Transition Metal Complexes of N -heterocyclic Carbenes and Derivatives Thereof: Synthesis and Reactivity Study

TIMOTHY G. LAROCQUE

A DISSERTATION SUBMITTED TO
 THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN CHEMISTRY YORK UNIVERSITY
 TORONTO, ONTARIO

August 2013
© Timothy G. Larocque, 2013

Abstract

N-heterocyclic carbenes (NHCs) have played a dominant role in organometallic chemistry for decades and revolutionized the field of homogenous catalysis. NHCs have been thoroughly studied, both experimentally and theoretically, and have shown unique reactivity towards transition metals, chalcogens, azides and pnictogens.

This thesis is aimed at utilizing the unique reactivity of N -heterocyclic carbenes to develop novel, robust catalysts to mediate organic transformations. The multi-faceted work within this thesis explores the use of NHCs as ancillary ligands on early and late transition metals as potential catalysts for olefin polymerization and ring-closing metathesis, respectively. This work also includes exploring the synthesis and coordination of ancillary ligands derived from the unique reactivity of NHCs towards azides, chalcogens and pnictinidenes.

The reactivity of a novel aryl-substituted acyclic imino- N -heterocyclic carbene to early transition metals, cyclooctasulfur and Grubbs-type ruthenium benzylidene complexes was explored. The reactivity of imidazol-2-imide towards Grubbs-type ruthenium benzylidene complexes and the synthesis and coordination of a novel group of ligands bearing an imidazol-2-imine scaffold were also explored. Lastly, this work will include the reactivity of IMes=PPh to Grubbs-type ruthenium benzylidene complexes.

Table of Contents

List of Figures VII
List of Schemes IX
List of Tables XI
Acknowledgments XII
Abbreviations XIII
Chapter 1 1
1.1 Introduction 1
1.2 Synthesis of N-Heterocyclic carbenes 1
1.3 Reactivity of N -heterocyclic carbenes towards metals 5
1.4 Reactivity of N-heterocyclic carbenes towards azides 9
1.5 Reactivity of N-heterocyclic carbenes towards chalcogens 10
1.6 Reactivity of N-heterocyclic carbenes towards pnictinidenes 12
1.7 Scope of thesis work 14
1.8 References 14
Chapter 2 20
2.0 Preface 20
2.1 Introduction 20
2.2. Results and Discussion 23
2.2.1 Coordination of C^{\wedge} Imine to early transition metal halides 23
2.2.1.1. Coordination of C^{\wedge} Imine to titanium 23
2.2.1.2. Coordination of free carbene to zirconium and hafnium 29
2.2.1.3. Coordination of free carbene to chromium 31
2.2.1.4. Ethylene polymerization catalysis 33
2.2.5. Coordination and reactivity of C^{\wedge} Imine to titanium phenoxo complexes 34
2.2.5.1 Synthesis of $\mathrm{TiCl}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{3}-\mathrm{Me}_{2}\right)_{2}$ (C^Imine), 2.7. 34
2.2.6. Synthesis of $\mathrm{TiCl}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{O}\right)\left(\mathrm{C}^{\wedge}\right.$ Imine), $\mathbf{2 . 9}$ 40
2.2.7. Attempted Synthesis of $\mathrm{TiCl}_{2}(=\mathrm{N}-\mathrm{R})\left(\mathrm{C}^{\wedge}\right.$ Imine $)$ 45
2.2.8. Ethylene polymerization catalysis 46
2.3.1. Synthesis of S^{\wedge} Imine 46
2.4.1. Conclusions 49
2.5. Experimental 50
2.5.1 General Considerations 50
2.5.2 Synthesis of $\mathrm{TiCl}_{4}\left(\mathrm{C}^{\wedge}\right.$ Imine $), \mathbf{2 . 1}$ 52
2.5.2 Synthesis of $\mathrm{TiCl}_{3}\left(\mathrm{C}^{\wedge}\right.$ Imine), 2.2 53
2.5.3 Synthesis of ZrCl_{4} (C^Imine), $\mathbf{2 . 3}$ 53
2.5.4 Synthesis of $\mathrm{HfCl}_{4}\left(\mathrm{C}^{\wedge}\right.$ Imine $)$, 2.4 54
2.5.5 Synthesis of $\mathrm{CrCl}_{3}\left(\mathrm{C}^{\wedge} \operatorname{Imine}\right)(\mathrm{THF}), 2.5$ 55
2.5.6 Synthesis of $\mathrm{CrCl}_{2}\left(\mathrm{C}^{\wedge}\right.$ Imine)(THF), 2.6 55
2.5.7. Synthesis of $\mathrm{TiCl}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{3}-\mathrm{Me}_{2}\right)_{2}\left(\mathrm{C}^{\wedge}\right.$ Imine $)$, 2.7. 55
2.5.8 Synthesis of $\mathrm{TiCl}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{3}-\mathrm{Me}_{2}\right)_{2}(1-(2,4,6-$
trimethylphenyl)imidazole), 2.8 56
2.5.9. Synthesis of $\mathrm{TiCl}_{2}\left(1,2-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{O}\right)\left(\mathrm{C}^{\wedge}\right.$ Imine $), 2.9$ 57
2.5.10. Synthesis of S^{\wedge} Imine, 2.10 58
2.5.11. General procedure for ethylene polymerization 59
2.5.12. X-ray crystallographic studies 60
2.6. References 61
Chapter 3 67
3.0 Preface 67
3.1 Introduction 67
3.2 Results and Discussion 70
3.3. Conclusions 78
3.4. Experimental 79
3.4.1. General Considerations 79
3.4.2. General procedure for the synthesis of 2-(1,3-bis(2,4,6-
trimethylphenyl)imizadol-2-imine)-1-(aryl)ethanone hydrochloride salt, IMesN^ethanone • $\mathrm{HX}, 3.1-3.3$. 80
3.4.2.1. 2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-phenylethanone hydrobromide salt, 3.1: 81
3.4.2.2. 2-(1,3-Bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-(4- chlorophenyl)ethanone hydrochloride salt, 3.2: 82
3.4.2.3. 2-(1,3-Bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-(4- nitrophenyl)ethanone hydrobromide salt, 3.3: 82
3.4.3. 2-(1,3-Bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-phenylethanone, IMesN^ethanone, 3.4: 83
3.4.4. Sodium 2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1- phenylethenolate, $\mathrm{Na}\left[\mathrm{IMes} \mathrm{N}^{\wedge}\right.$ ethenolate], 3.5: 84
3.4.5. General procedure for the synthesis of bis(2-(1,3-bis(2,4,6-
trimethylphenyl)imizadol-2-imine)-1-(aryl)ethenolate) zirconium dichloride, $\mathrm{ZrCl}_{2}\left(\mathrm{IMesN}^{\wedge}{ }^{\wedge} \text { ethenolate }\right)_{2}$, 3.6 and 3.7: 85
3.4.5.1. Bis(2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1- phenylethenolate) zirconium dichloride, 3.6: 85
3.4.5.2. $\operatorname{Bis}(2-(1,3-b i s(2,4,6-t r i m e t h y l p h e n y l) i m i z a d o l-2-i m i n e)-1-(4-~$ chlorophenyl)ethenolate) zirconium dichloride, 3.7: 86
3.4.6. General procedure for the synthesis of cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-(aryl)ethenolate) zirconium dichloride,
$\mathrm{CpZrCl}_{2}\left(\mathrm{IMesN}^{\wedge}\right.$ ethenolate), 3.8 and 3.9: 86
3.4.6.1 Cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1- phenylethenolate) zirconium dichloride, 3.8: 87
3.4.6.2 Cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-(4- chlorophenyl)ethenolate) zirconium dichloride, 3.9: 87
3.4.7. General procedure for the synthesis of cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-(aryl)ethenolate) titanium dichloride$\mathrm{CpTiCl}_{2}\left(\mathrm{IMesN}^{\wedge}\right.$ ethenolate), 3.10 and 3.11:88
3.4.7.1. Cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1- phenylethenolate) titanium dichloride, 3.10: 88
3.4.7.2. Cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-
(4-chlorophenyl)ethenolate) titanium dichloride, 3.11: 89
3.4.8. General procedure for ethylene polymerization. 89
3.4.9. Computational details 90
3.4.10. X-ray crystallography 90
References 91
Chapter 4 95
4.1 Introduction 95
4.1.1 Metathesis 95
4.1.2 Evolution of ruthenium metathesis catalysts 98
4.2 Results and Discussion 100
4.2.1. Synthesis and chemistry of cationic ruthenium benzylidene complex 100
4.2.2. Synthesis and chemistry of ruthenium benzylidene complexes bearing imidazol-2-imine ligand 106
4.2.3. Synthesis and chemistry of ruthenium benzylidene complexes bearing NHC-phosphinidene ligands 111
4.3 Conclusions and Future Considerations 119
4.4 Experimental 120
4.4.1 General Considerations 120
4.4.2 Synthesis of $\left[R u\left(\mathrm{C}^{\wedge} \operatorname{lmine}\right)(\mathrm{MeCN})_{4}(\mathrm{CHPh})\right]\left[\mathrm{PF}_{6}\right]_{2}, 4.2$ 121
4.4.6 Attempted synthesis of $\mathrm{RuCl}(\mathrm{IMes}=\mathrm{N})\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CHPh})$ 122
4.4.7 Attempted synthesis of $\mathrm{RuCl}(\mathrm{IMes}=\mathrm{N})(\mathrm{IMes}) \mathrm{py}(\mathrm{CHPh})$ 122
4.4.8 Attempted synthesis of $\mathrm{RuCl}\left(\mathrm{I}^{\mathrm{t}} \mathrm{Bu}=\mathrm{N}\right)\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CHPh})$ 123
4.4.9 Attempted synthesis of $\mathrm{Ru}(\mathrm{ItBu}=\mathrm{N})\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CPh})$ 123
4.4.10 Synthesis of $\mathrm{RuCl}(\mathrm{IMes})\left(\mathrm{I}^{\mathrm{t}} \mathrm{Bu}=\mathrm{N}\right) \mathrm{py}_{2}(\mathrm{CHPh}), 4.3$ 124
4.4.11 Attempted Synthesis of $\mathrm{RuCl}_{2}(\mathrm{IMes}=\mathrm{PPh})\left(\mathrm{PCy}_{3}\right)(\mathrm{CHPh})$, 4.4. 124
4.4.12 Synthesis of $\mathrm{RuCl}_{2}(\mathrm{IMes}=\mathrm{PPh})\left(\mathrm{PPh}_{3}\right)(\mathrm{CHPh}), 4.5$ 125
Decomposition Product, 4.5a 125
4.4.14 Ring-closing metathesis 126
4.5 References 126
Chapter 5 132
5.1 Conclusions and Future Work 132
Supplementary Material 137

List of Figures

Figure 1.2.1 Examples of five-membered NHCs with varying heteroatoms.......... 2
Figure 1.3.1. General representation of the three most common methods to coordinating NHCs to metal centres.. 6

Figure 1.3.1. Molecular orbital diagram representing NHC-metal interactions..... 7
Figure 1.4.2. The mesomeric structures for imidazol-2-imide 10
Figure 1.5.1. General reaction of imidazole-2-ylidene and chalcogens 11
Figure 1.5.2. The mesomeric structures for carbene-chalcogen adducts 11
Figure 1.6.1. General synthesis of carbene-pnictinidene adducts 12
Figure 1.6.2. The mesomeric structures for carbene-pnictinidene adducts 13
Figure 2.1. General representation of the imidazolium salts A and B................. 21
Figure 2.2. General representation of the iminocarbene ligand 23
Figure 2.3. ORTEP plot (50\% probability) of 2.1.. 25
Figure 2.4. ORTEP plot (50\% probability) of 2.4. .. 28
Figure 2.5. ORTEP plot (50\% probability) of 2.3.. 30
Figure 2.6. ORTEP plot (50\% probability) of 2.5. .. 32
Figure 2.6. ORTEP plot (50\% probability) of 2.7.. 36
Figure 2.7. ORTEP plot (50\% probability) of 2.8. .. 40
Figure 2.8. ORTEP plot (50\% probability) of 2.9. .. 41
Figure 2.9. Selected regions of the ${ }^{1} \mathrm{H}$ NMR spectra of 2.9 at temperatures
\qquad
Figure 2.10: ORTEP plot (30\% probability) of S^imine, 2.10. 49
Figure 3.1. Mesomeric structures of substituted imidazole-2-iminate. 68
Figure 3.2. Neutral (A) and anionic (B) bidentate ligands with an imidazol-2-imine
fragment 68
Figure 3.3. Early and late transition metal complexes of the salicylaldiminate
ligand system. 70
Figure 3.4. ORTEP plot (50\% probability) of 3.9 75
Figure 4.1. Common types of metathesis reactions 96
Figure 4.2. General accepted metathesis mechanism 97
Figure 4.3. Grubbs' first-generation (GI) catalyst 98
Figure 4.4. Examples of modifications to Grubbs-type ruthenium metathesis
catalysts 99
Figure 4.5. ORTEP plot (50\% probability) of 4.2 104
Figure 4.6. ORTEP plot (30\% probability level) of 4.4 113
Figure 4.7. Proposed decomposition pathway of $\mathrm{RuCl}_{2}(\mathrm{IMes}=\mathrm{PPh})\left(\mathrm{PCy}_{3}\right)(\mathrm{CHPh})$115
Figure 4.8. ORTEP plot (30\% probability level) of 4.5 117

List of Schemes

Scheme 1.2.1. Common synthetic strategies to forming stable free NHCs
 3

Scheme 1.2.2. General scheme to forming free carbenes 3
Scheme 2.1. Synthesis of group 4 and 6 metal halide complexes of $C^{\wedge} / m i n e$. 24
Scheme 1.4.1. General synthesis of N-silylated 2-iminoimidazoline and imidazol- 2-imine 9
Scheme 2.2. Synthesis of titanium complexes 2.7 and 2.9 from free carbene, C^{\wedge} Imine. 35
Scheme 2.3: Synthetic strategy to forming compound, 2.10 47
Scheme 3.1. Synthesis of 2-(1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-imino)-1- arylethanone hydrochloride (3.1-3.3) 70
Scheme 3.2. Sequential deprotonation of 3.1 to generate a tautomeric mixture of
2-(1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-imine)-1-phenylethanone (3.4 ${ }_{1}$ and
3.42) and the corresponding ethenolate (3.5)71
Scheme 3.3. Synthesis of titanium and zirconium complexes of the bis(imine ethenolate) ligand 72
Scheme 4.1. Reaction of $\mathrm{RuCl}_{2}\left(\mathrm{C}^{\wedge} \operatorname{Imine}\right)(\mathrm{CHPh})$ with AgPF_{6} in MeCN 102
Scheme 4.2. Proposed synthetic strategy for forming $\operatorname{RuCl}(\mathrm{X})\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CHPh})$ 106
Scheme 4.3. Possible formation of a ruthenium alkylidyne complex 107
Scheme 4.4. Dehydrohalogenation of Grubbs first generation catalyst ${ }^{31}$ 107
Scheme 4.5. Aryloxide selectivity based on metal precursor 108
Scheme 4.6. Synthetic scheme to forming compound 4.3. 108

Scheme 4.6. Proposed synthetic route to forming

Scheme 4.7. Synthetic strategy for $\mathrm{RuCl}_{2}(\mathrm{IMes}=\mathrm{PPh})\left(\mathrm{PPh}_{3}\right)(\mathrm{CHPh}), 4.5 . \ldots115$
List of Tables
Table 1.1. IR values for the CO stretching frequencies of $\mathrm{Ni}(\mathrm{CO}) 3(\mathrm{~L})$ complexes8
Table 2.1. Selected bond lengths and angles for compounds C^{\wedge} Imine, 2.1, 2.2,
2.3 and 2.5 27
Table 2.2. Selected bond lengths and angles for compounds $\mathrm{TiCl}_{4}\left(\mathrm{C}^{\wedge}{ }^{\wedge}\right.$ mine), 2.7
and 2.9 39
Table 3.1. Selected bond lengths and bond angles for compound 3.9 76
Table 4.1. Selected bond lengths and bond angles for compound 4.2 105
Table 4.2: Catalytic activity of ruthenium metathesis catalysts in CDCl_{3} 110
Table 4.3. Selected bond lengths and bond angles for compound 4.4 113

Acknowledgements

First, I would like to take this opportunity to express my gratitude towards my supervisor, Professor Gino Lavoie. His valuable knowledge and guidance throughout my time at York University allowed me to become a better researcher and leader, and for this I am truly grateful.

I would also like to thank past co-workers Anna Badaj, Jameel Al-Thagfi, Delwar Hossain, Barbara Skrela, Edwin Alvarado, Sarim Dastgir, Mike Harkness and Richard Morris for their support, suggestions and conversations throughout the years.

In addition, I would like to thank Dr. Howard Hunter for his knowledge and guidance in NMR spectroscopy. His humor and kindness was a breath of fresh air.

I will be forever thankful to my family and friends for their support during my post-secondary education. Their love and support helped me achieve my dream. I will be forever indebted to them.

Lastly, I would like to express my deepest appreciation to the love of my life. Shawna stood behind me with undying patience and support, and knew I would succeed. Her kindness, patience and laughter offered a shelter for the storm. For that, I owe her a lifetime of love.

Abbreviations

Ar	Aryl
Cy	Cyclohexyl, - $\mathrm{C}_{6} \mathrm{H}_{11}$
Cat.	Catalyst
DFT	Density functional theory
DMP	Dimethylphenyl
Equiv	Equivalents
EA	Elemental analysis
Hz	Hertz
HMBC	Heteronuclear multiple-bond correlation
HSQC	Heteronuclear single-quantum coherence
IMes	N, N-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene
Me	Methyl, - CH_{3}
Mes	Mesityl, 2,4,6-trimethylphenyl
NMR	Nuclear magnetic resonance
Ph	Phenyl, $-\mathrm{C}_{6} \mathrm{H}_{5}$
ppm	Parts per million
py	Pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
ORTEP	Oak Ridge Thermal Ellipsoid Plot program
RCM	Ring-closing metathesis
SIMes	N, N-bis-(2,4,6-trimethylphenyl)imidazolin-2-ylidene

t Bu	Tert-butyl, $-\mathrm{CMe}_{3}$
THF	Tetrahydrofuran
TMEDA	Tetramethylethylenediamine
TMS	Tetramethylsilane, SiMe_{4}
-TMS	Trimethylsilyl, -SiMe ${ }_{3}$
TOF	Turnover frequency
TON	Turnover number
UV	Ultra violet
Vis	Visible
VT	Variable temperature

Chapter 1

1.1 Introduction

A critical element of organometallic chemistry is the drive towards developing compounds for catalytic applications. In recent decades, there has been a great deal of emphasis on developing metal-based catalysts for industrial applications, polymerization and for the synthesis of fine chemicals. The activity of homogeneous catalysts is largely dependent on the ligand-metal combination. A wide variety of ligand classes have thus been explored. However, certain types of ligands have played a more significant role than others in organometallic chemistry. One class of ligands that has received considerable attention in recent years is the N-heterocyclic carbene (NHC) ligand. ${ }^{1}$ Since the first isolation by Arduengo in 1991, ${ }^{2}$ various synthetic methodologies of symmetrical and nonsymmetrical five-membered, two-electron-donating imidazol-2-ylidene ligands have been developed and are now well established. ${ }^{1,3}$

1.2 Synthesis of N -Heterocyclic carbenes

There are numerous examples of saturated and unsaturated, symmetrical and unsymmetrical five-membered heterocycles with a variety of heteroatoms (Figure 1.2.1).

Figure 1.2.1 Examples of five-membered NHCs with varying heteroatoms.
Despite the structural diversity of five-membered NHCs, the largest and most notable group of NHCs is the five-membered imidazole and imidazolidine-based ligands. There are numerous routes to forming stable free carbenes, including deprotonation of the corresponding imidazolium salt, reductive desulfurization and thermal elimination of the appropriate NHC precursor (Scheme 1.2.1). ${ }^{1-4}$ In most cases, the formation of free carbenes is formed by deprotonation of the corresponding imidazolium salt. The general synthesis of symmetrical unsaturated imidazolium salts involves the cyclization of a diimine with formaldehyde and a Brønsted acid, where the diimine starting material is a product of the condensation reaction between a primary amine and glyoxal (Scheme 1.2.2). ${ }^{3 a, 5}$

Scheme 1.2.1. Common synthetic strategies to forming stable free NHCs

Scheme 1.2.2. General scheme to forming free carbenes

The readily available precursors and facile synthesis of imidazolium salts has led to a wide range of NHC ligands with varying steric and electronic influences. ${ }^{6}$

There are three areas of the NHC ligand scaffold that offer easy modification that can lead to steric and electronic tailoring. These main areas of
the ligand include the C_{4} and C_{5} substituents, N, N '-substituents and the degree of saturation of the heterocycle. In the case of C_{4} and C_{5} substituents, incorporating various electron-donating and/or -withdrawing groups has a significant contribution to the overall electronic properties of the NHC ligand. ${ }^{6 \mathrm{c}}$ In addition, incorporating aryl, alkyl or other cycles to modify the steric demand and, in some cases, halogenated alkyl or aryl groups, can also affect the electronic properties as well as the sterics. The effect of steric by modifying the substituents at the C_{4} and C_{5} positions can be represented by the percent buried volume (\% $\left.V_{\text {Bur }}\right)$. The percent buried volume is the fraction of the first coordination sphere that a given ligand occupies about the metal centre. ${ }^{7}$ An in depth study by Poater explored quantum mechanically optimized structures of $\operatorname{IrCl}(\mathrm{CO})_{2}(\mathrm{NHC})$ to compile the $\% \mathrm{~V}_{\text {Bur }}$ of a variety of NHC ligands. ${ }^{7}$ Likewise, the ability to modify the substituents at the N, N ' positions offers tailoring of steric and electronic properties allowing for designed ligand-metal interactions, thus affecting activity, productivity, selectivity and scope of substrates. Although the degree of saturation of the ligand scaffold seems trivial, there are a number of examples in which this has played a role in organometallic catalysis. ${ }^{8}$ It has been shown that the $\% \mathrm{~V}_{\text {Bur }}$ for the saturated ring is greater than the unsaturated ring. ${ }^{7}$ As a result, we see a vast and continuously growing library of saturated and unsaturated, symmetrical and unsymmetrical five-membered NHC ligands with a broad range of steric and electronic properties.

1.3 Reactivity of \mathbf{N}-Heterocyclic Carbenes towards Metals

In the years following the discovery of stable NHC ligands, NHCs were considered simple tertiary phosphine-like ligands. Since that time, considerable theoretical and experimental research has been conducted in deducing that NHCs are unique in their own right. ${ }^{9}$ The coordination of NHC ligands often involves one of three routes of synthesis. The first approach to coordination of NHC ligands is the direct reaction of a free carbene with the metal precursor. ${ }^{5,10}$ This reaction is a simple ligand substitution, with the NHC displacing a neutral Lewis base on the metal centre, for example, a coordinated solvent molecule like THF, MeCN or a phosphine ligand. Transmetalation has also been a very successful synthetic method of coordination of NHC ligands. The most common carbene transmetalating agents are silver-based complexes, ${ }^{11}$ but recently copper and nickel-carbene complexes have been used for transmetalation to other metals. ${ }^{12,12 d}$ The last of the three main methods of coordination involves the in situ deprotonation of the salt, in the presence of the metal precursor (Figure 1.3.1). ${ }^{5,12 \mathrm{c}}$ The in situ deprotonation is utilized when the isolation of the free carbene is not possible and when the synthesis of the silver transmetalating reagent proves difficult or unachievable.

Figure 1.3.1. General representation of the three most common methods to coordinate NHCs to metal centres

NHC ligands are considered to be electron-deficient, strong σ-donating, weak π-accepting ligands. The strong σ-donating capabilities of NHCs arise from the lone pair of electrons in the high-energy σ orbital. Thus, the basicity of NHCs is higher than that of phosphines (I) ${ }^{5,9,13}$ (Figure 1.3.1). The weak π-accepting character of NHCs arises from their ability to accept electron density from filled d orbitals of a metal to an empty low energy π^{*} orbital (II). Lastly, NHCs are known to contribute electron density to electron-deficient metals via π-d donation (III)
(Figure 1.3.1). ${ }^{1 \mathrm{~b}, 11 \mathrm{a}, 13-14}$

Figure 1.3.1. Molecular orbital diagram representing NHC-metal interactions

The strong ligand-to-metal interaction of NHCs can be illustrated using different techniques, both experimental ${ }^{15}$ and computational. ${ }^{6,14,16}$ There are a number of reports in which the electron-donating capacities of phosphines and NHCs are compared using metal carbonyl complexes. Analyzing the stretching frequencies of metal-bound carbonyls allows for a general assessment of the degree of backdonation and thus, the electron-richness of the metal centre, and ultimately suggesting the relative donating ability of the ancillary ligands. ${ }^{6 a, 6 c, 17}$ It is important to note that this method evaluates the overall electron-donating properties of NHCs and does not provide details into the σ-donating and π -
accepting properties of the ligands. Considering the results of $\mathrm{Ni}(\mathrm{CO})_{3}(\mathrm{~L})$ complexes ${ }^{6 \mathrm{a}}$, where L is either an NHC or a phosphine, the lower-energy stretching frequencies of NHC-bearing metal carbonyls suggests that NHC are stronger donating ligands than phosphines (Table 1.1).

Table 1.1. IR values for the CO stretching frequencies of $\mathrm{Ni}(\mathrm{CO}) \mathbf{3 (L)}$ complexes ${ }^{6 \mathrm{a}}$

Ligand (L)	$\mathrm{V}_{\mathrm{co}}\left(\mathrm{A}_{1}\right)$	$\mathrm{V}_{\mathrm{co}}(\mathrm{E})$
IMes	2050.7	1969
SIMes	2051.5	1970
Pr	2051.5	1070
Pr^{H}	2056.1	1971
PCy_{3}	2056.4	1973
PPh_{3}	2068.4	1990

Along with experimental evidence of the strong NHC-metal bond, there are numerous computational reports further supporting this trend. Considerable work has been reported using the bond dissociation energies (BDE) of various ligands and metals, and the trend that NHCs are stronger electron-donating ligands than phosphines is observed. ${ }^{6 \mathrm{a}, 13,17-18}$

The combination of strong σ-donating, weak π-accepting ligands forming robust ligand-metal interactions, and the ability of the ligands to be tuned sterically and electronically has resulted in the widespread use of NHCs in transition metal chemistry. ${ }^{1 \mathrm{a}, 1 \mathrm{c}-\mathrm{e}, 3 \mathrm{a}, \mathrm{b}, 8 \mathrm{~b}, 11 \mathrm{~b}, 13-14,19}$ The dynamic role of NHCs as ancillary ligands can be illustrated by the seemingly endless examples of NHCcoordination to almost all transition metals. NHC-bearing metal complexes have been known to facilitate a vast range of organic transformations and have played an integral part of homogenous catalysis for decades.

1.4 Reactivity of \mathbf{N}-heterocyclic carbenes toward azides

As previously mentioned, N-heterocyclic carbenes have been coordinated to a variety of metals and have played a dominant role in the evolution of ligand design in organometallic catalysis. In addition to their coordination to transition metals, the reactivity of NHCs towards main group elements has garnered much attention. Over the last decade, the reactivity of NHCs towards azides has been explored and resulted in a new family of ligands, imidazol-2-imide. ${ }^{20}$ These monoanionic ligands have garnered considerable attention because of their 2σ, 4π-electron-donor capability, thus making them isoelectronic analogues of cyclopentadienyl and aryloxide ligands. In addition to the successful coordination of the imidazol-2-imide ligands to a variety of transition metals, the imidazol-2imine form of this novel class of ligand has been used as a ligand scaffold for developing neutral and anionic multidentate ligands. ${ }^{21}$ Tamm first reported the successful reaction between an NHC and trimethylsilyl azide to generate an N silylated 2-iminoimidazoline. ${ }^{20 \mathrm{~b}, 22}$

Scheme 1.4.1. General synthesis of \boldsymbol{N}-silylated 2 -iminoimidazoline and imidazol-2-imine

The previously reported synthesis of imidazol-2-imide ligands involved 2-imino-1,3-dimethylimidazoline, which was generated using a lengthy synthetic protocol
from 2-aminoimidazole. ${ }^{20 a, 23}$ The synthetic strategy of treating NHCs with azides was inspired by the facile synthesis of silylated phosphoraneimines. ${ }^{24}$ Thus, the synthesis of N -silylated 2-iminoimidazoline involves treating the free imidazolin-2ylidene ligand with trimethylsilyl azide in boiling toluene for $24-72 \mathrm{~h}$, depending on the carbene being used. ${ }^{20 b, 22}$ Two mesomeric structures can be drawn for the imidazol-2-imide ligand, where the imidazolium ring can stabilize a positive charge, thus leading to an increased negative charge on the nitrogen atom, creating a stronger electron-donating ligand (Figure 1.4.2).

Figure 1.4.2. The mesomeric structures for imidazol-2-imide
The solid-state X-ray structure of N-silylated 1,3-di-tert-butylimidazolin-2-imine suggests electron delocalization. The exocylic C-N bond length of $1.275(3) \AA$ for the ligand is shorter than a $\mathrm{C}-\mathrm{N}$ single bond and longer than a $\mathrm{C}=\mathrm{N}$ double bond, suggesting the ylidic mesomeric structure. ${ }^{20 b, 22}$ These ligands have been used as monoanionic ancillary ligands for the synthesis of metal complexes for homogenous catalysis. ${ }^{25}$

1.5 Reactivity of \mathbf{N}-heterocyclic carbenes towards chalcogens

Imidazole-2-thiones have been known for many years and have been used as an ancillary ligand for transition metal catalysis. ${ }^{26}$ One convenient route
to forming imidazole-2-thiones involves reacting imidazole-2-ylidenes with elemental cyclooctasulfur to form the desired thione adduct. ${ }^{26 a, 27}$ This synthetic methodology can be extended to include other chalcogens (Figure 1.5.1). ${ }^{19}$

Figure 1.5.1. General reaction of imidazole-2-ylidene and chalcogens Carbene-chalcogen adducts can be drawn using two mesomeric structures where the imidazolium ring can stabilize a positive charge, thus leading to an ylidic-type structure and creating a stronger electron-donating ligand (Figure 1.5.2).

Figure 1.5.2. The mesomeric structures for carbene-chalcogen adducts The solid-state X-ray structure of IMes=S offers some insight into nature of the carbon-sulfur bond. The carbon-sulfur bond for IMes=S is $1.6756(18) \AA$ is longer than a $\mathrm{C}=\mathrm{S}$ bond $(1.61 \AA$) and shorter than a $\mathrm{C}-\mathrm{S}$ bond $(1.81 \AA)$, thus indicating it is not true double bond character. ${ }^{27-28}$ In the cases of Se and Te carbene adducts, a similar trend is observed for the X -ray structures where the $\mathrm{C}-\mathrm{Ch}$ bond is longer than the corresponding $\mathrm{C}=\mathrm{Ch}$ double bond. The longer $\mathrm{C}-\mathrm{Ch}$
bond is a result of electron delocalization from the imidazole ring to the chalcogen atom, resulting in a polarized compound. The presence of electron delocalization is further supported by ${ }^{125} \mathrm{Te}$ and ${ }^{77} \mathrm{Se}$ solution NMR data. Highfield ${ }^{125} \mathrm{Te}$ and ${ }^{77} \mathrm{Se}$ resonances for the corresponding compounds compared to other selenium and tellurium species suggests a higher degree of shielding. ${ }^{19-20}$ This delocalization of electron density illustrates the usefulness of these compounds as strong electron-donating ancillary ligands.

1.6 Reactivity of \boldsymbol{N}-heterocyclic carbenes towards pnictinidenes

Despite the overwhelming success and usefulness of carbenechalcogens, specifically imidazole-2-thiones, there has been little interest in utilizing carbene-pnictindenes as potential ligands. ${ }^{29}$ Inspired by the synthesis of imidazole-2-thiones, Arduengo decided to react nucleophilic imidazol-2-ylidenes with cycloarylpnictinidenes to form carbene-pnictinidene adducts (Figure 1.6.1). ${ }^{29 a}$

Figure 1.6.1. General synthesis of carbene-pnictinidene adducts
Similar to imidazol-2-imides and carbene-chalcogens, carbene-pnictinidenes can be drawn using two mesomeric structures. Within these structures, the imidazolium ring can stabilize a positive charge leading to an increased negative charge on the phosphorus or arsenic atom, creating a stronger electron-donating
ligand (Figure 1.6.2).

Figure 1.6.2. The mesomeric structures for carbene-pnictinidene adducts The strongly polarized nature of the carbene-phosphinidene is apparent with the high-field ${ }^{31} \mathrm{P}$ chemical shifts. Typical ${ }^{31} \mathrm{P}$ nuclei in phosphaalkenes resonate downfield of $\delta 200 \mathrm{ppm}$, where as the IMes=PPh carbene-phosphinidene resonates at $\delta-23 \mathrm{ppm} .{ }^{29 a, 30}$ This upfield ${ }^{31} \mathrm{P}$ chemical shift is due to a highly shielded phosphorus atom, a result of π-donation from the imidazole ring. The presence of π-donation from the imidazole ring is further supported by the difference in ${ }^{31} \mathrm{P}$ chemical shifts between the $\mathrm{IMes}=\mathrm{PPh}(\delta-23 \mathrm{ppm})$ and SIMes $=\mathrm{PPh}(\delta-12 \mathrm{ppm})$. The difference in ${ }^{31} \mathrm{P}$ chemical shifts between the unsaturated and saturated ring illustrates the effectiveness of the unsaturated imidazole ring at stabilizing a positive charge, resulting in a greater charge polarization. The solid-state X-ray structure of IMes=PPh, the P-C bond (1.763 $\AA)^{29 \mathrm{a}}$ of the azole is slightly shorter than a P-C single bond $(1.843 \AA)^{28 b}$, but longer than the $\mathrm{P}-\mathrm{C}$ double bonds of phosphaalkenes (166). ${ }^{28 a}$ Once again, this single-bond character is likely a result of electron delocalization from the imidazole ring to the phosphorus atom. Solution-NMR spectroscopy and solidstate X-ray analysis show a strongly polarized carbene-phosphinidene, which
yields a promising strong electron-donating ancillary ligand for transition metal chemistry.

1.7 Scope of the thesis work

The work included in this thesis is aimed at utilizing the unique reactivity of N-heterocyclic carbenes to develop novel, robust catalysts to mediate organic transformations. The multi-faceted work within this thesis explores the use of NHCs as ancillary ligands on early and late transition metals as potential catalysts for olefin polymerization and ring-closing metathesis, respectively. This work also includes exploring the synthesis and coordination of ancillary ligands derived from the unique reactivity of NHCs towards azides, chalcogens and pnictinidenes. The reactivity of a novel aryl-substituted acyclic imino- N heterocyclic carbene to early transition metals, cyclooctasulfur and Grubbs-type ruthenium benzylidene complexes was explored. The reactivity of imidazol-2imide towards Grubbs-type ruthenium benzylidene complexes and the synthesis and coordination of a novel group of ligands bearing an imidazol-2-imine scaffold were also explored. Lastly, this work will include the reactivity of IMes=PPh to Grubbs-type ruthenium benzylidene complexes.

1.8 References

1 a) P. L. Arnold and I. J. Casely, Chem. Rev. 2009, 109, 3599; b) D. Bourissou, O. Guerret, F. P. Gabbaï and G. Bertrand, Chem. Rev. 2000, 100, 39; c) S. DíezGonzález, N. Marion and S. P. Nolan, Chem. Rev. 2009, 109, 3612; d) D.

Enders, O. Niemeier and A. Henseler, Chem. Rev. 2007, 107, 5606; e) G. C. Fortman and S. P. Nolan, Chem. Soc. Rev. 2011, 40, 5151.

2 A. J. Arduengo, III, R. L. Harlow and M. Kline, J. Am. Chem. Soc. 1991, 113, 361.

3 a) F. E. Hahn and M. C. Jahnke, Angew. Chem., Int. Ed. 2008, 47, 3122; b) N. Marion, S. Díez-González and S. P. Nolan, Angew. Chem., Int. Ed. 2007, 46, 2988; c) M. C. Perry and K. Burgess, Tetrahedron: Asymmetry 2003, 14, 951.

4 a) T. Dröge and F. Glorius, Angew. Chem., Int. Ed. 2010, 49, 6940; b) A. M. Voutchkova, L. N. Appelhans, A. R. Chianese and R. H. Crabtree, J. Am. Chem. Soc. 2005, 127, 17624.

5 W. A. Herrmann, Angew. Chem., Int. Ed. 2002, 41, 1290.
6 a) R. Dorta, E. D. Stevens, N. M. Scott, C. Costabile, L. Cavallo, C. D. Hoff and S. P. Nolan, J. Am. Chem. Soc. 2005, 127, 2485; b) R. Dorta, E. D. Stevens, N. M. Scott, C. Costabile, L. Cavallo, C. D. Hoff and S. P. Nolan, J Am Chem Soc 2005, 127, 2485; c) D. G. Gusev, Organometallics 2009, 28, 6458.

7 A. Poater, B. Cosenza, A. Correa, S. Giudice, F. Ragone, V. Scarano and L. Cavallo, Eur. J. Inorg. Chem. 2009, 1759.

8 a) R. L. Lord, H. Wang, M. Vieweger and M.-H. Baik, J. Organomet. Chem. 2006, 691, 5505; b) C. Lujan and S. P. Nolan, J. Organomet. Chem. 2011, 696, 3935; c) C. A. Urbina-Blanco, X. Bantreil, H. Clavier, A. M. Z. Slawin and S. P. Nolan, Beilstein J. Org. Chem. 2010, 6, 1120.

9 R. H. Crabtree, J. Organomet. Chem. 2005, 690, 5451.

10 F. E. Hahn and M. C. Jahnke, Angew. Chem., Int. Ed. 2008, 47, 3122.
11 a) J. C. Garrison and W. J. Youngs, Chem. Rev. 2005, 105, 3978; b) I. J. B. Lin and C. S. Vasam, Coord. Chem. Rev. 2007, 251, 642.

12 a) M. R. L. Furst and C. S. J. Cazin, Chem. Commun. 2010, 46, 6924; b) A. C. Badaj and G. G. Lavoie, Organometallics 2012, 31, 1103; c) J. A. Thagfi and G. G. Lavoie, Organometallics 2012, 31, 7351; d) W. W. N. O, A. J. Lough and R. H. Morris, Organometallics 2009, 28, 6755.

13 H. Jacobsen, A. Correa, A. Poater, C. Costabile and L. Cavallo, Coord. Chem. Rev. 2009, 253, 687.

14 X. Hu, I. Castro-Rodriguez, K. Olsen and K. Meyer, Organometallics 2004, 23, 755.

15 a) S. Díez-González and S. P. Nolan, Coord. Chem. Rev. 2007, 251, 874; b) W. A. Herrmann, J. Schütz, G. D. Frey and E. Herdtweck, Organometallics 2006, 25, 2437; c) R. A. Kelly lii, H. Clavier, S. Giudice, N. M. Scott, E. D. Stevens, J. Bordner, I. Samardjiev, C. D. Hoff, L. Cavallo and S. P. Nolan, Organometallics 2007, 27, 202; d) S. Fantasia, J. L. Petersen, H. Jacobsen, L. Cavallo and S. P. Nolan, Organometallics 2007, 26, 5880.

16 M. Srebro and A. Michalak, Inorg. Chem. 2009, 48, 5361.
17 R. Dorta, E. D. Stevens, C. D. Hoff and S. P. Nolan, J. Am. Chem. Soc. 2003, 125, 10490.

18 a) L. Cavallo, A. Correa, C. Costabile and H. Jacobsen, J. Organomet. Chem. 2005, 690, 5407; b) N. M. Scott and S. P. Nolan, Eur. J. Inorg. Chem. 2005, 2005, 1815.

19 W. A. Herrmann and C. Kocher, Angew. Chem., Int. Ed. 1997, 36, 2162.
20 a) N. Kuhn and A. Al-Sheikh, Coord. Chem. Rev. 2005, 249, 829; b) M. Tamm, D. Petrovic, S. Randoll, S. Beer, T. Bannenberg, P. G. Jones and J. Grunenberg, Org. Biomol. Chem. 2007, 5, 523.

21 a) S. Dastgir and G. G. Lavoie, Dalton Trans. 2010, 39, 6943; b) S. Dastgir and G. G. Lavoie, Dalton Trans. 2012, 41, 9651; c) M. B. Harkness, E. Alvarado, A. C. Badaj, B. C. Skrela, L. Fan and G. G. Lavoie, Organometallics 2013, 32, 3309; d) T. K. Panda, C. G. Hrib, P. G. Jones, J. Jenter, P. W. Roesky and M. Tamm, Eur. J. Inorg. Chem. 2008, 4270; e) D. Petrovic, T. Bannenberg, S. Randoll, P. G. Jones and M. Tamm, Dalton Trans. 2007, 2812; f) D. Petrovic, T. Gloege, T. Bannenberg, C. G. Hrib, S. Randoll, P. G. Jones and M. Tamm, Eur. J. Inorg. Chem. 2007, 3472.

22 M. Tamm, S. Randoll, T. Bannenberg and E. Herdtweck, Chem. Commun. 2004, 876.

23 a) N. Kuhn, R. Fawzi, M. Steimann, J. Wiethoff, D. Blaeser and R. Boese, Z. Naturforsch., B: Chem. Sci. 1995, 50, 1779; b) N. Kuhn, M. Grathwohl, M. Steimann and G. Henkel, Z. Naturforsch., B: Chem. Sci. 1998, 53, 997.

24 a) K. Dehnicke and F. Weller, Coord. Chem. Rev. 1997, 158, 103; b) D. W. Stephan, J. C. Stewart, F. Guérin, S. Courtenay, J. Kickham, E. Hollink, C.

Beddie, A. Hoskin, T. Graham, P. Wei, R. E. v. H. Spence, W. Xu, L. Koch, X. Gao and D. G. Harrison, Organometallics 2003, 22, 1937; c) N. L. S. Yue and D. W. Stephan, Organometallics 2001, 20, 2303.

