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Abstract 

Biological rhythms regulate numerous functional processes within organisms, 

including the expression of peroxisome proliferator-activated receptor-y coactivator 1-a 

(PGC-la), a potent regulator of mitochondrial biogenesis. Homozygous Clock mutant 

mice are characterized by arrhythmic and suppressed expression of circadian genes 

within skeletal muscle, including PGC-1 a. The present study sought to investigate 

mitochondrial physiology within these mutant animals, and to assess their adaptability to 

a chronic voluntary endurance training protocol. Our results indicate that Clock mutant 

mice exhibit decreased mitochondrial content, and this contributes to exercise intolerance 

in these mutant animals. Interestingly, endurance training ameliorates the decrement in 

mitochondrial content, as well as restores exercise capacity to levels evident in the 

wildtype mice. Thus, a functional CLOCK protein is necessary for optimal mitochondrial 

physiology, however Clock mutant mice retain the ability to adapt to chronic exercise. 
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1.0 CIRCADIAN RHYTHM 

1.1. Overview 

Circadian rhythm refers to the periodic fluctuation of various biochemical, 

physiological and behavioural parameters within organisms. The term circadian comes 

from the Latin circa, "around," and diem, "day," meaning "about a day." Nearly all 

organisms, ranging from single-cell bacteria to complex mammals, exhibit internal 

rhythmicity of a wide array of physiological processes over a 24-hour period ( 60; 68; 

122). Body temperature (35; 90), muscle strength (99), hormone secretion (12; 55), 

oxygen uptake (110), gene expression (60; 68; 122), metabolic rate (107), blood pressure 

(28; 67) and heart rate (90) are examples of physiological and biochemical variables that 

have been found to exhibit diurnal, or "daily," oscillations. 

Circadian rhythms are typically discussed in terms of the period and phase of a 

particular oscillator. The period of a rhythm refers to the length of one complete circadian 

cycle, while the phase refers to the timing of a particular point within the rhythm in 

relation to another oscillator (60). For example, the peak of cyclic mRNA expression for 

a particular gene may be expressed in relation to the peak of melatonin secretion by the 

pineal gland. 

The molecular mechanism that generates circadian rhythms involves a highly

conserved regulatory network of transcriptional-translational feedback loops which have 

been observed in a multitude of mammalian tissues and cell types. These complex 

molecular pathways are synchronized to the 24-hour light-dark cycle of the earth (60; 
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122), and likely evolved due to the significant survival advantage provided by the ability 

to anticipate daily environmental changes (60; 80; 122). 

1.2. Central and Peripheral Clocks 

Endogenous molecular clocks have been found to exist in several tissues, 

including liver (6; 40), heart (66; 87), brain (40), adipose tissue (123) and skeletal muscle 

(68). There is a central, or "master," circadian clock located within the suprachiasmatic 

nucleus (SCN) of the hypothalamus that is responsible for the synchronization of clocks 

in peripheral tissues (65; 93). The importance of the SCN in the maintenance of systemic 

behavioural rhythmicity has been made quite apparent in studies that involve the surgical 

ablation of this region of the hypothalamus. Diurnal locomotor activity and food 

consumption have been found to be arrhythmic in animals with SCN lesions (21; 61; 

102). In addition, transplantation of cells from the SCN of intact animals has restored the 

circadian rhythmicity of locomotor activity in previously-arrythmic animals with SCN 

lesions (21; 61 ). The mechanism of the synchronization of peripheral clocks by the SCN 

has not been fully established, however it is believed to rely on the coordinated release of 

various neural and humoral factors (65; 93) (Fig. 1 ). 

1.3. Zeitgebers and Entrainment 

The ability to synchronize the endogenous circadian clock with environmental 

time cues provides organisms with a unique selective advantage. An animal is considered 

entrained when its endogenous rhythm is congruent with a fixed environmental cue, such 
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as light (1 O; 60). An entrained animal will exhibit an endogenous circadian period length 

that is equal to that of the environmental cue, which is approximately 24 hours. Circadian 

research in mammals has been predominantly conducted on rodents. Rodents are 

nocturnal, and therefore exhibit increased metabolic activity, locomotor activity and food 

consumption during the active dark phase (107; 110). 

Environmental stimuli that are utilized for entrainment are referred to as 

zeitgebers, which is derived from the Latin zeit, "time," and geber, "giver." Zeitgebers 

are essential to ensure that the mammalian molecular clock remains synchronized with 

the 24-hour light-dark cycle of the earth. The primary circadian zeitgeber is sunlight, 

while secondary zeitgebers include temperature and nutrient availability (93; 122). 

Synchronization of the central circadian clock in the SCN with the light-dark cycle of the 

earth occurs through the retinohypothalamic tract (RHT), which directly connects the 

photosensitive retinal ganglion cells of the mammalian eye to the SCN ( 49; 50; 60). 

Circadian rhythmicity has been shown to persist even in the absence of external signals. 

The period that is exhibited under these conditions is referred to as the endogenous 

circadian period (32; 110; 112). The endogenous period is not exactly 24 hours, however, 

and exhibits slight variations depending on the species (23; 38; 110). This disparity 

emphasizes the importance of zeitgebers, such as light, in maintaining the synchronicity 

of the mammalian clock with the surrounding environment. 

The relationship between central and peripheral circadian clocks has been an 

important subject of recent research. Contrary to the initial paradigm, it appears that the 

molecular clock in peripheral tissues can be phase-dissociated from the central molecular 
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clock in the SCN by restrictive feeding ( 19; 103) and by scheduled bouts of physical 

activity (47; 117; 119; 121). Studies have ascertained that the presentation of food during 

the light cycle, which is out-of-phase relative to the innate onset of food consumption that 

occurs during the dark cycle, can alter the phase of cyclic gene expression by 10 - 12 

hours in peripheral tissues, but not in the SCN (19; 103). In addition to food as a non

photic zeitgeber, scheduled bouts of voluntary or involuntary physical activity can also 

synchronize biological rhythms in animals. It has been observed that scheduled exercise 

bouts result in reduced time required for re-entrainment to a new light-dark cycle (119; 

121 ). Furthermore, scheduled exercise bouts during the inactive light phase cause 

accelerated phase-shifts of gene expression in skeletal muscle (117) (Fig. 1 ). 

1.4. Evolutionary Adaptive Value 

Biological rhythms evolved due to their adaptive value, as they allow for the 

anticipation and subsequent evasion of environmental hazards, therefore conferring a 

significant selective advantage (60; 122). Specifically, a study by Paranjpe and Sharma 

(2005) employed surgical ablation of the SCN as a model of disrupting the circadian 

clock in squirrels. Following release into the wilderness, animals with SCN lesions 

exhibited a mortality rate that was two-fold greater in comparison with the control group. 

The increased rate of mortality in the absence of a properly-functioning circadian clock 

emphasizes the importance of biological timekeeping in the survival of org,anisms. 
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Figure 1. Central and peripheral circadian clocks. Biological timekeeping mechanisms 
persist in all bodily tissues. The central circadian clock is located in the SCN within the 
hypothalamus. Light, the primary zeitgeber that is used to synchronize the central 
molecular clock, is absorbed by the eye and conveyed by the RHT to the hypothalamus, 
where it is interpreted by the SCN. This information is then disseminated to circadian 
clocks within peripheral tissues. Within peripheral tissues, nutrient availability and 
contractile activity are additional zeitgebers that synchronize the molecular clock, and 
have been shown to be more significant than light in terms of altering circadian 
parameters. 
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1.6. The Core Molecular Clock 

The core molecular mechanism that governs the periodic oscillation of these 

processes involves a highly-conserved regulatory network of transcriptional-translational 

feedback loops. Within this network there are two sub-pathways, the positive and 

negative feedback components, which collectively govern rhythmic gene expression. The 

positive component of the molecular clock is primarily comprised of two proteins, 

circadian locomotor output cycles kaput (CLOCK) and brain and muscle aryl 

hydrocarbon receptor nuclear translocator (ARNT)-like protein 1 (BMALl), which 

belong to the basic helix-loop-helix (bHLH) Per-ARNT-Sim (PAS) family of 

transcription factors ( 60; 122). The functionality of these types of transcription factors is 

dependent upon their bHLH-PAS domain-mediated dimerization (51; 81). CLOCK and 

BMAL 1, therefore, form a heterodimer and subsequently translocate into the nucleus. 

The rate-limiting step in this heterodimerization is the cytoplasmic abundance of BMALl 

(89). The CLOCK:BMAL 1 heterodimer binds to E-box sequences (CACGTG) within the 

promoter regions of CLOCK-controlled genes (CCGs) and enhances their transcription 

( 60; 122) (Fig. 2). 

An important subset of CCGs is those that encode for the negative component of 

the molecular clock, which is comprised of Period (Perl, Per2) and Cryptochrome (Cryl, 

Cry2, Cry3). The binding of CLOCK and BMALl to E-box regulatory sequences 

enhances the transcription of Per and Cry. CLOCK:BMALl-mediated expression of Per 

and Cry eventually results in the accumulation of these protein products within the 

cytoplasm. Per and Cry proteins form a multimeric protein aggregate with casein kinase 
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lE (CKlE) and subsequently translocate into the nucleus. The rate-limiting step in the 

formation of this complex is the cytoplasmic availability of Perl (113). This multimeric 

protein repressor complex comprises the negative component of the molecular clock. The 

repressor complex binds to and inhibits the CLOCK:BMAL 1 transcription-activation 

complex (60; 122). Per appears to facilitate nuclear entry of the repressor complex (59), 

while Cry attenuates the histone acetyltransferase capability of the CLOCK:BMALl 

heterodimer (26). Due to the inhibition Per and Cry impose upon their own transcription, 

the amalgamation of both the positive and negative components of the molecular clock 

(CLOCK:BMALl-Cry:Per) is collectively referred to as the central autoregulatory 

feedback loop (60; 122) (Fig. 2). 

1.5.1. Histone Modifications and Chromatin Remodelling 

Acetylation and deacetylation of histones are important enzymatic reactions that 

regulate diurnal gene expression. Acetylation of histones alters chromatin to expose 

promoter regions to the transcriptional machinery, and is therefore associated with 

activation of gene expression. Conversely, histone deacetylation leads to chromatin 

condensation and is correlated with gene repression (26; 57). Chromatin-remodelling 

events are essential in the temporal regulation of gene expression (33; 39; 76). 

1.5.1.1. CLOCK 

It has been shown by Etchegaray et al. (2003) that the histone acetyltransferase 

(HAT) ElA binding protein p300 (p300) diurnally colocalizes with CLOCK in the 

nucleus, suggestive of the notion that p300 is likely an additional constituent of the 

transcription-activation complex. It has also been observed that p300 is a target for Cry-
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mediated inhibition (26), further implicating p300 in the rhythmic expression of CCGs. 

Similarly, in addition to its role as a transcription factor, CLOCK also possesses intrinsic 

histone acetyltransferase activity (22; 3 7). CLOCK rhythmically acetylates BMAL 1 at a 

specific residue that allows Cry of the repressor complex to bind to and inhibit the 

transcription-activation complex (39) (Fig. 2). 

1.5.1.2. SirTl 

The histone deacetylase (HDAC) sirtuin 1 (SirTl) has been associated with 

rhythmic gene silencing. SirtTl requires oxidized nicotinamide adenine dinucleotide 

(NAD+) as an obligatory cosubstrate in order to function properly (17; 69). Cellular levels 

of NAD+, as well as the rate-limiting enzyme that is involved in its synthesis, 

nicotinamide phosphoribosyltransferase (NAMPT), have both been shown to exhibit 

diurnal expression (69; 77; 78). Despite its role as a histone deacetylase, SirtTl does not 

possess intrinsic DNA-binding capabilities. Recent research has discovered that histone 

deacetylation by SirTl is facilitated through its binding with the CLOCK:BMALl 

heterodimer within the promoter region of CCGs (77). Further contributing to the 

temporal regulation of gene expression, SirTl also deacetylates Per2 within the repressor 

complex, leading to its degradation (11 ). Lastly, rhythmic SirTl deacetylase activity has 

been reported to be significantly out of phase in relation to oscillating histone acetylation 

(77). The antiphasic oscillatory relationship of HAT and HDAC activity implies that 

chromatin-remodelling is an essential mechanism in the circadian regulation of gene 

expression (Fig. 2). 
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1.5.2. Phosphorylation of Clock Proteins 

Rhythmic phosphorylation of molecular clock components is integral in 

maintaining the appropriate length of the circadian period. Phosphorylation modulates the 

period of biological rhythms by controlling the initiation, duration and termination of 

both the positive and negative components of the molecular clock (36; 45; 59; 89; 100; 

113). Two important serine-threonine protein kinases are involved in regulating the 

temporal activity of components of the molecular clock: 1) glycogen synthase kinase-3p 

(GSK-3p) and 2) CKls. 

1.5.2.1. GSK-3p 

GSK-3P requires phosphorylation by an upstream kinase in order to be 

functionally active. GSK-3P activity has been found to exhibit circadian rhythmicity in 

both the SCN as well as certain peripheral tissues, with GSK-3P reaching its peak level of 

activity during the early stages of the light cycle (60). Dependant upon the time of day, 

GSK-3P will phosphorylate either positive (89; 100) or negative (36; 45) components of 

the molecular clock, exerting a wide array of effects on its downstream targets. 

Early in the light phase, GSK-3P phosphorylates members of the positive 

component of the molecular clock. GSK-3P interacts with BMALl, targeting it for 

ubiquitination and subsequent degradation (89). Furthermore, it has been observed by 

Spengler et al. (2009) that BMAL 1 phosphorylates CLOCK, allowing it to be further 

activated by GSK-3P and subsequently degraded. GSK-3P has also been observed to 

phosphorylate and stabilize Rev-erba, a transcriptional co-repressor, enabling it to inhibit 

BMALl transcription (120). GSK-3P stabilizes CLOCK and BMALl abundance at a 



11 

time when there is elevated BMALl protein content in the cytoplasm (60; 68), therefore 

imposing a necessary time-delay between the accumulation of cytoplasmic BMAL 1 and 

the activity of the CLOCK:BMAL 1 transcription-activation complex (Fig. 2). 

Early in the dark phase, GSK-3~ phosphorylates members of the negative 

component of the molecular clock. It has been observed by Iitaka et al. (2005) that GSK-

3 ~ interacts with Per2 within the repressor complex, enhancing its ability to enter the 

nucleus and inhibit the transcription of CCGs. Conversely, GSK-3~ phosphorylates Cry2 

within the repressor complex and targets it for subsequent degradation (36). In addition to 

temporally regulating the transcription-activation complex, GSK-3~ can also delay or 

advance the molecular clock by altering the time of onset of transcriptional repression, 

thereby modulating the length of the circadian period (Fig. 2). 

1.5.2.2. CKlE 

CKle abundance at the protein level has not been found to exhibit circadian 

oscillations (59). CKle primarily interacts with components of the repressor complex (5; 

98), and dependant upon the time of day, CKle will exert a variety of effects on its 

downstream targets within the repressor complex (59; 113). 

