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ABSTRACT

Protein-protein interactions (PPIs) are a key regulatory mechanism in
coordinating a multitude of processes vital to normal cellular function. There exist a
number of wet-lab small-scale and high-throughput methods for accurately identifying
PPIs; however, despite their accuracy, these methods are expensive both in terms of time
and finances. Complementing experimental methods with computational predictions
increases the effectiveness of wet-lab small scale methodologies in identifying high
quality protein interaction networks. Computational predictions are made by applying
bioinformatics and machine-learning algorithms to large-scale training sets obtained from
wet-lab experiments, or by extracting information on PPIs from high volumes of
published data that do not directly identify protein interactions but are nonetheless
correlated with them. A disadvantage of computational predictions is their high degree of
inaccuracy, namely too many false positives and false negatives. To improve the
accuracy of computational predictions, it is important to consider interactions that are
likely to occur in vivo under certain biological conditions, termed ‘“context”. One
technique for improving prediction accuracy is analyzing data obtained via different types
of experiments that consider different features of the co-occurring proteins, such as co-
localization, co-expression, correlated mutations, or semantic similarity.  These
experimental sources and their resulting data are called “sources of evidence”.
Integrating data from multiple independent supporting evidence sources improves

prediction accuracy.
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In this work, I used text mining of PubMed abstracts as an evidence source for
protein interactions. I hypothesized that proteins whose names are frequently mentioned
in the same abstract are more likely to interact in vivo compared to randomly chosen
proteins. A comparison of three text mining techniques — gene name co-occurrence,
MeSH term indexing, and co-occurrence with a controlled vocabulary — shows that co-
occurrence with a controlled vocabulary yields the highest precision and recall. I
concluded that gene name co-occurrence with a controlled vocabulary can, therefore, be

used as a novel evidence source for prediction of WW domain-mediated PPIs.
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CHAPTER 1. INTRODUCTION

1.1 — Protein-protein interactions in signaling networks

In the post-genomic era, genes and their products are no longer studied only as
individual entities but in the context of larger functional interaction networks within the
cell. It has become increasingly evident that over 80% of gene products do not function
in isolation, but form part of a coordinated cell regulatory network (Berggard T et al.
2007). An example of a cellular regulatory network is the signal transduction process
[Fig. 1.1.1], where external stimulation events are converted into intracellular response
via a series of protein interactions within the cell (Wilks and Harpur 1996). Extracellular
signaling molecules, termed ligands, bind to specific receptor proteins on the cell’s
surface, initiating a physical and/or chemical reaction that is propagated within the cell by
interacting proteins. Proteins involved in the signal transmission process form signaling
pathways and these pathways in turn, assemble into complex networks that control
cellular function (Pawson and Nash 2000). Misregulation in signaling networks has been
observed in diseases such as cancer, muscular dystrophy, Alzheimer’s, and Huntington’s
disease (Gonzalez M.W.;, Kann, M.G. 2012). Increased knowledge of protein
interactions in signaling networks will lead to greater insight into the nature of those

diseases and to therapeutic advances.

Protein interactions may be direct (physical), where two proteins directly bind to
each other, or indirect (functional), where no direct contact takes place between the

interacting partners. This work focuses on direct physical PPIs.



Figure 1.1.1: Cellular signal transduction involving STATs that affects gene

regulation.
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An external stimulator binds to TGF-beta receptors on the surface on the cell,
initiating a series of interaction events that are propagated within the cell to invoke
a response (Darnell, 1997).

http://pawsonlab.mshri.on.ca/index.php?option=com content&task=view&id=219&Itemi
d=67




1.2 — Peptide Recognition Modules

Many protein interactions depend on the activity of peptide recognition modules
(PRMs). PRMs are globular protein domains that mediate interactions by binding to
specific, short, linear regions of other proteins (Sidhu et al. 2014). Well-known
examples of PRMs are SH2 and SH3 (Src homology 2 and 3) (Musacchio et al. 1992,
Mayer et al. 2001, Pawson et al 2001), PDZ (Postsynaptic Density 95 (PSD-95); discs
large (DLG) and zonula occludens-1 (ZO-1)) (Kennedy 1995, Doyle et al. 1996, Kim et
al. 2004, Tonikian et al. 2008), PTB (phosphotyrosine-binding) (Zhou et al. 1995), and
WW (named after the presence of two conserved tryptophan residues, abbreviated as
‘W’) (Bork and Sudol 1994, Sudol M 1996) domain family members. Each of these
domains folds into well-characterized structures typical of that domain and recognizes
specific peptide motifs (Pawson 2006), [Fig. 1.2.1-1.2.4]. For instance, the WW domain
is a 38 amino acid-long domain, which contains two conserved tryptophan residues and
binds proline-rich motifs (Nguyen et al. 1998, Wintjens et al. 2001). SH2 and PTB
domains bind to phosphorylated tyrosine residues, while SH3 and WW domains
recognize proline-rich peptides (Zhou et al. 1995, Kim and Sheng 2004, Pawson 2006).
Members of these PRM families are involved in a variety of regulatory cellular processes
(Pawson 2003), and mutations in them lead to misregulated pathways important in

diseases such as cancer, Alzheimer’s and Huntington’s disease (Pawson 2000).



Figure 1.2.1: SH2 Domain

SH2 domain of v-src bound to a pYRLYV peptide ligand

http://pawsonlab.mshri.on.ca/index.php?option=com content&task=view&ltemid=64&id
=178

SH2 domains contain a central anti-parallel beta-sheet (green) surrounded by two
alpha-helices (blue). They bind phosphotyrosine (pY) peptides and are found in a

variety of adaptor, scaffold and kinase proteins.




Figure 1.2.2: SH3 Domain

A SemS C-terminal SH3 (Src homology 3) domain complexed to the mSos-derived

sequence PPPVGPRRR (Pawson 2005).

http://pawsonlab.mshri.on.ca/index.php?option=com content&task=view&ltemid=64&id
=179

The SH3 domain contains five anti-parallel beta strands (green). The binding site
(orange) forms a hydrophobic patch that contains a cluster of conserved aromatic

residues and is surrounded by two charged and variable loops.



Figure 1.2.3: PDZ Domain

The third PDZ domain of PSD-95, bound to a TKNYKQTSYV peptide (Pawson

2005).

http://pawsonlab.mshri.on.ca/index.php?option=com content&task=view&ltemid=64&id

=168

PDZ domains are composed of approximately 80-90 amino acid (AA) residues and
contain two alpha-helices (blue) and 5-6 beta strands (green). The binding site is a

hydrophobic cleft that binds the peptide’s carboxylate group.



Figure 1.2.4: PTB Domain

PTB domain of Shc complexed to a HIIENPQpYFSDA peptide —
http://pawsonlab.mshri.on.ca/index.php?option=com content&task=view&ltemid=64&id

=170

PTB (phospho-tyrosine binding) domain is composed of approximately 100-150 AA
residues and binds phosphorylated proline-rich motifs (NPXpY). It contains two

alpha-helices (blue) and 6 beta sheets (green).



1.3 — WW Domains

The WW domain (also known as WWP), described by Bork and Sudol in 1996, is
a protein domain with two highly conserved tryptophan (‘W’) residues (Bork and Sudol
1994, Sudol 1996), [Fig. 1.3.1]. The WW domain recognizes and binds to proline-rich
motifs (Sudol 1996, Pawson and Nash 2003, Ingham et al. 2005). It is composed of
approximately 38 amino acid residues and folded into a three-stranded beta-sheet
structure (Sudol 1996). Proteins containing this domain are involved in signal
transduction in pathways such as the Hippo tumour suppressor pathway (Salah and
Ageilan 2011, Yu and Guan 2013), and mutations in the domain lead to misregulations
that have been implicated in diseases such as cancer in mammals (Kodaka and Hata
2015). For this reason, the WW domain has been of overlapping interest in the Pawson
and Bader laboratories; however, extensive research has not been done on them as much

as on SH2 and SH3 domains. For these reasons, my thesis focuses on the WW domain.



Figure 1.3.1: WW Domain

Pin1 WW domain -
http://pawsonlab.mshri.on.ca/index.php?option=com content&task=view&ltemid=64&id

=191

The WW domain is a 38-AA unit that folds into a 3-stranded beta sheet structure
and binds proline-rich motifs. The name ‘WW? illustrates that the domain contains

two conserved tryptophan (Trp or ‘W’) residues within its consensus sequence.



1.4 — Experimental PPI identification

Cellular protein interactions can be identified using several experimental
techniques. These techniques include tandem affinity purification (TAP) (Puig et al.
2001), yeast two-hybrid (Y2H) (Fields and Song 1989, Ito et al. 2001, Walhout and Vidal
2001, Briickner et al. 2009), co-immunoprecipitation (Co-IP) (Hall 2004, Isono and
Schwechheimer 2010), peptide arrays (Wu et al. 2007, Katz et al. 2011, Amartely et al.

2014) or phage display (Kay and Castagnoli 2003, Kokoszka and Kay 2015).

The yeast-two hybrid (Y2H) method (Fields and Song 1989) detects PPIs based
on the assembly of a transcription factor (TF) and the subsequent activation of selected
“reporter” genes (Auerbach D, Stagljar I 2005). A “bait” and a “prey” protein hybrids are
prepared in yeast. The “bait” is fused to the reporter gene’s TF’s DNA-binding domain
(DBD), while the “prey” is fused to the TF’s activation domain (AD). If the bait and prey
interact when expressed in a yeast cell that contains a specific “reporter gene”, the
interaction brings the AD and DBD into close proximity, resulting in a functional TF,
which, in turn triggers the expression of the reporter gene [Fig. 1.4.1]. Hence, the

reporter gene is used as an indicator of interactions between the ‘bait’ and ‘prey’ proteins.
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Figure 1.4.1: Yeast Two-Hybrid (Y2H) PPI detection method

Yeast Two Hybrid System

A B
target binding
protein partner

DNA-binding domain transcriptional

activation domain

RECOMBINANT GENES ENCODING (03
BAIT AND PREY INTRODUCED INTO
YEAST CELL

yeast cell i

v
CAPTURED PREY
BAIT
——
——1
TRANSCRIPTION
transcnptlonal activator OF REPORTER GENE
binding site —
reporter protein

BAIT

Yeast Two Hybrid System
www.technologyinscience.blogspot.com

The Yeast Two-Hybrid (Y2H) PPI detection method. A) A “bait” is prepared, by
fusing the target protein (P1) to the DBD of the TF. B) A “prey” is prepared, by
fusing a potential binding partner (P2) to the AD of the TF. C) Bait and prey are
placed inside a yeast cell that contains a reporter gene. D) Proteins P1 and P2

interact, creating a functional TF, which activates transcription of the reporter gene.

