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Abstract 

N-heterocyclic carbenes (NHCs) have played a dominant role in 

organometallic chemistry for decades and revolutionized the field of homogenous 

catalysis. NHCs have been thoroughly studied, both experimentally and 

theoretically, and have shown unique reactivity towards transition metals, 

chalcogens, azides and pnictogens. 

This thesis is aimed at utilizing the unique reactivity of N-heterocyclic 

carbenes to develop novel, robust catalysts to mediate organic transformations. 

The multi-faceted work within this thesis explores the use of NHCs as ancillary 

ligands on early and late transition metals as potential catalysts for olefin 

polymerization and ring-closing metathesis, respectively. This work also includes 

exploring the synthesis and coordination of ancillary ligands derived from the 

unique reactivity of NHCs towards azides, chalcogens and pnictinidenes. 

The reactivity of a novel aryl-substituted acyclic imino-N-heterocyclic 

carbene to early transition metals, cyclooctasulfur and Grubbs-type ruthenium 

benzylidene complexes was explored. The reactivity of imidazol-2-imide towards 

Grubbs-type ruthenium benzylidene complexes and the synthesis and 

coordination of a novel group of ligands bearing an imidazol-2-imine scaffold 

were also explored. Lastly, this work will include the reactivity of IMes=PPh to 

Grubbs-type ruthenium benzylidene complexes. 
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Chapter 1 

1.1 Introduction 

A critical element of organometallic chemistry is the drive towards 

developing compounds for catalytic applications. In recent decades, there has 

been a great deal of emphasis on developing metal-based catalysts for industrial 

applications, polymerization and for the synthesis of fine chemicals. The activity 

of homogeneous catalysts is largely dependent on the ligand-metal combination. 

A wide variety of ligand classes have thus been explored. However, certain types 

of ligands have played a more significant role than others in organometallic 

chemistry. One class of ligands that has received considerable attention in recent 

years is the N-heterocyclic carbene (NHC) ligand.1 Since the first isolation by 

Arduengo in 1991,2 various synthetic methodologies of symmetrical and non­

symmetrical five-membered, two-electron-donating imidazol-2-ylidene ligands 

have been developed and are now well established.1
·
3 

1.2 Synthesis of N-Heterocyclic carbenes 

There are numerous examples of saturated and unsaturated, symmetrical 

and unsymmetrical five-membered heterocycles with a variety of heteroatoms 

(Figure 1.2.1 ). 

1 
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Figure 1.2.1 Examples of five-membered NHCs with varying heteroatoms. 

Despite the structural diversity of five-membered NHCs, the largest and most 

notable group of NHCs is the five-membered imidazole and imidazolidine-based 

ligands. There are numerous routes to forming stable free carbenes, including 

deprotonation of the corresponding imidazolium salt, reductive desulfurization 

and thermal elimination of the appropriate NHC precursor (Scheme 1.2.1 ).1
-4 In 

most cases, the formation of free carbenes is formed by deprotonation of the 

corresponding imidazolium salt. The general synthesis of symmetrical 

unsaturated imidazolium salts involves the cyclization of a diimine with 

formaldehyde and a Bnzmsted acid, where the diimine starting material is a 

product of the condensation reaction between a primary amine and glyoxal 

(Scheme 1.2.2).38
'
5 

2 
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Scheme 1.2.1. Common synthetic strategies to forming stable free NHCs 
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Scheme 1.2.2. General scheme to forming free carbenes 

The readily available precursors and facile synthesis of imidazolium salts has led 

to a wide range of NHC ligands with varying steric and electronic influences.6 

There are three areas of the NHC ligand scaffold that offer easy 

modification that can lead to steric and electronic tailoring. These main areas of 

3 



the ligand include the C4 and Cs substituents, N,N'-substituents and the degree 

of saturation of the heterocycle. In the case of C4 and Cs substituents, 

incorporating various electron-donating and/or -withdrawing groups has a 

significant contribution to the overall electronic properties of the NHC ligand.6
c In 

addition, incorporating aryl, alkyl or other cycles to modify the steric demand and, 

in some cases, halogenated alkyl or aryl groups, can also affect the electronic 

properties as well as the sterics. The effect of steric by modifying the substituents 

at the C4 and Cs positions can be represented by the percent buried volume (% 

Vsur). The percent buried volume is the fraction of the first coordination sphere 

that a given ligand occupies about the metal centre.7 An in depth study by Poater 

explored quantum mechanically optimized structures of lrCl(C0)2(NHC) to 

compile the % Vsur of a variety of NHC ligands.7 Likewise, the ability to modify 

the substituents at the N,N' positions offers tailoring of steric and electronic 

properties allowing for designed ligand-metal interactions, thus affecting activity, 

productivity, selectivity and scope of substrates. Although the degree of 

saturation of the ligand scaffold seems trivial, there are a number of examples in 

which this has played a role in organometallic catalysis.8 It has been shown that 

the % Vsur for the saturated ring is greater than the unsaturated ring.7 As a result, 

we see a vast and continuously growing library of saturated and unsaturated, 

symmetrical and unsymmetrical five-membered NHC ligands with a broad range 

of steric and electronic properties. 

4 



1.3 Reactivity of N-Heterocyclic Carbenes towards Metals 

In the years following the discovery of stable NHC ligands, NHCs were 

considered simple tertiary phosphine-like ligands. Since that time, considerabl1.e 

theoretical and experimental research has been conducted in deducing that 

NHCs are unique in their own right.9 The coordination of NHC ligands oftein 

involves one of three routes of synthesis. The first approach to coordination of 

NHC ligands is the direct reaction of a free carbene with the metal precursor.5
•
10 

This reaction is a simple ligand substitution, with the NHC displacing a neutral 

Lewis base on the metal centre, for example, a coordinated solvent molecule like 

TH F, MeCN or a phosphine ligand. Transmetalation has also been a very 

successful synthetic method of coordination of NHC ligands. The most common 

carbene transmetalating agents are silver-based complexes, 11 but recently 

copper and nickel-carbene complexes have been used for transmetalation to 

other metals.12
•
12

d The last of the three main methods of coordination involves the 

in situ deprotonation of the salt, in the presence of the metal precursor (Figure 

1.3.1 ).5
·
12

c The in situ deprotonation is utilized when the isolation of the free 

carbene is not possible and when the synthesis of the silver transmetalating 

reagent proves difficult or unachievable. 

5 
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Figure 1.3.1. General representation of the three most common methods to 

coordinate NHCs to metal centres 

NHC ligands are considered to be electron-deficient, strong a-donating, 

weak TT-accepting ligands. The strong a-donating capabilities of NHCs arise from 

the lone pair of electrons in the high-energy a orbital. Thus, the basicity of NHCs 

is higher than that of phosphines (1)5
·
9

·
13 (Figure 1.3.1 ). The weak TT-accepting 

character of NHCs arises from their ability to accept electron density from filled d 

orbitals of a metal to an empty low energy TT* orbital (II). Lastly, NHCs are known 

to contribute electron density to electron-deficient metals via TT-d donation (Ill) 

(Figure 1_3_1 ).1b,11a,13-14 

6 
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Figure 1.3.1. Molecular orbital diagram representing NHC-metal 

interactions 

The strong ligand-to-metal interaction of NHCs can be illustrated using different 

techniques, both experimental15 and computational.6c·14
•
16 There are a number of 

reports in which the electron-donating capacities of phosphines and NHCs are 

compared using metal carbonyl complexes. Analyzing the stretching frequencies 

of metal-bound carbonyls allows for a general assessment of the degree of back-

donation and thus, the electron-richness of the metal centre, and ultimately 

suggesting the relative donating ability of the ancillary ligands.sa,sc,17 It is 

important to note that this method evaluates the overall electron-donating 

properties of NHCs and does not provide details into the a-donating and TT-

7 



--1 · 

accepting properties of the ligands. Considering the results of Ni(COh(L) 

complexes68
, where L is either an NHC or a phosphine, the lower-energy 

stretching frequencies of NHC-bearing metal carbonyls suggests that NHC are 

stronger donating ligands than phosphines (Table 1.1 ). 

Table 1.1. IR values for the CO stretching frequencies of Ni{C0)3{L) 
complexes6

a 

Ligand (L) 
I Mes 
SI Mes 
I Pr 
Pt8U3 
PCy3 
PPh3 

2050.7 
2051.5 
2051.5 
2056.1 
2056.4 
2068.4 

Vco(E) 
1969 
1970 
1070 
1971 
1973 
1990 

Along with experimental evidence of the strong NHC-metal bond, there are 

numerous computational reports further supporting this trend. Considerable work 

has been reported using the bond dissociation energies (BDE) of various ligands 

and metals, and the trend that NHCs are stronger electron-donating ligands than 

phosphines is observed.68
'
13

•
11

-
18 

The combination of strong a-donating, weak TT-accepting ligands forming 

robust ligand-metal interactions, and the ability of the ligands to be tuned 

sterically and electronically has resulted in the widespread use of NHCs in 

transition metal chemistry.18'1c-e.3a.b,Bb, 11 b·13-14•19 The dynamic role of NHCs as 

ancillary ligands can be illustrated by the seemingly endless examples of NHC-

coordination to almost all transition metals. NHC-bearing metal complexes have 

been known to facilitate a vast range of organic transformations and have played 

an integral part of homogenous catalysis for decades. 
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1.4 Reactivity of N-heterocyclic carbenes toward azides 

As previously mentioned, N-heterocyclic carbenes have been coordinated 

to a variety of metals and have played a dominant role in the evolution of ligand 

design in organometallic catalysis. In addition to their coordination to transition 

metals, the reactivity of NHCs towards main group elements has garnered much 

attention. Over the last decade, the reactivity of NHCs towards azides has been 

explored and resulted in a new family of ligands, imidazol-2-imide.20 These 

monoanionic ligands have garnered considerable attention because of their 20, 

4rr-electron-donor capability, thus making them isoelectronic analogues of 

cyclopentadienyl and aryloxide ligands. In addition to the successful coordination 

of the imidazol-2-imide ligands to a variety of transition metals, the imidazol-2-

imine form of this novel class of ligand has been used as a ligand scaffold for 

developing neutral and anionic multidentate ligands.21 Tamm first reported the 

successful reaction between an NHC and trimethylsilyl azide to generate an N­

silylated 2-iminoimidazoline.20
b·

22 

I\ 
N N TMS-N3 

R...- "'-./ ..._R 
• • toluene, 120°C 24-72 hr 

I\ 
...-NYN..._ R R 

I 
TMS/ 

N 

MeOH 

RT,2 hr 

I\ R--NyN..._R 
NH 

Scheme 1.4.1. General synthesis of N-silylated 2-iminoimidazoline and 

imidazol-2-imine 

The previously reported synthesis of imidazol-2-imide ligands involved 2-imino-

1,3-dimethylimidazoline, which was generated using a lengthy synthetic protocol 

9 



from 2-aminoimidazole.208
•
23 The synthetic strategy of treating NHCs with azides 

was inspired by the facile synthesis of silylated phosphoraneimines.24 Thus, the 

synthesis of N-silylated 2-iminoimidazoline involves treating the free imidazolin-2-

ylidene ligand with trimethylsilyl azide in boiling toluene for 24-72 h, depending 

on the carbene being used.20
b·

22 Two mesomeric structures can be drawn for the 

imidazol-2-imide ligand, where the imidazolium ring can stabilize a positive 

charge, thus leading to an increased negative charge on the nitrogen atom, 

creating a stronger electron-donating ligand (Figure 1.4.2). 

-2 

Figure 1.4.2. The mesomeric structures for imidazol-2-imide 

The solid-state X-ray structure of N-silylated 1,3-di-terl-butylimidazolin-2-imine 

suggests electron delocalization. The exocylic C-N bond length of 1.275(3) A for 

the ligand is shorter than a C-N single bond and longer than a C=N double bond, 

suggesting the ylidic mesomeric structure.20
b·

22 These ligands have been used as 

monoanionic ancillary ligands for the synthesis of metal complexes for 

homogenous catalysis. 25 

1.5 Reactivity of N-heterocyclic carbenes towards chalcogens 

lmidazole-2-thiones have been known for many years and have been 

used as an ancillary ligand for transition metal catalysis.26 One convenient route 
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to forming imidazole-2-thiones involves reacting imidazole-2-ylidenes with 

elemental cyclooctasulfur to form the desired thione adduct.268
•
27 This synthetic 

methodology can be extended to include other chalcogens (Figure 1.5.1 ).19 

F\ 
R,--N"./N........_R + 1/x Chx • 

•• 
Ch = S, Se or Te 

Figure 1.5.1. General reaction of imidazole-2-ylidene and chalcogens 

Carbene-chalcogen adducts can be drawn using two mesomeric structures 

where the imidazolium ring can stabilize a positive charge, thus leading to an 

ylidic-type structure and creating a stronger electron-donating ligand (Figure 

1.5.2). 

Figure 1.5.2. The mesomeric structures for carbene-chalcogen adducts 

The solid-state X-ray structure of IMes=S offers some insight into nature of the 

carbon-sulfur bond. The carbon-sulfur bond for IMes=S is 1.6756(18) A is longer 

than a C=S bond (1.61 A) and shorter than a C-S bond (1.81 A), thus indicating 

it is not true double bond character.21
-
28 In the cases of Se and Te carbene 

adducts, a similar trend is observed for the X-ray structures where the C-Ch 

bond is longer than the corresponding C=Ch double bond. The longer C-Ch 
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bond is a result of electron delocalization from the imidazole ring to the 

chalcogen atom, resulting in a polarized compound. The presence of electron 

delocalization is further supported by 125Te and 77Se solution NMR data. High-

field 125Te and 77Se resonances for the corresponding compounds compared to 

other selenium and tellurium species suggests a higher degree of shielding.19
-
20 

This delocalization of electron density illustrates the usefulness of these 

compounds as strong electron-donating ancillary ligands. 

1.6 Reactivity of N-heterocyclic carbenes towards pnictinidenes 

Despite the overwhelming success and usefulness of carbene-

chalcogens, specifically imidazole-2-thiones, there has been little interest in 

utilizing carbene-pnictindenes as potential ligands.29 Inspired by the synthesis of 

imidazole-2-thiones, Arduengo decided to react nucleophilic imidazol-2-ylidenes 

with cycloarylpnictinidenes to form carbene-pnictinidene adducts (Figure 

1.6.1 ).29a 

F\ F\ 
Mes....-N~N......._Mes + 1/x (R-Pn)x • 

•• 
Pn =Por As 

R = C6H5, C6F5 or CF3 

....-N N......._ 
Mes y Mes 

,........Pn 
R 

Figure 1.6.1. General synthesis of carbene-pnictinidene adducts 

Similar to imidazol-2-imides and carbene-chalcogens, carbene-pnictinidenes can 

be drawn using two mesomeric structures. Within these structures, the 

imidazolium ring can stabilize a positive charge leading to an increased negative 

charge on the phosphorus or arsenic atom, creating a stronger electron-donating 
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ligand (Figure 1.6.2). 

I\ I\ 

Figure 1.6.2. The mesomeric structures for carbene-pnictinidene adducts 

The strongly polarized nature of the carbene-phosphinidene is apparent with the 

high-field 31 P chemical shifts. Typical 31 P nuclei in phosphaalkenes resonate 

downfield of 5 200 ppm, where as the IMes=PPh carbene-phosphinidene 

resonates at 5 -23 ppm.298
•
30 This upfield 31 P chemical shift is due to a highly 

shielded phosphorus atom, a result of TT-donation from the imidazole ring. The 

presence of TT-donation from the imidazole ring is further supported by the 

difference in 31 P chemical shifts between the IMes=PPh (5 -23 ppm) and 

SIMes=PPh (5 -12 ppm). The difference in 31 P chemical shifts between the 

unsaturated and saturated ring illustrates the effectiveness of the unsaturated 

imidazole ring at stabilizing a positive charge, resulting in a greater charge 

polarization. The solid-state X-ray structure of IMes=PPh, the P-C bond (1.763 

A)298 of the azole is slightly shorter than a P-C single bond (1.843 A)28
b, but 

longer than the P-C double bonds of phosphaalkenes (166).288 Once again, this 

single-bond character is likely a result of electron delocalization from the 

imidazole ring to the phosphorus atom. Solution-NMR spectroscopy and solid-

state X-ray analysis show a strongly polarized carbene-phosphinidene, which 
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yields a promising strong electron-donating ancillary ligand for transition metal 

chemistry. 

1. 7 Scope of the thesis work 

The work included in this thesis is aimed at utilizing the unique reactivity of 

N-heterocyclic carbenes to develop novel, robust catalysts to mediate organirc 

transformations. The multi-faceted work within this thesis explores the use of 

NHCs as ancillary ligands on early and late transition metals as potential 

catalysts for olefin polymerization and ring-closing metathesis, respectively. This 

work also includes exploring the synthesis and coordination of ancillary ligands 

derived from the unique reactivity of NHCs towards azides, chalcogens and 

pnictinidenes. The reactivity of a novel aryl-substituted acyclic imino-N­

heterocyclic carbene to early transition metals, cyclooctasulfur and Grubbs-type 

ruthenium benzylidene complexes was explored. The reactivity of imidazol-2-

imide towards Grubbs-type ruthenium benzylidene complexes and the synthesis 

and coordination of a novel group of ligands bearing an imidazol-2-imine scaffold 

were also explored. Lastly, this work will include the reactivity of IMes=PPh to 

Grubbs-type ruthenium benzylidene complexes. 

1.8 References 

1 a) P. L. Arnold and I. J. Casely, Chem. Rev. 2009, 109, 3599; b) D. Bourissou, 

0. Guerret, F. P. Gabba"i and G. Bertrand, Chem. Rev. 2000, 100, 39; c) S. Diez­

Gonzalez, N. Marion and S. P. Nolan, Chem. Rev. 2009, 109, 3612; d) D. 

14 



Enders, 0. Niemeier and A. Henseler, Chem. Rev. 2007, 107, 5606; e) G. C. 

Fortman and S. P. Nolan, Chem. Soc. Rev. 2011, 40, 5151. 

2 A. J. Arduengo, Ill, R. L. Harlow and M. Kline, J. Am. Chem. Soc. 1991, 113, 

361. 

3 a) F. E. Hahn and M. C. Jahnke, Angew. Chem., Int. Ed. 2008, 47, 3122; b) N. 

Marion, S. Diez-Gonzalez and S. P. Nolan, Angew. Chem., Int. Ed. 2007, 46, 

2988; c) M. C. Perry and K. Burgess, Tetrahedron: Asymmetry 2003, 14, 951. 

4 a) T. Drage and F. Glorius, Angew. Chem., Int. Ed. 2010, 49, 6940; b) A. M. 

Voutchkova, L. N. Appelhans, A. R. Chianese and R. H. Crabtree, J. Am. Chem. 

Soc.2005, 127, 17624. 

5 W. A. Herrmann, Angew. Chem., Int. Ed. 2002, 41, 1290. 

6 a) R. Dorta, E. D. Stevens, N. M. Scott, C. Costabile, L. Cavallo, C. D. Hoff and 

S. P. Nolan, J. Am. Chem. Soc. 2005, 127, 2485; b) R. Dorta, E. D. Stevens, N. 

M. Scott, C. Costabile, L. Cavallo, C. D. Hoff and S. P. Nolan, J Am Chem Soc 

2005, 127, 2485; c) D. G. Gusev, Organometallics 2009, 28, 6458. 

7 A. Poater, B. Cosenza, A. Correa, S. Giudice, F. Ragone, V. Scarano and L. 

Cavallo, Eur. J. lnorg. Chem. 2009, 1759. 

8 a) R. L. Lord, H. Wang, M. Vieweger and M.-H. Baik, J. Organomet. Chem. 

2006, 691, 5505; b) C. Lujan and S. P. Nolan, J. Organomet. Chem. 2011, 696, 

3935; c) C. A. Urbina-Blanco, X. Bantreil, H. Clavier, A. M. Z. Slawin and S. P. 

Nolan, Beilstein J. Org. Chem. 2010, 6, 1120. 

9 R.H. Crabtree, J. Organomet. Chem. 2005, 690, 5451. 

15 



10 F. E. Hahn and M. C. Jahnke, Angew. Chem., Int. Ed. 2008, 47, 3122. 

11 a) J. C. Garrison and W. J. Youngs, Chem. Rev. 2005, 105, 3978; b) I. J. B. 

Lin and C. S. Vasam, Coord. Chem. Rev. 2007, 251, 642. 

12 a) M. R. L. Furst and C. S. J. Cazin, Chem. Commun. 2010, 46, 6924; b) A. C. 

Badaj and G. G. Lavoie, Organometallics 2012, 31, 1103; c) J. A. Thagfi and G. 

G. Lavoie, Organometallics 2012, 31, 7351; d) W.W. N. 0, A. J. Lough and R.H. 

Morris, Organometallics 2009, 28, 6755. 

13 H. Jacobsen, A. Correa, A. Poater, C. Costabile and L. Cavallo, Coord. Chem. 

Re~2009, 253,687. 

14 X. Hu, I. Castro-Rodriguez, K. Olsen and K. Meyer, Organometallics 2004, 23, 

755. 

15 a) S. Diez-Gonzalez and S. P. Nolan, Coord. Chem. Rev. 2007, 251, 874; b) 

W. A. Herrmann, J. Schutz, G.D. Frey and E. Herdtweck, Organometallics 2006, 

25, 2437; c) R. A. Kelly Iii, H. Clavier, S. Giudice, N. M. Scott, E. D. Stevens, J. 

Bordner, I. Samardjiev, C. D. Hoff, L. Cavallo and S. P. Nolan, Organometallics 

2007, 27, 202; d) S. Fantasia, J. L. Petersen, H. Jacobsen, L. Cavallo and S. P. 

Nolan, Organometallics 2007, 26, 5880. 

16 M. Srebro and A. Michalak, lnorg. Chem. 2009, 48, 5361. 

17 R. Dorta, E. D. Stevens, C. D. Hoff and S. P. Nolan, J. Am. Chem. Soc. 2003, 

125, 10490. 

16 



18 a) L. Cavallo, A. Correa, C. Costabile and H. Jacobsen, J. Organomet. Chem. 

2005, 690, 5407; b) N. M. Scott and S. P. Nolan, Eur. J. lnorg. Chem. 2005, 

2005, 1815. 

19 W. A. Herrmann and C. Kocher, Angew. Chem., Int. Ed. 1997, 36, 2162. 

20 a) N. Kuhn and A. Al-Sheikh, Coard. Chem. Rev. 2005, 249, 829; b) M. 

Tamm, D. Petrovic, S. Randoll, S. Beer, T. Bannenberg, P. G. Jones and J. 

Grunenberg, Org. Biomol. Chem. 2007, 5, 523. 

21 a) S. Dastgir and G. G. Lavoie, Dalton Trans. 2010, 39, 6943; b) S. Dastgir 

and G. G. Lavoie, Dalton Trans. 2012, 41, 9651; c) M. B. Harkness, E. Alvarado, 

A. C. Badaj, B. C. Skrela, L. Fan and G. G. Lavoie, Organometallics 2013, 32, 

3309; d) T. K. Panda, C. G. Hrib, P. G. Jones, J. Jenter, P. W. Roesky and M. 

Tamm, Eur. J. lnorg. Chem. 2008, 4270; e) D. Petrovic, T. Bannenberg, S. 

Randoll, P. G. Jones and M. Tamm, Dalton Trans. 2007, 2812; f) D. Petrovic, T. 

Gloege, T. Bannenberg, C. G. Hrib, S. Randoll, P. G. Jones and M. Tamm, Eur. 

J. lnorg. Chem. 2007, 3472. 

22 M. Tamm, S. Randoll, T. Bannenberg and E. Herdtweck, Chem. Commun. 

2004, 876. 

23 a) N. Kuhn, R. Fawzi, M. Steimann, J. Wiethoff, D. Blaeser and R. Boese, Z. 

Naturforsch., B: Chem. Sci. 1995, 50, 1779; b) N. Kuhn, M. Grathwohl, M. 

Steimann and G. Henkel, Z. Naturforsch., B: Chem. Sci. 1998, 53, 997. 

24 a) K. Dehnicke and F. Weller, Coard. Chem. Rev. 1997, 158, 103; b) D. W. 

Stephan, J. C. Stewart, F. Guerin, S. Courtenay, J. Kickham, E. Hollink, C. 

17 



Beddie, A. Hoskin, T. Graham, P. Wei, R. E. v. H. Spence, W. Xu, L. Koch, X. 

Gao and D. G. Harrison, Organometallics 2003, 22, 1937; c) N. L. S. Yue and D. 

W. Stephan, Organometallics 2001, 20, 2303. 

25 a) W. Apisuk, A. G. Trambitas, B. Kitiyanan, M. Tamm and K. Nomura, J. 

Po/ym. Sci., Part A: Polym. Chem. 2013, 51, 2575; b) S. Beer, K. Brandhorst, J. 

Grunenberg, C. G. Hrib, P. G. Jones and M. Tamm, Org Lett 2008, 10, 981; c) S. 

Beer, K. Brandhorst, C. G. Hrib, X. Wu, B. Haberlag, J. Grunenberg, P. G. Jones 

and M. Tamm, Organometallics 2009, 28, 1534; d) S. Beer and M. Tamm, 2007, 

pp. INOR; e) A. Gloeckner, T. Bannenberg, C. G. Daniliuc, P. G. Jones and M. 

Tamm, lnorg. Chem. 2012, 51, 4368; f) B. Haberlag, X. Wu, K. Brandhorst, J. 

Grunenberg, C. G. Daniliuc, P. G. Jones and M. Tamm, Chem. - Eur. J. 2010, 

16, 8868; g) S. Lysenko, C. G. Daniliuc, P. G. Jones and M. Tamm, J. 

Organomet. Chem. Ahead of Print; h) K. Nomura, H. Fukuda, W. Apisuk, A. G. 

Trambitas, B. Kitiyanan and M. Tamm, J. Mo/. Cata/. A: Chem. 2012, 363-364, 

501; i) S. H. Stelzig, M. Tamm and R. M. Waymouth, J. Polym. Sci., Part A: 

Po/ym. Chem. 2008, 46, 6064; j) M. Tamm and S. Randoll, 2006, pp. INOR; k) M. 

Tamm, S. Randoll, E. Herdtweck, N. Kleigrewe, G. Kehr, G. Erker and B. Rieger, 

Dalton Trans. 2006, 459; I) M. Tamm, S. Randoll, E. Herdtweck, N. Kleigrewe, G. 

Kehr, G. Erker and B. Rieger, Dalton Trans 2006, 459; m) A. G. Trambitas, D. 

Melcher, L. Hartenstein, P. W. Roesky, C. Daniliuc, P. G. Jones and M. Tamm, 

lnorg. Chem. 2012, 51, 6753; n) A.G. Trambitas, T. K. Panda, J. Jenter, P. W. 

Roesky, C. Daniliuc, C. G. Hrib, P. G. Jones and M. Tamm, lnorg. Chem. 2010, 

18 



49, 2435; o) A. G. Trambitas, T. K. Panda, J. Jenter, P. W. Roesky, C. Daniliuc, 

C. G. Hrib, P. G. Jones and M. Tamm, lnorg Chem 2010, 49, 2435. 

26 a) E. Alvarado, A. C. Badaj, T. G. Larocque and G. G. Lavoie, Chem. - Eur. J. 

2012, 18, 12112; b) Y.-B. Huang, W.-G. Jia and G.-X. Jin, J. Organomet. Chem. 

2008, 694, 86; c) W.-G. Jia, Y.-B. Huang, Y.-J. Lin and G.-X. Jin, Dalton Trans. 

2008, 5612; d) W.-G. Jia, Y.-B. Huang, Y.-J. Lin and G.-X. Jin, Dalton Trans 

2008, 5612; e) W.-G. Jia, Y.-B. Huang, Y.-J. Lin, G.-L. Wang and G.-X. Jin, Eur. 

J. lnorg. Chem. 2008, 4063; f) M. Slivarichova, R. Ahmad, Y.-Y. Kuo, J. Nunn, M. 

F. Haddow, H. Othman and G. R. Owen, Organometallics 2011, 30, 4779. 

27 J. Huang, H.-J. Schanz, E. D. Stevens, S. P. Nolan, K. B. Capps, A. Bauer 

and C. D. Hoff, lnorg. Chem. 2000, 39, 1042. 

28 a) P. Pyykkoand M. Atsumi, Chem. Eur. J. 2009, 15, 12770; b) P. Pyykkoand 

M. Atsumi, Chem. Eur. J. 2009, 15, 186. 

29 a) A. J. Arduengo, Ill, J. C. Calabrese, A. H. Cowley, H. V. R. Dias, J. R. 

Goerlich, W. J. Marshall and B. Riegel, lnorg. Chem. 1997, 36, 2151; b) A. J. 

Arduengo, Ill, C. J. Carmalt, J. A. C. Clyburne, A. H. Cowley and R. Pyati, Chem. 

Commun. 1997, 981; c) 0. Back, M. Henry-Ellinger, C. D. Martin, D. Martin and 

G. Bertrand, Angew. Chem., Int. Ed. 2013, 52, 2939; d) G. Frison and A. Sevin, 

J. Organomet. Chem. 2002, 643-644, 105. 

30 a) F. Mathey, Acc. Chem. Res. 1992, 25, 90; b) J. F. Nixon, Chem. Rev. 

1988, 88, 1327. 

19 



Chapter 2 Aryl-Substituted Acyclic lmino-N-Heterocyclic Carbene: 

Coordination to Early Transition Metals 

2.0 Preface 

This chapter is comprised of three reformatted and slightly modified peer­

reviewed journal publications: New Stable Aryl-Substituted Acyclic lmino-N­

Heterocyclic Carbene: Synthesis, Characterisation and Coordination to Early 

Transition Metals; T. G. Larocque, A. C. Badaj, S. Dastgir and G. G. Lavoie 

Dalton Transactions 2011, 40(47), 12705-12712; Coordination and Reactivity 

Study of Titanium Phenoxo Complexes Containing a Bulky Bidentate lmino-N­

Heterocyclic Carbene Ligand; T. G. Larocque and G. G. Lavoie J. Organometal. 

Chem. 2012, 715, 26-32.; N-Heterocyclic Carbenes and lmidazole-2-thiones as 

Ligands for the Gold{l)-Catalysed Hydroamination of Phenylacetylene; E. 

Alvarado, A. C. Badaj, T. G. Larocque and G. G. Lavoie, Chemistry - A 

European Journal 2012, 18, 12112. 

2.1 Introduction 

As outlined in Chapter 1, NHCs have played an increasingly important 

role in organometallic chemistry and catalysis. 1 These carbenes, which are 

. excellent a-donors and poor TT-acceptors, impart excellent thermodynamic 

stability to transition metal complexes.2 In many cases, replacement of 

phosphine ligands with NHCs has resulted in enhanced thermal stability and 

catalytic activities.3 This observation has led to widespread applications of 

NHCs in transition metal complex-mediated organic transformations. However, 
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despite the large number of various catalysts that have been developed for 

the polymerization of olefins,4
•
5

•
6

•
7 very little work has been reported on the 

use of NHCs in such catalysts.a Included in previously reported NHC-based 

catalysts are mono and dianionic, multidentate ligand systems.a Of these 

previously reported catalysts, some show exception catalytic activity towards 

oligomerization of ethylene.9 

Figure 2.1. General representation of multidentate NHC-based ligands on 

early transition metals 

The Lavoie group became interested in preparing and studying NHC 

analogues of the bulky a-diimines and 2,6-diiminopyridines to address the 

poor thermal stability of these systems. 10
·
11 Although these late transition 

metal complexes produce high-molecular-weight polyethylene in good rates, 

their performance decreases dramatically at temperatures greater than 50 °C 

due to thermal decomposition.12 Introduction of the NHC fragment in the 

ligand scaffold thus offers the potential to mitigate this important shortcoming 

of these systems. 
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We have previously described the synthesis and full characterization of 

the imidazolium salts A and B, and the corresponding Ag(I) and Cu,I) 

complexes. 13
•
14 

A B 

R1 = Me; R2 = Me, Ph; R3 = H, Me 

Figure 2.1. General representation of imidazolium salts A and B 

Salts similar to A, where either aryl ring is replaced by an alkyl group have been 

reported by other groups and used to prepare late transition metal complexes for 

studying various catalytic reactions, including Suzuki-Miyaura cross-coupling and 

cyclopropanation.15 However, considering the significance of steric bulk in the a-

diimine system to achieve high-molecular weight polymers, 10 we decided to 

investigate the effect of having two aryl rings close to the coordination site in 

ligand scaffold (Figure 2.2). 
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A R 
Ar-' N '-./ N--(.' 

