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Abstract 

GIS-based spatial analysis has been a common practice in mineral exploration, by which 
mineral potentials can be delineated to support following sequences of exploration. 
Mineral potential mapping is generally composed of geo-information extraction and 
integration. Geological anomalies frequently indicate mineralization. Volcanic 
sedimentary Fe deposits in eastern Tianshan mineral district, China provide an example 
of such an indication. However, mineral exploration in this area has been impeded by the 
desert coverage and geo-anomalies indicative to the presence of mineralization are often 
weak and may not be efficiently identified by traditional exploring methods. Furthermore, 
geological guidance regarding to spatially non-stationary relationships between Fe 
mineralization and its controlling factors were not sufficiently concerned in former 
studies, which limited the application of proper statistics in mineral exploration. In this 
dissertation, geochemical distributions associated with controlling factors of the Fe 
mineralization are characterized by various GIS-based spatial analysis methods. The 
singularity index mapping technique is attempted to separate geochemical anomalies 
from background, especially in the desert covered areas. Principal component analysis is 
further used in integrating the geochemical anomalies to identify geo-information of 
geological bodies or geological activities associated with Fe mineralization. In order to 
delineate mineral potentials, spatially weighted principal component analysis with more 
geological guidance is tried to integrate these identified controlling factors. At the end, as 
the first time been introduced to mineral exploration, a geographically weighted 
regression method is currently attempted investigate spatially non-stationary 
interrelationships presented across the space. Based on the results, superimposition of 
these controlling factors can be qualitatively and quantitatively summarized that provides 
a constructive geo-information to Fe mineral exploration in this area. From the practices 
in this dissertation, GIS-based mineral exploration will not only b:e efficient in mapping 
mineral potentials but also be supportive to strategies making of following mineral 
exploration. All of these experiences can be suggested to future mineral exploration in the 
other regions. 
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Chapter 1. Introduction 

1.1. Mineral potential mapping 

Mineral exploration objective to discover mineral deposits involves a series of 

procedures which are area reduction, reconnaissance exploration, preliminary 

follow-up and detailed follow-up (Hodgson, 1990; Moon et al., 2009). The area 

reduction to depict areas with mineral potentials is among the most important, since 

all following sequences are based on the delineation to the target of interesting 

(Hodgson, 1990; Haldar, 2102; Carranza et al., 2009). In practice, mineral potentials 

are mapped based on the knowledge of objective mineral deposits. The knowledge are 

descriptive features of the deposit types, controlling factors of mineralization, spatial 

distributions of indicators to deposits, and other useful geo-information in support of 

mineral exploration (Cheng, 2012; Hodgson, 1990). In general, main criteria selected 

for mineral potential mapping are based on conceptual and empirical models (Woodall, 

1994). The conceptual model is derived from geological theories, while the empirical 

model is dependent on experiments. Nowadays, development in computer sciences 

and Earth observation techniques has greatly facilitated broad utilization of 

geographic information system (GIS)-based spatial analysis. Well performed in data 

capture, manipulation, visualization, analysis, and sharing GIS has become one of the 

main approaches in support of mineral exploration (Bonham-Carter, 1994; Carranza, 
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2008; Chung and Agterberg, 1980; Chung and Moon, 1990; Haldar, 2012; Harris, 

1989; Harris et al., 2001; Moon et al., 2006; Pan and Harris, 200.0; Singer and Kouda, 

1997). 

Benefiting from the construction of geo-database worldwide (Darnley, 1995), more 

and more ground and underground properties can be investigated that provides 

multisource geo-information indicative to mineralization. The most commonly used 

geo-datasets are geochemical, geophysical, geological and other remotely sensed 

observations. In practice, potential mapping or mineral exploration model is 

composed of two principal modules. 

The first module is geo-information or geo-anomaly extraction. Geological model (i.e., 

conceptual and/or empirical model) delivering informative characteristics and reliable 

interpretation to metallogeny of objective deposits (Bonham-Carter, 1994; Hodgson, 

1990; Moon et al., 2006) serves as criteria for selecting potential areas. According to 

the model, geological issues associated with mineralization, so-called as controlling 

factors can be determined, properties of which are the geo-information of interest. 

Mineralization is a cascade geo-process (Cheng, 2007, 2012; Cheng and Agterberg, 

2009). Its associated geo-activities (e.g., tectonism, magmatism, alteration, etc.) cause 

the formation of certain geological features or bodies (e.g., faults or folds, igneous 

intrusions or extrusions, ore bodies etc.) and accompanied presences of geo-anomalies. 

Due to the physical or chemical differences with their surrounding, geo-anomaly is 
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identifiable. Fortunately, the geo-anomaly termed as geo-information can be used to 

indicate occurrences of these geological activities (Zhao, 1999). In general, 

geo-information extracted from geological map is indicative to spatial locations of 

geological occurrences (e.g., mineral occurrences, igneous rocks, fault traces), 

appropriate spatial analysis (e.g., buffer analysis) on the geo-information can assist to 

determine mineralization favored spaces (Agterberg et al., 1990; Bonham-Carter, 

1994). Since some of geological data were collected from filed surveys, geological 

units of some inaccessible areas might not be informative. Th~refore, newly received 

exploratory datasets (e.g., geochemical and geophysical data) can be supplementary 

geo-information resources to the location information. Commonly used methods to 

extract geo-anomalies are spatial statistics and frequency analysis (Cheng, 2007; 

Cheng et al., 2009). Since the introduction of fractal and multifractal theory by 

Mandelbrot (1972), fractal and multifractal approaches have been extensively 

accepted by its advantages to consider both frequency and spatial properties of 

geo-issues (Cheng, 2012; Wang et al., 2012, 2013; Zhao et al., 2012; Zuo et al., 

2009b). In Cheng et al (1994), a concentration-area (C-A) model was proposed and 

used to separate geochemical anomalies from background according to fractality of 

geochemical distributions. After that, a fractal and multifractal based singularity index 

mapping technique proposed by Cheng (1999) has been introduced to extract 

geo-anomalies from various sources of observational datasets. A series of practices 

had proved the efficiency of singularity index mapping technique in identification of 
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weak anomalies from a strong variance of background (Ali et al., 2007; Bai et al., 

2010; Cheng, 2007; Wang et al., 2011, 2012, 2013; Zhao et al., 2012; Zuo et al., 

2009a). 

The second module is geo-information integration. Since mineralization is caused by 

the interactions of associated geological factors across the space, the integration is to 

delineate the combining effects of these factors the spatial distribution of which is 

consequently believed as favorable spaces of mineralization (Bonham-Carter, 1994). 

In real practice, the integration is the weighted sum of all geo-information. Although 

numerous methods assigning weights to these factors have been broadly introduced in 

many references, the three main types of integration methods consisting of 

data-driven, knowledge-driven and hybrid are still valuable to be repeated in all 

related documents. Data-driven methods assign weights to predictor maps according 

to their significance to training data (e.g., known mineral occurrences), results of 

which are dependent on calculation rather than theories or experience. Some 

commonly employed data-driven methods are weights of evidence (WofE) 

(Bonham-Carter, 1994), neural networks (Singer and Kouda, 1996; Harris and Pan, 

1999), and principal component analysis (Jolliffe, 2002). On the contrary, 

knowledge-driven methods require experts assign weighs to predictor maps. Practiced 

knowledge-driven methods include Index overlay (Renez et al., 1994; de Araujo and 

Macedo, 2002), Fuzzy logic (An et al., 1991; Brown et al.., 2003; Knox-Robinson, 

2000), and Analytical hierarchy process (AHP) (Harris et al., 1995). Although 
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knowledge-driven methods are dependent on theories and experiences, the assigned 

weights without appropriate quantification are somehow subjective. In recent decades, 

geological interpreters have been noticed the importance of joint usages of both data

and knowledge-driven methods. In Cheng and Agterberg (1999), a fuzzy weights of 

evidence method was introduced as a hybrid of both data- and knowledge-driven 

methods to map mineral potentials. The weighs assigned to predictor maps are based 

on considerations of both quantification and geological experiences. Furthermore, in 

Cheng (2006) a spatially weighted principal component analysis (SWPCA) method 

was proposed, by which a weighting factor can be used to highlight the objective 

geo-information by modifying the correlation coefficient matrix of input variables. 

The weighting factor serving geological guidance makes the integration more 

informative to the targets of interest. More detailed introductions to integration 

methods can be found in Bonham-Carter (1994) and Harris and Sanborn-Barrie 

(2006). 

1.2. Spatial non-stationarity 

Spatial non-stationarity describes location-dependent relationships between variables 

(Brunsdon et al., 1996; Fotheringham et al., 1996a). Inherited from natural processes 

and/or human activities, it is broadly existed (Gao and Li, 2011). For examples, due to 

some specific reasons (e.g., degrees of urban development, population, transportation, 

etc.), relationships between agreed sale price and floor area of a house may vary 
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significantly in different cities (Brunsdon et al., 1999, 2002); caused by geographical 

variations (e.g., topography, landfonn, vegetation, etc.), refationships between 

rainfalls and altitude are varying across the space (Brunsdon et al., 2001 ); and 

relationships between urban temperature and land surface can be varied by both 

environmental (e.g., elevation and slope orientation) and human factors (e.g., highway 

infrastructure and greenbelt construction) (Li et al., 2010). In geological exploration, 

mineralization produced by a series of geological activities is a complex geo-process. 

The relationships existed between mineralization and associated geological activities 

present spatial non-stationarity as well. It explains why mineralization can only occur 

at limited locations. Being an integral concept, a deposit model is a gross functional 

form, according to which relationships between mineralization and its controlling 

factors are described and measured as general trends which may mis-specify localized 

reality and incorrectly represent relevant variables at different locations. In this study, 

a new deposit model which allows relationships between mineralization and its 

controlling factors to be described and measured at localized scale is proposed. This 

model is mean to calibrate the errors existed in the integral model generated by 

previous researches. 

In the second module of mineral exploration modeling, mineralization caused by the 

interactions of its controlling factors can be depicted by the weighted sum of predictor 

maps (i.e., geo-information of controlling factors), the result of which is suggestive to 

following mineral exploration sequences. However, many delineated target areas are 
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not completely or well coincident with known mineral occurrences. It might be due to 

the data quality or method limitation. Since the data quality is an uncontrollable issue 

for geological interpreter, current study only discusses the limitations of integration 

methods. As described in geological references, the interactions of the controlling 

factors are spatially varied across the space that is spatial non-stationarity, and caused 

by interactions of various controlling factors, different types of mineralization 

occurred at specific locations. It indicates that the spatially varied (i.e., non-stationary) 

interactions across the space might be the reason why different types of mineral 

deposits can be discovered within an area. By the integration model, weight with 

constant value is assigned to a predictor map that cannot represent its spatially 

non-stationary controlling effects to mineralization. Consequently, the integration 

results will be coincident with a certain mineral types rather than comprehensively 

indicative. The former integration only provides a spatial distribution of mineral 

potentials according to recognition of a certain metallogeny (i.e., geological model), 

which was spatially stationary. More improved understandings to the mineralization 

cannot be achieved. If spatial variations of interactions of controlling factors can be 

interpreted in a spatial scenario, then not only the prediction will become 

comprehensive but also the following exploration sequences will be benefitted 

significantly. 
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1.3. Fe mineralization and exploration in eastern Tianshan 

district, China 

The Tianshan region produced by a Palaeozoic orogeny extends east-west for more 

than 2,500 km in central Asia (Allen et al., 1992; Windley et al., 1990). The study area 

of current research located in the east part of the Tianshan region, so-called as eastern 

Tianshan region, with the longitude of 88°30'-96°30' and the latitude of 

41°30'-42°30'. The study area is sparsely populated. Except desert regions, 

transportations are convenient. LanXin railway and highways stretching across the 

study area are the primary channels connecting Xinjiang province and eastern of 

China. Geographically, eastern Tianshan is a typical Gobi desert covered gently hilly 

area, where relative elevation differences are within a few tens of meters. Diurnal 

temperature swings can reach 50°C that causes serious physical denudation of 

exposed rocks. Sand storms occur frequently due to the extremely dry climate with an 

average annual precipitation less than 48 mm. Produced by seasonal mountain floods, 

rivers in the study area present temporarily. All of these severe climatic conditions had 

greatly impeded the geological exploration in this area. 

Being one of the most productive mineralization districts in China, eastern Tianshan 

mineral district which possesses extraordinary preserves of metallic resources, 

including copper, nickel, gold, silver, molybdenum, rhenium, etc. has long been a 

focus of geological concerns (BGEDXP, 2009; Ma et al., 1993, 1997; Mao et al., 
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2005). Particularly, with the proceeding of mineral exploration in this area, marine 

volcanic sedimentary Fe deposits with great production and abundance have become a 

focus of study in recent decades (BGEDXP, 2009). Although metallogeny of typical 

Fe deposits (e.g., Yamansu, Hongyuntan, Bailingshan, Tieling, etc.) were studied by 

geologists in China for a long time, arguments on it were common. Accompanied with 

the development of techniques and the knowledge, different opinions on the 

metallogeny of Fe deposits reached to the unity, gradually. In recent years, geologists 

in an growing number held that Fe mineralization is mainly associated with complex 

tectono-magmatism, including fault activities triggered by Palaeozoic plate collision 

between the Junggar and the Tarim plates, the volcanic eruption in the Early 

Carboniferous accompanied with sedimentation of bimodal volcanic strata and 

primary Fe ores, the Late Carboniferous emplacement of granitoid intrusions into 

volcanic strata, and the alteration of primary Fe ores by hydrothermal fluids 

differentiated from granitoid intrusions (BGEDXP, 2009; Ding, 1990). Based on this 

geological model of volcanic sedimentary Fe deposits, main components of traditional 

mineral exploration are composed of fault systems, the Carboniferous volcanic strata, 

volcanic edifices, and alteration zones (BGEDXP, 2009). 

Following the mineral potential mapping strategies introduced in last section, 

geo-information of these controlling factors need to be extracted from various 

observational datasets and integrated by the three types of methods. However, current 
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study area is located in the Gobi desert where the Fe exploration was significantly 

impeded by ground coverage (e.g., regolith, tepetate and aeolian sand) (Xie and Wang, 

2003; Zhuang et al., 2003). The location-based spatial analysis i1s difficult to interpret 

mineralization associated geological features in this area due to the deficiency of 

outcrops. Consequently, extracting geo-information or geo-anomaly from secondary 

exploratory datasets (e.g., geochemical and geophysical data) rather than observations 

seems more helpful to support mineral potential mapping. Nevertheless, the real 

practice is still facing problems of ground cover effects. Due to ground coverage, 

geo-anomalies coincident with mineralization might be hidden in a strong variance of 

background (Cheng et al., 2012; Zhao et al., 2012). Traditionally used 

geo-information extraction methods such as delineating target areas based on 

concentration values (e.g., weight percent, quantile, and mean± standard deviation) of 

elements or element assemblages cannot satisfy Fe exploration in these covered areas, 

because the values are frequently very low. Therefore, advanced approaches to 

enhance weak anomalies are necessary to be employed. In addition, spatial 

distributions of controlling factors should be concerned by various observational 

datasets and advanced spatial analysis as well, since their location information 

masked by ground coverage may mislead the exploration modeling. In the aspect of 

geo-information integration for mapping mineral potentials, more geological guidance 

should be involved to calibrate the shortages of former implementations. 
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Moreover, in order to enhance the low degrees of exploration in this area, the spatially 

non-stationary influences of controlling factors on Fe mineralization should be 

appropriately investigated. According to the knowledge regarding to the spatially 

varying relationships, exploration strategies within reduced areas (i.e., target areas) 

can be suggested to following sequences of mineral exploration that is hitherto 

unobserved geo-information. 

1.4. Objectives 

For the Fe exploration in eastern Tianshan mineral district, China, the latest 

exploration model is the integration of geo-information extracted from location 

information, geochemical and geophysical anomalies (BGEDXP, 2009). Efficiency of 

indication of Fe mineral potentials is highly reduced by effects of ground coverage. 

Furthermore, the results from geo-information integration can only present target 

areas where following exploration procedures can be carried out; other information 

regarding to exploration strategies (e.g., spatial distribution of controlling factors and 

their spatially non-stationary influences on Fe mineralization) will not be informed. 

This dissertation has three main objectives: 

First of all, current study intends to achieve better knowledge regarding to the 

controlling factors of volcanic sedimentary Fe mineralization in eastern Tianshan 

mineral district. In this desert covered area, geo-anomalies associated with the Fe 

mineralization have been concerned by advanced spatial analysis techniques in a long 
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time; whereas, analysis of controlling factors of the mineralization (e.g., geological 

activities or processes) are still relied on location information (i.e., geol<ogical map) 

which are greatly impeded by the effects of ground coverage. In eastern Tianshan 

mineral district, physical transport (e.g., by aeolian and fluvial processes) of 

weathering products in the study area results lateral drift of overburden (e.g., regolith 

and exotic sediments). Mechanical dispersion of exposed rocks can produce high 

regional elemental background in their surrounding areas (Wang et al., 2003). In 

contrast, dispersion of exotic materials may produce low regional elemental 

background above covered rocks (Wang et al., 2001). From a geological point of view, 

formation of fault systems, igneous rocks, and deposits are accompanied by enormous 

energy release and material accumulation, which may be identified by singular 

differences with their surroundings (Cheng, 2007; Wang et al., 2011). Tracked in 

stream sediments (Rose et al., 1979; Davenport, 1990; Harris et al., 2001; Rencz et al., 

2002), the singular differences can be recognized as geo-anomalies in stream 

sediment geochemical data. Therefore, it is important that spatial analysis of 

geochemical data allows removal of the influences of overburden on bedrock signal 

and identification of not only strong anomalies but also weak anomalies from 

background. In this dissertation, advanced geo-anomaly extraction methods consisting 

of the singularity index mapping technique and principal component analysis (PCA) 

are jointly used to separate weak geo-anomalies from background for characterization 

of the Fe mineralization associated geo-processes (i.e., controlling factors). 
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Second of all, current study intends to provide a more reliable and improved 

geo-information integration for Fe mineral potential mapping. As discussed in former 

section, both data- and knowledge-driven integration methods might be subjective or 

arbitrary in many cases. In this dissertation, a hybrid geo-information integration 

method, SWPCA is applied which employs a spatially weighting factor with 

geological significance highlighted to estimate weights of all predictor maps. In 

comparison with data- or knowledge-driven methods, current result will be more 

powerful in geo-information integration due to the addition of geological significance 

based on specific mineralization model. 

Thirdly, current study intends to provide a new geo-information to enhance the 

knowledge of spatially non-stationary relationships between Fe mineralization and its 

controlling factors. In addition to mapping mineral potentials, there are more 

necessary concerns to interactions or relationships between geological activities or 

processes, knowledge of which will not only improve mineral potential mapping but 

also enhance understanding of metallogeny. Regression analysis is one of the 

commonly used methods to examine relationships among geo-variables. Relationships 

between each pair of geo-variables can be estimated and described by a regression 

coefficient and further used to determine the influence of independent variables on 

dependent variable. As described in former sections, the influences of controlling 

factors on mineralization exhibit spatial heterogeneity and non-stationarity. In order to 
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enhance the efficiency of Fe mineral exploration in this area, knowledge regarding to 

the spatially varied (spatially non-stationary) relationships between Fe mineralization 

and its controlling factors are necessary. Reviewing former GIS-based mineral 

exploration modeling, only target areas with higher possibility of mineralization can 

be suggested to the follow-up. Location information available to later exploration 

requires more detailed investigation on metallogeny to determine exploration 

strategies. In this dissertation, geo-information characterizing Fe mineralization and 

three controlling factors (i.e., fault systems, felsic intrusions, and volcanic strata) are 

assigned to be the dependent variable and independent variables, respectively; 

furthermore, both ordinary least square (OLS) regression and geographically weighted 

regression (GWR) are applied to investigate the objective relationships. Achieved 

results will provide more important and informative guidance to following sequences 

of the Fe exploration in this area. 

1.5. Data employment 

Exploratory geo-datasets employed in this research which are produced by China 

Geology Survey include stream sediment geochemical data in a scale of 1 :200,000 

and geological data acquired from 1 :200,000 geological databases. 

Recording geochemical signatures inherited from bedrocks, geochemical data are 

commonly used to identify geochemical anomalies associated with various geological 

bodies and to interpret geological phenomena (Bogoch et al., 1993; Brantley and 
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White, 2009; Cheng, 2007; Hao et al., 2007; Wang et al., 2011, 2012; Zhao et al., 

2012). As part of the "Regional Geochemistry National Reconnaissance (RGNR) 

Project", the stream sediment geochemical data used in this research were collected 

and analyzed by Chinese National Geochemical Mapping Project. The severe blowing 

transportation and accumulation related to strong wind in this area cause the stream 

sediment at/near surface to be diluted by mixing of aeolian sand, and the dilution can 

greatly change and blur the elemental concentration in stream sediments (Ren et al., 

1989). In order to reduce the impact of aeolian sand, the samples in the size greater 

than 2 mm are ideal for geochemical analysis because most of the aeolian materials 

are smaller than this size. The coarse-grained materials can be migrated by the 

seasonal floods within the watercourses and finally deposited in drainage basins. The 

samples were collected along the watercourses and drainage basins in an interval of 

1-4 km2
• Tepetate is another dominating cover type in the study area, which can block 

off the realistic elemental concentration in stream sediments. Samples in tepetate 

covered area are mainly collected from elurium under the tepetate layers in an interval 

of 1-2 km2 (Xie et al., 2009). Within the samples, 39 major, minor, trace and subtrace 

elements/compounds were mainly analyzed by means of X-ray Fluorescence (Xie et 

al., 1997; Zhuang et al., 2003). The concentration of these elements/compounds is 

further smoothed by averaging all samples within each 2x2 km2 cell. Detail 

information about the RGNR can be found in Xie et al. (1997). 
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Based on Zavaritskii geochemical classification of the elements, the 39 

elements/compounds can be classified into 8 categories: (1) rock-forming elements 

(i.e., Li, Be, Na, Mg, Al, Si, K, Ca, Sr, and Ba); (2) volatile elements (i.e., B, F and P); 

(3) iron family elements (i.e., Ti, V, Cr, Mn, Fe, Co, and Ni); (4) rare elements (i.e., Y, 

Zr, Nb, and La); (5) radioactive elements (i.e., U, and Th); (6) group 6 elements (i.e., 

Mo, W); (7) metal metallogenic elements (i.e., Cu, Ag, Au, Zn, Cd, Hg, Sn, and Pb); 

(8) semimetal and heavy mineralizer elements (i.e., As, Sb, and Bi). Element 

associations are frequently used as indicators to identify geologic units (e.g., granite 

with radioactivity caused by the containment of U and Th, and mafic-ultramafic 

igneous rocks characterized by enrichment of iron family elements, etc.) and further 

benefit mineral exploration (Cheng et al., 2011; Zhao et al., 2012). 