Late in the light phase, CKle phosphorylates Perl, inducing a conformational 

change that encumbers its nuclear localization signal. This hindrance prevents nuclear 

translocation of the repressor complex, and thereby indirectly allows for 

CLOCK:BMALl-mediated transcription of CCGs (113). CKle also interacts with Per3, 

signalling it for degradation (5; 98). Late in the dark phase, CKle hyper-phosphorylates 

proteins within the repressor complex, targeting the entire complex for degradation and 
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indirectly allowing the transcription-activation complex to begin to induce the expression 

of CCGs (59), thus assisting in the initiation of a new circadian cycle. CKlB modulates 

the initiation, duration and termination of the repressor complex, thereby wielding an 

important level of temporal influence on the circadian period (Fig. 2). 

1.6. The Molecular Clock in Skeletal Muscle 

Endogenous biological rhythms have been found to persist in a multitude of 

peripheral tissues, including skeletal muscle. Gene expression profiling in skeletal muscle 

by McCarthy et al. (2007) concluded that 215 genes exhibited a circadian pattern of 

expression. These genes encompass a broad range of functions within skeletal muscle, 

including transcription, intracellular signalling and metabolism. Myogenic determination 

factor 1 (MyoD), a protein that is important for skeletal muscle cell development, was 

one of the genes that was reported to exhibit a diurnal expression pattern ( 68). 

The inherent relationship between the SCN and molecular clocks in peripheral 

tissues has not been fully determined, although it has been postulated to involve the 

modulated release of neural and humoral factors ( 65; 93 ). Metabolic sensors are 

responsive to extracellular physiological stimuli, such as contractile activity (94; 106), 

nutrient availability (35) and energy homeostasis (16; 17; 69). Metabolic sensors impose 

post-translational modifications on the molecular clock components, thereby modulating 

the length and phase of the circadian period. Three important circadian metabolic sensors 

that interact with the molecular clock are: 1) adenine monophosphate (AMP)-activated 

protein kinase (AMPK), 2) peroxisome proliferator-activated receptor-y coactivator-la 
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(PGC-la) and 3) SirTl. These metabolic sensors exhibit inherent circadian rhythmicity in 

their activity levels, suggesting a mutually-dependent relationship between circadian 

rhythm and cellular metabolism (60). 

1.6.1. MyoD 

MyoD is a skeletal muscle-specific bHLH-PAS transcription factor that is 

activated during the early stages of muscle tissue formation, a process that is known as 

myogenesis. MyoD influences undifferentiated mesodermal cells to commit to the muscle 

lineage. MyoD coordinates muscle cell differentiation by regulating the expression of 

various structural, functional and metabolic skeletal muscle-specific genes during 

myogenesis (13; 14). 

It has been recently postulated by both Andrews et al. (2010) and McCarthy et al. 

(2007) that MyoD is a CCG. MyoD has been observed to exhibit circadian fluctuations at 

the mRNA level (68). This diurnal expression pattern of MyoD mRNA is abolished in 

CLOCK~19 and BMAL 1-1- circadian mutant mice (8). Furthermore, skeletal muscle from 

both CLOCK~19 and BMAL1-1
- mice exhibit severely impaired force production and 

myofilament organization (8), implying that the circadian clock influences skeletal 

muscle phenotype by regulating MyoD expression. 

1.6.2. AMPK 

AMPK is a well-established mediator of metabolic pathways. In skeletal muscle, 

AMPK is activated by stimuli that increase the intracellular AMP:ATP ratio, such as 

contractile activity (94; 106) and glucose restriction (16; 29). In response to physiological 

stimuli, AMPK regulates pathways in the metabolism of carbohydrates, proteins and 
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lipids (116). AMPK exists as a heterotrimeric protein that is composed of a-, ~-, and y

subunits. Activation of AMPK occurs through phosphorylation at the threonine- I 72 

residue within the catalytic a-subunit (101; 110). 

In addition to its roles in intracellular metabolism, AMPK is an important 

secondary component in the proper functioning of the molecular clock. AMPK has been 

observed to exhibit diurnal activation in the hypothalamus (110) and in the liver (58), 

although this temporal pattern has not yet been evaluated in skeletal muscle. AMPK 

interacts with the molecular clock through phosphorylation of Cryl, which targets it for 

degradation (58). The de-stabilization of Cryl attenuates the time interval that the 

repressor complex is active, thereby indirectly contributing to lengthening of the 

circadian period. Therefore, under conditions of contractile activity or nutrient 

deprivation, potential activation of AMPK may lengthen the circadian period by 

increasing the duration of CLOCK:BMAL 1-mediated transcription (Fig. 2). 

1.6.3. PGC-la 

PGC-1 a is an important transcriptional co-activator that is involved in many 

cellular processes. PGC-1 a has principally been recognized for its involvement in the 

regulation of mitochondrial content and function ( 4; 109). In addition to this role, PGC-

1 a is also involved in skeletal muscle fiber-type specialization (62) and glucose 

metabolism (70). PGC-1 a promotes gene expression by binding with transcription factors 

and subsequently assisting in recruitment of HAT proteins to the promoter region (85). 

Recent literature has implicated PGC-1 a as a significant contributor in the 

coordinated regulation of the biological clock. PGC-1 a has been reported to exhibit 
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diurnal oscillations at the mRNA level in skeletal muscle (72). Furthermore, PGC-1 a 

binds with retinoid-related orphan receptor a (RORa) when it is bound to its respective 

ROR response element within the BMALl promoter. This binding facilitates the 

recruitment of the HAT p300, thereby inducing BMALl transcription (48; 64). This 

interaction is consistent with the finding that peak PGC-1 a mRNA expression coincides 

with peak BMALl transcription (64). Therefore, by modulating the duration of BMALl 

transcription, PGC-1 a assists in the regulation of the circadian period (Fig. 2). 

1.6.4. SirTl 

As has been previously discussed in section 1.5.1.2., the oscillatory HDAC 

activity of SirTl is essential in counteracting the transcriptional activity of the 

CLOCK:BMAL 1 heterodimer, thereby maintaining the integrity of the timekeeping 

mechanism (77). SirTl also mediates the duration of activity of the repressor complex by 

rhythmically deacetylating Per2 (11 ). SirTl activity is inherently dependent upon the 

intracellular NAD+:NADH ratio, which is reflective of the energy homeostasis and the 

cellular redox status (17; 69). Therefore, by functioning as a metabolic sensor, SirTl 

HDAC activity manipulates the length of the circadian period based upon cellular energy 

demands. 
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Figure 2. The core molecular clock in skeletal muscle. CLOCK:BMALl heterodimers 
comprise the transcription-activation complex (positive component) of the molecular 
clock. This heterodimer binds to E-Box DNA sequences within the promoter regions of 
CCGs. Through the recruitment of numerous HA Ts, such as p300, the CLOCK:BMAL 1 
heterodimer rhythmically induces the transcription of CCGs. A repressor complex 
(negative component) that consists primarily of two CCG products, period and 
cryptochrome, aggregate in the cytoplasm and translocate into the nucleus. This repressor 
protein aggregate rhythmically inhibits the transcription-activation complex. In peripheral 
tissues, intracellular metabolic sensors (AMPK, PGC-la and SirTl) interact with the 
molecular clock via post-translational modifications as a means of altering the circadian 
period and phase to correspond with extracellular stimuli. AMPK periodically 
phosphorylates and destabilizes Cryl, thereby regulating the active duration of the 
transcriptional repressor complex. PGC-1 a, which exhibits diurnal expression, binds to 
response elements in the BMALl promoter, thereby inducing its transcription. The 
HDAC SirTl rhythmically counteracts the transcriptional activity of the 
CLOCK:BMALl heterodimer. 
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2.0 THE CLOCK GENE 

2.1. Overview 

The Clock gene was initially characterized in mammals by Vitatema et al. in 

1994. This study utilized N-ethyl-N-nitrosourea, a potent murine mutagen (88), to induce 

mutations to spermatogonial cells of male mice. Mutations in genes that affect circadian 

rhythms were identified by increased circadian period length, which was indirectly 

measured through aberrations in the pattern of daily locomotor activity under conditions 

of constant darkness (114). Analyses of subsequent generations of mutant progeny 

revealed that this mutation is heritable, and in addition to an elongated endogenous 

circadian period, circadian rhythmicity is eventually completely absent under conditions 

of constant darkness (114). 

The Clock gene has been extensively studied over the past 18 years. The Clock 

gene encodes for the protein CLOCK, which as previously discussed in section 1.1.5., 

heterodimerizes with BMAL 1 to form the transcription-activation complex that is a 

component of the central autoregulatory feedback loop (60; 122). CLOCK also has been 

observed to facilitate circadian gene expression by recruiting the HAT p300 to the 

transcription-activation complex within the promoter regions of CCGs (26). It was 

additionally purported by Hirayama et al. (2007) that CLOCK-mediated acetylation of 

BMAL 1 was an essential event to maintain the integrity of the biological timekeeping 

mechanism. 
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2.2. Structure 

The murine Clock gene is approximately 100,000 base pairs in length (9; 53), and 

has been mapped to chromosome 5 (53; 114). The murine CLOCK protein consists of 

855 amino acids that are organized into 24 exons, and it has a predicted molecular mass 

of 96.4 kDa (53). CLOCK contains two distinct functional regions within its secondary 

structure: 1) a bHLH-domain and 2) a PAS-domain. The bHLH-domain consists of two 

amphipathic a-helices connected by a loop, as well as a downstream sequence of basic 

amino acid residues (51 ). The a-helices are required for dimerization (20), while the 

sequence of basic amino acids facilitates the interaction with the E-Box DNA sequence 

within the promoter region (75). The PAS-domain is composed of a five-strand anti

parallel ~-sheet followed by numerous downstream a-helices (73; 81 ). The association of 

respective PAS-domains has been implicated in stabilizing protein dimerization (24). 

2.3. Expression 

The temporal and tissue-specific patterns of Clock expression have been well

characterized. Northern blot analysis of Clock expression in several types of murine 

tissue by King et al. (1997) revealed that Clock mRNA expression is not limited to the 

SCN. Significant Clock mRNA expression was evident in the retina, as well as in the 

testis, ovaries, liver, kidney and heart tissues (53). The Clock gene has been observed to 

be constitutively-expressed in the SCN throughout the light-dark cycle (96; 97). In 

contrast to the SCN, Lee et al. (2001) reported that Clock mRNA appears to exhibit 

modest rhythmicity within the liver in vivo. The isolation of cytoplasmic and nuclear 



19 

intracellular fractions has revealed minor diurnal fluctuations in nuclear CLOCK protein 

abundance in the SCN (56) and in the liver (59). 

The temporal intracellular expression and localization patterns of CLOCK and its 

binding partner, BMALl, reveal a unique level of transcriptional control within the 

molecular clock mechanism. It has been well-documented that BMAL 1 gene expression 

exhibits robust oscillations within both the SCN (l; 41) and peripheral tissues (7; 68). 

The dimerization of CLOCK and BMAL 1 occurs through the interaction of their 

respective bHLH-P AS domains (20; 24 ), and is essential for nuclear translocation of the 

transcription-activation complex (56). Therefore, the fact that CLOCK displays relatively 

constant temporal cytoplasmic protein expression lends credibility to the finding that 

rhythmic cytoplasmic BMAL 1 protein accumulation modulates the formation of the 

transcription-activation complex (89). The temporal expression pattern of the Clock gene 

confers an intricate level of transcriptional control to the biological clock. 

2.4. Clock Mutant Mice 

As has been previously discussed in section 2.1., a mutation within the Clock gene 

was first distinguished by Vitaterna et al. (1994). This study involved inducing genetic 

mutations within spermatogonial cells of male mice, and subsequently identifying mutant 

progeny according to elongated endogenous circadian periods (114). King et al. (1997) 

ascertained that the genetic basis of this mutation was characterized by a sfagle point 

mutation, an A~ T transversion, within the 5' splice donor site of intron 19. Subsequent 

analyses reveal that this mutation results in a splice variant that does not contain exon 19, 
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a segment that consists of 51 amino acids, within the functional polypeptide (53). The 

abnormal CLOCK~19 mutant polypeptide retains the ability to both heterodimerize with 

BMALl, as well as to bind to E-Box DNA sequences, however the CLOCK~19:BMAL1 

transcription-activation capability is severely impaired (30) (Fig. 3). 
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Figure 3. The Clock mutation. The Clock mutation is characterized by a single point 
mutation, an A 7 T transversion, at the third base position of the 5' splice donor site 
within intron 19 of the' coding (sense) DNA strand. The corresponding mRNA transcript 
erroneously contains a uracil ribonucleotide in place of an adenine ribonucleotide. This 
alteration potentially inhibits the biochemical interaction between the mRNA and the 
spliceosome. The result is that exon 19 is absent from the mature mRNA transcript, 
resulting in a dysfunctional CLOCKL\19 protein that does not contain the 51-amino acid 
segment encoded by exon 19. 
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2.4.1. Gene Expression 

The circadian transcriptome was first characterized in skeletal muscle by 

McCarthy et al. (2007). This study collected gastrocnemius hindlimb muscles under 

conditions of constant darkness from wild-type and homozygous Clock mutant mice at 4-

hour intervals, and subsequently utilized gene expression profiling to measure the activity 

of multiple genes. A cosine wave-fitting algorithm was then applied in order to determine 

which mRNA transcripts exhibited a circadian pattern of expression (68). In accordance 

with these rigorous criteria, it was observed that 215 genes exhibited a circadian pattern 

of expression in skeletal muscle, including numerous components of the molecular clock, 

such as BMALl, Per2 and Cry2. Interestingly, the expression pattern of the Clock gene 

was not statistically-determined to exhibit circadian rhythmicity as defined by the 

parameters employed in this study (68). The 215 circadian genes were observed to 

encompass a wide array of physiological processes, most notably transcription (18%), 

cellular signalling (15%) and protein metabolism (12%). The times of peak gene 

expression were very broad, however they were similarly-distributed between the 

subjective day (48%) and the subjective night (52%) (68). In accordance with the 

statistical parameters of this study, it was concluded that PGC-la mRNA did not exhibit 

a circadian pattern of expression, although more recent work by Miyazaki et al. (2011) 

purported that PGC-1 a does, in fact, exhibit diurnal expression in skeletal muscle. 

McCarthy et al. (2007) also measured the alteration in skeletal muscle gene 

expression as a consequence of the aforementioned Clock mutation. To compute these 

alterations, the expression of a particular gene was averaged between all of the respective 
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time points in order to condense the diurnal expression pattern into a single arithmetic 

mean. Interestingly, the arithmetic mean of diurnal PGC-1 a gene expression was found to 

exhibit over 50% reduction in the Clock mutant mice in comparison with the wild-type 

mice (8; 68). In addition to PGC-la, numerous structural, functional and metabolic genes 

were suppressed in skeletal muscle as a consequence of the Clock mutation (68). 

2.4.2. Phenotypic Characteristics 

As has been previously discussed in sections 2.1. and 2.4., the Clock mutation is a 

autosomal germline mutation (30; 53; 114), and therefore all somatic cells within the 

fully-developed organism will express the abnormal CLOCK619 protein. Extensive 

research has been conducted on homozygous Clock mutant mice, and consequently, 

many neurological and behavioural phenotypic aberrations have been described in these 

animals. The preliminary study by Vitaterna et al. (1994) reported that homozygous 

Clock mutant mice display a 24-hour circadian period when light is provided as a 

zeitgeber. Over this 24-hour period, these animals slept approximately 18% less than the 

wild-type animals (79). In the absence of photic time cues, the circadian period of 

homozygous Clock mutant mice initially lengthened to approximately 27.3 hours before 

exhibiting complete arrythmicity after 10 days of exposure to constant darkness (114). 

