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Abstract 

Previous studies indicate humans perceive faces categorically, particularly when the 

faces are familiar. Categorical perception is traditionally defined by positive results on 

two psychophysical tasks: an identification and a discrimination task. Whether non

human primates demonstrate the same phenomenon has not yet been explored. This 

study bridges this gap in the literature by exploring categorical perception of familiar and 

unfamiliar conspecific faces in two rhesus macaques using computer-generated morph 

line continua similar to those used in previous face categorization studies. Evidence of 

both hallmarks of categorical perception was found, demonstrating that rhesus 

macaques perceive conspecific faces in a categorical manner. This phenomenon 

becomes more distinct when one, but not both, of the conspecific faces are personally 

familiar to the individual. Inter-trial adaptation effects cannot account for these results. 

This study has laid down the behavioural foundation for future exploration of the neural 

underpinnings of the phenomenon known as categorical perception. 
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The concept of categorization is not a foreign one. All one need do is turn on the 

television or open a web browser to be bombarded with evidence that humans have a 

tendency to sort each other into discrete categories based on attributes and 

characteristics that, in actuality, exist along broad, continuous spectrums. For instance, 

skin colour varies along a continuum of hues, and yet we often categorize people as 

'black' or 'brown' or 'white'. Everyone is placed in a box, from their order at Starbucks 

and taste in music to their sexual orientation and perceived colour of their skin. These 

boxes, or categories, are meant to define us as 'individuals', a term riddled with irony 

given the context. While some embrace the labeling, others resist it; regardless it cannot 

be denied that categorization plays a central role in how we form impressions of each 

other and interact socially. That said, envisioning a similar phenomenon on a more 

basic, perceptual level does not require a stretch of the imagination- just as we may find 

it easier to define others by the categories in which we place them, in theory, a visual 

system bombarded with sensory stimuli would do well to organize its percepts 

categorically. If this were the case, categorical perception could play a pivotal role in the 

identification of objects, defining how we perceive the world around us, along with the 

individuals and objects existing within it. 

Many millennia ago, certain organisms developed the ability to visually perceive 

their external world to great evolutionary advantage (Land & Nilsson, 2001 ). Over time, 

this visual system has come to serve an important function for many species: the 
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identification and recognition of objects. It parses the visual world into objects and 

background and then identifies these objects quickly enough to allow the organism to 

make rapid decisions about the potential threat (or benefit) the objects may pose. 

However, the underlying neural mechanisms of this system remain somewhat of a 

mystery. This function necessitates a visual system with a great degree of inherent 

flexibility and generalization: initial identification of an object must occur within a fraction 

of a second under varying lighting conditions, angles of observation, distances, degrees 

of occlusion and other contextual variables, while still operating within the physiological 

confines of a neural system. In order to make these snap judgments, the visual system 

could, at least in part, employ some sort of categorization process during visual 

perception. Physical disparities in an object's appearance caused by the 

aforementioned contextual variables could be resolved by dropping them into gross 

categorical bins, instead of taking the time to perceive all the visual nuances of that 

particular exemplar. For instance, when viewing pictures of animals with the intent of 

picking out giraffes, it would be inefficient for the system to perceive subtle variations in 

neck or leg length, fur patterns or colours, beyond what constitutes acceptable values 

for the category 'giraffe', i.e., all animals with a 'long' neck, 'long' legs, and 'yellowy' fur 

with 'brownish' spots. Acknowledgment of the minor, physical variations that occur 

naturally between specimens of this category is not critical for the initial, first-pass 

identification of the object, unless they are significant enough to cross a category 
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boundary; the neck and legs are short enough and the fur is white enough with dark 

enough spots to categorize the object as a dairy cow rather than a giraffe. 

Liberman and his colleagues (1957) were the first to confirm that humans do 

indeed perceive some sensory stimuli categorically in their psychophysical studies of 

speech perception. He noted that speech sounds or 'phonemes', when equally spaced 

on a physical continuum, are not perceived as varying continuously, but instead are 

perceptually sorted by participants into specific categories of sounds (Liberman, 

Cooper, Shankweiler, & Studdert-Kennedy, 1967; Liberman, Harris, Hoffman, & Griffith, 

1957). Although theories of categorical perception first gained footing in the auditory 

literature, other scientists soon began to explore whether this phenomenon generalizes 

to perception in other sensory modalities, specifically vision (Bornstein & Korda, 1984). 

