark 6. Fix α < κ, fix p ∈ Pα. Recall that the support of p is supp(p) = {β <

α : p(β) 6= 1Q̇β}. Recall that 1Q̇β = (∅, ∅, ∅)̌.

Definition 34. Fix α ≤ κ, and fix p ∈ Pα. If for each β ∈ supp(p), there is a

triple (Lp,β, Rp,β, sp,β) ∈ Xβ ∩M such that p(β) = (Ľp,β, Řp,β, šp,β), then p is called

a determined condition. We sometimes omit the subscript p or β when the context

permits.

Definition 35. Fix α ≤ κ, fix p ∈ Pα. We say p has closed support if ∀β ∈ supp(p),

Lβ ∪Rβ ⊆ supp(p).

Definition 36. Fix α ≤ κ, fix p ∈ Pα. We say p is uniform if ∃lp such that for all

β ∈ supp(p), |sβ| = lp.

Definition 37. Fix 1 ≤ γ ≤ κ. Let Uγ = {p ∈ Pγ : p is determined, uniform and

of closed support}. Let Uγ,n = {p ∈ Uγ : lp ≥ n}.

Lemma 3.4.1. For each 1 ≤ γ ≤ κ and each n ∈ ω, Uγ,n is dense in Pγ.

Proof. The proof proceeds by induction on γ. The basis and limit cases are straight-

forward, so we turn to the successor case. Fix 1 ≤ α < κ, and suppose Uα,n is dense

in Pα, for all n ∈ ω. Fix a particular n ∈ ω, and let γ = α + 1. We will show

that Uγ,n is dense in Pγ. Fix p ∈ Pγ, and let q0 = p � α. Choose (Lα, Rα, sα) ∈ M

and q1 ≤ q0 such that q1 Pα “p(α) = (Ľα, Řα, šα)”. Choose q2 ≤ q1 such that

43



Lα ∪ Rα ⊆ supp(q2); for example, define q2(β) to be equal to q1(β) except when

β ∈ (Lα ∪Rα)\ supp(q1), in which case define q2(β) = (∅, ∅, (0, 108)̌).

Now, since Uα,n is dense in Pα by induction hypothesis, find q3 ≤ q2 such that

q3 ∈ Uα,n. In particular, we have Lα ∪Rα ⊆ supp(q2) ⊆ supp(q3). Also, lq3 ≥ n.

Let n̄ ≥ max(lq3 , |sα|) ≥ n, and find q4 ≤ q3 such that q4 ∈ Uα,n̄; in particular,

lq4 ≥ n̄.

Claim 4. There is an s in M ∩ lq4Q such that

q4
_(Ľα, Řα, š) ≤ q4

_(Ľα, Řα, šα).

Proof. Since |sα| ≤ n̄ ≤ lq4 , we can extend sα (using Claim 2) to s ∈ lq4Q ∩M so

that q4 Pα (Ľα, Řα, š) ≤ (Ľα, Řα, šα). So we have q4
_(Ľα, Řα, š) ≤ q_4 (Ľα, Řα, šα),

and |s| = lq4 .

Let p′ = q4
_(Ľα, Řα, š). Clearly, p′ is a determined condition. Furthermore,

since q4 ≤ q1 and q1 Pα “p(α) = (Ľα, Řα, šα)”, it follows that q4
_(Ľα, Řα, šα) ≤ p,

and hence p′ ≤ p. Since Lα ∪ Rα ⊆ supp(q3) ⊆ supp(p′), p′ is of closed support.

Moreover, since |s| = lq4 , it follows that for each β ∈ supp(p′), |sp′,β| = lq4 ≥ n̄ ≥ n.

Thus, p′ ∈ Uγ,n, and Uγ,n is dense.
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3.5 The Star-Extension Lemma

Definition 38. Given 1 ≤ γ ≤ κ, and p, q ∈ Uγ, we say p star-extends q, and we

write p ≤∗ q, iff p ≤ q, supp(p) = supp(q), and for each β ∈ supp(p) = supp(q),

sβ,p = sβ,q.

Remark 7. Thus, p above is obtained from q by expanding some of the Lβ and Rβ

sets to include more members from supp(q).

Lemma 3.5.1. Fix 1 ≤ γ ≤ κ, and fix p ∈ Uγ. Given β, δ ∈ supp(p) such that

β < δ, we have

• p Pγ “ḣβ <
∗ ḣδ” → ∃r ∈ Uγ such that r ≤∗ p and β ∈ Lr,δ.

• p Pγ “ḣδ <
∗ ḣβ” → ∃r ∈ Uγ such that r ≤∗ p and β ∈ Rr,δ.

Proof. Since the arguments for the basis and limit cases are quite straightforward,

we turn to the successor case. Fix α such that 0 < α < κ, and let γ = α + 1.

Suppose we have, for each q ∈ Uα,

• I.H.: ∀β < δ ∈ supp(q), q Pα “ḣβ <
∗ ḣδ” → ∃r ≤∗ q s.t. β ∈ Lr,δ, and

q Pα “ḣδ <
∗ ḣβ” → ∃r ≤∗ q s.t. β ∈ Rr,δ.

Fix β < δ ∈ supp(p). We suppose p Pγ ḣβ <
∗ ḣδ, and then show that ∃r ≤∗ p

such that β ∈ Lr,δ. (The other case is similar, by symmetry.) We might as well

assume δ = α, since the case δ < α follows directly from the induction hypothesis.
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Let q0 = p � α. Now, since p Pγ ḣβ <
∗ ḣα, we have q0 Pα ḣβ ∈ Aα, and so for

every σ ∈ Rα, q0 Pα ḣβ <
∗ ḣσ. (Note that β, σ ∈ supp(q0)). Applying I.H. |Rα|

times successively, we obtain q1 ≤∗ q0 such that for all σ ∈ Rα, we have β ∈ Lq1,σ

if β < σ, and σ ∈ Rq1,β if σ < β.

Let r = q_2 (Lα ∪ {β}, Rα, sα)̌. It is now easy to see that this r satisfies the

induction hypothesis.

3.6 The Uniform Extension Lemma

We now come to the final lemma needed to prove that P is ccc.

Lemma 3.6.1. Fix 1 ≤ γ ≤ κ, and fix p, q ∈ Uγ such that lp = lq. Suppose that

for all β ∈ supp(p)∩ supp(q), sp,β = sq,β. Then ∃r ∈ Uγ such that r ≤ p, q and

lr = lp = lq.

Proof. The proof proceeds by induction on γ. Since the basis and limit cases are

quite straightforward, we turn to the successor case. So, fix 1 ≤ α < κ, and let

γ = α + 1. Fix p, q ∈ Uγ such that lp = lq, and suppose that for all β ∈ supp(p)∩

supp(q), sp,β = sq,β. Now, apply the I.H. to p � α, q � α to obtain r1 ∈ Uα such

that r1 ≤ p � α, q � α, and lr1 = lp = lq.
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Case 1. Suppose α /∈ supp(p)∩ supp(q). Let

r1(α) =


p(α), if α /∈ supp(q),

q(α) otherwise.

Let r = r_1 r1(α). Then r ∈ Uγ, r ≤ p, q and lr = lp = lq, as required.

Case 2. Suppose α ∈ supp(p)∩ supp(q). Let L = Lp,α ∪ Lq,α, let R = Rp,α ∪Rq,α,

and let s = sp,α = sq,α.

Claim 5. r1 Pα ∀β ∈ L,∀δ ∈ R, ḣβ <∗ ḣδ.

Proof. Note that p � α Pα “(∀β ∈ Lp,α)ḣβ ∈ Aα”, and p � α Pα “(∀δ ∈ Rp,α)ḣδ ∈

Bα”. Similarly, q � α Pα “(∀β ∈ Lq,α)ḣβ ∈ Aα”, and q � α Pα “(∀δ ∈ Rq,α)ḣδ ∈

Bα”. The proof of the claim is now completed by the fact that r1 ≤ p � α, q � α.

Claim 6. ∃r2 ≤∗ r1 such that for all (β, δ) ∈ L×R, β ∈ Lr2,δ or δ ∈ Rr2,β.

Proof. Fix a pair (β, δ) ∈ L×R. Note first that β, δ ∈ supp(r1). Also, r1 Pα “ḣβ <
∗ ḣδ”

by the previous claim. By Lemma 3.5.1, we know that if β < δ, then ∃r̄ ≤∗ r1 such

that β ∈ Lr̄,δ, and if δ < β, then ∃r̄ ≤∗ r1 such that δ ∈ Rr̄,β. So, applying Lemma

3.5.1 successively, we get r2 ≤∗ r1 such that β ∈ Lr2,δ (if β < δ) or δ ∈ Rr2,β (if

δ < β).

Let r = r_2 (L,R, s). It is now easy to see that r ∈ Uγ, r ≤ p, q and lr = lp = lq.
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3.7 P has the ccc

Lemma 3.7.1. For each 1 ≤ γ ≤ κ, Pγ has the ccc.

Proof. Fix 1 ≤ γ ≤ κ, and suppose instead that P1 = {pα : α < ω1} ⊆ Pγ is

an antichain. By Lemma 3.4.1, for each pα ∈ P1 we can find qα ≤ pα such that

qα ∈ Uγ. Since P1 is an uncountable antichain, Q1 = {qα : α < ω1} is too.

Now, there are only countably many possibilities l ∈ ω for the “lqα”-value. So

there must be some l ∈ ω such that Q2 = {qα ∈ Q1 : lqα = l} is uncountable. Define

S = {supp(qα) : qα ∈ Q2}; so S is an uncountable family of finite sets. Applying

the ∆-system lemma, let S ′ ⊆ S be an uncountable ∆-system with root A, and let

Q3 = {qα ∈ Q2 : supp(qα) ∈ S ′}.

For each qα ∈ Q3, there is a mapping β 7−→ sqα,β for each β ∈ A. But since

|sqα,β| is always l, there are only countably many choices for each sqα,β, and so only

countably many choices for the finite sequence 〈sqα,β〉β∈A. So there must be some

finite sequence 〈s̄β〉β∈A such that

Q4 = {qα ∈ Q3 : 〈sqα,β〉β∈A = 〈s̄β〉β∈A}

is uncountable. Now, fix p, q ∈ Q4 ⊆ Uγ. We have lp = lq = l, and for each

β ∈ supp(p)∩ supp(q) = A, sp,β = sq,β = s̄β. So Lemma 3.6.1 applies, yielding

r ∈ Uγ such that r ≤ p, q. But p, q are supposed to be incompatible, since Q4 is an

antichain.
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3.8 2ω = κ in M [G]

We would like to show that 2ω = κ in M [G]. First, the following lemma shows that

|Pκ| = κ.

Lemma 3.8.1. For each α ≤ κ, |Pα| ≤ max{|α|, ω}.

Proof. (By induction on α.)

Basis. (α = 0). By definition, P0 = {0}.

Successor. Suppose α = β + 1, and suppose |Pβ| ≤ max{|β|, ω}. Note that Pα ⊆

Pβ× dom(Qα). But |dom(Qα)| ≤ |Xα| = max{|α|, ω}.

Limit. Suppose α is a limit ordinal, and ∀β < α, |Pβ| ≤ max{|β|, ω}. For each B ∈

[α]<ω, define CB = {p ∈ Pα : supp(p) = B}. Since |[α]<ω| = α, {CB : B ∈ [α]<ω} is

a partition of Pα into |α|-many classes. It suffices to show:

Claim 7. For each B ∈ [α]<ω, |CB| ≤ |α|.

Proof. Let λ = |maxB|. So λ ≤ |α|. Let n = |B|. So |CB| ≤ |Πγ∈BXγ| ≤ λn ≤

|α|.

Lemma 3.8.2. 2ω = κ in M [G].

Proof. First, note that in M [G], Lκ ⊆ ωQ, and |Lκ| = κ, so 2ω ≥ κ in M [G]. Next,

let A = {Y ∈M [G] : (Y ⊆ ω)M [G]}. In M [G], 2ω = |A|. Now, every subset of ω in
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M [G] gets represented by a nice-name28 (for a subset of ω̌), and each such nice-name

corresponds to an ω-sequence of antichains from P. Since |P| = κ, and since each

antichain is countable (Lemma 3.7.1), there are at most |[κ]≤ω| = κω antichains,

and so at most (κω)ω = κω ≤ κ<κ = (2<κ)<κ = 2<κ = κ such nice-names. So

2ω = |A| ≤ κ in M [G].

3.9 Lκ is Saturated in M [G]

The following lemma implies that Lκ is a saturated linear order of size continuum

in the forcing extension.

Lemma 3.9.1. Working in M [G], fix B1, B2 ∈ [Lκ]<κ such that B1 <∗ B2. Then

∃α < κ such that B1 <∗ hα <
∗ B2.

Proof. Let γ < κ be the minimal ordinal such that B1, B2 ⊆ Lγ. Note that we

have B1, B2 ∈ M [G], B1, B2 ⊆ Lκ, and |B1|, |B2| ≤ κ. Let B̄1 = {η : hη ∈ B1},

B̄2 = {η : hη ∈ B2}. Note that B̄1, B̄2 ⊆ γ.

Focusing on B1, note that there is a nice name (for a subset of γ̌) τ1 ∈MP such

that τ1[G] = B̄1. So τ1 is of the form

{(η̌, p) : η < γ, p ∈ Aη}

where for each η < γ, Aη is an antichain in P.

28See Definition 17.
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Since P is ccc, every antichain is countable, and so we can say

τ1 = {(η̌, p) : η < γ, p ∈ A1
η}

where 〈A1
η〉η<γ ∈ γ([P]≤ω).

For each p ∈
⋃
η<γ A

1
η, define a corresponding p̄ ∈ Pγ by setting, for each β < γ,

p̄(β) = (L,R, s) where p(β) = (L,R, s)̌. Let K1 = {(η, p̄) : (η̌, p) ∈ τ1}. So K1 ∈ K,

which means K1 occurs cofinally often in the enumeration C = {Cα : α < κ}. Find

α > γ = rank(K1) such that K1 = Cα.

Now, for each p̄, define (as in section 3.3) p′ in Pγ by setting, for each β < γ,

p′(β) = [p̄(β)]̌. Note that for each p ∈
⋃
η<γ A

1
η, p

′ = p.

So A′α = {(β̌, p′) : p ∈ Cα} (see section 3.3, page 42) and A′α names a subset of

α. So, as in section 3.3, A′α names a subset of α, and so (A′α)∗ is the name for the

corresponding subset of Lα (i.e., the subset indexed by A′α). Furthermore, Aα is the

index set for LeftPartLα(A′α)∗, and Bα is the index set for Lα \LeftPartLα(A′α)∗.

Since B̄1 ⊆ Aα and B̄2 ⊆ Bα, it follows that B1 <∗ hα <
∗ B2.

3.10 Lκ is a Maximal Linear Order in M [G]

The following lemma will be needed to show that L = Lκ is a maximal linear order

in (ωR, <∗). For the present chapter, the set E in the lemma could simply be α;

however, in the following chapter, the lemma will be applied with a different set for
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E.

Lemma 3.10.1. Suppose N is any countable transitive model of ZFC, and in N ,

α is an ordinal, E ⊆ α is cofinal in α, and Lα = {hβ : β ∈ E} ⊆ ωQ such

that Lα is linearly ordered by <∗. Fix (A∗, B∗), a partition cut in Lα, and let

A = {β ∈ E : hβ ∈ A∗}, B = {β ∈ E : hβ ∈ B∗}. Let K = K(A,B). Fix

H, a K-generic filter over N , and let hα =
⋃
{sp : p ∈ H}. Note that, in N [H],

A∗ <∗ hα <
∗ B∗. Suppose there is some b : ω −→ R in N such that A∗ <∗ b <∗ B∗.

Then b and hα are incomparable under ≤∗.

Proof. Let ḣα be a name for hα (i.e., ḣα[H] = hα). For each n ∈ ω, let Dn = {p ∈

K : ∃k > n, p  ḣα(k) < b(k)}, and let En = {p ∈ K : ∃k > n, p  ḣα(k) > b(k)}.