(Photo from www.technologyinscience.blogspot.com)
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Co-immunoprecipitation (Co-IP) is an extension of the immunoprecipitation (IP)
protocol, commonly used for protein detection. [P targets the protein in question
(antigen) with an antibody that the protein has a known affinity for and pulls down
(precipitates) the antigen-antibody complex using an immobilizing agent, such as an Ab-
binding protein, on a beaded surface. Proteins not precipitated on the beads are washed
away, and the protein in question is detected using gel electrophoresis followed by
Western blot. The Co-IP technique pulls down the bait protein along with its interacting
partners and, for example, uses mass spectrometry to identify the bait protein. (Thermo
Fisher Scientific Inc. 2015) [Fig. 1.4.2]. In the Tandem Affinity Purification (TAP)
technique, the TAP tag is used instead of direct antibodies to label and later detect the
bait proteins. Usually, the bait and prey are then identified by mass spectrometry. (Puig

etal. 2001)
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Figure 1.4.2: Co-immunoprecipitation (Co-IP) PPI detection method.

A L© | B | ’CJ 'E
o . N o9

1 2 3 4 G L ’ |
J— Lane 1. Mol. Weight Marker 0%
S e Lane 2. Extract @b b
— Lane 3.-ve IP (no ab) ﬁ | % ﬁ | %

Lane 4. Co-IP A % 4 Y \.‘/
&
~

Co-IP schema. A) Interacting proteins in vivo. B) Proteins in question are extracted
from the cell and placed in vitro in an extract of low-salt buffer with enzymatic shearing
to protect the protein complexes C) Antibody with known affinity to one of the
interacting proteins (bait) is added in vitro D) Antibody binding beads are added E)
Solution is washed, and proteins in question are immunoprecipitated on the beads F)
Proteins of interest are collected G) A Western blot is performed to analyze the
immunoprecipitated PPI using an Antibody against the bait’s interactor

Picture taken from http://www.activemotif.com/images/products/coip flowchart big.jpg
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1.5 — Computational PPI Predictions

1.5.1 — The need for computational predictions

Despite their accuracy, experimental methods for PPI identification remain costly
and time-consuming. Y2H and affinity-based techniques have shown 40%-80% false
negative rate and around 12% false positive rate, resulting in only partially complete
interactome maps (Venkatesan et al. 2009). Moreover, large-scale results for thousands
of samples often do not answer specific questions related to a particular protein (Leser
and Hakenberg 2005). The Y2H method, for instance, cannot reveal interactions between
more than two proteins (Berggérd et al. 2007). Complementing wet-lab procedures with
computational predictions can increase the financial and temporal effectiveness of wet-

lab methodologies in identifying high quality protein interaction networks.

1.5.2 — PPI prediction methods

Computational predictions are made by applying bioinformatics and machine-
learning algorithms to training sets obtained from large-scale experiments, such as
peptide arrays or phage display. Alternatively, prediction algorithms may extract
information on protein-protein interactions from high-volume collections of published
data that do not directly identify protein interactions, but nonetheless are correlated with
protein interactions. A simple method for predicting PRM-dependent protein interactions
involves position-weight matrices or position-specific scoring matrices (PWMs or
PSSMs) (Sinha 2006, Kerpedjiev et al. 2014). In this case, PWMs capture the probability

of an amino acid residue to occur at a specific position in a peptide that is predicted to
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bind to a PRM, which can be visualized as a sequence logo [Fig. 1.5.1]. Other
computational PPI prediction methods include high-throughput sequence-based
approaches (Chen and Jeong 2009, Liu et al. 2012, You et al. 2014), structure-based
approaches (Hosur 2012), function-based approaches (Schlicker et al. 2006, Wang et al.
2007), chromosome proximity (Vijaykumar and Vishal 2013), gene clustering (Lee and
Sonnhammer 2003), in-silico two-hybrid, phylogenetic tree, phylogenetic profile, and

gene expression-based approaches (Rao et al. 2014).
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Figure 1.5.1: Position-weight matrix and sequence logo

Position Weight Matrix
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Saurabh Sinha: “Counting position weight matrices in a sequence & an application to

discriminative motif finding” Computer Science, University of Illinois, Urbana-Champaign
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1.7 — The downside of computational predictions

Predictions made in silico contain many false positives, as bioinformatics methods
such as PWMs do not take into account the biological context that would make these
interactions possible in vivo. Even though computational methods can identify the
potential of proteins to interact, in reality conditions must be met within the cell in order
to enable interactions. These conditions are termed biological context. Examples of
biological context include co-localization (presence in the same location in the cell within
reasonable proximity of each other), co-expression (presence in the cell at the same time),
favorable conformation that permits interaction, or accessibility of interacting regions on
the proteins’ surfaces. Hence, a solid computational prediction model considers ‘real’
interactions, i.e. possible under certain biological conditions (“cellular context”), to
reduce the number of false positives and discard predicted interactions that are not likely

to occur in vivo.

1.6 — Sources of evidence for PPIs

Prediction datasets in a specific biological context are termed “sources of evidence” (or
“evidence sources”) for protein interactions. Co-localization, co-expression, surface
accessibility, pathway co-occurrence, correlated mutations, and evolutionary
conservation are all examples of evidence sources. Integrating data from multiple
independent supporting evidence sources improves prediction accuracy, as seen in tools
such as PrePPI (Zhang et al. 2012) that combines three-dimensional structural and

functional information. Repositories such as STRING (Snel et al. 2008, Szklarczyk et al.
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2015) [Fig. 1.6.1], PIPs [Fig. 1.6.2] and other contain information on PPIs from different

evidence sources.

Figure 1.6.1: STRING database

Home = Download =R Helpr=SMyibata “STMRING 10

STRING - Known and Predicted Protein-Protein Interactions

search search by multiple multiple
by name protein sequence names sequences
STRING is a database of known and predicted protein interactions.

protein name: (examples: #1 #2 #3) The interactions include direct (physical) and indirect (functional)
associations; they are derived from four sources:

~

-

(STRING understands a variety of protein names Genomic High-throughput (Conserved) Previous
and accessions; you can also try a random entry) Context Experiments Coexpression Knowledge

== 747 BB One

STRING quantitatively integrates interaction data from these sources
for a large number of organisms, and transfers information between
interactors wanted: these organisms where applicable. The database currently covers

. COGs " Proteins  Reset “ 9'643'763 proteins from 2'031 organisms.
\ J

please enter your protein of interest...

-[ Funding / Support] [Acknowledgements ] [Use Scenarios]

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) is being developed at CPR, EMBL, SIB, KU, TUD and UZH.
STRING references: Szklarczyk et al. 2015 / 2013 / 2011 / 2009 / 2007 / 2005 / 2003 / Snel et al. 2000.
Miscellaneous: Access Statistics, Robot Access Guide, Supported Browsers.

organism:
auto-detect v

What's New? This is version 10 of STRING - now covering more than 2000 organisms, and with improved prediction algorithms!
Sister Projects: check out STITCH and eggNOG - two sister projects built on STRING data!
Previous Releases: Trying to reproduce an earlier finding? Confused? Refer to our old releases.

CPR
NNF Center for Protein Research

EMBL
European Molecular Biology Laboratory

&y
Swiss Institute of Bioinformatics

STRING (Snel et al. 2008, Szklarczyk et al. 2015) is a repository of both known and
predicted physical and functional PPIs. Predicted interactions are obtained from

different evidence sources.
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Figure 1.6.2: The PIPs repository

(PIPs

Human Protein-Protein Interaction Prediction

Quick Search: Advanced Search What Does PIPs Do ... Help Document
Protein Name : eg IP100017381

PIPs is a database of predicted human protein-protein

(Currently supported identifiers interactions. The predictions have been made using a naive
include |PI, RefSeq and UniProt Bayesian classifier to calculate a Score of interaction. There
identifiers) are 37606 interactions with a Score 21 indicating that the

interaction is more likely to occur than not to occur.

Additional options:
Display module breakdown: The probability of interaction between two proteins is calculated

Minimum Score (2): 1.0 by combining different features including:

Submit  Reset Gene Orthology Domain
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Text Search: How to use Text
Search ...
Search Term:

To search multiple terms, separate

each with a space, eg "replication Co-localisation  Post Translational Network Analysis
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If you use this server in your work please cite:

McDowall, MD, Scott, MS and Barton, GJ PIPs: Human protein-protein interactions prediction
database Nucleic Acids Research 37:D651-D656 2009, Abstract, doi: 10.1093/nar/gkn870.

The PIPs database is a PPI prediction repository that combines predicted data from

different evidence sources.
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1.7 — Text Mining

Text mining, or information extraction, is automated extraction of structured
information from text using bioinformatics and machine-learning algorithms. It can help
to quickly uncover hidden or previously unknown information in high volumes of
unstructured text without human intervention. The most prominent example of this type
of text mining is a web search engine such as Google, which extracts information based
on keywords from a repository of websites (Hill and Lewicki 2007). In biology, text
mining of large volumes of published data is applied to assist biologists in quickly
uncovering information. An example of the application of text mining in biology is the
‘Related Articles’ function in PubMed, where a content similarity algorithm is used to

retrieve articles similar to the search term (Lin and Wilbur 2007).

At the basis of text mining is Named Entity Recognition (NER) — a strategy for
identifying the terms (entities) in question. NER is a technique to recognize concepts in
text that follow a selected form. Statistical methods and machine-learning techniques,
such as support vector machines (SVMs) (Takeuchi and Collier 2002), Hidden Markov
Models (HMM), Maximum Entropy (ME), and Conditional Random Fields (CRF are

then applied to extract and analyze the NER results.

