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Abstfacf
The human visua.l system is'capable_bf tracking multiple visual targets under a
variety of task constraints and configurations. For nearly two decades, the
psychophysical literature has shown tﬁat moving, occluded visual targets—
targets that are momentarily invisi’ble as,t_hey pass behind an occluding bar—are
differentially represented by the visual system compared to their moving, non-
occluded counterparts. Here, | sought toieXanﬂine the neurophysiological basis
of this behavioral difference in fespon,s_e to occluded versus non-occluded visual
targets. | used brain imaging.tb condUcf( modern retinotobic mapping
experiments in human participants. Once their early visual cortices were
mapped, | was able characterize the _ne_ukal representations for both targets and
distractors as well as during morhent's of occlusion and non-occlusion. The
results show that, using our 'method, we can distinguish visual targets from
distractors; furthermore, there appears fo be a representation in retinotopically
organized early Visual cortex for visual targets that have momentarily

disappeared from the visual field due to occlusion.
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1. 'Introduction

This thesis projéct started out as a small enterprise aimed}at determining how the
brain represents a moving visual stimu'l.us during a tracking task. The scope of
the project was initially circumscribed so as to explain how early visual cortex
differentiates between targets and distraétors within the context of its
representational architecture.. OVer fhe course of two years, the project has
grown into a package of sohewhat diVe_rée analytic approabhes and
experimental findings. To answer questions about the dynamic representation of
a moving objeét across multiple visual aféas, | drew upon methods and findings
from psychophysical, electrophysiology,‘and neuroimaging. fhe thesis is
organized to gradually build L_lp"a ¢ése for using novel néuroimaging techniques
to determine the role that mﬁlti’ple ar'eéé in early visual cortex play in extracting
and representing visual informatioh durvi:ng. a‘tracking task.

Visual tracking is an interesting psychological and behavioral state from
the perspective of neuroimaging, espééially in early visual cortex, because it
represents the intersection of botfom-;Jp and top-down visual processing.
Different visual stimhli of equivalent phy’siéal propertieé can be assigned the role
of target and distractor arbitrarily by the experimenter. From trial to trial,
participants have no trouble maintaining this djstinction and cén perform tracking
tasks made especially difficult with very Iiﬁlé decrement in their performance.
This scenario bégs thé question: how-do top-down, attention-driven task
demands affect the bottom-up, stimulusfdriven representations of visual stimuli in
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early visual cortex? The answer to this question has been put forth numerous
times in the Iiteraturé in the past decade, but nohe have proposed methods or
reported findings that differentiate sensory-bound signals from attention-driven
signals in early visual cortex. This absence is in part due to what seems like an
analytic and experimental design Qversig.ht'of one of the most fundamental
properties of early visual conekz retinotopic organization. |

After describing some basic me't_hodol'ogical detailé that subserve all
experimental aspects ofvthe thesis, | summarize the development of retinotopic
mapping in visual cortex, from nascence to the state of the art. Recent advances
in neuroimaging has moved towérds'an approach that attempts to describe the
point-for-point registry betwéen visual and cortical space with a level of precision
suitable for dissociating concurrent vi'su-al processes deployed across the visual
field. Such an épproach offers insight into how bottom-up, stimulus-driven
responses might differ from top-down, attention-drive signals écross multiple
visLlaI areas and for different task conditions.

The fourth section prehvssentsta' hovel neural decoding method in the fiéld of
neuroimaging. Here, | detail the development of an algorithm for generating
reconstructions of visual stimt;li based on Ithe retinotopic mapping and functional
time-series acquifed with functional bfa’in imaging. The method allows
experimenters explore aspects of how the brain’s voxel-wise activity varies as a
function of the patte~rn of visual stimula.iti'oh‘and task inStruction. Rather than

claiming something about how a given visual area changes its response during



tacking comparéd to rest, we are able to ask questions about how a givén visual
area represents a portion of the visualxs.pace while a target passes through it
compared to a distractor.

The fifth section of the thesis gOeé on to implement the stimulus
reconstruction method for a scaled-dAown version of a tracking task. The method
allows for the teasing apart of signals aséociated with tracked and non-tracked
items across multiple visual areas. | was able to demonstrate that the signal
associated with tracked and noh-tracked items as well as occluded and non-
ocgluded items can be differentiated within the same visual area at the same
moment in different retinotopic Iocétiohs.

The final section to the pape'r‘ aﬁehpts to make sense of the results of the
trackin'g experiment both in terms of thé" psyéhophysical tracking literature as well
as the underlying neurophysiological meaning of the recorded brain imaging
signal. The story for what thé expectéd brain activity should be given the
imaging technique and the taék démahds is quite complex. | try to frame this
complexity in terms .of how the brain a&ivfty in early visual cortex might express

forms of stimulus enhancement and/or inhibition as a result visual stimulation and
task demands. | offer several possible explan_ations for my reéults, as well as

some suggestions for experiments moving forward.



1.1 Multiple-object tracking
The multiple object tracking (MOT) paradigm was first introduced by Pylyshyn
and Storm (1988). Myriad variations on‘the original MOT task structure have en
developed throughout the years, but the ésSeﬁtiaI spirit of the task has remained
relatively the same. Participants fi‘>.<ate‘_a c;entral point on a visual display while
an array of dots are presented-on the écreen at the outse.tlof atrial. A subset of
the dofs are indicated as targets, usually via a brief change in luminance.
Following the cue period, all of the dots set off in motion at a constant velocity
around the display space. After some time, the dots stop moving and a single
dot is probed. Participants are required to respond as to whether the probed dot
is a target or distractor. }A

Storm and Pylyshyn (1988) discdveréd that participants performed quite
well at distinguishing targets from distractors for up to target and distractor set
sizes of 10, performing about 85% correct; tracking more than 5 targets (or
contrarily ignoring more than 5 distracitc)rs), was shown to be beyond the ability of
the participants (Storm & Pylyshyn, 1988; Pylyshyn, 1989). This pattern of
performance as a function of farget set éivz.e has been replicated across the years
for various MOT étimuli aside from dots, including surfaces (vanMarle & Scholl,
2003), objects (Alvarez & Franconeri, 2007), and faces (Ren et al., 2009). Since
targets and distractors were identical ih,vte'rms of their featural qualities, Storm

and Pylyshyn reasoned that the visual processes that support the participants’



tracking performance must indivyiduate"attended and ignored stimuli based on
their current and historical spatial locations. |

Storm and Pylyshyn constructed é model to determine whether
participants’ performance on thev MOT task for target set sizes of up to 5 items
relied on parallel or serial trécking meChénisms in the visual system. They rightly
pointed out that _if the mechanisms of visual tracking were truly operating in
parallel, then there should be no gradierit' of performance as the number of
tracked (or ignored) items increases. Cbnvers’ely, If visual tra&king operated via
a serial mechanism whereby_parti¢ipants rapidly shift thé locus of attention
around the visual field from ifem to iteﬁi in rapid succession in order to maiﬁtain
the identifies of targets and distractors, 'then errors and latency should increase
with both the number of targets and distractors as well as the distance between
them. |

The experimenters esti.mat'ed the trade off between attentional velocity
(i.e., the rapidity of éttentional shifts in.a' éerial tracking process) and
performance and found that_participant_s.’ performance for target set sizes of up to
5 items outpaced the performance of a serial tracking model (Pylyshyn, 1989).
With target set sizes larger than 5, .part_ici‘pénts’ performance drop off
precipitously. That pa.rticipants’outperfprm a serial tracking model but show a
degradation in performance with large 'target' set sizes indicates that tracking sits(
somewhere between a burely'serial and purely parallel process. That is, for a

certain number of items to be tracked, thé visual system can deploy tracking



mechanisms for each target in parallef; however, with target set sizes beyond this
limit, the processing demands exceed the capabilities of parallel deployment.
Pylyshyn hypothesizéd the éxistence of “fingers of instantiation” (FINSTs) to
explain how multiple targets can be individUatéd automatically and in parallel to
subserve processes éngaged |n thé MOT task. A FINST is resource-limited
mechanism that individuates féatu_re.s ih the visual scene, but which is separate
from ité retinal location per se. In the cése of the classic MOT experiment where4
targets and distractors are identical in ,Iuminancé and form, their feature-based
distinguishability relies solely Qn‘their sbatial locations and histories. Hence,
spatial location becomes the featﬁre iﬁdexed by FINSTs associated with each
target, allowing the visual system to corfectly identify a target in motion over time.

The individuation of targets via the FI.NST mechanism is thought to occur
in a pre-attentive stage of processing, analqgous to the feature integration model |
prdposed by Treisman and Galade-(1980) to explain various behavioral
phenomena of barticipants e’ngagéd in-a visual search paradigm. Visuél search
comes in two basic flavors. Feature séarch Where targets and distractors differ in
terms of a single feature demonstrates tﬁé pop-out effect. Under such a search
regime, the reaction time for find_ing the target does not scale with the number of
items in the array. Instead, the targef will effortlessly pop out because the feature
has been abstracted in the preattentivé_stage. Conjunction search, on the other
hand, uses search arrays where targéts and distractors share two or more

features. Reaction times wil scale with the number of items in the array as



attention is guided by the cohjunct‘i'on of two or more preattentive features, '
behaviorally manifested as participanté-conducting a serial search through the
array. Efficiency of search reletes thevsbeed at which participants are able to
identify the targef and the number of items in an array. Search efficiency is used
to delineate separable features fromintegral features. Thatis, if a particular
search array is found to be inefficient, 'then it is reasoned that attention is
required to bind multiple separable fe.atures,into an integral feature as the
participant seaiches fer the target among‘ distractors. Efficién{'t searches indicate
that preattentive processes select on a eeparéble feature and guide attention to
the target directly. The twofetaige v_r.inodel was put forth as a way of explaining how
certain conjunctions of features seem io require a serial search strategy and
Ionger'reaction times whereas searchee for the constituents of those
conjunctions do not. The model sets out-a framework for experimentally
determining, for a given scene, what~sriou|d be considered a separable or
integral feature. |

Within the FINST model, spatial iocation becomes a feature through which
multiple items can be individuated, tracked, ‘and identified when probed. An
interesting extension of the classic MOT paradigm has shown that participants’
performance can be modified when the targets and distractors interact with
occluding bars in the display;’ Schbli and Pyiyshyn (1999) found that paiticipants’
were able to track target_s regardless ofwhether the targets passed behind
occluders. In other words, even though'the stimulus is momentarily extinguished
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from the display, participants havé no _difficulties in persisting the representation
(FINST) long enough for the stimulus fo' tfaverse‘ the occluder and reappear on
the display. Interestingly, the experimenters also found that this equivalence
between occluded and non-occluded tracking can be destroyéd when unnatural
forms of occlusion are used. In the natural.world, objects that pass behind and in
front of one another cause thejr boundaries to delete and accrete in an ordered
succession. Scholl and Pylyshyn designed control conditions where occlusion
occurred in an unnaturai way. Here, the Objects would implode and explode or
instantaneously disappear and reappear .upon intersecting and reemerging from
behind an occluder. In these caées, -participants were up to 30% worse at the
MOT task with unnatural océlusion com}.p-ared to natural occlusion. These
findings imply that the visual system not only represents occluded items but that
there may be some mechanisms that ca‘n'not identify unnatural occlusion in the
course of deploying tracking resources. K |

| Extending these findings, Flbmbaum and others (}2008) found that the
deployment of attentional reéourceS'céh be biased by occlusion. Here, they had
participants track targets and v.ignore diStractors tfansiting around a field with two -
occluding bars. Participants were able to perform the tracking task equally
during occlusion and non-occlusion t_riéls, successfully identifying targets around
90% of trials. To investigate how attention varies as function of occlusion and
tracked item identity. the experimenteré"ihcluded the abpearance of brief (100
ms) probes that the participants_were asked to acknowledge yia button response.
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Tafgets and distactors were probed during moments of occlusion and
nonocclusion an equal numbér of iimés through all trials.  Two interesting
findings fell out of the behavidral respdnses to probes among these four
conditions. First, they confirrﬁed the exi‘s.ténce of distractor inhibition described
previously (Pylyshyn, 2006). Distractdr inhibition manifests itself behaviorally as
a lower probe detection rate (20%) for probes that occur at or near distractors
compared to targets. This finding suggests that attention deploys some kind of
mobile suppressive resource that haé information about the location and identity
of a particular tracked item. |

In addition to distractor inhibition, Flombaum and others posited a new
behavioral finding they dubbed >the‘.“at.t¢ntional high-beams effect”. The
attentional high-beams effect‘r‘nanife}‘stls itself as a behavioral advantage for
identifying target and distractor probes during moments of occlusion compared tb
nonocclusion. Specifically, participants were 229% and 33% better at identifying
probes on targets and distractors during occlusion compared to nonocclusion. In
other words, participants are bettér at .f.the.detecting probes near targets and
distractors during moments where occldders obscure them from view.
Interestingly, distractor probe detection benéfits more from occlusion than does
target probe detection; however, target probe detection was always higher than
distractor probe detection.

Distractdr inhibition a'r‘id, the attentional high-beams.effect offer Mo

interesting behavioral cases for investigating the role of neural mechanisms that .
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support visual tracking specifically and perhaps visual spati}al attention generally.
How do the neural representations of targéts and distractors differ in light of
distractor inhibition‘? How do the neurél’ répresentatiohs of “occluded and
nonoccluded tracked items differ in light of the attentional high-beams effect?
Surprisingly little is known about the answers to these queSxtio.ns, despite the
leaps and bounds made in the past decade in the field of human brain imaging.
To position ourselves better- to énswer ft_he_questions about the underlying neural
mechanisms supporting trackiﬁg and i'ts_ various quirks, a.review of the brain

imaging literature focusing on'multiple object tracking is helpful.