Lastly, homozygous Clock mutant mice exhibit increased food intake, basal metabolic 

rate and levels of locomotor activity during the light phase, as well as accelerated body 

mass accumulation beginning at four weeks of age (107). 

Homozygous Clock mutant mice exhibit disrupted circadian gene expression and 

altered phenotypic characteristics within peripheral tissues. It was observed by Oishi et 
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al. (2000) that, in homozygous Clock mutant mice, the amplitude of BMAL 1 mRNA 

expression was diminished in liver, heart and kidney. Disruption in the diurnal variation 

of mean arterial pressure (MAP) has also been observed in these animals (18). In 

addition, Kennaway et al. (2006) reported disrupted diurnal mRNA expression of 

BMAL 1, Per2 and Rev-erba in skeletal muscle of homozygous Clock mutant mice. 

Furthermore, both Nampt gene expression and intracellular NAD+ content have been 

observed to be attenuated in liver and white adipose tissue in these animals (86). 

Homozygous Clock mutant mice have also been associated with diminished glucose 

tolerance (52), as well as obesity and metabolic syndrome (107). It has also been reported 

by Andrews et al. (2011) that MyoD, PGC-la and PGC-1~ mRNA expression were 

impaired in the skeletal muscle of homozygous Clock mutant mice. In conjunction, these 

animals exhibit impaired myofilament organization, attenuated muscle contractility and 

reduced mitochondrial volume (8). 
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3.0 MITOCHONDRIA 

3.1. Overview 

Mitochondria are dynamic, membrane-bound organelles that exist within 

eukaryotic cells. These organelles were first identified by Altmann in 1890 (25), and are 

essential for the production of the energy-providing compound adenosine triphosphate 

(ATP), thereby ensuring the proper functioning, survival and adaptation of eukaryotic 

organisms. Mitochondria possess a unique and intricate molecular structure that consists 

of distinct outer- and inner-mitochondrial membranes, which are composed of 

phospholipid bilayers. The inner mitochondrial membrane defines the boundaries of the 

mitochondrial matrix, which contains mitochondrial DNA (mtDNA). The convoluted 

inner mitochondrial membrane contains numerous integral complexes, collectively 

referred to as the electron transport chain (ETC), which facilitate a series of redox 

reactions (43). Mitchell (1961) initially postulated that these reactions generate an 

electrochemical proton gradient, which is required for the production of ATP through 

chemiosmosis (25; 71 ). A consequence of mitochondrial oxidative phosphorylation is the 

coupled production of reactive oxygen species (ROS) (46; 104). 

The process of mitochondrial biogenesis is heavily reliant on initial transcriptional 

co-activation by PGC-1 a, which has been observed to catalyze the induction of numerous 

genes that are involved in the biosynthesis of these organelles (108; 118). There are two 

distinct intramuscular populations of mitochondria that have been observed within 

skeletal muscle fibers: 1) a subsarcolemmal (SS) subfraction that is located superficially 

inside the sarcolemmal membrane, and 2) an intermyofibrillar (IMF) subfraction that is 
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interspersed amongst the myofibrils ( 54 ). These discrete mitochondrial subfractions have 

been observed to exhibit distinct metabolic properties with respect to mitochondrial 

respiration, membrane potential and ROS production (2; 3). 

3.2. Mitochondrial Biogenesis 

Mitochondrial biogenesis is a complex process that involves the coordinated 

expression and assembly of multiple nuclear- and mitochondrially-encoded gene products 

(27; 44). This process is initiated by the PGC-la-mediated coactivation of nuclear 

respiratory factors (NRF)-1 and -2, followed by the subsequent binding of these 

transcription factors to the promoter regions of nuclear genes ~ncoding mitochondrial 

nroteins (NUGEMPs), inducing their transcription (31; 108). NUGEMPs encode for 

structural and functional components of the mitochondrial ETC (83), as well as mtDNA

specific transcription factors, such as mitochondrial transcription factor-A (Tfam) (92). 

Mitochondrial proteins are imported into mitochondria, and subsequently assembled into 

multi-subunit enzyme complexes (42; 44) (Fig. 4 ). 

3.3. Mitochondrial Respiration 

As has been previously alluded to in section 3.1., mitochondria are primarily 

required for the production of ATP. The mitochondrial ETC contains five embedded 

complexes: 1) NADH dehydrogenase, 2) succinate dehydrogenase (SDH), 3) cytochrome 

b-c1 complex, 4) cytochrome c oxidase (COX) and 5) ATP synthase. Electron transport 

chain complexes accept electrons from the reduced coenzymes NADH and flavin adenine 
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dinucleotide (F ADH2), and subsequently transfer these electrons to a downstream 

electron acceptor within the ETC. Electron navigation through the ETC is coupled with 

proton movement from the mitochondrial matrix into the inter-membrane space, 

producing an electrochemical proton gradient. Passive proton diffusion into the 

mitochondrial matrix through ATP synthase provides chemical energy that is utilized to 

synthesize ATP from adenosine diphosphate (ADP) and inorganic phosphate (Pi). 

As has been previously stated in section 3.1., there are two spatially- and 

metabolically-distinct mitochondrial subfractions within skeletal muscle fibers. It has 

been observed by Adhihetty et al. (2005) that both active ADP-induced (state III) and 

passive glutamate-induced (state IV) rates of mitochondrial respiration are significantly 

elevated in the IMF mitochondria subfractions, in comparison with SS mitochondria. 

3.3.1. ROS 

As has been previously mentioned in section 3.1., the production of ROS is a 

consequence of mitochondrial oxidative phosphorylation. As electrons are transferred 

along the ETC, two constituents of this chain, NADH dehydrogenase and cytochrome b

e 1 complex, erroneously donate electrons to oxygen, resulting in the production of 

superoxide anions (02) (74). ROS are deleterious molecules that can damage 

intracellular DNA. Despite this ROS-mediated oxidative stress, recent evidence has 

implicated ROS as a signalling mechanism in the induction of mitochondrial biogenesis. 

ROS have been associated with elevations in the mRNA expression of PGC-la (46), as 

well as two additional mitochondrial biogenesis precursors, Tfam and NRF-2 (105). The 

concept of the ROS-mediated induction of mitochondrial biogenesis is strengthened by 
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the finding that contractile activity stimulated ROS production in vitro in skeletal muscle 

myotubes (82). Additionally, it has been reported that respiration-induced ROS 

production in the SS mitochondrial subfractions is considerably higher, in comparison 

with IMF mitochondria (2; 3). 

3.4. Adaptation to Chronic Training 

It has been very well-established that chronic endurance training increases 

skeletal muscle mitochondrial content, as inferred by cytochrome c oxidase enzymatic 

activity (91; 111). Furthermore, chronic endurance training has been correlated with 

augmentations in both mitochondrial content as well as endurance capacity (115). Recent 

research has supported the concept that exercise-induced mitochondrial biogenesis may 

be mediated by PGC-1 a. Endurance-trained subjects exhibited elevated PGC-1 a mRNA 

content following a single acute bout of exercise, in comparison with untrained subjects 

(84). In addition, chronic bouts of endurance exercise have resulted in amplified levels of 

PGC-1 a protein abundance at rest (95). Therefore, it appears that there is a direct causal 

association between chronic endurance training, PGC-1 a expression and skeletal muscle 

mitochondrial content. In regards to the relationship between chronic endurance training 

and mitochondrial function, it has been reported that chronic endurance training does not 

alter the substrate-induced respiratory capacity of murine skeletal muscle-isolated 

mitochondrial subfractions in vivo (2; 4; 91). This result, however, is in contrast to work 

that has been performed by Wu et al. ( 1999), which asserted that in vitro over-expression 

of PGC-1 a in cultured murine myoblasts results in an increased rate of basal oxygen 
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consumption. Mitochondrial adaptations to chronic endurance training in vivo appear to 

be limited to increases in mitochondrial content and enzymatic activity, and do not 

necessarily induce improvements in properly-functioning mitochondria. 

3.5. PGC-la 

As has been previously discussed in sections 3 .1. and 3 .2., transcriptional co

activation by PGC-1 a is essential for the initiation and propagation of mitochondrial 

biogenesis. It has also been established in section 3 .3. that the exercise-mediated 

induction of PGC-la elevates mitochondrial content in skeletal muscle. Numerous 

studies have utilized in vivo models of PGC-1 a over-expression and ablation to further 

investigate the importance of this gene in the regulation of mitochondrial biogenesis and 

function. 

Recent research has observed that in vivo muscle-specific over-expression of 

PGC-la has been associated with elevated levels ofNUGEMP expression (15; 62). Lin et 

al. (2002) observed increased mRNA content of two subunits that comprise the COX 

complex within the ETC, COX II (mitochondrially-encoded) and COX IV (nuclear

encoded), as well as elevated cytochrome c protein abundance. Furthermore, muscle

specific over-expression of PGC-1 a allows for phenotypic adaptations that are consistent 

with elevated mitochondrial content. This was evident as Calvo et al. (2008) reported 

improved performance ability in these animals during a forced-endurance exercise test. 

The integral function of PGC-1 a has become readily apparent as a result of 

numerous in vivo studies that have utilized PGC-la-1
- animals. These animals exhibit 
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attenuated mRNA content of both nuclear- and mitochondrially-encoded gene products 

(63), as well as reduced mitochondrial content ( 4). Adhihetty et al. (2009) further 

observed impairments in the respiratory capacity of mitochondria that were isolated from 

PGC-1 a-1
- animals. Due to these phenotypic mitochondrial aberrations, PGC-1 a-1

- animals 

also exhibited an expected impairment in performance ability during a forced-endurance 

test (34). 
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Figure 4. Mitochondrial biogenesis. The transcriptional coactivator PGC-la binds to 
transcription factors within the promoter regions of NRF-1 and -2, thereby inducing the 
expression of these nuclear respiratory factors. NRF-1 and -2 subsequently induce the 
expression of Tfam, as well as NUGEMPs, such as COX IV. Tfam is imported into the 
mitochondrion, and it subsequently induces transcription of components of the 
mitochondrial genome, such as COX I. NUGEMPS, as well as mitochondrially-encoded 
gene products, are assembled into multi-subunit enzyme complexes. Endurance training 
induces the expression of PGC-1 a, thereby resulting in increased mitochondrial 
biogenesis. 



,. 

32 

4.0 THESIS OBJECTIVES 

Therefore, based on this review of literature, the primary objectives of my thesis utilizing 

Clock mutant mice are to: 

1. Assess the repercussions of the Clock mutation on exercise tolerance, metabolism 

and skeletal muscle mitochondrial physiology. 

2. Evaluate the efficacy of chronic voluntary endurance training on eliciting 

physiological and metabolic adaptations within Clock mutant mice. 

4.1 Hypotheses 

We hypothesized that: 

1. Clock mutant mice would exhibit accelerated body mass and lipid accumulation, 

diminished protein expression, attenuated mitochondrial content and function, 

impaired glucose tolerance and reduced exercise capacity. 

2. Endurance training would elicit metabolic adaptations within the Clock mutant 

mice that would improve mitochondrial function and content, glucose tolerance 

and exercise capacity, and attenuate the accelerated accumulation of body mass. 
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Abstract 

Circadian locomotor output cycles kaput (CLOCK) is a nuclear transcription 

factor which is a component of the central autoregulatory feedback loop that governs the 

generation of biological rhythms. Homozygous Clock mutant mice contain a truncated 

CLOCKL\19 protein within somatic cells, subsequently causing an impaired ability to 

rhythmically express circadian genes. The present study sought to investigate whether the 

Clock mutation affects mitochondrial physiology within skeletal muscle, as well as the 

responsiveness of these mutant animals to adapt to a chronic voluntary endurance training 

protocol. Within muscle, Clock mutant mice displayed 44% and 45% reductions in 

peroxisome proliferator-activated receptor-y coactivator 1-a (PGC-la) and mitochondrial 

transcription factor-A (Tfam) protein content, respectively, and an accompanying 16% 

decrease in mitochondrial content, as determined by cytochrome c oxidase enzyme 

activity. These decrements contributed to a 50% decrease in exercise tolerance in Clock 

mutant mice. Interestingly, the Clock mutation did not appear to alter subsarcolemmal 

(SS) or intermyofibrillar (IMF) mitochondrial respiration within muscle, or systemic 

glucose tolerance. Daily locomotor activity levels were similar between wildtype and 

Clock mutant mice throughout the training protocol. Endurance training ameliorated the 

decrease in PGC-1 a protein expression and mitochondrial content in the Clock mutant 

mice, eliciting a 2.9-fold improvement in exercise tolerance. Thus, our data suggest that a 

functional CLOCK protein is essential to ensure the maintenance of mitochondrial 

content within muscle, although the absence of a functional CLOCK protein does not 

impair the ability of animals to adapt to chronic exercise. 
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Introduction 

Circadian rhythms govern a wide variety of biochemical, physiological and 

behavioural processes within organisms. Body temperature (19; 43), hormone secretion 

(7; 31), blood pressure (15; 36) and gene expression (3; 39) are among the physiological 

and biochemical variables that exhibit rhythmic fluctuation. The mechanism that 

regulates the rhythmicity of these processes involves complex temporal interaction of the 

positive and negative feedback components of the molecular clock. The positive 

component of the molecular clock is comprised of two proteins, circadian locomotor 

output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMALl). 

These proteins heterodimerize and bind to E-box sequences within promoters to induce 

the expression of CLOCK-controlled genes (CCGs) (32; 57). A notable subset of CCGs 

encode for two constituents of the negative component of the molecular clock, Period 

(Per) and Cryptochrome (Cry). Per and Cry form a multimeric protein aggregate that 

rhythmically inhibits the transcriptional activity of the CLOCK:BMAL 1 heterodimer (32; 

57). 

Homozygous Clock mutant mice possess a truncated CLOCK~19 protein within 

somatic cells (30), and are characterized by an impaired ability to rhythmically activate 

transcription (16). Consequently, Clock mutant mice were reported to exhibit disrupted 

skeletal muscle myofilament organization, as well as attenuations in muscle contractility, 

mitochondrial volume and peroxisome proliferator-activated receptor-y coactivator 1-a 

(PGC-la) mRNA expression (3). In addition, these animals have been associated with 

altered glucose metabolism (29), as well as obesity and metabolic syndrome ( 49). 
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The central circadian clock is located within the suprachiasmatic nucleus (SCN) 

of the hypothalamus (35; 45). This circadian pacemaker is responsive to light, and is 

essential for the synchronization of molecular clocks in peripheral tissues. Molecular 

clocks have also been observed within numerous peripheral tissue types, including 

skeletal muscle (3 7). These peripheral clocks can be phase-dissociated from the central 

clock by various types of external stimuli, such contractile activity (54; 56), restrictive 

feeding (1 O; 48) and alterations in energy homeostasis (5; 40). Biological rhythms have 

been well-documented in skeletal muscle. McCarthy et al. (37) were the first to conduct 

gene expression profiling in skeletal muscle, and it was concluded that over 200 genes 

exhibited a rhythmic pattern of expression. These genes were observed to encompass a 

broad range of physiological processes, including transcription, cellular signaling and 

protein metabolism (37). 

