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Abstract 

The human visual system is capable_ of tracking multiple visual targets under a 

variety of task constraints and configurations. For nearly two decades, the 

psychophysical literature has shown that moving, occluded visual targets­

targets that are momentarily invisible as.they pass behind an occluding bar-are 

differentially represented by the visual system compared to their moving, non­

occluded counterparts. Here, I sought to examine the neurophysiological basis 

of this behavioral difference in response to occluded versus non-occluded visual 

targets. I used brain imaging to conduct modern retinotopic mapping 

experiments in human participants. Once· their early visual cortices were 

mapped, I was able characterize the neural representations for both targets and 

distractors as well as during moments of occlusion and non-occlusion. The 

results show that, u~ing our method, we ~an distinguish visual targets from 

distractors; furthermore, there appears to be a representation in retinotopically 

organized early visual cortex for visual targets that have momentarily 

disappeared from the visual field due to ·occlusion. 
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1. ·introduction 

This thesis project started out as a small enterprise aimed at determining how the . . 

brain r~presents a moving visual stimulus during a tracking task. The scope of 

the project was initially circumscribed so as to explain how early visual cortex 

differentiates between targets and distractors within the context of its 

representational architecture .. Over the course of two years, the project has 

grown into a package of somewhat dive.rse analytic approaches and 

experimental findings. To answer questions about the dynamic representation of 

a moving object across multiple visual areas, I drew upon methods and findings 

from psychophysical, electrophysiology, and neuroimaging. The thesis is 

organized to gradually build up· a case for using novel neuroimaging techniques 

to determine the role that multiple are~s in early visual cortex play in extracting 

and representing visual information duri~~ a·tracking task. 

Visual tracking is an interesting psychological and behavioral state from 

the perspective of neuroimaging; especially in early visual cortex, because it 

represents the intersection of bottom-up and top-down visual processing. 

Different visual stimuli of equivalent phy.sical properties can be assigned the role 

of target and di.stract~r arbitrarily by the e.xperimenter. From trial to trial, 

participants have no trouble maintaining. this distinction and can perform tracking 

tasks made especially difficult with very little decrement in their performance. 

This scenario begs the question: how.do tqp-down, attention-driven task 

dema~ds affect the bottom-up, stimulus~driven representations of visual stimuli in 



early visual cortex? The answer to this question has been put forth numerous 

times in the literature in the past decade, but none have proposed methods or 

reported findings that differentiate sensory-bound signals from attention-driven 

signals in early visual cortex. This absence is in part due to what seems like an 

analytic and experimental design oversight of one of the. most fundamental 

properties of early visual cortex: retinotopi.c organization. 

After describing some basic methodol.ogical details that subserve all 

experimental aspects of the thesis, I summarize the development of retinotopic 

mapping in visual cortex, from nascence to the state of the art. Recent advances 

in neuroimaging has moved towards· an approach that attempts to describe the 

point-for-point registry between visual ·.antj cortical space with a level of precision 

suitable for dissociating concurrent visual processes deployed across the visual 

field. Such an approach offers insight into how bottom-up, stimulus-driven 

responses might differ from top-down, attention-drive signals across multiple 

visual areas and for different task conditions. 

The fourth section presents a novel neural decoding method in the field of 

neuroimaging. Here, I detail the development of an algorithm for generating 

reconstructions of visual stimuli based on the retinotopic mapping and functional 

time-series acquired with functional brain imaging. The method allows 

experimenters explore aspects of how the brain's voxel-wise activity varies as a 

. . 

function of the pattern of visual stimulation and task instruction. Rather than 

claiming something about how a given v.isual area changes its response during 
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tacking compared to rest, we ~re able· to ask questions a~out how a given visual 

area represents a portion of the visual space while a target passes through it 

compared to a distractor. 

The fifth section of the thesis goes on to implement the stimulus 

reconstruction method for a scaled-down version of a tracking task. The method 

allows for the teasing apart of signals associated with tracked and non-tracked 

items across multiple visual areas. I was able to demonstrate that the signal 

associated with tracked and non-tracked items as well as occluded and non­

occluded items can be differentiated within the same visual area at the same 

moment in different retinotopic locations. 

The final section to the paper a~empts to make sense of the results of the 

tracking experiment both in te_rms of the. p~ychophysical tracking literature as well 

as the underlying neurophysiological meaning of the recorqed brain imaging 

signal. The story for what the expected brain activity should be given the 

imaging technique and the task demands is quite complex. I try to frame this 

complexity in terms of how the brain activity in early visual cortex might express 

forms of stimulus enhancement .and/or inhibition as a result visual stimulation and 

task demands. I offer several possible explanations for my results, as well as 

some suggestions for experiments .moving forward. 
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1. 1 Multiple-object tracking 

The multiple object tracking (MOT) para~igm was first introduced by Pylyshyn 

and Storm (1988). Myriad variations on the original MOT task structure have en 

developed throughout the years, but the essential spirit of the task has remained 

relatively the same. Particip~nts fixat~ a central point on a visual display while 

an array of dots are presented on the screen at the outset of a trial. A subset of 

the dots are indicated as targets, usually via a brief change :in luminance. 

Following the cue period, all of the dots s·et off in motion at a constant velocity 

around the display space. After som·e time, the dots stop moving and a single 

dot is probed. Parti~ipants are require_d t<? respond as to whether the probed dot 

is a target or distractor. 

Storm and Pylyshyn (1988) discovered that participants performed quite 

well at distinguishing targets from distractors for up to target and di:stractor set 

sizes of 10, performing about 85% correct; tracking more than 5 targets (or 

. . 

contrarily ignoring more than 5. distractors), was shown to be beyond the ability of 

the participants (Storm & Pylyshyn, 1988; Pylyshyn, 1989). This pattern of 

performance as a function of target set size has been replicated across the years 

for various MOT stimuli aside fro_m dots, including surfaces (vanMarle & Scholl, 

2003), objects (Alvarez & Franconeri, 2007), and faces (Ren et al., 2009). Since 

targets and distract6rs were identical in terms of their featural qualities, Storm 

and Pylyshyn reasoned that the visual processes that support the participants' 
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trackin.g performance must individuate· attended and ignored stimuli based on 

their current and historical spatial locations. 

Storm and· Pylyshyn constructed a model to determine whether 

participants' performance on the MOT.task for target set sizes of up to 5 items 

relied on parallel or serial tracking mec~anisms in the visua1I system. They rightly 

pointed out that if the mechanisms of visual tracking were truly operating in 

parallel, then there should be no gradient of performance as the number of 

tracked (or ignored) items increases. Conversely, If visual tracking operated via 

a serial mechanism whereby participants rapidly shift the locus of attention 

around the visual field from item to item in rapid succession 1in order to maintain . . 

the identifies of targets and distractors, then errors and latency should increase 

with both the number of targets and distractors as well as the distance between 

them. 

The experimenters estimated the trade off between attentional velocity 

(i.e., the rapidity of attentional shifts in a serial tracking process) and 

performance and fou~d that participants.' performance for target set sizes of up to 

5 items outpaced the performance of a serial tracking model (Pylyshyn, 1989). 

With target set sizes larger than 5, participants' performance drop off .. 

precipitously. That participants outperform a serial tracking model but show a 

degra~ation in performance with large t~rgef set sizes indicates that tracking sits 

somewhere between a purely· serial and purely parallel process. That is, for a 

certain number of items to be tracked,· the visual system can deploy tracking 
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mechanisms for each target in parallel"; .however, with target set sizes beyond this 

limit, the processing demands exceed the capabilities of parallel deployment. 

Pylyshyn hypothesized the existence of ''fingers of instantiatio.n" (FINSTs) to 

explain how multiple targets can be individuated automatically and in parallel to 

subserve processes engage~ in the ~OT task. A FINST is resource-limited. 

mechanism that individuates features in the visual scene, but which is separate 

from its retinal location per se. In the case of the classic MOT experiment where 

targets and distractors are identical in luminance and form, their feature-based 

distinguishability relies solely on ·their spatial locations and histories. Hence, 

spatial location becomes the feature indexed by FINSTs associated with each 

target, allowing the visual system to correctly identify a target in motion over time. 

The individuation of targets via the FINST mechanism is thought to occur 

in a pre-attentive stage of processing, an~logous to the featur·e integration model 

proposed by Treisman and Galade.(1980) to explain var'ious behavioral 

phenomena of participants e·ngaged in.·a visual search p~radigm. Visual search 

comes in two basic flavors. Feature search where targets and distractors differ in 

terms of a single feature demonstrates the pop-out effect. Under such a search 

regime, the reaction time for finding the target does not scale with the number of 

items in the array. Instead, the target will effortlessly pop out because the feature 

has been abstracted in the preattentive.stage. Conjunction search, on the other 

hand, uses search arrays where targets and d istractors share two or more 

features. Reaction times will scale with the number of items in the array as 
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attention is guided by the conjunction ·of two or more preattentive features, 

behaviorally manifested as participants· conducting a serial search through the 

array. Efficiency of search relates the speed at which participants' are able to 

identify the target and the number of items in an array. Search efficiency is used 

to delineate separable features from integral features. That is, if a particular 

search array is found to be inefficient, then it is reasoned that attention is 

required to bind .multiple separable features. into an integral feature as the 

participant searches for the target among distractors. Efficient searches indicate 

th~t preattentive processes select on a separable feature and guide attention to 

the target directly. The two-~tage mo~el was put forth as a way of explainin~ how 

certain conjunctions of features seem to require a serial search strategy and 

longer reaction times whereas searches for the constituents of those 

conjunctions do f'10t. The model sets out·a framework for experimentally 

determining, for a given scene, whatshould be considered a separable or 

integral feature. 

Within the FINST model, spatial location becomes a feature through which 

multiple items can be .individuated, tracked, and identified when probed. An 

interesting extension of the classic MOT paraqigm has shown· that participants' 

performance can be modified when the targets and distractors interact with 

occluding bars in the display: Scholl and Py~yshyn (1999) .found that participants' 

were able to track targets regardless of whether the targets passed behind 

occluders. In other words, even though the stimulus is momentarily extinguished 
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from the display, participants have no difficulties in persisting the representation 

(FINST) long enough for the stimulus to traverse the occluder and reappear on 

the display. lnteresti~gly, the experiment~rs also found tha~ this equivalence 

between occluded and non-occluded tracking can be destroyed when unnatural 

forms of occlusion are used. In th~ natural world, objects that pass behind and in 

front of one another cause their boundaries to delete and accrete in an ordered 

succession. Scholl and Pylyshyn designed control conditions where occlusion 

occurred in an unnatural way.· Here, the objects would implode and explode or 

instantaneously disappear and reappear upon intersecting and reemerging from 

behind an occluder. In these cases, participants were up to 30% worse at the 

MOT task with unnatural occlusion compared to natural occlusion. These 

findings imply that the visual system not only represents occ~luded items but that 

there may be some mechanisms that cannot identify unnatural occlusion in the 

course of deploying tracking resources. 

Extending these findings, Flombaum and others (2008) found th~t the 

deployment of attentional resources can be biased by occiusion. Here, they had 

participants track targets and ignore distractors transiting around a field with two· 

occluding bars. Participants were able to perform the tracking task equally 

during occlusion and non-occlusion t,rials, successfully identifying targets around 

90% of trials. To investigate. how attention varies as function of occlusion and 

tracked item identity. the experimenters .. included the appearance of brief (100 

ms) probes that'the p~rticipants.were asked to acknowledge via button response. 
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Targets and distactors were probed during moments of occlusion and 

. . 
nonocclusion an equal number of times through all trials .. Two interesting 

findings fell out of the behavioral responses to probes among these four 

conditions. First, they confirmed the existence of distractor inhibition described 

previously (Pylyshyn, 2006). Distractor inhibition manifests itself behaviorally as 

a lower probe detection rate_ (20%) for probes that occur at or near distractors 

compared to targets. This finding suggests that attention deploys some kind of 

mobile suppressive resource that has information about the, location and identity 

of a particular tracked item. 

In addition to distractor inhibition, Flombaum and _others posited a new 

behavioral finding they dubb~d the "attentional high-beams effect". The· 

attentional high-beams effect manifests itself as a behavioral advantage for 

identifying target and distractor probes during moments of occlusion compared to 

nonocclusion. Specifically, participants were 22% and 33% better at identifying 

probes on targets and distractors during occlusion compared to nonocclusion. In 

other words, participants are better at the detecting probes near targets and 
. . 

distractors during moments where occluders obscure them from view. 

Interestingly, distractor probe detection benefits more from occlusion than does 

target probe detection; however, target p~obe detection was a·lways higher than 

distractor probe detection. 

Distractor inhibition arid. the attentional high-beam~.effect offer two 

interesting behavioral cases for investigating the role of neural mechanisms that . 
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support visual tracking specifical.ly ar:id perhaps visual spatial attention generally. 

How do the neural representations of fargets and distractors differ in light of 

distractor inhibition? How do the neural· representations of 'occluded and 

nonoccluded tracked .items differ in light .~f the attentional high-beams effect? 

Surprisingly little is known about the an~wers to these quesitions, despite the 

leaps and bounds made in the past decade in the field of human brain imaging. 

To position ourselves better to answer the. questions about the underlying neural 

mechanisms supporting tracking and its various quirks, a review of the brain 

imaging literature focusing on· multiple object tracking is helpful. 

1.2 Neural correlates of tracking 

In comparison to the vast wealth of psych.ophysical experiments employing 

variants of the MOT task, relatively little is known about the neural correlates of 

MOT, and the neural representation of complex stimuli in geineral. The majority 

of studies using functional brain imaging (fMRI) to measure brain activity related 

to tracking tasks rely on statistical· methods to detect regions of the brain that 

show elevated blood-oxygenation-dependent (BOLD) sign·a1, for tracking versus 

passive-viewing blocks of trials. The ex·perimental paradigm is an alternating 

task structure whereby participants' brain. activity are recorded during epochs of 

effortful tracking and during passive yiewing. Statistical maps are computed that 

summarize the pattern of activity among .all the voxels during each of these task 
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epochs. The activity that occurs during tracking above and beyond the baseline 

activity is computed as the differen~e between the two task states. 