25 a) W. Apisuk, A. G. Trambitas, B. Kitiyanan, M. Tamm and K. Nomura, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2575; b) S. Beer, K. Brandhorst, J. Grunenberg, C. G. Hrib, P. G. Jones and M. Tamm, Org Lett 2008, 10, 981; c) S. Beer, K. Brandhorst, C. G. Hrib, X. Wu, B. Haberlag, J. Grunenberg, P. G. Jones and M. Tamm, Organometallics 2009, 28, 1534; d) S. Beer and M. Tamm, 2007, pp. INOR; e) A. Gloeckner, T. Bannenberg, C. G. Daniliuc, P. G. Jones and M. Tamm, Inorg. Chem. 2012, 51, 4368; f) B. Haberlag, X. Wu, K. Brandhorst, J. Grunenberg, C. G. Daniliuc, P. G. Jones and M. Tamm, Chem. - Eur. J. 2010, 16, 8868; g) S. Lysenko, C. G. Daniliuc, P. G. Jones and M. Tamm, J. Organomet. Chem. Ahead of Print; h) K. Nomura, H. Fukuda, W. Apisuk, A. G. Trambitas, B. Kitiyanan and M. Tamm, J. Mol. Catal. A: Chem. 2012, 363-364, 501; i) S. H. Stelzig, M. Tamm and R. M. Waymouth, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 6064; j) M. Tamm and S. Randoll, 2006, pp. INOR; k) M. Tamm, S. Randoll, E. Herdtweck, N. Kleigrewe, G. Kehr, G. Erker and B. Rieger, Dalton Trans. 2006, 459; I) M. Tamm, S. Randoll, E. Herdtweck, N. Kleigrewe, G. Kehr, G. Erker and B. Rieger, Dalton Trans 2006, 459; m) A. G. Trambitas, D. Melcher, L. Hartenstein, P. W. Roesky, C. Daniliuc, P. G. Jones and M. Tamm, Inorg. Chem. 2012, 51, 6753; n) A. G. Trambitas, T. K. Panda, J. Jenter, P. W. Roesky, C. Daniliuc, C. G. Hrib, P. G. Jones and M. Tamm, Inorg. Chem. 2010,

49, 2435; o) A. G. Trambitas, T. K. Panda, J. Jenter, P. W. Roesky, C. Daniliuc, C. G. Hrib, P. G. Jones and M. Tamm, Inorg Chem 2010, 49, 2435.

26 a) E. Alvarado, A. C. Badaj, T. G. Larocque and G. G. Lavoie, Chem. - Eur. J. 2012, 18, 12112; b) Y.-B. Huang, W.-G. Jia and G.-X. Jin, J. Organomet. Chem. 2008, 694, 86; c) W.-G. Jia, Y.-B. Huang, Y.-J. Lin and G.-X. Jin, Dalton Trans. 2008, 5612; d) W.-G. Jia, Y.-B. Huang, Y.-J. Lin and G.-X. Jin, Dalton Trans 2008, 5612; e) W.-G. Jia, Y.-B. Huang, Y.-J. Lin, G.-L. Wang and G.-X. Jin, Eur. J. Inorg. Chem. 2008, 4063; f) M. Slivarichova, R. Ahmad, Y.-Y. Kuo, J. Nunn, M. F. Haddow, H. Othman and G. R. Owen, Organometallics 2011, 30, 4779.

27 J. Huang, H.-J. Schanz, E. D. Stevens, S. P. Nolan, K. B. Capps, A. Bauer and C. D. Hoff, Inorg. Chem. 2000, 39, 1042.

28 a) P. Pyykköand M. Atsumi, Chem. Eur. J. 2009, 15, 12770; b) P. Pyykköand M. Atsumi, Chem. Eur. J. 2009, 15, 186.

29 a) A. J. Arduengo, III, J. C. Calabrese, A. H. Cowley, H. V. R. Dias, J. R. Goerlich, W. J. Marshall and B. Riegel, Inorg. Chem. 1997, 36, 2151; b) A. J. Arduengo, III, C. J. Carmalt, J. A. C. Clyburne, A. H. Cowley and R. Pyati, Chem. Commun. 1997, 981; c) O. Back, M. Henry-Ellinger, C. D. Martin, D. Martin and G. Bertrand, Angew. Chem., Int. Ed. 2013, 52, 2939; d) G. Frison and A. Sevin, J. Organomet. Chem. 2002, 643-644, 105.

30 a) F. Mathey, Acc. Chem. Res. 1992, 25, 90; b) J. F. Nixon, Chem. Rev. 1988, 88, 1327.

Chapter 2 Aryl-Substituted Acyclic Imino-N-Heterocyclic Carbene:

Coordination to Early Transition Metals

2.0 Preface

This chapter is comprised of three reformatted and slightly modified peerreviewed journal publications: New Stable Aryl-Substituted Acyclic Imino-NHeterocyclic Carbene: Synthesis, Characterisation and Coordination to Early Transition Metals; T. G. Larocque, A. C. Badaj, S. Dastgir and G. G. Lavoie Dalton Transactions 2011, 40(47), 12705-12712; Coordination and Reactivity Study of Titanium Phenoxo Complexes Containing a Bulky Bidentate Imino- N Heterocyclic Carbene Ligand; T. G. Larocque and G. G. Lavoie J. Organometal. Chem. 2012, 715, 26-32.; N-Heterocyclic Carbenes and Imidazole-2-thiones as Ligands for the Gold(I)-Catalysed Hydroamination of Phenylacetylene; E. Alvarado, A. C. Badaj, T. G. Larocque and G. G. Lavoie, Chemistry - A European Journal 2012, 18, 12112.

2.1 Introduction

As outlined in Chapter 1, NHCs have played an increasingly important role in organometallic chemistry and catalysis. ${ }^{1}$ These carbenes, which are excellent σ-donors and poor π-acceptors, impart excellent thermodynamic stability to transition metal complexes. ${ }^{2}$ In many cases, replacement of phosphine ligands with NHCs has resulted in enhanced thermal stability and catalytic activities. ${ }^{3}$ This observation has led to widespread applications of NHCs in transition metal complex-mediated organic transformations. However,
despite the large number of various catalysts that have been developed for the polymerization of olefins, ${ }^{4,5,6,7}$ very little work has been reported on the use of NHCs in such catalysts. ${ }^{8}$ Included in previously reported NHC-based catalysts are mono and dianionic, multidentate ligand systems. ${ }^{8}$ Of these previously reported catalysts, some show exception catalytic activity towards oligomerization of ethylene. ${ }^{9}$

Figure 2.1. General representation of multidentate NHC-based ligands on early transition metals

The Lavoie group became interested in preparing and studying NHC analogues of the bulky α-dimines and 2,6-diiminopyridines to address the poor thermal stability of these systems. ${ }^{10,11}$ Although these late transition metal complexes produce high-molecular-weight polyethylene in good rates, their performance decreases dramatically at temperatures greater than $50^{\circ} \mathrm{C}$ due to thermal decomposition. ${ }^{12}$ Introduction of the NHC fragment in the ligand scaffold thus offers the potential to mitigate this important shortcoming of these systems.

We have previously described the synthesis and full characterization of the imidazolium salts \mathbf{A} and \mathbf{B}, and the corresponding $\mathrm{Ag}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{I})$ complexes. ${ }^{13,14}$

A

B

$$
\mathrm{R}_{1}=\mathrm{Me} ; \mathrm{R}_{2}=\mathrm{Me}, \mathrm{Ph} ; \mathrm{R}_{3}=\mathrm{H}, \mathrm{Me}
$$

Figure 2.1. General representation of imidazolium salts A and B
Salts similar to A, where either aryl ring is replaced by an alkyl group have been reported by other groups and used to prepare late transition metal complexes for studying various catalytic reactions, including Suzuki-Miyaura cross-coupling and cyclopropanation. ${ }^{15}$ However, considering the significance of steric bulk in the $\alpha-$ diimine system to achieve high-molecular weight polymers, ${ }^{10}$ we decided to investigate the effect of having two aryl rings close to the coordination site in ligand scaffold (Figure 2.2).

Figure 2.2. General representation of the iminocarbene ligand
Considering the ubiquity of early transition metal catalysts in olefin polymerization, ${ }^{4,7,16,17,18}$ in this chapter, I describe the synthesis and structural characterization studies with free carbene, C^{\wedge} Imine, focused on Group 4 and 6 metals in their common oxidation states. As such, I describe the synthesis and isolation of the corresponding titanium, zirconium, hafnium and chromium metal halides. I also describe the synthesis and isolation of the corresponding titanium aryloxo complexes and the attempted synthesis of titanium imido complexes in hopes of generating five- and six-coordinate metal dichloride complexes that are commonly used as olefin oligomerisation and polymerization catalysts. ${ }^{4,6,7,15,16,19}$

2.2. Results and Discussion

2.2.1 Coordination of C^Imine to Early Transition Metal Halides

2.2.1.1. Coordination of C^{\wedge} Imine to titanium

Addition of one equivalent of C^{\wedge} Imine to $\mathrm{TiCl}_{4}(\mathrm{THF})_{2}$ in THF afforded TiCl_{4} (C^${ }^{\wedge}$ Imine) (2.1) as a spectroscopically pure yellow powder in excellent yield (91\%).

Scheme 2.1. Synthesis of group 4 and 6 metal halide complexes of C^Imine.

The NMR spectrum is consistent with the desired product. A decrease in the $\mathrm{C}=\mathrm{N}$ stretching frequency ($\mathrm{V}_{\mathrm{C}=\mathrm{N}} 1609 \mathrm{~cm}^{-1}$) compared to the free ligand ($\mathrm{v}_{\mathrm{C}=\mathrm{N}} 1662 \mathrm{~cm}^{-1}$) is observed, suggesting coordination of the imine nitrogen to the metal centre. Compound 2.1 crystallises in the $P 2_{1} / n$ space group, with the ligand coordinated in a bidentate fashion through the central imidazol-2ylidene carbon and the imine nitrogen, forming a distorted octahedral complex (Figure 2.3).

Figure 2.3. ORTEP plot (50\% probability level) of 2.1.
Hydrogen atoms and dichloromethane omitted for clarity.
The observed increase in the imine bond length upon coordination from $1.266(3)$ to $1.287(6) \AA$ is in agreement with the corresponding decrease in IR stretching frequency. The equatorial plane formed by $\mathrm{Ti} 1, \mathrm{C} 1, \mathrm{~N} 3, \mathrm{Cl} 1$ and Cl 4 atoms is almost perfectly orthogonal to the plane formed by $\mathrm{Ti} 1, \mathrm{Cl} 2$ and Cl 3 , and by those formed by the xylyl and mesityl rings, with respective angles of $89.47^{\circ}, 88.77^{\circ}$ and 89.09°. Other atoms such as N1, N2, C2, C3, C4, C5, C6, and C 14 also lie on the equatorial plane defined above. The $\mathrm{Cl} 2-\mathrm{Ti} 1-\mathrm{Cl} 3$ bond angle is $165.21(7)^{\circ}$ with both chlorine atoms bent towards C1 at an average angle of 82.75° and with chloride-carbenic carbon distances of 2.921 and $2.967 \AA$, considerably shorter than the sum of the van der Waals radii for both atoms $\left(3.45 \AA\right.$ Å.20 This could possibly arise from intermolecular interactions between the formally vacant p orbital on C 1 and the lone pairs of
the adjacent chlorides. ${ }^{21}$ Alternatively, the bending of Cl 2 and Cl 3 towards the carbene centre may be the result of repulsions between lone pairs on the other two adjacent chlorine atoms, as proposed by Arnold for a comparable highly congested d^{0} system. ${ }^{22}$ The trans effect of the strong carbene σ-donor is manifested by the longer Ti1-Cl4 (2.2808(16) \AA), compared to $\mathrm{Ti} 1-\mathrm{Cl} 1$ (2.2370(16) \AA). Selected bond lengths and angles for 2.1 and other compounds are listed in Table 2.1.

The corresponding $\mathrm{Ti}(\mathrm{III})$ complex 2.2 was prepared by a synthetic route similar to that used for 2.1 and was isolated as a purple solid. The solution magnetic susceptibility of 2.2 was determined to be $\mu_{\text {eff }}=1.65 \mu_{\mathrm{B}}$ using the Evans method, ${ }^{23}$ consistent with the predicted value ($\mu_{\text {eff }}$ (spin only) $=1.73)$ for one unpaired electron. X-ray quality crystals were obtained from vapour diffusion of pentane into a saturated THF solution (Figure 2.4). TiCl_{3} (C^{\wedge} Imine) (2.2) crystallised as a THF adduct in the $/ 41 /$ a space group with an elongated C4-N3 bond length of $1.280(3) \AA$, in agreement with the corresponding $\mathrm{C}=\mathrm{N}$ stretching frequency of $1607 \mathrm{~cm}^{-1}$.

Table 2.1. Selected bond lengths and angles for compounds C^Imine, 2.1, 2.2, 2.3 and 2.5

C^Imine					
$\mathbf{2 . 1}$					
bond length (Å)					
M-C1	-	$2.167(5)$	$2.178(3)$	$2.297(17)$	$2.041(4)$
M-N3	-	$2.358(4)$	$2.282(2)$	$2.479(14)$	$2.156(3)$
M-Cl1	-	$2.2370(16)$	$2.3139(9)$	$2.385(5)$	$2.2954(13)$
M-Cl2	-	$2.2930(18)$	$2.4202(9)$	$2.419(5)$	$2.3596(12)$
M-Cl3	-	$2.2775(18)$	$2.3595(9)$	$2.401(5)$	$2.2985(12)$
M-Cl4		$2.2808(16)$	-	-	-
N1-C1	$1.380(3)$	$1.373(6)$	$1.374(3)$	$1.42(2)$	$1.380(5)$
N2-C1	$1.354(3)$	$1.344(6)$	$1.336(3)$	$1.38(2)$	$1.345(5)$
N1-C4	$1.444(3)$	$1.448(6)$	$1.431(3)$	$1.35(2)$	$1.424(5)$
N3-C4	$1.266(3)$	$1.287(6)$	$1.280(3)$	$1.38(2)$	$1.287(5)$
C2-C3	$1.338(3)$	$1.329(8)$	$1.347(4)$	$1.19(3)$	$1.340(6)$
bond angle(deg)					
C1-M-N3	-	$70.42(16)$	$71.37(9)$	$67.0(5)$	$75.50(14)$
N1-C4-N3	$122.38(18)$	$112.3(4)$	$113.3(2)$	$112.8(15)$	$112.3(3)$
N1-C1-N2	$101.48(19)$	$104.7(4)$	$104.9(2)$	$105.1(14)$	$105.0(3)$
C1-M-Cl1	-	$97.18(14)$	$97.65(8)$	$100.1(4)$	$97.53(11)$
C1-M-Cl2	-	$83.34(15)$	$81.58(7)$	$82.85(13)$	$82.82(11)$
C1-M-Cl3	-	$82.16(15)$	$98.61(8)$	$155.0(4)$	$94.86(11)$
Cl1-M-Cl3	-	$92.49(6)$	$92.96(3)$	$104.9(2)$	$91.48(5)$
C1-M-Cl4	-	$158.65(14)$	-	-	
Cl2-M-Cl3	-	$165.21(7)$	$171.63(4)$	$96.48(12)$	$175.77(5)$

Figure 2.4. ORTEP plot (50\% probability level) of 2.2.

Hydrogen atoms omitted for clarity.

The complex has a highly distorted octahedral geometry. The Ti1-C1 bond length of $2.178(3) \AA$ is within expected values and comparable to that observed in 2.1. Interestingly, the vector formed by that bond is 11.5° off the plane of the imidazole ring. Moreover, the N1-C4-N3-C6 torsion angle is 163.95°, about 16° off the expected 180° value. The added bulk coming from the coordinated THF is likely contributing to these peculiar values. We believe that this increased steric bulk significantly influences other atom positions. In fact, the $\mathrm{C} 1-\mathrm{Ti} 1-\mathrm{Cl} 3$ bond angle is obtuse with a value of $98.61(8)^{\circ}$. Although the bond angle for $\mathrm{C} 1-\mathrm{Ti} 1-\mathrm{Cl} 2$ is $81.58(7)^{\circ}$ and comparable to the corresponding values observed in 2.1 , both Cl 2 and Cl 3 point directly towards

N3, further supporting that the bending of the trans chlorine atoms in 2.1 towards C1 may be strictly due to steric reasons and not electronic ones, as also previously proposed by Arnold. ${ }^{22}$ As expected, all metal-chloride bonds in 2.2 are longer than in the corresponding more electropositive and less sterically-congested $\mathrm{Ti}(\mathrm{IV})$ complex 2.1. Other bond lengths and angles are within normal range.

2.2.1.2. Coordination of free carbene to zirconium and hafnium

The zirconium (2.3) and hafnium (2.4) complexes were prepared in an analogous manner and isolated as white powders in yields of 67% and 73%, respectively. The NMR spectroscopic data for both complexes were consistent with the desired products and are similar to those for the titanium homologue 2.1. The $\mathrm{C}=\mathrm{N}$ stretching frequency for 2.3 and 2.4 were observed at $1606 \mathrm{~cm}^{-1}$ and $1604 \mathrm{~cm}^{-1}$, respectively, indicating a bidentate coordination motif. Coordination of the ligand through the carbene and the imine nitrogen was further corroborated for 2.3 through its X-ray structure (Figure 2.5).

Figure 2.5. ORTEP plot (50\% probability level) of 2.3.
Hydrogen atoms omitted for clarity.
Compound 2.3 exhibits a distorted octahedral coordination geometry. In contrast to 2.1, it crystallises in the Pnma space group, with the molecule lying on the crystallographic mirror plane orthogonal to the xylyl and to the mesityl rings, and passing through the imidazol-2-ylidene ring, as well as through C 4 , $\mathrm{C} 5, \mathrm{C} 17, \mathrm{~N} 3, \mathrm{Zr} 1, \mathrm{Cl} 1$ and Cl 3 . All bond lengths involving the $\mathrm{Zr}(\mathrm{IV})$ metal centre are on average $0.13 \AA$ longer than those observed in the corresponding Ti(IV) complex 2.1, in agreement with difference in covalent radii of both metals reported by Alvarez and Pyykkö. ${ }^{24}$ The Zr1-C1 and Zr1-N3 bond lengths are $2.319(7) \AA$ and $2.483(5) \AA$, respectively, with the zirconiumcarbene bond length similar to previously reported zirconium NHC complexes. ${ }^{25,26}$ As expected, the metal-chlorine bond trans to the strong
carbene σ-donor is slightly longer (2.407(2) \AA) than the one trans to the imine (2.384(2) \AA). Cl 2 and its crystallographically-equivalent Cl 2 a are bent towards C1 at an $82.85(13)^{\circ}$ angle, similar to that observed for 2.1 , with a carbonchlorine distance of $3.136 \AA$, possibly simply due to sterics considerations based on our previous observations for both $\mathrm{Ti}(\mathrm{III})$ (2.1) and $\mathrm{Ti}(\mathrm{IV})$ (2.2) compounds.

2.2.1.3. Coordination of free carbene to chromium

The $\operatorname{Cr}(I I I)$ (2.5) and $\operatorname{Cr}(I I)$ (2.6) complexes were prepared from the corresponding THF adduct metal halide precursors in 89% yield. In both cases, the complexes were purified by recrystallisation from THF under N_{2} at $-35^{\circ} \mathrm{C}$. Complexes 2.5 and 2.6 are both paramagnetic with a solution magnetic susceptibility of 3.81 and $2.90 \mu \mathrm{~B}$ (Evans Method), respectively, consistent with the predicted values for systems with three $\left(\mu_{\text {eff }}(\right.$ spin only $)=$ $\left.3.87 \mu_{\mathrm{B}}\right)$ and two (2.83 $\left.\mu_{\mathrm{B}}\right)$ unpaired electrons.

X-ray quality crystals were obtained for the trivalent chromium complex 2.5 (Figure 2.6). The complex crystallised in the $/ 41 /$ a space group as a THF adduct and is isostructural with the analogous $\mathrm{Ti}(\mathrm{III})$ complex 2.2.

Figure 2.6. ORTEP plot (50\% probability level) of 2.5.
Hydrogen atoms and dichloromethane omitted for clarity.
The $\mathrm{v}_{\mathrm{C}=\mathrm{N}}$ stretching frequency of $1604 \mathrm{~cm}^{-1}$ is in good agreement with the observed C4-N3 bond length of $1.287(5) \AA$ and comparable to the values observed for 2.2. All other $C-C$ and $C-N$ bond lengths of the C^{\wedge} Imine ligand in 2.5 are within experimental error of those observed in 2.2. In contrast, bond lengths between the metal centre and all six coordinating atoms are shorter than in the corresponding $\mathrm{Ti}(\mathrm{III})$ complex. The observed $\mathrm{Cr} 1-\mathrm{C} 1$ and $\mathrm{Cr} 1-\mathrm{N} 3$ bond lengths are in excellent agreement with the expected values based on the difference between the covalent radii of chromium (1.39 \AA) and titanium $(1.60 \AA) .{ }^{24}$ This is in contrast to the observed values for $\mathrm{Cr}-\mathrm{Cl}$ and $\mathrm{Cr}-\mathrm{O}$ bonds that are on average only $0.06 \AA$ shorter than the corresponding bonds
in 2.2, presumably because of greater repulsive interaction between the π electrons on the main elements and those in the metal d_{π}-orbitals. Interestingly, as observed for 2.2, the vector formed by Cr 1 and C 1 is also off the plane of the imidazole ring by 10.7° and the N1-C4-N3-C6 torsion angle is 163.67°. Moreover, Cl 2 and Cl 3 are also leaning more towards N 3 than C 1 . All other bond lengths and angles are within expected range and comparable to those observed in the analogous $\mathrm{Ti}(\mathrm{III})$ complex 2.2.

2.2.1.4. Ethylene polymerization catalysis

The catalytic activities of compounds 2.1-2.6 towards ethylene polymerization in toluene were studied at atmospheric pressure and room temperature in the presence of 1000 equivalents of methylaluminoxane (MAO) as cocatalyst. $\mathrm{ZrCl}_{4}\left(\mathrm{C}^{\wedge}\right.$ Imine) (2.3) was found to be the most active of all three complexes tested with a productivity of $140 \mathrm{~kg} \mathrm{PE} \cdot \mathrm{mol} \mathrm{M}^{-1} \cdot \mathrm{~h}^{-1}$, followed by the $\mathrm{Ti}(\mathrm{IV})$ homologue 2.1 at $40 \mathrm{~kg} \mathrm{PE} \cdot \mathrm{mol} \mathrm{m}^{-1} \cdot \mathrm{~h}^{-1}$. Those productivities are three and two times greater than those observed in respective control experiments using $\mathrm{ZrCl}_{4}(\mathrm{THF})_{2}$ and $\mathrm{TiCl}_{4}(\mathrm{THF})_{2}$. Furthermore, they are only one to two orders of magnitude lower than those observed using zirconocene dichloride as the benchmark catalyst. Reaction with the other complexes reported herein did not lead to any significant amount of solid polymer. In all cases, no soluble waxes or low molecular weight oligomers were generated. The maximum melting endotherms for the polyethylene produced by 2.1 and 2.3 were determined by differential scanning calorimetry and found to be
135.9 and $134.0^{\circ} \mathrm{C}$, respectively, indicative of linear polyethylene.

These preliminary results were promising and suggested that further development of the catalysts should focus on both titanium and zirconium.

2.2.5. Coordination and reactivity of C^{\wedge} Imine to titanium phenoxo complexes

2.2.5.1 Synthesis of $\mathrm{TiCl}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{3}-\mathrm{Me}_{2}\right)_{2}$ (C^Imine) (2.7)

The early transition metal halide systems bearing C^Imine are ideally suited for further tailoring of the activity by incorporation of alkoxide $\left(\mathrm{RO}^{-}\right)$, aryloxide $\left(\mathrm{ArO}^{-}\right)$, amide $\left(\mathrm{R}_{2} \mathrm{~N}^{-}\right)$or even imido $\left(\mathrm{RN}^{2-}\right)$ ligands to form five- and sixcoordinate metal dihalide complexes. Such strategies of fine-tuning the performance of the catalyst by incorporating one of these ancillary ligands while retaining two chlorides for subsequent activation has been used to develop other highly active catalytic systems. ${ }^{27}$ In view of the success of catalysts bearing aryloxo and imido ancillary ligands for α-olefin polymerization, ${ }^{5 c, 19 a, 27 a, 28}$ we chose to prepare titanium complexes of 1-(1-(2,6-dimethylphenylimino)-2,2-dimethylpropyl)-3-(2,4,6-trimethylphenyl)imidazol-2-ylidene carbene (C^Imine) containing aryloxo or imido groups as ancillary ligands in an attempt to develop structure-property relationships for ethylene polymerization.

Attempts to treat $\mathrm{TiCl}_{4}\left(\mathrm{C}^{\wedge}\right.$ Imine) with two equivalents of $\mathrm{Na}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{3}-\right.$ Me_{2}) under a variety of reaction conditions led to a mixture of reaction products. As a result, the $\mathrm{TiCl}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{3}-\mathrm{Me}_{2}\right)_{2}(\mathrm{THF})_{2}$ metal precursor was prepared and treated with one equivalent of C^{\wedge} Imine in toluene to give compound 2.7 as an
orange powder in good yield (82\%). The solution ${ }^{1} \mathrm{H}$ NMR spectrum was consistent with the desired product. The presence of two ortho methyl resonances for the 2,6-dimethylphenoxide ligands at $\delta 2.58$ and 2.41 is a strong indication of the cis arrangement of these ligands. A decrease in the $\mathrm{C}=\mathrm{N}$ stretching frequency from $1662 \mathrm{~cm}^{-1}$ for the free ligand to $1609 \mathrm{~cm}^{-1}$ for 2.7 suggests coordination of the ligand to the metal centre in a bidentate mode through both the carbenoid carbon and the imine nitrogen atoms. A comparable decrease in stretching frequency was also observed in TiCl_{4} (C^{\wedge} Imine) and other related early transition metal complexes. ${ }^{29}$

Mes $=2,4,6$-trimethylphenyl
DMP $=2,6$-dimethylphenyl

Scheme 2.2. Synthesis of titanium complexes 2.7 and 2.9 from free carbene, C^Imine.

Figure 2.6 ORTEP plot (50\% probability) of 2.7.
Hydrogen atoms and a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule are omitted for clarity.
In order to confirm the proposed structure of 2.7, we attempted to isolate single crystals suitable for X-ray crystallographic studies. Crystals of the desired product were successfully grown at $-35^{\circ} \mathrm{C}$ under nitrogen by slow liquid diffusion of pentane into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Analysis of the X-ray diffraction data confirmed the coordination of the ligand through the carbenoid carbon of the carbene and the imine nitrogen, with a C1-Ti1-N3 bite angle of $68.77(10)^{\circ}$, slightly smaller than that observed in $\mathrm{TiCl}_{4}\left(\mathrm{C}^{\wedge}\right.$ Imine) ${ }^{29}$ (Figure 2.6). The structure shows both chloride atoms trans to each other. As expected, the titanium centre of 2.7 exhibits a pseudo-octahedral coordination geometry, commonly observed
in $\mathrm{TiCl}_{2}(\mathrm{OAr})_{2} \mathrm{~L}_{2}$ complexes. ${ }^{30,31}$ Angles about the metal centre range from $76.25(8)$ to $100.80(10)^{\circ}$ (Table 2.2).

Upon coordination of C^{\wedge} Imine to titanium in 2.7, the $\mathrm{C}=\mathrm{N}$ bond length increases slightly from $1.266(3)$ to $1.270(4) \AA$, consistent with the observed decrease in the corresponding IR stretching frequency. The strong σ-donating ability of the carbene gives rise to the trans influence and is illustrated by the longer Ti-O2 bond trans to the carbene (1.821(2) \AA), compared to that for $\mathrm{Ti}-\mathrm{O} 1$ cis to the carbene (1.795(2) Å). The Ti1-C1 and Ti1-N3 bond distances were determined to be $2.226(3)$ and $2.379(2) \AA$, respectively. Both values are slightly greater than those observed in the tetrachloride complex $\mathrm{TiCl}_{4}\left(\mathrm{C}^{\wedge} \operatorname{Imine}\right)^{29}$, possibly due to the larger sterics of the phenoxide ligands or to its stronger trans influence compared to that of chlorides. ${ }^{32}$ Interestingly, both the Ti1-O1-C26 and the $\mathrm{Ti} 1-\mathrm{O} 2-\mathrm{C} 34$ bond angles are equivalent at $179.1(2)^{\circ}$.

As expected, we see significant multiple bond character between the metal and the oxygen with the Ti1-O1 (1.795(2) \AA) and $\mathrm{Ti} 1-\mathrm{O} 2$ (1.821(2) \AA) lengths closer to the expected bond distance of a $\mathrm{Ti}=\mathrm{O}$ double bond ($1.74 \AA$) than of a Ti-O single bond $(1.99 \AA) .{ }^{24 a, 33}$ The steric constraint imposed by the formation for the metallacycle leads to a yaw distortion of 10.0°, slightly higher than that observed in TiCl_{4} (C^{\wedge} Imine) $\left(9.1^{\circ}\right)^{29}$ but considerably smaller than in square planar nickel complexes of C^{\wedge} Imine $\left(14.5-15.7^{\circ}\right)^{34}$, further illustrating the effect of having a six-coordinate metal centre and sterically-demanding phenoxide ligands.

The xylyl and mesityl rings of C^{\wedge} Imine are almost orthogonal to the best plane formed by the imidazol-2-ylidene ring, at 82.40° and 89.26°, respectively. The phenoxide ring cis to the carbene is almost perfectly aligned with the mesityl ring, with a $\mathrm{N} 2-\mathrm{C} 1-\mathrm{Ti} 1-\mathrm{O} 1$ torsion angle of $0.7(3)^{\circ}$. These two rings are also approximately coplanar, as evidenced by the small angle (3.4°) between the mean planes formed by each ring. In contrast, the phenoxide ring trans to the carbene is neither well aligned nor coplanar with the xylyl ring of C^{\wedge} Imine, with a C6-N3-Ti1-O2 torsion angle of $25.1(2)^{\circ}$ and an angle between the planes formed by each ring of 15.9°.

Interestingly, previous attempts to grow crystals of 2.7 from slow liquid diffusion of pentane into a saturated THF solution at $-35^{\circ} \mathrm{C}$ resulted in the decomposition product 2.8, with two coordinated mesitylimidazole fragments bound to titanium cis to each other (Figure 2.7). Nucleophilic attack of adventitious water on the iminic carbon of the bidentate ligand, which has become a better electrophile through replacement of two chlorides in TiCl_{4} (C^{\wedge} Imine) with the more electronegative phenoxide ligands, likely accounts for its decomposition to mesityl imidazole and N-(2,6dimethylphenyl)pivaloylamide. Interestingly, such cleavage of the N1-C4 bond has not been reported for more electron-rich late transition metal analogues. ${ }^{34}$ Compound 2.8 was independently synthesized by reacting two equivalents of 1-(2,4,6-trimethylphenyl)imidazole with $\mathrm{TiCl}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{3}-\mathrm{Me}_{2}\right)_{2}(\mathrm{THF})_{2}$.

Table 2.2. Selected bond lengths and angles for compounds $\mathrm{TiCl}_{4}\left(\mathrm{C}^{\wedge}{ }^{1} \mathrm{mine}\right)$, 2.7 and 2.9.

	$\mathrm{TiCl}_{4}\left(\mathrm{C}^{\wedge} \mathrm{Imine}\right)^{29}$	2.7	2.9
Bond lengths (A)			
Ti-C1	2.167(5)	2.226(3)	2.186(3)
Ti-N3	2.358(4)	2.379(2)	2.336(3)
Ti-Cl1	2.2370(16)	2.3844 (9)	2.3427(9)
Ti-Cl2	2.2930(18)	2.3245 (9)	2.3064(10)
Ti-Cl3	2.2775(18)	-	-
Ti-Cl4	2.2808(16)	-	-
Ti-01	-	1.795(2)	1.892(2)
Ti-O2	-	1.821(2)	1.854(2)
N1-C1	1.373(6)	1.375(4)	1.376(4)
N2-C1	1.344(6)	1.344(4)	1.338(4)
N1-C4	1.448(6)	1.431(4)	1.441(4)
N3-C4	1.288(6)	1.270(4)	1.288(4)
C2-C3	1.329(8)	1.329(4)	1.326(5)
Bond angles (deg)			
$\mathrm{C} 1-\mathrm{Ti}-\mathrm{N} 3$	70.42(16)	68.77(10)	70.20(10)
N1-C4-N3	112.3(4)	113.3(3)	112.9(3)
N1-C1-N2	104.7(4)	104.8(2)	105.0(3)
$\mathrm{C} 1-\mathrm{Ti}-\mathrm{Cl} 1$	97.18(14)	76.25(8)	82.07(8)
$\mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl} 2$	83.34(15)	83.47(8)	157.71(8)
$\mathrm{C} 1-\mathrm{Ti}-\mathrm{Cl} 3$	82.16(15)	((
$\mathrm{Cl} 1-\mathrm{Ti}-\mathrm{Cl} 3$	83.32(15)	-	-
$\mathrm{C} 1-\mathrm{Ti}-\mathrm{Cl} 4$	158.65(15)	-	-
$\mathrm{Cl} 2-\mathrm{Ti}-\mathrm{Cl} 3$	165.21(7)	-	-
C1-Ti-O1		97.73(10)	88.97(10)
C1-Ti-O2	-	160.54(10)	99.83(10)
O1-Ti-O2	-	100.80(10)	81.26(9)
$\mathrm{Cl} 1-\mathrm{Ti}-\mathrm{O} 1$	-	97.17(7)	169.24(8)
$\mathrm{Cl} 1-\mathrm{Ti}-\mathrm{O} 2$	-	95.49(7)	94.34(7)

Figure 2.7. ORTEP plot (50\% probability) of 2.8.
Hydrogen atoms are omitted for clarity.

2.2.6. Synthesis of $\mathrm{TiCl}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{O}\right)\left(\mathrm{C}^{\wedge}\right.$ Imine) (2.9)

Considering that the cis arrangement of chloride ligands is critical in the formation of active olefin polymerization catalysts, we decided to prepare the catecholate titanium complex, with the expectation that the desired cis-chloride isomer would be produced. Similar to our observations with compound 2.7, attempts to treat $\mathrm{TiCl}_{4}\left(\mathrm{C}^{\wedge}\right.$ Imine) with one equivalent of $\mathrm{Li}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{O}\right)$ under a variety of reaction conditions led to a mixture of reaction products. The $\mathrm{TiCl}_{2}(2,6-$
$\left.\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{O}\right)(\mathrm{THF})_{2}$ metal precursor was thus prepared ${ }^{35}$ and treated with one equivalent of C^{\wedge} Imine in toluene to give compound 2.9 in good yield (84\%) as a dark red powder (Scheme 2). Compound 2.9, like compound 2.7, has a lower $\mathrm{C}=\mathrm{N}$ stretching frequency $\left(\mathrm{V}_{\mathrm{C}=\mathrm{N}} 1610 \mathrm{~cm}^{-1}\right)$ than that of the free carbene, suggesting that the ligand is also coordinating through the imine nitrogen.

Figure 2.8. ORTEP plot (50\% probability) of 2.9.
Hydrogen atoms and a pentane solvent molecule were omitted for clarity.
Crystals of 2.9 suitable for single crystal X-ray diffraction were successfully grown at $-35^{\circ} \mathrm{C}$ under nitrogen by slow liquid diffusion of pentane into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. X-ray crystallographic analysis confirmed the coordination of the ligand through both the central imidazol-2-ylidene carbon and the imine nitrogen, with a slightly larger $\mathrm{C} 1-\mathrm{Ti} 1-\mathrm{N} 3$ bite angle $\left(70.20(10)^{\circ}\right)$ than that observed in 2.7, a result of replacing two 2,6-dimethylphenoxide ligands with
the smaller bidentate 2,6-catecholate (Figure 2.8). This allows for the C^{\wedge} Imine ligand to be closer to the metal centre, resulting in shorter Ti1-C1 and Ti1-N3 bonds compared to those observed in 2.7. As expected, the titanium centre adopts a pseudo-octahedral coordination geometry with bond angles about the metal centre ranging from $70.20(10)$ to $99.83(10)^{\circ}$ (Table 1).

As observed for compound 2.7, coordination of C^{\wedge} Imine results in an increase in the $\mathrm{C}=\mathrm{N}$ bond length from $1.266(3)$ to $1.288(4) \AA$, which is in agreement with the related decrease in the $\mathrm{C}=\mathrm{N}$ bond IR stretching frequency. The formation of the metallacycle leads to a yaw distortion of 9.0°. To our surprise, we did not see elongation of the Ti1-CI2 bond from the trans influence of the strong σ-donating carbene. The $\mathrm{Ti} 1-\mathrm{Cl} 1$ and the $\mathrm{Ti} 1-\mathrm{Cl} 2$ bond lengths were determined to be $2.3427(9)$ and $2.3064(10) \AA$, respectively and the longer Ti1-Cl1 bond length could be a result of steric crowding of the catecholate ligand. The 2,6-dimethylphenyl and 2,4,6-trimethylphenyl rings are twisted 88.87° and 80.97° off the imidazol-2-ylidene ring, respectively. The catecholate and mesityl rings are approximately coplanar with C14 lying over O2, with an angle between the best planes formed by each ring of 7.94° and a $\mathrm{C} 14-\mathrm{O} 2$ distance of $3.388 \AA$. Lastly, the ipso carbon (C6) of the xylyl ring is in closer proximity to both Cl 2 and C 25 , at 3.169 and $2.840 \AA$, respectively.

The solution ${ }^{1} \mathrm{H}$ NMR spectrum for compound 2.9 at room temperature was surprisingly more complicated than that of compound 2.7. Broad resonances in the aromatic region at $\delta 6.41,5.88$ and 5.40 and in the benzylic region at δ
2.47 and 1.58 , each respectively integrating to $3,1,1,9$ and 3 protons were observed. The broad resonance at $\delta 6.41$ corresponds to the overlapping para and meta protons of the xylyl ring, while those at $\delta 5.88$ and 5.40 are the inequivalent meta protons of the mesityl ring. The resonance at $\delta 2.47$ corresponds to the broad ortho methyl protons of the xylyl ring and to one of the two ortho methyl groups of the mesityl ring, with the second set of inequivalent ortho methyl protons resonating at $\delta 1.58$. The magnetic inequivalence of the protons for both the mesityl and xylyl rings, and the presence of broad resonances suggest restricted rotation for both aryl rings.

This was further supported by variable-temperature NMR experiments (Fig. 5). $\mathrm{A}{ }^{1} \mathrm{H}$ NMR spectrum of 2.9 in CDCl_{3} was acquired at $21{ }^{\circ} \mathrm{C}$. The temperature was gradually increased and spectra were recorded at $5^{\circ} \mathrm{C}$ intervals up to a final temperature of $50^{\circ} \mathrm{C}$. Both meta proton resonances of the mesityl ring at $\delta 5.88$ and 5.40 coalesced at $\delta 5.63$ at approximately $40{ }^{\circ} \mathrm{C}$, with estimated values for the rate constant and the free energy of activation $\left(\Delta G^{\ddagger}\right)$ of $320 \mathrm{~s}^{-1}$ and $59 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at coalescence, respectively. The NMR spectrum recorded at $50^{\circ} \mathrm{C}$ showed further line sharpening of this resonance and of that assigned to the meta aromatic protons of the xylyl ($\delta 6.41$). Interestingly, in addition to becoming sharper, the relative integration of the resonance at $\delta 2.47$ decreased from the original 9 protons at room temperature to 6 protons at $50^{\circ} \mathrm{C}$, which were assigned to the methyl protons of the xylyl ring. The elevated temperature also resulted in broadening of the ortho methyl resonance from the
mesityl ring at $\delta 1.58$, indicating the beginning of coalescence with the other resonance for the magnetically-inequivalent methyl protons at $\delta 2.47$ (Figure 2.9).

Figure 2.9. Selected regions of the ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathrm{MHz}\right)$ of 2.9 at temperatures ranging from 21 to $50^{\circ} \mathrm{C}$.

The restricted rotation likely results from the steric about the hexacoordinate metal centre introduced by both the ortho-substituted aryl rings, the large tert-butyl group and by the rigid bidentate catecholate ligand. While distances of the ipso carbon (C 6 and C 14) of both aryl rings to nearby atoms (vide supra) may suggest a greater energy barrier for rotation of the xylyl ring compared to that of the mesityl ring, our variable-temperature experiments clearly indicate otherwise. This is reasonable considering that the dianionic catecholate ligand produces a stiff chelate with the metal centre and that the
neutral iminic nitrogen atom (N3) forms a weaker and more labile dative bond with the metal centre. Upon restoring the temperature of the solution back to 25 ${ }^{\circ} \mathrm{C}$, the original spectrum was restored, further supporting restricted rotation of both the xylyl and mesityl rings, and indicating no thermal decomposition.

2.2.7. Attempted Synthesis of $\mathrm{TiCl}_{2}(=\mathrm{N}-\mathrm{R})\left(\mathrm{C}^{\wedge}\right.$ Imine)

In an attempt to further expand the library of potential catalysts, we decided to prepare the titanium imido dichloride complex. Reaction of two equivalents of tert-butylamine with $\mathrm{TiCl}_{4}\left(\mathrm{C}^{\wedge}\right.$ Imine) led to a mixture of reaction products despite the various reaction conditions and solvents (THF, dichloromethane, chloroform) investigated. Attempts to separate the components of the reaction mixture were unsuccessful. In all cases, the resulting spectra contained a number of unidentified species. All spectra interestingly showed the same two characteristic resonances of equal intensity at $\delta 8.6$ and 8.3 also observed for the decomposition product 2.8.

As a result, we decided to adopt the same strategy used in the preparation of 2.7 and 2.9 and to attempt simple ligand displacement reactions with titanium imido precursors containing a labile ligand. Thus, TiCl_{2} (tert-butylimido)($\left.\mathrm{NHMe}_{2}\right)_{2}$, TiCl_{2} (tert-butylimido)(py) $)_{3}, \quad \mathrm{TiCl}_{2}$ (tert-butylimido)(TMEDA) and TiCl_{2} (tertbutylphenylimido)(TMEDA) were prepared ${ }^{30,36}$ and each one was treated with one equivalent of C^{\wedge} Imine in several solvents (THF, toluene, diethyl ether and chloroform) and at various reaction conditions. In all cases, a complex mixture of unidentified compounds was generated and attempts to isolate the components
were unsuccessful. The ${ }^{1} \mathrm{H}$ NMR spectra displayed the same distinctive downfield resonances reported above. We believe that upon coordination to the electropositive titanium centre, the $\mathrm{C}=\mathrm{N}$ bond becomes more electrophilic and more susceptible to nucleophilic attack, thus resulting in decomposition. This decomposition pathway might be mitigated in compounds 2.7 and 2.9 thanks to the bulkier hexacoordinate metal centres and to the greater electron-donating capabilities of two phenoxide ligands, compared to one single imido ligand.