Mitochondria are dynamic organelles that are a very important component of 

properly-functioning skeletal muscle. The convoluted inner mitochondrial membrane 

contains the mitochondrial electron transport chain (ETC), which is comprised of five 

integral complexes: 1) NADH dehydrogenase, 2) succinate dehydrogenase (SDH), 3) 

cytochrome b-c1 complex, 4) cytochrome c oxidase (COX) and 5) ATP synthase (23). 

The ETC facilitates a series of redox reactions that generates an electrochemical proton 

gradient, which is required for the production of adenosine triphosphate (ATP) (13; 38). 

Interestingly, it has been reported that components of the mitochondrial ETC are encoded 

by both the nuclear and mitochondrial genomes (14; 24). The process of mitochondrial 

biogenesis, however, requires initial nuclear stimulation by PGC-la, followed by 
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subsequent induction of the mitochondrial genome by mitochondrial transcription factor

A (Tfam). It has been well-documented that chronic endurance training results in 

elevations in PGC-la (42; 46) and Tfam (17) gene expression. Consequently, chronic 

endurance training has been reported to induce a PGC-1 a-mediated increase in skeletal 

muscle mitochondrial content ( 44; 51 ), concomitant with increases in endurance capacity 

(52). 

The purpose of the present study was to assess the physiological aRd biochemical 

ramifications of the murine Clock mutation. In particular, we sought to measure indices 

that may be affected as a result of the significant reduction in PGC-1 a. mRNA levels that 

have been observed in these animals (3; 37). It had previously been reported that PGC-la 

ablation resulted in attenuated mitochondrial content and impaired mitochondrial 

function ( 1 ), and therefore we hypothesized that homozygous Clock mutant mice would 

exhibit these same deficient mitochondrial characteristics. Consequently, we speculated 

that these potential physiological impairments would translate into diminished endurance 

performance. Lastly, we evaluated the effects of an eight-week chronic voluntary 

endurance training protocol on the restoration of PGC-1 a content, as well as the impact 

of exercise on the improvement of the same aforementioned physiological indices. Our 

results help to clarify the relationship between circadian rhythm and skeletal muscle 

function, as well as provide insight as to the role of the Clock gene in the adaptations of 

skeletal muscle to chronic exercise. 
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Materials and Methods 

Animal breeding. Heterozygous Clock mutant mice (maintained on a C57BL-6J genetic 

background) were obtained from the Jackson Laboratory (Bar Harbor, Maine, USA). 

Animals were bred in accordance with the guidelines of the York University Animal Care 

Committee. Progeny were genotyped similarly to Herzog et al. (20). Briefly, ear clippings 

were utilized for crude DNA extraction. DNA extracts were incubated with Jumpstart 

RED-Taq DNA Polymerase (Sigma; St. Louis, Missouri, USA), as well as forward and 

reverse primers for the wildtype or mutant nucleotide sequences, and amplified using 

polymerase chain reaction (PCR). The reaction products were separated on a 1.5% 

agarose gel, and visualized with the use of ethidium bromide (20). 

Voluntary wheel-running exercise model. Twelve-week old male wildtype and Clock 

mutant mice were assigned to control or trained experiment groups. All mice were 

maintained on a 12-hour light:dark cycle and were allowed access to food and water ad 

libitum. Trained mice were housed individually and were permitted access to a freely

rotating running wheel. The number of revolutions were recorded daily for each animal 

and converted into distance (kilometres; ( 44 ). This training model was utilized for eight 

weeks. During the ninth week, all animals were subjected to an intraperitoneal glucose 

tolerance test and an exercise capacity test, followed by the animals being sacrificed. 

Muscle extraction. Animals were anesthetized in accordance with the guidelines of the 

York University Animal Care Committee. Animals were injected in the intraperitoneal 

cavity with a ketamine-xylazine mixture at 0.2 mL· 100 g-1 of body mass. Hindlimb 

skeletal muscles [gastrocnemius, tibialis anterior (TA), quadriceps] were quickly excised 
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and placed in ice-cold mitochondrial isolation buffer. Freshly-harvested skeletal muscles 

were utilized for mitochondrial isolations, or were frozen in liquid nitrogen. Frozen 

skeletal muscle tissues were pulverized into powder with a liquid nitrogen-cooled steel 

mortar, and stored in liquid nitrogen for subsequent tissue analyses. 

Protein extraction and quantification. Frozen skeletal muscle tissue powder was re

suspended with a 10-fold dilution in muscle extraction buffer that contained protease 

inhibitors. Homogenates were rotated end-over-end for 1 hour at 4 °C. Homogenates were 

then sonicated (3 x 3 seconds; 30% power) and centrifuged at 14,000 g for 10 minutes at 

4°C. The supernatant fraction was removed, quantified using the Bradford assay (58), and 

stored at -80°C to be used for subsequent protein analyses. 

Intraperitoneal glucose tolerance test. In accordance with the optimal parameters that 

had been reported by Andrikopolous et al. ( 4 ), animals were fasted for six hours 

(beginning at 8:00 AM), but were still allowed access to water ad libitum. A 0.2 g·mL-1 

solution of D-glucose was prepared, and animals were injected with a 2 g· kg-1 dosage of 

the glucose solution in the intraperitoneal cavity. Blood measurements were obtained 

from tail veins. Blood glucose was measured prior to injection, as well as 15-, 30-, 60-

and 120-minutes post-injection (4). Blood glucose measurements were assayed using a 

Bayer Contour blood glucose meter (Toronto, Ontario, Canada). 

Cytochrome c oxidase (COX) enzyme activity. Enzyme extracts were prepared from 

powdered muscle tissue, and COX enzyme activity was evaluated similarly to Cogswell 

et al. (9). Briefly, enzyme extracts were sonicated (3 x 3 seconds; 30% power) and COX 

enzyme activity was determined spectrophotometrically as the maximal rate of oxidation 
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of fully-reduced cytochrome c (Sigma; St. Louis, Missouri, USA), measured by the 

change in absorbance at 550 nm using a Synergy HT microplate reader at 30°C (9). 

Exercise capacity test. Animals were acclimatized to the treadmill ( 10° incline) over a 

period of three days during the eighth week of the exercise protocol. The first day of 

acclimatization involved the animals being placed on the stationary treadmill belt for five 

minutes. The second and third days of acclimatization involved briefly running on the 

treadmill at speeds of 5 m·min-1 and 10 m·min-1
, respectively. The exercise capacity test 

protocol was adapted from Calvo et al. (8). Briefly, the speed of the treadmill was 

progressively increased by increments of 4 m·min-1 until animals reached exhaustion. 

Exhaustion was defined as the animals inability to run on the rear of the treadmill for 

more than five consecutive seconds (8). 

Mitochondrial isolation. Freshly-harvested skeletal muscles were minced, homogenized 

and subjected to differential centrifugation to isolate the subsarcolemmal (SS) and 

intermyofibrillar (IMF) mitochondrial subfractions, as described previously (9; 34 ). 

Mitochondrial subfractions were then suspended in re-suspension medium (100 mM KCl, 

10 mM MOPS, 0.2% BSA, pH 7.4), quantified and immediately utilized for analysis of 

mitochondrial respiration. 

Mitochondrial respiration. Freshly-isolated SS and IMF mitochondrial subfractions were 

incubated with V02 buffer (250 mM sucrose, 50 mM KCl, 25 mM Tris-HCl, 10 mM 

K2HP04, pH 7.4) at 30°C in a water-jacketed respiratory chamber with continuous 

stirring. Respiration rates (n atoms 0 2 · min-1 
· mg-1

) were evaluated in the presence of 10 

mM glutamate (state IV; passive respiration) and 0.44 mM ADP (state 111; active 
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respiration) utilizing a Mitocell S200 Micro-Respirometry System (Strathkelvin 

Instruments; Motherwell, UK) (1; 9; 34). Inner mitochondrial membrane integrity was 

assayed through the addition of NADH, which did not alter the rate of oxygen 

consumption in the respiratory chamber. 

Immunoblotting. Skeletal muscle protein extracts were separated utilizing 10-12% 

sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred to a 

nitrocellulose membrane. The membranes were incubated with primary antibodies 

targeting a-tubulin (Calbiochem; 1: 10,000), PGC-1 a (Millipore; 1 :500), CLOCK (Santa

Cruz Biotechnology; 1:1000), BMALl (Abeam; 1:500), COX I (Abeam; 1:1000), Tfam 

[Gordon et al. (17); 1 :2500] and COX IV (lnvitrogen; 1 :250) overnight at 4°C. Blots 

were subsequently incubated with the appropriate species-specific secondary antibody for 

one hour at 25°C. Blots were developed with Western Blot Luminol Reagent (Santa-Cruz 

Biotechnology; Santa Cruz, California, USA) and films were scanned and analyzed using 

SigmaScan Pro software (version 5.0). The quantification of all blots was corrected for 

loading using a-tubulin protein expression. 

Statistical analyses. Data are expressed as mean ± standard error (SE). Two-way 

analyses of variance (ANOVA) were performed when the control and trained condition 

were being compared between wildtype and Clock mutant animals, followed by the 

Bonferroni post-hoc test when appropriate. Statistical differences were considered 

significant if p < 0.05. 
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Results 

Physical and locomotor characteristics. To assess alterations in body mass progression, 

animals were weighed on a weekly basis. Clock mutant control and trained mice 

exhibited elevated body mass throughout the duration of the study, culminating in 

increases of approximately 11 - 12% in comparison to their wildtype counterparts (Fig. 

lA). Furthermore, chronic voluntary endurance training produced significant attenuations 

in body mass in both the wildtype and Clock mutant mice. These differences were 

initially evident after one week of training, and persisted throughout the duration of the 

study, ultimately resulting in reductions in body mass of approximately 10 - 11 % for 

both the wildtype and Clock mutant trained mice (Fig. lA). At the conclusion of the sixth 

week, food pellet consumption was evaluated for three complete daily cycles at 7:00 AM 

(ZT O; lights on) and 7:00 PM (ZT 12; lights off). As expected, food consumption was 

markedly increased during the dark phase in comparison to the light phase for all four 

experimental groups. Interestingly, daily food intake was distinctly elevated in the Clock 

mutant control mice by 67% relative to the wildtype control mice. Endurance training 

resulted in further increases in daily food consumption of 76% and 37% in the wildtype 

and Clock mutant mice, respectively (Fig. lB; p < 0.05). Concomitantly, Clock mutant 

control mice exhibited 4.3-fold greater food consumption during the light phase in 

comparison to the wildtype control mice. Endurance training further produced 2.6- and 

1.4-fold increases in food consumption during the light phase in the wildtype and Clock 

mutant mice, respectively (Fig. 1 C; p < 0.05). 
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Clock mutant mice displayed a 1.8-fold reduction in mean daily locomotor 

activity relative to the wildtype mice during the final week of training (Fig. 2A; p < 0.05). 

In addition, locomotor activity was assessed at ZT 0 and ZT 12 for three complete daily 

cycles during the sixth week of training. Interestingly, Clock mutant mice were observed 

to perform 13.5% of their daily locomotor activity during the light phase in comparison 

to only 0.3% in wildtype mice (Fig. 2B; p < 0.05). After the final week of training, 

animals were sacrificed and the gastrocnemius muscle complex, visceral fat depots and 

heart were harvested, weighed and frozen in liquid nitrogen. The visceral fat-to-body 

mass ratio was increased in the Clock mutant control mice by 66% relative to the 

wildtype control mice. Endurance training was an effective intervention and was 

observed to decrease this ratio by 19% and 32% in the wildtype and Clock mutant mice, 

respectively (Fig. 3A; p < 0.05). No significant differences were detected in 

gastrocnemius- or heart-to-body mass ratios among these same experimental groups (Fig. 

3B and 3C). 

Mitochondrial and physiological adaptations. To determine the tolerance of these 

animals to maximal-intensity exercise, a treadmill test was administered. Clock mutant 

control mice were only able to run on the treadmill for 51 % of the time exhibited by the 

wildtype control mice. Endurance training was able to ameliorate this, leading to a 

marked 2.9-fold improvement in exercise tolerance. Training had a modest 1.4-fold effect 

on exercise tolerance in the wildtype mice (Fig. 4A; p < 0.05). Whole-muscle COX 

enzyme activity, a well-established indicator of muscle mitochondrial content, was 

reduced in the Clock mutant control mice by 16% in comparison to the wildtype control 
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mice (Fig. 4B; p < O.OS). Endurance training produced an augmentation in COX enzyme 

activity of 12% in wildtype mice. Interestingly, endurance training reversed the 

decrement in COX activity that was evident in the Clock mutant mice, increasing the 

level by 19% (Fig. 4B; p < O.OS). As expected, a significant correlation was evident 

between whole-muscle COX enzyme activity and the time necessary to reach exhaustion 

(Fig. 4C; p < O.OS). 

Intraperitoneal glucose tolerance. To assess the ability of these animals to metabolize 

glucose, an intraperitoneal glucose tolerance test was utilized. No significant difference 

was observed in blood-glucose levels between the wildtype and Clock mutant mice. 

Endurance training resulted in 35% and 29% reductions in blood-glucose levels 60-

minutes post-injection in the wildtype and Clock mutant mice, respectively (Fig. SA; p < 

O.OS). No significant differences were observed in glucose tolerance between wildtype 

and Clock mutant mice. However, as expected, endurance training produced 20% and 

21 % improvements in glucose tolerance, respectively (Fig. SB; p < O.OS). 

SS and IMF mitochondrial respiration. To evaluate mitochondrial, state III and state IV 

respiration rates were measured in both the SS and IMF mitochondrial subfractions. 

There were no differences observed in state III or state IV respiration rates between 

wildtype and Clock mutant control mice, nor was an effect of training observed, in either 

the SS or the IMF mitochondrial subfractions (Fig. 6A and 6B). 

Mitochondrial and circadian protein expression. To determine the extent to which 

protein expression in muscle tissue differed due to mutation of the Clock gene or 

endurance training, western blotting was utilized. Clock mutant control mice exhibited a 
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marked 44% reduction in PGC-la protein content relative to the wildtype control mice. 

Endurance training had a curative effect in the Clock mutant trained mice, restoring PGC-

1 a protein content to the levels observed in the wildtype mice (Fig. 7 A; p < 0.05). 

Similarly, expression of the nuclear-encoded products Tfam and COX IV mitochondrial 

subunit were attenuated in the Clock mutant control mice by 45% and 41 %, respectively 

(Fig. 7B and 7C; p < 0.05). Endurance training did not alter COX IV protein expression 

in the present study, however it did elicit 22% and 49% increases in Tfam protein 

expression in the wildtype and Clock mutant mice, respectively (Fig. 7B and 7C). In 

contrast to COX IV, there was no effect of genotype on the protein expression of the 

mitochondrially-encoded COX I mitochondrial subunit. However, endurance training 

produced marked elevations in COX I protein expression of 41 % and 50% in the 

wildtype and Clock mutant mice, respectively (Fig. 7D; p < 0.05). The levels of CLOCK 

and BMAL 1 protein expression were not significantly altered with either mutation of the 

Clock gene or endurance training (Fig. 7E) 
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Discussion 

It has been established that skeletal muscle exhibits considerable metabolic 

plasticity in response to chronic exercise (21 ), and that the transcriptional coactivator 

PGC-1 a is a partial regulator of the exercise-induced mitochondrial adaptations that 

occur within skeletal muscle (2; 6; 8; 22; 50). Recent research has shown that PGC-la 

displays a rhythmic gene expression pattern (39), and that it may serve to assist in 

synchronization of the molecular clock in peripheral tissues (26; 33). Indeed, PGC-1 a is 

a component of an immense subset of genes that exhibit circadian rhythmicity, and which 

are centrally regulated by CLOCK (32; 57). The accumulation of evidence suggests a 

crucial role of biological rhythms in the regulation and coordination of physiological 

performance, as it has been observed that there are diurnal variations in both peak 

neuromuscular function (18; 55) and maximal oxygen uptake (53). Furthermore, 

molecular circadian rhythmicity is required to maintain functional skeletal muscle 

phenotype (3). Despite these advancements, the multifaceted relationship between 

circadian rhythms and skeletal muscle physiology remains to be fully identified. 