.. \\ 
N..._Ar' 

Figure 2.2. General representation of the iminocarbene ligand 

Considering the ubiquity of early transition metal catalysts in olefin 

polymerization,4·7•
16

•
17

·
18 in this chapter, I describe the synthesis and structural 

characterization studies with free carbene, C"lmine, focused on Group 4 and 6 

metals in their common oxidation states. As such, I describe the synthesis and 

isolation of the corresponding titanium, zirconium, hafnium and chromium metal 

halides. I also describe the synthesis and isolation of the corresponding titanium 

aryloxo complexes and the attempted synthesis of titanium imido complexes in 

hopes of generating five- and six-coordinate metal dichloride complexes that are 

commonly used as olefin oligomerisation and polymerization catalysts.4·6•
7

•
15

•
16

•
19 

2.2. Results and Discussion 

2.2.1 Coordination of CAlmine to Early Transition Metal Halides 

2.2.1.1. Coordination of CAlmine to titanium 

Addition of one equivalent of C"lmine to TiCl4(THF)2 in THF afforded 

TiCl4(C"lmine) (2.1) as a spectroscopically pure yellow powder in excellent 

yield (91%). 
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F\ tBu MCI (THF) F\ tBu 
N N-( n x N Ny Mes.....- ~ Mes.....- y . . I toluene or THF I 

N'\. MCln(THF)y/N'\. 
DMP DMP 

Mes = 2,4,6-trimethylphenyl; DMP = 2,6-dimethylphenyl 

M =Ti; n = 4 (2.1), 3 (2.2) 
M = Zr; n = 4 (2.3) 
M = Hf; n = 4 (2.4) 
M = Cr; n = 3 (2.5), 2 (2.6) 

Scheme 2.1. Synthesis of group 4 and 6 metal halide complexes of 

CAlmine. 

The NMR spectrum is consistent with the desired product. A decrease in the 

C=N stretching frequency (vc=N 1609 cm-1) compared to the free ligand 

(vc=N 1662 cm-1) is observed, suggesting coordination of the imine nitrogen to 

the metal centre. Compound 2.1 crystallises in the P21/n space group, with the 

ligand coordinated in a bidentate fashion through the central imidazol-2-

ylidene carbon and the imine nitrogen, forming a distorted octahedral complex 

(Figure 2.3). 
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C21 

C9 

Figure 2.3. ORTEP plot (50% probability level) of 2.1. 

Hydrogen atoms and dichloromethane omitted for clarity. 

The observed increase in the imine bond length upon coordination from 

1.266(3) to 1.287(6) A is in agreement with the corresponding decrease in IR 

stretching frequency. The equatorial plane formed by Ti1, C1, N3, Cl1 and Cl4 

atoms is almost perfectly orthogonal to the plane formed by Ti1, Cl2 and Cl3, 

and by those formed by the xylyl and mesityl rings, with respective angles of 

89.47°, 88.77° and 89.09°. Other atoms such as N1, N2, C2, C3, C4, CS, C6, 

and C14 also lie on the equatorial plane defined above. The Cl2-Ti1-Cl3 

bond angle is 165.21 (7) 0 with both chlorine atoms bent towards C1 at an 

average angle of 82.75° and with chloride-carbenic carbon distances of 2.921 

and 2.967 A, considerably shorter than the sum of the van der Waals radii for 

both atoms (3.45 A).20 This could possibly arise from intermolecular 

interactions between the formally vacant p orbital on C1 and the lone pairs of 
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the adjacent chlorides. 21 Alternatively, the bending of Cl2 and Cl3 towards the 

carbene centre may be the result of repulsions between lone pairs on the 

other two adjacent chlorine atoms, as proposed by Arnold for a comparable 

highly congested d0 system.22 The trans effect of the strong carbene a-donor 

is manifested by the longer Ti1-Cl4 (2.2808(16) A), compared to Ti1-Cl11 

(2.2370(16) A). Selected bond lengths and angles for 2.1 and other 

compounds are listed in Table 2.1. 

The corresponding Ti(lll) complex 2.2 was prepared by a synthetic 

route similar to that used for 2.1 and was isolated as a purple solid. The 

solution magnetic susceptibility of 2.2 was determined to be µeff = 1.65 µ6 

using the Evans method,23 consistent with the predicted value (µett(spin only) 

= 1.73) for one unpaired electron. X-ray quality crystals were obtained from 

vapour diffusion of pentane into a saturated THF solution (Figure 2.4). 

TiCb(C"lmine) (2.2) crystallised as a THF adduct in the I 41/a space group 

with an elongated C4-N3 bond length of 1.280(3) A, in agreement with the 

corresponding C=N stretching frequency of 1607 cm-1
. 
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Table 2.1. Selected bond lengths and angles for compounds CAlmine, 2.1, 
2.2, 2.3 and 2.5 

CAlmine 2.1 2.2 2.3 2.5 
bond length (A) 

M-C1 2.167(5) 2.178(3) 2.297(17) 2.041(4) 
M-N3 2.358(4) 2.282(2) 2.479(14) 2.156(3) 
M-Cl1 2.2370(16) 2.3139(9) 2.385(5) 2.2954(13) 
M-Cl2 2.2930(18) 2.4202(9) 2.419(5) 2.3596(12) 
M-Cl3 2.2775(18) 2.3595(9) 2.401 (5) 2.2985(12) 
M-Cl4 2.2808(16) 
N1-C1 1.380(3) 1.373(6) 1.374(3) 1.42(2) 1.380(5) 
N2-C1 1.354(3) 1.344(6) 1.336(3) 1.38(2) 1.345(5) 
N1-C4 1.444(3) 1.448(6) 1.431 (3) 1.35(2) 1.424(5) 
N3-C4 1.266(3) 1.287(6) 1.280(3) 1.38(2) 1.287(5) 
C2-C3 1.338(3) 1.329(8) 1.347(4) 1.19(3) 1.340(6) 

bond angle (deg) 
C1-M-N3 70.42(16) 71.37(9) 67.0(5) 75.50(14) 
N1-C4-N3 122.38(18) 112.3(4) 113.3(2) 112.8(15) 112.3(3) 
N1-C1-N2 101.48(19) 104.7(4) 104.9(2) 105.1(14) 105.0(3) 
C1-M-Cl1 97.18(14) 97.65(8) 100.1 (4) 97.53(11) 
C1-M-Cl2 83.34(15) 81.58(7) 82.85(13) 82.82(11) 
C1-M-Cl3 82.16(15) 98.61 (8) 155.0(4) 94.86(11) 
Cl1-M-Cl3 92.49(6) 92.96(3) 104.9(2) 91.48(5) 
C1-M-Cl4 158.65(14) 
Cl2-M-Cl3 165.21 (7) 171.63(4) 96.48(12) 175.77(5) 
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Figure 2.4. ORTEP plot (50% probability level) of 2.2. 

Hydrogen atoms omitted for clarity. 

The complex has a highly distorted octahedral geometry. The Ti1-C1 bond 

length of 2.178(3) A is within expected values and comparable to that 

observed in 2.1. Interestingly, the vector formed by that bond is 11.5° off the 

plane of the imidazole ring. Moreover, the N1-C4-N3-C6 torsion angle is 

163.95°, about 16° off the expected 180° value. The added bulk coming from 

the coordinated THF is likely contributing to these peculiar values. We believe 

that this increased steric bulk significantly influences other atom positions. In 

fact, the C1-Ti1-Cl3 bond angle is obtuse with a value of 98.61 (8)°. Although 

the bond angle for C1-Ti1-Cl2 is 81.58(7) 0 and comparable to the 

corresponding values observed in 2.1, both Cl2 and Cl3 point directly towards 
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N3, further supporting that the bending of the trans chlorine atoms in 2.1 

towards C 1 may be strictly due to steric reasons and not electronic ones, as 

also previously proposed by Arnold.22 As expected, all metal-chloride bonds in 

2.2 are longer than in the corresponding more electropositive and less 

sterically-congested Ti(IV) complex 2.1. Other bond lengths and angles are 

within normal range. 

2.2.1.2. Coordination of free carbene to zirconium and hafnium 

The zirconium (2.3) and hafnium (2.4) complexes were prepared in an 

analogous manner and isolated as white powders in yields of 67% and 73%, 

respectively. The NMR spectroscopic data for both complexes were consistent 

with the desired products and are similar to those for the titanium homologue 

2.1. The C=N stretching frequency for 2.3 and 2.4 were observed at 

1606 cm-1 and 1604 cm-1
, respectively, indicating a bidentate coordination 

motif. Coordination of the ligand through the carbene and the imine nitrogen 

was further corroborated for 2.3 through its X-ray structure (Figure 2.5). 
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Figure 2.5. ORTEP plot (50% probability level) of 2.3. 

Hydrogen atoms omitted for clarity. 

Compound 2.3 exhibits a distorted octahedral coordination geometry. In 

contrast to 2.1, it crystallises in the Pnma space group, with the molecule lying 

on t.he crystallographic mirror plane orthogonal to the xylyl and to the mesityl 

rings, and passing through the imidazol-2-ylidene ring, as well as through C4, 

CS, C17, N3, Zr1, Cl1 and Cl3. All bond lengths involving the Zr(IV) metal 

centre are on average 0.13 A longer than those observed in the corresponding 

Ti(IV) complex 2.1, in agreement with difference in covalent radii of both 

metals reported by Alvarez and Pyykko.24 The Zr1-C1 and Zr1-N3 bond 

lengths are 2.319(7) A and 2.483(5) A, respectively, with the zirconium­

carbene bond length similar to previously reported zirconium NHC 

complexes.25
·
26 As expected, the metal-chlorine bond trans to the strong 
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carbene a-donor is slightly longer (2.407(2)A) than the one trans to the imine 

(2.384(2)A). Cl2 and its crystallographically-equivalent Cl2a are bent towards 

C1 at an 82.85(13)0 angle, similar to that observed for 2.1, with a carbon­

chlorine distance of 3.136 A, possibly simply due to sterics considerations 

based on our previous observations for both Ti(lll) (2.1) and Ti(IV) (2.2) 

compounds. 

2.2.1.3. Coordination of free carbene to chromium 

The Cr(lll) (2.5) and Cr(ll) (2.6) complexes were prepared from the 

corresponding THF adduct metal halide precursors in 89% yield. In both 

cases, the complexes were purified by recrystallisation from THF under N2 at 

-35 °C. Complexes 2.5 and 2.6 are both paramagnetic with a solution 

magnetic susceptibility of 3.81 and 2.90 µB (Evans Method), respectively, 

consistent with the predicted values for systems with three (~tt(spin only) = 

3.87 µs) and two (2.83 µs) unpaired electrons. 

X-ray quality crystals were obtained for the trivalent chromium complex 

2.5 (Figure 2.6). The complex crystallised in the I 41/a space group as a THF 

adduct and is isostructural with the analogous Ti(lll) complex 2.2. 
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C21 

Figure 2.6. ORTEP plot (50% probability level) of 2.5. 

Hydrogen atoms and dichloromethane omitted for clarity. 

The vc=N stretching frequency of 1604 cm-1 is in good agreement with the 

observed C4-N3 bond length of 1.287(5) A and comparable to the values 

observed for 2.2. All other C-C and C-N bond lengths of the C"lmine ligand in 

2.5 are within experimental error of those observed in 2.2. In contrast, bond 

lengths between the metal centre and all six coordinating atoms are shorter 

than in the corresponding Ti(lll) complex. The observed Cr1-C1 and Cr1-N3 

bond lengths are in excellent agreement with the expected values based on 

the difference between the covalent radii of chromium (1.39 A) and titanium 

(1.60 A).24 This is in contrast to the observed values for Cr-Cl and Cr-0 

bonds that are on average only 0.06 A shorter than the corresponding bonds 
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in 2.2, presumably because of greater repulsive interaction between the rc­

electrons on the main elements and those in the metal drr -orbitals. 

Interestingly, as observed for 2.2, the vector formed by Cr1 and C1 is also off 

the plane of the imidazole ring by 10.7° and the N1-C4-N3-C6 torsion angle 

is 163.67°. Moreover, Cl2 and Cl3 are also leaning more towards N3 than C1. 

All other bond lengths and angles are within expected range and comparable 

to those observed in the analogous Ti(lll) complex 2.2. 

2.2.1.4. Ethylene polymerization catalysis 

The catalytic activities of compounds 2.1-2.6 towards ethylene 

polymerization in toluene were studied at atmospheric pressure and room 

temperature in the presence of 1000 equivalents of methylaluminoxane (~AO) 

as cocatalyst. ZrCl4(C"lmine) (2.3) was found to be the most active of all three 

complexes tested with a productivity of 140 kg PE · mol M-1 
· h-1

, followed by 

the Ti(IV) homologue 2.1 at 40 kg PE · mol M-1 
· h-1

. Those productivities are 

three and two times greater than those observed in respective control 

experiments using ZrCl4(THF)2 and TiCl4(THF)2. Furthermore, they are only 

one to two orders of magnitude lower than those observed using zirconocene 

dichloride as the benchmark catalyst. Reaction with the other complexes 

reported herein did not lead to any significant amount of solid polymer. In all 

cases, no soluble waxes or low molecular weight oligomers were generated. 

The maximum melting endotherms for the polyethylene produced by 2.1 and 

2.3 were determined by differential scanning calorimetry and found to be 
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135.9 and 134.0 °C, respectively, indicative of linear polyethylene. 

These preliminary results were promising and suggested that further 

development of the catalysts should focus on both titanium and zirconium. 

2.2.5. Coordination and reactivity of CAlmine to titanium phenoxo 

complexes 

2.2.5.1 Synthesis of TiCl2(2,6-0CsHa-Me2)2(CAlmine) (2. 7) 

The early transition metal halide systems bearing C"lmine are ideally 

suited for further tailoring of the activity by incorporation of alkoxide (RO-), 

aryloxide (Aro-), amide (R2N-) or even imido (RN2-) ligands to form five- and six­

coordinate metal dihalide complexes. Such strategies of fine-tuning the 

performance of the catalyst by incorporating one of these ancillary ligands while 

retaining two chlorides for subsequent activation has been used to develop other 

highly active catalytic systems. 27 In view of the success of catalysts bearing 

aryloxo and imido ancillary ligands for a-olefin polymerization,5
c·

198·278·28 we chose 

to prepare titanium complexes of 1-(1-(2,6-dimethylphenylimino)-2,2-

dimethylpropyl)-3-(2,4,6-trimethylphenyl)imidazol-2-ylidene carbene (C"lmine) 

containing aryloxo or imido groups as ancillary ligands in an attempt to develop 

structure-property relationships for ethylene polymerization. 

Attempts to treat TiCl4(C"lmine) with two equivalents of Na(2,6-0C6H3-

Me2) under a variety of reaction conditions led to a mixture of reaction products. 

As a result, the TiCl2(2,6-0CsH3-Me2)2(THF)2 metal precursor was prepared and 

treated with one equivalent of C"lmine in toluene to give compound 2. 7 as an 

34 



orange powder in good yield (82%). The solution 1H NMR spectrum was 

consistent with the desired product. The presence of two ortho methyl 

resonances for the 2,6-dimethylphenoxide ligands at o 2.58 and 2.41 is a strong 

indication of the cis arrangement of these ligands. A decrease in the C=N 

stretching frequency from 1662 cm-1 for the free ligand to 1609 cm-1 for 2.7 

suggests coordination of the ligand to the metal centre in a bidentate mode 

through both the carbenoid carbon and the imine nitrogen atoms. A comparable 

decrease in stretching frequency was also observed in TiCl4(Cl\lmine) and other 

related early transition metal complexes.29 

F\ tBu 
Mes .... NvNI( 

1 _,c1 
~0-Ti:.--N,DMP 

Cl~I 
0 

~ 
2.7 

TiCli(O-DMP)i(THF)2 
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F\ F\ 
N N-(tBu TiCl2(1,2-0C6H40)(THF~ N NytBu 

Mes.... '-.,/ Mes.... y 
• • I toluene oco I 

N I ::;:; ''!i N 
'DMP 0 Ti-- 'DMP 

CAJmine Cl~ I 
Cl 

Mes= 2,4,6-trimethylphenyl 
DMP = 2,6-dimethylphenyl 

2.9 

Scheme 2.2. Synthesis of titanium complexes 2. 7 and 2.9 from free 

carbene, CAlmine. 
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Figure 2.6 ORTEP plot (50% probability) of 2. 7. 

Hydrogen atoms and a CH2Cl2 solvent molecule are omitted for clarity. 

In order to confirm the proposed structure of 2.7, we attempted to isolate 

single crystals suitable for X-ray crystallographic studies. Crystals of the desired 

product were successfully grown at -35 °C under nitrogen by slow liquid diffusion 

of pentane into a saturated CH2Cl2 solution. Analysis of the X-ray diffraction data 

confirmed the coordination of the ligand through the carbenoid carbon of the 

carbene and the imine nitrogen, with a C1-Ti1-N3 bite angle of 68.77(10)°, 

slightly smaller than that observed in TiCl4(C"lmine)29 (Figure 2.6). The structure 

shows both chloride atoms trans to each other. As expected, the titanium centre 

of 2.7 exhibits a pseudo-octahedral coordination geometry, commonly observed 
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in TiCl2(0Ar)2L2 complexes.30
·
31 Angles about the metal centre range from 

76.25(8) to 100.80(10)0 (Table 2.2). 

Upon coordination of C"lmine to titanium in 2.7, the C=N bond length 

increases slightly from 1.266(3) to 1.270(4) A, consistent with the observed 

decrease in the corresponding IR stretching frequency. The strong a-donating 

ability of the carbene gives rise to the trans influence and is illustrated by the 

longer Ti-02 bond trans to the carbene (1.821 (2) A), compared to that for Ti-01 

cis to the carbene (1.795(2) A). The Ti1-C1 and Ti1-N3 bond distances were 

determined to be 2.226(3) and 2.379(2) A, respectively. Both values are slightly 

greater than those observed in the tetrachloride complex TiCl4(C"lmine )29
, 

possibly due to the larger sterics of the phenoxide ligands or to its stronger trans 

influence compared to that of chlorides.32 Interestingly, both the Ti1-01-C26 and 

the Ti1-02-C34 bond angles are equivalent at 179.1(2)°. 

As expected, we see significant multiple bond character between the 

metal and the oxygen with the Ti1-01 (1.795(2) A) and Ti1-02 (1.821 (2) A) 

lengths closer to the expected bond distance of a Ti=O double bond (1.74 A) 

than of a Ti-0 single bond (1.99 A).24
a·33 The steric constraint imposed by the 

formation for the metallacycle leads to a yaw distortion of 10.0°, slightly higher 

than that observed in TiCl4{C"lmine) (9.1°)29 but considerably smaller than in 

square planar nickel complexes of C"lmine (14.5-15.7°)34
, further illustrating the 

effect of having a six-coordinate metal centre and sterically-demanding 

phenoxide ligands. 
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The xylyl and mesityl rings of CAlmine are almost orthogonal to the best 

plane formed by the imidazol-2-ylidene ring, at 82.40° and 89.26°, respectively. 

The phenoxide ring cis to the carbene is almost perfectly aligned with the mesityl 

ring, with a_ N2-C1-Ti1-01 torsion angle of 0.7(3) 0
• These two rings are also 

approximately coplanar, as evidenced by the small angle (3.4 °) between the 

mean planes formed by each ring. In contrast, the phenoxide ring trans to the 

carbene is neither well aligned nor coplanar with the xylyl ring of CAlmine, with a 

C6-N3-Ti1-02 torsion angle of 25.1(2)0 and an angle between the planes 

formed by each ring of 15.9°. 

Interestingly, previous attempts to grow crystals of 2.7 from slow liquid 

diffusion of pentane into a saturated THF solution at -35 °C resulted in the 

decomposition product 2.8, with two coordinated mesitylimidazole fragments 

bound to titanium cis to each other (Figure 2.7). Nucleophilic attack of 

adventitious water on the iminic carbon of the bidentate ligand, which has 

become a better electrophile through replacement of two chlorides in 

TiCl4(CAlmine) with the more electronegative phenoxide ligands, likely accounts 

for its decomposition to mesityl imidazole and N-(2,6-

dimethylphenyl)pivaloylamide. Interestingly, such cleavage of the N1-C4 bond 

has not been reported for more electron-rich late transition metal analogues.34 

Compound 2.8 was independently synthesized by reacting two equivalents of 1-

(2,4,6-trimethylphenyl)imidazole with TiCl2(2,6-0C6H3-Me2)2(THF)2. 
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Table 2.2. Selected bond lengths and angles for compounds TiCl4(CAlmine), 
2.7 and 2.9. 

TiCl4(C"lmine }29 2.7 2.9 
Bond lengths (A) 

Ti-C1 2.167(5) 2.226(3) 2.186(3) 
Ti-N3 2.358(4) 2.379(2) 2.336(3) 
Ti-Cl1 2.2370(16) 2.3844(9) 2.3427(9) 
Ti-Cl2 2.2930(18) 2.3245(9) 2.3064(10) 
Ti-Cl3 2.2775(18) 
Ti-Cl4 2.2808(16) 
Ti-01 1.795(2) 1.892(2) 
Ti-02 1.821 (2) 1.854(2) 
N1-C1 1.373(6) 1.375(4) 1.376(4) 
N2-C1 1.344(6) 1.344(4) 1.338(4) 
N1-C4 1.448(6) 1.431 (4) 1.441 (4) 
N3-C4 1.288(6) 1.270(4) 1.288(4) 
C2-C3 1.329(8) 1.329(4) 1.326(5) 

Bond angles (deg) 
C1-Ti-N3 70.42(16) 68.77(10) 70.20(10) 
N1-C4-N3 112.3(4) 113.3(3) 112.9(3) 
N1-C1-N2 104.7(4) 104.8(2) 105.0(3) 
C1-Ti-Cl1 97.18(14) 76.25(8) 82.07(8) 
Cl-Ti-Cl2 83.34(15) 83.47(8) 157.71(8) 
C1-Ti-Cl3 82.16(15) 
Cl1-Ti-Cl3 83.32(15) 
C1-Ti-Cl4 158.65(15) 
Cl2-Ti-Cl3 165.21 (7) 
C1-Ti-01 97.73(10) 88.97(10) 
C1-Ti-02 160.54(10) 99.83(10) 
01-Ti-02 100.80(10) 81.26(9) 
Cl1-Ti-01 97.17(7) 169.24(8) 
Cl1-Ti-02 95.49(7} 94.34(7} 
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Figure 2.7. ORTEP plot (50% probability) of 2.8. 

Hydrogen atoms are omitted for clarity. 

2.2.6. Synthesis of TiCl2(2,6-0CsH40)(CAlmine) (2.9) 

Cll 

Considering that the cis arrangement of chloride ligands is critical in the 

formation of active olefin polymerization catalysts, we decided to prepare the 

catecholate titanium complex, with the expectation that the desired cis-chloride 

isomer would be produced. Similar to our observations with compound 2.7, 

attempts to treat TiCl4(C"lmine) with one equivalent of Lb(2,6-0CsH40) under a 

variety of reaction conditions led to a mixture of reaction products. The TiCl2(2,6-
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OC6H40}(THF)2 metal precursor was thus prepared35 and treated with one 

equivalent of C"lmine in toluene to give compound 2.9 in good yield (84%) as a 

dark red powder (Scheme 2). Compound 2.9, like compound 2.7, has a lower 

C=N stretching frequency (vc=N 1610 cm-1
) than that of the free carbene, 

suggesting that the ligand is also coordinating through the imine nitrogen. 

C21 

Figure 2.8. ORTEP plot (50% probability) of 2.9. 

Hydrogen atoms and a pentane solvent molecule were omitted for clarity. 

Crystals of 2.9 suitable for single crystal X-ray diffraction were 

successfully grown at -35 °C under nitrogen by slow liquid diffusion of pentane 

into a saturated CH2Cl2 solution. X-ray crystallographic analysis confirmed the 

coordination of the ligand through both the central imidazol-2-ylidene carbon and 

the imine nitrogen, with a slightly larger C1-Ti1-N3 bite angle (70.20(10)0
) than 

that observed in 2.7, a result of replacing two 2,6-dimethylphenoxide ligands with 

41 



the smaller bidentate 2,6-catecholate (Figure 2.8). This allows for the C"lmine 

ligand to be closer to the metal centre, resulting in shorter Ti1-C1 and Ti1-N3 

bonds compared to those observed in 2.7. As expected, the titanium centre 

adopts a pseudo-octahedral coordination geometry with bond angles about the 

metal centre ranging from 70.20(10) to 99.83(10)0 (Table 1 ). 

As observed for compound 2. 7, coordination of C"lmine results in an 

increase in the C=N bond length from 1.266(3) to 1.288(4) A, which is in 

agreement with the related decrease in the C=N bond IR stretching frequency. 

The formation of the metallacycle leads to a yaw distortion of 9.0°. To our 

surprise, we qid not see elongation of the Ti1-Cl2 bond from the trans influence 

of the strong a-donating carbene. The Ti1-Cl1 and the Ti1-Cl2 bond lengths 

were determined to be 2.3427(9) and 2.3064(10) A, respectively and the longer 

Ti1-Cl1 bond length could be a result of steric crowding of the catecholate 

ligand. The 2,6-dimethylphenyl and 2,4,6-trimethylphenyl rings are twisted 88.87° 

and 80.97° off the imidazol-2-ylidene ring, respectively. The catecholate and 

mesityl rings are approximately coplanar with C14 lying over 02, with an angle 

between the best planes formed by each ring of 7 .94 ° and a C 14-02 distance of 

3.388 A. Lastly, the ipso carbon (C6) of the xylyl ring is in closer proximity to both 

Cl2 and C25, at 3.169 and 2.840 A, respectively. 

The solution 1 H NMR spectrum for compound 2.9 at room temperature 

was surprisingly more complicated than that of compound 2.7. Broad resonances 

in the aromatic region at b 6.41, 5.88 and 5.40 and in the benzylic region at b 

42 



2.47 and 1.58, each respectively integrating to 3, 1, 1, 9 and 3 protons were 

observed. The broad resonance at o 6.41 corresponds to the overlapping para 

and meta protons of the xylyl ring, while those at o 5.88 and 5.40 are the 

inequivalent meta protons of the mesityl ring. The resonance at o 2.47 

corresponds to the broad ortho methyl protons of the xylyl ring and to one of the 

two ortho methyl groups of the mesityl ring, with the second set of inequivalent 

ortho methyl protons resonating at o 1.58. The magnetic inequivalence of the 

protons for both the mesityl and xylyl rings, and the presence of broad 

resonances suggest restricted rotation for both aryl rings. 

This was further supported by variable-temperature NMR experiments 

(Fig. 5). A 1H NMR spectrum of 2.9 in CDC'3 was acquired at 21 °C. The 

temperature was gradually increased and spectra were recorded at 5 °C intervals 

up to a final temperature of 50 °C. Both meta proton resonances of the mesityl 

ring at o 5.88 and 5.40 coalesced at o 5.63 at approximately 40 °C, with 

estimated values for the rate constant and the free energy of activation (~Gt) of 

320 s-1 and 59 kJ mor1 at coalescence, respectively. The NMR spectrum 

recorded at 50 °C showed further line sharpening of this resonance and of that 

assigned to the meta aromatic protons of the xylyl (o 6.41 ). Interestingly, in 

addition to becoming sharper, the relative integration of the resonance at o 2.47 

decreased from the original 9 protons at room temperature to 6 protons at 50 °C, 

which were assigned to the methyl protons of the xylyl ring. The elevated 

temperature also resulted in broadening of the ortho methyl resonance from the 
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mesityl ring at o 1.58, indicating the beginning of coalescence with the other 

resonance for the magnetically-inequivalent methyl protons at o 2.47 (Figure 2.9). 

l _________ G~- 50°C 

45°C 

l 40°C 

35°C 

i 30°C 

21°C 

8.0 7.5 7.0 6.5 6.0 5.5 5.0 2.5 2.0 1.5 ppm 

Figure 2.9. Selected regions of the 1H NMR spectra (CDCb, 300 MHz) of 2.9 

at temperatures ranging from 21 to 50 °C. 

The restricted rotation likely results from the sterics about the 

hexacoordinate metal centre introduced by both the ortho-substituted aryl rings, 

the large tert-butyl group and by the rigid bidentate catecholate ligand. While 

distances of the ipso carbon (C6 and C14) of both aryl rings to nearby atoms 

(vide supra) may suggest a greater energy barrier for rotation of the xylyl ring 

compared to that of the mesityl ring, our variable-temperature experiments 

clearly indicate otherwise. This is reasonable considering that the dianionic 

catecholate ligand produces a stiff chelate with the metal centre and that the 
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neutral iminic nitrogen atom (N3) forms a weaker and more labile dative bond 

with the metal centre. Upon restoring the temperature of the solution back to 25 

°C, the original spectrum was restored, further supporting restricted rotation of 

both the xylyl and mesityl rings, and indicating no thermal decomposition. 

2.2.7. Attempted Synthesis of TiCl2(=N-R)(CAlmine) 

In an attempt to further expand the library of potential catalysts, we 

decided to prepare the titanium imido dichloride complex. Reaction of two 

equivalents of tert-butylamine with TiCl4(CA1mine) led to a mixture of reaction 

products despite the various reaction conditions and solvents (THF, . 

dichloromethane, chloroform) investigated. Attempts to separate the components 

of the reaction mixture were unsuccessful. In all cases, the resulting spectra 

contained a number of unidentified species. All spectra interestingly showed the 

same two characteristic resonances of equal intensity at & 8.6 and 8.3 also 

observed for the decomposition product 2.8. 

As a result, we decided to adopt the same strategy used in the preparation 

of 2. 7 and 2.9 and to attempt simple ligand displacement reactions with titanium 

imido precursors containing a labile ligand. Thus, TiCl2(tert-butylimido)(NHMe2)2, 

TiCl2(tert-butylimido )(py)3, TiCl2(tert-butylimido )(TM EDA) and TiCli(tert­

butylphenylimido )(TM EDA) were prepared30
•
36 and each one was treated with 

one equivalent of CAlmine in several solvents (THF, toluene, diethyl ether and 

chloroform) and at various reaction conditions. In all cases, a complex mixture of 

unidentified compounds was generated and attempts to isolate the components 
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were unsuccessful. The 1 H NMR spectra displayed the same distinctive 

downfield resonances reported above. We believe that upon coordination to the 

electropositive titanium centre, the C=N bond becomes more electrophilic and 

more susceptible to nucleophilic attack, thus resulting in decomposition. This 

decomposition pathway might be mitigated in compounds 2. 7 and 2.9 thanks to 

the bulkier hexacoordinate metal centres and to the greater electron-donating 

capabilities of two phenoxide ligands, compared to one single imido ligand. 

2.2.8. Ethylene polymerization catalysis 

The catalytic activities of compounds 2.7 and 2.9 towards ethylene 

polymerization in toluene were studied at atmospheric pressure and room 

temperature in the presence of 1000 equivalents methylaluminoxane (MAO) as 

cocatalyst. In both cases, only trace amounts of polyethylene (PE) was 

recovered and no soluble waxes or low-molecular-weight oligomers were 

generated. In contrast, the parent TiCl4(C"lmine) complex showed productivities 

of 40 kg PE · mol M-1 
· h-1 

.
29 Coordination of the iminic nitrogen (N3) to the more 

Lewis-acidic metal centre enhances the electrophilicity of the iminic carbon (C4) 

in compounds 2.7 and 2.9, making it more susceptible to nucleophilic attack and 

to decomposition into complexes such as compound 2.8, which was itself also 

found to be inactive in ethylene polymerization under comparable conditions. 

2.3.1. Synthesis of SAlmine 

In an attempt to gain further insight into the chemistry involving the aryl­

substituted acyclic imino-N-heterocyclic carbene ligand, and possibly develop a 
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hard-soft, nitrogen-sulphur donor ligand, it was decided that synthetic 

investigations would be extended to prepare compound 2.10. Treating CAimin:e 

with sulphur in a toluene solution afforded a spectroscopically pure, beige 

powder of compound 2.10 in good yield (85%) (Scheme 2.3). 