In the first experiment to probe· ~he un'derlying neural mechanisms 

suppo~ting visual tracking, Culham and others (1998)-using the subtraction 

method-found that compared to a passive viewing conditi:on, voxels throughout 

occipitotemporal, parietal, and frontal cortices showed significant activation 

across both hemispheres during a tracking task. In particular, they found that 

both the motion-sensitive MT+ and the form processing lateral occipital cortex 

(LOC) showed significant activation for tracking versus pas:sive viewing. in 

addition, they found multiple foci of significant activation in parietal cortex for the 

tracking versus passive viewing contrast,· including two sites in the intraparietal 

sulcus (IPS) and superior parietal lobule (SPL). In the frontal cortex, they found 

that frontal eye fields (FEF) and supplementary motor area (SMA) were 

significantly more active·tor tr~cking vers~s passive viewing (Culham et al., 

1998). 

A major problem with this·study, and with the statistical contrast method in 

general, is the lack of specificity in the. contrast between an effortful task state 

and passive viewing. Tracking as a psychological and behavioral state brings 

with it an array .of neural mechanisms that subserve the task demands. 

Passively viewing a MOT task may crudely control for the low:.level visual 

components of a tracking task;. however, this condition would not account for the 

increased demands on spatial visual attention, vigilance, or response planning 
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among others. The contrast method lumps together all hig1her-level perceptual 

and cognitive processes into a monolithic statistical effect in contrast to passive 

viewing. To more finely gauge the involvement of different'task demands and 

their corresponding neural mechanisms, experimenters have used the method of 

parametric variation to define the involvement of different brain regions in the 

MOT task. 

Rather than simply defining two states of the task and the corresponding 
.. 

brain imaging data, the parametric variation approach is to use small, 

incremental changes in the task demands in order to enco'de corollary 

incremental modulations in the BOLD a<?tiyity among voxels measuring neural 

activity related to the task. Within the realm of MOT, this is usually implemented 

by way of increasing the number of items to be tracked. With increased numbers 

of targets, the supposition would be that BOLD activity should scale accordingly 

in areas that are specifically representing tracked items. Any brain areas which 

may be active to support a general vigilarwe or attention component of the task 

that does not scale with the number of tracked items should not change its level 

of activation. 

In a follow-up to their original f~RI tracking experiment, Culham and · 

others.(2001) found that the pattern ofresults in their earlier work was not as 

straightforward as their simple contrasts s·uggested. Here, the participants 

tracked between 0 and 5 targets, as i_ndicated at the outset of a given trial. In this 

context, 0 targets is analogous to. the passive viewing condition discussed earlier 
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in relation to their original 1998 experiment. The tracking component of the task 

was only prese.nt for target set sizes of 1 and greater. The parametric design 

allowed the experimenters to parse out patterns of activation driven by the 

general demand characteristics of the task from the patterns of activation 

involved in tracking on the basis of whether voxels demonstrated a scaled BOLD 

amplitude in conjunction with variable target set size. They found that sites in 

!PS-specifically the anterior intraparieta_I sulcus (AIP) and posterior intraparietal 

sulcus (PIP)-showed increased BO_LD amplitude that scaled with the number of 

' 

items tracked. In contrast to their origi"n~I 1998 findings, while voxels in areas 
. . 

FEF, SPL and MT+ all showed significantly greater activation for tracking versus 

passive viewing·(i.e., 0 targets), the activation levels in these areas did not 

parametrically vary with the number of distractors. In other words, the BOLD 

amplitude in these three brain areas remained tonically high during periods of 

tracking regardless of the number of items participants were cued to track. This 

seems to suggest that while certain areas in IPS subserve specific target-related 

demands of the tracking task,· areas FEF, SPL, and MT+ are recruited to support 

non-specific task-demands such as spatial attention, vigilance, and response 

planning (Culham et al., 2001 ). These results have been replicated in other 

functional imaging s.tudies using the parai:netric variation of attentional load 

during a tracking task (Jovicich, 2001 ; Howe, 2009). In general, the level of 

activation of vo"xels in posterior parietal cortex seems to scale. with the attentional 

load of the tracking task; frontal areas, including FEF and SMA, do not show 
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patterns of activation that scale with target set size. These findings are 

suggested to demonstrate the role of parietal cortex in the deployment of visual 

spatial attention resources. 

These findings add detail to the ·body of literature showing broad task­

driven ·responses in parietal and frontal".cortices (Kanwisher & Wojciulik, 2000; 

Wojciulik & Kanwisher, 1999). However, _a glaring absence in these imaging 

experiments exploring the neura.1 representations of MOT is the pattern of 

activation in early visual areas. Since early visual areas are retinotopically 

organized and the functional topographies of these areas are well defined 

(Wandell et a., 2007), differences in the _representation between targets and 

distractors should be detectable and ascribed in the coordinates of the retinotopic. 

space. Rather than comparing the relative differences among groupings of 

voxels and variations of task.conditior\ _it should be possible t0 trace the history 

of a target or distractor in terms of BOLD signal modulation ac'ross the human 

cortical surface in retinotopic space. If such an approach is possible, then it 

becomes relatively simple to compare. the representations of targets and 

distractors or stimulus and attention dynamically as a task unfolds. 

1.3 Hypotheses: squaring visual tracking and functional imaging 

The results of psychophysical experiments investigating the de~loyment of 

attentional resources during a tracking task suggest two interesting behavioral 

mainstays: 1) distractor inhibition and 2) the attentional-high beams effect. 
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Distractor inhibition describes the suppression of attentional salience at or near 

the visuotopic locations of distracting items. The attentional-high beams effect 

describes the enhancement ·of attentional salience at or near the visuotopic 

locations of occluded items, target or distractor. From these two behavioral 

findings, it is possible. to begin to formula~e hypotheses for ho.w neural 

mechanisms may deploy resources across retinotopic space under various 

circumstances. Distractor inhibitior:i should manifest itself neurophysiologically as 

a relativ~ increase in blood-oxygen-lev.el-dependent (BOLD) signal in brain tissue 

repres~nting the retinotopic coordinates. at or near distractors. Psychophysically,. 

distractor inhibition can be thought of as a negative bias in the salience map of 

the visual field at ·or near distractors, yi~lding low probe detection rates. 

However, since the BOLD signal cannot dissociate excitation from inhibition 

(Logothetis, 2008), the expected result would be an increase in the BOLD signal 

for neural tissue corresponding to the location of the distractor in retinotopic 

space, assuming an equivalence between psychophysical and neural inhibition. 

The attentional high-beams effect should· manifest itself neurophysiologically as a 

relative increase in the BOLD signal in tissue representing the retinotopic location 

at or near occluded items. 
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2 .. General Methods 

The sections that follow outline the.collection and analysis procedures that are 

common among the visual mapping .and attention experir'!lents. Special 

attention will be paid to describing the analyses specific to each of the 

experiments in subsequent chapters. 

2. 1 Participants 

Measurements were obtained from 4 participants (two.female; ages 25-31 

years). All participants had normal or corrected-to-normal visual acuity and gave 

written informed consent approved by the York University Institutional Review 

Board. Participants submitted to a visuar field mapping and a multiple object 

tracking experiment. 

2.2 Magnetic resonance imaging 

Magnetic resonance images were acquired with a 3T Siemens Trio Tim scanner 

and a 32-channel head coil. Foam padding was used to minimize the 

participants' head-motion. Participants were not naive to a scanning 

environment, having been previously.arid repeatedly instructed on how to 

comport themselves if} the scanner so as. to minimize head m.ovements. 

Functional images (flip angle = 90 °, TE = 28 ms, TR = 1500 ms, 256 mm 

FOV, 128x128 matrix, 2x2x2 mm v9xel, 6/8 partial phase Fourier, GRAPPA 

parallel imaging with 2x acceleration f~ctor, bandwidth = 752 Hz/px) were 
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acquired using an echo-planar pulse sequence with 20 coronal slices oriented 

perpendicular to the anterio~-posterior axis of the calcarine sulcus. Ten visual 

. . 

mapping runs and 10 tracking runs were collected from eacn subject in two 

scanning sessions on separate days. 

In addition, a T1 weighted three-dimensional MPRAGE .sequence scan of 

entire head with an isotropic 1 mm3 voxel (TR = 1900 ms, TE = 2.52 ms, 1 mm 

slice thickness, ·256 x 256 m~trix) .. Th.e T1 weighted sequence yielded a high 

contrast, high spatial resolution 3D structural image from which to derive surface 

reconstructions for function al data projecUons. 

2.3 Image processing 

All anatomic~! images were proce~sed through the FreeSurfe.r software 

package (Dale et al., 1999; Fischl et al., 1999), yielding surface reconstructions 

onto which statistical maps can be projected. For clarity in presenting data, the 

surfaces can be cut and flattened, offering a s~ngle-perspective view of an entire 

hemisphere. Smaller .sections were cut from these hemispheric flat maps, 

. . 
isolating the occipital lobe of each hemisphere. 

-All functional data were processed through a common analysis pipeline. 

All runs were slice-time corrected to ensure that the time-series of all voxels 

within a volume acquisition were aligned with respect to the visual stimulation. 

Data were then motion-corrected to the first volume of the first run for a given 

scanning session. Each run was deskulled and each t.ime-series mean-centered 
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and variance normalized. Since ea~h participant was scanned in multiple 

sessions in order to acquire all the· nec~ssa·ry pRF estima~ion and visual tracking 

data, i~ was necessary to transform all the data to a singular, common space. We 

used an affine registration procedure to ·register all functional runs with a single 

high-resolution T1 from which the surf.ace reconstructions were generated. The 

registration algorithm uses a local Pea_rson coefficient cost function (Saad et al., 

2009). This alignment prescription is designed to align functibnal and anatomical 

images based on local similarities in the images. Since the g1ross shape of the 

functional and anatomical images are quite distinct due to differences in the 

susceptibility artifacts and field distortion between the two pulse sequences, cost 

functions that use global shape to.drive the alignment between these types of 

images often fails. 

2.4 Volume censoring noise reduction 

In addition to these standard f_orms of fMRI data preprocessing in 

preparation for statistical analysis·, we ernployed noise reduction procedures for 

removing spurious signals from our data resulting from head-motion (Powers et 

al., 2012) and physiol?gic noise. (Thomas. et al., 2002). 

Motion-correction is a procedure whereby series of three dimensional 

volumes-which are typically concatenated over time to.produce a single four 

dimensional volume-are brought ·into sp~tial alignment with some reference 

volume of the same spatial resolution via an affine spatial transformation. While 
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there are many different implementations of motion-correction for images, the 

common thread throughout is an error minimization between the reference image 

and the motion-corrected image. The result of such a proce,dure is a six 

parameter spatial transformation that describes the translation (three degrees of 

freedom, units are in millimeters) and the· rotation (three degrees of-freedom, 

units are in radians) require~to bring the two images into alignment. ln.add.ition, 

these parameters tell us how much our participants moved during a scanning 

session by combining the vari,ous parame~ers into a singular measure. We can, 

in turn, use this n:ieasure to explicitly discount certain data points due to 

abnormally high amounts of head-motion. The measure adopted in this 

particular study was framewise displacement (Power et al., 2012). 

Framewise displacement expresses the instantaneous head-motion in a 

scalar quantity with th.e formula . 

where 

for a particular m~tion parameter. The same evaluation was used for each of the 

other motion parameters. The rotational displacements were converted from 

radians to millimeters to standardize the units across parameters. Once the 

framewise displacement had been computed for every volume in a given 
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scanning session, particular .volumes ~ere flagged as containing too much head-

motion if the framewise displacement measure exceeded a predetermined 

exclusion criterion. The exact exclusion criterion varied from scanning session to 

scanning session, but typically was se.t so as to remove the volumes whose 

framewise displacement exceeded the value that demarcated the 95th percentile 

of all volumes. Dis~ounted volumes w.ere. removed from the, computation of the 

mean run for a given experiment. 

2.5 Component-based noise reduction·. 

In addition to censoring volumes based on their framewise displacement 

. . 

as derived from the head motion parameters, an independent component 

analysis (ICA)was used to identify spurious signals embedded within the time-

course of each voxel. Each functional dataset is processed through MELODIC 

(Beckmann & Smith, 2002), a fr~e software tool that decomposes a four 

dimensional brain imaging d.ataset into a set of independent spatial components, 

each of which is associated with a particu·lar temporal component. The linear 

decomposition of the voxel time-series via ICA assumes that a given voxel time-

course is the weighted sum of an indeterminate number of components. 

However, because ICA is model-free, no automated tools exist for identifying 

certain components as being stimulu~-driven from those which :owe to · 

physiologic noise such as respiration or scanning artifacts such as susceptibility 

artifact. Noise components were identified if their frequency was less than half 
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or more than twice our stimulus frequency. For instance, the stimulus frequency 

of the bar stimulus was computed to be 0.067 Hz, where visually responsive 

voxels should show 8' peaks corresponding to the 8 bar sweeps over the course 

of the 120 volume run. Any ICA components which showed a frequency less 

than 0.033 Hz qr more than 0.133. Hz were flagged as being physiologi~ noise or 

otherwise as not emanating from the visual stimulation. · 

'Once flagged, noise components were removed from the raw time-series · 

of each voxel using the standard multiple. regression expression 

y = /30 + £. 
l. 

However, in our approach to reducing the. contribution of noise to a given voxel 

time-series, we were less interested in the parameter estimate f3 than in the 

residual error £. In the applying gener~l 1.inear model, each of our independent 

variables is a temporal component .derived from the ICAwhich is outside of the 

frequency band we've defined for a stimulus-driven signal.. Hence, the variability 

in our qata that is not accounted. for by the designated noise components is 

assumed to reflect stimulus-driven activity. 
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3. Mapping the visual space using functional brain imaging 

To be able to ask questions about differing neural representations for targets and 

distractors under occlusion and nonocclu.sion, it is necessary to take a 

cartographical approach to early. visual· cortex. The changes in the neural 

representation during a tracking task Will _vary both in terms of the configuration of 

the task structure as well as the locations of the targets and distractors. In order 

to fully dissociate the signals related to t~rgets and distractors or occluded and 

nonoccluded items, we need to precisely relate ~he visual space to cortical 

space. Defining the stimulus in visual space, then, should lead us to the 

corresponding signals in the .cortical space. This retinotopic mapping of human 

cortex is not a new enterprise, and emanated from somewhat humble 

beginnings. 