An excellent demonstration of the categorization of low-level visual stimuli can be seen 

in the natural world, namely our perception of rainbows (Beale & Keil, 1995).The 

chromaticity of light varies continuously along the visible spectrum by wavelength (380-

750nm; Bornstein, 1987). Although each wavelength differs from the next by a 

measureable quantitative change and, given the correct psychophysical circumstances, 

humans are able to discriminate between a good number of them, we identify hues 

using a relatively small number of hue categories (Bornstein, 1987). As a result, we 

perceive a rainbow to be compiled of discrete bands of colour, rather than the 

continuum of hues present (Beale & Keil, 1995). Empirical studies support this 
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anecdotal evidence; colours are indeed perceived categorically (Bornstein & Korda, 

1984). 

To investigate this phenomenon, researchers in the field established empirical 

methodology defining what constitutes evidence of categorical perception. The greatest 

hallmark of categorical perception is a non-linear, step distribution of percepts of stimuli 

equally spaced along a physical continuum. Within the categorical perception literature, 

this is referred to as a labeling or identification function. To illustrate this concept, the 

example of hue perception can be used (Figure 1 ). In a typical study of hue 

categorization, a researcher may repeatedly present the participant with colour stimuli of 

different wavelengths equally-spaced along the visible spectrum between what is 

prototypically perceived as blue and green (in Figure 1, 500-524nm and 525-550nm, 

respectively). If these hues were not perceived categorically, it would be expected that 

the distribution of 'green' responses to hue stimuli would vary linearly across the visible 

spectrum. In contrast, categorical perception dictates a rather shallow slope in 

perception of hue followed by a steep 'step' in perception approximately midway along 

the spectrum, followed again by a shallow slope conveying the idea that 'it's blue until 

it's green'. This step, or sudden change in perception, is referred to as the "category 

boundary''; the physical value of stimuli where perception of one category over the other 

occurs 50% of the time. To generate this distribution, one or both of two psychophysical 

tasks are often employed: an identification task, in which the participant is asked to 
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identify a stimulus as belonging to one category or the other, or a discrimination task, in 

which a participant is presented with pairs of stimuli spaced equally along the physical 

continuum and asked whether they belong to the same or different categories {Cheal & 

Rutherford, 2010). In the latter task, there are two types of stimulus pairs, those that fall 

to one side of the category boundary and are thus labeled 'within category' pairs, or 

those that straddle the category boundary and are thus labeled 'across category' pairs. 

If the perception of stimuli follow the identification function, within category pairs should 

be judged to be similar significantly more often than across category pairs, despite the 

physical differences between the stimulus pairs being equal. 

Using this established methodology, vision scientists broadened their 

investigation beyond low-level visual stimuli, such as hues, to more complex visual 

stimuli, such as objects, with a notable concentration on the categorization of faces. The 

idea was that if more complex visual stimuli are also perceived in a similar categorical 

manner, perhaps categorization is not specific to low-level perceptual processes but 

rather reflects more general cognitive processes (Beale & Keil, 1995). Faces are a 

particularly interesting class of objects because humans seem to have a propensity to 

identify and recognize faces quite rapidly, especially familiar ones (Ramon, Caharel, & 

Rossion, 2011) from an early age (Diamond & Carey, 1977). From an evolutionary 

standpoint, faces are extremely biologically relevant stimuli for a social species such as 
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humans, conveying emotion through shifts in musculature (Etcoff &. Magee, 1992), or 

intent through gaze (Perrett & Emery, 1994). 