_NF\--/tsu Sa -N(\N--/tBu 
Mes Y II toluene, RT, 2 h Mes y II 

N' s N' 
DMP DMP 

Mes = 2,4,6-trimethylphenyl; DMP = 2,6-dimethylphenyl 

Scheme 2.3: Synthetic strategy to forming compound 2.10 

The NMR spectroscopic analysis revealed an interesting 1 H NMR 

spectrum. It contained signals ranging from 6.83 ppm to 1.58 ppm. The 

resonances of the backbone hydrogens of the imidazol-2-ylidene appeared at 

6.00 ppm and 5.63 ppm. The broad para methyl protons of mesityl (2.67 ppm) 

and the non-equivalence of the ortho methyl protons of mesityl ring (1.99 ppm 

and 1.61 ppm) suggest restricted rotation about the nitrogen-carbon bond of the 

imidazol-2-ylidene and the mesityl ring. The plausible scenario of restricted 

rotation was further reinforced by variable temperature NMR experiments. An 

NMR spectrum of 2.10 in CsDs was acquired at 20 °C. The temperature was 

gradually increased to obtain spectra at 30 °C, 40 °C, 50 °C, 60 °C and 65 °C 

(Figure 4). Most noticeably, the mesityl ortho and para methyl signals began to 

broaden into the baseline at 30 °C and continued to broaden at 40 °C. Once the 

sample reached 50 °C, the para methyl proton signal began to reappear at 2.43 
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ppm and continued to sharpen at 60 °C and 65 °C. At 60 °C, the ortho methyl 

proton resonance begins to reappear as a broad singlet at 1.80 ppm and 

continued to sharpen at 65°C. As a result, the coalescence temperature was 

determined to be 60°C. The original spectrum was obtained once the 

temperature was restored to 20°C. The 13C NMR spectrum contained signals 

ranging from 163.4 ppm to 17.7 ppm. The central carbon of the imidazol-2-

ylidene and imine carbon signals appeared at 163.4 ppm and 160.4 ppm, 

respectively. 

Crystals suitable for X-ray diffraction analysis were grown at -35 °C under 

nitrogen by slow diffusion of pentane into a saturated THF solution (Figure 2.10). 

X-ray diffraction revealed the ligand adopts the Z-configuration in the solid state. 

The C1-S1 bond length was determined to be 1.6703(18) A and is similar to 

previously reported sulphur-NHC compounds. 

The S"lmine ligand was coordinated to gold(I) and was used to facilitate 

hydroamination reactions by another student within the Lavoie group.37 
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Figure 2.10: ORTEP plot (30% probability) of 2.10. 

Hydrogen atoms and CH2Cl2 solvate omitted for clarity. 

2.4.1. Conclusions 

C21 

Group 4 and 6 transition metals bearing the aryl-substituted acyclic imino­

N-heterocyclic carbene were synthesized, isolated and characterized. The 

catalytic activities during ethylene polymerization of all six complexes were 

explored. The zirconium and titanium complexes activities showed promise and 

warranted further tailoring of their coordination sphere. New aryloxo titanium 

complexes containing a bidentate imino-N-heterocyclic carbene were prepared 

as potential catalysts for olefin polymerization. The metal electronics and sterics 

about the metal centre were tuned through coordination of either two phenoxide 

ligands (2. 7) or one catecholate ligand (2.9). NMR experiments revealed 
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restricted rotation of both aryl rings that are part of the imino-carbene ligand 

scaffold. The solid-state structure of both complexes was confirmed by X-ray 

diffraction studies. Attempts to make a related titanium imido complex failed, 

presumably due to the sensitivity of the imine group towards nucleophilic attack, 

as evidenced by the formation of the bis(imidazole) decomposition product 2.8. 

The catalytic activities of the phenoxide complexes towards ethylene 

polymerization were assessed and found to be significantly lower than that 

previously reported for the tetrachloride complex. Compounds 2.7 and 2.9 were 

more susceptible to nucleophilic attack and to decomposition into complexes 

such as compound 2.8, which was itself also found to be inactive in ethylene 

polymerization under comparable conditions. The reactivity of C"lmine towards 

sulphur was explored and resulted in a new ligand, S"lmine. X-ray quality 

crystals of this new ligand were grown and analyzed. Another student explored 

the coordination of this ligand with gold and the activity of that complex showed 

considerable activity towards hydroamination. 

2.5. Experimental 

2.5.1 General Comments 

All manipulations were performed under a dinitrogen atmosphere in a 

drybox or using standard Schlenk techniques. Solvents used in the 

preparation of air and/or moisture sensitive compounds were dried using an 

MBraun Solvent Purification System fitted with alumina columns and stored 

over molecular sieves under a positive pressure of dinitrogen. Deuterated 
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solvents were degassed using three freeze-pump-thaw cycles. C6D6 and 

CDC'3 were vacuum distilled from sodium and CaH2, respectively, and stored 

under dinitrogen. NMR spectra were recorded on a Bruker DRX 600 CH at. 

600 MHz, 13C at 150.9 MHz), Bruker AV 400 CH at 400 MHz, 13C at 100 MH~) 

or Bruker AV 300 CH at 300 MHz, 13C at 75.5 MHz) spectrometer and are at 

room temperature unless otherwise stated. The spectra were referenced 

internally relative to the residual protio-solvent (1 H) and solvent C3C) 

resonances and chemical shifts were reported with respect to 6 = O for 

tetramethylsilane. A TA Model 2010 differential scanning calorimeter was 

used to measure the melting endotherm. The sample was first heated to 

160 °C, quenched with liquid nitrogen, and then reheated to 160 °C at a rate 

of 20 °C/min. Elemental compositions and exact masses were determined by 

either ANALEST Laboratory of the University of Toronto or by Guelph 

Chemical Laboratories Inc. located in Guelph, Ontario. 

All metal precursors were purchased from either BDH or Sigma-Aldrich. 

N-(2,6-Dimethylphenyl)acetamide was purchased from Sigma-Aldrich or Alfa 

Aesar and used without further purification. 1-(1-(2,6-Dimethylphenylimino )-

2,2-dimethylpropyl)-3-(2,4,6-trimethylphenyl)imidazol-2-ylidene (C"lmine)29, 

TiCl4(THF)238, ZrCl4(THF)238 and HfCl4(THF)238 were prepared using published 

procedures. TiCl2(2,6-0CsH3-Me2)2(THF)2 and TiCl2(1,2-0CsH4Q)(THF)2 were 

prepared analogous to the literature procedure. The product was further 

purified by dissolving it in THF with subsequent precipitation from pentane to 
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yield the THF adduct35·39. Deuterated NMR solvents were purchased from 

Cambridge Isotope Laboratories. MAO was graciously donated by Albemarle 

Corp. 

2.5.2 Synthesis of TiCl4(CAlmine) (2.1) 

A vial was charged with C"lmine (243 mg, 0.650 mmol) and was 

dissolved in a minimal amount of THF (5 ml) and was added to a THF 

solution (2 ml) of TiCl4(THF)2 (212 mg, 0.634 mmol). The solution 

immediately darkened to a dark yellowish-brown and was allowed to stir at 

room temperature for 2.5 hours. Volatiles were removed under reduced 

pressure to yield a bright yellow solid that was washed with pentane (15 ml) 

to yield a spectroscopically pure powder (325 mg, 91 %). Crystals suitable for 

X-ray diffraction study were grown at -35 °C under nitrogen by slow liquid 

diffusion of pentane into a saturated CH2Cl2 solution. 1H NMR (400 MHz, 

CDC'3): o 7.93 (s, 1 H, NCHCN(mesity1)), 7.06 (s, 1 H, NCCHN(mesity1)), 7.03-6.99 

(m, 3H, p-CH(2.s-xy1y1) + m-CH(2.s-xy1y1)), 6.96 (s, 2H, m-CH(mesity1)), 2.50 (s, 6H, o­

CH3(2.s-xy1y1)), 2.31 (s, 3H, p-CH3(mesity1)), 2.28 (s, 6H, o-CH3(mesity1)). 1.45 (s, 

9H, (CH3}3C(imine)); 13C{1H} NMR (100 MHz, CDC'3): o 197.4 (NCN), 165.3 

( C=N), 146.9 ( C(2.s-xy1y1)), 140.2 (p-C(mesity1)), 135. 7 ( o-C(mesity1)), 134.8 ( C(mesity1)), 

131.1 ( o-C(2.s-xy1y1)), 129.3 (m-CH(mesity1)), 128.3 (m-CH(2.s-xy1y1)), 126. 7 (p-CH(2,s­

xy1y1)), 122.9 (NCCN(mesity1)), 120.0 (N CCN(mesity1)), 40.9 ( C(imine)), 30.6 

((CH3)3C(imine)), 21.4 (o-CH3(2,6-xylyl)), 21.3 (p-CH3(mesityl)), 18.9 (o-CH3(mesityl)) 

FTIR (cast film) riC=N 1609 cm-1. Anal. Calcd. for C25H31 Cl4N3Ti x 0.5 
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CH2Cl2 (%): C, 53.02; H, 5.52; N, 7.40. Found(%): C, 52.68; H, 5.93; N, 7.31. 

2.5.2 Synthesis of TiCb(CAlmine) (2.2) 

Compound 2.2 was isolated as a purple solid according to the 

procedure described for 2.1, using TiC'3(THF)3 as metal precursor and toluene 

as solvent. Yield: 97%. Crystals suitable for X-ray diffraction study were grown 

at room temperature under nitrogen by slow vapour diffusion of pentane into a 

saturated CH2C'2 solution. FTIR (cast film) vc=N 1607 cm-1. Anal. Calcd. for 

C2sH31C'3N3Ti · 1.0 THF (%): C, 58.06; H, 6.55; N, 7.00. Found (%): C, 57.77; 

H, 6.30; N, 6.81. 

2.5.3 Synthesis of ZrCl4(CAlmine) (2.3) 

Compound 2.3 was isolated as a white solid according to the procedure 

described for 2.1, using ZrCl4(THF)2 as metal precursor and toluene as 

solvent. Yield: 67%. Crystals suitable for X-ray diffraction study were grown at 

-35 °C under nitrogen by slow liquid diffusion of pentane into a saturated THF 

solution. 1H NMR (400 MHz, CDC'3): b 7.98 (s, 1 H, NCHCNcmesity1)), 7.12 

(s, 1 H, NCCHNcmesity1)), 7.06-7.04 (m, 3H, p-CHc2.s-xy1y1) + m-CHc2.s-xy1y1)), 7.00 

(s, 2H, m-CHcmesity1)), 2.50 (s, 6H, o-CH3c2.s-xy1y1)), 2.33 (s, 3H, p-CHJ(mesity1)), 

2.25 (s, 6H, o-CH3(mesity1)), 1.49 (s, 9H, (CH3}3C(imine)); 13C{1 H} NMR (100 MHz, 

CDC'3): b 195.3 (NCN), 167.6 (C=N), 144.0 (Cc2.s-xy1y1)), 140.6 (p-Ccmesity1)), 

135.5 (Ccmesityl)), 134.4 (o-Ccmesityl)), 131.2 (o-CHc2,6-xylyl)), 129.5 7 (m-CHcmesityl)), 

128.7 (m-Cc2,6-xy1y1)), 127.1 (p-CHc2,6-xyly1)), 123.6 (NCCNcmesityl)), 121.0 

(NCCN(mesityl)), 41.6 (C(imine)}, 30.9 ((CH3}3C(imine)), 22.6 (p-CH3(mesityl)), 21.0 (o-
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CH3(2,6-xy1y1)), 18.6 (o-CH3(mesity1)). FTIR (cast film) Vc=N 1606 cm-1. Anal. Calcd. 

for C25H31Cl4N3Zr (%): C, 49.50; H, 5.15; N, 6.93. Found (%): C, 47 .35; H, 

4.91; N, 6.30 (repeated microcombustion analyses of spectroscopically-pure 

material consistently gave low carbon values). HRMS (AccuTOF™-DART®): 

Calculated for C2sH31Cl4N3Zr · C12H14N2, m/z = 789.1476; Found: 789.1483. 

2.5.4 Synthesis of HfCl4(CAlmine) (2.4) 

Compound 2.4 was isolated as a white solid according to the procedure 

described for 2.1, using HfCl4(TH F)2 as metal precursor and toluene as 

solvent. The complex was further purified by recrystallisation at -35 °C under 

nitrogen by slow liquid diffusion of pentane into a saturated CH2Cl2 

solution. Yield: 73%. 1H NMR (400 MHz, CDCb): b 8.01 (s, 1 H, 

NCHCN(mesity1)), 7.11 (s, 1 H, NCCHN(mesity1)), 7.07-7.03 (m, 3H, p-CH(2.s-xy1y1) + 

m-CH(2.s-xy1y1)), 6.98 (s, 2H, m-CH(mesity1)), 2.49 (s, 6H, o-CH3(2.s-xy1y1)), 2.32 (s, 

3H, p-CH3(mesityl)}, 2.23 (s, 6H, o-CH3(mesity1)), 1.48 (s, 

9H, (CH3}3C(imine)); 13C{1H} NMR (100 MHz, CDCb): b 201.6 (NCN), 168.5 

( C=N), 143. 7 ( C(2.s-xy1y1)), 140.5 (p-C(mesity1)), 135.5 ( o-C(mesity1)), 134.3 ( Ccmesity1)), 

131.5 (o-CH(2.s-xy1y1)), 129.4 (m-CHcmesity1)), 128.7 (m-Cc2.s-xy1y1)), 127.2 (p-CHc2.s­

xy1y1)), 123.5 (NCCN(mesityl)), 121.5 (N CCN(mesityl)), 41.4 ( C(imine)), 30.9 

((CH3}3C(imine)), 21.3 (p-CH3(mesityl)), 21.1 (o-CH3(2,6-xylyl)), 18.6 (o-CH3(mesityl)). 

FTIR (cast film) Vc=N 1604 cm-1. Anal. Calcd. for C2sH31Cl4N3Hf (%): C, 43.28; 

H, 4.50; N, 6.06. Found(%): C, 42.94; H, 4.71; N, 5.87. 
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2.5.5 Synthesis of CrCb(CAlmine)(THF) (2.5) 

Compound 2.5 was isolated as a deep dark blue solid according to the 

procedure described for 2.1, using CrCb(THFh as metal precursor and THF 

as solvent. Yield: 89%. Crystals suitable for X-ray diffraction study were grown 

at room temperature under nitrogen by slow vapour diffusion of pentane into a 

saturated CH2Cl2 solution. FTIR (cast film) Vc=N 1604 cm-1. Anal. Calcd. for 

C2sH31CIJN3Cr · 1.0 THF (%): C, 57.67; H, 6.51; N, 6.96. Found (%): C, 57.39; 

H, 6.41; N, 7.20. 

2.5.6 Synthesis of CrCl2(CAlmine)(THF) (2.6) 

Compound 2.6 was isolated as a blue solid according to the procedure 

described for 2.1, using CrCl2(THF)3 as metal precursor and THF as solvent. The 

complex was further purified by recrystallisation at -35 °C under nitrogen by slow 

liquid diffusion of pentane into a saturated CH2Cl2 solution. Yield: 89%. FTIR 

(cast film) vc=N 1604 cm-1. Anal. Calcd. for C2sH31CbN3Cr · 1.0 THF (%): C, 

61.26; H, 6.91; N, 7.39. Found(%): C, 60.89; H, 7.11; N, 7.58. 

2.5.7. Synthesis of TiCl2(2,6-0C6Ha-Me2)2(CAlmine) (2.7) 

A solution of CAI mine (107 mg, 0.287 mmol) dissolved in toluene (5 ml) 

was added to a toluene solution of TiC'2(2,6-0CsH3-Me2)2(THF)2 (145 mg, 0.287 

mmol) and the dark red solution was stirred at room temperature for 4 h. Volatiles 

were removed under reduced pressure and the product was washed with 

pentane (15 ml) to yield a bright orange-red powder. A spectroscopically-pure 

product was acquired by recrystallisation from CH2Cl2 and pentane (172 mg, 
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82% ). Crystals suitable for X-ray diffraction study were grown at -35 °C under 

nitrogen by slow liquid diffusion of pentane into a saturated CH2Cl2 solution. 1H 

NMR (400 MHz, C505): ~ 6.93 (d, J = 2.0, 1 H, NCHCN(mesity1)), 6.77-6.49 (m, 9H, 

p-CH(2.6-xy1y1) + p-CH(phenoxide) + p-CH(phenoxide) + m-CH(2.s-xy1y1) + m-CH(phenoxide) + m­

CH(phenoxide)), 6.47 (s, 2H, m-CH(mesity1)), 5.94 (d, J = 2.0, 1 H, NCCHN(mesity1)), 2.58 

(s, 6H, o-CH3(phenoxide)), 2.55 (s, 6H, o-CH3(2.s-xy1y1)), 2.43 (s, 6H, o-CH3(mesity1)), 2.41 

(s, 6H, o-CH3(phenoxide)), 1.84 (s, 3H, p-CH3(mesityl)), 0.88 (s,, 

9H, (CH3)3C(imine)); 13C{1H} NMR (100 MHz, C5Ds): D 201.2 (NCN), 167.9 

(Cipso(phenoxide)}, 165.7 (Cipso(phenoxide)}, 162.9 (C=N}, 146.0 (Cipso(2,6-xylyl)}, 139.8 (p­

C(mesityl)}, 135.6 ( o-C(mesity1)}, 131.6 ( o-C(2,6-xy1y1)}, 131.2 ( o-C(phenoxide)), 130.5 ( o­

C(phenoxide)), 129.7 (m-CH(mesityl)}, 129.1 (Cipso(mesityl)), 129.0 (m-CH(2,6-xylyl)), 128.7 

(m-CH(phenoxide)), 128.6 (m-CH(phenoxide)), 126.0 (p-CH(2,6-xylyl)), 122.1 (p­

CH(phenoxide)), 121.7 (NCCN(mesityl)), 121.3 (p-CH(phenoxide)}, 119.6 (NCCN(mesityl)}, 

40.7 ((CH3)3C), 30.2 ((CH3)3C), 22.0 (o-CH3(2,6-xy1y1)), 21.3 (p-CH3(mesity1)), 20.5 (o­

CH3(phenoxide)), 19.8 (o-CH3(mesityl)}, 19.2 (o-CH3(phenoxide)). FTIR (cast 

film) Vc=N 1616 cm-1. Anal. Calcd. for C41H49Cl2N302Ti (%): C, 67.03; H, 6.72; N, 

5.72; Found(%): C, 66.84; H, 7.01; N, 5.69. 

2.5.8 Synthesis of TiCl2(2,6-0CsH3-Me2)2(1-(2,4,6-

trimethylphenyl)imidazole )2 (2.8) 

A solution of 1-(2,4,6-trimethylphenyl)imidazole (144 mg, 0.776 mmol) 

dissolved in toluene (5 ml) was added to a toluene solution of TiCl2(2,6-0C6H3-

Me2)2(THF)2 (196 mg, 0.388 mmol) and the dark red solution was stirred at room 
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temperature for 3 hours. Volatiles were removed under reduced pressure and the 

product was purified by multiple recrystallisations from CH2Cl2 and pentane (201 

mg, 70%). 1H NMR (400 MHz, CDCb): o 8.18 (s, 2H, NCHN(mesityl)), 7.74 (s, 2H, 

NCCHN(mesity1)), 6.94 (s, 4H, m-CH(mesity1)), 6.87 (d, J = 7.4, 4H, m-CH(phenoxide~), 

6.77 (s, 2H, NCHCN(mesityl)), 6.70 (t, J = 7.4, 2H, p-CH(phenoxide)), 2.33 (s, 18H, O­

CH3(phenoxide), p-CH3(mesityl)), 1.95 (s, 12H, o-CH3(mesity1)); 13C{1 H} NMR (100 MHz, 

CDCb): 0 166.4 (Cipso(phenoxide)), 141.2 (NCHN), 139.6 (p-C(mesityl)), 134.8 (o­

C(mesityl)), 132.4 (Cipso(mesityl)), 130.8 (NCCN), 129.4 (O-C(phenoxide)), 129.2 (m­

CH(mesityl)), 127.9 (m-CH(phenoxide)), 121.7 (p-CH(phenoxide)), 118.8 (NCCN), 21.0 (p­

CH3(mesityl)), 17 .5 ( o-CHJ(phenoxide)), 17 .3 ( o-CH3(mesity1)). Anal. Calcd. for 

C4oH4sCl2N202Ti (%): C, 65.49; H, 6.32; N, 7.64; Found (%): C, 65.72; H, 6.13; 

N, 7.77. 

2.5.9. Synthesis of TiCl2(1,2-0C6H40)(CAlmine) (2.9) 

A solution of C"lmine (150 mg, 0.401 mmol) dissolved in toluene (2 ml) 

was added to a toluene solution (5 ml) of TiCl2(1,2-0CsH40)(THF)2 (149 mg, 

0.401 mmol). The dark red solution was allowed to stir for 4 hours. The volume 

was reduced under reduced pressure and the product was precipitated with 

pentane. The supernatant was removed and the product was dried in vacuo to 

yield a dark red powder. An analytically-pure product was isolated by 

recrystallisation from CH2Cl2 and pentane (202 mg, 84%). Crystals suitable for X­

ray diffraction study were grown at -35 °C under nitrogen by slow liquid diffusion 

of pentane into a saturated CH2Cb solution. 1H NMR (400 MHz, CDCb): o 7.93 
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(d, J = 2.0, 1 H, NCHCNcmesity1)), 7 .07 (d, J = 2.0, 1 H, NCCHNcmesity1)), 7 .03-6.99 

(m, 4H, CHcary1)), 6.41 (br s, 3H, m-CHc2.6-xy1y1), p-CHc2.6-xy1y1)), 5.88 (br s, 1 H, tn­

CHcmesityl)), 5.40 (br s, 1 H, m-CHcmesityl)), 2.47 (br s, 9H, o-CH3(aryl)), 2.24 (s, 3H, p­

CHJ(mesityl)), 1.58 (br s, 3H, o-CH3(ary1)), 1.43 (s, 9H, (CH3)3Ccimine)); 13C{1H} NMR 

(100 MHz, CDCb): D 197.2 (NCN), 166.9 (C=N), 158.7 (Ccary1)), 145.2 (Ccary1)), 

139.4 (p-Ccmesityl)), 134.8 (C(aryl)), 133.9 (C(aryl)), 129.3 (m-CHcmesityl)), 129.0 (C(aryl)), 

128.3 (m-CHc2.6-xy1y1)), 126.7 (p-CHc2,6-xy1y1)), 123.8 (NCCNcmesityl)), 119.9 

(NCCNcmesity1)), 111.2 (o-Ccmesity1)}, 40.7 ((CH3)3C), 30.4 ((CH3)3C), 21.0 (p­

CH3(mesity1)), 20.0 (o-CH3(mesity1)), 19.0 (o-CH3c2.6-xy1y1)), 16.6 (o-CH3(mesity1))· Not aH 

13C assignments could be made due to poorly defined correlations from the 

broad resonances. FTIR (cast film) Vc=N 1610 cm-1. Anal. Calcd. for 

C31 H35C'2N302Ti (%): C, 62.01; H, 5.88; N, 7.00; Found(%): C, 61.78; H, 6.12; 

N, 6.47. 

2.5.10. Synthesis of SAlmine (2.10) 

Sulfur (12.7 mg, 0.395 mmol) was added as a solid to a solution (3 ml) of 

1 (148 mg, 0.395 mmol) in toluene. The clear, light-yellow solution was allowed 

to stir for 2.5 h. Volatiles were removed under reduced pressure and the product 

was washed with pentane (3 x 5 ml) to yield a spectroscopically pure beige 

powder (136 mg, 0.334 mmol, 85 %). Crystals suitable for study by X-ray 

diffraction were grown at -35 °C under nitrogen by slow liquid diffusion of 

pentane into a saturated solution in THF. 1H NMR (400 MHz, C6D6): d= 6.87-

6.82 (m, 3H; p-CH(2,6-xylyl)+m-CH(2,6-xylyl)}, 6.65 (d, 3 J=3.9Hz, 2H; m-
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CH(mesityl)), 6.00 (d, 3 J=2.6Hz, 1 H; NCHCHN(mesityl)), 5.63 (s, 3 J= 2.6 Hz, 1 H; 

NCHCHN(mesityl)), 2.67 (brs, 3H; o-CH3(2,6-xylyl)), 2.03-1.99 (m, 9H; o-CH3 

(2,6-xylyl) + o-CH3 (mesityl) + p-CH3 (mesityl)), 1.61 (s, 3H; o-CH3 (mesityl)), 

1.58 ppm (s, 9H; C(CH3)3); 13C NMR (100 MHz, CDCl3): d = 163.4 (NCN), 160.0 

(C=N), 145.4 (i-C(2,6-xylyl)), 136.4 (o-C(mesityl)), 135.8 (o- C(mesityl)), 133.6 (i­

C(mesityl)), 129.3 (m-CH(mesityl)), 129.1 (m-C(mesityl)), 128.0 (m-CH(2,6-

xylyl)}, 123. 7 (p-CH(2,6-xylyl)), 117 .3 (NCCN(mesityl)}, 115.0 

(NCCN(mesityl)),41.7( (C(CH3)3), 29.8(C(CH3)3),20.9(p-CH3(mesityl)), 19.5 (br 

s; o-CH3(2,6-xylyl)), 17.9 (o-CH3(mesityl)), 17.3ppm (o-CH3(mesityl)}; FTIR 

(cast film): Vc=N =1660, Vc=s =1204 cm-1; Elemental analysis calcd (%) for 

C25H31N3S: C 74.03, H 7.70, N 10.36; found: C 74.13, H 7.56, N 10.38. 

2.5.11. General Procedure for Ethylene Polymerization 

Ethylene polymerization was performed at atmospheric pressure and 

room temperature in a 200-mL Schlenk flask containing a magnetic stir bar. The 

flask was conditioned in an oven at 160 °C for at least 12 h prior to use. The hot 

flask was brought to room temperature under dynamic vacuum, and back-filled 

with ethylene. This cycle was repeated a total of three times. Under an 

atmosphere of ethylene, the flask was charged with 20 ml of dry toluene and 

1000 equivalents of methylaluminoxane (MAO). The solution was stirred for 15 

min before a solution of the catalyst in toluene was introduced into the flask via a 

syringe. The reaction mixture was vigorously stirred for 10 min after the addition 

of the catalyst, and subsequently quenched with a 50:50 mixture of concentrated 
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hydrochloric acid and methanol. The resulting mixture was filtered and any solid 

collected was washed with distilled water. Solids collected were dried under 

vacuum at approximately 60 °C for several hours. 

2.5.12. X-ray crystallographic studies 

X-ray crystallographic data were collected at the University of Toronto on 

a Bruker-Nonius Kappa-CCD diffractometer using monochromated Mo-Ka 

radiation (>.. = 0. 71073 A) at 150 K and were measured using a combination of <P 

scans and w scans with K offsets, to fill the Ewald sphere. Intensity data were 

processed using the Denzo-SMN package40
• Absorption corrections were carried 

out using SORTAV.41 X-ray crystallographic data for compound 3 was collected 

at McMaster University on a Bruker APEX2 diffractometer using monochromated 

Mo-Ka radiation (>.. = 0.71073 A) at 100 K and were measured using <P and w 

scans. Unit cell parameters were determined using at least 50 frames from three 

different orientations. Data were processed using SAINT, and corrected for 

absorption with accurate face-indexing as well as redundant data (SADABS), and 

solved using direct methods and the SHELX program suite. The structures were 

solved and refined using SHELXTL V6.1 42 for full-matrix least-squares refinement 

was based on F2
. All H atoms were included in calculated positions and allowed 

to refine in riding-motion approximation with Uiso-tied to the carrier atom. Other 

crystallographic data (Tables of atomic coordinates with isotropic and anisotropic 

displacement parameters, bond lengths and angles) are provided as 

supplementary materials. 
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Chapter 3 lmidazol-2-imine Ethenolate Ligand: Synthesis and 

Coordination 

3.0 Preface 

This chapter is comprised of a reformatted and slightly modified peer­

reviewed journal publication. Reproduced with permission from Coordination and 

reactivity study of titanium and zirconium complexes of the first imidazol-2-imine 

ethenolate ligand; T. G. Larocque, S. Dastgir, G. G. Lavoie, Organometallics, 32 

(15), 4314-4320 DOI: 10.1021/om4004708. Copyright 2013 Am~rican Chemical 

Society. All work was performed by myself, excluding the synthesis and 

characterization of 3.1, 3.3, 3.41 and 3.42 and the computational work. 

3.1 Introduction 

As discussed in Chapter 1, the reactivity of NHCs towards azides has 

been explored, generating a new class of anionic imidazol-2-iminate ligands that 

are analogous to the phenoxides.1 Thanks to the stability of imidazolium salts, 

these imidazol-2-iminates can exist in different mesomeric forms with 

unexpectedly high electron density located on the exocyclic nitrogen (Figure 3.1 ). 

Several groups have recently explored the possibility to utilize imidazol-2-

iminates either as ancillary monodentate monoanionic ligands, 1 or as neutral 

fragment incorporated in more complex bidentate and tridentate ligand 

scaffolds .1 b,2 
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Figure 3.1. Mesomeric structures of substituted imidazole-2-iminate. 
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Figure 3.2. Neutral (A) and anionic (B) bidentate ligands with an 

imidazol-2-imine fragment. 

Our group has reported the synthesis of neutral imine imidazol-2-imine 

ligands (A, Figure 3.2) and their coordination to titanium(IV) and palladium(ll).3 

Structure characterization of these complexes showed two different binding 

modes depending on the metal centre.38 While the ligand coordinates to Ti(IV) in 

the expected N"N chelate, the use of Pd(ll) led to the formation of a dimeric 

structure with monodentate coordination of the ligand to the metal through the 

terminal imine nitrogen. To enforce coordination of the ligand in a bidentate 

fashion to both early and late transition metals, we recently reported the related 

anionic ureate and thioureate ligands (B, Figure 3.2).4 

Other bidentate monoanionic systems, and most notably the substituted 

salicylaldiminate ligands, have proven to be extremely versatile and have led to 
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highly active olefin polymerization catalysts based on both early and laite 

transition metals. Studied by Fujita5 and Grubbs,6 these salicylaldiminate ligands 

coordinate to the metal through the neutral imine nitrogen and anionic oxygen 

atoms (Figure 3.3). It is important to note that the salicylaldiminate ligands are 

not the only example of a highly active homogenenous catalysts bearing a 

bidentate N-0 ancillary ligand. In recent decades, Laurel Schafer has shown the 

usefullness of amidate ligands on transition metals to facilitate hydroamination, 

hydroaminoalkylation and amidation of aldehydes.7 

While the new anionic ureate and thioureate ligands B coordinated to both 

early and late transition metals, thereby successfully addressing the 

shortcomings of the first-generation neutral ligand system A, both the desired Np. 

to1y1ANimidazo1-2-y1idene and the undesired Np-to1y1AE (E = 0, S) chelates, with an 

uncoordinated imidazol-2-imine fragment, were observed. Inspired by the 

salicylaldiminate system, we decided to design a new ligand scaffold that could 

bind to the metal centre in a bidentate fashion exclusively through a neutral imine 

nitrogen donor and an anionic oxygen donor. As such, the new ligand scaffold 

combines an imidazol-2-imine fragment, as the neutral nitrogen donor, and an 

enolate, as the anionic oxygen donor. The synthesis of these new substituted 

NAO ligands, their coordination to group 4 metals and the potential of the 

resulting complexes as ethylene polymerization catalysts are reported. 
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Figure 3.3. Early and late transition metal complexes of the 

salicylaldiminate ligand system. 

3.2 Results and Discussion 

0 

R 

X toluene 

reflux 

R=H,X=Br(3.1) 
R =Cl, X =Cl (3.2) 
R = N02, X =Br (3.3) 

0 

3.1-3.3 

Scheme 3.1. Synthesis of 2-(1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-

imino)-1-arylethanone Hydrochloride (3.1-3.3) 

R 

The ketone imidazol-2-imine ligand precursors 3.1-3.3 were prepared in good 

yield (75-89%) by refluxing a toluene solution of 1,3-bis(2,4,6-

trimethylphenyl)imidazol-2-imine4 with the corresponding 2-halo-1-arylethanone 

for 12 h (Scheme 3.1 ). Solution NMR spectra for compounds 3.1-3.3 are 
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consistent with their expected structure. All 1H and 13C resonances were 

assigned using a series of one- and two-dimensional 1H and 13C NMR 

experiments, including heteronuclear single quantum correlation (HSQC) and 

heteronuclear multiple bond correlation (HMBC) techniques. The characteristic 

iminic proton for 3.1-3.3 appears at & 7.99, 9.71 and 8.26, respectively, as a 

triplet, coupled to two vicinal methylene protons (3 J = 6.4-6.9 Hz). These 

methylene protons and those of the imidazole backbone resonate at 

approximately & 4.5 and 6.7, respectively. 

F\ 
Mes-NYiN'Mes 

H~+ NaHMDS, THF,.. 