3. 1 Retinotopic Mapping in the Human Visual System 

The retinotopic org~nization of humanocc;;ipital cortex was first discovered in the 

early 20th century (Holmes, 1918). Evidence for an orderly spatiotopic map in 

the human cortex for representing the visual field bore out of ~erimetry 

experiments using veterans of the First World War with head trauma sustained in 

combat. The orderly relationship between the location of scotomas and occipital 
. . 

lobe lesions led to the conclusion that the ·brain represents the visual field in 

terms of retinal coordinates. The archive of neurophysiological research owes 

much of its expanse to this early work. In the last 50 years, enormous strides 
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have been made in characterizing the representational topography of the visual 

world in the central nervous system. 

The validity and efficacy of research exploring the neural basis of visual 

processing hinges on the capacity of the experimenter to faithfully survey the .. 

retinotopic functional organization through_out the cortical and subcortical 

pathw~ys. For decades, the standard operating procedure for electrophysiology 

experiments investigating visual processing has been a two-phase enterprise. 

First, experimenters define t_he location, extent, and boundar,ies of a neuron's 

classical receptive field. Once the classical receptive field is experimentally 

defined, a given neuron's response prope_rties are explored by comparing the 

relative neural activity when stimuli are presented inside versus outside the 

receptive field (Hartline, 1938; Hubel & Wiesel, 1963; Hubel & Wiesel, 1968). In 

the arena of functional brain imaging, this experimental approach can be adopted 

with relatively little modification; The real challenge is to adapt the clas~ical 

receptive field model in such a way as to make it useful for brain imaging 

research, taking into account the disparity in both spatial and temporal scale 

between single-cell electrophysiology tec_hniques and whole-brain magnetic 

resonance imaging. 

The functional organization of earl_y human visual cortex has been the 

topic of extensive neuroimaging research (Engel et al., 1994; Sereno et al., 1995; 

De Yoe et al., 1996; Tootell et al., 1997) .. FMRI offers a unique experimental 

avenue by which multiple.visual areas can be functionally sampled concurrently, 
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allowing researchers to probe the respo.nse properties of multiple visual areas 

with a single dataset and analytic approach. Traditionally, using fMRI to map 

visual areas has relied on the traveling .wave paradigm whereby periodic 

modulation in the visual stimulation accompanied by a frequency-domain 

analysis of the imag.ing data allows researchers to distinguish visually responsive 

voxels according to the frequency and phase of their responses. Presenting the 

visual system with a stimulus that varies periodically over time and space should 

entrain voxels to the periodicity of the stimulus. Since neurons in early visual 

areas have bee.n shown to have retinotopically organized receptive field.s, 

adjacent voxels-which presumably· respond to adjacent portions of the visual 

field-show slight differences in ·the phase of their periodically entrained 

responses. Hence, transforming the time-series to the frequency domain via the 

Fourier transform and computing the phase at the particular stimulus frequency 

(say 8 cycles per scan) will inform the results about the spatiotopic relationship 

between the retina and cortex. 

While the phase-encoding metho9 for performing retinotopic mapping is 

robust and widely recognized within the field, it is limited in its. precision for 

determining both the location and dispersion of.the representation in the visual 

field. Since a the phase of avoxel. reveals information about where in a· periodic 

stimulus' cycle to which it's most responsive, two sets of runs are required for 

determining the polar angle and the eccentricity of the voxel. Later, that 

information can be combined to yield a screen coordinate for each voxel, but it is 
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impossible to determine to extent over which a voxel pools its response in the 

visual field. In order to measure and later utilize information about each voxel 

responsiveness in terms of the location in and the extent over the visual field, we 

invoked the population receptive field _model (Dumoulin & Wandell, 2008; A~ano 

et aL, 2009). 

A. 
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Figure 1. The sweeping bar stimulus transits the visual field in 8 different directions 
over the course of a single run (A). Assuming that each portion of the bar stimulates 
equally, differing responses can be elicited_ based on both the location and 
dispersion of a·hypothetical population ·receptive field. Differentiable time-series are 
attainable by comparing the luminance intensity changes for two 1. 

0 

patches of the 
visual field (B, red and blue). Changing the. size of the patch to 5° (C) allows for the 
di_scrimination of two identical positions. 
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3.2 The population receptive field model . 

The population r~ceptive field (pRF) ~odel takes adva~tag~ of the fact that we 

know how a the response of a voxel should vary over a range of locations as well 

as receptive field sizes. The only requirements for such a methodological 

approach is that the visual stimulation varies over time and space and that it has 

a linear relationship with the measured neural activity. A toy ~xample of how 

presumptive visual signals might vary across t~e visual is shown in Figure 1. 

Given a sweeping bar stimulus that systematically sweeps through the visual 
. . . 

field, plotting the luminance ch_anges that occur over the <?Ourse of a run at 

locations· ( x1 ,y1) and (x2 ,y2 ) highlights differentiable luminance signals at each 

location. Further~ore, pooling the signals for multiple _locations surrounding 

( x
1 
,y

1
) and ( x2 ,y2 ) yields an even subtler difference in the luminance signals. 

This example offers.an intuitive sense .for .how signals among voxels may vary 

according to the locations and dispersions of their responsiveness across the 

visual field. The pRF.model is an encoding model in that the ·signal derived from 

each voxel is driven in a systematic way via the pattern of visual stimulation. The 

parameters of the model can be qu'antitatively worked out so long as th~ 

measured signals have a linear spatiotemporal relationship with respect to the 
. . 

stimulation (Boynton et al., 1996), and that the precise pattern of the stimulation · 

is known during the analysis phase. 
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3.3 Population receptive field stimuli 

The visual field mapping. stimuli consisted of a moving bar aperture that 

• " • • I 

revealed a high-contrast (100°(0) flickering· checkerboard pattern, reversing 

contrast at a rate of 4 Hz. Over the course of a single run, the bar was presented 

at four orientations (0°, 45°, 90°, and 135°). The bar moved in the two opposite 

directions perpen.dicular to their orientation, yielding a total of 8 different bar 

sweeps per run (Figure 2). The projection system and bore sized allowed for 13° 

of visual angle from·fixation. Each bar traversed 26° during a pass, always 

starting in the periphery, passing throug.h fixation, and terminating in the 
. . 

periphery, The bar width was set to 1 /4th of the presentation field radius (3.25°), 

as prescribed by previous pRF papers (Dumoulin & Wandell, 2008; Amano et al., 

2009). The bar.moved across the field in discrete 0.625° steps across the visual 
. . 

field, with each step being time locked .to the collection of a new functional brain 

imaging volume. Each bar svveep took a ~otal of 60 s to trave:rse the visual field. 

~moa0ooeoosoomoo0aoepostj 
. . I ~ 

~· / ~ ;I 
------------Time-----------,. 

Figure 2. The visual field mapping stimuli consisted of a moving bar'aperture that 
revealed a high-contrast (100%) flickering checkerboard pattern, reversing contrast at a 
rate of 4 Hz. Over the course of a single run; the bar was presented at four orientations 
(0°, 45°, 90°, and 135°). The.bar moved in the two opposite directions perpendicular to 
their orientation,. yielding a total of 8 di.fferent bar sweeps per run. 
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3.4 Population receptive field estimation 

We modeled the fMRI signal as a function of both the location in the visual field 

to which a given voxel is responsive (x,y) as well as the dispersion of the 

response across the visual field a . Hence, our 3-parameter model yields two-

dimensional Gaussians which vary in location, extent,· and amplitude as a 

function of dispersion across the visual f·i~ld from voxel to voxel. The Gaussian 

function 

g(x,y,a) 
· .. · .. · (<x-xo)2 +(.Y-yo)2 J 
exp-

: ·. 2a 2 

provides the formulation for the popul_ation receptive field where x0 and Yo 

represent the coordinate ma.trices defined by the horizontal and vertical 

dimensions of the vfsual display and <i denotes the standard deviation. The 

location and si~e of t~e Gaussian can be .arbitrarily set by varying the parameters 

(x,y) and a, respectively. 

The effective stimulus (L.e., ·the sweeping bars) was characterized in terms 

. . 
of its position on the screen (x,y) ata discrete unit of time t . Assuming that all 

portions of the flickering ·chec~erboard pa~ern contribute equally to the fMRI 

response (Engel ~t al., 1997), the predicted hemodynamic signal can be 

computed by multiplying the two-dimensional Gaussian by the stimulus frame at 
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a given time-step and summing the product. Doing so over al_I time-points yields 

·an.expected fMRI response (r) for a given model-parameter triplet (x,y,a) 

r(t) Ls(x,y,t)g(x,y,<J) 
x,y . 

The expected response r was then convolved by the canonical hemodynamic 

response function (Glover, 1.999; Frist6n .et al., 1998; Worsley et al., 2002) to 

yield a predicted fMRI signal 

p(t) = ·.r(t)*h(t) 

. The goodness of fit was computed as the residual sum-of-squares (RSS) 

between the actual fMRI response and the prediction 

·. L,(y(t)- p(t))2 

In estimating the model parameters, .two difficulties arose in turn: first, due to the 

multitude of possible solutions in estimat~ng the model, an exhaustive brute-force 
. . 

search would be impractical; second, if a gradient-descent error minimization 

procedure for model estimation was employed, an initial starting point for the 

model estimation would have to be provided. I employed a two-phase, coarse-

to-fine model estimation strategy that used an abbreviated brute-force search to 

discover the initial parameter settingsJ<;>r the gradient-descent error minimization 
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routine to converge on the final solution. All pRF estimation routines were 

recreated and reinvented by the author of this thesis. The software was written 

independent of the 9ode base distributed .bY the originators of the pRF model and 

will be made available under a public· use license. 

The first phase of the parameter estimation approach involved a brute-

. force grid-search that regularly sampled· candidate values in the parameter 

space. Because of the multitude of possible model solutions' and the 

combinatorics entailed, the grid-search estimation procedure was handed a 

coarsely sampled effective stimulus and roamed a sparsely sampled parameter · 

space. The effective stimulus was down-sampled to a resolution of 5% of the 

original using a three-dimensional linear interpolation. The procedure for 

sampling the parameter space was slightly more sophisticated. Here I 

implemented an adaptive brute-force search that would iteratively tighten the 

bounds of the three parameters via erro~ minimization. Each parameter was 

given four evenly spaced dimension coordinates with which to' generated a 

prediction. The RSS between it and ·the actual measure.d sign1al was computed 

for each of the 64 (4x4x4) permutations. The triplet with the lowest RSS was 

selected was selected as the seed for a new brute force within each of the three 

parameter dimensions, again 'Using regularly spaced samplings along each 

dimension. At each iteration through this procedure, the distance between the 

samples became incrementally smaller at square rate. The initial dist~nce 

between the bounds and the number of iterations could be set arbitrarily, 
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· although certain search configurations may lead to an overwhelming penalty in 

terms of computational time .. The .point of the adaptive brute was to ball. park an 
' • ' I 

initial guess to use as a starting point for a gradient-descent error minimization. 

The gradient-descent pro"cedure ~~ed was a downhiM simplex algorithm 

(Fletcher & Powell, 1963) for rapidly traversing down the ernor surface in the 

three-dimensional space of the model parameters. Once the solution was 

ascertained for a given voxel, the parameters were stored in conjunction with the 

covariance between the predicted and actual fMRI signal, for the purpose of 

thresholding. 
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Figure 3. The canonical hemodynamic·response function that is convolved with 
the stimulation time-series. In response to single brief stimulus, the function 
peaks 4-6 seconds post-stimulus; ·The signal then decays begins to undershoot 
the baseline (dashed line), reaching the most negative response about 14-16 . . 
seconds post-stimulus. At 22~24 seconds post-stimulus, the signal returns to 
baseline. 

31 



3.5 Voxel-wise HRF estimation· 

In addition to fitting the pRF model to the. fMRI signal, we also incorporated an 

HRF estimation procedure for generating a unique HRF on a voxel by voxel 

basis. The HRF des~ribes the evolution of the BOLD .signal i~ response to some 

. stimulus. While the formulations of the HRF vary greatly arnd a considerable 

amount of research has been devo~ed to determining the physiological basis and 

experimental consequences·of a given_HRF, versions of the HRF have emerged 

as star:idards in the field of fMRl.and, sq, have been dubbed "canonical". One of 

the more widely used HRFs is the doubie~gamma HRF; formulated as 

h(t). 

where a 1 and {31 represent the delay and dispersion of the peak, a 2 and {32 

represent the delay and dispersion of the undershoot, c represents the ratio of 

the peak to the undershoot, and r· is a.ganima function. Figure 3 shows the 
. . 

canoni.cal HRF. In response to a hypothetical stimulus, the BOLD signal in some. 

voxel will begin to increase. Approximatel.y 4-6 seconds post-stimulus, the BOLD 

signal will peak and begin to decay. On the downslide towards the initial 

intensity, the BOLD signal will undershoot its starting point, and eventually return 

back to baseline. 
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In the coarse-search phase of the analysis, the HRF was assumed to be 

the canonical form. In fine-search phase of the analysis, .however, the gradient­

descent error minimization routine:was .. allowed to explore a parameter space 

that included an HRF-delay term in addition to the three parameters of the pRF 

model. The delay term equally affected the peak and undershoot, effectively 

translating the HRF left or right along the ordinate (time) axis depending on 

whether the optimal' delay was negative. o'r positive. Since each stimulation run 

contained pairs of bar sweeps in mutually opposite directions (eight sweeps, four 

orientations), the delay parameter of the HRF model was not ~egenerative with 

th~ location estimate of the pRFmodel. If the stimulus was not designed with 

opposing pairs of bar sweep~, the fitti~g procedure would erroneously confl~te 

the HRF delay parameters with the pRF location parameters. 