1.2 Neural correlates of tracking‘ .

In comparison to the vast wéalth of psyghophysical experiments employing
variants of the MOT task, relatively little is known about the neural correlates of
MOT, and the néural representation of cb'mplex stimuli in general. The majority
of studies using functional brain imaging (fMRI) to measure bfain activity related
to fracking tasks rely on statistical methods to detect regions of the brain that
show elevated blood-oxygen‘at«ion-debéndén.t (BOLD) signal for tracking veréus
passive-viewing blocks of triais. The experimental paradigm is an alternating
task structure whereby particibants’ brain activity are recorded during epochs of
effortful tracking énd during passive yiéwing. Statistical maps are computed that

summarize the pattern of acti\)ity among all the voxels during each of these task
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epochs. The activity that occurs during tracking above and beyond the baseline
activity is computed as the difference between the two task states.
In the first experiment to probe the underlying neural mechanisms

supporting visual tracking, Culham and,others (1998) —using the subtraction

method —found that compared toa paséivé viewing condition, voxels throughout
occipitotemporal, parietal, and frontal 'cor"tices showed significant activation
across both hemispheres dqring a trécking task. In particular, they found that
both the motion-sensitive MT+ and the tdrm processing lateral occipital cortex
(LOC) showed significant activation fbr tracking versus passive viewing. in
addition, they féund rﬁultiple foci of signifi'cant activation in pa‘.rietal cortex for the
tracking versus passive viewing contrasf,’ inclu.ding two sites in the intraparietal
sulcus (IPS) and superior pa‘riétal llbbule (SPL). In the frontal cortex, they fqund
that frontal eye fields (FEF) and suppléhéntary motor aréé (SMA) were
signifiéantly more active for tracking veféus passive viewing (Culham et al.,
1998).

A major problem with this study, land with the statistical contrast method in
general, is the lack of specificity ih the_'contrast between an effortful task state
and passive viewing. Tracking as a psycﬁological and behavioral state brings
with it an array .of neural mechanisms that subserve the task demands.
Passively viewing a MOT task may crudely control for the low-level visual
components of a tracking task; however, this condition would not account for the

increased demands on spatial visual attention, vigilance, or response planning
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among others. The contrast method lumps together all higher-level perceptual
and cognitive processes into a monolithié statistical effect in contrast to passive
viewing. To more finely gauge tﬁe inVoIvement of different task demands and
their corresponding neural n.1echanism's_, Aexperimenters have used the method of
parametric variation to define the invdlveme}nt of different brain regions in the
MOT task. |

Rather than simply defining two states of the task and the corresponding
brain imaging data, the paramétrici_ \/ariation approach is.to use small,
incremental changes in the tés‘k der»'na.lﬁdsl in order to encode corollary
incremental modulations in thve BOLD ait_:ti_vity among voxels measuring neural
activity related to‘the task. Within the realm of MOT, this is usually implemented
by way of increasing the number of itéms to be tracked. With increased numbers
of targets, the supposition wohld be that BOLD activity should scale accordingly
in areas that are spécifically represen_ﬁrig 'tracked itemé. Any brain areas which
may be active to support a general vigilance or attention éomponent of the task
that does not scale with the number of tr_ackedA items should ﬁot change its level
of activation.

Ina follow-up tb their original fMRI trécking experiment, Culham and-
others (2001) found that the pattern of"r_esults in their earlier work was not as
straightforward as their éimple contrasts s'uggeéted. Here, the participants
tracked between 0 and 5 targets, as i_ndiéated at the outset of a given trial. In this
context, 0 targets is analogous tb_thé passive viewing condition discussed earlier
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in relation to their original 1998 experim.ent.. The tracking component of the task
was only prese'rit for target set sizes of 1 and greater. The parametric design
allowed the experimenters to parse out patterns of activation driven by the
geheral demand characteristics of the task from the pattérns of activation
involved in tracking on the bésis.of whether voxels demonstrated a scaled BOLD
amplitude in conjunction with variable target set size. They found that sites in
IPS —specifically the anterior intraparieta_l sulcus (AIP) and posterior intraparietal
sulcus (PIP)—shéwed increased BO’LAD amplitude that scaled with the number of
items tracked. In contrast to their original 1998 findings, while voxels in areas
FEF, SPL and MT+ all showed signific-élntl'y greater activation for tracking versus
passive viewing (i.e., O targets), the activation levels in these areas did not
parametrically vary with the .number of distractors. In other wbrds, the BOLD
amplitude in these three brain areas remz.ained. tonically high during periods of
tracking regardless of the nu.mber of items pérticipants were cued to track. This
seems to suggest that while cértain areas in IPS subservé specific target-related
demands of the tracking'task,-areas FEF, SPL, and MT+ are recruited to support.
non-specific task demands such as spatial attehtion, vigilance, and response
planning (Culham et al., 2001). ThéSe results have been replicated in other
functional imaging studies uéing the parametric variation of attentional load
during a tracking task (Jovicich, 2001; Howe, 2009). In general, the level of
activation of vo'xéls in posterior parietal cortex seems to scale with the attentional
load of the tracking task; frontal areas, including FEF and SMA, do not show
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patterns of actiVétion that scale with targe‘t set size. These findings are
suggested to demonstrate the role of parietal cortex in the debloyment of visual
spétial attention_ resources.

These findings add dé.tail td thé'body of literature showing broad task-
driven responses in parietal and frohtal"cortices (Kanwisher & Woijciulik, 2000;
Wojciulik & Kanwisher, 1999).‘. However, .a.l glaring absence in these imaging
experiments explbring the neural repr‘é‘sentations of MOT is the pattern of
activation in early visual areas. Since early visual areas are retinotopically
organized and the functional topographies of these areas are well defined
(Wandell et a., '2007), differences in the representation between targets and
distractors should be detectable and asc;ribed in the coordinaf_es of the retinotopic
space. Rather than comparing the relative differences among groupings of
voxels and variations of task‘vcdndit‘ion,}_it should be possible to trace the history
of a target or distractor in termé of B‘OL‘D signal modulatiéﬁ across the human
corticavl surface in retinotopic spéce. If such an approach is possible, then it
becomes relatively simple tQ compare the repre'sentations of targets and

distractors or stimulus and attention dynamically as a task unfolds.

1.3 Hypotheses: squaring visual trackihg and functional imaging

The results of péychophysical experiments i.nvestigating the deployment of
attentional resources during a tracking task suggest two interésting behavioral
méinstays: 1) distractor inhibition and 2) the aﬁéntional-high beams effect.
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Distractor inhibitiqn describes the suppression of attentional salience at or near
the visuotopic locations of di‘stracting'itéms. The attentional-high beams effect
describes the enhancement of att'entio_‘nal salience at or near the visuotopic
locations of occludéd items, target or‘d‘iétr.actor. From these two behavioral
findings, it is possible to begin to formulate hypotheses for how neural
mechanisms may deploy 'resources across retinotopic space Qnder various
circumstances. Distractor inhibition éhould manifest itself neurophysiologically as
a relative increase in bIood-oxyg‘enfl‘ev'el-dependent (BOLD‘) signal in brain tissue
representing the retinotopic coordinatés at or near distractors. Psychophysically,
distractor inhibition can be thought of as a negative bias in the salience map of
the visual field at or near distractors, yielding low probe detection rates.

However, since the BOLD signal~ can'not dissociate excitation from inhibition
(Logothetis, 2008), the expeéted result yvbuld be:an increase in the BOLD signal
for neural tissue‘ corresponding to the lo'cativon of the distractor in retinotopic
space, assumihg an équivalencé betweéh psychophysical and neural inhibition.

The attentional high-beams effect shouldmanifést itself neurophysiologically as a

relative increase in the BOLD s‘igriél in tissue representing the retinotopic location

at or near occluded items.
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2. General Methods

The sections that foIIo_w outline the.collection and analysis procedures that are
common among the visual mappirig ,a‘hd attention experiments. Speciél
attention will be paid to describing the énalyses specific to each of the

experiments in subsequent chapters.

2.1 Participants

Measurements were obtained from 4 parficipants (two female; ages 25-31
years). All participants had normal or corrected-to-normal visual acuity and gave
written informed consent approved by tﬁé York University Institutional Review
Board. Participants submitted to a visuél‘ field'niapping and a multiple object

tracking experiment.

22 Méghetic resonance imaging
Magnetic resonance images were acquired with a 3T Siemens Trio Tim scanner
and a 32-channel head coil.} Foam pédding was used to minimize the
participants’ head-motion. Pértici'pant.s were not naive to a scanning
environment, haviné been previously_éhdArepeatedly instructed on how to
comport themselves in the scanner so as. to minimize head movements.
Functional images.(flip angle = 90 "’,.TE =28ms, TR = i500 ms, 256 mm
FOV, 128x128 matrix, 2x2x2 mm vo)‘<elk, 6/8 partial phase Fourier, GRAPPA

parallel imaging with 2x acce'leratiOn, factor, bandwidth = 752 Hz/px) were
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acquired using ah echo-planar p_ulse‘ ée’quence with 20 coronal slices oriented
perpendicular to the anterior-posterior axjs of the calcarine sulcus. Ten visual
mapping runs and 10 tracking runs wére collected from each subject in two
scanning sessiqns on separate days.‘

In addition, a f1 weighted three-djmensional MPRAGE‘,'sequ.ence scan of
entire head with an isotropic 1 mm3 voxél (TR.= 1900 ms, TE = 2.52 ms, 1 mm
slice thickness, 256 x 256 m_atrix).-‘The.' T1'weighted sequence yielded a high
contrast, high spatial resolutioh 3D étrﬁptural image from 'v.vhich to derive surface

reconstructions for functional data projections.

2.3 Image processing

All anatomical images were pro§e$sed through the FreeSurfer software
package (Dale et al., 1999; Fischl et al.,. 1999), yielding surface reconstructions
onto which statiétical maps can be projé'cted. For clarity in presenting data, the
surfaces can be cut and flattened, offering a single-perspectivé view of an entire
hemisphere. Smaller sections were cut from these hemispheric flat maps,
isolating the occipital lobe of each .her'.nisphere.

-All functional data were processéd through a common analysis pipeline.
All runs were slice-time correc;,ted to enéu_fe that the time-series of all voxels
within a volume écquisition were alignéd with respect to the visual stimulation.
Data were then motion-corrected to the first volume of the first run for a given
scanning session. Each run was deskulle’d and each time-series mean-centered
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and variance normalized. Since ea_ch participant was scanned in multiple
sessions in order to aéquire‘ all the n.eC:ess,a'ry pRF estimation and visual tracking
data, it was necessary to transform all the data to a singular, common space. We
used an affine registration procedure to register ‘aII functional runs with a single
high-resolution T+ from which the surf_ace‘ reconstructions were generated. The
registration algorithm uses a Iocél_ Péa_rson coefficient cost function (Saad et al.,
2009). This alignment preséription is deéigned to align functional and anatomical
im‘ages based on local similarities in the images. Since the gross shape of the
functional and anatomical imagés are qﬁite distinct due to differences in the
susceptibility artifacts and field distortion between the two pulée sequences, cost
fuﬁctions that use global sh'ape to'_driye the alig.nrr.lent bétween these types of

images often fails.

2.4 Volume censoring noise reduction

In addition to these standard f_bﬁns of fMRI data preprocessing in
preparation for statistical analysis, we émployed noise reduction procedures for
removing spurious éignals from our déta résulting frorﬁ head-motion (Powers et
al., 2012) and physiolpgic noise (Thomas et al., 2002).

Motion-correction is a procedure whereby series of thrée dimensional
volumes—which are typically cpncaténatéd over time to produce a 'single four
dimensional vol‘ume—.are brought'in_to _spatial alignment w‘ith some reference
volume of the same spatial reéopution \‘/,ia an affine spatiai transformation. While
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there are many different implementations of motion-correction for images, the
common thread throughout is an error"minimization between the reference image

and the motion-corrected image. The result of sucha procedure is a six

parameter spatial transformation that describes the translation (three degrees of

freedom, units are in millimeters) and thé' r‘otat.ion (three_degrees of-freedom,
units are in radians) re’quired_vtd br‘ihg ﬁhe two images into alignment. In-addition,
these parameters tell us how‘much»buf pérticipants movéd during a scanning
session by combining the variods pararﬁeters into a singular measure. We can, |
in turn, use this measure to explicitly discount certain data points due to
abnormally high amounts of head-mdtibn. The measure adopted in this
particular study was framewisé diépla¢ement (Power et al., 2012).

Framewise displacement expreséés the instantaneous head-motion in a

scalar quantity with the formula -

FD, =|Ad,|+|Ad, | +|Ad,| +|Ac| +]AB | +|Ay ]
where

Ad,=d,, —d

for a particular motion parameter. The same evaluation was used for each of the
other motion parameters. The rotational displacements were converted from
radians to millimeters to standardize the units across parameters. Once the

framewise displacement had been computed for every volume in a given
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scanning session, parﬁcular voiumes W_ere flagged as containing too much head-
motion if the framewise displaéemeht measure exceededA a predetermined
exclusion criterion. The exact ekclusion criterion varied from scanning session td
scanning session, but typically was se,t_so as to remove the volumes whose
framewise displacement exceeded the value that demarcated the 95th percentile
of all volumes. Discounted volumes were removed from the computation of the

mean run for a given experiment.

2.5 Component-based noise reduction .

In addition to censoring volumes based on their framewise displacement
as derived from the head mo'ﬁon. pvara:r_neters, an independent component
analysis (ICA)was used to identify s.pu'rious signals embedded within the time-
course of each voxel. Each fﬁnctional dlat‘aset is processed through MELODIC
(Beckmann & Srﬁith, 2002), a free software tool that decomposes a four
dimensional brain imaging dataset into aAset of independent spatial components,
each of which is associated with a pari’icu‘lar temporal Component. The linear
decomposition of the voxel time-seriés via ICA assumes that a given voxel time-
course is the weighted sum of an indeterfninate number of co:r’nponents.
However, because ICA is model-free, no Aautorhated tools exist for identifying
certain components as being sfimullus‘-‘driven from those which.owe to -
physiologic noise such as respiratioﬁ dr scanning artifact‘s.such as susceptibility
artifacf. Noise components wére idenfified if their frequency was less than half |
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or more than twice our stimdlus frequen.c.y. For instance, the stimulus frequency
of the bar stimulus was computed to be 0.067 Hz, where visually responsive
voxels should show 8 peaks cor'respond-ihg to the 8 bar sweeps over the course
of the 120 volume run. Any ICA components which showed é‘ frequency less
thén 0.033 Hz or more than Q.1-33' Hz were flagged as béing physiologic noise or
otherwise as not emanating frorﬁ th’g—é Viéual stimulation. |

‘Once flagged, noise cdmpo‘nenté_ were removed from the raw time-series
of each voxel using the standard muitiple regression expression

i-

Y = ﬁo + ﬂlXil -'F.ﬁinz .t ﬁlXip T &

However, in our approach to reducing the.contribution of noise to a given voxel

time-series, we were less interested in the parameter estimate 3 than in the

residual error €. In the applying general linear model, each of our independent -
variables is a temporal component derived from the ICA which is outside of the
frequency bandA we've defined for a sﬁmulus-driven signa.l._ Hence, the \}ariability
in our data that is not accounted for'by: the designated noise components is

assumed to reflect stimulus-driven activity.
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3. Mapping the visual space usihg 'fUh‘Ctio'nal brain imaging

To be able to ask questions about differing neural representations for targets and
distractors under occlusion aﬁd nonocclusion, it is necessary to take a
cartographical apbroach to early visuél’cortex. The changes in the neural
representation during a tracking task will vary both in terms of the configuration of
the task structure as well as the Iocatici)ns‘of the targeté and distractors. In order
to fully dissociate the signals related to ta_rgets and distractors or occluded and
nonoccluded items, we need to precisely relate the visual spébe to cortical
space. Defining the stimulus in visual spéce, fhen, should lead us to the
corresponding s'ignals' in the cortical s,péce. This retinotopic mapping of human
cortex is not a new enterprise,,>and ém’anated from someWhat humble

beginnings.