An important animal model for the study of circadian rhythms has been the 

development of the homozygous Clock mutant mouse. The truncated CLOCK~19 protein 

in these animals does not contain exon 19, a polypeptide segment that consists of 51 

amino acids (30). Consequently, these animals are characterized by numerous deleterious 

phenotypic traits, including accelerated body mass and lipid accumulation ( 49), altered 

gene expression (28; 41) and dysfunctional skeletal muscle structure and contractility (3). 

We observed that Clock mutant mice displayed increases in both body mass and daily 
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food consumption in comparison to their wildtype counterparts. These increases are 

likely due to alterations in the expression of energy-regulating peptides within the 

hypothalamus of Clock mutant mice ( 49). Hypothalamic injury has previously been 

correlated with an increase in food consumption, and consequently body mass. In 

addition, it has been revealed that Clock mutant mice have decreased daily energy 

expenditure, further contributing to a positive energy balance and accelerated 

accumulation of body mass ( 49). 

Clock mutant control mice exhibited a modest reduction in skeletal muscle COX 

enzyme activity, a well-established indicator of mitochondrial content, in comparison to 

the wildtype control mice. This decline is likely a consequence of the decrease in PGC-

1 a protein content that we observed in the Clock mutant control mice, as PGC-1 a has 

previously been correlated with skeletal muscle COX enzyme activity both in vitro (50) 

and in vivo (1 ). The reduction of muscle mitochondrial content was corroborated by the 

decrease in protein expression of the nuclear-encoded COX IV subunit that was evident 

in the Clock mutant mice. This decrease in mitochondrial content that was displayed in 

the Clock mutant control mice was accompanied by a marked decrease in exercise 

tolerance in these animals. However, the relatively small decrement in muscle 

mitochondrial content that was observed in the Clock mutant control mice did not parallel 

the more pronounced 50% reduction in exercise tolerance, nor could this decrease in 

performance be attributable to mitochondrial dysfunction. In contrast to the 

mitochondrial dysfunction evident in BMALl (3), PGC-la (1) and p53 (44) knockout 

mice, no alteration in state III or state IV mitochondrial respiration was evident in the 
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Clock mutant mice. Since research has revealed that mitochondrial content and function 

are closely related to endurance performance (25), this suggests that other skeletal muscle 

deficiencies evident in Clock mutant mice, including myofilament disorganization and 

diminished contractility (3), likely contributed to the impaired exercise tolerance that was 

evident in these animals. 

Chronic voluntary endurance training is a potent exercise model that induces 

physiological and biochemical adaptations within rodent skeletal muscle ( 44; 51 ). Our 

results indicate that Clock mutant mice are complicit and responsive towards a voluntary 

exercise protocol. Consistent with the data reported by Turek et al. (2005), the Clock 

mutant mice were more active during the light phase in comparison to the wildtype mice, 

although total daily locomotor activity between these genotypes was similar. Voluntary 

exercise appeared to ameliorate the accumulation of body mass in the Clock mutant mice, 

resulting in a similar body mass progression as the wildtype control animals. As 

expected, the Clock mutant control mice displayed an increased visceral fat-to-body mass 

ratio in comparison to their wildtype counterparts, and endurance training was effective 

in reversing this obese phenotype by increasing daily caloric expenditure. Despite this 

robust effect of training, the exercise model did not induce either skeletal muscle or 

cardiac hypertrophy. The decline in voluntary exercise that was observed in the Clock 

mutant mice at the end of the study protocol can potentially be attributable to their 

increased body mass and adiposity, as this would have resulted in a greater level of work 

required while exercising on the running wheel. 
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We sought to ascertain the efficacy of this voluntary endurance training model to 

elicit metabolic improvements in the skeletal muscle of Clock mutant mice. Our results 

indicate that training restored the expression of skeletal muscle PGC-1 a protein content 

to the levels observed in the wildtype mice, and produced a corresponding increase in 

muscle mitochondrial content, as evident from the increases in both COX enzyme 

activity, as well as Tfam and COX I subunit protein expression in both the wildtype and 

Clock mutant mice. Training also markedly improved exercise tolerance in the Clock 

mutant mice, despite the more modest training-induced increase in skeletal muscle 

mitochondrial content. In addition to increases in mitochondrially-mediated lipid 

catabolism ( 11 ), endurance training in mice elicits improvements in both maximal 

oxygen consumption (12) and cardiac function (27), and these adaptations likely also 

contributed to the training-induced improvement in exercise tolerance in the Clock 

mutant mice. 

A multitude of metabolic deficiencies have been observed in Clock mutant mice, 

including hyperglycemia (49) and a high-fat diet-induced propensity towards impaired 

glucose tolerance (29). Thus, we hypothesized that Clock mutant control mice would 

exhibit a corresponding attenuation in glucose tolerance in comparison to the wildtype 

control mice. Our results suggest that there are no discernible differences in glucose 

tolerance between the wildtype and Clock mutant mice fed a normal diet, as both 

experimental groups displayed an equal area under the curve of the blood-glucose graph. 

However, it is relevant to note that endurance training was effective in improving glucose 
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tolerance in both the wildtype and Clock mutant mice, and this is consistent with data that 

has been previously reported (47). 

In summary, our data suggest that the CLOCK protein is vital to maintaining 

adequate physiological levels of mitochondria within skeletal muscle. Despite the 

numerous impairments previously observed in the Clock mutant mice, the dysfunctional 

CLOCK protein does not appear to diminish the ability of these animals to adapt to 

chronic exercise. Furthermore, endurance training is an effective intervention which 

reverses the metabolic defect observed in the absence of a functional CLOCK protein. 
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Figure Legends 

Figure 1. Body mass progression and food intake. Mice (wildtype, WT; mutant, CL19; 

trained, T; untrained, UT) were weighed on a weekly basis for the duration of the study. 

Food intake was evaluated at lights on and lights off during the sixth week of the study 

for three consecutive days. A) Body mass measurements (n = 6 - 9); B) Average daily 

food intake; C) Average food intake during the light and dark circadian phases. Values 

are displayed as mean ± SE; (n = 3 - 6). tp < 0.05, wildtype trained and Clock mutant 

control relative to wildtype control. 

Figure 2. Running performance and rhythmic locomotor activity. Voluntary locomotor 

activity was recorded on a daily basis for eight weeks. A) Average daily running 

performance during each week of running; B) Average locomotor activity during the light 

and dark phases. Values are displayed as mean± SE; (n = 6 - 8). *p < 0.05, Clock mutant 

relative to wildtype. 

Figure 3. Relative skeletal muscle, cardiac and adipose tissue mass characteristics. A) 

Visceral fat depots, B) the gastrocnemius muscle complex and C) the heart were 

harvested, weighed and normalized to body mass. Values are displayed as mean ± SE; (n 

= 6 - 8). tP < 0.05, Clock mutant relative to wildtype; *p. < 0.05, trained relative to 

control. 
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Figure 4. Exercise tolerance and skeletal muscle mitochondrial content. Mice were 

subjected to a treadmill test to determine exercise tolerance, and the time necessary to 

reach exhaustion was correlated with skeletal muscle COX enzyme activity. A) Exercise 

tolerance (n = 5 - 8); B) Gastrocnemius COX enzyme activity (n = 5 - 1 O); C) The 

correlation (r = 0.63; p < 0.05) between exercise tolerance and skeletal muscle COX 

enzyme activity based on individual animal values and represented as the means of each 

group. Values are displayed as mean± SE. tP < 0.05, Clock mutant relative to wildtype; 

*p < 0.05, trained relative to control. 

Figure 5. Intraperitoneal glucose tolerance. Glucose tolerance was assessed utilizing the 

intraperitoneal glucose tolerance test. A) Changes in blood glucose; B) Area under the· 

curve of the blood glucose graph. Values are displayed as mean ± SE; (n = 6 - 8). *p < 

0.05, effect of training in both the wildtype and Clock mutant mice. 

Figure 6. Mitochondrial respiration in SS and IMF subfractions. Mitochondrial 

respiration was measured in isolated A) SS and B) IMF subfractions to evaluate 

mitochondrial function. Values are displayed as mean± SE (n = 4 - 8). 

Figure 7. Metabolic, mitochondrial and circadian rhythm protein expression in muscle. 

Representative western blot images and quantifications of A) PGC-1 a, B) Tfam, C) COX 

IV, D) COX I and E) CLOCK and BMALl. Values are displayed as mean± SE (n = 6). 

tp < 0.05, Clock mutant relative to wildtype; *p < 0.05, trained relative to control. 
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SUMMARY AND FUTURE WORK 
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The results obtained from this thesis are important for the understanding of the 

interaction between biological rhythms and skeletal muscle physiology, a novel avenue of 

research that has not been extensively explored. This study utilized circadian locomotor 

output cycles kaput (CLOCK) mutant mice, which possess a truncated and dysfunctional 

CLOCK~19 protein, resulting in numerous deleterious phenotypes. Previous studies 

concerning these Clock mutant animals have revealed several phenotypic abnormalities, 

including altered sleep homeostasis, disrupted gene expression, obesity and metabolic 

syndrome, impaired glucose tolerance, and attenuated skeletal muscle contractility and 

myofilament organization. However, no research has been devoted to discerning the 

extent whereby these maladaptive phenotypes can potentially be restored through 

endurance training. 

Therefore, this thesis sought to investigate two distinct objectives: 1) to assess the 

effects of the Clock mutation on specific indices of mitochondrial and systemic 

physiology, and 2) to evaluate the results of a chronic voluntary endurance training 

protocol on eliciting adaptations that restore functionality to these mutant animals. Our 

results indicate that skeletal muscle mitochondrial content is reduced in Clock mutant 

mice, although no mitochondrial dysfunction is observed. Furthermore, endurance 

training elicits numerous improvements in these mutant animals that culminate in a 

dramatic improvement in exercise tolerance. Our results provide evidence that the 

coordination of biological timing is intimately involved in the regulation of physiological 

properties within peripheral tissues. 
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Given the present findings, future studies should focus on the following avenues: 

1. Further exploring the ramifications of the Clock mutation on mitochondrial 

physiology within skeletal muscle. Specifically, indices such as mitochondrial 

protein import and pore kinetics should be assessed in both subsarcolemmal 

(SS) and intermyofibrillar (IMF) isolated mitochondrial subfractions, as well 

as mitochondrial membrane potential as determined through flow cytometry. 

2. Manipulating the expression of a metabolic sensor to investigate the biological 

clock within skeletal muscle. The activity of CLOCK and the histone 

deacetylase sirtuin 1 (SirTl) exert opposite effects on circadian gene 

transcription within the central autoregulatory feedback loop. A hybrid 

mutant-knockout (CLOCKA19
; SirTl-1

) animal model sacrificed at different 

time points would provide insight regarding peripheral gene expression. 

3. Extensively profiling diurnal changes in mitochondrial content by assessing 

the interaction between mitochondrial biogenesis and degradation throughout 

the light-dark cycle in both wildtype and Clock mutant mice. 

t. Harvest the gastrocnemius muscle and isolate nuclear and 

cytoplasmic cell fractions. Harvest and freeze the contralateral 

gastrocnemius muscle. 

11. Measure protein expression of components involved m 

transcriptional coactivation during mitochondrial biogenesis in the 

nuclear cell fraction, including peroxisome proliferator-activated 
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receptor-y coactivator 1-a (PGC-1 a) and nuclear respiratory 

factors (NRF)-1 and -2. 

iii. Measure protein expression of components involved in autophagy 

and mitochondrial degradation in the cytoplasmic cell fractions, 

including microtubule-associated proteins lA-lB light chain 3A 

(LC3), autophagy-related protein 7 (ATG7) and phosphatase and 

tensin homolog-induced putative kinase 1 (PINKl ). 
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APPENDIX A 

DATA TABLES AND STATISTICAL ANALYSES 
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Table lA: Body Mass Progression (Week 0) 

1 28.6 27.8 31.5 29.4 

2 29.3 28.5 32.3 28.5 

3 29 29.3 30.3 30.5 

4 26.9 27.1 30.5 29.6 

5 29.4 27.1 30.2 31.5 

6 27.9 27.7 30.4 30.8 

7 29 30.4 31.9 

8 27.6 33.3 30.4 

9 28 31.6 

Interaction 0.6306 NS No 
Training 0.1719 NS No 
Genotype p < 0.0001 *** Yes 
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Table lA: Body Mass Progression (Week 1- Week 4) 

32 28.2 33.4 28.8 32.2 28.3 35.3 28.5 

2 31.6 28.6 35.6 28.6 31.8 28.6 38.3 29.l 

3 29.4 28.6 32.2 30.9 29.6 28.6 34.9 31 

4 28.1 27.5 32.3 29.4 28.1 27.7 35.2 30.4 

5 30.3 27.8 32.8 29.4 30.8 28.2 34.8 30.3 

6 30.7 27.8 33.9 29.1 31.2 28.7 35.3 29.7 

7 30.1 32.9 29.3 31.4 34.5 30.2 

8 28.3 35.9 30.l 28.9 37.3 30.3 

9 28.6 34.5 28.8 36.8 

1 32.5 29.5 35.3 29.1 34.0 29.4 35.4 29.8 

2 31.9 29.2 38.3 30.1 32.9 28.7 39.2 30.7 
3 29.6 30 34.9 32.6 30.0 29.5 32.6 33.6 
4 28.2 28.4 35.2 31.8 28.4 28.6 37.3 32.7 
5 31.3 29.3 34.8 29.5 31.9 29.1 34.2 30.7 
6 31.6 29.9 35.3 30.3 32.0 29.3 35.8 30.7 
7 32.7 34.5 31.9 34.9 35.6 32.9 
8 29.5 37.3 30.9 31.6 38.6 31.8 
9 29 36.8 31.1 36 
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Table lA: Body Mass Progression (Week 5 - Week 8) 

1 32.5 29.6 41.4 30.3 33.6 41.5 
2 34.3 28.7 36.7 31.8 33 29.8 38 32.8 

3 31.2 29.8 33.7 33.8 31.5 29.9 34.6 33.3 

4 31 28.2 35.8 32.8 32.2 28.4 36.6 35 

5 28.3 29.3 37.4 31.2 29.9 30.5 38.6 31.7 

6 31.9 30.0 36.6 31.4 32.4 29.8 37.4 32.l 

7 32.2 37 33 32.9 37.2 33.1 

8 31.8 40.6 32 32.5 40.5 32.6 

9 36 37.6 36 36.5 

1 36.5 30 42.8 31.8 37.3 42.8 33.9 
2 31.8 29.2 37.8 34 31.9 29.5 37.3 34.8 

3 33.9 29.5 34.6 33.6 33.5 30.7 35 34.9 
4 33 28.3 35.9 35.6 33.9 28.5 36.3 37.4 
5 31.9 30.7 35.5 32.2 32.5 32.2 38.7 32.9 
6 36 31.3 37.3 32.9 36.3 31.8 37.4 33.7 