3. 6 Population receptive field results . 

The pRF model estimation routirie generates a nine dimensional volume, 

comprised of the three spatial dimensions, the three pRF model parameter 
. . 

estimates, the HRF delay parameter, .the residual sum of squared error between 

the actual time ·series. and the model fit, and the covariance between the actual 

· BOLD time-series and the model fit. The actual and predicted time-series are 

shown in Figure 4 for three example voxels from a particular participant. The 

voxels were chosen based o'n ~heir .anatomical locations and their location in the 

retinotopic space. Panels A and B show the actual and predicted time-series for. 
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voxels selected from anterior and posterior portion of the calcarine sulcus. 

Previous experiments would suggest that these voxels contain neural 

representations ·of th~ periphery and fove.a, respectively. The. voxels differ from 

one another in a number of ways, including th~ distance between and amplitude 

of BOLD signal peaks. The model. parameters denoted in each panel dutifully 

describe the subtle differences among the. measured BOLD signal modulations of 

two vo;><els. The model parameter·esti~ates confirm anterior-posterior foveal­

periphery gradient retinotopic 'property of early visual cortex. The voxel in panel 

C was selected from dorsolateral occ.ipital lobe and may perhaps be sampled 

from what is generally considered. to be the motion-sensitive area, human MT+ 

(Wandell et al., 2007). This particular v~xel is interesting because of the 
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the anterior portion of calcairine sulcus (A), the 
posterior portion of the calcarine sulcus (B), and 
lateral occipital cortex (C). In all cases, the pRF 
model was fit to each voxel's demeaned, 
·variance normalized (z-units) timeseries. The 

. quaternary pRF ·model parameters-­
encompassing location, dispersion, and HRF c·. delay--are denoted for each model fit. Different 

·. combinations of pRF estimates are able to 
.____.,,,.6.,,,..0 -1~2""'"0..........,1~8..,,,..0___,,2.~4.,,...0 ___,,3~0""""'0 __,,,3~6o""'"· ~420 capture a diversity of visual signals. 
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similarity between its location and HR.F delay parameter estimates and those of 

the the voxel depicted in panel B. ·These voxels differ in their anatomical location 

in the brain and their receptive field size estimate. Retinotopically organized 

visual areas downstream of V1 ~ere found to have increasingly larger and larger 

receptive fields (Harvey & D~moulin, 2011 ). Cells in visually response cells in 

temporal and frontal cortices have been found to' have receptive fie.Ids spanning 

entire an entire hemifield, and in some case., the totality of the visual field. Panel 

. C demonstrates this effect in limited way, but also highlights t~e ability of the pRF . 

mqdel to map out the response properties of higher visual areas. 

Figure 5 ·shows the location.parameter estimates (x,y) of the four 

anatomical subdivisions of V1, inctuding the left and rig.ht hemispheres and the 
. . 

dorsal and ventral calcarine sulcus plotted in the visual display space in terms of 

degrees of visual· angle. The central scatter plot shows the locations of pRF 

estimates across all voxels in visual areas V1 , V2, and V3 whose covariance 

between the actual and predicted time~series exceed 0.2. The histograms above 

and beside the scatter plot show the distribution of X and Y , respectively. 

Since the voxels were extracted from both hemispheres and the dorsally and 

ventrally to the calcarine, the locati~n estimates are distributed across the entire 

visual field. The shapes of the distribu~ion.s· are roughly normal, although the 

distrib~tion along the vertical dimension. of the display space shows a moderate 

degree of kurtosis, with a Fisher kurtosis of 1.62 (Zwillinger & Kokoska, 2000). 

35 



. . 

The kurtosis suggests that visual cortex· inequitably samples the visual space, 

with relatively few voxels representing t~e periphery along the vertical meridians. 

This sort of letter-box representation has been previously found in human brain 

imaging experiments across cortical and subcortical visual areas (Kastner et al., 

2007; Schneide·r, 2011 ). Psychophysi~cs experiments have also demonstrated a 

behavioral deficit in visual discrimination tasks in the periphery along the vertical 

meridian (Carrasco et al., 2001; Corbett & Carrasco, 2011 ). 
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Figure 5. The distribution of location estimates across the entire visual space for 
participant P2. The central scatter plot shows· the intersection of the x and y location 
estimates amo·ng voxels throughout the measured brain whose cqvariance between 
the actual and predicted timeseries exceeded 0.2. The distribution of the x and y 
estimates are shown in histograms above·~nd beside the scatter.· 
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While this view of the data provides a good idea of the global visuospatial 

properties of early visual cortex, it doesn't illustrate the functional topography of 

the cortex itself. To do this, it is neces.sary to project the model parameter 

estimates into the cortical space (Dale et al., 1999; Fischl et al., 1999). Figures 6 

and 7 show the pR~ estimates projected· ~nto the cortical surface of a single 

participant, P7. Panels A, B, and C show the pRFs= projected separately onto 

the left and right hemisphere surfaces.· i=or clarity, the cortica1 surface 

reconstructions from each hemisphere have been flattened and cropped so as to 

only include to posterior portion each hemisphere. 

Figure6. pRFestimates. projeb\. tedonto!the co. rti.cal 
surface of a single participant, P7: Panels A. B, and c 
.shqw.th~ location fln<:t dispersipn estJrn~tesof.the pRF 
model parameters projected st\iparately\Cl>nto the left and 
right he'1\isp'1ere·surtac~s. Panels D. a.,,p_e: show the · 
. Jocation parameters :converted lfrom cart~sian to polar 
coordinates. Boundaries.between visual.areas· V1, V2, 
: anct V3 are drawn Jri bla~k dasfjied lines :;~f<ld are dtawn 
· base(i on ·the polar· angle phase :reversals apout the 
horii:ontal and.vertical meridians. 
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The values.of the location estimates (x,y) vary about 0, with positive and 

negative values traversing fixation horizontally and vertically .. Panel A reaffirms 

the basic retinotopic property of contralateral visual field representation in early 

occipital cortex;· hence, the horizontal ~e.stimates project onto the right hemisphere 

range from fixation to the extreme periphery of the left visual field. Estimates 

ranging from fixation to the extreme pertphery of the right visual field project onto 

the left hemisphere cortical surface. Pan.el B shows the cortical projection of the 

vertical position estimates using the same colormap rotate 90°. The results 

reconfirm the result~ of numerous experi~ents mapping the retinotopic 

organization of human and macaque ·cortex, with the upper and lower visual 

Figure 7. pRF estimates projeeted ~r)fo the co.rtic·a1 
surface of a single partiCiparit, P2. Pane'ts.A, B,ahd c 
f)how the .loca~P"- and. dispe..SJ:9n ~slim~t~s ofthe pRF . 
. model .parameters projected separatety·;~nto.:the left and 
tight hemisphere surfaces. Pafiels o.an~·E show· the 
locaticm pararm~ter~ convertedf,rqm cart¢'.sian tQ polar 
caordinates. 
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fields projecting to cortical zo~es ventra! and dorsal to the calcarine sulcus. 

Panel C shows the pRF size estimates. Here, values were always greater than 

0°, with the colormap being truncated at 5°. 

Panels D and E show the location. estimates location estimates in panels A 

and B converted from cartesian to polar· coordinates. The polar angle map-

measured in terms of.degrees or radians~is shown in panel~- The polar angle 

be computed from the cartesian coordinates a~ e = atan(y Ix). Polar angle 

complements eccentri.city, which describes the central to peripheral dimension of 

polar space. Eccentricity is co.mputed .'as .p = ~x2 + y 2 
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The organizati~n of retinotopic co~ex is notoriously unwieldy among the 

healthy control population, with the topography varying across individuals in 

terms of the functional size,. locati<?n, and orientation of visual areas with respect 

to anatomy. These irregularities among a~eas and brains has plagued various 

attempts to automate the retinotopic pa~cellation of visual cortex via software 

solutions, both in three-dimensional volume and two-dimensional cortical surface 

space. Manual tracing remains as the state of the art in retinotopic cortical 

parcellation. 

Boundaries between visual areas V1, V2, .and V3 are drawn in black 

dashed lines. The boundaries are drawn based on the polar angle phase 

· reversals about the horizontal and vertical meridians. · Each of these visual areas 
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can be divided into quadrant representations of the visual field according to 

hemisphere and ventral-dorsal position., containing represehtations from the 

vertical to horizontal meridian along all. eccentricities. Figuries 8, 9, and 10 show 

the distribution of pRF location estimate.s around the visual field for the four 

subdivisions of each visual area combined ~cross four participants (P2, P7, P23, 

P27). These figures iilustrate the relationship between the pRF location 

estimates among each of visual .areas' subdivi"sions and the visual field. 

In addition to this first order property of retinotopic organization in the 

cortex, visual cortex also demonstrate~ a collinearity between the eccentricity of 

the vis.ual representation and ~he recept!v~ field size. Fi.gure 11 shows this 

collinearity among multiple visuals are four participants. Here, each visual. area 
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was taken to. comprise both hemispheres and the dorsal and 1.ateral subdivisions. . 

Moving from foveal to peripheral representations among. the visual areas, there is 

a corresponding increase in ~he receptive field sizes, denoted by the positive 

slope of each line. The interc.ept of this relationship differs among the visual 

areas, with smaller receptive field sizes at a given eccentricilty for V1 compared 

to V2 and V2 compared to V3. This r~lation between the eccentricity and 

receptive field size maps-both within and across visual areas-has been 
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Figure 11. The relationship between eccentricity and receptive field size among 
multiple visual areas in four participants. Moving from foveal to periphery, there is a 
tonic increase in the pRF size, denoted by the positive slope of each line. The 
intercept of each line differs among the visual areas, with increasing pRF size at a 
given eccentricity along the V~ , V2, V3 ~rajectory. 
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previously demonstrated in macaques using electrophysiology techniques and in 

humans using functional brain imaging (Amano et al., 2009; Harvey & Dumoulin, 

2011 ). 

3.7 HRF results 

In addition to modeling the location and size of the pRFs, we explicitly modeled 

the delay of the hemodynamic response function. We allowed the gradient-
. . . 

descent error minimization to ~xplore delay as a model p~rameter. As mentioned 

earlier, since the bar sweeps occurred in opposing pairs, the location parameters. 

are not degenerate with the delay parameter. The distribution of HRF delays for 

four participants are shown in Figure ·13. The HRF delay values are negative or 

positive with respect to the baseline 5 s delay that is typically used as a good 

good approximation· across the brain and the population. Kernel density 

estimation was used to estimate the continuous distribution of pRF delay 

estimates. Here, a kernel bandwidth of 0.25 was used. The delay distributions 

across visual areas are roughly normal and centered about 0 s delay. There is a 

slight shift from ·positive to n~gative d~lays and broadening of the dispersio~ of 

delays moving from V1 to V2 to V3 .. 

3. 8 Retinotopic f1!apping discussion 

The results of the pRF modeling· of visual cortex across multiple participants 

indicates that the code base· of the original authors have been faithfully and 
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independently replicated. We were able to model the response properties of 

voxels sampled from various location in the brain (Figure 4). In addition, we able 

. . 
to define the boundaries of multiple visua1·areas across occipital lobe Figures 6 

and 7)· and that these cortical visual areas appear to show tine expected registry . 

with the visual space (Figures 8, 9, and 10). The second o:rder relationship 

between eccentricity and receptive field size was also replicated among multiple 

visual areas and participant~ (Figure 11 ). Interestingly, we were able to find an 
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orderly distribution of HRF delay. esti~ates across voxels in areas V1, V2, and 

V3 (Figure 12). 

These results are largely confirmatory in and of themselves. However, in 

the current con~ext, the pRF maps are _int~nded to serve as stepping stones for 

investigating the neural representations _emanating from a tracking task. In order · 

to do so, we need to recast_ the pRF maps in terms of the viisual space-not the .. 

cortical space. "This will allow us to examine how different portions of the visual 

field may be over- or under-represented in response to targets, distractors, 

occlusion, and nonocclusion. ·To this end,· we developed a neural decoding 

method for generating stimu_lus reconstructions based on the pRF maps and the 

neural activity. 
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4. ·Neural decoding 

Stimulus reconstruction falls -under the broad rubric of neural decoding. It is a 

metho~ for determining the relationship. _between known serisory inputs and 

measured neural responses s'uch that one can be derived from the other. 

Stimulus reconstruction is si.mply a flav~:>r of neural decoding, and it is useful to 

highlight the distinctions between. it and several other flavors of neural decoding 

approaches currently used in functional brain imaging research. 

4. 1 Image classification 

In a seminal paper in the field of brain imaging, Haxby and others (2001) 

developed an a~alytic framework for mapping the patterns of voxel activity to 

categories of visual stimuli. Here, the researchers were interested in determining 

whether object categories (e.g., faces, tiouses, tools) could be distinguished from 

one another based on the distributed and overlapping pattern of vowel activity 

across brain networks spanning .the l_ateral occipital and inferior temporal 

cortices. The participants were preseriteq with images of exemplars from 

multiple object categories. A standard general linear model was used to regress 

out the effect a~ong all voxels of each. of the category types. The participants 

were then exposed to a new round of e~emplars. The experimenters used the 

pattern of activity associated with each object category derived from the training .. 

dataset to determine which stimuli caused. a given pattern of brain activity in the 

test dataset. This procedure worked incredibly well, accurately predicting when a 
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given brain activity pattern resulted from viewing houses and faces at a rate of 

100%. The lowest accuracy observed f.or- identifying exemplars categories based 

on brain activity .was 65%, well above the 50% chance guess rate. Furthermore, 
. . 

the experimenters found that networks that responded maximally to a particular 

category type could be used to accurately predict the presentation of exemplars 

belonging to other, non-selective categorie~. This result points towards .the 

importance of distributed networks~rather than specialized modules-in 

representing a multitude of fe?tures assoqiated with a high-level visual stimulus. 