This Masters work describes the use of text mining of PubMed abstracts as a

novel evidence source for WW domain-mediated PPIs.
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1.8 — Precision and Recall

To evaluate the performance and utility of computational prediction algorithms, it
is necessary to determine how well the algorithm retrieves results that are true and how
well it discards results that are false. Two standard statistical measurements to compute
these ratios are precision and recall. Precision refers to the fraction of true positives out
of all predictions. Recall describes the fraction of true positives out of everything in the
benchmark. ‘True positives’ refers to prediction results that have been proven true — in
our case, a true positive would be a predicted interaction that has been experimentally
validated and shown to occur in vivo. Correspondingly, ‘false positives’ refer to results
that have been predicted true by the algorithm, but are actually false (in our case —
predicted interactions that have not been experimentally verified). A repository of
known, experimentally validated interactions serves as a ‘benchmark’. In this work, the
benchmark is the iReflndex version 9 repository of PPIs obtained using different

experimental methods.

1.9 — Thesis Outline

The first chapter of the thesis describes my work on gene name co-occurrence in
PubMed abstracts. I programmatically searched these abstracts for co-occurrence of gene
symbols of WW domain-containing proteins and evaluated these predictions statistically,
by setting a cutoff for the number of abstracts and plotting a precision-recall graph. 1
then proceeded to examine the Medical Subject Heading (MeSH) terms indexed in those

articles and compared the results to previous findings. This work is outlined in Chapter
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2. Finally, I refined the co-occurrence prediction approach by introducing a controlled
vocabulary into the search (Chapter 3). All results are presented graphically in figures

throughout the thesis. Python scripts used in the process are presented in the Appendix.
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CHAPTER 2. GENE NAME CO-OCCURRENCE

Co-occurrence based methods are one common technique in text mining to predict
and construct PPI networks (Jenssen et al. 2001, Cohen and Hunter 2008). Concepts that
are mentioned within the same unit of text, such as sentence or paragraph, are predicted
to also have a biological affiliation (Krallinger et al. 2008). In protein interaction
predictions, the co-occurring terms may be gene names, gene symbols, GO terms (Jain
and Bader 2010) or MeSH terms (Jenssen et al. 2001). Co-occurrence can be used as
computational evidence of biological association. In the STRING repository, co-

occurrence of genes serves as an indication of functional relation (Snel B 2008).

Research has been done in the Bader lab to predict PRM-mediated PPIs involving
SH3 and PDZ domain family members, using GO terms as an evidence source. Jain et al.
(2010) predicted that proteins with similar GO gene function annotation also potentially
interact in vivo. The procedure described below identifies co-occurring human gene
symbols in PubMed abstracts to be used as an evidence source for WW-mediated PPI
predictions. The confidence measure is the number of co-occurrences for protein names
in question; i.e. the higher the number of abstracts where these protein names co-occur,

the more likely these proteins are to interact in vivo.
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2.1 - MATERIALS AND METHODS

The Python programming language was selected as the language for writing
custom text mining scripts, since it is a language that I am extensively familiar with, as
well as one of the preferred languages for bioinformatics analyses, with its built-in Bio
and EUtils libraries. In addition, Python is open-source, lightweight for installation

and configuration on UNIX-like platforms, easy to learn and execute.

Scripts written in Python are executed in UNIX-like environments, such as Linux

or Mac.

As an auxiliary resource, a custom database [Appendix A] was constructed, using
the MySQL database management system (DBMS), by virtue of its being open-source,
freely available, flexible for installation on different operating systems (OS), including

Linux and Mac, and my extensive familiarity with it.

The iRefIndex (Turner et al. 2010) database was used as the benchmark, since it
contains information on both predicted and experimentally verified PPIs, which can be
either direct or indirect, physical or chemical, and detected using various methods.
iRefIndex integrates information on PPIs from different databases, including BIND,
BioGrid, DIP, HPRD, MPPI, OPHID and more. The iRefWeb web interface lets the user
select the number of databases where PPIs were observed (1 or more, 2 or more, 3 or
more). iReflndex was selected as the benchmark set, as it includes interactions from

different databases obtained using different experimental methods.  Other PPI
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repositories, such as HPRD, do not include data from multiple evidence sources, and,

hence, provide less information than iRefIndex.

2.2 - PROCEDURE

2.2.1. Datasets:

The text mining process started with downloading the following datasets:

A list of all approved official HGNC symbols for every protein-coding gene in the

human genome (32717 in total) in text format — Set A

A list of 50 gene symbols of WW domain-containing proteins, downloaded from

Ensembl (http://ensembl.org) using the Biomart query system (Smedley et al. 2009,

Zhang et al. 2011) in text format — Set B (Appendix B)

A set of all PubMed abstracts for every WW-containing protein in Set B, excluding
DMD and ITCH. The abstracts can be retrieved using the built-in ‘esearch’ and
‘efetch’ methods of the Entrez Programming Utilities Python package (EUtils)
(National Center for Biotechnology Information (US) 2008), or, alternatively,
downloaded directly from PubMed. DMD and ITCH were excluded from the
search, since the number of abstracts matching these terms exceeds 1000, and the
script times out. (Appendix C). Appendix D contains a Python script to parse the

XML results and store them in the database.
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- A list of 1722 interacting protein pairs, in text format, downloaded from the iRefWeb

(iReflndex database version 9) in full MITAB format.

To obtain the benchmark dataset, the iRefWeb site

http://wodaklab.org/iRefWeb/search/index was searched using the following

parameters:

Source database: ANY

Organism: Single organism interaction, Homo sapiens

Nature of Interactions: Pairwise, experimental, physical

- Number of Publications: 1 or more publications

The interacting protein pairs — were downloaded in MITAB format. MITAB is the

standard format for biological data exchange, as specified by the Human Proteome

Organization (HUPO) Proteomics Standard Initiative (PSI).

The downloaded MITAB file contains the following information:

( http://psidev.sourceforge.net/molecular_interactions/xml/doc/user/)

Columns 1 and 2:
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uidA uidB
Unique identifiers, mainly ‘UniProtKB’, of the interacting proteins:

e.g.uniprotkb:Q05193 uniprotkb:P608380

Columns 3 and 4:

altA altB

List of alternative identifiers of the interactors, separated by |

e.g.

uniprotkb:P60880edgetypeuniprotkb:Q05193 | refseq:NP_004399 |entrezg
ene/locuslink:1759|rogid:uiP8CXhKWQaP2GIAZULITLqwGLSs9606|irogid:4

370876

Columns 5 and 6:

aliasA aliasB

List of aliases for the interacting proteins, separated by |.

e.g.

uniprotkb:DYN1_HUMAN |entrezgene/locuslink:DNM1|crogid:uiP8CXhKWQa
P2GIAZULJITLqwGLS9606 |icrogid:4370876

This is the input I used for my benchmark, since it contains values in the form
GENESYMBOL HUMAN. In this work, all values that contain the term ‘HUMAN’

were extracted from the MITAB file; built-in UNIX commands and VI editor were used

to remove all other information.

Column 7:
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method - Interaction detection methods, separated by |

Column 8:
author — Author(s) of publications where this interaction was shown, separated by |
Column 9:

pmids — PubMed IDs of publications where this interaction was shown, separated by |

Columns 10 and 11:

taxa taxb — NCBI taxonomy identifiers for interactors A and B

The remaining columns are internal iRefWeb identifiers and scores, not used in this work.

Alternatively, interaction data may be downloaded from iRefWeb in MITAB-lite format,
which contains condensed information. Since it contains no protein names, only internal

identifiers, it was not used as a benchmark in this work.

The benchmark set was downloaded in the full MITAB format, and all information not
pertaining to WW domain-containing protein interaction was removed using the Python
programming language (ww_benchmark.py), as well as standard UNIX commands and

the built-in VI editor.

The final benchmark set contains 1722 interacting protein pairs (this number has likely

increased since 2012) ww_benchmark.tsv — Appendix E.
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2.2.2. Text mining:

Once the datasets were downloaded, Python scripts were written and executed to extract
protein names from PubMed abstracts. Proteins whose names were mentioned in the
same abstract were predicted to interact. The interacting pair, along with the PubMed
publication IDs (PMIDs) of the abstracts where the interaction was found, were recorded

in a tab-delimited file.

Scripts:

- co_occurrence.py: (Appendix F)

Contains the script to identify PubMed abstracts where a WW-containing protein and
any other proteins from the set of HUGO gene symbols co-occur
(approved_hgnc_symbol biomart.txt). The pair of protein names is recorded as a

predicted interaction, along with the PMID of the abstract where they were found.

Recorded interactions were grouped by the number of abstracts where the interaction was
found and verified against the benchmark (Appendix G) to reveal TPs and FPs. A
predicted interaction that was also found in the benchmark was recorded as a TP. An

interaction that was predicted but did not appear in the benchmark was recorded as a FP.
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2.3 - RESULTS

Figure 2.3.1: Example of protein name co-occurrence in abstracts.

73. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18404-9. Epub 2010 Oct 11.
Coupling of tandem Smad ubiquitination regulatory factor (Smurf) WW domains modulates target specificity.
Chong PA, Lin H, Wrana JL, Forman-Kay JD.

Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, ON,
Canada M5G 1X8.

Smad ubiquitination regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that participates in degradation of TGF-
B receptors and other targets. Smurf2 WW domains recognize PPXY (PY) motifs on ubiquitin ligase target
proteins or on adapters, such as Smad7, that bind to E3 target proteins. We previously demonstrated that the
isolated WW3 domain of Smurf2, but not the WW2 domain, can directly bind to a Smad7 PY motif. We show
here that the WW2 augments this interaction by binding to the WW3 and making auxiliary contacts with the PY
motif and a novel E/D-S/T-P motif, which is N-terminal to all Smad PY motifs. The WW2 likely enhances the
selectivity of Smurf2 for the Smad proteins. NMR titrations confirm that Smad1 and Smad2 are bound by Smurf2
with the same coupled WW domain arrangement used to bind Smad7. The analogous WW domains in the short
isoform of Smurfl recognize the Smad7 PY peptide using the same coupled mechanism. However, a longer
Smurfl isoform, which has an additional 26 residues in the inter-WW domain linker, is only partially able to use
the coupled WW domain binding mechanism. The longer linker results in a decrease in affinity for the Smad7
peptide. Interdomain coupling of WW domains enhances selectivity and enables the tuning of interactions by
isoform switching.