2.2.8. Ethylene polymerization catalysis

The catalytic activities of compounds 2.7 and 2.9 towards ethylene polymerization in toluene were studied at atmospheric pressure and room temperature in the presence of 1000 equivalents methylaluminoxane (MAO) as cocatalyst. In both cases, only trace amounts of polyethylene (PE) was recovered and no soluble waxes or low-molecular-weight oligomers were generated. In contrast, the parent $\mathrm{TiCl}_{4}\left(\mathrm{C}^{\wedge}\right.$ Imine) complex showed productivities of $40 \mathrm{~kg} \mathrm{PE} \cdot \mathrm{mol} \mathrm{M}^{-1} \cdot \mathrm{~h}^{-1} \cdot{ }^{29}$ Coordination of the iminic nitrogen (N3) to the more Lewis-acidic metal centre enhances the electrophilicity of the iminic carbon (C4) in compounds 2.7 and 2.9, making it more susceptible to nucleophilic attack and to decomposition into complexes such as compound 2.8, which was itself also found to be inactive in ethylene polymerization under comparable conditions.

2.3.1. Synthesis of \mathbf{S}^{\wedge} Imine

In an attempt to gain further insight into the chemistry involving the arylsubstituted acyclic imino- N-heterocyclic carbene ligand, and possibly develop a
hard-soft, nitrogen-sulphur donor ligand, it was decided that synthetic investigations would be extended to prepare compound 2.10. Treating C^imine with sulphur in a toluene solution afforded a spectroscopically pure, beige powder of compound 2.10 in good yield (85\%) (Scheme 2.3).

Scheme 2.3: Synthetic strategy to forming compound 2.10
The NMR spectroscopic analysis revealed an interesting ${ }^{1} \mathrm{H}$ NMR spectrum. It contained signals ranging from 6.83 ppm to 1.58 ppm . The resonances of the backbone hydrogens of the imidazol-2-ylidene appeared at 6.00 ppm and 5.63 ppm . The broad para methyl protons of mesityl (2.67 ppm) and the non-equivalence of the ortho methyl protons of mesityl ring (1.99 ppm and 1.61 ppm) suggest restricted rotation about the nitrogen-carbon bond of the imidazol-2-ylidene and the mesityl ring. The plausible scenario of restricted rotation was further reinforced by variable temperature NMR experiments. An NMR spectrum of 2.10 in $\mathrm{C}_{6} \mathrm{D}_{6}$ was acquired at $20^{\circ} \mathrm{C}$. The temperature was gradually increased to obtain spectra at $30^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$ (Figure 4). Most noticeably, the mesityl ortho and para methyl signals began to broaden into the baseline at $30^{\circ} \mathrm{C}$ and continued to broaden at $40^{\circ} \mathrm{C}$. Once the sample reached $50^{\circ} \mathrm{C}$, the para methyl proton signal began to reappear at 2.43
ppm and continued to sharpen at $60^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$. At $60^{\circ} \mathrm{C}$, the ortho methyl proton resonance begins to reappear as a broad singlet at 1.80 ppm and continued to sharpen at $65^{\circ} \mathrm{C}$. As a result, the coalescence temperature was determined to be $60^{\circ} \mathrm{C}$. The original spectrum was obtained once the temperature was restored to $20^{\circ} \mathrm{C}$. The ${ }^{13} \mathrm{C}$ NMR spectrum contained signals ranging from 163.4 ppm to 17.7 ppm . The central carbon of the imidazol-2ylidene and imine carbon signals appeared at 163.4 ppm and 160.4 ppm , respectively.

Crystals suitable for X-ray diffraction analysis were grown at - $35^{\circ} \mathrm{C}$ under nitrogen by slow diffusion of pentane into a saturated THF solution (Figure 2.10). X-ray diffraction revealed the ligand adopts the Z-configuration in the solid state. The C1-S1 bond length was determined to be $1.6703(18) \AA$ and is similar to previously reported sulphur-NHC compounds.

The S^$^{\wedge}$ Imine ligand was coordinated to gold(I) and was used to facilitate hydroamination reactions by another student within the Lavoie group. ${ }^{37}$

Figure 2.10: ORTEP plot (30\% probability) of 2.10.
Hydrogen atoms and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate omitted for clarity.

2.4.1. Conclusions

Group 4 and 6 transition metals bearing the aryl-substituted acyclic imino-N-heterocyclic carbene were synthesized, isolated and characterized. The catalytic activities during ethylene polymerization of all six complexes were explored. The zirconium and titanium complexes activities showed promise and warranted further tailoring of their coordination sphere. New aryloxo titanium complexes containing a bidentate imino-N-heterocyclic carbene were prepared as potential catalysts for olefin polymerization. The metal electronics and sterics about the metal centre were tuned through coordination of either two phenoxide ligands (2.7) or one catecholate ligand (2.9). NMR experiments revealed
restricted rotation of both aryl rings that are part of the imino-carbene ligand scaffold. The solid-state structure of both complexes was confirmed by X-ray diffraction studies. Attempts to make a related titanium imido complex failed, presumably due to the sensitivity of the imine group towards nucleophilic attack, as evidenced by the formation of the bis(imidazole) decomposition product 2.8 . The catalytic activities of the phenoxide complexes towards ethylene polymerization were assessed and found to be significantly lower than that previously reported for the tetrachloride complex. Compounds 2.7 and 2.9 were more susceptible to nucleophilic attack and to decomposition into complexes such as compound 2.8 , which was itself also found to be inactive in ethylene polymerization under comparable conditions. The reactivity of C^{\wedge} Imine towards sulphur was explored and resulted in a new ligand, S^Imine. X-ray quality crystals of this new ligand were grown and analyzed. Another student explored the coordination of this ligand with gold and the activity of that complex showed considerable activity towards hydroamination.

2.5. Experimental

2.5.1 General Comments

All manipulations were performed under a dinitrogen atmosphere in a drybox or using standard Schlenk techniques. Solvents used in the preparation of air and/or moisture sensitive compounds were dried using an MBraun Solvent Purification System fitted with alumina columns and stored over molecular sieves under a positive pressure of dinitrogen. Deuterated
solvents were degassed using three freeze-pump-thaw cycles. $\mathrm{C}_{6} \mathrm{D}_{6}$ and CDCl_{3} were vacuum distilled from sodium and CaH_{2}, respectively, and stored under dinitrogen. NMR spectra were recorded on a Bruker DRX $600\left({ }^{1} \mathrm{H}\right.$ at $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 150.9 MHz$)$, Bruker $\operatorname{AV} 400\left({ }^{1} \mathrm{H}\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100 MHz$)$ or Bruker AV $300\left({ }^{1} \mathrm{H}\right.$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 75.5 MHz$)$ spectrometer and are at room temperature unless otherwise stated. The spectra were referenced internally relative to the residual protio-solvent (${ }^{1} \mathrm{H}$) and solvent $\left({ }^{13} \mathrm{C}\right)$ resonances and chemical shifts were reported with respect to $\delta=0$ for tetramethylsilane. A TA Model 2010 differential scanning calorimeter was used to measure the melting endotherm. The sample was first heated to $160^{\circ} \mathrm{C}$, quenched with liquid nitrogen, and then reheated to $160^{\circ} \mathrm{C}$ at a rate of $20^{\circ} \mathrm{C} / \mathrm{min}$. Elemental compositions and exact masses were determined by either ANALEST Laboratory of the University of Toronto or by Guelph Chemical Laboratories Inc. located in Guelph, Ontario.

All metal precursors were purchased from either BDH or Sigma-Aldrich. N-(2,6-Dimethylphenyl)acetamide was purchased from Sigma-Aldrich or Alfa Aesar and used without further purification. 1-(1-(2,6-Dimethylphenylimino)-2,2-dimethylpropyl)-3-(2,4,6-trimethylphenyl)imidazol-2-ylidene (C^Imine) ${ }^{29}$, $\mathrm{TiCl}_{4}(\mathrm{THF})_{2}{ }^{38}, \mathrm{ZrCl}_{4}(\mathrm{THF})_{2}{ }^{38}$ and $\mathrm{HfCl}_{4}(\mathrm{THF})_{2}{ }^{38}$ were prepared using published procedures. $\mathrm{TiCl}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{3}-\mathrm{Me}_{2}\right)_{2}(\mathrm{THF})_{2}$ and $\mathrm{TiCl}_{2}\left(1,2-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{O}\right)(\mathrm{THF})_{2}$ were prepared analogous to the literature procedure. The product was further purified by dissolving it in THF with subsequent precipitation from pentane to
yield the THF adduct ${ }^{35,39}$. Deuterated NMR solvents were purchased from Cambridge Isotope Laboratories. MAO was graciously donated by Albemarle Corp.

2.5.2 Synthesis of $\mathrm{TiCl}_{4}\left(\mathrm{C}^{\wedge}\right.$ Imine) (2.1)

A vial was charged with C^Imine ($243 \mathrm{mg}, 0.650 \mathrm{mmol}$) and was dissolved in a minimal amount of THF (5 mL) and was added to a THF solution (2 mL) of $\mathrm{TiCl}_{4}(\mathrm{THF})_{2}(212 \mathrm{mg}, 0.634 \mathrm{mmol})$. The solution immediately darkened to a dark yellowish-brown and was allowed to stir at room temperature for 2.5 hours. Volatiles were removed under reduced pressure to yield a bright yellow solid that was washed with pentane (15 mL) to yield a spectroscopically pure powder ($325 \mathrm{mg}, 91 \%$). Crystals suitable for X-ray diffraction study were grown at $-35^{\circ} \mathrm{C}$ under nitrogen by slow liquid diffusion of pentane into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.93$ (s, 1H, $\mathrm{NCHCN}_{(\text {mesity }}$), 7.06 (s, $1 \mathrm{H}, \mathrm{NCCHN}_{\text {(mesity) }}$), $7.03-6.99$ $\left(m, 3 H, p-\mathrm{CH}_{(2,6-x y \mid y i)}+m-\mathrm{CH}_{(2,6-x y|y|)}\right), 6.96\left(\mathrm{~s}, 2 \mathrm{H}, m-\mathrm{CH}_{(\text {mesity })}\right), 2.50(\mathrm{~s}, 6 \mathrm{H}, o-$
 $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{\text {(imine) }}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 197.4(\mathrm{NCN}), 165.3$ $(C=N), 146.9\left(C_{(2,6-x y \mid y 1)}\right), 140.2\left(p-C_{(\text {mesityl })}\right), 135.7\left(o-C_{(\text {mesity })}\right), 134.8\left(C_{(\text {mesity }}\right)$, 131.1 (o-C $\left(2,6-\right.$-xylyl) $^{)}$, $129.3\left(m-\mathrm{CH}_{(\text {mesity })}\right)$, $128.3\left(m-\mathrm{CH}_{(2,6-x y \mid y)}\right)$, $126.7\left(p-\mathrm{CH}_{(2,6-}\right.$ xylyl) $), \quad 122.9 \quad\left(\operatorname{NCCN}_{(\text {mesityl }}\right), \quad 120.0 \quad\left(\operatorname{NCCN}_{(\text {mesity }}\right), \quad 40.9 \quad\left(C_{\text {(imine) }}\right), \quad 30.6$ $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{(\text {imine })}\right)$, $21.4\left(o-\mathrm{CH}_{3(2,6-\text {-xylyl) }}\right)$, $21.3\left(p-\mathrm{CH}_{3(\text { mesity })}\right)$, $18.9\left(o-\mathrm{CH}_{3(\text { mesityl) }}\right)$ FTIR (cast film) $\eta \mathrm{C}=\mathrm{N} 1609 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{Ti} \times 0.5$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (\%): C, 53.02; H, 5.52 ; N, 7.40. Found (\%): C, $52.68 ; \mathrm{H}, 5.93 ; \mathrm{N}, 7.31$.

2.5.2 Synthesis of $\mathrm{TiCl}_{3}\left(\mathrm{C}^{\wedge}\right.$ Imine) (2.2)

Compound 2.2 was isolated as a purple solid according to the procedure described for 2.1, using $\mathrm{TiCl}_{3}(\mathrm{THF})_{3}$ as metal precursor and toluene as solvent. Yield: 97\%. Crystals suitable for X-ray diffraction study were grown at room temperature under nitrogen by slow vapour diffusion of pentane into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. FTIR (cast film) $\mathrm{v}_{\mathrm{C}=\mathrm{N}} 1607 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{Ti} \cdot 1.0$ THF (\%): C, 58.06; H, 6.55; N, 7.00. Found (\%): C, 57.77; H, 6.30; N, 6.81.

2.5.3 Synthesis of $\mathrm{ZrCl}_{4}\left(\mathrm{C}^{\wedge}\right.$ Imine) (2.3)

Compound 2.3 was isolated as a white solid according to the procedure described for 2.1, using $\mathrm{ZrCl}_{4}(\mathrm{THF})_{2}$ as metal precursor and toluene as solvent. Yield: 67%. Crystals suitable for X-ray diffraction study were grown at $-35^{\circ} \mathrm{C}$ under nitrogen by slow liquid diffusion of pentane into a saturated THF solution. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98$ (s, $\left.1 \mathrm{H}, \mathrm{NCHCN}_{(\text {mesity })}\right), 7.12$ (s, 1H, NCCHN $($ mesityl) $), 7.06-7.04\left(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{CH}_{(2,6-x y \mid y l)}+m-\mathrm{CH}_{(2,6-x y \mid y 1)}\right), 7.00$ (s, $\left.2 \mathrm{H}, m-\mathrm{CH}_{(\text {mesityl) }}\right), 2.50\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3(2,6 \text {-xylyl) }}\right), 2.33$ (s, $\left.3 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3(\text { mesity })}\right)$, 2.25 ($\left.\mathrm{s}, 6 \mathrm{H}, \mathrm{o}-\mathrm{CH}_{3(\text { mesityl) })}\right), 1.49\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{\text {(imine) })}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 195.3(\mathrm{NCN}), 167.6(C=\mathrm{N}), 144.0\left(C_{(2,6-x y|y|)}\right), 140.6\left(p-C_{(\text {mesity })}\right)$, $135.5\left(C_{(\text {mesityl })}\right), 134.4\left(o-C_{(\text {mesityl) }}\right), 131.2\left(o-\mathrm{CH}_{\left(2,6-\mathrm{xy} \mathrm{y}^{\prime}\right)}\right)$, $129.57\left(m-\mathrm{CH}_{\text {(mesityl) }}\right)$, $128.7\left(m-C_{(2,6-x y \mid y l)}\right), \quad 127.1\left(p-\mathrm{CH}_{(2,6-x y|y| l}\right), \quad 123.6 \quad\left(\mathrm{NCCN}_{(\text {mesityl }}\right), 121.0$ $\left(\mathrm{NCCN}_{(\text {mesity })}\right), 41.6\left(\mathrm{C}_{(\text {(imine })}\right), 30.9\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{(\text {imine })}\right), 22.6\left(p-\mathrm{CH}_{3 \text { (mesityl) }}\right), 21.0$ (o-
$\left.\mathrm{CH}_{3(2,6-\mathrm{xy}|\mathrm{y}|}\right)$), $18.6\left(o-\mathrm{CH}_{3 \text { (mesityl) }}\right)$. FTIR (cast film) $\mathrm{v}_{\mathrm{C}=\mathrm{N}} 1606 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{Zr}$ (\%): C, 49.50; H, 5.15; $\mathrm{N}, 6.93$. Found (\%): C, $47.35 ; \mathrm{H}$, 4.91; N, 6.30 (repeated microcombustion analyses of spectroscopically-pure material consistently gave low carbon values). HRMS (AccuTOF ${ }^{T M}$-DART ${ }^{\circledR}$): Calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{Zr} \cdot \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}, \mathrm{~m} / \mathrm{z}=789.1476$; Found: 789.1483.

2.5.4 Synthesis of $\mathrm{HfCl}_{4}\left(\mathrm{C}^{\wedge}\right.$ Imine) (2.4)

Compound 2.4 was isolated as a white solid according to the procedure described for 2.1, using $\mathrm{HfCl}_{4}(\mathrm{THF})_{2}$ as metal precursor and toluene as solvent. The complex was further purified by recrystallisation at $-35^{\circ} \mathrm{C}$ under nitrogen by slow liquid diffusion of pentane into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Yield: $73 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01 \quad(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{NCHCN}_{(\text {mesityl) }}\right), 7.11\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCCHN}_{(\text {mesityl) }}\right), 7.07-7.03\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{(2,6-\mathrm{xylyl})}+\right.$ $\left.m-\mathrm{CH}_{(2,6-x y \mid y 1)}\right), 6.98\left(\mathrm{~s}, 2 \mathrm{H}, m-\mathrm{CH}_{(\text {mesityl) }}\right), 2.49\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3(2,6-\mathrm{xy} \mid \mathrm{y})}\right), 2.32$ (s, $\left.3 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3(\text { mesityl) }}\right), \quad 2.23 \quad$ (s, $\left.\quad 6 \mathrm{H}, o-\mathrm{CH}_{3(\text { mesityl) }}\right)$, 1.48 (s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{\text {(imine) })}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.6$ (NCN), 168.5
 $131.5\left(o-\mathrm{CH}_{(2,6-\mathrm{xy} \mid \mathrm{y})}\right)$, $129.4\left(m-\mathrm{CH}_{(\text {mesityl }}\right)$, $128.7\left(m-\mathrm{C}_{(2,6-x y \mid y)}\right)$, $127.2\left(\mathrm{p}-\mathrm{CH}_{(2,6-}\right.$ xylyl) $\left.), \quad 123.5\left(\operatorname{NCCN}_{(\text {mesityl }}\right), \quad 121.5\left(\operatorname{NCCN}_{(\text {mesity }}\right)\right), \quad 41.4 \quad\left(C_{\text {(imine) }}\right), \quad 30.9$ $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{\text {(imine) }}\right)$, $21.3\left(p-\mathrm{CH}_{3 \text { (mesityl) }}\right)$, $21.1\left(o-\mathrm{CH}_{3(2,6-x y 1 \text { yl })}\right)$, $18.6\left(o-\mathrm{CH}_{3(\text { mesity })}\right)$. FTIR (cast film) $v_{C=N} 1604 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{Hf}$ (\%): $\mathrm{C}, 43.28$; H, 4.50; N, 6.06. Found (\%): C, 42.94; H, 4.71; N, 5.87.

2.5.5 Synthesis of CrCl_{3} (C^Imine)(THF) (2.5)

Compound 2.5 was isolated as a deep dark blue solid according to the procedure described for 2.1, using $\mathrm{CrCl}_{3}(\mathrm{THF})_{3}$ as metal precursor and THF as solvent. Yield: 89\%. Crystals suitable for X-ray diffraction study were grown at room temperature under nitrogen by slow vapour diffusion of pentane into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. FTIR (cast film) $\mathrm{v}_{\mathrm{C}=\mathrm{N}} 1604 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{Cr} \cdot 1.0$ THF (\%): C, 57.67 ; H, 6.51; N, 6.96. Found (\%): C, 57.39; H, 6.41; N, 7.20.

2.5.6 Synthesis of $\mathrm{CrCl}_{2}\left(\mathrm{C}^{\wedge} \operatorname{lmine}\right)(\mathrm{THF})(2.6)$

Compound 2.6 was isolated as a blue solid according to the procedure described for 2.1, using $\mathrm{CrCl}_{2}(\mathrm{THF})_{3}$ as metal precursor and THF as solvent. The complex was further purified by recrystallisation at $-35^{\circ} \mathrm{C}$ under nitrogen by slow liquid diffusion of pentane into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Yield: 89%. FTIR (cast film) $\mathrm{v}_{\mathrm{C}=\mathrm{N}} 1604 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{Cr} \cdot 1.0$ THF (\%): C, 61.26; H, 6.91; N, 7.39. Found (\%): C, 60.89; H, 7.11; N, 7.58.

2.5.7. Synthesis of $\mathrm{TiCl}_{2}\left(\mathbf{2}, 6-\mathrm{OC}_{6} \mathrm{H}_{3}-\mathrm{Me}_{2}\right)_{2}\left(\mathrm{C}^{\wedge}\right.$ Imine) (2.7)

A solution of C^{\wedge} Imine ($107 \mathrm{mg}, 0.287 \mathrm{mmol}$) dissolved in toluene (5 mL) was added to a toluene solution of $\mathrm{TiCl}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{3}-\mathrm{Me}_{2}\right)_{2}(\mathrm{THF})_{2}(145 \mathrm{mg}, 0.287$ mmol) and the dark red solution was stirred at room temperature for 4 h . Volatiles were removed under reduced pressure and the product was washed with pentane (15 mL) to yield a bright orange-red powder. A spectroscopically-pure product was acquired by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pentane $(172 \mathrm{mg}$,
82%). Crystals suitable for X-ray diffraction study were grown at $-35^{\circ} \mathrm{C}$ under nitrogen by slow liquid diffusion of pentane into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.93\left(\mathrm{~d}, J=2.0,1 \mathrm{H}, \mathrm{NCHCN}_{(\text {mesityl }}\right)$), 6.77-6.49 (m,9H, $p-\mathrm{CH}_{(2,6-\mathrm{xyly})}+p-\mathrm{CH}_{(\text {phenoxide) }}+p-\mathrm{CH}_{(\text {phenoxide) }}+m-\mathrm{CH}_{(2,6-\mathrm{xylyl})}+m-\mathrm{CH}_{\text {(phenoxide) }}+m-$ $\mathrm{CH}_{\text {(phenoxide) })}$), $6.47\left(\mathrm{~s}, 2 \mathrm{H}, m-\mathrm{CH}_{\text {(mesityl) }}\right), 5.94\left(\mathrm{~d}, \mathrm{~J}=2.0,1 \mathrm{H}, \mathrm{NCCHN}_{\text {(mesity) }}\right), 2.58$ (s, 6H,o-CH $H_{3(\text { phenoxide) })}$), $2.55\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3(2,6-x y \mathrm{y} \mid \mathrm{y})}\right), 2.43\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3 \text { (mesity) }}\right), 2.41$ (s, $\left.\quad 6 \mathrm{H}, o-\mathrm{CH}_{3(\text { phenoxide) })}\right), \quad 1.84 \quad$ (s, $\left.\quad 3 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3(\text { mesity })}\right), \quad 0.88 \quad$ (s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{\text {(imine) })}\right){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 201.2$ (NCN), 167.9 $\left(C_{\text {ipso(phenoxide) }}\right)$, $165.7\left(C_{\text {ipso(phenoxide) }}\right)$, $162.9(C=N), 146.0\left(C_{\text {ipso(2,6-xyly })}\right)$, 139.8 ($p-$ $\left.C_{(\text {mesity })}\right), 135.6$ (o- $\left.C_{(\text {mesityl) }}\right), 131.6$ (o- $\left.C_{(2,6-\text {-xyly) })}\right), 131.2$ (o-C $C_{\text {(phenoxide) })}$), 130.5 (o-
 $\left(m-\mathrm{CH}_{\text {(phenoxide) })}\right), \quad 128.6 \quad\left(m-\mathrm{CH}_{(\text {phenoxide) })}\right), \quad 126.0 \quad\left(p-\mathrm{CH}_{(2,6-x y \mid y)}\right), \quad 122.1 \quad(p-$ $\left.\mathrm{CH}_{\text {(phenoxide) })}\right), 121.7\left(\mathrm{NCCN}_{(\text {mesityl) }}\right)$, $121.3\left(p-\mathrm{CH}_{\text {(phenoxide) })}\right)$, $119.6\left(\mathrm{NCCN}_{(\text {mesity) }}\right)$, $40.7\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 30.2\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, $22.0\left(o-\mathrm{CH}_{3(2,6-x y \mid y)}\right)$, $21.3\left(p-\mathrm{CH}_{3(\text { mesity })}\right)$, 20.5 (o$\mathrm{CH}_{3 \text { (phenoxide) })}$), $19.8 \quad\left(0-\mathrm{CH}_{3(\text { mesityl) }}\right), \quad 19.2 \quad\left(0-\mathrm{CH}_{3(\text { phenoxide) })}\right)$. FTIR (cast film) $\mathrm{v}_{\mathrm{C}=\mathrm{N}} 1616 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Ti}(\%): \mathrm{C}, 67.03 ; \mathrm{H}, 6.72 ; \mathrm{N}$, 5.72; Found (\%): C, 66.84; H, 7.01; N, 5.69.

2.5.8 Synthesis of $\mathrm{TiCl}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{3}-\mathrm{Me}_{2}\right)_{2}(1-(2,4,6-$

trimethylphenyl)imidazole) $\mathbf{2}_{\mathbf{2}}(\mathbf{2 . 8})$
A solution of 1-(2,4,6-trimethylphenyl)imidazole ($144 \mathrm{mg}, 0.776 \mathrm{mmol}$) dissolved in toluene (5 mL) was added to a toluene solution of $\mathrm{TiCl}_{2}\left(2,6-\mathrm{OC}_{6} \mathrm{H}_{3}\right.$ $\left.\mathrm{Me}_{2}\right)_{2}(\mathrm{THF})_{2}(196 \mathrm{mg}, 0.388 \mathrm{mmol})$ and the dark red solution was stirred at room
temperature for 3 hours. Volatiles were removed under reduced pressure and the product was purified by multiple recrystallisations from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pentane (201 $\mathrm{mg}, 70 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCHN}_{\text {(mesityl) }}\right), 7.74(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NCCHN}_{(\text {mesityl }}\right), 6.94\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{m}-\mathrm{CH}_{\text {(mesityl) }}\right), 6.87\left(\mathrm{~d}, J=7.4,4 \mathrm{H}, m-\mathrm{CH}_{\text {(phenoxide) })}\right)$, 6.77 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCHCN}($ mesity) $), 6.70\left(\mathrm{t}, \mathrm{J}=7.4,2 \mathrm{H}, p-\mathrm{CH}_{\text {(phenoxide) }}\right), 2.33(\mathrm{~s}, 18 \mathrm{H}, o-$ $\mathrm{CH}_{3 \text { (phenoxide) })}, p-\mathrm{CH}_{3 \text { (mesityl) }}$), 1.95 ($\left.\mathrm{s}, 12 \mathrm{H}, o-\mathrm{CH}_{3(\text { mesity) })}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 166.4\left(C_{\text {ipso(phenoxide) })}\right), 141.2(\mathrm{NCHN}), 139.6\left(p-C_{(\text {mesityl }}\right), 134.8$ (o$C_{\text {(mesity) })}$), 132.4 ($\left.C_{\text {ipso(mesity) }}\right), 130.8$ (NCCN), 129.4 (o- $\left.C_{\text {(phenoxide) }}\right)$, 129.2 (m $\left.\mathrm{CH}_{\text {(mesityl) }}\right)$, $127.9\left(m-\mathrm{CH}_{\text {(phenoxide) }}\right)$, $121.7\left(\mathrm{p}-\mathrm{CH}_{\text {(phenoxide) })}\right)$, $118.8(\mathrm{NCCN})$, $21.0(p-$ $\mathrm{CH}_{3 \text { (mesity) })}$), $17.5\left(0-\mathrm{CH}_{3 \text { (phenoxide) })}\right)$, $17.3\left(0-\mathrm{CH}_{3(\text { mesityl) }}\right)$. Anal. Calcd. for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Ti}$ (\%): C, 65.49; H, 6.32 ; N, 7.64; Found (\%): C, 65.72; H, 6.13; N, 7.77.

2.5.9. Synthesis of $\mathrm{TiCl}_{2}\left(1,2-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{O}\right)\left(\mathrm{C}^{\wedge}\right.$ Imine) (2.9)

A solution of C^Imine ($150 \mathrm{mg}, 0.401 \mathrm{mmol}$) dissolved in toluene (2 mL) was added to a toluene solution $(5 \mathrm{~mL})$ of $\mathrm{TiCl}_{2}\left(1,2-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{O}\right)(\mathrm{THF})_{2}(149 \mathrm{mg}$, $0.401 \mathrm{mmol})$. The dark red solution was allowed to stir for 4 hours. The volume was reduced under reduced pressure and the product was precipitated with pentane. The supernatant was removed and the product was dried in vacuo to yield a dark red powder. An analytically-pure product was isolated by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pentane (202 $\mathrm{mg}, 84 \%$). Crystals suitable for X ray diffraction study were grown at $-35^{\circ} \mathrm{C}$ under nitrogen by slow liquid diffusion of pentane into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.93$
(d, $\left.J=2.0,1 \mathrm{H}, \mathrm{NCHCN}_{(\text {mesityl) }}\right), 7.07$ (d, $\left.J=2.0,1 \mathrm{H}, \mathrm{NCCHN}_{(\text {mesityl) }}\right), 7.03-6.99$ (m, 4H, $\left.\mathrm{CH}_{(\text {aryl })}\right), 6.41$ (br s, $\left.\left.3 \mathrm{H}, m-\mathrm{CH}_{(2,6-\mathrm{xy} \mid \mathrm{y})}\right), p-\mathrm{CH}_{(2,6-\mathrm{xy} \mid \mathrm{y} 1)}\right), 5.88$ (br s, $1 \mathrm{H}, m-$ $\left.\mathrm{CH}_{\text {(mesity) }}\right), 5.40\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, m-\mathrm{CH}_{\text {(mesityl) }}\right), 2.47$ (br s, $\left.9 \mathrm{H}, o-\mathrm{CH}_{3(\text { aryl) })}\right), 2.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{p}-$ $\left.\mathrm{CH}_{3(\text { mesityl) })}\right), 1.58$ (br s, $\left.3 \mathrm{H}, \mathrm{o}-\mathrm{CH}_{3(\text { aryl) })}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{(\text {(imine })}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.2(\mathrm{NCN}), 166.9(\mathrm{C}=\mathrm{N}), 158.7\left(C_{(\text {aryl })}\right)$, $145.2\left(C_{(\text {aryl })}\right)$, $139.4\left(p-C_{(\text {mesityl })}\right), 134.8\left(C_{(\text {aryl })}\right), 133.9\left(C_{(\text {aryl })}\right), 129.3\left(m-\mathrm{CH}_{(\text {mesity })}\right), 129.0\left(\mathrm{C}_{(\text {aryl })}\right)$, $128.3 \quad\left(m-\mathrm{CH}_{(2,6-x y \mid y 1)}\right), \quad 126.7 \quad\left(p-\mathrm{CH}_{(2,6-x y \mid y 1)}\right), \quad 123.8 \quad\left(\mathrm{NCCN}_{(\text {mesityl }}\right), 119.9$ $\left(\mathrm{NCCN}_{(\text {mesityl })}\right), 111.2 \quad\left(o-\mathrm{C}_{(\text {mesity } 1)}\right), 40.7 \quad\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 30.4 \quad\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 21.0 \quad$ (p-
 ${ }^{13} \mathrm{C}$ assignments could be made due to poorly defined correlations from the broad resonances. FTIR (cast film) $\mathrm{V}_{\mathrm{C}=\mathrm{N}} 1610 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Ti}$ (\%): C, 62.01; H, $5.88 ; \mathrm{N}, 7.00$; Found (\%): C, 61.78; H, 6.12; N, 6.47.

2.5.10. Synthesis of \mathbf{S}^{\wedge} Imine (2.10)

Sulfur ($12.7 \mathrm{mg}, 0.395 \mathrm{mmol}$) was added as a solid to a solution (3 mL) of 1 ($148 \mathrm{mg}, 0.395 \mathrm{mmol}$) in toluene. The clear, light-yellow solution was allowed to stir for 2.5 h . Volatiles were removed under reduced pressure and the product was washed with pentane ($3 \times 5 \mathrm{~mL}$) to yield a spectroscopically pure beige powder ($136 \mathrm{mg}, 0.334 \mathrm{mmol}, 85 \%$). Crystals suitable for study by X-ray diffraction were grown at $-35{ }^{\circ} \mathrm{C}$ under nitrogen by slow liquid diffusion of pentane into a saturated solution in THF. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C} 6 \mathrm{D} 6$): $\mathrm{d}=6.87-$ 6.82 ($\mathrm{m}, 3 \mathrm{H} ; \mathrm{p}-\mathrm{CH}(2,6-x y l y l)+m-\mathrm{CH}(2,6-x y l y l)), 6.65$ (d, ${ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{m}-$

CH (mesityl)), $6.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NCHCHN}\right.$ (mesityl)), $5.63\left(\mathrm{~s},{ }^{3} \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$; NCHCHN(mesityl)), 2.67 (brs, 3H; o-CH3(2,6-xylyl)), 2.03-1.99 (m, 9H; o-CH3 (2,6-xylyl) + o-CH3 (mesityl) + p-CH3 (mesityl)), 1.61 (s, 3H; o-CH3 (mesityl)), $1.58 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H} ; \mathrm{C}(\mathrm{CH} 3) 3) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3$): \mathrm{d}=163.4$ (NCN), 160.0 (C=N), 145.4 (i-C(2,6-xylyl)), 136.4 (o-C(mesityl)), 135.8 (o- C(mesityl)), 133.6 (iC (mesityl)), 129.3 (m- $\mathrm{CH}($ mesityl)), 129.1 (m-C(mesityl)), 128.0 (m-CH(2,6xylyl)), $123.7 \quad(\mathrm{p}-\mathrm{CH}(2,6-x y l y l)), \quad 117.3 \quad(\mathrm{NCCN}($ mesityl $)), \quad 115.0$ (NCCN (mesityl)),41.7(($\mathrm{C}(\mathrm{CH} 3) 3$), 29.8(C(CH3)3),20.9(p-CH3(mesityl)), 19.5 (br s; o-CH3(2,6-xylyl)), 17.9 (o-CH3(mesityl)), 17.3ppm (o-CH3(mesityl)); FTIR (cast film): $\mathrm{v}_{\mathrm{C}=\mathrm{N}}=1660, \mathrm{v}_{\mathrm{C}=\mathrm{s}}=1204 \mathrm{~cm}^{-1}$; Elemental analysis calcd (\%) for C25H31N3S: C 74.03, H 7.70, N 10.36; found: C 74.13, H 7.56, N 10.38.

2.5.11. General Procedure for Ethylene Polymerization

Ethylene polymerization was performed at atmospheric pressure and room temperature in a $200-\mathrm{mL}$ Schlenk flask containing a magnetic stir bar. The flask was conditioned in an oven at $160^{\circ} \mathrm{C}$ for at least 12 h prior to use. The hot flask was brought to room temperature under dynamic vacuum, and back-filled with ethylene. This cycle was repeated a total of three times. Under an atmosphere of ethylene, the flask was charged with 20 mL of dry toluene and 1000 equivalents of methylaluminoxane (MAO). The solution was stirred for 15 min before a solution of the catalyst in toluene was introduced into the flask via a syringe. The reaction mixture was vigorously stirred for 10 min after the addition of the catalyst, and subsequently quenched with a $50: 50$ mixture of concentrated
hydrochloric acid and methanol. The resulting mixture was filtered and any solid collected was washed with distilled water. Solids collected were dried under vacuum at approximately $60^{\circ} \mathrm{C}$ for several hours.

2.5.12. X-ray crystallographic studies

X-ray crystallographic data were collected at the University of Toronto on a Bruker-Nonius Kappa-CCD diffractometer using monochromated Mo-Ka radiation $(\lambda=0.71073 \AA)$ at 150 K and were measured using a combination of ϕ scans and ω scans with κ offsets, to fill the Ewald sphere. Intensity data were processed using the Denzo-SMN package ${ }^{40}$. Absorption corrections were carried out using SORTAV. ${ }^{41}$ X-ray crystallographic data for compound 3 was collected at McMaster University on a Bruker APEX2 diffractometer using monochromated Mo-K α radiation $(\lambda=0.71073 \AA$) at 100 K and were measured using ϕ and ω scans. Unit cell parameters were determined using at least 50 frames from three different orientations. Data were processed using SAINT, and corrected for absorption with accurate face-indexing as well as redundant data (SADABS), and solved using direct methods and the SHELX program suite. The structures were solved and refined using SHELXTL V6. 1^{42} for full-matrix least-squares refinement was based on F^{2}. All H atoms were included in calculated positions and allowed to refine in riding-motion approximation with Uiso-tied to the carrier atom. Other crystallographic data (Tables of atomic coordinates with isotropic and anisotropic displacement parameters, bond lengths and angles) are provided as supplementary materials.

2.6. References

1 a) A. J. Arduengo, R. L. Harlow and M. Kline, J. Am. Chem. Soc. 1991, 113, 361; b) P. L. Arnold and I. J. Casely, Chem. Rev. 2009, 109, 3599; c) D. Bourissou, O. Guerret, F. P. Gabbaï and G. Bertrand, Chem. Rev. 1999, 100, 39; d) S. Diez-González, N. Marion and S. P. Nolan, Chem. Rev. 2009, 109, 3612; e) D. Enders, O. Niemeier and A. Henseler, Chem. Rev. 2007, 107, 5606; f) G. C. Fortman and S. P. Nolan, Chem. Soc. Rev. 2011, 40, 5151.

2 a) R. H. Crabtree, J. Organomet. Chem. 2005, 690, 5451; b) W. A. Herrmann, Angew. Chem., Int. Ed. 2002, 41, 1290; c) D. M. Khramov, V. M. Lynch and C. W. Bielawski, Organometallics 2007, 26, 6042.

3 a) E. Despagnet-Ayoub and T. Ritter in N-Heterocyclic Carbenes as Ligands for Olefin Metathesis Catalysts, Vol. 21 Springer Berlin Heidelberg, 2007, pp. 193; b) N. Marion and S. P. Nolan, Acc. Chem. Res. 2008, 41, 1440.

4 D. Takeuchi, Dalton Trans. 2010, 39, 311.
5 a) G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew. Chem., Int. Ed. 1999, 38, 428; b) V. C. Gibson, C. Redshaw and G. A. Solan, Chem. Rev. 2007, 107, 1745; c) V. C. Gibson and S. K. Spitzmesser, Chem. Rev. 2003, 103, 283; d) W. Kaminsky, A. Funck and H. Hahnsen, Dalton Trans. 2009, 0, 8803; e) W. Kaminsky and A. Laban, Appl. Catal., A 2001, 222, 47; f) S. Park, Y. Han, S. K. Kim, J. Lee, H. K. Kim and Y. Do, J. Organomet. Chem. 2004, 689, 4263; g) D. W. Stephan, Organometallics 2005, 24, 2548.

6 Y. Yoshida, S. Matsui and T. Fujita, J. Organomet. Chem. 2005, 690, 4382.

7 H. Makio and T. Fujita, Acc. Chem. Res. 2009, 42, 1532.
8 a) D. McGuinness, Dalton Trans. 2009, 6915; b) C. Bocchino, M. Napoli, C. Costabile and P. Longo, J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 862; c) A. A. El-Batta and R. H. Grubbs, 2011, pp. INOR; d) Y. Hu, G. M. Miyake, B. Wang, D. Cui and E. Y. X. Chen, Chem. - Eur. J. 2012, 18, 3345; e) I. G. Jung, Y. T. Lee, S. Y. Choi, D. S. Choi, Y. K. Kang and Y. K. Chung, J. Organomet. Chem. 2009, 694, 297; f) V. Khlebnikov, A. Meduri, H. Mueller-Bunz, B. Milani and M. Albrecht, New J. Chem. 2012, 36, 1552; g) J. Urbano, A. J. Hormigo, F. P. de, S. P. Nolan, M. M. Diaz-Requejo and P. J. Perez, Chem. Commun. (Cambridge, U. K.) 2008, 759; h) D. Zhang, S. Zhou, Z. Li, Q. Wang and L. Weng, Dalton Trans. 2013, 42, 12020.

9 D. S. McGuinness, V. C. Gibson, D. F. Wass and J. W. Steed, Journal of the American Chemical Society 2003, 125, 12716.

10 L. K. Johnson, C. M. Killian and M. Brookhart, J. Am. Chem. Soc. 1995, 117, 6414.

11 a) G. J. P. Britovsek, V. C. Gibson, S. J. McTavish, G. A. Solan, A. J. P. White, D. J. Williams, G. J. P. Britovsek, B. S. Kimberley and P. J. Maddox, Chem. Commun. 1998, 0, 849; b) B. L. Small, M. Brookhart and A. M. A. Bennett, J. Am. Chem. Soc. 1998, 120, 4049.

12 a) G. J. P. Britovsek, M. Bruce, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. Mastroianni, S. J. McTavish, C. Redshaw, G. A. Solan, S. Strömberg, A. J. P. White and D. J. Williams, J. Am. Chem. Soc. 1999, 121, 8728; b) D. P. Gates, S.
A. Svejda, E. Oñate, C. M. Killian, L. K. Johnson, P. S. White and M. Brookhart, Macromolecules 2000, 33, 2320; c) S. S. Ivanchev, A. V. Yakimanskii and D. G. Rogozin, Doklady Physical Chemistry 2003, 393, 334; d) J. Kiesewetter, B. Arikan and W. Kaminsky, Polymer 2006, 47, 3302; e) S. Mecking, L. K. Johnson, L. Wang and M. Brookhart, J. Am. Chem. Soc. 1998, 120, 888; f) C. S. Popeney and Z. Guan, Macromolecules 2010, 43, 4091; g) D. J. Tempel, L. K. Johnson, R. L. Huff, P. S. White and M. Brookhart, J. Am. Chem. Soc. 2000, 122, 6686.

13 A. C. Badaj, S. Dastgir, A. J. Lough and G. G. Lavoie, Dalton Trans. 2010, 39, 3361.

14 J. A. Thagfi, S. Dastgir, A. J. Lough and G. G. Lavoie, Organometallics 2010, 29, 3133.

15 a) K. S. Coleman, S. Dastgir, G. Barnett, M. J. P. Alvite, A. R. Cowley and M. L. H. Green, J. Organomet. Chem. 2005, 690, 5591; b) S. Dastgir, K. S. Coleman, A. R. Cowley and M. L. H. Green, Organometallics 2005, 25, 300; c) M. Frøseth, K. A. Netland, C. Rømming and M. Tilset, J. Organomet. Chem. 2005, 690, 6125; d) K. A. Netland, A. Krivokapic, M. Schröder, K. Boldt, F. Lundvall and M. Tilset, J. Organomet. Chem. 2008, 693, 3703; e) K. A. Netland, A. Krivokapic and M. Tilset, J. Coord. Chem. 2010, 63, 2909; f) M. L. Rosenberg, A. Krivokapic and M. Tilset, Organic Letters 2008, 11, 547; g) M. L. Rosenberg, K. r. Vlašaná, N. S. Gupta, D. Wragg and M. Tilset, J. Org. Chem. 2011, 76, 2465.

16 T. Agapie, Coord. Chem. Rev. 2011, 255, 861.

17 K. C. Gupta and A. K. Sutar, Coord. Chem. Rev. 2008, 252, 1420.
18 D. F. Wass, Dalton Trans. 2007, 0, 816.
19 a) P. D. Bolton and P. Mountford, Adv. Synth. Catal. 2005, 347, 355; b) S. Licciulli, I. Thapa, K. Albahily, I. Korobkov, S. Gambarotta, R. Duchateau, R. Chevalier and K. Schuhen, Angew. Chem., Int. Ed. 2010, 49, 9225; c) L. A. MacAdams, G. P. Buffone, C. D. Incarvito, A. L. Rheingold and K. H. Theopold, J. Am. Chem. Soc. 2005, 127, 1082; d) A.-S. Rodrigues and J.-F. Carpentier, Coord. Chem. Rev. 2008, 252, 2137.