Claim 8. ∀n ∈ ω, Dn and En are dense.

Proof. Fix n ∈ ω, and fix r ∈ K; say r = (L,R, s). Find k̄ > max{n, |s|} such

that ∀k ≥ k̄, ∀γ ∈ L, δ ∈ R, hγ(k) < b(k) < hδ(k). Find b1, b2 ∈ Q such that

max{hγ(k) : γ ∈ L} < b1 < b(k) < b2 < min{hδ(k) : δ ∈ R}.

Define s̄, t̄ : k̄ + 1 −→ Q by

s̄(k) =


s(k) if k < |s|,

(max{hγ(k) : γ ∈ L}+ min{hδ(k) : δ ∈ R})/2 if |s| ≤ k < k̄, and

b1 if k = k̄.
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t̄(k) =


s(k) if k < |s|,

(max{hγ(k) : γ ∈ L}+ min{hδ(k) : δ ∈ R})/2 if |s| ≤ k < k̄, and

b2 if k = k̄.

Now, let p = (L,R, s̄) ∈ Dn, and let q = (L,R, t̄) ∈ En. Since p ≤ r and q ≤ r,

the sets Dn and En are dense.

Having established the claim, fix n ∈ ω, and find p ∈ H ∩Dn, q ∈ H ∩En. Find

k1 > n such that p  “ḣα(k1) < b(k1)”, and k2 > n such that q  “ḣα(k2) > b(k2)”.

So in N [H], both “hα ≤∗ b” and “b ≤∗ hα” are false; i.e., hα and b are incomparable

under ≤∗.

Theorem 3.10.2. In M [G], (L, <∗) is a maximal linearly ordered subspace of

(ωR, <∗).

Proof. (For the present chapter, let EL = κ; note that in the next chapter the

proof below will be quoted except that EL will have a different definition.) Suppose

instead ∃b ∈ M [G] such that b : ω −→ R , b /∈ L, and (L ∪ {b}, <∗) is a linear

order. Since b can be identified with a subset of ω× ω, there is an η < κ such that

b ∈M [Gη] (see Lemma 5.14 from Chapter VIII of [Kun80], page 276).

Working in M [Gη], let

C̄ = {hγ : γ ∈ EL ∩ η, hγ <∗ b}

D̄ = {hγ : γ ∈ EL ∩ η, b <∗ hγ}
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So (C̄, D̄) is a partition cut in Lη. Let C = {γ : hγ ∈ C̄}, and D = {γ : hγ ∈ D̄}.

Note that sup(C), sup(D) ≤ η. Let B = {β ≥ η : β ∈ EL, C̄ ⊆ A∗β, and D̄ ⊆ B∗β}.29

Note that β ∈ B whenever β ≥ η and Cβ names the set C; since there are κ-many

such β’s, in particular, B 6= ∅. Let β̄ = minB.

Claim 9. (i) C̄ is cofinal in A∗
β̄
; i.e., ∀a ∈ A∗

β̄
, ∃c ∈ C̄ such that a <∗ c or c = a;

and (ii) D̄ is coinitial in B∗
β̄
, i.e., ∀a ∈ B∗

β̄
, ∃d ∈ D̄ such that d <∗ a or d = a.

Proof. For (ii), suppose instead ∃hα ∈ B∗β̄ such that hα <
∗ D̄. Note that α < β̄ and

α ∈ EL. Since hα ∈ B∗β̄, A∗
β̄
<∗ hα. Thus, since C̄ ⊆ A∗

β̄
, C̄ <∗ hα. In particular,

hα is neither in C̄ nor in D̄, which means hα is not in Lη. So α ≥ η, and since

(by definition) A∗α <∗ hα <∗ B∗α, it must be that C̄ ⊆ A∗α and D̄ ⊆ B∗α. Thus,

α ∈ B, and α < β̄, contrary to the minimality of β̄. The argument for (i) is very

similar.

Now, by definition, C̄ <∗ b <∗ D̄. Thus, by the above claim, A∗
β̄
<∗ b <∗ B∗

β̄
.

But, by definition, A∗
β̄
<∗ hβ̄ <∗ B∗

β̄
. We now can apply Lemma 3.10.1 (where

α = β̄ and E = EL ∩ β̄) to conclude that b and hβ̄ are incomparable (under

≤∗) in M [Gβ̄+1], and therefore in M [G]. This contradicts the assumed linearity of

(Lκ ∪ {b}, <∗).

29Recall that for each β ∈ EL, (A∗β , B
∗
β) is the cut in Lβ , while Aβ = {γ : hγ ∈ A∗β}, Bβ = {γ :

hγ ∈ B∗β} are the corresponding index sets; moreover, Cβ is the βth element in the enumeration
C = {Cβ : β ∈ EL} of potential names for subsets of κ of size < κ.
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Remark 8. It is important for the above argument that for each α < κ, |Lα| < κ,

to ensure that the cut (C̄, D̄) is of size < κ. This remark will be especially relevant

in the next chapter.
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4 A Saturated Pantachie and MA

The goal of this chapter is to show the consistency of Martin’s Axiom together with

the existence of a saturated pantachie, in other words, the existence of a maximal

saturated linear order of size c ≥ ω2 in the partial order (ωR, <∗) (i.e., functions

from ω into the reals, ordered by eventual strict domination). In short, the goal of

this chapter is to prove the following:

Theorem 4.0.3. Con(ZFC + MA + ∃ a maximal saturated linear order of size

c ≥ ω2 in (ωR, <∗)).

We work with the restricted partial order, (ωQ, <∗) (i.e., functions from ω into

the rationals, ordered by eventual strict domination), and eventually show that

the saturated linear order constructed is a maximal linearly ordered subspace not

merely of (ωQ, <∗), but also of (ωR, <∗).
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4.1 Introduction and Strategy Outline

The strategy for proving Theorem 4.0.3 involves a finite support iterated forcing

construction (within M , a countable transivite model for ZFC) of length κ, where

κ is a regular cardinal such that κ ≥ ω2 and 2<κ = κ. First, partition κ into the

following classes:

• EL = EASY-LIMITS = {β < κ : β ∈ LIM , cf(β) 6= ω1};

• HL = HARD-LIMITS = {β < κ : β ∈ LIM , cf(β) = ω1}

• ES = EASY-SUCCESSORS = {β < κ : β = α + 1, α /∈ HL};

• HS = HARD-SUCCESSORS = {β < κ : β = α + 1, α ∈ HL}

A subset L of ωQ will be constructed recursively, and shown to be a maximal

saturated linear order of size κ = c in the final forcing extension. First, using the

class EL of easy limit ordinals as index set, fix an enumeration of cuts in L (or

more precisely, an enumeration of candidates for names of cuts in L ) such that

each cut (i.e., candidate) is enumerated cofinally often.30 Similarly, fix a cofinally-

often enumeration of all candidates for ccc-partial order names, using the class ES

of easy successor ordinals as index set.

30Cf. section 3.2 from Chapter 3
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The iterated forcing and L are defined by a simultaneous recursion of length κ.

Through the course of the recursion, for each α ∈ EL, a function hα is defined, and

for any β ≤ κ, let Lβ = {hα : α < β, α ∈ EL}. (In the end we will set L = Lκ.) In

a bit more detail:

1. When α ∈ EL, force with the Kunen partial order for filling the cut in Lα

from the enumeration. (Note that it is only at these stages that we add

functions into the emerging linear order; namely, we add the function hα that

fills the cut.)

2. For α ∈ ES, force with the ccc partial order given by the ccc-p.o. enumera-

tion. (This ensures that MA will hold in the final forcing extension.)

3. If α ∈ HL, force with the (finite-support) product of the Kunen partial orders

for filling each partition cut in Lα. (Note however that no function is added

into the emerging linear order at this stage! We only force with these partial

orders to render the appropriate gaps ccc-fillable31 in later stages.)

4. Finally, for α ∈ HS, force with the (finite-support) product of all Aronszajn-

tree specializers. (It will be shown that forcing with this product renders it

impossible to add new ω1-gaps of exisiting elements in the linear order via

any future ccc forcing.)

31See Definition 39.
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After defining the forcing and L = Lκ, we show that the forcing is ccc. It then

follows by standard methods that in the forcing extension, c = κ and MA holds.

Finally, we show that L is a maximal saturated linear order of size c in (ωR, <∗).

4.2 Special Gaps and Strong Gaps

The important notion of a “strong” or ccc-indestructible gap can now be introduced.

This machinery is due to Kunen; similar versions of these definitions and results

can be found in [Woo84]. In the definitions and results that follow, the statement

“Let (F ,G) be an ω1-(pre)gap” is short for “Suppose ({fα : α < ω1}, {gα : α < ω1})

is an ω1-(pre)gap in (Q, <∗), and let (F ,G) = ({fα : α < ω1}, {gα : α < ω1})”.

Definition 39. Let (F ,G) be an ω1-gap. (F ,G) is called a strong gap or a ccc-

indestructible gap if it cannot be filled in any ccc forcing extension. On the other

hand, an ω1-gap which is not strong (i.e., it can be filled by some ccc forcing

extension) is called weak, or ccc-fillable.

Definition 40. An ω1-pregap (F ,G) is said to be special if there is some k < ω

such that the following two conditions hold:

(i) ∀α < ω1, ∀n > k, fα(n) < gα(n); and

(ii) ∀α 6= β < ω1, ∃n > k such that fα(n) ≥ gβ(n) or fβ(n) ≥ gα(n).

Lemma 4.2.1. For any ω1-pregap (F ,G), if (F ,G) is special then (F ,G) is a gap.
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Proof. Suppose instead that for some h : ω −→ Q, F <∗ h <∗ G. Find k such

that (i) and (ii) from Definition 40 hold. Define π : ω1 −→ ω by π(α) = min{m ≥

k : ∀n ≥ m, fα(n) < h(n) < gα(n)}. Suppose for some m ∈ ω, π(α) = m (for

all α < ω1). Also, suppose there is some g : m −→ Q such that for all α < ω1,

gα � m = g.

Now property (ii) is contradicted for any pair α 6= β < ω1. To see this, fix

n ≥ k. If k ≤ n < m, then, using property (i), fα(n) < gα(n) = g(n) = gβ(n), and

fβ(n) < gβ(n) = g(n) = gα(n). On the other hand, if n ≥ m, then fα(n) < h(n) <

gβ(n) and fβ(n) < h(n) < gα(n).

Corollary 4.2.2. A special gap is ccc-indestructible.

Proof. Let (F ,G) be special and let P be a ccc forcing notion. Find k such that

(i) and (ii) from Definition 40 hold. In V P , (F ,G) is an (ω1)V -pregap satisfying

properties (i) and (ii) from Definition 40 for k, by absoluteness. Since P is ccc,

(ω1)V
P

= (ω1)V , so by Lemma 4.2.1 in V P , (F ,G) is a gap in V P .

Remark 9. Note that the above proof actually shows that a special gap remains un-

filled not only in a ccc forcing extension, but in any forcing extension that preserves

ω1.

Lemma 4.2.3. Let (F ,G) be an ω1-gap. If K = K(F ,G)32 is not ccc, then (F ,G)

32The notation K(F ,G) is explained in Definition 28.
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is equivalent to a special gap.

Proof. Fix A = {pγ | γ < ω1} an uncountable antichain in K, and suppose for

each γ, pγ = (Lγ, Rγ, sγ). By extending the pγ if necessary, suppose that for all

γ < ω1, Lγ = Rγ. Also, suppose without loss of generality that there is some

k ∈ ω and s : k −→ Q such that for all γ < ω1, sγ = s. Furthermore, suppose

the set {Lγ : γ < ω1} forms a ∆-system with root Σ such that ∀γ < γ′ < ω1,

Lγ \ Σ < Lγ′ \ Σ.

Claim 10. For each γ 6= γ′ ∈ ω1, there is some n ≥ k such that max{fα(n) : α ∈

Lγ} ≥ min{gα(n) : α ∈ Rγ′} or max{fα(n) : α ∈ Lγ′} ≥ min{gα(n) : α ∈ Rγ}.

Proof. Suppose instead that there is a pair γ 6= γ′ ∈ ω1 such that for each n ≥ k,

max{fα(n) : α ∈ Lγ} < min{gα(n) : α ∈ Rγ′} and max{fα(n) : α ∈ Lγ′} <

min{gα(n) : α ∈ Rγ}. Then q = (Lγ ∪ Lγ′ , Rγ ∪ Rγ′ , s) is a condition extending

both pγ and pγ′ , which are supposed to be incompatible.

Next, for each γ < ω1, define Fγ, Gγ : ω −→ Q by

Fγ(n) =


0 if n < k,

max{fα(n) : α ∈ Lγ} if n ≥ k.

Gγ(n) =


1 if n < k,

min{gα(n) : α ∈ Rγ} if n ≥ k.
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Let F ′ = {Fγ | γ < ω1}, and G ′ = {Gγ | γ < ω1}. For each γ < ω1, let

π(γ) = maxLγ = maxRγ. So Fγ =∗ fπ(γ) and Gγ =∗ gπ(γ). Thus, (F ,G) ∼= (F ′,G ′).

To see that (F ′,G ′) satisfies property (i) from Definition 40 for k, first fix γ < ω1

and n ≥ k. For some β ∈ Lγ and some δ ∈ Rγ, Fγ(n) = fβ(n) and Gγ(n) = gδ(n).

So Fγ(n) < Gγ(n). Next, to see that (F ′,G ′) satisfies property (ii) from Definition

40 for k, fix γ 6= γ′ < ω1. By Claim 10, ∃n ≥ k such that Fγ(k) ≥ Gγ′(k) or

Fγ′(k) ≥ Gγ(k). So (F ′,G ′) is special.

Corollary 4.2.4. Let (F ,G) be an ω1-gap. (F ,G) is ccc-indestructible iff (F ,G) is

equivalent to a special gap.

Proof. Suppose first that (F ,G) is equivalent to (F ′,G ′), a special gap. By Corol-

lary 4.2.2, (F ′,G ′) is ccc-indestructible. But then, any ccc forcing for splitting

(F ,G) would also split (F ′,G ′), since the gaps are equivalent. Thus, (F ,G) is

ccc-indestructible.

Next, suppose that (F ,G) is ccc-indestructible. Since K = K(F ,G) splits the

gap, K cannot be ccc. Thus, by Lemma 4.2.3, (F ,G) is equivalent to a special

gap.

Lemma 4.2.5. Suppose (F ,G) is an ω1-gap. Then K = K(F ,G) is ccc iff (F ,G)

is ccc-fillable (i.e., weak).

Proof. Suppose first K is ccc. Since K fills the gap (F ,G), the gap is ccc-fillable.
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Next, suppose K is not ccc. Then, using Lemma 4.2.3, (F ,G) is equivalent to some

special gap (F ′,G ′). By Corollary 4.2.2, (F ′,G ′) is a ccc-indestructible gap. So then

(F ,G) must be ccc-indestructible too.

The following formulation will be useful.

Lemma 4.2.6. Suppose (F ,G) is a ccc-indestructible ω1-gap, and k̄ ∈ ω. Then

there is some k∗ ≥ k̄ and an uncountable subset S ⊆ ω1 such that

• ∀α ∈ S, ∀n ≥ k∗, fα(n) < gα(n); and

• ∀α 6= β ∈ S, ∃n ≥ k∗ such that fα(n) ≥ gβ(n) or fβ(n) ≥ gα(n).

Proof. Since (F ,G) is ccc-indestructible, in particular, K(F ,G) is not ccc. Let

A = {pγ : γ < ω1} be an uncountable antichain where for each γ, pγ = (Lγ, Rγ, sγ),

|sγ| ≥ k̄, and Lγ = Rγ. Find k∗ ≥ k̄ and s : k∗ −→ Q such that S1 = {γ < ω1 :

sγ = s} is uncountable. Find Σ ∈ [ω1]<ω and S2 ∈ [S1]ω1 such that {Lγ : γ ∈ S2}

is a ∆-system with root Σ and ∀γ < γ′ ∈ S2, Lγ \ Σ < Lγ′ \ Σ.