The earliest geological mapping in the study area can be dated back to late 1950's. 

Revisions of these maps had been finished until early 1990's. The revised geological 

maps perform better in depicting the geological setting of the study area, which had 

been widely used in scientific researches in China. The construction of digital 

geologic map database had been started from 1996 and ended by 2001. All data were 

digitized from the geologic maps achieved previously. After that, the database was 

maintained during 2002 to 2003. The current research involves fifteen 1 :200,000 map 

sheets, and spatial distributions of tectonic settings, lithological units, ore deposits, 

geographical features, etc. are characterized (BGEDXP, 2009). 
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1.6. Scope of dissertation 

This dissertation is composed of ten chapters, for each chapter, discussion on a 

specific topic will be delivered. 

In chapter 2, detailed geological background of the study area and metallogeny of 

typical Fe deposits (i.e., Yamansu deposit) are introduced. Literatures regarding to 

major faults, felsic igneous rocks, and lithology of strata formed in this area and their 

influences on Fe mineralization are reviewed. 

In chapter 3, detailed explanations of employed methods to identify geochemical 

signatures of controlling factors of Fe mineralization are provided. Development and 

utilization of these methods in other researchers are briefly reviewed. Logratio 

transformation and singularity mapping technique is used to extract geo-information 

from stream sediment geochemical data sets. The derived geo-information will further 

be integrated to identify the spatial distribution of Fe mineralization related geological 

bodies (i.e., controlling factors) by principal component analysis (PCA) and spatially 

weighted principal component analysis (SWPCA). The Student's t-test in the context 

of weights of evidence (WofE) is employed to delineate potential areas of Fe 

mineralization. At the end, regression analysis including ordinary least square (OLS) 

and geographically weighted regression (GWR) are used to estimate spatially 

non-stationary relationships existed between Fe mineralization and its controlling 

factors. 
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In chapter 4, geo-information of fault systems in eastern Tianshan mineral district are 

extracted from stream sediment geochemical data. Stream sediment geochemical data 

is a compositional data or closed system. Confined by a constant sum (e.g., 1 and 

100% ), element concentration is recorded in weight percent rather than absolute 

values, In order to open the closed system and analyze geochemical data with 

standard statistical methods (e.g., PCA), the logratio transformation is employed to 

preprocess element concentrations. 4 case studies of the logratio transformation with 

different dividers are demonstrated. After that, geochemical anomalies of element 

association composed of logratio transformed Au, As, Sb and Hg are assigned as the 

indicator of fault systems. On the other hand, the singularity index mapping technique 

is applied to characterize enrichment or depletion of a certain element, results of 

which are used to indicate the geochemical behaviors of elements in space. 

Combining singularity indices of Au, As, Sb and Hg with PCA, the result 

characterizing geochemical behaviors of element association is accepted as the 

indicator of fault activities. Comparing the two multivariate processes, the PCA result 

of singularity indices of element association depicting not only spatial presence of 

geochemical signatures of fault systems but also geochemical behaviors of element 

association is prior to the PCA result of logratio transformed geochemical data in 

indicating fault activities. 

In chapter 5, similar data processing procedures as chapter 4 are applied to 
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geochemical data to derive geochemical signatures related to felsic igneous rocks. For 

identification of felsic igneous rocks, the element association consisting of Si02, 

Ah03, K20, Na20, CaO, MgO, Fe203, Ba, Be, and Li are employed. In order to 

decompose the closed system, 3 case studies of logratio transformation with different 

dividers are demonstrated. After that, PCA is applied to integrate the logratio 

transformed geochemical data to indicate the geochemical signatures of felsic igneous 

rocks. Since the formation of igneous rocks is a singular geo-process, singularity 

index mapping technique is currently applied to characterize singularly distributed 

element concentrations. By PCA, singularity indices of 10 selected element 

concentrations are integrated to demonstrate geochemical signatures of element 

association related to felsic igneous rocks. The result representing felsic activities are 

preserved for further analysis in latter chapters. 

In chapter 6, geochemical signatures of the Carboniferous Yamansu volcanic strata are 

identified by PCA results of both logratio transformed and singularity indices of 

geochemical signatures of the element association. The element association related to 

the Yamansu Formation is composed of Cu, Pb, Zn, Au, Ag, Bi, Mo, W, As, Hg, and 

Sb. Based on the conclusion derived from chapters 4 and 5, the logratio 

transformation with Si02 as the divider is applied to geochemical data before PCA. 

Furthermore, the PCA result of singularity indices of element association performs 

better than of the logratio transformed element association in depicting the spatial 
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distribution of Yamansu volcanic strata. The former one is consequently kept for 

further usage of mineral exploration modeling. 

In chapter 7, singularity index mapping technique is applied to depict spatial 

variations of geochemical signatures associated with Fe mineralization, the result of 

which can eliminate influences of both Fe-rich rocks and sandy coverage. In addition, 

compared to a single element, the element association with more reliable 

geo-information of Fe mineralization is analyzed to depict potential areas. The 

Student's t-test is applied to delineate the favorable places of Fe mineralization. By 

comparing the statistics of each evidence layers in mapping target areas, the PC 1 

score map of singularity indices of the element association with more confidence in 

indicating geo-information of Fe mineralization and higher efficiency in delineating 

target areas are retained for the usage of following chapters. 

In chapter 8, as a PCA extension, spatially weighted principal component analysis 

(SWPCA) is applied to integrate Fe mineralization associated geo-information 

derived from previous chapters (i.e., chapters 4, 5, 6 and 7). By this method, a 

spatially weighing factor objective to highlight favorable spaces of the Fe 

mineralization is applied to calculate correlation coefficient matrix. In comparison 

with the results of ordinary PCA, it can be found that SWPCA can generate more 

geologically reliable integration results for mineral exploration. 

In chapter 9, spatially non-stationary relationships between Fe mineralization and it 
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controlling factors are investigated. Both ordinary least square (OLS) and 

geographically weighted regression (GWR) models are employed. ResHlts by GWR 

quantitatively depict non-stationary influences of tectono-magmatism on Fe 

accumulation in spatial scenario, which demonstrate the significant improvement in 

parameter estimation. Examining regression coefficients, it can be inferred that Fe 

mineralization at different locations in eastern Tianshan mineral district was caused 

by interactivities of multiple geo-processes to different degrees, and these variations 

can be demonstrated by the GWR results as well. 

In chapter 10, the proposed exploration model of volcanic sedimentary Fe deposits in 

eastern Tianshan mineral district in this dissertation is reviewed. In addition, 

experiences through this study are summarized and discussed. Future works regarding 

to mineral exploration modeling are suggested to following Fe exploration sequences 

in eastern Tianshan mineral district. 

Regarding to the researches introduced in this dissertation, a list of papers had been 

published or submitted: 

1. One paper in respect to the identification of felsic igneous rocks had been 

published in the Journal of Geochemical Exploration: 

Zhao, J., Wang, W., Dong, L., Yang, W., Cheng, Q., 2012. Application of 

geochemical anomaly identification methods in mapping of intermediate and 
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felsic igneous rocks in eastern Tianshan, China. Journal of Geochemical 

Exploration 122, 81-89. 

2. One paper in respect to the logratio transformation had been submitted to the 

Journal of Geochemical Exploration: 

Wang, W., Zhao, J., Cheng, Q., Liu, J., (Under review) Mapping of Fe 
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Chapter 2. Geological background 

The study area, eastern Tianshan mineral district is a strip area bounded to the west by 

the Xiaorequanzi area, to the east by the Late Paleozoic Beishan rift, to the north by 

the Turpan-Hami basin, and to the south by the Aqikekuduke-Shaquanzi fault zone 

(Mao et al., 2005; Wang et al., 2006). It is a typical Gobi desert region with intensive 

physical and chemical weathering (BGEDXP, 2009). Complex gee-processes within 

the study area during the geological history produced favorable environment for Fe 

mineralization. Previous literatures illustrate that volcanic sedimentary Fe 

mineralization in eastern Tianshan mineral district is genetically related to a series of 

tectono-magmatism consisting plate collision and expansion, volcanism, emplacement 

of magmatic intrusion, hydrothermal alteration, etc. 

2.1. Tectonic evolution of the study area 

From former researches (Feng et al., 2002; Ma et al., 1993; Su et al., 2011; Wang et 

al., 1994; Zhang et al., 2005), complex plate tectonic evolution in this area was 

developed through a long geological history. In the Ordovician, due to the B type 

subduction of the ancient Tianshan oceanic crust (north) under the Tarim crust (south), 

magmatism, metamorphism and migmatism were intensively occurred along the 

northern edge of the Tarim continental crust. In the Silurian, plate tectonic activities 

became complex. Following the B type subduction in the Ordovician, the 
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Turpan-Hami micro-continent situated in the Tianshan oceanic crust collided and 

collaged onto the Tarim crust (i.e., the A type subduction). After that, accompanying 

with formations of the Bogurda-Harlik and the Aqishan-Yamansu volcanic arcs, a new 

B type subduction zone along the north edge of the Turpan-Hami continent was 

developed. Meanwhile, influenced by the rift expansion between these two arcs, the 

Kanggur inter-arc basin was produced. In the Late Carboniferous, the continuous B 

type subduction of the Tianshan oceanic crust triggered closure of the Kanggur basin 

which led to the A type subduction of these two arcs. Consequently, granitoid 

magmatism (e.g., emplacement, differentiation, and hydrothermal alteration) was 

spreading over the suture zone. At the end of the Late Carboniferous, the Tianshan 

oceanic crust moved underneath the Tarim crust, and the collision between the 

Junggar crust and the Turpan-Hami continent occurred. 
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Fig.2. 1 Simplified geological maps. a. The study area and its tectonic settings (Modified from Yang et al., 1996 and Mao et al., 2005). A 
=the Kanggurtag-Harlik area. B =the Qiugemingtashi-Huangshan ductile shear zone. C =the Aqishan-Yamansu volcanic basin. (1) =the 
Kanggurtag-Huangshan fault. (2) =the Yamansu fault. (3) =the Aqikekuduke-Shaquanzi fault. (4) =the Toksun-Gangou fault. (5) =the 
Xingxingxia fault. (6) =the south-edge fault of middle Tianshan. b. The distribution of the lithologic units of the study area. 
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2.2. Geological environment of Fe mineralization 

2.2.1. Tectonic settings 

The southward subduction of the Tianshan ocean crust (as a part of the Junggar plate) 

to the Tarim crust in the period of the Ordovician to the Late carboniferous produced 

the generally EW trending structural framework of this district (Wang et al., 1994). 

Three EW trending faults including the Kanggurtag-Huangshan fault, the Yamansu 

fault, and the Aqikekuduke-Shaquanzi fault constituted the main regional faults (Fig. 

2.la). 

The fault system is one of the most important factors to Fe mineralization in eastern 

Tianshan mineral district. First of all, EW-trending faults confine boundaries of the 

volcanic strata which are believed as host rocks of Fe ores (Fig. 2.1 a) (BGEDXP, 

2009; Li et al., 2002; Mao et al., 2005; Yang et al., 1996). Consequently, the volcanic 

strata, especially the Fe ore-bearing strata (i.e., the Yamansu Formation) are mainly 

spreading along EW direction within the Jueluotag aulacogen (Fig. 2.1 b ). Secondly, 

intersections of NE- and NW-trending faults dominate the spatial distribution of 

eruption centers of volcanoes. They could therefore control spatial distributions of 

both the Yamansu Formation and Fe ores (BGEDXP, 2009). Thirdly, the fault system 

performed as conduits associated with emplacement of granitoid and migration of 

differentiated hydrothermal fluids (Ma et al., 1993; Wang et al., 1994; Zhang et al., 

2005). The general properties of the three major faults are introduced as follow: 

1. Kanggurtag-Huangshan fault 
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Being the largest tectonic settings in dividing geological environment in eastern 

Tianshan mineral district, the Kanggurtag-Huangshan fault is the boundary of the 

Junggar crust in the north and the Tarim crust in the south. The west end of this fault 

is connected with the north edge of southern Tianshan district and the east end of this 

fault reaches territory of Mongolia. The southward-convex fault trace is striking 

through the entire study area from the west to the east. The fallllt is steeply dipping 

southward (Zhou et al., 1996; BGEDXP, 2009). 

2. Yamansu thrust nappe belt 

The Yamansu thrust nappe belt is the second largest tectonic setting in the study area. 

It is the boundary of the Qiugemingtashi-Huangshan shear zone in the north and the 

Aqishan-Yamansu volcanic arc in the south. EW trending secondary imbricate thrust 

systems are commonly existed within the nappe belt. Strata within the Yamansu nappe 

belt are generally middle metamorphosed. In the study area, it is an important 

mineralization zone for ductile shear zone type gold deposits (Ma et al., 1997). 

3. Aqikekuduke-Shaquanzi fault 

The Aqikekuduke-Shaquanzi fault was the frontier of subduction of the ancient 

Tianshan oceanic crust to the Tarim crust in the Ordovician and was developed into a 

right lateral strike-slip fault in the Mesozoic (Ma et al., 1993; Wang et al., 1994; 

Zhang et al., 2005; Han and Zhao, 2003; Mao et al., 2002; Zhou et al., 1996). 

Separating eastern Tianshan from middle Tianshan, this southward-convex fault is 

southward dipping and trending from the west to the east across the study area. 

Lithologically, this fault is the line separating the Precambrian metamorphosed strata 
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in the south caused by upthrust of hanging-wall block and the Late Paleozoic volcanic 

strata in the north (Zhou et al., 1996). 

2.2.2. Magmatism 

Most of the Fe deposits are formed within the extent of Late Paleozoic Jueluotag 

aulacogen, where volcanic edifices produced by a series of geological activities are 

linearly distributed (Han and Zhao, 2003; Hou et al., 2006). Previous researches 

indicated that the tension period of Jueluotag aulacogen is the main period of the Fe 

mineralization. Bimodal volcanic eruptions were widely spread during the tension 

period starting from the Early Carboniferous. Along with the migration of magma 

towards the earth surface, Fe ore materials were erupted, transported and finally 

solidified in lower marine basins in layer and/or layer-like forms within the 

Carboniferous Yamansu volcanic strata (Han et al., 2002; Ma et al., 1993; Wang et al., 

2006). After the tension period, intensive emplacement of granitoid caused by the 

compression of Jueluotag aulacogen in Late Carboniferous (i.e., middle-late 

Hercynian period, 318.1±1.3 - 250 Ma) played an important role in altering and 

enriching the previously precipitated Fe ores (Jiang et al., 2002; Wang et al., 2007; 

Ding, 1990). First of all, the intrusions of felsic magma can be sources of ore-forming 

materials. Differentiated from the magma, ore-forming materials contained in the 

hydrothermal fluids were retained for mineralization while non-metallogenic 

materials (e.g., Si02, Mg2
+, Ca2l were consumed during the processes of 

silicification, diopsidization, actinolitization. Second of all, heat provided by the 

intrusions could hydrothermally alter previously formed Fe ore bodies. Magnetization 

and garnetization of existing Fe ore rocks driven by the heat resulted that the 
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magnetite in the ore rocks were interbended with pyrite and garnet (BGEDXP, 2009; 

Li et al., 2002; Yang et al., 1996). In summary igneous rocks in the eastern Tianshan 

district, either extrusive/intrusive or mafic/felsic, are not only main products of 

magmatism but also primary components of regional lithologic strata (Li et al., 2002; 

Zhang et al., 2004; Wang et al., 2006). 

In eastern Tianshan mineral district, felsic intrusions emplaced during middle 

Hercynian period are widespread. Two granitoid belts (i.e., Kanggurtag-Harlik belt in 

the north and Aqishan-Yamansu belt in the south) are separated by the 

Huangshan-Jing' erquan late Hercynian mafic/ultramafic complex. Bounded to the 

Kanggurtag region and Kumtag Sand Ridge (Fig. 2.la), the study area can be divided 

into the west, the middle and the east subareas. The large-scale felsic intrusions are 

mainly distributed in the west end of Aqishan-Yamansu belt and east ends of both 

granitoid belts. Magmatism in the middle range of the study area was not that 

concentrated. The felsic intrusions are mainly composed of monzogranite, 

granodiorite, plagiogranite, moyite, quartz diorite, and diorite. A small number of 

tonalite, plagiogranite porphyry, diorite porphyrite, granite porphyry, and quartz 

monzodiorite can also be observed in limited places (BGEDXP, 2009; Li et al., 2002). 

2.2.3. Stratigraphic framework 

Due to the collision between Junggar oceanic crust and Tarim. continental crust, the 

study area was formed by the Late Paleozoic orogeny. The outcropping strata in the 

study area are mainly composed of thick layers of low grade-non metamorphic 

Carboniferous marine volcanic sedimentary rocks. Strata deposited during Ordovician, 
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Silurian, Devonian, Permian and Mesozoic are scattered in the study area. 

Lithologic units in the eastern Tianshan district (Fig. 2.1 a) are mainly located in three 

E-W trending areas, which area juxtaposed from the north to the south (Li et al., 2002; 

Mao et al., 2005): (A) the Kanggurtag-Harlik area; (B) the 

Qiugemingtashi-Huangshan area; and (C) the Aqishan-Yamansu area. Areas A and C 

are composed of igneous rocks deposited during the Middle Ordovician-Upper 

Carboniferous and the Lower Carboniferous-Middle Permian, respectively. In area C 

Permian granitic intrusions are widely distributed (Mao et al., 2002). The Yamansu 

Formation (C 1y) is the primary ore-hosting strata in area C (Fig. 2.1 b ). Influenced by 

intensive tectonic activities, the area B clamped between areas A and C is a series of 

highly deformed and metamorphic volcanic-sedimentary strata. 

The strata outcropping over the study area include following units (BGEDXP, 2009; 

Li et al., 2002; Ma et al., 1997; Wang et al., 2006; Yang et al., 1996): 

Middle Ordovician Daliugou Formation (02_3d): intermediate-felsic volcaniclastics, 

continental elastics, carbonate rocks and volcano lava; 

Upper Silurian-Lower Devonian Hongliugou group (S3D 1H): non-metamorphic 

continental elastics, tuffaceous elastics, and marine volcaniclastics layered with 

volcaniclastic sedimentary rocks; 

Lower Devonian Dananhu Formation (D 1d): submarine intermediate-mafic 

volcaniclastics, tuff, and elastics layered with intermediate-mafic volcanic rocks; 

Middle Devonian Tousuquan Formation (D2t): marine siliceous volcaniclastic 
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sediments layered with mafic-felsic lava and marble. 

Carboniferous: 

Area (A): 

Lower Carboniferous Xiaorequanzi Formation (C1xr): intermediate-felsic 

volcanic rocks layered with volcaniclastics, elastics and limestone lens; 

Upper Carboniferous Dikan'er Formation (C2d): continental elastics, tuffaceous 

elastics and carbonate rocks; 

Area (B): 

Lower Carboniferous Gandun Formation (C 1g): Siliceous rocks, quartz sandstone 

layered with felsic volcanielastics (protolith); 

Upper Carboniferous Wutongwozi Formation (C2w): elastics layered with 

intermediate-felsic tuff (lower member) and volcaniclastics, andesite, basalt, and 

felsophyre layered with elastics (upper member); 

Area (C): 

Lower Carboniferous Aqishan Formation (C 1a): intermediate-felsic volcanic 

rocks and volcaniclastics; 

Lower Carboniferous Yamansu Formation (C 1y): Biolithite limestone, continental 

fine-grained elastics, volcaniclastics, and carbonate rocks layered with tuffaceous 

elastics, volcanielastics and mafic-felsic lava (i.e., bimodal volcanic rocks); 
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Upper Carboniferous Shaquanzi Formation (C2sh): laminated limestone and 

elastics layered with volcanic rocks and volcaniclastics; 

Upper Carboniferous Matoutan Formation (C2m): interme:diate-mafic volcanic 

rocks and volcaniclastics; 

Middle Permian Aqikebulak Formation (P2a): marine-land interchanging facies of 

volcanic sedimentary series. 

2.2.4. Metallogeny of typical deposit 

The Yamansu deposit with an average grade of 51 % Fe is the largest volcanic 

sedimentary Fe deposits in the study area, the ores of which are mainly hosted by the 

potash-felsophyre in Carboniferous Yamansu Formation (Mao et al., 2005; Han and 

Zhao, 2003). Undergone complex tectonic activities along the boundary of Junggar 

and Tarim plates, the formation of this type of Fe deposits (e.g., the Yamansu, 

Baishanquan, Bailingshan and Hongyuntan deposits) were caused by multi-stage 

geo-processes (Ma et al., 1993; Qin et al., 2005; Shu et al., 1997; Wang et al., 1994; 

Zhang et al., 2005, 2008). Being the most representative volcanic sedimentary Fe 

deposit in the study area, its mineralization process can be divi.ded into two stages. 