20 A. Bondi, J. Phys. Chem. 1964, 68, 441.
21 a) C. D. Abernethy, G. M. Codd, M. D. Spicer and M. K. Taylor, J. Am. Chem. Soc. 2003, 125, 1128; b) B. M. Gardner, J. McMaster and S. T. Liddle, Dalton Trans. 2009, 6924; c) P. Shukla, J. A. Johnson, D. Vidovic, A. H. Cowley and C. D. Abernethy, Chem. Commun. 2004, 360.

22 S. A. Mungur, A. J. Blake, C. Wilson, J. McMaster and P. L. Arnold, Organometallics 2006, 25, 1861.

23 a) G. A. Bain and J. F. Berry, J. Chem. Educ. 2008, 85, 532; b) D. F. Evans, J. Chem. Soc. 1959, 2003.

24 a) P. Pyykköand M. Atsumi, Chem. Eur. J. 2009, 15, 186; b) B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan and S. Alvarez, Dalton Trans. 2008, 2832.

25 S. P. Downing, S. C. Guadano, D. Pugh, A. A. Danopoulos, R. M. Bellabarba, M. Hanton, D. Smith and R. P. Tooze, Organometallics 2007, 26, 3762.

26 a) C. Lorber and L. Vendier, Dalton Trans. 2009, 6972; b) D. Zhang, H. Aihara, T. Watanabe, T. Matsuo and H. Kawaguchi, J. Organomet. Chem. 2007, 692, 234.

27 a) N. Hazari and P. Mountford, Acc. Chem. Res. 2005, 38, 839; b) K. Nomura, S. Hasumi, M. Fujiki and K. Itagaki, Dalton Trans. 2009, 9052.

28 a) N. R. d. S. Basso, P. P. Greco, C. L. P. Carone, P. R. Livotto, L. M. T. Simplicio, R. Z. N. da, G. B. Galland and S. J. H. Z. dos, J. Mol. Catal. A: Chem. 2007, 267, 129; b) J.-B. Cazaux, P. Braunstein, L. Magna, L. Saussine and H. Olivier-Bourbigou, Eur. J. Inorg. Chem. 2009, 2942; c) P. M. Gurubasavaraj and K. Nomura, Inorg. Chem. 2009, 48, 9491; d) K. Itagaki, K. Kakinuki, S. Katao, T. Khamnaen, M. Fujiki, K. Nomura and S. Hasumi, Organometallics 2009, 28, 1942; e) K. Nomura, Dalton Trans. 2009, 8811; f) C. Redshaw, Dalton Trans. 2010, 39, 5595; g) J. A. Suttil, D. S. McGuinness, M. Pichler, M. G. Gardiner, D. H. Morgan and S. J. Evans, Dalton Trans. 2012, 41, 6625.

29 T. G. Larocque, A. C. Badaj, S. Dastgir and G. G. Lavoie, Dalton Trans. 2011, 40, 12705.

30 A. J. Nielson, C. Shen, P. Schwerdtfeger and J. M. Waters, Eur. J. Inorg. Chem. 2005, 1343.

31 H. Yasuda, Y. Nakayama, K. Takei, A. Nakamura, Y. Kai and N. Kanehisa, J. Organomet. Chem. 1994, 473, 105.

32 H.-M. Gau, C.-S. Lee, C.-C. Lin, M.-K. Jiang, Y.-C. Ho and C.-N. Kuo, J. Am. Chem. Soc. 1996, 118, 2936.

33 P. Pyykköand M. Atsumi, Chem. Eur. J. 2009, 15, 12770.
34 A. C. Badaj and G. G. Lavoie, Organometallics 2012, 31, 1103.
35 A. Flamini, D. J. Cole-Hamilton and G. Wilkinson, J. Chem. Soc., Dalton Trans. 1978, 454.

36 A. J. Blake, P. E. Collier, S. C. Dunn, W.-S. Li, P. Mountford and O. V. Shishkin, J. Chem. Soc., Dalton Trans. 1997, 1549.

37 E. Alvarado, A. C. Badaj, T. G. Larocque and G. G. Lavoie, Chemistry - A European Journal 2012, 18, 12112.

38 L. E. Manzer, Inorg. Synth. 1982, 21, 135.
39 S. A. Waratuk, M. G. Thorn, P. E. Fanwick, A. P. Rothwell and I. P. Rothwell, J. Am. Chem. Soc. 1999, 121, 9111.

40 Z. Otwinowski and W. Minor, Methods Enzymol. 1997, 276, 307.
41 R. H. Blessing, Acta Crystallogr., Sect. A: Found. Crystallogr. 1995, A51, 33.
42 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found Crystallogr. 2008, A64, 112.

Chapter 3 Imidazol-2-imine Ethenolate Ligand: Synthesis and

Coordination

3.0 Preface

This chapter is comprised of a reformatted and slightly modified peerreviewed journal publication. Reproduced with permission from Coordination and reactivity study of titanium and zirconium complexes of the first imidazol-2-imine ethenolate ligand; T. G. Larocque, S. Dastgir, G. G. Lavoie, Organometallics, 32 (15), 4314-4320 DOI: 10.1021/om4004708. Copyright 2013 American Chemical Society. All work was performed by myself, excluding the synthesis and characterization of $3.1,3.3,3.4_{1}$ and 3.4_{2} and the computational work.

3.1 Introduction

As discussed in Chapter 1, the reactivity of NHCs towards azides has been explored, generating a new class of anionic imidazol-2-iminate ligands that are analogous to the phenoxides. ${ }^{1}$ Thanks to the stability of imidazolium salts, these imidazol-2-iminates can exist in different mesomeric forms with unexpectedly high electron density located on the exocyclic nitrogen (Figure 3.1). Several groups have recently explored the possibility to utilize imidazol-2iminates either as ancillary monodentate monoanionic ligands, ${ }^{1}$ or as neutral fragment incorporated in more complex bidentate and tridentate ligand scaffolds. ${ }^{\text {b, }, 2}$

Figure 3.1. Mesomeric structures of substituted imidazole-2-iminate.

A

B
$\mathrm{Ar}=$ 2,6-dimethylphenyl, $\mathrm{Ar}^{\prime}=4$-methylphenyl; $\mathrm{E}=\mathrm{O}, \mathrm{S}$
Figure 3.2. Neutral (A) and anionic (B) bidentate ligands with an imidazol-2-imine fragment.

Our group has reported the synthesis of neutral imine imidazol-2-imine ligands (A, Figure 3.2) and their coordination to titanium(IV) and palladium(II). ${ }^{3}$ Structure characterization of these complexes showed two different binding modes depending on the metal centre. ${ }^{3 \mathrm{a}}$ While the ligand coordinates to $\mathrm{Ti}(\mathrm{IV})$ in the expected $\mathrm{N}^{\wedge} \mathrm{N}$ chelate, the use of $\operatorname{Pd}(\mathrm{II})$ led to the formation of a dimeric structure with monodentate coordination of the ligand to the metal through the terminal imine nitrogen. To enforce coordination of the ligand in a bidentate fashion to both early and late transition metals, we recently reported the related anionic ureate and thioureate ligands (B, Figure 3.2). ${ }^{4}$

Other bidentate monoanionic systems, and most notably the substituted salicylaldiminate ligands, have proven to be extremely versatile and have led to
highly active olefin polymerization catalysts based on both early and late transition metals. Studied by Fujita ${ }^{5}$ and Grubbs, ${ }^{6}$ these salicylaldiminate ligands coordinate to the metal through the neutral imine nitrogen and anionic oxygen atoms (Figure 3.3). It is important to note that the salicylaldiminate ligands are not the only example of a highly active homogenenous catalysts bearing a bidentate N-O ancillary ligand. In recent decades, Laurel Schafer has shown the usefullness of amidate ligands on transition metals to facilitate hydroamination, hydroaminoalkylation and amidation of aldehydes. ${ }^{7}$

While the new anionic ureate and thioureate ligands B coordinated to both early and late transition metals, thereby successfully addressing the shortcomings of the first-generation neutral ligand system \mathbf{A}, both the desired $\mathrm{N}_{p \text { - }}$ toly $\wedge \mathrm{N}_{\text {imidazol--ylidene }}$ and the undesired $\mathrm{N}_{\text {p-tolyl }} \wedge \mathrm{E}(\mathrm{E}=\mathrm{O}, \mathrm{S})$ chelates, with an uncoordinated imidazol-2-imine fragment, were observed. Inspired by the salicylaldiminate system, we decided to design a new ligand scaffold that could bind to the metal centre in a bidentate fashion exclusively through a neutral imine nitrogen donor and an anionic oxygen donor. As such, the new ligand scaffold combines an imidazol-2-imine fragment, as the neutral nitrogen donor, and an enolate, as the anionic oxygen donor. The synthesis of these new substituted $\mathrm{N}^{\wedge} \mathrm{O}$ ligands, their coordination to group 4 metals and the potential of the resulting complexes as ethylene polymerization catalysts are reported.

Figure 3.3. Early and late transition metal complexes of the salicylaldiminate ligand system.

3.2 Results and Discussion

Scheme 3.1. Synthesis of 2-(1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-imino)-1-arylethanone Hydrochloride (3.1-3.3)

The ketone imidazol-2-imine ligand precursors 3.1-3.3 were prepared in good yield (75-89\%) by refluxing a toluene solution of 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-imine ${ }^{4}$ with the corresponding 2-halo-1-arylethanone for 12 h (Scheme 3.1). Solution NMR spectra for compounds 3.1-3.3 are
consistent with their expected structure. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances were assigned using a series of one- and two-dimensional ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR experiments, including heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) techniques. The characteristic iminic proton for 3.1-3.3 appears at $\delta 7.99,9.71$ and 8.26 , respectively, as a triplet, coupled to two vicinal methylene protons (${ }^{3} J=6.4-6.9 \mathrm{~Hz}$). These methylene protons and those of the imidazole backbone resonate at approximately $\delta 4.5$ and 6.7 , respectively.

Scheme 3.2. Sequential Deprotonation of 3.1 to Generate a Tautomeric
Mixture of 2-(1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-imine)-1-
phenylethanone (3.41 and 3.42) and the Corresponding Ethenolate (3.5)
Deprotonation of compound 3.1 with one equivalent of sodium hexamethyldisilazide (NaHMDS) gave a mixture of two tautomers, 3.41 and 3.42, in a 3:1 ratio (Scheme 3.2). The major tautomer was identified spectroscopically as the enol (3.41), with the characteristic vinyl proton and the corresponding carbon nucleus resonating, respectively, at $\delta 6.39$ and 108.6 in chloroform- d. The methylene protons of the corresponding minor keto tautomer (3.42) were observed as a singlet at a lower frequency ($\delta 4.40$), integrating to two protons,
with the α-carbon atom resonating at δ 54.5. Further deprotonation of the tautomeric mixture 3.4 with an additional equivalent of NaHMDS gave 3.5, as a single molecule, in 87% yield (Scheme 2). The proton on the α-carbon atom resonates downfield at $\delta 6.21\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$, with the carbon nucleus observed in the $\begin{array}{lllllll}\text { expected vinyl region of the spectrum at } \delta & 103.8 .\end{array}$

Scheme 3.3. Synthesis of Titanium and Zirconium Complexes of the Bis(imine ethenolate) Ligand.

The sodium ethenolate salt 3.5 could also be prepared directly by addition of two equivalents of base to 3.1, and used with no further purification in the preparation of titanium and zirconium complexes. Thus, addition of two equivalents of NaHMDS at $-40^{\circ} \mathrm{C}$ to a THF suspension of compound 3.1 , with subsequent warming to room temperature, resulted in an intense yellow solution of 3.5. Without further purification, the sodium ethenolate solution was added to a THF solution of $\mathrm{ZrCl}_{4}(\mathrm{THF})_{2}$ in a 2:1 stoichiometric ratio, resulting in the
immediate precipitation of the desired bis(imine ethenolate) zirconium dichloride complex 3.6 as a yellow solid in moderate yield (60\%) (Scheme 3.3). Similarly, the para-chloro derivative 3.7 could also be prepared from, albeit in slightly lower yield (42%). Attempts to synthesize the p-nitrophenyl analogue from 3.3 resulted in a mixture of reaction products that could not be successfully isolated.

Compounds 3.6 and 3.7 were characterized by NMR spectroscopy and combustion analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 3.6 contained only one set of resonances, indicating the selective generation of a single isomer with two sets of ligands that are magnetically equivalent. As expected, the NMR spectrum of 3.6 no longer displays the distinctive triplet at $\delta 7.99$ corresponding to the imine proton of 3.1. A singlet observed at $\delta 5.91$ for the vinylic protons of the ligand, integrating to two protons (one proton for each set of ligand), is consistent with double deprotonation of 3.1 and coordination to zirconium. The azole ring backbone protons resonate at $\delta 6.59$ as a singlet integrating to four protons (two protons for each set of ligand). As observed for compound 3.6, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3.7 show only one set of resonance for the enolate ligands, indicating the generation of a single coordination isomer. Although the structure of neither 3.6 nor 3.7 could be confirmed by X-ray diffraction studies, based on zirconium work using ureate and thioureate ligands ${ }^{4}$ and substituted salicylaldiminate ligands, ${ }^{8}$ we would expect the chloride atoms to adopt a cis conformation, with both enolate ligands coordinated to the metal with the oxygen atoms trans to each other. However, in bis(salicylaldiminate) metal complexes
with sterically-demanding substituents on the imine nitrogen, a trans-N/cis-O/cisCl isomer is in fact preferred. ${ }^{8 b, 9}$ Considering that our ethenolate ligand bears most of the bulk on the nitrogen atom, we think that complexes 3.6 and 3.7 may also adopt a trans- $\mathrm{N} /$ cis $-\mathrm{O} /$ cis -Cl arrangement. This is supported by DFT (B3LYP/LanL2DZ) calculations on compound 3.6, which predicts this isomer to be $12.6 \mathrm{kcal} / \mathrm{mol}$ more stable than the corresponding cis-N/trans-O/cis-Cl isomer. Attempts to prepare the related titanium complexes using the same methodology only led to mixtures of species, possibly coordination isomers, which could not be isolated and characterized.

Cyclopentadienyl (imine ethenolate) complexes of zirconium (3.8-3.9) and titanium (3.10-3.11) were prepared by adding the ethenolate salt, prepared in situ by double deprotonation of 3.1-3.3 with NaHMDS , to CpMCl_{3} (Scheme 3.3). The zirconium complexes 3.8 and 3.9 were isolated as yellow solids in 47 and 59% yield, respectively. The ${ }^{1} \mathrm{H}$ NMR spectra of both complexes showed characteristic resonances of the ethenolate ligand, with an additional resonance for the cyclopentadienyl protons at $\delta 6.0$ in chloroform-d, integrating to five protons.

Figure 3.4. ORTEP plot (50\% probability) of 3.9. Only one of two independent molecules found in the asymmetric unit cell is drawn. Hydrogen atoms and diethyl ether were omitted for clarity.

Crystals of compound 3.9 suitable for X-ray diffraction studies were grown at $-35^{\circ} \mathrm{C}$ under nitrogen by slow liquid diffusion of diethyl ether into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Compound 3.9 crystallizes in the P_{2} / n space group and exhibits a distorted piano stool geometry with the cyclopentadienyl ligand adopting an η^{5} hapticity (Figure 3.4; Table 3.1). As expected, the ligand coordinates in a bidentate fashion though the imine nitrogen and ethenolate oxygen atoms. The formation of a 5-membered metallacycle leads to an $\mathrm{O} 1-\mathrm{Zr}-\mathrm{N} 3$ bite angle of $75.92(9)^{\circ}$, which is significantly larger than that observed for the 4-membered metallacycle formed in $\mathrm{Ti}\left(\mathrm{IMes} \mathrm{N}^{\wedge} \mathrm{Imine}^{(} \mathrm{Cl}_{4}\left(60.50(12)^{\circ}\right)\right.$. The cyclopentadienyl
ligand is asymmetrically bound to zirconium, with $\mathrm{Zr}-\mathrm{C}$ bond lengths ranging from $2.481(4)$ to $2.534(4) \AA$, with shorter bonds anti to the chloride atoms and longer ones anti to the imine ethenolate donor atoms. The mesityl rings of ligand are almost orthogonal to the best plane formed by the imidazol-2-imine ring, at 84.36° and 70.21°, respectively.

The p-chlorophenyl and azole rings slightly deviate by 9.1° and 17.9°, respectively, from coplanarity with the best plane formed by N3, C22, C23 and O1, possibly indicating little electron delocalization from the imidazole ring to the exocyclic atoms (N3, C22, C23 and O1). However, the C1-N3 bond is only slightly shorter than C1-N1, C1-N2 and C22-N3.

Table 3.1. Selected bond lengths and bond angles for compound 3.9 ${ }^{\text {a }}$

Selected Bond Lengths (\AA)		Selected Bond Angles (deg)	
Zr1-Cl1	2.4626(10)	O1-Zr1-N3	75.92(9)
Zr1-Cl2	2.4995(9)	O1-Zr1-Cl1	90.80(7)
Zr1-01	2.059(2)	N3-Zr1-Cl1	131.58(7)
Zr1-N3	2.276(3)	O1-Zr1-Cl2	145.06(7)
Zr1-C30	2.521(4)	N3-Zr1-Cl2	79.70(7)
Zr1-C31	2.492(4)	$\mathrm{Cl} 1-\mathrm{Zr} 1-\mathrm{Cl} 2$	86.95(4)
Zr1-C32	2.481(4)	Zr1-N3-C1	141.00(2)
Zr1-C33	2.503(4)	Zr1-N3-C22	83.15(2)
Zr1-C34	2.534(4)	Zr1-O1-C23	92.15(2)
N1-C1	1.363(4)	C1-N3-C22	118.65(3)
N2-C1	$1.377(4)$	N3-C22-C23	119.25(3)
N3-C1	1.332(4)	C22-C23-O1	117.20(3)
N3-C22	1.413(4)		
C22-C23	1.357(5)		
O1-C23	1.356(4)		
${ }^{\text {a }}$ Average bond lengths and angles for both molecules present in the asymmetric unit cell			

Furthermore, the length of these bonds, as well as those for $\mathrm{C} 22-\mathrm{C} 23$ and $01-$ C23, are all intermediate to those expected for single and double bonds, ${ }^{10}$
indicating significant bond conjugation. Interestingly, despite the relatively long Zr1-C22 and Zr1-C23 distances (2.5 \AA), the position of zirconium with respect to the ethenolate ligand in fact resembles that of metal bound to an $\eta^{4}-1,4-$ butadiene ligand, perhaps another manifestation of the double bond character between N3 and C22, and O 1 and C23, which would arise from electron delocalization from the imidazole ring through the conjugated system.

While the effect of steric from the bulky imidazole ring cannot be ruled out, the weaker coulombic interactions between the formally charged metal centre and the neutral nitrogen donor, in contrast to the negatively charged oxygen atom, likely accounts for the longer $\mathrm{Zr} 1-\mathrm{N} 3$ bond (2.276(3) \AA), compared to $\mathrm{Zr} 1-$ O1. Furthermore, π-donation of the oxygen atom to the Lewis acidity metal centre leads to a $\mathrm{Zr}-\mathrm{O} 1$ bond length of 2.059(2), which is intermediate between those for $\mathrm{Zr}-\mathrm{O}$ single ($2.17 \AA$) and $\mathrm{Zr}=\mathrm{O}$ double ($1.84 \AA$) bonds. ${ }^{10}$

Addition of one equivalent of sodium ethenolate, prepared in situ, to CpTiCl_{3} resulted in an immediate color change of the THF solution from yellow to deep blue, indicative of a ligand-to-metal charge transfer, with formation of complexes 3.10 and 3.11 in 74 and 56% yield, respectively. NMR spectra of both complexes are in agreement with their structure, with resonances and chemical shifts similar to those observed for compounds 3.8 and 3.9. Attempts to prepare the cyclopentadienyl zirconium and titanium complexes of the p-nitrophenyl derivative resulted in a mixture of reaction products that could not be successfully isolated.

All titanium and zirconium complexes were evaluated for their activity in ethylene polymerization. Complexes were activated with methylaluminoxane (MAO) as cocatalyst in toluene, at room temperature and at one atmosphere of ethylene. While all four zirconium complexes gave only trace amounts of polyethylene, titanium complex 3.10 gave polymer at a moderate rate of 110 kg PE mol cat ${ }^{-1} h^{-1}$. The small electronic perturbation arising from replacing the para hydrogen atom with the more electronegative chlorine atom led to a slight enhancement in catalytic activity for complex 3.11 ($170 \mathrm{~kg} \mathrm{PE} \mathrm{mol}_{\text {cat }}{ }^{-1} \mathrm{~h}^{-1}$). These activities favorably compare to the best ones reported by Lancaster and Bochmann for a series of titanium and zirconium cyclopentadienyl salicylaldiminate complexes. ${ }^{11}$ While they are also comparable to those reported for bis(salicylaldiminate) ZrCl_{2} complexes that have small alkyl substituents on the phenol ring, these activities are orders of magnitude lower than those of related complexes with larger tert-butyl, adamantyl and cumyl groups. ${ }^{14}$ The lower activity observed in our complexes may therefore be a result of an unoptimized substitution pattern on the ethenolate ligand. Alternatively, it may also be a result of either the different ligand arrangement (trans-N/cis-O/cis-Cl vs. cis-N/trans$\mathrm{O} /$ cis-Cl) or of a lesser electrophilic metal centre, a result of electron delocalization from the imidazole ring to the exocyclic nitrogen atom. ${ }^{1 e, 3-4}$

3.3. Conclusions

The synthesis of a new monoanionic bidentate ligand structure that incorporates the electron-rich imidazol-2-imine fragment was reported for the first
time, and coordinated to zirconium and titanium. Bis(ethenolate) and (cyclopentadienyl)(ethenolate) metal dichloride complexes were successfully prepared and fully characterized. The solid-state structure of the cyclopentadienyl zirconium complex 3.9 confirmed the targeted bidentate coordination of the ligand, resulting in a four-legged piano stool configuration. The synthesis of the bis(imine ethenolate) zirconium dichloride complexes furthermore proved to be very selective, with the formation of one single highly symmetric molecule. While all zirconium complexes tested showed no activity in ethylene polymerization, both titanium complexes 3.10 and 3.11 were effective catalysts at room temperature, with activities up to $170 \mathrm{~kg} \mathrm{PE} \mathrm{mol} \mathrm{cat}{ }^{-1} \mathrm{~h}^{-1}$. A decrease in the electron-donating capabilities of the ligand through the inductive effect of a more electronegative chlorine atom led to enhanced catalyst activities. Work on determining the effect of other ligand substitution patterns on catalyst performance will be reported in due course.

3.4. Experimental

3.4.1. General Considerations

All manipulations were performed under a dinitrogen atmosphere in a drybox or using standard Schlenk techniques. Solvents used in the preparation of air and/or moisture sensitive compounds were dried using an MBraun Solvent Purification System fitted with alumina columns and stored over molecular sieves under a positive pressure of argon. Toluene for polymerization was distilled under argon after being dried with the MBraun SPS. Deuterated solvents were
degassed using three freeze-pump-thaw cycles. $\mathrm{C}_{6} \mathrm{D}_{6}$ and CDCl_{3} were vacuum distilled from sodium and CaH_{2}, respectively, and stored under dinitrogen. NMR spectra were recorded on a Bruker DRX $600\left({ }^{1} \mathrm{H}\right.$ at $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 150.9 MHz$)$, Bruker AV $400\left({ }^{1} \mathrm{H}\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100 MHz$)$ or Bruker AV $300\left({ }^{1} \mathrm{H}\right.$ at 300 $\mathrm{MHz},{ }^{13} \mathrm{C}$ at 75.5 MHz) spectrometer and are at room temperature unless otherwise stated. The spectra were referenced internally relative to the residual protio-solvent $\left({ }^{1} \mathrm{H}\right)$ and solvent $\left({ }^{13} \mathrm{C}\right)$ resonances and chemical shifts were reported with respect to $\delta=0$ for tetramethylsilane. Elemental compositions were determined by Guelph Chemical Laboratories Inc. located in Guelph, Ontario.

All metal precursors were purchased from either BDH or Sigma-Aldrich. All acetophenones and NaHMDS were purchased from Sigma-Aldrich and used as received. Deuterated NMR solvents were purchased from Cambridge Isotope Laboratories. MAO was graciously donated by Albemarle Corp. Lastly, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-imine ${ }^{1 \mathrm{c}}$ and $\mathrm{ZrCl}_{4}(\mathrm{THF})_{2}{ }^{12}$ were prepared using published procedures.

3.4.2. General procedure for the synthesis of 2-(1,3-bis(2,4,6-

trimethylphenyl)imizadol-2-imine)-1-(aryl)ethanone hydrochloride salt, IMesN^ethanone • HX, 3.1-3.3.

In a typical procedure, the substituted 2-halo-1-(4-substituted phenyl)ethanone (3.65 mmol) was added as a solid to a toluene $(20 \mathrm{~mL})$ solution of 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-imine (3.28 mmol). The solution was refluxed for a few hours, resulting in the formation of a precipitate. The reaction
mixture was then cooled to room temperature and filtered. The solid was washed with pentane $(2 \times 15 \mathrm{~mL})$ and dried in vacuo to yield the product as a powder.

3.4.2.1. 2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-phenylethanone hydrobromide salt, 3.1:

89% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): major isomer (keto form, 82%) δ $7.99(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{NH}), 7.49\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, p-\mathrm{CH}_{(\text {phenyl) }}\right), 7.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $\left.7.8 \mathrm{~Hz}, 0-\mathrm{CH}_{\text {(phenyl) }}\right), 7.30\left(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, m-\mathrm{CH}_{\text {(phenyl) }}\right), 6.89(\mathrm{~s}, 4 \mathrm{H}, m-$ $\left.\mathrm{CH}_{(\text {mesityl })}\right), 6.77$ (s, $\left.2 \mathrm{H},-\mathrm{NCHCHN}-\right), 4.48\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz},=\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{C}-\right.$), 2.23 (s, 12H,o-CH $H_{3(\text { mesityl) }}$), 2.21 (s, 6H, p- $\mathrm{CH}_{3(\text { mesity })}$); minor isomer (enol form, 18%; some resonances are missing due to accidental overlap with those of the major isomer) $\delta 7.06\left(\mathrm{~s}, 4 \mathrm{H}, m-\mathrm{CH}_{(\text {mesityl }}\right), 6.83(\mathrm{~s}, 2 \mathrm{H},,-\mathrm{NCHCHN}-), 6.69(\mathrm{~s}+$ br, 2H, $=\mathrm{NH}-\mathrm{CH}=\mathrm{CPh}-$), 4.97 ($\mathrm{s}+\mathrm{br}, 1 \mathrm{H},-\mathrm{C}(\mathrm{Ph}) \mathrm{OH}$), 2.35 (s, 6H, $\mathrm{p}-\mathrm{CH}_{3(\text { mesity) })}$), 2.16 (s, 12H,o-CH $\left.\mathrm{C}_{3(\text { mesity })}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): major isomer δ 192.2 ($\mathrm{O}=\mathrm{C}$), 144.8 ($-\mathrm{NCN}-$), 141.4 (ipso- $\mathrm{C}_{\text {(mesity) }}$), 136.0 (o- $\mathrm{C}_{\text {(mesity) }}$), 133.7 ($p-$ $\left.C_{\text {(phenyl) }}\right), 130.0\left(p-C_{(\text {mesityl }}\right), 128.4$ (o- $\left.C_{(\text {phenyl })}\right), 127.5\left(m-C_{(\text {phenyl }}\right)$, 117.7 (-$\mathrm{NCHCHN}-), 48.6\left(=\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{C}-\right)$, $21.1\left(p-\mathrm{CH}_{3(\text { mesityl) }}\right)$, $17.8\left(p-\mathrm{CH}_{3(\text { mesityl })}\right)$; minor isomer (some resonances are missing due to accidental overlap with those of the major isomer) $\delta 145.2$ ($-\mathrm{NCN}-$), 141.4 (o- $\left.C_{\text {(mesityly }}\right)$, $135.6\left(C_{\text {(mesityl) }}\right)$, 130.4 ($p-$ $\mathrm{C}_{\text {(mesity) })}$), $117.2(-\mathrm{NCHCHN}-), 21.2\left(p-\mathrm{CH}_{3(\text { mesity })}\right)$, $17.6\left(p-\mathrm{CH}_{3(\text { mesityl) }}\right)$. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{BrN}_{3} \mathrm{O}$ (\%): C, 67.18; $\mathrm{H}, 6.22$; $\mathrm{N}, 8.10$; Found (\%): $\mathrm{C}, 67.20 ; \mathrm{H}$, 6.31; N, 8.35.

3.4.2.2. 2-(1,3-Bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-(4-

 chlorophenyl)ethanone hydrochloride salt, 3.2:81% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.71(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{NH}), 7.42$ (d, $\left.2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, o-\mathrm{CH}_{(\text {phenyl) }}\right), 7.28\left(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, m-\mathrm{CH}_{(\text {phenyl) }}\right), 6.91(\mathrm{~s}, 4 \mathrm{H}$, $\left.m-\mathrm{CH}_{(\text {mesity })}\right), 6.67(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NCHCHN}-), 4.47\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},=\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{C}-\right)$, 2.22 (s, 18H, $\left.p-\mathrm{CH}_{3(\text { mesityl) }}+o-\mathrm{CH}_{3(\text { mesity })}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 191.4 ($\mathrm{O}=\mathrm{C}$), 145.2 ($-\mathrm{NCN}-$), 141.3 ($p-\mathrm{C}_{(\text {mesity })}$), 140.0 (ipso- $\mathrm{C}_{\text {(phenyl) }}$), 132.2 ($p-$ $\mathrm{CH}_{\text {(phenyl) }}$), 130.4 (o- $\left.\mathrm{C}_{(\text {mesity })}\right), 130.1\left(m-\mathrm{CH}_{\text {(mesityl) }}\right), 128.9$ (ipso- $\left.\mathrm{C}_{(\text {mesity })}\right), 128.8$ (o$\left.\mathrm{CH}_{\text {(phenyl) }}\right)$, $128.7\left(\mathrm{~m}-\mathrm{CH}_{\text {(phenyl) }}\right), 117.3(-\mathrm{NCHCHN}-), 48.5$ (= $\left.\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{C}-\right), 21.1$ ($p-\mathrm{CH}_{3(\text { mesityl })}$), 17.7 (o- $\left.-\mathrm{CH}_{3 \text { (mesityl) }}\right)$. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$ (\%): C, 68.50; H, 6.14; N, 8.26; Found (\%): C, 68.66; H, 5.95; N, 8.44.

3.4.2.3. 2-(1,3-Bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-(4-

 nitrophenyl)ethanone hydrobromide salt, 3.3:75% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.26(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{NH}), 8.16$ (d, $\left.2 \mathrm{H}, J=8.7 \mathrm{~Hz}, m-\mathrm{CH}_{\text {(nitrophenyl) }}\right), 7.68\left(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, o-\mathrm{CH}_{\text {(nitrophenyl) }}\right), 6.93$ (s, $\left.4 \mathrm{H}, m-\mathrm{CH}_{(\text {mesity })}\right), 6.74(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCHCHN}), 4.60\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},=\mathrm{NH}-\mathrm{CH}_{2}\right.$ $\mathrm{C}-$), 2.22 (s, 12H, p- $\left.\mathrm{CH}_{3(\text { mesity })}\right) 2.16$ (s, 6H,o-CH $\mathrm{H}_{3 \text { (mesity) })}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.6(\mathrm{O}=\mathrm{C}), 144.8(-\mathrm{NCN}-), 150.5\left(p-\mathrm{C}_{(\text {nitrophenyl) }}\right), 138.3$ (ipso$\left.C_{\text {(nitrophenyl) }}\right), 136.0$ (ipso- $\left.C_{(\text {mesityl) }}\right), 135.6\left(p-C_{(\text {mesityl) }}\right), 130.2$ (o- $\left.C_{(\text {mesity })}\right)$, 128.6 (o$\left.\mathrm{CH}_{\text {(nitrophenyl) }}\right), 123.5\left(m-\mathrm{CH}_{\text {(nitrophenyl) }}\right), 117.6(-\mathrm{NCHCHN}-), 49.0\left(=\mathrm{NH}-\mathrm{CH}_{2}=\mathrm{C}-\right)$, $17.7\left(o-\mathrm{CH}_{3(\text { mesityl })}\right)$, $17.6\left(p-\mathrm{CH}_{3(\text { mesity } 1)}\right)$. Anal. Calcd. For $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{BrN}_{4} \mathrm{O}_{3}(\%)$: C , 61.81; H, 5.55; N, 9.94; Found (\%): C, 61.85; H, 5.38; N, 10.12.

3.4.3. 2-(1,3-Bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-phenylethanone, IMesN^^ethanone, 3.4:

Compound 3.1 ($2.6 \mathrm{~g}, 5.0 \mathrm{mmol}$) was suspended in THF (30 mL) and a solution of NaHMDS ($938 \mathrm{mg}, 5.11 \mathrm{mmol}$) in THF (10 mL) was added dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min , subsequently slowly warmed to room temperature and stirred for an additional 30 min . The pale yellow solution was filtered, evaporated to dryness and extracted with pentane (2 $\times 30 \mathrm{~mL}$). The off-white solid was dried in vacuo and the pale yellow pentane solution was concentrated to 15 mL and left at $-78^{\circ} \mathrm{C}$ for 4 h to collect additional product through precipitation. The precipitated off-white solid was washed with cold $\left(-78^{\circ} \mathrm{C}\right)$ pentane (10 mL) and dried in vacuo. Yield: $1.8 \mathrm{~g}(82 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): major isomer (enol form 75%) $\delta 7.41$ (d, 1H, J = $7.7 \mathrm{~Hz}, \mathrm{o}$ $\left.\mathrm{CH}_{\text {(phenyl) }}\right), 7.08\left(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, p-\mathrm{CH}_{\text {(phenyl) }}\right), 6.94-6.84\left(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{CH}_{\text {(phenyl) }}\right)$, 6.71 (s, 4H, m-CH (mesityl)), 6.39 (s, 1H, $=\mathrm{N}-\mathrm{CH}=\mathrm{C}-$), 5.60 (s, $2 \mathrm{H},-\mathrm{NCHCHN}-$), 2.13 ($\left.\mathrm{s}, 12 \mathrm{H}, o-\mathrm{CH}_{3(\text { mesity })}\right), 2.11\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3(\text { mesity } 1)}\right)$; minor isomer (keto form, $25 \%) \delta 7.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}, o-\mathrm{CH}_{\text {(phenyl) }}\right), 7.04-6.84\left(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{CH}_{\text {(phenyl) }}+1 \mathrm{H}\right.$, $\left.p-\mathrm{CH}_{\text {(phenyl) }}\right), 6.62\left(\mathrm{~s}, 4 \mathrm{H}, m-\mathrm{CH}_{(\text {mesityl }}\right), 5.65(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NCHCHN}-), 4.40(\mathrm{~s}, 2 \mathrm{H}$, $\left.=\mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}-\right), 2.35\left(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{CH}_{3(\text { mesityl) }}\right), 1.98\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3(\text { mesity })}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (100 MHz, CDCl_{3}): major isomer $\delta 141.9$ ($-\mathrm{NCN}-$), 136.4 ($\mathrm{C}_{\text {(mesity) }}$), $136.2(\mathrm{O}-\mathrm{C})$, 133.9 (o- $\left.C_{\text {(mesity) }}\right)$, $128.9\left(p-C_{\text {(mesity) }}\right), 126.1\left(p-C_{(\text {phenyl })}\right), 129.1\left(m-C_{(\text {phenyl })}\right), 123.2$ (o- (pheny)), 108.6 ($=\mathrm{N}-\mathrm{CH}=\mathrm{C}-)$, 114.7 ($-\mathrm{NCHCHN}-$), $21.6\left(p-\mathrm{CH}_{3(\text { mesityl })}\right)$, 18.6 (o$\left.\mathrm{CH}_{3 \text { (mesityl) }}\right)$; minor isomer $\delta 196.6$ ($\left.C_{(\text {ketone })}\right), 145.5(-\mathrm{NCN}-), 136.7\left(C_{\text {(mesityl) }}\right)$,
$136.3\left(C_{(\text {phenyl })}\right) 132.7\left(m-C_{(\text {phenyl })}\right), 129.1$ ($\left.p-C_{(\text {mesity })}\right), 128.8$ (o- $\left.C_{\text {(mesityl) }}\right), 128.7$ ($p-$ $\left.C_{\text {(phenyl) }}\right)$, 123.2 (o-C (phenyl)), 114.2 ($-\mathrm{NCHCHN}-$), 54.5 ($=\mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}-$), 21.5 (p$\left.\mathrm{CH}_{3 \text { (mesityl) }}\right)$, $18.9\left(\mathrm{o}-\mathrm{CH}_{3 \text { (mesity) }}\right)$. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}(\%): \mathrm{C}, 79.60 ; \mathrm{H}$, 7.14; N, 9.60; Found (\%): C, 79.35; H, 7.17; N, 9.38.

3.4.4. Sodium 2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1phenylethenolate, $\mathrm{Na}\left[\mathrm{IMes} \mathrm{N}^{\wedge}\right.$ ethenolate], 3.5:

To a THF (2 mL) suspension of $\mathrm{NaH}(11.5 \mathrm{mg}, 480 \mu \mathrm{~mol})$ at $-40^{\circ} \mathrm{C}$ slowly was added a cold $\left(-40^{\circ} \mathrm{C}\right)$ solution of $3.4(150 \mathrm{mg}, 343 \mu \mathrm{~mol})$ in THF $(5 \mathrm{~mL})$. The reaction mixture was slowly warmed to room temperature and stirred for 60 min , resulting in the color slowly changing to intense yellow. Pentane (5 mL) was added to precipitate the product, which was filtered, washed with pentane (2×5 $\mathrm{mL})$ and dried in vacuo to yield a yellow solid. Yield: $137 \mathrm{mg}(87 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.26\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, m-\mathrm{CH}_{\text {(phenyl) }}\right), 7.08(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, p-$ $\left.\mathrm{CH}_{\text {(phenyl) }}\right), 6.98\left(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{CH}_{\text {(mesity) }}\right), 6.82\left(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, o-\mathrm{CH}_{\text {(phenyl) }}\right), 6.75(\mathrm{~s}$, $\left.1 \mathrm{H}, m-\mathrm{CH}_{\text {(mesityl) }}\right), 6.30\left(\mathrm{~s}, 1 \mathrm{H}, m-\mathrm{CH}_{\text {(mesityl) }}\right), 6.21(\mathrm{~s}, 1 \mathrm{H},=\mathrm{N}-\mathrm{CH}=\mathrm{C}-), 6.08(\mathrm{~s}, 1 \mathrm{H}$, $\left.m-\mathrm{CH}_{(\text {mesityl) }}\right), 5.61$ (d, $1 \mathrm{H}, J=2.7 \mathrm{~Hz}-\mathrm{NCHCHN}-$), 5.58 (d, $1 \mathrm{H}, J=2.7 \mathrm{~Hz}-$ $\mathrm{NCHCHN}-$), 2.49 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3(\text { mesity })}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\text { mesityl) }}\right), 2.16$ (s, 3 H , $\mathrm{CH}_{\left.3(\text { mesity })^{\prime}\right)} 2.15$ (s, 3H, $\left.\mathrm{CH}_{3(\text { mesityl })}\right), 2.05$ (s, $3 \mathrm{H}, \mathrm{CH}_{\left.3(\text { mesity })^{\prime}\right)} 1.89$ (s, 3 H , $\mathrm{CH}_{3(\text { mesityl) })} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.6 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 150.3$ (O-C), 146.5 (ipso$C_{\text {(mesityl) }}$), 141.5 (-NCN-), 137.9 (aromatic $C H$), 137.7 (aromatic $C H$), 137.4 (aromatic $C H$), 136.9 (aromatic $C H$), 135.8 (aromatic $C H$), 135.5 (aromatic CH), 135.2 (aromatic $C H$), 133.3 (ipso- $C_{\text {(mesity) }}$), 130.3 (aromatic $C H$), 129.6 (aromatic
$C H$), 129.0 (aromatic $C H$), $128.7\left(m-\mathrm{CH}_{\text {(mesity) }}\right), 127.7\left(m-\mathrm{CH}_{\text {(phenyl) }}\right), 124.5$ (o$\left.\mathrm{CH}_{\text {(phenyl) }}\right)$, $122.5\left(\mathrm{p}-\mathrm{CH}_{\text {(phenyl) }}\right), 114.3$ (-NCHCHN-), 113.8 (-NCHCHN-), 103.8 (=N-CH=C-), $21.1\left(\mathrm{CH}_{3(\text { mesityl })}\right), \quad 20.7\left(\mathrm{CH}_{3 \text { (mesityl) }}\right), \quad 19.3\left(\mathrm{CH}_{3(\text { mesity })}\right), 18.8$ $\left(\mathrm{CH}_{3 \text { (mesityl) }}\right)$, $18.4 \quad\left(\mathrm{CH}_{3(\text { mesity } 1)}\right), \quad 16.9 \quad\left(\mathrm{CH}_{3(\text { mesityl) }}\right)$. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{NaO}$ (\%): C, 75.79; H, 6.58; N, 9.14; Found (\%): C, 76.04; H, 6.62; N, 8.87 .

3.4.5. General procedure for the synthesis of bis(2-(1,3-bis(2,4,6-

 trimethylphenyl)imizadol-2-imine)-1-(aryl)ethenolate) zirconium dichloride, $\mathrm{ZrCl}_{2}\left(\mathrm{IMesN}^{\wedge}{ }^{\wedge} \text { ethenolate }\right)_{2}, 3.6$ and 3.7:NaHMDS (0.773 mmol) was slowly added at room temperature as a solid to a THF (5 mL) suspension of compound $1(0.386 \mathrm{mmol})$. The solution immediately turned an bright yellow and the reaction mixture was allowed to stir for 30 min . The solution was then added to a $\mathrm{THF}(2 \mathrm{~mL})$ solution of $\mathrm{ZrCl}_{2}(\mathrm{THF})_{2}$ (0.386 mmol). A white precipitate formed immediately. The yellow solution was stirred for 2 h , subsequently filtered through a pad of Celite and dried under reduced pressure. The product was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and dried in vacuo to yield a yellow powder.