Facial expressions vary along a number of natural continua, such as sad-happy, 

and thus, in theory, could be perceived categorically. Etcoff and Magee (1992) 

conducted both discrimination and identification tasks of illustrated faces that varied 

along multiple physical continua of expression generated by a computer program. It was 

the first study to employ an, albeit primitive, form of morph lines in the study of 

categorical perception. A morph line consists of two extremes, or endpoint stimuli, that 

represent prototypes of the categories being investigated with intermediate morph 

stimuli generated by a computer algorithm falling on a physical continuum between the 

two endpoints. In the case of facial expression, all of these intermediate, morph stimuli 

would occur naturally, but using a morph algorithm allowed researchers to quantitatively 

control the physical change between stimuli (in this case line drawings representing 

facial expressions). Similar studies of emotional expression were later conducted using 

morphs of photographs (Calder, Young, Perrett, Etcoff, & Rowland, 1996; Cheal & 

Rutherford, 201 O; Gelder, Teunisse, & Benson, 1997; Teunisse & Gelder, 2001; Young, 

Rowland, Calder, Etcoff, Seth, & Perret, 1997). Results from these studies confirmed 

that facial expression in humans is perceived in a categorical manner. 

Initially, categorical perception was thought to only occur for visual stimuli that 

naturally vary across a physical continuum. Beale and Keil (1995) challenged this idea, 
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investigating whether an individual's face could be treated as a category in and of itself 

and, if so, if morph stimuli varying across an artificially generated physical continuum 

between two individual's faces would demonstrate the hallmarks of categorical 

perception. Computer-generated morph lines of pairs of photographs of famous faces, 

such as Bill Clinton and John F Kennedy, were presented to participants in both 

identification and discrimination tasks. The familiarity of the face stimuli was also 

measured and varied across stimulus pairs. These studies were the first to demonstrate 

that faces can be perceived categorically and the degree of categorization was relative 

to the familiarity of the faces being presented (Beale & Keil, 1995). Perhaps one of the 

most well-known follow-up studies was conducted by Rotshtein, Henson, Treves, 

Driver, and Dolan (2004), who employed a morph line of Margaret Thatcher and Marilyn 

Monroe's faces, again choosing highly familiar faces for endpoints. Additionally, Ramon, 

Caharel and Rossion (2011) recently noted that familiar faces seem to be categorized 

more quickly than non-familiar faces in a go, no-go task of categorical perception. It 

would appear that familiarity plays a key role as to whether face stimuli will be perceived 

categorically, suggesting that face categorization may not be an innate property of the 

visual system but rather acquired through repeated exposure (Beale & Keil, 1995; but 

see Campenella, Hanoteau, Seron, Joassin, & Bruyer, 2003). 

Although the studies that have been discussed thus far have only explored 

categorical perception in humans, animal studies have demonstrated similar 
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categorization in a variety of species, including pigeons (Herrnstein & Loveland, 1964), 

bees (von Frisch, 1964), and non-human primates (Sandell, Gross, & Bornstein, 1979). 

Animal modeling is an extremely useful methodology, as the neural underpinnings of 

the human visual system remain relatively unexplored. In contrast, there exists an 

abundance of research defining the visual system of non-human primates, specifically 

that of rhesus macaques, however, very few studies have explored the performance of 

macaques on rapid visual categorization tasks. 

In an attempt to bridge this gap in the human and macaque comparative 

literature, Fabre-Thorpe and colleagues carried out a series of object categorization 

studies in both macaques and humans over the last decade. The initial study (Fabre

Thorpe, Richard, & Thorpe, 1998), along with the studies that followed, employed a go, 

no-go rapid categorization task for both species, in which previously unseen natural 

images of objects belonging (or not) to one of two categories (food or animal) were 

briefly presented (80ms) on a tactile screen. The participant (macaque or human) was 

tasked with categorizing the images by either indicating the presence of an exemplar of 

the category (food or animal) by removing their hand from a button and touching the 

screen (go response), or keeping their hand on the button to signify the absence of a 

target object (no-go response). The objects in the images were presented against their 

natural backgrounds, such as a frog sitting on a leaf in a forest environment, or a piece 

of fruit on a table, and a wide variety of exemplars were used for both categories (fruits, 
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nuts, and vegetables for food, and a wide variety of species of animals). It is important 

to note the differences between this categorization paradigm and the traditional 

methodology previously described here. Fabre-Thorpes and colleagues (1998) did not 

vary their exemplars of a category equally across a physical continuum in a controlled 

manner and they provided contextual cues in their images. They also only used one 

macaque participant per category explored, leaving open the question of generalization 

across individuals of the species, at least after this initial study. 