The first stage is volcanic extrusion and sedimentation stage. Fe ions were dissolved 

out of magma chambers at low-oxygen fugacity condition and further oxidized due to 

the participation of underground water during upwelling (Han et al., 2002; Lu et al., 

1995; Zhang and Xie, 2001). Meanwhile, ore-bearing fluids were formed and 

extruded along with intermediate-mafic magma in the early Carboniferous and 

precipitated in sea basins (Han et al., 2002). The Fe ore bodies were arranged in 
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stratoid and lenticular posture with the attitude in accordance with their host (i.e., the 

Yamansu volcanic and volcaniclastic rocks). The second stage involves 

magmatic-hydrothermal transformation (BGEDXP, 2009). After solidification, the Fe 

ore bodies were further enriched by either contact metamorphic or regional 

metasomatic processes (Guilbert and Park, 1986; Misra, 2000). Thermal sources of 

these two processes were gas/liquid mixture produced in the later stages of volcanic 

eruption and the hydrothermal fluids extracted from the Late Carboniferous granitoid 

intrusions, respectively. They both intensively altered (i.e., albitization, chloritization, 

epidotization, diopsidization and garnetization, etc.) the country rocks and previously 

formed Fe ores (BGEDXP, 2009; Ding, 1990; Han and Zhao, 2003; Li et al., 2002; 

Shu et al., 1997; Yang et al., 1996; Wang, 2005). The banded texture (Fig. 2.3) 

constituted by ore minerals (e.g., magnetite and pyrite) and gangue minerals (e.g., 

garnet) is common in the Fe ores, which is comparable to most of banded iron 

formations (BIFs) witnessed around the world (Edwards and Atkinson, 19,86; Guilbert 

and Park, 1986). Other ore textures including massive and disseminated textures can 

be observed in the Fe ores as well. The magnetite and pyrite were formed at a 

temperature of 330-340°C and 150-220°C, respectively (Liu et al., 1996). 

In this chapter, geological background of eastern Tianshan mineral district is briefly 

introduced. Through previously discussed geological background of this area, it can 

be noticed that the Fe mineralization was under the control of a series of geological 

processes consisting of tectonic and magmatic activities. The formation of Fe deposits 

can be considered as end products of interactions of these activities. Therefore, in 

order to improve the Fe exploration in this area, geological features associated with 
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the tectono-magmatism are necessary to be identified; meanwhile, the relationships 

between these geo-processes and Fe mineralization should be interpreted by 

quantitative evaluation in spatial scenario. 
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Fig.2. 2 Tectonic evolution model (Neoproterozoic-Early Permian) for eastern 
Tianshan mineral district (Modified from Su et al., 2011 ). 
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c d 
Fig.2. 3 Ore textures observed in the Yamansu Fe deposit. a. banded Fe ore composed 
of magnetite (black), pyrite (yellow) and garnet (reddish brown) (by Jie Zhao, 
summer 2010); b. massive Fe ore composed of magnetite (by Jie Zhao, summer 2010); 
c. disseminated Fe ore composed of magnetite (black), pyrite (yellow), quartz and 
feldspar (off-white) (by Jie Zhao, summer 2011); d. The mining pit of the Yamansu 
deposit. This picture was taking from the east to the west (by Jie Zhao, summer 2010). 
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Chapter 3. Methodology 

3.1. Logratio transformation 

Confined by the constant sum, compositional data (e.g., raw geochemical data) lies in 

a restricted space where data are recorded as proportion rather than absolute values 

(Pawlowsky-Glahn and Egozcue, 2006). Being relative proportions, none of the 

compositions can vary between (-oo, +oo) independently. For example, if Si02 

contained in a sample of igneous rock accounts for 69% of the total weight, then the 

content of another constituent like MgO can only take values less than 31 %. In the 

restricted space or so-called simplex, data are following Aitchison geometry where 

D-part compositions only contain D-1 dimensional information since the residual 

composition can be expressed by the difference between constant unity and the sum 

of D-1 compositions (Egozcue and Pawlowsky-Glahn, 2006). In other words, the 

correlation and covariance matrices of compositional data are singular 

(Pawlowsky-Glahn and Egozcue, 2006). Since most standard statistical methods are 

designed for Euclidean geometry, applications of which to raw geochemical data 

might be inappropriate, even though the log-transformed data are normally distributed 

(Filzmoser et al., 2012). Therefore, logratio transformations whic,h converts 

compositional data to Euclidean space can be used to open the closure effect, and the 

logratio transformed data will be analyzed with unconstrained multivariate statistics 
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(Aitchison and Egozcue, 2005; Carranza, 2011). The air, the cir, and the ilr 

transformation are the three main algorithms converting compositional data to an 

open system by which more realistic correlations among compositions can be 

identified (Carranza, 2011; Pawlowsky-Glahn and Egozcue, 2006). 

Suppose a set of geochemical data as a D-part compositional vector x=(x1, ••• , xDl in 

simplex is defined as SJ. Compositions x; (i=l, 2, ... , D) (e.g., 39 elements/oxides 

tested in currently used stream sediment geochemical samples) are strictly positive 

components summing to a constant (e.g., 100%). Geochemical data as a closed system 

can be opened by air (Eq. 3-1), cir (Eq. 3-2) and ilr (Eq. 3-3) transformation to a real 

space R, respectively (Egozcue et al., 2003; Filzmoser et al., 2009): 

x. 
Y; =log-' (i=l, 2, ... , D-1,j=D) 

xi 

y;=log~' DTID x. 
i=I I 

x. 
(i=l, 2, ... , D) 

(i=l, 2, ... , D-1) 

(3-1) 

(3-2) 

(3-3) 

Logratio transformation processes compositional data by two treatments: defining 

ratios for compositions and taking logarithm on the ratios. The former is to 

decompose the closure effect by selecting a common divider (e.g., one composition, 

geometric mean, etc.), while the latter is to make the transformed compositional data 

lognormally distributed (Aitchison, 1982, 1986; Filzmoser et al., 2009; Zhou, 1998). 
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In general, there are three main logratio transformation aJgorithms applied to 

compositional data: (1) additive logratio (air) transformation (Aitchison, 1982, 1983, 

1986); (2) centered logratio (clr) transformation (Aitchison, 1982, 1983, 1986); and (3) 

isometric logratio (ilr) transformations (Egozcue et al., 2003). 

Through former studies on these three logratio algorithms, some properties assisting 

to comprehend the three forms of logratio transformation are reviewed as follow: 

(1) The algorithms of alr and cir are relatively simple. By air transformation, one 

composition (i.e., denominator) is selected to divide remaining compositions (i.e., 

numerators) and then log-transformation is taken on the ratios (Aitchison, 1986). 

By cir transformation, compositions are divided by the geometric mean of all 

components and then log-transformation is taken on the ratios (Aitchison, 1986). 

Different from air and cir, by ilr transformation the stepwise elimination of 

compositions is taken into the calculation of geometric mean which performs as 

the divider. It provides one-to-one conversion of compositions lies in Aitchison 

geometry into a vector in real Euclidean geometry (Filzmoser et al., 2012; Hron 

et al., 2010). 

(2) Both air and ilr transformation can reduce the dimensionality of compositional 

data (i.e., from 8° to w-1
), whereas the cir preserves D real components. The cir 

transformed compositions adding up to zero means that the transformed vectors 
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are constrained in a sub-space (Egozcue et al., 2003; Pawlowsky-Glahn and 

Egozcue, 2006). 

(3) Both cir and ilr transformed vectors lie in orthogonal systems. 

Many applications revealed that ilr transformation generating correct equivalent in 

real Euclidean space is ideal for decomposing the compositional data (Carranza, 2011; 

Filzmoser et al., 2009; Filzmoser et al., 2012); meanwhile, it is also blamed for its 

shortages of geological interpretability (Pawlowsky-Glahn and Egozcue, 2006). As 

well as ilr, the cir is commonly used in many cases especially when all compositions 

are necessary to be involved or of interest (Drew et al., 2010). The air are believed as 

subjective and its results are dependent on the chosen denominator; however air 

transformed data insist the geological meanings inherited from the compositions 

rather than obtain a set of unknown physical quantities (Rollinson, 1992, 1993). 

Therefore, compared with the cir and ilr transformation, the statistical treatment to air 

transformed data and the interpretation of the statistical results can be dominated with 

a geological guidance. 

3.2. Singularity index mapping technique 

Nonlinear processes (e.g. earth quake, fault activities, emplacement of igneous rocks) 

occur quite often in geological domain, the products of which can present singular and 

non-stationary properties such as anomalous energy release and material accumulation 
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within a short space-temporal interval (Cheng, 2012; Wang et al., 2011, 2012, 2013; 

Zhao et al., 2012). Typically, mineralization caused by a series of cascade 

geo-processes produces abnormal geochemical signatures which can be identified by 

nonlinear methods (Cheng, 2007). Singularity mapping technique in the context of 

multifractal has become one of the most popular methods in separating the 

geochemical anomalies from background. Suppose the mass of metallic element 

contained in an area A (i.e., 2-dimensional scenario) is denoted as µ(A), and the metal 

concentration of the area A can be expressed as C(A) = µ(A)IA. From a multifractal 

point of view, the changes of µ(A) and C(A) depend on the variation of A by following 

power-law relationships: 

(µ(A))= cAa12 

(C(A)) = cAa12
-

1 

(3-4) 

(3-5) 

where the coefficient c is a constant defining the magnitude of the power-law equation; 

the exponent a determining the shape of the power-law equation or changing behavior 

of the quantities of element with changes of A within the given area is termed as 

singularity index; and The "expectation" symbol ( ) explains the power-law 

relationships in a statistical manner. Generally, the changing behaviors of the 

quantities of element characterized by singularity index a can be classified two 

situations: (1) a = 2 describes a non-singular distribution of element concentration 

which means C(A) is constant in the area of A and will not change accordingly with 
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the variation of A; (2) a i- 2 describes a singular distribution of element concentration 

implying changes of C(A) is dependent on the variation of A. Specifically, based on 

the magnitude of a, positive and negative singularities can be further differentiated by 

a < 2 and a > 2, respectively. The former case shows increase of C(A) with the 

decrease of area A, which is corresponding with the accumulation of element 

concentration at a given location. The latter case shows decrease of C(A) with area A 

decreases, which is corresponding with the depletion of element concentration at a 

given location. Generally, geochemical anomalies produced by various geo-processes 

(e.g., mineralization, magmatic emplacement, fault activities) can be characterized by 

enrichment of element (and/or element associations) within a narrow space interval 

(Cheng, 2007; Zhao et al., 2012; Wang et al., 2011, 2013). By mapping the singularity 

indices across the space, locations with geochemical anomalies will frequently 

indicated by positive singularity. 

To estimate the singularity index, a series of square window A( E) with various side 

lengths E min = E 1 < E 2 < ... < E n = E max centered at a given location are defined. 

Therefore, singularity index can be estimated by taking log-transformation on both 

sides of Eq. (3-5): 

LogC[A(t:)] = Log(c) + (a-2)Log(t:) (3-6) 

where C[A( E )] is the average element concentration value within the square window 

A(E). Log(c) is a constant value. Plotting the window size against the element 
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concentration on a log-log plot, the singularity index a at the given location can be 

achieved from the slope of the linear function (i.e., a - 2). Therefore, singularity 

indices at all locations can be estimated by sliding the square windows across the 

space (Cheng, 2007). Detailed information about window-based method can be found 

in Cheng (1999). In this dissertation, calculation of singularity indices of elemental 

concentrations was manipulated in GeoDAS GIS environment. 

3.3. PCA and SWPCA 

3.3.1. Ordinary PCA 

As a well known multivariate statistics, PCA has been broadly used to examine the 

relationships between variables. By orthogonal transformation, a series of interrelated 

variables can be converted into uncorrelated principal components (PCs) based on a 

covariance or correlation coefficient matrix (Horel, 1984; Loughlin, 1991 ). PCA is 

well performed to reduce high-dimensional information carried by original datasets to 

fewer PCs whose eigenvalues are descendingly ordered. In general, the first few PCs 

will be with most variance of original datasets (Panahi et al., 2004). Therefore, PCA is 

frequently utilized to increase information interpretability of targets of interest by 

reducing the dimensionality (Cheng et al., 2011; Christophersen and Hooper, 1992; 

Horel, 1984; Jolliffe, 2002; Singh and Harrison, 1985). According to the algorithm of 

PCA, PCs are linear combinations of original variables to represent integration results 

of original variables in different ways (Abdi and Williams, 201 O; Nomikos and 
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MacGregor, 1994); meanwhile, information possessed by each PC is disintegrated 

from the whole datasets. In other words, PCA can perform as both integrator of 

fractions and decomposer of the whole. 

Since introduced to geological field, PCA has been extemsively employed to 

geochemical data for identifying geological bodies (e.g., ores, igneous rocks, strata, 

etc.) (Cheng 2007; Wang et al., 2011, 2012; Zhao et al., 2012). From a geochemical 

perspective, different geochemical distributions (i.e., elemental concentration) are 

caused by effects of diverse geo-processes (Jiang et al., 2006). Elemental assemblages 

associated with geological bodies can be characterized by different PCs (i.e., linear 

combination of corresponding geochemical distributions), which may represent 

geochemical signatures of the end products of these geo-processes. 

Algorithmically, correlation coefficient matrix evaluating interrelations between 

variables is the foundation of PCA (Cheng, 2002; Cheng et al., 2011 ). According to 

the orthogonal transformation, eigenvectors of the matrix will construct an orthogonal 

Euclidian space where PCs are the axes, while the eigenvalues correspond to the 

variance of PCs. The PC with maximum eigenvalue (i.e., the greatest variance) is 

termed as the first PC (PC 1 ). The second PC (PC2) has the second largest eigenvalue, 

and so forth (Christophersen and Hooper, 1992). Suppose a geochemical dataset 

consisting of p elemental concentrations is conducted by PCA, the correlation 

coefficient between any two elemental concentrations is defined by the following 
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formula (Cheng et al., 2006, 2011; Wang and Cheng, 2008): 

1 - -
-I(41 -A)(Bij-B) 

R(A, B) = -==m:::::::::::::::n ===---;:::===== 

/_1 I(4.-A)2 _1 L(Bi'-B)2 
Vmn 'l mn 'l 

(3-7) 

where, AiJ and BiJ are the concentration values of the geochemical distributions of 

element A and B at location (i, j), respectively, and m and n represent the number of 

rows and columns of these two variables. The correlation coefficients of these p 

elemental concentrations will build a p x p symmetrical correlation coefficient matrix 

R (Cheng, 2011). 

Based on the achieved matrix, the eigenvalues and eigenvectors can be calculated by 

Eqs. (3-8) and (3-9), respectively: 

det(R - IU) = 0 (3-8) 

(R-IU)U = 0 (3-9) 

where, R is the correlation coefficient matrix of multivariate datasets, I is the p x p 

identity matrix, and "det" is the determinant of the matrix formed by R - ll. A.; (i= 1, 

2, ... , p) calculated from the characteristic equation of R is the eigenvalue, and U = 

[ail, a ;2, ... , a;p, i = 1, 2, ... , p] is the eigenvector matrix consisting of PCs with m 

rows and n columns. Mathematically, each PC can be expressed as a linear 

combination of the p variables (i.e., X1, X2, ... , Xp) as: 
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(3-10) 

Based on Kaiser's rule (Kaiser, 1960), eigenvalue of each PC should be greater than 

or equal to 1 to explain at least as much variance as one observed variable; otherwise 

they are considered to be statistically unreliable (Jollife, 2002). Restricted to this rule, 

some of the PCs with eigenvalue less than 1 will not be further used. However, the 

loadings of these PCs might be explainable to some physical meanings. Applications 

of PCA in geochemical exploration frequently encounter this problem, since the PCs 

with weak variance (i.e., A.; < 1) but meaningful geo-information might be the interests 

of geological interpreters in many cases. Therefore, the PCA extensions which can 

provide more statistically acceptable PCs by increasing the eigenvalues of formerly 

unusable PCs will greatly benefit the understandings of geological bodies resulted 

from multiple geo-processes. 

3.3.2. SWPCA 

Proposed by Cheng (2000), SWPCA applied a spatially weighting factor to the 

calculation of correlation coefficient matrix (Eq. 3-7). The relative importance of 

geological issue-associated certain physical quantities at different locations is taken 

into consideration by a spatially weighting factor (Cheng, 2006, 2011; Wang and 

Cheng, 2008; Xiao et al., 2012). A spatially weighted correlation coefficient of two 

variables can be expressed as 
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(3-11) 

where, W ij is the spatially weighting factor. In practice, W ij ranging from 0 to 1 (i.e., 0 

~ Wij ~ 1) is used. Wij = 0 implies that the location at (i, j) is not important or 

irrelative to the objective geological features, which will be removed from calculation 

of correlation coefficient. Wij = 1 implies that the location at (i,j) is very important or 

highly associated with the objective geological features, which will be highlighted 

during the calculation of correlation coefficient. Values of the spatially weighting 

factor assigned to locations ranging from 0 < W ij <1 are based on their significance to 

the objective geological features. In other words, the greater the W ij is, the more 

important the locations (i,j) are. In addition, if Wij is a constant across the space, then 

Eq. (3-11) will be same as the ordinary formula Eq (3-7). If Wij is a binary pattern 

with two values 1 and 0, then Wij is similar to the ordinary mask. The design of mask 

depends on spatial locations or intrinsic properties of specific objective features. 

As described above, PCs with qualified loadings can be used to describe the 

geological features. If a spatially weighing factor is applied to enhance the 

geo-information supported by the ith PC (PCi), then the SWPCA will produce new 

PCi (i.e., SWPCi) (Fig. 3.1); meanwhile, the eigenvector of SWPCi will be stretched 

along the similar but not exactly same direction as PCi: 
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(3-12) 

where [bli, b 2;, ..• , bp;, i = 1, 2, ... , pf forms a new eigenvector matrix. Since the 

observations of original variables Xp are not changed by using Wu·, whilst the 

eigenvector matrix is derived from spatially weighted correlation coefficient matrix R·, 

the eigenvalues (i.e., variances) of PCi and SWPCi should be different (Fig. 3.1). As a 

result, the SWPCl will not be able to retain as greatest variance as the ordinary PCl 

does and the eigenvectors and eigenvalues of other newly produced SWPCs by Eq. 

(3-12) are varied (Fig. 3 .1 ). SWPC 1 possessing smaller eigenvalue than PC 1 can be 

considered as a rotation of PC 1 to the enhanced direction. Moreover, the eigenvector 

of other SWPCs perpendicular to SWPCl will have a greater eigenvalue than ordinary 

PCs (Fig. 3.1). If the eigenvalues of these SWPCs are equal to or greater than 1, then 

more SWPCs will become reliable for interpreting than ordinary PCs. More detailed 

description and discussions of the SWPCA can be found in Cheng et al. (2011 ). In this 

dissertation, both PCA and SWPCA approaches were manipulated in GeoDAS GIS 

environment. 
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Fig.3. 1 Schematic diagram of eigenvectors of principal components (PCs) and 
spatially weighted principal components (SWPCs) in 2-dimensional scenario. Blue 
area denotes the plot of observations on two variables X and Y. In this demonstration, 
the information contained by the first principal component is supposed to be enhanced. 
The comparison between these two methods can be extended to n-dimensional 
scenario. 

3.4. Student's I-value 

The student's !-statistic involved in the weights of evidence (WofE) method has been 

used frequently to quantify the spatial relationship between a point pattern and a map 

(polygon) pattern (Bonham-Carter, 1994; Cheng and Agterberg, 2009; Cheng et al., 

1994; Zuo et al., 2009). In WofE, two statistics W- and W are defined to characterize 

the spatial relationship between point events and a map pattern according to 

conditional probabilities: 
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(3-14) 

where D and D represent presence and absence of point event,, respectively; and B1 

and Bj stands for presence and absence of the /h map pattern. The symbols 

P(B ID), P(B ID), P(B ID), P(li ID) stand for conditional probabilities of point 

events with respect to map patterns. W- is a log-transformed ratio of conditional 

probabilities of P(B ID)/ P(B ID), thus it measures the spatial relationship between 

point events and the presence of map pattern B. Similarly, W measures the spatial 

relationship between point events and the absence of map pattern B . The sum of these 

indices, C = W- - W, measures the overall spatial relationship between point events 

and map pattern. In order to characterize the statistical significance of the spatial 

relationship one needs to know the standard deviation of these indices. The student's 

!-statistic can then be used to quantity the statistical significance of the spatial 

relationship: 

c 
t=

(J' (3-15) 

where a is the standard deviation of C, which can be estimated according to the 

following approximations: 

(3-16) 
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(3-17) 

(3-18) 

More detailed discussions and derivation of the above equations can be found in 

Bonham-Carter (1994) and Bonham-Carter et al. (1989). In this dissertation, t-values 

were calculated in GeoDAS GIS environment. 

3.5. OLS and GWR 

Suppose a dependent variable Y can be estimated by a linear function of a series of 

independent variables Xk, an OLS model can be expressed as: 

.r; = ao + Iakxik + &; 
k (3-19) 

where, Y; is the observation value of the dependent variable at location i, X;k is the 

observation value of kth independent variable at location i, and £; is the independent 

and normally distributed error term with zero means (Brunsdon et al., 1996). The 

regression coefficient ak characterizing relationships between Y and Xk can be derived 

from the following matrix manipulation: 

(3-20) 

where, a• denotes an estimation of coefficient a which evaluates the strength of 

influence of independent variables to the dependent variable, X and Y represent 

observation values of independent variables and the dependent variable, respectively 
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(Brunsdon et al., 1996). For the OLS model, a· is a constant over space without 

implying any information for specific locations. In other words, one model fits all 

situations. Under some situations, it may lead great error in the estimation of 

relationships between variables especially when the relationships are non-stationary 

(Fotheringham et al., 2002). 