7 35.l 37 33.7 31.4 38 34.1 
8 33.2 40.5 33.6 33.5 41.5 34.1 

9 30.5 36.3 35.6 
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Table lA: Body Mass Progression (Week 9) 

37.7 31.4 43.6 34.1 

2 33.7 30.1 38.3 34.5 

3 35.4 30.7 35.9 36.3 

4 37.9 28.9 36.2 37.l 

5 33.2 32.4 39.5 33.8 

6 34.8 33.4 38.3 34.1 

7 32.3 39.2 34.9 
8 35 42.4 34.8 

9 37.4 

Interaction 0.9020 NS No 
Training p < 0.0001 *** Yes 
Genotype p < 0.0001 *** Yes 
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Table lB: Daily Food Intake 

1.8 3.7 3.55 5 

2 2.6 3.9 5.075 4.7 

3 2.3 4.6 3.15 5.4 

4 2.4 3.15 5.2 

5 4.7 3.7 

6 4.2 

Interaction 0.5895 NS No 

Training 0.0013 ** Yes 
Genotype 0.0005 *** Yes 

p < 0.05 

Mutant 1.158 2.623 p < 0.05 * 
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Table 1 C: Circadian Cycle Food Intake 

2 0.4 2.2 1.3 2.6 1.65 3.4 1.6 3.1 

3 0.5 1.8 0.6 4 2.3 0.9 2.5 2.9 

4 0.4 2 1.2 2.0 2 .2 

5 0.7 4 1.425 2.3 

6 1.1 

Interaction 0.246 NS No 

Circadian Cycle p < 0.0001 *** Yes 

Training 0.0073 ** Yes 

WT-T 2.217 7.152 p < 0.001 *** 

Interaction 0.4666 NS No 

Circadian Cycle 0.0032 ** Yes 
Genotype 0.0420 * Yes 

Interaction 0.0876 NS No 
Circadian Cycle p < 0.0001 *** Yes 
Tr.+ Genotype p < 0.0001 *** Yes 
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Table 2A: Daily Running Performance (Week 1 - Week 4) 

1 1.59 5.97 7.12 9.88 6.46 11.04 5.68 11.93 
2 3.08 4.28 8.94 6.73 8.55 6.55 10.87 6.82 
3 4.15 3.73 8.47 6.29 7.47 5.69 6.85 4.59 
4 2.85 6.21 5.12 7.41 4.24 6.94 3.84 6.90 
5 3.06 1.61 6.07 4.84 7.04 7.82 4.90 6.41 
6 3.27 3.25 5.16 4.14 4.67 4.11 5.95 2.92 
7 1.81 4.34 4.67 
8 2.86 5.12 6.89 

P-value 0.3682 
NS 

p < 0.05 No 

P-value 0.4765 
NS 

p < 0.05 No 

P-value 0.7750 
NS 

p < 0.05 No 

P-value 0.9024 
NS 

<0.05 No 
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Table 2A: Daily Running Performance (Week 5 - Week 8) 

7.09 10.97 6.07 10.02 6.48 7.60 5.63 5.35 

2 9.02 6.59 9.85 5.69 11.01 3.32 11.41 3.20 

3 7.47 4.16 7.08 3.53 6.18 1.69 5.96 1.87 

4 4.95 5.82 4.87 4.54 4.50 3.32 6.79 3.11 

5 6.98 6.01 7.23 4.69 5.43 4.74 4.89 5.37 

6 5.45 2.74 4.07 2.36 3.44 3.22 3.23 2.32 

7 3.55 3.29 3.68 3.53 

8 5.98 4.89 4.06 3.81 

0.3615 
NS 

p < 0.05 No 

P-value 0.1920 
NS 

p < 0.05 No 

P-value 0.0784 
NS 
No 

P-value 0.0278 

* 
P < 0.05 Yes 
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Table 2B: Circadian Cycle Locomotor Activity 

1 99.81 

2 0.46 99.54 61.70 

3 0.09 99.91 10.75 89.25 

4 0.73 99.27 13.15 86.85 

5 0.11 99.89 17.33 82.67 

6 0.06 99.94 11.35 88.65 

7 8.75 91.25 

8 19.76 80.24 

Interaction p < 0.0001 *** 
Circadian Cycle p < 0.0001 *** Yes 

Genotype 1.0000 NS No 

Mutant 68.28 17.94 p < 0.001 *** 
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Table 3A: Visceral Fat Mass (Normalized to Body Mass) 

21.15 15.18 29.35 22.39 
2 27.49 16.03 59.78 21.81 

3 25.14 21.97 56.42 32.89 
4 22.39 20.16 41.15 25.73 

5 27.49 21.02 41.87 35.09 
6 26.21 25.78 38.77 35.55 
7 31.45 33.69 28.06 
8 16.34 20.78 

Interaction 0.1416 No 
Genotype 0.0036 ** Yes 

Training 0.0002 *** Yes 

p > 0.05 NS 
Mutant -13.13 3.469 p < 0.01 ** 
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Table 3B: Gastrocnemius Muscle Mass (Normalized to Body Mass) 

5.03 5.08 5.21 5.16 
2 4.47 5.48 4.70 5.71 
3 5.13 5.42 5.11 5.31 
4 4.64 5.27 4.70 5.36 
5 4.05 5.28 4.79 5.53 
6 5.16 5.26 5.42 5.54 
7 4.96 5.58 5.62 
8 5.34 6.08 5.53 

Interaction 0.4965 NS No 
Genotype 0.2101 NS No 
Training 0.1551 NS No 



106 

Table 3C: Heart Mass (Normalized to Body Mass) 

1 4.21 3.56 3.82 4.48 

2 3.88 4.02 4.31 4.79 
3 3.97 3.87 3.69 4.28 
4 4.21 4.30 3.63 3.78 
5 3.34 3.98 3.66 3.72 
6 3.80 4.40 3.87 4.32 
7 3.62 3.54 4.32 
8 4.86 4.92 4.01 

Interaction 0.4185 NS No 
Genotype 0.2999 NS No 
Training 0.6580 NS No 
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Table 4B: Exercise Tolerance 

80 73 28 60 

2 74 101 29 81 

3 44 100 19 99 
4 78 68 41 94 

5 48 97 52 103 

6 44 23 93 

7 24 92 

8 29 81 

Interaction 0.0112 * 
Genotype p < 0.0001 *** Yes 
Training 0.0122 * Yes 

Mutant 57.38 8.036 p < 0.001 *** 



108 

Table 4C: COX Enzyme Activity 

24.47 24.12 17.89 17.80 
2 20.70 23.47 17.10 18.53 

3 18.69 23.33 18.46 20.02 
4 23.34 24.38 19.02 23.10 
5 22.80 21.30 19.57 20.09 

6 16.53 17.68 22.04 
7 21.81 17.52 23.85 
8 21.49 14.27 23.20 
9 18.40 17.65 
10 20.99 

Interaction 0.5305 No 
Genotype 0.0005 *** Yes 
Training 0.0009 *** Yes 

Mutant p < 0.01 ** 
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Table 4D: Exercise Tolerance + COX Enzyme Activity Correlation 

1 80 24.47 73 24.12 28 17.89 60 17.80 

2 74 20.70 101 23.47 29 17.10 81 18.53 

3 44 18.69 100 23.33 19 18.46 99 20.02 

4 78 23.34 68 24.38 41 19.02 94 23.10 

5 48 22.80 97 21.30 52 19.57 103 20.09 

6 44 16.53 23 17.68 93 22.04 

7 24 17.52 92 23.85 

8 29 14.27 81 23.20 

9 

10 

Slope 5.470 ± 1.372 
Y-intercept -48.05 ± 28.68 

r 0.6288 
P-Value 0.0005 

Is slope significantly non-zero? Yes 
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Table 5A: Glucose Tolerance 

9.1 9.4 6.9 9.3 

2 8.1 9.6 9.6 11.7 

3 8.1 8.8 8.2 9.1 

4 9.4 9.2 8.8 9.1 

5 9.9 10.1 8.4 9.2 

6 9.3 9.4 10 8.8 
7 8.8 8.7 

8 6.2 10.2 

CLAI9_T 

1 23.9 17.8 15.2 21.3 22.9 18.9 28.6 

2 27.7 20.8 22.7 21 25.6 24.5 23.4 23.5 

3 28.5 20.9 16.8 20.6 30.6 20.2 22.3 21.6 

4 26.3 19.3 18.6 21 22.3 24.5 20.8 22.3 

5 20.1 21.2 23.9 18.8 19.7 22.2 27.4 22.8 

6 23.6 18 16.6 20.5 21 25.6 24.6 16.2 

7 22.2 18.2 27.8 25.3 

8 30.2 16.5 29.8 

21.1 15.4 23.9 20.3 11 10.6 7.4 
2 21.9 15.3 24.4 18.8 9.7 12.3 11 12.8 
3 28.8 15.l 21.5 13.5 23.9 10.3 11.8 12.3 
4 21.1 11.9 22.8 17.9 10.4 10.9 8.7 12.2 
5 19.6 15.2 24.9 12.6 12.3 14.2 18 9.5 
6 19.8 15.2 19.4 10.4 12.4 13 13.3 5.3 
7 22.9 25.2 14.9 11.1 
8 19.1 8.9 10.5 7.2 
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Table SB: Blood-Glucose A.U.C. 

2221 1774 2405 2324 
2 2328 1993 2397 2162 
3 3189 1833 2212 1840 
4 2228 1759 2438 2057 
5 2070 2003 2699 1716 
6 2198 1991 2225 1430 
7 2502 2375 
8 2351 

Interaction 0.9442 NS No 
Training 0.0002 *** Yes 

Genotype 0.8396 NS No 
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Table 6A: SS Mitochondrial Respiration 

1 31.49 39.53 42.90 31.98 

2 8.47 31.82 7.04 30.23 12.09 51.01 10.1 32.62 

3 12.69 38.80 8.00 25.78 6.79 21.69 7.19 50.52 

4 13.13 41.61 7.28 31.97 6.01 55.40 5.25 50.92 

5 7.55 33.50 9.42 42.81 7.9 48.35 

6 16.28 52.19 6.11 47.34 

Interaction 0.3545 NS No 
Training 0.1723 NS No 
Genotype 0.6843 NS No 

Interaction 0.7034 NS No 
Training 0.5762 NS No 
Genotype 0.2209 NS No 
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Table 6B: IMF Mitochondrial Respiration 

54.73 54.05 55199 43.41 

2 13.38 59.73 16.31 75.68 15.18 73;17 14.33 45.96 

3 14.01 54.59 16.80 51.16 15.49 91.89 17.6 92.29 

4 12.04 72.91 27.21 96.33 11.42 59.58 12.35 45.72 

5 19.73 91.82 16.01 52.20 15.28 75.05 26.21 90.15 

6 17.38 57.02 13.53 51.59 18.57 57.25 

7 12.67 60.M 
8 16.59 73.44 

Interaction 0.8185 NS No 
Training 0.2380 NS No 
Genotype 0.7886 NS No 

Interaction 0.8428 NS No 
Training 0.6009 NS No 
Genotype 0.9429 NS No 
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Table 7A: PGC-la Protein Expression 

0.2155 0.2883 0.2343 0.3462 

2 0.2763 0.2797 0.1256 0.0641 

3 0.2145 0.2554 0.1361 0.3721 

4 0.3620 0.3085 0.2779 0.1557 

5 0.7016 0.7419 0.2894 0.5977 

6 0.5851 0.6972 0.2786 0.6338 

Interaction 0.5638 NS No 
Training 0.2715 NS No 
Genotype 0.1709 NS No 
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Table 7B: Tfam Protein Expression 

1 0.279 0.444 0.134 0.309 

2 0.202 0.241 0.176 0.273 

3 0.232 0.336 0.183 0.191 

4 0.171 0.263 0.201 0.184 

5 0.389 0.273 0.144 0.301 

6 0.221 0.261 0.179 0.256 

Interaction 0.5747 NS No 
Training 0.0135 * Yes 
Genotype 0.0180 * Yes 
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Table 7C: COX IV Protein Expression 

0.4633 0.6357 0.3866 0.6138 

2 0.7009 0.6831 0.5652 0.3030 

3 0.3237 0.2578 0.1898 0.5619 

4 0.5798 0.5266 0.2769 0.5848 

5 0.9291 1.2495 0.4590 0.5340 

6 0.9885 0.9808 0.4561 0.8498 

Interaction 0.5298 NS No 
Training 0.2361 NS No 

Genotype 0.0467 * Yes 



117 

Table 7D: COX I Protein Expression 

0.2603 0.6316 0.2808 0.5050 

2 0.4870 0.7368 0.5652 0.3030 

3 0.2253 0.4414 0.1898 0.5619 

4 0.3148 0.2996 0.2769 0.5848 

5 0.4411 0.6596 0.4590 0.5340 

6 0.8333 0.9226 0.4561 0.8498 -{US 

Interaction 0.5237 NS 
Training 0.0277 * Yes 
Genotype 0.9597 NS No 
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Fig. Sl 

Figure Sl. Circadian rhythm protein expression in muscle. Representative western blot 

quantifications of A) CLOCK and B) BMAL 1. Values are displayed as mean ± SE (n = 

6). 
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Fig. S4 

30 

Figure S4. Exercise tolerance and mitochondrial content. Individual animal values 

displaying the correlation (r = 0.63; p < 0.05) between exercise tolerance and skeletal 

muscle COX enzyme activity. Values are displayed as individual data points (n = 27). 
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Table SlA: CLOCK Protein Expression 

0.5734 0.5821 0.9463 0.5799 

2 0.5985 0.5904 0.5582 0.6589 

3 0.7487 0.4223 0.9936 0.5393 

4 0.3980 0.5429 0.4276 0.5430 

5 1.2132 1.1314 0.8538 0.7464 

6 0.8679 1.5180 0.7535 1.1420 

Interaction 0.6379 NS No 
Training 0.9661 NS No 
Genotype 0.7683 NS No 
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Table SIB: BMALl Protein Expression 

1.5411 1.2473 1.8844 1.8622 

2 1.2774 1.8478 0.9922 1.6063 

3 0.1390 0.0773 0.1370 0.1273 

4 0.1333 0.1036 0.0563 0.0617 

5 0.4153 0.8880 0.5746 0.5891 

6 0.5999 0.6108 0.5061 0.4624 

Interaction 0.9740 NS No 
Training 0.7175 NS No 
Genotype 0.9950 NS No 
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Table 84: Exercise Tolerance+ COX Enzyme Activity Correlation 

2 23 17.678 

3 24 17.516 

4 28 17.893 

5 29 17.099 

6 29 14.267 

7 41 19.023 

8 44 18.687 

9 44 16.534 

10 48 22.804 

11 52 19.575 

12 60 17.799 

13 68 24.380 

14 73 24.122 

15 74 20.705 

16 78 23.337 

17 80 24.472 

18 81 18.525 

19 81 23.199 

20 92 23.853 

21 93 22.037 

22 94 23.100 

23 97 21.297 

24 99 20.019 

25 100 23.327 

26 101 23.467 

27 103 20.086 

Slope 5.470 ± 1.372 
Y-intercept · -48.05 ± 28.68 

r 0.6288 
P-Value 0.0005 

Is slope significantly non-zero? Yes 
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Rationale 

Recent literature has revealed that PGC-1 a, a transcriptional coactivator that 

induces mitochondrial biogenesis, exhibits diurnal oscillations at the mRNA level within 

skeletal muscle. This pilot study sought to ascertain if the expression pattern of PGC-1 a 

was evident at the protein level within rodent skeletal muscle, and if there were any 

apparent downstream differences in mitochondrial content throughout the day. 