Remarkably, performance of macaques on the task was good, despite its high 

demands on the visual system. Upon first exposure to the stimuli, accuracy was slightly 

lower than humans (90.5% for the food task and 84% for the animal task), while 

reaction time was slightly faster (356ms for the food task and 251 ms for the animal 

task), with both macaque participants demonstrating a bias for go responses, 

suggesting perhaps a speed-accuracy tradeoff. Improved performance on repeated 

trials was negligible, demonstrating little effects of learning and suggesting that a similar 

process was used by the visual system for both familiar and novel stimuli. It was 

concluded that macaques must rely on abstract categorical concepts, as with humans, 

given their comparably rapid categorization of natural images (Fabre-Thorpe et al., 

1998). 

Further studies were conducted by this group using the same task to rule out the 

possibility that participants were using low-level cues inherent to the natural images to 
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make their decisions versus abstract categorical concepts. It was established that 

consistent differences between category and distractor images in colour (Delorme, 

Richard, & Fabre-Thorpe, 2000), contrast (Mace, Delorme, Richard, & Fabre-Thorpe, 

2010), spatial frequency (Girard & Koenig-Robert, 2011) and context (Fize, Cauchoix, & 

Fabre-Thorpe, 2011 ), could not account for their results. It would follow that both 

macaques and humans were categorizing objects (animals and foods) using abstract 

categorical concepts and were able to generalize to new novel exemplars of the 

category (Girard, Jouffrais, & Kirchner, 2008). A non-motor, forced-choice saccadic 

categorization task was also conducted using the same stimuli with similar results 

(Girard et al., 2008). Overall, these studies have provided considerable evidence that 

macaques are able to categorize objects in a similar fashion to humans, but neglected 

to address the idea of controlled physical continua and categorization of intermediate 

stimuli- all images shown either belonged to the category, or they did not. 

Comparatively, little work has been done to explore the idea of face 

categorization in non-human primates, which is surprising given the overwhelming focus 

of human literature in this area. One study investigated categorical perception of 

conspecific and nonconspecific faces in chimpanzees (Martin-Malivel & Okada, 2007). 

Although evidence has been collected that rhesus macaques process conspecific faces 

in a similar manner to humans (Dahl, Logothetis, & Hoffman, 2007; but see Parr, 2011 ), 
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no study to date has attempted to replicate findings in the human literature of face 

categorization using computer-generated morph lines. 

This study bridges this gap in the literature by exploring categorical perception of 

biologically relevant stimuli, namely conspecific faces, in macaques, using computer

generated morph line continua similar to those used in previous face categorization 

studies (Beale & Keil, 1995; Cheal & Rutherford, 2010). Preliminary data collected by an 

Undergraduate Honours Thesis student in our lab suggests that macaques do 

categorize conspecifc faces in a similar fashion, adhering to the pre-described 

definitions of categorical perception, at least for familiar conspecific faces. The first 

hypothesis is that the four rhesus macaques tested in this study will perceive familiar 

conspecific faces in a categorical fashion, as evidenced by the presence of an 

identification function and a discrimination effect in their behavioural data. Additionally, 

given the evidence that familiarity of face stimuli affects categorical perception of these 

stimuli, it is predicted that the degree of familiarity of the endpoint face stimuli used in 

this study will bias rhesus macaques categorical perception in such a way that category 

boundaries will be significantly moved toward nonfamiliar versus familiar endpoint 

stimuli. This study is intended to lay the behavioural groundwork for future 

electrophysical studies in the lab, exploring the neural mechanisms underlying the 

phenomenon of categorical perception of conspecific faces. Studies have shown that 

clinical populations, such as individuals with autism, demonstrate measureable deficits 
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in these tasks {Teunisse & Gelder, 2001 ). Results of this study and studies to follow will 

contribute to our understanding of object recognition in both the intact and lesioned 

primate visual system. 
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Method 

Subjects 

Four adult female rhesus macaques, LE, AN, LU and RI (ages 12, 6, 6, and 6 years, 

respectively), have been housed socially together for more than five years in York 

University's non-human primate animal housing facility. Although all four females 

interact with one another in this set-up, LE has the more visual contact with AN than 

with LU or RI and vice versa. All procedures conducted with these subjects were 

approved by the York University Animal Care Committee, which follows the guidelines 

outlined by the Canadian Council on Animal Care. All four rhesus macaques have 

served as subjects in previous visual psychophysics experiments, but faces were never 

differentially reinforced in these experiments. 