Claim 11. For each γ 6= γ′ ∈ S2, there is some n ≥ k∗ such that max{fα(n) : α ∈

Lγ} ≥ min{gα(n) : α ∈ Rγ′} or max{fα(n) : α ∈ Lγ′} ≥ min{gα(n) : α ∈ Rγ}.

Proof. Exactly the same as the proof of Claim 10 from Lemma 4.2.3.

Define Fγ and Gγ just as in the proof of Lemma 4.2.3. Define π : S2 −→ ω1 by

π(γ) = maxLγ = maxRγ. Define e : S2 −→ ω by e(γ) = min{m ≥ k∗ : ∀n ≥ m,
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Fγ(n) = fπ(γ)(n) and Gγ(n) = gπ(γ)(n)}.

Find m ≥ k∗, f : m −→ Q, g : m −→ Q, and S3 ∈ [S2]ω1 such that ∀γ ∈ S3,

e(γ) = m, fπ(γ) � m = f , and gπ(γ) � m = g

Let S = {π(γ) : γ ∈ S3}. Fix n ≥ k∗ and γ ∈ S3. Since π(γ) ∈ Lγ = Rγ,

fπ(γ)(n) < gπ(γ)(n). Next, fix γ, γ′ ∈ S3. By Claim 11, find n ≥ k∗ such that

max{fα(n) : α ∈ Lγ} ≥ min{gα(n) : α ∈ Rγ′} or max{fα(n) : α ∈ Lγ′} ≥

min{gα(n) : α ∈ Rγ}. By the choice of m, it must be that n ≥ m, which means

that fπ(γ)(n) ≥ gπ(γ′)(n) or fπ(γ′)(n) ≥ gπ(γ)(n). Thus, the set S is as required.

We next prove a product version of Lemma 4.2.6 which will be used in the proof

of Theorem 4.5.1.

Lemma 4.2.7. Let {(F i,Gi) : i < N} be a collection of ω1-gaps where for each

i < N , F i = {f iα : α < ω1} and Gi = {giα : α < ω1}. Suppose that for some k′ ∈ ω,

∀γ < ω1,∀i < N,∀k ≥ k′, f iγ(k) < giγ(k) (4.1)

and

∀S ∈ [ω1]ω1 ,∃α 6= β ∈ S,∀i < N,∀k ≥ k′, f iα(k) < giβ(k) and f iβ(k) < giα(k). (4.2)

Then Π{K(F i,Gi) : i < N} is ccc.
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Proof. Our first task is to find a single gap, (F ,G), which encodes the N gaps,

{(F i,Gi) : i < N}. To this end, a bijection between ω × N and ω will be needed,

and we find it preferable to use a concrete bijection obtained by partitioning ω into

the N -modular classes.

Definition 41. Given k ∈ ω, let div(k) and rem(k) be the unique finite ordinals

such that rem(k) < N and k = div(k) ·N + rem(k).

Definition 42. Define π : (ωQ)N −→ (ωQ) by π(f 0, . . . , fN−1) = f , where f is

defined by f(k) = f i(m), where i = rem(k) and m = div(k).

Remark 10. Note that π is a bijection, and π−1(f) = (f 0, . . . , fN−1), where for each

i < N and m ∈ ω, f i(m) = f(m ·N + i).

Definition 43. For each γ < ω1, define fγ = π(f 0
γ , . . . , f

N−1
γ ), and gγ = π(g0

γ, . . . , g
N−1
γ ).

Let F = {fγ : γ < ω1}, and G = {gγ : γ < ω1}.

Claim 12. (F ,G) is a pregap.

Proof. Fix β < γ < ω1. Fix j > N such that ∀i < N, ∀k ≥ j, f iβ(k) < f iγ(k) <

giγ(k) < giβ(k). Now, fix k ≥ j ·(N+1), and suppose k = m ·N+ i, where i < N . So

m ≥ j, and so f iβ(m) < f iγ(m) < giγ(m) < giβ(m). Hence, fβ(k) < fγ(k) < gγ(k) <

gβ(k).

Claim 13. (a) If (F ,G) is filled then ∀i < N , (F i,Gi) is filled.
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(b) (F ,G) is a gap.

Proof. Suppose that (F ,G) is filled; say F <∗ h <∗ G. Fix i < N , and define

hi : ω −→ Q by hi(m) = h(m · N + i). Fix j such that ∀k ≥ j, fγ(k) < h(k) <

gγ(k). Now, fix m ≥ j and let k = m · N + i. Since m ≥ j, k ≥ j. Thus,

f iγ(m) = fγ(k) < h(k) = hi(m) < gγ(k) = giγ(m). So hi fills (F i,Gi); since the

latter is actually a gap (i.e., unfilled), it must be that (F ,G) is also a gap.

Remark 11. Although not needed for the proof of Lemma 4.2.7, it’s interesting to

note (as demonstrated by the above proof of Claim 13) that if there is even just

one i < N such that (F i,Gi) is a gap, then (F ,G) will be a gap as well.

Notation. Let K = K(F ,G), and let K ′ = Π{K(F i,Gi) : i < N}.

Claim 14. If K is ccc, then K ′ is ccc.

Proof. Suppose K is ccc. In V K , since (F ,G) is filled, each (F i,Gi) is also filled

(by Claim 13). Since K is ccc, (ω1)V = (ω1)V
K

, and so each (F i,Gi) is a filled

ω1-pregap; hence, each K(F i,Gi) is σ-centered in V K (see Lemma 4.2.8 below). So

K ′ is σ-centered in V K , since a product of σ-centered forcing notions is σ-centered.

Now, suppose towards a contradiction that A ⊆ K ′ is an antichain of size ω1 in

V . Then A is still an ω1-antichain in V K , whence K ′ is both ccc and not ccc in

V K .
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Finally, we suppose, toward a contradiction, that K ′ = Π{K(F i,Gi) : i < N} is

not ccc. Thus, by Claim 14, K = K(F ,G) is not ccc. So, by Lemma 4.2.5, (F ,G)

is ccc-indestructible. Thus, we may apply Lemma 4.2.6, using k̄ = k′ ·N + N . So

we obtain a set X ∈ [ω1]ω1 and an integer k∗ ≥ k̄ such that for each γ 6= η ∈ X,

there is some k ≥ k∗ such that fγ(k) ≥ gη(k) or fη(k) ≥ gγ(k).

Claim 15. ∃S ∈ [ω1]ω1, ∀γ 6= η ∈ S, ∃i < N and m ≥ k′ such that f iγ(m) ≥ giη(m)

or f iη(m) ≥ giγ(m).

Proof. Let S = X. Fix any γ 6= η ∈ X. So, there is some k ≥ k∗ ≥ k̄ such that

either fγ(k) ≥ gη(k), or fη(k) ≥ gγ(k). Suppose first that fγ(k) ≥ gη(k). Say

k = m · N + i. So f iγ(m) = fγ(k) ≥ gη(k) = giη(m). Note that m ≥ k′, since

k ≥ k∗ ≥ k̄ = k′ ·N +N . The case fη(k) ≥ gγ(k) is similar.

Note that Claim 15 contradicts (4.2) from page 64.

Lemma 4.2.8. Let (F ,G) be an ω1-pregap in (<ωQ, <∗), let h : ω −→ Q, and

suppose F <∗ h <∗ G. Then K = K(F ,G) is σ-centered.

Proof. For each s ∈ <ωQ, k ∈ ω, andB,C ∈ [kQ]<ω, letK(s, k, B, C) = {(L,R, s) ∈

K : k > |s|, ∀γ ∈ L, ∀δ ∈ R, ∀n ≥ k, fγ(n) < h(n) < gδ(n), B = {fγ � k : γ ∈ L},

C = {gδ � k : δ ∈ R}}.

Claim 16. K =
⋃
{K(s, k, B, C) : s ∈ ωQ, k ∈ ω, B,C ∈ [kQ]<ω}.
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Proof. Fix (L,R, s) ∈ K. Since L <∗ h <∗ R, find k > |s| such that ∀γ ∈ L, ∀δ ∈

R, ∀n > k, fγ(n) < h(n) < gδ(n). Let B = {fγ � k : γ ∈ L}, C = {gδ � k : δ ∈ R}.

Then (L,R, s) ∈ K(s, k, B, C).

Claim 17. For each s ∈ Q<ω, k ∈ ω, and B,C ∈ [kQ]<ω, the set K(s, k, B, C) is

centered.

Proof. Fix such s, k, B and C. Let {(Li, Ri, s) : i < m} be a finite subset

of K(s, k, B, C). Let L =
⋃
i<m L

i, and R =
⋃
i<mR

i. Then for each i < m,

(L,R, s) ≤ (Li, Ri, s). To see this, we need only show that (L,R, s) ∈ K. So, fix

γi ∈ Li, δr ∈ Rr, and n > |s|. If n > k, then fγi(n) < h(n) < gδr(n), by definition

of K(s, k, B, C). So suppose that n < k. Note that {fγ � k : γ ∈ Li} = B = {fγ �

k : γ ∈ Lr}. So ∃γr ∈ Lr such that fγi � k = fγr � k. So fγi(n) = fγr(n) < gδr(n),

since (Lr, Rr, s) ∈ K.

So K is a countable union of centered sets.

Definition 44. A partial order P is pre-caliber ℵ1 (or has ℵ1 as a pre-caliber) if for

every uncountable subset A of P , there is an uncountable B ⊆ A that is a centered

family in P (i.e., given any finite subset F ⊆ B, there is some p ∈ P such that p

extends every element of F ).

Remark 12. It is easy to see that a σ-centered partial order is pre-caliber ℵ1.
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Lemma 4.2.9. Let (F ,G) be a (κ, λ)-gap in (ωQ, <∗). If cf(κ) 6= ω1 or cf(λ) 6= ω1,

then K(F ,G) is pre-caliber ℵ1.

Proof. Write F = {fα : α < κ}, G = {gα : α < λ}, and K = K(F ,G). It suffices to

consider the case cf(κ) 6= ω1.

CASE 1 Suppose cf(κ) = ω. Let {ξj : j < ω} be a strictly increasing sequence

of ordinals from κ converging to κ. For each j ∈ ω, let Aj = {(L,R, s) ∈ K : L ⊆

ξj}. Note that K =
⋃
j∈ω Aj.

For each j ∈ ω, s̄ ∈ Q<ω, k ∈ ω, and B,C ∈ [kQ]<ω, let Aj(s̄, k, B, C) =

{(L,R, s) ∈ Aj : s = s̄, k > |s|, ∀γ ∈ L, ∀δ ∈ R, ∀n ≥ k, fγ(n) < fξj(n) < gδ(n),

B = {fγ � k : γ ∈ L}, C = {gδ � k : δ ∈ R}}.

Claim 18. For each j < ω, Aj =
⋃
{Aj(s̄, k, B, C) : s̄ ∈ ωQ, k ∈ ω, B,C ∈

[kQ]<ω}.

Proof. Similar to the proof of Claim 16, except now fξj plays the role of h.

Claim 19. For each j ∈ ω, s ∈ Q<ω, k ∈ ω, and B,C ∈ [kQ]<ω, the set

Aj(s, k, B, C) is centered.

Proof. Similar to the proof of Claim 17, except now fξj plays the role of h.

So K =
⋃
j∈ω Aj is a countable union of centered sets. Being σ-centered, K is

pre-caliber ℵ1.
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CASE 2 Suppose cf(κ) = ρ > ω1. For each A ∈ [K]<ρ, find ξA < κ such that

∀(L,R, s) ∈ A, L ⊆ ξA. Fix A and ξA. We need to show A has an uncountable

centered subset, but we will show something stronger, namely, that A is σ-centered.

For each s ∈ Q<ω, k ∈ ω, and B,C ∈ [kQ]<ω, let A(s̄, k, B, C) = {(L,R, s) ∈

A : s = s̄, k > |s|, ∀γ ∈ L, ∀δ ∈ R, ∀n ≥ k, fγ(n) < fξA(n) < gδ(n), B = {fγ � k :

γ ∈ L}, C = {gδ � k : δ ∈ R}}.

Claim 20. A =
⋃
{A(s̄, k, B, C) : s̄ ∈ ωQ, k ∈ ω, B,C ∈ [kQ]<ω}.

Proof. Just like the proof of Claim 16, except now fξA plays the role of h.

Claim 21. For each s ∈ Q<ω, k ∈ ω, and B,C ∈ [kQ]<ω, the set A(s, k, B, C) is

centered.

Proof. Just like the proof of Claim 17, except now fξA plays the role of h.

So A is a countable union of centered sets.

CASE 3 Suppose cf(κ) < ω. For cf(κ) = 0, any finite set of conditions of

the form {(∅, Ri, s) : i < m} will have lower bound (∅,
⋃
i<nR

i, s). So suppose

cf(κ) = 1. Let ξ = sup(κ) < κ, and let h = fξ.

For each s ∈ Q<ω, k ∈ ω, andB,C ∈ [kQ]<ω, letK(s, k, B, C) = {(L,R, s) ∈ A :

k > |s|, ∀γ ∈ L \ h, ∀δ ∈ R, ∀n ≥ k, fγ(n) < h(n) < gδ(n), B = {fγ � k : γ ∈ L},

C = {gδ � k : δ ∈ R}}.
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Claim 22. K =
⋃
{K(s, k, B, C) : s ∈ ωQ, k ∈ ω, B,C ∈ [kQ]<ω}.

Proof. Like the proof of Claim 16.

Claim 23. For each s ∈ Q<ω, k ∈ ω, and B,C ∈ [kQ]<ω, the set K(s, k, B, C) is

centered.

Proof. Similar to the proof of Claim 17.

So K is a countable union of centered sets. Once again, being σ-centered, K is

pre-caliber ℵ1.

We will need a few standard facts about pre-caliber ℵ1, namely, that pre-caliber

ℵ1 posets are ccc, that the product of a pre-caliber ℵ1 poset with a ccc partial order

is ccc, and that the pre-caliber ℵ1 property is preserved under finte products.

Lemma 4.2.10. Let P and Q be partial orders.

1. If P is pre-caliber ℵ1, then P is ccc.

2. If P and Q are pre-caliber ℵ1, then P ×Q is pre-caliber ℵ1.

3. If P is pre-caliber ℵ1 and Q is ccc, then P ×Q is ccc.

Proof. See [Kun11], page 182.
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4.3 The Suslin Tree Lemmas

Before describing in detail the actual forcing construction needed to prove Theorem

4.0.3, a few more lemmas will be needed. These results, and some of the proofs,

can also be found in [Woo84].

Lemma 4.3.1. Fix M , a countable transitive model for ZFC, and in M, suppose

(L,<) is an uncountable linear order, and P is a ccc forcing notion. If forcing with

P creates a new ω1-gap in L, then there is a Suslin tree T in M such that forcing

with P shoots a branch through T .

Proof. Before proceeding, some definitions will be needed. First, a subset I ⊆ L

will be called an interval if ∀a, c ∈ I, ∀b ∈ L, a < b < c ⇒ b ∈ I. It will be useful

to identify gaps in L with the corresponding upper half interval in L:

Definition 45. Given a gap (A,B) in L, let UHI(A,B) (respectively, LHI(A,B))

denote the upper-half interval (respectively, lower-half interval) corresponding to

(A,B). I.e., UHI(A,B) = {x ∈ L : ∀a ∈ A, a < x}, and LHI(A,B) = {x ∈ L :

∀b ∈ B, x < b}.

Definition 46. Given a gap (A,B) in L, and an interval J from L, say (A,B) lies

in J if both LHI(A,B)∩J and UHI(A,B)∩J are non-empty. Note that if (A,B)

is an ω1-gap and A = {aα : α < ω1}, B = {bα : α < ω1}, then (A,B) lies in J iff

∃η̄ < ω1 such that “(A,B) beyond η̄ is in J”; i.e., ∀η > η̄, aη, bη ∈ J .

72



Definition 47. Given an interval I ⊆ L and some y ∈ I, let I0(y) = {x ∈ I : x ≤

y} and I1(y) = {x ∈ I : x > y}.