3.1 Retinotopic Mapping in the Humian Visual System
The retinotopic orgavnization'of human-occipital cortex was first discovered in the
early 20th century (Holmes, 1918). Evidence for an orderly spatiotopic map in

the human cortex for representing the visual field bore out of perimétry

experiments using veterans of the First World War with head frauma sustained in

cofnbat. The orderly relationship between the lbcation of scotomas and occipital
lobe lesions led to the concIUsioh t.hat' _t'he brain represents the visual field ih
terms of retinal coordinates. The aréhi.Ve of neurophysiological research owes
much of its expanse to this eérly work. in.the last 50 years, enormous strides
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have been made in bharacterizing the 'representezltionai topography of the visual
world in the central nervous system.

The validity and efficacy of research exploring the ne‘utél basis of visual
processing hinges on the capa;:ity_ pf the éxperimenter to faithfully survey the
retinotopic functional drganizatibn throgghout the cortical an;d subcortical
pathwgys. For decades, the sfandard "o.,'perating procedufe for electrophysiology
experiments investigatin.g visual processing has been a two-phase enterprise.
First, experimenters define the location, extent, ‘and boundaries of a neuron’s
classical receptive field. Once the classical receptive field is experimentally
defined, a given neuron’s résponse properties are explored by comparing the
relative neural acti’vity when stimuli are bresented inside versus outside the

receptive field (Hartline, 1938; Hubel & Wiesel, 1963; Hubel & Wiesel, 1968). In

the arena of functional brain imaging, this experimental approach can be adopted

with relatively little modification. The real challénge is td adapt the classical
receptive field model in such' a Way‘aé_to make it useful for brain imaging |
research, taking into account .the dispafity in both spatial and femporal scale
between single-cell electrophysiology tecﬁniques and whole-brain magnetic
resonance imagiﬁg. |

The functional organization of early human visual cortex has been the
topic of extensive néuroimaging resea:rch.(EngeI et al.; 1994; Sereno et al., 1995;
DeYoe et al., 1996; Tootell et al., 1997).- FMRI offers a unique experimental
avenue by which multiple visual areas can be functionally sarﬁpled concurrently,
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allowing researchers to probe fhe resp"qnse properties of ‘multiple visual areas
with a single dataset and analytic approach. Traditionally, using fMRI to map
visual areas has relied on the traveling _wave paradigm whereby periodic
modulation in the visual stimu]atib_n accompanied by a frequency-domain
analysis of the imaging datalallows resea,rchers to distinguish visually responsive

voxels according to the frequency and phase of their responses. Presenting the

visual system with a stimulus that varies periodically over time and space should

entrain voxels to the periodicity of the stimulus. Since neuroné in early visual
aréas have been shown to have retinotopically organized receptive fields,
adjacent voxels—which pres‘uméb}iy' ré‘épdnd to adjacent portions of the visﬁal
field—show slight differences’in‘thé phase of their periodically entrained
responses. Hence, transformfng the time;series to the frequency domain via the
Fourier transform4 and computing the ‘phase at the particular stimulus frequency
(say 8 cycles per scan) will inform the results about the spatiotopic relationship
between the retina and cortex. | |

While the phase-encoding meth_od_for performing retinotopic mapping is
robust and widely recognized within the field, it is limited in itsl.‘precision for
determining both the location and .dis'pers'ion ofthe representation in the visual
field. Since a the phaSe of a-vdxel. revéals information about where in a periodic
stimulus’ .cycle to which it's mdst reépdnsive, two sets of funs are required for
determining the polar ahgle and.the eccentricity of the voxel. Later, that
information can be combined to yield‘a_sc':reen coordinate for each voxel, but it is
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impossible to determine to extent over which a voxel pools its response in the
visual field. In erder to measure and Iatef utilize information ebout each voxel
responsiveness in terms of the location |n .and‘t.h.e extent over the visual field, we
invoked the population recep_ti\)'e fi_eld model (Dumoulin & Wandell, 2008; Amano

et al.,, 2009).
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Figure 1. The sweeping bar stimulus transits the visual field in 8 different directions
over the course of a single run (A). Assuming that each portion of the bar stimulates
equally, differing responses can be elicited based on both the location and
dispersion of a hypothetical population receptive field. Differentiable time-series are
attainable by comparing the luminance intensity changes for two 1° patches of the

visual field (B, red and blue). Changing the size of the patch to 5° (C) allows for the
discrimination of two identical positions.
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3.2 The bopulation receptive ‘_fie‘ld modél ,

The population receptive field (pPRF) model takes advantage of the fact that we
know how a the response of a voxel éhbuld vary over a ran'tge of locations as well
as receptive field sizes. The onIyArequ,‘irements for such a methodological
approach is that the visual stimulation véries over time and space and that it has
a linear relationship with the measured neufal activity. Atoy e_xample of how
presumptive visual signalé might vary across the visual is shown in Figure 1.
Given a sweeping bar‘ stimulus that systematically sweeps through the visual

field, plotting the luminance éh_angés that occur over the course of arun at -

locations (x,,y,) and (x,,y,)highlights differentiable luminance signals at each

location. Furthermore, pooling the signals for multiple locations surrounding

(x,,y) and (x,.y,)yields an even subtler difference in the luminance signals.

This example offers.an intuifive senseiqu.how signals among voxels may vary
according to the~ locations and dispersions of their responsiveness across the
visual field. The pRF model is an encod‘ihg model in that the signal derived from |
each voxel is driven in a systematic way via the pattern of visﬁal stimulation. The
parameters of the model can_ be qu'anti'tatively Worked oLnt so long as the
measured signals have a Iinéar spétidtémporal relationship with respect to the
stimulation (Boynton et al., 19.‘96), and fhat the precise pattern of the stimulation

is known during the analysis phase.
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3.3 Population receptive fie/d stimuli

The visual field mapping stimuli consisted of a moving bar aperture that
revealed a high;contrast (100%)'fIiCkéring«checkerboard paﬁern, reversing '
contrast at a rate of 4 Hz. Over ,the'chrse of a single run, the bar was presented
at four orientations (0°, 45°, 90", and 135"). The bar moved in the two opposite
directions perpendicular to their orientation, yielding a fotal of 8 different bar
sweeps per run (Figure 2). The projéction system and bore sized allowed for 13°
of visual angle from fixation. Each bar t_réversed“ 26° during a pass, always
starting in the periphery, passing thrdugh fixation, and terminating in the
periphery, The. bar width was set to 1/4th' of the preséntation field radius (3.25°),
as .prescribed by previous pRF papers (.D'u'moUI.in & Wandell, 2008; Amano et al.,
2009). The bar-moved acrdss t’hev_f‘ield in discrete 0.625° steps across the visual
field, with each step being timé Iockéd-,'fo tAhe collection of'é new functional brain

imagin‘g volume. Each bar sweép took a total of 60 s to traverse the visual field. |
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Figure 2. The visual field mapping stimuli consisted of a moving bar aperture that
revealed a high-contrast (100%) flickering checkerboard pattern, reversing contrast at a
rate of 4 Hz. Over the course of a single run, the bar was presented at four orientations
(07, 45°,90°, and 135°). The.bar moved in the two opposite directions perpendicular to
their orientation, yielding a total of 8 different bar sweeps per run.
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3.4 Population receptive field estimation |
We modeled the fMRI signal as a function of both the location in the visual field

to which a given voxel is responsive (x,y) as well as the dispersion of the

response across the visual field o . Hence, our 3-parameter model yields two-

dimensional Gaussians which vary in location, extent, and amplitude as a
function of dispersion across the visual field from voxel to voxel. The Gaussian

function

20°

. p | _ 2 - 2
8(x,y,0) = expf((x Xo) + (Y= ) }

provides the formulation for the popul_at_io'n receptive field where x,and y,

represent the coordinate matrices defined by the horizontal and vertical

dimensions of the visual display and ¢ denotes the standard deviation. The

location and size of the Gaussian can be arbitrarily set by varying the parameters

(x,y) and o, respectively.

The effective stimulus (i.e., the sweeping bars) was characterized in terms

of its position on the screen (x,y) at-a discrete unit of time t. Assuming that all

portiohs of the ﬂickering'checkefboard pat_tern contribute equally to the fMRI
response (Engel et al., 1997), the predicted hemodynamic signal can be

computed by multiplying the two-dimensional Gaussian by the stimulus frame at
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a given time-step and summing the product. Doing so over all time-points yields

- an expected fMRI response (r) for a'givén model-parameter triplet (x,y,o)
r(f) = D s(xy.0)g(x,y,0)
‘ Loxy

The expected reéponse r was then convolved by the canonical hemodynamic

response function (Glover, 1999; Friston et al., 1998; Worsley et al., 2002) to

yield a predicted fMRI signal
p) = r@®)*h()

- The goodness of fit was computed as the residual sum-of-squares (RSS)

between the actual fMRI re'»spoh‘sé:and' the prediction
) S 2
RSS = X.(()- p(®))
: -

In estimating the hodel parameters, ’t'vAv'o difficulties arose in turn: first, due to the
multitude of possible solutions in estimating the model, an exhaustive brute-force
search would be imbractical; second, i.'f a gradieht-deSCent error minimization
procedure for model estimation was emplpyed, an init'ial starting point for the
model estimation would h’avé to be provided. | employed a Mo-phase, coarse-
“to-fine model estimation strategy t}haf uséd anAabb‘reviated brute-force search to

discover the initial parameter settings for the gradient-descent error minimization
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routine to converge on the final solutipn. All pRF estimation routines were
recreated and reinvented by the author of this thesis. The software was written
independent of the code base distributed by the originators of the pRF model and
will be made available under a publicusé license.

The first bhase of the parameter estimation approach involved a brute-
_force grid-search that regularly sampled candidate values in the parameter
spéce. Because of the multitude of possible mbdel squtionsi and the
combinatorics entailed, the grid-éeérch'estihation procedure was handed a.
coarsely sampled effective sti'mulu's and roamed a sparsely sampled parameter
space. The effective stimulus‘. was dowﬁ-_éampled to a resolution of 5% of the
original using a tHree-dimen'sionaI Iin.e‘ar interpolation. The procedure for
sampling the parameter space was slightly more sophisticated. Here |
implemented an adaptive brute-force éeafch thaf would iteratively tighten the
bounds of the three parameters via error minimization. Each barameter was
given four evenly spaéed ’dirhension coqrdinates with which td generated a
prediction. The RSS between it and the éctuall measured signal was computed

for each of the 64 (4><4x4) permutations. The triplet with the lowest RSS was

selected was selected as the s.e.ed. for a new brute force Within each of the three
parameter dimensions, égain using regularly spaced samplings along each
dimension. At each iteration through _th_isA procedure, the distance between the
samples became incrementally ér_nalie_r at square rate. The initial distance

between the bounds and the number of iterations could be set arbitrarily,
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" although certain search configurations rhay Iead to an overwh.elming penalty in
terms of computational timé. _The'poin‘t of the adaptive brute was to ball park an
initial guess to use as a start-ing poiht for a gradient-descehf error minimization.

The gradient-descent pro'ce.duresps_ed was a downhill simplex algorithm
(Fletcher & Powe‘ll, 1963) for rapidly traversing down tHe error surface in the
three-dimensional space of the model parameters. Once the solution was
ascertained for a given voxel,’the'para.'meters were stored in conjunction with the

covariance between the predicted and actual fMRI signal, for the purpose of

thresholding.
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Figure 3. The canonical hemodynamic response function that is convolved with
the stimulation time-series. In response to single brief stimulus, the function
peaks 4-6 seconds post-stimulus. - The signal then decays begins to undershoot
the baseline (dashed line), reaching the most negative response about 14-16

seconds post-stimulus. At 22-24 seconds post-stimulus, the signal returns to
baseline. ' oo
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3.5 Voxel-wise HRF estimaiion -

In addition to fitting the pRF 'rhodél to the, fMRI signal, we also incorporated an |
HRF estimation proéedure for generatfh'g .a uniqﬁe HRF on a voxel by voxel

basis. The HRF describes the evolution of the BOLD signal in response to some

~stimulus. While the formUIations of the HBF vary greatly and é considerable

amount of research has been qévoftéd to determining the physiological basis and

experimental cdnsequences-bf a g'iv_eh,HRF, versions of the HRF have émerged

as standards in the field of fMRI and, so, have been dubbed “canonical”. One of

the more widely used HRFs is the double-gamma HRF, formulated as

ca-lpoy —pBi a1 pa, =Bt
ne) = 't _‘e,' —ct .ﬁz e
a) Ia,)

where o, and Bl represent the delay and dispersion of the peak, «, and

represent the delay and dispersion of thel undérshoot, c represents the ratio of
the peak to the 'underéhoot, and r _i__s 'a.ga_mma function. Figure 3 shows the
canonical HRF. In response to a hypofhetical stimulus, the BOLD signal in some
voxel will begin to increase. Approximat'el'y 4-6 seconds post-stimulus, the BOLD
signal will peak and begin to decay. On fhe downslide towards the initial
intensity, the BOLD signal will uﬁderéh,oot its starting point, and eventually return

back to baseline.
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In the coarse-search phaée of the analyéis, the HRF was assumed to be
the canonical form. In fine-séarchxthSe of’ the analysis, however, the gradiént-
descent error minimization routine"was' ‘allowed fo explore a parameter space
that included an HRF-delay térm in addfti_dn to the threé parameters of the pRF
model. The delay term equally affectéd the peak and undershoot, effectively
translating the HRF left or right along the ordinate (time) axis depending on
whether the optimal'deléy was negati\ie- or positive. Since each stimulation run
contained pairs of bar sweeps in mutual!y opposite directions (eight sweeps, four

orientations), the deléy para-meter of the HRF model Was not degenerative with
the location estimate of the pRF model. If ‘the lstimulus was not designed with
opposing pairs of bar 9weeps, fhev.,f.itti'n_g procedure would erroneously conflate

the HRF delay parameters wi_th the pRF location parametérs.