As a localized regression model, GWR allows variables to be estimated at different 

locations across the space. One of superiorities of using GWR is to explore spatial 

non-stationary relationships among variables. By GWR, the regression model can be 

expressed as: 

Y; =ao(UpV;)+ ~>k(UpV;)X;k +&; 
k 

(3-21) 

where, (u;, v;) indicates the location of point i in Euclidean space, and ak(u;, v;) are 

the localized coefficients of the kth independent variable at location i. The realistic 

meanings of other parameters in Eq. (3-21) are inherited from OLS model. Comparing 

these two regression models, OLS can only demonstrate a general trend of 

relationships between variables whereas GWR provides more localized inspection to 

the relationships between variables. In GWR, a weighting factor w(u;, v;) is applied 

during parameter estimation, by which the jth observation is weighted in accordance 

with its proximity to calibration point i. Observations close to the calibration point i 

will be assigned higher spatial weighting, and consequently have stronger influence 

on the estimation of the coefficients ak(u;, v;) than the locations away from i 

(Brunsdon et al., 1996, 2002; Fotheringham et al., 1998, 2001). The coefficients 

estimated for each single location can be: 
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(3-22) 

where w(u;, v;) is an n x n matrix. Diagonal elements of w(u;, v;) denote the spatial 

weighting of observed / 1 sample point located around calibration point i, while the 

other elements are zero (Brunsdon et al., 1996; Fotheringham et al., 1998; Charlton et 

al., 2009). The weighting matrix can be expressed as: 

W;1 0 0 0 

0 W;2 0 0 

w(u;, v;) = 0 0 W;3 0 

0 0 0 Wu (3-23) 

Furthermore, the spatial weighting of observed jth sample point w iJ is designed as a 

piecewise function: 

- d~) wii -exp(- 132 if dij<fJ 

otherwise (3-24) 

where p is the bandwidth which determines a maximum influence distance between 

calibration point i and observation point j. Based on the weighting function in Eq. 

(3-24), only points located within the bandwidth are considered in calibration of the 

center point i. As the distance between point i andj increases, the weighting of pointj 

will decrease following a Gaussian curve. A greater p defining a wider boundary of 

Gaussian curve will have more observation point j involved that corresponds to a 

more global model for parameter estimation; whereas a smaller p defining a narrow 
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boundary of Gaussian curve will have less observation point j involved that 

corresponds to a more localized model for parameter estimation. It can be assume that 

if f3 tends to infinity, then the weighting of observation point j will approach to 1 and 

GWR becomes the OLS. Therefore, GWR can be seen as disaggregation of OLS 

model at different locations (Fotheringham et al., 2002), and the bandwidth f3 governs 

the decay rate of w ij and the degree of locality of the regression model (Brunsdon et 

al., 2001, 2002; Fotheringham and Brunsdon, 1999). An appropriate bandwidth can be 

determined by cross-validation (CV) method or Akaike information criterion (AIC). 

More details of these two methods can be found in Brunsdon et al (1996, 2000) and 

Fotheringham et al. (2002). In this dissertation, both OLS and GWR approaches were 

implemented in ArcGIS GIS environment. 
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Chapter 4. Identification of fault systems 

As introduced in Chapter 2, tectonism is significant to the Fe mineralization in eastern 

Tianshan mineral district, China. According to stages of mineralization, fault activities 

or faults can be sorted into pre-, syn-, and post-mineralization (Zhai et al., 1999; 

Wang et al., 2012). From former studies, there are several discussions regarding to the 

influence of fault activities on Fe mineralization in the study area (BGEDXP, 2009; 

Ma et al., 1997; Wang, 1998). First of all, the pre-mineralization latticed fault systems 

controlled centers of volcanic eruptions in this area. Secondly, the syn- and 

post-mineralization fault activities played an important role in modification of shapes 

and distributions of Fe ores. Finally, fault systems acted as hydrothermal fluid 

conduits benefitting the Fe mineralization and hydrothermal alteration. Due to 

controlling effects of faults on Fe mineralization, most of Fe deposits are located 

within the fault systems and/or their buffer zones (Fig. 2.1 b ). Consequently, 

delineating spatial distributions of fault systems and/or their associated signatures is 

necessary and beneficial to the Fe exploration. 

Stress difference is one of the main effects enforcing hydrothermal fluid flow 

(Curewitz and Karson, 1997; Everett et al., 1999; Kassoy and Zebib, 1978; Kerrich, 

1986; Sibson, 1996; Tan et al., 2004). Fault activities which produce local 

decompression environment with abrupt decrease of geo-stress within geological 

bodies are beneficial to the convection of hydrothermal fluids (Lopez and Smith, 1995; 
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Saemundsson et al., 2009; Sibson, 1994). In the study area, latticed fault systems 

especially tension fractures are generally believed as mineralization favored positions 

(BGEDXP, 2009; Ma et al., 1993). By extracting salts (e.g., NaCl, MgCh, etc.) from 

wall rocks, hydrothermal fluids were developed into brine during migration within 

faulted spaces, and the increasing of salinity will boost the solubility of metals 

exponentially (e.g., Hg, Sb, As, U, Pb, Zn, Cu, Ag, and V, etc.) in hydrothermal fluid 

(Barton and Johnson, 2000; Ellis, 1968; Hemley et al., 1992). Being geochemically 

active fractions, Hg, Sb and As are sensitive to the variations in environment and are 

apt to be dissolved into or precipitated from the hydrothermal fluids. Meanwhile, As 

and Sb are often paragenetically associated with Au. Acting as mineralizer, 

geochemical behaviors of As, Sb and Hg benefit the migration of Au (Hua et al., 2002; 

Thornton and Farago, 1997; Yang and Blum, 1999). Influenced by variations in 

geo-stress, temperature, physical-chemical condition, etc., these elements tend to 

migrate with hydrothermal fluids toward surface and/or precipitate at favorable places. 

In general, the places are coincident with fracture zones or intersections of faults 

along different directions (Yuan et al., 1979). In eastern Tianshan district, there is a Au 

mineralization belt located in Kanggurtag-Huangshan shear zone (Fig. 2.la), 

formation of which is accompanied with activation, migration and mineralization of 

Au and its paragenetic elements (As, Sb and Hg). The presence of mineralization 

produces geochemical anomalies of these elements at/near the surface which are 

linearly distributed along fault traces and/or around intersections of faults trending 
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along different directions (Qian, 2009). Therefore, geochemical anomalies of these 

four elements (i.e., Au, As, Hg, and Sb) are broadly received as indicators to faults 

(BGEDXP, 2009; He and Chen, 2002; Yuan et al., 1979). In this chapter, they are 

employed to recognize the spatial distribution of fault systems in the study area. 

4.1. Closure effect of geochemical data 

With development of computer sciences in past decades, exploratory datasets were 

frequently employed to recognize geo-anomalies (i.e., geo-information) for mapping 

mineral potentials. As an important source of geo-information, geochemical data has 

been processed by advanced spatial analysis methods to identify 

mineralization-associated geological bodies and delineate mineralization-favored 

spaces (Cheng et al., 2011; Wang et al., 2011, 2012, 2013; Zhao et al., 2012). 

However, commonly used geochemical data is a typical compositional data. The 

closure effect which may cause errors if standard statistics applied to them was 

concerned by only limited quantity of geological studies in China (Cheng et al., 2011; 

Zhao et al., 2012; Zhou, 1998; Zuo et al., 2013). Based on properties of compositional 

data, it is significant to pay attention to the closure effect during working on the 

geochemical data with statistical analysis methods. 

Reviewing references regarding to the closure effect, it can be noticed that 

compositional data has long been concerned in the geological field (Buccianti et al., 

2006; Chayes and Trochimczyk, 1978). Compositional data is not particular and 
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exists in various geological datasets (e.g., mineral contents of igneous rocks, 

elemental concentration of whole-rock geochemical samples, rock types of sediment 

samples, etc.) (Buccianti et al., 2006; Carranza, 2011 ). Representing relative 

information of different parts to a whole, compositional data are always summing to a 

unity (e.g., 1 for the case if an observed physical quantity is in parts per unit, 100 for 

the case ifthe physical quantity is in percentage, etc.) and recorded in a closed system 

(Filzmoser and Hron, 2009; Pawlowsky-Glahn and Egozcue, 2006). Unlike 

unconstrained variables whose values are free to vary from -oo to +oo in Euclidean 

space independently, compositional data, especially the exploratory data by 

geological observations are often with positive values ranging from 0 to 1 (or a 

constant sum) (Pawlowsky-Glahn and Egozcue, 2006). Restricted by the force of 

constant sum, geo-information carried by compositions is trading off each other. 

Taking geochemical samples as an example, increase in the proportion of one element 

will cause decrease of the other(s) to some degree. As a result, correlation coefficients 

of compositions are not free to vary from -1 to+ 1 independently, and there must be at 

least one negative correlation coefficient; furthermore, correlation coefficients are 

negatively biased (Pawlowsky-Glahn and Egozcue, 2006; Thomas and Aitchison, 

2006). Consequently, correlations among these compositions are often spurious, 

misleading and/or meaningless in statistical sense (Rollinson, 1993). Standard 

statistical methods (e.g., principal component analysis) employed to examine relations 

between open variables might be inappropriate for the analysis of untransformed 
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compositional data (i.e., closed systems) (Aitchison, 1983). For geochemical data like 

whole-rock and stream sediment samples, logratio transformation is a helpful 

approach to open the closed system for better understandings of realistic relationships 

among compositions (Carranza, 2011; Egozcue et al., 2003; Feizmoser et al., 2012; 

Verma et al., 2006). 

In this research, a geochemical exploration model to identify fault systems with 

stream sediment geochemical data in eastern Tianshan mineral district is 

demonstrated. In order·to approximately depict spatial distributions fault systems, the 

air transformation, prior to statistical analysis (i.e., principal component analysis, 

PCA), is chosen and applied to stream sediment geochemical data. Through a series 

of experiments, the opened geochemical data is no longer constrained by the constant 

sum, which can be used to explore the realistic geochemical signatures of geological 

bodies. Achieved principal components (PCs) reduce the inappropriate estimation 

resulted from the closure effect. 

4.2. Identification of fault systems with logratio transformed 

geochemical data 

Since the interpretation of results of air transformation are considerably dependent on 

the divider, four practices demonstrate the delineation of fault systems by using PCA 

to the 4 log-transformed trace elements (i.e., case 1 ), to 4 air transformed trace 

elements, the divider of which is the sum of weight percent of all oxides (i.e., lj;, x; 
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are the oxides) (i.e., case 2), to 4 alr transformed trace elements, the divider of which 

is weight percent of Si02 (i.e., case 3), and to 4 alr transformed trace elements, the 

divider of which is weight percent of trace element Ba (i.e., case 4). Among these four 

experiments, case 1 without opening the closure effect will be treated as a standard to 

evaluate the improvement of air transformed results. The sum of weight percent of all 

7 major elements (i.e., Si02, Na203, MgO, Fe203, K10, CaO, and A}i03) assigned as 

the divider in case 2, which is an intuitive divider with a general geological guidance, 

because weight of all the oxides may account for more than 90% of the samples. Si02 

and Ba in case 3 and 4 are to test the differences of using a major and trace element as 

the divider, respectively. The content of Si02 is relatively stable over the space and 

shows high percentages in both igneous rocks and desert coverage. Ba as the divider 

is employed as a weighting factor to highlight the geo-information of fault systems 

because there is a distinct depletion and accumulation of Ba in the fault systems and 

the igneous rocks, respectively, in eastern Tianshan mineral district (BGEDXP, 2009). 

Choosing Ba as the divider is similar to the application of TM 5/7 to identify 

hydrothermal alteration in remote sensing. PCA results of these four cases are 

demonstrated in Table 4.1 and Figs 4.1to4.3. 
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Table 4. 1 Correlation coefficient matrixes calculated for 4 trace elements by logratio 
transformations using various dividers. a: log-transformation; b: sum of weight 
percent of all 4 oxides as the divider; c: weight percent of Si02 as the divider; d: 
weight percent of Ba as the divider. 

a: Sb Hg Au As 

Sb 1.000 

Hg 0.348 1.000 

Au 0.297 0.182 1.000 

As 0.675 0.276 0.497 1.000 

b: Sb Hg Au As 

Sb 1.000 

Hg 0.466 1.000 

Au 0.431 0.322 1.000 

As 0.750 0.421 0.595 1.000 

c: Sb Hg Au As 

Sb 1.000 

Hg 0.384 1.000 

Au 0.321 0.212 1.000 

As 0.693 0.317 0.515 1.000 

d: Sb Hg Au As 

Sb 1.000 

Hg 0.414 1.000 

Au 0.343 0.237 1.000 

As 0.712 0.354 0.532 1.000 

Comparing with the major oxides, concentrations of the trace elements are extremely 

small. The trading off effects in these 4 trace elements (i.e., Au, As, Hg and Sb) may 

not as significant as the major oxides, and concentrations of these four trace elements 

in geochemical data can vary more independently, which means their concentrations 

have more freedom to vary across the space. Statistical results of the trace elements 

might consequently be influenced by the closure effect less than the major oxides. 
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This hypothesis can be validated by the PCA results of the four cases (Figs 4.1, 4.2 

and 4.3). Although the bias to small correlations is rectified to different degrees 

(Tables 4.1 ), there is no significant difference among statistical results of the four 

cases (e.g., the eigenvalues, loadings and scores) can be observed. Positive loadings 

of elements in these four PC 1 s suggested that they satisfy geochemical signatures of 

fault systems (Fig. 4.2), by high scores of which the spatial distribution of fault 

systems in eastern Tianshan mineral district can consequently be indicated (Fig. 4.3). 

Overlaid with geological features, all PCls well correspond to the fault traces, among 

which PCl scores of case 2 and 3 (Figs 4.3b and 4.3c) show similar patterns to PCl of 

case 1 (Fig. 4.3a) while PCl of case 4 (Fig. 4.3d) demonstrates minor differences and 

disturbances (e.g., abnormal high values at middle to lower right). Since both 

numerators and denominators used in case 4 are trace elements with extremely small 

concentrations (i.e., ppm or ppb ), the closure effects are not significant. Furthermore, 

the 4 logratio transformed trace elements are more influenced by the ratio effect rather 

than logratio transformation. Therefore, when trace elements are required to be used, 

dividers like major oxides with general geological meanings (e.g., Si02) are 

recommended in decomposing the closure effect. 

Cross-referencing with geologic map, all PCl scores in Fig. 4.3 show prominent 

coincidence between high values and fault traces. However, due to the extensive 

regolith coverage in eastern Tianshan region, there are still many fault traces 

stretching in areas with low PCl scores. Therefore, additional treatments are 
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implemented (see below) to enhance delineation of fault systems associated 

geochemical signatures in the covered areas. 

4.3. Identification of fault systems with Singularity mapping 

technique 

Geo-processes or activities (e.g., tectonism) resulting in mineralization are frequently 

accompanied by intense accumulation or depletion of materials and energy within a 

short spatial-temporal interval (Cheng, 2007). End products of these geo-processes 

(e.g., faults systems) can cause geo-anomalies which are important to mineral 

exploration (Zhao, 1999). Separating anomalies from background is one of the top 

issues in geochemical exploration (Cheng, 1999a). Due to some uncontrollable issues 

(e.g., ground coverage and the burial depth of geological bodies), geochemical 

anomalies may be weak and difficult to be distinguished from background. 

Singularity index mapping technique developed within the context of multifractal 

theory has been proven to be efficient in identifying weak geo-anomalies hidden 

within the strong variance of background (Cheng, 2007, 2012; Wang et al., 2011, 

2012, 2013; Zhao et al., 2012; Zuo et al., 2009). 

By means of singularity mapping technique, both weak and strong geo-anomalies of 

four elements (i.e., Au, As, Hg, and Sb) can be separated from backgrounds, 

appropriately. After that, singularity indices (i.e., a) of these four elements are 

integrated by PCA to depict geochemical behaviors of element association caused by 

tectonism. As introduced previously, a window-based method needs to set several 
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parameters including windows shape and the minimum and maximum window sizes. 

Considering both shapes and extents of igneous rocks to be identified, square 

windows whose side size ranging from 2 km to 26 km with an interval of 4 km were 

defined. It means that these windows in areas of 2 x 2 km2
, 6 x 6 km2

, 10 x 10 km2
, 

14 x 14 km2
, .•• , 26 x 26 km2 will be built. For each window, the average value of 

element concentration C[A(r;)] is acquired by calculating the mean value of all 

samples located in the window. At each given location i, element concentration will 

be calculated for the 7 windows A(r;). Plotting the average concentrations versus 

window sizes on a log-log graph, a linear trend line can be draw by means of least 

square method. Based on Eq. (3-6), the singularity index a for the location i can be 

estimated by the slop of the straight line (i.e., a - 2). By sliding the window sets, 

singularity indices of a certain element can be estimated for all locations in space. 

As described above, geochemical concentrations are laying in a closed system, and 

the logratio transformation should be applied before any of the statistical treatments. 

Currently achieved singularity indices depict geochemical behaviors according to the 

spatial variations of geochemical concentrations, values of which around 2 can vary 

independently rather than recorded in forms of proportion. Therefore, it is not 

necessary to take logratio transformation on singularity indices of geochemical 

signatures before statistical treatments. 

64 



Table 4. 2 PCA results of singularity indices of 4 selected geochemical signatures for 
recognition of fault systems. 

Component PCl PC2 PC3 PC4 

variance 1.92 0.91 0.83 0.33 

Loadings of As Au Hg Sb 
singularity indices 

of geochemical 0.62 0.38 0.33 0.60 
signatures on PC 1 

The singularity indices calculated for each of the selected geochemical variables are 

integrated by PCA. Positively loaded singularity indices of four geochemical 

distributions suggested that PC 1 scores can be used to represent the geochemical 

behaviors of element association (Table 4.2). Based on properties of singularity index 

(i.e., a < 2 means enrichment and a> 2 means depletion), low PCl scores coincident 

with positive geochemical anomalies can be used to infer the spatial distribution of 

fault systems. Furthermore, the low scores illustrate precipitation of elemental 

association from hydrothermal fluids along the fault systems (Fig. 4.4). In addition to 

the well delineation of strong anomalies in exposed areas, weak anomalies hidden by 

the strong background (i.e., areas with overburden) are recognized successfully. In 

comparison with previously achieved patterns (Fig. 4.3), the PCA result by integrating 

singularity indices of these four elements produces a better performance in 

recognizing fault systems not only in exposed areas but also in the covered extents. 
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Fig.4. 1 Scree plots of eigenvalues of PCls of the four c~es to recognize fault 

systems. 
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Fig.4. 2 Loading of PC ls of the four cases to recognize fault systems. 
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Fig.4. 3 Score maps of obtained PC ls to delineate spatial distributions of fault systems. a: Case I; b: Case 2; c: Case 3; d: Case 4. 
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PCl: Faults • Fe deposits 
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- Low : -5.651 

Fig.4. 4 PCI scores of singularity indices of 4 selected geochemical signatures (i.e., Au, As, Hg, and Sb) for identification of fault 
systems. Fault traces and known Fe deposits are shown for reference. 
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4.4. Summary and discussions 

In this chapter, fault systems as an important controlling factor of the Fe 

mineralization in the study area are investigate through a series of GIS-based spatial 

analysis methods. In order to enhance the knowledge of fault systems, four 

geochemical elements associated fault activities are selected and analyzed. In this 

study, two issues often reduced exploration efficiency had been concerned. Achieved 

results can be used to delineate influenced areas of fault systems which are coincident 

with mineralization favored spaces. 

First of all, geochemical concentrations described in forms of proportion are 

pre-processed by logratio transformation to open the closure system. Through four 

experiments, experiences beneficial to future applications of logratio transformation 

are suggested. Secondly, since current study is implemented in a desert area, masses 

of geochemical anomalies are often masked by ground covers that influence results of 

geochemical data analysis. In order to enhance weak anomalies hidden within a 

background with strong variance, singularity index mapping techniques is applied. In 

comparison with traditionally used geochemical analysis methods, current results are 

more indicative and informative to describe the influenced areas of fault systems in 

eastern Tianshan mineral district, China. 

In following chapters, other mineralization associated geological features will be 
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recognized, and then currently achieved faulted areas will be integrated with them to 

mapping Fe mineral potentials. At the end, all of these features will be investigated 

jointly to facilitate geological exploration in the study area. 
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Chapter 5. Identification of felsic igneous 

rocks 

In past decades, mineral exploration in eastern Tianshan mineral district, China has 

discovered 125 Fe deposits, 87 (or about 70%) of which are spatially and genetically 

associated with magmatic activities (Table 5 .1) (Han and Zhao, 2003; BGEDXP, 

2009). A proper understanding of the spatial distribution of igneous rocks is therefore 

beneficial to Fe mineral exploration in this district. The locations of magmatic 

igneous rocks have been mapped by traditional geological mapping; however, the 

ones masked by overburden materials may associate with Fe mineralization have not 

been investigated sufficiently. In order to enhance knowledge to support future 

mineral exploration, it is necessary to delineate areas where igneous rocks exist, 

including areas covered by overburden. 