This approach is broadly known as image classification and relies on the 

method of multi-voxel pattern analysis. In general, the experiments and analyses 

are designed such that classes of stimuli. can be characterized and differentiated 

in terms of configurations of voxel activfty patterns. The paradigm has been 

extended to other dorrtains in visual neuroscience. Kamitani ~nd Tong (2005) 

used a multi-voxel pattern analysis technique ~o train a classification algorithm to 

identify sets of voxels whose respo.nses were found to code the specific 

orientation of gratings, an elusive fin.dil')g in ·brain imaging .. Kamitani and Tong 

reaso~ed that, although neurons specifiGally selective for certain orientations 

may have a functional topography too fine for typical functional imaging 

resolution to register, randomly sampHng from a portion of visual cortex may 

result in a preponderance of neurons selective for a specific orientation to reside 

in a given voxel by chance. Given this unequal distribution, voxels may differ 

from one another according to their weak but predominant selective responses to 
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various values of some feature· dim.ension, for instance sinusoidal gratin_gs 

oriented at a particular angle. · 

·Their voxel classification algorithm was trained using: functional datasets . . 

collected while participants viewed 45 and 135· oriented sinusoidal gratings. On 

subsequent functional runs, the two 9rthogonal gratings were combined into a 

single plaid and presented to part.icipant$ who were cued to attend to either the 

45 or 135 grating component of the plaid stimulus. Kamitani and Tong found 

that their classifier w~s able to accurately_ predict which of the two plaid 

components the participants were attenc;iin_g during any given -epoch based on 

the patterned time-course activity ~f over 800 voxels sampled from visual areas 

V1, V2, V3, and V4. 

While the mind-reading aspect o.~ these kinds of experiments is quite 

appealing, the important findings are related to the neural decoding that mediates 

the sensory input and the neural activation patterns. The classification 

algorithms are indeed able to learn the association between types of sensory 

inputs and patterns of voxel activity; however, the question becomes: does this 

tell us anything about the kinds of information being represented differently for 

faces versus houses, ·or for lines oriented one way versus the.other? Where this 

approach falls a little flat is in its inability. to classify new, untrained stimuli. Since 

the relationship_between the training and test datasets is _purely statistical, it 

becomes difficult to determine which features of a particular stimulus are being 

represented by a given pattern. ·indeed~ the only conclusion that can be drawn is 

48 



that two patterns of .activation are distinct _from one another and that they are 

each associated with a particular kind of stimulus. The details of how a pattern of 

activation is associated with a given sUniulus is not explicitly modeled based on 

the stimulus features themselves, and so. cannot be unambiguously determined. 

4.2 Image identification 

lmage·identification is a _flavor of neurat·decoding that explicitly models the 

response properties of voxels. Kay and others (2008) used image identification 

to predict which particular image_ in a ·set of novel, natural scenes a participant 

viewed. Their approach con_sisted of two phases. In the first phase, each 

participant viewed a large training dataset consisting of 1, 750 natural images. 

The activity of each voxel in response to these images was modeled based on a 

Gabor wavelet pyramid, describing the tuning along the dimensions of space 

(x,y,a), orientation, and spatial frequency. Thi.s model is more comprehensive 

. . . . 

than the pRF model, which only describes the three spatial parameters (x,y.,a). 

. . 

Once the model parameter e~timates w~r~ derived for each voxel, the 

participants were submitted to a testing phase. ·Here, participants viewed 120 

novel natural images similar but not identical to the training images. The set of 

model parameter estimates for a given cluster of voxels were then used to 

· predict the aggregate voxel pattern activity evoked by each of the 120 novel 

images. Images wer~ identified as havi'ng been viewed by th~ participant when 
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the correlation between the predicted ~ctivity and the actual activity was highest. 

Image.identification performa~ce peake~ ~or one particular participant at 92% 

accuracy; however, this number diminished greatly when images were identified 

using the correlation between the predicted response and a single-trial response 

(32% accuracy), but was still performed at a level vastly superior to chance 

(<1 %). 

The distiriguis~ing feature of imag~ identificatiqn is tha_t the predicted 

pattern of activity is based on models that explicitly capture the response 

properties of voxels. Whereas. ima~e classification attempts to associate 

patterns of activity with particular sets· ~f s~imuli, image identification uses the 

model _parameters for various dimensio.r:is (e.g., space, orientation, spatial 

frequency) to generate a predicted pattern of activity. Novel images can be 

processed through the model paramet~r estimates of voxels to yield a predicted 

signal. 

4.3 Image reconstruction 

An interesting consequence of using the pRF model is the abili1ty to reconstruct 

visual stimuli based on the pRF estimates and the time series of voxels. The 

pRF model deploys an encoding procedure that uses a three parameter. 

Gaussian to describe the response· properties of voxels whose signals are driven 

by known patterns of visual stim.ulation. · Each voxel views the world through a 
' . 

uniquely situated aperture in the retinotopic space. pRF estimates are 
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computed for each voxel, describing the location and extent of the aperture 

through which the vo~el reads in the visu~I space. The model can be easily 

inverted such that a given pRF estimate.ar:id signal intensity fluctuations can be 

combined to predict the luminance .changes in the display space at specific 

locations and times. Such a-procedure., ~hen summated across a multitude of 

voxels.for each step in the time series,· ~enerates a predictimn of the visual 

stimulus presented to the participant and encoded in the intensity modulations of 

the voxels. This sort of stimulus reconstruction can be used on any novel 

dataset, the only prerequisite bei~g that pRF estimates must have been already 

computed for a given participant. Furthermore, since groups of voxels can be 

functionally bundled into visual areas according to an arbitrary ruleset, stimulus 

reconstructions may be generated that highlight differences in the components of 

a visual task that various visual areas extract and represent. 

Using the mapping between· sensory input and brain measureme_nts to 

generate a reconstruction of an organism's sensory processing isn't new. One of 

the earliest demonstrations of stimulus reconstruction within the arena of 

neuroscience was published more than two decade ago (Bialek et al., 1991 ). 

Recording from a motion-sensitive c~ll ·in the blowfly, the researchers were able 

to reconstruct the analog temporal profil~ of the stimulus (i.e., the velocity a 

moving stimulus) using the digital spikin·g output of single neuron. The 

reconstruction algorithm assumes a specific mapping between the digital spiking 
. . . . . . 

output of the neuron and the graded intensity modulation of the stimulus (in this 
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case ir:i the domain of motion), of which.rate coding is only one possible mapping. 

Other solutions exist for relating the spiking output of a neuron to the stimulus 

time series that generated it, most of which center around the likel1ihood of 

different spiking outputs given the stim.ulus. However, while the approach taken 

by Bialek and others was foundational" f~r. developing analytic linka·ges between 

neural signals and. sensory inputs, its purview is quite limited. The kinds of 

stimulus reconstructions I'm interested in developing for use with functional brain 

imaging datasets should be generative for more complex spatiotemporal stimuli 

and for larger ensembles of neurons. 

Stanley and others (1999) deve!oped a stimulus reconstruction procedure 

for rendering natural images (~.g., face~, ~ooded scenes) from the spiking output 

of multiple neurons in the lateral geniculate nucleus (LGN) of, the thalamus of an 

anesthetized cat. Such an approach. is appealing in two ways: first, in order to 

extract meaningful information about the wide-ranging spatial and temporal 

properties of typical visual stimuli from brain measurements, a stimulus 

reconstruction ~ppro~ch that considers ci.rcuits over n.eurons ~hould be requisite; 

second, such reconstruction algorithms ~hould at least be extensible to decode 

brain activity for natural stimuli. Th~ experimenters recorded from 7 LGN 

neurons simultaneously using a multi~e.le~trode array. The experiment was· 

repeated. numerous times whereby vid~o clips of white noise, a human face, or a . . 

wooded scene were presented. Cells were screened on the basis of the 

reproducibility of the measured neural· response over repeated video clip 
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presentations. After the cull, experimenters.were left with 177 cells that were 

used to derive linear filters for relating the spiking output of sets of neurons to the 

luminance changes of sets of pixels .. Once this mapping was determined, 

stimulus reconstruction simply ·became a matter of modulating the lumin,ance of 

the appropriate set of pixels for a give~ cell based on its spiking output. The 
. . 

reconstructed stimulus was g~nerated b_y .convolving the spiking output of a set o'f 

cells with their corresponding linear filters and summating over the set. The 

filters were optimized so as to minimize a cost function (i.e., the residual sum of 

squares) relating the actual stimulus and. the reconstructed stimulus. For each 

pixel in the reconstructed stimulus, an average of 14 cells' responses were used. 

The neurons w~ed to create the .reconstr.~cti'ons included those with both on- and 

off-center receptive fields. In the end, the ~xperimenters were able to generate 

stimulus reconstructions whose sp~tial correlation coefficients with the actual 

stimuli were as high as 0.8. · · 

Th.is experiment, and in particul~r the stimulus reconstruction procedure 

used, is interesting in the current context because of the similarity between the 

pRF model and the response properties of LGN cells. The experimenters · 

mapped out the location and extent (x,y,a) of the receptive field of a given 

. . 

neuron, including both the center and the surround. These parameter estimates 

were used to make an assumption abou.t the number of neurons representing a 

particular position (i.e., screen pixel) in the visual space. Their implementation of · 
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the image reconstruction required two components: 1) the neural responses of 

sets of LGN cells.in response to visual stimulation; and 2) the mapping between 

neurons and screen coordinates·. The thing they got for free by dint of using LGN 

cells was the recept_ive field structure and_ response properti.es of the cells 

themselves. As on-center cells became more active, the ex1perimenters 

presumed an increase in the luminance for pixels which fall in the center of a 

given cell's receptive field and presumed.a decrease in the luminance for pixels 

which fall in the surround. If one repeats this procedure over a multitude of 

. . 
neurons and summates the result, the product is a three dimensional dataset that 

resembles-both temporally and s·patially-the stimulus- used. 

Such an approach should work for the voxel-based pRF model as well, 

albeit with somewhat different assumptions. In both the cases of individual 

neurons recorded via electrophysiology and populations of neurons recorded via 

fMRI, each observational unit is described in terms of a receptive field location 

and size. Once .derived, the receptive field estimates across all voxels could be 

used to generate a stimulus reconstruction through the sumrn_ation of intensity-

we_ighted Gaussians across space in a manner. nearly identical to that described 

by Stanley and others' 1999 _study._ 

4.4 Stimulus reconstruction method 

The lynchpin of the stimulus reconstru_ction procedure is the voxel-wise pRF 

estimation computed per participant using the sweeping bar aperture stimulus. 
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Each participant's pRF estimation volume is 7-dimensional, whereby each voxel 

contains seven different values. The first three dimensions denote the spatial 

location of a particular voxel with respect to the coordinate system of the MRI 

magnet bore. The remaining four dime·nsions denote the. pRF model param.eter 

estimates for the location and extent of.the receptive field (x,y,a) as well as the. 

delay estimate d ~f the double-gamma HRF. These four estimates describe not 

only where a given voxel is responsive to in the visual field but also when a given 

voxel is responsive in time following a stimulation event. 
. . 

To begin, it is helpful to review.the nature of the actual stimulus as it was 

drawn to the screen and stored for later ·use in the pRF estimation. The actual 

stimulus was displayed on a screen and projected at a resolution 800x600 

pixels. While the refresh rate of the display was set to 60Hz, the sweeping bar 

stimulus was designed in such a way as to be phase-locked to the repetition time 

of the scanner (i.e., 1500 ms). As each·new volume was acquired every 1500 

ms during the course of a functional run, .the stimulus would advance by discrete 

intervals at the outset of every n~w volume acquisition. The stimulus, then, could 

be captured in terms of screen coordinates and binned into time-units equal to 

the duration of the functional volumes.· Hence, while our functional runs were of 

size 128x128x·22x440 our stimulus runs were of size 800x600x440. The 

parity in the time dimension between th~ functional and stimulus datasets 

allowed us to relate the neural activity to the stimulation pattern via the pRF 
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model. This is crucial not only for determining the response properties of voxels, 

but also for recreating the stimul~s based on the pRF estimates and signal 

intensity modulations of the voxels. 

Once the pRF model estimates.had been ·computed for every voxel, we 

set about predicting the stimulus shown to the participant from the signal 

intensity modulations of the voxels via image reconstruction .. The first step in the. 

image reconstruction process was to initialize an empty matrix with the sa~e 

dimensions as the actual stir:nulus .(i.e.~, 800x600x440). The predicted stimulµs as 

this point is essentially a representation of the participant viewing a 800x600 

display with zero mean luminance. For each acquisition in the functional run, we 

iterated through each of its constituent voxels. A particular pRF estimate 
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Figure 13. The pRF estim.ates of two voxels plotted in screen 
coordinates. The pRF in panel A was generated with parameters 
(-2.4, -3.2, 0.7). The pRF in panel B was generated with parameters 
(4.2, 6.3, 3.7). The colorbar shows the units of each 'of the 
Gaussians generated from the pRF estimates. In both panels, the 
red dot in the center represents.the fixation point. 
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provides enough information to recreate. a .single Gaussian at ·a particular location · 

and of a particular size among .the .. screen coordinates. · Figure 13 shows the 
. . 

pRF estimates for two different voxels plotted in the screen 1coordinates that 

match _the stimulus dimensions from wh.ich the estimates were derived. Notice 

how the location and extent param'eters ·affect the Gaussians that are computed 

from the two pRF estimates. Natively,· the units of the screen coordinates were 

pixels. For the purposes of deriving the pRF estimates and stimulus 

reconstruction, the screen coordinates ~ere rescaled to degrees of visual angle. 

Therefore, pRF es.timates whose x-coordinate is negative are plotted to the left of 

fixation and whose y-coordinate is negative are plotted above fixation. The 

fixation point is also drawn in both pRF plots. 

In order to reconstruct a .. singleframe of our stimulus, we iterated.through 

all relevant voxels and generate the ·Gaussian from each ·of their pRF estimates. 