3.4.5.1. $\operatorname{Bis}(2-(1,3-b i s(2,4,6-t r i m e t h y l p h e n y l) i m i z a d o l-2-i m i n e)-1-~$

 phenylethenolate) zirconium dichloride, 3.6:60% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.98\left(\mathrm{~m}, 12 \mathrm{H}, m-\mathrm{CH}_{(\text {mesityl) }}+m-\right.$ $\left.\mathrm{CH}_{\text {(phenyl) }}\right), 6.88\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, p-\mathrm{CH}_{\text {(phenyl) }}\right), 6.74(\mathrm{~d}, 4 \mathrm{H}, J=7.4 \mathrm{~Hz}, 0-$ $\left.\mathrm{CH}_{\text {(phenyl) }}\right), 6.58(\mathrm{~s}, 4 \mathrm{H},-\mathrm{NCHCHN}-), 5.93(\mathrm{~s}, 2 \mathrm{H},=\mathrm{N}-\mathrm{CH}=\mathrm{C}-), 2.30(\mathrm{~s}, 12 \mathrm{H}, \mathrm{p}-$
$\left.\mathrm{CH}_{3(\text { mesityl) }}\right), 2.24\left(\mathrm{~s}, 24 \mathrm{H}, o-\mathrm{CH}_{3(\text { mesity })}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.5$ (O-C), 139.2 ($p-C_{(\text {mesity) })}$), 137.1 (ipso- $C_{(\text {phenyl) })}$), 136.3 (ipso- $C_{\text {(mesityl) }}$), 132.3 (-$\mathrm{NCN}-), 129.6\left(m-\mathrm{CH}_{\text {(mesityl) }}\right), 126.9\left(m-\mathrm{CH}_{\text {(phenyl) }}\right)$, $124.3\left(p-\mathrm{CH}_{\text {(phenyl) }}\right), 123.5$ (o$\left.\mathrm{CH}_{\text {(phenyl) }}\right)$, 117.4 (-NCHCHN-), 113.0 (=N-CH=C-), $21.1\left(p-\mathrm{CH}_{3 \text { (mesity) }}\right)$, 19.2 (o$\mathrm{CH}_{3 \text { (mesity) }) \text {). Anal. Calcd. for }} \mathrm{C}_{58} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Zr}$ (\%): $\mathrm{C}, 67.29 ; \mathrm{H}, 5.84 ; \mathrm{N}, 8.12$; Found (\%): C, 67.48; H, 6.02; N, 7.94.
3.4.5.2. $\operatorname{Bis}(2-(1,3-b i s(2,4,6-t r i m e t h y l p h e n y l) i m i z a d o l-2-i m i n e)-1-(4-~$ chlorophenyl)ethenolate) zirconium dichloride, 3.7:
42% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.96\left(\mathrm{~s}, 8 \mathrm{H}, m-\mathrm{CH}_{\text {(mesityl) }}\right) 6.92(\mathrm{~d}$, $4 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, m-\mathrm{CH}_{\text {(chlorophenyl) }}$), $6.64\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{o}-\mathrm{CH}_{\text {(chlorophenyl) }}\right), 6.59$ (s, 4H, -NCHCHN-), 5.91 (s, 2H, $=\mathrm{N}-\mathrm{CH}=\mathrm{C}-$), $2.30\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3(\text { mesity })}\right), 2.21$ (s, 24H, o-CH $\left.{ }_{3(\text { mesityl) }}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.4$ (O-C), 139.3 ($p-$ $\left.C_{(\text {mesityl) }}\right), 136.2$ (ipso- $\left.C_{(\text {mesityl) }}+o-\mathrm{C}_{(\text {mesityl) }}\right), 135.6\left(p-\mathrm{C}_{(\text {chlorophenyl) }}\right), 132.2$ (-NCN-), $129.6\left(m-\mathrm{CH}_{\text {(mesityl) }}\right), 129.5$ (ipso- $\mathrm{C}_{\text {(chlorophenyl) }}$), $127.1\left(m-\mathrm{CH}_{\text {(chlorophenyl) }}\right), 124.5$ (o$\mathrm{CH}_{\text {(chlorophenyl) }}$), 117.5 ($-\mathrm{NCHCHN}-$), 113.4 ($=\mathrm{N}-\mathrm{CH}=\mathrm{C}-$), $21.1\left(\mathrm{p}-\mathrm{CH}_{3(\text { mesityl) }}\right)$, 19.2 (o- $\mathrm{CH}_{3(\text { mesityl) })}$). Anal. Calcd. for $\mathrm{C}_{58} \mathrm{H}_{58} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Zr}$ (\%): $\mathrm{C}, 63.09 ; \mathrm{H}, 5.29 ; \mathrm{N}, 7.61$; Found (\%): C, 63.32; H, 5.01; N, 7.43.
3.4.6. General procedure for the synthesis of cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-(aryl)ethenolate) zirconium dichloride, CpZrCl_{2} (IMesN^{\wedge} ethenolate), 3.8 and 3.9:

NaHMDS (0.773 mmol) was slowly added as a solid to a THF (5 mL) suspension of compound 1 (0.386 mmol). The solution immediately turned an
bright yellow and the reaction mixture was allowed to stir for 30 min . The solution was then added to a THF (2 mL) solution of CpZrCl_{3} (0.386 mmol). A white precipitate immediately formed and the reaction mixture was allowed to stir for 2 h. The reaction mixture was then filtered through a pad of Celite and dried under reduced pressure. The product was washed with diethyl ether ($2 \times 5 \mathrm{~mL}$) and dried in vacuo to yield a yellow powder.

3.4.6.1 Cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-

 1-phenylethenolate) zirconium dichloride, 3.8:47% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.13-7.09\left(\mathrm{~m}, 7 \mathrm{H}, m-\mathrm{CH}_{\text {(mesiyl) }}+\right.$ $\left.o-\mathrm{CH}_{\text {(phenyl) }}+p-\mathrm{CH}_{\text {(phenyl) }}\right), 6.92\left(\mathrm{dd}, 2 \mathrm{H}, J=7.2,6.0 \mathrm{~Hz}, m-\mathrm{CH}_{(\text {phenyl) }}\right), 6.53(\mathrm{~s}, 2 \mathrm{H}$, $-\mathrm{NCHCHN}-$), 6.10 (s, $1 \mathrm{H},=\mathrm{N}-\mathrm{CH}=\mathrm{C}-$), 6.04 (s, $5 \mathrm{H}, \mathrm{Cp}$), 2.34 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{p}-$ $\left.\mathrm{CH}_{3(\text { mesity })}\right)$, 2.31 (s, 12H, o- $\left.\mathrm{CH}_{3(\text { mesity })}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.8$ ($\mathrm{O}-\mathrm{C}$), $147.4(-\mathrm{NCN}-), 140.5\left(\mathrm{p}-\mathrm{C}_{(\text {mesityl) }}\right), 136.2\left(\mathrm{o}-\mathrm{C}_{(\text {mesityl) }}\right), 132.9$ (ipso- $\left.\mathrm{C}_{(\text {phenyl) }}\right)$, 132.7 (ipso- $\left.\mathrm{C}_{(\text {mesityl) }}\right), 130.1\left(m-\mathrm{CH}_{\text {(mesityl }}\right)$, $128.3\left(p-\mathrm{CH}_{(\text {phenyl }}\right)$, $127.5\left(o-\mathrm{CH}_{(\text {phenyl) }}\right)$, $125.6\left(m-\mathrm{CH}_{(\text {phenyl) }}\right), 117.7(-\mathrm{NCHCHN}-), 115.8(\mathrm{Cp}), 103.9$ (=N-CH=C-), 21.0 ($\mathrm{p}-\mathrm{CH}_{3 \text { (mesityl) })}$), 18.7 (o- $\mathrm{CH}_{3(\text { mesityl) })}$). Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OZr}$ (\%): $\mathrm{C}, 61.52$; H, 5.31; N, 6.33; Found (\%):C, 61.30; H, 5.24; N, 6.10.

3.4.6.2 Cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-

 1-(4-chlorophenyl)ethenolate) zirconium dichloride, 3.9:59% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.08\left(\mathrm{~s}, 4 \mathrm{H}, m-\mathrm{CH}_{(\text {mesityl }}\right)$), $7.06(\mathrm{~d}$, $\left.2 \mathrm{H}, J=8.5 \mathrm{~Hz}, o-\mathrm{CH}_{\text {(chlorophenyl) }}\right), 6.84\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, m-\mathrm{CH}_{\text {(chlorophenyl) }}\right), 6.55$ (s, 2H, -NCHCHN-), 6.09 (s, 1H, =N-CH=C-), 6.02 (s, 5H, Cp), $2.34(\mathrm{~s}, 6 \mathrm{H}, \mathrm{p}-$
$\left.\mathrm{CH}_{3 \text { (mesity) }}\right), 2.30\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{o}-\mathrm{CH}_{3(\text { mesityl) }}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.5$ (-NCN-), $146.6(\mathrm{O}-\mathrm{C}), 140.5 \quad\left(p-\mathrm{C}_{(\text {mesity })}\right), 136.1 \quad\left(0-\mathrm{C}_{(\text {mesity })}\right), 133.8 \quad(p-$ $\left.C_{\text {(chlorophenyl) }}\right), 132.6$ (ipso- $\left.C_{(\text {mesityl) }}\right), 131.6$ (ipso- $\left.C_{\text {(chlorophenyl) }}\right)$, $130.3\left(m-\mathrm{CH}_{\text {(mesity) }}\right)$, $127.7\left(\mathrm{o}-\mathrm{CH}_{\text {(chlorophenyl) }}\right), 126.8\left(\mathrm{~m}-\mathrm{CH}_{\text {(chlorophenyl) }}\right)$, 117.8 ($-\mathrm{NCHCHN}-$), 115.9 (Cp), 104.71 ($=\mathrm{N}-\mathrm{CH}=\mathrm{C}-$), $21.0\left(\mathrm{p}-\mathrm{CH}_{3 \text { (mesityl) }}\right)$, $18.7\left(o-\mathrm{CH}_{3(\text { mesityl) }}\right)$. Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{OZr}(\%): \mathrm{C}, 58.49 ; \mathrm{H}, 4.91 ; \mathrm{N}, 6.02$; Found (\%): C, $58.64 ; \mathrm{H}, 4.72 ; \mathrm{N}$, 5.76.
3.4.7. General procedure for the synthesis of cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-(aryl)ethenolate) titanium dichloride $\mathrm{CpTiCl}_{2}\left(\mathrm{IMesN}^{\wedge}\right.$ ethenolate), 3.10 and 3.11:

Compounds 3.10 and 3.11 were prepared using the same procedure used for the preparation of compounds 3.8 and 3.9 , with the exception that the CpTiCl_{3} was used as metal precursor. The product was purified by redissolving it in toluene, filtering the mixture and removing the volatiles in vacuo to yield blue powders. Analytically-pure samples were obtained by recrystallization from THF and pentane at $-35^{\circ} \mathrm{C}$.

3.4.7.1. Cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-

 imine)-1-phenylethenolate) titanium dichloride, 3.10:74% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.19-7.17\left(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{CH}_{\text {(phenyl) }}+m-\right.$ $\left.\mathrm{CH}_{(\text {(phenyl) }}\right), 6.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{p}-\mathrm{CH}_{\text {(phenyl) }}\right), 6.78(\mathrm{~s}, 1 \mathrm{H},=\mathrm{N}-\mathrm{CH}=\mathrm{C}-), 6.73(\mathrm{~s}$, $\left.4 \mathrm{H}, m-\mathrm{CH}_{(\text {mesityl) }}\right), 6.12$ (s, $\left.5 \mathrm{H}, \mathrm{Cp}\right), 5.56$ (s, $2 \mathrm{H},-\mathrm{NCHCHN}-$), $2.12(\mathrm{~s}, 12 \mathrm{H}, o-$ $\mathrm{CH}_{3 \text { (mesityl) }}$), 2.09 (s, $6 \mathrm{H}, p-\mathrm{CH}_{3(\text { mesityl) })} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 156.8$
(O-C), 144.8 ($-\mathrm{NCN}_{- \text {(mesity) })}$), 139.1 ($\mathrm{p}-\mathrm{C}_{(\text {mesity) })}$), 137.7 (ipso- $\left.\mathrm{C}_{\text {(phenyl) }}\right), 136.5$ (o$\left.C_{\text {(mesity) }}\right)$, 133.9 (ipso- $\left.C_{(\text {mesity })}\right)$, $129.6\left(m-\mathrm{CH}_{\text {(mesityl) }}\right)$, $127.0\left(m-\mathrm{CH}_{(\text {phenyl) }}\right)$, 125.4 (p$\left.\mathrm{CH}_{\text {(phenyl) }}\right)$, $124.2(\mathrm{~N}-\mathrm{CH}=\mathrm{C})$, $122.3\left(\mathrm{o}-\mathrm{CH}_{\text {(phenyl) }}\right)$, $120.5(\mathrm{Cp}), 115.0(-\mathrm{NCHCHN}-)$, $20.9\left(\mathrm{p}-\mathrm{CH}_{3(\text { mesityl })}\right)$, 18.0 (o- $\left.\mathrm{CH}_{3(\text { mesityl) })}\right)$. Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OTi}$ (\%): C , 65.82; H, 5.69; N, 6.77; Found (\%): C, 66.10; H, 5.90; N, 7.02.

3.4.7.2. Cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-

 imine)-1-(4-chlorophenyl)ethenolate) titanium dichloride, 3.11:56% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.05(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}, m-$ $\left.\mathrm{CH}_{\text {(chlorophenyl) }}\right), 6.97\left(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, o-\mathrm{CH}_{\text {(chlorophenyl) }}\right), 6.71\left(\mathrm{~s}, 4 \mathrm{H}, m-\mathrm{CH}_{\text {(mesityl) }}\right)$, 6.68 (s, 1H, $=\mathrm{N}-\mathrm{CH}=\mathrm{C}-$), 6.05 (s, 5H, Cp), 5.56 (s, 2H, -NCHCHN-), 2.09 (s, $\left.12 \mathrm{H}, o-\mathrm{CH}_{3(\text { mesity }}\right)$), $2.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3(\text { mesityl) })}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ 155.6 (O-C), 144.8 ($-\mathrm{NCN}-$), 139.2 ($\left.p-\mathrm{C}_{(\text {mesity })}\right)$, 136.4 (o- $\left.\mathrm{C}_{(\text {mesityl })}\right)$, 136.3 ($p-$ $C_{\text {(chlorophenyl) }}$), 133.8 (ipso- $\left.C_{(\text {mesity })}\right), 130.7$ (ipso- $C_{\text {(chlorophenyl) }}$), $129.9\left(m-\mathrm{CH}_{(\text {mesityl })}\right)$, $128.6\left(m-\mathrm{CH}_{\text {(chlorophenyl) }}\right), 124.6(=\mathrm{N}-\mathrm{CH}=\mathrm{C}-)$, $123.4\left(\mathrm{o}-\mathrm{CH}_{\text {(chlorophenyl) }}\right)$, $120.6(\mathrm{Cp})$, 115.1 ($-\mathrm{NCHCHN}-$), $20.9\left(p-\mathrm{CH}_{3(\text { mesityl) }}\right)$, $17.9\left(o-\mathrm{CH}_{3(\text { mesity })}\right)$. Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{OTi}(\%): \mathrm{C}, 62.36 ; \mathrm{H}, 5.23$; N, 6.42; Found (\%): C, 62.15; H, 5.09; N, 6.38.

3.4.8. General Procedure for Ethylene Polymerization.

Ethylene polymerization was performed at atmospheric pressure and room temperature in a 200 mL Schlenk flask containing a magnetic stir bar. The flask was conditioned in an oven at $160^{\circ} \mathrm{C}$ for at least 12 h prior to use. The hot flask was brought to room temperature under dynamic vacuum, and back-filled
with ethylene. This cycle was repeated a total of three times. Under an atmosphere of ethylene, the flask was charged with 20 mL of dry toluene and 1000 equivalents of methylaluminoxane (MAO). The solution was stirred for 15 \min before a solution of the catalyst in toluene was introduced into the flask via a syringe. The reaction mixture was vigorously stirred for 10 min after the addition of the catalyst, and subsequently quenched with a 50:50 mixture of concentrated hydrochloric acid and methanol. The resulting mixture was filtered and any solid collected was washed with distilled water. Solids collected were dried under vacuum at approximately $60^{\circ} \mathrm{C}$ for several hours.

3.4.9. Computational Details.

DFT calculations were carried out at the hybrid B3LYP level of theory with LanL2DZ as basis set using Gaussian 9^{13} and GaussView 3^{14} for computing and molecular visualization, respectively. These calculations were performed on the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca).

3.4.10. X-ray Crystallography.

Detailed crystallographic data for compound 3.9 (Tables of atomic coordinates with isotropic and anisotropic displacement parameters, bond lengths and angles) are provided as supplementary materials. Crystallographic data for 3.9 were collected at the University of Toronto on a Bruker-Nonius Kappa-CCD diffractometer using monochromated Mo-K α radiation $(I=0.71073$ \AA) at 150 K and were measured using a combination of ϕ scans and ω scans with
κ offsets, to fill the Ewald sphere. Intensity data were processed using the Denzo-SMN package. ${ }^{15}$ Absorption corrections were carried out using SORTAV. ${ }^{16}$ The structure was solved with using Superflip ${ }^{17}$ and refined using WinGX ${ }^{18}$ with SHELXS-97 ${ }^{19}$ for full-matrix least-squares refinement that was based on F^{2}. All H atoms were included in calculated positions and allowed to refine in riding-motion approximation with $U_{\text {iso }}$ tied to the carrier atom.

3.5 References

1 a) T. K. Panda, A. G. Trambitas, T. Bannenberg, C. G. Hrib, S. Randoll, P. G. Jones and M. Tamm, Inorg. Chem. 2009, 48, 5462; b) D. Petrovic, T.

Bannenberg, S. Randoll, P. G. Jones and M. Tamm, Dalton Trans. 2007, 2812;
c) M. Tamm, D. Petrovic, S. Randoll, S. Beer, T. Bannenberg, P. G. Jones and J. Grunenberg, Org. Biomol. Chem. 2007, 5, 523; d) M. Tamm, S. Randoll, T. Bannenberg and E. Herdtweck, Chem. Commun. (Cambridge, U. K.) 2004, 876;
e) M. Tamm, S. Randoll, E. Herdtweck, N. Kleigrewe, G. Kehr, G. Erker and B. Rieger, Dalton Trans. 2006, 459.

2 S. Randoll, P. G. Jones and M. Tamm, Organometallics 2008, 27, 3232.
3 a) S. Dastgir and G. G. Lavoie, Dalton Trans. 2010, 39, 6943; b) S. Dastgir and G. G. Lavoie, Dalton Trans. 2012, 41, 9651.

4 M. B. Harkness, E. Alvarado, A. C. Badaj, B. C. Skrela, L. Fan and G. G. Lavoie, Organometallics 2013, 32, 3309.

5 S. Matsui, Y. Tohi, M. Mitani, J. Saito, H. Makio, H. Tanaka, M. Nitabaru, T. Nakano and T. Fujita, Chem. Lett. 1999, 1065.

6 C. Wang, S. Friedrich, T. R. Younkin, R. T. Li, R. H. Grubbs, D. A. Bansleben and M. W. Day, Organometallics 1998, 17, 3149.

7 a) P. Garcia, P. R. Payne, E. Chong, R. L. Webster, B. J. Barron, A. C. Behrle, J. A. R. Schmidt and L. L. Schafer, Tetrahedron 2013, 69, 5737; b) P. HorrilloMartinez, B. O. Patrick, L. L. Schafer and M. D. Fryzuk, Dalton Trans. 2012, 41, 1609; c) D. C. Leitch, R. H. Platel and L. L. Schafer, J. Am. Chem. Soc. 2011, 133, 15453; d) M. C. Wood, D. C. Leitch, C. S. Yeung, J. A. Kozak and L. L. Schafer, Angew. Chem., Int. Ed. 2007, 46, 354; e) Z. Zhang and L. L. Schafer, Org. Lett. 2003, 5, 4733.

8 a) H. Makio and T. Fujita, Acc. Chem. Res. 2009, 42, 1532; b) H. Makio, H. Terao, A. Iwashita and T. Fujita, Chem. Rev. (Washington, DC, U. S.) 2011, 111, 2363; c) M. Mitani, R. Furuyama, J. Mohri, J. Saito, S. Ishii, H. Terao, T. Nakano, H. Tanaka and T. Fujita, J. Am. Chem. Soc. 2003, 125, 4293; d) M. Mitani, J. Mohri, Y. Yoshida, J. Saito, S. Ishii, K. Tsuru, S. Matsui, R. Furuyama, T. Nakano, H. Tanaka, S.-i. Kojoh, T. Matsugi, N. Kashiwa and T. Fujita, J. Am. Chem. Soc. 2002, 124, 3327; e) J. Sun, Z. Cheng, Y. Nie, H. Schumann and M. Hummert, Appl. Organomet. Chem. 2007, 21, 268; f) H. Terao, S. Ishii, M. Mitani, H. Tanaka and T. Fujita, J. Am. Chem. Soc. 2008, 130, 17636; g) G. W. Theaker, C. Morton and P. Scott, Macromolecules (Washington, DC, U. S.) 2011, 44, 1393; h) J. Strauch, T. H. Warren, G. Erker, R. Frohlich and P. Saarenketo, Inorg. Chim. Acta 2000, 300-302, 810.

9 A. L. Johnson, M. G. Davidson, M. D. Lunn and M. F. Mahon, Eur. J. Inorg. Chem. 2006, 3088.

10 a) P. Pyykköand M. Atsumi, Chem. Eur. J. 2009, 15, 186; b) P. Pyykköand M. Atsumi, Chem. Eur. J. 2009, 15, 12770.

11 R. K. J. Bott, D. L. Hughes, M. Schormann, M. Bochmann and S. J.
Lancaster, J. Organomet. Chem. 2003, 665, 135.
12 L. E. Manzer, Inorg. Synth. 1982, 21, 135.
13 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2009;

14 Ik, R. D.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, L. W.; Gilliland, R. GaussView 3; Gaussian, Inc.: Carnegie, PA, 2003;

15 Otwinowski, Z.; Minor, W. Processing of x-ray diffraction data collected in oscillation mode.; Academic Press: London, 1997; 276 (Macromolecular Crystallography, Part A); pp 307-326.

16 Blessing, R. H. Acta Crystallogr., Sect. A: Found. Crystallogr. 1995, A51, 3338.

17 Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786-790.
18 Farrugia, L. G. J. App. Cryst. 1999, 32, 837-838.
19 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found Crystallogr. 2008, A64, 112.

Chapter 4 Grubbs-type Metathesis Catalysts: A Three Pronged Approach

4.1 Introduction

The formation of carbon-carbon bonds is one of the most important transformations in organic chemistry and has propelled the research interest of homogenous organometallic catalysis. As a result, a great deal of emphasis has been placed on developing catalysts with specifically designed ancillary ligands for the syntheses of specific desired products under controlled conditions. One area of transition metal catalysis that has garnered much attention in recent decades is ruthenium-based olefin metathesis. ${ }^{1}$ The availability of easily prepared, robust ruthenium metathesis catalysts has led to their tremendous usage in facilitating a wide variety of organic transformations.

4.1.1 Metathesis

There are several metathesis subtypes, which include cross-metathesis $(C M)^{1 \mathrm{a}, \mathrm{b}, 1 e, 2}$, ring-opening metathesis polymerization (ROMP) ${ }^{2 \mathrm{~g}, 3}$, ring-closing metathesis $(R C M)^{1 e, 2 \mathrm{a}, 2 \mathrm{~d}, 2 \mathrm{~g}, 4}$, acyclic diene metathesis polymerization (ADMET) $)^{2 \mathrm{~g}, 3 \mathrm{a}, 5}$ and ring-opening cross-metathesis (ROCM) ${ }^{2 \mathrm{e}, 2 \mathrm{~g}, 6}$. In all cases, a metal alkylidene is present to facilitate the carbon-carbon double bond rearrangement.

Figure 4.1. Common types of metathesis reactions
The highly studied olefin metathesis reaction mechanism, first proposed by Chauvin ${ }^{7}$, involves a series of alternating $[2+2]$-cycloadditions and cycloreversions, involving a catalytically important metallocyclobutane intermediate (Figure 4.2). ${ }^{8}$

Figure 4.2. General accepted metathesis mechanism
The most notable metathesis catalysts are based on molybdenum ${ }^{3 \mathrm{~h}, 4 \mathrm{~b}, 9}$, tungsten ${ }^{3 \mathrm{~h}, 9 \mathrm{c}-9}$ and ruthenium. ${ }^{1,2 \mathrm{~d}, 3 \mathrm{e}, 4 \mathrm{a}, \mathrm{b}, 9 \mathrm{a}, 10}$ In our case, we were most interested in ruthenium alkylidene metathesis catalysts because of their stability and tolerance towards many different organic functional groups. One of the first, and most notable, ruthenium-based metathesis catalyst is Grubbs first-generation (GI) catalyst (Figure 4.3). ${ }^{11}$

Figure 4.3. Grubbs first-generation (GI) catalyst

4.1.2 Evolution of ruthenium metathesis catalysts

Since the isolation of GI, there has been a great deal of emphasis on improving the productivity of this catalyst. The most notable modification to Grubbs first-generation catalyst was substituting one of the neutral ancillary phosphine ligands with an N-heterocyclic carbene (NHC) ligand. ${ }^{1 b, 1 d, e, 2 d, 4 a, 10 b, c, 12}$

As discussed in Chapter 1, NHC ligands are excellent σ-donors and poor π-acceptors and impart excellent thermodynamic stability to transition metal complexes. Substituting one of the tertiary phosphines with an NHC ligand offers enhanced stability of the coordinatively unsaturated intermediate in the metathesis catalytic cycle. ${ }^{\text {b,2d }}$ In addition, certain NHC ligands offer considerably more steric bulk around the metal centre compared to tertiary phosphines, thus promoting dissociation of the phosphine and initiation of the catalytic cycle. ${ }^{1 \mathrm{~b}, 2 \mathrm{~d}, 13}$ As a result, the combination of a strong electron-donating, non-labile, sterically bulky NHC ligand and a labile ligand resulted in significantly greater metathesis productivity.

Other notable advancements and modifications ${ }^{2 \mathrm{~d}, 6 \mathrm{a}, 10 \mathrm{c}, 14}$ to Grubbs-type ruthenium complexes include using more labile ligands, such as $\mathrm{PPh}_{3}{ }^{15}$ or
pyridine ${ }^{16}$, as a replacement for the second phosphine, substituting the chloride ligand(s) ${ }^{17}$ and modifying the benzylidene ${ }^{1 \mathrm{bb}, 14,18}$ ligand itself (Figure 4.4).

Figure 4.4. Examples of modifications to Grubbs-type ruthenium metathesis catalysts

Despite the extensive research into ruthenium metathesis catalysts over the last few decades, we found a few areas that remained underdeveloped. The use of multidentate ligands, both mono ${ }^{19,20}$ and dianionic, ${ }^{21}$ and chelating benzylidene ligands, ${ }^{22}$ have been used in the synthesis of Grubbs-type ruthenium complexes, but considerably less attention was given towards incorporating neutral bidentate ligands. ${ }^{23}$ As a result, we became interested in developing the area of Grubbs-type ruthenium complexes bearing neutral, bidentate ligands, specifically the aryl-substituted acyclic imino- N-heterocyclic carbene. ${ }^{24}$

The second area of Grubbs-type ruthenium complexes that garnered our attention was the substitution of the chloride ligand(s) with alkyl/aryloxide ligand(s). ${ }^{17 b, 21 b, c, 25}$ Fogg has demonstrated that substituting one or two of the halides with an aryloxide can lead to enhanced activity for ring-closing metathesis when compared to other Grubbs-type catalysts (Scheme 1). In one study, ${ }^{21 b}$ Fogg demonstrated that the activity of the ruthenium complexes in metathesis decreases as the aryloxide becomes more electron-deficient. This
observed trend provided an opportunity to investigate substituting one or two of the halides of Grubbs first- and second-generation catalysts with the imidazol-2imide ligand. ${ }^{26}$

We were also interested in substituting one of the tertiary phosphines of GI with an NHC-phosphinidene. ${ }^{27}$ As discussed in Chapter 1, NHCphosphinidene ligands are strong electron-donating ligands with considerable bulk (from the NHC), and the ligands can be easily modified both electronically and sterically. Incorporation of an NHC-phosphinidene ligand would yield a ruthenium complex bearing a strong electron-donating and sterically bulky ligand and a labile tertiary phosphine ligand for dissociation/initiation. We herein report our progress in these research interests.

4.2 Results and Discussion

4.2.1. Synthesis and chemistry of cationic ruthenium benzylidene complex

Within the Lavoie group, an efficient synthetic route for forming a phosphine-free Grubbs-type ruthenium complex was prepared. Reacting a slight excess of C^{\wedge} Imine with Grubbs first-generation complex in toluene for 24 hours at room temperature afforded the phosphine-free $\mathrm{RuCl}_{2}\left(\mathrm{C}^{\wedge} \mathrm{Imine}\right)(\mathrm{CHPh})^{28}$. The catalytic activity of this complex towards ring-closing metathesis of diethyl diallylmalonate and diallyl sulfide was evaluated at $70^{\circ} \mathrm{C}$ using $5 \mathrm{~mol} \% \mathrm{Ru}$, and monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. After 1 hour, no ring-closing product, catalyst decomposition or substrate consumption was observed and the diagnostic benzylidene proton was still visible in the ${ }^{1} \mathrm{H}$ NMR spectrum. The
inactivity of this complex towards RCM suggests a robust chelation of the C^Imine $^{\wedge}$ ligand, thus impeding the initiation step via the formation of a free coordination site.

Our attention was then turned towards synthesizing the cationic derivative by abstracting one of the chloride ligands. We believed that treating $\mathrm{RuCl}_{2}\left(\mathrm{C}^{\wedge} \mathrm{Imine}\right)(\mathrm{CHPh})$ with a halide-abstracting agent, in the presence of a weakly coordinating solvent, would yield a solvated cationic adduct. From this product, a free coordination site could be formed to initiate ring-closing metathesis via dissociation of a solvent molecule. As a result, we decided to treat $\mathrm{RuCl}_{2}\left(\mathrm{C}^{\wedge}\right.$ Imine $)(\mathrm{CHPh})$ with one equivalent of AgPF_{6} in acetonitrile in an attempt to form $\left[\mathrm{RuCl}\left(\mathrm{C}^{\wedge} \mathrm{Imine}\right)(\mathrm{MeCN})\left(\mathrm{CHPh}^{2}\right)\right]\left[\mathrm{PF}_{6}\right]$. To our surprise this led to the selective formation of one product in approximately 50\% yield; addition of two equivalents of AgPF_{6} led to the formation of the same product, presumably compound 4.1, in fair yield (70\%) (Scheme 4.1).

Scheme 4.1. Reaction of $\mathrm{RuCl}_{2}\left(\mathrm{C}^{\wedge}\right.$ Imine)(CHPh) with AgPF_{6} in MeCN

The solution ${ }^{1} \mathrm{H}$ NMR spectrum of the product showed promise, with a new resonance at $\delta 16.5 \mathrm{ppm}$, a characteristic region for resonances of benzylidene protons. Likewise, the benzylidene carbon resonance resonates far downfield at $\delta 334.3 \mathrm{ppm}$, similar in chemical shift to other ruthenium benzylidene complexes. In the aliphatic region, there were 10 resonances ranging from $\delta 2.49-1.43$ ppm. If the methyl groups of the ligand were spectroscopically inequivalent (similar to $\mathrm{RuCl}_{2}\left(\mathrm{C}^{\wedge} \operatorname{Imine}\right)(\mathrm{CHPh})$), there should be 8 resonances in the aliphatic region, including two coordinated MeCN ligands. Combustion analysis of this product was not consistent with compound 4.1.

Despite the inconsistent characterization of the complex, the activity of this product towards RCM was assessed. The RCM of diethyldiallyl malonate and of diallyl sulfide was evaluated at $70{ }^{\circ} \mathrm{C}$ using $5 \mathrm{~mol} \% \mathrm{Ru}$ (conditions similar to other studies), ${ }^{25 a}$ and monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. To our surprise, no ring-closing product, catalyst decomposition or substrate consumption was observed and the diagnostic downfield resonances at $\delta 16.5 \mathrm{ppm}$ was still visible in the ${ }^{1} \mathrm{H}$ NMR spectrum after 1 hour.

In an attempt to gain a deeper understanding of the newly formed product, and to perhaps develop structure-property relationships, our attention was turned towards growing X-ray quality crystals. X-ray quality crystals were grown from a solution NMR sample of what was thought to be compound 4.1 in CDCl_{3}. The product crystallized as gold needles in the $\mathrm{P} 21 / \mathrm{n}$ space group. Surprisingly, the solid-state structure was very different from the expected product. The actual product, complex 4.2, is a dicationic ruthenium metal centre with a distorted octahedral geometry. The complex consists of a benzyl substituted ligand, the coordinated iminic moiety of the former C^{\wedge} Imine ligand and four coordinated MeCN molecules. This unique molecule was consistent with combustion analysis (Figure 4.5).

Figure 4.5. ORTEP plot (50\% probability level) of 4.2. Two
hexafluorophosphate anions, two chloroform- d_{1} free solvent molecules and most hydrogen atoms are omitted for clarity reasons.

Most notable is the presence of an sp^{3}-hybridized carbon atom (C26), with bond angles for C1-C26-C27, C1-C26-Ru1, C1-C26-Ru1, C1-C26-H26 and C27-C26-H26 determined to be 118.3(3), 98.0(2), 115.8(3), 105(3) and $113(3)^{\circ}$, respectively (Table 4.1). The ruthenium-nitrogen bond lengths of the coordinated acetonitrile molecules range from 2.006(3)-2.094(4), with the longest bond length trans to the alkyl group; a likely result of a strong trans influence.

Table 4.1. Selected bond lengths and bond angles for compound 4.2

Selected Bond Lengths (\AA)		Selected Bond Angles (deg)	
$\mathrm{C}(1)-\mathrm{C}(26)$	$1.438(5)$	$\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{C}(27)$	$118.3(3)$
$\mathrm{C}(1)-\mathrm{N}(2)$	$1.364(5)$	$\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{Ru}(1)$	$98.0(2)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.345(5)$	$\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{Ru}(1)$	$115.8(3)$
$\mathrm{C}(26)-\mathrm{Ru}(1)$	$2.184(4)$	$\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{H}(26)$	$105(3)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.502(5)$	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	$113(3)$
$\mathrm{N}(3)-\mathrm{Ru}(1)$	$2.130(3)$	$\mathrm{N}(6)-\mathrm{Ru}(1)-\mathrm{N}(4)$	$90.50(14)$
$\mathrm{N}(4)-\mathrm{Ru}(1)$	$2.030(3)$	$\mathrm{N}(6)-\mathrm{Ru}(1)-\mathrm{C}(26)$	$90.57(14)$
$\mathrm{N}(5)-\mathrm{Ru}(1)$	$2.094(4)$	$\mathrm{N}(7)-\mathrm{Ru}(1)-\mathrm{C}(26)$	$89.30(14)$
$\mathrm{N}(6)-\mathrm{Ru}(1)$	$2.028(4)$	$\mathrm{N}(4)-\mathrm{Ru}(1)-\mathrm{N}(3)$	$89.15(13)$
$\mathrm{N}(7)-\mathrm{Ru}(1)$	$2.006(3)$	$\mathrm{N}(4)-\mathrm{Ru}(1)-\mathrm{N}(5)$	$87.31(13)$
		$\mathrm{N}(6)-\mathrm{Ru}(1)-\mathrm{N}(5)$	$87.25(14)$

The synthesis and characterization of this complex is quite remarkable and offers insight into the decomposition pathway of Grubbs-type ruthenium complexes. The decomposition pathway of Grubbs-type ruthenium catalysts has been extensively studied since the first isolation of ruthenium benzylidene complexes. Previous work into the intramolecular insertion of NHC substituents of Grubbs-type complexes has been observed experimentally ${ }^{29}$ and investigated theoretically. ${ }^{30}$ Despite the extensive experimental and theoretical investigations into the decomposition pathway, direct insertion of the benzylidene into a RuNHC bond, forming a ruthenium-benzyl complex has, to our knowledge, never been reported. It is clear that the formation of a cationic or dicationic metal centre from $\mathrm{RuCl}_{2}\left(\mathrm{C}^{\wedge}\right.$ Imine $)(\mathrm{CHPh})$ favours the migratory insertion of the NHC into the ruthenium benzylidene bond. As a result, there lies the possibility of other ruthenium alkylidene complexes undergoing decomposition via nucleophilic attack of the NHC on the benzylidene ligand for complexes with electron-poor metal centres. This new finding may help provide insight into the possible
decomposition pathway and the active species in alkene metathesis and possibly lead to tailoring ruthenium alkylidene catalysts to mitigate this nucleophilic attack, thus improving catalyst lifetime and productivity.

4.2.2. Synthesis and chemistry of ruthenium benzylidene complexes bearing an imidazol-2-imine ligand

Our group has become interested in incorporating the imidazol-2-imide ligand ${ }^{26}$ into a Grubbs-type ruthenium metathesis catalyst. In an attempt to synthesize a new catalyst, we focused on replacing one or two halide(s) from Grubbs first-generation catalyst (GI) with an imidazol-2-imide ligand. Treating GI with one equivalent of either $[I M e s=N] L i$ or $\left[I^{t} B u=N\right] L i$ resulted in a mixture of reaction products (Scheme 4.2).

R = 2,4,6-trimethylphenyl (IMes=N) or tBu (ItBu=N)

Scheme 4.2. Proposed synthetic strategy for forming $\mathrm{RuCl}(\mathrm{X})\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CHPh})$

$$
\left(X=I M e s=N \text { or } I^{t} B u=N\right)
$$

In all cases, there was no distinct benzylidene proton observed in the ${ }^{1} \mathrm{H}$ NMR spectra. Also, there was protonated imidazol-2-imine present in the reaction mixtures. The presence of protonated imidazol-2-imine suggests the deprotonation of the benzylidene, which could lead to the formation of a ruthenium alkylidyne via dehydrohalogenation (Scheme 4.3). ${ }^{31}$

Scheme 4.3. Possible formation of a ruthenium alkylidyne complex If the product was a ruthenium alkylidyne complex, then we would expect to see a new signal in the ${ }^{31} \mathrm{P}$ spectrum. Unfortunately, we only see free PCy_{3} in the ${ }^{31} \mathrm{P}$ spectrum, thus indicating the absence of our intended benzylidene or alkylidyne product. A similar observation was recorded by Johnson with their attempts to react GI with $\mathrm{Sn}\left(\mathrm{CH}\left[\mathrm{SiMe}_{3}\right]_{2}\right)_{2} .{ }^{31 \mathrm{a}}$

Scheme 4.4. Dehydrohalogenation of Grubbs first generation catalyst ${ }^{\mathbf{3 1}}$

Attempts to treat Gl with 2 equivalents of $[\mathrm{IMes}=\mathrm{N}] \mathrm{Li}$ or $\left[{ }^{\mathrm{t}} \mathrm{Bu}=\mathrm{N}\right] \mathrm{Li}$ in hopes of synthesizing the halide-free alkylidyne complex were also unsuccessful.

At this point, we turned our attention towards treat [$\mathrm{Mes}=\mathrm{N}] \mathrm{Li}$ or [$\left.{ }^{\mathrm{t}} \mathrm{Bu}=\mathrm{N}\right] \mathrm{Li}$ with ruthenium benzylidene complexes bearing ancillary NHC ligands. Two ruthenium starting materials were used, $\mathrm{RuCl}_{2}(\mathrm{IMes})\left(\mathrm{PCy}_{3}\right)(\mathrm{CHPh})$ and $\mathrm{RuCl}_{2}\left({ }^{\mathrm{I} B u}\right)\left(\mathrm{PPh}_{3}\right)(\mathrm{CHPh})$, and in both cases we see the disappearance of the benzylidene proton regardless of the stoichiometry. Unfortunately, no products in
the reaction mixture could be isolated or crystallized in order to gain insight into their nature.

Despite the inability to synthesize a ruthenium benzylidene complex at this point, we decided to try using phosphine-free ruthenium benzylidene precursors. Fogg ${ }^{17 b}$ has shown that, depending on the starting material, either the halide-free alkylidyne or substituted alkylidene can be synthesized and isolated (Scheme 4.5).

Scheme 4.5. Aryloxide selectivity based on metal precursor
Attempts to treat 2 equivalents of [IMes=N]Li or $\left[{ }^{\mathrm{t}} \mathrm{Bu}=\mathrm{N}\right] \mathrm{Li}$ with $\mathrm{RuCl}_{2}(\mathrm{IMes}) \mathrm{py}_{2}(\mathrm{CHPh})$ resulted in a mixture of reaction products and the absence of a benzylidene proton. However, adding 1 equivalent of $\left[l^{\prime} B u=N\right] L i$ to $\mathrm{RuCl}_{2}(\mathrm{IMes}) \mathrm{py}_{2}(\mathrm{CHPh})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ resulted in the likely formation of RuCl(IMes)($\left.{ }^{\mathrm{t}} \mathrm{Bu}=\mathrm{N}\right) \mathrm{py}_{2}$ (CHPh) (4.3) (Scheme 4.6).

4.3

Scheme 4.6. Synthetic scheme to forming compound 4.3.

After five minutes, all the starting material was consumed and a new benzylidene proton resonance was observed downfield at $\delta 17.01 \mathrm{ppm}$. The aliphatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum contained four major resonances at $\delta=2.43,2.22,2.21$ and 1.10 ppm , which correspond to the coordinated IMes and imidazol-2-imide methyl groups, respectively. The aromatic region contained from 8 resonances ranging 8.54 to 5.86 ppm , with some resonances being broad, an indication of fluxional behaviour. The reaction was monitored using NMR spectroscopy over a period of several hours. After 1.5 hours, the benzylidene proton resonance decreased by more than 80% while the broad resonances in the aliphatic region appeared. Attempts to acquire 2D HSQC, 2D HMBC and ${ }^{13} \mathrm{C}$ NMR spectra were unsuccessful due to decomposition in $\mathrm{C}_{6} \mathrm{D}_{6}$. A variety of other NMR solvents were used $\left(\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{CD}_{3} \mathrm{CN}\right)$ to acquire the desired NMR spectra and in all cases, led to relatively quick decomposition. Despite the incomplete characterization of compound 4.3, the catalytic activity towards ring-closing metathesis was tested. The catalyst was prepared fresh in $\mathrm{C}_{6} \mathrm{D}_{6}$, dried and redissolved in CDCl_{3} prior to each catalytic run without any purification. Due to the observed decomposition of the complex at room temperature in solution, we decided to test the activity towards RCM of diallyl sulfide at room temperature. After 90 mins, no ring-closing product was observed. In light of the inactivity at room temperature, the RCM activity was tested at $70^{\circ} \mathrm{C}$. After 30 mins at $70^{\circ} \mathrm{C}$ with 5 \% mol catalyst, greater than 99.9% conversion of diallyl sulfide to the RCM product was observed. The activity of this complex showed promise because the

RCM activity of RuCl_{2} (IMes) $\mathrm{PCy}_{3}(\mathrm{CHPh})$ was tested under the same conditions and yielded only 36% RCM product (Table 4.2). At lower catalyst loading (1 mol $\%$) for complex 4.3, we see a 48% conversion after 20 minutes at $70^{\circ} \mathrm{C}$ for RCM of diallyl sulfide.