Finally, fix a P -name τ such that 1  “τ is an ω1-gap in L”, and such that

∀x ∈ P(L) ∩M , ∀p ∈ P , p 6 “UHI(τ) = x̌”.

Claim 24. Suppose I is an interval from L such that ∃p ∈ P , p  “τ lies in Ǐ”.

Then there is some xI ∈ I and conditions p0, p1 ∈ P such that p0  “τ lies in

I0(x̌I)”, and p1  “τ lies in I1(x̌I)”.

Proof. Fix (Ȧ, Ḃ) such that 1  “τ = (Ȧ, Ḃ)”. Fix I and p such that p  “τ lies in

I”. Suppose first that for each y ∈ I, p  “τ lies in I0(y)”, or p  “τ lies in I1(y)”.

Let I1 = {y ∈ L : p  τ lies in I0(y)}. Note that I1 is in M , and p  “UHI(τ) =

I1”, contrary to hypothesis. To see more clearly that p  “UHI(τ) = I1”, fix G, a

generic filter for P over M , such that p ∈ G. Let A = Ȧ[G], and let B = Ḃ[G]. We

need to show that UHI(A,B) = I1. Fix first y ∈ UHI(A,B). So for each a ∈ A,

a < y. Either y ∈ I, or y > I. In the latter case, since p  “τ lies in I”, it follows

that p  “τ lies in I0(y)”. On the other hand, if y ∈ I, suppose instead that p  “τ

lies in I1(y)”. So in M [G], (A,B) lies in I1(y). But then ∃a ∈ A such that a > y,

contrary to the assumption that y ∈ UHI(A,B) = {x ∈ L : ∀a ∈ A, a < x}. Next,

fix y ∈ I1. So y ∈ L and p  “τ lies in I0(y)”. So, in M [G], (A,B) lies in I0(y).

Then, given a ∈ A, it must be that a < y. So y ∈ UHI(A,B).
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So, there must be some xI in I such that p 6 “τ lies in I0(xI)”, and p 6 “τ lies

in I1(xI)”. So ∃p1 ≤ p such that p1  “τ does not lie in I0(y)”, and hence p1  “τ

lies in I1(y)”; similarly, ∃p0 ≤ p such that p0  “τ lies in I0(y)”.

Now, recursively define {Sα : α < ω1} such that for each α < ω1:

1. Sα ⊆ P(L) is a non-empty collection of intervals of L;

2. ∀I 6= J ∈ Sα, I ∩ J = ∅;

3. 1  “(∃I ∈ Sα)τ lies in I”;

4. ∀I ∈ Sα, ∃p ∈ P such that p  “τ lies in I”;

5. ∀β < α, ∀I ∈ Sβ, ∃I0, I1 ∈ Sα such that I0 ∩ I1 = ∅ and I0 ∪ I1 ⊆ I;

6. ∀β < α, ∀I ∈ Sα, ∃J ∈ Sβ such that I ⊆ J .

To begin, let S0 = {L}. Next, fix β < ω1, and suppose that for all δ < β, Sδ has

been defined subject to the conditions. If β = α+ 1, find xI for each I ∈ Sα as per

Claim 24. Let Sβ = {I0(xI) : I ∈ Sα} ∪ {I1(xI) : I ∈ Sα}.

If β ∈ LIM , first let Xβ = {x ∈ L : ∀α < β,∃I ∈ Sα such that x ∈ I}. Define

an equivalence relation ∼ on Xβ by x ∼ y iff ∀α < β, ∀I ∈ Sα, x ∈ I ⇔ y ∈ I. Let

S = {[x] : x ∈ Xβ}, the collection of equivalence classes for ∼ on Xβ.

Claim 25. S is a collection of intervals of L.
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Proof. Fix [x] ∈ S. Suppose y, z ∈ [x] such that y < z, and fix w ∈ L such that

y < w < z. To see that w ∼ x, fix α < β, I ∈ Sα, and suppose first x ∈ I. Then

y, z ∈ I, and so w ∈ I since I is an interval. So suppose next that w ∈ I. Since

x ∈ Xβ, there is some I ′ ∈ Sα such that x ∈ I ′. So y, z ∈ I ′, and hence w ∈ I ′.

Since w ∈ I ∩ I ′, it must be that I = I ′, and so x ∈ I.

Now, for each α < β, for each I ∈ Sα, find pI ∈ P such that pI  τ lies in I.

Extend each {pI} to an antichain AI such that ∀p ∈ AI , p  τ lies in I, and AI is

maximal with respect to this property. For each α < β, let Aα =
⋃
{AI : I ∈ Sα}.

Claim 26. For each α < β, Aα is a maximal antichain in P .

Proof. Fix p, q ∈ Aα, and suppose p ∈ AI , q ∈ AJ (where I, J ∈ Sα). If I = J , then

p ⊥ q since AI is an antichain; if I 6= J , then I ∩ J = ∅, so p ⊥ q. Thus, Aα is an

antichain. For maximality, suppose instead there is some r ∈ P such that ∀p ∈ Aα,

r ⊥ p. Since 1  “(∃I ∈ Sα)τ lies in I”, find I ∈ Sα and q ≤ r such that q  τ lies

in I. So ∃p ∈ AI such that p 6⊥ q. But then r 6⊥ p, a contradiction.

Claim 27. For each G ⊆ P generic over M , there is a pG ∈ G such that pG 

(∃I ∈ S)τ lies in I.

Proof. Fix such a G, and for each α < β, let pα denote the unique condition such

that pα ∈ G ∩ Aα. Let Iα denote the unique I ∈ Sα such that pα  τ lies in İα

(where İα names the interval Iα, for each α < β). In M [G], suppose τ [G] = (A,B),
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where A = {aη : η < ω1}, B = {bη : η < ω1}. Since β is countable and (A,B) is an

ω1-gap, there must be some η̄ such that ∀α < β, (A,B) beyond η̄ is in Iα. Thus,

I∗ =
⋂
α<β Iα is an (uncountable) interval of L such that (A,B) lies in I∗. Note

that for each x ∈ I∗, I∗ = [x] ∈ S. So in M [G], (∃I ∈ S)τ [G] lies in I. The forcing

lemma now completes the proof.

Claim 27 can be rephrased as follows:

Claim 28. 1  “(∃I ∈ S) τ lies in I”.

Let S ′ = {I ∈ S : ∃p ∈ P , p  “τ lies in I”}. Note that by Claim 27, S ′ is

non-empty. For each I ∈ S ′, find xI as per Claim 24, and let Sβ = {I0(xI) : I ∈

S ′} ∪ {I1(xI) : I ∈ S ′}.

Having completed the construction, let T =
⋃
{Sα : α < ω1}.

Claim 29. (T,⊇) is an ω1-Suslin tree in M .

Proof. Clearly T is a tree of height ω1 with levels the Sα’s. To see that T has no

uncountable levels, or more in general, no uncountable antichains, suppose instead

that A = {Iα : α < ω1} is an antichain in T . For each α < ω1, choose pα ∈ P such

that pα  τ lies in Iα. But then {pα : α < ω1} is an uncountable antichain in P ,

contrary to the assumption that P is ccc.

The fact that (in M) every chain in T is countable, follows immediately now

by a well-known result on trees. To be explicit, suppose instead that B ⊆ T is an
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ω1-branch of T in M . For each α ∈ ω1, let B(α) denote the node of T on the αth

level of T ; i.e., {B(α)} = B∩Sα, and pick Iα ∈ Sα+1\B such that Iα ⊆ B(α). Then

{Iα : α < ω1} is an uncountable antichain, contrary to the preceding paragraph.

Finally, note that τ determines an ω1-branch through T in MP . More explicitly,

fixing G ⊆ P generic over M , the set {I ∈ T : ∃p ∈ G such that p  τ lies in I} is

a branch through T in M [G].

Definition 48. Given any tree T , define S(T ) = {p ∈ Fn(T, ω) | ∀n ∈ ω, p−1{n}

is an antichain in T}, ordered by reverse inclusion.33 Call these forcing notions the

tree-specializers.

Remark 13. Note that forcing with S(T ) makes T into a special tree — see Lemma

4.3.4 for a proof. Furthermore, Baumgartner has shown that S(T ) is ccc whenever

T is an Aronszajn tree.

Lemma 4.3.2. Given any Aronszajn tree T , S(T ) is ccc.34

Proof. Suppose instead that A ⊆ S(T ) is an uncountable antichain. Suppose that

{dom(p) : p ∈ A} is a ∆-system with root R and tails Xp, such that for all p ∈ A,

|Xp| = n (for some fixed n ∈ ω). For each p ∈ A, write Xp = {tpi : i < n}. Suppose

further that ∃p̄ : R −→ ω such that for each p ∈ A, p � R = p̄.

33Given sets I, J , Fn(I, J) denotes the set of finite partial functions from I into J .

34Cf. [BMR70].
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Claim 30. For each p 6= q ∈ A, ∃k, l < n such that tpk, t
q
l are comparable and

p(tpk) = q(tql ).

Proof. If not, then p ∪ q ∈ S(T ), and then p, q would be compatible.

Fix U , a non-principal ultrafilter on A (i.e., on (P(A),⊆)) such that all co-

countable subsets of A are in U .

Claim 31. ∀p ∈ A, ∃k = kp, l = lp < n such that Ap,k,l = {q ∈ A : p(tpk) = q(tql ),

and tpk, t
q
l are comparable} ∈ U .

Proof. Fix p ∈ A. Note that A \ {p} =
⋃
{Ap,k,l : k, l < n}.35 But A \ {p} ∈ U ,

since U is non-principal. Since {Ap,k,l : k, l < n} is a finite collection, there must

be some k, l < n such that Ap,k,l ∈ U .

For each p ∈ A, choose kp < n and lp < n as per Claim 31. Suppose ∃k, l < n

such that ∀p ∈ A, kp = k and lp = l.

Claim 32. {tpk : p ∈ A} is a chain in T .

Proof. Fix p 6= q ∈ A, and let A′ = Ap,k,l ∩ Aq,k,l ∈ U . Since U is an ultrafilter

containing all co-countable sets, A′ cannot be countable. Furthermore, note that

35To see that A\{p} =
⋃
{Ap,k,l : k, l < n}, first fix q ∈ A\{p}. By Claim 30, there are k, l < n

such that q ∈ Ap,k,l. For the other direction, given any k, l < n, note that p /∈ Ap,k,l, by definition
of S(T ).
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for all u ∈ A′, tpk, tul are comparable, and tqk, t
u
l are comparable. Since T is an ω1-

tree, there are only countably many nodes that lie below tpk (in the tree ordering).

Since A′ is uncountable, there must be some u ∈ A′ such that tpk ≤ tul . But then tpk

and tql are comparable.

Since A is uncountable, {tpk : p ∈ A} is an uncountable branch in T , contrary to

the assumption that T is Aronszajn.

Definition 49. Let T = {(T,≤) : T ⊆ ω1, (T,≤) is an Aronszajn tree}, and let

S = Π{S(T ) : T ∈ T }, the finite support product of these tree specializers.

Corollary 4.3.3. S is ccc.

Proof. It suffices to show that given any finite collection {Ti : i < k} of Aronszajn

trees, the product Πi<kS(Ti) is ccc. To begin, let T denote the disjoint union of

these finitely many trees. Note that S(T ) is order isomorphic to Πi<kS(Ti); the

isomorphism is given by:

ϕ : S(T ) −→ Πi<kS(Ti); ϕ(p) = (p � T0, . . . , p � Tk−1)

But since each Ti is an Aronszajn tree, T is also an Aronszajn tree. Thus, by

Lemma 4.3.2, S(T) is ccc, and so Πi<kS(Ti) is ccc.
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Lemma 4.3.4. Fix M a countable transitive model for ZFC, and suppose T is a

tree in M . Fix G ⊆ S(T ), generic over M . In M [G], T is a special tree.

Proof. For each t ∈ T , let Dt = {p ∈ S(T ) : t ∈ dom(p)}. To see that each Dt is

dense, fix t ∈ T and q ∈ S(T ) such that t /∈ dom(q). Choose m ∈ ω \ ran(q), and

let p = q ∪ {(t,m)}. So p−1{m} = {t}, an antichain in T . Thus, p ∈ Dt and p ≤ q.

Define F =
⋃
G, and note that F : T −→ ω.

Claim 33. For each n ∈ ω, F−1{n} is an antichain in T .

Proof. Fix n ∈ ω, and suppose s, t ∈ F−1{n}. Fix p ∈ G such that s ∈ dom(p),

fix q ∈ G such that t ∈ dom(q), and find r ∈ G extending p and q. Since s, t ∈

dom(r), r(s) = F (s) = n = F (t) = r(t) and s, t are incomparable.

Since T =
⋃
n∈ω F

−1{n}, T is a special tree.

Remark 14. Forcing with S = Π{S(T ) : T ∈ T } specializes all Aronszajn trees of

the ground model.

Lemma 4.3.5. Let V be a countable transitive model for ZFC, and let (L,<) be a

linear order in V . Suppose P is (forced to be) a ccc partial order in V S. Then P

does not introduce any new ω1-gaps in L.

Proof. Suppose instead that P did introduce a new ω1-gap in L. Note that since

S is ccc and S  P is ccc, the iteration S ∗ P is ccc. Thus, by Lemma 4.3.1, there
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must be some Suslin tree T in V such that in V S∗P , there is an uncountable branch

in T . But T is special in V S, and hence in V S∗P . So T is both special and contains

an uncountable branch in V S∗P , which is impossible.

Lemma 4.3.6. Fix M a countable transitive model for ZFC, T a Suslin tree in M ,

P a ccc forcing notion in M , and G a P -generic filter over M . Suppose in M [G],

B is a branch through T . Then in M [G], P is not ccc.

Proof. Let τ be a P -name for B; i.e., τ [G] = B.

Claim 34. Given t ∈ T and pt ∈ P such that pt  t ∈ τ , there are nodes t0, t1 ∈ T ,

and conditions pt0 , pt1 ∈ P such that

• t ≤ t0, t1, and t0, t1 are incomparable;

• pt0 , pt1 ≤ pt; pt0  t0 ∈ τ ; and pt1  t1 ∈ τ .

Proof. Suppose instead there is some t ∈ T and pt  t ∈ τ for which there are

no nodes t0, t1 and conditions p0, p1 satisfying the stated properties. But then pt

decides τ ; i.e., for each β such that ht(t) < β < ω1, there is some r(β) ∈ T ∩M such

that pt  “r(β) is the βth element of the branch τ”. Let B′ = {t′ ∈ T : pt  t′ ∈ τ}.

Then B′ is a branch through T that lies in M , a contradiction.

Now, working in M [G], let t(β) be the βth element of the branch B; i.e., the

node from the branch on the βth level of T . By the forcing lemma, for each β < ω1,
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there is some pβ ∈ G such that pβ  t(β) ∈ τ . For each β < ω1, Claim 34 provides

a qβ ≤ pβ and an r(β) ≥ t(β) such that r(β) /∈ B, but qβ  r(β) ∈ τ . Thus, in

M [G], {qβ : β < ω1} is an uncountable antichain in P .

The following definition is from [Woo84]. Some of the results which follow

appear without proof in [Woo84].

Definition 50. A partial order P shall be called nice iff P is ccc (in V , the ground

model), P is ccc in V P , and P is ccc in any ccc forcing extension of V P .

Corollary 4.3.7. Forcing with nice partial orders cannot add ω1-branches to a

ground model Suslin tree.

Proof. Immediate by Lemma 4.3.6.

Corollary 4.3.8. Let V be a countable transitive model for ZFC, and let (L,<)

be a linear order in V . Suppose P is a nice partial order in V . Then P does not

introduce any new ω1-gaps in L.

Proof. Suppose P did add a new ω1-gap to L. Then by Lemma 4.3.1, P adds a

branch to a Suslin tree of V , contradicting Corollary 4.3.7.

Lemma 4.3.9. Let (F ,G) be a pregap, and let K = K(F ,G). K is nice iff K is

ccc.
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Proof. Suppose K is ccc. Then forcing with K fills the pregap, so in V K the pregap

is filled, and so K is σ-centered in V K by Lemma 4.2.8. In any further ccc extension,

the pregap is of course still filled, so K remains σ-centered.