Benefitting from the development of computer sciences and geo-databases, extraction 

of geo-information from multi-source datasets can satisfy various objectives (e.g., 

mineral exploration, lithological analysis, age determination, etc.). GIS-based spatial 

analysis methods provide efficient ways to quantitatively and qualitatively 

characterize geo-information in spatial and frequency domains (Bonham-Carter, 1994; 

Darnley, 1995; Pan and Harris, 2000; Carranza, 2008). Geochemical and geophysical 

signatures are primary indicators of physical and chemical properties of geological 
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bodies. Geophysical surveys detect the presence of geological bodies in the 

subsurface. Geochemical data can provide clues about the presence and spatial 

distribution of geological bodies on/near the surface (Rose et al., 1979). In this 

chapter, the focus is mainly on geochemical signatures of concealed igneous rocks in 

the eastern Tianshan district. A comprehensive assessment and prediction of mineral 

deposits in this area is referred to Cheng (2012). 

The study area is a typical arid to semi-arid region in the Gobi desert covered by 

regolith, tepetate and aeolian sand (Xie and Wang, 2003; Zhuang et al., 2003). Areas 

above the snowline are snow-covered all year round. Glacier is well developed, the 

melting of which causes seasonal floods (Wang, 2005b; BGEDXP, 2009). Physical 

and chemical weathering can result decomposition of exposed rocks. Elements in 

chemical weathering products occur in the form of solid mineral grains (e.g., quartz 

and opal), dissolved acid (e.g., silicic acid), silica minerals (e.g., kaolinite), ions (e.g., 

K+ and Mg2+), etc (Rose et al., 1979). Among these chemical weathering products, 

soluble and active materials (e.g., cations and colloidals) migrate by surface runoff; 

whereas insoluble and stable compounds (e.g., quartz and kaolinite) remain kept in 

situ (Rose et al., 1979). These insoluble and stable compounds constitute the regolith 

in eastern Tianshan district (Wang et al., 2001). Inherited from the protoliths, 

geochemical signatures of these compounds in the regolith can be analyzed to infer 

the covered protoliths (Wang et al., 2001; Brantley and White, 2009). 
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Table 5. 1 The properties of typical igneous-sedimentary related iron deposits in the eastern Tianshan district, China (modified from 
BGEDXP, 2009). 

Mineralization Time Typical Deposit 

Deposit Types 
Time (amount, 

Total 
percentage) 

Name Mineralization Process 

Late Carboniferous 
C1 (2, 7.4%) granite intruded into 

Magmatic-hydrothermal 27 C2 (10, 37%) Tieling #1, Shuangjingzi Lower-Carboniferous 
P1 (15, 55.6%) Yamansu volcanic 

Formation 
Igneous-related 

Yamansu, Shaquanzi, 
Carboniferous volcanism 

Marine volcanic 48 
C1 (19, 39.6%) Hongyuntan, Bailingshan, 

overlaid by post-igneous 
C2 (29, 60.4%) Baishanquan, 

hydrothermal alteration. 
Shuangfengshan 

Sedimentation of marine 

Sedimentary-related 
Marine 

12 
C1 (9, 75%) 

Kumutag, Lingtietan 
volcanics and carbonates 

volcanic-sedimentary C2 (3, 25%) overlaid by post-igneous 
hydrothermal alteration. 
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5.1. Identification of felsic igneous rocks with logratio 

transformed geochemical data 

The geochemical data used in identification of felsic igneous rocks consist of major 

rock-forming oxides (i.e., Si02, Ah03, K10, Na20, CaO, MgO, and Fe203). 

Specifically, in the eastern Tianshan district felsic igneous rocks are rich in Ba and Be 

whereas mafic rocks are rich in Li (BGEDXP, 2009). Three experiments are 

demonstrated to depict the spatial distribution of felsic igneous rocks by using PCA to 

7 log-transformed oxides (i.e., case 1 ), to 7 air transformed oxides the divider of 

which is the residual part of the closed system (i.e., 1-kx;, x; = oxides) (i.e., case 2), 

and to 7 air transformed oxides the divider of which is the sum of weight percent of 

Ba, Be and Li (i.e., case 3). Among these three experiments, case I without opening 

the closure effect will be treated as a standard to evaluate the improvement of air 

transformed results. The divider chosen for case 2 is the sum of weight percent of all 

other compositions (i.e., 1-lj;, x; represents the 7 oxides) which is an intuitive divider 

without an explicit geological guidance. Consequently, it may cause difficulties to 

achieve results with explainable geological meanings. The divider used in case 3 is 

the sum of weight percent of Ba, Be and Li. It is based on previous statements that 

igneous rocks in eastern Tianshan mineral district is characterized by high 

concentration of Ba, Be and Li (BEDGXP, 2009). Being the divider in case 3, Ba and 

Be can enhance geo-information of femic oxides and depress felsic oxides, while Li 
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contributes opposite effects. Using the sum of these three as a divider, air transformed 

data will retain their initial geological meanings. 

Table 5. 2 Correlation coefficient matrixes calculated for 7 oxides by logratio 
transformations using various dividers. Negative values are labeled in bold. a: 
log-transformation; b: sum of weight percent of all trace elements (i.e., 1-I Oxide) as 
the divider; c: sum of weight percent of Ba, Be and Li as the divider. 

a: Si02 Na20 MgO K20 Fe203 Cao Ah03 

Si02 1.000 

Na20 0.312 1.000 

MgO 0.509 -0.002 1.000 

K20 0.280 0.167 -0.510 1.000 

Fe203 0.237 0.149 0.737 -0.511 1.000 

Cao 0.513 -0.379 0.469 -0.378 0.293 1.000 

Ah03 0.222 0.700 0.156 0.226 0.336 -0.130 1.000 

b: Si02 Na20 MgO K10 Fe203 Cao Ah03 

Si02 1.000 

Na20 0.779 1.000 

MgO 0.057 0.135 1.000 

K20 0.655 0.561 -0.313 1.000 

Fe203 0.271 0.397 0.726 -0.130 1.000 

Cao 0.102 -0.160 0.406 -0.246 0.270 1.000 

Ah03 0.792 0.887 0.235 0.610 0.507 0.025 1.000 

c: Si02 Na20 MgO K20 Fe203 Cao Ah03 

Si02 1.000 

Na20 0.732 1.000 

MgO 0.296 0.445 1.000 

K20 0.477 0.373 -0.109 1.000 

Fe203 0.435 0.541 0.827 -0.107 1.000 

Cao 0.321 0.252 0.641 0.020 0.543 1.000 

Ah03 0.751 0.868 0.562 0.432 0.662 0.440 1.000 
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Table 5 .2 illustrates correlation coefficient matrices calculated for the three 

pre-processed geochemical data. Confined by the constant sum (i.e., 100%), many 

correlation coefficients in Table 5.2a are negatively biased; whereas i:n other two 

correlation coefficient matrices of air transformed oxides, negative bias i.s rectified to 

different degrees {Tables 5.2b and 5.2c). Based on Kaiser's rule (Kaiser, 1960), PCls 

and PC2s of these three cases with eigenvalues greater than 1 can be kept for further 

analysis (Fig. 5.1 ). The oxides in compositional data recorded in relative proportion 

(i.e., weight percent) are commonly used to classify igneous rocks into felsic, 

intermediate, and mafic/ultramafic. When PCA is applied to the log-transformed 

geochemical data, the obtained PC with greatest variance (i.e., PCl in case 1) 

represents the spatial distribution of different classifications of igneous rocks (Fig. 

5.2a and 5.3a). By the air transformation, opened variables can be considered as the 

ones characterizing physical existence of geochemical signatures rather than the 

relative proportion. Compared with the original geochemical data, correlation 

coefficients of the air transformed geochemical data shown in Table 5.2 can reflect 

more realistic relationships among these oxides; moreover, the geo-information of 

elemental associations (i.e., PCls in Figs. 5.2b and 5.2c) indicating different ground 

features (e.g., rocks and desert covers) can be enhanced. Consequently, the greatest 

variance possessed by new PCls (i.e., PCls in case 2 and 3) will no longer denote the 

classification of igneous rocks but the changes of the ground features (Figs. 5.4b and 

5.4c) which were shown by PC2 in case 1 (Fig. 5.4a). Rather than expressed by the 
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dominating geo-information contained in air transformed data (i.e., PCls in case 2 

and 3), geochemical signatures classifying igneous rocks (i.e., same as PC I in case I 

does) are possessed by other PCs (i.e., PC2s in case 2 and 3) (Figs. 5.2b, 5.2c, 5.3b 

and 5.3c); therefore, based on loadings of these oxides, PC2s of case 2 and 3 can be 

used to indicate spatial distribution of felsic igneous rocks in current study. Overlaid 

with geological map, PC2 score map of air transformed oxides in case 3 performs the 

best in corresponding with spatial distributions of outcrops of felsic igneous rocks. It 

can be seen that a divider with explicit geological meanings can enhance the 

geochemical signatures of numerators in identification of objective geological bodies. 

•Casel •Case2 •Case3 

4 

3 

2 

I 

0 

PCI PC2 PC3 PC4 PCS PC6 PC7 

Fig.5. I Scree plots of eigenvalues of PCs of the three cases to recognize felsic 
igneous rocks. 
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Fig.5. 2 Loading of PCls and PC2s of the three cases to recognize felsic igneous 
rocks. a: Case 1. b: Case 2. c: Case 3. 
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Fig. 5. 3 Score maps of obtained PCs to delineate spatial distributions of felsic igneous rocks. a: PC 1 of log-transformed geochemical data 
in case 1. b: PC2 of air transformed geochemical data in case 2. c: PC2 of air transformed geochemical data in case 3. 
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Fig.5. 4 Score maps of obtained PCs to indicate changes ofrock types. a: PC2 of log-transformed geochemical data in case 1. b: PCI of 
air transformed geochemical data in case 2. c: PCI of air transformed geochemical data in case 3. 
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5.2. Identification of felsic igneous rocks with Siingularity 

mapping technique 

As main products of magmatism, igneous rocks can be analyzed to investigate 

magmatic activities (Cheng, 2007). Similar as the tectonism, magmatism is a 

non-linear geo-process as well. The formation of igneous rocks is frequently 

accompanied by enormous energy release and material accumulation in narrow 

spatial-temporal intervals. Local singularity mapping method is consequently satisfied 

to recognize the spatial distribution of geo-anomalies associated with igneous rocks. 

Considering both shapes and extents of igneous rocks to be identified, square 

windows with minimum and maximum window sizes of 2 km and 26 km, respectively, 

were defined. Many mapped units of igneous rocks in the study area have elliptical 

shape with an axis longer than 25 km. The defined Emax insures that the estimated 

singularity indices can properly characterize the geochemical properties of igneous 

rocks. 

Besides the previously introduced 7 oxides (i.e., main component of magmatic rocks), 

Ba, Be, and Li which are specifically enriched in igneous rocks in eastern Tianshan 

region are employed to recognize the felsic igneous rocks. The singularity indices 

calculated for these selected geochemical variables are integrated by PCA. The results 

are shown in Figs. 5.5 and 6. 
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Fig.5. 5 PCA results using singularity indices of geochemical data. a: Scree plot of 
eigenvalues of principal components of singularity indices of geochemical data; b: 
Loadings of geochemical variables on PC 1 of singularity indices of geochemical data. 
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Fig.5. 6 PCI score maps of singularity indices of geochemical data. 
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Eigenvalues of the first two PCs greater than 1 support that PC 1 and PC2 can be 

retained for further analysis (Figs. 5.5a); furthermore, loadings of geochemical 

variables on PCI suggest that PCI can be used to indicate presence of felsic intrusive 

rocks (Fig. 5.5b). Negatively loaded felsic association and positively loaded femic 

association can be used to infer that the spatial distribution of high PC 1 scores (Fig. 

5.6) is indicative to felsic intrusions, and the strong coincidence with locations of 

known felsic igneous rocks in the study area indicates that currently achieved result is 

geological reasonable and meaningful. More importantly, compare to the result in Fig. 

5.3b and 5.3c, the PCA result of singularity indices of selected geochemical signatures 

in Fig. 5.6 demonstrates a noticeable improvement for recognition of possible igneous 

rocks especially in the covered areas (Fig. 5.6). The high PCI scores in the eastern 

parts of the district (e.g., areas around Jing'erquan and Xingxingxia) illustrate that 

singularity indices of geochemical data rather than air-transformed geochemical data 

can effectively reduce the influence of weathering on geochemical anomalies and 

allow extraction of geochemical anomalies from high regional elemental background. 

The high PC 1 scores in the western parts of the district illustrate that singularity are 

advantageous for enhancing weak anomalies within low regional elemental 

background. Furthermore, the high PCI scores in the middle parts of the district (Figs. 

5.6, 5.3b, and 5.3c) can be interpreted as patterns of exposed and concealed rocks. 

However, the patterns in the middle parts of the district may be caused by physical 

drifting of regolith as well. Therefore, the presence of igneous bodies beneath regolith 
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needs further validation. One way is to compare the results with geophysical data and 

another way is to validate by drilling. Cheng (2012) explained how singularity index 

mapping can be used to detect anomalies caused by buried sources in covered areas, 

and used F e20 3 concentration data for validating the idea. The author also integrated 

geophysical and geochemical data for the delineation of igneous rocks. It has been 

proved that singularity indices calculated from geochemical concentrations of oxides 

are associated with gravity and aeromagnetic anomalies. 

5.3. Conclusions 

In the study area, most marine volcanic-sedimentary Fe deposits are found in the 

Yamansu Formation, which is recognized as the ore-hosting strata. Based on the 

spatial distribution of felsic igneous outcrops and Fe deposits, the area is divided from 

the middle into eastern and western parts. In the western half, Fe deposits are 

primarily found within the contact zones of felsic igneous rocks with the Yamansu 

Formation. This indicates that the felsic igneous rocks provided heat and ore-forming 

materials for the formation of Fe deposits and/or hydrothermal alteration. Future 

mineral exploration in the western part can focus on skarn rocks within the contact 

zones of felsic igneous rocks with Yamansu Formation carbonate rocks. In contrast, 

Fe deposits in the eastern half are associated with mafic extrusive rocks of the 

Yamansu Formation. This indicates that the formation of Fe deposits experienced the 

processes of volcanic extrusion, magma migration, ore-forming material 
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sedimentation, and mineralization. The scattered distributions of felsic igneous rocks 

in the eastern part could have enriched the Fe mineralization as in the western part. 

Therefore, intersections of mafic extrusive rocks of Yamansu Formation with felsic 

igneous rocks are interesting targets for future exploration of Fe deposit in the eastern 

part. 

Geochemical exploration in overburden areas has become a major challenge in recent 

decades. In the Gobi desert region, geo-anomalies related to mineralization in eastern 

Tianshan district are masked by overburden to a great extent. In this paper, principal 

components analysis was applied separately to air-transformed stream sediment 

geochemical data and to singularity indices of stream sediment geochemical data. The 

scores of interpretable principal components indicate well the spatial distribution of 

exposed igneous rocks and, to some extent, those with concealed by desert 

overburden. Finally, the results show that singularity indices of geochemical data are 

more advantageous than ilr-transformed geochemical data for mapping of areas likely 

underlain by igneous rocks beneath overburden. 
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Chapter 6. Identification of the Yamansu 

Formation 

In eastern Tianshan district, the most primary ore-hosting unit is the Lower 

Carboniferous Yamansu Formation which is mainly distributed within the extent of 

the Yamansu volcanic basin (Wang et al., 2006). Lithologieally, the Yamansu 

Formation is composed of complex sediment series including submarine felsic-mafic 

lava, volcaniclastic rocks, terrigenous elastics, and carbonate rocks, etc. (Ding, 1990; 

Hou et al., 2006; Xiao et al., 2004 ). Among various rock types, the mafic extrusive 

rocks are believed to provide ore sources for Fe mineralization (Jiang et al., 2002). 

Although Fe ore types are diverse (e.g., volcanic-sedimentary, hydrothermal, and 

contact skam deposits, etc.), most of them distributed around ancient volcanic edifices 

are stratigraphically controlled. Moreover, due to the Paleozoic collision between the 

Junggar plate (in the north) and Tarim plate (in the south), the volcanic edifices 

produced by the tectonism are linearly distributed in an EW direction in eastern 

Tianshan mineral district. As a result, the long axes of the extrusive rocks are in 

accordance with the trending orientation of major faults. Previous literatures revealed 

that the stratiform, stratiform-like, and lens ores with same attitudes as their hosts are 

mainly embraced by carbonate-rich fine-grained volcaniclastics or skarns (Ding, 1990; 

Han et al., 2002). By hydrothermal alteration, the banded structure of ore bodies 

consisting of ore minerals (e.g., magnetite), gangue minerals (e.g., garnet, chlorite, 
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actinolite, epidote, calcite and quartz, etc.) and sulfide minerals (e.g., pyrite and 

chalcopyrite) can be widely observed (BGEDXP, 2009; Deng et al., 2006; Han et al., 

2002; Lu et al., 1996). Preliminary results of geochemical exploration indi:cate that the 

Yamansu Formation is rich in Cu, Pb, Zn, Au, Ag, Bi, Mo, W, As, Hg, and Sb 

(BGEDXP, 2009). Among these elements, Au, Ag, Cu, Pb, and Zn correspond to the 

main metallic mineralization in the Yamansu Formation. Bi, Mo, and W (i.e., the 

group 6 elements) correspond to the felsic igneous rocks associated mineralization. As, 

Hg and Sb (i.e., the semimetal and mineralizer elements) formerly used to indicate the 

fault systems can be employed to illustrate fault controlled volcanic strata (BGEDXP, 

2009). 

6.1. Identification of the Yamansu Formation with logratio 

transformed geochemical data 

Similar to the identification of fault systems in chapter 4, 11 trace elements (i.e., Cu, 

Pb, Zn, Au, Ag, Bi, Mo, W, As, Hg, and Sb) are selected to recognize the Yamansu 

Formation. Two experiments demonstrated in this chapter to delineate the spatial 

distribution of the Yamansu Formation are applications of PCA to the log-transformed 

selected geochemical signatures (i.e., case 1) and to the air transformed selected 

geochemical signatures (i.e., case 2). As introduced in the section 4.2, the major oxide 

Si02 is chemically stable and distributed continuously across the space, the weight 

percent of which is used as the divider of air transformation for these elements. 
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Table 6. I Correlation coefficient matrix calculated for a: 11 log-transformed trace elements and b: 11 air transformed trace elements 
using the weight percent of Si02 as the divider. Negative values (in Table 6.1 a) and the increased correlation coefficients (in Table 6.1 b) 
are labeled in red. 

a: Sb Bi As w Mo Zn Pb Hg Cu Au Ag 

Sb 1.000 
Bi 0.112 1.000 
As 0.716 0.198 1.000 

w 0.202 0.586 0.287 1.000 
Mo 0.274 -0.048 0.342 0.047 1.000 
Zn 0.361 0.040 0.442 0.144 0.240 1.000 
Pb 0.104 0.316 -0.003 0.234 0.102 -0.032 1.000 

Hg 0.463 -0.065 0.341 -0.002 0.247 0.186 0.013 1.000 

Cu 0.184 0.005 0.310 0.034 0.222 0.636 -0.096 0.173 1.000 

Au 0.354 0.176 0.485 0.162 0.234 0.205 0.028 0.186 0.291 1.000 

Ag 0.338 -0.071 0.361 -0.085 0.386 0.251 0.120 0.265 0.208 0.236 1.000 
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b: Sb Bi As w Mo Zn Pb Hg Cu Au Ag 

Sb 1.000 

Bi 0.222 1.000 

As 0.712 0.266 1.000 

w 0.407 0.564 0.394 1.000 

Mo 0.441 0.259 0.579 0.356 1.000 
Zn 0.438 0.126 0.545 0.273 0.564 1.000 

Pb 0.299 0.400 0.244 0.365 0.275 0.256 1.000 

Hg 0.414 0.085 0.354 0.170 0.353 0.246 0.244 1.000 

Cu 0.385 0.078 0.548 0.184 0.573 0.774 0.131 0.283 1.000 

Au 0.343 0.202 0.532 0.183 0.386 0.252 0.125 0.237 0.365 1.000 

Ag 0.381 0.180 0.460 0.251 0.510 0.521 0.381 0.196 0.473 0.262 1.000 
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Fig.6. 1 Scree plots of eigenvalues of PC ls of the two cases to recognize the Yamansu Formation. 
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Fig.6. 2 Loading of PC ls of the two cases to recognize the Yamansu Formation. 
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Fig.6. 3 Score maps of obtained PC ls to delineate spatial distributions of the Yamansu Formation. a: Case 1. b: Case 2. Outcrops of the 
Yamansu Formation and known Fe deposits are shown for reference. 
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The correlation coefficient matrices demonstrated in Table 6.1 imply that the bias to 

negative correlation between pairs of variables has been greatly rectified by log-ratio 

transformation that there is no more negative values shown in the correlation 

coefficient matrix of 11 air transformed selected geochemical signatures. Moreover, 

most of the correlation coefficients have been improved by air transformation. It 

means that the closure effect existed among the geochemical data has been solved, 

although trace elements may not be affected by the closure effect as much as the 

oxides. The greater eigenvalue of the first PC in case 2 than in case 1 (Fig. 6.1) 

implies that the PC 1 of air transformed geochemical signatures possesses greater 

variance of the geochemical data. Considering the geo-information contained in PCl 

and other PCs as signal and noise, PC 1 of the case 2 with higher signal to noise ratio 

(SNR) may reflect the reality more precisely than of the case 1. Positive loadings of 

all the trace elements on PC 1 s of both cases (Fig. 6.2) satisfy geochemical signatures 

of the Yamansu Formation. It is suggested that the two PC ls can indicate presence 

the igneous strata. High values of both PC 1 score maps showing similar patterns are 

coincident to the spatial distribution of the Yamansu Formation (Fig. 6.3). The fact 

implies that using Si02 (i.e., the major oxide with stable spatial distributions across 

the space) as the divider in air transformation does not significantly affect the 

geochemical property of elements. Therefore, the air transformed geochemical 

signatures are superior in possessing the geological meanings of the original data and 

eliminating the closure effect. 
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6.2. Identification of the Yamansu Formation with 

singularity mapping technique 

Based on the metallogeny of volcanic sedimentary Fe deposit in eastern Tianshan 

mineral district, the formation of Fe deposit is mainly associated with the Yamansu 

Formation and the Late Carboniferous felsic intrusions. The mafic and felsic 

members are believed as the main ore resources and carrier of heat and materials in 

support of metasomatism for Fe mineralization, respectively (BGEDXP, 2009). The 

contact between these two lithological units may probably be beneficial to the 

formation of Fe deposits. Therefore, delineating spatial distributions of geochemical 

signatures of the Yamansu Formation and the variations of lithology will be 

beneficial to mineral exploration in the study area. As introduced in former sections, 

the Yamansu Formation is generally a volcanic strata produced by the Early 

Carboniferous volcanism. Similar to mineralization, the volcanic eruption 

accompanied with enormous releases of energy and accumulation of materials is a 

non-linear geo-process. The location of volcanic edifices presents fractal geometry in 

space. Confined by the volcanic eruption center, the spatial distribution of the 

volcanic strata which are located around the volcanic edifices can be investigated 

with fractal and multifractal modeling technique. Similar as the description of 

geochemical signatures of felsic igneous rocks in chapter 5, singularity index 

mapping technique is currently applied to the 11 elements (i.e., Cu, Pb, Zn, Au, Ag, 

Bi, Mo, W, As, Hg, and Sb) to demonstrate their geochemical behaviors (i.e., 
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accumulation and depletion) in the study area. Derived singularity indices of these 

elements are further integrated by PCA to characterize the enrichment of the element 

association which indicates geochemical signatures of the Yamansu Formation. 