Table 4.2: Catalytic activity of ruthenium metathesis catalysts in CDCl_{3}
Substrate

On the other hand, the RCM yield with diethyl diallylmalonate for compound 4.3 was lower (50\% conversion) than RuCl_{2} (IMes) $\mathrm{PCy}_{3}(\mathrm{CHPh})$ ($>99.9 \%$ conversion) after 20 minutes at $70^{\circ} \mathrm{C}$ with a $5 \mathrm{~mol} \%$ catalyst loading. The preliminary catalytic results for 4.3 are quite lower than other known ruthenium alkylidenes containing aryloxides. ${ }^{25 a}$ These results are not surprising, considering that complex 4.3 undergoes decomposition under mild conditions and one would assume that the catalyst lifetime of this complex would be short-lived. In order to truly assess the potential catalytic application of ruthenium alkylidene complexes bearing imidazol-2-imide ancillary ligands towards olefin metathesis, we would need to synthesize and isolate more robust precatalysts.

4.2.3. Synthesis and chemistry of ruthenium benzylidene complexes bearing NHC-phosphinidene ligands

In an attempt to synthesize a Grubbs-type complex bearing the 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-phenylphosphinidene (IMes=PPh) ${ }^{27 a}$ ligand as a potential catalyst for metathesis, we decided to treat GI with an excess of IMes=PPh (Scheme 4.6).

Scheme 4.6. Proposed synthetic route to forming $\mathrm{RuCl}_{\mathbf{2}}$ (IMes=PPh)(PCy_{3})(CHPh)

To our surprise, the solution ${ }^{1} \mathrm{H}$ NMR spectrum of the product was not consistent with the desired compound. Most notable was the absence of the distinctive benzylidene proton in the downfield range of 15 to 20 ppm . In addition, the proton signals were mainly broad singlets, suggesting fluxional behaviour. In an attempt to gain further insight into the identity of the isolated product, our attention was turned towards growing X-ray quality crystals for crystallographic analysis. Fortunately, X-ray quality crystals were isolated via slow liquid diffusion of diethyl ether into a saturated THF solution. They crystallized in the $P 21 / n$ space group. As expected, I did not see the desired product, but rather a decomposition product containing components of the intended target (Figure 4.6).

Figure 4.6. ORTEP plot (30\% probability level) of 4.4.
Most hydrogens were omitted for clarity.
Table 4.3. Selected bond lengths and bond angles for compound 4.4

Selected Bond Lengths (\hat{A})		Selected Bond Angles (deg)	
C1-N1	$1.352(3)$		C34-P1-C22
C1-N2	$1.355(3)$	C34-P1-C1	$104.51(10)$
C1-P1	$1.883(2)$	C22-P1-C1	$95.02(10)$
Ru-Cl1	$2.4899(7)$	C34-P1-Ru1	$107.88(7)$
P1-Ru1	$2.1844(6)$	C28-Ru1-C21	$94.09(8)$
P2-Ru1	$2.3464(7)$	C28-Ru1-P1	$80.51(6)$
C28-Ru1	$2.035(2)$	P1-Ru1-P2	$95.21(3)$
C21-Ru1	$2.157(2)$	P2-Ru1-Cl1	$86.85(3)$
C22-P1	$1.842(2)$	P1-Ru1-Cl1	$177.83(2)$
C34-P1	$1.839(2)$	Ru1-C21-C18	$89.8(1)$

There are a few noteworthy observations for the X-ray structure. There are two instances in which $\mathrm{C}-\mathrm{H}$ bond activation occurred. The metal centre adopts a distorted square pyramidal geometry with the apical site being occupied by C28. Interestingly, there is a five-membered metallacycle with a bite angle of $90.51(6)^{\circ}$ (C28-Ru1-P1). The long P1-Ru1 bond length of 2.1844(6) Á shows that there is significant single bond character for this ligand. The sp ${ }^{3}$ carbon C34 corresponds to the former benzylidene carbon and contains two hydrogen atoms located on the density map. Lastly, we see an acute Ru1-C21-C18 bond angle of 89.8(1) ${ }^{\circ}$, which is considerably smaller than similar bond angles reported. ${ }^{30 b, 32}$ it is important to note that the coordination of PPh_{3} is likely a result of fortuitous free PPh_{3} from the starting materials. The corresponding PCy_{3} decomposition product was isolated and characterized by using vigorously purified starting material. As discussed in Section 4.2.1, there have been considerable experimental ${ }^{29}$ and theoretical ${ }^{30}$ studies into the decomposition of Grubbs-type ruthenium catalysts and numerous examples of $\mathrm{C}-\mathrm{H}$ bond activation of NHC substituents on ruthenium. ${ }^{30 b, 32}$ We believe that the decomposition of the product is initiated by the migratory insertion of the $\mathrm{IMes}=\mathrm{PPh}$ ligand on the benzylidene carbon, followed by cyclometallation of the o-methyl group of the mesityl ring. A reductive elimination then occurs, followed by another cyclometallation and then the release of HCl (Figure 4.7).

reductive elimination

Figure 4.7. Proposed decomposition pathway of

$\mathrm{RuCl}_{2}(\mathrm{IMes}=\mathrm{PPh})\left(\mathrm{PCy}_{3}\right)(\mathrm{CHPh})$

An usual imidazolium benzylidene complex was reported recently, for which the authors suggest nucleophilic attack on the alkylidene carbon by a silver-NHC adduct. ${ }^{30 \mathrm{~d}}$ Interestingly, treating $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CHPh})$ with a slight excess of IMes=PPh in toluene at room temperature under nitrogen for one hour afforded a yellow-brown solution with a light brown precipitate (Scheme 4.7).

Scheme 4.7. Synthetic strategy for $\mathrm{RuCl}_{2}(\mathrm{IMes}=\mathrm{PPh})\left(\mathrm{PPh}_{3}\right)(\mathrm{CHPh}), 4.5$

The solution was filtered, dried and recrystallized from pentane and dichloromethane to yield dark crystals of the desired compound. Solution ${ }^{1} \mathrm{H}$ NMR spectrum of the product was consistent with the desired compound with the benzylidene proton resonating at $\delta 15.48 \mathrm{ppm}$ as a doublet of doublets, a result of coupling to the two inequivalent phosphine atoms. The corresponding benzylidene carbon resonates at $\delta 299.7 \mathrm{ppm}$, while the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum contains two singlets at $\delta 64.8$ and 37.4 ppm.

Crystals suitable for X-ray diffraction analysis were grown from slow liquid diffusion of pentane into a saturated dichloromethane solution and crystallized in the $C 2 / c$ space group (Figure 4.8). The crystal structure was consistent with the desired product. Its metal centre adopts a distorted square-pyramidal coordination with almost linear $\mathrm{Cl} 2-\mathrm{Ru}-\mathrm{P} 2$ and $\mathrm{Cl} 1-\mathrm{Ru}-\mathrm{P} 1$ bond angles of $168.06(2)^{\circ}$ and $158.18(2)^{\circ}$, respectively. The $\mathrm{Ru}-\mathrm{Cl} 2$ and $\mathrm{Ru}-\mathrm{Cl} 1$ bond lengths were determined to be $2.4012(6)$ and $2.3925(6) A$, respectively. Interestingly, we see a C1-P1 bond length of $1.847(2) \AA$, indicating significant single bond character, likely a result of electron delocalization from the azole nitrogen atoms to the phosphorus atom. The Ru-P1 and Ru-P2 bond lengths were determined to be $2.3643(7)$ and $2.3272(6) \AA$, respectively. Surprisingly, the chloride ligands adopt a cis arrangement, atypical to ruthenium alkylidene complexes without a bidentate ligand. ${ }^{10 a, 77 b, 33}$

Figure 4.8. ORTEP plot (30\% probability level) of 4.5. Most hydrogens and 1 molecule of dichloromethane were omitted for clarity.

Table 4.3. Selected bond lengths and angles for compounds 4.5

Selected Bond Lengths (\AA)		Selected Bond Angles (deg)	
C1-N1	$1.367(3)$	C1-P1-Ru1	$113.81(8)$
C1-N2	$1.361(3)$	C22-P1-Ru1	$98.20(8)$
C1-P1	$1.847(2)$	C22-P1-C1	$103.53(11)$
Ru1-Cl1	$2.3925(6)$	C28-Ru1-P2	$86.69(7)$
Ru1-Cl2	$2.4012(6)$	C28-Ru1-P1	$96.43(8)$
P1-Ru1	$2.3643(7)$	P1-Ru1-P2	$90.61(2)$
P2-Ru1	$2.3272(6)$	P2-Ru1-Cl1	$86.89(2)$
C28-Ru1	$1.841(3)$		

One could argue that using a poorer electron-donating phosphine would result in the ruthenium metal centre being less electron-rich. Consequently, the metal
centre would accept more electron density from the alkylidene carbon and less π backdonation to the carbon would result, thus making that carbon more electrophilic. In our case, it appears as though sterics, rather than electronics, played a crucial role in promoting the migratory insertion of the phosphaalkene in the presence of exess reagent, thus triggering subsequent decomposition steps. The reaction between GI and $\mathrm{IMes}=\mathrm{PPh}$ afforded the decomposition product 4.4, when the tertiary phosphines in the starting material were PCy_{3}. On the other hand, $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CHPh})$ starting material containing sterically less demanding PPh_{3}, afforded the desired product (4.5).

Having synthesized and isolated a Grubbs-type carbene complex bearing the IMes=PPh ligand, we turned our attention towards the application of this complex towards Ring-Closing Metathesis (RCM). We decided to test the activity towards RCM of diallyl sulfide at room temperature. Surprisingly, no ring-closing product, catalyst decomposition or substrate consumption was observed and the diagnostic downfield resonances at $\delta 15.5 \mathrm{ppm}$ was still visible in the ${ }^{1} \mathrm{H}$ NMR spectrum after 6 hours. In light of the inactivity at room temperature, the RCM activity was tested at $70^{\circ} \mathrm{C}$. Heating a sample of CDCl_{3} solution containing diallyl sulfide and $5 \mathrm{~mol} \%$ of catalyst to $70^{\circ} \mathrm{C}$ for 1 hour resulted in no observable ringclosing and the complete conversion of complex 4.5 to a product with similar ${ }^{1} \mathrm{H}$ NMR chemical shifts as shown by the decomposition of the X-ray structure (4.4). The thermal stability of 4.5 at $70^{\circ} \mathrm{C}$ was tested by heating the sample in CDCl_{3} for 1 hour. Once again, the complex completely decomposed into a species with
${ }^{1} \mathrm{H}$ NMR resonances similar to that of 4.4. These results, although disappointing, shows that the complex is susceptible to thermal decomposition under mild conditions. We are currently validating the decomposition mechanism of these complexes and developing NHC-phosphinidene ligand variants that would mitigate the nucleophilic attack of the alkylidene fragment.

4.3 Conclusions and Future Considerations

In an attempt to synthesize and isolate a cationic $\left[\mathrm{RuCl}\left(\mathrm{C}^{\wedge} \mathrm{Imine}\right)(\mathrm{MeCN})\left(\mathrm{CHPh}^{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ complex, we isolated an unusual decomposition product. The decomposition product was characterized and is the first example of a complex with direct insertion of the benzylidene into a Ru-NHC bond, forming a ruthenium-benzyl complex (4.2).

The application of imidazol-2-imide ligands as ancillary ligands on Grubbstype ruthenium metathesis catalysts were investigated. A partially characterized ruthenium complex, $\mathrm{RuCl}(\mathrm{IMes})\left(\mathrm{I}^{\mathrm{t}} \mathrm{Bu}=\mathrm{N}\right) \mathrm{py}(\mathrm{CHPh})$ (4.3), showed promising results for the ring-closing metathesis of diallyl sulfide. Studies into the stability of these complexes are currently being conducted and the synthesis and isolation of other novel Grubbs-type metathesis catalysts are being explored.

The successful synthesis and isolation of a Grubbs-type ruthenium alkylidene complex bearing the $\mathrm{IMes}=\mathrm{PPh}$ was reported (4.5). An interesting decomposition product was also synthesized and characterized (4.4), providing insight into the decomposition pathway of Grubbs-type complexes. We are currently exploring the decomposition mechanism of these complexes and
developing NHC-phosphinidene ligand variants that would mitigate decomposition.

4.4 Experimental

4.4.1 General Considerations

All manipulations were performed under a dinitrogen atmosphere in a drybox or using standard Schlenk techniques. Solvents used in the preparation of air and/or moisture sensitive compounds were dried using an MBraun Solvent Purification System fitted with alumina columns and stored over molecular sieves under a positive pressure of argon. Toluene for polymerization was distilled under argon after being dried with the MBraun SPS. Deuterated solvents were degassed using three freeze-pump-thaw cycles. $\mathrm{C}_{6} \mathrm{D}_{6}$ and CDCl_{3} were vacuum distilled from sodium and CaH_{2}, respectively, and stored under dinitrogen. NMR spectra were recorded on a Bruker DRX $600\left({ }^{1} \mathrm{H}\right.$ at $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 150.9 MHz), Bruker AV $400\left({ }^{1} \mathrm{H}\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at $100 \mathrm{MHz},{ }^{31} \mathrm{P}$ at 161 MHz$)$ or Bruker AV $300\left({ }^{1} \mathrm{H}\right.$ at 300 $\mathrm{MHz},{ }^{13} \mathrm{C}$ at $75.5 \mathrm{MHz},{ }^{31} \mathrm{P}$ at 81 MHz) spectrometer and are at room temperature unless otherwise stated. The spectra were referenced internally relative to the residual protio-solvent $\left({ }^{1} \mathrm{H}\right)$ and solvent $\left({ }^{13} \mathrm{C}\right)$ resonances and chemical shifts were reported with respect to $\delta=0$ for tetramethylsilane. The ${ }^{31} \mathrm{P}$ spectra were referenced externally with $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.

All metal precursors were purchased from either BDH or Sigma-Aldrich. Deuterated NMR solvents were purchased from Cambridge Isotope

Laboratories. Imidazol-2-imine ${ }^{26}$ compounds and their derivatives, IMes $=\mathrm{PPh},{ }^{27 \mathrm{a}} \quad \mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CHPh}),{ }^{11 \mathrm{~b}} \quad \mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CHPh}),{ }^{11 \mathrm{~b}}$ $\mathrm{RuCl}_{2}(\mathrm{IMes}) \mathrm{PCy}_{3}(\mathrm{CHPh}),{ }^{34} \quad \mathrm{RuCl}_{2}\left(\mathrm{I}^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{PPh}_{3}(\mathrm{CHPh})^{35}$ and $\mathrm{RuCl}_{2}(\mathrm{IMes}) \mathrm{py}_{2}(\mathrm{CHPh})^{25 \mathrm{a}}$ were prepared using published procedure.

4.4.2 Synthesis of $\left[R u\left(C^{\wedge} \operatorname{lmine}\right)(\mathrm{MeCN})_{4}\left(\mathrm{CHPh}^{2}\right)\right]\left[\mathrm{PF}_{6}\right]_{2}, 4.2$

RuCl_{2} (C^Imine)(CHPh) (1) ($41.7 \mathrm{mg}, 65.6 \mu \mathrm{~mol}$) was dissolved in a minimal amount of $\mathrm{MeCN}(5 \mathrm{~mL}) . \mathrm{AgPF}_{6}(33.2 \mathrm{mg}, 131 \mu \mathrm{~mol})$ was added as a solid to the solution mixture. The solution was stirred stir for 4 h at room temperature, filtered and concentrated in vacuo. Diethyl ether was added until the product precipitated out of solution. Yield: $47 \mathrm{mg}, 47 \mu \mathrm{~mol}, 72 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHPh}), 8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCCN}($ mesity $)$) $) 8.13(\mathrm{~d}, \mathrm{~J}$ $\left.=7.0 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}_{(2,6-x y|y|}\right), 7.87\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{(2,6-x y \mid y)}\right), 7.63(\mathrm{t}, \mathrm{J}=7.8$ $\left.\mathrm{Hz}, 2 \mathrm{H},, 0-\mathrm{CH}_{\text {(phenyl) }}\right), 7.05\left(\mathrm{~s}, 2 \mathrm{H}\right.$, , $\left.m-\mathrm{CH}_{\text {(mesityl) }}\right), 6.96\left(\mathrm{~m}, 2 \mathrm{H},, m-\mathrm{CH}_{\text {(phenyl) }}\right)$, $6.71\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H},, p-\mathrm{CH}_{\text {(phenyl) }}\right), 6.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCCHN}_{(\text {mesity }}\right)$), $2.49(\mathrm{br} \mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3(\text { MeCN })}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, o-\mathrm{CH}_{3(\text { mesityl) }}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{p}-\mathrm{CH}_{3(\text { mesityl }}\right)$, 2.15 (s, $3 \mathrm{H}, \mathrm{o}-$ $\left.\mathrm{CH}_{3\left(2,6-\mathrm{xy} \mathrm{y}_{\mathrm{l}}\right)}\right), 2.02$ (br s, $3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{MeCN})}$), 1.87 (s, $3 \mathrm{H}, \mathrm{CH}_{3(\text { MeCN })}$), 1.85 (s, 3 H , $\left.\mathrm{CH}_{3(\text { MeCN })}\right), 1.59\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3(\text { imine })}\right), 1.49\left(\mathrm{~s}, 3 \mathrm{H}, o-\mathrm{CH}_{3(2,6-\mathrm{xy} 1 \mathrm{y} 1}\right)$), $1.43 \mathrm{ppm}(\mathrm{s}$, $\left.3 \mathrm{H}, \mathrm{o}-\mathrm{CH}_{3(\text { mesityl) })}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=334.3(\mathrm{CHPh}), 189.8$ $(\mathrm{NCN}($ mesityl $)), 172.3(\mathrm{C}=\mathrm{N}), 151.2,144,139.9,136.6\left(p-\mathrm{CH}_{(2,6-x y \mid y)}\right), 135.8$, 134.8, $133.5\left(m-\mathrm{CH}_{(2,6-x y|y|}\right), 132.5,130.3\left(o-\mathrm{CH}_{(\text {phenyl })}\right), 129.5,129.3(m-$
 $128.0\left(p-\mathrm{CH}_{(\text {phenyl) }}\right), 126.9,124.58,124.1\left(m-\mathrm{CH}_{\text {(mesityl) }}\right), 123.1\left(\mathrm{NCCN}_{(\text {mesity }}\right)$,
 2.78, 1.87 ppm ; elemental analysis calcd (\%) for $\mathrm{C}_{40} \mathrm{H}_{49} \mathrm{~F}_{12} \mathrm{~N}_{7} \mathrm{P}_{2} \mathrm{Ru}$ (\%): C 47.15, H 4.85, N 9.62; found C 47.41, H 5.09, N 9.39.

4.4.6 Attempted synthesis of $\mathrm{RuCl}(\mathrm{IMes}=\mathrm{N})\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CHPh})$

[IMes $=\mathrm{N}] \mathrm{Li}(0.032 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ was added to a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution containing $\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CHPh})$ (0.032 mmol). The solution immediately turned a dark reddish-green and was transferred to an NMR tube fitted with a rubber septum. The reaction was monitored using NMR spectroscopy over a period of several hours. During this time, the distinct alkylidene proton resonance decreases while the resonances corresponding to protonated imidazol-2-imine appears. A variety of different solvents were used including THF, pyridine and toluene and, in each case, it resulted in spectra containing a number of unidentified species and no alkylidene proton resonance.

4.4.7 Attempted synthesis of $\mathrm{RuCl}(\mathrm{IMes}=\mathrm{N})(\mathrm{IMes}) \mathrm{py}(\mathrm{CHPh})$

[IMes $=\mathrm{N}] \mathrm{Li}(0.056 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ was added to a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution containing $\mathrm{RuCl}_{2}(\mathrm{IMes}) \mathrm{py}_{2}(\mathrm{CHPh})(0.056 \mathrm{mmol})$. The solution immediately turned a dark reddish-green and was transferred to an NMR tube fitted with a rubber septum. The reaction was monitored using NMR spectroscopy over a period of several hours. During this time, the distinct alkylidene proton resonance decreases while the resonances corresponding to protonated imidazol-2-imine appears. A variety of different solvents were used including THF, pyridine and toluene and, in each case, it resulted in spectra containing
a number of unidentified species and no alkylidene proton resonance.

4.4.8 Attempted synthesis of $\mathrm{RuCl}\left(\mathrm{I}^{\mathrm{t}} \mathrm{Bu}=\mathrm{N}\right)\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CHPh})$

$\left[I^{\mathrm{I}} \mathrm{Bu}=\mathrm{N}\right] \mathrm{Li}$ (0.046 mmol) in $\mathrm{C}_{6} \mathrm{D}_{6}$ was added to a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution containing $\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CHPh})$ (0.046 mmol). The solution immediately turned a dark green and was transferred to an NMR tube fitted with a rubber septum. The reaction was monitored using NMR spectroscopy over a period of several hours. During this time, the distinct alkylidene proton resonance decreases while the resonances corresponding to protonated imidazol-2-imine appears. In the ${ }^{31} \mathrm{P}$ spectra, there are two observed resonances corresponding to the starting material and free PCy_{3}. The reaction was repeated using THF and pyridine and similar spectra was obtained. Attempts to isolate the unidentified species in the reaction mixture were unsuccessful.

4.4.9 Attempted synthesis of $\mathrm{Ru}(\mathrm{ItBu}=\mathrm{N})\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CPh})$

$\left[{ }^{\mathrm{t}} \mathrm{Bu}=\mathrm{N}\right] \mathrm{Li}(0.060 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ was added to a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution containing $\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CHPh})(0.030 \mathrm{mmol})$. The solution immediately turned a dark green and was transferred to an NMR tube fitted with a rubber septum. The reaction was monitored using NMR spectroscopy over a period of several hours. During this time, the distinct alkylidene proton resonance decreases while the resonances corresponding to protonated imidazol-2-imine appears. In the ${ }^{31} \mathrm{P}$ spectra, there are two observed resonances corresponding to the starting material and free PCy_{3}. After 24 h , only free PCy_{3} was observed in the ${ }^{31} \mathrm{P}$ spectrum. The reaction was repeated using

THF and the solution was allowed to stir for 24 hours. At this time, only free PCy_{3} was observed in the ${ }^{31} \mathrm{P}$ NMR spectrum. In all cases, attempts to isolate the unidentified species in the reaction mixture were unsuccessful.

4.4.10 Synthesis of $\mathrm{RuCl}(\mathrm{IMes})\left({ }^{\mathrm{t}} \mathrm{Bu}=\mathrm{N}\right) \mathrm{py}_{2}(\mathrm{CHPh})$, 4.3

$\left[{ }^{\mathrm{t}} \mathrm{Bu}=\mathrm{N}\right] \mathrm{Li}$ (0.089 mmol) in $\mathrm{C}_{6} \mathrm{D}_{6}$ was added to a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution containing $\mathrm{RuCl}_{2}(\mathrm{IMes}) \mathrm{py}_{2}(\mathrm{CHPh})(0.089 \mathrm{mmol})$. The solution immediately turned a dark green and was transferred to an NMR tube fitted with a rubber septum. After 15 minutes, all the starting material was consumed. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl3): $\delta 17.09$ (s, 1H), 8.54 (br s, 5 H), 7.82 (br s, 2 H), 7.11 (s, $3 \mathrm{H}), 6.96(\mathrm{~m}, 5 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 6.62(\mathrm{br} \mathrm{s}, 5 \mathrm{H}), 6.32(\mathrm{~s}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 2.43$ (s, 6H), 2.22 (s, 6H), 2.21 (s, 6H, 1.13 (s, 18 H).

4.4.11 Attempted Synthesis of $\mathrm{RuCl}_{2}(\mathrm{IMes}=\mathrm{PPh})\left(\mathrm{PCy}_{3}\right)(\mathrm{CHPh}), 4.4$

A toluene solution of $\mathrm{IMes}=\mathrm{PPh}(67.1 \mathrm{mg}, 157 \mu \mathrm{~mol})$ was added slowly over one minute to a toluene solution (5 mL) of $\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(\mathrm{CHPh})(92.7 \mathrm{mg}$, $112 \mu \mathrm{~mol})$. The solution was allowed to stir for 12 hours at room temperature. During this time, the solution turned from purple to brown with the formation of a light brown precipitate. The solution was dried under reduced pressure. The product was recrystallized from pentane and dichloromethane to yield a light brown powder ($85.7 \mathrm{mg}, 82.8 \%$). Crystals suitable for X-ray diffraction study were grown at room temperature under nitrogen by slow liquid diffusion of diethyl ether into a saturated THF solution. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 11.00(\mathrm{~s}, 1 \mathrm{H}), 8.11$ (m, 2H), $7.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 4 \mathrm{H}), 6.83(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$,
2.18 (s, 12H), 1.76-0.90 (m, 30H). Anal. Calcd. for $\mathrm{C}_{52} \mathrm{H}_{67} \mathrm{ClN}_{2} \mathrm{P}_{2} \mathrm{Ru}(\%): \mathrm{C}$, 67.99; H, 7.35; N, 3.05. Found (\%): C, 68.28; H, 7.53; N, 2.77.

4.4.12 Synthesis of $\mathrm{RuCl}_{2}(\mathrm{IMes}=\mathrm{PPh})\left(\mathrm{PPh}_{3}\right)(\mathrm{CHPh}), 4.5$

A toluene solution of IMes=PPh ($30.1 \mathrm{mg}, 73.0 \mu \mathrm{~mol}$) was added slowly over one minute to a toluene solution (5 mL) of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CHPh})(52.1 \mathrm{mg}$, $66.2 \mu \mathrm{~mol})$. The solution was allowed to stir for 1 hour at room temperature. During this time, the solution turned from purple to yellowish brown with the formation of a light brown precipitate. The solution was filtered and dried under reduced pressure. Recrystallization by slow liquid diffusion of pentane into a saturated dichloromethane solution at $-35^{\circ} \mathrm{C}$ to afforded dark brown crystals ($37.4 \mathrm{mg}, 60.3 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.48$ (dd, $J=9.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}$, CHPh), $8.14(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.08-6.65(\mathrm{~m}, 18 \mathrm{H}), 6.56(\mathrm{t}, \mathrm{J}$ $=9.2,2 \mathrm{H}), 6.47(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2.29$ (br s, 3H), $2.24(b r s, 3 H), 2.10(b r s, 3 H), 1.60(b r s, 6 H) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 299.7$ (CHPh), 169.6, 168.3, 150.93, 141.15, 21.1-20.5, 19.419.0, 18.5, 17.9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 64.8$ (s), 37.4 (s). Anal. Calcd. for $\mathrm{C}_{52} \mathrm{H}_{50} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Ru}$ (\%): C, 66.66; H, 5.38; N, 2.99. Found (\%): C, 66.46; H, 5.60; N, 2.92.

Decomposition Product, 4.5a

The brown precipitate that was accumulated during the filtration step in the synthesis of 4.5 was washed thoroughly with toluene and diethyl ether. The light brown product was dried in vacuo ($17.8 \mathrm{mg}, 29.9 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$):
$\delta 11.09(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.18(\mathrm{~m}), 7.01(\mathrm{~s}, 4 \mathrm{H}), 6.83(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.34(\mathrm{~s}$, 6 H), 2.20 (s, 9H), 2.01 (br s, 2H). Anal. Calcd. for $\mathrm{C}_{52} \mathrm{H}_{49} \mathrm{CIN}_{2} \mathrm{P}_{2} \mathrm{Ru}(\%): \mathrm{C}, 69.10$; H, 5.49; N, 3.11. Found (\%): C, 69.10; H, 5.50; N, 2.96.

4.4.14 Ring-closing metathesis

The catalyst (0.006 mmol) was dissolved in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$. The solution was added to either an NMR tube fitted with a rubber septum or a scintillation vial fitted with a rubber septum. The neat substrate was added via syringe and the reaction vessel was either placed in a hot oil bath at $70^{\circ} \mathrm{C}$ or left at room temperature. Reaction products were analyzed via solution ${ }^{1} \mathrm{H}$ NMR spectroscopy.

4.5 References

1 a) R. H. Grubbs, Tetrahedron 2004, 60, 7117; b) C. Samojlowicz, M. Bieniek and K. Grela, Chem Rev 2009, 109, 3708; c) Y. Schrodi and R. L. Pederson, Aldrichimica Acta 2007, 40, 45; d) T. M. Trnka and R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18; e) G. C. Vougioukalakis and R. H. Grubbs, Chem. Rev. 2010, 110, 1746.

2 a) R. H. Grubbs and S. Chang, Tetrahedron 1998, 54, 4413; b) M. J. Krische, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 3279; c) J. Prunet and L. Grimaud, 2010, pp. 287; d) G. C. Vougioukalakis and R. H. Grubbs, Chem. Rev. 2009, 110, 1746; e) A. Wojtkielewicz, Curr. Org. Synth. 2013, 10, 43; f) A. K. Chatterjee, T.-L. Choi, D. P. Sanders and R. H. Grubbs, J. Am. Chem. Soc.

2003, 125, 11360; g) K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem., Int. Ed. 2005, 44, 4490.

3 a) M. R. Buchmeiser, Chem. Rev. 2000, 100, 1565; b) W. J. Feast and E. Khosravi, J. Fluorine Chem. 1999, 100, 117; c) R. H. Grubbs and E. Khosravi, 1999, pp. 65; d) A. Hafner, d. S. P. A. van and A. Muehlebach, Chimia 1996, 50, 131; e) A. Leitgeb, J. Wappel and C. Slugovc, Polymer 2010, 51, 2927; f) O. Nuyken and S. D. Pask, Polymers 2013, 5, 361; g) C. Pariya, K. N. Jayaprakash and A. Sarkar, Coord. Chem. Rev. 1998, 168, 1; h) R. R. Schrock, Top. Organomet. Chem. 1998, 1, 1.

4 a) J. M. Berlin, K. Campbell, T. Ritter, T. W. Funk, A. Chlenov and R. H. Grubbs, Org. Lett. 2007, 9, 1339; b) R. H. Grubbs, S. J. Miller and G. C. Fu, Acc. Chem. Res. 1995, 28, 446; c) A. J. Phillips and A. D. Abell, Aldrichimica Acta 1999, 32, 75; d) S. K. Armstrong, J. Chem. Soc., Perkin Trans. 1 1998, 371.

5 a) P. Atallah, K. B. Wagener and M. D. Schulz, Macromolecules Ahead of Print; b) T. W. Baughman and K. B. Wagener, Adv. Polym. Sci. 2005, 176, 1; c) J. E. Schwendeman, A. C. Church and K. B. Wagener, Adv. Synth. Catal. 2002, 344, 597.

6 a) S. J. Connon and S. Blechert, Angew. Chem., Int. Ed. 2003, 42, 1900; b) G. D. Cuny and J. R. Hauske, CHEMTECH 1998, 28, 25; c) C. L. Dwyer, 2006, pp. 201; d) Y. Li, W. Zhao and X. Bai, Jingxi Shiyou Huagong 2007, 24, 79; e) M. Mori, Farumashia 2002, 38, 931; f) M. Schuster and S. Blechert, Angew. Chem., Int. Ed. 1997, 36, 2037.

7 J.-L. Hérisson and Y. Chauvin, Die Makromolekulare Chemie 1971, 141, 161.
8 R. H. Grubbs, P. L. Burk and D. D. Carr, J. Am. Chem. Soc. 1975, 97, 3265.
9 a) K. Sato, Org. Square 2012, 2; b) R. R. Schrock, Tetrahedron 1999, 55, 8141; c) R. R. Schrock, J. Mol. Catal. A: Chem. 2004, 213, 21; d) R. R. Schrock, Chem. N. Z. 2011, 75, 117; e) R. R. Schrock, Chem. Commun. 2013, 49, 5529; f) R. R. Schrock and C. Czekelius, Adv. Synth. Catal. 2007, 349, 55; g) R. R. Schrock and A. H. Hoveyda, Angew. Chem., Int. Ed. 2003, 42, 4592; h) R. R. Schrock and A. H. Hoveyda, Angew. Chem., Int. Ed. 2003, 42, 4592. 10 a) X. Bantreil, A. Poater, C. A. Urbina-Blanco, Y. D. Bidal, L. Falivene, R. A. M. Randall, L. Cavallo, A. M. Z. Slawin and C. S. J. Cazin, Organometallics 2012, 31, 7415; b) H. Clavier and S. P. Nolan, Chem. - Eur. J. 2007, 13, 8029; c) E. Despagnet-Ayoub and T. Ritter, Top. Organomet. Chem. 2007, 21, 193; d) M. S. Sanford, J. A. Love and R. H. Grubbs, Organometallics 2001, 20, 5314.

11 a) P. Schwab, M. B. France, J. W. Ziller and R. H. Grubbs, Angew. Chem., Int. Ed. 1995, 34, 2039; b) P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100.

12 a) L. Vieille-Petit, H. Clavier, A. Linden, S. Blumentritt, S. P. Nolan and R. Dorta, Organometallics 2010, 29, 775; b) L. Vieille-Petit, X. Luan, M. Gatti, S. Blumentritt, A. Linden, H. Clavier, S. P. Nolan and R. Dorta, Chem. Commun. 2009, 3783.

13 K. M. Kuhn, J.-B. Bourg, C. K. Chung, S. C. Virgil and R. H. Grubbs, J. Am. Chem. Soc. 2009, 131, 5313.

14 V. Dragutan, I. Dragutan and A. Demonceau, Platinum Met. Rev. 2005, 49, 123.

15 J. Huang, E. D. Stevens, S. P. Nolan and J. L. Petersen, J. Am. Chem. Soc. 1999, 121, 2674.

16 a) M. S. Sanford, J. A. Love and R. H. Grubbs, Organometallics 2001, 20, 5314; b) J. A. Love, J. P. Morgan, T. M. Trnka and R. H. Grubbs, Angew. Chem., Int. Ed. 2002, 41, 4035.

17 a) W. Buchowicz, A. Makal and K. Wozniak, J. Organomet. Chem. 2009, 694, 3179; b) J. C. Conrad, D. Amoroso, P. Czechura, G. P. A. Yap and D. E. Fogg, Organometallics 2003, 22, 3634; c) P. S. Kumar, K. Wurst and M. R. Buchmeiser, J. Am. Chem. Soc. 2009, 131, 387; d) X. Miao, A. Blokhin, A. Pasynskii, S. Nefedov, S. Osipov, T. Roisnel, C. Bruneau and P. H. Dixneuf, Organometallics 2010, 29, 5257; e) K. Tanaka, V. P. W. Boehm, D. Chadwick, M. Roeper and D. C. Braddock, Organometallics 2006, 25, 5696; f) K. Vehlow, S. Maechling, K. Koehler and S. Blechert, Tetrahedron Lett. 2006, 47, 8617.

18 a) M. Ahr, C. Thieuleux, C. Coperet, B. Fenet and J.-M. Basset, Adv. Synth. Catal. 2007, 349, 1587; b) F. Boeda, H. Clavier and S. P. Nolan, Chem. Commun. 2008, 2726; c) S. Gessler, S. Randl and S. Blechert, Tetrahedron Lett. 2000, 41, 9973; d) N. Ledoux, R. Drozdzak, B. Allaert, A. Linden, D. V. P. Van and F. Verpoort, Dalton Trans. 2007, 5201; e) S. E. Lehman, Jr. and K. B. Wagener, Organometallics 2005, 24, 1477; f) F. Nunez-Zarur, X. Solans-Monfort, L. Rodriguez-Santiago and M. Sodupe, Organometallics 2012, 31, 4203; g) H.-J.

Schanz, L. Jafarpour, E. D. Stevens and S. P. Nolan, Organometallics 1999, 18, 5187; h) V. Thiel, M. Hendann, K.-J. Wannowius and H. Plenio, J. Am. Chem. Soc. 2012, 134, 1104; i) C. A. Urbina-Blanco, A. Poater, T. Lebl, S. Manzini, A. M. Z. Slawin, L. Cavallo and S. P. Nolan, J. Am. Chem. Soc. 2013, 135, 7073. 19 S. Torker, A. Muller, R. Sigrist and P. Chen, Organometallics 2010, 29, 2735. 20 a) S. Chang, L. Jones, II, C. Wang, L. M. Henling and R. H. Grubbs, Organometallics 1998, 17, 3460; b) S. D. Drouin, H. M. Foucault, G. P. A. Yap and D. E. Fogg, Can. J. Chem. 2005, 83, 748; c) S. Monsaert, N. Ledoux, R. Drozdzak and F. Verpoort, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 302; d) G. Occhipinti, H.-R. Bjorsvik, K. W. Toernroos and V. R. Jensen, Organometallics 2007, 26, 5803; e) J. S. M. Samec and R. H. Grubbs, Chem. Commun. 2007, 2826; f) J.-C. Wasilke, G. Wu, X. Bu, G. Kehr and G. Erker, Organometallics 2005, 24, 4289.

21 a) J. M. Blacquiere, R. McDonald and D. E. Fogg, Angew. Chem., Int. Ed. 2010, 49, 3807; b) S. Monfette, K. D. Camm, S. I. Gorelsky and D. E. Fogg, Organometallics 2009, 28, 944; c) S. Monfette and D. E. Fogg, Organometallics 2006, 25, 1940.

22 a) M. Bieniek, R. Bujok, M. Cabaj, N. Lugan, G. Lavigne, D. Arlt and K. Grela, J. Am. Chem. Soc. 2006, 128, 13652; b) S. R. Dubberley, P. E. Romero, W. E. Piers, R. McDonald and M. Parvez, Inorg. Chim. Acta 2006, 359, 2658; c) A. Fuerstner, O. R. Thiel and C. W. Lehmann, Organometallics 2002, 21, 331; d) R. Gawin, A. Makal, K. Wozniak, M. Mauduit and K. Grela, Angew. Chem., Int. Ed.

2007, 46, 7206; e) A. Hejl, M. W. Day and R. H. Grubbs, Organometallics 2006, 25, 6149; f) S. Kim, W. Hwang, I. S. Lim, S. H. Kim, S.-g. Lee and B. M. Kim, Tetrahedron Lett. 2010, 51, 709; g) K. Zukowska, A. Szadkowska, A. E. Pazio, K. Wozniak and K. Grela, Organometallics 2012, 31, 3814; h) K. Zukowska, A. Szadkowska, A. E. Pazio, K. Wozniak and K. Grela, Organometallics 2012, 31, 462.

23 a) H. Jong, B. O. Patrick and M. D. Fryzuk, Organometallics 2011, 30, 2333; b) C. L. Lund, M. J. Sgro and D. W. Stephan, Organometallics 2012, 31, 580; c) E. Mothes, S. Sentets, M. A. Luquin, R. Mathieu, N. Lugan and G. Lavigne, Organometallics 2008, 27, 1193; d) J. A. Wright, A. A. Danopoulos, W. B. Motherwell, R. J. Carroll and S. Ellwood, J. Organomet. Chem. 2006, 691, 5204. 24 T. G. Larocque, A. C. Badaj, S. Dastgir and G. G. Lavoie, Dalton Trans. 2011, 40, 12705.

25 a) J. C. Conrad, H. H. Parnas, J. L. Snelgrove and D. E. Fogg, J. Am. Chem. Soc. 2005, 127, 11882; b) M. W. Kotyk, S. I. Gorelsky, J. C. Conrad, C. Carra and D. E. Fogg, Organometallics 2009, 28, 5424; c) S. Monfette, J. M. Blacquiere, J. C. Conrad, N. J. Beach and D. E. Fogg, NATO Sci. Ser., II 2007, 243, 79; d) S. Monfette, S. J. A. Duarte, S. I. Gorelsky, S. J. Dalgarno, S. E. N. dos, M. H. Araujo and D. E. Fogg, Can. J. Chem. 2009, 87, 361.

26 a) M. Tamm, D. Petrovic, S. Randoll, S. Beer, T. Bannenberg, P. G. Jones and J. Grunenberg, Org. Biomol. Chem. 2007, 5, 523; b) M. Tamm, S. Randoll,
E. Herdtweck, N. Kleigrewe, G. Kehr, G. Erker and B. Rieger, Dalton Trans. 2006, 459.

27 a) A. J. Arduengo, III, J. C. Calabrese, A. H. Cowley, H. V. R. Dias, J. R. Goerlich, W. J. Marshall and B. Riegel, Inorg. Chem. 1997, 36, 2151; b) O. Back, M. Henry-Ellinger, C. D. Martin, D. Martin and G. Bertrand, Angew. Chem., Int. Ed. 2013, 52, 2939.

28 A. Badaj and G. G. Lavoie, unpublished work 2013.
29 a) B. R. Galan, K. P. Kalbarczyk, S. Szczepankiewicz, J. B. Keister and S. T. Diver, Org. Lett. 2007, 9, 1203; b) B. R. Galan, M. Pitak, M. Gembicky, J. B. Keister and S. T. Diver, J. Am. Chem. Soc. 2009, 131, 6822; c) F. Grisi, A. Mariconda, C. Costabile, V. Bertolasi and P. Longo, Organometallics 2009, 28, 4988; d) M. B. Herbert, Y. Lan, B. K. Keitz, P. Liu, K. Endo, M. W. Day, K. N. Houk and R. H. Grubbs, J. Am. Chem. Soc. 2012, 134, 7861; e) E. M. Leitao, S. R. Dubberley, W. E. Piers, Q. Wu and R. McDonald, Chem. - Eur. J. 2008, 14, 11565; f) T. M. Trnka, J. P. Morgan, M. S. Sanford, T. E. Wilhelm, M. Scholl, T.L. Choi, S. Ding, M. W. Day and R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 2546. g) S. M. Hansen, F. Rominger, M. Metz and P. Hofmann, Chem. - Eur. J. 1999, 5, 557; h) H. Tsurugi, T. Ohno, T. Kanayama, R. A. Arteaga-Muller and K. Mashima, Organometallics 2009, 28, 1950.

30 a) J. Mathew, N. Koga and C. H. Suresh, Organometallics 2008, 27, 4666; b) A. Poater and L. Cavallo, J. Mol. Catal. A: Chem. 2010, 324, 75; c) A. Poater and
L. Cavallo, Theor. Chem. Acc. 2012, 131, 1; d) G. Occhipinti, V. R. Jensen, K. W. Tornroos, N. A. Froeystein and H.-R. Bjoersvik, Tetrahedron 2009, 65, 7186.

31 a) S. R. Caskey, M. H. Stewart, Y. J. Ahn, M. J. A. Johnson and J. W. Kampf, Organometallics 2005, 24, 6074; b) S. R. Caskey, M. H. Stewart, Y. J. Ahn, M. J. A. Johnson, J. L. C. Rowsell and J. W. Kampf, Organometallics 2007, 26, 1912.