Br'"' ~78°CtoRT,40min 

0 ~, 

~ 
3.1 

F\ F\ 
es-NUN'Mes Mes-NYiN'Mes 

H',NJL = ~ Nl ~ 
'o_ () o: () 

3.41 3.42 

NaHMDS,THF 
-40 °C to RT, 1 h 

F\ 
Mes-NYiN'Mes 

~~ 0 ~ 

Nt ~I 
3.5 

Scheme 3.2. Sequential Deprotonation of 3.1 to Generate a Tautomeric 

Mixture of 2-(1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-imine)-1-

phenylethanone (3.41 and 3.42) and the Corresponding Ethenolate (3.5) 

Deprotonation of compound 3.1 with one equivalent of sodium 

hexamethyldisilazide (NaHMDS) gave a mixture of two tautomers, 3.41 and 3.42, 

in a 3:1 ratio (Scheme 3.2). The major tautomer was identified spectroscopically 

as the enol (3.41 ), with the characteristic vinyl proton and the corresponding 

carbon nucleus resonating, respectively, at & 6.39 and 108.6 in chloroform-d. The 

methylene protons of the corresponding minor keto tautomer (3.42) were 

observed as a singlet at a lower frequency (& 4.40), integrating to two protons, 
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with the a-carbon atom resonating at b 54.5. Further deprotonation of the 

tautomeric mixture 3.4 with an additional equivalent of NaHMDS gave 3.5, as a 

single molecule, in 87% yield (Scheme 2). The proton on the a-carbon atom 

resonates downfield at b 6.21 (CsDs), with the carbon nucleus observed in the 

expected vinyl region of the 

F\ F\ 
Mes .... NyN .. Mes Mes .... Nyl N .. Mes 

II+ 2 NaHMDS II 
HN ---- N 

Br ~HF, RT, 30 min +-~ 
o I~ Nao ~ 

3.1-3.3 Q R I Q R 

1or2 equiv 

spectrum 

1/2 ZrCl4(THF)2 

RT,2 h 

RT, 2 h 

3.6: R = H; X = Br 3.7: R = Cl; X = Cl 
3.8: M =Zr; R = H; X = Br 3.9: M =Zr; R = Cl; X = Cl 

3.10: M =Ti; R = H; X =Br 3.11: M =Ti; R =Cl; X =Cl 

at 103.8. 

F\ 
Mes .... Nl(N .. Mes 

/N~ CpMCl2 I 
'o ~ 

ID 
3.8-3.9 R 

Scheme 3.3. Synthesis of Titanium and Zirconium Complexes of the 

Bis(imine ethenolate) Ligand. 

The sodium ethenolate salt 3.5 could also be prepared directly by addition 

of two equivalents of base to 3.1, and used with no further purification in the 

preparation of titanium and zirconium complexes. Thus, addition of two 

equivalents of NaHMDS at -40 °C to a THF suspension of compound 3.1, with 

subsequent warming to room temperature, resulted in an intense yellow solution 

of 3.5. Without further purification, the sodium ethenolate solution was added to a 

THF solution of ZrCl4(THF)2 in a 2:1 stoichiometric ratio, resulting in the 

72 



immediate precipitation of the desired bis(imine ethenolate) zirconium dichloride 

complex 3.6 as a yellow solid in moderate yield (60%) (Scheme 3.3). Similarly, 

the para-chloro derivative 3.7 could also be prepared from, albeit in slightly lower 

yield (42% ). Attempts to synthesize the p-nitrophenyl analogue from 3.3 resulted 

in a mixture of reaction products that could not be successfully isolated. 

Compounds 3.6 and 3.7 were characterized by NMR spectroscopy and 

combustion analysis. The 1 H NMR spectrum (CDCl3) of 3.6 contained only one 

set of resonances, indicating the selective generation of a single isomer with two 

sets of ligands that are magnetically equivalent. As expected, the NMR spectrum 

of 3.6 no longer displays the distinctive triplet at 6 7 .99 corresponding to the 

imine proton of 3.1. A singlet observed at 6 5.91 for the vinylic protons of the 

ligand, integrating to two protons (one proton for each set of ligand), is consistent 

with double deprotonation of 3.1 and coordination to zirconium. The azole ring 

backbone protons resonate at 6 6.59 as a singlet integrating to four protons (two 

protons for each set of ligand). As observed for compound 3.6, the 1 H and 13C 

NMR spectra of 3.7 show only one set of resonance for the enolate ligands, 

indicating the generation of a single coordination isomer. Although the structure 

of neither 3.6 nor 3.7 could be confirmed by X-ray diffraction studies, based on 

zirconium work using ureate and thioureate ligands4 and substituted 

salicylaldiminate ligands,8 we would expect the chloride atoms to adopt a cis 

conformation, with both enolate ligands coordinated to the metal with the oxygen 

atoms trans to each other. However, in bis(salicylaldiminate) metal complexes 
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with sterically-demanding substituents on the imine nitrogen, a trans-N/cis-0/cis­

CI isomer is in fact preferred.8
b·

9 Considering that our ethenolate ligand bears 

most of the bulk on the nitrogen atom, we think that complexes 3.6 and 3.7 may 

also adopt a trans-Nlcis-0/cis-CI arrangement. This is supported by OFT 

(B3L YP/Lanl2DZ) calculations on compound 3.6, which predicts this isomer to 

be 12.6 kcal/mol more stable than the corresponding cis-Nltrans-0/cis-CI isomer. 

Attempts to prepare the related titanium complexes using the same methodology 

only led to mixtures of species, possibly coordination isomers, which could not be 

isolated and characterized. 

Cyclopentadienyl (imine ethenolate) complexes of zirconium (3.8-3.9) and 

titanium (3.10-3.11) were prepared by adding the ethenolate salt, prepared in situ 

by double deprotonation of 3.1-3.3 with NaHMDS, to CpMCb (Scheme 3.3). The 

zirconium complexes 3.8 and 3.9 were isolated as yellow solids in 47 and 59% 

yield, respectively. The 1H NMR spectra of both complexes showed characteristic 

resonances of the ethenolate ligand, with an additional resonance for the 

cyclopentadienyl protons at() 6.0 in chloroform-d, integrating to five protons. 
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Cll 

CI3 

Figure 3.4. ORTEP plot (50% probability) of 3.9. Only one of two 

independent molecules found in the asymmetric unit cell is drawn. 

Hydrogen atoms and diethyl ether were omitted for clarity. 

Crystals of compound 3.9 suitable for X-ray diffraction studies were grown 

at -35 °C under nitrogen by slow liquid diffusion of diethyl ether into a saturated 

CH2Cl2 solution. Compound 3.9 crystallizes in the P21/n space group and exhibits 

a distorted piano stool geometry with the cyclopentadienyl ligand adopting an 115 

hapticity (Figure 3.4; Table 3.1 ). As expected, the ligand coordinates in a 

bidentate fashion though the imine nitrogen and ethenolate oxygen atoms. The 

formation of a 5-membered metallacycle leads to an 01-Zr-N3 bite angle of 

75.92(9)°, which is significantly larger than that observed for the 4-membered 

metallacycle formed in Ti(IMesN"lmine)Cl4 (60.50(12) 0
). The cyclopentadienyl 
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ligand is asymmetrically bound to zirconium, with Zr-C bond lengths rangir.ig 

from 2.481 (4) to 2.534(4) A, with shorter bonds anti to the chloride atoms and 

longer ones anti to the imine ethenolate donor atoms. The mesityl rings of ligand 

are almost orthogonal to the best plane formed by the imidazol-2-imine ring, at 

84.36° and 70.21°, respectively. 

The p-chlorophenyl and azole rings slightly deviate by 9 .1° and 17 .9°, 

respectively, from coplanarity with the best plane formed by N3, C22, C23 and 

01, possibly indicating little electron delocalization from the imidazole ring to the 

exocyclic atoms (N3, C22, C23 and 01 ). However, the C1-N3 bond is only 

slightly shorter than C1-N1, C1-N2 and C22-N3. 

Table 3.1. Selected bond lengths and bond angles for compound 3.9a 
Selected Bond Lengths (A) Selected Bond Angles (deg) 
Zr1-Cl1 2.4626(10) 01-Zr1-N3 75.92(9) 
Zr1-Cl2 2.4995(9) 01-Zr1-Cl1 90.80(7) 
Zr1-01 2.059(2) N3-Zr1-Cl1 131.58(7) 
Zr1-N3 2.276(3) 01-Zr1-Cl2 145.06(7) 
Zr1-C30 2.521(4) N3-Zr1-Cl2 79.70(7) 
Zr1-C31 2.492(4) Cl1-Zr1-Cl2 86.95(4) 
Zr1-C32 2.481(4) Zr1-N3-C1 141.00(2) 
Zr1-C33 2.503(4) Zr1-N3-C22 83.15(2) 
Zr1-C34 2.534(4) Zr1-01-C23 92.15(2) 
N1-C1 1.363(4) C1-N3-C22 118.65(3) 
N2-C1 1.377(4) N3-C22-C23 119.25(3) 
N3-C1 1.332(4) C22-C23-01 117.20(3) 
N3-C22 1.413(4) 
C22-C23 1.357(5) 
01-C23 1.356(4) 

a Average bond lengths and angles for both molecules present in the 
asymmetric unit cell 

Furthermore, the length of these bonds, as well as those for C22-C23 and 01-

C23, are all intermediate to those expected for single and double bonds, 10 
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indicating significant bond conjugation. Interestingly, despite the relatively long 

Zr1-C22 and Zr1-C23 distances (2.5 A), the position of zirconium with respect to 

the ethenolate ligand in fact resembles that of metal bound to an ri4-1,4-

butadiene ligand, perhaps another manifestation of the double bond character 

between N3 and C22, and 01 and C23, which would arise from electron 

delocalization from the imidazole ring through the conjugated system. 

While the effect of steric from the bulky imidazole ring cannot be ruled out, 

the weaker coulombic interactions between the formally charged metal centre 

and the neutral nitrogen donor, in contrast to the negatively charged oxygen 

atom, likely accounts for the longer Zr1-N3 bond (2.276(3) A), compared to Zr1-

01. Furthermore, :re-donation of the oxygen atom to the Lewis acidity metal centre 

leads to a Zr-01 bond length of 2.059(2), which is intermediate between those 

for Zr-0 single (2.17 A) and Zr=O double (1.84 A) bonds.10 

Addition of one equivalent of sodium ethenolate, prepared in situ, to 

CpTiCb resulted in an immediate color change of the THF solution from yellow to 

deep blue, indicative of a ligand-to-metal charge transfer, with formation of 

complexes 3.10 and 3.11 in 74 and 56% yield, respectively. NMR spectra of both 

complexes are in agreement with their structure, with resonances and chemical 

shifts similar to those observed for compounds 3.8 and 3.9. Attempts to prepare 

the cyclopentadienyl zirconium and titanium complexes of the p-nitrophenyl 

derivative resulted in a mixture of reaction products that could not be successfully 

isolated. 
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All titanium and zirconium complexes were evaluated for their activity in 

ethylene polymerization. Complexes were activated with methylaluminoxane 

(MAO) as cocatalyst in toluene, at room temperature and at one atmosphere of 

ethylene. While all four zirconium complexes gave only trace amounts of 

polyethylene, titanium complex 3.10 gave polymer at a moderate rate of 11 O kg 

PE mol caC1 h-1
• The small electronic perturbation arising from replacing the para 

hydrogen atom with the more electronegative chlorine atom led to a slight 

enhancement in catalytic activity for complex 3.11 (170 kg PE mol caC1 h-1
). 

These activities favorably compare to the best ones reported by Lancaster and 

Bochmann for a series of titanium and zirconium cyclopentadienyl 

salicylaldiminate complexes. 11 While they are also comparable to those reported 

for bis(salicylaldiminate)ZrCl2 complexes that have small alkyl substituents on the 

phenol ring, these activities are orders of magnitude lower than those of related 

complexes with larger tert-butyl, adamantyl and cumyl groups.14 The lower 

activity observed in our complexes may therefore be a result of an unoptimized 

substitution pattern on the ethenolate ligand. Alternatively, it may also be a result 

of either the different ligand arrangement (trans-N/cis-0/cis-CI vs. cis-Nltrans-

0/cis-CI) or of a lesser electrophilic metal centre, a result of electron 

delocalization from the imidazole ring to the exocyclic nitrogen atom.1e.3-4 

3.3. Conclusions 

The synthesis of a new monoanionic bidentate ligand structure that 

incorporates the electron-rich imidazol-2-imine fragment was reported for the first 
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time, and coordinated to zirconium and titanium. Bis(ethenolate) and 

(cyclopentadienyl)(ethenolate) metal dichloride complexes were successfully 

prepared and fully characterized. The solid-state structure of the 

cyclopentadienyl zirconium complex 3.9 confirmed the targeted bidentate 

coordination of the ligand, resulting in a four-legged piano stool configuration. 

The synthesis of the bis(imine ethenolate) zirconium dichloride complexes 

furthermore proved to be very selective, with the formation of one single highly 

symmetric molecule. While all zirconium complexes tested showed no activity in 

ethylene polymerization, both titanium complexes 3.1 O and 3.11 were effective 

catalysts at room temperature, with activities up to 170 kg PE mol cat-1 h-1
. A 

decrease in the electron-donating capabilities of the ligand through the inductive 

effect of a more electronegative chlorine atom led to enhanced catalyst activities. 

Work on determining the effect of other ligand substitution patterns on catalyst 

performance will be reported in due course. 

3.4. Experimental 

3.4.1. General Considerations 

All manipulations were performed under a dinitrogen atmosphere in a 

drybox or using standard Schlenk techniques. Solvents used in the preparation of 

air and/or moisture sensitive compounds were dried using an MBraun Solvent 

Purification System fitted with alumina columns and stored over molecular sieves 

under a positive pressure of argon. Toluene for polymerization was distilled 

under argon after being dried with the MBraun SPS. Deuterated solvents were 
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degassed using three freeze-pump-thaw cycles. CsD6 and CDCb were vacuum 

distilled from sodium and CaH2, respectively, and stored under dinitrogen. NMR 

spectra were recorded on a Bruker DRX 600 CH at 600 MHz, 13C at 150.9 MHz), 

Bruker AV 400 CH at 400 MHz, 13C at 100 MHz) or Bruker AV 300 CH at 300 

MHz, 13C at 75.5 MHz) spectrometer and are at room temperature unless 

otherwise stated. The spectra were referenced internally relative to the residual 

protio-solvent CH) and solvent C3C) resonances and chemical shifts were 

reported with respect to 5 = 0 for tetramethylsilane. Elemental compositions were 

determined by Guelph Chemical Laboratories Inc. located in Guelph, Ontario. 

All metal precursors were purchased from either BDH or Sigma-Aldrich. 

All acetophenones and NaHMDS were purchased from Sigma-Aldrich and used 

as received. Deuterated NMR solvents were purchased from Cambridge Isotope 

Laboratories. MAO was graciously donated by Albemarle Corp. Lastly, 1,3-

bis(2,4,6-trimethylphenyl)imidazol-2-imine 1c and ZrC14(THF)2
12 were prepared 

using published procedures. 

3.4.2. General procedure for the synthesis of 2-(1,3-bis(2,4,6-

trimethylphenyl)imizadol-2-imine)-1-(aryl)ethanone hydrochloride salt, 

IMesNAethanone • HX, 3.1-3.3. 

In a typical procedure, the substituted 2-halo-1-(4-substituted 

phenyl)ethanone (3.65 mmol) was added as a solid to a toluene (20 ml) solution 

of 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-imine (3.28 mmol). The solution was 

refluxed for a few hours, resulting in the formation of a precipitate. The reaction 
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mixture was then cooled to room temperature and filtered. The solid was washed 

with pentane (2 x 15 ml) and dried in vacuo to yield the product as a powder. 

3.4.2.1. 2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine )-1-phenylethanone 

hydrobromide salt, 3.1: 

89% yield. 1H NMR (400 MHz, CDC'3): major isomer (keto form, 82%) 5 

7.99 (t, 1 H, J = 6.9 Hz, NH), 7.49 (t, 1 H, J = 7.8 Hz, p-CH(pheny1)), 7.46 (d, 1 H, J = 

7.8 Hz, o-CH(pheny1)), 7.30 (t, 1 H, J = 7.8 Hz, m-CH(pheny1)), 6.89 (s, 4H, m­

CH(mesityl)), 6.77 (s, 2H, -NCHCHN-), 4.48 (d, 2H, J = 6.9 Hz, =NH-CHrC-), 

2.23 (s, 12H, o-CH3(mesityl)), 2.21 (s, 6H, p-CH3(mesityl)); minor isomer (enol form, 

18%; some resonances are missing due to accidental overlap with those of the 

major isomer) 5 7.06 (s, 4H, m-CHcmesityl)), 6.83 (s, 2H, , -NCHCHN-), 6.69 (s + 

br, 2H, =NH-CH=CPh-), 4.97 (s + br, 1 H, -C(Ph)OH), 2.35 (s, 6H, p-CH3(mesityl)), 

2.16 (s, 12H, o-CH3(mesityl))· 13C{1H} NMR (100 MHz, CDC'3): major isomer 5 

192.2 (O=C), 144.8 (-NCN-), 141.4 (ipso-C(mesitylJ), 136.0 (o-C(mesityl)), 133.7 (p­

C(phenyl)), 130.0 (p-C(mesitylJ), 128.4 (O-C(phenyl)), 127.5 (m-C(phenyl)), 117.7 (­

NCHCHN-), 48.6 (=NH-CHrC-), 21.1 (p-CH3(mesity1)), 17.8 (p-CH3(mesity1)); minor 

isomer (some resonances are missing due to accidental overlap with those of the 

major isomer) 5 145.2 (-NCN-), 141.4 (o-C(mesitylJ), 135.6 (C(mesitylJ), 130.4 (p­

C(mesitylJ), 117.2 (-NCHCHN-), 21.2 (p-'CH3(mesityl)), 17.6 (p-CH3(mesityl)). Anal. 

Calcd. for C29H328rN30 (%): C, 67.18; H, 6.22; N, 8.10; Found(%): C, 67.20; H, 

6.31; N, 8.35. 
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3.4.2.2. 2-{1,3-Bis{2,4,6-trimethylphenyl}imizadol-2-imine}-1-{4-

chlorophenyl}ethanone hydrochloride salt, 3.2: 

81% yield. 1H NMR (400 MHz, CDCIJ): 6 9.71 (t, 1H, J = 6.4 Hz, NH), 7.42 

(d, 2H, J = 8.7 Hz, o-CH(phenyt)), 7.28 (d, 2H, J = 8.7 Hz, m-CH(phenyt)), 6.91 (s, 4H, 

m-CH(mesityt)), 6.67 (s, 2H, -NCHCHN-), 4.47 (d, 2H, J = 6.4 Hz, =NH-CHz-C-), 

2.22 (s, 18H, p-CH3(mesityt) + o-CH3(mesityt))· 13C{1H} NMR (100 MHz, CDCb): 6 

191.4 (O=C), 145.2 (-NCN-), 141.3 (p-C(mesityt)), 140.0 (ipso-C(phenyt)), 132.2 (p­

CH(phenyt)), 130.4 (o-C(mesityt)), 130.1 (m-CH(mesityt)), 128.9 (ipso-C(mesityt)), 128.8 (o­

CH(phenyt)), 128.7 (m-CH(phenyt)), 117.3 (-NCHCHN-), 48.5 (=NH-CH2-C-), 21.1 

(p-CH3(mesityl)), 17.7 (o-CH3(mesityl)). Anal. Calcd. for C29H31C'2N30 (%): C, 68.50; 

H, 6.14; N, 8.26; Found (%): C, 68.66; H, 5.95; N, 8.44. 

3.4.2.3. 2-{1,3-Bis{2,4,6-trimethylphenyl}imizadol-2-imine}-1-{4-

nitrophenyl}ethanone hydrobromide salt, 3.3: 

75% yield. 1 H NMR (400 MHz, CDCb): 6 8.26 (t, 1 H, J = 6.4 Hz, NH), 8.16 

(d, 2H, J = 8.7 Hz, m-CH(nitrophenyt)), 7.68 (d, 2H, J = 8.7 Hz, o-CH(nitrophenyt)), 6.93 

(s, 4H, m-CH(mesityt)), 6.74 (s, 2H, NCHCHN), 4.60 (d, 2H, J = 6.4 Hz, =NH-CHz­

C-), 2.22 (s, 12H, p-CH3(mesityt)) 2.16 (s, 6H, o-CH3(mesityt)). 13C{1H} NMR (100 

MHz, CDCb): 6 191.6 (O=C), 144.8 (-NCN-), 150.5 (p-C(nitropheny1)), 138.3 (ipso­

C(nitrophenyt)), 136.0 (ipso-C(mesityl)), 135.6 (p-C(mesityt)), 130.2 (o-C(mesityt)), 128.6 (o­

CH(nitrophenyt)), 123.5 (m-CH(nitrophenyt)), 117.6 (-NCHCHN-), 49.0 (=NH-CH2=C-), 

17.7 (o-CH3(mesityt)), 17.6 (p-CH3(mesityt)). Anal. Calcd. For C29H31BrN403 (%): C, 

61.81; H, 5.55; N, 9.94; Found(%): C, 61.85; H, 5.38; N, 10.12. 
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3.4.3. 2-(1,3-Bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-pti'lenylethanone, 

IMesNAethanone, 3.4: 

Compound 3.1 (2.6 g, 5.0 mmol) was suspended in THF (30 ml) and a 

solution of NaHMDS (938 mg, 5.11 mmol) in THF (10 ml) was added dropwise 

at -78 °C. The reaction mixture was stirred for 10 min, subsequently slowly 

warmed to room temperature and stirred for an additional 30 min. The pale 

yellow solution was filtered, evaporated to dryness and extracted with pentane (2 

x 30 ml). The off-white solid was dried in vacuo and the pale yellow pentane 

solution was concentrated to 15 ml and left at -78 °C for 4 h to collect additional 

product through precipitation. The precipitated off-white solid was washed with 

cold (-78 °C) pentane (10 ml) and dried in vacuo. Yield: 1.8 g (82%). 1H NMR 

(400 MHz, CDCb): major isomer (enolform 75%) o 7.41 (d, 1 H, J = 7.7 Hz, o­

CH(pheny1)), 7.08 (t, 1 H, J = 7.7 Hz, p-CH(pheny1)), 6.94-6.84 (m, 2H, m-CH(pheny1)), 

6.71 (s, 4H, m-CHcmesity1)), 6.39 (s, 1 H, =N-CH=C-), 5.60 (s, 2H, -NCHCHN-), 

2.13 (s, 12H, o-CH3(mesityl)), 2.11 (s, 6H, p-CH3(mesityl}); minor isomer (keto form, 

25%) 0 7.57 (d, 1 H, J = 7.7 Hz, o-CH(pheny1)), 7.04-6.84 (m, 2H, m-CH(phenyl} + 1 H, 

p-CH(pheny1)), 6.62 (s, 4H, m-CH(mesity1)), 5.65 (s, 2H, -NCHCHN-), 4.40 (s, 2H, 

=N-CHr-C-), 2.35 (s, 12H, o-CH3(mesity1)), 1.98 (s, 6H, p-CH3(mesity1})· 13C{1H} NMR 

(100 MHz, CDCb): majorisomero 141.9 (-NCN-), 136.4 (C(mesitylJ), 136.2 (0-C), 

133.9 (O-C(mesitylJ), 128.9 (p-C(mesitylJ), 126.1 (p-C(phenyl)), 129.1 (m-C(phenyl)), 123.2 

(o-C(pheny1)), 108.6 (=N-CH=C-), 114.7 (-NCHCHN-), 21.6 (p-CH3(mesity1)), 18.6 (o­

CH3(mesity1}); minorisomero 196.6 (C(ketone)), 145.5 (-NCN-), 136.7 (C(mesity1J), 

83 



136.3 (C(phenylJ) 132.7 (m-C(phenyl)), 129.1{p-C(mesitylJ),128.8 {o-C(mesitylJ), 128.7 (p­

C(phenyl)), 123.2 (o-C(pheny1)), 114.2 (-NCHCHN-), 54.5 (=N-CHz-C-), 21.5 (p­

CH3(mesityt)), 18.9 {o-CH3(mesityt)). Anal. Calcd. for C29H31N30 {%): C, 79.60; H, 

7.14; N, 9.60; Found(%): C, 79.35; H, 7.17; N, 9.38. 

3.4.4. Sodium 2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-

phenylethenolate, Na[IMesNAethenolate], 3.5: 

To a THF (2 ml) suspension of NaH (11.5 mg, 480 µmol) at -40 °C slowly 

was added a cold (-40 °C) solution of 3.4 (150 mg, 343 µmol) in THF (5 ml). The 

reaction mixture was slowly warmed to room temperature and stirred for 60 min, 

resulting in the color slowly changing to intense yellow. Pentane (5 ml) was 

added to precipitate the product, which was filtered, washed with pentane (2 x 5 

mlj and dried in vacuo to yield a yellow solid. Yield: 137 mg (87%). 1H NMR (400 

MHz, CsDs): o 7.26 (t, 2H, J = 7.4 Hz, m-CHcphenyt)), 7.08 (t, 1 H, J = 7.4 Hz, p­

CHcpheny1)), 6.98 (s, 1 H, m-CHcmesityt)), 6.82 {d, 2H, J = 7.4 Hz, o-CH(pheny1>}, 6.75 (s, 

1 H, m-CHcmesityl)), 6.30 (s, 1 H, m-CHcmesityt)), 6.21 (s, 1 H, =N-CH=C-), 6.08 (s, 1 H, 

m-CHcmesityt)), 5.61 (d, 1 H, J = 2.7 Hz -NCHCHN-), 5.58 (d, 1 H, J = 2.7 Hz -

NCHCHN-), 2.49 (s, 3H, CHJ(mesityt)), 2.28 (s, 3H, CHJcmesityt)), 2.16 (s, 3H, 

CH3(mesityt)), 2.15 (s, 3H, CH3(mesityt)), 2.05 (s, 3H, CH3(mesityt)), 1.89 (s, 3H, 

CHJ(mesityt))· 13C{1H} NMR (100.6 MHz, CsDs): <S 150.3 (0-C), 146.5 (ipso­

C(mesitytJ), 141.5 (-NCN-), 137.9 (aromatic CH), 137.7 (aromatic CH), 137.4 

(aromatic CH), 136.9 (aromatic CH), 135.8 (aromatic CH), 135.5 (aromatic CH), 

135.2 (aromatic CH), 133.3 (ipso-C(mesitylJ), 130.3 (aromatic CH), 129.6 (aromatic 
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CH), 129.0 (aromatic CH), 128.7 (m-CH(mesitylJ), 127.7 (m-CH(phenyl)), 124.5 (o­

CH(phenyl)), 122.5 (p-CH(phenyl)), 114.3 (-NCHCHN-), 113.8 (-NCHCHN-), 103.8 

(=N-CH=C-), 21.1 (CH3(mesityl)), 20.7 (CH3(mesity1)), 19.3 (CH3(mesity1)), 18.8 

( CH3(mesityl)), 18.4 ( CH3(mesityl)), 16.9 ( CH3(mesityl))· Anal. Calcd. for 

C29H30N3NaO (%): C, 75.79; H, 6.58; N, 9.14; Found (%): C, 76.04; H, 6.62; N, 

8.87. 

3.4.5. General procedure for the synthesis of bis(2-(1,3-bis(2,4,6-

trimethylphenyl)imizadol-2-imine )-1-(aryl)ethenolate) zirconium dichloride, 

ZrCl2(1MesNAethenolate)2, 3.6 and 3.7: 

NaHMDS (0.773 mmol) was slowly added at room temperature as a solid 

to a THF (5 ml) suspension of compound 1 (0.386 mmol). The solution 

immediately turned an bright yellow and the reaction mixture was allowed to stir 

for 30 min. The solution was then added to a THF (2 ml) solution of ZrCl2(THF)2 

(0.386 mmol). A white precipitate formed immediately. The yellow solution was 

stirred for 2 h, subsequently filtered through a pad of Celite and dried under 

reduced pressure. The product was washed with Et20 (2 x 5 ml) and dried in 

vacuo to yield a yellow powder. 

3.4.5.1. Bis(2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-

phenylethenolate) zirconium dichloride, 3.6: 

60% yield. 1 H NMR (400 MHz, CDCb): C> 6.98 (m, 12H, m-CH(mesityl) + m­

CH(pheny1)), 6.88 (d, 2H, J = 7.4 Hz, p-CH(pheny1)), 6.74 (d, 4H, J = 7.4 Hz, o­

CH(pheny1)), 6.58 (s, 4H, -NCHCHN-), 5.93 (s, 2H, =N-CH=C-), 2.30 (s, 12H, p-
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CH3(mesity1)), 2.24 (s, 24H, o-CH3(mesityl)); 13C{1H} NMR (100 MHz, CDCb): o 145.5 

(0-C), 139.2 (p-C(mesityl)), 137 .1 (ipso-C(phenyl)), 136.3 (ipso-C(mesityl)), 132.3 (­

NCN-), 129.6 (m-CH(mesityt)), 126.9 (m-CH(phenyt)), 124.3 (p-CH(phenyl)), 123.5 (o­

CH(phenyt)), 117.4 (-NCHCHN-), 113.0 (=N-CH=C-), 21.1 (p-CH3(mesity1)), 19.2 (o­

CH3(mesityt)). Anal. Calcd. for CsaHsoCl2Ns02Zr (%): C, 67.29; H, 5.84; N, 8.12; 

Found(%): C, 67.48; H, 6.02; N, 7.94. 

3.4.5.2. Bis(2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-(4· 

chlorophenyl)ethenolate) zirconium dichloride, 3.7: 

42% yield. 1H NMR (400 MHz, CsDs): o 6.96 (s, 8H, m-CH(mesityt)) 6.92 (d, 

4H, J = 8.4 Hz, m-CH(chlorophenyt)), 6.64 (d, 4H, J = 8.4 Hz, o-CH(chtoropheny1)), 6.59 

(s, 4H, -NCHCHN-), 5.91 (s, 2H, =N-CH=C-), 2.30 (s, 12H, p-CH3(mesityt)), 2.21 

(s, 24H, o-CH3(mesityt)); 13C{1H} NMR (100 MHz, CDCb): o 144.4 (0-C), 139.3 (p­

C(mesityt)), 136.2 (ipso-C(mesity1)+ o-C(mesityt)), 135.6 (p-C(chtorophenyt)), 132.2 (-NCN-), 

129.6 (m-CH(mesityt)), 129.5 (ipso-C(chlorophenyl)), 127.1 (m-CH(chlorophenyt)), 124.5 (o­

CH(chlorophenyt)), 117.5 (-NCHCHN-), 113.4 (=N-CH=C-), 21.1(p-CH3(mesityt)),19.2 

(o-CH3(mesityt))· Anal. Calcd. for CsaHsaCl4Ns02Zr (%): C, 63.09; H, 5.29; N, 7.61; 

Found(%): C, 63.32; H, 5.01; N, 7.43. 

3.4.6. General procedure for the synthesis of cyclopentadienyl (2-(1,3-

bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-(aryl)ethenolate) zirconium 

dichloride, CpZrCl2(IMesNAethenolate), 3.8 and 3.9: 

NaHMDS (0.773 mmol) was slowly added as a solid to a THF (5 ml) 

suspension of compound 1 (0.386 mmol). The solution immediately turned an 
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bright yellow and the reaction mixture was allowed to stir for 30 min. The solution 

was then added to a THF (2 ml) solution of CpZrCb (0.386 mmol). A white 

precipitate immediately formed and the reaction mixture was allowed to stir for 2 

h. The reaction mixture was then filtered through a pad of Celite and dried under 

reduced pressure. The product was washed with diethyl ether (2 x 5 ml) and 

dried in vacuo to yield a yellow powder. 

3.4.6.1 Cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-

1-phenylethenolate) zirconium dichloride, 3.8: 

47% yield. 1H NMR (400 MHz, CDCb): b 7.13-7.09 (m, 7H, m-CH(mesityl) + 

o-CH(pheny1) + p-CH(pheny1)), 6.92 (dd, 2H, J = 7.2, 6.0 Hz, m-CH(pheny1)), 6.53 (s, 2H, 

-NCHCHN-), 6.10 (s, 1H, =N-CH=C-), 6.04 (s, SH, Cp), 2.34 (s, 6H, p-

CH3(mesityl)), 2.31 (s, 12H, o-CH3(mesityl)). 13C{1H} NMR (100 MHz, CDCb): b 147.8 

(0-C), 147.4 {-NCN-), 140.5 {p-C(mesityl)), 136.2 (O-C(mesityl)), 132.9 (ipso-C(phenyl)), 

132.7 {ipso-C(mesityl)), 130.1 (m-CH(mesityl)), 128.3 {p-CH(phenyl)), 127.S (o-CH(phenyl)), 

125.6 (m-CH(pheny1)), 117.7 (-NCHCHN-), 11S.8 (Cp), 103.9 (=N-CH=C-), 21.0 

{p-CH3(mesityl)), 18. 7 ( o-CH3(mesityl)). Anal. Ca led. for C34H3sCl2N30Zr (% ):C, 61.52; 

H, 5.31; N, 6.33; Found (%):C, 61.30; H, S.24; N, 6.10. 