Smurfl, Smurf2, Smadl, Smad 2 and Smad7 gene names co-occur in this abstract.
These proteins are also listed as interacting partners in GeneMANIA (Mostafavi et

al. 2008, Warde-Farley et al. 2010), as illustrated in Figure 2.3.2.
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Figure 2.3.2 has been obtained using the GeneMANIA visualization tool, which
illustrates protein interactions of different types (direct or indirect). The strength of
interactions corresponds to the thickness of lines connecting the proteins in

question.

Figure 2.3.2: A diagram illustrating the interaction between Smurfl, Smurf2,

Smadl, Smad2 and Smad7 proteins from the GeneMANIA prediction server

(Warde-Farley et al. 2010) (http://www.genemania.org)
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Figure 2.3.3: An abstract describing the interaction of Smurf2 and Smad1 proteins
in vivo (Zhang et al. 2001).

Smad proteins are key intracellular signaling effectors for the transforming growth
factor-p superfamily of peptide growth factors. Following receptor-induced
activation, Smads move into the nucleus to activate transcription of a select set of
target genes. The activity of Smad proteins must be tightly regulated to exert the
biological effects of different ligands in a timely manner. Here, we report the
identification of Smurf2, a new member of the Hect family of E3 ubiquitin ligases.

Smurf2 selectively interacts with receptor-regulated Smads and preferentially

targets Smad1l for ubiquitination and proteasome-mediated degradation. At higher
expression levels, Smurf2 also decreases the protein levels of Smad2, but not Smad3.
In Xenopusembryos, ectopic Smurf2 expression specifically inhibits Smadl
responses and thereby affects embryonic patterning by bone morphogenetic protein
signals. These findings suggest that Smurf2 may regulate the competence of a cell to
respond to transforming growth factor-p/bone morphogenetic protein signaling
through a distinct degradation pathway that is similar to, yet independent of,

Smurfl.

Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):974-9.

Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase.
Zhang Y1, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R.

PMID: 11158580
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Figure 2.3.4: An abstract describing the interaction of Smurf2 and Smad1 proteins

in vivo (Fukasawa et al. 2004).

Overexpression of transforming growth factor beta (TGF-B) has been shown to play
pathogenic roles in progression of renal fibrosis, and the severity of tubulointerstitial
fibrosis correlates better with renal function than the severity of glomerulosclerosis.
Smad proteins are signaling transducers downstream from TGF-B receptors. Three
families of Smad proteins have been identified: receptorregulated Smad2 and Smad3,
common partner Smad4, and inhibitory Smad7 (part of a negative-feedback loop). We
investigated Smad-mediated TGF-B signaling pathway and regulatory mechanisms of
inhibitory Smad7 in unilateral ureteral obstruction (UUO) kidneys in mice, a model of
progressive tubulointerstitial fibrosis. Compared with sham-operated kidneys, the level of
Smad7 protein, but not mRNA, decreased progressively in UUO kidneys, whereas
immunoreactivity for nuclear phosphorylated Smad2 and Smad3 and renal fibrosis were
inversely increased. Furthermore, we demonstrated that both the degradation and
ubiquitination activity of Smad7 protein were increased markedly in UUO kidneys
compared with sham-operated ones. We also found that both Smurfl and Smurf2 (Smad
ubiquitination regulatory factors), which are E3 ubiquitin ligases for Smad7, were

increased and that they interacted with Smad7 in UUO kidneys. Our results suggest that

the reduction of Smad7 protein resulting from enhanced ubiquitin-dependent degradation

plays a pathogenic role in progression of tubulointerstitial fibrosis.

Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8687-92. Epub 2004 Jun 1.

“Down-regulation of Smad?7 expression by ubiquitin-
dependent degradation contributes to renal fibrosis in obstructive nephropathy in
mice.”

Fukasawa H', Yamamoto T, Togawa A, Ohashi N, Fujigaki Y, Oda T, Uchida C, Kitagawa K, Hattori
T, Suzuki S, Kitagawa M, Hishida A.

PMID: 15173588
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Figure 2.3.5: An abstract describing the interaction of Smurf2 and Smad1 proteins

in vivo (Lin et al. 2000)

Smads are important intracellular signaling effectors for transforming growth factor-beta (TGF-
beta) and related factors. Proper TGF-beta signaling requires precise control of Smad functions.
In this study, we have identified a novel HECT class ubiquitin E3 ligase, designated Smurf2, that

negatively regulates Smad2 signaling. In both yeast two-hybrid and in vitro binding assays, we

found that Smurf2 could interact with receptor-activated Smads (R-Smads), including Smad1,

Smad2, and Smad3 but not Smad4. Ectopic expression of Smurf2 was sufficient to reduce the

steady-state levels of Smad1 and Smad2 but not Smad3 or Smad4. Significantly, Smurf2

displayed preference to Smad2 as its target for degradation. Furthermore, Smurf2 exhibited

higher binding affinity to activated Smad2 upon TGF-beta stimulation. The ability of Smurf2 to
promote Smad2 destruction required the HECT catalytic activity of Smurf2 and depended on the
proteasome-dependent pathway. Consistent with these results, Smurf2 potently reduced the
transcriptional activity of Smad2. These data suggest that a ubiquitin/proteasome-dependent

mechanism is important for proper regulation of TGF-beta signaling.

J Biol Chem. 2000 Nov 24;275(47):36818-22.

“Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent
degradation of Smad2 in transforming growth factor-beta signaling.”

Lin X1, Liang M, Feng XH.

PMID: 11016919
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Precision and Recall

A standard measure for evaluating the accuracy of bioinformatics methods is
precision and recall computation. Precision, also known as ‘specificity’, is the fraction of
true positives out of all predictions. Recall, also referred to as ‘sensitivity’, is the fraction
of true positives out of everything in the benchmark. Precision and recall are computed

according to the following formulas:

Precision =TP / (TP + FP)

Recall = TP / (TP + FN),

‘TP’ and ‘FP’ represent the number of true positives and false positives in the prediction

set.

In this work, predictions were grouped by the number of abstracts in which they
were encountered. For every predicted interacting protein pair, the number of abstracts in
which this prediction was encountered was also recorded. The higher the number of
abstracts in which a given protein pair was encountered, the higher the likelihood that
these proteins interact in vivo. Ideally, precision and recall would grow as the abstract

cutoff increases.

Since the obtained precision and recall values are less than 1.0, they have been

computed to 4 (four) significant figures, shown in the tables below.
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Table 2.3.6: WW domain-containing protein interactions, grouped by the number of

abstracts cutoff.

False
# abstracts True positives False positives Total predictions negatives
>=] 225 2236 2461 1497
>=) 130 721 851 1592
>=3 89 362 451 1633
>=4 78 254 332 1644
>=5 61 193 254 1661
>=6 52 108 160 1670
>=7 44 81 125 1678
>=8 39 63 102 1683
>=9 33 50 83 1689
>=10 30 42 72 1692
>=]1 28 35 63 1694
>=12 27 31 58 1695
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Table 2.3.7: WW domain-containing protein interaction prediction results based on

co-occurrence of protein names in PubMed abstracts (2012)

# abstracts cutoff Recall Precision
>=] 0.1307 0.0914
>=) 0.0868 0.1528
>=3 0.0651 0.1973
>=4 0.0610 0.2349
>=5 0.0508 0.2402
>=6 0.0457 0.3250
>=7 0.0405 0.3520
>=8 0.0374 0.3824
>=9 0.0329 0.3976

>=10 0.0309 0.4167
>=]11 0.0298 0.4444
>=]12 0.0296 0.4655

As evident from this figure, precision drops as the abstract cutoff decreases. Recall

is also low at high precision.

The resulting precision-recall graph is shown in Fig. 2.3.8.
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Figure 2.3.8: Precision-recall graph of WW domain-containing PPI predictions by

text mining based on co-occurrence of protein names in PubMed abstracts
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2.4 — DISCUSSION

The main problem with text mining by gene name co-occurrence, besides long
execution time, is ambiguity. For gene names that match a dictionary word, such as
ITCH, PubMed search returns all abstracts that contain this word and its derivatives
(‘itchy skin’, ‘itching’, etc.), not necessarily the protein name. The same applies to gene
names consisting of one or two characters, such as ‘T’ or ‘TH’, which form parts of
English words, and gene names equivalent to disease name abbreviations, such as ‘MS’.
The number of PubMed abstracts returned for these genes exceeds several thousand,

resulting in a high number of false positives, which, in turn, lead to low recall.

2.5 - CONCLUSIONS

Text mining by gene name co-occurrence in PubMed abstracts is successful in predicting
interacting protein pairs with precision rate between approximately 0.1 and 0.5, and recall

rate between approximately 0.03 and 0.1.
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CHAPTER 3: MeSH TERM INDEXING

To resolve the issue of ambiguity mentioned in 2.4, I needed to refine the search
to limit the number of abstracts returned by the search to abstracts that specifically talk
about this gene name. For this, I used the Medical Subject Heading (MeSH) term

indexing.

The Medical Subject Heading (MeSH) database is a controlled vocabulary of the
U.S. National Library of Medicine that uniformly indexes biomedical literature (NIH:
U.S. National Library of Medicine 2012). The MeSH vocabulary includes four main
types of terms: Headings (descriptors), Subheadings (qualifiers), Supplementary
Concepts, and Publication Types (NIH: U.S. National Library of Medicine 2012). These
terms characterize different aspects of the published MeSH records and are classified as
Descriptors, Qualifiers, or Supplementary Concept Records (SCRs) (NIH: National
Library of Medicine 2014). For human protein names, the MeSH terms are in the form
“official_gene symbol protein, human” (e.g. ‘BAG3 protein, human’) and are indexed

in PubMed abstracts as either ‘Supplementary Concepts’ or ‘Entry terms’.

MeSH term indexing facilitates searching PubMed by retrieving only publications
that discuss the search term substantively. A publication that simply mentions a concept
but does not discuss it in detail is not indexed with a MeSH term for this concept and will
not be returned by the search. Hence, using the MeSH Supplementary Concept indexing

of protein names to retrieve only articles that specifically discuss these proteins and their
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interacting partners is expected to increase search precision considerably, compared to

only searching for simple gene name mentions.

3.1 - MATERIALS AND METHODS

3.1.1. Datasets:

The text mining process started with the following datasets:

A list of all approved official HGNC symbols for every protein-coding gene in the

human genome (32717 in total) in text format — Set A

A list of 50 gene symbols of WW domain-containing proteins, downloaded from
Biomart (Smedley et al. 2009, Zhang et al. 2011) in text format - Set B

(Appendix B)

A list of MeSH terms for all genes from Set A and Set B. These terms may be

retrieved in batch from the MeSH database using Python EUtils package as follows:

handle = Entrez.esearch(db="mesh", term=prot, rettype='xml',
retmax=ret_max)

A unique MeSH supplementary concept term was found for 44 of the 50 WW

domain-containing proteins. Of the remaining 6 proteins, 5 have not been indexed
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for MeSH, and the MeSH supplementary concept for DRP2 is not in the format ‘DRP2
protein, human’ and was excluded from the search.

The returned abstract set corresponds to the results of a generalized manual search
of PubMed using the MeSH term as a search keyword. Alternatively, the MeSH terms
may be downloaded manually in XML format from the MeSH repository. Then
Python and/or UNIX commands would be used to extract the protein names and
their corresponding MeSH terms from the downloaded file, in the form “gene_name
protein, human” (e. g. “A1CF protein, human”, which corresponds to the ‘A1CF’ gene
symbol). However, the script’s execution time using MEDLINE is many times faster

than retrieving the records as XML or plain text.

The retrieved MeSH terms were stored in a MySQL database.

- A set of all PubMed abstracts for every WW-containing protein in Set B, excluding
DMD and ITCH, since they were not included in part 1 of the analysis. The abstracts
were retrieved using the built-in ‘esearch’ and ‘efetch’ methods of the Entrez
Programming Utilities Python package (EUtils) (National Center for Biotechnology

Information 2008).

Alternatively, the abstracts can be downloaded manually from the NLM MeSH
website: http://www.nlm.nih.gov/mesh/filelist.html. Either of these techniques may
be implemented for use in the future in an automated prediction pipeline. Approach

a) requires no human interaction, whereas approach b) requires human effort.
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The retrieved abstracts with their PMIDs were stored in a MySQL database.

- A list of 1722 interacting protein pairs, in text format, downloaded from iRefWeb in

full MITAB format (same as in Chapter 2) using the script from Appendix E.

Computational resources are the same as in Chapter 2.

3.1.2. Text mining:

Once the datasets were downloaded, Python scripts were written and executed to
find the MeSH terms for protein names from Set A from the downloaded PubMed
abstracts. Proteins whose corresponding MeSH terms were indexed in the same abstract
were predicted to interact. The interacting pair, along with the PubMed publication IDs
(PMIDs) of the abstracts in which the interaction was found, were recorded in a tab-
delimited file. Interactions were then grouped by number of abstracts where each
interaction was found (similar to Chapter 2), precision and recall were computed, and a

precision-recall graph was constructed.

Scripts:

- mesh_search.py: (Appendix I)
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Contains code to download the MeSH term for every human protein-coding gene
symbol. The script accesses the MeSH repository remotely. Retrieved MeSH term

records were stored in a MySQL database

- eutils search.py:

This script does two things:

a) Search PubMed remotely for all abstracts pertinent to each WW-containing
protein from Set B.

b) In every abstract, identify all MeSH terms indexed in it, both for WW-
containing proteins and any other proteins from the set of HUGO gene
symbols. All MeSH terms were recorded in the database as predicted
interacting partners, along with the PMID of the abstract where they were

found.

The resulting interaction dataset was stored in the database.

Table 3.1.1: A sample MySQL table storing mapping between HGNC symbols and

their corresponding MeSH terms:

MeSH Term Gene Symbol
UTRN protein, human UTRN
DMD protein, human DMD
ARHGAP27 protein, human ARHGAP27
GAS7 protein, human GAS7
ITCH protein, human ITCH
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Table 3.1.2: A sample MySQL table storing predicted interactions for MeSH terms

indexed in the same abstract.

PMID of abstracts where
interactions were found

protein,

21452305

21383157,21212414

Source MeSH Term Interacting Partner
GAST7 protein, human | RUNX2
human
ITCH protein, human | LATS protein, human
SMURFTI protein, SMUREF2 protein,
human human

22351504,20937913, 20484049

Table 3.1.3: WW domain-containing protein interaction prediction results based on

MeSH term indexing in PubMed abstracts (2013)

# Abstracts True positives False positives Total predictions False negatives
>=] 85 556 641 1637
>=) 25 70 95 1697
>=3 7 20 27 1715
>=4 3 8 11 1719
>=5 2 3 5 1720
>=6 1 1 2 1721
>=T7 1 1 2 1721
>=8 1 1 2 1721
>=0 1 0 1 1721
>=10 1 0 1 1721
>=11 1 0 1 1721
>=12 1 0 1 1721

Table 3.1.4: Precision and recall computed for results in Fig. 3.1.3

# abstracts cutoff Recall Precision
>=] 0.0494 0.1326
>=) 0.0145 0.2632
>=3 0.0041 0.2593
>=4 0.0017 0.2727
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>=5 0.0012 0.4000
>=6 0.0006 0.5000
>=T7 0.0006 0.5000
>=8 0.0006 0.5000
>=9 0.0006 1.0000
>=10 0.0006 1.0000
>=]1 0.0006 1.0000
>=]12 0.0006 1.0000
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Figure 3.1.5: Precision-recall graph of WW domain-containing PPI predictions by

text mining based on MeSH terms indexed in PubMed abstracts
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Table 3.1.6: Comparison of text mining prediction results based on gene name co-

occurrence in abstracts and results based on MeSH term indexing

Gene name co-occurrence MeSH terms
Abstracts Recall Precision Recall Precision
>=] 0.1307 0.0914 0.0494 0.1326
>=7 0.0868 0.1528 0.0145 0.2632
>=3 0.0651 0.1973 0.0041 0.2593
>=4 0.0610 0.2349 0.0017 0.2727
>=5 0.0508 0.2402 0.0012 0.4000
>=6 0.0457 0.3250 0.0006 0.5000
>=7 0.0405 0.3520 0.0006 0.5000
>=8 0.0374 0.3824 0.0006 0.5000
>=9 0.0329 0.3976 0.0006 1.0000
>=10 0.0309 0.4167 0.0006 1.0000
>=]1 0.0298 0.4444 0.0006 1.0000
>=12 0.0296 0.4655 0.0006 1.0000

A comparison of both curves is illustrated in Fig. 3.1.7.
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Figure 3.1.7: Comparison of text mining results based on gene name co-occurrence

to results based on MeSH term indexing.
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3.1.3 - DISCUSSION

The main disadvantage of using MeSH indexing for PPI prediction is the lack of
indexing for many proteins that are not a major topic of an article. If a protein has not
been indexed for MeSH, it would not be considered an interacting partner, even though it

might be a TP.

3.1.4 - CONCLUSIONS

Text mining results based on MeSH term indexing show much greater precision
than results based on gene name co-occurrence, as expected, due to stringent definition of
MeSH terms and publication indexing in PubMed. However, the recall is much lower
than recall using gene name co-occurrence. Many proteins that interact in real life and
are co-mentioned in abstracts but are not major topics of publications are not indexed for
MeSH. For this reason, a script that relies on MeSH term indexing to predict protein
interactions returns a high number of false negatives, i.e. predictions are simply missed.
MeSH terms can, therefore, be used for PubMed text mining in cases where high
precision is required; however, due to the low recall, it is not worthwhile to use MeSH

terms for large-scale text mining.
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CHAPTER 4. CO-OCCURRENCE WITH CONTROLLED

VOCABULARY

Since MeSH term search yielded poor recall, the final step of the analysis reverts
to gene name co-occurrence. To improve precision by reducing the number of false
positives and predict interactions that specifically involve the WW domain, a controlled
vocabulary has been applied to identify specific interactions mediated by the WW

domain.

The controlled vocabulary terms have been selected manually based on known
WW PPI abstracts, to reflect WW domain-mediated interactions to the domain’s binding

motif. The list includes the following terms:

- proline-rich

- protein-protein interaction
- WW domain

- proline residues

- PPxY

- LPxY

- protein interaction module
- WW domain-binding

- WW-binding
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4.1. MATERIALS AND METHODS

4.1.1. Datasets:

The text mining process started with the following datasets:

- A list of all approved official HGNC symbols for every protein-coding gene in the

human genome (32717 in total) in text format — Set A

- A list of 50 gene symbols of WW domain-containing proteins, downloaded from
Biomart (Smedley et al. 2009, Zhang et al. 2011) in text format — Set B (Appendix

B)

- Alist of controlled vocabulary terms - Set C

Set C: Controlled vocabulary terms

proline-rich

- protein-protein interaction
- WW domain

- proline residues

- PPxY

- LPxY

- protein interaction module
- WW domain-binding

- WW-binding
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- A set of all PubMed abstracts for every WW-containing protein in Set B,
excluding DMD and ITCH, since they were not included in part 1 of the
analysis. The abstracts were retrieved using the built-in ‘esearch’ and ‘efetch’
methods of the Entrez Programming Utilities Python package (EUtils)
(National Center for Biotechnology Information (US) 2008) -and stored in a

custom MySQL database.
Alternatively, the abstracts can be downloaded manually from the NLM MeSH
website: http://www.nlm.nih.gov/mesh/filelist.html. Either of these techniques may
be implemented for use in the future in an automated prediction pipeline. Approach

a) requires no human interaction, whereas approach b) requires human effort.

Computational resources (UNIX, Python, MySQL) are the same as in Chapters 2 and 3.

4.1.2. Text mining:

For each controlled vocabulary term, abstracts that contain this term, were

selected for analysis. Remaining abstracts were discarded.

An example of such an abstract is shown in Fig. 4.1.1
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Figure 4.1.1: An abstract that contains controlled vocabulary term
‘PHOSPHORYLATION’. Co-occurring protein names HSF1 and BAG3 are

highlighted. These proteins were predicted to interact.

PMID: 23983126

Heat shock factor 1 (HSF1) enhances the survival of cancer cells under various
stresses. The knock-out of HSFI1 impairs cancer formation and progression,
suggesting that HSF'1 is a promising therapeutic target. To identify inhibitors of
HSF1 activity, we performed cell-based screening with a library of marketed and
experimental drugs and identified cantharidin as an HSF'1 inhibitor. Cantharidin is
a potent antitumor agent from traditional Chinese medicine. Cantharidin inhibited
heat shock-induced luciferase activity with an IC50 of 4.2 xcexbcm. In contrast,
cantharidin did not inhibit NF-xcexbaB luciferase reporter activity, demonstrating
that cantharidin is not a general transcription inhibitor. When the HCT-116
colorectal cancer cells were exposed to heat shock in the presence of cantharidin, the
induction of HSKF1 downstream target proteins, such as HSP70 and BAG3 (Bcl-2-
associated athanogene domain 3), was suppressed. HSP70 and its co-chaperone
BAG3 have been reported to protect cells from apoptosis by stabilizing anti-
apoptotic Bcl-2 family proteins. As expected, treating HCT-116 cancer cells with
cantharidin significantly decreased the amounts of BCL-2, BCL-xL, and MCL-1
protein and induced apoptotic cell death. Chromatin immunoprecipitation analysis
showed that cantharidin inhibited the binding of HSK1 to the HSP70 promoter and
subsequently blocked HSF1-dependent p-TEFb recruitment. Therefore, the p-
TEFb-dependent phosphorylation of the C-terminal domain of RNA polymerase II
was blocked, arresting transcription at the elongation step. Protein phosphatase 2A
inhibition with PP2CA siRNA or okadaic acid did not block HSF1 activity,
suggesting that cantharidin inhibits HSF1 in a protein phosphatase 2A-independent
manner. We show for the first time that cantharidin inhibits HSF1 transcriptional
activity.

Proteins HSF1 and BAG3, which co-occur in the referenced article, also interact in vivo,

as shown by the Cytoscape (Shannon et al. 2003) diagram in Fig. 4.1.2.
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Figure 4.1.2: A Cytoscape (Shannon et al. 2003) diagram illustrating the interaction

between BAG3 and HSF1 proteins
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Interacting protein pairs and the PMIDs of the abstract where they co-occur were
stored in a MySQL database. Again, co-occurrences were grouped by the number of

abstracts, and a precision-recall graph was constructed.

The script was first run for each controlled vocabulary (CV) term; then a

combined prediction script was run for all the CV terms.

Prediction statistics using co-occurrence with CV terms and comparison to

previous text mining results are shown in Fig. 4.1.4 — 4.1.8.

Table 4.1.3: The number of TPs and FPs for each individual CV term

predictions
1 0 1

LPxY

PPxY 93 23 70
Proline residues 8 1 7
Proline-rich 45 9 36
Protein interaction 56 15 41
PXXP 1 0 1
WW-binding 9 2 7
WW domain 321 74 247
WW domain-binding 4 2 2

Total: 539
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Figure 4.1.4: Precision-recall table and graph for CV term ‘protein interaction’
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Figure 4.1.5: Precision-recall table and graph for CV term ‘WW domain’
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Figure 4.1.6: Precision-recall table and graph for CV term ‘PPXY’
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Figure 4.1.7: Precision and recall values for all CV terms combined

Total True False
>= abstract cutoff predictions positives positives Recall Precision
>=1 288 60 228 0.0348 0.2083
>=2 74 21 53 0.0122 0.2838
>=3 27 7 20 0.0041 0.2593
>=4 14 2 12 0.0011 0.1429
>=5 7 1 6 0.0006 0.1429
>=7 3 1 2 0.0006 0.3333
>=9 2 1 1 0.0006 0.5000
>=15 1 0 1 0 0
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Figure 4.1.8: Precision-recall graph for gene name co-occurrence with all CV terms

combined
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Figure 4.1.9: Comparison of precision and recall values for gene name co-

occurrence with and without all CV terms combined

Gene name co-occurrence Gene name co-occurrence
without CV with CV
Abstracts Recall Precision Recall Precision

>=1 0.1307 0.0914 0.0348 0.2083
>=2 0.0868 0.1528 0.0122 0.2838
>=3 0.0651 0.1973 0.0041 0.2593
>=4 0.0610 0.2349 0.0012 0.1429
>=5 0.0508 0.2402 0.0006 0.1429
>=6 0.0457 0.3250 0.0006 0.1429
>=7 0.0405 0.3520 0.0006 0.3333
>=8 0.0374 0.3824 0.0006 0.3333
>=9 0.0329 0.3976 0.0006 0.5
>=10 0.0309 0.4167 0 0
>=11 0.0298 0.4444 0 0
>=12 0.0296 0.4655 0 0
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Figure 4.1.10: Comparison of all text mining results — based on gene name co-

occurrence without CV, based on MeSH terms, and based on gene name co-

occurrence with CV
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4.2. DISCUSSION

As expected, text mining based on co-occurrence with CV yields higher precision
and higher recall than co-occurrence without CV. It also yields higher precision than
MeSH term-based mining. It shows lower recall than MeSH term-based mining, which
can be explained by two factors. The first is the stringency of CV selection — like MeSH
term definition, the CV algorithm may discard relevant abstracts that contain information

on PPIs but not the CV terms.

As outlined in section 2.4, it would be helpful to rerun the prediction script with a
new version of iReflndex and ensure that the publications examined by the script are not
newer than the latest version of the benchmark. This step may help identify more TPs

and fewer FPs.

4.3. CONCLUSIONS

Based on the precision-recall graph for gene name co-occurrence with CV, it may be
concluded that gene name co-occurrence is a text mining algorithm that can be used

as a novel evidence source, for PPIs that involve the WW domain and for other PPIs.
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FUTURE DIRECTIONS

It would be helpful to consider gene name aliases. Since many proteins are listed
in HGNC under multiple names, or their names have changed over time, and the HGNC
symbol differs from the name in the publication, gene names may be missed by the co-
occurrence script. Moreover, different databases use different identifiers for the same
gene (e.g. NCBI and Ensembl), and publication authors may use these identifiers
interchangeably. Therefore, it would be helpful to have a method to detect multiple gene

names and different database identifiers.

Also, some of the abstracts have been published after the release of iRefIndex
v.4.1; therefore, PPIs outlined in these abstracts would be identified as FPs when
they are actually TPs. Rerunning the script with a new version of iRefIndex, as well
as ensuring that the publications examined by the script are not newer than the

latest version of the benchmark may help identify more TPs and fewer FPs.

The pipeline needs to be expanded to other domains, besides WW-containing
proteins, and updated with the latest version of iRefIndex as a benchmark. Abstract
selection needs to reflect the dates of the publications to correlate with the benchmark

and not include abstracts published after the benchmark release.

The controlled vocabulary needs to be expanded and adapted to more
natural language processing (e.g. ‘does not interact’, ‘but not’ or ‘except’) [Fig. 5.1,

NLP terms highlighted in red]. Furthermore, it would be helpful to include the
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distance between terms and assign weights to interactions based on how far protein

names are from each other in the abstract.

Figure 5.1: An abstract describing the interaction of Smurf2 and Smad]1 proteins in

vivo (Lin et al. 2000)

Smads are important intracellular signaling effectors for transforming growth factor-beta (TGF-
beta) and related factors. Proper TGF-beta signaling requires precise control of Smad functions.
In this study, we have identified a novel HECT class ubiquitin E3 ligase, designated Smurf2, that

negatively regulates Smad2 signaling. In both yeast two-hybrid and in vitro binding assays, we

found that Smurf2 could interact with receptor-activated Smads (R-Smads), including Smad1,

Smad2, and Smad3 FUNNSHSMENE. Ectopic expression of Smurf2 was sufficient to reduce the

steady-state levels of Smad1 and SiEGEEDUNOTSHEGONoISmENd. Significantly, Smurf2

displayed preference to Smad2 as its target for degradation. Furthermore, Smurf2 exhibited

higher binding affinity to activated Smad2 upon TGF-beta stimulation. The ability of Smurf2 to

promote Smad2 destruction required the HECT catalytic activity of Smurf2 and depended on the
proteasome-dependent pathway. Consistent with these results, Smurf2 potently reduced the
transcriptional activity of Smad2. These data suggest that a ubiquitin/proteasome-dependent

mechanism is important for proper regulation of TGF-beta signaling.

J Biol Chem. 2000 Nov 24;275(47):36818-22.

Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of
Smad?2 in transforming growth factor-beta signaling.

Lin X1, Liang M, Feng XH.
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Appendix A — Database ER diagram

interactions

Www_gene_names

interactionID: INT PK

genelD: INT PK
gene_name: TEXT

A

pmID: TEXT FK references(abstracts)
ww_src: INT FK references (ww_gene_names)
interactor: INT FK references

(gene_to_mesh_mapping)

ww_tp

prot1: INT FK references
(ww_gene_names)
prot2: INT FK references

gene_to_mesh_mapping

abstracts

mesh_id: INT not null PK

(aII_gene_names)l

all_gene_names

genelD: INT PK
gene_name: TEXT

gene_name: INT FK references(all_gene_names)
mesh_term: TEXT

pmID: TEXT
abstract: TEXT

mesh_terms_in_abstracts

A

mp_id: INT not null PK

A

mesh_term: INT FK references (ww_gene_to_mesh_mapping)
pmID: TEXT FK references (abstracts)

ww_benchmark

interaction|D: INT PK

prot1: INT FK references (all_gene_names)
prot2: INT FK references (all_gene_names)
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Appendix B — Ensembl repository search results, using the Biomart
query engine:

http://www.ensembl.org/biomart/martview/

Search filters:
Database: Ensembl genes 81
Dataset: Homo Sapiens Genes (GRCh38.p3)

Protein domain: IPR001202 (corresponds to WW domain InterPRO ID)

BLAST/BLAT | BioMart | Tools | Downloads | Help & Documentation | Blog

[> New | @ Count | @ Rosute |
Dataset 54 / 66592 Genes Export all results to File B Tsv | ) Unique results only
Homo sapiens genes Email notification to
(GRCh38.p3)
Fllters View Al B rowsas HTML [ @ Unique results only
Interpro ID(s) [e.g.
IPR007087]: [ID-list specified] | | HGNC symbol
Attributes gg;’_g?
HGNC symbol GAS?
WWC1
MAGH
Dataset ITCH
[None Selected] PIN1
HECW1
IQGAP1
NEDD4L
SAV1
ARHGAP27
PCIF1
APBB1
GALNT9
BAG3
IQGAP2
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Appendix C — Ensembl repository search results for WW domain

50 WW domain-containing proteins (ensembl_ww_sorted.txt)

APBB1
APBB2
APBB3
ARHGAPI12
ARHGAP27
ARHGAP39
ARHGAP9
BAG3
CEP164
DGCRS

DMD
DRP2
FNBP4
FRMPD4
FTSJD2
GAS7
HECW1
HECW2
IQGAPI
IQGAP2

ITCH
MAGI1
MAGI2
MAGI3
NEDD4
NEDD4L
PCIF1
PIN1
PLEKHAS
PLEKHA7

PQBPI
PRPF40A
PRPF40B
SAV1
SETD2
SMURF1
SMURF2
STXBP4
TCERGI
TCERGIL

UTRN
WAC
WBP4
WWC1
WWC2
WWOX
WWP1
WWP2
WWTRI1
YAP1
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Appendix D — PubMed abstracts in XML format

File pubmed_result.xml
Sample:

<?xml version="1.0"7>
<data>
<PubmedArticle>
<PMID Version="1">24008736</PMID>

<ArticleTitle>WWOX suppresses autophagy for inducing
apoptosis in methotrexate-treated human squamous cell
carcinoma.</ArticleTitle>

<AbstractText>Squamous cell carcinoma (SCC) cells

refractory to initial chemotherapy frequently develop disease
relapse and distant metastasis. We show here that tumor
suppressor WW domain-containing oxidoreductase (WWOX) (also named
FOR or WOX1) regulates the susceptibility of SCC to methotrexate
(MTX) in vitro and cure of SCC in MTX therapy. MTX increased WWOX
expression, accompanied by caspase activation and apoptosis, in
MTX-sensitive SCC cell lines and tumor biopsies. Suppression by a
dominant-negative or small interfering RNA targeting WWOX blocked
MTX-mediated cell death in sensitive SCC-15 cells that highly
expressed WWOX. In stark contrast, SCC-9 cells expressed minimum
amount of WWOX protein and resisted MTX-induced apoptosis.
Transiently overexpressed WWOX sensitized SCC-9 cells to
apoptosis by MTX. MTX significantly downregulated autophagy-
related Beclin-1, Atgl2-Atg5 and LC3-II protein expression and
autophagosome formation in the sensitive SCC-15, whereas
autophagy remained robust in the resistant SCC-9.
Mechanistically, WWOX physically interacted with mammalian target
of rapamycin (mTOR), which potentiated MTX-increased
phosphorylation of mTOR and its downstream substrate p70 S6
kinase, along with dramatic downregulation of the aforementioned
proteins in autophagy, in SCC-15. When WWOX was knocked down in
SCC-15, MTX-induced mTOR signaling and autophagy inhibition were
blocked. Thus, WWOX renders SCC cells susceptible to MTX-induced
apoptosis by dampening autophagy, and the failure in inducing
WWOX expression leads to chemotherapeutic drug
resistance.</AbstractText>
</PubmedArticle>
</data>
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Appendix E — A Python script to parse downloaded abstract search

results in XML format and store in the database

#!/usr/bin/python
import xml.etree.ElementTree as ET
import MySQLdb

# RUNS ON LARISA-DEV

db = MySQLdb.connect(host="1localhost", user="root",
passwd="password", db="binding_site")

cursor = db.cursor()

tree

ET.parse( 'pubmed_result.xml")
root = t

= tree.getroot()
for child in root:
for c2 in child:

if c2.tag == 'PMID':
pmID = c2.text.strip()
elif c2.tag == 'ArticleTitle':
title = c2.text.strip()
elif c2.tag == 'AbstractText':

abstract = c2.text.strip()

cursor.execute("INSERT INTO abstracts(pmID, title,
abstract) VALUES('" + pmID + "', '"" + title.replace("'",
IIIIII) + III’ [} + abstract.replace(lllll’ IIIIII) + III)II)




Appendix F — iRefIndex PPI dataset, used as the benchmark set in PPI

prediction script (ww_benchmark.tsv)

Sample:

alias a

alias b

crogid:EOGRPafDKt63MMyDOHF7BVg3Z6g|ic
rogid:1217575

uniprotkb:PIN1_HUMAN | entrezgene/locuslink:PIN1|cro
gid:FICkSpcBgvSDFW4iY1Etik85xN09606 |icrogid:189425
0

crogid:Nge6q/DbfBB/c7EleD0zSDci2NU |icrogi
d:947444

uniprotkb:SMUF2_HUMAN |entrezgene/locuslink:SMUR
F2|crogid:Ch9UvXcmtb2iD8i9DVKGCe77J7k9606 |icrogid
:1393325

crogid:WfcEVi/FMyvX8rgahjZYttRQ2Qs|icrogi
d:1099782

uniprotkb:DGCR8_HUMAN |entrezgene/locuslink:DGCRS8
| crogid:BpQaVWnWsgh5SDFrKplf7/9aWQw9606 | icrogi
d:1271497

crogid:jUtlYIlvMjurxZ7r7noeUQYVU4wQ |icrog
id:886865

uniprotkb:ITCH_HUMAN | entrezgene/locuslink:ITCH|cro
gid:JyySOfI+ZHOI1mvdxWDGN6NnjgCY9606 |icrogid:2639
679

crogid:xALY6DILikn8xKzeeWLJ/Chtkql|icrogi
d:1114318

uniprotkb:DGCR8_HUMAN |entrezgene/locuslink:DGCRS8
| crogid:BpQaVWnWsgh5SDFrKplf7/9aWQw9606 | icrogi
d:1271497

entrezgene/locuslink:ACCN3 | crogid:SXIXB6A
Noi3b+vd3LFNHMYFCqok9606 |icrogid:41177
48

entrezgene/locuslink:MAGI1 | crogid:WNOiaCIXUObtIMG
07eRIQdaGDSk9606 |icrogid:11793640

entrezgene/locuslink:AIMP1 | crogid:UtCeSRjF
YUuEHUxVF2HkG9RA55k9606 |icrogid:442520
2

uniprotkb:SMUF2_HUMAN |entrezgene/locuslink:SMUR
F2|crogid:Ch9UvXcmtb2iD8i9DVKGCe77J7k9606 |icrogid
:1393325

entrezgene/locuslink:APBB3 | crogid:U1jEo7ZP
G53cA/Bcls/BMGo/vWES606 |icrogid:430447
8

entrezgene/locuslink:APLP1|crogid:6PKn8miZNOLOS3c4
MjZFchs1yaQ9606 |icrogid: 715083

entrezgene/locuslink:APBB3 | crogid:U1jEo7ZP
G53cA/Bcls/BMGo/vWE9606 |icrogid:430447
8

uniprotkb:A4_HUMAN | entrezgene/locuslink:APP | crogi
d:HatR8w8+mNjtjr7s5+bAwaStpmk9606 |icrogid:218608
7

entrezgene/locuslink:APBB3 | crogid:U1jEo7ZP
G53cA/Bcls/BMGo/vWE9606 |icrogid:430447
8

uniprotkb:APLP2_HUMAN | entrezgene/locuslink:APLP2|
crogid:WBmrQxD6+MjRPRNHt63XDIs9++09606 |icrogid:
4664969

entrezgene/locuslink:ARHGAP27 | crogid:E5n
mKdVVnfW2ee8Uc9Inb6Nb3rkA9606 |icrogid:
14007633

rogid:8UhNuJtumIKtKerMGo2BYQznJ9U9606 | crogid:8U
hNuJtumIKtKerMGo2BYQznJ9U9606 |icrogid:9993265 | -
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Appendix G — A Python script to detect co-occurrence between WW
domain-containing proteins and other human proteins in PubMed

abstracts

#!/usr/bin/python

HHBHRHRHBHBHBHBHBHBHRHBHBHBHBHRHRHRHRHRHRFHH R ARG R R AR AR AR AR
HHUHHHRHBHBH R AR AR AR AR AR AR AR HB AR AR H

# RERUN W/0 CV, PURE CO-OCCURRENCE

# ABSTRACTS ARE FROM 2012

# RUNS ON LARISA-DEV, DATABASE binding_site

# EXCEPTIONS: NES, INS, NTS, TES, TRO, EFS - Deleted them from
the human gene set and predictions table
e e e e e
HHABHHBHBHHBHHBHBHHBHFRHBHHBHF R AR

import MySQLdb
import shlex, subprocess

# RUNS ON LARISA-DEV

db = MySQLdb.connect(host="1localhost", user="root",
passwd="password", db="binding_site")

cursor = db.cursor()

# WW genes
cursor.execute("SELECT * FROM ww_genes")
results_ww = cursor.fetchall()
ww_genes = []
for r_ww in results_ww:
ww_gene = r_ww(0]
ww_genes.append(ww_gene)
wg_set = set(ww_genes)
# ALL genes
cursor.execute("SELECT x FROM genes'")
results_g = cursor.fetchall()
genes = []

for r_g in results_g:
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gene = r_glo]
genes.append(gene)

cursor.execute("SELECT x FROM ww_abstracts_unique")
abst_res = cursor.fetchall()

abstrDict = {}
for a_res in abst_res:
pm_ID = a_res[0]
abstr = a_res|[1]
print pm_ID
abstrDict[pm_ID] = abstr
s_genes = set(genes)
punctuation = [II.II’ II’II' II:II' II;II]
#print abstrDict.keys()
for pmID in abstrDict.keys():
if pmID != "":
abstract = abstrDict[pmID]
#print abstract
for ww_gene in wg_set:
#print 'WW gene: ' + ww_gene. lower()
#print abstract. lower()

combos = []