32 a) K. Abdur-Rashid, T. Fedorkiw, A. J. Lough and R. H. Morris, Organometallics 2004, 23, 86; b) M. J. Chilvers, R. F. R. Jazzar, M. F. Mahon and M. K. Whittlesey, Adv. Synth. Catal. 2003, 345, 1111.

33 a) X. Bantreil, T. E. Schmid, R. A. M. Randall, A. M. Z. Slawin and C. S. J. Cazin, Chem. Commun. 2010, 46, 7115; b) C. E. Diesendruck, E. Tzur, A. BenAsuly, I. Goldberg, B. F. Straub and N. G. Lemcoff, Inorg. Chem. 2009, 48, 10819; c) S. Pruehs, C. W. Lehmann and A. Fuerstner, Organometallics 2004, 23, 280; d) T. Ung, A. Hejl, R. H. Grubbs and Y. Schrodi, Organometallics 2004, 23, 5399.

34 K. Zhang, M. A. Lackey, J. Cui and G. N. Tew, J. Am. Chem. Soc. 2011, 133, 4140.

35 T. Weskamp, F. J. Kohl and W. A. Herrmann, J. Organomet. Chem. 1999, 582, 362.

Chapter 5 Conclusions and Future Work

The focus of this work was aimed at utilizing the unique reactivity of N heterocyclic carbenes to develop novel, robust catalysts to mediate organic transformations. As overviewed in Chapter 1, the synthesis and coordination of NHCs has revolutionized the field of synthetic organometallic chemistry and homogenous catalysis. In addition, the reactivity of NHCs towards azides, chalcogens and pnictinidenes has resulted in unique classes of ligands with varying steric and electronic properties.

The reactivity of the aryl-substituted acyclic imino- N-heterocyclic carbene towards Group 4 and 6 transition metals was presented in Chapter 2. The catalytic activities of these complexes towards ethylene polymerization were explored. The zirconium and titanium complexes activities showed promise and warranted further tailoring of their coordination sphere. In an attempt to enhance the catalytic activity of the titanium complexes, we decided to synthesize titanium-C^imine complexes containing either two phenoxide ligands or one catecholate ligand. Unfortunately, the catalytic activities of these two complexes were lower than the corresponding titanium tetrachloride.

The reactivity of NHCs towards azides to form imidazole-2-imines presented the opportunity to synthesize a new monoanionic bidentate ligand with an imidazol-2-imine fragment incorporated into the ligand scaffold. The synthesis and coordination of this novel ligand class was explored in Chapter 3. Bis(ethenolate) and (cyclopentadienyl)(ethenolate) metal dichloride complexes
were successfully prepared and fully characterized. We see enhanced activity when there is a decrease in the electron-donating capabilities of the ligand through the inductive effect of a more electronegative atom in the ligand scaffold. As a result, future work could include exploring different substitution patterns on the ligand, testing the activity of these complexes towards ethylene polymerization, and developing structure-property relationships.

Chapter 4 of this thesis was a multifaceted approach to leverage our knowledge of NHCs and of their reactivity by developing new catalytically active ruthenium benzylidene complex. We first looked at synthesizing a cationic $\left[\mathrm{RuCl}\left(\mathrm{C}^{\wedge} \operatorname{Imine}\right)(\mathrm{MeCN})(\mathrm{CHPh})\right]\left[\mathrm{PF}_{6}\right]$ complex, but instead isolated an unusual decomposition product. Upon characterization, we discovered the first example of a complex with direct insertion of the benzylidene into a Ru-NHC bond, forming a ruthenium-benzyl complex. This structure offers insight into the potential decomposition pathway of ruthenium alkylidene catalysts and this information would be relevant to future catalyst design.

Investigations into the incorporation of the electron-rich imidazol-2-imide ligand with ruthenium benzylidene complexes were also presented in Chapter 4. A partially characterized ruthenium complex, $\mathrm{RuCl}(\mathrm{IMes})\left(\mathrm{I}^{\mathrm{t}} \mathrm{Bu}=\mathrm{N}\right) \mathrm{py}(\mathrm{CHPh})$ showed promising results for the ring-closing metathesis of diallyl sulfide when freshly prepared. Future work could include utilizing imidazole-2-imine variants with less sterically demanding substituents and less electron-rich imides in hopes of synthesizing and isolating stable ruthenium benzylidene complexes.

Lastly, the successful synthesis and isolation of the first Grubbs-type ruthenium alkylidene complex bearing $\mathrm{IMes}=\mathrm{PPh}$ was reported. An interesting decomposition product was also isolated and fully characterized. Interestingly, we see an unusual decomposition product upon coordination of the $\mathrm{IMes}=\mathrm{PPh}$ ligand. Future work could include using less sterically demanding carbenephosphinidene ligands to mitigate the nucleophilic attack on the benzylidene since we believe sterics, rather than electronics, plays a crucial role in promoting the migratory insertion of the phosphaalkene, thus triggering the subsequent decomposition steps. If the trigger for decomposition could be determined, then perhaps a ligand variant could be utilized to mitigate decomposition and the catalytic activity of these complexes could be explored.

Supplementary Material

Table 6.1. Crystal data and structure refinement for compound 4.2. 138
Table 6.2. Atomic coordinates and equivalent isotropic displacement parameters for 4.2 140
Table 6.3. Bond lengths and angles for 4.2 144
Table 6.4. Anisotropic displacement parameters for 4.2 160
Table 6.6. Crystal data and structure refinement for compound 4.4. 166
Table 6.7. Atomic coordinates and equivalent isotropic displacement parameters for compound 4.4 168
Table 6.8. Bond lengths and angles for compound 4.4. 171
Table 6.9. Anisotropic displacement parameters for compound 4.4. 179
Table 6.11. Crystal data and structure refinement for compound 4.5. 185
Table 6.12. Atomic coordinates and equivalent isotropic displacement parameters for compound 4.5. 187
Table 6.13. Bond lengths and angles for compound 4.5. 190
Table 6.14. Anisotropic displacement parameters for compound 4.5. 199

Identification code	d1397	
Empirical formula	C42 H51 Cl6 F12 N7 P2 Ru	
Formula weight	1257.61	
Temperature	150(2) K	
Wavelength	0.71073 A	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	$a=16.913(3) \AA$	$a=90$
	$\mathrm{b}=15.631(2) \AA$	$\mathrm{b}=9$
	$\mathrm{c}=20.393(3) \AA$	$\mathrm{g}=90$
Volume	5369.4(14) \AA^{3}	
Z	4	
Density (calculated)	$1.554 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.730 \mathrm{~mm}^{-1}$	
F(000)	2540	
Crystal size	$0.230 \times 0.110 \times 0.040 \mathrm{~mm}^{3}$	
Theta range for data collection	1.50 to 27.57°.	
Index ranges	$-21<=h<=21,-20<=k<=20,-23<=1<=26$	
Reflections collected	47744	
Independent reflections	$12360[R($ int $)=0.0488]$	
Completeness to theta $=27.57^{\circ}$	99.6 \%	

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6597
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	$12360 / 0 / 643$
Goodness-of-fit on F2	1.029
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0596, \mathrm{wR2}=0.1534$
R indices (all data)	$\mathrm{R} 1=0.0858, \mathrm{wR} 2=0.1691$
Largest diff. peak and hole	1.856 and $-1.539 \mathrm{e} . \AA^{-3}$

Table 6.2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\mathcal{A}^{2} \times 10^{3}\right)$ for 4.2. $U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U(eq)
C(1)	798(2)	3251(2)	1318(2)	24(1)
C(1S)	6492(3)	-52(3)	785(2)	40(1)
C(2)	-128(3)	2931(3)	496(2)	32(1)
C(2S)	8652(3)	6715(4)	1965(3)	51(1)
C(3)	513(3)	3201(3)	227(2)	32(1)
C(4)	-474(2)	2592(3)	1639(2)	28(1)
C(5)	-1363(2)	2829(3)	1522(2)	34(1)
C(6)	-1729(3)	2977(4)	2177(2)	44(1)
C(7)	-1834(3)	2107(3)	1153(2)	43(1)
C(8)	-1497(3)	3678(3)	1134(2)	43(1)
C(9)	-536(3)	1502(3)	2471(2)	32(1)
C(10)	-630(3)	1672(3)	3132(2)	35(1)
C(11)	-904(3)	1007(3)	3510(2)	45(1)
C(12)	-1081(3)	211(4)	3247(3)	53(1)

C(13)	-1011(3)	66(3)	2591(3)	49(1)
C(14)	-731(3)	700(3)	2185(2)	37(1)
C(15)	-608(3)	464(3)	1486(2)	43(1)
C(16)	-501(3)	2535(3)	3449(2)	36(1)
C(17)	1805(2)	3881(3)	641(2)	28(1)
C(18)	1785(3)	4773(3)	699(2)	33(1)
C(19)	2471(3)	5225(3)	604(2)	40(1)
C(20)	3160(3)	4818(3)	450(2)	40(1)
C(21)	3157(3)	3943(3)	390(2)	38(1)
C(22)	2487(3)	3453(3)	483(2)	34(1)
C(23)	1029(3)	5228(3)	856(3)	46(1)
C(24)	3909(3)	5322(4)	364(3)	60(2)
C(25)	2518(3)	2492(3)	422(3)	47(1)
C(26)	1255(2)	3266(2)	1947(2)	23(1)
C(27)	1024(2)	3892(2)	2455(2)	26(1)
C(28)	275(2)	4243(3)	2473(2)	29(1)
C(29)	86(3)	4790(3)	2977(2)	37(1)
C(30)	664(3)	5008(3)	3472(2)	42(1)
C(31)	1417(3)	4691(3)	3451(2)	45(1)
C(32)	1606(3)	4147(3)	2948(2)	35(1)
C(33)	2997(3)	1704(3)	2411(2)	31(1)
C(34)	3844(3)	1584(3)	2559(3)	44(1)

C(35)	1078(3)	-46(3)	2674(2)	39(1)
C(36)	1066(4)	-926(3)	2900(3)	59(2)
C(37)	1368(3)	2402(3)	3697(2)	33(1)
C(38)	1481(3)	2659(4)	4383(2)	49(1)
C(39)	1080(3)	1167(3)	755(2)	31(1)
C(40)	1054(3)	773(3)	102(2)	44(1)
$\mathrm{Cl}(1 \mathrm{~S})$	7119(1)	451(1)	266(1)	51(1)
$\mathrm{Cl}(2 \mathrm{~S})$	5871(1)	-794(1)	351(1)	54(1)
$\mathrm{Cl}(3 \mathrm{~S})$	7069(1)	-560(1)	1429(1)	67(1)
$\mathrm{Cl}(4 \mathrm{~S})$	9306(1)	6109(1)	1524(1)	57(1)
$\mathrm{Cl}(5 \mathrm{~S})$	7949(1)	6032(2)	2261(2)	125(1)
$\mathrm{Cl}(6 \mathrm{~S})$	8255(2)	7560(2)	1513(1)	136(1)
$F(1)$	5129(2)	3443(3)	830(3)	112(2)
$F(2)$	5199(3)	2124(6)	408(3)	185(4)
F(3)	6250(2)	2729(3)	916(2)	86(1)
F(4)	5625(3)	1639(3)	1410(3)	127(2)
$F(5)$	5566(3)	2930(3)	1792(2)	93(1)
F(6)	4470(2)	2365(3)	1216(2)	88(1)
$F(7)$	1965(2)	8907(3)	767(2)	83(1)
F(8)	1560(3)	7566(3)	567(2)	93(1)
F(9)	1682(2)	8061(2)	1583(2)	64(1)
$F(10)$	490(3)	7778(4)	1031(2)	118(2)

$\mathrm{F}(11)$	$908(3)$	$9185(3)$	$1248(2)$	$106(2)$
$\mathrm{F}(12)$	$769(2)$	$8671(2)$	$235(2)$	$68(1)$
$\mathrm{N}(1)$	$1086(2)$	$3412(2)$	$737(2)$	$26(1)$
$\mathrm{N}(2)$	$34(2)$	$2982(2)$	$1181(2)$	$27(1)$
$\mathrm{N}(3)$	$-114(2)$	$2095(2)$	$2066(2)$	$26(1)$
$\mathrm{N}(4)$	$1106(2)$	$1481(2)$	$1256(2)$	$28(1)$
$\mathrm{N}(5)$	$1074(2)$	$636(2)$	$2490(2)$	$31(1)$
$\mathrm{N}(6)$	$2336(2)$	$1787(2)$	$2302(2)$	$28(1)$
$\mathrm{N}(7)$	$1241(2)$	$2230(2)$	$3154(2)$	$29(1)$
$\mathrm{P}(1)$	$1204(1)$	$8372(1)$	$927(1)$	$39(1)$
$\mathrm{P}(2)$	$5377(1)$	$2537(1)$	$1082(1)$	$48(1)$
$\mathrm{Ru}(1)$	$1138(1)$	$1916(1)$	$2196(1)$	$25(1)$

Table 6.3. Bond lengths [\AA] and angles [${ }^{\circ}$] for 4.2.

$\mathrm{C}(1)-\mathrm{N}(1)$	$1.345(5)$
$\mathrm{C}(1)-\mathrm{N}(2)$	$1.364(5)$
$\mathrm{C}(1)-\mathrm{C}(26)$	$1.438(5)$
$\mathrm{C}(1 \mathrm{~S})-\mathrm{Cl}(1 \mathrm{~S})$	$1.750(5)$
$\mathrm{C}(1 \mathrm{~S})-\mathrm{Cl}(2 \mathrm{~S})$	$1.752(5)$
$\mathrm{C}(1 \mathrm{~S})-\mathrm{Cl}(3 \mathrm{~S})$	$1.754(5)$
$\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.328(6)$
$\mathrm{C}(2)-\mathrm{N}(2)$	$1.401(5)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9300
$\mathrm{C}(2 \mathrm{~S})-\mathrm{Cl}(6 \mathrm{~S})$	$1.712(6)$
$\mathrm{C}(2 \mathrm{~S})-\mathrm{Cl}(5 \mathrm{~S})$	$1.745(6)$
$\mathrm{C}(2 \mathrm{~S})-\mathrm{Cl}(4 \mathrm{~S})$	$1.764(6)$
$\mathrm{C}(2 \mathrm{~S})-\mathrm{H}(2 \mathrm{~S})$	0.9800
$\mathrm{C}(3)-\mathrm{N}(1)$	$1.394(5)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9300
$\mathrm{C}(4)-\mathrm{N}(3)$	$1.279(5)$
$\mathrm{C}(4)-\mathrm{N}(2)$	$1.457(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.537(6)$
$\mathrm{C}(5)-\mathrm{C}(7)$	

$\mathrm{C}(5)-\mathrm{C}(6)$	$1.539(6)$
$\mathrm{C}(5)-\mathrm{C}(8)$	$1.551(7)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9600
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9600
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	0.9600
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9600
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9600
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	0.9600
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9600
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9600
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9600
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.398(6)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.408(6)$
$\mathrm{C}(9)-\mathrm{N}(3)$	$1.468(5)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.396(6)$
$\mathrm{C}(10)-\mathrm{C}(16)$	$1.503(6)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.377(8)$
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9300
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.900(7)$
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9300
$\mathrm{C}(13)-\mathrm{C}(14)$	800
$\mathrm{C}(13)-\mathrm{H}(13)$	

$\mathrm{C}(14)-\mathrm{C}(15)$	$1.505(6)$
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9600
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9600
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9600
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9600
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9600
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9600
$\mathrm{C}(17)-\mathrm{C}(22)$	$1.397(6)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.399(6)$
$\mathrm{C}(17)-\mathrm{N}(1)$	$1.449(5)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.386(6)$
$\mathrm{C}(18)-\mathrm{C}(23)$	$1.522(6)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.388(7)$
$\mathrm{C}(19)-\mathrm{H}(19)$	0.9300
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.374(7)$
$\mathrm{C}(20)-\mathrm{C}(24)$	$1.515(7)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.394(6)$
$\mathrm{C}(21)-\mathrm{H}(21)$	0.9300
$\mathrm{C}(22)-\mathrm{C}(25)$	$0.9608(6)$
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	C

$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9600
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9600
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9600
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9600
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	0.9600
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	0.9600
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.502(5)$
$\mathrm{C}(26)-\mathrm{Ru}(1)$	$2.184(4)$
$\mathrm{C}(26)-\mathrm{H}(26)$	$1.02(5)$
$\mathrm{C}(27)-\mathrm{C}(28)$	$1.384(6)$
$\mathrm{C}(27)-\mathrm{C}(32)$	$1.401(6)$
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.395(6)$
$\mathrm{C}(28)-\mathrm{H}(28)$	0.9300
$\mathrm{C}(29)-\mathrm{C}(30)$	$1.383(7)$
$\mathrm{C}(29)-\mathrm{H}(29)$	0.9300
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.371(7)$
$\mathrm{C}(30)-\mathrm{H}(30)$	0.9300
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.391(6)$
$\mathrm{C}(31)-\mathrm{H}(31)$	0.9300
$\mathrm{C}(32)-\mathrm{H}(32)$	$1.127(5)$
$\mathrm{C}(33)-\mathrm{N}(6)$	$\mathrm{C}(33)-\mathrm{C}(34)$
C	

$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	0.9600
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	0.9600
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	0.9600
$\mathrm{C}(35)-\mathrm{N}(5)$	$1.130(6)$
$\mathrm{C}(35)-\mathrm{C}(36)$	$1.452(7)$
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	0.9600
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	0.9600
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	0.9600
$\mathrm{C}(37)-\mathrm{N}(7)$	$1.141(5)$
$\mathrm{C}(37)-\mathrm{C}(38)$	$1.452(6)$
$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	0.9600
$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	0.9600
$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	0.9600
$\mathrm{C}(39)-\mathrm{N}(4)$	$1.131(5)$
$\mathrm{C}(39)-\mathrm{C}(40)$	$1.464(6)$
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	0.9600
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	0.9600
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	0.9600
$\mathrm{~F}(1)-\mathrm{P}(2)$	$1.551(5)$
$\mathrm{F}(2)-\mathrm{P}(2)$	$1.523(5)$
$\mathrm{F}(3)-\mathrm{P}(2)$	$1.572(4)$
$\mathrm{F}(4)-\mathrm{P}(2)$	

$\mathrm{F}(5)-\mathrm{P}(2)$	$1.579(4)$
$\mathrm{F}(6)-\mathrm{P}(2)$	$1.605(4)$
$\mathrm{F}(7)-\mathrm{P}(1)$	$1.592(4)$
$\mathrm{F}(8)-\mathrm{P}(1)$	$1.604(4)$
$\mathrm{F}(9)-\mathrm{P}(1)$	$1.576(3)$
$\mathrm{F}(10)-\mathrm{P}(1)$	$1.553(4)$
$\mathrm{F}(11)-\mathrm{P}(1)$	$1.534(4)$
$\mathrm{F}(12)-\mathrm{P}(1)$	$1.602(3)$
$\mathrm{N}(3)-\mathrm{Ru}(1)$	$2.130(3)$
$\mathrm{N}(4)-\mathrm{Ru}(1)$	$2.030(3)$
$\mathrm{N}(5)-\mathrm{Ru}(1)$	$2.094(4)$
$\mathrm{N}(6)-\mathrm{Ru}(1)$	$2.028(4)$
$\mathrm{N}(7)-\mathrm{Ru}(1)$	$2.006(3)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$106.9(3)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(26)$	$125.1(4)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(26)$	$127.7(3)$
$\mathrm{Cl}(1 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{Cl}(2 \mathrm{~S})$	$111.1(3)$
$\mathrm{Cl}(1 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{Cl}(3 S)$	$109.3(3)$
$\mathrm{Cl}(2 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{Cl}(3 S)$	$110.3(3)$
$\mathrm{Cl}(1 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S})$	108.7
$\mathrm{Cl}(2 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S})$	108.7

$\mathrm{Cl}(3 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S})$	108.7
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(2)$	$107.5(4)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	126.2
$\mathrm{~N}(2)-\mathrm{C}(2)-\mathrm{H}(2)$	126.2
$\mathrm{Cl}(6 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{Cl}(5 \mathrm{~S})$	$114.3(4)$
$\mathrm{Cl}(6 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{Cl}(4 \mathrm{~S})$	$111.9(3)$
$\mathrm{Cl}(5 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{Cl}(4 \mathrm{~S})$	$109.0(3)$
$\mathrm{Cl}(6 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{H}(2 \mathrm{~S})$	107.1
$\mathrm{Cl}(5 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{H}(2 \mathrm{~S})$	107.1
$\mathrm{Cl}(4 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{H}(2 \mathrm{~S})$	107.1
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	$107.8(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	126.1
$\mathrm{~N}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	126.1
$\mathrm{~N}(3)-\mathrm{C}(4)-\mathrm{N}(2)$	$114.8(3)$
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$130.2(4)$
$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$115.0(3)$
$\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{C}(6)$	$107.8(4)$
$\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{C}(4)$	$110.7(4)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$111.3(4)$
$\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{C}(8)$	$109.4(4)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(8)$	$105.2(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	$112.2(4)$
C	

$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	109.5
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	109.5
$\mathrm{H}(6 \mathrm{~B})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C})$	109.5
$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.5
$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5
$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{H}(8 B)$	109.5
$\mathrm{H}(8 \mathrm{AA})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	$121.7(4)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(3)$	$121.7(4)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{N}(3)$	$115.9(4)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$117.6(4)$

$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(16)$	$118.2(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(16)$	$124.1(4)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$122.0(5)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	119.0
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.0
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$119.5(5)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	120.2
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	120.2
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$121.5(5)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.3
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.3
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$117.7(4)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$117.9(4)$
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(15)$	$124.2(4)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
C	

$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{C}(18)$	$121.6(4)$
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{N}(1)$	$120.6(4)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{N}(1)$	$117.8(4)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$118.0(4)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)$	$121.4(4)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)$	$120.6(4)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$121.8(4)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	119.1
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	119.1
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$118.7(4)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(24)$	$120.2(4)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(24)$	$121.0(4)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$122.1(4)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	118.9
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	118.9
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(17)$	$117.7(4)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(25)$	$120.1(4)$
$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(25)$	$122.2(4)$
C	

$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{C}(20)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	109.5
$\mathrm{C}(20)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{C}(20)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	109.5
$\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{C}(22)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~B})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{C}(27)$	$118.3(3)$
$\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{Ru}(1)$	$98.0(2)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{Ru}(1)$	$115.8(3)$
$\mathrm{C}(1)-\mathrm{C}(26)-\mathrm{H}(26)$	$105(3)$

$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	$113(3)$
$\mathrm{Ru}(1)-\mathrm{C}(26)-\mathrm{H}(26)$	$105(3)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(32)$	$117.0(4)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	$125.0(4)$
$\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(26)$	$118.1(4)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	$122.2(4)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28)$	118.9
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28)$	118.9
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	$119.7(4)$
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29)$	120.1
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29)$	120.1
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	$119.0(4)$
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30)$	120.5
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30)$	120.5
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	$121.3(4)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31)$	119.3
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{H}(31)$	119.3
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(27)$	$120.7(4)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32)$	119.7
$\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{H}(32)$	119.7
$\mathrm{~N}(6)-\mathrm{C}(33)-\mathrm{C}(34)$	$179.0(5)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	109.5
C	

```
C(33)-C(34)-H(34B) 109.5
H(34A)-C(34)-H(34B) 109.5
C(33)-C(34)-H(34C) 109.5
H(34A)-C(34)-H(34C) 109.5
H(34B)-C(34)-H(34C) 109.5
N(5)-C(35)-C(36) 178.6(6)
C(35)-C(36)-H(36A) 109.5
C(35)-C(36)-H(36B) 109.5
H(36A)-C(36)-H(36B) 109.5
C(35)-C(36)-H(36C) 109.5
H(36A)-C(36)-H(36C) 109.5
H(36B)-C(36)-H(36C) 109.5
N(7)-C(37)-C(38) 175.9(5)
C(37)-C(38)-H(38A) 109.5
C(37)-C(38)-H(38B) 109.5
H(38A)-C(38)-H(38B) 109.5
C(37)-C(38)-H(38C) 109.5
H(38A)-C(38)-H(38C) 109.5
H(38B)-C(38)-H(38C) 109.5
N(4)-C(39)-C(40) 179.0(5)
C(39)-C(40)-H(40A) 109.5
C(39)-C(40)-H(40B) 109.5
```

$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{H}(40 \mathrm{~B})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	109.2(3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(17)$	126.0(3)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(17)$	123.7(3)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	108.5(3)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(4)$	126.8(3)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(4)$	122.9(3)
$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(9)$	122.8(3)
$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{Ru}(1)$	124.8(3)
$\mathrm{C}(9)-\mathrm{N}(3)-\mathrm{Ru}(1)$	112.1(3)
$\mathrm{C}(39)-\mathrm{N}(4)-\mathrm{Ru}(1)$	173.7(3)
$\mathrm{C}(35)-\mathrm{N}(5)-\mathrm{Ru}(1)$	175.9(4)
$\mathrm{C}(33)-\mathrm{N}(6)-\mathrm{Ru}(1)$	174.7(3)
$\mathrm{C}(37)-\mathrm{N}(7)-\mathrm{Ru}(1)$	174.1(4)
$F(11)-P(1)-F(10)$	98.6(3)
$F(11)-P(1)-F(9)$	93.3(2)
$F(10)-P(1)-F(9)$	92.6(2)
$F(11)-P(1)-F(7)$	87.4(3)
$F(10)-P(1)-F(7)$	173.8(3)

$F(9)-P(1)-F(7)$	88.55(18)
$F(11)-P(1)-F(12)$	89.6(2)
$F(10)-P(1)-F(12)$	89.6(2)
$F(9)-P(1)-F(12)$	176.1(2)
$F(7)-P(1)-F(12)$	88.9(2)
$F(11)-P(1)-F(8)$	175.8(3)
$F(10)-P(1)-F(8)$	85.4(3)
$F(9)-P(1)-F(8)$	87.8(2)
$F(7)-P(1)-F(8)$	88.6(3)
$F(12)-P(1)-F(8)$	89.2(2)
$F(2)-P(2)-F(1)$	93.5(4)
$F(2)-P(2)-F(3)$	90.0(3)
$F(1)-P(2)-F(3)$	89.2(3)
$F(2)-P(2)-F(5)$	177.8(4)
$F(1)-P(2)-F(5)$	88.6(3)
$F(3)-P(2)-F(5)$	90.4(3)
$F(2)-P(2)-F(4)$	91.7(4)
$F(1)-P(2)-F(4)$	174.5(3)
$F(3)-\mathrm{P}(2)-\mathrm{F}(4)$	92.4(3)
$F(5)-P(2)-F(4)$	86.1(3)
$F(2)-P(2)-F(6)$	88.2(3)
$F(1)-P(2)-F(6)$	88.5(2)

F(3)-P(2)-F(6)	$177.1(3)$
F(5)-P(2)-F(6)	$91.5(3)$
F(4)-P(2)-F(6)	$90.0(3)$
N(7)-Ru(1)-N(6)	$85.56(14)$
$N(7)-R u(1)-N(4)$	$173.68(14)$
$N(6)-R u(1)-N(4)$	$90.50(14)$
$N(7)-R u(1)-N(5)$	$87.57(13)$
$N(6)-R u(1)-N(5)$	$87.25(14)$
$N(4)-R u(1)-N(5)$	$87.31(13)$
$N(7)-R u(1)-N(3)$	$94.98(13)$
$N(6)-R u(1)-N(3)$	$177.84(13)$
$N(4)-R u(1)-N(3)$	$89.15(13)$
$N(5)-R u(1)-N(3)$	$94.86(13)$
$N(7)-R u(1)-C(26)$	$89.30(14)$
$N(6)-R u(1)-C(26)$	$90.57(14)$
$N(4)-R u(1)-C(26)$	$95.68(14)$
$N(5)-R u(1)-C(26)$	$176.31(14)$
$N(3)-R u(1)-C(26)$	$87.35(13)$

[^0]Table 6.4. Anisotropic displacement parameters $\left(A^{2} \times 10^{3}\right)$ for 4.2. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\right.$ $\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathbf{U}^{\mathbf{1 2}}$]

U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}

C(1)	26(2)	23(2)	24(2)	O(1)	3(2)	2(2)
C(1S)	45(3)	39(2)	35(2)	5(2)	9(2)	8(2)
C(2)	34(2)	38(2)	22(2)	-4(2)	1(2)	-4(2)
C(2S)	54(3)	52(3)	48(3)	3(2)	8(2)	7(2)
C(3)	35(2)	41(2)	21(2)	-1(2)	1(2)	-1(2)
C(4)	29(2)	31(2)	24(2)	-10(2)	4(2)	-8(2)
C(5)	25(2)	45(3)	33(2)	-4(2)	3(2)	-2(2)
C(6)	32(2)	59(3)	41(3)	-5(2)	9(2)	4(2)
C(7)	30(2)	57(3)	43(3)	-11(2)	-3(2)	-8(2)
C(8)	32(2)	51(3)	46(3)	-2(2)	2(2)	4(2)
C(9)	33(2)	29(2)	35(2)	1(2)	9(2)	-2(2)
C(10)	35(2)	38(2)	32(2)	0 (2)	7(2)	1(2)
C(11)	53(3)	53(3)	33(2)	8(2)	13(2)	-4(2)
C(12)	54(3)	46(3)	60(3)	15(3)	17(3)	-10(2)

$\mathrm{C}(13)$	$49(3)$	$34(3)$	$64(3)$	$-4(2)$	$10(2)$	$-13(2)$
$\mathrm{C}(14)$	$32(2)$	$32(2)$	$47(3)$	$-5(2)$	$8(2)$	$-10(2)$
$\mathrm{C}(15)$	$44(3)$	$39(3)$	$47(3)$	$-16(2)$	$8(2)$	$-12(2)$
$\mathrm{C}(16)$	$39(2)$	$42(3)$	$29(2)$	$-6(2)$	$7(2)$	$1(2)$
$\mathrm{C}(17)$	$32(2)$	$29(2)$	$22(2)$	$2(2)$	$5(2)$	$-3(2)$
$\mathrm{C}(18)$	$38(2)$	$32(2)$	$29(2)$	$8(2)$	$6(2)$	$5(2)$
$\mathrm{C}(19)$	$44(3)$	$28(2)$	$50(3)$	$8(2)$	$14(2)$	$-1(2)$
$\mathrm{C}(20)$	$38(2)$	$38(2)$	$44(3)$	$6(2)$	$12(2)$	$-7(2)$
$\mathrm{C}(21)$	$36(2)$	$37(2)$	$43(2)$	$3(2)$	$16(2)$	$2(2)$
$\mathrm{C}(22)$	$36(2)$	$36(2)$	$32(2)$	$1(2)$	$9(2)$	$-1(2)$
$\mathrm{C}(23)$	$46(3)$	$32(2)$	$61(3)$	$6(2)$	$15(2)$	$7(2)$
$\mathrm{C}(24)$	$49(3)$	$46(3)$	$88(4)$	$8(3)$	$28(3)$	$-9(2)$
$\mathrm{C}(25)$	$44(3)$	$34(2)$	$65(3)$	$-9(2)$	$24(2)$	$-2(2)$
$\mathrm{C}(26)$	$25(2)$	$23(2)$	$22(2)$	$1(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(27)$	$35(2)$	$19(2)$	$23(2)$	$3(2)$	$2(2)$	$-3(2)$
$\mathrm{C}(28)$	$35(2)$	$25(2)$	$27(2)$	$-2(2)$	$4(2)$	$-5(2)$
$\mathrm{C}(29)$	$46(3)$	$32(2)$	$33(2)$	$-2(2)$	$10(2)$	$-1(2)$
$\mathrm{C}(30)$	$73(3)$	$27(2)$	$27(2)$	$-2(2)$	$9(2)$	$2(2)$
$\mathrm{C}(31)$	$75(4)$	$29(2)$	$28(2)$	$-2(2)$	$-17(2)$	$-1(2)$
$\mathrm{C}(32)$	$42(2)$	$28(2)$	$34(2)$	$0(2)$	$-7(2)$	$2(2)$
$\mathrm{C}(33)$	$38(2)$	$27(2)$	$30(2)$	$-5(2)$	$5(2)$	$2(2)$
$\mathrm{C}(34)$	$34(2)$	$48(3)$	$49(3)$	$-8(2)$	$0(2)$	$10(2)$

C(35)	51(3)	33(2)	32(2)	-4(2)	9(2)	-3(2)
C(36)	107(5)	31(3)	42(3)	8(2)	18(3)	$-5(3)$
C(37)	37(2)	30(2)	32(2)	2(2)	4(2)	-6(2)
C(38)	61(3)	58(3)	28(2)	-5(2)	4(2)	-13(3)
C(39)	37(2)	25(2)	32(2)	-6(2)	9(2)	-6(2)
C(40)	58(3)	41(3)	34(2)	-12(2)	7(2)	-1(2)
$\mathrm{Cl}(1 \mathrm{~S})$	63(1)	45(1)	45(1)	12(1)	10(1)	-6(1)
$\mathrm{Cl}(2 \mathrm{~S})$	57(1)	53(1)	50(1)	7(1)	1(1)	-6(1)
$\mathrm{Cl}(3 \mathrm{~S})$	65(1)	82(1)	51(1)	31(1)	-11(1)	-9(1)
$\mathrm{Cl}(4 \mathrm{~S})$	52(1)	61(1)	59(1)	14(1)	15(1)	13(1)
$\mathrm{Cl}(5 \mathrm{~S})$	83(1)	106(2)	200(3)	3(2)	80(2)	-4(1)
$\mathrm{Cl}(6 \mathrm{~S})$	208(3)	115(2)	89(2)	40(1)	39(2)	104(2)
$F(1)$	67(3)	108(4)	157(4)	83(3)	-12(3)	-13(2)
$F(2)$	115(4)	348(10)	98(4)	-137(5)	52(3)	-105(5)
$F(3)$	50(2)	133(4)	76(3)	-8(3)	12(2)	-3(2)
F(4)	143(5)	46(2)	191(6)	6(3)	17(4)	24(3)
$F(5)$	140(4)	84(3)	57(2)	-15(2)	12(2)	22(3)
$F(6)$	73(3)	84(3)	115(3)	21(2)	46(2)	-11(2)
$F(7)$	72(2)	105(3)	70(2)	37(2)	-9(2)	-34(2)
$F(8)$	101(3)	85(3)	86(3)	-32(2)	-33(2)	34(2)
F(9)	71(2)	71(2)	43(2)	21(2)	-19(2)	-24(2)
$\mathrm{F}(10)$	82(3)	162(5)	103(3)	76(3)	-32(2)	-74(3)

$\mathrm{F}(11)$	$157(4)$	$95(3)$	$65(2)$	$-32(2)$	$5(3)$	$51(3)$
$\mathrm{F}(12)$	$91(3)$	$43(2)$	$63(2)$	$7(2)$	$-36(2)$	$-4(2)$
$\mathrm{N}(1)$	$26(2)$	$30(2)$	$22(2)$	$0(1)$	$2(1)$	$0(1)$
$\mathrm{N}(2)$	$26(2)$	$32(2)$	$23(2)$	$-4(1)$	$4(1)$	$-2(1)$
$\mathrm{N}(3)$	$29(2)$	$26(2)$	$22(2)$	$-4(1)$	$4(1)$	$-5(1)$
$\mathrm{N}(4)$	$32(2)$	$22(2)$	$32(2)$	$-2(1)$	$7(1)$	$-2(1)$
$\mathrm{N}(5)$	$38(2)$	$28(2)$	$27(2)$	$-2(1)$	$7(1)$	$-1(2)$
$\mathrm{N}(6)$	$34(2)$	$23(2)$	$28(2)$	$0(1)$	$4(1)$	$2(1)$
$\mathrm{N}(7)$	$35(2)$	$24(2)$	$28(2)$	$1(1)$	$3(1)$	$-2(1)$
$\mathrm{P}(1)$	$46(1)$	$34(1)$	$35(1)$	$0(1)$	$-7(1)$	$-5(1)$
$\mathrm{P}(2)$	$58(1)$	$42(1)$	$49(1)$	$-5(1)$	$22(1)$	$-2(1)$
$\mathrm{Ru}(1)$	$29(1)$	$22(1)$	$24(1)$	$-2(1)$	$4(1)$	$-1(1)$

Table 6.5. Hydrogen coordinates (x 104) and isotropic displacement parameters ($\mathbf{A} 2 \times 103$) for 4.2.

H(12)	-1247	-225	3513	63
H(13)	-1153	-465	2411	58
H(15A)	-151	101	1482	65
H(15B)	-528	974	1238	65
H(15C)	-1068	167	1292	65
H(16A)	-1004	2806	3484	55
H(16B)	-185	2882	3185	55
H(16C)	-230	2467	3880	55
H(19)	2469	5818	645	48
H(21)	3616	3668	283	45
$H(23 A)$	1123	5833	881	68
$H(23 B)$	874	5026	1270	68
H(23C)	614	5111	515	68
H(24A)	4327	4936	273	89
H(24B)	4063	5635	760	89
H(24C)	3811	5715	3	89
H(25A)	3016	2327	267	70
H(25B)	2091	2301	115	70
H(25C)	2468	2237	844	70
H(28)	-116	4109	2139	35
H(29)	-425	5007	2979	44
H(30)	543	5364	3815	50

$H(31)$	1810	4842	3780	54
$H(32)$	2124	3951	2939	42
$H(34 A)$	4014	1865	2966	66
$H(34 B)$	4121	1823	2211	66
$H(34 C)$	3959	984	2598	66
$H(36 A)$	601	-1019	3128	88
$H(36 B)$	1532	-1037	3192	88
$H(36 C)$	1056	-1305	2529	88
$H(38 A)$	1142	3136	4454	73
$H(38 B)$	2025	2820	4490	73
$H(38 C)$	1351	2190	4657	73
$H(40 A)$	826	1169	-222	66
$H(40 B)$	735	265	95	66
$H(40 C)$	1582	628	5	66
$H(26)$	$1830(30)$	$3330(30)$	$1840(20)$	$40(13)$

Table 6.6. Crystal data and structure refinement for compound 4.4.

Identification code	d 1324
Empirical formula	C 53 H 52 Cl 4 N 2 P 2 Ru
Formula weight	1021.78
Temperature	$150(1) \mathrm{K}$

Wavelength	0.71073 À
Crystal system	monoclinic
Space group	C 2/c
Unit cell dimensions	$a=39.366(4) \AA \quad \alpha=90^{\circ}$.
	$b=10.3992(11) \AA \quad \beta=104.747(2)^{\circ}$.
	$\mathrm{c}=24.505(3) \AA \quad \gamma=90^{\circ}$.
Volume	9701.5(18) \AA^{3}
Z	8
Density (calculated)	$1.399 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.648 \mathrm{~mm}^{-1}$
F(000)	4208
Crystal size	$0.36 \times 0.22 \times 0.20 \mathrm{~mm}^{3}$
Theta range for data collection	1.07 to 27.52°.
Index ranges	$-50<=h<=51,-13<=k<=13,-31<=\mid<=31$
Reflections collected	42646
Independent reflections	$11151[\mathrm{R}$ (int) $=0.0520]$
Completeness to theta $=27.52^{\circ}$	99.7 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	11151/0/569
Goodness-of-fit on F^{2}	1.019
Final R indices [$1>2$ sigma(l)]	$\mathrm{R} 1=0.0367, \mathrm{wR} 2=0.0736$

R indices (all data)
$R 1=0.0579, w R 2=0.0834$

Largest diff. peak and hole
0.589 and -0.555 e. \AA^{-3}

Table 6.7. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(A^{2} \times 10^{3}\right)$ for compound 4.4. $U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.
\qquad
\qquad

	x	y	z	U(eq)
C(1)	1800(1)	3994(2)	2471(1)	21(1)
C(1S)	949(1)	8740(4)	2356(2)	72(1)
C(2)	2373(1)	4551(3)	2768(1)	33(1)
C(3)	2272(1)	4136(3)	3217(1)	35(1)
C(4)	2083(1)	4926(2)	1755(1)	24(1)
C(5)	2240(1)	4158(2)	1423(1)	24(1)
C(6)	2241(1)	4616(3)	891(1)	28(1)
C(7)	2100(1)	5807(3)	694(1)	33(1)
C(8)	1951(1)	6547(3)	1046(1)	34(1)
C(9)	1943(1)	6144(2)	1583(1)	29(1)
C(10)	1792(1)	6998(2)	1957(1)	37(1)

C(11)	2411(1)	2894(3)	1629(1)	33(1)
C(12)	2124(1)	6269(3)	124(1)	47(1)
C(13)	1721(1)	3410(3)	3431(1)	25(1)
C(14)	1747(1)	2154(3)	3633(1)	27(1)
C(15)	1546(1)	1829(3)	4004(1)	31(1)
C(16)	1337(1)	2720(3)	4189(1)	35(1)
C(17)	1338(1)	3979(3)	4001(1)	34(1)
C(18)	1527(1)	4357(3)	3623(1)	28(1)
C(19)	1527(1)	5732(3)	3431(1)	37(1)
C(20)	1983(1)	1180(3)	3462(1)	35(1)
C(21)	1122(1)	2332(4)	4593(1)	52(1)
C(22)	1057(1)	3617(2)	2370(1)	19(1)
C(23)	803(1)	4549(3)	2381(1)	25(1)
C(24)	533(1)	4306(3)	2636(1)	34(1)
C(25)	513(1)	3134(3)	2891(1)	36(1)
C(26)	762(1)	2202(3)	2886(1)	31(1)
C(27)	1030(1)	2425(2)	2624(1)	23(1)
C(28)	1495(1)	2796(2)	832(1)	21(1)
C(29)	1699(1)	2039(2)	522(1)	21(1)
C(30)	1817(1)	782(2)	674(1)	27(1)
C(31)	2002(1)	122(3)	351(1)	31(1)
C(32)	2063(1)	663(3)	-128(1)	35(1)

C(33)	1943(1)	1884(3)	-290(1)	39(1)
C(34)	1764(1)	2565(3)	34(1)	29(1)
C(35)	735(1)	3142(2)	35(1)	22(1)
C(36)	849(1)	2083(3)	-219(1)	30(1)
C(37)	835(1)	2097(3)	-792(1)	36(1)
C(38)	707(1)	3159(3)	-1116(1)	39(1)
C(39)	592(1)	4214(3)	-872(1)	36(1)
C(40)	603(1)	4209(3)	-299(1)	27(1)
C(41)	664(1)	4779(2)	921(1)	18(1)
C(42)	918(1)	5698(2)	897(1)	22(1)
C(43)	855(1)	6993(2)	959(1)	27(1)
C(44)	539(1)	7384(2)	1055(1)	30(1)
C(45)	288(1)	6487(2)	1092(1)	30(1)
C(46)	349(1)	5182(2)	1022(1)	24(1)
C(47)	367(1)	2228(2)	836(1)	20(1)
C(48)	103(1)	1915(3)	364(1)	33(1)
C(49)	-182(1)	1186(3)	415(1)	45(1)
C(50)	-208(1)	779(3)	936(1)	40(1)
C(51)	50(1)	1108(3)	1415(1)	35(1)
C(52)	334(1)	1830(2)	1365(1)	27(1)
$\mathrm{Cl}(1)$	1030(1)	149(1)	982(1)	31(1)
$\mathrm{Cl}(1 \mathrm{~S})$	526(1)	8562(1)	2453(1)	78(1)

$\mathrm{Cl}(2)$	$1712(1)$	$961(1)$	$2006(1)$	$28(1)$
$\mathrm{Cl}(2 \mathrm{~S})$	$1263(1)$	$8941(1)$	$2995(1)$	$65(1)$
$\mathrm{N}(1)$	$2083(1)$	$4476(2)$	$2311(1)$	$23(1)$
$\mathrm{N}(2)$	$1919(1)$	$3791(2)$	$3036(1)$	$25(1)$
$\mathrm{P}(1)$	$1370(1)$	$4001(1)$	$1947(1)$	$18(1)$
$\mathrm{P}(2)$	$761(1)$	$3106(1)$	$796(1)$	$17(1)$
$\mathrm{Ru}(1)$	$1270(1)$	$2176(1)$	$1352(1)$	$17(1)$

Table 6.8. Bond lengths $[\AA \AA]$ and angles [${ }^{\circ}$] for compound 4.4.