3.4.6.2 Cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-imine)-

1-(4-chlorophenyl)ethenolate) zirconium dichloride, 3.9: 

59% yield. 1H NMR (400 MHz, CDCb): b 7.08 (s, 4H, m-CH(mesityl)), 7.06 (d, 

2H, J = 8.S Hz, o-CHcchlorophenyl)), 6.84 (d, 2H, J = 8.S Hz, m-CH(ch1oropheny1)), 6.SS 

(s, 2H, -NCHCHN-), 6.09 (s, 1 H, =N-CH=C-), 6.02 (s, SH, Cp), 2.34 (s, 6H, p-
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CHJ(mesity1)), 2.30 (s, 12H, o-CHJ(mesity1)). 13C{1H} NMR (100 MHz, CDCb): o 147.5 

(-NCN-), 146.6 (0-C), 140.5 (p-C(mesityl)), 136.1 (o-C(mesityl)), 133.8 (p­

C(chlorophenyl)), 132.6 (ipso-C(mesityl)), 131.6 (ipso-C(chlorophenyl)), 130.3 (m-CH(mesityl)), 

127.7 (o-CH(chlorophenyl)), 126.8 (m-CH(chlorophenyl)), 117.8 (-NCHCHN-), 115.9 (Cp), 

104.71 (=N-CH=C-), 21.0 (p-CH3(mesityl)), 18.7 (o-CH3(mesityl)). Anal. Calcd. for 

C34H34Cl3N30Zr (%):C, 58.49; H, 4.91; N, 6.02; Found (%): C, 58.64; H, 4.72; N, 

5.76. 

3.4. 7. General procedure for the synthesis of cyclopentadienyl (2-(1,3-

bis(2,4,6-trimethylphenyl)imizadol-2-imine)-1-(aryl)ethenolate) titanium 

dichloride CpTiCl2(IMesNAethenolate), 3.10 and 3.11: 

Compounds 3.10 and 3.11 were prepared using the same procedure used 

for the preparation of compounds 3.8 and 3.9, with the exception that the CpTiCl3 

was used as metal precursor. The product was purified by redissolving it in 

toluene, filtering the mixture and removing the volatiles in vacuo to yield blue 

powders. Analytically-pure samples were obtained by recrystallization from THF 

and pentane at -35 °C. 

3.4. 7.1. Cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-

imine )-1-phenylethenolate) titanium dichloride, 3.10: 

74% yield; 1H NMR (400 MHz, CsDs): o 7.19-7.17 (m, 4H, o-CH(phenyl) + m­

CH(pheny1)), 6.90 (d, 1 H, J = 8.5 Hz, p-CH(pheny1)), 6.78 (s, 1 H, =N-CH=C-), 6.73 (s, 

4H, m-CH(mesity1)), 6.12 (s, SH, Cp), 5.56 (s, 2H, -NCHCHN-), 2.12 (s, 12H, o­

CHJ(mesity1)), 2.09 (s, 6H, p-CHJ(mesity1))- 13C{1H} NMR (100 MHz, CsDs): o 156.8 
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(0-C), 144.8 (-NCN-(mesityl)), 139.1 (p-C(mesityl)), 137.7 (ipso-C(phenyl)), 136.5 (o­

C(mesityl)), 133.9 (ipso-C(mesityl)), 129.6 (m-CH(mesityl)), 127 .0 (m-CH(phenyl)), 125.4 (p­

CH(phenyl)), 124.2 (N-CH=C), 122.3 (o-CH(pheny1)), 120.5 (Cp), 115.0 (-NCHCHN-), 

20.9 (p-CH3(mesityl)), 18.0 (o-CH3(mesityl)). Anal. Calcd. for C34H3sCl2N30Ti (%): C, 

65.82; H, 5.69; N, 6.77; Found(%): C, 66.10; H, 5.90; N, 7.02. 

3.4. 7.2. Cyclopentadienyl (2-(1,3-bis(2,4,6-trimethylphenyl)imizadol-2-

imine)-1-(4-chlorophenyl)ethenolate) titanium dichloride, 3.11: 

56% yield. 1H NMR (400 MHz, CsDs): b 7.05 (d, 2H, J = 8.6 Hz, m­

CH(ch1oropheny1)), 6.97 (d, 2H, J = 8.6 Hz, o-CH(ch1oropheny1)), 6.71 (s, 4H, m-CH(mesity1)), 

6.68 (s, 1 H, =N-CH=C-), 6.05 (s, SH, Cp), 5.56 (s, 2H, -NCHCHN-), 2.09 (s, 

12H, o-CHJ(mesity1)), 2.06 (s, 6H, p-CHJ(mesity1)). 13C{1H} NMR (100 MHz, CsDs): b 

155.6 (0-C), 144.8 (-NCN-), 139.2 (p-C(mesityl)), 136.4 (O-C(mesityl)), 136.3 (p­

C(chlorophenyl)), 133.8 (ipso-C(mesityl)), 130.7 (ipso-C(chlorophenyl)), 129.9 (m-CH(mesityl)), 

128.6 (m-CH(chlorophenyl)), 124.6 (=N-CH=C-), 123.4 (o-CH(chlorophenyl)), 120.6 (Cp), 

115.1 (-NCHCHN-), 20.9 (p-CH3(mesityl)), 17.9 (o-CH3(mesityl)). Anal. Calcd. for 

C34H34CbN30Ti (%):C, 62.36; H, 5.23; N, 6.42; Found(%): C, 62.15; H, 5.09; N, 

6.38. 

3.4.8. General Procedure for Ethylene Polymerization. 

Ethylene polymerization was performed at atmospheric pressure and 

room temperature in a 200 ml Schlenk flask containing a magnetic stir bar. The 

flask was conditioned in an oven at 160 °C for at least 12 h prior to use. The hot 

flask was brought to room temperature under dynamic vacuum, and back-filled 
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with ethylene. This cycle was repeated a total of three times. Under an 

atmosphere of ethylene, the flask was charged with 20 ml of dry toluene and 

1000 equivalents of methylaluminoxane (MAO). The solution was stirred for 15 

min before a solution of the catalyst in toluene was introduced into the flask via a 

syringe. The reaction mixture was vigorously stirred for 10 min after the addition 

of the catalyst, and subsequently quenched with a 50:50 mixture of concentrated 

hydrochloric acid and methanol. The resulting mixture was filtered and any solid 

collected was washed with distilled water. Solids collected were dried under 

vacuum at approximately 60 °C for several hours. 

3.4.9. Computational Details. 

DFT calculations were carried out at the hybrid B3L YP level of theory with 

Lanl2DZ as basis set using Gaussian 913 and GaussView 314 for computing and 

molecular visualization, respectively. These calculations were performed on the 

Shared Hierarchical Academic Research Computing Network (SHARCNET: 

www .sharcnet.ca ). 

3.4.10. X-ray Crystallography. 

Detailed crystallographic data for compound 3.9 (Tables of atomic 

coordinates with isotropic and anisotropic displacement parameters, bond 

lengths and angles) are provided as supplementary materials. Crystallographic 

data for 3.9 were collected at the University of Toronto on a Bruker-Nonius 

Kappa-CCD diffractometer using monochromated Mo-Ka radiation (I = 0.71073 

A) at 150K and were measured using a combination of <P scans and w scans with 
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K offsets, to fill the Ewald sphere. Intensity data were processed using the 

Denzo-SMN package.15 Absorption corrections were carried out using 

SORTAV.16 The structure was solved with using Superflip 17 and refined using 

WinGX18 with SHELXS-9?19 for full-matrix least-squares refinement that was 

based on F2
. All H atoms were included in calculated positions and allowed to 

refine in riding-motion approximation with Uiso tied to the carrier atom. 
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Chapter 4 Grubbs-type Metathesis Catalysts: A Three Pronged Approach 

4.1 Introduction 

The formation of carbon-carbon bonds is one of the most important 

transformations in organic chemistry and has propelled the research interest of 

homogenous organometallic catalysis. As a result, a great deal of emphasis has 

been placed on developing catalysts with specifically designed ancillary ligands 

for the syntheses of specific desired products under controlled conditions. One 

area of transition metal catalysis that has garnered much attention in recent 

decades is ruthenium-based olefin metathesis.1 The availability of easily 

prepared, robust ruthenium metathesis catalysts has led to their tremendous 

usage in facilitating a wide variety of organic transformations. 

4.1.1 Metathesis 

There are several metathesis subtypes, which include cross-metathesis 

(CM)1
a,b,

1
e·

2
, ring-opening metathesis polymerization (ROMP)29•

3
, ring-closing 

metathesis (RCM) 1e·
2

a,
2

d·29•
4

, acyclic diene metathesis polymerization 

(ADMET)29 '
38

'
5 and ring-opening cross-metathesis (ROCM)2

e·29•
6

. In all cases, a 

metal alkylidene is present to facilitate the carbon-carbon double bond 

rearrangement. 
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Figure 4.1. Common types of metathesis reactions 

The highly studied olefin metathesis reaction mechanism, first proposed 

by Chauvin7
, involves a series of alternating [2 + 2]-cycloadditions and 

cycloreversions, involving a catalytically important metallocyclobutane 

intermediate (Figure 4.2).8 
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Figure 4.2. General accepted metathesis mechanism 

The most notable metathesis catalysts are based on molybdenum3
h.

4
b.

9
, 

tungsten3h.9c-9 and ruthenium.1•2d.3e.4a.b.9a·10 In our case, we were most interested 

in ruthenium alkylidene metathesis catalysts because of their stability and 

tolerance towards many different organic functional groups. One of the first, and 

most notable, ruthenium-based metathesis catalyst is Grubbs first-generation 

(GI) catalyst (Figure 4.3). 11 
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Figure 4.3. Grubbs first-generation (GI) catalyst 

4.1.2 Evolution of ruthenium metathesis catalysts 

Since the isolation of GI, there has been a great deal of emphasis on 

improving the productivity of this catalyst. The most notable modification to 

Grubbs first-generation catalyst was substituting one of the neutral ancillary 

phosphine ligands with an N-heterocyclic carbene (NHC) ligand.1b.1d.e.2d.4a.1ob,c,12 

As discussed in Chapter 1, NHC ligands are excellent a-donors and poor 

TT-acceptors and impart excellent thermodynamic stability to transition metal 

complexes. Substituting one of the tertiary phosphines with an NHC ligand offers 

enhanced stability of the coordinatively unsaturated intermediate in the 

metathesis catalytic cycle.1
b,

2
d In addition, certain NHC ligands offer considerably 

more steric bulk around the metal centre compared to tertiary phosphines, thus 

promoting dissociation of the phosphine and initiation of the catalytic cycle.1
b·

2
d·

13 

As a result, the combination of a strong electron-donating, non-labile, sterically 

bulky NHC ligand and a labile ligand resulted in significantly greater metathesis 

productivity. 

Other notable advancements and modifications2
d,sa.

1
oc,

14 to Grubbs-type 

ruthenium complexes include using more labile ligands, such as PPh3
15 or 
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pyridine 16
, as a replacement for the second phosphine, substituting the chloride 

ligand(s)17 and modifying the benzylidene 11
b·

14
•
18 ligand itself (Figure 4.4). 

Figure 4.4. Examples of modifications to Grubbs-type ruthenium 

metathesis catalysts 

Despite the extensive research into ruthenium metathesis catalysts over 

the last few decades, we found a few areas that remained underdeveloped. The 

use of multidentate ligands, both mono 19
•
20 and dianionic,21 and chelating 

benzylidene ligands,22 have been used in the synthesis of Grubbs-type ruthenium 

complexes, but considerably less attention was given towards incorporating 

neutral bidentate ligands.23 As a result, we became interested in developing the 

area of Grubbs-type ruthenium complexes bearing neutral, bidentate ligands, 

specifically the aryl-substituted acyclic imino-N-heterocyclic carbene.24 

The second area of Grubbs-type ruthenium complexes that garnered our 

attention was the substitution of the chloride ligand(s) with alkyl/aryloxide 

ligand(s).17
b·

21
b,c,

25 Fogg has demonstrated that substituting one or two of the 

halides with an aryloxide can lead to enhanced activity for ring-closing 

metathesis when compared to other Grubbs-type catalysts (Scheme 1 ). In one 

study,21
b Fogg demonstrated that the activity of the ruthenium complexes in 

metathesis decreases as the aryloxide becomes more electron-deficient. This 
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observed trend provided an opportunity to investigate substituting one or two of 

the halides of Grubbs first- and second-generation catalysts with the imidazol-2-

imide ligand.26 

We were also interested in substituting one of the tertiary phosphines of 

GI with an NHC-phosphinidene.27 As discussed in Chapter 1, NHC­

phosphinidene ligands are strong electron-donating ligands with considerable 

bulk (from the NHC), and the ligands can be easily modified both electronically 

and sterically. Incorporation of an NHC-phosphinidene ligand would yield a 

ruthenium complex bearing a strong electron-donating and sterically bulky ligand 

and a labile tertiary phosphine ligand for dissociation/initiation. We herein report 

our progress in these research interests. 

4.2 Results and Discussion 

4.2.1. Synthesis and chemistry of cationic ruthenium benzylidene complex 

Within the Lavoie group, an efficient synthetic route for forming a 

phosphine-free Grubbs-type ruthenium complex was prepared. Reacting a slight 

excess of CAlmine with Grubbs first-generation complex in toluene for 24 hours 

at room temperature afforded the phosphine-free RuC!i(CAlmine)(CHPh)28
. The 

catalytic activity of this complex towards ring-closing metathesis of diethyl 

diallylmalonate and diallyl sulfide was evaluated at 70 °C using 5 mol% Ru, and 

monitored by 1H NMR spectroscopy. After 1 hour, no ring-closing product, 

catalyst decomposition or substrate consumption was observed and the 

diagnostic benzylidene proton was still visible in the 1H NMR spectrum. The 
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inactivity of this complex towards RCM suggests a robust chelation of the 

CAlmine ligand, thus impeding the initiation step via the formation of a free 

coordination site. 

Our attention was then turned towards synthesizing the cationic derivative 

by abstracting one of the chloride ligands. We believed that treating 

RuCb(CAlmine)(CHPh) with a halide-abstracting agent, in the presence of a 

weakly coordinating solvent, would yield a solvated cationic adduct. From this 

product, a free coordination site could be formed to initiate ring-closing 

metathesis via dissociation of a solvent molecule. As a result, we decided to treat 

RuCl2(CA1mine)(CHPh) with one equivalent of AgPFs in acetonitrile in an attempt 

to form [RuCl(CAlmine)(MeCN)(CHPh)][PFs]. To our surprise this led to the 

selective formation of one product in approximately 50% yield; addition of two 

equivalents of AgPFs led to the formation of the same product, presumably 

compound 4.1, in fair yield (70%) (Scheme 4.1 ). 
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1 equiv. AgPF6 

MeCN,RT 

RuCl2(C"lmine )(CHPh) 

2 equiv. AgPF6 

MeCN,RT 

/\ tBu 
1...-NyN.__/ 

Ar Cl0 •.. 1 '! 
j=="Ru---- "' 

I I Ar2 
Ph MeCN 

2+2 PFs­

, __ NnN.__/tBu 

ArMeCN~ ~ 
j=="Ru---- "' 

I I' Ar2 
Ph MeCN NCMe 

4.1 

Ar 1 = 2,4,6-trimethylphenyl; Ar2 = 2,6-dimethylphenyl 

Scheme 4.1. Reaction of RuC'2(CAlmine)(CHPh} with AgPFs in MeCN 

The solution 1H NMR spectrum of the product showed promise, with a new 

resonance at D 16.5 ppm, a characteristic region for resonances of benzylidene 

protons. Likewise, the benzylidene carbon resonance resonates far downfield at 

D 334.3 ppm, similar in chemical shift to other ruthenium benzylidene complexes. 

In the aliphatic region, there were 10 resonances ranging from D 2.49 - 1.43 

ppm. If the methyl groups of the ligand were spectroscopically inequivalent 

(similar to RuCl2(C"lmine)(CHPh)), there should be 8 resonances in the aliphatic 

region, including two coordinated MeCN ligands. Combustion analysis of this 

product was not consistent with compound 4.1. 
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Despite the inconsistent characterization of the complex, the activity of this 

product towards RCM was assessed. The RCM of diethyldiallyl malonate and of 

diallyl sulfide was evaluated at 70 °C using 5 mol % Ru (conditions similar to 

other studies),25
a and monitored by 1H NMR spectroscopy. To our surprise, no 

ring-closing product, catalyst decomposition or substrate consumption was 

observed and the diagnostic downfield resonances at ~ 16.5 ppm was still visible 

in the 1H NMR spectrum after 1 hour. 

In an attempt to gain a deeper understanding of the newly formed product, 

and to perhaps develop structure-property relationships, our attention was turned 

towards growing X-ray quality crystals. X-ray quality crystals were grown from a 

solution NMR sample of what was thought to be compound 4.1 in CDC'3. The 

product crystallized as gold needles in the P21/n space group. Surprisingly, the 

solid-state structure was very different from the expected product. The actual 

product, complex 4.2, is a dicationic ruthenium metal centre with a distorted 

octahedral geometry. The complex consists of a benzyl substituted ligand, the 

coordinated iminic moiety of the former CAlmine ligand and four coordinated 

MeCN molecules. This unique molecule was consistent with combustion analysis 

(Figure 4.5). 

103 



Figure 4.5. ORTEP plot (50% probability level) of 4.2. Two 

hexafluorophosphate anions, two chloroform-d1 free solvent molecules and 

most hydrogen atoms are omitted for clarity reasons. 

Most notable is the presence of an sp3-hybridized carbon atom (C26), with bond 

angles for C1-C26-C27, C1-C26-Ru1, C1-C26-Ru1, C1-C26-H26 and C27-

C26-H26 determined to be 118.3(3), 98.0(2), 115.8(3), 105(3) and 113(3)°, 

respectively (Table 4.1 ). The ruthenium-nitrogen bond lengths of the coordinated 

acetonitrile molecules range from 2.006(3)-2.094(4), with the longest bond 

length trans to the alkyl group; a likely result of a strong trans influence. 
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Table 4.1. Selected bond lengths and bond angles for compound 4.2 
Selected Bond Lengths (A) Selected Bond Angles (deg) 
C(1 )-C(26) 1.438(5) C(1 )-C(26)-C(27) 118.3(3) 
C(1 )-N(2) 1.364(5) C(1 )-C(26)-Ru(1) 98.0(2) 
C(1 )-N(1) 1.345(5) C(1 )-C(26)-Ru(1) 115.8(3) 
C(26)-Ru(1) 2.184(4) C(1 )-C(26)-H(26) 105(3) 
C(26)-C(27) 1.502(5) C(27)-C(26)-H(26) 113(3) 
N(3)-Ru(1) 2.130(3) N(6)-Ru(1 )-N(4) 90.50(14) 
N(4 )-Ru(1) 2.030(3) N(6)-Ru(1 )-C(26) 90.57(14) 
N(5)-Ru(1) 2.094(4) N(7)-Ru(1 )-C(26) 89.30(14) 
N(6)-Ru(1) 2.028(4) N(4 )-Ru(1 )-N(3) 89.15(13) 
N(7)-Ru(1) 2.006(3) N(4)-Ru(1 )-N(S) 87.31 (13) 

N(6}-Ru(1 }-N(5) 87.25(14) 

The synthesis and characterization of this complex is quite remarkable 

and offers insight into the decomposition pathway of Grubbs-type ruthenium 

complexes. The decomposition pathway of Grubbs-type ruthenium catalysts has 

been extensively studied since the first isolation of ruthenium benzylidene 

complexes. Previous work into the intramolecular insertion of NHC substituents 

of Grubbs-type complexes has been observed experimentally29 and investigated 

theoretically.30 Despite the extensive experimental and theoretical investigations 

into the decomposition pathway, direct insertion of the benzylidene into a Ru-

NHC bond, forming a ruthenium-benzyl complex has, to our knowledge, never 

been reported. It is clear that the formation of a cationic or dicationic metal centre 

from RuCl2(CA1mine)(CHPh) favours the migratory insertion of the NHC into the 

ruthenium benzylidene bond. As a result, there lies the possibility of other 

ruthenium alkylidene complexes undergoing decomposition via nucleophilic 

attack of the NHC on the benzylidene ligand for complexes with electron-poor 

metal centres. This new finding may help provide insight into the possible 
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decomposition pathway and the active species in alkene metathesis and possibly 

lead to tailoring ruthenium alkylidene catalysts to mitigate this nucleophilic attack, 

thus improving catalyst lifetime and productivity. 

4.2.2. Synthesis and chemistry of ruthenium benzylidene complexes 

bearing an imidazol-2-imine ligand 

Our group has become interested in incorporating the imidazol-2-imide 

ligand26 into a Grubbs-type ruthenium metathesis catalyst. In an attempt to 

synthesize a new catalyst, we focused on replacing one or two halide(s) from 

Grubbs first-generation catalyst (GI) with an imidazol-2-imide ligand. Treating GI 

with one equivalent of either [IMes=N]Li or [ltBu=N]Li resulted in a mixture of 

reaction products (Scheme 4.2). 

PCy3 r===\ 
I ,\,,,Cl N N 

Ru·-=\ + R_....... y --R 
c1~I -\ 

PCy3 Ph 
Li N 
(f) e 

R = 2,4,6-trimethylphenyl (IMes=N) or tBu (ltBu=N) 

Scheme 4.2. Proposed synthetic strategy for forming RuCl(X)(PCy3)2(CHPh) 

(X = IMes=N or ltBu=N) 

In all cases, there was no distinct benzylidene proton observed in the 1 H 

NMR spectra. Also, there was protonated imidazol-2-imine present in the 

reaction mixtures. The presence of protonated imidazol-2-imine suggests the 

deprotonation of the benzylidene, which could lead to the formation of a 

ruthenium alkylidyne via dehydrohalogenation (Scheme 4.3).31 
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R = 2,4,6-trimethylphenyl or tBu 

Scheme 4.3. Possible formation of a ruthenium alkylidyne complex 

If the product was a ruthenium alkylidyne complex, then we would expect to see 

a new signal in the 31 P spectrum. Unfortunately, we only see free PCy3 in the 31 P 

spectrum, thus indicating the absence of our intended benzylidene or alkylidyne 

product. A similar observation was recorded by Johnson with their attempts to 

react GI with Sn(CH[SiMe3]2)2.31
a 

PCy3 

I 
Ar'O-Ru== 

I 
Ar 

PCy3 

Scheme 4.4. Dehydrohalogenation of Grubbs first generation catalyst31 

Attempts to treat GI with 2 equivalents of [IMes=N]Li or [ltBu=N]Li in hopes of 

synthesizing the halide-free alkylidyne complex were also unsuccessful. 

At this point, we turned our attention towards treat [IMes=N]Li or 

[ltBu=N]Li with ruthenium benzylidene complexes bearing ancillary NHC ligands. 

Two ruthenium starting materials were used, RuCl2(1Mes)(PCy3)(CHPh) and 

RuCl2(ltBu)(PPh3)(CHPh), and in both cases we see the disappearance of the 

benzylidene proton regardless of the stoichiometry. Unfortunately, no products in 
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the reaction mixture could be isolated or crystallized in order to gain insight into 

their nature. 

Despite the inability to synthesize a ruthenium benzylidene complex at 

this point, we decided to try using phosphine-free ruthenium benzylidene 

precursors. Fogg Hb has shown that, depending on the starting material, either 

the halide-free alkylidyne or substituted alkylidene can be synthesized and 

isolated (Scheme 4.5). 

PCy3 

I 
CsFsO-Ru=-~--Ph 

I 
PCy3 

PY 
RuCl2(PCy3h(CHPh) RuCl2(IMes)py2(CHPh) I ,,,,,IMes 

2 TIOC6F5 -----~ ~Ru·~ 
C5F50 I Ph 

OC6F5 

Scheme 4.5. Aryloxide selectivity based on metal precursor 

Attempts to treat 2 equivalents of [IMes=N]Li or [11Bu=N]Li with 

RuCl2(IMes)py2(CHPh) resulted in a mixture of reaction products and the 

absence of a benzylidene proton. However, adding 1 equivalent of [11Bu=N]Li to 

RuCl2(IMes)py2(CHPh) in CsDs resulted in the likely formation of 

RuCl(IMes)(l1Bu=N)py2(CHPh) (4.3) (Scheme 4.6). 

I Mes 
I ,,,,,Cl 

py-Ru·-=\ 
c1" I \ 

PY Ph 

4.3 

Scheme 4.6. Synthetic scheme to forming compound 4.3. 
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After five minutes, all the starting material was consumed and a new benzylidene 

proton resonance was observed downfield at o 17 .01 ppm. The aliphatic region 

of the 1H NMR spectrum contained four major resonances at o = 2.43, 2.22, 2.21: 

and 1.10 ppm, which correspond to the coordinated I Mes and imidazol-2-imide 

methyl groups, respectively. The aromatic region contained from 8 resonances 

ranging 8.54 to 5.86 ppm, with some resonances being broad, an indication of 

fluxional behaviour. The reaction was monitored using NMR spectroscopy over a 

period of several hours. After 1.5 hours, the benzylidene proton resonance 

decreased by more than 80% while the broad resonances in the aliphatic region 

appeared. Attempts to acquire 2D HSQC, 2D HMBC and 13C NMR spectra were 

unsuccessful due to decomposition in CsDs. A variety of other NMR solvents 

were used (CDCb, CD2Cl2, CD3CN) to acquire the desired NMR spectra and in 

all cases, led to relatively quick decomposition. Despite the incomplete 

characterization of compound 4.3, the catalytic activity towards ring-closing 

metathesis was tested. The catalyst was prepared fresh in CsDs, dried and 

redissolved in CDCb prior to each catalytic run without any purification. Due to 

the observed decomposition of the complex at room temperature in solution, we 

decided to test the activity towards RCM of diallyl sulfide at room temperature. 

After 90 mins, no ring-closing product was observed. In light of the inactivity at 

room temperature, the RCM activity was tested at 70 °C. After 30 mins at 70 °C 

with 5 % mol catalyst, greater than 99.9% conversion of diallyl sulfide to the RCM 

product was observed. The activity of this complex showed promise because the 
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RCM activity of RuCb(IMes)PCy3(CHPh) was tested under the same conditions 

and yielded only 36% RCM product (Table 4.2). At lower catalyst loading (1 mol 

% ) for complex 4.3, we see a 48% conversion after 20 minutes at 70 °C for RCM 

of diallyl sulfide. 

Table 4.2: Catalytic activity of ruthenium metathesis catalysts in CDCb 

Substrate Catalyst 
mol o/o 

Conditions o/o Product 
Ru 

JS\ 4.3 5 90 min, 23 °C 0% 

JS\ 4.3 5 30 min, 70 °C >99.9% 

JS\ 4.3 1 20 min, 70 °C 48% 

JS\ RuCl2{IMes)PCy3(CHPh) 5 30 min, 70 °C 36% 

EAi 
4.3 5 20 min, 70 °C 50% 

.# ~ 

EAi 
RuCl2(IMes)PCy3(CHPh) 5 20 min, 70 °C >99.9% 

.# ~ 
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On the other hand, the RCM yield with diethyl diallylmalonate for compound 4.3 

was lower (50% conversion) than RuC!i(IMes)PCy3(CHPh) (>99.9% conversion) 

after 20 minutes at 70 °C with a 5 mol % catalyst loading. The preliminary 

catalytic results for 4.3 are quite lower than other known ruthenium alkylidenes 

containing aryloxides.25
a These results are not surprising, considering that 

complex 4.3 undergoes decomposition under mild conditions and one would 

assume that the catalyst lifetime of this complex would be short-lived. In order to 

truly assess the potential catalytic application of ruthenium alkylidene complexes 

bearing imidazol-2-imide ancillary ligands towards olefin metathesis, we would 

need to synthesize and isolate more robust precatalysts. 

4.2.3. Synthesis and chemistry of ruthenium benzylidene complexes 

bearing NHC-phosphinidene ligands 

In an attempt to synthesize a Grubbs-type complex bearing the 1,3-

bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-phenylphosphinidene (IMes=PPh)27
a 

ligand as a potential catalyst for metathesis, we decided to treat GI with an 

excess of IMes=PPh (Scheme 4.6). 
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J;t~ rl-N1~)~ toluene 
Cl_.-1\ ~II~ 

PCy3 Ph P,Ph 12 h 

1.4 equiv 

Scheme 4.6. Proposed synthetic route to forming 

RuC'2(IMes=PPh)(PCy3)(CHPh) 

To our surprise, the solution 1H NMR spectrum of the product was not consistent 

with the desired compound. Most notable was the absence of the distinctive 

benzylidene proton in the downfield range of 15 to 20 ppm. In addition, the proton 

signals were mainly broad singlets, suggesting fluxional behaviour. In an attempt 

to gain further insight into the identity of the isolated product, our attention was 

turned towards growing X-ray quality crystals for crystallographic analysis. 

Fortunately, X-ray quality crystals were isolated via slow liquid diffusion of diethyl 

ether into a saturated THF solution. They crystallized in the P21/n space group. 

As expected, I did not see the desired product, but rather a decomposition 

product containing components of the intended target (Figure 4.6). 
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Cll 

Figure 4.6. ORTEP plot (30% probability level) of 4.4. 

Most hydrogens were omitted for clarity. 

Table 4.3. Selected bond lengths and bond angles for compound 4.4 
Selected Bond Lengths {A) Selected Bond Angles (deg) 
C1-N1 1.352(3) C34-P1-C22 104.51(10) 
C1-N2 1.355(3) C34-P1-C1 107.02(10) 
C1-P1 1.883(2) C22-P1-C1 95.67(9) 
Ru-Cl1 2.4899(7) C34-P1-Ru1 107.88(7) 
P1-Ru1 2.1844(6) C28-Ru1-C21 94.09(8) 
P2-Ru1 2.3464(7) C28-Ru1-P1 80.51(6) 
C28-Ru1 2.035(2) P1-Ru1-P2 95.21 (3) 
C21-Ru1 2.157(2) P2-Ru1-Cl1 86.85(3) 
C22-P1 1.842(2) P1-Ru1-Cl1 177.83(2) 
C34-P1 1.839(2) Ru1-C21-C18 89.8(1) 
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There are a few noteworthy observations for the X-ray structure. There are 

two instances in which C-H bond activation occurred. The metal centre adopts a 

distorted square pyramidal geometry with the apical site being occupied by C28. 

Interestingly, there is a five-membered metallacycle with a bite angle of 90.51 (6)0 

(C28-Ru1-P1). The long P1-Ru1 bond length of 2.1844(6) A shows that there is 

significant single bond character for this ligand. The sp3 carbon C34 corresponds 

to the former benzylidene carbon and contains two hydrogen atoms located on 

the density map. Lastly, we see an acute Ru1-C21-C18 bond angle of 89.8(1 )°, 

which is considerably smaller than similar bond angles reported.30
b·

32 It is 

important to note that the coordination of PPh3 is likely a result of fortuitous free 

PPh3 from the starting materials. The corresponding PCy3 decomposition product 

was isolated and characterized by using vigorously purified starting material. As 

discussed in Section 4.2.1, there have been considerable experimental29 and 

theoretical30 studies into the decomposition of Grubbs-type ruthenium catalysts 

and numerous examples of C-H bond activation of NHC substituents on 

ruthenium.30
b·

32 We believe that the decomposition of the product is initiated by 

the migratory insertion of the IMes=PPh ligand on the benzylidene carbon, 

followed by cyclometallation of the o-methyl group of the mesityl ring. A reductive 

elimination then occurs, followed by another cyclometallation and then the 

release of HCI (Figure 4. 7). 
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migratory 
insertion 

+L 

-HCI 

reductive 1 
elimination 

Figure 4. 7. Proposed decomposition pathway of 

RuCl2(IMes=PPh)(PCy3)(CHPh) 

An usual imidazolium benzylidene complex was reported recently, for which the 

authors suggest nucleophilic attack on the alkylidene carbon by a silver-NHC 

adduct.30
d Interestingly, treating RuCl2(PPh3)2(CHPh) with a slight excess of 

IMes=PPh in toluene at room temperature under nitrogen for one hour afforded a 

yellow-brown solution with a light brown precipitate (Scheme 4.7). 

4.5 

Scheme 4.7. Synthetic strategy for RuC'2(1Mes=PPh)(PPh3)(CHPh), 4.5 
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The solution was filtered, dried and recrystallized from pentane and 

dichloromethane to yield dark crystals of the desired compound. Solution 1 H 

NMR spectrum of the product was consistent with the desired compound with the 

benzylidene proton resonating at b 15.48 ppm as a doublet of doublets, a result 

of coupling to the two inequivalent phosphine atoms. The corresponding 

benzylidene carbon resonates at b 299.7 ppm, while the 31 P{1H} spectrum 

contains two singlets at o 64.8 and 37.4 ppm. 