# whole-word
combos.append(" " + ww_gene.lower() + " ")

# CANNOT use this, b/c gene '"INS' would return a
match for 'proteins' or 'domains' and gene 'NTS' matches

'variants' or 'elements', '"IDE' would match 'nucleotide'
#combos2.append(g.lower() + " ")

# and this would probably match 'insert'
#combos2.append(" " + g.lower())

# Dashes

# And this matches REL to "-related"!!
#combos2.append("-" + g.lower())

combos.append("-" + ww_gene.lower() + " ")
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for p in punctuation:

combos.append("-" + ww_gene.lower() + p)
combos.append(" " + ww_gene. lower() + "-")
combos.append("-" + ww_gene. lower() + "-")
# Brackets

combos.append (" (" + ww_gene.lower() + ")")

# Slashes
combos.append("/" + ww_gene. lower())
combos.append(ww_gene. lower() + "/")

for p in punctuation:
combos.append("/ " + ww_gene.lower() + p)

for p in punctuation:
combos.append(ww_gene. lower() + p)

s_comb = set(combos)
#print “s2_comb’

for s in s_comb:
if abstract.lower().find(s.lower()) >= 0:
print ww_gene + " found in abstr " + pmID

for g in s_genes:
if g !'= ww_gene and len(g) >= 3:

combos2 = []

# whole-word
combos2.append(" " + g.lower() + " ')

# CANNOT use this, b/c gene 'INS'

would return a match for 'proteins' or 'domains' and gene 'NTS'
matches 'variants' or 'elements', 'IDE' would match 'nucleotide'

"insert'

related"!!

#combos2.append(g. lower() + " ")
# and this would probably match
#combos2.append(" " + g.lower())
# Dashes

# And this matches REL to "-

#combos2.append("-" + g.lower())
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combos2.append("-" + g.lower() + " ')

for p in punctuation:

combos2.append("-" + g.lower() +
p)
combos2.append(" " + g.lower() + "-")
combos2.append("-" + g.lower() + "-")
# Brackets
combos2.append(" (" + g.lower() + ")")
# Slashes
combos2.append("/" + g.lower())
combos2.append(g.lower() + "/")
for p in punctuation:
combos2.append("/ " + g.lower() +
p)

for p in punctuation:
combos2.append(g.lower() + p)

s2_comb = set(combos?2)

for s2 in s2_comb:
if
abstract.lower().find(s2.lower()) >= 0:
print ww_gene + " and " + g +
" were found in abstract " + pmID

# check reverse interaction!!
if g in wg_set:
cursor.execute("SELECT x*
FROM co_occ_rerun_new_abstr WHERE genel=" + "g° + " AND gene2=" +
‘ww_gene' + " AND pmID=" + “pmID")
result =
cursor.fetchone()

if not result:

cursor.execute("INSERT INTO co_occ_rerun_new_abstr(pmID, genel,
gene2) VALUES("™ + “pmID® + ", "™ + “ww_gene’ + ", " + g  + ")")
break
else:

# still check if recorded

cursor.execute("SELECT x
FROM co_occ_rerun_new_abstr WHERE gene2=" + “g° + " AND genel=" +
‘ww_gene' + " AND pmID=" + “pmID")

result =
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cursor.fetchone()

if not result:

cursor.execute("INSERT INTO co_occ_rerun_new_abstr(pmID, genel,

gene2) VALUES("™ + “pmID + ", " + ‘ww_gene' + ", " +

break

AN

break

g

N +II)II)
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Appendix H — A Python script to compare predictions to benchmark

and detect TPs and FPs

#!/usr/bin/python

import MySQLdb

# RUNS ON LARISA-DEV

db = MySQLdb.connect(host="1localhost", user="root",
passwd="password", db="binding_site")

cursor = db.cursor()

outfile = open('co_occ_rerun_verification.tsv', 'w')

cursor.execute("SELECT * FROM ww_new_bm")
results = cursor.fetchall()

benchmark = []
for result in results:

genel = result[o]
gene2 = result[1]

tupl = (genel, gene2)

benchmark.append(tupl)
print “benchmark®
cursor.execute("SELECT *x FROM co_occ_rerun_new_abstr")
results2 = cursor.fetchall()

for result2 in results2:

pmID = result2[@].strip()

genel = result2[1].strip()
gene2 = result2[2].strip()
b_tup = (genel, gene2)

b_tup_rev = (gene2, genel)

outfile.write(pmID + '\t' + genel.strip() + '\t' +
gene2.strip() + '\t')

if b_tup not in benchmark and b_tup_rev not in benchmark:
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outfile.write("FP\n")

elif b_tup in benchmark or b_tup_rev in benchmark:
outfile.write("TP\n")
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Appendix I — Python script to retrieve MeSH terms for every human

protein-coding gene.

#!/usr/local/bin/python

import re

import string

import EUtils

import urllib

import urllib2

from Bio import Entrez

from EUtils import HistoryClient

Entrez.email = 'molhovsky@gmail.com'

# Oct. 2, 2012: Search ENTIRE human genome, WW-prots AND
their interactors

genes_file = open("approved_hgnc_symbol_biomart.txt", 'r")

ww_prots = []

outfile = open("mesh_results.txt", 'w')

url = "http://www.ncbi.nlm.nih.gov/mesh/"

ret_max = 1000

num_abstr = 1

pmids = [] # list of Pubmed IDs

pubmedDict = {} # dictionary: geneSymbol => [pmIDs]
search_str = ""

f errl open("no_mesh_ids.txt", 'w')

f err2 open("too_many_mesh_ids.txt", 'w')
p_set = []

for line in genes_file.readlines():

prot = line.strip()

p_set.append(prot)

pSet = set(p_set)
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non_human_mesh = open('non_human_mesh.txt', 'w')
gen_err_file = open('mesh_err.txt', 'w')

for prot in pSet:
try:
handle = Entrez.esearch(db="mesh", term='""' + prot +
, rettype='text', retmax=ret_max)
record = Entrez.read(handle)
mesh_ids = record ["IdList"]

if len(mesh_ids) ==
f_errl.write("No Mesh IDs for " + prot + '\n')

elif len(mesh_ids) <= 5:
for uid in mesh_ids:
try:

#handle2 =
urllib.urlopen("http://www.ncbi.nlm.nih.gov/mesh?term=" + uid +
"luid]")

handle2

record2

urllib.urlopen(url + uid)
handle2. read()

sl = record2.find(" [Supplementary

Concept]")
i=sl1
c = record2[il

while c = ">":
i-=1
c = record2[il

mesh_term = record2[i+1:s1]
if mesh_term.lower().strip() ==
prot.lower().strip() + " protein, human":
outfile.write(prot + '\t' +
mesh_term + '\n"')

else:

non_human_mesh.write(prot + '\t'

+ mesh_term + '\n"')

except urllib2.URLError:
gen_err_file.write(prot + '\n')

Entrez.email = 'gingerbraid@yahoo.com'
continue
else:
f_err2.write("Too many IDs: " + prot + '\n')
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except RuntimeError:
gen_err_file.write(prot + '\n')
Entrez.email = 'olhovsky@lunenfeld.ca'
continue

except IOError:
gen_err_file.write(prot + '\n')
Entrez.email = 'olhovsky@lunenfeld.ca'
continue

except urllib2.URLError:
gen_err_file.write(prot + '\n')
Entrez.email = 'olhovsky@lunenfeld.ca'
continue
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Appendix J — Python script for retrieving all MeSH abstracts in

MEDLINE format and identifying the MeSH terms indexed in them as

Supplementary Concepts.

#!/usr/local/bin/python
import re

import string

import EUtils

from Bio import Entrez

from EUtils import HistoryClient
from Bio import Entrez

Entrez.email = 'molhovsky@gmail.com'
ww_prots_file = open("ensembl_ww_sorted.txt", 'r') # all Ww-
containing proteins (51 total)
ww_prots = []
outfile = open("abstracts_EUtils.txt", 'w')
ret_max = 1000
num_abstr = 1
err_file = open('over_1000_abstracts.txt', 'w')
mesh_dict = {} # prot, [MeSH Terms] query string
mesh_outfile = open("mesh_terms.txt", 'w')
for line in ww_prots_file.readlines():
prot = line.strip()
mesh_terms = "http://www.ncbi.nlm.nih.gov/pubmed?term="

handle = Entrez.esearch(db="pubmed", term=prot,
retmax=ret_max)

record = Entrez.read(handle)
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max_ret = int(record["Count"])

if max_ret > ret_max:
print "More than 1000 entries for " + prot

err_file.write(prot + '\t' + "max_ret® + '\n')
continue

for pmID in record["IdList"]:

h2 = Entrez.efetch(db="pubmed", id=pmID,
rettype="abstract", retmode="xml")

for line in h2.readlines():
ind1l line.find("<AbstractText>")
ind2 line.find("</AbstractText>")

if indl > @ and ind2 > @ and ind2 > ind1l:
outfile.write( num_abstr™ + ". " +
line[ind1l+len("<AbstractText>"):ind2] + "\n\n")
num_abstr += 1

# Find MeSH terms:
if line.strip().find('<DescriptorName') ==

line.strip().find(">")
line.strip().find('</DescriptorName>")

m_indl
m_ind?2

if m_indl > @ and m_ind2 > @ and m_ind2 >
m_ind1l:
mesh_descr = line.strip() [m_ind1+1:m_ind2]

if mesh_terms ==
"http://www.ncbi.nlm.nih.gov/pubmed?term=":
mesh_terms = '"' + mesh_descr +
'"[MeSH Terms]'
else:
mesh_terms += " AND " + '"' +
mesh_descr + '"[MeSH Terms]'

mesh_dict[prot] = mesh_terms

mesh_outfile.write('\n' + prot + '\n' + mesh_terms +
"\n\n")

89