We used the signal intensity of the voxe_ls. at any given point in time as a graded · 

indication of the level of activation of that.voxel and, hence, of the luminosi.ty of 

the stimulus in the corresponding portion of the visual field. The equation for 

computing the scaled Gaussian then becomes 

g(x,y,a ,i) 
.. ((x-xo)2 +(y-yo)2). 

exp-. . 2 it 
. . . 20" 

where it represents the voxel signal intensity i at time t ~ Since the distribution of 

voxels' signal intensities at any given point in time will range in both positive and 
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negative values, it is possible to generate Gaussian distributions above and 

below zero, depending on the signal intensity by which they are scaled. Figure 

14 shows how the Gaussians generated from two pRF estimates interact when 

combined into a si_ngle screen frame of the stimulus reconstruction. Panels A 

and B show the Gaus·sians produced when two pRF estimate·s are rendered. 

Although the pRF estimates are on either side· of the fixation point with locations 

centered on (-3~,2°) and (3°,2°}'-respectively, they overlap_ slightly becau~e of the 
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Figure 14. The pRF estimates plotted in. the visual space. Panel A shows the 
Gaussian generated from a pRF estimate of (-3,0,2). Panel B shows the Gaussian 
generated from a pRF estimate· of (3,0,2). Panel C shows the summation of the 
Gaussians shown in panels A and B when scaled by +1. Panel D shows the result of 
adding the two Gaussians from panels A and 8 when scaled by + 1 and -1, respectively. 

58 



extent of their Gaussians (2°). If each pRF estimate is scaled by 1 and 

summated, the result is an bjmodal di~tribution as shown· in panel C of Figure 14. 

More interesting summations .can be produced by scaling the Gaussians with 

differently signed intensities as shown in panel D. Here, the result is again a 

bimodal distribution; however, scaling .the Gaussians with a negative and a 

positive intensity and summating across the two results in a distribution of pixel 

values for this particular stimulus reconstruction frame.that spans both positive 
. . 

and negative values. Additionally, using both negative and positive scaling 

factors and summating the results will begin to produce stimw.lus reconstructions 

with sharper edges than any of their con~tituent Gaussians possess. Figure 15 

shows how different configurations·of Gaussiaris scaled ·by negative and positive 

intensities can produce interes.ting reconstructions with rich spatial information. 
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Figure 15. Multiple pRF estimates plotted in the visual space. Combining multrple . 
Gaussians scaled with positively.and negatively along a dimension of space creates 
edges and bands of activation and inactivation in the visual space (A). Thresholding the 
plot at O reveals a bar-like structure (8). 
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In the case illustrated in Figure 15, a series of negative Gaussians flanking either 

side of a series positive Gaussians will summate. to a vertical bar. 

A slight complication in the stimulus reconstruction procedure arises when 

one tries to relate the ·temporal dimension of the functional tirne series with that of 

the stimulus presentation. The stimulus reconstruction procedure here described 

attempts to use. the voxel-wise pR.F model estimates in tandem with the. voxel­

wise intensity fluctuations for the purpose of creating a facsimile of the visual 

stimulus. From frame to frame, the contribution of any given set of pRF 

estimates is determined via their scalar s.ignal intensities. The hemodynamic 

response function describes the .temporal dissociation between the stimulus and 

the response it evokes. Stimulus· everits. occurring now have effective BOLD 

signals at some later point in time. The HRF is generally though to peak 4-6 s 

post-stimulus; however, the imprecision.of this estimate might prove problematic . . . . . 

for determining the signal intensity contr.ibution of a given pRF estimate on the 

stimulus reconstruction. 

The solution to the problem ·of iden~ifying exactly when a stimulus 

occurring now manifests itself in the· the unfolding BOLD signal of a given voxel is 

found via the explicit modeling of the HRF delay in the course of the pRF model 

estimation, aforementioned in section .3. Each pRF estimate includes both a 

three-parameter Gaussian as well as an HRF delay estimate. The delay 

describes the shift in the HRF peak with r~spect .to onset. Since the delays 

derived using the model can be any real number but the ordinate dimension of 
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our functional datasets can only be· integers, we have to i.nterpolate the ~ime 

series of each voxel. To do this, we used a cubic spline to' up-sample the time 

series ·of the voxel 100 fold. In so doing, we are able to determine the signal 

intensity of a voxel at an onset delay of say 4.5 or 4. 75 s rather than 4 or 5 s. 

The equation for scaling the. Gaussi~n now becomes 

g(x ,y ,.a ,i) . ··((x-xo)2 +(y-yo)2). 
exp- . . 2 zt+d 

· 2a 

. 
where lt+d describes the signal intensity at a .given time-point plus some derived · 

HRF delay. 

4.5 Stimulus reconstruction results 

It is at this point that the stimulus reconstruction procedure can begin to 

demonstrate its effectivenes·s in rendering derivations of the stimulus presented 

to a participant based on the participants' voxel-wise pRF estimation maps and 

functional time series. Rather than using a single voxel or even a handful of 

voxels, the reconstruction procedure uses every voxel within a circumscribed 
. . 

region of interest (ROI) to render, scale, and summate the Gaussians. Doing so 

over large numbers of voxels across the entire functional time series yields 

stimulus reconstructions that-approximate the stimulation pattern used during the 

visual presentation. Figure 16 shows a series of reconstructed frames from a 
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single participants' averaged dataset coll.ected when using the sweeping bar 
. . 

aperture as the visual stimulus. Since the pRF estimates were derived from the 

same sweeping ·bar dataset that produc~d the stimulus reconstruction, this is less 
. . 

a cross-validation of the pRF model than a proof of concept for the stimulus 

reconstruction in general. Each column in Figure 16 represents a single time-

point in the course of both th.e actual stimulus and the stimulus reconstruction. 

Figure 16. Binarized versions of the stimuli are sho~n on~ the top row 
at specific time intervals during the course of a stimulation run.· The 
corresponding stimulus reconstructions are shown below on the 
bottom row. Each of the three columns correspond to a particular 
stimulus frame a.nd its correspondi·ng stimulus. reconstruction frame. 
The stimulus reconstruction was g~r:ierated using the mean run 
(computed from 5 runs) of one participant, with pRF estimates and 
signal intensities mined. from voxels in V1, V2, and V3. 

62· 



I've selected three frames for demo.nstrati~n purposes, but it is important to .note 

that these frames were chosen from a ·1.arger set of frames that comprises the 

entire duration of the visual presentation and functional dataset collection. The 

actual stimulus (the top row of Figure 16) and the stimulus reconstruction (the 

bottom row of Figure 16) are quite similar both in terms of the spatial 

configuration of pix~I luminance within a ~ingle frame as well as the temporal 

continuity over the course of an entire run.· 

In order to cross-validate the stimulus reconstruction procedure, we used 

the pRF estimates derived from the sweeping bar stimulus and scaled these 

within the functional time series from other stimuli including an expanding ring 

and a rotating hemifield. The sweeping bars data, used to derive the pRF 

estimates, and the rotating hemifield data, used (in combination with the pRF 

estimates) to reconstruct the visual stimu.lus, for this particular participant were 

collected in different sessioris-in fact, ·in different years. Each of these datasets 

were comprised of 8 32 s cycles. ·These data were originally designed and 

. . ' 

collected for deriving the retinotopy of early visual cortex using the phase-

encoding approach described earlier. Nonetheless, these data serve as a good 

·testbed for cross-validating our stimulus reconstructions. 

Figure 17 shows the actual stimulus and. the reconstructed stimulus for the 

rotating hemifield dataset fro.m a singl~. participant. A single mean cycle· was 

computed from 7 of the 8 32 s cycles, having thrown away the first cycle due to 

the capitative nature of the BOLD signaL The voxels used in the reconstruction 
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were mined from visual areas V1, V2, ·arid V3. Only those voxels with pRF 

estimates in which the covariance exceed o .. 33 were accepted for candidacy in 

the reconstruction procedure. Again, three slices from the time axis were 

selected to demonstrate the apparent similarity between the actual stimulus and 

the reconstructed stimulus. Th·e same ·procedure and selection process. was 

used on the expanding ring data, shown in Figure 18. 

As in the case of the s~eeping b~u .and rotating hemifield, the similarity of· 

the actual expanding ring stimulus and its reconstructed counterpart are obvious. 

Figure 17. Fram.es selected from the binarized versibns J.the 
rotating hemifield stimulus and the corresponding stimulus 
reconstruction .. The stimulus re.constructiqn was generated using the 
a mean cycle· (32 s, 7 cycles) of a"mean run (5 runs).; with pRF 
estimates and signal intensities mined from voxels i~ V1, V2, and V3 .. 
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In all three cases, the spatiotemporal characteristics seem to be well-captured by 

the pRF model and stimulus reconstruction algorithm. That the sweeping bars 

are reconstructeq faithfully shouldn't ~every surprising; after all, the pRF 

estimates were derived from exactly these data. It is quite encouraging, though, 

that the reconstruction holds up so we.II with the phase-encoding stimuli, to which 

the algorithm was naive. 

However, making judgments concerning the fidelity of the stimulus 

reconstructions based on the similarity in. app~arance of a handful of sampled 

• 

Figure 18. Frames selected from the binarized versibns of the 
expanding ring stimulus and the corresponding.stimllllus 
reconstruction. The stimulus reconstruction was generated using the 
a mean cycle (32 s, 7 cycles) of a mean· run (5 runs), with pRF 
estimates and· signal intensities ·mined from voxels in V1, V2, and V3. 
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time slices isn't sufficient for rigorous evaluation. For quantitatively assessing the 

performance of the algorithm in reconstru.cting stimuli for novel functional 

datasets, it is necessary to use metrics that summarize the entirety of the 

spatiotemporal relationship betwee·n the stimuli and their reconstruction~. 

4. 6 Stimulus reconstruction quantification 

The stimulus reconstructions generated by the algorithm have several interesting 

properties that facilitate the attempt t.o decode the relationship between the 

measured neural activity and the patte·rn .of visual stimulation. First, every 

stimulus reconstruction exists in the same coordinate space. The spatial 

resolution of the· stimulus reconstructions is ·always inherited from the visual 
. . . . . 

display. This makes it trivial to combine .data from multiple participants' once the 

stimulus reconstructions ha.ve been generated for a given functional dataset. .. 

Each participants' reconstruction gener.at~d from a given set of voxels will have a 

pixel-for-pixel (or degree-for-degre.e) correspondence with any other 

reconstruction, whether it be generated from a homologous set of voxels from 

another participant or from another set .of voxels form the same participant. 

Second, the spatiotemporal pattern of the reconstructions will vary 

depending on the set of voxels used as input to the algorithm. Various tasks 

engage different kinds of behaviors ahd will recruit different networks of brain 

regions. The variation in stimulus reco.nstruction as a· function of voxel selection 

can be informative in terms of the kinds of "information those voxels extract from 
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and represent about a stimulus or task .. For instance, if a particular brain area 

responds primarily to the visual stimulation component of a task, the 

reconstruction should demonstrate a clear similarity in the luminance and 

contrasts of the stimulus. If,· on the other hand, a brain region is primarily driven 

by the attentional component of a task, its reconstruction should be relatively 

unresponsive to the contrast and luminance components of the visual stimulus 

and instead should reflect the shifts in sp~tial ~ttention around the visual field. 

Third, since the reconstructions .are _generated via linear operations, the 
. . . 

stimulus reconstructions that resulUrom pooling the inputs (i..e., ROls drawn in 

the brain -imaging volume) or the outputs of the algorithm (i.e., stimulus 

reconstructions) are equivalent. For example, if one were interested in 

reconstructing the stimulus based on -the pRF estimates and functional time 

series of V1 and V2, one could either add the regions of interest together and 

feed this into the reconstruction algorith_m· or add· the individual reconstructions 

generated from V1 and V2 separately-although combining ROls to create 
. . 

supersets of encompassing multiple areas is only sensible for a within-subjects 

analysis. Additionally, stimulus reconstrudions can serve as operands for any 

other linear matrix operation,. such as. addition, subtraction, e~c. Figure 19 s.hows 

the result of adding two different frame.s from the stimulus reconstruction of the 

expanding ring and rotating h~mifield sti.m_ulus. 

Fourth, sin_ce the stimulus reconstructions represent information about the 

spatiotemporal qualities of the stimulus in terms of pixel luminance fluctuations, 
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regions of interest can be defined in the ·screen coordinates from which a time-

series can be extracted for the purpose of summarizing the pattern of activation. 

Figure 20 shows the mean time series .derived from a single location within the 

display space of the stimulus reconstructions across multiple visual areas, 

including V1, V2, and V3. Figure 21 shows the result of. the same kind of 

analysis, but this time using the rotating hemifie.ld and expanding ring 

reconstructions instead of sweeping bar reconstruction. Here, the mean 32 s 

I ,. 

Figure 19. Stimulus reconstructions .can act as operands in 
mathematical operations. Here, frames from the reconstruction of a 
bar stimulus· extracted at different times are added together to show 
the response to two bars in the same frame simulta11eously. Any 
linear matrix operation can be used to manipulate the content of the 
stimulus reconstructions, i_ncl~ding addition, subtraction, and 
multiplication. 
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cycle is shown for the purposes of demonstration. Notice how the time-series 

derived from stimulus reconstruction.are both sinusoidal. 

4. 7 Stimulus reconstruction discussion .. 

The method of stimulus reconstruction .as outlined here offers a new and 

interesting avenue for approaching and an.alyzing brain imaging data measuring 

visual processes. Ensembl.es of two-dimensional Gaussians can be linearly 
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Figure 20. The mean luminance timeseries for stimvlus reconstr~ctions.,generated 
using V1, V2, and V3 RO.I :and the bar~ fun·ctional dataset. Each ~et of time-series 
across the visual areas was ·computed from pixels extr,act~d fro111 a parfltular 
.location· in·thestimulus reconstruct~on. Th~ time-series oft.he act,ual :stimulus is 
shown in black. 
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combined (Figures 14 and 15) to produce new spatial configurations rich with 

information. Doing so across pRF ~stimates for variously defined clusters of 

voxels and scaled with the correspond!ng .BOLD signal modulations produces 

stimul~s reconstructions that mimic the .. ~patiotemporal pattern of the visual 

stimulation (Figures 16, 17, and 18). Since the stimulus reconstructions are 

linearly related to· the brain imaging dat.a and since they exist in the coordinates 

of the visual space, time-series can be_ derived via screen cmordinate masks that 

amass the pixel fluctuations of the stimulus reconstructions themselves (Figures 

20 and 21 ). 

In the context of th~ current thesis; the stimulus reconstructions can be 

used to derive the brain activity related to a particular location in the visual space 

and moment in time. This ability serves as a point of departure betwee":1 the 
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. figure .21. The· mean lurn_inaoc~ tirne-series for stimulus recon$tructioos .gene~ated using 
the rotating hemifield (panel.~.} and ·expanding ring (panel B) fun"ctional\datasets~ Here, the. 
mean cycle of 32 s is computed for purposes of' demonstration .. The. simusoidal. time-series 
of stimulus reconstruction is appare.nt... · · · · 
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current study and the majority of brain· imaging experiments investigating 

tracking. Because we know the precise locations of targets and distractors over 

space and time as it was presented on ~he visual display, we can use this 

information to th.en refer to stimulus reconstructions at the very same locations in 

. . 

time and space and extract the corresponding brain activity. Thus, we are able to 

dissociate and compare signals related to attended versus unattended items and 

occluded versus nonoccluded item: Such an approach shoul.d serve as. a ~odel 

for further investigations into the spatiqtemporal properties of retinotopic cortex in 

a variety of task contexts, incl~ding atter:iti.on and occlusion. 
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5. Tracking 

Having 1) computed the pRF maps for·mult_iple participants and 2) deve.loped a 

stimulus reconstruction method, we ca_n now begin to explore the differential 

responses during a tracking task. We d~~eloped a much simpler version of the 

MOT task as outlined in previous experiments (Scholl & Pylyshyn, 1999; 

Flombaum et al., 2008). The reason. for this was multifold and warrants some 

discussion. 

Typically, the MOT task trial durations are under a minute. In addition, the 

initial positions .of targ.ets and distractors ~s well as the trajec~ories that unfold 

over a given trial are random by design so.as to even sample·the visual space. 

This poses a problem in terms of p~rting the MOT task to a brain imaging 
. . . 

environment. Since the the· signal~to-n_ois~ ·ratio of BOLD is relatively low, it" is 

comm~n to design experiments such th?lt the stimuli and/or task are periodic over 

the course of scanning runs o'r sessions·. Thus, the imaging data can be 

averaged across ·cycles, runs, or sessions so as to reduce the noise floor as 

much as possible. Using a rando_mly generated visual stimulus and task from 

trial to trial is prohibitive for combining ·.datasets .. Furthermore, most laboratories 

using the MOT task generate their stimuli s~ch that the distribution of targets and 

distractors remains homogehous over the extent of the visual" field from trial to 

trial. We made no such attempt as it was discovered after an alternate version of 

the task was ad.opted and because· it would have been beyond the scope of the 

current project. 
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Attempts were made in the course of our experiment to use a 30 s 

tracking task. The starting positions and·identities of the tracked items were 

reseeded to be the same at the start of every scanning run. Due to the 

deterministic nature of the motion equations governing how the items interacted 

with each other and the boundaries of th~ display through a trial, the trial would 

always unfold in the same way with the items always ter·minating their transit in 

the same positions. We then collected-a multitude of 30 ~·brain imaging datasets 

and then computed the mean· from these. The resulting. stimulus reconstructions 

were so much noisy as chaotic. We abandoned this approach in favor of a 

scaled-down tracking task with on "target" and one "distractor". Participants 

maintained covert attention on the target via a monitoring task. ThtJs, a periodic 

design could be enforced and a mean ·cycle could be computed. 

5. 1 Tracking stimuli 

The tracking stimuli consisted· of two 2° white dots that transited around 

fixation on an orbit at 6° ecce.nfricity and at a velocity of 2° Is . . Each dot tran~ited 

a full period around the orbit in· 60 s, and each run consisted of 8 periods. The 

attention component was cre~ted via a ~apid serial visual presentation (RSPV) 

was superimpos~d on each dot. Participants were instructed to count the . 

occurrences of 'O' and 'X' among distractor letters and digits. The RSPV probes 

changed at a rate of 3 Hz. At the outset of run, the initial positions of the two dots 

73 



were set to the upper and lower vertical meridians and instructions were given to 

the participants to attend to the dot at the· upper vertic·a1 meridian. 

In addition to the dots and RSVP ·streams, an occluding bar was inserted 

into the display. The bar was oriented at 135° and spanned spanned fixation, 

extending to 10° eccentricity on either side of fixation. On ·half the runs, the 

northwest end of the bar occluded both the dot and the RSVP as it transited past. 

On the other half of the runs, the southeast end of the bar occluded the dot and 

the RSVP stream (Figure 22). Designing the tracking stimulus in this fashion 

allowed for the direct comparison· of functional brain imaging signals 
. . 

corresponding to attended versus unattended and occluded versus non-occluded 

conditions at each· of the two bar locatio~s (135° polar angle, 6° eccentricity and 

315° polar angle, 6° eccentricity). 

Figure 22. A scherl1atic of the tracking exp~riment. At the .outset cpf a run, two 2° wide 
dots with an RSVP superimposed on each appeared above and b¢1ow fi~ation. 
Participants were instructed to attend the target and RSVP stream above fixation (T) and 
ignore the distractor and RSVP below (D) .. Each dot orbited fixation at a radius of 6°, witl 
an orbiting taking 60 s. Occl.uding bars were inserted into the task such that on half the 
runs the northwest bar occluded the attended and unattended RSVP streams (right 
panel) while on the other half of the runs the southwest bar occluded attended and 
unattended streams (left panel). Each orbit took 60 sand was repeated 8 times per run. 
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5.2 Tracking results 

Stimulus reconst~uctions were generated for each participant and each visu8:1 

area individually. Since the stimulus·reconstrudions exist in the common 

coordinate system of the visual space, combinin'g datasets across participants is 

trivial. Figure 23 shows a single frame in time from the stimulus reconstruction 

• I 

generated using the orbiting. stimulus. · In this c~se, the frame taken shows a 
I 
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Figure 23. A frame from the stimulus reconstruction generated using the 
tracking stimulus. The peak in the upper left

1 

corresponds to the signal 
. resulting from the nonoccluded distractor while the peak! on the lower 

right corresponds to the signal resulting from' the occluded distractor. 
Note how the representation of t~e ·target ·is higher and more narrowly 
tuned over space compared to the distractor. The scale is in z-units. 
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moment during· the course o.f the mean cycle where the target is occluded by the 

bar in the southeast corner while the non9cclu.ded distractor is passing over the 

bar in the northwest corner.. The stJmulus reco.nstructions were variance 
. . . 

normalized frame by frame so .that' the .pixel intensities are. expressed in z-units . 

.Typically, a region-of-interest brain imaging analysis computes a time-

series based on the BOLD signal fluctuations over time within a circumscribed 

portion of brain tissue. Where it concerns stimulus reconstructions, though, the 

region-of-interest analysis can be.conducted in terms of the coordinates of the 

display space. Because the locations ·at the the occluding and nonoccluding bars 

in the visual sp~ce were known, the mean time-series were computed by 

extracting and combining ·the time-course of groups of pixels at locations 

co~responding to the bars (two 2° diameter circular patches centered at 6° 

eccentricity and oriented at polar angles of 135° and 315~). 

Figure 24 shows the time-series and associated metrics derived from the 

stimulus reconstructions gen~rated using voxels from visual area V1 across four 

participants. In a.II panels, the colors of the lines and bars refer to the data 

extracted from different locations within the stimulus reconstructions as indicated 

in the legend. Solid lines and bars deriote signals and metrics that were 

extracted from positions in the stimulus reconstructions related to the target item. 

Hollow lines and bars. denote signals and. metrics that were e~tracted from 

positions in the stimulus reconstructions. related to the distractor item. The 

breaks in the lines at the midway point.in the cycle were· inserted for the sake of 
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clarity to demarcate when the target exited and ·the distractor entered a given 

position on the screen. From the perspective of pixels in the stimulus 

reconstruction corresponding to the oran~e box, the target passes through that 
. . 

location first followed by the distractor. Hence, at the beginning of the cycle, the 

orange line is solid as the target passes .that location and then transitions to 

hollow as the distractor passes the same location later in the same cycle. The 

same color coding convention was used for the. metrics shown in the bar plots. 

Note that comparison of time-series a.nd bars colored orange. or blue with those 

colored green or purple offers a gli.mps~ at the differences in the BOLD signal 

related to occluded versus nonoccluded' items. Again, the comparison between 
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Figure 24. The results ofthe tracking experiment in visual area V1. All data was ,derived by computed the. 
mean cycle across multiple runs a·nd participant$. Panel A shows time-series whi,le panels B, C,. and D show 
metrics,summarizing the FWHM_, peak amplitude1·and area uhderthe curve~ Th~ legend ftvrall plots is 
displayed to the right. The signals.are color-coded according to the point in the stimulus reconstruction from 

.. the;.data were extracted. Solid lihes and.bars denote signal and metrics related.t0 the target (T). Hollow lines 
and bars denote. signal an~ metrics related to the di~tractor (0). · 
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solid and hollow lines and bars highlights the distinction in signal related to 

targets and distractors. The metric.s in. the bar plots were chosen for the purpose 
. . . . 

of conveying and scrutinizing the di~er~nces between the .time-series across 

attenti~n .and occlusion conditions~ ·we ... chose the peak amplitude, the area 

under the curve (AUC), and the full-width-half-maximum (FWHM) of each pair of 

peaks in the course of a full 60 s cycle .. These metrics offer a summary of how 

fast the signal ramps up and down from the mean and by how much. 

If we examine Figure 24 more closely, we.can spot several interesting 

findings. Comparing the amplitudes associated with solid pwrple and orange to 

those amplitudes associated with the solid green and blue highlights the contrast 
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Figure 25 .. The. results of the tracking experiment in visual area V2. All data was derived by·computed the 
mean cycle across multiple runs and .Participants. Panel A shows time-series while panels IB, C, and o. show 
metrics.summarizing the FWHM, peak amplitude; anq area under the curve. The l~gend for all plots is 
<;lispl.ayed to the right The $ignals· are color-~ded'-according·to th~ point in the stirinulu_s,reeonstru¢tjo~ from 
the data were extracted. ~olid lines arid b~rs d~notf.f~ignal and m~trics relateci to the targef .(T}. Hollow lines 
and bars denote signal and. metrics related. to the distractor (0). 
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in BOLD activity related to targets dudng occlusion versus nonocclusion. The 

results suggest that area V1 responds.more strongly to targets during moments 

of occlusion than during moments when the target is nonoccluded. If we 

compare the hollow purple and orange with the hollow green and blue, we see 

that this pattern of results is reversed. Here, it appears as though area V1 

responds more strongly to distractors during moments of nonocclusion compared 

to occlusion. If we compare .these. sar.ne conditions among the other metric~, the 

results indicate that targets during occlusion effect stronger but more brief BOLD 

responses compared to targets during nonocclusion. Distractors dominate the 
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Figure 26. The results of the tracking experiment in visual area V3. All data was derived by computed the 
mean cycle across multiple runs and participants. Panel A shows time-series while panels B, C, and D show 
.metrics summarizing the FWHM, peak amplitude, and area under the curve. The legend-for all .plots is 
displayed to the right. The·. signals are color-coded according to the point in the stimulus .reaonstruction from 
·the data were extracted. Solid lines and bars denote .signal and metrics reiated to the· target. (T). Hollow iines 
and bars denote signal and. meti'iqs related to the distractor (D). 
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BOLD signal at locations of. nonocclusion (blue·and green) and, as indicated by 

the AUC and FWHM metrics.,· seem to be rJl·ore broadly tuned over space. · 

If we shift attention towards. the ·same set of metrics extract from stimulus 

reconstructions generated using voxels from visual areas V2 (Figure 25) and V3 

(Figure 26), the results become slightly_ more homogenous across occlusion and 

attention conditions. In both V2 and V3, the signals related to the target items-

occluded or not-are higher than the sign.al related to the distractor items. An 

interesting break from this pattern is found in panel B of Figures 24 and 25. 

Here, the du rat.ion of the signal related. occluded targets is less than the duration 

related to distractors at the same location. 
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Figure 27. Identity plots summarizing the 
. ·.differences between the three time-series 

metrics for targets and '.distractors among the 
three visual areas V1, V2, and V3. Notice that · 

·the peak amplitudes falll nearly exclusively 
above ~he identity line (~dotted) while the 
FWHM measures fall below. "f.his indicates 
that targets have higher, sharper peaks 
compared to distractors. . . 
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The identity plots shown in Figure 27 summarize the effect of attention 

across all three visu·a1 areas and time-series metrics. In general, signals 

associated with ~argets are stronger and briefer compared to signal associated 

with distractors. This pattern is broken for nonocclusion in area V1 where the 

sig.nals are stronger than their target counterparts. 

5.3 Tracking discussion 

The imaging findings reporteq here in response .to a scaled-down version of a 

tracking task can be framed in terms of the psychophysical terminology revolving 

around the behavioral results of MOT occlusion studies (Pylyshyn, 2006; 

Flombaum et al., 2008). These experi_menters noted that probes occurring on 

distractors are detected at a lower rate than probes occurring on targets. This 

result could manifest itself in terms of the.fMRI data in one of .two ways. If 

distractor inhibition is an active process where.by the regions of visual space 

surrounding distractors are actively suppressed so as do reduce distractor 

saliency, then probes occurring in these regions .should be detected less often. 