3.6 Population receptive field results

The pRF model estimation routine ge.nérates a nine dimensional volume,
comprised of the three spatial dirﬁensi.ons, the three pRF model parameter
estimates, the HRF delay parameter, -thé residual sum of squared error between
the actual time series.and the model fit,"and. the covariance between the actual

- BOLD time-series and the model fit. _The, actual and predicted time-series are
shown in Figure 4 for three 'exarhple voxels from a particular participant. The
voxels were chésen based on theif.aﬁatomical locations and their Iocatibn in the
retinotopic space. Panels A and B éhdw the actual and predicted time-series for .
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voxels selected from anterior énd' post_érior portion of the calcarine sulcus.
Previous experimen.ts would suggestvth'at.these voxels contain neural
representations 'of'the. periphery and fovea, 'respectively. The voxels differ from
one another in a number bf ways, including the distance between and amplitude
of BOLD signal peaks. The movd'el‘pérameters denoted in each panel dutifully
describe the subtle differences among the measured BQLD signal modulations of
two voxels. The model paramet_er-estimates confirm anterior-posterior foveal-
periphery gradient retindtopic"property of early yisual cortex. The voxel in panel
C was selected from dorsolateral occipitél lobe and may perhaps be sampled
from what is generally consideréd_ to'be the motion-sensitive area, human MT+

(Wandell et al., 2007). This particular 'vQXeI is interesting because of the
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timeseries for three different voxels sampled from
the anterior portion of calcarine sulcus (A), the
posterior portion of the calcarine sulcus (B), and
fateral occipital cortex (C). In all cases, the pRF
model was fit to each voxel’s demeaned,
‘variance normalized (z-units) timeseries. The

. quaternary pRF model parameters--
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delay--are denoted for each model fit. Different
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similarity betweén its location and HRF deléy parameter estimates and fhosé of
the the voxel depicted in panel B. 'Theé‘e voxels differ in their anatomical location
in the brain and their receptivé field size. eétimate. Retinotopically organized
visual areas downstream of V1 were found to have increasingly larger and larger
receptive fields (Harvey & Dumoulin, 2011). Cells in visually response cells in
temporal and frontal cortices have beén- found to have receptive fields spanning
entire an entire hemifield, and in some case, the totality of the visual field. Panel
.C demonstrateé this éffect ih limited way,-but also highlights t‘he ability of the pRF .

model to map out the response properties of higher visual areas.

Figure 5 shows the location. parameter estimates (X,Y) of the four

anatomical subdivisions of V1, incl‘udihg the left and right hemispheres and the
dorsal and ventral calcarine sulcus plottéd in the visual display space in terms of
degrees of visual angle. The central sCaﬁer plot shows the locations of pRF
estimates across all voxels in visual éreas V1, V2, and V3 whose covariance

between the actual and predicted time-series exceed 0.2. The histograms above

and beside the scatter plot show the distribution of X and Y , respectively.

Since the voxels were extracted from thh_hemispheres and the dorsally and
ventrally to the calcarine, the Iocati_oh estimates are distributed across the entire
visual field. The shapés of the distr_i_bu_tions' are roughly normal, although the
distribution along the vertical dimen'sio‘n. of the display space shows a moderate A

degree of kurtosis, with a Fisher kurtosis of 1.62 (Zwillinger & Kokoska, 2000).
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The kurtosis suggeéts that visual cortéx iriequitably safnples the visual space,
with relatively few voxels representing the periphery along the vertical meridians.
- This sort of Ietter-box.repreéentation ha:_s been previously fouﬁd in human brain
imaging experiments across cortiqal and éubcbrtical visual areas (Kastner et al.,
2007; Schneider, 2011 ). Psych-ophysi,é_s e‘xperiments have also demonstrated a
behavioral deficit in visual disc‘riminétion tasks in the periphery along the vertical

meridian (Carrasco et al., 2001; Corbett & Carrasco, 2011).
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Figure 5. The distribution of location estimates across the entire visual space for
participant P2. The central scatter plot shows the intersection of the x and y location
estimates among voxels throughout the measured brain whose covariance between
the actual and predicted timeseries exceeded 0.2. The distribution of the x and y
estimates are shown in histograms above-and beside the scatter.
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While this view of the déta pfbvi-ées a good idea of fhe global visuospatial
properfies of early visual cortex,. it doesn't-illustrate the functional topography of |
the cortex itself. To do this, it is necessary to pr.oject the model parameter
estimates into the cortical space'(DaIe et al., 1999; Fischl et al., 1999). Figures 6
and 7 show the pRF estimates projected onto the cortical surface of a single
participant, P7. Panels A, B, and C shdw the pRFs= projected separately onto

the left and right hemisphere surfaces. For clarity, the cortical surface

reconstructions from each hemisphere have been flattened and cropped so as to

onl'y include to posterior portion each hemisphére.

surface of a single participant,|P7. Panéls A, B, and C
_show the location and dispersion estimates.of the pRF
‘madel parameters projected separately ‘onto the left and
right hemisphere-surfaces: Panels D and E show the
Jlocation parameters:converted from cariesian to polar
coordinates. Boundaries between visual'areas V1, V2,
-and V3 are drawn in black dashed linesand.are drawn
based on the polar-angle phasé reversals about the
horizontal and vertical meridians.
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The values of the location estifnates _(x ,y) vary about 0, with positive and

negative values trave.rsing ﬁxation horizc_)ntally and vertically. .,'Panel A reaffirms
the basic retinotopic property of cqntralatéral Qisual field representation in early
occipital cortex; hencé, the hori'zont_al ;é_stimates project onto the right hemisphere
range from fixation to the extréme ,périphery of the left viéual field. Estimates
ranginé from fixation to the extréme periphery of the right visual field project onto
the left hemisphere cortical surface. .F.’an‘el B shows the cortical projection of the
vertical position estimates using the same colormap rotate 90°. The results

reconfirm the results of numerous experiments mapping the retinotopic

organization of human and macaque cortex, with the upper and lower visual

Figure 7. pRF estimates projected onto-the cortical
surface of a single participant, P2. Panhels A, B, and C
show the location.and dtspers:gﬂ -estimates of the pRF
:model parameters projected separately-onfo:the left and
right hémisphere surfaces. Panels D. and'E show the
location parameters converted from cartesian to polar
coordinates.
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fields projecting to cortical zoﬁes Qentré! and dorsal to the calcarine sulcus.
Panel C shows the pRF size estimates. Here, \)alues were always greater than
0°, with the colormap being truncated at 5°.

Panels D and E show t'he Ibcati_bn.estimates location estimates in panels A
and B converted froh cartesian to po_Iaf cbordinétes. The polar angle map—

measured in terms of degrees or radians—is shown in panel D. The polar angle

be computed from the cartesian coordinates as 6 = atan(y/ x). Polar angle
complements eccentricity, which describes the central to peripheral dimension of

polar space. Eccentricity is computed as p = XY
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Degrees of visual angle in Y

: =5 0 5 1
Degrées of visual angle'in X

across:four participants. The.central
panél show{vs location estimates for all
of V1 as defined via polar.angle maps.
“The distribution of pRF location
estimates across the.visual field is also
shown for the left, right, dorsal, and
ventral subdivisions of V1..
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The organizatiqn of retinotopic cortex is notoriously unwieldy among the
healthy control population, with the topography varying acrosé individuals in
terms of the functional size, Ioc'a‘tiqn,v andl orientation of visual areas with respect
to anatomy. These irregularitiés among areas and brains has plagued various
attempts to automate the retinbtopic patcellation of visuat cortex via software
solutions, both in three-dimensional volume and two-dimenstonal cortical surface
space. Manual tracing remains as the state of the art in retinotopic cortical
parcellation.

Boundaries between Visual areas V1, V2, and V3 are drawn in black
dashed lines. The boundaries are draWn based on the polar angle phase

' reversals about the horizontal and vertical meridians. Each of these visual areas
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can be divided into quadrant representations of_the visual field according to
hemisphere and ventral-dorsal position, éontaining representations from the
vertical to horizontal meridian-albng éll_ eccentricities. Figures 8, 9, and 10 show
the distribution of pRF Iocatibn estima'te.‘s. around the visual field for the four
subdivisions of each visual area combined across four participants (P2, P7, P23,
| P27). These figures illustrate thé relatibhéhip between the pRF location
estimates among each of visual areas’ subdivisions and the visual field.
In addition to this firét ordef_ broperty_of retinotopié.organization in the
cortex, visual cortex also dervnOnstré'te's; a bollinearity between the eccentricity of
the visual representation and fth'e récepﬁve field size. Figure 11 shows this

collinearity among multiple visuals are four participants. Here, each visual area

dorsal

Degrees of visual-anglein Y

-100 -~ o 10 st BRE
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. jon estirm ong across the
visual field recru rom V3 voxels-
across-four participants. The central
panel.shows location:éstimates for ali
ofV3as defined vi polar-angle maps.
The distribution of pRF location
estimates across the;visual field is also
sshown for {he.left; right,-dorsal,-and
ventral subdivisions of V3.

ventral
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was taken to comprise both hemispheres and the dorsal and lateral subdivisions. -

Moving from foveal to peripheral- represehtatiohs among the visual areas, there is
a corresponding increase in the receptlve fleld sizes, denoted by the positive
slope of each line. The mtercept of th|s relatlonshlp duffers among the visual
areas, W|th smaller receptive f|e|d sizes at a given eccentrlcnty for V1 compared
to V2 and V2 compared to V3. This relation between the eccentricity and

receptive field size maps—both within and across visual areas—has been
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Figure 11. The relationship between eccentricity and receptive field size among
multiple visual areas in four participants. Moving from foveal to periphery, there is a
tonic increase in the pRF size, denoted by the positive slope of each line. The
intercept of each line differs among the visual areas, with increasing pRF size at a
given eccentricity along the V1, V2, V3 trajectory
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previously demonstrated in macaques using eléctrophysiology techniques and in
humans using functional brain imaging (Amano et al., 2009; Harvey & Dumoulin,

2011).

3.7 HRF results

In addition to modeling thé location and size of the pRFs, we explicitly modeled
the delay of the hemodynamic résponse function. We allowed the gradient-
descent error rﬁinimization to explére "delay. as a model parameter. As rﬁenfioned
earlier, since the bar sweeps OCcurréd.i-n opposing pairs, the location parameters
are not degenerate with the délay pararhéter. The distribution of HRF delays for
four participants are shown in Figure 13. The HRF delay values are negative or
positive with respect to the baseline 5 s delay that is typically used as a good
good approximation across the brain én.d the population. Kernel density
estimation was used to estimate the éontinuous distribution of pRF delay
estimates. Heré, a kérnel band‘width 6f 6.25 was uséd. The delay distributions
across visual areas are roughly normal é'nd céntered abput 0 s delay. Thereis a
slight shift from positive to rﬂggétivé deiays and broadening of the dispersion of

delays moving from V1 to V2 to V3.

3.8 Retinotopic mapping discussion
The results of the pRF modeling of visual cortex across multiple participants
indicates that the code base of the original authors have been faithfully and
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independently replicated. We were able to model the responée properties of
voxels sampled from various Iocétion in the brain (Figuré‘4). In addition, we able
to define the boundaries of fﬁultiplé’viéﬂal'areas across occipital lobe Figurés 6
and 7)-and that these cortical'visuallaréas appear to show the expected registry -
with the visual space (Figureé 8,9, and .14(')). The second order relationship
between eccentribity and receptive field size was also replicated among multiple

visual areas and participants (Figure 11). Interestingly, we were able to find an
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Figure 12. The kerne! density estnmauon for the HRF delay estimates among visual areas
V1, V3, and V3. The kernel bandwidth used was 0.25. The abscissa denotes the
probabmty at any given detay estimate. The HRF delay mean and standard deviation for
‘each visual are is shown in the legend. -
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orderly distributioﬁ of HRF d'elay, estirﬁates across voxels in areas V1, V2, and
V3 (Figure 12).

These results are largely confirfnafory in and of-themselves. However, in
the current context, the pRF maps are ,int‘en'ded to serve as stepping stones for
investigating the neural representations emanating from a tracking task. In order -
to do so, we need to recast(the‘ pBE mapé in térms of the visual space—not the
cortical space. This Will allow us to .e‘xamilrie how different portions of the visual
field may be over- or under-rebresenteq in response to térgets, distractors,
occlusion, and nonoccluéion. “To this end, we developed a neural decoding

method for generating stimulus reconstructions based on the pRF maps and the

neural activity.
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4. Neural decoding

Stimulus reconétructidn falls-under _the'bro,ad rubric of neural decoding. ltisa
method for determining the relatvions'hip_between known sensory inputs and
measured neural respohses such that one can be derived from the other.
Stimulus reconstruction is simply a ﬂav‘or‘ of neural decoding, and it is useful to
highlight the distinctions betweeh_it and several other flavors of neural decoding

approaches currently used in functionalbrain imaging research.