Task 

Stimuli. The categorical face perception task uses 'morph lines' between pairs of 

photographs of faces. Conspecific faces were used in this study, both familiar and 

unfamiliar to the subjects, as endpoints along a linear morph continuum. Digital 

photographs were obtained for each of the four female subjects, along with the male 

that is in the same colony room with them. The images of unfamiliar conspecific faces 

were borrowed from a large database of images kindly made accessible by Dr. Katalin 

Gothard. The background of all images were masked with a uniform mid-grey and the 
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appropriate stimuli were paired. That is, each female familiar face image was matched 

with another familiar female face and with an unfamiliar female face, creating both a 

female familiar-familiar pair and a female familiar-unfamiliar pair for each subject's 

image. Lastly, the familiar male face was paired with an unfamiliar male face. As a 

result, a total of seven endpoint pairs were created: two female familiar-familiar pairs 

(RI-LU, AN-LE), four female familiar-unfamiliar pairs, and one male familiar-unfamiliar 

pair. These pairs were then digitally adjusted using Adobe Photoshop ©software, such 

that face size, image size, contrast and colour of the paired images were similar to each 

other. 

After the endpoint stimuli pairs were established and edited, the images were 

uploaded in Psychomorph software (Tiddeman, Stirrat, & Perrett, 2005)- a software 

program that takes endpoint images and creates a continuum of morph images between 

the two endpoints (see Figure 2). The resulting morph line has proportional elements of 

each endpoint image changing in a linear fashion over a set number of images (e.g., a 

morph line with three morph images would produce a 75% 'endpoint 1 '/25% 'endpoint 

two' image, a 50%/50% image, and lastly a 25%/75% image). To !~uide the morph 

algorithm, Psychomorph asks the user to create any number of peiints- and connect 

these points with lines where appropriate- to form a template overlay of the face image, 

capturing key facial structures to be used as landmarks in the morphing process. In this 

experiment, 117 points were placed on predetermined structural features over each of 
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the faces. For example, one point was placed on the centre of each pupil, another on 

each corner of the mouth, and others around the exterior of the face. After the face 

templates are created for each face in an endpoint pair, the number of steps, or morph 

images, is specified and Psychomorph renders the morph images. In this study, nine 

morph images were rendered for each set of endpoint images (s;ee Figure 2). 

Design. Each morph line was presented in a categorical perception task using 

Presentation software (NeuroBehavioral Systems). The task used in this s,tudy was an 

altered version of the task developed by undergraduate Honours student, Josh Tallman, 

in a pilot study for this task, which itself was modeled after the visual expectation 

paradigm used by Cheal & Rutherford (2010). Each trial consisted of the presentation of 

a stimulus followed by a 2-alternative forced choice scenario. ThHre were two versions 

of the task, a training version and a testing version. These versioins differed from one 

another only in that the training version presented only endpoint images while the 

testing version also included morph images. The general structun3 of a trial is outlined in 

Figure 3. 

Each training trial began with a blank mid-grey screen with centered black 

crosshairs. After fixating the crosshairs for 250ms, the crosshairs were replaced with 

one of the two endpoint images of the morph line (spanning 17.23 degrees of visual 

angle) and a brief tone sounded. The endpoint image was randomly selected with 

replacement in each trial. The x-axis coordinates of the presented stimulus remained 
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constant from trial to trial (centering the stimulus on the screen}, while the vertical 

coordinates were randomized with replacement from the vertical centre of the screen 

within a +/- 83 pixel range. This vertical toggle was integrated into the task to prevent 

the subjects from adopting a strategy involving the use of low-le~vel spatial cues that 

vary from stimulus to stimulus. After the stimulus was fixated for 75ms, a blank mid

grey screen was presented for 200ms before two checkerboard blocks (each spanning 