Lemma 4.3.10. Fix n ∈ ω, and for each i < n suppose (F i,Gi) are pregaps. For

each i < n, suppose Ki = K(F i,Gi). Then ΠKi is nice iff ΠKi is ccc.

Proof. Suppose ΠKi is ccc. In V ΠKi
, all the pregaps are filled, so each is σ-centered.

Thus, ΠKi is σ-centered in V ΠKi
since the product of σ-centered partial orders is

easily seen to be σ-centered. In any further ccc extension, all the pregaps remain

filled, so ΠKi remains σ-centered.

Lemma 4.3.11. Fix α ∈ ON, and for each i < α suppose (F i,Gi) are pregaps. For

each i < α, suppose Ki = K(F i,Gi). Then Πi<αK
i is nice iff Πi<αK

i is ccc.

Proof. Suppose Πi<αK
i is ccc. In V Πi<αK

i
, all the pregaps are filled, so each is σ-

centered. To see that the finite support product is ccc in V Πi<αK
i
, we’ll show that

any finite product is σ-centered. Fix n ∈ ω, and look at (without loss of generality)

{Ki : i < n}. To see that Πi<nK
i is σ-centered in V Πi<αK

i
, note once again that

the product of finitely many σ-centered partial orders is σ-centered. In any further

ccc extension, all the pregaps remain filled, so any finite product of Ki’s remains

σ-centered.
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Fact 7. (a) For any Aronszajn tree T , S(T ) is nice. Furthermore, (b) The finite-

support product S is a nice partial order as well.

Proof. For (a), note first that S(T ) is ccc if T is Aronszajn, by Lemma 4.3.2. In

V S(T ), T is still Aronszajn — T cannot have a branch in this extension since it is

special. This remains true in any further ccc extension. For (b), by Lemma 4.3.3, S

is ccc. But in V S, all the relevant trees have been specialized and remain Aronszajn,

so S is ccc in V S, and in any further ccc extension.

4.4 The Construction

The strategy for the proof of Theorem 4.0.3 has already been outlined in Section

4.1, but here we make the details of the iterated forcing construction more explicit.

Fix M a countable transitive model for ZFC, and in M , fix κ a regular cardinal

such that κ ≥ ω2 and 2<κ = κ. Recall (from Section 4.1) our partition of κ into the

following classes:

• EL = EASY-LIMITS = {β < κ : β ∈ LIM , cf(β) 6= ω1};

• HL = HARD-LIMITS = {β < κ : β ∈ LIM , cf(β) = ω1}

• ES = EASY-SUCCESSORS = {β < κ : β = α + 1, α /∈ HL};

• HS = HARD-SUCCESSORS = {β < κ : β = α + 1, α ∈ HL}
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Using the class EL of easy limit ordinals as index set, fix an enumeration C =

{Cα : α ∈ EL} of (potential nice names for elements of) [EL]<κ, and suppose that

each member of [EL]<κ is enumerated cofinally often.36 C serves as our enumeration

of candidates for cuts. Similarly, using the class ES of easy successor ordinals as

index set, fix a cofinally-often enumeration of all candidates for ccc-partial order

names: R = {Ṙα : α ∈ ES}.

The finite support iterated forcing construction of length κ will be defined using

the somewhat standard notation ({Pα : α ≤ κ}, {Q̇α : α < κ}). By simultaneous

recursion, and making use of the canonical names Ġα for the generics on the Pα,

and the associated names Hα = {t ∈ Q̇α : (∃p ∈ Ġα) p ∗ t ∈ Ġα+1} for the generics

on the Q̇α, we define {Q̇α : α < κ}, {Lα : α < κ}, {(Aα, Bα) : α ∈ EL}, and

{hα : α ∈ EL} such that for all α < κ, Lα = {hβ : β ∈ α ∩EL} is a linear order in

(ωQ, <∗). For α < κ:

• If α ∈ EL, look at Cα. If Cα names a subset of α ∩ EL, let Aα = Cα ∪ {β ∈

(α ∩ EL) : ∃γ ∈ Cα, hβ <
∗ hγ}, and let Bα = (α ∩ EL) \ Aα. Otherwise,

simply let (Aα, Bα) = (α∩EL, ∅), the pair of index sets for a trivial partition

cut. Also, let A∗α = {hβ : β ∈ Aα}, and let B∗α = {hβ : β ∈ Bα}. Now, let

Q̇α = K(Aα, Bα), the Kunen partial order for filling the cut (A∗α, B
∗
α), and let

hα =
⋃
p∈Hα sp, the generic function that fills this cut.

36See Chapter 3, section 3.2.
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• Suppose next α ∈ ES. If Ṙα names a valid ccc partial order, let Q̇α = Ṙα;

otherwise, let Q̇α name the trivial (singleton) partial order.

• If α ∈ HL, first let Xα = {(Aβα, Bβ
α) : β < κ} enumerate all partition cuts

in Lα. Let Q̇α = Π{K(Aβα, B
β
α) : β < κ}, the (finite-support) product of the

Kunen partial orders for filling each such cut.37

• Finally, for α ∈ HS, we force with the (finite-support) product of all Aron-

szajn tree specializers. More explicitly, as in the previous section, let T =

{(T,≤) : T ⊆ ω1 and (T,≤) is an Aronszajn tree}. Let Q̇α = Π{S(T ) : T ∈

T }, the finite support product of these tree specializers. Lemma 4.3.5 shows

that forcing with this product renders it impossible to add new ω1-gaps of

exisiting elements in the linear order via any future ccc forcing.

Let P = Pκ, and L = Lκ. Fix G a P-generic filter over M , and for each α < κ, let

Gα = G∩Pα. It must be shown that P is ccc. It then follows by standard methods

that |P| = κ (cf. Lemma 3.8.1), and that in M [G], c = κ (cf. Lemma 3.8.2), and

MA holds (see [Kun80], Chapter VIII, section 6, starting on page 278). Finally,

we’ll show that L is a maximal saturated linear order of size c in (ωR, <∗). This

37Note that no function is added into the emerging linear order at this stage. We only force with
these partial orders to render the corresponding cuts ccc-fillable in later stages. If the functions
added at this state of the forcing were included into the emerging linear order, then |Lα| would be
> κ (for cofinally many α). It is necessary to ensure |Lα| remains < κ for each α in order to prove
maximality of the linear order in the final forcing extension. See Theorem 4.6.4 and Remark 17.
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work will be done in the following two sections. The current section now concludes

with a definition that will be needed for the proof that P is ccc.

Definition 51. Fix θ < κ. Let (C,D) be a partition cut (or a gap which represents

a partition cut) in Lθ = {hα : α ∈ EL ∩ θ}. If there is some λ < θ such that

{hα ∈ C : α ∈ EL ∩ λ} is cofinal in C, then we say the left tower is bounded in

θ; if there is no such λ < θ the left tower is said to be unbounded in θ. Similarly,

if there is some λ < θ such that {hα ∈ D : α ∈ EL ∩ λ} is coinitial in D, then we

say the right tower is bounded in θ; otherwise the right tower is unbounded in θ.

If both left and right towers are bounded, the gap is said to be left/right-bounded

in θ, or just bounded in θ for short; if the left tower is bounded but the right tower

is unbounded, the gap is said to be left-bounded in θ; if the right tower is bounded

but the left is unbounded, the gap is called right-bounded in θ; if both the left

and right towers are unbounded, the gap is called left/right-unbounded in θ, or just

unbounded in θ for short. We suppress mention of θ when the context permits.

4.5 A Product of Gap-fillers

The theorem (Theorem 4.5.1) proved in this section says that under the right con-

ditions, a product of Kunen gap-filling notions for ω1-gaps that arise in the course

of our iterated forcing construction (as described in the previous section) is ccc.

More precisely, fix θ < κ such that cf(θ) = ω1. Suppose {(Ai, Bi) : i < N} is a
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collection of unfilled ω1-partition cuts in the linear order Lθ, each of which arises

at stage θ in the finite-support iterated forcing construction. If the iterated forcing

construction is ccc up to stage θ, then the product forcing Π{K(Ai, Bi) : i < N} is

ccc.

Theorem 4.5.1 will be needed for the proof that our forcing notion P is ccc

(cf. Theorem 4.6.2). Before stating the theorem, we list the following general

assumptions that will be needed:38

Assumption 1. Suppose M is a countable transitive model for ZFC. (We work in

M , except where otherwise indicated.)

1. θ ∈ ON, cf(θ) = ω1.

2. ({Pβ : β ≤ θ}, {Q̇β : β < θ}) is a ccc finite-support iterated forcing construc-

tion.

3. L ⊆ LIM is a cofinal subset of θ, and ∀α ∈ L, Pα+1  hα ∈ ωQ.

4. For each α ≤ θ, Pα  “Lα = {hβ : β ∈ L ∩ α} is a linear order (under <∗).”

5. For each α ∈ L, there is a partition cut (Aα, Bα) of Lα such that Pα  “Q̇α =

K(Aα, Bα)”, and hα is the generic function added by K(Aα, Bα).

38We have endeavoured to make this section somewhat self-contained by explicitly stating the
assumptions that are needed. The use of the less restrictive L rather than the set EL (as well
as the lack of mention of the sets ES and HS) reflects some generalization that is possible, and
highlights which features from the partition of κ in Section 4.4 are relevant to the proof of Theorem
4.5.1 and which are not.
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6. For each i < N , (Ai, Bi) is an unfilled ω1-partition cut in L = Lθ that is either

left-bounded, right-bounded, or left/right-unbounded in θ. (See Definition 51.

Note that this assumption will be used in the proof of Claim 43.)

7. HL(θ) = {α < θ : cf(α) = ω1} is disjoint from L, and for each α ∈ HL(θ),

Q̇α = Πi∈JK(E i,Hi), where J is an index set and all the partition cuts (see

Definition 4) of Lα occur in the enumeration {(E i,Hi) : i ∈ J}.

The following notation will be useful.

Definition 52. For each i < N , let θAi = min{ε ≤ θ : Ai ∩ Lε is cofinal in Ai},

and let θBi = min{ε ≤ θ : Bi ∩ Lε is coinitial in Bi}. Note that if (Ai, Bi) is

left-bounded then θAi < θ while θBi = θ; if (Ai, Bi) is right-bounded then θAi = θ

while θBi < θ; if (Ai, Bi) is unbounded then θAi = θBi = θ. Now, for each i < N ,

if (Ai, Bi) is left-bounded or right-bounded, let εi = min{θAi , θBi}; otherwise, let

εi = 0. Let ε = max{εi : i < N}.

Theorem 4.5.1. Pθ  Π{K(Ai, Bi) : i < N} is ccc.

Proof. Suppose instead that for some q̄0 ∈ Pθ, q̄0  “Π{K(Ai, Bi) : i < N} is

not ccc”. Obtain (for each i < N) Pθ-names for strictly increasing sequences in θ,

(µ̇iβ)β<ω1 and (λ̇iβ)β<ω1 , such that the following condition holds:

Condition 1. q̄0  “∀i < N , (µ̇iβ)β<ω1 is strictly increasing and cofinal in θAi ,
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(λ̇iβ)β<ω1 is strictly increasing and cofinal in θBi , {hµ̇iβ : β < ω1} is strictly increasing

and cofinal in Ai, and {hλ̇iβ : β < ω1} is strictly decreasing and coinitial in Bi”.

Find k′ ∈ ω, a name S0 for an uncountable subset of ω1, and a condition q̄1 ≤ q̄0

such that:

Condition 2. q̄1  “∀β ∈ S0, ∀i < N , ∀n ≥ k′, hµ̇iβ(n) < hλ̇iβ
(n)”.

Let F i = {hµ̇iβ : β ∈ S0}, and let Gi = {hλ̇iβ : β ∈ S0}; let Ki = K(F i, Gi),

and let K̃i = K(Ai, Bi); let K = Πi<NK
i; and let K̃ = Πi<NK̃

i. Note that we are

assuming q̄1 ≤ q̄0  “K̃ is not ccc”.

Claim 35. q̄1  “K is not ccc”.

Proof. Fix a filter G, generic for Pθ over M such that q̄1 ∈ G. Suppose instead

K is ccc in M [G]. Let H be a filter generic for K over M [G]. In M [G][H], each

gap (F i, Gi) is filled, so each cut (Ai, Bi) is filled. Thus, each K̃i is σ-centered in

M [G][H], and so K̃ is σ-centered in M [G][H].

Since q̄1 ∈ G, K̃ is not ccc in M [G]. Let A ⊆ K̃ be an ω1-antichain in V . But

then A is still an ω1-antichain in M [G][H], since we are assuming K is ccc in M [G].

But then K̃ is both ccc and not ccc in M [G][H].

Claim 36. There is a Pθ-name Ṡ for a subset of ω1 and a condition q̄2 ≤ q̄1 such
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that

q̄2  ∀α 6= β ∈ Ṡ, ∃i < N , ∃n ≥ k′, hµ̇iα(n) ≥ hλ̇iβ
(n) or hµ̇iβ(n) ≥ hλ̇iα(n)

Proof. Fix a filter G generic for Pθ over M such that q̄1 ∈ G. In M [G], apply

Lemma 4.2.7 (in contrapositive form) to conclude that there exists an uncountable

subset S of ω1 such that:

∀α 6= β ∈ S, ∃i < N , ∃n ≥ k′, hµ̇iα(n) ≥ hλ̇iβ
(n) or hµ̇iβ(n) ≥ hλ̇iα(n)

Find a Pθ-name Ṡ and a condition r ∈ G such that

r  ∀α 6= β ∈ Ṡ, ∃i < N , ∃n ≥ k′, hµ̇iα(n) ≥ hλ̇iβ
(n) or hµ̇iβ(n) ≥ hλ̇iα(n)

Since r and q̄1 are in G, they are compatible, and so there is some condition q̄2

extending both r and q̄1.

We shall exhibit a contradiction by finding ordinals η, ξ and a condition p ≤ q̄2 ∈

Pθ which forces η, ξ ∈ Ṡ and ∀i < N , ∀n ≥ k′, hµ̇iη(n) < hλ̇iξ
(n) and hµ̇iξ(n) < hλ̇iη(n).

Remark 15. Since there must be some q′ ≤ q̄2 ∈ Pθ which decides the ordering39

of the N cuts from the collection {(Ai, Bi) : i < N}, without loss of generality

suppose that ∀i < j < N , q′  (Ai, Bi) < (Aj, Bj). Recursively, for each i < N −1,

find σi < θ and qi extending q′ and all qj for j < i such that qi  hσi ∈ Bi ∩ Ai+1.

Moreover, let σ̄ = max{σi : i < N − 1}, and let q̄3 = qN−2.

39See Definition 12 on page 21 for an explanation of the ordering on cuts.
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Let S = {α < ω1 : ∃p ≤ q̄3, p  α̌ ∈ Ṡ}.

Now, for each α ∈ S, for each i < N , find µiα and λiα in M ∩ θ as well as pα ≤ q̄3

such that for each i < N , µiα, λ
i
α ∈ supp(pα), pα  α̌ ∈ Ṡ, and pα  ∀i < N ,

µ̇iα = µ̌iα, λ̇iα = λ̌iα.

For each α ∈ S, for each i < N , find m[α, i] such that ∀j ≤ i, pα  “∀n ≥

m[α, i], hµjα(n) < hσi(n)” and ∀j > i, pα  “∀n ≥ m[α, i], hλjα(n) > hσi(n)”.40

For every α ∈ S, choose m[α] ≥ max{m[α, i] : i < N}+ k′. So we have:

∀α ∈ S,∀i < N,∀j ≤ i, pα  ∀n ≥ m[α], hµjα(n) < hσi(n) (4.3)

and

∀α ∈ S,∀i < N,∀j < i, pα  ∀n ≥ m[α], hσi(n) < hλjα(n) (4.4)

Definition 53. Fix ξ ∈ S, fix i < N . Define SLξ,i : ω −→ P(L) by recursion: first,

let SLξ,i(0) = {µiξ}. Having defined SLξ,i(n), let SLξ,i(n + 1) =
⋃
{Lξβ : β ∈ SLξ,i(n)}.