Crystals suitable for X-ray diffraction analysis were grown from slow liquid 

diffusion of pentane into a saturated dichloromethane solution and crystallized in 

the C2/c space group (Figure 4.8). The crystal structure was consistent with the 

desired product. Its metal centre adopts a distorted square-pyramidal 

coordination with almost linear Cl2-Ru-P2 and Cl1-Ru-P1 bond angles of 

168.06(2)0 and 158.18(2)0
, respectively. The Ru-Cl2 and Ru-Cl1 bond lengths 

were determined to be 2.4012(6) and 2.3925(6) A, respectively. Interestingly, we 

see a C1-P1 bond length of 1.847(2) A, indicating significant single bond 

character, likely a result of electron delocalization from the azole nitrogen atoms 

to the phosphorus atom. The Ru-P1 and Ru-P2 bond lengths were determined 

to be 2.3643(7) and 2.3272(6) A, respectively. Surprisingly, the chloride ligands 

adopt a cis arrangement, atypical to ruthenium alkylidene complexes without a 

bidentate ligand.10a·17b.33 
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Figure 4.8. ORTEP plot (30% probability level) of 4.5. Most hydrogens and 1 

molecule of dichloromethane were omitted for clarity. 

Table 4.3. Selected bond lengths and angles for compounds 4.5 
Selected Bond Lengths (A) Selected Bond Angles (deg) 
C1-N1 1.367(3) C1-P1-Ru1 113.81 (8) 
C1-N2 1.361 (3) C22-P1-Ru1 98.20(8) 
C1-P1 1.847(2) C22-P1-C1 103.53(11) 
Ru1-Cl1 2.3925(6) C28-Ru1-P2 86.69(7) 
Ru1-Cl2 2.4012(6) C28-Ru1-P1 96.43(8) 
P1-Ru1 2.3643(7) P1-Ru1-P2 90.61(2) 
P2-Ru1 2.3272(6) P2-Ru1-Cl1 86.89(2) 
C28-Ru1 1.841(3) 

One could argue that using a poorer electron-donating phosphine would result in 

the ruthenium metal centre being less electron-rich. Consequently, the metal 
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centre would accept more electron density from the alkylidene carbon and less rc­

backdonation to the carbon would result, thus making that carbon more1 

electrophilic. In our case, it appears as though sterics, rather than electronics, 

played a crucial role in promoting the migratory insertion of the phosphaalkene in 

the presence of exess reagent, thus triggering subsequent decomposition steps. 

The reaction between GI and IMes=PPh afforded the decomposition product 4.4, 

when the tertiary phosphines in the starting material were PCy3. On the other 

hand, RuCl2(PPh3)2(CHPh) starting material containing sterically less demanding 

PPh3, afforded the desired product (4.5). 

Having synthesized and isolated a Grubbs-type carbene complex bearing 

the IMes=PPh ligand, we turned our attention towards the application of this 

complex towards Ring-Closing Metathesis (RCM). We decided to test the activity 

towards RCM of diallyl sulfide at room temperature. Surprisingly, no ring-closing 

product, catalyst decomposition or substrate consumption was observed and the 

diagnostic downfield resonances at D 15.5 ppm was still visible in the 1 H NMR 

spectrum after 6 hours. In light of the inactivity at room temperature, the RCM 

activity was tested at 70 °C. Heating a sample of CDCb solution containing diallyl 

sulfide and 5 mol % of catalyst to 70 °C for 1 hour resulted in no observable ring­

closing and the complete conversion of complex 4.5 to a product with similar 1 H 

NMR chemical shifts as shown by the decomposition of the X-ray structure (4.4). 

The thermal stability of 4.5 at 70 °C was tested by heating the sample in CDCb 

for 1 hour. Once again, the complex completely decomposed into a species with 
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1 H NMR resonances similar to that of 4.4. These results, although disappointing, 

shows that the complex is susceptible to thermal decomposition under mild 

conditions. We are currently validating the decomposition mechanism of these 

complexes and developing NHC-phosphinidene ligand variants that would 

mitigate the nucleophilic attack of the alkylidene fragment. 

4.3 Conclusions and Future Considerations 

In an attempt to synthesize and isolate a cationic 

[RuCl(C"lmine)(MeCN)(CHPh)][PFs] complex, we isolated an unusual 

decomposition product. The decomposition product was characterized and is the 

first example of a complex with direct insertion of the benzylidene into a Ru-NHC 

bond, forming a ruthenium-benzyl complex (4.2). 

The application of imidazol-2-imide ligands as ancillary ligands on Grubbs­

type ruthenium metathesis catalysts were investigated. A partially characterized 

ruthenium complex, RuCl(IMes)(ltBu=N)py(CHPh) (4.3), showed promising 

results for the ring-closing metathesis of diallyl sulfide. Studies into the stability of 

these complexes are currently being conducted and the synthesis and isolation 

of other novel Grubbs-type metathesis catalysts are being explored. 

The successful synthesis and isolation of a Grubbs-type ruthenium 

alkylidene complex bearing the IMes=PPh was reported (4.5). An interesting 

decomposition product was also synthesized and characterized (4.4), providing 

insight into the decomposition pathway of Grubbs-type complexes. We are 

currently exploring the decomposition mechanism of these complexes and 
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developing NHC-phosphinidene ligand variants that would mitigate 

decomposition. 

4.4 Experimental 

4.4.1 General Considerations 

All manipulations were performed under a dinitrogen atmosphere in a 

drybox or using standard Schlenk techniques. Solvents used in the 

preparation of air and/or moisture sensitive compounds were dried using an 

MBraun Solvent Purification System fitted with alumina columns and stored 

over molecular sieves under a positive pressure of argon. Toluene for 

polymerization was distilled under argon after being dried with the MBraun 

SPS. Deuterated solvents were degassed using three freeze-pump-thaw 

cycles. C6Ds and CDCb were vacuum distilled from sodium and CaH2, 

respectively, and stored under dinitrogen. NMR spectra were recorded on a 

Bruker DRX 600 CH at 600 MHz, 13C at 150.9 MHz), Bruker AV 400 CH at 

400 MHz, 13C at 100 MHz, 31 P at 161 MHz) or Bruker AV 300 CH at 300 

MHz, 13C at 75.5 MHz, 31 P at 81 MHz) spectrometer and are at room 

temperature unless otherwise stated. The spectra were referenced internally 

relative to the residual protio-solvent (1 H) and solvent {1 3C) resonances and 

chemical shifts were reported with respect to l5 = 0 for tetramethylsilane. The 

31 P spectra were referenced externally with 85% H3P04. 

All metal precursors were purchased from either BDH or Sigma-Aldrich. 

Deuterated NMR solvents were purchased from Cambridge Isotope 
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Laboratories. lmidazol-2-imine26 compounds and their derivatives, 

IMes=PPh,27
a RuCb(PCy3)2(CHPh), 11

b RuCl2(PPh3)2(CHPh), 11
b 

RuCl2(1Mes)PCy3(CHPh),34 RuCb(ltBu)PPh3(CHPh)35 and 

RuCl2(1Mes)py2(CHPh)25
a were prepared using published procedure. 

4.4.2 Synthesis of [Ru(CAlmine)(MeCN)4{CHPh)][PFs]2, 4.2 

RuCl2(C"lmine)(CHPh) (1) (41.7 mg, 65.6 µmol) was dissolved in a 

minimal amount of MeCN (5 ml). AgPFs (33.2 mg, 131 µmol) was added as a 

solid to the solution mixture. The solution was stirred stir for 4 h at room 

temperature, filtered and concentrated in vacuo. Diethyl ether was added until 

the product precipitated out of solution. Yield: 47 mg, 47 µmol, 72%. 1H NMR 

(400 MHz, CDCl3): o = 16.5 (s, 1 H, CHPh), 8.49 (s, 1 H, NHCCN(mesityl)}, 8.13 (d, J 

= 7.0 Hz, 2H, m-CH(2.s-xy1y1)), 7.87 (t, J = 7.3 Hz, 1 H, , p-CH(2,s-xy1y1)), 7.63 (t, J = 7.8 

Hz, 2H, , o-CH(pheny1)), 7 .05 (s, 2H, , m-CH(mesityl)), 6.96 (m, 2H, , m-CH(pheny1)), 

6.71 (d, J = 7.8 Hz, 1 H, , p-CH(pheny1)), 6.63 (s, 1 H, NCCHN(mesity1)), 2.49 (br s, 3H, 

CH3(MeCN)), 2.36 (s, 3H, o-CH3(mesityl)), 2.18 (s, 3H, p-CH3(mesityl)), 2.15 (s, 3H, o­

CH3(2,6-xylyl)), 2.02 (br s, 3H, CH3(MeCN)), 1.87 (s, 3H, CH3(MeCN)), 1.85 (s, 3H, 

CH3(MeCN)), 1.59 (s, 9H, C(CH3)3(imine)), 1.49 (s, 3H, o-CH3c2.s-xy1y1)), 1.43 ppm (s, 

3H, o-CH3{mesity1)). 13C{1H} NMR (100 MHz, CDCb): o = 334.3 (CHPh), 189.8 

(N CN(mesityl)), 172.3 ( C=N), 151.2, 144, 139.9, 136.6 (p-CH(2,s-xy1y1)), 135.8, 

134.8, 133.5 (m-CH(2,6-xylyl)), 132.5, 130.3 (o-CH{phenyl)), 129.5, 129.3 (m­

CH(phenyl)}, 128.7 (NCCN(mesity1)), 128.6 ( C(CH3)(2,s-xy1y1)), 128.3 (C(CH3Jc2.s-xy1y1)), 

128.0 (p-CH(phenyl)}, 126.9, 124.58, 124.1 (m-CH(mesityl)}, 123.1 (NCCN(mesityl)}, 
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63.83, 41.1 (C(CH3}3(imine)), 30.1 (C(CH3}3(imine)), 20.74, 18.9, 18.3, 17.5, 17.2, 

2.78, 1.87 ppm; elemental analysis calcd (%)for C40H49F12N1P2Ru (%): C 47.15, 

H 4.85, N 9.62; found C 47.41, H 5.09, N 9.39. 

4.4.6 Attempted synthesis of RuCl(IMes=N)(PCy3)2(CHPh) 

[IMes=N]Li (0.032 mmol) in CsDs was added to a C6Ds solution 

containing RuC'2(PCy3)2(CHPh) (0.032 mmol). The solution immediately 

turned a dark reddish-green and was transferred to an NMR tube fitted with a 

rubber septum. The reaction was monitored using NMR spectroscopy over a 

period of several hours. During this time, the distinct alkylidene proton 

resonance decreases while the resonances corresponding to protonated 

imidazol-2-imine appears. A variety of different solvents were used including 

THF, pyridine and toluene and, in each case, it resulted in spectra containing 

a number of unidentified species and no alkylidene proton resonance. 

4.4. 7 Attempted synthesis of RuCl(IMes=N)(IMes)py(CHPh) 

[IMes=N]Li (0.056 mmol) in CsDs was added to a C6Ds solution 

containing RuCl2(IMes)py2(CHPh) (0.056 mmol). The solution immediately 

turned a dark reddish-green and was transferred to an NMR tube fitted with a 

rubber septum. The reaction was monitored using NMR spectroscopy over a 

period of several hours. During this time, the distinct alkylidene proton 

resonance decreases while the resonances corresponding to protonated 

imidazol-2-imine appears. A variety of different solvents were used including 

THF, pyridine and toluene and, in each case, it resulted in spectra containing 
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a number of unidentified species and no alkylidene proton resonance. 

4.4.8 Attempted synthesis of RuCl(ltBu=N)(PCy3)2(CHPh) 

[11Bu=N]Li (0.046 mmol) in C6D6 was added to a C6D6 solution 

containing RuCl2(PCy3)2(CHPh) (0.046 mmol). The solution immediately 

turned a dark green and was transferred to an NMR tube fitted with a rubber 

septum. The reaction was monitored using NMR spectroscopy over a period 

of several hours. During this time, the distinct alkylidene proton resonance 

decreases while the resonances corresponding to protonated imidazol-2-imine 

appears. In the 31 P spectra, there are two observed resonances 

corresponding to the starting material and free PCy3. The reaction was 

repeated using THF and pyridine and similar spectra was obtained. Attempts 

to isolate the unidentified species in the reaction mixture were unsuccessful. 

4.4.9 Attempted synthesis of Ru(ltBu=N)(PCy3)2(CPh) 

[11Bu=N]Li (0.060 mmol) in C5D5 was added to a CsDs solution 

containing RuC'2(PCy3)2(CHPh) (0.030 mmol). The solution immediately 

turned a dark green and was transferred to an NMR tube fitted with a rubber 

septum. The reaction was monitored using NMR spectroscopy over a period 

of several hours. During this time, the distinct alkylidene proton resonance 

decreases while the resonances corresponding to protonated imidazol-2-imine 

appears. In the 31 P spectra, there are two observed resonances 

corresponding to the starting material and free PCy3. After 24 h, only free 

PCy3 was observed in the 31 P spectrum. The reaction was repeated using 
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THF and the solution was allowed to stir for 24 hours. At this time, only free 

PCy3 was observed in the 31 P NMR spectrum. In all cases, attempts to isolate 

the unidentified species in the reaction mixture were unsuccessful. 

4.4.10 Synthesis of RuCl(IMes)(ltBu=N)py2(CHPh), 4.3 

[ltBu=N]Li (0.089 mmol) in CsDs was added to a CsDs solution 

containing RuCl2(IMes)py2(CHPh) (0.089 mmol). The solution immediately 

turned a dark green and was transferred to an NMR tube fitted with a rubber 

septum. After 1S minutes, all the starting material was consumed. 1H NMR 

(300 MHz, CDCl3): & 17.09 (s, 1H), 8.S4 (br s, SH), 7.82 (br s, 2H), 7.11 (s, 

3H), 6.96 (m, SH), 6.73 (s, 2H), 6.62 (br s, SH), 6.32 (s, 2H), S.86 (s, 2H), 2.43 

(s, 6H), 2.22 (s, 6H), 2.21 (s, 6H, 1.13 (s, 18 H). 

4.4.11 Attempted Synthesis of RuCl2(IMes=PPh)(PCy3)(CHPh), 4.4 

A toluene solution of IMes=PPh (67 .1 mg, 1 S7 µmol) was added slowly 

over one minute to a toluene solution (S ml) of RuCl2(PCy3)2(CHPh) (92.7 mg, 

112 µmol). The solution was allowed to stir for 12 hours at room temperature. 

During this time, the solution turned from purple to brown with the formation of a 

light brown precipitate. The solution was dried under reduced pressure. The 

product was recrystallized from pentane and dichloromethane to yield a light 

brown powder (8S.7 mg, 82.8%). Crystals suitable for X-ray diffraction study were 

grown at room temperature under nitrogen by slow liquid diffusion of diethyl ether 

into a saturated THF solution. 1H NMR (400 MHz, CDCl3): & 11.00 (s, 1 H), 8.11 

(m, 2H), 7.66 (br s, 1 H), 7.60 (s, 2H), 7.01 (s, 4H), 6.83 (br s, 2H), 2.S7 (s, 3H), 
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2.18 (s, 12H), 1.76-0.90 (m, 30H). Anal. Calcd. for Cs2Hs1CIN2P2Ru (%): C, 

67.99; H, 7.35; N, 3.05. Found(%): C, 68.28; H, 7.53; N, 2.77. 

4.4.12 Synthesis of RuCl2(IMes=PPh)(PPh3)(CHPh), 4.5 

A toluene solution of IMes=PPh (30.1 mg, 73.0 µmol) was added slowly 

over one minute to a toluene solution (5 ml) of RuCb(PPh3)2(CHPh) (52.1 mg, 

66.2 µmol). The solution was allowed to stir for 1 hour at room temperature. 

During this time, the solution turned from purple to yellowish brown with the 

formation of a light brown precipitate. The solution was filtered and dried under 

reduced pressure. Recrystallization by slow liquid diffusion of pentane into a 

saturated dichloromethane solution at -35 °C to afforded dark brown crystals 

(37.4 mg, 60.3%). 1H NMR (400 MHz, CDCl3): b 15.48 (dd, J = 9.2, 8.7 Hz, 1H, 

CHPh), 8.14 (d, J = 7.4 Hz, 1H), 7.62-7.44 (m, SH), 7.08-6.65 (m, 18H), 6.56 (t, J 

= 9.2, 2H), 6.47 (br s, 2H), 6.19 (br s, 1 H), 5.97 (br s, 1 H), 2.54 (br s, 3H), 2.29 

(br s, 3H), 2.24 (br s, 3H), 2.10 (br s, 3H), 1.60. (br s, 6H). 13C{1 H} NMR (100 

MHz, CDCb): b 299.7 (CHPh), 169.6, 168.3, 150.93, 141.15, 21.1-20.5, 19.4-

19.0, 18.5, 17.9. 31 P{1H} (121 MHz, CDCl3): b 64.8 (s), 37.4 (s). Anal. Calcd. for 

Cs2HsoCl2N2P2Ru (%): C, 66.66; H, 5.38; N, 2.99. Found (%): C, 66.46; H, 5.60; 

N, 2.92. 

Decomposition Product, 4.5a 

The brown precipitate that was accumulated during the filtration step in the 

synthesis of 4.5 was washed thoroughly with toluene and diethyl ether. The light 

brown product was dried in vacuo (17.8 mg, 29.9%). 1H NMR (400 MHz, CDCl3): 
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b 11.09 (s, 1 H), 8.11 (m, 1 H), 7.33-7.18 (m), 7.01 (s, 4H), 6.83 (br s, 2H), 2.34 (s, 

6H), 2.20 (s, 9H), 2.01 (br s, 2H). Anal. Calcd. for Cs2H49CIN2P2Ru (%): C, 69.10; 

H, 5.49; N, 3.11. Found (%): C, 69.1 O; H, 5.50; N, 2.96. 

4.4.14 Ring-closing metathesis 

The catalyst (0.006 mmol) was dissolved in CDCb (0.5 ml). The 

solution was added to either an NMR tube fitted with a rubber septum or a 

scintillation vial fitted with a rubber septum. The neat substrate was added via 

syringe and the reaction vessel was either placed in a hot oil bath at 70 °C or 

left at room temperature. Reaction products were analyzed via solution 1 H 

NMR spectroscopy. 
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Chapter 5 Conclusions and Future Work 

The focus of this work was aimed at utilizing the unique reactivity of N­

heterocyclic carbenes to develop novel, robust catalysts to mediate organic 

transformations. As overviewed in Chapter 1, the synthesis and coordination of 

NHCs has revolutionized the field of synthetic organometallic chemistry and 

homogenous catalysis. In addition, the reactivity of NHCs towards azides, 

chalcogens and pnictinidenes has resulted in unique classes of ligands with 

varying steric and electronic properties. 

The reactivity of the aryl-substituted acyclic imino-N-heterocyclic carbene 

towards Group 4 and 6 transition metals was presented in Chapter 2. The 

catalytic activities of these complexes towards ethylene polymerization were 

explored. The zirconium and titanium complexes activities showed promise and 

warranted further tailoring of their coordination sphere. In an attempt to enhance 

the catalytic activity of the titanium complexes, we decided to synthesize 

titanium-CAimine complexes containing either two phenoxide ligands or one 

catecholate ligand. Unfortunately, the catalytic activities of these two complexes 

were lower than the corresponding titanium tetrachloride. 

The reactivity of NHCs towards azides to form imidazole-2-imines 

presented the opportunity to synthesize a new monoanionic bidentate ligand with 

an imidazol-2-imine fragment incorporated into the ligand scaffold. The synthesis 

and coordination of this novel ligand class was explored in Chapter 3. 

Bis(ethenolate) and (cyclopentadienyl)(ethenolate) metal dichloride complexes 
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were successfully prepared and fully characterized. We see enhanced activity 

when there is a decrease in the electron-donating capabilities of the ligand 

through the inductive effect of a more electronegative atom in the ligand scaffold. 

As a result, future work could include exploring different substitution patterns on 

the ligand, testing the activity of these complexes towards ethylene 

polymerization, and developing structure-property relationships. 

Chapter 4 of this thesis was a multifaceted approach to leverage our 

knowledge of NHCs and of their reactivity by developing new catalytically active 

ruthenium benzylidene complex. We first looked at synthesizing a cationic 

[RuCl(CAlmine)(MeCN)(CHPh)][PF5] complex, but instead isolated an unusual 

decomposition product. Upon characterization, we discovered the first example 

of a complex with direct insertion of the benzylidene into a Ru-NHC bond, 

forming a ruthenium-benzyl complex. This structure offers insight into the 

potential decomposition pathway of ruthenium alkylidene catalysts and this 

information would be relevant to future catalyst design. 

Investigations into the incorporation of the electron-rich imidazol-2-imide 

ligand with ruthenium benzylidene complexes were also presented in Chapter 4. 

A partially characterized ruthenium complex, RuCl(IMes)(ltBu=N)py(CHPh) 

showed promising results for the ring-closing metathesis of diallyl sulfide when 

freshly prepared. Future work could include utilizing imidazole-2-imine variants 

with less sterically demanding substituents and less electron-rich imides in hopes 

of synthesizing and isolating stable ruthenium benzylidene complexes. 
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Lastly, the successful synthesis and isolation of the first Grubbs-type 

ruthenium alkylidene complex bearing IMes=PPh was reported. An interesting . 

decomposition product was also isolated and fully characterized. Interestingly, 

we see an unusual decomposition product upon coordination of the IMes=PPh 

ligand. Future work could include using less sterically demanding carbene­

phosphinidene ligands to mitigate the nucleophilic attack on the benzylidene 

since we believe sterics, rather than electronics, plays a crucial role in promoting 

the migratory insertion of the phosphaalkene, thus triggering the subsequent 

decomposition steps. If the trigger for decomposition could be determined, then 

perhaps a ligand variant could be utilized to mitigate decomposition and the 

catalytic activity of these complexes could be explored. 
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Table 6.1. Crystal data and structure refinement for compound 4.2. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27 .57° 

d13g7 

C42 H51 Cl6 F12 N7 P2 Ru 

1257.61 

150(2) K 

0.71073 A 

Monoclinic 

P 21/n 

a= go0
• a= 16.g13(3) A 

b = 15.631(2) A b= g5.168(3)°. 

c = 20.3g3(3) A 

536g.4(14) A3 

4 

1.554 Mg/m3 

0.730 mm-1 

2540 

g =goo. 

0.230 x 0.110 x 0.040 mm3 

1 .50 to 27 .57°. 

-21 <=h<=21, -20<=k<=20, -23<=1<=26 

47744 

12360 [R(int) = 0.0488] 

gg_6% 

138 



Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [1>2sigma(I)] 

R indices (all data) 

Largest diff. peak and hole 

Semi-empirical from equivalents 

0.7456 and 0.6597 

Full-matrix least-squares on F2 

12360 I 0 I 643 

1.029 

R1 = 0.0596, wR2 = 0.1534 

R1 = 0.0858, wR2 = 0.1691 

1.856 and -1.539 e.A-3 
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Table 6.2. Atomic coordinates { x 1 o4) and equivalent isotropic 

displacement parameters (A2x 103) for 4.2. U{eq) is defined as one third of 

the trace of the orthogonalized uij tensor. 

x y z U(eq) 

C(1) 798(2) 3251(2) 1318(2) 24(1) 

C(1S) 6492(3) -52(3) 785(2) 40(1) 

C(2) -128(3) 2931 (3) 496(2) 32(1) 

C(2S) 8652(3) 6715(4) 1965(3) 51 (1) 

C(3) 513(3) 3201(3) 227(2) 32(1) 

C(4) -474(2) 2592(3) 1639(2) 28(1) 

C(5) -1363(2) 2829(3) 1522(2) 34(1) 

C(6) -1729(3) 2977(4) 2177(2) 44(1) 

C(7) -1834(3) 2107(3) 1153(2) 43(1) 

C(8) -1497(3) 3678(3) 1134(2) 43(1) 

C(9) -536(3) 1502(3) 2471 (2) 32(1) 

C(10) -630(3) 1672(3) 3132(2) 35(1) 

C(11) -904(3) 1007(3) 3510(2) 45(1) 

C(12) -1081(3) 211 (4) 3247(3) 53(1) 
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C(13) -1011(3) 66(3) 2591 (3) 49(1) 

C(14) -731(3) 700(3) 2185(2) 37(1) 

C(15) -608(3) 464(3) 1486(2) 43(1) 

C(16) -501 (3) 2535(3) 3449(2) 36(1) 

C(17) 1805(2) 3881 (3) 641(2) 28(1) 

C(18) 1785(3) 4773(3) 699(2) 33(1) 

C(19) 2471 (3) 5225(3) 604(2) 40(1) 

C(20) 3160(3) 4818(3) 450(2) 40(1) 

C(21) 3157(3) 3943(3) 390(2) 38(1) 

C(22) 2487(3) 3453(3) 483(2) 34(1) 

C(23) 1029(3) 5228(3) 856(3) 46(1) 

C(24) 3909(3) 5322(4) 364(3) 60(2) 

C(25) 2518(3) 2492(3) 422(3) 47(1) 

C(26) 1255(2) 3266(2) 1947(2) 23(1) 

C(27) 1024(2) 3892(2) 2455(2) 26(1) 

C(28) 275(2) 4243(3) 2473(2) 29(1) 

C(29) 86(3) 4790(3) 2977(2) 37(1) 

C(30) 664(3) 5008(3) 3472(2) 42(1) 

C(31) 1417(3) 4691 (3) 3451 (2) 45(1) 

C(32) 1606(3) 4147(3) 2948(2) 35(1) 

C(33) 2997(3) 1704(3) 2411(2) 31 (1) 

C(34) 3844(3) 1584(3) 2559(3) 44(1) 

141 



C(35) 1078(3) -46(3) 2674(2) 39(1) 

C(36) 1066(4) -926(3) 2900(3) 59(2) 

C(37) 1368(3) 2402(3) 3697(2) 33(1) 

C(38) 1481 (3) 2659(4) 4383(2) 49(1) 

C(39) 1080(3) 1167(3) 755(2) 31 (1) 

C(40) 1054(3) 773(3) 102(2) 44(1) 

Cl(1S) 7119(1) 451 (1) 266(1) 51 (1) 

Cl(2S) 5871(1) -794(1) 351 (1) 54(1) 

Cl(3S) 7069(1) -560(1) 1429(1) 67(1) 

Cl(4S) 9306(1) 6109(1) 1524(1) 57(1) 

Cl(5S) 7949(1) 6032(2) 2261 (2) 125(1) 

Cl(6S) 8255(2) 7560(2) 1513(1) 136(1) 

F(1) 5129(2) 3443(3) 830(3) 112(2) 

F(2) 5199(3) 2124(6) 408(3) 185(4) 

F(3) 6250(2) 2729(3) 916(2) 86(1) 

F(4) 5625(3) 1639(3) 1410(3) 127(2) 

F(5) 5566(3) 2930(3) 1792(2) 93(1) 

F(6) 4470(2) 2365(3) 1216(2) 88(1) 

F(7) 1965(2) 8907(3) 767(2) 83(1) 

F(8) 1560(3) 7566(3) 567(2) 93(1) 

F(9) 1682(2) 8061 (2) 1583(2) 64(1) 

F(10) 490(3) 7778(4) 1031 (2) 118(2) 
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F(11) 908(3) 9185(3) 1248(2) 106(2) 

F(12) 769(2) 8671 (2) 235(2) 68(1) 

N(1) 1086(2) 3412(2) 737(2) 26(1) 

N(2) 34(2) 2982(2) 1181 (2) 27(1) 

N(3) -114(2) 2095(2) 2066(2) 26(1) 

N(4) 1106(2) 1481(2) 1256(2) 28(1) 

N(5) 1074(2) 636(2) 2490(2) 31 (1) 

N(6) 2336(2) 1787(2) 2302(2) 28(1) 

N(7) 1241 (2) 2230(2) 3154(2) 29(1) 

P(1) 1204(1) 8372(1) 927(1) 39(1) 

P(2) 5377(1) 2537(1) 1082(1) 48(1) 

Ru(1) 1138(1) 1916(1) 2196(1) 25(1) 
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Table 6.3. Bond lengths [A] and angles [°] for 4.2. 

C(1 )-N(1) 1.345(5) 

C(1 )-N(2) 1.364(5) 

C(1 )-C(26) 1.438(5) 

C(1 S)-Cl(1 S) 1.750(5) 

C(1 S)-Cl(2S) 1.752(5) 

C(1 S)-Cl(3S) 1.754(5) 

C(1S)-H(1S) 0.9800 

C(2)-C(3) 1.328(6) 

C(2)-N(2) 1.401 (5) 

C(2)-H(2) 0.9300 

C(2S)-C1(6S) 1.712(6) 

C(2S)-Cl(5S) 1.745(6) 

C(2S)-Cl(4S) 1.764(6) 

C(2S)-H(2S) 0.9800 

C(3)-N(1) 1.394(5) 

C(3)-H(3) 0.9300 

C(4)-N(3) 1.279(5) 

C(4)-N(2) 1.457(5) 

C(4)-C(5) 1.547(6) 

C(5)-C(7) 1.538(6) 
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C(5)-C(6) 1.539(6) 

C(5)-C(8) 1.551 (7) 

C(6)-H(6A) 0.9600 

C(6)-H(68) 0.9600 

C(6)-H(6C) 0.9600 

C(7)-H(7A) 0.9600 

C(7)-H(78) 0.9600 

C(7)-H(7C) 0.9600 

C(8)-H(8A) 0.9600 

C(8)-H(88) 0.9600 

C(8)-H(8C) 0.9600 

C(9)-C(10) 1.398(6) 

C(9)-C(14) 1.408(6) 

C(9)-N(3) 1.468(5) 

C(1 O)-C(11) 1.396(6) 

C(1 O)-C(16) 1.503(6) 

C(11)-C(12) 1.377(8) 

C(11 )-H(11) 0.9300 

C(12)-C(13) 1.374(8) 

C(12)-H(12) 0.9300 

C(13)-C(14) 1.400(7) 

C(13)-H(13) 0.9300 
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C(14)-C(15) 1.505(6) 

C(15)-H(15A) 0.9600 

C(15)-H(15B) 0.9600 

C(15)-H(15C) 0.9600 

C(16)-H(16A) 0.9600 

C(16)-H(16B) 0.9600 

C(16)-H(16C) 0.9600 

C(17)-C(22) 1.397(6) 

C(17)-C(18) 1.399(6) 

C(17)-N(1) 1.449(5) 

C(18)-C(19) 1.386(6) 

C(18)-C(23) 1.522(6) 

C(19)-C(20) 1.388(7) 

C(19)-H(19) 0.9300 

C(20 )-C(21 ) 1.374(7) 

C(20)-C(24) 1.515(7) 

C(21 )-C(22) 1.394(6) 

C(21 )-H(21) 0.9300 

C(22)-C(25) 1.508(6) 

C(23)-H(23A) 0.9600 

C(23)-H(23B) 0.9600 

C(23)-H(23C) 0.9600 
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C(24 )-H(24A) 0.9600 

C(24 )-H(24B) 0.9600 

C(24 )-H(24C) 0.9600 

C(25)-H(25A) 0.9600 

C(25)-H(25B) 0.9600 

C(25)-H(25C) 0.9600 

C(26)-C(27) 1.502(5) 

C(26)-Ru(1) 2.184(4) 

C(26)-H(26) 1.02(5) 

C(27)-C(28) 1.384(6) 

C(27)-C(32) 1.401 (6) 

C(28 )-C(29) 1.395(6) 

C(28)-H(28) 0.9300 

C(29)-C(30) 1.383(7) 

C(29)-H(29) 0.9300 

C(30)-C(31) 1.371 (7) 

C(30)-H(30) 0.9300 

C(31 )-C(32) 1.391 (6) 

C(31 )-H(31) 0.9300 

C(32)-H(32) 0.9300 

C(33)-N(6) 1.127(5) 

C(33)-C(34) 1.449(6) 
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C(34 )-H(34A) 0.9600 

C(34)-H(348) 0.9600 

C(34 )-H(34C) 0.9600 

C(35)-N(5) 1.130(6) 

C(35)-C(36) 1.452(7) 

C(36)-H(36A) 0.9600 

C(36)-H(368) 0.9600 

C(36)-H(36C) 0.9600 

C(37)-N(7) 1.141(5) 

C(37)-C(38) 1.452(6) 

C(38)-H(38A) 0.9600 

C(38)-H(388) 0.9600 

C(38)-H(38C) 0.9600 

C(39)-N(4) 1.131(5) 

C(39)-C(40) 1.464(6) 

C(40)-H(40A) 0.9600 

C(40)-H(408) 0.9600 

C(40)-H(40C) 0.9600 

F(1 )-P(2) 1.551(5) 

F(2)-P(2) 1.523(5) 

F(3)-P(2) 1.572(4) 

F(4)-P(2) 1.596(5) 
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F(5)-P(2) 1.579(4) 

F(6)-P(2) 1.605(4) 

F(7)-P(1) 1.592(4) 

F(8)-P(1) 1.604(4) 

F(9)-P(1) 1.576(3) 

F(1 O)-P(1) 1.553(4) 

F(11 )-P(1) 1.534(4) 

F(12)-P(1) 1.602(3) 

N(3)-Ru(1) 2.130(3) 

N(4)-Ru(1) 2.030(3) 

N(5)-Ru(1) 2.094(4) 

N(6)-Ru(1) 2.028(4) 

N(7)-Ru(1) 2.006(3) 

N(1 )-C(1 )-N(2) 106.9(3) 

N(1 )-C(1 )-C(26) 125.1(4) 

N(2)-C(1 )-C(26) 127.7(3) 

Cl(1 S)-C(1 S)-Cl(2S) 111.1(3) 

Cl(1 S)-C(1 S)-Cl(3S) 109.3(3) 

Cl(2S)-C(1 S)-Cl(3S) 110.3(3) 

Cl(1 S)-C(1 S)-H(1 S) 108.7 

Cl(2S)-C(1 S)-H(1 S) 108.7 
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Cl(3S)-C(1 S)-H(1 S) 108.7 

C(3)-C(2)-N(2) 107.5(4) 

C(3)-C(2)-H(2) 126.2 

N(2)-C(2)-H(2) 126.2 

Cl ( 6S )-C(2S )-Cl( SS) 114.3(4) 

Cl(6S)-C(2S)-Cl(4S) 111.9(3) 

Cl(5S)-C(2S)-Cl(4S) 109.0(3) 

Cl(6S)-C(2S)-H(2S) 107.1 

Cl(5S)-C(2S)-H(2S) 107.1 

Cl(4S)-C(2S)-H(2S) 107.1 

C(2)-C(3)-N(1) 107.8(4) 

C(2)-C(3)-H(3) 126.1 

N(1 )-C(3)-H(3) 126.1 

N(3)-C(4 )-N(2) 114.8(3) 

N(3)-C(4)-C(5) 130.2(4) 

N(2)-C(4 )-C(S) 115.0(3) 

C(7)-C(5)-C(6) 107.8(4) 

C(7)-C( 5)-C( 4) 110.7(4) 

C(6)-C(5)-C(4) 111.3(4) 

C(7)-C(5)-C(8) 109.4(4) 

C(6)-C(5)-C(8) 105.2(4) 

C(4 )-C(5)-C(8) 112.2(4) 
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C(5)-C(6)-H(6A) 109.5 

C(5)-C(6)-H(68) 109.5 

H(6A)-C(6)-H(68) 109.5 

C(5)-C(6)-H(6C) 109.5 

H(6A)-C(6)-H(6C) 109.5 

H(68)-C(6)-H(6C) 109.5 

C(5)-C(7)-H(7 A) 109.5 

C(5)-C(7)-H(78) 109.5 

H(7 A)-C(7)-H(78) 109.5 

C(5)-C(7)-H(7C) 109.5 

H(7 A)-C(7)-H(7C) 109.5 

H(78)-C(7)-H(7C) 109.5 

C(5)-C(8)-H(8A) 109.5 

- C(5)-C(8)-H(88) 109.5 

H(8A)-C(8)-H(88) 109.5 

C(5)-C(8)-H(8C) 109.5 

H(8A)-C(8)-H(8C) 109.5 

H(88)-C(8)-H(8C) 109.5 

C(1 O)-C(9)-C(14) 121.7(4) 

C(1 O)-C(9)-N(3) 121.7(4) 

C(14 )-C(9)-N(3) 115.9(4) 

C(11 )-C(1 O)-C(9) 117.6(4) 
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C(11 )-C(1 O)-C(16) 118.2(4) 

C(9)-C(1 O)-C(16) 124.1(4) 

C(12)-C(11)-C(10) 122.0(5) 

C(12)-C(11 )-H(11) 119.0 

C(1 O)-C(11 )-H(11) 119.0 

C(13)-C(12)-C(11) 119.5(5) 

C(13)-C(12)-H(12) 120.2 

C(11 )-C(12)-H(12) 120.2 

C(12)-C(13)-C(14) 121.5(5) 

C(12)-C(13)-H(13) 119.3 

C(14 )-C(13)-H(13) 119.3 

C(13)-C(14 )-C(9) 117.7(4) 

C(13)-C(14 )-C(15) 117.9(4) 

C(9)-C(14 )-C(15) 124.2(4) 

C(14 )-C(15)-H(15A) 109.5 

C(14 )-C(15)-H(15B) 109.5 

H(15A)-C(15)-H(15B) 109.5 

C(14 )-C(15)-H(15C) 109.5 

H(15A)-C(15)-H(15C) 109.5 

H(15B)-C(15)-H(15C) 109.5 

C(1 O)-C(16)-H(16A) 109.5 

C(1 O)-C(16)-H(16B) 109.5 
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H(16A)-C(16)-H(16B) 109.5 

C(1 O)-C(16)-H(16C) 109.5 

H(16A)-C(16)-H(16C) 109.5 

H(16B)-C(16)-H(16C) 109.5 

C(22)-C(17)-C(18) 121.6(4) 

C(22)-C(17)-N(1) 120.6(4) 

C(18)-C(17)-N(1) 117.8(4) 

C(19)-C(18)-C(17) 118.0(4) 

C(19)-C(18)-C(23) 121.4(4) 

C(17)-C(18)-C(23) 120.6(4) 

C(18)-C(19)-C(20) 121.8(4) 

C(18)-C(19)-H(19) 119.1 

C(20)-C(19)-H(19) 119.1 

C(21 )-C(20)-C(19) 118.7(4) 

C(21 )-C(20)-C(24) 120.2(4) 

C(19)-C(20)-C(24) 121.0(4) 

C(20)-C(21 )-C(22) 122.1 (4) 

C(20)-C(21 )-H(21) 118.9 

C(22)-C(21 )-H(21) 118.9 

C(21 )-C(22)-C(17) 117.7(4) 

C(21 )-C(22)-C(25) 120.1 (4) 

C(17)-C(22)-C(25) 122.2(4) 
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C(18)-C(23)-H(23A) 109.5 

C(18)-C(23)-H(23B) 109.5 

H(23A)-C(23)-H(23B) 109.5 

C(18)-C(23)-H(23C) 109.5 

H(23A)-C(23)-H(23C) 109.5 

H(23B)-C(23)-H(23C) 109.5 

C(20)-C(24 )-H(24A) 109.5 

C(20)-C(24 )-H(24B) 109.5 

H(24A)-C(24 )-H(24B) 109.5 

C(20)-C(24 )-H(24C) 109.5 

H(24A)-C(24 )-H(24C) 109.5 

H(24B)-C(24 )-H(24C) 109.5 

C(22)-C(25)-H(25A) 109.5 

C(22)-C(25)-H(25B) 109.5 

H(25A)-C(25)-H(25B) 109.5 

C(22 )-C(25 )-H (25C) 109.5 

H(25A)-C(25)-H(25C) 109.5 

H(25B)-C(25)-H(25C) 109.5 

C(1 )-C(26)-C(27) 118.3(3) 

C(1 )-C(26)-Ru(1) 98.0(2) 

C(27)-C(26)-Ru(1) 115.8(3) 

C(1 )-C(26)-H(26) 105(3) 
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C(27)-C(26)-H(26) 113(3) 

Ru(1 )-C(26)-H(26) 105(3) 

C(28 )-C(27)-C(32) 117.0(4) 

C(28)-C(27)-C(26) 125.0(4) 

C(32 )-C(27)-C(26) 118.1(4) 

C(27)-C(28 )-C(29) 122.2(4) 

C(27)-C(28 )-H (28) 118.9 

C(29)-C(28)-H(28) 118.9 

C(30)-C(29)-C(28) 119.7(4) 

C(30 )-C(29 )-H (29) 120.1 

C(28 )-C(29 )-H (29) 120.1 

C(31 )-C(30)-C(29) 119.0(4) 

C(31 )-C(30)-H(30) 120.5 

C(29 )-C(30 )-H (30) 120.5 

C(30)-C(31 )-C(32) 121.3(4) 

C(30)-C(31 )-H(31) 119.3 

C(32)-C(31 )-H(31) 119.3 

C(31 )-C(32)-C(27) 120.7(4) 

C(31 )-C(32)-H(32) 119.7 

C(27)-C(32)-H(32) 119.7 

N(6)-C(33)-C(34) 179.0(5) 

C(33)-C(34 )-H(34A) 109.5 
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C(33)-C(34 )-H(34B) 109.5 

H(34A)-C(34 )-H(34B) 109.5 

C(33)-C(34 )-H(34C) 109.5 

H(34A)-C(34 )-H(34C) 109.5 

H(34B)-C(34 )-H(34C) 109.5 

N(5)-C(35)-C(36) 178.6(6) 

C(35)-C(36)-H(36A) 109.5 

C(35)-C(36)-H(36B) 109.5 

H(36A)-C(36)-H(36B) 109.5 

C(35)-C(36)-H(36C) 109.5 

H(36A)-C(36)-H(36C) 109.5 

H(36B)-C(36)-H(36C) 109.5 

N(7)-C(37)-C(38) 175.9(5) 

C(37)-C(38 )-H (38A) 109.5 

C(37)-C(38)-H(38B) 109.5 

H(38A)-C(38)-H(38B) 109.5 

C(37)-C(38)-H(38C) 109.5 

H(38A)-C(38)-H(38C) 109.5 

H(38B )-C(38)-H(38C) 109.5 

N(4 )-C(39)-C(40) 179.0(5) 

C(39)-C(40)-H(40A) 109.5 

C(39)-C(40)-H(40B) 109.5 
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H(40A)-C(40)-H(40B) 109.5 

C(39)-C(40)-H(40C) 109.5 

H(40A)-C(40)-H(40C) 109.5 

H(40B)-C(40)-H(40C) 109.5 

C(1 )-N(1 )-C(3) 109.2(3) 

C(1 )-N(1 )-C(17) 126.0(3) 

C(3)-N(1 )-C(17) 123.7(3) 

C(1 )-N(2)-C(2) 108.5(3) 

C(1 )-N(2)-C(4) 126.8(3) 

C(2)-N(2)-C(4) 122.9(3) 

C(4 )-N(3)-C(9) 122.8(3) 

C(4 )-N(3)-Ru(1) 124.8(3) 

C(9)-N(3)-Ru(1) 112.1(3) 

C(39)-N(4 )-Ru(1) 173.7(3) 

C(35)-N(5)-Ru(1) 175.9(4) 

C(33)-N(6)-Ru(1) 174.7(3) 

C(37)-N(7)-Ru(1) 174.1(4) 

F(11 )-P(1)-F(10) 98.6(3) 

F(11 )-P(1 )-F(9) 93.3(2) 

F(1 O)-P(1 )-F(9) 92.6(2) 

F(11 )-P(1 )-F(7) 87.4(3) 

F(1 O)-P(1 )-F(7) 173.8(3) 
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F(9)-P(1 )-F(7) 88.55(18) 

F(11 )-P(1 )-F(12) 89.6(2) 

F(1 O)-P(1 )-F(12) 89.6(2) 

F(9)-P(1 )-F(12) 176.1(2) 

F(7)-P(1 )-F(12) 88.9(2) 

F(11 )-P(1 )-F(8) 175.8(3) 

F(1 O)-P(1 )-F(8) 85.4(3) 

F(9)-P(1 )-F(8) 87.8(2) 

F(7)-P(1 )-F(8) 88.6(3) 

F(12)-P(1 )-F(8) 89.2(2) 

F(2)-P(2)-F(1) 93.5(4) 

F (2 )-P(2 )-F (3) 90.0(3) 

F(1 )-P(2)-F(3) 89.2(3) 

F (2 )-P(2 )-F ( 5) 177.8(4) 

F(-1 )-P(2)-F(5) 88.6(3) 

F(3)-P(2)-F(5) 90.4(3) 

F(2)-P(2)-F(4) 91.7(4) 

F(1 )-P(2)-F(4) 174.5(3) 

F(3)-P(2)-F(4) 92.4(3) 

F(5)-P(2)-F(4) 86.1 (3) 

F (2 )-P(2 )-F (6) 88.2(3) 

F(1 )-P(2)-F(6) 88.5(2) 
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F(3)-P(2)-F(6) 177.1(3) 

F(5)-P(2)-F(6) 91.5(3) 

F(4 )-P(2)-F(6) 90.0(3) 

N(7)-Ru(1 )-N(6) 85.56(14) 

N(7)-Ru(1 )-N(4) 173.68(14) 

N(6)-Ru(1 )-N(4) 90.50(14) 

N(7)-Ru(1 )-N(5) 87.57(13) 

N(6)-Ru(1 )-N(5) 87.25(14) 

N(4)-Ru(1 )-N(5) 87.31(13) 

N(7)-Ru(1.)-N(3) 94.98(13) 

N(6)-Ru(1 )-N(3) 177.84(13) 

N(4)-Ru(1 )-N(3) 89.15(13) 

N(5)-Ru(1 )-N(3) 94.86(13) 

N(7)-Ru(1 )-C(26) 89.30(14) 

N(6)-Ru(1 )-C(26) 90.57(14) 

N(4 )-Ru(1 )-C(26) 95.68(14) 

N(5)-Ru(1 )-C(26) 176.31(14) 

N(3)-Ru(1 )-C(26) 87.35(13) 

Symmetry transformations used to generate equivalent atoms: 
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Table 6.4. Anisotropic displacement parameters (A2x 103) for 4.2. The 

anisotropic displacement factor exponent takes the form: -2p2[ h2a•2u11 + 

... + 2 h k a* b* U 12 ] 

u11 u22 u33 u23 u13 u12 

C(1) 26(2) 23(2) 24(2) 0(1) 3(2) 2(2) 

C(1S) 45(3) 39(2) 35(2) 5(2) 9(2) 8(2) 

C(2) 34(2) 38(2) 22(2) -4(2) 1(2) -4(2) 

C(2S) 54(3) 52(3) 48(3) 3(2) 8(2) 7(2) 

C(3) 35(2) 41(2) 21 (2) -1 (2) 1(2) -1(2) 

C(4) 29(2) 31(2) 24(2) -10(2) 4(2) -8(2) 

C(5) 25(2) 45(3) 33(2) -4(2) 3(2) -2(2) 

C(6) 32(2) 59(3) 41(3) -5(2) 9(2) 4(2) 

C(7) 30(2) 57(3) 43(3) -11(2) -3(2) -8(2) 

C(8) 32(2) 51(3) 46(3) -2(2) 2(2) 4(2) 

C(9) 33(2) 29(2) 35(2) 1(2) 9(2) -2(2) 

C(10) 35(2) 38(2) 32(2) 0(2) 7(2) 1(2) 

C(11) 53(3) 53(3) 33(2) 8(2) 13(2) -4(2) 

C(12) 54(3) 46(3) 60(3) 15(3) 17(3) -10(2) 
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C(13) 49(3) 34(3) 64(3) -4(2) 10(2) -13(2) 

C(14) 32(2) 32(2) 47(3) -5(2) 8(2) -10(2) 

C(15) 44(3) 39(3) 47(3) -16(2) 8(2) -12(2) 

C(16) 39(2) 42(3) 29(2) -6(2) 7(2) 1(2) 

C(17) 32(2) 29(2) 22(2) 2(2) 5(2) -3(2) 

C(18) 38(2) 32(2) 29(2) 8(2) 6(2) 5(2) 

C(19) 44(3) 28(2) 50(3) 8(2) 14(2) -1(2) 

C(20) 38(2) 38(2) 44(3) 6(2) 12(2) -7(2) 

C(21) 36(2) 37(2) 43(2) 3(2) 16(2) 2(2) 

C(22) 36(2) 36(2) 32(2) 1(2) 9(2) -1(2) 

C(23) 46(3) 32(2) 61(3) 6(2) 15(2) 7(2) 

C(24) 49(3) 46(3) 88(4) 8(3) 28(3) -9(2) 

C(25) 44(3) 34(2) 65(3) -9(2) 24(2) -2(2) 

C(26) 25(2) 23(2) 22(2) 1 (1) 2(1) -1 (1) 

C(27) 35(2) 19(2) 23(2) 3(2) 2(2) -3(2) 

C(28) 35(2) 25(2) 27(2) -2(2) 4(2) -5(2) 

C(29) 46(3) 32(2) 33(2) -2(2) 10(2) -1(2) 

C(30) 73(3) 27(2) 27(2) -2(2) 9(2) 2(2) 

C(31) 75(4) 29(2) 28(2) -2(2) -17(2) -1(2) 

C(32) 42(2) 28(2) 34(2) 0(2) -7(2) 2(2) 

C(33) 38(2) 27(2) 30(2) -5(2) 5(2) 2(2) 

C(34) 34(2) 48(3) 49(3) -8(2) 0(2) 10(2) 
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C(35) 51(3) 33(2) 32(2) -4(2) 9(2) -3(2) 

C(36) 107(5) 31(3) 42(3) 8(2) 18(3) -5(3) 

C(37) 37(2) 30(2) 32(2) 2(2) 4(2) -6(2) 

C(38) 61(3) 58(3) 28(2) -5(2) 4(2) -13(3) 

C(39) 37(2) 25(2) 32(2) -6(2) 9(2) -6(2) 

C(40) 58(3) 41(3) 34(2) -12(2) 7(2) -1(2) 

Cl(1S) 63(1) 45(1) 45(1) 12(1) 10(1) -6(1) 

Cl(2S) 57(1) 53(1) 50(1) 7(1) 1 (1) -6(1) 

Cl(3S) 65(1) 82(1) 51(1) 31 (1) -11(1) -9(1) 

Cl(4S) 52(1) 61(1) 59(1) 14(1) 15(1) 13(1) 

Cl(5S) 83(1) 106(2) 200(3) 3(2) 80(2) -4(1) 

Cl(6S) 208(3) 115(2) 89(2) 40(1) 39(2) 104(2) 

F(1) 67(3) 108(4) 157(4) 83(3) -12(3) -13(2) 

F(2) 115(4) 348(10) 98(4) -137(5) 52(3) -105(5) 

F(3) 50(2) 133(4) 76(3) -8(3) 12(2) -3(2) 

F(4) 143(5) 46(2) 191 (6) 6(3) 17(4) 24(3) 

F(5) 140(4) 84(3) 57(2) -15(2) 12(2) 22(3) 

F(6) 73(3) 84(3) 115(3) 21(2) 46(2) -11 (2) 

F(7) 72(2) 105(3) 70(2) 37(2) -9(2) -34(2) 

F(8) 101 (3) 85(3) 86(3) -32(2) -33(2) 34(2) 

F(9) 71(2) 71(2) 43(2) 21(2) -19(2) -24(2) 

F(10) 82(3) 162(5) 103(3) 76(3) -32(2) -74(3) 
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F(11) 157(4) 95(3) 65(2) -32(2) 5(3) 51(3) 

F(12) 91(3) 43(2) 63(2) 7(2) -36(2) -4(2) 

N(1) 26(2) 30(2) 22(2) 0(1) 2(1) 0(1) 

N(2) 26(2) 32(2) 23(2) -4(1) 4(1) -2(1) 

N(3) 29(2) 26(2) 22(2) -4(1) 4(1) -5(1) 

N(4) 32(2) 22(2) 32(2) -2(1) 7(1) -2(1) 

N(5) 38(2) 28(2) 27(2) -2(1) 7(1) -1(2) 

N(6) 34(2) 23(2) 28(2) 0(1) 4(1) 2(1) 

N(7) 35(2) 24(2) 28(2) 1 (1) 3(1) -2(1) 

P(1) 46(1) 34(1) 35(1) 0(1) -7(1) -5(1) 

P(2) 58(1) 42(1) 49(1) -5(1) 22(1) -2(1) 

Ru(1) 29(1) 22(1) 24(1) -2(1) 4(1) -1 (1) 
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Table 6.5. Hydrogen coordinates ( x 104) and isotropic displacement 

parameters (A2x 103) for 4.2. 

x y z U(eq) 

H(1S) 6162 384 973 48 

H(2) -598 2743 271 38 

H(2S) 8965 6955 2349 61 

H(3) 570 3243 -221 39 

H(6A) -2268 3165 2090 66 

H(6B) -1429 3406 2428 66 

H(6C) -1717 2452 2423 66 

H(7A) -1835 1610 1429 65 

H(7B) -1591 1969 759 65 

H(7C) -2370 2292 1039 65 

H(8A) -1406 3586 682 65 

H(8B) -1136 4104 1321 65 

H(8C) -2033 3869 1159 65 

H(11) -969 1106 3952 55 
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H(12) -1247 -225 3513 63 

H(13) -1153 -465 2411 58 

H(15A) -151 101 1482 65 

H(158) -528 974 1238 65 

H(15C) -1068 167 1292 65 

H(16A) -1004 2806 3484 55 

H(16B) -185 2882 3185 55 

H(16C) -230 2467 3880 55 

H(19) 2469 5818 645 48 

H(21) 3616 3668 283 45 

H(23A) 1123 5833 881 68 

H(238) 874 5026 1270 68 

H(23C) 614 5111 515 68 

H(24A) 4327 4936 273 89 

H(248) 4063 5635 760 89 

H(24C) 3811 5715 3 89 

H(25A) 3016 2327 267 70 

H(258) 2091 2301 115 70 

H(25C) 2468 2237 844 70 

H(28) -116 4109 2139 35 

H(29) -425 5007 2979 44 

H(30) 543 5364 3815 50 
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H(31) 1810 4842 3780 54 

H(32) 2124 3951 2939 42 

H(34A) 4014 1865 2966 66 

H(348) 4121 1823 2211 66 

H(34C) 3959 984 2598 66 

H(36A) 601 -1019 3128 88 

H(36B) 1532 -1037 3192 88 

H(36C) 1056 -1305 2529 88 

H(38A) 1142 3136 4454 73 

H(388) 2025 2820 4490 73 

H(38C) 1351 2190 4657 73 

H(40A) 826 1169 -222 66 

H(408) 735 265 95 66 

H(40C) 1582 628 5 66 

H(26) 1830(30) 3330(30) 1840(20) 40(13) 

Table 6.6. Crystal data and structure refinement for compound 4.4. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

d1324 

C53 H52 Cl4 N2 P2 Ru 

1021.78 

150(1) K 
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Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27 .52° 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [1>2sigma(I)] 

0.71073 A 

monoclinic 

C 2/c 

a = 3g.366(4) A 

b = 10.3gg2(11) A 

c = 24.505(3) A 

g101.5(18) A3 

8 

1.3gg Mg/m3 

0.648 mm-1 

4208 

0.36 x 0.22 x 0.20 mm3 

1.07 to 27 .52°. 

a= go0
• 

~= 104.747(2)0
• 

Y =goo. 

-50<=h<=51, -13<=k<=13, -31<=1<=31 

42646 

11151 [R(int) = 0.0520] 

gg.13 

Full-matrix least-squares on F2 

11151 I 0 I 56g 

1.01g 

R1 = 0.0367, wR2 = 0.0736 
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R indices (all data) 

Largest diff. peak and hole 

R1 = 0.0579, wR2 = 0.0834 

0.589 and -0.555 e.A-3 

Table 6.7. Atomic coordinates ( x 104) and equivalent isotropic 

displacement parameters (A2x 103) for compound 4.4. U(eq) is defined as 

one third of the trace of the orthogonalized uij tensor. 

x y z U(eq) 

C(1) 1800(1) 3994(2) 2471(1) 21(1) 

C(1S) 949(1) 8740(4) 2356(2) 72(1) 

C(2) 2373(1) 4551 (3) 2768(1) 33(1) 

C(3) 2272(1) 4136(3) 3217(1) 35(1) 

C(4) 2083(1) 4926(2) 1755(1) 24(1) 

C(5) 2240(1) 4158(2) 1423(1) 24(1) 

C(6) 2241 (1) 4616(3) 891 (1) 28(1) 

C(7) 2100(1) 5807(3) 694(1) 33(1) 

C(8) 1951 (1) 6547(3) 1046(1) 34(1) 

C(9) 1943(1) 6144(2) 1583(1) 29(1) 

C(10) 1792(1) 6998(2) 1957(1) 37(1) 
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C(11) 2411 (1) 2894(3) 1629(1) 33(1) 

C(12) 2124(1) 6269(3) 124(1) 47(1) 

C(13) 1721 (1) 3410(3) 3431 (1) 25(1) 

C(14) 1747(1) 2154(3) 3633(1) 27(1) 

C(15) 1546(1) 1829(3) 4004(1) 31 (1) 

C(16) 1337(1) 2720(3) 4189(1) 35(1) 

C(17) 1338(1) 3979(3) 4001 (1) 34(1) 

C(18) 1527(1) 4357(3) 3623(1) 28(1) 

C(19) 1527(1) 5732(3) 3431 (1) 37(1) 

C(20) 1983(1) 1180(3) 3462(1) 35(1) 

C(21) 1122(1) 2332(4) 4593(1) 52(1) 

C(22) 1057(1) 3617(2) 2370(1) 19(1) 

C(23) 803(1) 4549(3) 2381(1) 25(1) 

C(24) 533(1) 4306(3) 2636(1) 34(1) 

C(25) 513(1) 3134(3) 2891 (1) 36(1) 

C(26) 762(1) 2202(3) 2886(1) 31 (1) 

C(27) 1030(1) 2425(2) 2624(1) 23(1) 

C(28) 1495(1) 2796(2) 832(1) 21 (1) 

C(29) 1699(1) 2039(2) 522(1) 21 (1) 

C(30) 1817(1) 782(2) 674(1) 27(1) 

C(31) 2002(1) 122(3) 351 (1) 31 (1) 

C(32) 2063(1) 663(3) -128(1) 35(1) 
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C(33) 1943(1) 1884(3) -290(1) 39(1) 

C(34) 1764(1) 2565(3) 34(1) 29(1) 

C(35) 735(1) 3142(2) 35(1) 22(1) 

C(36) 849(1) 2083(3) -219(1) 30(1) 

C(37) 835(1) 2097(3) -792(1) 36(1) 

C(38) 707(1) 3159(3) -1116(1) 39(1) 

C(39) 592(1) 4214(3) -872(1) 36(1) 

C(40) 603(1) 4209(3) -299(1) 27(1) 

C(41) 664(1) 4779(2) 921 (1) 18(1) 

C(42) 918(1) 5698(2) 897(1) 22(1) 

C(43) 855(1) 6993(2) 959(1) 27(1) 

C(44) 539(1) 7384(2) 1055(1) 30(1) 

C(45) 288(1) 6487(2) 1092(1) 30(1) 

C(46) 349(1) 5182(2) 1022(1) 24(1) 

C(47) 367(1) 2228(2) 836(1) 20(1) 

C(48) 103(1) 1915(3) 364(1) 33(1) 

C(49) -182(1) 1186(3) 415(1) 45(1) 

C(50) -208(1) 779(3) 936(1) 40(1) 

C(51) 50(1) 1108(3) 1415(1) 35(1) 

C(52) 334(1) 1830(2) 1365(1) 27(1) 

Cl(1) 1030(1) 149(1) 982(1) 31 (1) 

Cl(1S) 526(1) 8562(1) 2453(1) 78(1) 
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Cl(2) 1712(1) 961 (1) 2006(1) 28(1) 

Cl(2S) 1263(1) 8941 (1) 2995(1) 65(1) 

N(1) 2083(1) 4476(2) 2311(1) 23(1) 

N(2) 1919(1) 3791 (2) 3036(1) 25(1) 

P(1) 1370(1) 4001 (1) 1947(1) 18(1) 

P(2) 761 (1) 3106(1) 796(1) 17(1) 

Ru(1) 1270(1) 2176(1) 1352(1) 17(1) 

Table 6.8. Bond lengths [A] and angles [°] for compound 4.4. 

C(1 )-N(2) 1.361 (3) 

C(1 )-N(1) 1.367(3) 

C(1 )-P(1) 1.847(2) 

C(1 S)-Cl(2S) 1.745(4) 

C(1 S)-Cl(1 S) 1.751(4) 

C(2)-C(3) 1.332(4) 

C(2)-N(1) 1.383(3) 

C(3)-N(2) 1.394(3) 

C(4)-C(5) 1.394(4) 

C(4)-C(9) 1.402(3) 

C(4)-N(1) 1.439(3) 

C(5)-C(6) 1.389(4) 
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C(5)-C(11) 1.503(3) 

C(6)-C(7) 1.393(4) 

C(7)-C(8) 1.390(4) 

C(7)-C(12) 1.503(4) 

C(8)-C(9) 1.390(4) 

C(9)-C(10) 1.503(4) 

C(13)-C(14) 1.391(4) 

C(13)-C(18) 1.398(4) 

C(13)-N(2) 1.445(3) 

C(14)-C(15) 1.391(4) 

C(14)-C(20) 1.504(4) 

C(15)-C(16) 1.390(4) 

C(16)-C(17) 1.389(4) 

C(16)-C(21) 1.510(4) 

C(17)-C(18) 1.386(4) 

C(18)-C(19) 1.505(4) 

C(22)-C(23) 1.398(3) 

C(22)-C(27) 1.404(3) 

C(22)-P(1) 1.843(3) 

C(23)-C(24) 1.390(4) 

C(24 )-C(25) 1.380(4) 

C(25)-C(26) 1.381 (4) 
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C(26)-C(27) 1.387(4) 

C(28)-C(29) 1.469(3) 

C(28)-Ru(1) 1.841(3) 

C(29)-C(34) 1.396(4) 

C(29)-C(30) 1.406(3) 

C(30)-C(31) 1.385(4) 

C(31 )-C(32) 1.378(4) 

C(32)-C(33) 1.378(4) 

C(33)-C(34) 1.383(4) 

C(35)-C(36) 1.394(4) 

C(35)-C(40) 1.398(4) 

C(35)-P(2) 1.840(3) 

C(36)-C(37) 1.389(4) 

C(37)-C(38) 1.379(4) 

C(38)-C(39) 1.381(4) 

C(39)-C(40) 1.395(4) 

C(41 )-C(46) 1.389(3) 

C(41 )-C(42) 1.394(3) 

C(41 )-P(2) 1.824(2) 

C(42)-C(43) 1.384(3) 

C(43)-C(44) 1.384(4) 

C(44 )-C(45) 1.379(4) 
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C(45)-C(46) 1.397(3) 

C(47)-C(48) 1.383(3) 

C(47)-C(52) 1.396(4) 

C(47)-P(2) 1.827(2) 

C(48)-C(49) 1.385(4) 

C(49)-C(50) 1.373(4) 

C(50)-C(51) 1.384(4) 

C(51 )-C(52) 1.381(3) 

Cl(1 )-Ru(1) 2.3925(6) 

Cl(2)-Ru(1) 2.4012(6) 

P(1 )-Ru(1) 2.3643(7) 

P(2)-Ru(1) 2.3272(6) 

N(2)-C(1 )-N(1) 104.77(19) 

N(2)-C(1 )-P(1) 136.43(19) 

N(1 )-C(1 )-P(1) 118.01 (18) 

Cl(2S)-C(1 S)-Cl(1 S) 111.8(2) 

C(3)-C(2)-N(1) 107.0(2) 

C(2)-C(3)-N(2) 107.7(2) 

C(5)-C(4)-C(9) 122.7(3) 

C(5)-C(4)-N(1) 118.2(2) 

C(9)-C(4)-N(1) 119.0(2) 

174 



C(6)-C(5)-C(4) 117.4(2) 

C(6)-C(5)-C(11) 120.5(2) 

C(4)-C(5)-C(11) 122.1(2) 

C(5)-C(6)-C(7) 122.2(3) 

C(8)-C(7)-C(6) 118.1(3) 

C(8)-C(7)-C(12) 122.4(3) 

C(6)-C(7)-C(12) 119.5(3) 

C(9)-C(8)-C(7) 122.4(3) 

C(8)-C(9)-C(4) 117.1(3) 

C(8)-C(9)-C(10) 120.5(2) 

C(4 )-C(9)-C(10) 122.5(3) 

C(14 )-C(13)-C(18) 122.6(3) 

C(14 )-C(13)-N(2) 119.5(2) 

C(18)-C(13)-N(2) 117.8(2) 

C(15)-C(14 )-C(13) 117.3(2) 

C(15)-C(14 )-C(20) 120.8(3) 

C(13)-C(14)-C(20) 121.9(2) 

C(16)-C(15)-C(14) 122.3(3) 

C(17)-C(16)-C(15) 117.9(3) 

C( 17)-C( 16 )-C(21 ) 121.3(3) 

C(15)-C(16)-C(21) 120.8(3) 

C(18)-C(17)-C(16) 122.5(3) 
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C(17)-C(18)-C(13) 117.2(3) 

C(17)-C(18)-C(19) 121.3(3) 

C(13)-C(18)-C(19) 121.5(3) 

C(23 )-C(22 )-C(27) 117.9(2) 

C(23)-C(22)-P(1) 116.32(19) 

C(27)-C(22)-P(1) 125.37(18) 

C(24 )-C(23 )-C(22) 121.1(3) 

C(25 )-C(24 )-C(23) 120.2(3) 

C(24 )-C(25)-C(26) 119.6(3) 

C(25)-C(26)-C(27) 120.8(3) 

C(26)-C(27)-C(22) 120.4(2) 

C(29)-C(28)-Ru(1) 126.40(18) 

C(34 )-C(29)-C(30) 118.1(2) 

C(34 )-C(29)-C(28) 118.5(2) 

C(30)-C(29)-C(28) 123.3(2) 

C(31 )-C(30)-C(29) 119.8(3) 

C(32)-C(31 )-C(30) 121.0(3) 

C(33)-C(32)-C(31) 120.0(3) 

C(32)-C(33)-C(34) 119.7(3) 

C(33)-C(34 )-C(29) 121.5(3) 

C(36)-C(35)-C(40) 118.6(2) 

C(36)-C(35)-P(2) 119.7(2) 
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C(40)-C(35)-P(2) 121.6(2) 

C(37)-C(36)-C(35) 120.6(3) 

C(38)-C(37)-C(36) 120.3(3) 

C(37)-C(38 )-C(39) 120.0(3) 

C(38)-C(39)-C(40) 120.2(3) 

C(39)-C(40)-C(35) 120.3(3) 

C(46)-C(41 )-C(42) 118.8(2) 

C(46)-C(41 )-P(2) 123.56(18) 

C(42)-C(41 )-P(2) 117.60(18) 

C(43)-C(42)-C(41) 120.8(2) 

C(44 )-C(43)-C(42) 119.8(2) 

C(45)-C(44 )-C(43) 120.1(2) 

C(44 )-C(45)-C(46) 120.1(2) 

C(41 )-C(46)-C(45) 120.3(2) 

C(48)-C(47)-C(52) 118.7(2) 

C(48)-C(47)-P(2) 122.7(2) 

C(52)-C(47)-P(2) 118.54(18) 

C(47)-C(48)-C(49) 120.4(3) 

C( 50 )-C( 49 )-C( 48) 120.3(3) 

C(49)-C(50)-C(51) 120.1(3) 

C(52)-C(51 )-C(50) 119.6(3) 

C(51 )-C(52)-C(47) 120.8(2) 
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C(1 )-N(1 )-C(2) 110.6(2) 

C(1 )-N(1 )-C(4) 125.82(19) 

C(2)-N(1 )-C(4) 123.5(2) 

C(1 )-N(2)-C(3) 109.9(2) 

C(1 )-N(2)-C(13) 128.3(2) 

C(3)-N(2)-C(13) 121.5(2) 

C(22)-P(1 )-C(1) 103.53(11) 

C(22)-P(1 )-Ru(1) 98.20(8) 

C(1 )-P(1 )-Ru(1) 113.81(8) 

C(41 )-P(2)-C(47) 104.46(11) 

C(41 )-P(2)-C(35) 101.00(11) 

C(47)-P(2)-C(35) 103.68(11) 

C(41 )-P(2)-Ru(1) 118.95(7) 

C(47)-P(2)-Ru(1) 112.19(8) 

C(35)-P(2)-Ru(1) 114.79(8) 

C(28)-Ru(1 )-P(2) 86.69(7) 

C(28)-Ru(1 )-P(1) 96.43(8) 

P(2)-Ru(1 )-P(1) 90.61 (2) 

C(28)-Ru(1 )-Cl(1) 105.05(8) 

P(2)-Ru(1 )-Cl(1) 86.89(2) 

P(1 )-Ru(1 )-Cl(1) 158.18(2) 

C(28)-Ru(1 )-Cl(2) 104.61 (7) 
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P(2)-Ru(1 )-Cl(2) 

P(1 )-Ru(1 )-Cl(2) 

Cl(1 )-Ru(1 )-Cl(2) 

168.06(2) 

91.89(2) 

86.45(2) 

Symmetry transformations used to generate equivalent atoms: 

Table 6.9. Anisotropic displacement parameters (A2x 1 o3) for compound 

4.4. The anisotropic displacement factor exponent takes the form: -2p2[ 

h2a•2u11 + ... + 2 h k a* b* u12] 

u11 u22 u33 u23 u13 u12 

C(1) 20(1) 18(1) 25(2) -1 (1) 5(1) 1 (1) 

C(1S) 127(4) 52(2) 42(2) -4(2) 34(2) -25(2) 

C(2) 17(1) 41(2) 34(2) -2(1) -4(1) -2(1) 

C(3) 20(1) 48(2) 31(2) -1 (2) -5(1) -1 (1) 

C(4) 16(1) 26(1) 27(2) 2(1) 1 (1) -7(1) 

C(5) 15(1) 27(1) 30(2) 5(1) 3(1) -7(1) 

C(6) 18(1) 35(1) 31(2) 4(1) 4(1) -7(1) 

C(7) 19(1) 42(2) 35(2) 14(1) 0(1) -9(1) 
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C(8) 23(1) 26(1) 48(2) 13(1) 1 (1) -6(1) 

C(9) 18(1) 23(1) 42(2) 4(1) 0(1) -8(1) 

C(10) 35(1) 21 (1) 52(2) -4(1) 5(1) -3(1) 

C(11) 29(1) 31 (1) 38(2) 6(1) 11 (1) 5(1) 

C(12) 36(2) 57(2) 48(2) 24(2) 8(2) -4(2) 

C(13) 20(1) 34(1) 18(1) -2(1) -1 (1) 4(1) 

C(14) 24(1) 38(2) 16(1) -1 (1) -1 (1) 6(1) 

C(15) 30(1) 38(2) 22(2) 4(1) 1 (1) 5(1) 

C(16) 29(1) 51(2) 23(2) 0(1) 4(1) 7(1) 

C(17) 27(1) 44(2) 29(2) -8(1) 4(1) 10(1) 

C(18) 25(1) 35(1) 19(2) -3(1) -2(1) 6(1) 

C(19) 39(2) 32(2) 36(2) -8(1) 3(1) 3(1) 

C(20) 36(2) 44(2) 23(2) 7(1) 5(1) 15(1) 

C(21) 50(2) 71(2) 43(2) 7(2) 24(2) 6(2) 

C(22) 17(1) 22(1) 16(1) -4(1) 1 (1) -2(1) 

C(23) 23(1) 29(1) 21(2) -6(1) 2(1) 0(1) 

C(24) 23(1) 48(2) 30(2) -8(1) 7(1) 5(1) 

C(25) 27(1) 57(2) 26(2) -6(2) 12(1) -8(1) 

C(26) 35(1) 37(2) 21(2) 1 (1) 7(1) -8(1) 

C(27) 23(1) 26(1) 19(1) -2(1) 2(1) -1 (1) 

C(28) 19(1) 17(1) 25(2) 1 (1) 4(1) -1 (1) 

C(29) 20(1) 23(1) 23(1) -3(1) 9(1) -3(1) 
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C(30) 32(1) 26(1) 27(2) -2(1) 13(1) -1 (1) 

C(31) 33(1) 26(1) 36(2) -4(1) 14(1) 1 (1) 

C(32) 33(1) 41(2) 38(2) -12(1) 21 (1) -4(1) 

C(33) 43(2) 50(2) 29(2) 1(2) 20(1) -6(1) 

C(34) 28(1) 32(1) 29(2) 4(1) 10(1) -4(1) 

C(35) 21 (1) 27(1) 18(1) -3(1) 5(1) -11(1) 

C(36) 33(1) 31(1) 25(2) -6(1) 9(1) -11(1) 

C(37) 36(1) 45(2) 30(2) -15(2) 15(1) -17(1) 

C(38) 37(2) 62(2) 18(2) -6(2) 8(1) -21(2) 

C(39) 31 (1) 51(2) 23(2) 8(1) 3(1) -14(1) 

C(40) 24(1) 34(1) 23(2) 2(1) 6(1) -6(1) 

C(41) 22(1) 16(1) 16(1) 1 (1) 0(1) -1 (1) 

C(42) 21 (1) 21(1) 23(1) 0(1) 3(1) -2(1) 

C(43) 30(1) 20(1) 29(2) 1 (1) 4(1) -4(1) 

C(44) 34(1) 19(1) 34(2) -2(1) 2(1) 4(1) 

C(45) 24(1) 28(1) 36(2) -4(1) 4(1) 4(1) 

C(46) 20(1) 25(1) 25(2) -3(1) 2(1) -3(1) 

C(47) 20(1) 18(1) 23(1) -3(1) 7(1) -4(1) 

C(48) 28(1) 47(2) 24(2) -2(1) 5(1) -16(1) 

C(49) 33(2) 63(2) 37(2) -14(2) 6(1) -26(2) 

C(50) 30(1) 43(2) 50(2) -7(2) 14(1) -21 (1) 

C(51) 34(1) 37(2) 37(2) 5(1) 16(1) -8(1) 
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C(52) 23(1) 31 (1) 26(2) 0(1) 5(1) -9(1) 

Cl(1) 38(1) 14(1) 41 (1) -4(1) 12(1) -7(1) 

Cl(1S) 102(1) 73(1) 56(1) 9(1) 15(1) 12(1) 

Cl(2) 32(1) 26(1) 26(1) 6(1) 9(1) 10(1) 

Cl(2S) 105(1) 43(1) 50(1) 7(1) 23(1) -7(1) 

N(1) 18(1) 25(1) 23(1) 1 (1) 0(1) -3(1) 

N(2) 20(1) 33(1) 20(1) 1 (1) 1 (1) 2(1) 

P(1) 16(1) 16(1) 20(1) -1 (1) 2(1) 0(1) 

P(2) 18(1) 15(1) 18(1) -2(1) 4(1) -5(1) 

Ru(1) 19(1) 13(1) 19(1) 0(1) 7(1) -1 (1) 
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Table 6.10. Hydrogen coordinates ( x 104) and isotropic displacement 

parameters (A2x 103) for compound 4.4. 

x y z U(eq) 

H(1S1) 1007 7986 2164 86 

H(1S2) 953 9481 2117 86 

H(3) 2596 4837 2764 39 

H(2) 2412 4085 3584 42 

H(6) 2340 4110 658 34 

H(8) 1854 7340 917 40 

H(10A) 1787 7870 1826 56 

H(10B) 1935 6948 2337 56 

H(10C) 1558 6723 1946 56 

H(11A) 2452 2418 1316 49 

H(11 B) 2259 2408 1802 49 

H(11 C) 2630 3047 1900 49 

H(12A) 1959 6955 0 71 

H(12B) 2070 5573 -141 71 
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H(12C) 2357 6576 149 71 

H(15) 1552 986 4134 37 

H(17) 1206 4592 4133 41 

H(19A) 1408 6259 3646 55 

H(19B) 1407 5789 3038 55 

H(19C) 1764 6025 3486 55 

H(20A) 1920 1095 3059 52 

H(20B) 1956 365 3631 52 

H(20C) 2222 1459 3588 52 

H(21A) 877 2352 4401 78 

H(21 B) 1167 2919 4906 78 

H(21C) 1187 1477 4729 78 

H(23) 816 5346 2214 30 

H(24) 364 4934 2635 40 

H(25) 333 2973 3065 43 

H(26) 750 1416 3061 37 

H(27) 1192 1780 2617 28 

H(30) 1772 395 990 33 

H(31) 2086 -700 460 37 

H(32) 2185 204 -342 42 

H(33) 1981 2248 -615 46 

H(34) 1686 3393 -75 35 
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H(36) 935 1362 -4 35 

H(37) 912 1386 -957 43 

H(38) 698 3164 -1499 46 

H(39) 506 4931 -1091 43 

H(40) 522 4917 -137 32 

H(42) 1132 5437 838 26 

H(43) 1025 7598 937 32 

H(44) 496 8254 1095 36 

H(45) 78 6751 1163 36 

H(46) 178 4580 1043 29 

H(48) 116 2195 10 40 

H(49) -357 970 94 54 

H(50) -398 281 967 48 

H(51) 31 844 1769 42 

H(52) 507 2053 1687 32 

H(28) 1455(6) 3650(30) 686(11) 25(7) 

Table 6.11. Crystal data and structure refinement for compound 4.5. 

Identification code 

Empirical formula 

Formula weight 

d12283 

C52 H49 Cl N2 P2 Ru 

900.39 
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Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.42° 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

150(1) K 

0.71073 A 

monoclinic 

P 21/n 

a= 11.1g6(3) A 

b = 18.g7g(5) A 

c = 20.473(5) A 

451g(2) A3 

4 

1.323 Mg/m3 

0.514 mm-1 

1864 

0.1 g x 0.05 x 0.02 mm3 

1.47 to 27.42°. 

a= go0
• 

~ = gg.625(7)0
• 

y =goo. 

-15<=h<=15, -24<=k<=14, -26<=1<=26 

40082 

10285 [R(int) = 0.0505] 

gg,g3 

Full-matrix least-squares on F2 

10285 / 0 / 523 

1.011 
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Final R indices [1>2sigma(I)] 

R indices (all data) 

Largest diff. peak and hole 

R1 = 0.0331, wR2 = 0.0675 

R1 = 0.0506, wR2 = 0.0736 

0.554 and -0.359 e.A-3 

Table 6.12. Atomic coordinates { x 104) and equivalent isotropic 

displacement parameters (A2x 1 o3) for compound 4.5. U{eq) is defined as 

one third of the trace of the orthogonalized uij tensor. 

x y z U(eq) 

C(1) 5336(2) 723(1) 3082(1) 15(1) 

C(2) 5888(2) -178(1) 3770(1) 24(1) 

C(3) 6477(2) -231 (1) 3263(1) 23(1) 

C(4) 4479(2) 675(1) 4123(1) 16(1) 

C(5) 4942(2) 1194(1) 4568(1) 19(1) 

C(6) 4209(2) 1492(1) 4961 (1) 21 (1) 

C(7) 3069(2) 1282(1) 4917(1) 23(1) 

C(8) 2675(2) 727(1) 4495(1) 24(1) 

C(9) 3370(2) 404(1) 4092(1) 21(1) 

C(10) 6164(2) 1448(1) 4622(1) 28(1) 
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C(11) 2289(3) 1641(1) 5326(1) 39(1) 

C(12) 2942(2) -212(1) 3656(1) 31 (1) 

C(13) 6660(2) 520(1) 2273(1) 17(1) 

C(14) 6515(2) 76(1) 1728(1) 22(1) 

C(15) 7078(2) 266(1) 1202(1) 26(1) 

C(16) 7744(2) 869(1) 1223(1) 26(1) 

C(17) 7852(2) 1307(1) 1778(1) 21 (1) 

C(18) 7322(2) 1147(1) 2330(1) 16(1) 

C(19) 5784(2) -580(1) 1692(1) 31 (1) 

C(20) 8380(3) 1051(1) 660(1) 40(1) 

C(21) 7388(2) 1624(1) 2898(1) 16(1) 

C(22) 3642(2) 1015(1) 2014(1) 21 (1) 

C(23) 3895(2) 860(1) 1389(1) 26(1) 

C(24) 3112(3) 488(2) 932(2) 42(1) 

C(25) 2078(3) 268(2) 1095(2) 57(1) 

C(26) 1815(3) 421 (2) 1714(2) 55(1) 

C(27) 2585(2) 798(1) 2171(1) 36(1) 

C(28) 5625(2) 2721 (1) 3188(1) 17(1) 

C(29) 6387(2) 3210(1) 3545(1) 24(1) 

C(30) 6140(3) 3551 (1) 4106(1) 34(1) 

C(31) 5113(3) 3418(1) 4335(1) 36(1) 

C(32) 4357(2) 2922(1) 4009(1) 28(1) 
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C(33) 4611 (2) 2564(1) 3453(1) 20(1) 

C(34) 3831(2) 1985(1) 3129(1) 18(1) 

C(35) 4650(2) 2627(1) 745(1) 20(1) 

C(36) 5409(2) 2106(1) 602(1) 24(1) 

C(37) 5384(2) 1874(1) -45(1) 34(1) 

C(38) 4623(3) 2166(1) -560(1) 37(1) 

C(39) 3859(2) 2679(1) -426(1) 35(1) 

C(40) 3865(2) 2905(1) 219(1) 27(1) 

C(41) 5038(2) 3871 (1) 1570(1) 18(1) 

C(42) 5065(2) 4244(1) 986(1) 22(1) 

C(43) 5308(2) 4967(1) 1009(1) 27(1) 

C(44) 5502(2) 5323(1) 1602(1) 29(1) 

C(45) 5509(2) 4954(1) 2188(1) 29(1) 

C(46) 5289(2) 4232(1) 2174(1) 24(1) 

C(47) 3180(2) 2945(1) 1698(1) 24(1) 

C(48) 2838(2) 3365(1) 2192(1) 31 (1) 

C(49) 1705(3) 3340(1) 2313(2) 44(1) 

C(50) 904(3) 2900(2) 1946(2) 54(1) 

C(51) 1231(2) 2483(2) 1460(2) 46(1) 

C(52) 2364(2) 2499(1) 1338(1) 32(1) 

Cl(1) 7539(1) 3059(1) 2128(1) 20(1) 

N(1) 5187(2) 414(1) 3657(1) 17(1) 
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N(2) 

P(1) 

P(2) 

Ru(1) 

6136(2) 

4699(1) 

4722(1) 

6003(1) 

330(1) 

1514(1) 

2915(1) 

2243(1) 

2843(1) 

2601 (1) 

1610(1) 

2361 (1) 

17(1) 

14(1) 

16(1) 

13(1) 

Table 6.13. Bond lengths [A] and angles [°] for compound 4.5. 

C(1 )-N(1) 1.352(3) 

C(1 )-N(2) 1.355(3) 

C(1 )-P(1) 1.883(2) 

C(2)-C(3) 1.346(3) 

C(2)-N(1) 1.391 (3) 

C(3)-N(2) 1.384(3) 

C(4)-C(5) 1.391 (3) 

C(4)-C(9) 1.397(3) 

C(4)-N(1) 1.456(3) 

C(5)-C(6) 1.396(3) 

C(5)-C(10) 1.506(3) 

C(6)-C(7) 1.391 (3) 

C(7)-C(8) 1.392(3) 

C(7)-C(11) 1.507(3) 

C(8)-C(9) 1.398(3) 

190 



C(9)-C(12) 1.506(3) 

C(13)-C(14) 1.386(3) 

C(13)-C(18) 1.418(3) 

C(13)-N(2) 1.454(3) 

C(14)-C(15) 1.404(3) 

C(14)-C(19) 1.510(3) 

C(15)-C(16) 1.385(3) 

C(16)-C(17) 1.396(3) 

C(16)-C(20) 1.517(3) 

C(17)-C(18) 1.414(3) 

C(18)-C(21) 1.466(3) 

C(21 )-Ru(1) 2.157(2) 

C(22)-C(23) 1.393(3) 

C(22)-C(27) 1.400(3) 

C(22)-P(1) 1.842(2) 

C(23 )-C(24) 1.391(4) 

C(24 )-C(25) 1.382(4) 

C(25)-C(26) 1.385(4) 

C(26)-C(27) 1.389(4) 

C(28)-C(29) 1.408(3) 

C(28)-C(33) 1.426(3) 

C(28)-Ru(1) 2.035(2) 
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C(29)-C(30) 1.391 (3) 

C(30)-C(31) 1.393(4) 

C(31 )-C(32) 1.387(4) 

C(32)-C(33) 1.400(3) 

C(33)-C(34) 1.514(3) 

C(34)-P(1) 1.839(2) 

C(35)-C(36) 1.397(3) 

C(35)-C(40) 1.400(3) 

C(35)-P(2) 1.841(2) 

C(36)-C(37) 1.392(3) 

C(37)-C(38) 1.381 (4) 

C(38)-C(39) 1.385(4) 

C(39)-C(40) 1.388(3) 

C(41 )-C(42) 1.394(3) 

C(41 )-C(46) 1.400(3) 

C(41 )-P(2) 1.857(2) 

C(42)-C(43) 1.401 (3) 

C(43)-C(44) 1.375(4) 

C(44 )-C(45) 1.389(3) 

C(45)-C(46) 1.394(3) 

C(47)-C(52) 1.397(4) 

C(47)-C(48) 1.399(3) 
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C(47)-P(2) 1.859(2) 

C(48)-C(49) 1.400(4) 

C(49)-C(50) 1.384(5) 

C(50)-C(51) 1.377(5) 

C(51 )-C(52) 1.400(4) 

Cl(1 )-Ru(1) 2.4899(7) 

P(1 )-Ru(1) 2.1844(6) 

P(2)-Ru(1) 2.3464(7) 

N(1 )-C(1 )-N(2) 105.98(17) 

N(1 )-C(1 )-P(1) 134.54(15) 

N(2)-C(1 )-P(1) 119.48(15) 

C(3)-C(2)-N(1) 107.51(19) 

C(2)-C(3)-N(2) 106.70(18) 

C(5)-C(4 )-C(9) 123.53(19) 

C(5)-C(4 )-N(1) 117.67(19) 

C(9)-C(4)-N(1) 118.78(19) 

C(4 )-C(5)-C(6) 116.9(2) 

C(4 )-C(5)-C(10) 122.79(19) 

C(6)-C(5)-C(10) 120.3(2) 

C(7)-C(6)-C(5) 122.1(2) 

C(6)-C(7)-C(8) 118.4(2) 
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C(6)-C(7)-C(11) 120.5(2) 

C(8)-C(7)-C(11) 121.1(2) 

C(7)-C(8)-C(9) 122.0(2) 

C(4 )-C(9)-C(8) 116.7(2) 

C(4)-C(9)-C(12) 122.0(2) 

C(8)-C(9)-C(12) 121.3(2) 

C(14 )-C(13)-C(18) 124.64(19) 

C(14 )-C(13)-N(2) 118.97(18) 

C(18)-C(13)-N(2) 116.36(18) 

C(13)-C(14 )-C(15) 116.9(2) 

C(13)-C(14 )-C(19) 122.2(2) 

C(15)-C(14 )-C(19) 120.9(2) 

C(16)-C(15)-C(14) 121.7(2) 

C(15)-C(16)-C(17) 119.5(2) 

C(15)-C(16)-C(20) 121.0(2) 

C(17)-C(16)-C(20) 119.5(2) 

C(16)-C(17)-C(18) 122.0(2) 

C(17)-C(18)-C(13) 115.21 (19) 

C(17)-C(18)-C(21) 122.00(18) 

C(13)-C(18)-C(21) 122.65(18) 

C(18)-C(21 )-Ru(1) 89.79(13) 

C(23)-C(22)-C(27) 119.0(2) 
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C(23)-C(22)-P(1) 118.82(17) 

C(27)-C(22)-P(1) 122.16(19) 

C(24 )-C(23 )-C(22) 120.3(2) 

C(25 )-C(24 )-C(23) 120.3(3) 

C(24 )-C(25)-C(26) 119.9(3) 

C(25 )-C(26 )-C(27) 120.2(3) 

C(26 )-C(27)-C(22) 120.2(3) 

C(29 )-C(28 )-C(33) 116.40(19) 

C(29)-C(28)-Ru(1) 121.03(16) 

C(33)-C(28)-Ru(1) 122.53(16) 

C(30)-C(29)-C(28) 122.0(2) 

C(29)-C(30)-C(31) 120.5(2) 

C(32)-C(31 )-C(30) 119.1(2) 

C(31 )-C(32)-C(33) 120.8(2) 

C(32 )-C(33 )-C(28) 121.0(2) 

C(32 )-C(33 )-C(34) 120.8(2) 

C(28)-C(33)-C(34) 118.18(18) 

C(33)-C(34 )-P(1) 104.67(14) 

C(36)-C(35)-C(40) 118.1(2) 

C(36 )-C(35 )-P(2) 118.86(18) 

C( 40 )-C(35 )-P(2) 123.02(17) 

C(37)-C(36)-C(35) 120.6(2) 
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C(38 )-C(37)-C(36) 120.5(2) 

C(37)-C(38 )-C(39) 119.5(2) 

C(38 )-C(39 )-C( 40) 120.3(2) 

C(39)-C(40)-C(35) 120.8(2) 

C(42)-C(41 )-C(46) 118.48(19) 

C(42)-C(41 )-P(2) 124.54(17) 

C(46)-C(41 )-P(2) 116.97(16) 

C(41 )-C(42)-C(43) 120.2(2) 

C(44 )-C(43)-C(42) 120.9(2) 

C(43)-C(44 )-C(45) 119.4(2) 

C(44 )-C(45)-C(46) 120.2(2) 

C(45)-C(46)-C(41) 120.7(2) 

C(52)-C(47)-C(48) 118.1(2) 

C(52)-C(47)-P(2) 121.96(19) 

C(48)-C(47)-P(2) 119.5(2) 

C( 4 7)-C( 48 )-C( 49) 120.5(3) 

C(50)-C(49)-C(48) 120.7(3) 

C(51 )-C(50)-C(49) 119.4(3) 

C(50)-C(51 )-C(52) 120.5(3) 

C(47)-C(52)-C(51) 120.8(3) 

C(1 )-N(1 )-C(2) 109.52(17) 

C(1 )-N(1 )-C(4) 126.63(17) 
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C(2)-N(1 )-C(4) 123.70(17) 

C(1 )-N(2)-C(3) 110.28(17) 

C(1 )-N(2)-C(13) 124.57(16) 

C(3)-N(2)-C(13) 124.76(17) 

C(34 )-P(1 )-C(22) 104.51 (10) 

C(34 )-P(1 )-C(1) 107.02(10) 

C(22)-P(1 )-C(1) 95.67(9) 

C(34 )-P(1 )-Ru(1) 107.88(7) 

C(22)-P(1 )-Ru(1) 127.16(7) 

C(1 )-P(1 )-Ru(1) 112.78(7) 

C(35)-P(2)-C(41) 103.06(9) 

C(35)-P(2)-C(47) 102.37(11) 

C(41 )-P(2)-C(47) 100.45(9) 

C(35)-P(2)-Ru(1) 112.97(7) 

C(41 )-P(2)-Ru(1) 116.63(8) 

C(47)-P(2)-Ru(1) 119.07(7) 

C(28)-Ru(1 )-C(21) 94.09(8) 

C(28)-Ru(1 )-P(1) 80.51 (6) 

C(21 )-Ru(1 )-P(1) 92.48(6) 

C(28)-Ru(1 )-P(2) 95.52(6) 

C(21 )-Ru(1 )-P(2) 168.55(6) 

P(1 )-Ru(1 )-P(2) 95.21(3) 
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C(28)-Ru(1 )-Cl(1) 

C(21 )-Ru(1 )-Cl(1) 

P(1 )-Ru(1 )-Cl(1) 

P(2)-Ru(1 )-Cl(1) 

98.62(6) 

85.59(6) 

177.83(2) 

86.85(3) 

Symmetry transformations used to generate equivalent atoms: 
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Table 6.14. Anisotropic displacement parameters (A2x 103) for compound 

4.5. The anisotropic displacement factor exponent takes the form: -2p2[ 

h2a*2u11+ ... +2 h k a* b* u12] 

u11 u22 u33 u23 u13 u12 

C(1) 15(1) 12(1) 16(1) -1 (1) 2(1) -3(1) 

C(2) 28(1) 19(1) 27(1) 9(1) 7(1) 5(1) 

C(3) 26(1) 15(1) 28(1) 4(1) 5(1) 6(1) 

C(4) 19(1) 17(1) 14(1) 5(1) 4(1) 1 (1) 

C(5) 18(1) 21 (1) 17(1) 5(1) 2(1) -3(1) 

C(6) 28(1) 21 (1) 13(1) 1 (1) 2(1) -2(1) 

C(7) 28(1) 24(1) 18(1) 5(1) 9(1) 1 (1) 

C(8) 18(1) 29(1) 25(1) 4(1) 6(1) -6(1) 

C(9) 24(1) 20(1) 19(1) 3(1) 5(1) -5(1) 

C(10) 21 (1) 34(1) 28(2) -3(1) 3(1) -9(1) 

C(11) 36(2) 49(2) 38(2) -7(1) 20(1) -1 (1) 

C(12) 33(2) 28(1) 33(2) -6(1) 9(1) -12(1) 

C(13) 17(1) 17(1) 17(1) 1 (1) 5(1) 6(1) 

C(14) 23(1) 19(1) 24(1) -2(1) 2(1) 5(1) 
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C(15) 32(2) 29(1) 18(1) -7(1) 5(1) 7(1) 

C(16) 27(1) 33(1) 18(1) 3(1) 7(1) 9(1) 

C(17) 19(1) 22(1) 23(1) 4(1) 5(1) 3(1) 

C(18) 13(1) 18(1) 18(1) 3(1) 2(1) 6(1) 

C(19) 40(2) 22(1) 30(2) -7(1) 4(1) -1 (1) 

C(20) 45(2) 52(2) 28(2) 0(1) 20(1) 5(1) 

C(21) 13(1) 18(1) . 17(1) 2(1) 2(1) 1 (1) 

C(22) 19(1) 20(1) 22(1) 5(1) -2(1) -3(1) 

C(23) 24(1) 28(1) 24(1) 1 (1) -1 (1) -4(1) 

C(24) 43(2) 51(2) 30(2) -11 (1) -2(1) -8(1) 

C(25) 46(2) 72(2) 47(2) -17(2) -10(2) -28(2) 

C(26) 33(2) 79(2) 52(2) -7(2) 3(2) -31 (2) 

C(27) 28(2) 47(2) 32(2) 3(1) 6(1) -14(1) 

C(28) 22(1) 15(1) 14(1) 4(1) 4(1) 1 (1) 

C(29) 28(1) 25(1) 19(1) 0(1) 6(1) -6(1) 

C(30) 48(2) 31 (1) 23(1) -8(1) 10(1) -13(1) 

C(31) 56(2) 29(1) 30(2) -10(1) 24(2) -4(1) 

C(32) 37(2) 22(1) 31(2) 2(1) 20(1) 2(1) 

C(33) 24(1) 16(1) 21 (1) 4(1) 8(1) 4(1) 

C(35) 20(1) 17(1) 21 (1) 2(1) 1 (1) -4(1) 

C(36) 25(1) 21 (1) 25(1) 4(1) 1 (1) 2(1) 

C(37) 45(2) 27(1) 32(2) -4(1) 8(1) 5(1) 
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C(38) 50(2) 36(1) 21 (1) -7(1) 0(1) -4(1) 

C(39) 38(2) 40(1) 22(1) 2(1) -9(1) 1 (1) 

C(40) 22(1) 31(1) 26(1) 1 (1) -3(1) 2(1) 

C(41) 14(1) 16(1) 24(1) 4(1) 3(1) 3(1) 

C(42) 19(1) 21(1) 25(1) 4(1) 5(1) 3(1) 

C(43) 24(1) 24(1) 33(2) 12(1) 4(1) 0(1) 

C(44) 22(1) 19(1) 44(2) 3(1) 2(1) . -2(1) 

C(45) 25(1) 26(1) 34(2) -7(1) 1 (1) -1 (1) 

C(46) 22(1) 24(1) 24(1) 3(1) 1 (1) 0(1) 

C(47) 18(1) 23(1) 32(1) 16(1) 4(1) 4(1) 

C(48) 29(2) 28(1) 38(2) 16(1) 13(1) 10(1) 

C(49) 37(2) 42(1) 61(2) 25(1) 29(2) 18(1) 

C(50) 24(2) 58(2) 86(3) 39(2) 24(2) 11 (1) 

C(51) 20(2) 52(2) 63(2) 27(2) -1(2) -5(1) 

C(52) 20(1) 36(1) 40(2) 16(1) 0(1) 0(1) 

Cl(1) 19(1) 19(1) 25(1) 4(1) 8(1) -2(1) 

N(1) 18(1) 16(1) 18(1) 4(1) 5(1) 0(1) 

N(2) 19(1) 14(1) 18(1) 1 (1) 5(1) 2(1) 

P(1) 14(1) 14(1) 15(1) 2(1) 3(1) 0(1) 

P(2) 15(1) 16(1) 18(1) 4(1) 3(1) 1 (1) 

Ru(1) 13(1) 14(1) 13(1) 2(1) 3(1) 0(1) 
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