By singularity mapping technique, accumulation of element in space is characterized 

by a < 2 whereas depletion of element is by a > 2. Stability in content of an element 

in a given area is characterized by a = 2. In order to recognize the Yamansu 

Formation related geochemical behaviors of element association, singularity indices 

of the 11 geochemical distributions are integrated by PCA. Singularity indices of all 

elements possessing same signs in PC 1 (Table 6.2) suggests that PC 1 can be used to 

indicate the geochemical signatures of element association related to the Yamansu 

Formation. In addition, since all elements contribute positively in PCl, low scores 

can be used to represent positive geochemical anomalies of the element association 

(i.e., accumulation) (Fig. 6.4). The spatial distribution of the low PCl scores 

indicating the enrichment of element association can therefore be used to 

characterize the present of the Yamansu Formation. Overlying with geological 

occurrences, patterns with low PCl scores (i.e., positive anomalies) are well 

coincident with the outcrops of the Yamansu Formation and most of known Fe 

deposits. It satisfies the fact that Fe deposits in eastern Tianshan mineral district are 

mainly hosted by the Yamansu Formation. Compared with the PCl scores of air 

transformed geochemical signatures illustrated in the previous sections (Fig. 6.3b), 

currently derived PC 1 score map based on singularity indices shows a better 
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performance in identifying the spatial distribution of the Yamansu Formation. The 

patterns well coincident with the outcropped Yamansu Formation demm1strate that 

singularity mapping technique can enhance weak geochemical anomalies hidden in 

both the strong (i.e., Xiaorequanzi volcanic basin in the western tail of the study area) 

and the weak background (i.e., desert cover in the eastern tail of the study area). 

Referring to the geological map shown in Fig. 2.1 b, geochemical anomalies of the 

element association located in desert areas are enhanced to supports the Fe 

exploration in covered areas. Therefore, the singularity-based PCA result indicating 

spatial distribution of the Carboniferous Yamansu volcanic Formation will be used 

jointly with other two controlling factors (i.e., fault systems and felsic intrusions) in 

future data integration procedure. 
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Table 6. 2 PCA results of singularity indices of 11 selected geochemical signatures for recognition of the Yamansu Formation. 

PCl PC2 PC3 PC4 PCS PC6 PC7 PCS PC9 PClO PCll 
Component 

variance: 3.66 

Loadings of Au 
singularity indices 

of geochemical I 0.22 
signatures on PC 1 

c 
~ 

90°00' 
PCl: Yamansu formation 

.High 

- Low 

1.49 1.07 1.00 

Ag Cu Pb 

0.28 0.29 0.23 

Fe deposits 

~ Yamansu formation 

0.85 0.74 0.66 0.49 0.47 0.30 0.27 

Zn Bi Mo w As Hg Sb 

0.33 0.25 0.37 0.33 0.42 0.16 0.36 

' r~~-~r·r/~~ ,~ .... ;. • .. ···m~1rl~j,~m .... t.:11~ 
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Fig.6. 4 PCl scores of singularity indices of 11 selected geochemical signatures for identification of the Yamansu Formation. Outcrops of 
the Yamansu Formation and known Fe deposits are shown for reference. 
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6.3. Discussions 

Trace elements commonly used to characterize mineralization associated 

geochemical signatures are currently used to characterize geological features. In this 

chapter, following the recognization of the mineralization associated fault systems 

and felsic igneous rocks, the spatial distribution of the Yamansu Formation is 

delineated by applying PCA to air transformed elements (associated with the 

Yamansu Formation) and to singularity indices of these elements. 

Comparing these two delineations, the singularity index-based PCl more efficient in 

identifying geo-information in eastern Tianshan mineral district (i.e., a cover area); 

whereas, the air transformation-based result can not indicate the distribution, 

appropriately, due to the cover effects. Therefore, the PC 1 by integrating singularity 

indices of the 7 elements is chosen to represent presence of the Yamansu Formation. 

In the following chapters, current result will be integrated with other mineralization 

associated geological features to mapping the mineralization favored areas supported 

by tectonism, magmatism and metamorphism. 
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Chapter 7. Recognition of Fe mineralization 

Former mineral exploration indicates that mineralization no matter types (e.g., 

hydrothermal, sedimentary, etc.) and conditions of occurrences (e.g., buried or 

exposed) is always accompanied with geochemical anomalies (Jiang et al., 2006). 

These anomalies may exist around the ore bodies shown as geochemical halos. As the 

distance from the mineralization centers increasing, their strength decreases until 

reaches the background. In practice, geochemical anomalies can be recorded in rocks, 

soil, water, gas, and even vegetation, detection of which is advanced to locate 

mineralization centers (Jiang, 2006). Among various media, sample collected from 

soil, rocks and stream sediments are commonly applied because of their superiority in 

relatively stable, less affected, and easier to preserve. In recent decades, geochemical 

survey are routinely used in almost all mineral exploration programs, with the assist 

of which, mechanism of relative enrichment of economic elements in various 

positions of an interested area can be determined to satisfy human needs (Rose et al., 

1979). 

Geochemical exploration in eastern Tianshan mineral district, China was first 

launched in 1985. Delineated anomalous areas (about 7,738 km2
) by previous 

researches are mainly distributed in the Yamansu and Xiaorequanzi volcanic basins. 

Confined by the exploration technology, equipment, and resolution of geochemical 

data, only 28 out of 135 Fe deposits in the study area were located within the 

anomalous area, although the threshold to separate geochemical anomalies and 

background was not strict at all (BGEDXP, 2009). Apparently, the efficiency of 
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previous geochemical exploration cannot satisfy to map mineral potentials in the 

study area. In this study, geochemical data with higher resolution and advanced data 

processing methods are available to assist the geochemical exploration. The data 

processing procedure with better performance in delineating potential areas of Fe 

mineralization will be demonstrated in the following sections in this chapter. 

7.1. Geochemical signatures of Fe mineralization mapping 

7.1.1. Geochemical signatures of Fe 

Fe concentration in currently used stream sediment geochemical data is recorded in 

form of Fe20 3. In eastern Tianshan mineral district, the spatial distribution of Fe203 

concentration is nonuniform (Fig. 7 .1) (BGEDXP, 2009). The most prominent 

geochemical anomalies of Fe203 concentration are located in the Xiaorequanzi 

volcanic basin that corresponds to the Fe enrichment in the Xiaorequanzi volcanic 

Formation; however, there were not so many Fe deposits discovered in this area. In 

addition, the Fe mineralization is eminent in the Aqishan-Bailingshan area, the 

Kanggurtag-Tuwu area, the east district of the Kumtag sand ridge, the Yamansu 

volcanic basin, and the Shaquanzi area as well. Typical volcanic sedimentary Fe 

deposits located in these areas include the Kumtag, the Chilongfeng, the Tieling, the 

Yufeng, the Bailingshan, the Hongyuntan, and the Yamansu deposits, etc. As 

introduced in previous chapters, Fe mineralization in the study area is mainly 

associated with intermediate-mafic volcanic rocks, spatial distribution of which is 

generally confined by the EW trending fault systems. These mineralization areas are 

consequently extending along EW direction (BGEDXP, 2009; Li et al., 2002; Mao et 
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al., 2005; Yang et al., 1996). 

In addition to the Fe mineralization in eastern Tianshan mineral district, 

intermediate-mafic volcanic rocks composed of Fe rich minerals (e.g., olivine, 

pyroxene, and hornblende) are another main source of Fe203 (Han et al., 2002; Ma et 

al., 1993; Wang et al., 2006). Broadly distributed intermediate-mafic volcanic rocks in 

the study area can result high values in Fe20 3 concentration and high geochemical 

background. It might be the reason why only a small number of Fe deposits were 

discovered in anomalous areas of Fe203 coincident with the Xiaorequanzi volcanic 

basin. On the contrary, the east tail of the study area (i.e., the Jing'erquan subarea) is 

mainly covered by desert, where the insufficiency of Fe-rich minerals in the sandy 

coverage causes low Fe20 3 concentration or low geochemical background. However, 

remarkable Fe mineralization is still performed in this area. These two situations 

imply that delineating of Fe potential areas by analyzing the spatial distribution of 

Fe20 3 concentration is unreliable. The strategy of geochemical exploration in this area 

should be based on eliminating the influence of both Fe-rich igneous rocks and sandy 

coverage. 

7.1.2. Fe anomalies mapping 

As described above, employment of geochemical data for characterizing anomalies 

associated with mineralization in eastern Tianshan mineral district, China requires 

advanced spatial analysis methods, because geochemical data used to analyze Fe 

concentration is recorded in Fe203. This form of iron concentration can reflect the 
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spatial distribution of both Fe deposits and Fe-rich geological bodies (e.g., 

intermediate-mafic igneous rocks) in the study area. Furthermore, influenced by the 

desert, geochemical anomalies associated with Fe mineralization in covered areas are 

weak. These two situations are frequently termed as high and low geochemical 

background, respectively. However, the mineralization is a typical non-linear process 

accompanied with enormous energy release and material accumulation. Consequently, 

the concentration of Fe203 in Fe deposits is overwhelmingly greater than those in 

Fe-rich igneous rocks. In addition, geochemical properties of the Fe mineralization 

are extraordinarily distinguished from desert coverage, although the Fe mineralization 

only occurs within a narrow space. Therefore, recognition of the differences between 

Fe mineralization and its surroundings is beneficial to the Fe potential mapping. The 

singularity mapping technique applied in former chapters to identify spatial 

distributions of mineralization associated geological bodies (i.e., fault systems, felsic 

intrusions, and the Yamansu Formation) is currently used to describe the spatial 

variations of Fe203 concentration. By this method, geochemical anomalies associated 

with Fe mineralization can be identified from both high and low background. 

Fig. 7 .2 illustrates the spatial distribution of singularity indices of F e20 3 concentration 

calculated by window-based method with sizes ranging from 2 km to 26 km. Based 

on the definition of singularity index, areas with a less than 2 (i.e., low values) 

represent accumulation of Fe203 (i.e., positive anomalies) while areas with a greater 

than 2 (i.e., high values) represent depletion of Fe20 3 (i.e., negative anomalies). As 
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the primary advantage of singularity index mapping technique, geochemical 

anomalies can be separated from both strong and weak background efficiently. 

Specifically, positive anomalies of Fe20 3 at exposed area (e.g., the Xiaorequanzi 

volcanic basin, the Aqishan-Bailingshan area, and the Yamansu volcanic basin) 

demonstrate the separation of Fe mineralization associated anomalies from the ones 

with Fe-rich igneous rocks. Anomalous areas indicated by the spatial distribution of 

singularity indices ofFe203 have been greatly reduced, especially in the Xiaorequanzi 

volcanic basin (Fig. 7.2). Meanwhile, positive anomalies at covered area (e.g., the 

Jing'erquan area) have been notably enhanced which demonstrates the separation of 

weak Fe anomalies blurred by sandy cover. 

7.2. Geochemical signatures of Fe mineralization associated 

elements mapping 

Element measured for detecting ore bodies is termed as indicator element, such as Fe 

for Fe ores or Cu for Cu ores. However, the indicator element being sought, in a 

majority of situations, may be difficult to detect, or yielding features which are 

unreliable and difficult to interpret (Ross et al., 1979). Elements with similar 

physical-chemical properties have a tendency to aggregate together by various 

geo-processes (Jiang et al., 2006). These elements are so-called element association. 

Rather than a single element, anomalies of element association are commonly 

employed to investigate related geological bodies due to their priority of being stable 

and reliable to interpret corresponding geological processes (BGEDXP, 2009). 

107 



Therefore, knowledge to the spatial distribution of element associations means 

significantly to mineral potential mapping. 

7.2.1. Geochemical signatures of element association 

In this research, using Fe20 3 as the indicator for mapping of Fe potentials encounters 

many problems. The most important issue is that the Fe anomalies are indicative to 

both Fe deposits and Fe-rich rocks. In order to locate potential areas of Fe 

mineralization, variations in Fe203 concentration has been derived by the singularity 

mapping technique. However, the spatial distribution of singularity indices ofFe203 is 

still doubtful, because the relative enrichment of Fe203 (i.e., positive singularity) 

within the mafic igneous rocks may not probably related with Fe mineralization. 

Therefore, it is necessary to consult with elements which are specifically enriched in 

Fe ores other than igneous rocks. In the following sections, more reliable result to 

depict potential areas of Fe mineralization will be obtained by investigating 

geochemical signatures element association related to Fe mineralization. 

Published literatures (BGEDXP, 2009; Han et al., 2002; Qin et al, 2003; Wang et al., 

2006) indicate that the Fe mineralization can be sorted into four sub-categories 

according to ore element assemblages: Fe deposits, Fe-Mn deposits, Fe-V-Ti deposits, 

and Fe-Cu-Zn deposits. From a geochemical perspective, the geochemical anomalies 

of element associations are more reliable than of a single element to assist in Fe 

mineral exploration; mapping of the spatial distributions of these geochemical 

signatures is therefore necessary to depict target areas. In currently study, the element 
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association consisting of Fe203, Mn, V, Ti, Co, Ni, Cu, and Zn which are specifically 

enriched in Fe ore bodies will be used to investigate the geochemical signatures 

related to Fe mineralization. 

Applying PCA to these elements, achieved results suggest that PC 1 satisfies 

characterization of the geochemical signatures of the element association (Fig. 7.3). 

The low PC 1 scores can be used to delineate geochemical anomalies associated with 

Fe mineralization (Fig. 7.3c). In addition, the variance and the loadings on PCl also 

illustrate the strong coexistence of the 8 selected geochemical signatures. By 

comparing the spatial distribution of Fe203 concentration (Fig. 7 .1) and the 

geochemical signatures of element association (Fig. 7.3c), the coexistence can also be 

observed from these two similar patterns. Although patterns with high values are 

similarly distributed in these two maps, the spatial distribution of geochemical 

signatures of element association with stronger geological guidance is more reliable to 

depict mineralization associated geochemical anomalies than the Fe20 3 (Fig. 7 .1 ). 

7.2.2. Anomaly mapping 

From the perspective of non-linear theory, mineralization as a singular geo-process 

exhibit fractal/multifractal properties (Cheng, 2007, 2012; Zhao et al., 2012). 

Consequently, fractal or multifractal analysis of element association related to 

mineralization might be more reasonable to characterize mineralization. The 

multifractal-based singularity mapping technique is currently used. Similar to 

109 

L 



identification of the fault systems, felsic igneous rocks, and the Yamansu Formation, 

deriving geo-information of Fe mineralization from geochemical signatures of the 

element association requires a combining usage of the singularity mapping technique 

and PCA. By this model, singularity indices of each element can be estimated, and 

then PCA is applied to delineate the spatial distribution of the element association. 

From the results of PCA, PC 1 with highest eigenvalue possesses the greatest variance 

of the geochemical data sets and all elements are positively loaded, loadiags of which 

suggested that the PC 1 satisfies characterization of the geochemical signatures of 

element association related to Fe mineralization (Fig. 7.4). Based on properties of 

singularity index (i.e., a < 2 represents positive anomalies and a > 2 represents 

negative anomalies), low values in PCI scores are coincident with Fe anomalies. 

Comparing the two PCI score maps (Figs. 7.3c and 7.4c), the latter is eligible to 

detect both strong and weak anomalies from background from either exposed or 

covered areas. It indicates that based on singularity mapping technique, the precision 

in depicting spatial variations of geochemical signatures of Fe mineralization has been 

improved. 

In order to compare these depicted Fe mineralization (Figs. 7.1-7.4 ), the Student's 

t-value in the context of weights of evidence (WofE) is applied to evaluate the 

statistical significance of spatial relationship between known Fe deposits and evidence 

layers. Patterns with highest spatial association with known Fe deposits are defined as 
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the target areas of Fe mineralization for each map. In this chapter, evidence layers 

derived in the previous sections include the spatial distribution of Fe concentration 

(Fig. 7.1), singularity indices of Fe concentration (Fig. 7.2), PCI scores of 

geochemical signatures of element association (Fig. 7.3c), and PCl scores of 

singularity indices of geochemical signatures of element association (Fig. 7.4c ). By 

the Student's t-value, their efficiency in indicating Fe mineral occurrences can be 

achieved and compared (Figs. 7.5 and 7.6), and some useful information can be 

derived from the statistics (Table 7.1). For the spatial distribution of Fe20 3 

concentration, although covering the most known deposits, the targets occupying 

nearly half of the study area may not be an efficient prediction to Fe deposits (Fig. 

7.6a). The similar problem is possessed by the PCl scores of geochemical signatures 

of element association as well (Fig. 7 .6c ). On the contrary, targets delineated by 

spatial distributions of both singularity indices of Fe20 3 concentration (Fig. 7 .6b) and 

the element association (Fig. 7.6d) circle more than half number of the known Fe 

deposits by covering less than a quarter of the study area that provide more efficient 

references for mineral exploration. By eliminating influences of both strong and weak 

geochemical background, anomalous areas depicted by the singularity index method 

are more likely to be related with Fe mineralization rather than mixed with Fe-rich 

igneous rocks (Figs. 7.6b and 7.6d). Moreover, target areas derived based on the 

geochemical signatures of element association can provide more reliable indication in 

mapping mineral potentials (Fig. 7 .6d), because the element association, in a majority 
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of situations, performs better than a single element in describing geochemical 

signatures related to mineralization (Figs. 7 .6b ). 

7 .3 Discussions 

In this chapter, the singularity index mapping technique is currently applied to depict 

spatial variations of Fe mineralization associated geochemical signatures. With the 

assist of the advanced technology, influences of both Fe-rich rocks and sandy 

coverage can be eliminated appropriately. In addition, the spatial distribution of 

geochemical signatures related to Fe mineralization has been depicted using both 

single element and element associations. From the perspective of exploration 

geochemistry, the element association providing more reliable geo-information 

regarding mineralization is commonly employed to assist mineral potential mapping. 

The Student's t-value is applied to further depict target areas of Fe mineralization. By 

comparing the efficiency of all evidence layers (Fig. 7.6), the PCl scores of 

singularity indices of element association with more confidence in indicating 

geo-information of Fe mineralization and with higher efficiency in depiicting target 

areas will be used in following chapters. 
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Fig.7. 1 Spatial distributions of Fe20 3 concentration in eastern Tianshan mineral district. High values are corresponding to high Fe 
concentration. 7 subareas are circled in red color. From the west to the east, they are (1) the Xiaorequanzi volcanic basin, (2) the 
Aqishan-Bailingshan subarea, (3) the Kanggurtag-Tuwu subarea, (4) the east district of the Kumtag sand ridge, (5) the Yamansu volcanic 
basin, (6) the Shaquanzi subarea, and (7) the Jing'erquan subarea. 
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Fig.7. 2 Spatial distribution of singularity indices of Fe20 3 concentration describing geochemical behaviors caused by Fe accumulation. 
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Fig.7. 3 PCA results for identifying geochemical signatures of element association related to Fe mineralization. a. Scree plots of 
eigenvalues of PCs; b. Loading of 8 selected geochemical signatures on PC 1; c. Score map of obtained PC 1 to delineate spatial 
distribution of geochemical signatures of element association. Known Fe deposits are shown for reference. 

116 



7 

6 

5 

4 

3 

2 

1 

0 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

PCI 

Zn 

PC2 PC3 PC4 

v Ti Ni 

PCS PC6 PC7 PCS 

a 

Mn Fe203 Cu Co 

b 

117 



0 
~fl I ,-.~~,: 
':t 

PCl • 
• High : 13.650 

it·~. ...~ .,..'" ,, , 

- Low : -9.206 

Fe depo~its 

c 

N 

A 

~ 
'"" ...,. 

Fig.7. 4 PCA results for identifying singularity indices of geochemical signatures of element association related to Fe mineralization. a. 
Scree plots of eigenvalues of PCs; b. Loadings of singularity indices of 8 selected geochemical signatures on PC I; c. PC I scores of 
singularity indices of geochemical signatures of element association. Known Fe deposits are shown for reference. 
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Table 7. 1 Statistical results showing the comparison of the efficiency in delineating the potential areas of Fe mineralization based on the 
spatial distribution of Fe203 concentration (Fig. 7.1), singularity indices of Fe20 3 concentration (Fig. 7.2), PCI scores of geochemical 
signatures of element association (Fig. 7.3c) and PC 1 scores of singularity indices of geochemical signatures of element association (Fig. 
7.4c). 

Anomalous area (in km2
) 

Numbers of the known Fe 
Effi . #deposits% 

(percentage accounting for the 
deposits overlapped (percentage iciency = 
accounting for the total number 

AnomalousArea% 
whole study area) 

of Fe deposits) 

Spatial distribution of Fe20 3 73.39% 
= 1.700 

concentration (in Fig. 7.1) 
15, 136 (43.16%) 80 (73.39%) 

43.16% 

Spatial distribution of singularity 54.13% = 2.395 
indices of Fe20 3 concentration (in Fig. 7,928 (22.60%) 59 (54.13%) 22.60% 

7.2) 

PC 1 score of geochemical signatures 72.48% = 1.740 
of element association (in Fig. 7.3c) 

14,608 (41.65%) 79 (72.48%) 
41.65% 

PC 1 score of singularity indices of 59.63% = 1.783 
geochemical signatures of element 11,728 (33.44%) 65 (59.63%) 33.44% 

association (in Fig. 7.4c) 
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Fig. 7. 5 Student's !-values calculated for measuring spatial relationship between 
known Fe deposits and a. the spatial distribution ofFe203 concentration demonstrated 
in Fig. 7 .1; b. the spatial distribution of singularity indices of Fe20 3 concentration 
demonstrated in Fig. 7.2; c. PCI of geochemical signatures of element association 
demonstrated in Fig. 7.3c; and d. PC I of singularity indices of geochemical signatures 
of element association demonstrated in Fig. 7.4c. 
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Fig. 7. 6 Optimum targets with highest probability of being underlain by known Fe deposits. The grey patterns in a. are derived based on 
thresholds of the 13th class of the spatial distribution of Fe concentration demonstrated in Fig. 7.1; in b. are based on the 1 oth class of 
spatial distribution of singularity indices of Fe concentration demonstrated in Fig. 7.2; inc. are based on the 21st class of PCI scores 
demonstrated in Fig. 7.3c; and ind. are based on the 10th class of PCI scores demonstrated in Fig. 7.4c, respectively. The thresholds are 
determined by the Student's t-values illustrated in Fig. 7.5. 
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Chapter 8. Geo-information integration for 

mineral potential mapping by SWPCA 

model 

From a geological perspective, mineral deposits are the end products dominated by 

complex geo-processes and the formation of which are temporally, spatially and 

mechanically confined by various geological bodies associated with these 

geo-processes. As introduced previously, most of the volcanic sedimentary Fe 

deposits are located within the extent of Jueluotag rift and dominated by regional 

tectonic-magmatic activities (Han and Zhao, 2003; Hou et al., 2006; Zhou et al., 

2001). Specifically, the volcanic Fe deposits were formed along with the eruption and 

following sedimentation of the Yamansu volcanic rocks, especially the 

intermediate-mafic rocks. Genetically, the volcanic eruption was triggered by plate 

collision between the Junggar plate and the Tarim plate occurred from the Ordovician. 

As a result, the spatial distributions of volcanic edifices, volcanic rocks and even Fe 

mineralization belts are highly associated with the latticed fault systems (BGEDXP, 

2009), which are generally distributed along EW direction. Influenced by subsequent 

felsic magmatic emplacement in the Late Carboniferous, previously formed Fe ore 

bodies within the Yamansu volcanic strata were altered and enriched by hydrothermal 

fluids. Contact zones of the Yamansu Formation and felsic intrusions have long been 
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considered as exploration targets. 

As a Gobi Desert area, general mineral exploration in eastern Tianshan mineral 

district is seriously limited by ground coverage mainly consisting of aeolian sand, 

tepetate, and regolith. Advanced techniques for mineral exploration are desired to 

delineate potential areas of Fe mineralization. With the development in techniques and 

database construction, there is a great improvement in geo-information identification 

approaches (e.g., regression analysis, characteristic analysis, principal component 

analysis, weights of evidence, etc.) from multi-source and multi-scale geo-datasets 

(Wang and Cheng, 2008). These advances encourage the characterization of 

geo-anomalies associated with mineralization (Bonham-Carter, 1994; Ranjbar and 

Honarmand, 2004). 

Being an efficient image processing method, principal component analysis (PCA) is 

frequently employed in earth sciences (Cheng et al., 2011). One of the primary 

objectives of using PCA is to achieve comprehensive geo-information (i.e., 

geo-anomaly) from multisource datasets. The identified geo-information can be used 

to support concerns regarding to geological decision making by geological 

interpreters. In order to enhance the efficiency of PCA, several extensions of PCA 

were proposed by former researches (e.g., robust PCA, weighted PCA, kernel PCA, 

etc.) (Jolliffe, 2002; Zhao et al., 2007). In Cheng (2006), three extended PCA 

algorithms consisting of spatially weighted PCA (SWPCA) and high-order PCA based 
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on correlation coefficient matrix, and spatial autocorrelation and cross-correlation 

matrix-based PCA were proposed to enhance interpretation of objective 

geo-information. Many inspirational applications of SWPCA have been published in 

past decade. Wang and Cheng (2008) used buffer distances of outcropping intrusive 

rocks as the spatially weighting factor to enhance the spatial distributions of intrusions. 

In Cheng et al. (2011), SWPCA was applied to integrate felsic intros.ions related 

stream sedimentary geochemical data, and the results by using various weighting 

factors were compared. After that, spatially weighting factors associated with other 

geological issues were attempted as well (Xiao et al., 2012). Based on formerly 

recognized ore controlling factors (i.e., fault systems, felsic intrusions, and the 

Yamansu Formation) in eastern Tianshan mineral district, China, SWPCA method is 

currently applied as a hybrid geo-information integration method to delineate spatial 

distributions of Fe mineralization-associated geochemical signatures, results of which 

are compared with of ordinary PCA. An improved delineation, SWPCA involving 

more geological significances can enhance the mineral potential mapping that will 

benefit the future Fe exploration in the study area. 

8.1. SWPCA model and definition of weighting factor 

In this chapter, SWPCA is applied to stream sediment geochemical data for 

delineating geo-information associated with Fe mineralization in eastern Tianshan 

district, China. Based on mechanism of these Fe deposits recognized by former 
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researches, a general process of SWPCA modeling in this area consists of input 

variable selection and spatially weighting factor definition. 

The Fe mineralization in eastern Tianshan district is generally controlled by three 

factors as fault systems, the Yamansu volcanic strata and hydrothermal alteration 

associated with felsic intrusions. Because most of the Fe deposits are located within 

extents of the Yamansu Formation and were altered by hydrothermal fluids 

differentiated from felsic intrusions, a spatially weighting factor which intends to 

highlight objective Fe mineralization favored spaces is defined as follow: (1) since 

contact zones between the Yamansu Formation and felsic igneous intrusions are 

optimal places for the Fe mineralization, the first step is to outline intersections of 

these two geo-bodies; (2) Euclidean distances from the intersections are created to 

determine a decay function of weighting factor (i.e., the further the location away 

from the intersection, the lower the weight is assigned to the location); (3) areas out of 

the Yamansu Formation which do not possess great Fe mineralization potentials are 

spatially weighted as 0 and expelled from the calculation of correlation coefficient 

matrix. Therefore, in current SWPCA model (Fig. 8.1 ), the Euclidian buffers of the 

intersections between the Yamansu Formation and felsic intrusions, which are 

confined within the extent of the Yamansu Formation are used as the weighting factor 

(Fig. 8.2); spatial distributions of felsic igneous rocks, fault systems, the Yamansu 

Formation, and geochemical signatures of element association related to Fe 

mineralization derived in previous chapters (i.e., chapters 4, 5, 6 and 7) are assigned 
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to be the input variables. By this SWPCA model, Fe mineralization favored areas 

associated with different controlling factors can be delineated. 

As discussed in previous chapters, PC 1 scores of singularity ind!ices of geochemical 

signatures performed better in depicting spatial distributions of corresponding 

geological bodies than the ones without applying singularity index mapping technique. 

Therefore, the singularity index-based patterns (Figs. 4.4, 5.6, 6.4, and 7.4c) are 

currently applied as input variables in this SWPCA model (Fig. 8.1) to represent 

spatial distributions of fault systems, felsic intrusions, the Yamansu Formation, and 

the element association, respectively. 

8.2. Mapping of Fe mineralization by SWPCA 

Based on achieved geo-information, SWPCA is currently used to map the potentials 

of Fe mineralization in eastern Tianshan mineral district, China. The PCA and 

SWPCA results are shown in Figs. 8.3 and 8.4. As discussed above, the weighting 

factor to highlight objective Fe mineralization favored spaces is participated in 

calculation of the correlation coefficient matrix, and then differences between 

ordinary PCA and SWPCA eigenvector matrixes can be investigated to evaluate the 

improvement. Geometrically, rotation of eigenvectors of each PCi will be performed 

on corresponding SWPCi. Consequently, SWPCI will no longer possess the greatest 

variance of the entire geochemical datasets and eigenvalue of SWPCI will be less 

than of the PCI (Fig. 3.1). Variance held by other eigenvectors will increase or 
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decrease according to their rotation directions. Comparison of the relative importance 

of all PCs and SWPCs demonstrates the effect of rotation in eigenvector matrixes, 

although the variation is not changed significantly (Fig. 8.3a). Eigenvalues of both 

PC 1 and SWPC 1 are greater than 1 imply that they can be retained for further 

interpretation. 

All input variables are positively loaded on PCl and SWPCl implies that they both 

are suitable to describe combining effect of the controlling factors on the Fe 

mineralization in the study area (Fig. 8.3b). The loading of the Yamansu Formation is 

increased in SWPCl that well demonstrate the effect of the weighting factor to 

highlight geo-information of Fe mineralization within the volcanic strata. Meanwhile, 

the raised contribution of fault systems on SWPCl implies their spatial restriction to 

the Yamansu volcanic strata. Because all input variables are positively loaded in both 

PCI and SWPCI, based on the properties of singularity indices (i.e., low value 

represents enrichment and high value represents depletion), locations with lower 

scores in both PCl and SWPCl represent the Fe mineralization in the Yamansu 

Formation (Fig. 8.4). Since the Fe mineralization is the main geo-information 

dominating the most variance of the input variables, with greatest eigenvalues 

information in both PCI and SWPCl indicative to Fe mineralization are shown as 

extremely similar patterns. However, the influence of the Yamansu Formation to the 

Fe mineralization is emphasized by SWPCA (Fig. 8.3b); meanwhile SWPCl with 

greater contributions of the Yamansu Formation and fault systems and less 
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contribution of felsic igneous rocks is more mechanically significant than ordinary 

PCI. At the end, locations with lower PCl (Fig. 8.4a) and SWPCl scores (Fig. 8.4b) 

coincident with the Yamansu Formation but not correspondimg with known Fe 

deposits can be inferred as target areas for exploration of volcanic sedimentary Fe 

deposits. 

8.3. Discussions 

In this chapter, previously achieved geo-information of Fe mineralization related 

controlling factors (i.e., fault systems, felsic intrusions, and the Yamansu Formation) 

and element association are integrated by both PCA and SWPCA methods. Different 

from former PCA applications by which the input variables were direct and explicit, 

the input variables used in this chapter are based on interpretation of controlling 

factors from secondary geo-information (i.e., geochemical anomalies related to each 

controlling factor). Compared with the location information of various geological 

bodies from geological maps, spatial distributions of corresponding geological bodies 

characterized by geochemical signatures are more flexible to represent spatial 

variations of geochemical properties (e.g., composition, geochemical influence on 

mineralization, etc.). 

By employing a spatially weighting factor, SWPCA provides more reliable results 

than PCA. Since derived favorable locations of mineralization by SWPCl are not 

significantly improved, it indicates that more practices should be considered in future 
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work. This case study can be introduced to other data sets and study areas where 

different weighting factors can be tested to achieve more prominent gee-information 

integration results in support of mineral exploration. Furthermore, gee-information 

integration for the mineral potential mapping by means of weighted sum may not be 

efficient in some cases due to the limitations introduced in chapter 1 (i.e., dafa quality 

and method limitation); therefore, an advanced gee-information analysis methods is 

applied to the Fe mineral exploration in next chapter. 
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Fig.8. 1 SWPCA model. In the SWPCA model, controlling factors (i.e., fault systems, the Yamansu Formation and felsic intrusions) and 
geochemical signatures of the element association derived in the previous chapters are currently used as input variables. Weighting factor 
is defined in Fig. 8.2. 
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Fig.8. 2 Spatial distribution of the spatially weighting factor. The Euclidian distance of pixels from the intersections between the 
Yamansu Formation and felsic intrusions is currently used as the weighting factor in SWPCA model. The farther the pixel away from the 
intersection, the lower weighting value is assigned to the pixel. The pixels located out of the extent of the Yamansu .Formation are 
weighting 0. Intersections between the Yamansu Formation and felsic intrusions are displayed for reference. 
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Chapter 9. Identification of spatially 

non-stationary relationships between Fe 

mineralization and its controlling fact@rs 

Ore deposits are characterized by accumulation of ore-forming elements and/or 

minerals in favorable geological environment, the formation of which is dominated by 

diverse geological issues so-called controlling factors (e.g., fault systems, magmatism, 

strata, lithologic units, regional geochemical field and petrophacies, etc.) (Guilbert 

and Park, 1986; Wang et al., 2011, 2012). Normally, metallogenesis is influenced by 

cooperation of multiple controlling factors; however, for an individual deposit, the 

mineralization might be caused by only one or few controlling factors. The 

superimposed effect of various controlling factors confines the properties of ore 

deposits, which is frequently anisotropic over an entire space (Cheng, 2007; Yuan et 

al., 1979). In eastern Tianshan mineral district, the Carboniferous volcanic rocks are 

the main hosts of Fe deposits broadly distributed within volcanic basins; nevertheless 

Fe mineralization can only take place at limited locations due to the changing 

influence of controlling factors on mineralization. Thus, relationships between Fe 

mineralization and diverse controlling factors are varying over space. The spatial 

variation is termed as spatial non-stationarity (Brunsdon et al., 1996; Fotheringham et 

al., 1996, 1998). It is currently used to describe the spatially varying and 
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heterogeneous relationships existed among the Fe mineralization and its controlling 

factors. The spatially non-stationary relationships may considerably influence the 

prediction and evaluation for Fe mineral resources. Therefore, depiction of the spatial 

non-stationarity of the relationships between Fe mineralization and its controlling 

factors is necessary for enhancing the efficiency of Fe exploration at different 

locations. 

Regression analysis is a popular method to discern relationships between a single 

dependent variable and one or more independent variables (Fotheringham et al., 1998; 

Ryan, 2009). By modeling the spatial relationships, regression analysis allows to 

predict occurrences of events (e.g., ore deposits) and to investigate the explanatory 

factors (e.g., igneous rocks, strata, geochemical background, etc.) (Fotheringham and 

Brunsdon, 1999). Based on scales of observation, regression analysis involves global 

and local regressions. Relationships between variables can be examined accordingly 

by global and local statistics (Fotheringham et al., 2002). A global model (e.g., 

ordinary least square, OLS) calibrates a dependent geo-variable with linear 

combination of a series of independent geo-variables, the algorithm of which is 

readily available and widely employed in spatial analysis of geochemical data 

(Rollinson, 1993). Relationships between each pair of geo-variables for the entire 

study area can be estimated and described by a constant regression coefficient. In 

other words, one regression model characterizes all situations across the space. 

However, it may not be able to correctly depict the relationships between variables in 
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reality, especially when the relationships exhibit spatial non-stationarity 

(Fotheringham et al., 2002). 

Geographically weighted regression (GWR) allows the relationships among 

geo-variables to be estimated locally by using a spatially weighted least square 

regression to a small number of samples fallen in a given area (Fotheringham et al., 

2002). In comparison with OLS model, GWR can describe more localized and 

detailed variations in relationships rather than a general trend by global models (de 

Smith et al., 2007). Therefore, GWR can be seen as disaggregation of OLS model. By 

their natures, global regression models investigate similarity of relationships between 

variables in space; whereas, local regression models concern differences of the 

relationships at different locations (Fotheringham et al., 2002). 

Former practices of GWR mainly concerned to social science, like relationship 

between car ownership and household incomes (Brunsdon et al., 1996), relationship 

between spatial distribution of long-term illness and unemployment (Fotheringham et 

al., 1998; Brunsdon et al., 1998), and relationship between school performance and 

local education environment (Fotheringham et al., 2001). After these applications, 

GWR has been gradually introduced to natural science. Paez et al. (2002) used GWR 

to examine relationship between heat island and land use. Su.et al. (2012) used GWR 

to analyze relationship between agricultural landscape patterns and urbanization. Tu 

and Xia (2008) applied GWR to estimate relationship between land use and water 
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quality. Considering the spatial non-stationary property exists universally in 

geosciences, it might be a meaningful attempt to characterize interactions or 

relationships of mineralization associated geological issues by GWR in spatial 

scenario. 

In general, the formation of volcanic sedimentary Fe deposits in eastern Tianshan 

mineral district is genetically and spatially controlled by three geological processes 

consisting of fault activities started from Ordovician, the volcanic eruption during the 

Early Carboniferous and hydrothermal alteration of ore bodies accompanied with the 

emplacement of felsic igneous rocks in the Late Carboniferous (Ding, 1990; Lu et al., 

1995). In previous chapters (i.e., chapters 4, 5, 6, and 7), combination of singularity 

index mapping technique and PCA has been employed to characterize Fe 

mineralization associated tectono-magnetism in eastern Tianshan mineral district (i.e., 

fault activities, the emplacement of felsic igneous rocks, and the formation of 

Yamansu volcanic strata). In this chapter, GWR is utilized to inspect the spatially 

non-stationary relationships between Fe mineralization and these geological activities 

or processes. 

9.1. Regression analysis 

9.1.1. OLS model 

To enhance knowledge of spatial non-stationary relationships between Fe 
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mineralization and tectono-magmatism in eastern Tianshan mineral district, China, 

regression analysis methods including OLS and GWR are employed to evaluate the 

global (i.e., general trend) and local relationships, respectively. In OLS model, 

geochemical anomalies related to Fe mineralization are assigned to be the dependent 

variable, while geochemical anomalies of fault systems, felsic igneous rocks and the 

Yamansu Formation are assigned to be independent variables. By OLS model, the 

regression can be: 

(9-1) 

where, the dependent variable PCassociation is the PCl scores of singularity indices of 

element association (Fig. 7.4c) at location i; independent variables PC1aul1s, PCfelsic and 

PC Yamansu represent PC 1 scores of singularity indices of geochemical signatures of 

fault systems (Fig. 4.4), felsic igneous rocks (Fig. 5.6) and the Yamansu Formation 

(Fig. 6.4), respectively. Influences of independent variables to the dependent variable 

can be described by their corresponding regression coefficients ai, a2, and a3. a0 and e; 

are the intercept and the residuals at location i of regression model. 

Before the application of regression analysis, several important characteristics of the 

four variables (Table 9 .1) are listed to facilitate interpretation of the relationships. For 

the PCl of singularity indices of element association related to Fe mineralization, 

high values represent depletion of element association, while low values well 

coincident with distribution of Fe deposits represent accumulation of element 
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association. Therefore, it currently used as indicator of Fe mineralization. In addition, 

low values of all three independent variables are associated with Fe mineralization. 

By OLS, relationships between Fe mineralization and the tectono-magmatism are 

expressed as: 

Fez03; = 0.000059- 0.528 X PC faults+ 0.782 X PC falsie+ 0.619 X PCYamansu + E; (9-2) 

Examining correlation coefficients derived from the global model, positive 

contributions of felsic intrusions and the Yamansu Formation and negative 

contribution of fault systems to the estimation of Fe accumulation suggest that the Fe 

accumulation is mainly associated with the Yamansu Formation and relatively mafic 

rock types (i.e., mafic igneous rocks and skarns) rather than fault systems. The 

estimation of the regression coefficients is somehow missing the expectation on Table 

9.1. Theoretically, relationships between Fe mineralization and these three controlling 

factors are positive; however, the estimation of OLS is based on a global trend and 

controlling effects of fault systems to Fe mineralization can only occur within limited 

areas. Consequently, the negative estimation indicates that the influence of fault 

systems on Fe accumulation in the entire study area is indirect. Furthermore, 

estimated regression coefficients are stationary that is often invalid for exploring 

relationships between gee-processes and mineralization at specific locations. 

Therefore, a localized regression model, GWR is employed in this research work to 

estimate the non-stationary relationships between variables in different areas. 
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9.1.2. GWR model 

By the GWR model, equation (9.1) can be updated by introducing spatial information: 

where, (u;, v;) indicates the location of point i in the stud~ area, and a1(u;, v;), a2(u;, v;), 

and a3(u;, v;) are the localized regression coe~cients of PCtaults, PCfelsic and PCramansu, 

respectively, at location i. By the nature of localized model, regression coefficients 

estimated by GWR can describe spatial variations of relationships between Fe 

mineralization and its controlling factors across the space (Fig. 9 .1) rather than 

constant estimation generated by OLS model. 

According to estimated spatial non-stationary relationships (Figs. 9.la, 9.lc, 9.le), 

two issues should be noticed. First of all, most of known Fe deposits are located in the 

areas with high regression coefficients of the three controlling factors. It proves that 

the Fe accumulation is positively and highly associated with corresponding 

tectono-magmatism in eastern Tianshan mineral district, China. Secondly, comparing 

spatial locations of known Fe deposits and spatial distributions of regression 

coefficients, Fe occurrences can be discovered in areas with low regression 

coefficients of individual controlling factors as well. It satisfies the fact that 

influences of these controlling factors on Fe accumulation are spatially non-stationary 

and Fe mineralization can only occur in areas with optimum interactions of these 
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controlling factors. Based on properties of singularity indices, the GWR results imply 

that the Fe accumulation is dominated by enrichment of element associations related 

to relatively mafic rocks (e.g., volcanic rocks and skarns), fault systems and the 

Yamansu Formation. Furthermore, controlling effects of these geo-processes (i.e., 

fault activities, hydrothermal alteration by felsic igneous rocks, and bimodal volcanic 

eruption of the Yamansu Formation) are varied across the space, and spatial 

distributions of these effects can be delineated, quantitatively and qualitatively. 

If interpretation of spatial non-stationary relationships are limited to the previously 

defined Fe mineralization target areas (Fig. 7.6d), more explicit explanation for the 

controlling effects of tectono-magnetism on Fe mineralization can be achieved (Figs. 

9.lb, 9.ld, and 9.lf). Negative coefficients of PCfault (Fig. 9.lb) indicate that fault 

systems may not directly influence Fe mineralization in many areas. It is in 

accordance with geological background of the study area that fault activities caused 

volcanism which led to eruption, migration and sedimentation of ore-bearing fluids in 

lower basins; meanwhile, positive coefficients of PCtault demonstrate direct 

controlling effects of fault systems on Fe mineralization (e.g., vein type Fe deposits). 

Positive coefficients of PC;gneous at most of the target areas (Fig. 9 .1 d) imply that 

relative mafic rocks around felsic intrusions (i.e., skarns) highly associated with Fe 

mineralization. It is coincident with the metallogeny of Fe deposits that most of the Fe 

ores are altered by hydrothermal fluids differentiated from granitoid intrusions. 

Extensively distributed positive and negative coefficients of PC Yamansu imply that the 
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Yamansu Formation may not dominate the spatial distribution of Fe mineralization at 

all locations. It is in accordance with the lithological properties of the Yamansu 

Formation (i.e. bimodal volcanic strata) that mafic volcanic rocks may have great 

potential in hosting Fe deposits, but the felsic volcanic rocks may not. 

9.2. Improvement of GWR to OLS 

Two commonly used diagnostic parameters to evaluate improvement of GWR to OLS 

are the coefficient of determination Ji2 value and corrected Akaike Information 

Criterion value (AICc) (Akaike, 1974, 1987). Ji2 ranging from 0 to 1 is to verify the 

correctness (i.e., goodness of fit) of a regression model, and regression with higher Ji2 

value will produce more creditable results (Ryan, 2009). AICc is to evaluate 

information distances between the modeled distribution and the true distribution, and 

regression with a smaller A!Cc value indicates better parameter estimation and 

reflectance of reality (Chalton and Fotheringham, 2009; Fotheringham et al., 2002). 

The GWR model with a much higher maximum Ji2 value than the OLS model 

indicates that the GWR results are more credible (Table 9.2). Using the Ji2 value of 

OLS model as a threshold, the binary map of Ii2 values of GWR model implies that 

GWR model severs a better performance than OLS model at most locations, 

especially the areas with known Fe deposits (Fig. 9.2). Two AICc values indicate that 

results of GWR model possess shorter information distance between parameter 

estimation and reality than the results of OLS model (Table 9.2). 
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Comparing the two models with spatial distribution of PC I scores of singularity 

indices of geochemical signatures of element association related to Fe mineralization 

(Fig. 7.4c), residuals of OLS model (Fig. 9.3a) showing obvious spatial clustering 

distribution indicate imperfect prediction of dependent variable (Fig. 9.3b); whereas 

residuals derived from GWR (Fig. 9.4a) with more random spatial distribution across 

the space indicate a better performance in predicting the dependent variable (Fig. 

9.4b). Moreover, given by PCassociationi - PCassociationi• (i.e., real value - predicted value), 

the spatial distribution of residuals of GWR model may provide some useful clues for 

Fe exploration in eastern Tianshan mineral district. Based on the values, residuals are 

sorted into two categories. First of all, PCassociationi = PCassociationi• corresponding with 

an equal estimation (i.e., residual = 0) indicates that the three independent variables 

can fully describe the Fe mineralization. It can be inferred that the Fe mineralization 

is completely dominated by the three factors discussed in this paper. Secondly, 

PCassociationi -:f:. PCassociationi• corresponds an unequal estimation (i.e., resid¢1.10). 

Specifically, PCassociationi < PCassociationi• and PCassociationi > PCassociationi• represent 

over-estimation (i.e., residual < 0) and under-estimation (i.e., residual > 0), 

respectively. It can be inferred that the Fe mineralization might be dominated by other 

geo-processes besides the three controlling factors discussed above. More local 

controlling factors (e.g., ground coverage, aeolian sand, buried depth of geological 

bodies, and measurement error of stream sediment samples) should be taken into 

consideration of Fe exploration in the unequally estimated areas. In other words, the 
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over-estimation and under-estimation reflect the decreased and increased association 

between Fe accumulation and tectono-magnetism, respectively. In addition to achieve 

the relationships between Fe mineralization and its controlling factors, further detailed 

studies focusing on interpretation of residuals may assistant to understand local 

metallogeny of Fe mineralization. 

9.3. Suggestions on Fe mineral exploration in eastern 

Tianshan mineral district 

Investigating the relationships between Fe mineralization and its controlling factors 

can benefit understandings of metallogeny of Fe deposits. The spatial non-stationarity 

existed among various geological variables (i.e., geo-processes) can be further used as 

a guide for Fe mineral exploration at different locations in the study area. In this 

dissertation, seven subareas which are sorted based on the spatial distribution of 

known Fe deposits in Fig. 7 .1 are discussed here. The subareas from the west to the 

east are (1) the Xiaorequanzi volcanic basin, (2) the Aqishan-Bai.liii1gshan subarea, (3) 

the Kanggurtag-Tuwu subarea, ( 4) the east district of the Kum tag sand ridge, ( 5) the 

Yamansu mineralization district, (6) the Shaquanzi subarea, and (7) the Jing'erquan 

subarea. 

(1) The Xiaorequanzi volcanic basin. The host rock of known Fe deposits in this 

subarea is the Carboniferous strata, especially the Xiaorequanzi Formation which is 

mainly composed of mafic-felsic volcanic rocks. In this subarea, patterns with high 

values describe high correlation between Xiaorequanzi volcanic strata and Fe 

anomalies (Fig. 9.le). The known deposits are also located around the felsic 
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intrusions, and patterns with high coefficients are presented within the extent of felsic 

intrusions (Fig. 9.lc). It implies that the felsic igneous rocks in this subarea containing 

Fe-rich materials provided not only thermodynamic conditions but also ore-forming 

materials for Fe mineralization in nearby areas. Therefore, the focus of Fe mineral 

exploration in this subarea is suggested to the Fe mineralization in the Carboniferous 

strata which are located around felsic intrusions. 

(2) The Aqishan-Bailingshan subarea. Most of the known Fe deposits in this subarea 

are mainly hosted by the Yamansu Formation which is validated by the high-middle 

coefficients of PCl(ramansu) in the Yamansu Formation (Fig. 9.le). The high 

coefficients of PCl(FeLsic) in some of the felsic igneous rocks (Fig. 9.lc) illustrate Fe 

enriches in felsic intrusions as well. It corresponds to the known deposits located 

within the felsic intrusions and near the boundary between the intrusions and the 

Yamansu Formation. Meanwhile, the known deposits are mainly scattered along the 

fault systems, where high coefficients of fault systems are shown as well. 

Consequently, interior and exterior contact zones of the felsic intrusions and the 

Yamansu Formation, especially the places are highly fractured are defined as targets 

of Fe mineral exploration in this subarea. 

(3) The Kanggurtag-Tuwu subarea. Fig. 7.4c shows that the known deposits in this 

subarea are in accordance with the geochemical anomalies of element association and 

are strictly limited within the extent of the Carboniferous strata. High-middle 

coefficients within the Carboniferous strata in Fig. 9 .1 e indicate the enrichment of 

element association related to Fe mineralization. Therefore the mineral exploration in 

this subarea may focus on the Yamansu Formation under the guidance of spatial 
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distribution of geochemical anomalies of element association related to Fe 

mineralization (Fig. 7.4c ). 

(4) The east district of the Kumtag sand ridge. The known deposits are mainly hosted 

by the Carboniferous strata. The Formation of Fe deposits may relate to the 

intermediate and mafic volcanism in the Carboniferous period, since high coefficients 

are distributed around the known deposits (Fig. 9 .1 e ). In addition, middle to high 

coefficient of fault systems is displayed in this area as well. All of these facts are in 

accordance with close spatial relationship between known Fe deposits and fault 

systems. The hydrothermal influence of felsic igneous rocks on Fe mineralization is 

described by middle coefficients of felsic igneous rocks. Mineral exploration in this 

area might be based on consideration of all the three controlling factors. 

(5) The Yamansu mineralization district. Most of the known deposits in this district 

are located in the Yamansu volcanic rocks and/or around the felsic intrusions, which 

are also occupied by distinct geochemical anomalies of element association related to 

Fe mineralization (Fig. 7.4c). As shown in Fig. 9.le, the middle-high coefficients 

within the extent of the Yamansu Formation indicate that the Fe ore bodies were 

formed during the mafic extrusion (the Yamansu Formation). These ore bodies were 

further hydrothermally enriched by the intrusion of felsic magma, since middle-high 

values are shown in Yamansu volcanic basin (Fig. 9.lc). The depiction of Fe 

geochemical anomalies around the exterior contact zones between the felsic rocks and 

the Yamansu Formation may be efficient to Fe mineral exploration in this subarea. 

(6) The Shaquanzi subarea. Noticeable Fe geochemical anomalies are in accordance 
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with known Fe deposits in this area (Fig. 7.4c ). The high coefficients of both felsic 

igneous rocks (Fig. 9.lc) and the Yamansu Formation (Fig. 9.le) imply that the 

intermediate-mafic extrusion in the Yamansu Formation is the main controlling factor 

to the formation of Fe ores which were further hydrothermally altered by felsic 

igneous rocks. 

(7) The Jing'erquan subarea. Only a few of deposits have been discovered in this 

aeolian sand covered area. In Fig. 9.le, high coefficients within and around the 

Yamansu Formation implies enrichment of Fe in the volcanic strata. Fig. 5.6 shows 

great potential of felsic intrusions which might be seriously covered by the aeolian 

sand. However, the middle-low coefficients around the known deposits in this subarea 

may imply hydrothermal transformation conducted by felsic intrusions (Fig. 9. I c ). It 

can be inferred that there might still have great potentials of Fe mineralization in the 

Yamansu Formation, especially the layers covered by the desert. 

9 .4. Discussions 

From a statistical perspective, relationships between variables estimated by a 

traditional global regression model are constant over space. In other words, global 

model can only present integral trends across the space. PCs can be seen as a series of 

global regressions, and constant contributions of geochemical variables in PCs are the 

regression coefficients. However, the straightforward linear regression, either PCA or 

OLS may have limitations to appropriately ch~racterize the cause-and-effect 

relationships between geological events at different locations if the relationships are 

152 



spatially non-stationary (e.g., mineralization and its associated issues). As a 

complement to global regression models, GWR model is applied in current research 

to study the mechanism of Fe mineralization. The parameter estimates can depict 

more realistic spatial relationships between Fe mineralization and its controlling 

factors at different locations with higher confidence. 

Compared with global regression models (e.g., OLS and PCA), GWR shows its 

advantages to characterize localized spatial relationships between geological issues, 

and provides an alternative way to demonstrate variations of the relationships over a 

geographical space. GWR is suitable approach to analyze non-linear geo-processes 

(e.g., analysis of ore-genesis theory, prediction of floods, etc.) whose causative factors 

are anisotropic. Current research applied both global and local regression models to 

identify the spatial relationships between marine volcanic-sedimentary Fe 

mineralization and its controlling factors. Suggestions to support future mineral 

exploration based on GWR analysis at seven subareas are proposed. 

In this chapter, the application of GWR to investigate non-stationary relationships 

between mineralization and its associated geo-processes is a new trial of this method 

in geological field. According to the discussion above, the result is reasonable and 

meaningful in support of the Fe mineral exploration in eastern Tianshan region, China. 

However, due to the resolution limit of currently used geological and stream sediment 

geochemical datasets, only general and regional controlling factors of the Fe 

mineralization (i.e., the Yamansu Formation, intermediate-mafic extrusions and felsic 
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intrusions) are chosen. For individual deposit, other factors (e.g., oxidation, 

denudation, tectonism and geochemical/geophysical anomalies) might specifically 

contribute to the formation of Fe ores. Therefore, in order to further facilitate the 

analysis, more detailed controlling factors identified from other sources of 

geo-datasets will be considered in our future researches. 
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Table 9. 1 Depiction of four geo-variables employed in regression analysis. 
- -

Dependent variable Independent variables 

PC 1 of element 
PC 1 of fault systems 

PCl of felsic igneous 
association rocks PCl of the Yamansu 

(Fig. 4.4) 
Formation (Fig. 6.4) 

(Fig. 7.4c) (Fig. 5.6) 

Low value 
Accumulation of Fe Accumulation of element Accumulation of mafic Accumulation of element 

concentration association element association association 

High value 
Depletion of Fe Depletion of element Accumulation of felsic Depletion of element 
concentration association element association association 

Value range 
associated with Fe Low Low Low Low 

mineralization 
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Table 9. 2 Diagnostic parameters calculated by OLS and GWR models. 

R2 

AI Cc 

6 • 
~~ I 

Coefficients of fault systems 

.. High:l.327 

11111 Low :.-2960 

OLS 

0.576 

33132.188 

.93°00' 

• Fe deposits 

-- Faults 

a 

GWR 

0.9433 (Max= 0.980) 

17642.501 

~ 

N 

A 
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Fig.9. 1 Regression coefficients estimated by GWR model. a, c, and e represent spatial distributions of non-stationary relationships 
between accumulation of element association and fault systems, felsic igneous rocks and the Yamansu Formation, respectively; b, d, and 
f represent the relationships limited to the target areas of Fe mineralization. 
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Fig.9. 2 R? values estimated by GWR model. a: Non-stationary distribution of If value calculated by GWR model; b: A binary map of R? 
distribution defined by using the If value of OLS model (i.e., R? = 0.576) as the threshold. 
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Fig.9. 3 Several other results of OLS. a: Predicted spatial distribution of PCassociation i by OLS model; b: The spatial distribution of 
residuals by OLS model. 
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Fig.9. 4 Several other results of GWR. a: Predicted spatial distribution of singularity indices of Fe203 concentration by GWR model; b: 
The spatial distribution of residuals by GWR model. 
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Chapter 10. Summary and conclusions 

The study area located in eastern Tianshan mineral district, China is a Gobi desert 

area. Impeded by the sandy coverage, geo-anomalies associated with the marine 

volcanic sedimentary Fe mineralization and its dominating geo-processes are often 

weak or even missing and traditional mineral exploration approaches may not be 

efficient in detecting them. Therefore, advanced techniques which are more efficient 

in separating weak geo-anomalies from background are necessary to be applied to 

assist mineral exploration in this region. Moreover, Fe deposits and their associated 

geological bodies may be buried at depth, recognition of which may rely on more 

indirect geo-information with consideration of relationships between Fe 

mineralization and its controlling factors. By their singular natures, relationships 

between Fe mineralization and controlling geo-processes present spatial 

non-stationarity which is commonly existed in various types of deposits. Routine 

statistics (e.g., ordinary least square) may not be efficient in estimating the 

relationships properly, confined by which knowledge regarding to the spatially 

non-stationary relationships were not sufficiently concerned in former mineral 

exploration. To improve the efficiency of Fe mineral exploration in eastern Tianshan 

mineral district statistics which are able to characterize complex spatial heterogeneity 

are necessary to enhance the prediction of mineral potentials. 
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In order to solve the problems encountered by previous mineral exploration 

researches, objectives to overcome each of the difficulties can be addressed in this 

dissertation. First of all, current study intends to achieve better knowledge regarding 

to the controlling factors of volcanic sedimentary Fe mineralization in eastern 

Tianshan mineral district. Instead of using location information provided by 

geological maps which may be unreliable in some desert covered areas, geochemical 

signatures of elements association related to controlling factors of Fe mineralization 

(i.e., fault systems, felsic igneous rocks, and the Yamansu Formation) are 

characterized by various GIS-based spatial analysis methods. Specifically, the 

singularity index mapping technique inspecting geo-information in both spatial and 

frequency domain is attempted to separate geochemical anomalies from background, 

especially in the desert covered areas. After that, Principal component analysis is 

further used in integrating the geochemical anomalies to identify geo-information of 

Fe mineralization associated controlling factors, results of which (i.e., element 

associations) can indicate spatial distributions of these mineralization associated 

geological bodies or geological activities. Second of all, current study intends to 

provide a more reliable and improved geo-information integration for Fe mineral 

potential mapping. In order to delineate mineral potential maps for following 

sequences of mineral exploration, SWPCA with more geological guidance is tried to 

integrate these identified controlling factors, interactions of which to Fe 

mineralization can then be derived. Thirdly, current study intends to provide a new 
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geo-information to enhance the knowledge of spatially non-stationary relationships 

between Fe mineralization and its controlling factors. As the first time been 

introduced to mineral exploration, a GWR method is applied to investigate spatial 

non-stationary relationships between Fe mineralization and its controlling factors that 

provides important suggestions regarding to the strategy making of Fe mineral 

exploration in eastern Tianshan mineral district. 

Through all studies in this dissertation, some valuable experiences are received. First 

of all, in the aspect of geo-information extraction, the singularity index mapping 

technique is successfully used to identify geochemical anomalies from both weak and 

strong backgrounds in the study area, especially in the desert covered area; therefore, 

the interference of overburden can be removed. It is the first time that this method has 

been applied in identify spatial distributions of geological bodies other than 

mineralization in an overburden area. This method is suggested to be attempted in 

study areas with other types of coverage (e.g., grassland, forest, frozen soil, etc.). 

Identified geochemical signatures by singularity index mapping technique are further 

integrated by PCA. The whole process used to be employed to delineate geochemical 

anomalies related to mineralization in previous studies is currently extended to 

characterize geochemical anomalies produced by other geological bodies or processes 

(i.e., faults, magmatic rocks and strata). Furthermore, rather than the location 

information of controlling factors derived from geological maps, identified 

geo-information by the whole process is more reliable to describe spatial variations in 
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geochemical signatures caused by the presence of different geological bodies. Second 

of all, a hybrid geo-information integration method, spatially weighted principal 

component analysis (SWPCA) demonstrates a technically improved application of 

principal component analysis (PCA) for mapping mineral potentials, results of which 

with emphases on geological significance are more informative to following 

sequences of Fe mineral exploration. The SWPCA method is firstly applied in 

research in eastern Tianshan mineral district and the weighting factor proposed in this 

dissertation is strictly following the geological model. Abundant experiments of 

SWPCA with different weighting factors are suggested to be conducted in other study 

areas to derive geo-information of interested geological issues. Thirdly, spatially 

non-stationary relationships between the Fe mineralization and controlling factors are 

investigated. As a broadly existed characteristic of geological issues, spatially varied 

interactions of various geological activities did not attract many concerns in previous 

geological studies. Using the applications in social science for the reference, 

geographically weighted regression (GWR) which is firstly introduced to assist 

mineral exploration provides inspiring estimations on spatial relationships between 

geo-processes. The case study demonstrated in this dissertation is an innovational 

application of GIS-based spatial analysis, which extends the application of GWR to 

geological issues. GIS-based mineral exploration proposed in this dissertation serves 

not only producing maps of mineral potentials but also providing strategies for 

following sequences of mineral exploration. Therefore, the entire GIS-based data 
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processing procedure demonstrated in this dissertation can be established as a 

valuable mineral exploration model dealing with the geological issues not only in the 

study area but also in other mineral district with various types of coverage. 

In this dissertation, there are still some insufficiencies. In the aspect of datasets, only 

geochemical data are employed, whereas gravity, aeromagnetic and remote sensing 

data efficient in identifying both exposed and covered geological bodies are not 

involved. Consequently, based on the exploration model proposed in this dissertation, 

more exploratory gee-datasets are necessary to be considered for a comprehensive 

investigation of the Fe mineralization in this area. In the aspect of delineation to the 

mineral potentials, the SWPCA result does not show a significant improvement in 

comparison with the PCA result; however, it still encourages the further attempts to 

achieve more noticeable improvements with informative geological guidance by 

determining new spatially weighting factors or input variables. Moreover, this 

dissertation demonstrates a few methods (e.g., Student's t-test, and R-squared value, 

and AIC value) of uncertainty assessment. In this research, uncertainty may be 

resulted from but not limited to (1) imprecision in the data collection and 

measurement; (2) misuse of element assemblage in characterizatioll of different 

geological bodies; (3) misuse of window sizes for the calculation of singularity 

indices in recognition of geological bodies; and (4) imprecision in construction of 

regression model. Errors caused by the first situation will be intrinsically delivered to 

the following data processing approaches, which may only be solved by employing 
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data sets with higher precision. The information integration results and regression 

results are estimated by the Student's t-test and If and AIC values, respectively. 

However, the uncertainty caused by the latter three situations can be probably reduced 

by enhancing the knowledge of geological model. The future work could be suggested 

to focus on systematic uncertainty assessment and improving the statistical results of 

the entire exploration model. 

Field work regarding to this research had been carried out in summers 2010 and 2011. 

During the field trips typical deposits such as the Yamansu, Hongyuntan, Bailingshan, 

Tieling deposits had been visited in summer 2010. Data processing results (i.e., 

identification offelsic igneous rocks in tongue-shape rock) had been validated in July, 

2011. However, recognition results of other geological bodies, gee-information 

integration results, GWR results, and even the target areas delineated in current 

research should be further validated in future work. 
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