$\mathrm{C}(1)-\mathrm{N}(2)$	$1.361(3)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.367(3)$
$\mathrm{C}(1)-\mathrm{P}(1)$	$1.847(2)$
$\mathrm{C}(1 \mathrm{~S})-\mathrm{Cl}(2 \mathrm{~S})$	$1.745(4)$
$\mathrm{C}(1 \mathrm{~S})-\mathrm{Cl}(1 \mathrm{~S})$	$1.751(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.332(4)$
$\mathrm{C}(2)-\mathrm{N}(1)$	$1.383(3)$
$\mathrm{C}(3)-\mathrm{N}(2)$	$1.394(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.394(4)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.402(3)$
$\mathrm{C}(4)-\mathrm{N}(1)$	$1.439(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.389(4)$

$C(5)-C(11)$	$1.503(3)$
$C(6)-C(7)$	$1.393(4)$
$C(7)-C(8)$	$1.390(4)$
$C(7)-C(12)$	$1.503(4)$
$C(8)-C(9)$	$1.390(4)$
$C(9)-C(10)$	$1.503(4)$
$C(13)-C(14)$	$1.391(4)$
$C(13)-C(18)$	$1.398(4)$
$C(13)-N(2)$	$1.391(4)$
$C(14)-C(15)$	$1.504(4)$
$C(14)-C(20)$	$1.390(4)$
$C(15)-C(16)$	$1.510(4)$
$C(16)-C(17)$	$1.386(4)$
$C(16)-C(21)$	$1.505(4)$
$C(17)-C(18)$	$1.3983(3)$
$C(18)-C(19)$	$1.404(3)$
$C(22)-C(23)$	$1.380(4)$
$C(22)-C(27)$	$-P(1)$

C(26)-C(27)	1.387(4)
$\mathrm{C}(28)-\mathrm{C}(29)$	1.469(3)
$\mathrm{C}(28)-\mathrm{Ru}(1)$	1.841(3)
$\mathrm{C}(29)-\mathrm{C}(34)$	1.396(4)
C(29)-C(30)	1.406(3)
$\mathrm{C}(30)-\mathrm{C}(31)$	1.385(4)
$\mathrm{C}(31)-\mathrm{C}(32)$	1.378(4)
$\mathrm{C}(32)-\mathrm{C}(33)$	1.378(4)
C(33)-C(34)	1.383(4)
$\mathrm{C}(35)-\mathrm{C}(36)$	1.394(4)
$\mathrm{C}(35)-\mathrm{C}(40)$	1.398(4)
$\mathrm{C}(35)-\mathrm{P}(2)$	1.840(3)
$\mathrm{C}(36)-\mathrm{C}(37)$	1.389(4)
C(37)-C(38)	1.379(4)
$\mathrm{C}(38)-\mathrm{C}(39)$	1.381(4)
$\mathrm{C}(39)-\mathrm{C}(40)$	1.395(4)
$\mathrm{C}(41)-\mathrm{C}(46)$	1.389(3)
$\mathrm{C}(41)-\mathrm{C}(42)$	1.394(3)
$\mathrm{C}(41)-\mathrm{P}(2)$	1.824(2)
$\mathrm{C}(42)-\mathrm{C}(43)$	1.384(3)
C(43)-C(44)	1.384(4)
$\mathrm{C}(44)-\mathrm{C}(45)$	1.379(4)

$\mathrm{C}(45)-\mathrm{C}(46)$	$1.397(3)$
$\mathrm{C}(47)-\mathrm{C}(48)$	$1.383(3)$
$\mathrm{C}(47)-\mathrm{C}(52)$	$1.396(4)$
$\mathrm{C}(47)-\mathrm{P}(2)$	$1.827(2)$
$\mathrm{C}(48)-\mathrm{C}(49)$	$1.385(4)$
$\mathrm{C}(49)-\mathrm{C}(50)$	$1.373(4)$
$\mathrm{C}(50)-\mathrm{C}(51)$	$1.384(4)$
$\mathrm{C}(51)-\mathrm{C}(52)$	$1.381(3)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)$	$2.3925(6)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)$	$2.4012(6)$
$\mathrm{P}(1)-\mathrm{Ru}(1)$	$2.3643(7)$
$\mathrm{P}(2)-\mathrm{Ru}(1)$	$2.3272(6)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$104.77(19)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{P}(1)$	$136.43(19)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{P}(1)$	$118.01(18)$
$\mathrm{Cl}(2 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{Cl}(1 \mathrm{~S})$	$111.8(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(1)$	$107.0(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(2)$	$107.7(2)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	$122.7(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)$	$118.2(2)$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{N}(1)$	$119.0(2)$

$C(6)-C(5)-C(4)$	$117.4(2)$
$C(6)-C(5)-C(11)$	$120.5(2)$
$C(4)-C(5)-C(11)$	$122.1(2)$
$C(5)-C(6)-C(7)$	$122.2(3)$
$C(8)-C(7)-C(6)$	$118.1(3)$
$C(8)-C(7)-C(12)$	$122.4(3)$
$C(6)-C(7)-C(12)$	$119.5(3)$
$C(9)-C(8)-C(7)$	$122.4(3)$
$C(8)-C(9)-C(4)$	$117.1(3)$
$C(8)-C(9)-C(10)$	$120.5(2)$
$C(4)-C(9)-C(10)$	$122.5(3)$
$C(14)-C(13)-C(18)$	$122.6(3)$
$C(14)-C(13)-N(2)$	$119.5(2)$
$C(18)-C(13)-N(2)$	$117.8(2)$
$C(15)-C(14)-C(13)$	$117.3(2)$
$C(15)-C(14)-C(20)$	$120.8(3)$
$C(13)-C(14)-C(20)$	$121.9(2)$
$C(16)-C(15)-C(14)$	$122.3(3)$
$C(17)-C(16)-C(15)$	$117.9(3)$
$C(17)-C(16)-C(21)$	$121.3(3)$
$C(15)-C(16)-C(21)$	$120.8(3)$
$C(18)-C(17)-C(16)$	$122.5(3)$
C	
C	
C	

$C(17)-C(18)-C(13)$	$117.2(3)$
$C(17)-C(18)-C(19)$	$121.3(3)$
$C(13)-C(18)-C(19)$	$121.5(3)$
$C(23)-C(22)-C(27)$	$117.9(2)$
$C(23)-C(22)-P(1)$	$116.32(19)$
$C(27)-C(22)-P(1)$	$125.37(18)$
$C(24)-C(23)-C(22)$	$121.1(3)$
$C(25)-C(24)-C(23)$	$120.2(3)$
$C(24)-C(25)-C(26)$	$119.6(3)$
$C(25)-C(26)-C(27)$	$120.8(3)$
$C(26)-C(27)-C(22)$	$120.4(2)$
$C(29)-C(28)-R u(1)$	$126.40(18)$
$C(34)-C(29)-C(30)$	$118.1(2)$
$C(34)-C(29)-C(28)$	$118.5(2)$
$C(30)-C(29)-C(28)$	$123.3(2)$
$C(31)-C(30)-C(29)$	$119.8(3)$
$C(32)-C(31)-C(30)$	$121.0(3)$
$C(33)-C(32)-C(31)$	$120.0(3)$
$C(32)-C(33)-C(34)$	$119.7(3)$
$C(33)-C(34)-C(29)$	$121.5(3)$
$C(36)-C(35)-C(40)$	$118.6(2)$
$C(36)-C(35)-P(2)$	$119.7(2)$
C	
C	

$C(40)-C(35)-P(2)$	$121.6(2)$
$C(37)-C(36)-C(35)$	$120.6(3)$
$C(38)-C(37)-C(36)$	$120.3(3)$
$C(37)-C(38)-C(39)$	$120.0(3)$
$C(38)-C(39)-C(40)$	$120.2(3)$
$C(39)-C(40)-C(35)$	$120.3(3)$
$C(46)-C(41)-C(42)$	$118.8(2)$
$C(46)-C(41)-P(2)$	$123.56(18)$
$C(42)-C(41)-P(2)$	$117.60(18)$
$C(43)-C(42)-C(41)$	$120.8(2)$
$C(44)-C(43)-C(42)$	$119.8(2)$
$C(45)-C(44)-C(43)$	$120.1(2)$
$C(44)-C(45)-C(46)$	$120.1(2)$
$C(41)-C(46)-C(45)$	$120.3(2)$
$C(48)-C(47)-C(52)$	$118.7(2)$
$C(48)-C(47)-P(2)$	$122.7(2)$
$C(52)-C(47)-P(2)$	$118.54(18)$
$C(47)-C(48)-C(49)$	$120.4(3)$
$C(50)-C(49)-C(48)$	$120.3(3)$
$C(49)-C(50)-C(51)$	$120.1(3)$
$C(52)-C(51)-C(50)$	$119.6(3)$
$C(51)-C(52)-C(47)$	$120.8(2)$
C	
C	

$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$110.6(2)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	$125.82(19)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)$	$123.5(2)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$109.9(2)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(13)$	$128.3(2)$
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(13)$	$121.5(2)$
$\mathrm{C}(22)-\mathrm{P}(1)-\mathrm{C}(1)$	$103.53(11)$
$\mathrm{C}(22)-\mathrm{P}(1)-\mathrm{Ru}(1)$	$98.20(8)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{Ru}(1)$	$113.81(8)$
$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(47)$	$104.46(11)$
$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(35)$	$101.00(11)$
$\mathrm{C}(47)-\mathrm{P}(2)-\mathrm{C}(35)$	$103.68(11)$
$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{Ru}(1)$	$118.95(7)$
$\mathrm{C}(47)-\mathrm{P}(2)-\mathrm{Ru}(1)$	$112.19(8)$
$\mathrm{C}(35)-\mathrm{P}(2)-\mathrm{Ru}(1)$	$114.79(8)$
$\mathrm{C}(28)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$86.69(7)$
$\mathrm{C}(28)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$96.43(8)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$90.61(2)$
$\mathrm{C}(28)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$105.05(8)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$86.89(2)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$158.18(2)$
$\mathrm{C}(28)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$104.61(7)$

$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$168.06(2)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$91.89(2)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$86.45(2)$

Symmetry transformations used to generate equivalent atoms:

Table 6.9. Anisotropic displacement parameters ($A^{2} \times 10^{3}$) for compound
4.4. The anisotropic displacement factor exponent takes the form: $-2 p^{2}[$ $h^{2} a^{*} \mathbf{U}^{11}+\ldots+2$ h k a* $\left.b^{*} \mathbf{U}^{12}\right]$

| $\bar{\sim}$ | U^{11} | U^{22} | U^{33} | U^{23} | U^{13} |
| :--- | :--- | :--- | :--- | :--- | :--- |u^{12}

C(1)	$20(1)$	$18(1)$	$25(2)$	$-1(1)$	$5(1)$	$1(1)$
$C(1 S)$	$127(4)$	$52(2)$	$42(2)$	$-4(2)$	$34(2)$	$-25(2)$
$\mathrm{C}(2)$	$17(1)$	$41(2)$	$34(2)$	$-2(1)$	$-4(1)$	$-2(1)$
$\mathrm{C}(3)$	$20(1)$	$48(2)$	$31(2)$	$-1(2)$	$-5(1)$	$-1(1)$
$\mathrm{C}(4)$	$16(1)$	$26(1)$	$27(2)$	$2(1)$	$1(1)$	$-7(1)$
$\mathrm{C}(5)$	$15(1)$	$27(1)$	$30(2)$	$5(1)$	$3(1)$	$-7(1)$
$\mathrm{C}(6)$	$18(1)$	$35(1)$	$31(2)$	$4(1)$	$4(1)$	$-7(1)$
$\mathrm{C}(7)$	$19(1)$	$42(2)$	$35(2)$	$14(1)$	$0(1)$	$-9(1)$

$\mathrm{C}(8)$	$23(1)$	$26(1)$	$48(2)$	$13(1)$	$1(1)$	$-6(1)$
$\mathrm{C}(9)$	$18(1)$	$23(1)$	$42(2)$	$4(1)$	$0(1)$	$-8(1)$
$\mathrm{C}(10)$	$35(1)$	$21(1)$	$52(2)$	$-4(1)$	$5(1)$	$-3(1)$
$\mathrm{C}(11)$	$29(1)$	$31(1)$	$38(2)$	$6(1)$	$11(1)$	$5(1)$
$\mathrm{C}(12)$	$36(2)$	$57(2)$	$48(2)$	$24(2)$	$8(2)$	$-4(2)$
$\mathrm{C}(13)$	$20(1)$	$34(1)$	$18(1)$	$-2(1)$	$-1(1)$	$4(1)$
$\mathrm{C}(14)$	$24(1)$	$38(2)$	$16(1)$	$-1(1)$	$-1(1)$	$6(1)$
$\mathrm{C}(15)$	$30(1)$	$38(2)$	$22(2)$	$4(1)$	$1(1)$	$5(1)$
$\mathrm{C}(16)$	$29(1)$	$51(2)$	$23(2)$	$0(1)$	$4(1)$	$7(1)$
$\mathrm{C}(17)$	$27(1)$	$44(2)$	$29(2)$	$-8(1)$	$4(1)$	$10(1)$
$\mathrm{C}(18)$	$25(1)$	$35(1)$	$19(2)$	$-3(1)$	$-2(1)$	$6(1)$
$\mathrm{C}(19)$	$39(2)$	$32(2)$	$36(2)$	$-8(1)$	$3(1)$	$3(1)$
$\mathrm{C}(20)$	$36(2)$	$44(2)$	$23(2)$	$7(1)$	$5(1)$	$15(1)$
$\mathrm{C}(21)$	$50(2)$	$71(2)$	$43(2)$	$7(2)$	$24(2)$	$6(2)$
$\mathrm{C}(22)$	$17(1)$	$22(1)$	$16(1)$	$-4(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(23)$	$23(1)$	$29(1)$	$21(2)$	$-6(1)$	$2(1)$	$0(1)$
$\mathrm{C}(24)$	$23(1)$	$48(2)$	$30(2)$	$-8(1)$	$7(1)$	$5(1)$
$\mathrm{C}(25)$	$27(1)$	$57(2)$	$26(2)$	$-6(2)$	$12(1)$	$-8(1)$
$\mathrm{C}(26)$	$35(1)$	$37(2)$	$21(2)$	$1(1)$	$7(1)$	$-8(1)$
$\mathrm{C}(27)$	$23(1)$	$26(1)$	$19(1)$	$-2(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(28)$	$19(1)$	$17(1)$	$25(2)$	$1(1)$	$4(1)$	$-1(1)$
$\mathrm{C}(29)$	$20(1)$	$23(1)$	$23(1)$	$-3(1)$	$9(1)$	$-3(1)$

$\mathrm{C}(30)$	$32(1)$	$26(1)$	$27(2)$	$-2(1)$	$13(1)$	$-1(1)$
$\mathrm{C}(31)$	$33(1)$	$26(1)$	$36(2)$	$-4(1)$	$14(1)$	$1(1)$
$\mathrm{C}(32)$	$33(1)$	$41(2)$	$38(2)$	$-12(1)$	$21(1)$	$-4(1)$
$\mathrm{C}(33)$	$43(2)$	$50(2)$	$29(2)$	$1(2)$	$20(1)$	$-6(1)$
$\mathrm{C}(34)$	$28(1)$	$32(1)$	$29(2)$	$4(1)$	$10(1)$	$-4(1)$
$\mathrm{C}(35)$	$21(1)$	$27(1)$	$18(1)$	$-3(1)$	$5(1)$	$-11(1)$
$\mathrm{C}(36)$	$33(1)$	$31(1)$	$25(2)$	$-6(1)$	$9(1)$	$-11(1)$
$\mathrm{C}(37)$	$36(1)$	$45(2)$	$30(2)$	$-15(2)$	$15(1)$	$-17(1)$
$\mathrm{C}(38)$	$37(2)$	$62(2)$	$18(2)$	$-6(2)$	$8(1)$	$-21(2)$
$\mathrm{C}(39)$	$31(1)$	$51(2)$	$23(2)$	$8(1)$	$3(1)$	$-14(1)$
$\mathrm{C}(40)$	$24(1)$	$34(1)$	$23(2)$	$2(1)$	$6(1)$	$-6(1)$
$\mathrm{C}(41)$	$22(1)$	$16(1)$	$16(1)$	$1(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(42)$	$21(1)$	$21(1)$	$23(1)$	$0(1)$	$3(1)$	$-2(1)$
$\mathrm{C}(43)$	$30(1)$	$20(1)$	$29(2)$	$1(1)$	$4(1)$	$-4(1)$
$\mathrm{C}(44)$	$34(1)$	$19(1)$	$34(2)$	$-2(1)$	$2(1)$	$4(1)$
$\mathrm{C}(45)$	$24(1)$	$28(1)$	$36(2)$	$-4(1)$	$4(1)$	$4(1)$
$\mathrm{C}(46)$	$20(1)$	$25(1)$	$25(2)$	$-3(1)$	$2(1)$	$-3(1)$
$\mathrm{C}(47)$	$20(1)$	$18(1)$	$23(1)$	$-3(1)$	$7(1)$	$-4(1)$
$\mathrm{C}(48)$	$28(1)$	$47(2)$	$24(2)$	$-2(1)$	$5(1)$	$-16(1)$
$\mathrm{C}(49)$	$33(2)$	$63(2)$	$37(2)$	$-14(2)$	$6(1)$	$-26(2)$
$\mathrm{C}(50)$	$30(1)$	$43(2)$	$50(2)$	$-7(2)$	$14(1)$	$-21(1)$
$\mathrm{C}(51)$	$34(1)$	$37(2)$	$37(2)$	$5(1)$	$16(1)$	$-8(1)$
				20		

$\mathrm{C}(52)$	$23(1)$	$31(1)$	$26(2)$	$0(1)$	$5(1)$	$-9(1)$
$\mathrm{Cl}(1)$	$38(1)$	$14(1)$	$41(1)$	$-4(1)$	$12(1)$	$-7(1)$
$\mathrm{Cl}(1 \mathrm{~S})$	$102(1)$	$73(1)$	$56(1)$	$9(1)$	$15(1)$	$12(1)$
$\mathrm{Cl}(2)$	$32(1)$	$26(1)$	$26(1)$	$6(1)$	$9(1)$	$10(1)$
$\mathrm{Cl}(2 \mathrm{~S})$	$105(1)$	$43(1)$	$50(1)$	$7(1)$	$23(1)$	$-7(1)$
$\mathrm{N}(1)$	$18(1)$	$25(1)$	$23(1)$	$1(1)$	$0(1)$	$-3(1)$
$\mathrm{N}(2)$	$20(1)$	$33(1)$	$20(1)$	$1(1)$	$1(1)$	$2(1)$
$\mathrm{P}(1)$	$16(1)$	$16(1)$	$20(1)$	$-1(1)$	$2(1)$	$0(1)$
$\mathrm{P}(2)$	$18(1)$	$15(1)$	$18(1)$	$-2(1)$	$4(1)$	$-5(1)$
$\mathrm{Ru}(1)$	$19(1)$	$13(1)$	$19(1)$	$0(1)$	$7(1)$	$-1(1)$

Table 6.10. Hydrogen coordinates (x 104) and isotropic displacement parameters ($\AA 2 \times 103$) for compound 4.4.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(1S1)	1007	7986	2164	86
H(1S2)	953	9481	2117	86
H(3)	2596	4837	2764	39
H(2)	2412	4085	3584	42
H(6)	2340	4110	658	34
H(8)	1854	7340	917	40
H(10A)	1787	7870	1826	56
H(10B)	1935	6948	2337	56
H(10C)	1558	6723	1946	56
H(11A)	2452	2418	1316	49
H(11B)	2259	2408	1802	49
H(11C)	2630	3047	1900	49
H(12A)	1959	6955	0	71
H(12B)	2070	5573	-141	71

H(12C)	2357	6576	149	71
H(15)	1552	986	4134	37
H(17)	1206	4592	4133	41
H(19A)	1408	6259	3646	55
H(19B)	1407	5789	3038	55
H(19C)	1764	6025	3486	55
H(20A)	1920	1095	3059	52
H(20B)	1956	365	3631	52
H(20C)	2222	1459	3588	52
H(21A)	877	2352	4401	78
H(21B)	1167	2919	4906	78
H(21C)	1187	1477	4729	78
H(23)	816	5346	2214	30
H(24)	364	4934	2635	40
H(25)	333	2973	3065	43
H(26)	750	1416	3061	37
H(27)	1192	1780	2617	28
H(30)	1772	395	990	33
H(31)	2086	-700	460	37
H(32)	2185	204	-342	42
H(33)	1981	2248	-615	46
H(34)	1686	3393	-75	35

$\mathrm{H}(36)$	935	1362	-4	35
$\mathrm{H}(37)$	912	1386	-957	43
$\mathrm{H}(38)$	698	3164	-1499	46
$\mathrm{H}(39)$	506	4931	-1091	43
$\mathrm{H}(40)$	522	4917	-137	32
$H(42)$	1132	5437	838	26
$H(43)$	1025	7598	937	32
$H(44)$	496	8254	1095	36
$H(45)$	78	6751	1163	36
$H(46)$	178	4580	1043	29
$H(48)$	116	2195	10	40
$H(49)$	-357	970	94	54
$H(50)$	-398	281	967	48
$H(51)$	31	844	1769	42
$H(52)$	$1455(6)$	$3650(30)$	$686(11)$	$25(7)$
$H(28)$			1687	32

Table 6.11. Crystal data and structure refinement for compound 4.5.

Identification code
Empirical formula
Formula weight
d12283
C52 H49 CI N2 P2 Ru
900.39

Temperature	150(1) K
Wavelength	0.71073 A
Crystal system	monoclinic
Space group	P 21/n
Unit cell dimensions	$a=11.796(3) \AA \quad \alpha=90^{\circ}$.
	$b=18.979(5) \AA \quad \beta=99.625(7)^{\circ}$.
	$\mathrm{c}=20.473(5) \AA \quad \gamma=90^{\circ}$.
Volume	4519(2) \AA^{3}
Z	4
Density (calculated)	$1.323 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.514 \mathrm{~mm}^{-1}$
$F(000)$	1864
Crystal size	$0.19 \times 0.05 \times 0.02 \mathrm{~mm}^{3}$
Theta range for data collection	1.47 to 27.42°.
Index ranges	$-15<=\mathrm{h}<=15,-24<=\mathrm{k}<=14,-26<=1<=26$
Reflections collected	40082
Independent reflections	$10285[\mathrm{R}$ (int) $)=0.0505]$
Completeness to theta $=27.42^{\circ}$	99.9 \%
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	10285 / 0 / 523
Goodness-of-fit on F^{2}	1.011

Final R indices [$1>2$ sigma (I)]
$R 1=0.0331, w R 2=0.0675$
R indices (all data)
$R 1=0.0506, w R 2=0.0736$
Largest diff. peak and hole
0.554 and -0.359 e. A^{-3}

Table 6.12. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 4.5. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U \mathrm{ij}$ tensor.
\qquad
\qquad

	X	y	z	U(eq)
C(1)	5336(2)	723(1)	3082(1)	15(1)
C(2)	5888(2)	-178(1)	3770(1)	24(1)
C(3)	6477(2)	-231(1)	3263(1)	23(1)
C(4)	4479(2)	675(1)	4123(1)	16(1)
C(5)	4942(2)	1194(1)	4568(1)	19(1)
C(6)	4209(2)	1492(1)	4961(1)	21(1)
C(7)	3069(2)	1282(1)	4917(1)	23(1)
C(8)	2675(2)	727(1)	4495(1)	24(1)
C(9)	3370(2)	404(1)	4092(1)	21(1)
C(10)	6164(2)	1448(1)	4622(1)	28(1)

C(11)	2289(3)	1641(1)	5326(1)	39(1)
C(12)	2942(2)	-212(1)	3656(1)	31(1)
C(13)	6660(2)	520(1)	2273(1)	17(1)
C(14)	6515(2)	76(1)	1728(1)	22(1)
C(15)	7078(2)	266(1)	1202(1)	26(1)
C(16)	7744(2)	869(1)	1223(1)	26(1)
C(17)	7852(2)	1307(1)	1778(1)	21(1)
C(18)	7322(2)	1147(1)	2330(1)	16(1)
C(19)	5784(2)	-580(1)	1692(1)	31(1)
C(20)	8380(3)	1051(1)	660(1)	40(1)
C(21)	7388(2)	1624(1)	2898(1)	16(1)
C(22)	3642(2)	1015(1)	2014(1)	21(1)
C(23)	3895(2)	860(1)	1389(1)	26(1)
C(24)	3112(3)	488(2)	932(2)	42(1)
C(25)	2078(3)	268(2)	1095(2)	57(1)
C(26)	1815(3)	421(2)	1714(2)	55(1)
C(27)	2585(2)	798(1)	2171(1)	36(1)
C(28)	5625(2)	2721(1)	3188(1)	17(1)
C(29)	6387(2)	3210(1)	3545(1)	24(1)
C(30)	6140(3)	3551(1)	4106(1)	34(1)
C(31)	5113(3)	3418(1)	4335(1)	36(1)
C(32)	4357(2)	2922(1)	4009(1)	28(1)

C(33)	4611(2)	2564(1)	3453(1)	20(1)
C(34)	3831(2)	1985(1)	3129(1)	18(1)
C(35)	4650(2)	2627(1)	745(1)	20(1)
C(36)	5409(2)	2106(1)	602(1)	24(1)
C(37)	5384(2)	1874(1)	-45(1)	34(1)
C(38)	4623(3)	2166(1)	-560(1)	37(1)
C(39)	3859(2)	2679(1)	-426(1)	35(1)
C(40)	3865(2)	2905(1)	219(1)	27(1)
C(41)	5038(2)	3871(1)	1570(1)	18(1)
C(42)	5065(2)	4244(1)	986(1)	22(1)
C(43)	5308(2)	4967(1)	1009(1)	27(1)
C(44)	5502(2)	5323(1)	1602(1)	29(1)
C(45)	5509(2)	4954(1)	2188(1)	29(1)
C(46)	5289(2)	4232(1)	2174(1)	24(1)
C(47)	3180(2)	2945(1)	1698(1)	24(1)
C(48)	2838(2)	3365(1)	2192(1)	31(1)
C(49)	1705(3)	3340(1)	2313(2)	44(1)
C(50)	904(3)	2900(2)	1946(2)	54(1)
C(51)	1231(2)	2483(2)	1460(2)	46(1)
C(52)	2364(2)	2499(1)	1338(1)	32(1)
$\mathrm{Cl}(1)$	7539(1)	3059(1)	2128(1)	20(1)
$N(1)$	5187(2)	414(1)	3657(1)	17(1)

$\mathrm{N}(2)$	$6136(2)$	$330(1)$	$2843(1)$	$17(1)$
$\mathrm{P}(1)$	$4699(1)$	$1514(1)$	$2601(1)$	$14(1)$
$\mathrm{P}(2)$	$4722(1)$	$2915(1)$	$1610(1)$	$16(1)$
$\mathrm{Ru}(1)$	$6003(1)$	$2243(1)$	$2361(1)$	$13(1)$

Table 6.13. Bond lengths $[\AA]$ and angles [$\left.{ }^{\circ}\right]$ for compound 4.5.

$\mathrm{C}(1)-\mathrm{N}(1)$	$1.352(3)$
$\mathrm{C}(1)-\mathrm{N}(2)$	$1.355(3)$
$\mathrm{C}(1)-\mathrm{P}(1)$	$1.883(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.346(3)$
$\mathrm{C}(2)-\mathrm{N}(1)$	$1.391(3)$
$\mathrm{C}(3)-\mathrm{N}(2)$	$1.384(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.391(3)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.397(3)$
$\mathrm{C}(4)-\mathrm{N}(1)$	$1.456(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.396(3)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.506(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.391(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.392(3)$
$\mathrm{C}(7)-\mathrm{C}(11)$	$1.507(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.398(3)$

$C(9)-C(12)$	$1.506(3)$
$C(13)-C(14)$	$1.386(3)$
$C(13)-C(18)$	$1.418(3)$
$C(13)-N(2)$	$1.454(3)$
$C(14)-C(15)$	$1.404(3)$
$C(14)-C(19)$	$1.510(3)$
$C(15)-C(16)$	$1.385(3)$
$C(16)-C(17)$	$1.517(3)$
$C(16)-C(20)$	$1.466(3)$
$C(17)-C(18)$	$2.157(2)$
$C(18)-C(21)$	$1.393(3)$
$C(21)-R u(1)$	$1.400(3)$
$C(22)-C(23)$	$1.842(2)$
$C(22)-C(27)$	$1.391(4)$
$C(22)-P(1)$	$1.382(4)$
$C(23)-C(24)$	$1.385(4)$
$C(24)-C(25)$	$1.4269(4)$
$C(25)-C(26)$	$C(26)-C(27)$

C(29)-C(30)	1.391(3)
$\mathrm{C}(30)-\mathrm{C}(31)$	1.393(4)
C(31)-C(32)	1.387(4)
C(32)-C(33)	1.400(3)
C(33)-C(34)	1.514(3)
$\mathrm{C}(34)-\mathrm{P}(1)$	1.839(2)
$\mathrm{C}(35)-\mathrm{C}(36)$	1.397(3)
C(35)-C(40)	1.400(3)
$\mathrm{C}(35)-\mathrm{P}(2)$	1.841(2)
C(36)-C(37)	1.392(3)
C(37)-C(38)	1.381(4)
C(38)-C(39)	1.385(4)
C(39)-C(40)	1.388(3)
$\mathrm{C}(41)-\mathrm{C}(42)$	1.394(3)
$\mathrm{C}(41)-\mathrm{C}(46)$	1.400(3)
$\mathrm{C}(41)-\mathrm{P}(2)$	1.857(2)
C(42)-C(43)	1.401(3)
C(43)-C(44)	1.375(4)
C(44)-C(45)	1.389(3)
$\mathrm{C}(45)-\mathrm{C}(46)$	1.394(3)
$\mathrm{C}(47)-\mathrm{C}(52)$	1.397(4)
$\mathrm{C}(47)-\mathrm{C}(48)$	1.399(3)

$\mathrm{C}(47)-\mathrm{P}(2)$	1.859(2)
$\mathrm{C}(48)-\mathrm{C}(49)$	1.400(4)
C(49)-C(50)	1.384(5)
$\mathrm{C}(50)-\mathrm{C}(51)$	1.377(5)
$\mathrm{C}(51)-\mathrm{C}(52)$	1.400(4)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)$	2.4899(7)
$\mathrm{P}(1)-\mathrm{Ru}(1)$	$2.1844(6)$
$\mathrm{P}(2)-\mathrm{Ru}(1)$	2.3464(7)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	105.98(17)
$N(1)-C(1)-P(1)$	134.54(15)
$N(2)-C(1)-P(1)$	119.48(15)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(1)$	107.51(19)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(2)$	106.70(18)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	123.53(19)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)$	117.67(19)
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{N}(1)$	118.78(19)
$C(4)-C(5)-C(6)$	116.9(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	122.79(19)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	120.3(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	122.1(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	118.4(2)

$C(6)-C(7)-C(11)$	$120.5(2)$
$C(8)-C(7)-C(11)$	$121.1(2)$
$C(7)-C(8)-C(9)$	$122.0(2)$
$C(4)-C(9)-C(8)$	$116.7(2)$
$C(4)-C(9)-C(12)$	$122.0(2)$
$C(8)-C(9)-C(12)$	$121.3(2)$
$C(14)-C(13)-C(18)$	$124.64(19)$
$C(14)-C(13)-N(2)$	$118.97(18)$
$C(18)-C(13)-N(2)$	$116.36(18)$
$C(13)-C(14)-C(15)$	$116.9(2)$
$C(13)-C(14)-C(19)$	$122.2(2)$
$C(15)-C(14)-C(19)$	$120.9(2)$
$C(16)-C(15)-C(14)$	$121.7(2)$
$C(15)-C(16)-C(17)$	$119.5(2)$
$C(15)-C(16)-C(20)$	$121.0(2)$
$C(17)-C(16)-C(20)$	$119.5(2)$
$C(16)-C(17)-C(18)$	$122.0(2)$
$C(17)-C(18)-C(13)$	$115.21(19)$
$C(17)-C(18)-C(21)$	$122.00(18)$
$C(13)-C(18)-C(21)$	$122.65(18)$
$C(18)-C(21)-R u(1)$	$89.79(13)$
$C(23)-C(22)-C(27)$	$119.0(2)$
C	
C	

$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{P}(1)$	118.82(17)
$\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{P}(1)$	122.16(19)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	120.3(2)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	120.3(3)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	119.9(3)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	120.2(3)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(22)$	120.2(3)
C(29)-C(28)-C(33)	116.40(19)
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{Ru}(1)$	121.03(16)
$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{Ru}(1)$	122.53(16)
C(30)-C(29)-C(28)	122.0(2)
C(29)-C(30)-C(31)	120.5(2)
$C(32)-C(31)-C(30)$	119.1(2)
$C(31)-C(32)-C(33)$	120.8(2)
C(32)-C(33)-C(28)	121.0(2)
C(32)-C(33)-C(34)	120.8(2)
$\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(34)$	118.18(18)
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{P}(1)$	104.67(14)
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(40)$	118.1(2)
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{P}(2)$	118.86(18)
$\mathrm{C}(40)-\mathrm{C}(35)-\mathrm{P}(2)$	123.02(17)
$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(35)$	120.6(2)

$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(36)$	120.5(2)
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$	119.5(2)
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	120.3(2)
C(39)-C(40)-C(35)	120.8(2)
$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(46)$	118.48(19)
$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{P}(2)$	124.54(17)
$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{P}(2)$	116.97(16)
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	120.2(2)
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(42)$	120.9(2)
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	119.4(2)
$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(46)$	120.2(2)
$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(41)$	120.7(2)
C(52)-C(47)-C(48)	118.1(2)
$\mathrm{C}(52)-\mathrm{C}(47)-\mathrm{P}(2)$	121.96(19)
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{P}(2)$	119.5(2)
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(49)$	120.5(3)
$C(50)-C(49)-C(48)$	120.7(3)
$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{C}(49)$	119.4(3)
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)$	120.5(3)
$\mathrm{C}(47)-\mathrm{C}(52)-\mathrm{C}(51)$	120.8(3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	109.52(17)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	126.63(17)

$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)$	$123.70(17)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$110.28(17)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(13)$	$124.57(16)$
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(13)$	$124.76(17)$
$\mathrm{C}(34)-\mathrm{P}(1)-\mathrm{C}(22)$	$104.51(10)$
$\mathrm{C}(34)-\mathrm{P}(1)-\mathrm{C}(1)$	$107.02(10)$
$\mathrm{C}(22)-\mathrm{P}(1)-\mathrm{C}(1)$	$95.67(9)$
$\mathrm{C}(34)-\mathrm{P}(1)-\mathrm{Ru}(1)$	$107.88(7)$
$\mathrm{C}(22)-\mathrm{P}(1)-\mathrm{Ru}(1)$	$127.16(7)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{Ru}(1)$	$112.78(7)$
$\mathrm{C}(35)-\mathrm{P}(2)-\mathrm{C}(41)$	$103.06(9)$
$\mathrm{C}(35)-\mathrm{P}(2)-\mathrm{C}(47)$	$102.37(11)$
$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(47)$	$100.45(9)$
$\mathrm{C}(35)-\mathrm{P}(2)-\mathrm{Ru}(1)$	$112.97(7)$
$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{Ru}(1)$	$116.63(8)$
$\mathrm{C}(47)-\mathrm{P}(2)-\mathrm{Ru}(1)$	$119.07(7)$
$\mathrm{C}(28)-\mathrm{Ru}(1)-\mathrm{C}(21)$	$94.09(8)$
$\mathrm{C}(28)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$80.51(6)$
$\mathrm{C}(21)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$92.48(6)$
$\mathrm{C}(28)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$95.52(6)$
$\mathrm{C}(21)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$168.55(6)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$95.21(3)$
10	

$\mathrm{C}(28)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$98.62(6)$
$\mathrm{C}(21)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$85.59(6)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$177.83(2)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$86.85(3)$

Symmetry transformations used to generate equivalent atoms:

Table 6.14. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 4.5. The anisotropic displacement factor exponent takes the form: $-2 p^{2}[$ $\left.h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	u^{11}	U22	U33	U^{23}	U13	u^{12}
C(1)	15(1)	12(1)	16(1)	-1(1)	2(1)	-3(1)
C(2)	28(1)	19(1)	27(1)	9(1)	7(1)	5(1)
C(3)	26(1)	15(1)	28(1)	4(1)	5(1)	6(1)
C(4)	19(1)	17(1)	14(1)	5(1)	4(1)	1(1)
C(5)	18(1)	21(1)	17(1)	5(1)	2(1)	-3(1)
C(6)	28(1)	21(1)	13(1)	1(1)	2(1)	-2(1)
C(7)	28(1)	24(1)	18(1)	5(1)	9(1)	1(1)
C(8)	18(1)	29(1)	25(1)	4(1)	6(1)	-6(1)
C(9)	24(1)	20(1)	19(1)	3(1)	5(1)	-5(1)
C(10)	21(1)	34(1)	28(2)	-3(1)	3(1)	-9(1)
C(11)	36(2)	49(2)	38(2)	-7(1)	20(1)	-1(1)
C(12)	33(2)	28(1)	33(2)	-6(1)	9(1)	-12(1)
C(13)	17(1)	17(1)	17(1)	1(1)	5(1)	$6(1)$
C(14)	23(1)	19(1)	24(1)	-2(1)	2(1)	5(1)

C(15)	32(2)	29(1)	18(1)	-7(1)	5(1)	7(1)
C(16)	27(1)	33(1)	18(1)	3(1)	7(1)	9(1)
C(17)	19(1)	22(1)	23(1)	4(1)	5(1)	3(1)
C(18)	13(1)	18(1)	18(1)	3(1)	2(1)	6(1)
C(19)	40(2)	22(1)	30(2)	-7(1)	4(1)	-1(1)
C(20)	45(2)	52(2)	28(2)	$0(1)$	20(1)	5(1)
C(21)	13(1)	18(1)	17(1)	2(1)	2(1)	1(1)
C(22)	19(1)	20(1)	22(1)	5(1)	-2(1)	-3(1)
C(23)	24(1)	28(1)	24(1)	1(1)	-1(1)	-4(1)
C(24)	43(2)	51(2)	30(2)	-11(1)	-2(1)	-8(1)
C(25)	46(2)	72(2)	47(2)	-17(2)	-10(2)	-28(2)
C(26)	33(2)	79(2)	52(2)	-7(2)	3(2)	-31(2)
C(27)	28(2)	47(2)	32(2)	3(1)	6(1)	-14(1)
C(28)	22(1)	15(1)	14(1)	4(1)	4(1)	1(1)
C(29)	28(1)	25(1)	19(1)	0 (1)	6(1)	-6(1)
C(30)	48(2)	31(1)	23(1)	-8(1)	10(1)	-13(1)
C(31)	56(2)	29(1)	30(2)	-10(1)	24(2)	-4(1)
C(32)	37(2)	22(1)	31(2)	2(1)	20(1)	2(1)
C(33)	24(1)	16(1)	21(1)	4(1)	8(1)	4(1)
C(35)	20(1)	17(1)	21(1)	2(1)	1(1)	-4(1)
C(36)	25(1)	21(1)	25(1)	4(1)	1(1)	2(1)
C(37)	45(2)	27(1)	32(2)	-4(1)	8(1)	5(1)

C(38)	50(2)	36(1)	21(1)	-7(1)	$0(1)$	-4(1)
C(39)	38(2)	40(1)	22(1)	2(1)	-9(1)	1(1)
C(40)	22(1)	31(1)	26(1)	1(1)	-3(1)	2(1)
C(41)	14(1)	16(1)	24(1)	4(1)	3(1)	3(1)
C(42)	19(1)	21(1)	25(1)	4(1)	5(1)	3(1)
C(43)	24(1)	24(1)	33(2)	12(1)	4(1)	$0(1)$
C(44)	22(1)	19(1)	44(2)	3(1)	2(1)	-2(1)
C(45)	25(1)	26(1)	34(2)	-7(1)	1(1)	-1(1)
C(46)	22(1)	24(1)	24(1)	3(1)	1(1)	$0(1)$
C(47)	18(1)	23(1)	32(1)	16(1)	4(1)	4(1)
C(48)	29(2)	28(1)	38(2)	16(1)	13(1)	10(1)
C(49)	37(2)	42(1)	61(2)	25(1)	29(2)	18(1)
C(50)	24(2)	58(2)	86(3)	39(2)	24(2)	11(1)
C(51)	20(2)	52(2)	63(2)	27(2)	-1(2)	-5(1)
C(52)	20(1)	36(1)	40(2)	16(1)	0 (1)	$0(1)$
$\mathrm{Cl}(1)$	19(1)	19(1)	25(1)	4(1)	8(1)	-2(1)
N(1)	18(1)	16(1)	18(1)	4(1)	5(1)	$0(1)$
N(2)	19(1)	14(1)	18(1)	1(1)	5(1)	2(1)
$\mathrm{P}(1)$	14(1)	14(1)	15(1)	2(1)	3(1)	$0(1)$
$P(2)$	15(1)	16(1)	18(1)	4(1)	3(1)	1(1)
$\mathrm{Ru}(1)$	13(1)	14(1)	13(1)	2(1)	3(1)	$0(1)$

[^0]: Symmetry transformations used to generate equivalent atoms:

