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Abstract 

Sea ice-associated primary producers are a major source of energy within Arctic 

marine ecosystems, particularly when pelagic primary growth is temporally and 

spatially limited. Using samples and data collected in spring 2011 and 2012, the 

variation in the fatty acid composition and stable isotopes of ice-based primary 

producers and primary consumers were investigated over several spatial scales in 

the Canadian Arctic Archipelago. Snow and ice thickness significantly affected ice 

algae fatty acid composition. Broad scale year-to-year variation in snow and ice 

conditions indirectly affected the fatty acid compositions, particularly the levels of 

polyunsaturated fatty acids, of a keystone zooplankton species. Environmental 

influence on fatty acid composition decreased as trophic level increased. Despite the 

presence of high quality pelagic phytoplankton under the sea ice, the data suggest 

herbivores rely mainly on ice algae. 
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Chapter 1 

Introduction 
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Polar environments experience extremely low temperatures and variable 

photoperiods, ranging from 24 hours of daylight in the summer to complete 

darkness during winter months. The defining characteristic of the Arctic landscape 

is the sea-ice, which can cover up to 14 million km2 and last for more than 9 months 

of the year (Spindler 1994). Arctic marine ecosystems experience short but intense 

periods of productivity as darkness and sea ice cover combine to restrict primary 

growth during the winter (S0reide et al., 2010). The sea ice also acts as habitat for 

primary producers and invertebrates that subsist within and under the ice. Adapted 

for growth under extremely low irradiance, ice algae initiates the Arctic spring 

bloom and accounts for 25-30% of the total annual productivity in Arctic seas 

(Legendre et al., 1992). The energy from primary producers is transferred to higher 

trophic levels primarily by calanoid copepods, zooplankton which have adapted to 

the variation in food availability by making and storing large amounts of lipid (Falk

Petersen et al., 2009). 

Arctic marine food webs are highly dependent on the production and 

transfer of lipids to maintain their structure and biodiversity (Damis et al., 2012), 

making fatty acids a useful tool for studying the ecology of this system. 

This thesis sought to provide a baseline of the fatty acid signatures of primary 

producers and consumers in sea-ice ecosystems. The aim of the work was to 

examine what environmental features had the most influence on fatty acids and 
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investigate what spatial patterns arise in fatty acid composition as a result of 

environmental variability. Arctic marine food webs rely on the production and 

transfer of lipids, and the study of fatty acid dynamics therefore provides unique 

insight into how energy flow is dictated within the system. I specifically focused on 

omega-3 and omega-6 polyunsaturated fatty acids due to their higher values as 

dietary components (Sargent et al., 1995). In conjunction with fatty acids, I also 

examined 813C and 815N stable isotopes to help determine carbon sources and 

trophic positions. Other studies investigating the influence of environmental factors 

on fatty acid composition and stable isotope profiles have been undertaken, but few 

have examined sea-ice communities, and none have encompassed a large spatial 

area during the spring bloom. Record lows in ice cover and earlier break up of the 

sea ice highlights the need for increased understanding of the early spring lipid 

dynamics of Arctic food webs. 

Fieldwork for this study was carried out in May of 2011 and 2012 near 

Cornwallis Island, Nunavut in the Canadian Arctic Archipelago. The specific 

objectives of this thesis were to: 1) characterize fatty acid patterns of ice algae over 

a large area, 2) determine what variance in primary producer fatty acid profiles 

could be attributed to environmental drivers, 3) examine how primary producer 

fatty acid compositions and environmental variables influence zooplankton fatty 

acid dynamics, and 4) characterize the fatty acids of a phytoplankton bloom I found 

occurring under the sea-ice. 
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1.1 Fatty acids 

Fatty acid molecules are usually straight, even numbered chains of carbon 

between 14-24 atoms long with 0-6 double bonds. One end is a methyl terminus 

while the other is a carboxyl, making it an acid. Although fatty acids shorter than 12 

or longer than 24 carbons are present in marine food webs, they usually comprise 

less than 0.1 % of the total of all fatty acids (Budge et al., 2006). Fatty acids can be 

separated into three categories based on the presence and number of double bonds: 

saturated (SAFA), monounsaturated (MUFA) or polyunsaturated (PUFA). The 

nomenclature used for describing fatty acids is A:Bn-X where A is the number of 

carbon atoms, Bis the number of double bonds, and Xis the position of the first 

double bond relative to the methyl terminus. Biosynthesis of fatty acids begins with 

the addition of carbon chains to acetyl-CoA to produce a saturated fatty acid, often 

16:0. Other fatty acids are then synthesized from elongation and desaturation of 

16:0. Although most fatty acids exist as straight chains, some are branched. These 

are indicated in relation to the methyl end by prefacing the name with an i, for a 

branch at the second carbon or ai for a branch occurring at the third carbon. 

Cellular lipids are constructed from specific combinations of fatty acids. 

Phosholipids (PL) are the structural components of cell membranes and are made 

from two fatty acids esterified to a glycerol molecule that also contains a polar 

derivative of phosphatidic acid. However, because of their functional nature, fatty 

acids in cell membranes are relatively insensitive to dietary changes, unlike storage 

lipids, which are energy reserves (Sargent et al., 1995). The most common storage 

molecule is a triacylglycerol (TAG), which is three fatty acids esterified to a glycerol 



backbone. Wax esters are another common form of storage lipid, particularily in 

Arctic zooplankton (Lee et al., 2006). These consist of one fatty acid esterified to a 

fatty alcohol. These fatty alcohols are generally saturated or monounsaturated but 

the fatty acid portion can be from any of the fatty acid categories. 

4 

When ingested, the ester bonds of TAG and PL are hydrolyzed, releasing free 

fatty acids, which are then absorbed by the body (Budge et al., 2006). Short chain 

fatty acids are completely broken down while fatty acids longer than 13 carbons are 

utilized in several different ways (Budge et al., 2006). They can be metabolized if 

energy is required immediately or they may be re-esterified into TAG for storage. In 

copepods, fatty acids may be incorporated into a secondary type of storage in the 

form of wax esters, where a MUFA may be reduced to form the fatty alcohol 

component (Dalsgaard, et al., 2003). PUFAs in particular may be incorporated into 

structural tissues or used as precursors for hormone production. 

Minimal, or at least predictable, modifications are made to fatty acids 

ingested by consumers (Budge et al., 2006). While no fatty acid is unique to any one 

species, it is possible to use similarities in fatty acid compositions to trace energy 

flow through the food web (Iverson et al., 1997). Quantitative methods for 

estimation of dietary composition also exist, however they require complete 

knowledge of all prey fatty acid compositions (Iverson et al., 2004). Qualitative 

estimates can be made using specific combinations of fatty acids, such as 16:1n-

7 /16:0 for diatoms (Dalsgaard et al., 2003), to determine the source of the 

consumer's lipid intake. 
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PUFAs 20:5n-3 and 22:6n-3 are particularly useful, as they are only produced 

by algae, yet are necessary for homeostasis in animals. Termed essential fatty acids 

(EFA), these PUFAs maintain cell membrane fluidity and associated enzyme 

functions as well as act as precursors for certain hormones (Sargent et al., 1995). 

There is poor genetic control of PUFA levels in cell membrane synthesis and 

therefore dietary deficiencies of EFAs will quickly lead to general health problems in 

animals (Sargent et al., 1995). Despite all PUFAs having lower energy per unit than 

saturated fatty acids of the same length, EFAs are exceptionally nutritious: higher 

levels increase zooplankton egg production, and the subsequent viability of their 

eggs (Arendt et al. 2005, S0reide et al., 2010). The success of copepods in Arctic 

ecosystems has hinged adapting their life cycles to take advantage of available EFAs 

(S0reide et al., 2010). 

1.2 Stable isotopes 

The ratios of 813( and 81SN stable isotopes provide measures of trophic 

positions and carbon sources in a food web (Post 2002). During energy transfer 

between trophic levels, heavier isotopes are enriched in a predictable manner 

(Hobson et al., 1995). For 815N, this fractionation is about 3-4%0 greater in the 

consumer relative to its diet (Hobson and Welch, 1992). The enrichment of 813( 

between trophic levels is very low, less than 1 %0 (Post 2002). Therefore, if primary 

producers are isotopically distinct, mixing models can be used to determine the 

relative contributions of each carbon source to consumers (Post 2002). 
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1.3 Ice algae 

Ice algae thrive under extremely low light conditions, can grow at 

temperatures as low as -5.5°C and salinities as high as 95 psu (Spindler 1994). 

These adaptations allow ice algae to initiate growth extremely early in the year, at a 

time when pelagic primary growth is temporally and spatially limited (Gosselin et al. 

1997; Carmack and Wassmann 2006). Ice algae communities are an assemblage of 

species and can include dinoflagellates, prasinophytes, cryptophytes, chlorophytes, 

and euglenophytes, however pennate diatoms are usually dominant (Cota et al., 

1991; Niemi et al., 2011). Ice algae can form thick mats on the lower surface of sea 

ice and even grow in the interstitial spaces in the sea ice that are the result of brine 

formation (Cota et al. 1991). Blooms can occur with almost any type of ice and have 

been found in multi-year as well as frazil ice (Cota et al. 1991). The spring bloom of 

ice algae is the first source of food for herbivorous cope pods in the season, and has 

the added benefit of being rich in the EFA 20:5n-3 (S0reide et al., 2010). 

1.4 Copepods 

Calanoid copepods make up a large proportion of the total zooplankton 

biomass in Arctic seas (Tremblay et al., 2006). They act as the energetic bridge 

between primary production and higher consumers and are regarded as a keystone 

for Arctic marine food webs (Tremblay et al., 2006; S0reide et al., 2010). During the 

summer, calanoids take advantage of algal blooms to develop large amounts of 

lipids, which can be up to 70% of their dry mass (Falk-Petersen et al., 2009). Then 

during autumn, they descend to great depths and significantly decrease their 
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metabolic rate, entering a state called diapause until the spring (Auel et al., 2003). 

Female copepods spawn just prior to or during the ice algal bloom, allowing 

utilization of these nutrients for the reproductive effort (S0reide et al., 2010). Once 

eggs hatch, juveniles feed on the summer phytoplankton and grow through 6 nauplii, 

and 4 or 5 copepodite stages before overwintering at depth (Falk-Petersen et al., 

2009). 

1.5 Thesis organization 

This thesis is organized as two, stand-alone manuscripts and an overall 

introduction and conclusion. Chapter 1 is an introduction to fatty acids, their role in 

Arctic marine ecosystems, and their utility as trophic biomarkers. 

Chapter 2 investigates environmental drivers of spatial variation in low 

trophic level fatty acid compositions and the influence of this variation on food web 

dynamics. I utilized a combination of fatty acid analysis and stable isotopes to 

determine energy flow. 

In Chapter 3, I focused on a pelagic diatom, Coscinodiscus centralis, which was 

found under the sea ice in the both years of sampling. The fatty acid and stable 

isotope composition of C. centralis is described and compared to ice algae. I used the 

clustering of lipid compositions and isotopic values to determine the origins of C. 

centralis. 

In Chapter 4, I provide an overview of my main findings and conclusions, and 

suggest some directions for future research. 
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Living off the fat of the sea: environmental drivers 
and spatial patterns of fatty acids at the base of an 
Arctic marine food web 
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Abstract 

Arctic marine food webs are highly dependent on the production and 

transfer of lipids to maintain their structure and biodiversity. Ice algae provide a 

pulse of nutritious polyunsaturated fatty acids (PUFAs) early in the spring before 

open water production is prevalent. Little is known about what drives the spatial 

distribution of ice-associated PUFAs and what impact this has on lipid flux to higher 

trophic levels. This study investigated the variation in fatty acid composition and 

bulk carbon and nitrogen stable isotope ratios of ice-based primary producers and 

zooplankton over multiple spatial scales in the Canadian Arctic Archipelago during 

the spring of 2011 and 2012. No spatial patterns were evident in ice algae fatty acid 

compositions, but they were significantly affected by snow and ice cover. Snow 

depth was also linked to annual PUFA levels in Ca/anus spp. Pelagic phytoplankton 

and zooplankton fatty acids were primarily dictated by current, although the 

strength of that influence decreased with increasing trophic level. Some 

zooplankton fatty acid profiles were also significantly affected by daily light levels; 

increased levels of 22:6n-3 on brighter days were likely caused by dinoflagellates 

released from shade inhibition. Based on these findings, global warming-associated 

changes in sea-ice and snowfall will not only directly affect habitat, but will 

indirectly alter the nutritional dynamics of Arctic marine ecosystems. 
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2.1 Introduction 

Each winter, Arctic ecosystems undergo a period of several months where the water 

column is too dark to sustain photosynthesis. When light levels increase in the 

spring, communities of microorganisms begin to grow on the underside of the sea 

ice and are the first available source of primary production (Welch and Bergmann, 

1989). These communities are generally dominated by diatoms and are adapted for 

growth under very low light levels (Cota 1985). As photosynthetically active 

radiation (PAR; 400-700 nm) levels increase, polyunsaturated fatty acid (PUFA) 

proportions in algae drop, which decreases food quality for herbivores (Leu et al., 

2010). Conversely, excess UV radiation (280-400 nm) has no significant affect on 

PUF A levels, but causes significant decreases in biomass due to physiological 

damage (Leu et al., 2006). The total contribution of ice algae to yearly production 

varies widely across the Arctic, and accounts for about 10% in the .Canadian Arctic 

Archipelago (Michel et al., 1996). However, the importance of ice algae to local food 

webs comes not from its biomass, but from the production of high quality PUFAs so 

early in the spring, which is a biologically important time for calanoid copepods 

(Michel et al., 1996; Leu et al., 2010). 

The nutritional benefits of foods high in PUFA, especially long chain essential 

fatty acids (EFAs) 20:Sn-3 and 22:6n-3, are evident at every stage of copepod life 

cycles. At all stages, Arctic copepods require high levels of algal PUFAs in 

phospholipids to maintain cell membrane fluidity (Lee et al., 2006). The early pulse 

of PUFAs from ice algae is used by female Ca/anus to finish their development and 

reproduce (Wold et al., 2011 ). Higher amounts of PUFAs, particularly the EFA 20:5n-
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3, increase egg production and hatching survival rates (Arendt et al., 2005). Nauplii 

that feed on higher quality food have lower mortality rates compared to individuals 

that consume diets poor in PUFAs (Daase et al., 2011). Adult copepods use excess 

fatty acids to accumulate large amounts of wax esters, a fatty alcohol esterified to a 

fatty acid, which are used as slow release energy reserves during diapause (Lee et al., 

2006). Additionally, by reproducing early in the season, offspring have time for 

maturation and are then able to take advantage of the pelagic bloom that occurs 

after the sea ice breaks up (Sfztreide et al., 2010). Therefore, because copepod 

population dynamics control the transfer of energy from primary producers to 

higher trophic levels (Welch et al., 1992), the nature of this initial pulse of high 

quality food has implications for the entire food web. 

The Arctic is currently experiencing unprecedented losses in total sea ice 

cover and with this, progressively earlier dates of sea ice break up (Comiso et al., 

2008). Additionally, Arctic marine systems can vary significantly from year-to-year 

(Michel et al., 2006). Environmental conditions such as nutrient availability, 

temperature, and light significantly influence fatty acid composition in plants and 

animals (Dalsgaard et al., 2003, Leu et al., 2006). However, broad-scale drivers of 

Arctic fatty acid compositions and subsequent food web dynamics are poorly 

understood (S0reide et al., 2010). Most studies that have investigated 

environmental influences on fatty acid composition have done so on small spatial 

scales, or during cruises that occur after the initial ice algae bloom (Leu et al., 2010; 

Scott et al., 2002). An understanding of the trophic dynamics of primary producers 



and consumers is necessary for predicting the effects of further ice loss on food 

webs, and for sustainable management of changing Arctic ecosystems. 
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In this study I tested the hypothesis that environmental conditions drive 

large-scale variability in ice algae fatty acid profiles and that these patterns will be 

evident in their zooplankton grazers. I conducted a multi-year study on ice algae and 

zooplankton from a large area around Resolute Bay, Nunavut. Utilizing a 

combination of stable isotope and fatty acid analysis, my specific objectives were to: 

1) to characterize fatty acid patterns of ice algae over a large area, 2) determine 

what variance in primary producer fatty acid profiles could be attributed to 

environmental drivers, and 3) examine how primary productivity and 

environmental variables influence zooplankton fatty acid dynamics. In addition to 

these goals, I hoped to establish baseline fatty acid and stable isotope data for use in 

future food web studies in the Canadian Arctic Archipelago. 

2.2 Methods 

2.2.1 Study area 

In 2011 and 2012, I collected ice algae, phytoplankton and zooplankton 

samples from landfast sea ice near Cornwallis Island, Nunavut. Ice formation in this 

area begins mid to late September and lasts until breakup around the end of June, 

but ice can also last until the beginning of August (Brown and Cote, 1992). The 

majority of sea ice in the area is predominately first year, although some patches of 

multiyear ice are present (Welch and Bergmann, 1989). Average sea ice thickness 

reaches a maximum of 2 m in mid April (Brown and Cote, 1992). Snow depth can 
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reach a maximum average thickness of 22 cm although the patterns of accumulation 

are dictated by prevailing winds (Brown and Cote, 1992). 

The dominant ocean current around Cornwallis Island flows from west to 

east and averages 6.16 cm/sin the spring, with speeds increasing up to 60 cm/s 

during the tidal flux (Prinsenberg and Bennett, 1987; Cota et al., 1987). The three 

main inflows into Barrow Strait are from Viscount Melville Sound in the west, Penny 

Strait to the north, which flows around both sides of Cornwallis Island, and from 

Peel Sound in the south (Fig. 2.1; Prinsenberg and Bennett, 1987). With a sill of 

,...,125m depth, Barrow Strait is the narrowest and shallowest point of the Northwest 

Passage (Cota et al, 1990; Michel et al, 2006). 

2.2.2 Field observations 

Ice thickness and snow depth as well as meteorological observations such as 

air temperature and wind.direction were recorded at each station. Measurements of 

photosynthetically active radiation (PAR, 400 - 700 nm) were taken of down welling 

light, upwelling light (reflectance) and underwater light using a LICOR quantum 

sensor. Measurements under the sea ice were obtained by mounting the sensor on a 

hinged aluminum arm. All PAR readings were conducted under or over undisturbed 

snow cover. Water column salinity and temperature measurements were collected 

both years using a Sea-bird conductivity-temperature-depth (CTD) probe, however 

only CTD data from 2011 were available. The values for chlorophyll A (Chi A) and 

particulate organic carbon (POC) were collected by the Department of Fisheries and 

Oceans. 
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Figure 2.1. Stations sampled over 2011-2012 field seasons near Cornwallis Island, NU. Arrows indicate direction and relative 

strength of currents; solid circles are the locations of sampling stations. 
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2.2.3 Sample collection 

I sampled a total of 47 stations during the springs of 2011 and 2012 for 

zooplankton, phytoplankton and ice algae (Fig. 2.1). In 2011 sampling occurred May 

4-18 at a total of 23 locations. In 2012, samples were collected May 1-17 at 24 

separate stations. A manual ice corer (Mark II coring system, 9 cm internal diameter, 

Kovacs Enterprises) was used to collect the ice algae. The bottom 3 cm of each core 

was cut off and melted overnight in 500 ml of Millipore micropore (0.2 µm) filtered 

seawater (FSW) to avoid osmotic stress (Garrison and Buck, 1986). Samples were 

then measured for total volume, filtered onto pre-combusted (500°C for 4 hours) 

glass fiber filters (GF /F) and treated with 10 ml boiling FSW to deactivate lipolytic 

enzymes (Budge and Parrish 1999). In 2011 most filters were then placed into 

chloroform and stored at -20°C. Several duplicates were not placed in chloroform 

and were stored in cryovials at -80°C. Similar to Falk-Petersen et al. (1998), no 

differences were found in the fatty acids of ice algae stored in chloroform vs. those 

stored at -80°C (Two-sample Hotelling Test, p = 0.36). In 2012, all ice algae samples 

were stored in cryovials at -80°C until analysis. 

Zooplankton was collected using a 20 cm mouth diameter net 160 cm long, 

(mesh size 153 µm, Aquatic Sampling Company, Buffalo, New York) which was fitted 

with a flowmeter (General Oceanics model 2030RC, one way clutch) in 2012. Three 

vertical hauls were taken from each station from 5 m above bottom to a maximum 

of 150 m. Hauls were pooled and separated by size using 500 µm and 250 µm sieves. 

The remaining filtrate was collected using a 20 µm mesh sieve in 2011 and onto 

GF /F filters in 2012. Calanoid copepods and Gammarus setosus, ice associated 
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am phi pods, were collected by picking large individuals out of the 500 µm size 

fraction. In 2012, I used a dissecting microscope to separate the 500 µm size 

fraction into copepods larger than 500 µm (referred to as the 500 µm size category), 

gelatinous zooplankton, Themisto libullela (a pelagic amphipod), Clione limacina (a 

pelagic pteropod), and Sagitta elegans (a chaetognath). A larval fish, some mysids, 

the ctenophore Mertensia ovum, and another species of pteropod, Limacina helicina, 

were also isolated and included in investigations of differences between sample 

types, but because of insufficient sample sizes they were excluded from individual 

redundancy analysis of fatty acids. All zooplankton samples were immediately 

placed into chloroform (Omnisolv grade, VWR) and stored at -20°C until analysis. 

Additionally in 2012, the diatom Coscinodiscus centralis was isolated from the 

250 µm size fraction using 3 rounds of settlement and then by hand-picking any 

remaining zooplankton from the sample using a pasteur pipette and a dissecting 

microscope. The purified samples were then filtered onto pre-combusted GF /F 

filters and immediately placed into chloroform and stored at -20°C. 

2.2.4 Lipid extraction 

Lipids were extracted using 2 different methods. Zooplankton and C. centralis 

lipids were extracted using a modified Folch et al. (1957) procedure by sonicating 

the filters for 5 minutes in 10.5 ml of 2:1 chloroform and methanol solution; 2.6 ml 

of 0. 7% saltwater was then mixed in before centrifuging and extracting the bottom 

phase. The upper phase, filter, and all remaining tissues were kept for stable isotope 

analysis. Lipid extracts were dried over anhydrous sodium sulfate before being 



transesterified to produce fatty acid methyl esters (FAME) using sulfuric acid 

(Hilditch et al. 1964) as a catalyst. 
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Most lipids in Ca/anus copepods are stored as wax esters (Falk-Petersen et al., 

2009). Therefore, thin layer chromatography was used to separate FAME from fatty 

alcohols that were also generated during the transesterification process. Samples 

were streaked on to silica gel plates along with standards of fatty alcohols and 

triacylglycerols. Plates were placed in toluene (Omnisolv grade, VWR) until the 

solvent front reached 3 cm from the top and then dried in a fume hood before being 

sprayed with a 0.2% dichloroflourocine in ethanol mixture. FAME were identified 

under UV light, collected from the plates and re-extracted using a 1:1 chloroform 

and hexane mixture (Omnisolv grade, VWR). Alcohols were extracted using 

chloroform and archived at -20°C. 

To extract ice algae lipids, I used an in situ BCb catalyzed transesterification 

method similar to Park and Goins (1994). The in situ method yields equivalent 

results for algae when compared to the combination of Folch and Hilditch methods 

and is more efficient for very small samples (Hall MSc 2012). 

I identified 78 individual FAME using gas chromatography and quantified 

using 5-a cholestane as an internal standard. Every sample was analyzed using two 

injections, which were averaged to get the final values. A combination gas 

chromatograph/mass spectrometer was used to identify fatty acids. Fatty acid data 

are presented as mean% ± 1 SD of total mass of fatty acids. 
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2.2.5 Stable isotope analysis 

Zooplankton and C. centralis tissues were removed after lipid extraction in 

2:1 chloroform (S0reide et al., 2006) and methanol and freeze-dried at -40°C for 48 

hours before being sent to the Great Lakes Institute for Environmental Research 

(University of Windsor, Windsor Ontario) for 813C and 815N stable isotope 

quantification. Isotopic signatures are expressed as a deviation (SX = [(Rsampie 

/Rstandard) - 1] X 1,000) from international standards calibrated against Vienna

PeeDee Belemnite (VPDB), for carbon, and atmospheric N2 (AIR) for nitrogen. Ice 

algae stable isotopes were prepared and analyzed at the Freshwater Institute 

(Department of Fisheries and Oceans) in Winnipeg, Manitoba. 

Stable isotope fractionation values of 3.4%o for 815N and 0.6%0 for 813C were 

selected based on the trophic enrichment rates of similar ecosystems (S0reide et al., 

2006). Single source approximations of trophic levels were calculated using: 

Equation 1. 

TLconsumer = 1 + (815Nconsumer + 8 15Nprimaryproducer)/3.4 

Where 1 represents the trophic position of the primary producers and 3.4 is the 

amount ()lSN is enriched at each trophic transfer (Post 2002). To estimate trophic 

levels while accounting for multiple nitrogen sources a two-source model was 

calculated from Post (2002): 

Equation 2. 

TLconsumer= 1 + (815Nconsumer-[815Nprimaryproducer1 x a + 8 15Nprimaryproducer2 x (1-a )])/3.4 



Where a represents the proportion of nitrogen in the consumer derived from 

primary producer 1. 

Equation 3. 

a= (813Cconsumer - 813Cprimaryproducer2)/ (813Cprimaryproducer1 - 813Cprimaryproducer2) 

2.2.6 Statistical analysis 
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Statistical analyses were done using R statistical software (R Core Team, 

2012). Differences between sample categories were tested using a permutational 

MAN OVA so further analysis to test the effects of environmental variables could be 

conducted separately for each group. Any fatty acid that accounted for less than 1 % 

of the total mass of fatty acids in every sample was not included in analysis. Selected 

fatty acids were calculated separately for samples that were isolated in 2012. Where 

possible, permutation tests were used to avoid transforming data, however fatty 

acid proportional data were arcsin square-root transformed before using 

parametric multivariate analyses such as principal component analysis (PCA) or 

hierarchical clustering on the principal component axes (HCPC) (Sokal and Rohlf, 

1995). Redundancy analysis (RDA) using R package vegan was used to calculate the 

influence of environmental variables on fatty acid signatures (Oksanen et al., 2013). 

RDA analysis tests the significance and explanatory power of environmental 

variables using Monte Carlo permutations, selecting the best model using the Akaike 

Information Criterion. Lastly, the response variables (fatty acids) were constrained 

linearly to the predictive environmental variables and the model was tested again 

using Monte Carlo permutations. Only fatty acid profiles that had complete sets of 
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environmental variables were used in redundancy analysis. Hierarchical clustering 

analysis and HCPC were used to find any internal groupings within sample 

categories (R package FactoMineR (Husson et al., 2013)). Principal component 

analysis was calculated to determine the importance of individual fatty acids for any 

internal clusters found (R package vegan). 

2.3 Results 

2.3.1 Field observations: 

Average snow depth was higher in 2011(mean=8.3 cm, range= 1.1 to 20.6 

cm) compared to 2012 (mean= 5.9 cm, range= 1.7 to 13.9 cm). Ice thickness 

showed the reverse trend and was thicker in 2012 (mean= 162.7 cm, range= 121.4 

to 235.0 cm) than in 2011(mean=133.0 cm, range= 96.2 to 167.6 cm). Areas of 

open water were visible at the end of the sampling period in 2011 but in 2012, 

100% ice cover remained throughout field sampling. Light levels in both years were 

above the minimum value required for photosynthesis (2-9 µE m-2 s-1; Horner and 

Schrader, 1982), but were lower and less variable in 2011 (mean = 4. 90 ± 3.03 µE m-

2s-1) than 2012 (mean= 9.36 ± 8.76 µE m-2s-1). CTD data were only available for 

2011. Casts showed water column temperature and salinity were effectively 

homogenous throughout most of the study area. 

2.3.2 Trophic interactions 

Fatty acid profiles were significantly different between sample types (one

way PerMANOVA, p < 0.001). RDA was applied to investigate similarities between 
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sample types and explained 66.3% of the total variability (Fig. 2.2). The first two 

axes explained 46.4% of the total unconstrained variance in fatty acid compositions. 
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Figure 2.2. Redundancy analysis plot based on fatty acid composition of all 

individual samples. Blue circles indicate mean values of each sample type. Sample 

types were assigned roles as dummy variables with fatty acids that were present 

> 1 % as the response matrix. The variance in fatty acid compositions explained is 

26.2% and 20.2% for axes 1 and 2 respectively. 

Ice algae had the highest and most variable values of 813C of all sample types 

(Fig. 2.3). While having similar 813C values to other sample types (Fig. 2.3), C. 
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centralis fatty acid profiles were isolated during clustering, and it is therefore 

unclear if they are a viable food source for local zooplankton (Fig. 2.4). When C. 

centralis and ice algae <5 13C values were input into the 2 source mixing model, only 

chaetognaths had a trophic level higher than 1. Ice algae fatty acids were more 

similar to herbivores than C. centralis (Fig. 2.4 ), therefore trophic positions were 

recalculated using ice algae as the base of a single source model (Table 2.1 ). 

Table 2.1. Stable carbon (<513C) and nitrogen (<515N) isotope values and trophic 

levels of primary producers and zoo plankton. Trophic levels were calculated from a 

single source food web model using ice algae as the base. 

Trophic 
Sample type n l)13C l)lSN level 
153 µm 25 -18.2 ± 1.9 8.4 ± 1.8 1.6 
250 µm 20 -19.6 ± 1.3 10.8 ± 1.0 2.3 
500 µm 19 -19.8 ± 1.3 11.1 ± 0.7 2.4 
G. setosus 1 -16.0 8.3 1.6 
Ca/anus 9 -20.1 ± 0.8 10.4 ± 0.5 2.2 
C. centralis 24 -19.0 ± 0.7 4.8 ± 1.4 0.6 
S. elegans 2 -20.5 ± 1.1 13.1 ± 0.9 3.0 
T. libellula 1 -19.5 10.9 2.3 
Gelatinous zooplankton 16 -20.7 ± 0.9 11.8 ± 0.4 2.6 
Ice algae 21 -12.8 ± 2.6 6.3 ± 0.6 1.0 

When calculated using only ice algae as a carbon source, S. elegans had the 

highest trophic level, followed by gelatinous zooplankton (Table 2.1). These two 

groups were also the most depleted out of all sample types for l)13C (Fig. 2.3). The 

fatty acid profiles·of known predators grouped together, although Clione limacina 

had slightly more distinctive fatty acid compositions than Sagitta elegans, gelatinous 

zooplankton and Themisto libellula (Fig. 2.2, Fig. 2.4 ). Consisting mainly of copepods, 



500 µm and 250 µm had similar trophic levels to the amphipod T. libellula (Table 

2.1). A fatty acid indicator of carnivory, 18:1n-9, increased with sample body size 

(Fig. 2.2). 
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Ca/anus fatty acid profiles were more similar to ice algae than were 250 µm 

or 500 µm categories (Fig. 2.2). Size categories 250 µm and 500 µm were similar 

and closely related to the cluster including ice amphipods and 153 µm size category 

(Fig. 2.4). Fatty acids of samples with only a single copepod species were all more 

similar to one another than the cluster of mixed species samples (Fig. 2.4). The 153 

µm size category was well separated from other groups isotopically (Fig. 2.3) but 

had a similar trophic level to that of ice amphipods (Table 2.1). Mysids, fish and 

Helicina limacina fatty acid profiles were distinct compared to the rest of the sample 

categories (Fig. 2.2, 2.4). 
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Figure 2.3. Stable isotope values (mean ± SD) of carbon and nitrogen for all sample 

types collected in 2012. Trophic levels calculated from the single source model are 

on the right side. 
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1ralb1Ile 2.2 Fatty acid composition (mass% of total FA ±SD) of sample types that were collected in both years. PUFA 
polyunsaturated fatty acids, MUFA monounsaturated fatty acids, SAFA saturated fatty acids. 
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0.3 ± 0.6 0.1 ± 0.1 2.5 ± 1.6 1.5 ± 1.2 

0.1±0.1 0±0 1.4±0.5 2.1±1.7 

1.3 ± 0.7 1.7 ± 0.6 5.1±1.4 3.9 ± 1.8 

34.3 ± 12.1 30.6 ± 10.1 26 ± 6.3 27.6 ± 4.9 

38.3 ± 8.2 41.4 ± 6.5 49.8 ± 5.5 44.8 ± 5.6 

27.2 ± 4.6 27.9 ± 4.3 24 ± 5.3 27.4 ± 2.4 

250 um 

2011 

n = 18 

2.9 ± 1.6 

1.6±0.7 

8.4 ± 1.8 

0.2 ± 0.2 

0.2 ± 0.3 

23.1 ± 2.8 

1.3 ± 0.5 

0.7 ± 0.4 

0.7 ± 0.8 

1.4 ± 1.6 

0 ± 0 

14.2 ± 3.3 

2.9 ± 0.8 

1.3 ± 0.5 

1.4 ± 0.6 

0.3±0.1 

0.3 ± 0 

1 ± 0.4 

0.4 ± 0.1 

2 ± 1.3 

0.8 ± 0.3 

16.2 ± 2.9 

1.5 ± 1.3 

0.5 ± 0.3 

6.9 ± 1.2 

32.9 ± 4.4 

52.2 ± 5.8 

14.7±4.2 

2012 

n = 24 

2.7 ± 1.7 

1.9 ± 0.4 

9 ± 2.7 

0.2±0.1 

0.1 ± 0 

26.1 ± 2.9 

1.1 ± 0.2 

0.6 ± 0.2 

0.5 ± 0.3 

1 ± 0.5 

0 ± 0 

16.6 ± 3.8 

2.6 ± 0.7 

1.1 ± 0.3 

1.4 ± 0.6 

0.3 ± 0.1 

0.3 ± 0 

1 ± 0.2 

0.3 ± 0.1 

1.3 ± 0.5 

0.5±0.1 

15.8±2.7 

0.7 ± 0.5 

0.2 ± 0.1 

6.7 ± 2.1 

31 ± 4.2 

53.9 ± 4.3 

14.9 ± 4.6 

son um 

2011 

n = 17 

2.5 ± 1.1 

1.6 ± 0.7 

6.3 ± 0.8 

0.2 ± 0 

0.1 ± 0 

25 ± 1.9 

0.9 ± 0.2 

0.3 ± 0.1 

0.2 ± 0.1 

0.7 ± 0.2 

0±0 

15.9 ± 3.7 

2.4 ± 0.3 

1 ± 0.1 

0.7 ± 0.1 

0.2 ± 0 

0.2 ± 0 

0.5 ± 0.1 

0.4 ± 0.1 

5.2 ± 2.2 

0.9 ± 0.2 

14.6 ± 2 

3.7±1.7 

0.8 ± 0.3 

7.7 ± 1.3 

28.9 ± 2.9 

60 ± 3.2 

10.9 ± 1.5 

Ca/anus 

2012 2011 

n = 25 n = 18 

2.2±1.1 6.6±2.1 

2 ± 0.8 0.5 ± 0.2 

6.6 ± 1.5 7.5 ± 4.2 

0.1 ± 0 0.3 ± 0.1 

0 ± 0 0.1 ± 0 

27.6 ± 2.4 26.5 ± 2.3 

1.1 ± 0.1 1.5 ± 0.2 

0.5 ± 0.1 0.5 ± 0.2 

0.3 ± 0.2 0.1 ± 0.1 

0.6 ± 0.6 1.2 ± 1.3 

0±0 0±0 

18.1 ± 3.7 3.1 ± 0.6 

2.3 ± 0.4 1.7 ± 0.2 

0.9 ± 0.2 1 ± 0.1 

1±0.2 0.7±0.2 

0.2 ± 0.1 0.2 ± 0.1 

0.2 ± 0 0.2 ± 0 

0.5±0.1 0.3±0.1 

0.6 ± 1.5 0.6 ± 0.2 

4.9 ± 3.8 9.8 ± 2.7 

0.5 ± 0.3 1.3 ± 0.4 

13.7 ± 2.5 11.4 ± 2.7 

3 ± 2.7 8 ± 2.4 

0.6 ± 0.8 2.2 ± 0.8 

6.2 ± 1.3 5.2 ± 1.2 

26.4 ± 3.5 24.2 ± 3. 7 

62.6 ± 4.5 58.5 ± 5.1 

10.8 ± 2.9 17.2 ± 6.6 

2012 

n = 16 

8.4 ± 2.2 

0.6 ± 0.2 

8.1 ± 2.1 

0.2 ± 0 

0±0 

30.2 ± 4.7 

1.8 ± 0.3 

0.5 ± 0.2 

0.2 ± 0.1 

0.9 ± 0.5 

0±0 

3.2 ± 0.4 

1.7 ± 0.3 

1 ± 0.1 

0.8 ± 0.1 

0.1 ± 0 

0.1 ± 0 

0.3 ± 0.1 

0.3 ± 0.1 

11.1 ± 1.6 

0.9 ± 0.6 

7.8 ± 1.6 

6.9 ± 1.6 

1.7 ± 0.6 

5 ± 1.4 

19.3 ± 2.5 

60.6 ± 4.5 

20 ± 4.6 

G.setosus 

2011 

n = 3 

3.5 ± 0.6 

0.1 ± 0 

14.7 ± 0.7 

0.4 ± 0.1 

0.1 ± 0 

20.6 ± 0.9 

1.2±0.1 

0.7 ± 0.2 

0.9 ± 0.2 

0.9 ± 0.2 

1 ± 0.8 

11.3 ± 3.4 

3.5 ± 1.3 

0.6 ± 0.2 

0.8 ± 0.2 

0.5 ± 0.1 

0.2 ± 0 

1.4 ± 0.3 

0.9±0.7 

4.6 ± 3.2 

1.4 ± 0.1 

17.2 ± 5.1 

1.6 ± 1.1 

0.7±0.3 

4.2 ± 1.6 

30.6 ± 8.6 

48.7 ± 7.8 

20.5 ± 0.8 

28 

2012 

n=4 

3.6 ± 0.5 

0.1 ± 0 

16.2 ± 0.4 

0.3 ± 0 

0±0 

22.2 ± 5.5 

1.2 ± 0.3 

0.5 ± 0.2 

1 ± 0.8 

1.2 ± 0.4 

1.3 ± 0.4 

14.5 ± 3.3 

2.6 ± 0.4 

0.5 ± 0.2 

1 ± 0.1 

0.6 ± 0.2 

0.1 ± 0 

1.3 ± 0.6 

2.7 ± 3.5 

4.7 ± 2.7 

0.6 ± 0.4 

13.8 ± 2.3 

1.2 ± 0.9 

0.9 ± 0.8 

2.4 ± 0.5 

24 ± 4.2 

54 ± 4.2 

21.8 ± 0.9 
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2.3.3 Ice algae 

Monounsaturated fatty acids (MUFAs) were the dominant class of fatty acid 

of ice algae in both years, and PUFAs were the second.most abundant. The 

individual fatty acid present in the highest amount was 16:1n7, followed by 16:0. 

Two common diatom fatty acid biomarkers, 16:4nl and 20:5n3, were also present 

in high amounts both years (Table 2.2) .. 0nce the effect of snow cover was taken into 

account, there were no significant differences in fatty acid profiles between years 

(Fig. 2.5). Ice and snow thickness explained 28.27% of total variance in fatty acid 

profiles (R2=0.28, AIC = 167, step= 999, p=0.001). Snow depth had the strongest 

influence on fatty acids, responsible for 17% of the total variance. Ice algae fatty acid 

profiles separate into three distinct clusters (Fig. 2.6), however no environmental or 

spatial explanations could be found for their cause. These clusters were separated 

by inverse relationships of 20:5n3 and 16:4nl with 16:0 and 16:1n7 fatty acids (Fig. 

2.7). 
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Figure 2.5. Redundancy plot of the fatty acid composition of ice algae. The first and 

second axes explained 31.61 % and 0.75%, respectively, of the variability in ice algae 

fatty acids. 
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lFftgunire 2.6. Hierarchical cluster analysis of arcsin square-root transformed ice algae 

fatty acids sorted according to the first principal component. Clusters were selected 

at the point of maximum between-group variances. 
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Figure 2.7. Cluster map of principal component analysis using arcsin square-root transformed ice algae fatty acids. Boxes 

indicate cluster means. 
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2.3.4 Coscinodiscus centralis 

C. centralis samples had high proportions of PUFAs, which were present in 

higher amounts than in any other sample type (Table 2.2, 2.3). MUFAs and saturated 

fatty acids (SAFAs) accounted for 26.4% and 23.3% of total fatty acids, respectively. 

Coscinodiscus fatty acids were comprised mainly of 14:0, 16:0, 16:1n-7, and 20:Sn-3; 

although 16:4n-1 was also present in high amounts (Table 2.3). Environmental 

variables had no significant explanatory effects on C. centralis fatty acid profiles, 

however cluster analysis indicated two distinct groups existed that were related to 

known inflows. C. centralis samples collected in Barrow Strait had higher levels of 

20:5n-3 and 16:4n-1 while sites downstream of Penny Strait had greater amounts of 

16:1n-7, 18:2n-6 and 18:1n-9. 
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Figure 2.8. Hierarchical cluster analysis of arcsin square-root transformed C. 

centralis fatty acids. McD =McDougall Sound; B=Barrow Strait; W=Wellington 

Channel. 
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2.3.5 153 µm size category 

In both years, the most abundant fatty acid class was MUFA while PUFAs and 

SAFAs were present in similar amounts year-to-year (Table 2.2). The fatty acid 

present in the highest proportions in both years was 16:1n-7, with 20:5n-3 being 

the second most common. Compared to ice algae and C. centra/is, 153 µm samples 

had greater amounts of fatty acids that are not associated with diatoms: 18-carbon 

MUFAs, 20:1n-9, and 22:6n-3. Snow thickness, latitude and year sampled all had 

significant effects on 153 µm fatty acid signatures (R2 = 0.21, AIC = 136.9, step= 999, 

p = 0.004) (Fig. 2.9). Clustering analysis of 153 µm fatty acid profiles showed 3 

groups (Fig. 2.10). Cluster 1 was characterized by diatom fatty acid trophic markers 

16:1n-7, 16:2n-4 and 16:4n-1. Cluster 2 was differentiated by 18-carbon MUFAs and 

dinoflagellate biomarker 22:6n-3, and cluster 3 had higher levels of copepod fatty 

acid biomarkers 20:1n-7, 20:1n-9 and 22:1n-11. Diatom fatty acids were more 

prevalent in 2012 compared to more dinoflagellate and copepod signatures in 2011. 

Non-diatom fatty acid trophic markers were also linked to the northern inflow (Fig. 

2.9). 
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Figure 2.9. Redundancy analysis of 153 µm size category fatty acid profiles. The 

variance in 153 µm fatty acids explained is 18.22% and 8.36% by the first and 

second axes, respectively. 



-~ 
(0 

""'" m 
T'""" -
N 

E 
i:S 

6 

0 
0 

0 
I 

N 
0 

I 

(Y) 

0 
I 

cluster 1 
cluster 2 
cluster 3 

• 

I 

20.:n.3: 
16.4n.1 • • 

• • • 
o. • : 

14.o... ~EJ .. 
- -- - - - ...... ..,,,, .,... - - - - - - - - - - - - -- - - - - - - - - - ..cl- - - - - """' - - - - ~ i :;;;; - - ... 

• • • o • • 
• • 

• 
16.ln.7 

• 

-0 .4 -0.2 0.0 

Dim 1 (41 .46%} 

18.ln.9 

• 

• 

0.2 0.4 
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2.3.6 250 µm size category 

Fatty acid profiles for 250 µm differed significantly between years (p > 

0.001). Because of the removal of C. centralis from the 250 µm size category in the 

second season, 2011and2012 were analyzed separately. 

2011 

38 

The most dominant fatty acid class was MUFA followed in decreasing order 

by PUFA and SAFA (Table 2.2). An indicator fatty acid of diatoms, 16:1n-7, was 

present in high amounts, as was 20:5n-3, although 16:4n-1 was present in only trace 

amounts. Dinoflagellate biomarker 22:6n-3 and 18:1n-9 accounted for significant 

proportions of 250 µm fatty acid signatures in 2011 (Table 2.2). Fatty acid 

compositions were primarily affected by inflow and then by chlorophyll A 

concentrations in the sea ice (R2 = 0.29, AIC = 46.4, step= 999, p =0 .031) (Fig. 2.11). 

2012 

MUFAs made up the bulk of 250 µm fatty acids in 2012, followed by PUFAs 

and then by SAFAs. The major fatty acids were the same as those in 2011 and were 

present in similar amounts (Table 2.2). Fatty acids were most significantly affected 

by inflow, although in 2012 this was determined by their proximity to the west 

inflow of Barrow Strait. Downwelling light also had a significant effect (RZ=0.25, AIC 

= 71.0, step= 999, p = 0.007) (Fig. 2.12). 
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Figure 2.11. Redundancy analysis plot of 250 µm size category samples from 2011. 

The first axis accounts for 23.01 % of the variance in 250 µm fatty acids, while the 

second explains 17.97%. 
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Figure 2.12. Redundancy analysis plot of 250 µm size category samples from 2012 

under the reduced model. The variance in 250 µm fatty acids explained by the axes 

is 31.87% and 1.43%, respectively. 

2.3. 7 500 µm size category 

Fatty acids of zooplankton in the 500 µm size category were mostly MUFAs 

followed by PUFAs. SAFAs were present in the least abundance in both years (Table 

2.2). The most abundant individual fatty acid was 16: ln-7 in both 2011 and in 2012. 

The second most prevalent was 18:1n-9, followed closely by 20:5n-3. A calanoid 

copepod trophic marker, 20:1n-9, was present in nearly the same amounts as 16:0 

(Table 2.2). Fatty acids were not significantly affected by any of the environmental 
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variables, had no spatial patterns or differed between years. Clustering resulted in 3 

groups, the main differences being driven by Ca/anus biomarkers 20:1n-9 and 

22:1n-11(Fig.2.13). 
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Figure 2.13. Hierarchical clusters of 500 µm size category fatty acids overlaid on the first two principal component axes. 

Boxes indicate cluster centroids. Fatty acids were arcsin square-root transformed. 
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2.3.8 Ca/anus spp. 

Calanoid fatty acids were dominated by MUFAs in both years (Table 2.2). In 

2011 PUFAs were more abundant than SAFAs. In 2012 however, PUFAs and SAFAs 

were present in nearly equal amounts. PUFA levels were significantly higher in 2011 

compared to 2012 (p < 0.001) (Fig. 2.14). The most abundant individual fatty acids 

in 2011were16:1n-7 and 20:Sn-3 (Table 2.2). The relative proportions of 14:0, 

16:0, and 22:6n-3 were similar in 2011and2012 while 16:1n-7 and 20:1n-9 

increased in 2012. Not surprisingly, the Ca/anus biomarkers 20:1n-9 and 22:1n-11 

were present in higher amounts in Ca/anus samples than any other sample type 

(Table 2.2, 2.3). Ca/anus fatty acid profiles differed significantly between years and 

inflows (R2 = 0.29, AIC = 92.8, step= 999, p = 0.001). Samples from 2011 had higher 

amounts of 20:5n-3 and 16:1n-7 drives the separation of 2012 (Fig. 2.15). 
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Figure 2.14. Difference of mean PUFA levels in calanoid copepods between 2011 

and 2012. Lines indicate one standard deviation. 
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Figure 2.15. Redundancy analysis of Ca/anus copepods. The first and second axes 

account for 27.76% and 7.18% of the variance in Ca/anus fatty acids. 

2.3.9 Ice associated Amphipod (Gammarus setosus) 

Amphipod fatty acid profiles were dominated by MUFAs in both years. PUFA 

levels decreased in 2012 while SAFA levels were similar in both years (Table 2.2). 

Amphipod fatty acid profiles consisted of relatively few fatty acids, 16:0, 16:1n-7, 

18:1n-9, and 20:5n-3, that were present in high amounts (Table 2.2). No other fatty 

acid was present over 5%. Variation in fatty acids was significantly affected by ice 

thickness, although the inclusion of a non-significant variable, particulate organic 
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carbon (POC) in sea ice (p = 0.08), increased the fit of the model from R2 = 0.22 to R2 

= 0.40 (AIC = 27.8, step= 10000, p = 0.027) (Fig. 2.16) . 
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Figure 2.16. Redundancy analysis of ice amphipod fatty acids. The non-significant 

variable POC is included in the plot. The variance in ice amphipod fatty acids 

accounted by the axes is 35.4% and 24. 72% respectively. 
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1raifi]Ile 2.3 Fatty acid composition (mass % of total FA ±SD) of sample types collected 
only in 2012. PUFA polyunsaturated fatty acids, MUFA monounsaturated fatty acids, 
SAFA saturated fatty acids. 

Gelatinous 
C. centralis S. elegans zooplankton T. libellula C. limacina 
n = 24 n = 8 n = 20 n = 14 n = 6 

14:0 10.2 ±·2.2 2.1 ± 0.7 3 ± 0.9 1.9 ± 0.6 1.7 ± 0.4 
15:0 0.2 ± 0.3 0.2 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 2.6 ± 0.2 
15: ln-6 0.1 ± 0.1 0.2 ± 0.5 1.7 ± 7.4 0 ± 0.1 0 ± 0.1 
i-16:0 0.2 ± 0.4 2.5 ± 2.5 2.3 ± 3.1 3.1 ± 6.7 4.4±5.1 
16:0 8.9 ± 2.6 20 ± 5.4 14.4 ± 3.8 16.6 ± 5.7 16.6 ± 3.i 
16:1n-11 2.5 ± 0.7 0.1 ± 0.1 0.3 ± 0.2 0.1 ± 0.1 0.6 ± 0 
16:1n-7 17.4 ± 5.1 11.7 ± 4.1 11.8 ± 4.6 12.6 ± 3.3 10.6 ± 1.9 
16: ln-5 0.2 ± 0 1.7 ± 1 0.2 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 
17:1(a) 0±0 0±0 0 ± 0.1 0±0 0.4 ± 0.9 
ai-17:0 0±0 0 ± 0.1 0.1 ± 0 0±0 1.2 ± 0.2 
16:2n-4 4.7 ± 1.3 0.1 ± 0.1 0.4 ± 0.2 0.2 ± 0.1 0 ± 0.1 
17:0 0±0 0.3 ± 0.2 0.3 ± 0.1 0.2 ± 0.2 2.8 ± 0.4 
16:3n-4 2.7 ± 1 0±0 0.1 ± 0.1 0±0 0±0 
17:1 0±0 0.1 ± 0.1 0.1 ± 0 0±0 7.7 ± 1.6 
16:4n-3 0 ±.0.1 0.1 ± 0.2 0±0 0 ± 0.1 0.4 ± 0.9 
16:4n-1 7.1 ± 2.5 0±0 0 ± 0.2 0±0 0±0 
18:0 2 ± 1.2 8.8 ± 7.1 6.6 ± 2.8 6.5 ± 5.7 5.8 ± 3.5 
18: ln-9 2.3 ± 1.4 12.8 ± 4.8 11.9 ± 3.5 12.2 ± 2.8 4.7 ± 0.8 
18:1n-7 0.9 ± 1.1 3.2 ± 1 2.9 ± 0.8 4.7 ± 1.1 4 ± 0.3 
18: ln-5 0.1 ± 0.2 3.8 ± 1.2 0.7 ± 0.2 1.2 ± 0.4 0.4 ± 0.2 
18:2n-6 3.5 ± 1.1 1.6 ± 0.5 1.3 ± 0.4 2.1 ± 0.4 1.2 ± 0.5 
18:4n-3 2.6 ± 0.4 0.1 ± 0.1 0.4 ± 0.2 0.1 ± 0.1 0.4 ± 0.2 
20:0 0±0 0.4 ± 0.5 0.3 ± 0.4 0.4 ± 0.4 0.3 ± 0.2 
20:1n-11 0.1 ± 0.2 0.5 ± 0.7 0.1 ± 0.1 2.8 ± 1.8 0.8 ± 0.4 
20: ln-9 0.4 ± 0.4 1.2 ± 0.6 3.5 ± 1.6 7.9 ± 4.4 2.2 ± 0.6 
20:1n-7 0.4 ± 0.9 1 ± 0.9 1 ± 0.3 2.9 ± 1 3 ± 0.2 
20:5n-3 24.4 ± 5 10.1 ± 2.9 13.9 ± 4.8 8.8 ± 3.7 10.1 ± 1.4 
22:0 0±0 0.5 ± 0.5 0.3 ± 0.2 0.3 ± 0.3 0.2 ± 0.2 
22:1n-11 0.1 ± 0.4 1.1 ± 1.5 1.5 ± 0.9 2 ± 1.2 0.9 ± 1.4 
22:6n-3 2.6 ± 0.9 8.2 ± 2.5 9.8 ± 4.8 5.3 ± 2.6 7.7 ± 1.7 
L PUFA 50.3 ± 8.9 23.6 ± 6.7 30.2 ± 9.4 19.3 ± 6.6 24.4 ± 5.6 
L MUFA 26.3 ± 6.3 39.4 ± 11.2 39.3 ± 6.3 49.9 ± 13 37.7 ± 4.3 
L SAFA 23.3 ± 3.9 36.8 ± 13.7 30.4 ± 8.9 30.7 ± 16.5 37.7 ± 7.3 



2.3.10 Gelatinous zooplankton (Hydrozoa: Euphysa aura ta, Eumedusae birulai, 

Botrynema brucei, Aglantha digitale) 
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The most abundant fatty acid class in the gelatinous zooplankton samples 

was MUFAs, with PUFAs and SAFAs present in similar amounts (Table 2.3). 

Gelatinous zooplankton had higher amounts of fatty acids from dinoflagellate 

origins (16:1n-7 /16:0 <l) than from diatoms (Dalsgaard et al., 2003). Individually, 

16:0 and 18:1n-9 were the most abundant individual fatty acids after 20:5n-3. 

There were also small amounts of Ca/anus biomarker 20: ln-9 present. I found no 

observable spatial patterns, and environmental variables had no significant effect on 

gelatinous zooplankton fatty acid profiles. 

2.3.11 Themisto libellula 

Themisto libellula fatty acids consisted mainly of MUFAs and then, in 

decreasing amounts, SAFAs and PUFAs (Table 2.3). The most abundant fatty acid 

was 16:0. The ratio of 16:1n-7 /16:0 was less than one, indicating that 

dinoflagellates are an important dietary source for T. libellula; however the 20:Sn-

3/22:6n-3 ratio was 1.7, characteristic of a food web supported by ice algae (Auel et 

al., 2002). The third most abundant fatty acid in T. libellula was 18:1n-9. Ca/anus 

biomarkers 22:1n-11 and 20:1n-9 also made up a significant proportion of T. 

libellula fatty acids (Table 2.3). There was an indication that inflow source may have 

some impact on Themisto fatty acid profiles, but the effect was not significant (p = 

0.099). 
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2.3.12 Chaetognath (Sagitta elegans) 

MUFAs and SAFAs were present in similar amounts while PUFA levels were 

lower (Table 2.3). The most abundant individual fatty acid was 16:0, followed by 

16:1n-7 and 18:1n-9. Chaetognaths had the highest relative% of 18:0 among all 

samples (Table 2.2, 2.3). Diatom- and dinoflagellate-derived n-3 fatty acids were 

present in similar amounts in S. elegans samples (Table 2.3). Fatty acid profiles were 

significantly influenced by the reflectivity of the surface (upwelling PAR) (R2 = 0.56, 

AIC = 25.0, step = 9999, p = 0.036). Increasing reflectivity was positively linked with 

fatty acids 18:1n-9 and 16:1n-7 and negatively linked with 18:0 (Fig. 2.17) . 
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Figure 2.17. Redundancy analysis of chaetognath fatty acids sampled in 2012. The 

variance in chaetognath fatty acids accounted by the first RDA axis is 39.6%. 
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2.3.13 Clione limacina 

Similar to S. elegans, SAFA and MUFA levels in C. limacina were similar with 

PUFAs making up the remaining 24.5%. The most abundant individual fatty acid 

was 16:0, with diatom biomarkers 16:1n-7 and 20:5n-3 being second most. 

Dinflagellate markers were also present, although in lower amounts (Table 2.3). 

Lastly, C. limacina samples had significant amounts of i-16:0 and 17: 1, fatty acids 

that were rare in all of the other sample types. There was a significant influence on 

fatty acids by inflow, with i-16:0 being positively linked to sampling sites closer to 

Barrow Strait (R2 = 0.15, AIC = 21.0, step= 9999, p = 0.033) (Fig. 2.18). 
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Figure 2.18. Redundancy analysis of pteropod C. limacina fatty acids sampled in 

2012. The variance in fatty acids accounted by the first RDA axis is 37.8%. 



so 

2.4 Discussion 

Ice algae communities function as the initial nutritional basis of Arctic 

marine food webs, and thus influence the nature of energy transfer throughout the 

whole system (Michel et al., 1996; Leu et al., 2011). Contrary to my initial hypothesis, 

no spatial patterns were observable in ice algae fatty acids. However, I did find that 

zoo plankton rely heavily on ice algae (Fig. 2.4 ), and I identified broad scale spatial 

influences on zooplankton fatty acid levels (Fig. 2.9, 2.11, 2.12, 2.15). Therefore, it is 

possible that spatial patterns do exist in ice algae, but on a larger scale than my 

study examined. In addition to spatial patterns, my data indicate that some trophic 

levels exhibit day-to-day responses in their fatty acid profiles to environmental 

changes (Fig. 2.12). Furthermore, this study found that environmental effects 

predictably varied with plankton size and functional group. My results demonstrate 

how snow and sea ice conditions can affect the nutritional content of marine 

plankton and contribute to an improved understanding of the potential effects of 

climate change on Arctic food web dynamics. 

2.4.1 Trophic interactions 

My analysis indicated that, based on the similarity of their fatty acid 

compositions, ice algae is an important food source for 153 µm, 250 µm, and 500 µm 

size categories as well as for ice amphipods and Ca/anus (Fig. 2.2, 2.4). Carnivory 

increased with size in the mixed species sample types based on 18:1n-9, an 

indicator of carnivory in zooplankton (Fig. 2.2) (Falk-Petersen et al., 1990). This is 

most likely due to larger omnivorous copepods being more able to prey on smaller 

copepods. 
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Values for trophic levels calculated by the two-source food web model (Eq. 2) 

were unusable. While the fractionation of 613C is small (0-1 %0), higher trophic levels 

will still be enriched relative to the primary producers forming the base of the food 

web. The l)13C values I found were slightly higher than other studies in regards to 

zooplankton ( "'1 %0), however 613C values in primary producers were much higher 

(Forest et al., 2011; S0reide et al., 2013). Forest et al. (2011) reported ice algae from 

the southwestern part of the Canadian Arctic Archipelago had maximums of ca. -

19 %0 and pelagic particulate organic matter ca. -26 %0. In contrast, my values were 

-12.8 %0 for ice algae and -19.0 %0 for pelagic phytoplankton. Lighter isotopes are 

stoicheometrically preferred for use in metabolism, but during bloom ·conditions 

bulk carbon values for Arctic ecosystems are known to increase dramatically as 

carbon supply diminishes (Post 2002; Tamelander et al., 2009). My study took place 

in an area where ice cover lasts until July, and therefore high 613C values may be due 

to the system being carbon limited for a longer time. The 613C values of ice algae are 

also known to be dependent on the makeup of the protist community, and so 

differences in local species composition may also have an influence (Pineault et al., 

2012). 

Secondary calculations of trophic levels using a single source equation (Eq. 1) 

resulted in a trophic structure similar to what has been previously reported for 

under-ice systems (Falk-Petersen et al., 1987; S0reide et al., 2006). One exception 

however, was the low level of 615N found in T. libellula. The trophic level of 2.3 was 

inconsistent with its known position as a second order consumer, similar to S. 

e/egans (Hop et al., 2002). Other studies have noted T. libellula is initially 
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herbivorous at small sizes before transitioning to a more carnivorous diet once they 

are larger (Tamelander et al., 2006). 

2.4.2 Ice algae 

PUFA levels of ice algae (30-34%) were relatively high compared to other 

reports of algal spring fatty acids (Budge et al., 2008; Wold et al., 2011), although 

levels exceeding 50% are known to occur (Falk-Petersen et al., 1998). PUFAs are at 

their highest during periods of exponential cell division (Sargent et al., 1985; Parrish 

et al., 2005); the mid-range levels I found, coupled with very high 813C values, may 

therefore be an indication that ice algae communities in the area were approaching 

their maximum biomass. Snow and ice cover largely dictated individual ice algae 

fatty acids levels (Fig. 2.5), similar to the findings of Leu et al. (2010). Increasing 

light levels cause desaturation of long chain fatty acids in the thylakoid membranes 

of single celled organisms as chloroplasts are activated for photosynthesis 

(Klyachko-Gurvich 1999, Mock and Kroon, 2002). Conversely, I found no link with 

the percentage of light transmittance (downwelling PAR/under ice PAR). Compared 

with the study by Leu et al. (2010), which investigated the effects of high and low 

light on fatty acid composition at only three sites, I found that snow cover explained 

a similar amount of the total variance even when assessed over a large spatial scale. 

However, this still left 67.7% of the total variance unexplained and did not account 

for the three distinct groups I found in ice algae fatty acid profiles (Fig. 2.6). This 

grouping may have several causes including differences in the concentrations of 

nutrients such as silica (Smith et al., 1993), diatom community species compositions 



or even grazing pressures (Falk-Petersen et al., 1998). There was a gradient from 

high 20:5n-3 to high 16:1n-7, ratios of which have been used as an indicator of 

growth activity, but the reasons for the dissimilarity between clusters remains 

unclear (Fig. 2. 7). 

2.4.3 Coscinodiscus centralis 
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Pelagic primary producers exhibit a very different life strategy compared to 

ice algae and so it was no surprise that the factors determining their fatty acid 

compositions were also different. C. centralis fatty acid composition had the highest 

amounts of PUFA of any size category or species (Table 2.2, 2.3). Fatty acid profiles 

showed that clusters of stations located in Barrow Strait and McDougall Sound were 

more similar than stations sampled in Wellington Channel (Fig. 2.8) although none 

of the environmental variables I measured had significant effects on fatty acid 

composition. Leu et al., (2010) state that despite being lower quality food than open

water species, the early timing of the ice algae bloom is what makes it such an 

important resource. C. centralis nutritional quality was higher than ice algae, had 

more consistent broad scale patterns, and was present under ice cover. Despite this, 

there were no obvious signs that zooplankton were utilizing diatoms as a food 

source (Fig. 2.4). Increasing reports of phytoplankton blooms under sea ice are 

challenging the traditional view of the dynamics of Arctic primary production 

during ice cover (Arrigo et al., 2012). The presence and fatty acid characteristics of C. 

centralis make it a potentially valuable food source for Arctic herbivores in a time 

when other sources of pelagic production may be limited. 
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2.4.4 153 µm size category 

The 153 µm size category occupied a mid range trophic level between the 

primary producers and obligate consumers and was much more variable than other 

consumer trophic levels (Fig. 2.3). Fatty acids were significantly related to snow 

cover, year and inflow (Fig. 2.9). This wide range of signatures and environmental 

influence is most likely caused by a mixture of settling aggregations of ice algae that 

have sloughed off of the ice, and microzooplankton grazing on these aggregations. 

Based on the similarity to ice algae (Fig. 2.2) and that snow cover had the strongest 

influence, a large component of the 153 µm size component was most likely ice 

algae that had sloughed off of the sea ice. The remaining portion of the 153 µm size 

category was made up of small pelagic consumers, the fatty acids of which were 

linked to inflow. The year-to-year variation was probably driven by changes in 

community composition, as higher levels of dinoflagellate (22:6n-3) and copepod 

(20:1n-9) fatty acid biomarkers were present in 2011 as compared to a stronger 

diatom signature for 2012 (Table 2.2). The wide range of <)13( values, all of which 

were much lower than for ice algae by itself, and the larger proportion of 18-carbon 

PUFAs relative to ice algae is an indication that a portion of the pelagic dinoflagellate 

primary producer community was collected in this size category. 

2.4.5 250 µm size category 

2011 

PUFA levels for 250 µm samples were 2% higher in 2011, however it is 

unclear if this is an effect of the presence of C. centralis. Dinoflagellate biomarker 
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22:6n-3 was linked with the northern inflow, and characteristic diatom fatty acids 

were consistent with more C. centralis coming from the west into Barrow Strait (Fig. 

2.11). Chi A was the only other significant environmental driver, but there doesn't 

appear to be much impact on any specific fatty acid. Higher Chi A levels have been 

linked to increased zooplankton feeding rates in the past (Campbell et al., 2009). 

2012 

Once C. centralis were removed, the 250 µm category consisted mainly of 

Ca/anus and M. longa copepodites and nauplii, along with low numbers of various 

other species of zoo plankton. This mixture of species is most likely responsible for 

the slightly higher trophic level of 250 µm compared to the pure Ca/anus samples. 

PUFA levels were relatively high, and comparable to what is present in ice algae 

(Table 2.2). While inflow is known to influence zooplankton community 

compositions (Matsuno et al., 2012) I also found that absolute light levels had a 

measurable effect on 250 µm fatty acid profiles. To my knowledge, this is the first 

evidence that day-to-day environmental variations may be able to cause shifts in 

community level fatty acid dynamics in Arctic ecosystems. Brighter days had a trend 

towards increased levels of 22:6n-3, a dinoflagellate biomarker (Fig. 2.12). The 

implications are that dinoflagellates in the water column are light limited, but bright 

days are sufficient to activate photosynthesis under the sea-ice. The change in 250 

µm fatty acid profiles may have several explanations. Dinoflagellates from the genus 

Ceratium were observed in low numbers in 250 µm samples and this increase could 

be caused by an increase in their populations. Alternatively it could be due to 

zooplankton grazing on increased numbers of smaller dinoflagellates and the 
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subsequent concentration of the phytoplankton in their guts. The link between 

feeding behaviour and increased Chi A would also help to augment the effect of light 

on zooplankton fatty acid profiles (Campbell et al., 2009). This signal would not be 

evident in the 500 µm or the Ca/anus samples as juvenile copepodites and nauplii 

have low levels of lipid reserves compared to the well-established lipid sacs of 

larger animals, and smaller changes in proportions would be more noticeable (Falk

Petersen et al., 2009). My results suggesting community level fatty acid profiles 

could react suddenly to environmental stimuli are novel for Arctic systems. Under

ice light environments are expected to change with warming trends (Matsuoka et al., 

2009). If Arctic systems are sensitive to day-to-day variation early in the season, 

large scale, and chronic deviations to light levels could lead to changes in fatty acid 

dynamics and even food web structures. 

2.4.6 500 µm size category 

The 500 µm size category was mainly copepods, of which Ca/anus spp., M. 

longa and Pseudocalanus acuspes make up the vast majority in this area (Michel et 

al., 2006). For the Ca/anus samples, which were isolated from the large bodied 500 

µm category, inflow had a significant effect on fatty acid profiles. However, the 

remainiilg mixed species composition loses this effect. The 500 µm size category 

had a higher trophic level than calanoids, and had elevated levels of 18:1n-9, which 

is another indicator of carnivorous feeding (Graeve et al., 1997) (Fig. 2.13). Metridia 

are known omnivores, and while some debate exists for Ca/anus, most evidence 

suggests that they are predominantly herbivorous (Falk-Petersen et al., 2009). Like 
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other omnivores, M. longa are active throughout the year (Seuthe et al., 2007) 

whereas calanoids stop feeding and descend into deep water where they undergo 

diapause, a period of decreased metabolic activity, during winter months (Falk

Petersen et al., 2009). Fatty acid signatures are known to "blur" in regards to 

sources as trophic level increases (Dalsgaard et al., 2003), and neither 500 µm, nor 

any of my other sample types with elevated 6 1sN values were related to inflow. 

Three groups could be distinguished within the 500 µm category based on 

fatty acid profiles (Fig. 2.13). The first cluster is the most tightly grouped and 

characterized by high amounts of diatom biomarkers 16:1n-7 and 20:5n-3. 

Interestingly, 14:1n-9 was found in abundances >l % in only 250µm and 500 µm 

size categories. This fatty acid is not usually found above trace amounts in Ca/anus, 

Metridia, or Psuedocalanus spp. and its origins in the 500 µm samples are unclear 

(Falk-Petersen et al., 1987, Peters et al., 2006). The relative rarity of 14:1n-9 in 

other groups may make it useful as a potential biomarker if its source can be 

identified. The second cluster is strongly linked with Ca la nus biomarkers 20: ln-9 

and 22:1n-9. The last cluster was situated centrally and is most likely caused by an 

intermediate mixture of herbivorous and omnivorous species. Unlike 153 µm, which 

also had internal groupings characterized by different fatty acid biomarkers, there is 

no significant year-to-year variation, indicating that species abundances in the 500 

µm size range are relatively stable between years. 
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2.4. 7 Ca/anus 

Ca/anus samples had the third lowest trophic level of all zooplankton sample 

types, supporting other findings that large calanoids are primarily herbivorous 

(Falk-Petersen et al., 2009). Because Ca/anus react rapidly to changing levels of 

primary production and feed at high rates early in the spring, I would expect fatty 

acids in Ca/anus to reflect locally available food sources despite their large lipid 

stores (Campbell et al., 2009; Forest et al., 2011 ). The majority of fatty acids in 

Ca/anus samples were derived from diatom sources, with high levels of 16:1n-7 and 

20:5n-3. Despite C. centralis having higher relative PUFA content than ice algae, the 

dissimilarity between pelagic phytoplankton and Ca/anus fatty acid compositions 

imply that copepods are not heavily grazing on these large diatoms (Fig. 2.4 ). The 

813C %0 of Ca/anus samples were more depleted than either of the primary 

producers sampled, which may indicate that there is a significant pelagic component 

to their diets (Hobson et al., 1995). As Arctic zooplankton subsist on a combination 

of pelagic and ice associated primary production during the course of the year, ()13( 

values are never as enriched as late bloom ice algae (S0reide et al., 2013). However, 

I found higher 813C values than other studies of calanoids under sea-ice, which is 

likely caused by the longer duration of ice cover in the High Arctic, and therefore, an 

increased reliance on ice algae (Forest et al., 2011, Wold et al., 2011). 

Inflow had a significant effect on calanoid fatty acid compositions, indicating 

that two potential source populations of copepods exist. More importantly however, 

broad scale year-to-year variation in ice and snow conditions appears to have an 

important influence in the fatty acid composition of large copepods (Fig. 2.15). 
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Higher PUFA levels in copepods for 2011 correspond with higher PUFA levels in ice 

algae due to thicker snow cover (Fig. 2.14 ). As far as I am aware, this is the first 

evidence of inter-annual variation in environmental conditions directly influencing 

the nutritional quality of copepods. The amplified effect of snow and ice (mediated 

by primary producers) on the nutritive quality of a keystone zoo plankton species 

means changes in ice conditions will not only affect habitat, but the amount of high 

quality food available to all animals in Arctic marine food webs. 

2.4.8 Ice associated amphipod (Gammarus setosus) 

The range of Gammarus setosus extends throughout the Arctic, and although 

they are more commonly found benthically (Arndt and Swadling, 2006), they were 

collected near the ice/water interface. The fatty acid 18:1n-9 was linked with ice 

thickness (Fig. 2.16). High levels of this fatty acid have been associated with 

increased amounts of carnivory (Falk-Petersen et al., 2000) or reliance on detritus 

(Dalsgaard et al., 2003). The diatom biomarker 16:1n-7 was positively linked with 

the non-significant variable POC. Because of the low trophic position indicated by 

stable isotopes (Fig. 2.3) and the close similarity to the fatty acid profiles of 153 µm 

size class (Fig. 2.2, Fig. 2.4 ), it is likely that individuals residing in areas of thicker ice 

cover feed more on decaying matter. In shallow areas with seasonal ice that may not 

be accessible to obligate ice species such as Gammarus wiltzikii, benthic species may 

fill an important trophic niche. 



2.4.9 Gelatinous zooplankton (Hydrozoa: Euphysa aurata, Eumedusae birulai, 

Botrynema brucei, Aglantha digitale) 
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The sum of individual fatty acids in gelatinous zooplankton that were present 

in amounts> 1 % was 90.9%, a lower total than any other category and is indicative 

of a diverse diet. Based on the ratio of 16: ln-7 /16:0, dinoflagellates were the 

dominant origin of jellyfish fatty acids (Budge and Parrish, 1998). Only a small 

proportion of copepod fatty acid biomarkers were present, probably because the 

hydrozoans sampled were too small to effectively prey on calanoids. As there are 

over 200 identified species of cnidarians in the Arctic Ocean, I expected to see 

groupings of fatty acid profiles as a result of differing species abundances, similar to 

the 500 µm size category (Fig. 2.13). However, as no clustering was observed, all of 

the species collected appear to occupy the same trophic niche at small body sizes. 

Gelatinous zooplankton were the only sample group that were not influenced by any 

of the environmental variables nor had any other discernible patterns in their fatty 

acid profiles. This homogeneous spatial pattern is probably caused by gelatinous 

zooplankton's carnivorous, non-selective method of feeding. 

2.4.10 Themisto libellula 

The levels of PUFA I found in Themisto samples were much lower than has 

been reported for T. libellula in other regions of the Arctic (Auel et al., 2002). In 

particular, 16:0 levels were nearly double to previous reports while 20:Sn-3 levels 

were approximately half compared to the Fram Strait (Auel et al., 2002). Levels of 

18:1n-9 were higher than of the Central Arctic Basin, but levels of Ca/anus 
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biomarkers 20:1n-9 and 22:1n-11, were lower (Auel et al., 2002). This may be due 

to smaller individuals of T. libellula relying more on detritus and only preying on 

copepods once reaching a sufficient body size (Tamelander et al., 2006). The lack of 

influence by current is most likely due to the small number of samples, but may also 

relate to the year-round activity of T. libellula and their omnivorous diet (Kraft et al., 

2013). 

2.4.11 Chaetognath (Sagitta elegans) 

Despite seemingly low levels of characteristic calanoid fatty acids 20:ln-9 

and 22:1n-11 in chaetognath fatty acid profiles, S. elegans is known to prey 

primarily on copepods and nauplii (0resland 1987). This is due to S. elegans only 

maintaining modest amounts of triacylglycerols for energy storage (Falk-Petersen et 

al., 1987). Chaetognaths occupied the highest trophic level of all sample types (Table 

2.1), and while 18:1n-9 levels indicate S. elegans were carnivorous, they were nearly 

10% lower than reported by Falk-Petersen et al. (1987). 

S. elegans fatty acid profiles were significantly affected by surface reflectance, 

although the internal variation and small sample size made it difficult to see any 

patterns in the data. A fatty acid indicator of carnivory, 18:1n-9 was positively 

linked to upwelling PAR (Fig. 2.17). This may relate more to overall light levels as 

Falkenhaug (1991) found chaetognath feeding activity increased with brightness. 

Alternatively, this influence could be due to the physical properties ice and snow. 

The albedo (reflectance) of melting snow decreases (Meinander et al., 2010), 

potentially chaetognath prey choice could be influenced by melt conditions. 
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Chaetognaths have been estimated to consume --3% of secondary production and it 

is unclear how changes in ice and snow cover might alter these predation dynamics 

(Falkenhaug, 1991). 

2.4.12 Clione limacina 

C. limacina are known to produce many of their fatty acids de nova, and 

branched or odd numbered fatty acids are common (Kattner et al., 1998). Compared 

to C. limacina that were sampled in June to August, I found 9.3%-13.8% less 22:6n-3 

in early spring (Kattner et al., 1998; Boer et al., 2006). This is most likely a reflection 

of the low abundance of dinoflagellates in the water column during periods of ice 

cover, as diatom derived 20:5n-3 levels were similar between spring and summer 

(Boer et al., 2006). A branched chain fatty acid, i-16:0, made up 4.4% of total fatty 

acids and was only reported in trace amounts in other studies (Kattner et al., 1998; 

Boer et al., 2006). Interestingly, C. limacina was the only predatory sample type to 

be significantly affected by inflow (Fig. 2.18). This is likely because of C. limacina's 

extremely specialized diet of only Limacina helicina (Kattner et al., 1998). A single 

dietary source would reduce the "blur" of fatty acid transfer in higher trophic levels 

and better retain environmental signals from C. limacina 's prey fatty acid profiles. 



63 

2.5 Conclusion 

Ice algae fatty acid profiles were primarily driven by ice and snow thickness. 

The importance of light on the nutritional value of ice-associated producers was 

confirmed but concluded that small-scale studies may underestimate the natural 

variability of fatty acids in sea ice communities. Lower snow depth in 2012 yielded 

lower PUFAs in ice algae, which caused significantly lower PUFA levels in Ca/anus 

compared to 2011. Zooplankton herbivore fatty acid profiles were largely dictated 

by inflow, implying that while not visible on the scale of my study, broad scale 

patterns in ice algae fatty acids exist. Zooplankton fatty acid profiles showed 

decreasing sensitivity to environmental variables with increased trophic level. By 

demonstrating that broad scale environmental variations have a significant effect on 

the food quality of a keystone species, I am able to provide not only a baseline, but 

show that changes in ice and snow conditions will have a large impact on how these 

systems function. 
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Abstract 

Primary production in Arctic seas has traditionally been viewed as having 

two temporally and spatially distinct components, ice algal communities which 

grow within and on the bottom of sea ice, and phytoplankton blooms that occur in 

open water after sea-ice breakup. There is growing evidence however, that under

ice blooms of pelagic phytoplankton may be a regular occurrence. In 2011 I found 

substantial numbers of a large centric diatom, Coscinodiscus centralis, under the sea 

ice near Cornwallis Island, Nunavut. During the springs of 2011 and 2012, I 

documented the abundance patterns of C. centralis and investigated their fatty acid 

and stable isotope profiles to determine where they originated, what were the 

growth conditions, and what influence this alternate source of primary production 

might have on local food webs. Higher numbers of pelagic diatoms were observed in 

Barrow Strait than in more northerly channels. Based on their fatty acid profiles, C. 

centralis represent a significantly different, and potentially more nutritious food 

source for local herbivores than ice algae. The pelagic diatoms had significantly 

higher levels of polyunsaturated fatty acids (PUFA) (mean± SD: 50.3 ± 8.9%) 

compared to ice-associated producers (30.6 ± 10.3%). Spatial patterns of fatty acid 

profiles and stable isotopes indicated there were two source populations for C. 

centralis: a western origin with low light conditions and high nutrients, and a 

northern origin with lower nutrient levels but brighter conditions. In a captive 

zooplankton feeding experiment, no changes in copepod fatty acids were observed 

and chlorophyll levels of C. centralis actually increased in the presence of 



zooplankton. I conclude that C. centralis is able to initiate growth well before the 

open-water bloom and can do so in a variety of nutrient and light conditions. 

3.1 Introduction 
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Arctic marine food webs are dependent on the production and transfer of 

lipids to maintain their structure and biodiversity. These food webs are classically 

viewed as being supported by two spatially and temporally distinct types of primary 

production: ice associated algae and pelagic open water algae (Gosselin et al., 1997; 

Carmack and Wassmann 2006; Brown et al., 2010). It has generally been accepted 

that under light-limiting ice cover, the water column is unable to support significant 

numbers of pelagic autotrophs and therefore ice algae are the first and only 

available source of food for zooplankton grazers in the early spring (S0reide et al., 

2010). 

Specifically, ice algae were viewed as the first significant pulse of 

polyunsaturated fatty acids (PUFAs ), upon which reproducing zooplankton are 

reliant (Michel et al., 1996; S0reide et al., 2010). Higher PUFA levels increase 

zooplankton egg production and the subsequent viability of the eggs (Arendt et al. 

2005; S0reide et al. 2010). PUFAs are important in cold environments for 

maintaining cell membrane fluidity and associated enzyme functions (Sargent et al. 

1993). There is poor genetic control of PUFA levels in cell membrane synthesis so 

dietary deficiencies quickly lead to general health problems in animals (Sargent et al. 

1993). Copepods take advantage of early availability of high quality food by foraging 

at much higher rates in the spring compared to summer, despite higher levels of 

primary production later on in the year (Campbell et al., 2009). The timing of peak 
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ice algae PUFA availability is therefore important to secondary consumers and there 

is concern that early melting of sea ice could cause a mismatch between food 

availability and copepod spring hatch (S0reide et al., 2010). Subsequent population 

declines in copepods would have immediate and far-reaching effects on higher 

trophic levels (Moline et al., 2008). 

Contrary to the classical view of a water column devoid of producers, there is 

mounting evidence that pelagic blooms occur under sea ice throughout the Arctic, 

sometimes hundreds of kilometers from open water (Strass and Nothig, 1996; 

Mundy et al., 2009; Arrigo et al., 2012). Arrigo et al. (2012) found that failing to 

account for this pelagic component meant underestimating the net annual primary 

production of the Chukchi sea continental shelf by an order of magnitude. The 

intense blooms of Chaetocerus and Thalassiosira that follow breakup are thought to 

require several processes, including release from light limitation and the 

stratification of the water column that concentrates nutrients in the upper euphotic 

zone (Strass and Nothig, 1996; Michel et al., 2006; Leu et al., 2010). Blooms 

occurring under sea ice would not follow similar dynamics to blooms commonly 

observed in the marginal ice zone, and could potentially provide a buffer for food 

webs during early ice melt. 

One species commonly found in early phytoplankton assemblages is 

Coscinodiscus centralis, a large centric diatom averaging between 180-200 µmin 

diameter with individuals as large as 300 µm (Hasle and Lange 1992). The general 

cell shape is tympaniform with a gentle central depression in the valve (Hasle and 
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Lange, 1992; Hasle and Syvertsen, 1997). They are free-living and contain very high 

amounts of chlorophyll per cell (Atkins and Park, 1951). 

C. centralis is a cosmopolitan species, found in every marine biogeographic 

region (Hasle and Lange, 1992). Reports of its presence in the Arctic date back to the 

late 1800s and it is a dominant species early in the spring bloom of the North Water 

Polynya (Cleve 1883; Lovejoy et al., 2002). Although C. centralis has been found 

under the ice at the North Pole in the late summer and early fall, most reports are 

from ice-free areas or marginal ice zones (Budge et al., 2008; Katsuki et al., 2009). 

C. centralis peak abundances generally occur in high salinity water 

(>32.5%0), but they have been found to tolerate levels as fresh as 24%0 (Hasle and 

Lange, 1992). Coscinodiscus are often situated deeper in the water column at the 

base of the euphotic zone, and there is some evidence that suggests they may be 

adapted to very low light levels (Kemp et al., 2000). Large Coscinodiscus spp. may be 

able to alter their buoyancy to sink below established haloclines, allowing them to 

take advantage of deeper, nutrient-rich water (Kemp et al., 2000). Despite being 

present in all of the world's oceans, C. centralis is poorly studied and little is known 

about its growth requirements or general population dynamics (Hasle and Lange, 

1992; Kemp et al., 2000). 

During zooplankton sampling in the Canadian Arctic, I identified C. centralis 

in the water column under complete ice cover. The aim of this study was to 

investigate the presence of C. centralis under the sea ice and its potential role in 

_under-ice food webs. I believe this is the first report of growth being initiated under 

sea ice (Hasle and Lange, 1992; Ratkova and Wassmann, 2005). I describe the 
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environmental conditions associated with C. centralis and examine its stable isotope 

(813C and ()lSN) and fatty acid composition. 

The combination of stable isotope and fatty acid analysis can provide 

potentially powerful insights into trophic relationships. The ratio of 813 to 312 carbon 

isotopes is modified by a very small amount during trophic transfers and can 

therefore be used to determine the importance of isotopically distinct primary 

producers to higher trophic levels (Post, 2002). The amount of 815N can initially be 

variable in producers, depending on growth conditions, but is enriched by a 

constant amount with each successive trophic level (Tamelander et al., 2009). Fatty 

acids are the primary components of most lipids. Biochemical limitations on the 

synthesis of fatty acids in animals result in predictable, quantitative relationships 

between the fatty acids present in a consumer and those present in its constituent 

foods (Dalsgaard et al., 2003). Together, these analyses can provide insights into 

ecosystem structure and functioning (Budge et al., 2008) and thus help reveal the 

origin and importance of under-ice blooms of C. centralis in Arctic marine food webs. 

3.2 Methods 

3.2.1 Study area 

Sampling was done in 2011 and 2012 on landfast sea ice near Cornwallis 

Island, Nunavut (Fig. 3.1). Ice formation begins in mid- to late September and lasts 

until breakup around the end of June, although breakup can be delayed until the 

beginning of August (Brown and Cote, 1992). The majority of sea ice in the area is 

predominately first year, although some patches of multiyear ice are present. Ice 
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thickness reaches an average maximum of 2 min mid-April (Welch and Bergmann, 

1989; Brown and Cote, 1992). Snow depth can reach a maximum average thickness 

of 22 cm although the patterns of accumulation are significantly affected by 

prevailing winds (Brown and Cote, 1992). 

The main ocean current direction is from west to east and averages 6.16 

cmf sin the spring with speeds increasing up to 60 cmf s during the tidal flux 

(Prinsenberg and Bennett, 1987; Cota et al., 1987). The three main inflows into 

Barrow Strait are from Viscount Melville Sound in the west, Penny Strait to the 

north, which flows around both sides of Cornwallis Island, and from Peel Sound in 

the south (Prinsenberg and Bennett, 1987). Most of the inflow water is Arctic 

surface water, although the ratio of Pacific/ Atlantic water may have a profound 

effect on primary production (Prinsenberg and Bennett, 1987; Michel et al. 2006). 

With a sill of approximately 125 m, Barrow strait is the narrowest and shallowest 

point of the Northwest Passage (Michel et al., 2006). 
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3.2.2 Field observations 

Ice thickness, snow depth, and freeboard (the distance from the surface of 

the water to the top of the ice), were recorded at each station. Measurements of 

photosynthetically active radiation (PAR, 400 - 700 nm) were taken under the sea 

ice using a LICOR quantum sensor mounted on a hinged aluminum arm. All PAR 

readings were conducted under undisturbed snow cover. Water column salinity and 

temperature measurements were collected in 2011 using a Sea-bird conductivity

temperature-depth (CTD) probe. 

3.2.3 Sample collection 

A total of 46 stations were sampled May 1-18 in 2011 and 2012 (Fig. 3.1). No 

isolated samples of C. discus could be obtained for fatty acid analysis in 2011 but 

qualitative estimates of abundance on a 0-3 scale were made. A value of 3 meant 

that if shaken in a scintillation vial, it was impossible to see through, 2 was that the 

vial darkens when shaken but the other side is clearly visible, 1 meant that few 

individuals present, with 0 indicating no diatoms were present. 

In 2012, phytoplankton and ice algae samples were collected at 24 separate 

stations. A manual ice corer (Mark II coring system, 9 cm internal diameter, Kovacs 

Enterprises) was used to collect the ice algae. The bottom 3 cm of each core was cut 

off and melted overnight in 500 ml of Millipore micro pore (0.2 µm) filtered 

seawater (FSW) to avoid osmotic stress (Garrison and Buck, 1986). Samples were 

then measured for total volume, filtered onto pre-combusted (500°C for 4 hours) 

glass fiber filters (GF /F) and treated with 10 ml boiling FSW to deactivate lipolytic 

enzymes (Budge and Parrish 1999). Filters were then stored in cryovials at -80°C. 
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Samples of C. centralis were collected using a zooplankton net (25 cm mouth 

diameter, mesh size 153 µm) fitted with a flowmeter (General Oceanics model 

2030RC, one way clutch). Three vertical hauls were taken from each station from 5 

m above bottom to a maximum of 150 m. Hauls were pooled and separated by size 

using 500 µm and 250 µm sieves. C. centralis were isolated from the 250 µm size 

fraction using 3 rounds of settlement and then by hand-picking any remaining 

zooplankton from the sample using a pasteur pipette and a dissecting microscope 

(Fig. 3.2). The purified samples were then filtered onto pre-combusted GF /F filters 

and immediately placed into chloroform (Omnisolv grade, VWR) and stored at -20°C. 

lFliguire 3.2. Photo of Coscinodiscus centralis collected in 2012. Cell diameter is >250 

µm and the large green patches are chloroplasts. (Photo credit: M. Poulin, Canadian 

Museum of Nature). 
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3.2.4 Feeding Experiment 

To test whether C. centralis are eaten by copepods, I collected zooplankton 

from Resolute Passage on May 14th 2011. Calanoid copepods greater than 500 µm 

in length were retained from pooled vertical hauls taken from 30 m depth to the 

surface. The copepods were placed into bottles containing 450 ml of FSW, placed 

into a seawater bath at 0°C with light levels of 2.5-3.5 µE m·2s·1 and starved for 24 

hours. The bottles were randomized into two treatments, and fed either ice algae or 

C. centralis. One bottle of ice diatoms and one of C. centralis were incubated with no 

copepods to serve as controls. The food added consisted of 4 cores, 9 cm in length, 

diluted into 2 L of FSW (2750 ml total) for ice algae, and a 500 ml solution of C. 

centralis that was isolated from the vertical hauls. Duplicate 150 ml subsamples of 

the ice algae solution were preserved for FA analysis while only a single 150 ml 

sample was taken from the C. centralis solution. Additionally two subsamples were 

taken for determination of chlorophyll A (Chi A) levels (100 ml for ice algae and 50 

ml for C. centralis) as well as 125 ml from each for taxonomic verification and cell 

counts. On May 19th 2011 each bottle was sieved through 500 µm mesh and 

copepods were retained for FA analysis. The filtrate was then collected for Chi A 

analysis. Samples were prepared with 90% acetone and incubated in darkness at 

4°C over night. 10% HCI was used for acidification before being analyzed in a 

fluorometer (Turner Designs 10AU). 
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3.2.5 Fatty acid analysis 

Lipids were extracted using 2 different methods. C. centralis lipids were 

extracted using a modified Folch et al. (1957) procedure by sonicating the filters for 

5 minutes in 10.5 ml of 2:1 chloroform and methanol solution; 2.6 ml of 0.7% · 

saltwater was then added before centrifuging and extracting the bottom layer. The 

filter, top layer, and all remaining tissues were kept for stable isotope analysis. Lipid 

extracts were dried over anhydrous sodium sulfate before being transesterified to 

produce fatty acid methyl esters (FAMEs) using sulfuric acid (Hilditch et al. 1964) as 

a catalyst. 

For ice algae lipids, an in situ BCb catalyzed transesterification method 

similar to Park and Goins (1994) was used. This was chosen instead of the 2-step 

process due to concerns that the limited amounts we were able to collect may only 

contain trace amounts of lipids. This method has been found to yield equivalent 

results for algae when compared to the combination of Folch and Hilditch methods 

and is more efficient for very small-quantity samples (Hall 2012). 78 individual 

FAMES were identified using gas chromatography and quantified using 5-a 

cholestane as an internal standard. In cases where the identification of a peak was in 

doubt, a combination gas chromatograph/mass spectrometer was used to cross

verify the identity of the fatty acid. 

3.2.6 Stable isotope analysis 

C. centralis tissue was removed after lipid extraction in 2:1 chloroform and 

methanol (S0reide et al., 2006) and freeze-dried at -40°C for 48 hours before 313c 

and 815N stable isotope analysis at the Great Lakes Institute for Environmental 



Research (University of Windsor, Windsor Ontario). Isotopic signatures are 

expressed as a deviation (cSX = [(Rsampte /Rstandard) - 1] X 1,000) from international 

standards calibrated against Vienna-PeeDee Belemnite (VPDB), for carbon, and 

atmospheric Nz (AIR) for nitrogen. Ice algae stable isotopes were prepared and 

analyzed at the Freshwater Institute (Department of Fisheries and Oceans) in 

Winnipeg, Manitoba. 

3.2. 7 Statistical analysis 
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Statistical analysis was done using R statistical software (R Core Team, 

2012). Wilcoxon sign rank tests were used to compare untransformed fatty acid 

proportions of ice algae and diatoms. Fatty acid proportional data were arcsin 

square-root transformed before using multivariate analyses (Sokal and Rohlf, 1995). 

A two-sample Hotellings T test was used to compare multivariate means of ice algae 

and C. centralis based on 16 fatty acids (R package: rrcov (Valentin and Filzmoser, 

2009)). These 16 fatty acids were chosen based on known trophic markers in 

addition to the most common present in samples (>1 %). Principal component 

analysis (PCA) was used to assess the importance of the 16 fatty acids on the 

separation of ice algae and C. centralis (R package: vegan (Oksanen et al., 2013)). 

Significance of PCA axes were calculated based on Equiprobability = (1/#var)* 100 

= 1/16*100=6.25% (Helaouet and Beaugrand 2007). Internal groupings within 

Coscinodiscus samples were found using hierarchical clustering analysis and 

hierarchical clustering analysis based on principal components (HCPC) (R package: 

FactoMineR (Husson et al., 2013)). Hierarchical clustering was applied to the 

principal component axes, using the PCA as an initial preprocessing step to de-noise 
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the data (Husson et al., 2010). The number of clusters (Q) was chosen to maximize 

between-group variance while minimizing within-group V<:triance: fl.Q/ fl.(Q+l) 

(Husson et al., 2010). A two-sample t-test assuming equal variance (variances were 

tested using an F test) was used to measure the difference in 815N between clusters. 

Regressions were used to assess relationships between stable isotopes, 

environmental variables and lipid abundances. Interpolation of lipid masses 

between stations was done using DIVA (Data-Interpolating Variational Analysis) 

gridding in the program Ocean Data View 4 (Schlitzer, 2013). Unless otherwise 

noted, all fatty acids are reported as mean ± one standard deviation. 

3.3 Results 

3.3.1 Field observations 

Mean ice thickness in 2011was133.0 ± 19.5 cm (range= 167.6 to 96.2 cm). 

Near the end of the expedition there were signs of open water east of Cornwallis 

Island and several polynyas opened up in Wellington Channel. In 2012, ice was 

thicker, (mean 163 ± 35 cm; range= 235 to 121.4 cm) and we saw no signs of 

melting or open water. Mean snow depth was 8.3 ± 4.3 cm (range 20.6 to 1.1 cm) in 

2011and5.9 ± 2.9 cm in 2012 (range 13.9 to 1.7 cm). Snow values cannot be treated 

as representative of average regional values as specific depths were chosen at 

sampling locations. Underwater PAR was lower and less variable in 2011 (mean= 

4.90 ± 3.03 µE m-2s-1) than 2012 (mean =9.36 ± 8.76 µE m-Zs-1), but both were high 

enough to support photosynthesis (2-9 µE m-2s-1; Horner and Schrader, 1982). CTD 

casts at each station showed that temperature and salinity were usually 

homogeneous throughout the water column (Fig 3.3). Three stations in the 
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southwest portion of our sampling range showed fresher values for surface water 

and an increase in salinity and temperature around 125 m. 

Temperature 
0 

-0.5 

-1 

·1.5 

~ 
~ 
J -2 

30 31 32 33 34 
Salinity [psu] 

Figure 3.3: CTD profiles of stations from 2011. 

3.3.2 Comparisons of stable isotopes and fatty acids in C. centralis and ice algae 

Stable isotopes 

Pooled C. centralis isotopic signatures showed a large range for ()lSN (2.84 to 

7.42%0, mean 4.95%0) and were depleted in 813C (mean= -19.07 ± 0.67%0) relative 

to ice-associated values (mean= -12.77 ± 2.57%0). Ice algae samples were generally 

more enriched and less variable in 815N (6.30 ± 0.59%0). ()13( values had a greater 

range in ice algae (-17.10 to -8.34%0) compared to C. centralis (-20.89 to -18.27%0). 
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Fatty acids 

Ice algae and C. centralis had significantly different fatty acid compositions 

(Hotelling's T-test, p < 0.001 ). In C. centralis, 13 of the 78 identified FA were present 

in amounts;::: 1 %, comprising 91.56% of the total FA. In ice algae 11 FA were present 

at;::: 1 % for a total of 91.5 7%. Fatty acids in both ice algae and C. centralis were 

dominated by 16:0, 16:1n-7 and 20:5n-3. Samples from the pelagic diatoms had 

significantly higher levels of both 20:5n-3 (Wilcoxon rank sum, p < 0.001) and total 

PUFA (Wilcoxon rank sum, p<0.001) than ice associated communities (Table 3.1). 

Ice algae were richer in monounsaturated fatty acids (MUFAs; 41.4%) and both had 

similar levels of saturated fatty acids (SAFAs; Table 3.1). While C. centralis had lower 

quantities of both 16:1n-7 and 16:0 than ice algae (Table 3.1), the ratios of the two, 

used as a fatty acid trophic marker for diatoms, were not significantly different 

(Wilcoxon rank sum, p = 0.67). The ratio of 22:5n-3/22:6n-3, another commonly 

used indicator of diatoms in dietary studies, was significantly different between the 

two groups (Wilcoxon rank sum, p < 0.001). The value for both was greater than 1, 

indicating fatty acids were predominately produced by diatoms with little input 

from either dinoflagellate or bacterial sources (Budge and Parrish, 1999; Dalsgaard 

et al., 2003). C. centralis had higher levels of all 18-carbon fatty acids with the 

exception of 18:3n-6. 
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Figure 3.4: Principal component plot of fatty acid proportions ( arcsin square root 

transformed) of C. centralis (blue) and ice algae (black). PCAl explains 72.41 % 

while PCA2 accounts for 9. 79% of the variance. Fatty acid vectors are scaled 

proportional to eigenvalues while sites are unscaled. 

PCAs were calculated using 16 fatty acids as variables. The first axis 

explained 72.41 % of the total variance. The 2nd and 3rd component axes explained 

9. 79% and 5.6% respectively. Equiprobability calculations indicate that only the 

first two axes are significant, explaining 84.2% of the total variance, and plotted in 

Figure 3.4. 
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Fatty acids 16:0, 16:1n-7, 16:4n-1, 18: ln-9, 18:2n-6, and 20:5n-3 had the 

largest eigenvectors (Fig. 3.4) in relation to the first two principal component axes. 

Separation of the two groups is driven mostly by the presence of 20:4n-6 in ice algae, 

and by 18:2n-6 and 18:1n-9 in the pelagic diatoms (Fig. 3.4); despite being present 

in low amounts (0.24-3.53%) in both sample types (Table 3.1). 

3.3.3 Distribution and potential growth sources of C. centralis 

Large diatoms (>250 µmin diameter) were present in every zooplankton 

haul in the 2011 season. Stations in Barrow Strait had the highest amounts while 

areas in Queen's Channel, Wellington Channel and McDougall Sound had less (Fig. 

3.5). 

, 
14°N 

95°W 

Figure 3.5. Qualitative abundance estimates of diatom abundances in spring, 2011. 

Circle sizes correspond to abundance estimates (1-3); larger circles indicate a 

higher estimated number of diatoms compared to smaller circles. 
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Table 3.1: Mean abundance (±SD) of 16 fatty acids (expressed as mass% of total 

fatty acids) and characteristic fatty acid ratios in ice algae and C. centralis collected 

in spring 2012. PUFA polyunsaturated fatty acids, MUFA monounsaturated fatty 

acids, SAFA saturated fatty acids, EFA essential fatty acids. 

Fat~Acid Ice al~ae Coscinodiscus centralis 

14:0 8.94 ±1.97 10.23 ±2.21 
16:0 16.85 ±3.57 9.00 ±2.67 
16:1n-11 0.43 ±0.98 2.59 ±0.71 
16:1n-9 2.81 ±2.76 0.12 ±0.13 
16:1n-7 35.21 ±7.86 17.41 ±5.16 
16:2n-4 2.91 ±0.87 4.79 ±1.32 
16:3n-4 1.42 ±0.98 2.78 ±1.03 
16:4n-1 4.68 ±2.24 7.13 ±2.59 
18:0 0.36 ±0.16 2.01 ±1.25 
18:1n-9 0.63 ±0.44 2.35 ±1.42 
18:2n-6 0.47 ±0.11 3.53 ±1.18 
18:3n-6 t.22 ±0.45 0.53 ±0.15 
18:3n-3 0.34 ±0.16 0.27 ±0.13 
18:4n-3 2.08 ±0.76 2.69 ±0.45 
20:1n-9 0.06 ±0.05 0.45 ±0.47 
20:4n-6 0.24 ±0.10 0.03 ±0.06 
20:4n-3 0.40 ±0.27 0.34 ±0.67 
20:5n-3 13.66 ±5.11 24.41 ±5.06 
22:1n-11 0.15 ±0.11 0.18 ±0.49 
22:1n-9 0.02 ±0.03 0.32 ±0.33 
22:6n-3 1.77 ±0.64 2.66 ±0.93 
Total SFA 27.97 ±4.43 23.32 ±3.99 
Total MUFA 41.41 ±7.03 26.38 ±6.30 
Total PUFA 30.62 ±10.33 50.30 ±8.90 
Total EFA (20:5n-3+22:6n-3] 15.43 ±5.70 27.08 ±5.43 
Diatom ratio (16:1n-7 /16:0) 2.12 ±0.33 2.03 ±0.56 
Diatom ratio (20:5n-3/22:6n-3) 7.82 ±1.33 9.71 ±2.30 
Dinoflagellate signal (18:4n-3+ 
22:6n-3) 3.85 ±1.26 5.35 ±0.93 
Bacterial signal (sum of odd and 
branched fat!l acids] 1.60 ±0.51 2.11 ±2.33 
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Like 2011, C. centralis was present at every station in 2012, and for many, 

accounted for most of the biomass in the net hauls (Fig. 3.6). Total weights of fatty 

acids of each station were closely related to values standardized by volume (R2 = 

0. 78) indicating a uniform distribution of C. centralis throughout the water column 

(Fig. 3.7). 

The size range of C. centralis collected in the 2012 season ranged in diameter 

from 153 µm to --450 µm, with the vast majority being >250 µm. Chloroplasts were 

clearly visible and appeared healthy in all samples (Fig. 3.2). In samples that had 

very high amounts of C. centra/is, some extracellular polymeric substance (IEPS) was 

observed in tendrils dangling from the water surface as well as in some clumping in 

cells that sank. 
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IFfigMire 3.6: Amounts (mg/m3) of C. centralis fatty acids in the water column in 

spring 2012. Interpolation between stations was done using DIVA gridding. 
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Figure 3.7: Relation of total weight of fatty acids (mg) collected per station to the 

mg/m3 of the same stations. 
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Figure 3.8: Hierarchical clustering dendrogram indicating station locations of 

arcsin square-root transformed fatty acid proportions. Clusters were selected at the 

point of maximum between-group variance. 
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The relative Euclidean distance is largest between ice algae and C. centralis 

but two clusters of C. centralis are also clearly visible (Fig. 3.8). Cluster 2 (red) is 

made up of 11 pelagic and 4 ice algae samples, samples in this cluster are further 

from each other in Euclidean distance compared to cluster 3 (green) (Fig. 3.9). Nine 

of the C. centralis samples in cluster 2 were taken from Wellington Channel, with the 

other two being the westernmost stations from the transect across McDougall 

Sound. Cluster 3 is entirely C. centralis and consists of 12 stations: 4 from Resolute 

Passage, 4 from Barrow Strait, 3 from McDougall Sound and 1 from Wellington 

channel. Differences between the two clusters are driven by 20:5n-3 and 18:2n6 

and 18:1n9 (Fig. 3.4). The C. centralis sample taken from station 15 in the south west 

of Barrow Strait was grouped with the other 18 ice algae samples into cluster 1 

despite being closer to cluster 2 on the first two principal component axes (Fig. 3.9). 
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fatty acid percentages overlaid onto the first two principal component axes. 

Clusters 2 and 3 are mainly C. centralis profiles while cluster 1 corresponds to ice 

algae samples. Height on they axis indicates Euclidean distances between clusters. 

When separated, samples from Barrow Strait (cluster 3, Fig. 3.10) had 

significantly lower 815N values than those from Wellington Channel (cluster 2, Fig. 

3.10) (p=0.004). Fatty acid weights (mg/m3 of FA per station) had a negative 

logarithmic relationship with 815N (y = -0.166lnx + 0.3372, r2 = 0.50) (Fig. 3.11). 
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PUFA wete also negatively correlated with cS 1SN (y = -3.7958x + 68.595, r2 = 0.33) 

(Fig. 3.12). The 3 outlier stations in cluster 3 with higher 815N are stations from 

Wellington Channel and McDougall Sound (Figs. 3.11, 3.12). 
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Figure 3.10. The means and standard deviations of stable isotopes for C. centralis 

clusters and ice algae using standard 8 notation. 
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Figure 3.11: Relationship between C5 15N and amounts (mg/m3) of C. centralis fatty 

acids in the water column. Black circles are individuals from cluster 2, white from 

cluster 3 and the lone red point is the C. centralis sample that was grouped into 

cluster 1 with ice algae. 
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Figure 3.12: The relationship between C5 15N and% PUFA of C. centralis. Black circles 

are samples from cluster 2, white are cluster 3 and the red is the C. centra/is sample 
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3.3.4 Feeding experiment 

No differences were observed between the fatty acid profiles of copepods fed 

C. centralis compared to those fed ice algae. Only two fatty acids, 16:0, which 

increased by 2.1 % in copepods fed ice algae, and 20:5n-3, which decreased in both C. 

centralis (-3.3%) and ice algae treatments (-4.7%), changed by more than 2% from 

initial levels. 

Chi A levels were higher in bottles that had copepods and C. centralis in them 

compared to the control bottles that contained only C. centralis. Conversely, Chi A 

declined in ice algae replicates that were incubated with copepods relative to 

copepod-free controls (Fig. 3.13). 

When observations were made at the c;onclusion of the incubation, I found 

no visible evidence of feeding (i.e. obvious decrease in visible diatoms, empty 

frustules, or incr~ase in copepod fecal material) in any of the bottles containing C. 

centralis and copepods. 

Difference in Chi A from copepod free control 

DC. centralis 

•Ice algae 

Figure 3.13: Chlorophyll A (ChlA) differences of copepod depredated bottles from 

diatom only controls at the conclusion of the feeding experiment. 
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3.4 Discussion 

3.4.1 Presence of C. centralis under sea ice 

The discovery of C. centralis under the sea ice was a surprise to the senior 

researchers of our expedition, all whom have studied Barrow Strait for decades (C. 

Michel, M. Poulin, J. Wictor, personal communication). Previously, the earliest 

reported occurrence of C. centralis in the Canadian Arctic Archipelago had also been 

in May, but in the Northwater Polynya, where open water allows light values to be 

significantly higher (Lovejoy et al., 2002). Accounts of Coscinodiscus sp. occurring as 

far west as Cornwallis Island are rare, with none indicating the presence of either 

this particular species, nor the abundance I found (von Quillfeldt, 2000; Riedel et al., 

2003). Comprehensive spring sampling campaigns from 1980 to the 1990s had no 

record of C. centralis, despite using almost identical zooplankton sampling methods 

and locations as our field study (Michel et al., 2006). Nevertheless, it is difficult to 

tell whether under-ice growth of C. centralis has only recently become possible or if 

this is an annual occurrence that has not been reported. Coscinodiscus spp. are often 

present in low amounts relative to dominant taxa, and may be missed in 

quantitative phytoplankton sampling routines (Hasle and Lange 1992). This has 

been posited as a reason for records of it being scarce or irregular in other areas 

(Hasle and Lange 1992). 

The generally large size (250 µm to ....... 450 µm diameter) of C. centralis I found 

is greater than the average size reported elsewhere (180-200 µm, Hasle and Lange 

1992; Hasle and Syvertsen, 1997). The larger size I found may be due to inherent 

variability of C. centralis, which has been found to reach up to 300 µm in diameter 

(Hasle and Lange, 1992). The large sizes may also be an indication that high rates of 
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sexual reproduction are occurring. During normal asexual division, frustule sizes 

linearly decrease, causing the mean population cell size to decrease (Nagai and Imai 

1997). Another explanation could be that local herbivores are not exerting 

significant grazing pressure or alternately, are unable to utilize C. centralis as a food 

source. Herbivorous copepods selectively prey on larger cell sizes; thus, under 

significant grazing, average cell sizes decrease (Sommer and Lewandowska, 2011; 

Peter and Sommer, 2012). Lastly, Peter and Sommer (2012) found that increasing 

temperatures reduced cell size in marine pelagic diatoms; Coscinodiscus collections 

used as the basis for identification were all from water at or above 3°C (Hasle and 

Lange (1992)). Cold-adapted ecotypes have been found in other cosmopolitan 

species of phytoplankton; larger than average diameters could be indication that 

Arctic C. centralis represent a new sub-species (Lovejoy et al., 2007). 

A large size would be important if these diatoms were to exhibit a completely 

different life history strategy than the more commonly studied smaller bloom 

species. Kemp et al. (2000) and Smetacek (2000) theorize that large diatom species 

have slower growth rates, stay at relatively low numbers, and persist longer than 

smaller boom and bust species. Due to lower numbers, they are less likely to 

encounter pathogens and their large size means that they are more heavily armored 

compared to their smaller counterparts, making them less accessible to consumers 

(Smetacek 2000). Bigger cell size would also be beneficial for increased buoyancy 

control, allowing for transfer from nutrient depleted surface waters to deeper strata. 

Given the ability of C. centralis to grow under a variety of conditions (Hasle 

and Lange, 1992), its continual and regular presence nearby in the North Water 

Polynya (Lovejoy et al., 2002) and the lack of significant environmental variation 
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from the region's normal conditions (Cota et al., 1987; Michel et al., 2006), it is 

possible that C. centralis occurs regularly under sea ice in this area and has avoided 

detection up to this point. However, given the high numbers of C. centralis I found 

during our sampling, it does not seem likely that these phytoplankton would have 

been missed by previous expeditions. I suggest that either previous studies sampled 

before the bloom occurred (most took place in April) or, the bloom was unusually 

large during our sampling years. 

3.4.2 Comparisons of stable isotopes and fatty acids in C. centralis and ice algae 

Stable isotopes 

Stable SBC values for C. centralis samples were more depleted and less 

variable than ice-associated producers (Fig. 3.10), which is characteristic of pelagic 

production (Hobson et al., 1995). This is due to the high levels of dissolved inorganic 

carbon available in the water column during growth (Hobson et al., 1995). As 

carbon is very lightly enriched with successive trophic levels, this may be useful to 

discern the relative importance of C. centralis as a carbon source in higher trophic 

levels (Post, 2002). Conversely, ice algae had relatively little variation in SlSN values 

compared to C. centralis (Fig. 3.10), suggesting that nitrate levels are more uniform 

at the ice/water interface than throughout the water column (Tamelander et al., 

2009). The large variation of 015N in C. centralis may inhibit the future use of oisN as 

an indicator of trophic level (Tamelander et al., 2009). 

Fatty acids 

C. centralis had significantly higher levels of PUFAs, specifically essential fatty 

acids (EFAs), compared to ice algae (Fig. 3.4). Although PUFA levels in C. centralis 
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varied depending on growth origin (32-62%) (Fig. 3.12), they were still in the upper 

ranges of what has been reported previously (Dunstan et al., 1994; Parrish et al., 

2005; Leu et al. 2006). PUFA levels greater than 30% are indicative of the 

exponential growth stage of a bloom, where fatty acid deposition is highest in the 

polar lipids of cell membranes (Parrish et al., 2005; Leu et al., 2006)). The 

similarities in fatty acids and shared dominance of characteristic diatom PUFAs 

20:5n-3 and 16:4n-1 in our samples and spring blooms found in Arctic open water 

environments (Leu et al., 2006) suggest that C. centralis are able to actively grow 

under sea ice. 

C. centralis exhibited similar levels to ice algae of other characteristic diatom 

fatty acid trophic markers, including ratios of both 16:1n-7 /16:0 and 20:5n-

3/22:6n-3 (Table 3.1), precluding these indices as identifiers of C. centralis in 

dietary studies (Budge and Parrish 1998; Dalsgaard 2003). I did find larger 

proportions of 18:0 (2.01±1.25%), 18:1n-9 (2.35 ± 1.42%), 18:2n-6 (3.53 ± 1.18%), 

18:4n-3 (2.69 ± 0.45%) and 22:6n-3 (2.66 ± 0.93%) in C. centralis compared to ice 

algae (Fig. 3.4 ), all of which are more commonly associated with dinoflagellates. 

However Dunstan et al. (1994) also found significant amounts of 18-carbon fatty 

acids in their laboratory grown culture of Coscinodiscus spp. It is unlikely that 

appreciable numbers of dinoflagellates were present in my samples due to several 

separation steps, which included rinsing over a 250 µm mesh sieve with FSW and 

the removal of all organisms and particles that were not C. centralis using a 

dissecting microscope. 

In future studies of Arctic food webs, there may be potential to use 16:1n-11 

as a dietary indicator of C. centralis. I found it in noticeably higher levels (2.59 ± 
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0.71 %) than"Was present in our ice algae samples (0.43 ± 0.98%; Table 3.1). 

Furthermore, 16:1n-11 has only been found in trace amounts ( <0.8%) in other 

studies of ice algae (Falk-Petersen et al., 1998; Leu et al., 2010), pelagic diatoms 

(Budge and Parrish, 1999; Leu et al., 2007), bulk phytoplankton (Lewis, 1969) and 

other types of primary producers (Kelly and Scheibling, 2012). Even in studies of 

other Coscinodiscus species, 16: ln-11 has not been reported in significant amounts 

(Dunstan et al., 1994 ), therefore this fatty acid may be a rare instance of a species

specific biomarker. 

3.4.3 Distribution and potential growth sources of C. centralis 

In both years of our study, C. centralis was found at every station sampled. 

Estimates from 2011 were similar to the quantified fatty acid weights/m3 of 2012 

indicating that patterns of abundance may be stable from year to year (Figs. 3.5 & 

3.6). By examining the relationship between total fatty acid weight (mg/station) to 

mg/m3 it is evident that C. centralis is uniformly distributed throughout the water 

column and not concentrated at any specific depth (Fig. 3. 7). Barrow Strait had 

higher weights of fatty acids/m3 (max 0.32 mg/m3) and abundance estimates than 

either McDougall Sound or Wellington Channel (max 0.11 mg/m3) (Fig. 3.6). Based 

on current directions, this means that the largest amount of growth occurred to the 

west, in the region of Viscount Melville Sound, an area that was ice covered during 

both years. The second growth source was north of Cornwallis, potentially Penny 

Strait Polynya or Dundas Island Polynya at the top of Wellington Channel, and had 

much lower associated abundances. 
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Analysis of stable isotopes and fatty acids confirmed that C. centralis were 

originating from two separate growth sources with significantly different conditions 

(Fig. 3.8, 3.9). Cluster 2 had significantly higher values of o15N than cluster 3 and 

overlapped with ice algae (Fig. 3.10). The preferential uptake of lighter isotopes by 

primary producers therefore indicates that the nitrogen availability in Viscount 

Melville Sound was higher than the growing conditions of the northern source 

(Needoba and Harrison, 2004; Ganeshram et al., 1995). The bulk nitrogen isotope 

ratios I found were lower than other Arctic studies for phytoplankton (Tremblay et 

al. 2006) but this may be due to earlier sampling as the N03 pool becomes more 

l)lSN enriched as the bloom progresses (Tamelander et al. 2009). 

Although I do not have direct measurements of the growth origin conditions, 

inferences can be made based on the combination of fatty acid and stable isotope 

values. Samples from Barrow Strait had lower o15N values and high PUFA levels (Fig. 

3.12), these are indicative of high nutrient levels and lower light values, suggesting 

that the growth of these diatoms is occurring under the patchy low light 

environment of pack ice (Tremblay et al. 2006; Leu et al. 2006). In contrast to lower 

latitudes, the photosynthetic capability of Arctic phytoplankton significantly 

increases with nitrogen availability (Matsuoka et al., 2009). Diatoms from the 

northern source were present in lower abundances, had lower levels of PUFA, and 

higher o15N values (Fig. 3.11, 3.12): consistent with a more depleted nutrient pool 

with higher light, such as a polynya. These findings follow in the wake of a growing 

pool of literature that contradicts the traditional view of pelagic production only 

being possible after ice breakup (Ariggo et al., 2012, Mundy et al., 2009). 
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3.4.4 Feeding Experiment 

Despite C. centralis and ice algae having significantly different fatty acid 

profiles, no difference was observable in copepods fed by the treatments. Based on 

turnover rates of lipids in calanoids, a dietary switch should have been evident via 

changes in fatty acids if extensive feeding did take place (Graeve et al., 2005; 

Kreibich et al., 2011). The decreases in EFA 20:5n-3 in both treatments were 

consistent with starvation (Sargent et al., 1993), which in the case of ice algae, was 

probably due to rapid depletion of the added food source. Large cell size of C. 

centralis could preclude nauplii or juvenile copepodites from effectively grazing, 

which may explain the lack of any observable grazing in our feeding experiment. 

Not only were C. centralis cells still healthy.at the end of the experiment, they 

actually increased growth in bottles containing zooplankton, implying that bottles 

with only diatoms were nutrient-limited in comparison (Fig. 3.13). Our feeding 

study also provides a direct observation of the shade tolerance Kemp et al. (2000) 

predicted is crucial for a pre-ice breakup strategy to be successful. Based upon our 

preliminary findings it is conceivable that C. centralis may represent another unique 

form of primary production in addition to the classical ice vs. open water pelagic 

blooms. 

Coscinodiscus can have greater than 10 times the lipid per cell than smaller 

species (Dunstan et al., 1994). This large amount, coupled with their high levels of 

PUFA could make these diatoms a nutritious and important food source for 

copepods, even at relatively low abundances. Alternately, these diatoms could be 

exported to benthic ecosystems; C. centralis has been found in the stomachs of 

benthic fish on South African coastal shelves (Kemp et al., 2000). 
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The importance to either pelagic or benthic systems however, will be 

determined by the palatability of C. centralis. I observed indications that some C. 

centralis cells I collected were producing small amounts of extracellular polymeric 

substance (EPS). EPS has been shown to be a defense mechanism for some diatoms 

including Coscinodiscus spp., and effectively inhibits copepod grazing (Malej and 

Harris, 1993). The production of EPS is thought to be inversely related with 

nutrient levels (Malej and Harris, 1993): a future study looking at differences in EPS 

production between our two source populations would be worthwhile. 

3.5 Conclusion 

Unusually large C. centralis were present at every station during both years 

of our study. Regional abundances were similar year to year and diatoms appeared 

to be uniformly present throughout the water column regardless of depth. C. 

centralis was distinct from ice algae both in its fatty acid and stable isotope profiles, 

having significantly higher amounts of nutritious EFAs. Despite having greater 

nutritional value in comparison to ice algae, it does not appear that copepods take 

advantage of C. centralis as a food source. There may be potential to use an unusual 

fatty acid, 16: ln-11, as a species-specific biomarker for C. centralis. I concluded that 

there are two source populations for C. centralis, one to the west growing under the 

pack ice and one to the north of Cornwallis Island, most likely from a polynya. Lastly, 

based on the size, historic and present distribution, and chemical signatures of the 

diatoms I found, there is evidence that the presence of C. centralis at our study sites 

is not a new phenomena but potentially represents an alternative life-history 
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strategy to the classical view of ice algae transitioning to open water pelagic blooms 

for primary production in the area. 
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Chapter4. 

Conclusion 

4.1 Main findings 
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The main objective of this thesis was to determine if there were 

environmentally driven, large scale patterns in the lipid composition of ice algae and 

how this influenced energy transfer to zooplankton. In Chapter 2 I found that ice 

algae fatty acids did not exhibit any spatial patterns although compositions were 

significantly affected by the thickness of ice and snow (R2=0.28, p=0.001). Snow and 

ice appear to explain similar amounts of variation in ice algae fatty acids regardless 

of scale (Leu et al., 2010). Ice algae fatty acid compositions grouped into three 

distinct clusters however I found no spatial or environmental explanations for these 

groupings. More research is required to explain the remaining variation of ice algae 

fatty acids. 

Calanoid copepods relied heavily on ice algae as a food source (Fig. 2.2, 2.4). 

Polyunsaturated fatty acids (PUFAs) in Ca la nus samples were significantly lower in 

2012 (p < 0.001, Fig. 2.14), which I attributed to lower snowfall in 2012 causing a 

decrease in ice algae PUFA levels (Leu et al., 2010). Aside from Ca/anus, zooplankton 

trophic levels tended to increase with body size (Fig. 2.3). At the trophic levels of 

primary consumers, fatty acid composition was primarily dictated by inflow, either 

from the west or from the north (153 µm: Fig. 2.9; 250 µm: Fig. 2.11, 2.12; Ca/anus: 

Fig. 2.15). Because of the dietary reliance oflow trophic levels on ice algae as a food 

source (Fig. 2.2, 2.4) (S0reide et al., 2010), the influence of inflow implies that 

spatial patterns in ice algae exist, just on a larger scale than this study was able to 
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investigate. Higher trophic levels were less likely to be significantly affected by any 

environmental variable. 

Daily variations in light levels had significant effects on several sample types. 

Zooplankton of 250 µm body size had increased levels of a fatty acid characteristic 

of dinoflagellates, 22:6n-3, on brighter days (Fig. 2.12). Light levels also significantly 

affected the fatty acid compositions of Sagitta elegans (Fig. 2.17). This evidence 

suggesting that community level fatty acid compositions can exhibit day-to-day 

responses to environmental variation is the first I am aware of for an under-ice food 

web (Scott et al., 1999; Leu et al., 2006), and a more thorough investigation is 

needed. 

Our interest in ice algae was due to the spatial and temporal discontinuity of 

Arctic primary production; mainly that ice algae are an important source of food for 

zooplankton during periods of ice cover when pelagic producers are limited (Michel 

et al., 1996). Recent findings however, suggest that pelagic producers play an 

important role in under-ice food webs (Arrigo et al., 2012). In chapter 3, I describe 

the fatty acids and stable isotopes of a large pelagic diatom, Coscinodiscus centra/is, I 

found subsisting under the sea ice. C. centralis had significantly higher levels of 

PUFA compared to ice algae (Wilcoxon rank sum, p < 0.001) and more specifically, 

the essential fatty acids 20:5n-3 (Wilcoxon rank sum, p < 0.001). C. centralis were 

present at every station sampled in both years, but were most abundant in Barrow 

Strait (Fig. 3.5, 3.6). Fatty acid compositions yielded two distinct clusters, indicating 

C. centralis had two source populations (Fig. 3.8, 3.9). One was to the west of 

Cornwallis Island, likely Viscount Melville Sound, and has fatty acid and stable 
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isotope characteristics of a nitrogen rich, low light environment (Fig. 3.10). The 

other population originates to the north of Cornwallis island, and grew under more 

nutrient limited, higher light environment, probably a polynya. Despite the apparent 

nutritional benefit, zooplankton did not appear to be utilizing C. centralis as a food 

source. 

4.2 Future research 

Arctic research is an expensive, logistically challenging endeavour. Because 

of these constraints, studies are often short and have a very specific scope. This 

study has served to initiate a time series of low trophic level fatty acids over a large 

area, and should be maintained. Of particular interest is the relationship between 

large calanoid copepods, ice algae and snow and ice conditions. 

Research in this region should also be expanded to the benthic community, 

although C. centralis does not appear to be important to pelagic grazers, it may be 

for the benthos. Lastly, a particular isoprenoid fatty acid (IP25) in ice algae has 

emerged as a paleological indicator of sea ice cover (Brown et al., 2010). In the 

future I plan on investigating how local environmental conditions influence the 

production and distribution of this biomarker. 
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Appendix: 

Table S.1 Summary of fatty acid common names and their uses as trophic markers 
in Arctic food webs. 

Fatty add Common name Trophic marker Reforrefill(Ce 
14:0 Myristic acid 
16:0 Palmitic acid 
17:0 Margaric acid 
18:0 Stearic acid 
16:1n-7 Palmitoleic acid 
18:1n-7 Cis-vaccenic acid 
18:1n-9 Oleic acid Carn ivory Falk-Petersen et 

al., 1990 
18:2n-6 Linoleic acid 
18:3n-6 y-linoleic acid 
20:4n-6 Arachidonic acid 
22:5n-6 ro6-

docosapentaenoic 
acid 

16:4n-3 Hexadecatetraenoic 
acid 

18:3n-3 a-linolenic acid 
18:4n-3 Stearidonic acid Dinoflagellates Budge and Parrish 

1998 
20:5n-3 Eicosapentaenoic Diatoms Budge et al., 2908 

acid 
'22:6n-3 Docosahexaenoic Dino flagellates Falk-Petersen et 

acid al., 1998 
16:1n-7 /16:0 Diatoms Budge and Parrish 

1998 
20:5n-3/Z2:6n-3 Diatoms Dalsgaard et al., 

2003 
18:4n-3+22:6n-3 Dino flagellates Dalsgaard et al., 

2003 
L odd+branched Bacteria Dalsgaard et al., 
chain FA 2003 
20: ln-9+ 22: ln-11 Ca/anus Falk-Petersen et 

al., 2009 