If, on the other hand, regions of .the visual space near distractors are simply 

ignored or otherwise under-sampled, then probes would presumably be missed 

more often when ·they appear near distractors. Each scenario-active 

suppressed distractor salience and passive non-enhanced distractor salience­

would should have the same behavioral. outcome (i.e.,·1ower probe detection 

near distractors). 
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In terms of the BOLD _signal, a~tive distractor suppression should be .met 

with an uptick in the local metaboli_c-demand corresponding to regions of the 

retinomapic map at and around the distractor, albeit inhibitory, since increases in 

the BOLD signal related to local inhibition and excitation cannot be dissociated 

(Logothetis, 2008). The second ·possibility-that distractors are concomitant with 

regions of neglect i~ the visual space~s~ould be met with little or no modulation 

in the BOLD signal. That we found found an increased BOLD activation in the 

regions surrounding both targets and distractors provides a neurophysiological 

basis for distractor inhibition. 

In addition to finding·a neurophysiological candidate for distractor 

inhibition, the results suggest that the.BOLD signal reflects some amount of the 

high-beams effect reported prev~ously in the behavioral literature (Flombaum et 

al., 2008). Here, probe detection is facilitated when they occur near targets and 

distractors during moments of occlusion compared to nonocalusion. The imaging 

results support this finding, but only for targets. The peak amplitude of occluded 

targets were higher than their nonoccluded counterparts. This was true across 

all three visual areas for both locations i.n the visual field where occlusion and 

nonocclusion events coincided in space. This effect did not h~ld for distractors, 

wh_ere nonoccluded distractors showed higher peak BOLD amplitudes across 

visual areas V1; V2, and V3._. It is unc_lear why the effect shol)ld hold for·targets 

but not for distractors, especially in light of Flombaum and others' finding that the 

relative occlusion advantage for probe detection was higher for distractors 
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compared to targets (although target probe detection was always higher in 

magnitude). The easiest explanation for the discontinuity between the behavioral 

and neurophysiological findings could be ·found in the differen·ces between our 

task and their task. We used an overly simplified version of the MOT task and 

did not include ~ny probe detection component. Participants were neve_r cued to 

the distractor during the course of our runs, and so occlusion advantages at 

distractors may have been lost. · 
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6. General Discussion 

6. 1 Technical challenges 

The lion's share of work hours spent. in the course of completing this thesis 

revolved around rewriting the pRF esti_mation routines and the entailing software 

support. The original authors' code-base for the pRF estimation (Dumoulin & 

Wandell, 2008). was ~ritten i_n MATLAB and designed primaril_y as a graphical 

user interface through which brain imagers co~ld configure and run their 

analyses. Consequently, the pRF.~stimation code repository is quite byzantine. 

The author of this thesis wrote the pRF· model e~timation procedure anew using 

the op~n~source Python programming l~nguage (http://python.org), utilizing its 

various supporting scientific computing modules (e.g., http://www.scipy.org). In 

most cases, natively available tools were used for reading and writing files, 

performing time-series analysis, and model fitting. Where these tools did not 

exist, as in the case· of the multi-scale ·a9aptive brute-force estimation routine, the 

author created and programmed the algorithms. All software written by this 

author-including pRF estimation and stimulus reconstruction-will be 

incorporated into NIPY (http://nipy.sourceforge.net) and made available under a 

public use license. 
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6.2 Population receptive field estimation 

The results of the pRF estimation experiment reconfirm retinotopic organization 

of early visual cortex using both the phase-encoding methom (Engel et al., 1994; 

Sereno et al., 1995; De Yoe et al., 1°996; Tootell et al., 1997) :and the pR~ model 

(Dumoulin & Wandell, 2008; Amano et.al., 2009). Figures·6,and 7 demonstrate 

the orderly registry between visual field ·and the neuroanatomy. Based on the 

phase reversals of the polar angle maps,. we were able to delineate the 

boundaries among cortical visual ar~as. 

Al~hough the scope of this study was limited to visual areas V1, V2, and 

V3, the pRF estimate maps from several subjects indicate a level of detail that 

would allow for. the d~lineation of higher".'C?rder visual areas moving dorsally 

towards parietal cortex and ventrally anq laterally towards temporal cortex. 

Several participants' pRF estimate .maps were clean enough to suggest the 

emergence of v·isual areas along the dors?I. pathway including areas V3a, V3b, 

and h~4 and several areas in IPS .(Wah~ell et al., 2007). Additionally, a few 

participants' pRF maps showed retinotopically organized maps located laterally 

I 

and ventrally to V3, including LO, VO,-~V4, and MT+ (Wandell et al., 2007). That 

these areas weren't prominent among all participants is most likely attributable to 

lower signal-to-noise ratio of visual signals in these areas. The maps delineating 

the boundaries among these and even more areas are generally generated using 

multiple (i.e., more than 2) sessions of retinotopic mapping per participant. That 
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we were able to detect a sub~et of these areas with much fewer datasets is 

encouraging and _warrants further investigation. 

In addition to mapping more cortical regions, efforts are underway to 

implement the Difference-of.:Gaussian_ (DoG) pRF model (Zuiderbaan et al., 

2012). The version of the pRF model used in this thesis was the single Gaussian 

model, whereby. the spatiotemporal reposne properties of eaGh voxel are 

modeled as a 3-parameter Gaussian with sing_le positive peak amplitude. This 

version of the model, however,. is in capable of capturing the large negative 

BOLD response to the sweepi~g bars· (see Figure 4, panels A and C for an · 

illustra~ion). Convolution of the effective stimulus with the double-gamma HRF-. 

which includes a post-stimulus negative undershoot-allows for only subtle 

negative BOLD responses. In order to .more accurately capture the variation of 

the BOLD about baseline, it is necessary to add an inhibitory surround to the pRF 

model. The resulting two-dimensional· Gaussian· is the· so-called "mexican hat" 

function. Instead of a singular positive peak, the DoG model is function with an 

. . 

larger, central positive peak surrounded by an intermediate, negative peak. The 

DoG pRF model has been shown to explain more variance compared to the 

single Gaussian pRF model; in addition, the intercepts of.rel~tionship betwe.en 

eccentricity and receptive field. size is lower across visual" areas (Figure 11 ). For 

reasons unknown, the author~ of the DqG_ pRF model use only center-on 

receptive field models and do not report any results using center-on and center-

off receptive field models. An interesting extension of their work would include 
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using both center-on and center~off receptive field models for· capturing visual 

signals in BOLD. Using the DoG model ·would also allow for more complex 

configurations of pRF estimates, potentially adding richness to the 

spatiotemporal information of the stimulus· reconstructions~ 

6.3 Stimulus reconstruction 

The stimulus reconstruction ·procedure ·outlined in this paper is novel in the field 

human brain imaging and shows a lot of promise for future mapping studies 

. . 

across sensory modalities. · We demonstrated that stimulus reconstructions can 

be generated using the pRF estimates d.erived from the pattern of activation 

driven by the sweeping bar stimulus in combination with the SOLD signal 

fluctuations driven by any arbitrary pattern of visual stimulation. The algorithm 

works quite well for datasets.used .to t_rain the pRF model' (Figure 16) as· well as 

datasets that were agnostic to the .model estimation procedure (Figures 17, 18, 

and 23). 

Furthermore, our stimulus reconstructions offer new avenues for 

approaching experimental design, data analysis, and the summarization of 

results. Since the stimulus reconstructions are linear combinations of voxel time-. . 

series data recast into the coordinate system of the display screen, combining 

datasets across visual areas and participants is trivial: The stimulus 

reconstructions themselves can serve as. operands for any matrix operation 

including but limited to addition, subtraction, division, and multiplication (Figure 
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19). That the stimulus reconstructions exist in the coordinates of the display 

screen allows for region-of-interest analyses whereby the responses can be 

pooled over locations and extents of the display rather than of brain tissue. This 

affords an ability to inspect patterns of brain activation in terms of narrowly 

defined stimulus char~cteristics over tinie and space .. 

Since stimulus reconstructions are i.nter:1ded to be facsimiles of patterns of · 

luminance fluctuations among pixe!s on a display screen, it is possible to use 
. . 

image similarity metrics to evaluate ano tune the performance of the 

recon~truction algorithm. The depth of .this project proved to be beyond the 

scope of the current thesis, but efforts are underway to implement a version of 

the algorithm whereby the contribution .of voxels to the fidelity of the 

reconstruction can be determined. The approach taken is to iteratively increase 

and decrease the contributi.on of a giver) pRF estimate· to the resulting stimulus 

reconstruction. If, for instance, amplifying the contribution of a given voxel to the 

stimulus reconstruction increases the dissimilarity between it and the actual 

stimulus, then the contribution of that voxel can be attenuated. However, 

because single .frames from stimulus reconstructions are .the result combining 

. . . . . 

positively and negatively scaled Gaussians of various amplitudes, multiple voxel 

contribution configurations ar~ possible ... I~ is possible that settings among sets of 

voxels may be degenerate with each other, with no clear optimal solution. These 

are the sorts of issues that need· to be worked out if any kind of optimization 

routine is implemented in the scheme of the stimulus reconstruction algorithm. 
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6.4 Tracking 
. . 

The results of the tracking experiment seem to lend some ·neurophysiological 

support to the findings of MOT tasks us.ing occlusion. We showed that the 

representations of targets across the visual field are higher and in amplitude and 

shorter in duration compared to distractors. Said another way, the responses to 

moving targets are more narrowly tuned over space. This effect is generally 

exaggerated during ·moments of occlusion. Distractors, on t1he other hand, are 

associated with weaker more slowly ev~lving signals. This would suggest that 

distractors are diffusely represented in the visual space and a.re broadly tuned 

over space. These findings indirectly suggest that the behavioral distractor 

inhibition results from an active suppression of rather than same kind of' passive . . 

neglect of the neighboring visual space. A confound in our experiment is that we 

didn't include a control condition where purely visual signals are measured in 

response to an orbiting visual stimulus without the presence of a competitor. 

From this, we could compare whether the increase in BOLD signals associated 

targets and distractc:>rs could be assesse~ in terms of deviation from the stimulus­

bound, tracking-free baseline. The stimulus reconstruction data structure would 

be ideal for conducting such a control experiment. Participants could passively 

fixate while untracked visual items transit. around the visual field on trajectories 

identical to the tracking task. These data could be used to generate ·stimulus 

reconstructions that could be subtracted from those gene.rated using the tracking 

89 



data. This would remove the signal attributed to the visual stimulus alone, and 

so we could make greater cl.aims about the signals that emanate from the targets 

. . 
and distractors as attentional entities. As it is, the attention-' and stimulus-drive 

signals are conflated. 

Assuming for the moment that the signals related to di$tractors are indeed . 

a form of neurophysiological distractor inhibition, the question now becomes: why 

should the visual system act!vely repr~sent distractors araH?. After all, the . 

passive neglect explanation for distractor inhibition seems to be the simpler 

answer to the question of how to bias salience towards attended locations in the 

visual field. It may be the case that the g·oal is to both bias towards targets and 

away from distractors, but this explanation seems tautological. A more 

interesting explanat~on can be found in te~ms of . recent findings in the 

neuroscientific literature that suggest a role of prominence for inhibitory signals in 

the early visual· cortex of awake vertebrates. Haider and others (2013) found that 

cortical responses to visual stimuli in awake mice are the product of strong 

synaptic inhibition signals tuning the concomitant but weaker excitatory 

. . 

responses. The response to visual·stimuli in awake mice. was found to have a 

high ratio of inhibitory to excitatory· signals and were narrowly tuned in space and 

time. Comparing the cortical output and the relative ratio of inhibition and 

excitation measured in awake mice in response to a visual stimulus, signals 

measured during anesthetize have a lower ratio of inhibitory to excitatory signals 

and are more broadly broadly tuned over time and space. That mixtures of 
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excitatory and inhibitory signals car:1 increase the spatial· and temporal tuning 
. . . . 

characteristics of neurons has been .sh.own in a yariety of sensory modalities 

(lsaac~on & Scanziani, 2011 ). Both. feeqfoward and fee.dback inhibitory neural 

circuits are thought to help shape the response properties of neurons, effectively 

enhancing their sensitivity to a particular coordinate within some feature space. 

Returning again to the trac.king results, these findings shed some light on 

why the visual system bothers represen.ting at all. While the BOLD signal is 

unable to dissociate local excitation from inhibition, it stands to reason that the 

explicit representation of targets and distractors would have the effect of spatially 

sharpening each of the items in the retinotopic space. Moreover, anytime there 

was a close encounter between targets and distractors in the visual fielq, 

neurophysiological distractor inhibition .·would presumably sharpen the 

boundaries of the target in both time a~~ space. The task as it was conceived in· 

our experiment does not afford us the ability to search for this sort of distractor-

target spatial tuning interaction as they were separated by 180° of polar angle 

and 12° of eccentricity in the visual field .. In light of both our findings and those of 

Haider and others (2013) Warrant furthefr investigation using a task where target 

and distractor items i~tersect in .space. . . 

That we found differences in BO~D .activation in relation to attention and 

occlusion among our visual. areas .i~dicate that there is some kind of disparity in 
. . 

the types of information processing goi.ng ,on along the visl.llal· stream. Relating 

differe~ces in the BOLD in relation to t~~k demands with functional properties of 
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visual areas, though, is a complicated affair. The BOLD signal is considered to 

be associated with the inputs into a cortical region as well as the processing of 

that input by the. local cortical circuitry (Logothetis, 2003). An increased response 

would suggest that the neural mechanisms have selected on a particular feature 

in the stream of visual input and are persisting and further d.ifferentiating that 

feature. If we turn again to t~e findin~ of increased BOLD signal for nonocc.luded 

distractors in V1 but not V2 and V3,.the results in tandem with the nature of 

BOLD would suggest that V1 pontributes to the individuation of distractors in a 

particular attentio.nal state. This individuation of nonoccluded distractors 

disappears upon inspecting the pattern of activation in areas V2 and V3. This 

train of thought could be continued for. various aspects of the results in an effort 

to localize task demands in terms of the functional and anatomical hierarchy of 

the visual system. However, in light of ·the irregularity.of the fi.ndings, more data 

should be collected and more experiments ex~cuted in order to determine the 

true neurophysiological order of operations in extracting·and abstracting the 

various task demands related to tra.cking and occlusion. 
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