Experimental Design 

Following 10- 14 days of entrainment, male Sprague-Dawley rats were sacrificed 

at four distinct time points throughout the circadian cycle (CT 0, CT 6, CT 12, CT 18). 

The soleus muscle was harvested, and nuclear cell fractions were isolated from these 

tissues. The contralateral soleus muscle was removed, frozen and pulverized into powder. 

COX enzyme activity was then performed on these frozen tissues. 
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Fig. S2 
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Figure S2. Diurnal initiation of mitochondrial biogenesis. A) Representative western 

blot images and quantifications of PGC-1 a in nuclear cell extracts (n = 6); B) COX 

enzyme activity (n = 5 - 6). Values are displayed as mean± SE. *p < 0.05, CT 0 vs. CT 

18. 
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Fig. S3 

Figure S3. Diurnal expression of transcriptional coactivators for mitochondrial 

biogenesis. Representative western blot images and quantifications of A) PGC-la and B) 

Tfam (n= 3). 
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Results 

No differences in temporal protein expression of the transcriptional coactivator 

PGC-la. was evident in isolated nuclear cell fractions from the soleus muscle (Fig. S2A). 

Despite this result, soleus mitochondrial content as inferred from COX enzyme activity 

appeared to differ between CT 0 and CT 18 by 19% (Fig. S2B; p < 0.05). Whole-muscle 

protein expression of both PGC-1 a. and Tfam did not exhibit any temporal alterations 

(Fig. S3). 

Discussion 

It was initially hypothesized that PGC-1 a. would exhibit robust temporal changes 

in protein expression within the isolated nuclear cell fractions, however possibly due to 

insufficient sample size, as well as inter-sample variation, this was not evident. PGC-1 a. 

has been shown to be a CCG, as well as a potent inducer of mitochondrial biogenesis, and 

therefore it was expected to see diurnal rhythms of COX enzyme activity. It is possible 

that temporal protein changes are not robust enough to be detected at the whole-muscle 

level, therefore explaining the results observed in both PGC-1 a. and Tfam. 
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Table S2A: Circadian Nuclear PGC-la Protein Expression 

0.882 0.351 0.224 0.15 
2 0.34 0.344 0.895 0.439 

3 0.363 0.681 0.485 0.334 
4 0.482 1.054 0.194 0.372 
5 0.435 0.661 0.256 0.451 

6 0.3720 0.522 0.882 0.301 

P-value 0.3382 
NS 
No 
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Table S2B: Circadian COX Enzyme Activity 

1 15.79 17.85 21.07 21.43 

2 15.76 14.19 18.79 19.94 

3 18.15 18.05 19.55 18.7 
4 15.94 13.29 19.57 21.23 

5 15.79 19.82 17.33 17.23 

6 18.08 18.79 18.07 

P-value 0.0140 

* 
Yes 

CTO vs. CT6 -0.594 0.5558 p > 0.05 NS 
CT 0 vs. CT 12 -2.897 2.711 p > 0.05 NS 
CT 0 vs. CT 18 -3.147 2.945 p < 0.05 * 
CT 6 vs. CT 12 -2.303 2.26 p > 0.05 NS 
CT 6 vs. CT 18 -2.553 2.506 p > 0.05 NS 

CT 12 vs. CT 18 -0.250 0.2453 P> 0.05 NS 
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Table S3A: Circadian Whole-Muscle PGC-la Protein Expression 

P-value 0.2126 
NS 

P<0.05 No 
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Table S3B: Circadian Whole-Muscle Tfam Protein Expression 

P-value 0.9384 
NS 

p < 0.05 No 
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Mitochondrial Isolation (Muscle Tissue) 

Reagents 

All buffers are set to pH 7.4 and stored at 4 °C 

- Buffer 1 +ATP - Buffer 1 
lOOmMKCl 
5mMMgS04 
5mMEDTA 

Add 1 mM ATP to Buffer 1 

50 mM Tris base 

- Buffer 2 
lOOmMKCl 
5mMMgS04 
5mMEGTA 
50 mM Tris base 
1 mMATP 

- Nagarse protease (Sigma, P-4 789) 
10 mg/ml in Buffer 2 
Make fresh for each isolation, keep on ice 

Procedure 

- Resuspension medium 
100 mMKCl 
lOmMMOPS 
0.2%BSA 

1. Remove muscle tissue from the animal, and put it in a beaker containing 5 ml 
Buffer 1, on ice immediately. 

2. Place muscle tissue on a watch glass that is also on ice and trim away fat and 
connective tissue. Proceed to thoroughly mince the muscle sample with forceps 
and scissors, until no large pieces are remaining. 

3. Place the minced tissue in a plastic centrifuge tube and record the exact weight of 
tissue. 

4. Add a 10-fold dilution of Buffer 1 +ATP to the tube. 
5. Homogenize the samples using the Ultra-Turrax polytron with 40% power output 

and 10 s exposure time. Rinse the shaft with 0.5 ml of Buffer 1 + ATP to help 
minimize sample loss. 

6. Using a Beckman JA 25.50 rotor, spin the homogenate at a centrifuge setting of 
800 g for 10 min. This step divides the IMF and SS mitochondrial subfractions. 
The supemate will contain the SS mitochondria and the pellet will contain the 
IMF mitochondria. 
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SS Mitochondrial Isolation 

7. Filter the supemate through a single layer of cheesecloth into a second set of 50 
ml plastic centrifuge tubes. 

8. Spin tubes at 9000 g for 10 min. Upon completion of the spin discard the 
supemate and gently resuspend the pellet in 3.5 ml of Buffer 1 +ATP. Since the 
mitochondria are easily damaged, it is important that the resuspension of the 
pellet is done carefully. 

9. Repeat the centifugation of the previous step (9000 g for 10 min) and discard the 
supemate. 

10. Resuspend the pellet in 200 µl of Resuspension medium, being gentle so as to 
prevent damage to the SS mitochondria. Some extra time is needed during this 
final resuspension to ensure the SS pellet is completely resuspended. 

11. Keep the SS samples on ice while proceeding to islolate the IMF subfraction. 

IMF Mitochondrial Isolation 

7. Gently resuspend the pellet (from step 6) in a 10-fold dilution of Buffer 1 +ATP 
using a teflon pestle. 

8. Using the Ultra-Turrax polytron set at 40% power output, polytron the 
resuspended pellet for 10 s. Rinse the shaft with 0.5 ml of Buffer 1 +ATP. 

9. Spin at 800 g for 10 min and discard the resulting supemate. 
10. Resuspend the pellet in a 10-fold dilution of Buffer 2 using a teflon pestle. 
11. Add the appropriate amount of nagarse. The calculation for the appropriate 

volume is 0.025 ml/g of tissue. Mix gently and let stand exactly 5 min. 
12. Dilute the nagarse by adding 20 ml of Buffer 2. 
13. Spin the diluted samples at 5000 g for 5 min and discard the resulting supemate. 
14. Resuspend the pellet in a 10-fold dilution of Buffer 2. Gentle resuspension is with 

a teflon pestle. 
15. Spin the samples at 800 g for 10 min. Upon the completion of the spin, the 

supemate is poured into another set of 50 ml plastic tubes (on ice), and the pellet 
is discarded. 

16. Spin the supemate at 9000 g for 10 min. The supemate is discarded and the pellet 
is resuspended in 3.5 ml of Buffer 2. 

17. Spin samples at 9000 g for 10 min and discard the supemate. 
18. Gently resuspend the pellet in 300 µl of Resuspension medium. 



Reagents 

- Extraction buffer 
100 mM Na/K P04 
2mMEDTA 
pH to 7.2 

- 5X Bradford dye 

Bradford Total Protein Assay 

250 ml 85% Phosphoric acid 
250 ml 100% Ethanol 
500 ml ddH20 
0.235 g Coomassie Brilliant Blue G250 

- Bovine Serum Albumin (BSA) 
2 mg/ml in ddH20 

Procedure 

1. Prepare the test tubes allowing for duplicates of each sample. 
2. Add 95 µl of extraction buffer to each tube. 
3. Add 5 µl of sample to each tube containing the extraction buffer. 
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4. To generate the standard curve, add the following volumes (in µl) of extraction 
buffer: BSA, each in separate tubes - 100:0, 95:5, 90:10, 85:15, 80:20, 75:25. 

5. Pipette 5 ml of 1 X Bradford reagent into each tube and mix by gentle vortexing. 
6. In duplicate, add 0.2 ml of each test tube to 96 well plate wells. 
7. Measure absorbance of wells at 595 nm with a microplate reader. 
8. Calculate the protein concentration of each sample using the standard curve. 



SDS Polyacrylamide Gel Electrophoresis (SDS-P AGE) 

Reagents 

- Polyacrylamide solution 
30% (w/v) Acrylamide 
0.8% (w/v) Bisacrylamide 
Filter and store at 4 °C 

- Ammonium Persulfate (APS) 
10% (w/v) in ddH20 
Store at 4 °C 

- Over Tris buffer 
1 M Tris•HCl 
Spatula tip of Bromophenol Blue 
pH to 6.8, store at 4 °C 

- 15% Acrylamide separating gel 
5 ml 30% acrylamide 
1.8 ml ddH20 
3 ml Under Tris 
0.1 ml SDS 
0.1 ml APS 
0.01 ml TEMED 

- 3% Acrylamide stacking gel 
0.5 ml 30% Acrylamide 
3.75 ml ddH20 
0.625 ml Over Tris 
0.05 ml SDS 
0.05 ml APS 
7.5 µl TEMED 

- Sample dye 

- Under Tris buffer 
1 M Tris•HCI 
pH to 8.8, store at 4 °C 

- Sodium Dodecyl Sulfate (SDS) 
10% (w/v) in ddH20 

- TEMED (Sigma, T-9281) 
Store at 4 °C 

- Electrophoresis buffer 
25 mM Tris 
192 mM Glycine 
0.1 % (w/v) SDS 
pH to 8.3 

- L ysis buff er 
10% (w/v) glycerol 
2.3% (w/v) SDS 
62.5 mM Tris• HCl 
pH to 6.8 
add 5% ~-mercaptoethanol 

40% (w/v) sucrose in electrophoresis buffer 
spatula tip of Bromophenol Blue 
store at -20 °C 

Procedure 
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1. Prepare the separating gel solution and pour it between the glass plates of a gel 
apparatus assembly. 

2. Add 100 µl of Tert-amyl alcohol overlay and allow 30 min for gel polymerization. 
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3. Prepare the stacking gel. 
4. Once the separating gel has polymerized, pour off the Tert-amyl alcohol, insert 

the lane comb, and pipette the stacking gel around the comb. Allow 30 min for the 
stacking gel to polymerize. 

5. Tum on the block heater to 95 °C. 
6. Mix each sample with a 1: 1 volume of lysis buffer. 
7. Add 7 µl of sample dye to each sample and mix by tapping. 
8. Denature the samples at 95 °C for 5 min, followed by a quick cool on ice and a 

brief spin. 
9. Remove the comb and place the gel in the electrophoresis chamber. Fill the 

chamber with electrophoresis buffer. 
10. Add 10 µl of protein molecular weight marker to the first lane. 
11. Load the samples into the remaining lanes by slowly ejecting the entire sample 

volume at the bottom of the lane. 
12. Run the gel for 2 hr at 120 V. 
13. Once the Bromophenol Blue band has reached the bottom of the gel, turn off the 

power supply and remove the gel. The gel slab is ready for electroblotting (see 
Western Blot). 



Reagents 

- Transfer buffer 
0.025 M Tris•HCl 
0.15 M Glycine 
20% Methanol 
pH to 8.3 

- Ponceau stain (Sigma) 

I' 

Western Blot 

- Wash buffer 
10 mM Tris•HCI 
lOOmMNaCl 
0.1%TWEEN 
pH to 7.5 

- Blocking buffer 
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Dilute with 150 ml ddH20 % skim milk powder in wash buffer 

- Enhanced chemiluminescence (ECL) fluid (Santa Cruz) 
Store at 4 °C 

Procedure 

1. Remove the gel from the electrophoresis chamber, and separate the glass plates 
from the gel slab, keeping the gel moist at all times with transfer buffer. 

2. Place three sheets of Whatman paper soaked in transfer buffer onto the plastic 
sandwich, with a scrubbie. These sheets must be cut to the exact dimensions of 
the gel slab. 

3. Carefully place the gel on top of the Whatman paper. 
4. Cut a piece of nitrocellulose membrane to the exact specifications of the gel, soak 

it in ddH20, and place it on top of the gel slab. 
5. Stack three more sheets of transfer buffer-soaked Whatman paper (same 

dimensions as gel) on top of membrane. Roll out any air bubbles with a glass rod. 
6. Secure the top of the sandwich with a scrubbie soaked in transfer buffer. 
7. Transfer the proteins from the gel to the membrane for 1.5 hours at 120V. 
8. Once the transfer is complete, place the membrane in Ponceau stain and gently 

agitate. Pour off the stain and rinse with ddH20 until the protein bands on the blot 
are revealed. 

9. Wrap the membrane in plastic wrap and scan. 
10. Remove the membrane from the wrap and rinse off the stain with wash buffer. 
11. Pour off the wash buffer and block the membrane in blocking solution on a shaker 

for 1 hour at room temperature. 
12. Incubate the membrane with primary antibody diluted in blocking buffer 

overnight at 4 °C. This is done by placing the membrane face-down on a pool of 
the antibody solution. 

13. The following morning, wash the membrane with rotation 3 X 5 min in wash 
buffer. 
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14. Incubate the membrane with the appropriate secondary antibody for 1 hr at room 
temperature. This is done by laying the membrane face-up and pipetting the 
secondary antibody solution on top of it. 

15. Wash the membrane with rotation 3 X 5 min in wash buffer. 
16. In the dark room, apply ECL fluids (1: 1) to the membrane for 2 min. 
1 7. Remove the membrane from the ECL fluid, wrap the membrane in plastic wrap, 

turn off the lights, and expose the blot to film. 
18. Develop until bands are visualized and place the film into fixer fluid for 2 min. 



Cytochrome c Oxidase (COX) Enzyme Activity Assay 

Reagents 

- 100 mM K.P04 buffer 
0.1 MKH2P04 
0.1 M K2HP04•3H20 
Mix equal portions of above, pH to 7 .0 

- 10 mM K.P04 buffer 
Dilute the 100 mM KP04 buffer 1:10 with ddH20. 