4.1 Image classification

In a seminal paper in the field of brain imaging, Haxby and otﬁers (2001)
deQeIoped an analytic framéwOrk for mapping the patterhs of voxel activity to
categories of visual stimuli. Here, 'th'e1 feséarchers were interested in deterrﬁining
whether object categories (e.g., 'fabes, Hogses, tools) could be distinguished from
one another based on the distributed and overlapping pattern of voxel activity
across brain networks spanning the I,étéral occipital and inferior temporal
cortices. The participants were presented with images of exemplars from
multiple object categories. A standard'ge'neral linear rﬁodel was used to regress
out the effect among all voxels of each of the category types. The participants
were then exposed to a new round of exemplars. The experirﬁenters used the
pattern of activity associated w.ith gaéh object category derived from the training
dataset to determine which stimuli-caused a given pattern of brain activity in the
test dajaset. This procedure Worked ing:redibly well, accﬁrately predicting when a
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given brain activity pattern resulted ffom viewing houses and faces at a rate of
100%. The lowest accuracy observed f'o.r- identifying exemplars categories based
on brain activity was 65%, well above the 50% chance guess rate. Furthermore,
the experimentérs found that ne'tworks.tﬁ‘at responded maximally to a particular
category type could be used to accurate-ly .predjct the presentation of exemplars
belonging to other, non-selécti\ie cﬁ_éteg'ories. This result points towards.the.
importance of distributed netwbrks;_'ra,".the‘r than specializ'éd modules—in
represéniing a multitude of features asé.ociated with a hi'gh-level visual stimulus.
This approach is broadly known as image classification and relies on the
method of multi-voxel patterh analysi‘s.- In general, the experiments and analyses
are designed such that classés of stim}uli- can be characterized and differentiated
in terms of configurétions of voxel actiQi’ty‘panerﬁs. The paradigm has been
extended to other domains in visual neuroscience. Kamitani and Tong (2005)
used a multi-voxel patterh analysis technjque to train a classification algorithm to ‘
identify sets of voxels whose reSpo,nées were found to code the specific
orientation of gfatings, an eIUsive fin_ding in brain imaging'._ Kamitani and Tong
reasoned that, although neurons specifically selective for certain orientations
may have a functional topography too fine for typical functional imaging
resolution to register, randomly sampling‘from a portion of visual cortex may
result in a preponderance of neQroné selective for a specific orientation to reside
in a given voxel by chance. Given this ghequal distribution, voxels may differ
from one anothe_r according to their Weak but predominant selective responses to
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vafious values of some feature’~dirfien_sion,‘for iﬁstance s'inusoidal gratings
oriented at a particular anglé. ' | |

Their voxel classificatién algorith“r'n was trained using functional datasets
collected while participants viewed 45 and 135" oriented siﬁusoidal gratings. On
subsequent functional runs, the two Qﬁhogonal gratings were combined into a
single plaid and presented to part'icipa.'nts who were cued to attend to either the
45 or 135 grating cbmponent of the plaid stimulhs. Kémitani and Tong found
that their classifier was able to accurately predict which of the two plaid
components the participahts were attending during any given epoch based on
the patterned time-course activity of 'over‘ 800 voxels sampled from visual areas
V1,V2,V3, and V4. |

~While the mind-reading .avspe'ct of these kinds of ekperiments is quite
appealing, the importanf findings are related to the neural decoding that mediates
the sensory input and the neural activatidn patterns. The classification
algorithms are indeed able to ,Ieérn the association between types of sensory
inputs and patterns of voxel ‘activity; howéver, the question becomes: does this
tell us anything about the kinds of infOrmatiqn being represented differently for
faces versus houses, or for lines orientéd' one way versus the.other? Where this
approach falls a little flat is in its‘inab,ility' to classify new, untréined stimuli. Since
thé relationship between the training and test détasets ié purely statistical, it
becomes difficult to determiﬁe ~whi§h’ featUres of a particular stimulus are be~ing
represented by a given patter‘n. 'In'deed", the only conclusion that can be drawn is
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that two patterns of activatio'n are distinct from one another and that they are
each associated with a particular kind of stimulus. The details of how a pattern of
activation is associated with a given stimulus is not explicitly modeled based on

the stimulus features themselves, and so cannot be unambigUouslsy determined.

4.2 Image identification

Image-identification is a flavof of neUréI‘decoding that explicitly models the
response properties of voxels\. Kay and‘QAthers (2008) used image i_dentification
to predict which barticular image in a set of novel, natural scenes a participant
viewed. Their approach consisted of two phases. In the first phase, each
participant viewed a large training datéset consisting of 1,750 natural images.
The activity of each voxel in responsé to these images was modeled based on a
Gabor wavelet pyramfd, describing the tuﬁing along the dimeﬁsions of space

(x,y,c), orientation, and spatial freqUenéy. This model is more comprehensive
than the pRF model, which o"nl.y describes t‘he three spatial parameters (x,y,o).

Once t'he‘ model parameter estimafes Wére derived for each voxel, the
participants were‘submitted to a testing phase. Here, participants viewed 120
novel natural images similar' but not identical to the training images. The set of
model parameter estimates fdr a giveh cluster of voxels were then used to

" predict the aggregafe voxel pattern acfiVity evokéd by éach of the 120 novel

images. Images Were identified as having been viewed by the participant when
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the correlation between the bredicté_d 'a-cti\'/ity and the actual activity was highest.
lmage'idéntiﬁcation pen‘ormance beakéd for one particular participant at 92%
accuracy, howeyer, this number diminished greatly when images were identified
using the correlation betweén the pre'di'cted response and a single-trial response
(32% accuracy), but was still perfbrme_d at a level vastly superior to chance
(<1%). | n | |

The distingUishing feature of image identification is that the predicted
pattern of activity is based on models that expiicitly capture the response
properties of voxels. Whereas image classification attempts to associate
patterns of acti\)ity with particular sets of stimuli, image identification uses the
model parameters for various dimensio_ns (e.g., space, orientation, spatial
frequency) to generate ai predicted pattern of activity. Novel images can be
processed through the model parameter éstimates of voxels to yield a predicted

signal.

4.3 Image reconstruction

An interesting Conseq’uen,ce' of uSing thé pRF model is the ability to reconstruct
visual stimuli based on the pRF _estimatés and the time series' of voxels. The
pR'F model deploys an encbding p'r'oce'dure. thai uses a ihree parameter
Gaussian to describe the res.ponsé"prﬁbeities of voxels whose signals are diiven
by known patterns of visual stim‘ulétion.“v Each voxel views the world through a
uniquely situated aperture in the retinotopic space. pRF estimates are
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computed for each Qoxel, describing t_He' lbcation. and éxtent of the aperture
through which the 'voxel reads in the visual space. The mo‘de.l can be easily
inverted such that a giveh pRF estimate and sjgna| intensity fluctuations can be
combined to predict the Iuminavn'ce .cha‘nge.s in the display space at specific
locations and times. Such a-procedure, when summated across a multitude of
voxels for each step in the time _series,' generates a prediction of the visual
stimulus presented to thé participant and encoded in the intensity modulations of
the voxels. This sort of stimulus reconstr'uction can be used on any novel
dataset, the only prerequisite béing that pRF estimates must have been already
computed for a given particibant. Furthérmore, since groups of voxels can be
functionally bundled into visual areas'according to an arbitrary ruleset, stimulus
reconstructions may be generated that highlight differences in the components of
a visual task that various visual areas extract and represent. |

| Using the mapping between sensory inpﬁt and bréin measurements to
generate a reconstruction of.an organ.is'm"s sensory processing isn't new. One of
the earliest demonstrations of stim.ulus 'feconstruction within the arena of
neuroscience was published more than two decade ago (Bialek et al., 1991).
Recording from é motion-sensitive celi in the blowfly, the researchers were able
to reconstruct the analog temporal profile of the stimulus (i.e., the velocity a
moving stimulus) us'ing the digital spikin‘g 'output Vof single neuron. The
reconstruction algOrithm assumes a specific mapping between the digital spiking
output of the neuron and the graded intensity modulation of th‘e stimulus (in this
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case in the domain of motion), of which rate coding is only one possible mapping.
Other solutions exist for }relatihg the spiking output of a neuron to the stimulus
time series that generated it, most of whiéh center around the likelihood of
different spiking outputs given thé_ stim.ulus. However, while the approach taken
by Bialek and others was foﬁndational'.fpf.developing analytic linkages between
neural signals and sensory inputs, its pL_Jrvie_w is quite limited. The kinds of
stimulus reconstructions I'm intérésted'ih'developing for use with functional brain |
imaging datasets should be generative for more complex spafiotemporal stimuli\
and for larger ensembles of r_neUrd_ris. ' | |

Stanley and others (1999) dévéjbpéd a stimulus reconstruction procedure
for rendeﬁng natural images (“e.'g.,-face:s'., wooded scenes) from the spiking output
of multiple neurons in the lateral geniculate nucleus (LGN) of the thalamus of an
anesthetized cat. Such an épproach_.i.s' appealing in two ways: first, in order to
extract meaningful information about thewide-ranging spatial and temporal
properties of typicallvisual stimuli frorlﬁ bréin meésurerﬁents, é stimulus
reconstruction approach tha_t considers circuits over neurons $hou|d be requisite;
second, such reconstruction algorithms should at least be extensible to decode
brain activity for natural stimuli. The ‘exptierimenters recorded from 7 LGN
neurons simultaheously using a multi-’electr’ode array. The experiment was:
repeated numerous times whereby video clips of white noise, a human face, or a
wooded scene were présente‘d. Cells were screened on the basis of the
reproducibility of the measured neural r_eSponse over repeated video clip
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presentations. After the cull, experim’enAtersAwere left with 177 cells that were
used to deriye linear filters for rélating fhé spiking output of sets of neurons to the A
luminance changes of sets of pixels.. Once this mapping was .dete‘rmined,
stimulus reconstruction simpl_y bec':_ém‘ej a matter of modﬁlating the luminance of
the appropriate set of pixels fo‘r a gi"y"e.rj. cell based on its spiking output. The
reconstructed stimulus was géneréted by convolving the spiking output of a set of
cells with their corresponding linear filters and summating over the set. The
filters were optimized so as to minimiié a cost function (i.e., the residual sum of
squares) relating the actual st.imu‘lus a_hd_the reconstructed stimulus. For each
pixel in the reconstrﬁcted stimulus, an.a'vérage of 14 célls’ responses were used.
The neurons used to create the reconstructions included those with both on- and
off-center receptive fields. In the end, the expgrimenters were able to generate
stimulus reconstructions whose Spatial_ correlation coefficients with the actual
stimuli were as high as0.8. -

This experiment, and in partiCular the stimulus reconstruction procedure
used, is interesting in thé current context because of the similarity between the
pRF model and the response properties 6f LGN cells. The experimenters

mapped out the location and extent (x,y,a) of the receptive field of a given

neuron, including both the center and the surround. These parameter estimates
were used to make an assumption about the number of neurons representing a

particular position (i.e., screen pixel) in the visual space. Their implementation of -
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the imége reconstruction requiréd two cémpohents: 1) the neural responses of
sets of LGN cells.in response to visual stimulation; and 2) the mapping between
neurons and screen coordinates. The thing they got for free by dint of using LGN
cells was the receptive field structure and response properties of the cells
themselves. As on-center cells becamé more active, the experimenters
presumed an inéréase in the Iuminance"for bixels which fall in the center of a
given cell’s receptive field and presumed,a decrease in the luminance for pixels
which fall in the surround. If oné repeats this pfocedure‘ove.r a multitude of
neurons and summates the'r'.esult,.'thé product is a three dimensional dataset that
resembles—both temporally and s'pétiélvly—the stimulus used.

Such an approach shduld work fér ihe voxel-based pRF model as well,
albeit with someWhat different assumptions. In both the cases of individuall
neurons recorded via electrophysiology and populations of neurons recorded via
fMRI, each observational unit is described in terms of a receptive field location
and size. Once derived, the receptivé fi_eld estimates across all voxels could be
used to generate a sti’mulus'reconstructidn through thé sumrh_ation of intensity-
weighted Gaussians across space in a m‘anne.rAnearIy identical to that described

by Stanley and others’ 1999 ‘stUdy._ : |

4.4 Stimulus reconstruction method
The lynchpin of the stimulus reconstruction proCedure is the voxel-wise pRF
estimation computed per participant using the sweeping bar aperture stimulus.
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Each participant’s ‘pRF estimation vqurrté io 7-dimensional, whereby each voxel
contains seven different values. The first three dimensions denote the spatial
location of a particular voxel wittt respect to the coordinate system of the MR
magnet bore. The remaininvg. four .dirn:e‘nsi‘o.ns denote the pRF model param'eter

estimates for the location and extent of the receptive field (x,y,c) as well as the -

delay estimate d of the double-gamma HRF. These four estimates describe not

only where a given voxel is respOnsivé to in the visual field but also when a given
voxel is responsive in time fOIIowihg a,_étimulatiort event.

To begin, it is helpful to reviewth:e nature of the actual stimulus as it was
drawn to the screen and stored for Iater"use‘ in the pRF estimation. The actual

stimulus was displayed on a screen and- projected at a resolution 800x600

plxels While the refresh rate of the dnsplay was set to 60Hz the sweepmg bar
stimulus was designed in such a way as 1o be phase-locked to the repetmon time
of the scanner (i.e., 1500 ms) As each new volume was acquired every 1500
ms during the course of a functnonal run, the stimulus would advance by dlscrete
intervals at the outset of every new v_0|Ume acquisition. The stimulus, then, could
be captured in terms of screen coordinates and binned into time-units equal to
the duration of the functional volumes.}' Hence, while oUr functional runs were of

size 128 x128x22x440 our stimulus runs were of size 800x600x440. The

parity in the time dimension between the functional and stimulus datasets

allowed us to relate the neural activity to the stimulation pattern via the pRF
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model. This is crucial not only for deterrﬁihing the response properties of voxels,
but also for recreéting the stimulus based on the pRF estimates and signal
intensity modulations of the voxels.

Once the pRF model estimates»'had been computed for every voxel, we
set about predicting the stimulus shown to the participant from the signal
intensity modulations .of the Voxels via imége reconstruction. The first step in the .
image reconstruction process was to initialize én empty matrix with the same
dimensions as the actual stir.nu‘ius ._(.i.e;.,'_800x600x440). The predicted stimulus as
this point is essentially a repreéent}éﬁoﬁ of the participant'\./iewing a 800x600
display With zero mean l'uminané:e. For-each acquisitioh in the functional run, we'

iterated through each of its constituent voxels. A particular pRF estimate -

0.0

Figure 13. The pRF estimates of two voxels plotted in screen
coordinates. The pRF in panel A was generated with parameters
(-2.4,-3.2, 0.7). The pRF in panel B was generated with parameters
(4.2, 6.3, 3.7). The colorbar shows the units of each of the
Gaussians generated from the pRF estimates. In both panels, the
red dot in the center represents the fixation point.

56



provides enough informafion to recreate a single Gaussian at "a particular location
and of a particular size among _the _séreen coordinates. - Figure 13 shows the
pRF estimates for two different vox_elé plotted in the screen coordinates that
match the stimulus dimensions from which the estimates were derived. Notice
how the location and exfent parameters affect the Gaussians that are computed
from the two pRF estimates. Natively, thé units of the screen coordinates were
pixels. For the purposes of deri\}ing ihe pRF estimates and stimulus
reconstruction, the screen céordinates’ \_(vére rescaled to degrees of visual angle.
Therefore, pRF estimates whose x-cdor_dinate is negative are plotted to the left of
fixation and whose y-coordinate is negéﬁVe are plotted above fixation. The
fixation point is also drawn in both pRF pldts. ' |

In order to reconstrubt_ a‘sihglenf'rame of our stimdlus, we iterated through
all relevant voxels and genefate thé»’G'a.us'sian from each of their pRF estimates.
We used the signal intensity éf the. voxé]s_at any given point in time as a graded
indication of the level of activation of that.voxel and, hence, of the luminosity of
the stimulus in the correspohding po,rﬁdn of the visual field. The equation for

computing the scaled Gaussian then becomes

2 2
. [ (x—x) +(y- ,
g(x,,y,o,z) - | exp—((‘ o)zo-gy Yo) )lt

where i, represents the voxel signal i'ntenéity i attime ¢. Since the distribution of

voxels’ signal intensities at ahy given point in time will range in both positive and
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negative values, it is possi.bl_e to generaté Gaussian distributions above and
below zero, depending on the. éi.gnal‘in_tensity by which they are scaled. Figure
14 shows how the Gaussian.s generated from two pRF estimates interact when
combined into a single screen frame of the stimulus reconstruction. Panels A
and B show the Gaussians prod’uced whén two pRF estimates are rendered.
Although the pRF estimates are on either side of the fixation boint with locations

centered on (-3°,2°) and (3°',2°)'-res'pectively, they overlap slightly because of the

Figure 14. The pRF estimates plotted in the visual space. Panel A shows the
Gaussian generated from a pRF estimate of (-3,0,2). Panel B shows the Gaussian
generated from a pRF estimate of (3,0,2). Panel C shows the summation of the
Gaussians shown in panels A'and B when scaled by +1. Panel D shows the result of
adding the two Gaussians from panels A-and B when scaled by +1 and -1, respectively.
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extent of their Gaussians (2°). If eac‘h pRF esﬁmate is scaled by 1 and
summated, the result is an blmodal dlstnbutlon as shown'in panel C of Figure 14.
More mterestmg summatlons can be produced by scalmg the Gaussians with
dlfferently signed intensities as shown in panel D. Here, the result is again a
bimodal distribution; however, scaling the Gauseians with a negative and a
positive intensity and summatving across the two results in a distribution of pixel
values for this particular stimulus 'recor.lstr.uction frame that spans both positive
and negative values. Additionally, usiné both negative and positive scaling
factors and sum'meting the results will bégih to produce stimulus reconstructions
with sharper edges than any of their constituent Gaussians possess. Figure 15
shows how different configuratio‘ns-of Gaussians scaled by negative and positive

intensities can produce intefesting'reeo'nstructions with rich spatial information.

Figure 15. Multiple pRF estimates plotted in the visual space. Combining multiple
Gaussians scaled with positively and negatively along a dimension of space creates
edges and bands of activation and inactivation in the visual space (A). Thresholding the
plot at O reveals a bar-like structure (B).
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In the case illustrated in Figure 1-5, a series of negative Gaussians flanking either
side of a series positive Gauésians will _summate. to a vertical bar.

A slight complication in the stimulus reconstruction procedure arises when
one tries to relate the temporal dimensidn of the functional fime series with that of
the stimulus presentation. The s_timulus‘re'con'struction proéedure here described
attémpts to use the voxel-Wise'pRF m‘odel'estir-nates in fandem with the voxel-
wise intensity fluctuations fdf the pﬁrbo’ée of creating a fac‘sirﬁile of the visuél
stimulus. From frame to frame, 'thé cohtribution of any given set of pRF
estimates is determined via their scalar signal intensities. The hemodynamic
response functioﬁ describes the ,tempb'ral dissociation between the stimulus and
the response it evokes. StimUIus‘eventsloccurring now have effective BOLD
signals at some later point in time. Th'e-'H'RF is generélly though to peak 4-6 s
post-stimulus; however, the imprecision of this estimate might prove problematic
for determining the signal intensity contribution of a given pRF estimate on the
stimulus reconstruction. | |

The solution to the problemqf iqentifying exactly when a stimulus
occurring now manifests itself fn the the_ unfolding BOLD éignal of a given voxel is
found via the explicit modeling of the HRF delay in the course of the pRF model
estimation, aforementioned in section 3. Each bRF estimate includes both a
three-parameter Gaussian as,wél_l as an HRF delay estimate. The delay
describes the shift in the HRF peak with respect to onset. Since the delays

derived using the model can be any real number but the ordinate dimension of
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ouf functional datasets can'onl'y be injegers, wé have to.interpolate the time
series of each voxel. To do‘t'his, wé 'Ué_‘éd a cubic spline to ub-sample the tirﬁe
series of the voxel 100 fold. I.n so -doing:;", we are able to determine the signal
intensity of a voxel at an onset delay of say 4.5 or4.75s rather than 4 or 5 s.

The equation for scaling the Gaussian now becomes

o (Gmx 2 O=y) ).
g(x’yio-J) '= exp—( i 0)20_2y yO lt+d

where lt+d describes the signal intensity at a given time-point plus some derived '

HRF delay.

4.5 Stimulus reconstruction r‘esu/t'sA
It is at this point that th;e stimulus réconstruction procedure can begin to

demonstrate its effectivenes’s in _rend.e.ring derivations of the stimulus presented
| to a participant based on the parti'cipants_’ voxel-wise pRF estimation maps and
functional time series. Rather than usfn‘g a singlé voxél or even a handful of
voxels, the reconstruction procedure uses every voxe] within a circumscribed
region of interest (Rdl) to rénder, scale,.and summate the Gé,Ussians. Doing so
over large numbers of voxels acrqss'the éntiré functional time series yields
stimulus reconstructions thatapproximételthe stimulation pattern used during the

visual presentation. Figure 16 shows a series of reconstructed frames from a
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single participants’ averaged dataset collected when using the sweeping bar
aperture as the visual stimulus. Since.' the pRF éstima’tes were derived from the
same sweeping ‘bar dataset that produceq the stimulus reconstruction, this is less
a cross-validation of the pR# model than a proof of concept fér the stimulus

reconstruction in general. Each column in Figure 16 represents a single time-

point in the course of both the actual stimulus and the stimulus reconstruction.

Figure 16. Binarized versions of the stimuli are ShO\‘Nn on the top row
at specific time intervals during the course of a stimulation run. The

- corresponding stimulus reconstructions are shown below on the
bottom row. Each of the three columns correspond to a particular
stimulus frame and its corresponding stimulus reconstruction frame.
The stimulus reconstruction was generated using the mean run
(computed from 5 runs) of one participant, with pRF estimates and
signal intensities mined from voxels in V1, V2, and V3.

62



I've selected three frames for démo_nstr_atién purposes, but it is important to note
that these frames were choseh from a 'Igrger set of frameé that comprises the
entire duration of the visual presentation and functional dataset collection. The
actual stimulus (the top row of Figure 1_6)' and tHe stimulus reconstruction (the
bottom row of Figure 16) are quife si’milar both in terms of the spatial
configuration of pixel luminance within a single frame as well as the temporal
continuity over thel course of an entire rQn.

In order 'fo cross-validate’the stifﬁu‘lus reconstruction procedure, we used
the pRF estimates derived from the sweeping bar stimulus and scaled these
within the functional time series from other stimvuli includ'ing an expanding ring
and a rotating hemifield. Thé sweépihg bafs data, used to derive the pRF |
estimates, and the rotating hemifield data, used (in combination with the pRF
estimates) to reconstruct the \‘/isual stimull'us, for this particular participant were
collected in differént sessions—in fag’f, in different years. Each of these datasets
were comprised of 8 32 s cycles. These data were originally designed and
collected for deriving the retinotopy of :ear'ly visual cortéx using the phase-
encoding apprqach described earlier. Nonetheless, these data serve as a good
‘testbed for cross-validatin’g bur stimulus‘reconstructions. |

Figure 17 shows the‘actual_sti'multljs and the reconstructed stimulus for the
rotating hemifield dataset from a singl,é.pafticipant. A single mean cycle was
computeq from 7 of the 8 32 s‘cyclé.s, ﬁaving thrown awa'y. the first cycle due to
the cabitative nature of the BOLD signat. The voxels usled in the reconstruction |
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were mined from visual areas V1, V2, 'a_nd V3. Only those voxels with pRF
estimates in which the covariance exCeed 0,33 were accepted for candidacy in
the reconstruction procedure. Again, thfée slices from the time axis were
sel_ected to demonstrate the apparent simiiarity between the actual stimulus and
the reconstructed stimulus.vlThé sémejproCedure and selection process was
used on the expanding ring data, shown ih Figuré 18.

As in the case of the svyeépfng b‘arAand rotating hemifield, the similarity of
the actual expanqing ring stimulus and its reconstructed counterpart are obvious.

|

Figure 17. Frames selected from the binarized versi',ons of the
rotating hemifield stimulus and the corresponding stimulus
reconstruction. The stimulus reconstruction was generated using the
a mean cycle (32 s, 7 cycles) of a'mean run (5 runs), with pRF
estimates and signal intensities mined from voxels in V1, V2, and V3.
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In all three cases, the spatiotempqué'l éhafacteristics seerﬁ to be well-captured by
the pR‘F fnodel and stimulus recbnstruéfion algorithm. That the sweeping bars
are reconstructed faithfully shouldn’t be very sufprising; after all, the pRF -
estimates were derived frorﬁ exactly fhése data. It is quite encouraging, though,
that the reconstructipn holds up sb wejll with the phase‘-encoding stimuli, to which
the algorithm was naive. |

However, nﬂaki.ng judgments conCerhing the fidelity of the stimulus

reconstructions based on the similarity in appearance of a handful of sampled

Figure 18. Frames selected from the binarized versions of the
expanding ring stimulus and the corresponding stimulus
reconstruction. The stimulus reconstruction was generated using the
a mean cycle (32 s, 7 cycles) of a mean run (5 runs), with pRF
estimates and signal intensities mined from voxels in V1, V2, and V3.
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time slices isn’t sufficient for rigorous evaluation. For quantitatively assessing the
performance of the algorithm in 'recons‘tru'cting stimuli for novel functional
datasets, it is necessary to use metrics that summarize the entirety of the

spatiotemporal ,relationship'betWee'n the stimuli and their reconstructions.

4.6 Stimulus reconstruction du&nfificat)bn
The stimulus reconstructions generated by the algorithm have several interesting
properties that faéilitate the attempt to. decode the relationship between the
measured neural activity and the pattern of visual stimulation. Flrst, every
stimulus reconstrucﬁon exists in the sémé coordinate épace. The spatial
resolution of the stimglus reconstructions is always inherited from the visual
display. This makes it trivial to combine data from multiple pafticipants’ once the -
stimulus reconstructions have been genérated for a given functional dataset.
Each participants’ reconstructidn ggné(ated from a given set of voxels will have a
pixel-fqr-pixel (or degree-for-dégree) correspondence wjth any other
reconstruction, whether it be generated from a homologous set of voxels from
another participant or from another set 4of' voxels form the same participant.
Second, the spatiotempofal pattern of the reconstructions will vary
depending on the set of voxéls used as input to the algorithm. Various tasks
engage different kjnds of béhaviors and will .recruit different networks of brain
regions. The vériation in stimulus recoﬁétruction as a function of voxel selection
can be informative in terms of the kinds of information those \)oxels extract from
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and rebrésent about a stimulus br task.x. For instance, if Va particular brain area
responds primarily to the visual stimulation com‘ponent of a task, the
reconstruction should demoﬁstrate a ‘cl-ear similarity in the luminance and
contrasts of the stimulus. If, on the other hand, a brain region is primarily driven
by the attentional compone'nt of a task, 'its reconstruction should be relatively
unresponsive to thé contrast and Iumina‘nce' components of the visual stimulus
and instead should reflecf the shifts in spatial attention around the visual field.

Third, since the reconstructions are generated via linear operations, the
stimulus reconsfructions thaf‘resuli ,frt.j'm pobling the inputs (i.e., ROls dfawri in
the brain imaging volume) or the o‘utputs of the algorithm (i.e., stimulus
reconstructions) are equivaleht. For exérhple, if one were interested in
reconstructing the stimulus based on-t’hevaF estimates and functional timé
series of V1 and V2, one coyld eithef add the regions of interest together and
feed this into the reconstruction algorith_nﬁ'or add the iridividual reconstructions
generated from V1 and V2 separately—_although combining ROIs to create
supersets of ehcompéssing 'mulitiple aréaé is only senlsible for: a within-subjects
analysis. Additionally, stimulus r_econstrl’JCfionsAcan serve as operands for any
other linear matrix operatioh,}sUch_és,addition, subtraction, etc. Figure 19 s_hows
the result of adding two differeht fréfneé frbm the stimulus 'reconstruction of the
expanding ring and rotating hemifield sﬁ_mulus.

Fourth, since the stimulus reconstructions represent information about the
spatiotemporal qualities of the stimulus' in terms of pixel luminance fluctuations,
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regions of intere-st’can be defined in the"scréen coordinates from which a time-
series can be extracted for the purpose of summarizing the pattern of activation.
Figure 20 shows the mean time series derived from a single location within the
display space of the stimulus recohstéu'ctiohs across multiple‘visual areas, ‘
including V1, V2, and V3. Figure 2i sh‘0ws the result of the same kind of

analysis, but this time using the rotating hemifield and expanding ring

reconstructions ihstead of sweeping bar reconstruction. Here, the mean 32 s

Figure 19. Stimulus reconstructions can act as operands in
mathematical operations. Here, frames from the reconstruction of a
bar stimulus extracted at different times are added together to show
the response to two bars in the same frame simultaneously. Any
linear matrix operation can be used to manipulate the content of the
stimulus reconstructions, including addition, subtraction, and
multiplication. ' -
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cycle is shown for the purposes of demonstration. Notice how the time-series

derived from stimulus reconstruction are both sinusoidal.