Let Lξ,i =
⋃
n∈ω S

L
ξ,i(n). Note that for some n∗ ∈ ω, ∀j ≥ n∗, SLξ,i(j) = ∅, so

Lξ,i is actually a finite union of finite sets. Similarly, define SRξ,i : ω −→ P(L) by

recursion: first, let SRξ,i(0) = {λξ}. Having defined SRξ,i(n), let SRξ,i(n+ 1) =
⋃
{Rξ

β :

β ∈ SRξ,i(n)}. Let Rξ,i =
⋃
n∈ω S

R
ξ,i(n), a finite set since for some n∗, ∀j ≥ n∗,

SRξ,i(j) = ∅.

Claim 37. For each i < N , for each ξ ∈ S, for each α ∈ L:

40See Remark 15 for the definition of the hσi functions. Furthermore, while it may be necessary
to extend pα to p′α, we simply suppress the prime notation.
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(a) ∀γ < θ, if γ ∈ Lξα and α ∈ Lξ,i, then γ ∈ Lξ,i; and

(b) ∀δ < θ, if δ ∈ Rξ
α and α ∈ Rξ,i, then δ ∈ Rξ,i.

Proof. We show only (a), since (b) is very similar. Since α ∈ Lξ,i =
⋃
n∈ω S

L
ξ,i(n),

find n such that α ∈ SLξ,i(n). But then, since γ ∈ Lξα, it follows that γ ∈ SLξ,i(n+ 1),

by Definition 53. So γ ∈ Lξ,i, as claimed.

Now, for each pair i < j < N and each α ∈ S, find m(α, i, j) < ω such that

∀n ≥ m(α, i, j),∀γ ∈ Lα,i,∀δ ∈ Rα,j, pα  hγ(n) < hδ(n) (4.5)

Let m(α) = max{m(α, i, j) : i < j < N}.

Assumption 2. Without loss of generality, suppose:

1. Each pα is determined and of closed support over L. In other words, for each

α ∈ S, for each β ∈ supp(pα) ∩ L, pα(β) = (Ľαβ , Ř
α
β , š

α
β) (i.e., determined),

and Lαβ ∪Rα
β ⊆ supp(pα) ∩ L (i.e., closed support). (Cf. Section 3.4.)

2. Each pα is uniform; more specifically, there is some kα greater than both m[α]

and m(α) such that ∀β ∈ supp(pα) ∩ L, |sαβ | = kα. (Cf. Section 3.4.)

Find an uncountable subset Z0 of S and some k ∈ ω such that ∀α ∈ Z0,

kα = k > k′.
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Without loss of generality, suppose the collection D = {supp(pξ) : ξ ∈ Z0} is a

∆-system with root Σ and tails Tξ (for each ξ ∈ Z0). Suppose all the tails of D are

of the same finite size, t̄, and suppose that for each ξ ∈ Z0, Tξ = {tξj : j < t̄}.

Moreover, thinning down Z0 if necessary, we can also make the following as-

sumptions:

Assumption 3. Suppose that:

1. for each β ∈ Σ ∩ L, there is some sβ such that ∀η ∈ Z0, sηβ = sβ;

2. for each i < N : if (Ai, Bi) is left-unbounded, then ∃l < t̄ such that for each

ξ ∈ Z0, µiξ = tξl ; and, if (Ai, Bi) is right-unbounded, then ∃r < t̄ such that for

each ξ ∈ Z0, λiξ = tξr;

3. for each i < N , for each η, ξ ∈ Z0, hµiη � k = hµiξ � k and hλiη � k = hλiξ � k.

There are various possibilities for the structure of the ∆-system D = {supp(pξ) :

ξ ∈ Z0}, as per the following definition:

Definition 54. Fix λ ≥ ω1. Let A be a ∆-system on λ with root R and tails

{Aη : η < ω1}. Define the type of A by type(A) = min{n ∈ ω : ∃S ∈ [R]n, ∀η <

ω1,∀ρ ∈ R, ∃s ∈ S such that ∀α ∈ Aη, α < ρ iff α < s}.

Note that the type of a ∆-system corresponds to the number of “blocks” the

root is divided into, where “blocks” are divided by elements of the tails (i.e., a block
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is a maximal subset of the root such that the interval between the mininimum and

maximum of the subset contains no tail elements). Without loss of generality we

suppose that:

Assumption 4. There are uncountably many tail elements between any two blocks

of the root in the ∆-system D = {supp(pξ) : ξ ∈ Z0}.

Now, let Θ = {θ̄ < θ : cf(θ̄) = ω1, {Tη ∩ θ̄ : η ∈ Z0} is unbounded in θ̄}. Note

that since the tails of the ∆-system D are all of the same (finite) size t̄, the set Θ

is finite; to be specific, |Θ| ≤ t̄. If Θ is not empty, let θ∗ = max Θ, otherwise, let

θ∗ = 0.

Remark 16. Note that if the type of the ∆-system D is larger than 1, then θ∗ > 0.

Moreover, it’s possible that max Σ > θ∗, in which case Σ\θ∗ is the “top block” of the

∆-system. In any case, we can assume without loss of generality that (θ∗,max Σ)

is an interval containing no tail elements; i.e., (θ∗,max Σ) ∩
⋃
{Tη : η ∈ Z0} = ∅.

To see this, note first that if max Σ ≤ θ∗, the interval (θ∗,max Σ) is empty. On

the other hand, if max Σ > θ∗, suppose instead there is some η ∈ Z0 such that

(θ∗,max Σ) ∩ Tη 6= ∅: if there were countably many such η’s in Z0, we could

remove those η’s from Z0; if there were uncountably many such η’s in Z0, this

would contradict the maximality of θ∗. We restate the now justified aforementioned

assumption for ease of reference.
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Assumption 5. (θ∗,max Σ) is an interval containing no tail elements; i.e., (θ∗,max Σ)∩⋃
{Tη : η ∈ Z0} = ∅.

Claim 38. Let P be ccc and let Y ⊆ P be uncountable. Then there is some generic

filter G ⊆ P such that Y ∩G is uncountable.

Proof. First, consider the following general fact:

Fact 8. Given a ccc partial order P and X ⊆ P uncountable, there is some p ∈ P

such that ∀r ≤ p, X(r) = {x ∈ X : r 6⊥ x} is uncountable.

Proof. Fix P ccc, and suppose instead there is some uncountable X ⊆ P such that

∀p ∈ P , there is a p̄ = p̄(X) ≤ p such that X(p̄) is countable. Note that if this is

true of X, it is true of any subset of X.

Construct recursively sequences (qα)α<ω1 and (Xα)α<ω1 such that for each β <

ω1, {qα : α ≤ β} is an antichain, and (Xα)α<ω1 is a descending sequence of un-

countable sets. To begin, let X0 = X and choose any q0 in X0. Having chosen Xα

and qα ∈ Xα, let q̄α = q̄α(Xα), let Xα+1 = X \ Xα(q̄α), and choose qα+1 ∈ Xα+1.

Note that {qβ : β ≤ α + 1} is an antichain, by induction hypothesis and the fact

that qα+1 ∈ Xα+1.

Finally, having chosen Xβ and qβ for each β < α where α ∈ LIM , let Xα =

X \
⋃
β<αXβ(q̄β) (which is uncountable since the latter union consists of countable

sets), and let qα ∈ Xα. Once again, note that {qβ : β ≤ α} is an antichain.
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So {qα : α < ω1} is an antichain, contradicting that P is ccc.

The proof of Claim 38 is now completed by Fact 9, below.

Fact 9. Fix any ccc poset P , any X ⊆ P uncountable, and let p be as in Fact 8.

Then p  “X̌ ∩ Ġ is uncountable”, where Ġ is the canonical name for a generic

filter on P.

Proof. Suppose instead that there is some r ≤ p such that r  “X̌∩Ġ is countable”.

SinceX(r) is uncountable, choose x ∈ X(r) such that r  “x̌ /∈ Ġ”. Since x ∈ X(r),

we can find p ≤ r, x. Since p ≤ r, p  x̌ /∈ Ġ; but since p ≤ x, p  x̌ ∈ Ġ.

By Assumptions 1 part 2, Pθ∗+1 is ccc.

Claim 39. There is a generic filter G ⊆ Pθ∗+1 such that the set Z1 = {α ∈ Z0 :

pα � (θ∗ + 1) ∈ G} is uncountable.

Proof. Let Y = {pα � (θ∗ + 1) : α ∈ Z0}. If Y is countable, then there must be

some p̄ ∈ Pθ∗+1 such that the set Z̃ = {α ∈ Z0 : pα � (θ∗ + 1) = p̄} is uncountable.

Choose a generic filter G ⊆ Pθ∗+1 such that p̄ ∈ G; then Z̃ ⊆ Z1 = {α ∈ Z0 :

pα � (θ∗ + 1) ∈ G}. On the other hand, if Y is uncountable, then by Claim

38, obtain a generic filter G ⊆ Pθ∗+1 such that Y ∩ G is uncountable. But then

Z1 = {α ∈ Z0 : pα � (θ∗ + 1) ∈ Y ∩G} is uncountable.

Now, fix G and Z1 as in Claim 39.
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For each i < N , let E i∗ = {hα : α ∈ Lη,i ∩ θ∗, η ∈ Z1}, Hi∗ = {hα : α ∈

Rη,i ∩ θ∗, η ∈ Z1}.

Claim 40. For each i < N , (E i∗,Hi∗) is a cut in Lθ∗.

Proof. Fix i < N . It must be shown that ∀η, ξ ∈ Z1, ∀α ∈ Lη,i ∩ θ∗, ∀β ∈ Rξ,i ∩ θ∗,

hα <∗ hβ. So fix such η, ξ, α, β. Since α ∈ Lη,i, hα <∗ hµiη or hα = hµiη (see

Definition 53). Similarly, hλiξ <
∗ hβ or hλiξ = hβ. But hµiη <

∗ hλiξ , by Condition

2.41

Note that the cut (E i∗,Hi∗) is definable in M [G]. To see this, note first that each

pη (for η ∈ Z1) is a determined condition (see Assumption 2, part 1, on page 93),

and so Lη,i, Rη,i are sets in the ground model, M (see Definition 53); furthermore,

Z1 = {α ∈ Z0 : pα � (θ∗ + 1) ∈ G} ∈M [G].

If the cut (E i∗,Hi∗) is filled in M [G], let hi∗ ∈ M [G] denote such a cut-filler.

Note that if θ∗ = 0, then there will certainly be such a cut-filler hi∗ since the cut

(E i∗,Hi∗) would be finite (in fact, empty). Otherwise, suppose there is no such hi∗

in M [G]; in particular, θ∗ > 0 and cf(θ∗) = ω1. So θ∗ ∈ HL(θ) (see Assumptions

1, part 7).

41Since Condition 2 involves forcing over Pθ, rather than Pθ∗ , it would seem at first that we have
only shown q̄1  “hα <

∗ hβ”. But hα and hβ are Pθ∗ -names. To see that q̄1 � θ∗  “hα <
∗ hβ”,

suppose instead that q̄1 � θ∗ 6 hα <∗ hβ . Then there must be some p′ ≤ q̄1 � θ∗ in Pθ∗ such
that p′  ¬(hα <

∗ hβ). Let p′′ = p′_q̄1 � [θ∗, θ). Then p′′ ≤ q̄1, but p′′  “¬(hα <
∗ hβ)” while

q̄1  “hα <
∗ hβ”, a contradiction. Thus, in M [G], we really do have hα <

∗ hβ .
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Working in M [G], for each ζ ∈ Z1, note that pζ(θ
∗) ∈ Πj∈JK(E j,Hj), where

J is an index set and all of the partition cuts of Lθ∗ occur in the enumeration

{(E j,Hj) : j ∈ J}. So, for each i < N , ∃j(i) ∈ J such that E i∗ ⊆ E j(i), and

Hi∗ ⊆ Hj(i). Let Hθ∗ be the filter such that G ∼= Gθ∗ ∗ Hθ∗ , and let Hθ∗(j(i))

denote the associated filter that is generic for K(E j(i),Hj(i)). Let hi∗ be the generic

function obtained from the latter filter; so E i∗ <∗ hi∗ <∗ Hi∗.

Definition 55. Let θ̄ = max(Σ ∪ {ε, σ̄, θ∗ + 1}) + 1.42

Claim 41. There is a generic filter Ḡ ⊆ Pθ̄ such that the set Z2 = {α ∈ Z1 : pα �

θ̄ ∈ Ḡ} is uncountable.

Proof. Apply the argument of Claim 39 within M [G].

Note that Ḡ is chosen so that it extends G, since Ḡ is obtained in M [G].43

For each i < N , let Ē i = {hα : α ∈ Lη,i∩ θ̄, η ∈ Z2}, H̄i = {hα : α ∈ Rη,i∩ θ̄, η ∈

Z2}.

We work now in M [Ḡ]. Note that for each i < N , in moving from (E i∗,Hi∗) to

(Ē i, H̄i), only finitely many functions are added to either side of the cut—namely,

the functions hα for α ∈ (Σ \ θ∗) ∩ L.44 It is possible that the function hi∗ (which

42ε is defined in Definition 52, on page 89; σ̄ is defined in Remark 15 on page 91.

43To be more precise, Ḡ (which is actually defined in M [G]) is a filter for the iteration partial
order from Pθ up to Pθ̄. In M , let Ḣ be a name for Ḡ. The filter required is G ∗ Ḣ, but for
simplicity, we refer to the latter filter as Ḡ.

44Because of closed support (see Assumption 2, part 1 on page 93) and Assumption 5 on page
95, the hα’s added must come from the root Σ, which is finite.
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fills the cut (E i∗,Hi∗)) already fills the cut (Ē i, H̄i). If not, then there is some

ν(i) ∈ Σ∩L (ν(i) > θ∗) such that hν(i) splits (Ē i \ {hν(i)}, H̄i \ {hν(i)}). Let ν(i) be

such an index if hi∗ does not fill the cut (Ē i, H̄i); otherwise, if hi∗ does fill the cut,

let ν(i) = −1 and let h−1 = hi∗. So, in either case,

hν(i) fills the cut (Ē i \ {hν(i)}, H̄i \ {hν(i)}). (4.6)

For each i < N , for each ζ ∈ Z2, ∃mi
ζ ,∀n ≥ mi

ζ ,∀γ ∈ (Lζ,i \ {ν(i)}) ∩ θ̄, ∀δ ∈

(Rζ,i \ {ν(i)}) ∩ θ̄, hγ(n) < hν(i)(n) < hδ(n). So, obtain, for each i < N , m̄i such

that Z3 = {ζ ∈ Z2 : mi
ζ = m̄i} is uncountable. Choose m̄ such that m̄ ≥ max{m̄i :

i < N}+ k. (Recall the definition of k immediately following Claim 37.)

Finally, for each i < N , find integers l̄i, r̄i ∈ ω and sets {f l,i : l < l̄i}, {gr,i : r <

r̄i} such that for an uncountable Z4 ⊆ Z3, for each ζ ∈ Z4, for each i < N ,

Lζ,i ∩ θ̄ = {γζ,il : l < l̄i}, Rζ,i ∩ θ̄ = {δζ,ir : r < r̄i} (4.7)

and,

∀l < l̄i, r < r̄i, hγζ,il
� m̄ = f l,i and hδζ,ir � m̄ = gr,i. (4.8)

The following Lemma will be helpful in the proof of Claim 42.

Lemma 4.5.2. Fix i < N . In M [Ḡ], ∀η ∈ Z4, ∀γ ∈ Lη,i∩ θ̄, ∀δ ∈ Rη,i∩ θ̄, ∀j ≥ k,

hγ(j) < hδ(j).

Proof. Fix η ∈ Z4, γ ∈ Lη,i ∩ θ̄, δ ∈ Rη,i ∩ θ̄, j ≥ k. (Recall the definition of

k immediately following Claim 37.) The first task is to show that pη  hγ(j) ≤
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hµiη(j), and the argument is by induction on n ∈ ω, where γ ∈ SLη,i(n). (Recall

from Definition 53 that Lη,i =
⋃
n∈ω S

L
η,i(n).) The case n = 0 is immediate since

SLη,i(0) = {µiη}. So fix n > 0 and say γ ∈ Lηβ, where β ∈ SLη,i(n−1). By the induction

hypothesis, pη  hβ(j) ≤ hµiη(j). Since γ ∈ Lηβ and j ≥ k, it follows that pη 

hγ(j) < hβ(j); thus pη  hγ(j) ≤ hµiη(j), as required. A similar induction argument

shows that pη  hλiη(j) ≤ hδ(j). Since pη  hµiη(j) < hλiη(j) (see Condition 2, and

note that k > k′), it follows that pη  hγ(j) < hδ(j). Finally, since hγ, hδ ∈ M [Ḡ],

it must be the case that, in M [Ḡ], hγ(j) < hδ(j) (i.e., the inequality is no longer

merely a forcing statement but actually true in M [Ḡ]).45

Without loss of generality, we make the following assumption:

Assumption 6. Suppose for all ζ ∈ Z4: if (Ai, Bi) is not left-bounded, then µiζ > θ̄,

and if (Ai, Bi) is not right-bounded, then λiζ > θ̄.

Now choose η < ξ ∈ Z4 with max(Tη \ θ∗) < min(Tξ \ θ∗). Note that supp(pη)∩

supp(pξ) ⊆ θ̄. Since pη � θ̄, pξ � θ̄ ∈ Ḡ, find q ∈ Ḡ ∩ Pθ̄ such that q ≤ pη � θ̄, pξ � θ̄.

Definition 56. For each α ∈
⋃
i<N L

η,i ∪
⋃
i<N R

η,i, let L̄ηα = Lηα ∪
⋃
{Lξ,i ∩ θ̄ :

i < N, α ∈ Rη,i}, and let R̄η
α = Rη

α ∪
⋃
{Rξ,i ∩ θ̄ : i < N, α ∈ Lη,i}. For each

45Since pη  hγ(j) < hδ(j), and hγ , hδ are Pθ̄-names, it must be the case that pη � θ̄  hγ(j) <
hδ(j). To see this more clearly, suppose instead that pη � θ̄ 6 hγ(j) < hδ(j). Then there must
some p′ ≤ pη � θ̄ in Pθ̄ such that p′  hγ(j) ≥ hδ(j). Let p′′ = p′_pη � [θ̄, θ). Then p′′ ≤ pη, but
p′′  “hγ(j) ≥ hδ(j)” while pη  “hγ(j) < hδ(j)”.
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α ∈
⋃
i<N L

ξ,i ∪
⋃
i<N R

ξ,i, let L̄ξα = Lξα ∪ {µiη : i < N, α ∈ Rξ,i}, and let R̄ξ
α =

Rξ
α ∪ {λiη : i < N, α ∈ Lξ,i}. Define p : θ −→M as follows:

p(α) =



q(α) if α < θ̄

(L̄ηα, R̄
η
α, s

η
α) if α ≥ θ̄ and α ∈

⋃
i<N L

η,i ∪
⋃
i<N R

η,i

(L̄ξα, R̄
ξ
α, s

ξ
α) if α ≥ θ̄ and α ∈

⋃
i<N L

ξ,i ∪
⋃
i<N R

ξ,i

(pη ∪ pξ)(α) otherwise.

Claim 42. p is a condition; i.e., p ∈ P.

Proof. The argument proceeds by induction on α ∈ supp(p).

CASE 42.1 Suppose α ∈
⋃
i<N L

η,i ∪
⋃
i<N R

η,i. The goal is to show that

p � α  “p(α) ∈ Q̇α”, which means, in this case, p � α  “∀n ≥ k,∀γ ∈ L̄ηα,∀δ ∈

R̄η
α, hγ(n) < hδ(n).” So we fix such n, γ, δ.

Note that either γ ∈ Lηα, or γ ∈ Lξ,j ∩ θ̄, where α ∈ Rη,j, for some j < N . Also,

either δ ∈ Rη
α, or δ ∈ Rξ,j ∩ θ̄, where α ∈ Lη,j, for some j < N . Furthermore, γ < θ̄

or γ > θ̄, and δ < θ̄ or δ > θ̄. We consider all the combinations that are possible.

CASE 42.1.a Suppose γ ∈ Lηα, and δ ∈ Rη
α. Regardless of whether δ or

γ are less than or greater than θ̄, the argument is completed by the fact that

p � α ≤ pη � α.

CASE 42.1.b Suppose γ ∈ Lηα, δ ∈ Rξ,j ∩ θ̄, where α ∈ Lη,j, and γ < θ̄. Since

γ ∈ Lηα and α ∈ Lη,j, it follows that γ ∈ Lη,j by Claim 37.
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So γ ∈ Lη,j ∩ θ̄ and δ ∈ Rξ,j ∩ θ̄. So, if n > m̄, then, by (4.6), hγ(n) ≤ hν(j)(n)

(with equality only if γ = ν(j)), and hν(j)(n) ≤ hδ(n) (with equality only if δ =

ν(j)). Since at least one of the preceding inequalities must be strict, hγ(n) < hδ(n).

On the other hand, suppose n < m̄. Note that since γ ∈ Lη,j ∩ θ̄, (4.7) applies;

say γ = γη,jl . Similarly, say δ = δξ,jr . But hδξ,jr (n) = hδη,jr (n) by the fact that these

functions are equal below m̄ — see (4.8). So we may now apply Lemma 4.5.2 to

conclude that hγη,jl
(n) < hδη,jr (n) — note that both functions refer to a single η ∈ Z4,

as required by Lemma 4.5.2. Thus, hγ(n) = hγη,jl
(n) < hδη,jr (n) = hδξ,jr (n) = hδ(n),

as needed.

CASE 42.1.c Suppose γ ∈ Lηα, δ ∈ Rξ,j ∩ θ̄, where α ∈ Lη,j, and γ > θ̄. Again,

since γ ∈ Lηα and α ∈ Lη,j, it follows that γ ∈ Lη,j by Claim 37. Thus, since γ < α

and γ ∈ Lη,j, the induction hypothesis applies, and the second case of Definition

56 gives p � γ  ḣγ(n) < hδ(n).46

CASE 42.1.d Suppose γ ∈ Lξ,j ∩ θ̄, where α ∈ Rη,j, δ ∈ Rη
α, and δ < θ̄. Since

δ ∈ Rη
α and α ∈ Rη,j, it follows that δ ∈ Rη,j (see Claim 37). Thus, the argument

in the second paragraph of CASE 42.1.b applies.

46The dot on ḣγ , and on other h-functions throughout, is intended to remind the reader that this
function is the generic function added at that stage (in this case, stage γ) in the forcing. Moreover,
to see in more detail how the second case of Definition 56 gives (by the induction hypothesis)
p � γ  ḣγ(n) < hδ(n), note that the induction hypothesis yields p � γ  “(L̄ηγ , R̄

η
γ , s

η
γ) ∈ Q̇γ”,

which means, in particular, that p � γ  ḣγ(n) < hδ(n). (Note that δ ∈ Rξ,j ∩ θ̄ and γ ∈ Lη,j ,
so δ ∈ R̄ηγ .) A similar explanation applies to the other cases in the proof of Claim 42 where the
Induction Hypothesis is used (and the relevant part of Definition 56 is referenced).
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CASE 42.1.e Suppose γ ∈ Lξ,j ∩ θ̄, where α ∈ Rη,j, δ ∈ Rη
α, and δ > θ̄. Again,

by Claim 37, since δ ∈ Rη
α and α ∈ Rη,j, it follows that δ ∈ Rη,j. Thus, the I.H.

applies (since δ < α and δ ∈ Rη,j), and so the second case of Definition 56 gives

p � δ  hγ(n) < ḣδ(n). (Note that γ ∈ Lξ,j ∩ θ̄ and δ ∈ Rη,j, so γ ∈ L̄ηδ .)

CASE 42.1.f Suppose γ ∈ Lξ,j ∩ θ̄, for some j < N , where α ∈ Rη,j, and

δ ∈ Rξ,l∩ θ̄, for some l < N , where α ∈ Lη,l. Note that j < l, since α ∈ Lη,l∩Rη,j.47

Thus, by (4.5), pη  hγ(n) < hδ(n).48

CASE 42.2 Suppose α ∈
⋃
i<N L

ξ,i ∪
⋃
i<N R

ξ,i. As in CASE 42.1, the goal is

to show that p � α  “p(α) ∈ Q̇α”. In this case, we must show p � α  “∀n ≥

k,∀γ ∈ L̄ξα, ∀δ ∈ R̄ξ
α, hγ(n) < hδ(n).” Fix such n, γ, δ.

Note that either γ ∈ Lξα, or γ = µjη, where α ∈ Rξ,j. Also, either δ ∈ Rξ
α, or

δ = λjη, for some j < η, where α ∈ Lξ,j. Furthermore, γ < θ̄ or γ > θ̄, and δ < θ̄ or

δ > θ̄. We consider all the combinations that are possible.

CASE 42.2.a Suppose γ ∈ Lξα, and δ ∈ Rξ
α. Regardless of whether δ or

γ are less than or greater than θ̄, the argument is completed by the fact that

p � α ≤ pξ � α.

CASE 42.2.b Suppose γ ∈ Lξα, δ = λjη, for some j < η, where α ∈ Lξ,j, and

47To see more clearly that j < l, first note that hα <
∗ hµlη or hα =∗ hµlη , since α ∈ Lη,l, and

hλjη <
∗ hα or hλjη = hα, since α ∈ Rη,j (see Definition 53). So hα is on the left side of the lth cut

and on the right side of the jth cut. So the jth cut must be to the left of the lth cut. By Remark
15, j < l.

48Since pη  hγ(n) < hδ(n), it must be the case that pη � θ̄  hγ(n) < hδ(n). See the argument
in footnote 45 on page 101.
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γ > θ̄. Note that δ ∈ Rη,j by Definition 53, and γ ∈ Lξ,j by Claim 37. Since

γ < α and γ ∈ Lξ,j, the I.H. applies, and so the third case of Definition 56 gives

p � γ  ḣγ(n) < hδ(n). (Note that δ ∈ R̄ξ
γ, since γ ∈ Lξ,j. Note that this case

applies regardless of whether δ < θ̄ or δ > θ̄.)

CASE 42.2.c Suppose γ ∈ Lξα, δ = λjη, for some j < η, where α ∈ Lξ,j, and

γ < θ̄. If δ < θ̄, then the argument in the second paragraph of CASE 42.1.b

applies. If δ > θ̄, then the I.H. applies, and the second case of Definition 56 gives

p � δ  hγ(n) < ḣδ(n). (Note that δ < α, δ ∈ Rη,j, and γ ∈ Lξ,j ∩ θ̄, so γ ∈ L̄ηδ .)

CASE 42.2.d Suppose γ = µjη, where α ∈ Rξ,j, and δ ∈ Rξ
α. Since α ∈ Rξ,j,

δ ∈ Rξ,j, by Claim 37. If δ > θ̄, then the I.H. applies, and the third case of

Definition 56 gives p � δ  hγ(n) < ḣδ(n). (Note that γ ∈ L̄ξδ, since δ ∈ Rξ,j.)

If δ < θ̄ and γ < θ̄, then the argument in the second paragraph of CASE 42.1.b

applies. So suppose δ < θ̄ and γ > θ̄. Since γ ∈ Lη,j, the I.H. applies, and so the

second case of Definition 56 gives p � γ  ḣγ(n) < hδ(n). (Note that δ ∈ Rξ,j ∩ θ̄,

and γ ∈ Lη,j, so δ ∈ R̄ξ
γ.)

CASE 42.2.e Suppose γ = µjη, where α ∈ Rξ,j, and δ = λlη, where α ∈ Lξ,l.

(In this case it doesn’t matter whether δ or γ are less than or greater than θ̄.) Note

that j < l, since α ∈ Lξ,l ∩ Rξ,j.49 By (4.3) and (4.4), pη  ḣµjη(n) < hσj(n) and

49To see more clearly that j < l, first note that hα <
∗ hµlξ or hα =∗ hµlξ , since α ∈ Lξ,l, and

hλjξ
<∗ hα or hλjξ

=∗ hα, since α ∈ Rξ,j (see Definition 53). So hα is on the left side of the lth cut

and on the right side of the jth cut. So the jth cut must be to the left of the lth cut. By Remark
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pη  hσj(n) < ḣλlη(n). Since these ordinals are all less than α, it must be the case

that pη � α forces these inequalities (see the argument in footnote 45 on page 101).

The argument in this case is now complete since p � α ≤ pη � α.

Note that p ≤ pη, and p ≤ pξ. In particular, p ≤ pη  “η ∈ Ṡ” and p ≤ pξ 

“ξ ∈ Ṡ” (see choice of the pα following Remark 15).

Claim 43. p  ∀i < N , ∀n ≥ k′, hµiη(n) < hλiξ(n) and hµiξ(n) < hλiη(n).

Proof. Fix i < N , and fix n ≥ k′; we’ll show p  “hµiη(n) < hλiξ(n) and hµiξ(n) <

hλiη(n)”. If k′ ≤ n < k, then by Assumption 3 (part 3), hµiη(n) = hµiξ(n) < hλiξ(n)

and hµiξ(n) = hµiη(n) < hλiη(n). Note that Condition 2 was also used here. So

suppose n > k. By Assumption 1 (part 6), there are three cases to consider:

(Ai, Bi) is left-bounded (but not right-bounded), (Ai, Bi) is right-bounded (but

not left-bounded), and (Ai, Bi) is left/right unbounded.

CASE 43.1 Suppose first (Ai, Bi) is left-bounded, but not right-bounded. Since

(Ai, Bi) is not right-bounded, λiη, λ
i
ξ > θ̄, by Assumption 6. Now, noting that

λiξ ∈ Rξ,i (see Definition 53), it follows that p(λiξ) = (L̄ξα, R̄
ξ
α, s

ξ
α), by the third case

of Definition 56. Thus, p � λiξ  hµiη(n) < ḣλiξ(n). Moreover, since (Ai, Bi) is

left-bounded, µiη, µ
i
ξ < ε < θ̄ (see Definition 55). Thus, since λiη ∈ Rη,i, p(λiη) =

15, j < l.
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(L̄ηα, R̄
η
α, s

η
α), by the second case of Definition 56. Thus, since µiξ ∈ Lξ,i∩ θ̄, p � λiη 

hµiξ(n) < ḣλiη(n).

CASE 43.2 Suppose next that (Ai, Bi) is right-bounded, but not left-bounded.

So λiη, λ
i
ξ < ε < θ̄ (by Definition 55), while µiη, µ

i
ξ > θ̄ (by Assumption 6). Since

µiη ∈ Lη,i, p(µiη) = (L̄ηα, R̄
η
α, s

η
α), by the second case of Definition 56. Since λiξ ∈

Rξ,i ∩ θ̄, it follows that p � µiη  ḣµiη(n) < hλiξ(n). Similarly, since µiξ ∈ Lξ,i,

p � µiξ  ḣµiξ(n) < hλiη(n), by the third case of Definition 56.

CASE 43.3 Finally, suppose (Ai, Bi) is left/right unbounded. Since (Ai, Bi)

is not right-bounded, just as in CASE 43.1, λiη, λ
i
ξ > θ̄. Again, noting that λiξ ∈

Rξ,i (see Definition 53), it follows that p(λiξ) = (L̄ξα, R̄
ξ
α, s

ξ
α), by the third case of

Definition 56. Thus, p � λiξ  hµiη(n) < ḣλiξ(n). Now, since (Ai, Bi) is not left-

bounded, µiη, µ
i
ξ > θ̄, by Assumption 6. In particular, since µiξ ∈ Lξ,i, it follows that

p � µiξ  ḣµiξ(n) < hλiη(n), by the third case of Definition 56.