- Test solution (prepare in tinted jar) 
20 mg horse heart cytochrome c (Sigma, C-2506) 
1 ml 10 mM KP04 buffer 
40 µl sodium dithionite 
8 ml ddH20 
1 ml 100 mM KP04 buffer 

- Muscle extraction buffer 
100 mM Na/K P04 
2mMEDTA 
pH to 7.2 

Procedure 
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1. Add "'5-10 µg of frozen, powdered muscle tissue to 10-200 µl (to obtain a 80-fold 
dilution) of extraction buffer in an Eppendorf tube. 

2. Add a micro stir bar to the tube and stir the tissue extract for 15 min on ice. Make 
the Test solution during this time and wrap the tinted jar in foil. 

3. Sonicate each sample 3 X 3 s. 
4. Pipette 250 µl of the Test solution into a 96 well plate and incubate them at 30 °C 

for 10 min. 
5. In a second 96 well plate, pipette 30 µl of sample into 4-8 empty plates. Using the 

multipipette, quickly draw up the test solution and pipette into the wells with the 
sample extracts. 

6. Place well plate into microplate reader and start recording the change in 
absorbance at 550 nm for 1 min. 

7. Calculate cytochrome c oxidase enzyme activity (µmol/min/g or U/g) using the 
following formula: 

l!i Abs/minx total volume (ml) x 80 (dilution) 
18.5 Abs/µmol x sample volume (ml) 



Reagents 

- V02 buffer 
250 mM sucrose 
50mMKCl 
25 mM Tris base 
lOmMK2HP04 
pH to 7.4, store at 4 °C 

Mitochondrial Respiration 

- 10 mM Glutamate (Sigma, G-1501) 

- 0.44 mM ADP (Sigma, A-2754) 

- 30 mM NADH (Sigma, N-9534) 

Procedure 
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1. Set water circulation temperature through respiration chambers to 30 °C. Place a 
stir bar in a chamber. 

2. Add 250 µl of respiration buffer to the chamber, and begin stirring. Allow the 
buffer to equilibrate to the chamber temperature for 5-10 min. 

3. Cease spinning and pipette 50 µl of the mitochondrial suspension into the 
chamber. 

4. Carefully close the chamber, ensuring no air bubbles remain. Resume spinning. 
5. Set the Strathkelvin 782 oxygen consumption software to begin recording data. 
6. Once a steady state V02 is reached, add glutamate through the electrode port to 

initiate state 4 respiration. 
7. After a satisfactory gradient has been achieved (----3 min later), add ADP to begin 

state 3 respiration. 
8. To assess the integrity of the inner membrane, add NADH during state 3 

respiration. 
9. Calculate state 4 and state 3 respiration rate (natoms 0 2/min/mg) as follows: 

Respiration rate (%/mg/min)= 
respiration rate (%/min) 

([protein] (µg/µl) x sample vol. (µl)) I 1000 

followed by: 

respiration rate (%/mg/min) x 112.5 (natoms 0 2) 
Respiration rate (natoms02/min/mg) = ----------------

100% 
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Nuclear and Cytosolic Fractionation (Muscle Tis·sue) 

Reagents 

1. NE-PER® Nuclear and Cytoplasmic Extraction Kit (Fisher Scientific PI78833) 
a. Contains three buffers CER I, CER II and NER 

2. PBS (Sigma D-8537) 
3. Protease Inhibtors 

a. Leupeptin (1 Omg/ml stock) 
b. Aprotinin (lOmg/ml stock) 
c. Pepstatin (lOmg/ml stock) 
d. PMSF (500mM stock) 
e. DTT (lM stock) 

4. Phosphatase Inhibitors 
a. Sodium Orthovanadate (250mM stock) 
b. PhosSTOP tablets (1 OX concentrated stock) 

Procedure 

Tissue Preparation 

1. Cut 20-1 OOmg of tissue into small pieces and place in a microcentrifuge tube. 

2. Wash tissue with PBS. Centrifuge tissue at 500 x g for 5 minutes. 

3. Using a pipette, carefully remove and discard the supernatant, leaving cell pellet 
as dry as possible. 

4. Homogenize tissue using a Dounce homogenizer or a tissue grinder in the 
appropriate volume of CER I (Table 1 ). Proceed Cytoplasmic and Nuclear Protein 
Extraction, using the reagent volumes indicated in Table 1. 

Table 1. Reagent volumes for different tissue masses. 

Tissue Mass (me:) CER I (µI) CER II (µI) NER (µI) 
20 200 11 100 
40 400 22 200 
80 800 44 400 
100 1000 55 500 

*Different tissue types may require more or less NE-PER Reagents per weight to 
optimally extract cytoplasmic and nuclear proteins. 
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Cytoplasmic and Nuclear Protein Extraction 

Note: Scale this protocol depending on the tissue mass (Table 1). Maintain the volume 
ratio of CER I: CER II: NER reagents at 200: 11: 100 µl, respectively. 

1. Vortex the tube vigorously on the highest setting for 15 seconds to fully suspend 
the cell pellet. Incubate the tube on ice for 10 minutes. 

2. Add ice-cold CER II to the tube. 
3. Vortex the tube for 5 seconds on the highest setting. Incubate tube on ice for 1 

minute. 
4. Vortex the tube for 5 seconds on the highest setting. Centrifuge the tube for 5 

minutes at maximum speed in a microcentrifuge (-16,000 x g). 
5. Immediately transfer the supernatant (cytoplasmic extract) to a clean pre-chilled 

tube. Place this tube on ice until use or storage (see Step 10). 
6. Suspend the insoluble (pellet) fraction produced in Step 4, which contains nuclei, 

in ice-cold NER. 
7. Vortex on the highest setting for 15 seconds. Place the sample on ice and continue 

vortexing for 15 seconds every 10 minutes, for a total of 40 minutes. 
8. Centrifuge the tube at maximum speed (-16,000 x g) in a microcentrifuge for 10 

minutes. 
9. Immediately transfer the supernatant (nuclear extract) fraction to a clean pre

chilled tube. Place on ice. 
10. Store extracts at -80°C until use. 



Sakamoto Muscle Extract Preparation 

Reagents 

- Sakamoto muscle extraction buffer 
20 mM Hepes (ph 7.4) 
2mMEGTA 
1%Trition-Xl00 
50% Glycerol 
50 mM ~-Glycerophosphate 
pH to 7.4, store at 4 °C 

I 

Table 1. Protease inhibitor volumes for Sakamoto muscle extraction buffer. 

Rea~ent Volume (for 10 mL) Volume (for 5 mL) 
Muscle Extraction Buffer 9.8mL 4.9mL 

lmMDTT 10 µl 5 µl 
lmMPMSF 100 µl 50 µl 

1 mM Sodium Orthovan. 50 µl 25 µl 
2µ1/ml Leupeptin 20 µl 10 µl 
1 µl/ml Pepstatin A 10 µl 5 µl 
1 µl/ml Aprotinin 10 µl 5 µl 

Procedure 

1. Label two sets of eppendorf tubes accordingly. 
2. Add 100 µl of above solution (Table 1) to the first set of eppendorf tlibes. 
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3. Weigh out 15-20 mg of tissue into the first set of eppendorf tubes and record the 
exact weight of each sample in a table. 

4. Add the appropriate volume of solution to each eppendorf to produce 20x volume. 
5. Rotate homogenates end over end for 1 hour at 4 °C. 
6. Sonicate 3 x 3seconds at 30%. 
7. Centrifuge at 14000 rcf for 10 minutes at 4°C. 
8. Completely withdraw the supernatant and pipette the solution into the new pre

labeled eppendorf tubes. 
9. Store at -20°C. 
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Exercise Tolerance Test 

Acclimatization 

1. One week before the exercise tolerance test (at the same approximate time), 
acclimatize the animals to the treadmill ( 10° incline) over a period of three days. 

Day 1 : Place all animals on the treadmill belt, and allow them to remain 
on the stationary belt for five minutes. 

Day 2: Allow all animals to remain on the stationary belt for five minutes, 
followed by walking on the treadmill at 5 m/min. for five minutes. 

Day 3: Allow all animals to walk on the treadmill at 5 m/min. for five 
minutes, followed by 10 m/min. for 10 minutes. 

Exercise Tolerance Test 

1. Place each of the four animals onto their respective treadmill belts, and label the 
condition and genotype that corresponds to each animal. 

2. Allow animals to perform the acclimatization protocol prior to the exercise test. 
3. Gradually increase the speed of the treadmill for each exercise increment (see 

Figure 1 ), while continuously encouraging the animals to run. 
4. As animals complete each exercise increment, record this in the observations table 

(see Table 1). 
5. As animals begin to fatigue, administer electric shocks from the rear force plate. 
6. Complete fatigue is achieved when the animals remain on the rear force plate and 

endure continuous electric shock for five consecutive seconds. 
7. When animals have reached the level of complete fatigue, remove them from the 

treadmill and gently place them back in their cage, and note the time. 

Table 1. Sample data table for exercise tolerance test. 

5 m/min 10 m/min 20 m/min 24m/min 28 m/min 32 m/min 

Animal 5 min 5 min 30 min 15 min 30 min 15 min 
AIRF x x x x x 3:35 
A2LB x x x x x 7:07 

Figure 1. Exercise tolerance test protocol. 

Warm-up Exercise Test 
--------~"""' ....... ------~ __________________ _,..,____ -------------------,. "'"* ' 

(5 min.) (10 min.) (30 min.) (15 min.) (30 .lnin.) (15 min.) 



Intraperitoneal (l.P.) Glucose Tolerance Assay 

Reagents 

- D-Glucose solution (0.2 g/ml) 
2 g D-glucose 
0.09 gNaCl 
10 ml water 

Procedure 
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8. 6 hours prior to LP. injection, transfer animals to a clean cage and do not provide 
any food pellets (water is still provided ad libitum). 

9. Weigh animals and record exact weights. 
10. Restrain animals in an inverted beaker and allow the tail to protrude from the 

spout of the beaker. 
11. Make a small incision in the tail with a razor blade and collect a sample of blood 

(5 µl) on the test strip, and then place the test strip in the blood glucose meter. 
12. Administer LP. injections of the D-glucose solution (dosage: 2 g/kg; see below) to 

animals (staggered in 60 - 90 second intervals). Record this as "time O" (see 
Table 1). 

13. Collect blood samples (using the same incision) at 15-, 30-, 45- (optional), 60-, 
90- (optional) and 120-minutes post-injection. 

14. Following the last blood collection, place animals back in their original cage and 
replenish their food source. 

Table 1. Sample data table for glucose tolerance assay. 

Animal Weight 0 Injection 15 30 60 
ID (2) min. Time min. min. min. 

Al RF 32.7 6.7 2:30 23.6 25.4 14.3 
A2LB 31.8 5.8 2:32 21.0 27.9 14.2 
A3LF 30.3 6.2 2:34 19.8 25.9 13.7 

Example calculation (for a 30 g animal): 

2 g/kg glucose required x 0.03 kg= 0.06 g glucose (for a 30 g animal) 

0.2 g/ml glucose solution 
0.06 g glucose required 

0.3 ml (300µ1) 

120 
min. 
8.1 
5.3 
5.8 



Clock Mutant Genotyping 

Reagents 

- L ysis buff er 
10 mM Tris HCl 
150mMNaCl 
20mMEDTA 
pH to 8.0, store at 2S°C 

- Supermix 
Sigma Jumpstart REDtaq Ready Mix PCR Reaction Mix (P0982) 
20 mM Tris-HCl (pH to 8.3) 
lOOmMKCl 
4mMMgC12 
0.002% gelatin 
0.4 mM (dATP, dCTP, dGTP, TTP) 
0.06 unit/µl Taq DNA polymerase 
JumpStart Taq antibody 

- Primers 
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Forward and reverse primers for wildtype and mutant strains (stock: 500 pmol/µl) 

- Proteinase K (1 mg/ml) 

- Agarose 
SOX TAE 
lX TAE (dilute SOX TAE with stH20) 
10 mg/ml EtBr 
Sterile water 

- SOX TAE (1 L) 
242 g Tris 
500 ml dH20 
100 ml 0.5M EDTA (pH 8.0) 
57 .1 ml Glacial Acetic Acid 

Procedure 

DNA Extraction 

1. Make (fresh) 10:1 mixture of lysis buffer to Proteinase K (1 mg/ml; fresh). 
2. Add 20 µl of this mixture to a 1.S ml sterile eppendorf tube. 
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3. Obtain ear clipping from animal, add to tube and vortex (ensure ear clipping is 
immersed in solution). 

4. Incubate solutions in a 55 °C water bath for 30min. 
5. Add 180 µl of sterile distilled water. 
6. Place in boiling water for 5 minutes (use hot plate), and then vortex. 
7. Store at -20°C, or use immediately for PCR. 

1. Prepare three individual mastermix solutions (one for each potential genotype), 
each containing a different combination of primers (see Table 1). 

A) Wildtype 

25 µl Supermix 
1 µl WT Forward Primer 
1 µl Common Primer 
23 µl Sterile Water 
50 µl Total 

B) Mutant 

25 µl Supermix 
1 µl Mutant Reverse Primer 
1 µl Mutant Forward Primer 
23 µl Sterile Water 
50 µl Total 

2. For each ear clipping, use 40 µl of mastermix and 10 µl of template DNA 
(extracted previously). Repeat this for each potential genotype (2 PCR reaction 
tubes per animal). 

3. Add 1 drop of mineral oil to each PCR tube to prevent evaporation of sample 
during cycling. 

4. Include negative controls using ddH20 (instead of DNA template) with mastermix 
for each potential genotype (optional). 

5. Cycling times: Initial Denaturation 94°C 2 min 

35 cycles: Denaturation 
Annealing 
Extension 

Final Extension 

Hold 

Agarose Gel Electrophoresis 

1. Prepare a large 1.5% agarose gel. 
4 .5 g Agarose 
6 ml SOX TAE 
294 ml Sterile Water 

94°C 30 sec 
60°C 30 sec 
72°C 45 sec 

72°C 5 min 

4°C 

2. Mix solution, cover the beaker with saran wrap and boil in the microwave. 
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3. Upon complete dissolving of agarose (ensuring a homogenous and relatively clear 
agarose solution), add 30 µl of EtBr (10 mg/ml), slightly cool solution at room 
and then pour into caster. 

4. Load PCR products (30 µl) onto gel and run for 120 minutes. 
5. Visualize PCR products using UV lightbox in the molecular core faciility. 

Table 1. Clock mutant and wildtype genotyping primers. 

Mutant Forward 5'-AGC ACC TTC CTT TGC AGT TCG-3' 
Mutant Reverse 5'-TGT GCT CAG ACA GAA TAA GTA-3' 

Common 5'-TGG GGT AAA AAG ACC TCT TGC C-3' 
Wildtype Forward 5'-GGT CAA GGG CTA CAG GTA-3' 

Figure 1. Sample agarose gel displaying PCR products. 

1 2 3 4 5 6 7 8 

+ Mu + Mu + Mu + Mu + Mu + Mu + Mu + Mu 

Genotype Analysis 

Wildtype Clock gene: 150 kbp 
Mutant Clock gene: 4 7 5 kbp 

1 - Wildtype homozygote 
2 - Mutant homozygote 
3 - Heterozygote 
4 - Heterozygote 

5 - Heterozygote 
6 - Heterozygote 
7 - Heterozygote 
8 - Mutant homozygote 
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