4.7 Stimulus reconstruction discussio_n ’
The method of stimulus reconstruction as outlined here offers a new and
interesting avenue for approaching and analyzing brain imaging data measuring

visual processes. Ensembles of two-dimensional Gaussians can be linearly
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Figure 20. The mean luminance timeseries for stimulus reconstructions generated
using V1, V2, and V3 ROl and the bars functional dataset. Each set of time-series
across the visual areas was: computed from pixels extracted from a pamcular
location in the stimulus reconstruction. The time-series of the actual stimulus is
shown in black. :
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combined (Figures 14 and 15) to produce new spatial configurations rich with
information. Doing so across pRF eétimates for variously defined clusters of
voxels and scaled with the corresp‘o_nding BOLD signal modulations produces
stimulus reconstructions that mimic 'thé,spatiotemporal pattern of the visual
stimulation (Figures 16, 17, and 18). Since the stimulus reconstructions are
linearly related to the brain imaging data énd since they exist in the coordinates
of the visual space, time-series éan be derived via screen coordinate masks that
amass the pixel fluctuations lof the stimums reconstructions themselves (Figures
20 and 21).

In the context of the current thesis, the stimulus reconstructions can be
used to derive the brain activity related toa pa‘rti'cular Iocation. in the visual space

and moment in time. This ability sérve's as a point of departure between the
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Figure 21. The méan luminance time-series for stlmulus reconstructions generated using
the rotating hemifield (panel Ay and expanding ring (panel B) functionalidatasets. Here, the.
‘mean cycle of 32 s is computed for purposes of demonstration.. The. smusoudal tnme-senes
of stimulus reconstruction is apparent
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current study and the majority of brain imaging experiments investigating
tracking. Because we know the precise locations of targets and distractors over
space and time as it was presented on the visual display, we can use this

information to then refer to stimulus reconstructions at the very same locations in

time and space and extract the correspohding brain activity. Thus, we are able to .

dissociate and compare signals related t6 attended versus unattended items and
occluded versus nonoccluded iteml Such an approach should serve as a model
for further investigations into the spétidtemporal propertie'é of retinotopic cortex in

a variéty of task contexts, inc[uding attehti_on'and occlusion.
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5. Tracking
Having 1) computed the pRVFV rhap's' for multiple participaAnts arnd 2) developed a
stimulus reconstruction metﬁod, we'vbé_‘h now begin to explore the differential
resporisés during a tracking tgsk. -We d.'ev.eIOped a much simpler version of the
MOT task as outlined in previous experiments (Scholl & Pylyshyn, 1999;
Flombaum et al., 2008). Thé reason. for this was multifold and warrants some
discussion. |

Typically, the.MOT task trial duv_r‘a'tio.ns are.under. a minute. In addition, the
initial positions of targets and distractors as well as the trajectories that unfold
over a given trial are random by design so as tp even sample the visual space.
This poses a problem in terms _of pprﬁng the MOT task to a brain imaging
environment. Since the the's'ignal'-'t_p-vnoise‘ratio of BOLD is relatively low, itis
common to design experiments such that the stimuli and/or task are periodic over
the course of scanning runs or sessions. Thus, the imaging data can be
averaged across cycles, runs, or sessioné so as to reduce the noise floor as
much as possible. Using a randbmly generated visual stimulus and task from
trial to trial is prohibitive for}c.:ombiningld'étasets. ‘Furthermore, most laboratories
using the MOT task generate their stimuli éuch that the distribution of targets and
distractors remains hc)mogenoué over 'thé extent of the visual field from trial to
trial. We made no such attempt as it was discovered after an alternate version of
thé task was adopted and because it _wouldv haQe been beyond the scope of the
current project. A. o |
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Attempts were made ‘in the coﬁrée of our experiment to use a 30 s
tracking tésk. The starting p'ositiohs ahd»identities of the tracked items were
reseeded to be the same at the start of .évery scanning run. Due to the
deterministic naiufe of the motion‘equat'ions' governing how the items interacted
with each other and the bbundaries of the display through a trial, the trial would
always unfold in the same way with the items always terminating their transit in
the same positibns. We then collel'cte.d‘a multitude of 30 s.b‘réin imaging datasets
and then computed the mean from fheée. The resulting. stimulus reconstructions
were so much noisy as chaotic. We abéndoned this approach in favor of a
scaled-down tracking task with on “targ-ef” and one “distractor”. Participanfs
maintained covert attention on the ta‘rget via a monitoring task. Thus, a periodic

design could be enforced and a mean"c_ycle could be COmputed.

5.1 Tracking stimuli

The tracking stimuli consisted of two 2° 'v_vhite dots that transited around
fixation on an orbit at 6° ecéenfricify and at a velocity of 2°/s. 'Each dot transited
a full period around the orbit |n 60 s:, aﬁd éach run consisted of 8 periods. The
attention bomponent was crea‘te'd via a:'r,apid serial visual presentation (RSPV)
was superimposed on each dot. Parti_cipants were instructed to count the .
occurrences of ‘O’ and ‘X’ afnong disfréctor letters and digits. The RSPV probes

changed at a rate of 3 Hz. At the'outs"et of run, the initial positions of the two dots
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were set to the upper and lower verticali mer_idians and instructions were given to
the participants fo attend to the dot at thé’ upper vertical meridian.

In addition to the dots and RSVP streams, an ochUding bar was inserted
intb the display. The bar was oriented at 135° énd spanhed épanned fixation,
extending to 10° eccentricity;on eit.h’er. side of fixation. On'haif the runs, the.
northwest end of the bar occlUdedboth"the dot and the RSVP as it transited past.
On the other half of the runs, ‘the southeaét end of the bar occluded the dot and
the RSVP strearﬁ (Figure 22). Desighing the tracking stimulus in this fashion
allowed for the direct comparison of functional brain imaging signals
corresponding to attended versus unafterided and occiuded versus non-occluded
conditions at each of the two bar locations (135° polar angle, 6° eccentricity and

315’ polar angle, 6° eccentricity).

Figure 22. A schematic of the tracking experiment. At the outset of a run, two 2° wide
dots with an RSVP superimposed on each appeared above and below fixation.
Participants were instructed to attend the target and RSVP stream above fixation (T) and
ignore the distractor and RSVP below (D). Each dot orbited fixation at a radius of 6°, witl
an orbiting taking 60 s. Occluding bars were inserted into the task such that on half the
runs the northwest bar occluded the attended and unattended RSVP streams (right
panel) while on the other half of the runs the southwest bar occluded attended and
unattended streams (left panel). Each-orbit took 60 s and was repeated 8 times per run.
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5.2 Tfacking results

Stimulus reconstructions were geherated‘ for each participant and each visual
area individually. Since the étimulusfebonstrucﬁons exist in the common
coordinate system of the visual space,- combiniﬁg datasets across participants is
trivial. Figure 23 shows a Single frame i'n time frbm the stimulus reconstruction

generated using the arbiting stimulus. - In this case, the frame taken shows a

2.4
1.6

0.8

0.0
Figure 23. A frame from the stlmulus reconstructlon generated using the
tracking stimulus. The peak in the upper left corresponds to the signal

 resulting from the nonoccluded distractor while the peak on the lower
right corresponds to the signal resulting from the occluded distractor.

Note how the representation of the target is higher and more narrowly
tuned over space compared to the distractor. The scale is in z-units.
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moment during the course of the mean éyclé where the target is occluded by the
bar in the southeast cornér while the_ nonoccluded distractor is passing over the
bar in the northwest corner. Th‘é stimulus reconstructions were variance
normalized frarﬁe by frame so ‘thatx thé .pixel' intensities aré. exbressed in.z-uhits.

Typically, a region-of-interes’t.bréin imaging analysis computes a time-
series based on the BOLD signal fluctuétibns over time within a circumscribed
portion of brain tissue. Where it vconcérns stimulus reconstructions, though, the
region-of-interest analysis can be-coﬁducted in terms of the coordinates of the
display space. Because the Iocations"of 'the the occluding and nonoccluding bars
in the visual space were known, the rhean time-series were computed by
extracting and éombihing-thé tirﬁe-coursé of groups of pixels ét locations
corresponding to the bars (two 2° diamefef ciréular patches centered at 6°
eccentricity and oriented at'_p'ol-ar éﬁglés of 135" and 315°).

Figure 24 shows the ti_m'e-se'r,ies- an'd assdciated métrics derived from the
stimulﬁs feconstructions generaied usiﬁg voxels from viéual area V1 across four
participants. In all panels, the colors of the lines and bars refer to the data
extracted from different Ioca.tvions withih the stimulus reconstructions as indicated
in the legend. Solid lines and baré dehote signals and metrics that were
extracted from positions in the stimulus reconstructions related to the target item.
Hollow lines and b‘arsA denote signals and. métrics that were extracted from
positions in the stimulus réconstructions- related to the distractor item. The
breaks in the lines at the midway point in the cycle were inserted for the sake of
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clarity to demarcate when the target exited and the distractor entered a giyen
position on the scfeen. From the perépective of pixels in the stimulus
reconstruction corresponding to the orange box, the target passes through that
location first followed by the distractor.: Hence, at the beginning of the cycle, the
orange line is solid as the target passe_s;that location and then transitions to
hollow as the distractor pasées the same IQcation later in the éame cycle. The
same color coding convention was used for thé. metrics shown in the bar plots.
Note that comparison of time-séries a'nd bars colored orange or blue with those
colored green or purple offers é glim.pse at the differencés in the BOLD signal

related to occluded versus nonoccluded items. Again, the comparison between
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Figure 24. The results of the tracking experiment in visual:area V1. All data was derived by computed the
mean cycle across multiple runs and participants. Panel A shows time-séries while panels B, C,.and D show
metrics.summarizing the. FWHM, peak amplitude, and area under the curve. The legend for all plots is
displayed to the right. The signals.are ¢olor-coded according to the point in the stimulus reconstruction from
‘the:data were extracted.. ‘Solid lines and bars denote signal and metrics related.to the target (T). Hollow lines
and bars denote signal and metrics related to the distractor (D). ’
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solid and hollow lines and bars highlights the distinction in signal related to
targets and distractors. The metri_qs in the bar plots were chosen for the purpose
of conveying and scrutinizing the diﬂérence’s between the time-series across
attention and occlusion conditions: We. chose the peak amalitude, the area
under the curve (AUC), and the full-width-half-maximum (FWHM) of each pair of
peaks in the course of a full 60 s cycle. These metrics offer a summary of how
fast the signal ramps up and doWn frbm the mean and by how much.

If we examine Figura .24 more-CIqéer, we.can spot several interesting

findings. Comparing the amplitudes associated with solid purple and orange to

those amplitudés associated with the solid green and blue highlights the contrast
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Figure 25. The results of the tracking experiment in visual area V2 All data was denved by computed the
mean cycle across multiple runs and participants. Panel A shows time-series while panels B, C, and D.show
metrics summarizing the FWHM, peak amphtude, and area under the curve. The legend forall plots is
displayed to the right. The signals are color-coded according to the point in the stimulus reconstruction from
the data were extracted. Solid lines and bars denote signal and metrics related to the target (T). Hollow lines
and bars denote signal and metrics related to the dlstrac’tor (D).
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in BOLD activity related to targets during occlusion versus nonocclusion. The
results suggest that area V1 responds-more strongly to targets during moments
of occlusion than during moments whén the target is nonoccluded. If we
compare the hollow purple and orang.e with the hollow green and blue, we see
that this patterﬁ of reéults is.revérsed. Hére, it appeafs as théugh area V1
responds more strongly to distractors dufihg moments of nonocclusion compared
to occlusion. If we compare .thése.,_'sarhe conditions among the other metrics, the
results ihdicate that targets dufing .c;,écl.usic‘)n efféct strongér but more brief BOLD

responses compared to targets during nonocclusion. Distractors dominate the

Z-units

.15

w4 -

d
(.}

12

b
o

10

Peak Amplitude (z)
- =3
@ i

e
i

N_D O o

0.0 ) ;
Figure.26. The resuits of the tracking experiment in visual area V3. All data was derived by computed the
.mean cycle across multiple runs and participants. Panel A shows time-series while panels B, C, and D show
.metrics summarizing the FWHM, peak amplitude, and area under the curve. The legend for all plets is
displayed to the-right. The:signals are color-coded according to the point in the stimulus reconstruction from
‘the-data were extracted. Solid lines and bars denote signal and metrics related to the target (T). Hollow lines
and bars denote signal and metrics related to the distractor (D).
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BOLD signal at locations of nonOcc.lu.sipn. (blue-and green) and, as indicated by
the AUC and FWHM metrics, séem__to' be more broadly tUned over space.

‘If we shift attention towards.the same set of metri_c}s extract from stimulus |
reconstructions generated using voxels from visual areas V2 (Figure 25) and V3
(Figure 26), the results become slightly more homogenous across occlusion and
attention conditions. In both V2 é_nd 'V_3, the signals related to the target items—
occluded or not—are higher}than the-sighal related to the distractor items. An
interesting break from this pattern is found in panel B of Figures 24 and 25.
Here, the duration of the signal related'dcicluded targets is less than the duration

related to distractors at the same location.
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The identity plots shown in Fiéure 27 summarize the effect of attention
across all three visual areas and time-vs_e-ries met‘rics.. In general, signals
associated with targets are stronger énd bfiefer compared to signal associated
with distractorsl. This'patterh is broken- fo.r nonocclusion in aréa V1 where the

signals are stronger than their target'couhterpé_rts.

5.3 Tracking discussion

The irﬁag.ing findings reported here in résponse toa scéled-down version of a
tracking task can be framed in terms of the psychophysical terminology revolving
around the behavioral resulfs of MOT 6cclusion studies (Pylyshyn, 2006;
Flombaum et al., 2008). Théese ekperi_fnenters noted that probes occurring on
distractors are detected at a lower rate than probes occurring on targets. This
result could mahifést itself in ter‘mé of th'eAfIV'IFlI data in one of ,two ways. If
distractor inhibition is an éctive process whereby the regions of visual space
surrounding distractors are actively suppressed so as do reduce distractor
saliency, then pfobes occurring in iheée regions should bé detected Iesé often.
If, on the other hand, regions of the visual space near distractors are simply
ignored or otherwise under-saimpled, then probes would presumably be missed
more often when they appear near dis’trabtors. Each scenario—active
suppressed distractor salience and bassive non-enhanced distractor salience—
would should have the same behaviofa_l, 6utcome (i.er,'lower probe detection

near distractors). .
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In terms of the BOLD ,siénal,,l ’act'ive distractor suppression should be met
with an uptick in the local metéboli_c.-vde.r_nand coriespondihg to regions of the
retinoinapic map at and around ihe disti-actor, albeit inhibitory, since increases in.
the BOLD signal related to local inhibition and éxcitation cannot be dissociated
(Logothetis, 2008). The second possibility—that distractors are concomitant with
regions of neglect in the visual spéce%should be met with little or no modulation
in the BOLD signal. That We found fourid an increased BOLD activation in the
regions surroundirig both targets and diétraétors provides a neurophysiological
basis for distractor inhibition.

In addition to finding a neurophysiological candidate for distractor
inhibition, the results suggesf that .t'he':BOL[.) signal reflects some amourit of the
high-beams effect reported pfevioUéIy |n the behavioral literature (Flombaum et .
al., 2008). Here, probe deteciion is facilit_éted when they occur near targets and
distractors during- moments of oc_:clusidn compared to nonocclusion. The iinaging
results support this finding, but only for targets. The peak amplitude of occluded
targets were higher than their nonoccliide‘d counterparts. This was true across
all three visual areas for both Iocatiohs i_n the visual field where occlusion and
nonocclusion ei/ents c':oincid.ed in space. ~This effect did not h‘old for distractors,
where nonoccluded distractors showed 'h‘ig‘her‘ peak BOLD amplitudes across
visual areas V1; V2, and V3.. If is i,inc.léar why the effect should hold for-targets
but not for distractors, especially in light of Flombaum and others’ finding that the
relativé oéclusion advantage f,or.probe aetection was higher for distractors
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compared to targets (although target »prqbe detection was always higher in
magnitude). The easiest explanation for the discontinuity between the behavioral
and neurophysiological findings'could bé found in the differences between our
task and their task. We used an overly simplified version of}tr.\e MOT task and
did' not include any probe déteCtioh' cqmpor)ent; Particibant‘s were never cued to
the distractor during the coufée 6f our funé, and so occlusion. advantages af

distractors may have been lost.
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6. General Discussion

6.1 Technical challenges

The lion’s share of work hoUrs spent.in.the course of completing this thesis
revolved around rewriting the pRF esti_mation routines and the entailing software
support. The originél authors’ code-b_éée vfor the.pRF' estimation (Dumoulin &
Wandell, 2008) was written in MATLAB 'and'designed primarily as a graphical
user interface through wh‘ich brain imagers could configure and run their
analyses. Consequently, the p_RF_eStimation code repository is quite byzantine.
The author of this thesis wroteAthe”p}R'F» model estimationlproCedure anéw using
the open-source Python programming “Ianguage (http://python.org), utilizing its
various supporting scientific computing mOduIes (e.g., http://www.scipy.org). In
most cases, natively available tools were- used for reading and writing files;
performing time-series analysis, Aa_ndmodel fitting. Where these tools did not
exist, as in the case of the rﬁulti-scale 'a._d-aptive brute-force estimation routine, the
author created and programmed the algorithms. All software written by this
author—includi‘ng pRF estimation and éfifnulus reconstruction—will be
incorporated into NIPY (http:/nip y.sgurcg‘ 'fg' rge.net) and made. available under a

public use license.
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6.2 Population receptive field estimation
The results of the pRF estimation expéri'rhent reconfirm retinotopic organization
of early visual cortex using both the phaée¥encoding method (Engel et al., 1994;
Se}eno et al., 1995; DeYoe et al., ‘1'996; Toqtell .et al., 199_7) and the pRF model
(Dumoulin & Wandell, 2008; .Amané_ ef:él.,' 2009). Figures 6.and 7 fdemonst.rate
the orderly registry between visUaIl field"‘ar‘\d the neuroanatomy. Based on the
phase reversals of the polar angle maps, we were able to delineate the
boundaries among cortical visual areés.

Although the scope of this study was limited to visual areas V1, V2, and
V3, the pRF estimaté maps from sevefal Subjects ind'iéate a level of detail that
would allow for the delineation of higher-order visual areas moving dorsally
towards parietal cortex and ventrally and laterally towards temporal cortex.
Several participants’ pRF estima’te .maps.were clean enough to suggest the
emergence of visual areas a!ohg the dorsal pathway incIUding areas V3a, V3b,
and h\(4 and several areas in IPS (Wa’ndell et al., 2007)-. .Additionallly, a few
participants’ pRF maps showed retinotopically organized maps located laterally
and ventrally to V3, including LO, VO,-hV4, and' MT+ (Wandell et al., 2007). That
these areas weren’t prominent afnohg _aII participants is most likely attributable to
lower signal-to-noise ratio of visual sign_als in these areas. The maps delineating
the boundaries among these and even more areas are generally generated using

multiple (i.e., more than 2) sessions of 'rét'inotopic mapping per participant. That
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we were éble to detect a subs‘et'of theéé areas with much fewer datasets is
encouraging and warrants further investigation.'

In addition to mapping more cbrfical regions, efforts are underway to
implement the Difference-of-’Gaus.sian,'(DoG) pRF model (Zuiderbaan et al.,
2012). The version of the pRF model used in this thesis was the single Gaussian
model, whereby the spatiotemporal repOsné properties of each voxel are
modeled as a 3-parameter Gaussian with single positive peak amplitude. This
version of the model, however,_is in capable of capturing the large negative
BOLD responsé to the sweeping b'a,r_s'" (see Figure 4, panéls Aand C for'an '
illustration). Convolution of the eﬁeéti\)e stimulus with the double-gamma HRF—
which includes a post-stimulus negative‘ uhdershoot—allows for only subtle
negative BOLD responses. In order to.rﬁore accurately capture the variation of
the BOLD about baseline, it is neceséary to add an inhibitory surround to the pRF
model. 'I"he resulting two-d'imensionall’Géussian-is the so-called “mexican hat”
function. Instead of a singular positive peak, the DoG model is function with an
larger, central bositivé peak zsurr'ounded ‘b.y an intermédiate, hegative peak. The
Do_G pRF model has been shown to exbl’ain mqre variance compared to the
single Gaussian pRF modél_; in"additioh, the intercepts of relationship betwegn
eccentricity and receptive field'size‘i's Ibwér across visual areas (Figure 11). For
reasons Unknown, the authors of tﬁe D;.'.)'G' pRF model use only center-on
receptive field models and do not report any results using center-on and center-
off receptive field models. An interestihg extension of their work would include
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using both center-on and ‘center'-off receptive field models for-capturing visual
signals in BOLD. Using the DoG model would also allow for rhore complex
configurations of pRF estimates, potentially adding richhess to the

spatiotemporal information of the stimulus reconstructions.

6.3 Stimulus reconstruction
The stimulus recdnstruction'procedu_r’é outlined in this paper is novel in the field
human brain imaging and shows a lot of promise for future mapping studies
across sensory modalities. - We demoﬁstrated that stimulus reconstructions can
be generated ulsing the pRF estimatesldlerived from the pattern of activation
driven by the sweepiﬁg bar étimulus in c.ombination with the BOLD signal
fluctuations driven by any arbitrary patterh of Qisual stimulation. The algorithm
works quite well for datasets,uéed «,';Q t.r.ain the pRF model (Figure 16) as well as
datasets that were agnostic to .the ,r'n.odlgel estimaﬁon procédu-re (Figures 17, 18,
and 2é). | |

Furthermore, our stimulus reco,nst’ruction's offer new avenues for
approaching experimental design, data analysis, and the summarization of
results. Since the stimulus feconstructions are linear.combinations of voxel time-
series data recast into the Coordinate» system of the display screen, combining
datasets across‘visual areas and partiCi'panfs is trivial. The stimulus
reconstructions themselves can serve as operands for any matrix operation
incAIuding but limited to addition, éubtraction, division, and multiplication (Figure
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19). That the stimulus reconstructions exist in the coordinates of the display
screen allows for region-of-irtterest analyses whereby the responses can be
pooled over locations and extente of the display rather_ than of brain tissue. This
affords an ability to inspect patterns of brain activation in terms of narrowly
defined stimulus characteristics over time and space. .

Since stimulus reccnstructions are intended to be facsimiles of patterns of ‘
luminance fluctuations among pi’xels.on a display screen, it is possible to use
image similarity. metrics to evatuate,ahd tune the performance of the
* reconstruction algorithm. The d_epth of this project proved to be beyond the
scope of the current thesis, but efforts are underway to implement a version of
the algorithm whereby the contribution ,of. voxels to the fidelity of the
reconstruction can be determined. The approach taken is to iteratively increase
and decrease the contribution of a given 'pRF estimate to the resulting stimulus
reconstruction. If, for instance, amplifying the contribution of a given voxel to the
stimulus reconstruction increases the dieeimilarity between it and the actual
stimulus, then the contribution of that vo'x'e.l can be attenuated. However,
because single frames frorrr stifn_ut__ds reconstructions are the result combining
positively and negatively scaled Gatis's:tan‘s of various amplitudes, multiple voxel
contribution configurations are p‘os.sible:.', Itis possible that settings among sets of
voxels may be degenerate with each other, with no clear optimal solution. These
are the sorts of issues that heed-to be Worked out if any kind of optimization
routine is implemented in the scheme cf the stimulus reconstruction algorithm.
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6.4 Tracking

The results of the tracking eXperirnenr s'eenrr to lend someneurophysiologicel
support to the findings of MOT taske ue'ing occlusion. We showed that the
representations of targets across the vieuel field are higher and in amplitude and
shorter in duration compared to distraCtors. Said another way, the responses to
moving targets are more narrowly tuned over space. This effect is generally
exaggerated during moments of occlueion. Distractore, on the other hand, are
associated with weaker more slowly ev_olving signals. This would suggest that
distractors are diffuse‘ly represented in the visual space and ere broadly tuned
over space. These findinge indirectly suggest 'that the behavioral distractor
inhibition results from an active' suopreesion of rather than some kino of passive
neglect of the neighboring vrsual space A confound in our experiment is that we
didn’t include a control condltron where purely visual srgnals are measured in |
response to an orbiting visual stimulus without the presence of a competitor.
From this, we could compare whether the increase in BOLD signals associated
targets and distractors could be asseseed in terms of deviation from the stimulus-
bound, tracking-free baseline. The stimulus reconstruction data structure would
be ideal for conducting such a control ekperiment. Participants could passively
fixate while untracked visual items transit around the visual field on trajectories
identical to the tracking task. These data could be used to generate stimulus
reconstructions that could be subtracred from those gene.rated using the tracking
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data. This would'remove the signal aftributed to the visual stimulus alone, and
so we could make greater claims about the signals that emanate from the targets
and distractors as attentional entities. I'As'it is, the attention- and stimulus-drive
signals are con’ﬂated.

Assuming for tﬁe mohent that thc_a signals related to diétractors are indeed -
a form of neurophysiological distractor inhibitidn, the question now becomes: why
should the visual system ac_tivé'ly réprésent‘distractors at'all?. After all, the .
passive neglect explanation fof disfrécfpr inhibitibn seem'svto be the simpler
answe.r to the question of how td bias salience towards éttended locations in the |
visual field. It may be the case that the goal is fo both bias towards targets and
away from distractors, but this explanation seems tautological. A more
interesting explanation can be fouhd |n terms of recent findings in the
neuroscientific literature thét suggest-a .fole of prominence for inhibitory signals in
the early visual éoﬁex of awake 'vertebrétes; Haider and others (2013) found that
cortical responses to visual stimuli in awake mice are the product of strong |
syhaptic inhibition signals tuning the concomitant but weaker excitatory
responses. The response to visuav‘l-st-iAmuIi ih awake mice. waé found to have a
high ratio of inhibitory to excitatory éigﬁals and were narrowly tuned in space and
time. Comparing the cortical 6utput and the relative ratio of inhibition and
excitation measured in awake mice in response to a visual stimulus, signais
measured during anesthetize have a lower ratio of inhibitory to excitatory signals
and are more broadly broadly tuned over time and space. That mixtures of
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excitatory and inhibitory signals Can fncrease the spatial and temporal tuning
characteristics of neurons has been ‘s‘h,own in a variety of serisory modalities
(Isaacson & Scanziani, 2011). Both' feé_dfoward and feedback inhibitory neural
circuits are thought to help shape the re'sponse.properties of neurons, effectively
ehhancing their sensitivity to a particular Coordinate within some feature space.

Returning again to the trab_king results, these findingé shed some light on
why the visual system bothérs represe'nﬁng at all. While the BOLD signal is
unable to dissociate local excitation ffom inhibition, it stands to reason that the
explicit represéntatioh of targets and disffactors would have the effect of spatially -
sharpening each of the items in the retihotbpic’ space. Moreerr, anytime there
was a close encounter betWeeh ta‘r'gets' and distractors ih the‘ visual field,
neurophysiological distractof inhibitioﬁ_'WoUId presumably sharpen the
boundaries of the target in both tihe arid space. The task as it was conceived in
our experiment dpes not afford us the ability to search for this sort of distractor-
target spatial tuning interaction as théywere separated by 180° of polar angle
and 12" of eccentricity in the visual field. . In light of both our findings and those of
Haider and others (é013) warrant furt'h.e'r ihvestigation .using a task where target
and distractor items intersect in space. .

That we found differences in BOLD_actiyation in relation to attention and
occlusion among our visual areas_indic_ate that there is some kind of disparity in
the types of information processirig.,géi_ng on along the viéaal'stream. Relating
differences in the BOLD in relation to task demands with functional properties of |
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visual areas, though, is a complicated affair. The BOLD signal is considered to
be associated with the inputs into a cortical region as well as the processing of
that input by the local cortical circuitry (Logothetis, 2003). An increased response
would suggest that the neural mechani.srns have selected on 'e particular feature
in the stream of visual input and are perlsis.ting' and further differentiating that
feature. If we turn again to A’tne"fino'ing_ of increased BOLD signal for nonoccluded
distractors in V1 but not V2 and V3,._‘the results in tandem with the nature of
BOLD 'would suggest that V1 ,co'ntributes to the individuation of distractors in a
particular attentional state. This individuation of nonoccluded distractors
disappears upon inspecting .the pattern. of activation in areas V2 and V3. This
train of thought could be continued for{lvarious aspects_ of the results in an effort
to localize task demands in terms of the functional and anatomical hierarchy of
the visual system. However, in light of the irregularity of the findings, more data
should be collected and rnore experiments executed in order to determine the
true neurophysiological order of operations in extracting and abstracting the

various task demands related to tré_cking and occlusion. -
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