So p ≤ q̄2, p  “η, ξ ∈ Ṡ”, and p  “∀i < N , ∀n ≥ k′, hµiη(n) < hλiξ(n) and

hµiξ(n) < hλiη(n)”. This contradicts Claim 36.
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4.6 The Linear Order is Maximal and Saturated

Finally, we prove Theorem 4.0.3. The first step is to show that P is ccc. We have

already completed a crucial piece of the ccc proof by showing that a finite product

of Kunen gap-fillers for ω1-gaps is ccc, provided that the gaps arise at stages θ of

cofinality ω1, and that the gaps are not bounded in θ (cf. Theorem 4.5.1 in Section

4.5). The following lemma will also be needed for the proof that P is ccc.

Lemma 4.6.1. Fix α < κ, and suppose that for each δ < α, Pδ  “Q̇δ is ccc”.

Suppose Pα forces (A,B) is an ω1-cut in Lα that is bounded in α, and suppose

(A,B) is equivalent to (C,D) ⊆ Lδ, where δ ∈ α∩HL and the ω1-cut (C,D) is not

bounded in δ. Then (C,D) is in M [Gδ] and Pα forces (A,B) is a filled cut.

Proof. Suppose instead that (C,D) does not appear in M [Gδ]. There are three

possibilities:

(i) Q̇δ adds the cut (C,D) to Lδ,

(ii) Q̇δ+1 adds the cut (C,D) to Lδ, or

(iii) The iteration from δ + 1 to α adds the cut (C,D) to Lδ.

Suppose (i) holds. But Q̇δ is the product of Kunen gap-fillers, which is ccc by

hypothesis, and hence nice by Lemma 4.3.11; this contradicts Corollary 4.3.8. Sup-

pose next that (ii) holds. Note that Q̇δ+1 is the finite support product of Aronszajn
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tree specializers. This forcing is nice, so again it cannot add a gap. (Alternatively,

note that if Q̇δ+1 did add a gap to Lδ, it would shoot a branch through a Suslin

tree of M [Gδ] by Lemma 4.3.1, which is impossible since all such Suslin trees are

specialized by Q̇δ+1.) Finally, suppose (iii) holds. So the iteration from δ + 1 to α

(which is ccc by hypothesis) added a new ω1-gap to Lδ, contradicting Lemma 4.3.5.

Thus (C,D) is in Xδ, which means (C,D) gets filled before stage α, and so

Pα  (A,B) is a filled cut.

Theorem 4.6.2. P is ccc.

Proof. Since P is a finite-support iterated forcing construction, it suffices to show

by induction that ∀α < κ, Pα  Q̇α is ccc.

First, suppose α ∈ EL. If (A∗α, B
∗
α) is not equivalent to an ω1-cut, then

K(Aα, Bα) is ccc by Lemma 4.2.9 and Lemma 4.2.10 part 1. If (A∗α, B
∗
α) is equiv-

alent to an ω1-cut, then there must be some δ ∈ α ∩HL and an equivalent ω1-cut

(C,D) ⊆ Lδ that is not bounded in δ (see Definition 51). By Lemma 4.6.1, (C,D)

is in M [Gδ], which means that (C,D) is in Xδ, (C,D) gets filled before stage α, and

Pα  (A,B) is a filled cut. Thus, Pα forces K(Aα, Bα) is ccc (in fact, σ-centered,

by Lemma 4.2.8).

If α ∈ ES, then clearly Q̇α is forced to be ccc. If α ∈ HS, then Q̇α is forced to

be ccc by Corollary 4.3.3.

Finally, suppose that α ∈ HL.
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In order to show that Π{K(Aβα, B
β
α) : β < κ} is ccc, it suffices to show that any

such finite product is ccc. So fix a finite set {(Ai, Bi) : i < N̄} from the collection of

partition cuts {(Aβα, Bβ
α) : β < κ}, and without loss of generality, suppose for some

N ≤ N̄ , only the initial segment {(Ai, Bi) : i < N} consists of ω1-cuts that are

unfilled. By Lemma 4.2.10 parts 1 and 2, the product Π{K(Ai, Bi) : N ≤ i < N̄}

is ccc. Thus, by Lemma 4.2.10 part 3, it suffices to show that Π{K(Ai, Bi) : i < N}

is ccc.

Note first that the cuts {(Ai, Bi) : i < N} are not bounded in α (in the sense

of definition 51). To see this, suppose instead (A,B) is an unfilled ω1-cut from Xα

that is bounded in α. But then there must be some δ ∈ α ∩HL and an equivalent

ω1-cut (C,D) ⊆ Lδ such that (C,D) is not bounded in δ. By Lemma 4.6.1, (C,D)

must be in M [Gδ], which means (C,D) is in Xδ, (C,D) gets filled before stage α,

and so Pα forces (A,B) is a filled cut. But we are assuming that (A,B) is unfilled.

Thus, all the statements from Assumptions 1 of Section 4.5 hold, where α plays

the role of θ and EL plays the role of L. So Theorem 4.5.1 from that section applies:

Π{K(Ai, Bi) : i < N} is ccc, as required.

Theorem 4.6.3. L is a saturated linear order of size c in (ωQ, <∗).

Proof. Clearly, inM [G], L is a linear order in (ωQ, <∗), of size κ = c. For saturation,

fix any cut (A,B) of type (λ, δ) in L, where λ, δ < κ. Let C0 = {β : hβ ∈ A},
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and let C1 = {β : hβ ∈ B}. Since |C0| < κ, C0 is named cofinally often in the

enumeration C. Choose α ∈ EL such that sup(C0), sup(C1) < α and Cα names C0.

So hα fills the cut (A,B).50

Theorem 4.6.4. In M [G], (L, <∗) is a maximal linearly ordered subspace of (ωR, <∗).

Proof. The argument is the same as that for the proof of Theorem 3.10.2, verbatim,

except EL 6= κ; the set EL is as defined in this Chapter (see the beginning of section

4.1 or section 4.4).

Remark 17. As noted in Remark 8, it is important for the proof of this theorem

that for each α < κ, |Lα| < κ, to ensure that the cut (C̄, D̄) is of size < κ.

50See the proof of Lemma 3.9.1 for a more expanded version of this argument.
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5 Appendix: Open Problems

In this appendix we mention some questions related to the subject of this thesis that

remain open (at least to the knowledge of the present author). We also present some

partial results. These questions concern the existence of saturated linear orders and

maximal saturated linear orders in the various alternate partial orders. We focus on

three partial orderings, namely, divergence, eventual domination without eventual

equality, and almost inclusion; we consider each of the orderings over a set that

renders the structures countably saturated (in particular, we are careful to omit

endpoints).

Notation. Recall the definitions of ≺, �∗ and ⊂∗ from Chapter 1.

1. Let F = {f ∈ ωω : f is not bounded}, ordered by ≺;

2. let T = {f ∈ ωω : f is not eventually 0}, ordered by �∗; and

3. let B = {A ⊆ ω : A is infinite and co-infinite}, ordered by ⊂∗.

In the context of any of these partial orders, a saturated linear order (or SLO)
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refers to a saturated linear order of size c.

The first open question is about whether it is possible to have a saturated linear

order in some partial order, but no maximal saturated linear order.

Question 6. Does the existence of a SLO in F , T or B imply the existence of a

maximal SLO in the same partial order?

Obtaining maximality in cases where there is a SLO does not seem to be easy; for

the arguments in Chapters 3 and 4, genericity played a crucial role. Nevertheless,

we do not have an example of a model in which there is a saturated linear order,

but no maximal one.

Another question of interest is whether the existence of a SLO in one partial

order implies the existence of a SLO in another partial order. The following result

is a positive answer to this question, at least for our three partial orders:

Theorem 5.0.5. The following are equivalent:

(i) ∃ a SLO in F ,

(ii) ∃ a SLO in T , and

(iii) ∃ a SLO in B.

Proof. (i) ⇒ (ii): Suppose F is a SLO in F . Then F is automatically a SLO in T .
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(ii) ⇒ (iii): Let F be a SLO in T . Define, for each f ∈ F , Af = {(m,n) : n ≤

f(m)}. Let AF = {Af : f ∈ F}.

Fix a bijection ϕ : ω× ω −→ ω. Let Φ : P(ω× ω) −→ P(ω) be the lifting of ϕ;

in other words, Φ(A) = ϕ[A] = {ϕ(m,n) : (m,n) ∈ A} for each A ⊂ ω × ω. The

following general fact will be useful.

Fact 10. Let X, Y be any infinite sets of the same cardinality, let ψ : X −→ Y be

a bijection, and let Ψ be the lifting of ψ. Then

(a) Ψ is a bijection, and

(b) Ψ preserves ⊆, ⊆∗, and ⊂∗.51

Proof. Routine.

By Fact 10, Φ is a ⊂∗-order isomorphism.

Now, define σ : F −→ AF by σ(f) = Af . It is straightforward to check that σ

is an order isomorphism. Thus, AF is a SLO in (P(ω × ω),⊂∗). So the range of

Φ � AF is a SLO in (P(ω),⊂∗), and therefore in B.

(iii) ⇒ (i): Let A be a SLO in B. For each A ⊆ ω, let (fA(n))n∈ω enumerate

the elements of A in increasing order; in other words, if A = {an : n ∈ ω} is the

increasing enumeration of A, then f : ω −→ ω is defined by f(n) = an.

51Let S be any infinite set. For all A,B ⊆ S, define A ⊆∗ B iff A \ B is finite, and define
A ⊂∗ B iff A \B is finite but B \A is infinite.
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Claim 44. ∀A,B ∈ A, A ⊂∗ B iff fB ≺ fA.

Proof. Fix A,B ∈ A. Suppose first A ⊂∗ B. Let n̄ = min{n : A \ n ⊆ B}. Let

m̄ = min{m > n̄ : fA(m) ≥ fB(m)}.

Now, fix M ∈ ω. We wish to find M ′ such that for each n > M ′, fA(n) −

fB(n) > M . To do this, simply choose M ′ > m̄ such that |{n : m̄ < n < M ′,

n ∈ B \ A}| > M + m̄. Then, for all n > M ′, it must be that fA(n)− fB(n) > M .

Next, suppose that fB ≺ fA. Clearly, A 6= B. Since A is a linear order, either

A ⊂∗ B or B ⊂∗ A. But the latter would imply, by the preceding argument, that

fA ≺ fB. So, it must be the case that A ⊂∗ B.

Let F = {fA : A ∈ A}, and define ϕ : A −→ F by ϕ(A) = fA. By Claim 44, ϕ

is an order-reversing isomorphism. Thus, F is a SLO in F .

Although the existence of a SLO in one of our partial orders implies the existence

of a SLO in the other two, the situation for maximal saturated linear orders seems

more complicated.

Question 7. Does the existence of a maximal SLO in one of F , T or B imply the

existence of a maximal SLO in the other two partial orders?

We do not know the answer to the latter question. However, we do have the

following partial result:
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Theorem 5.0.6. If there is a maximal SLO in F and a maximal SLO in A, then

there is a maximal SLO in T .

Proof. Suppose A is a maximal SLO in B and F is a maximal SLO in F . For each

X ⊆ ω, let 1X denote the characteristic function of X as a subset of ω, and let

0̄ = 1∅. Moreover, let Ā = A ∪ {∅}, and let F̄ = F ∪ {0̄}. Define:

F̃ = {f + n+ 1A : f ∈ F̄ , n ∈ Z, A ∈ Ā} \ {0̄}

where, if n < 0,

f(m) + n =


f(m) + n if f(m) + n ≥ 0

0 otherwise

Claim 45. (F̃ ,�∗) is a linear order.

Proof. Fix f ′ 6= g′ ∈ F̃ ; say f ′ = f + n+ 1A, and g′ = g +m+ 1B, where f, g ∈ F̄ ,

m,n ∈ Z, and A,B ∈ Ā.

CASE 1: Suppose first f 6= g. Without loss of generality, suppose f ≺ g. We

need to show f ′ �∗ g, but we’ll show something stronger, namely, that f ′ ≺ g′. To

this end, fix M ∈ ω, and find n such that ∀k ≥ n, g(k)− f(k) > |m|+ |n|+ 2 +M .

Then, ∀k ≥ n, g′(k) − f ′(k) = g(k) + m + 1B − f(k) − n − 1A > |m| + |n| + 2 +

M +m− n+ 1B − 1A > M .

CASE 2: Suppose next that f = g, but m 6= n. Without loss of generality, say

n < m. Since A is co-infinite, f ′ �∗ g.
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CASE 3: Suppose finally that f = g and m = n. So it must be the case

that A 6= B. Since A is a linear order, either A ⊂∗ B or B ⊂∗ A; without loss of

generality, suppose A ⊂∗ B. But then 1A �∗ 1B, and so f ′ �∗ g′.

Claim 46. (F̃ ,�∗) is a saturated linear order.

Proof. Let (C,D) be a cut of size < c in F̃ . Let C ′ = {f : ∃n ∈ Z, ∃A ∈ Ā, ∃f ′ ∈ C

such that f ′ = f + n+ 1A}, and let D′ = {f : ∃n ∈ Z, ∃A ∈ Ā, ∃f ′ ∈ D such that

f ′ = f + n+ 1A}. If C ′ ∩D′ = ∅, then (C ′, D′) is a cut (of size < c) in (F,≺); but

then any h ∈ F which fills the cut (C ′, D′) also fills the cut (C,D). So, suppose

instead that C ′ ∩ D′ 6= ∅. It must be that |C ′ ∩ D′| = 1, so let C ′ ∩ D′ = {f}.

Define

m̄ = sup{m : ∃A ∈ A, f +m+ 1A ∈ C}

and

n̄ = inf{m : ∃A ∈ A, f +m+ 1A ∈ D}

Note that m̄ and n̄ are finite integers, and m̄ ≤ n̄, since C �∗ D. Define

A1 = {A ∈ A : f + m̄+ 1A ∈ C}, and A2 = {A ∈ A : f + n̄+ 1A ∈ D}

Suppose first that m̄ < n̄. Note that since |C| < κ, also |A1| < κ. So (A1, ∅)

is a cut of size < κ in A. Since A is a SLO, find B ∈ A filling this cut. Then

C �∗ f + m̄+ 1B �∗ D.
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Next, suppose that m̄ = n̄. Note that (A1,A2) must be a cut in A since (C,D)

is a cut in F̃ . So find B ∈ A filling the cut (A1,A2). But then, C �∗ f+m̄+1B �∗

D.

It now remains to show that (F̃ ,�∗) is maximal in T . To this end, suppose

instead there is a function h ∈ T \ F̃ such that (F̃ ∪ {h},�∗) is a linear order.

Since h /∈ F̃ , it follows that h /∈ F , since otherwise h = h + 0 + 1∅ would be in F̃ .

However, since F is a maximal SLO in F , (F ∪ {h},≺) is not a linear order. So

there must be some f ∈ F such that f and h are incomparable under the divergence

ordering. But since f = f + 0 + 1∅ ∈ F̃ , f and h must be comparable under �∗, by

hypothesis.

So either f �∗ h or h �∗ f . We consider only the case f �∗ h, since the other

case is similar.

Claim 47. There is some n > 0 such that h �∗ f + n.

Proof. Suppose instead that for each n > 0, h �∗ f + n fails. Since, for each n,

f + n = f + n + 1∅ ∈ F̃ and F ∪ {h} is assumed to be a linear order under �∗,

it must be the case that for each n > 0, f + n �∗ h. Now, fix N > 0. Since

f + (N + 1) �∗ h, find m̄ such for each m ≥ m̄, f(m) + (N + 1) ≤ h(m). So, for

each m ≥ m̄, h(m)− f(m) > N . This shows that f ≺ h, but f and h are supposed

to be incomparable under ≺.
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Let n̄ = min{n > 0 : h �∗ f + n}. So f + (n̄ − 1) ≤∗ h �∗ f + n̄. So, there

is some B ⊆ ω such that h =∗ f + (n̄ − 1) + 1B. Since A is maximal, there must

be some B′ ∈ Ā such that B and B′ are incomparable under ⊂∗. But then h is

incomparable to f + (n̄− 1) + 1B′ ∈ F̃ under �∗, contrary to the assumption that

(F̃ ∪ {h},�∗) is a linear order.
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