4.958 degrees of visual angle) appeared 500 pixels to the left and right of the centre of 

the screen. One of the endpoints 'cued' a left-checkerboard fixation and the other cued 

fixation of the right checkerboard. When the subject fixated for ~~OOms on the 

checkerboard correctly corresponding to the previously presented stimulus, the 

incorrect checkerboard disappeared and a juice reward was dispensed through the 

spout, followed by a black screen lasting 1500ms marking the end of the trial. If the 

subject fixated on the incorrect checkerboard block for the same duration, or neglected 

to fixate on either of the checkerboards within a 4000ms temporal window, the incorrect 

checkerboard block disappeared and a buzzer sounded. Lastly, a black screen was 

presented for 2500ms marking the end of the incorrect trial and forcing the subject to 

wait a little longer than in correct trials before having the opportunity to earn a juice 

reward in the next trial. Incorrect trials were always followed by a. trial with the same 

endpoint image, allowing the subject to 'correct' the erroneous choice. The total number 

of trials presented in any given testing session was flexible and determined by the 

experimenter. 
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The testing version of the task was structured in the same manner, with two 

exceptions: 1) morph images were also presented and 2) the total number of trials 

presented was fixed. In trials where the presented stimulus was a morph image, the 

animal received a juice reward regardless of their choice between the left and right 

checkerboard blocks. These trials served as probe trials and werei embedded in a much 

greater proportion of trials (85%) with endpoint images. Trials with endpoint images had 

the same structure as those in the training version of the task, that is, feedback was 

given. Stimulus selection for any given trial in the testing version was structured in such 

a manner that, for each trial, the stimulus was selected randomly without replacement 

from a pool of 360 images from a morph line, 15% of which were morph images and 

85% of which were endpoint images. 

Apparatus. The subjects were transported from their living quarters in the 

vivarium facility to the lab space using a primate chair, which was placed within a 

darkened booth in the lab. An LCD monitor (40x32cm using 60Hz 1refresh with 32-bit 

colour) was positioned approximately 44cm from the primate chair in the booth. An 

iViewX infrared eye-tracking system (SensoMotoric Instruments) was also incorporated 

into the booth with infrared LEDs and a camera centered below the aforementioned 

screen. The last component to the booth set up is the juice dispenser and spout, which 

is controlled by programmed commands from Presentation and can also be triggered 
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manually from outside the booth. The spout is fastened to the m~ckplate of the chair by 

screws, allowing the subject to lick the juice as it is dispensed. 

Behavioural Procedure 

Preliminary training paradigm. Subjects' reward preferemces were tested by 

offering multiple types of food/fluid reward and seeing which one~ was selected first by 

the animal. LE, AN and LU preferred a juice reward comprised of three parts pear and 

one part banana baby food, diluted with cherry-flavoured drink, whereas RI preferred 

pure cherry-flavoured drink. Additionally, a complementary strategy incorporated into 

this study was a carefully monitored caloric or fluid control program that increased the 

desirability of the juice reward, thereby increasing the subject's motivation to perform 

the task. Food and water control adhered to protocol approved by the York University 

Animal Care Committee. This protocol seeks to minimize the amount of control used, 

with water control avoided if possible. To summarize briefly, threH stages are outlined in 

this protocol. The first stage uses stimulating images or videos as 'rewards' during 

experimentation. Given that monkeys habituate to images quite rapidly, this form of 

reward is often only used intermittently. The second stage replaces treats received in 

the subjects housing units with treats during testing. When or if this stage does not 

provide enough motivation, subjects are then moved to caloric restriction in stage three, 

which is calculated based on base-level caloric intake of that specific monkey and their 

18 



weight and carefully monitored by a staff veterinarian. Fluid restriction is used as a last 

resort and is also carefully monitored by vet staff. 

The subjects participated in previous behavioural studies; in the lab and, 

therefore, have some basic behavioural training. All four subjects were already trained 

to be taken out of the colony room and into the lab testing booth, to be calibrated for 

eye-tracking, and were familiar with the association of receiving a juice reward for 

various visual behaviours, such as fixating on an object on screien or searching for an 

object amongst distracters. Both AN and LU participated in an e·arly version of this task 

in a pilot study conducted six months prior to beginning training for this study. For this 

reason, AN and LU were the first two subjects selected to be trained on the task, 

followed by LE an~ RI after AN and LU data were collected. 

The two main challenges to the task that needed to be aoldressed in the 

preliminary training paradigm were 1) learning any cue-response mapping and 2) 

learning the mapping even for complex endpoint stimuli. To address these challenges, 

subjects were first trained on a version of the task with a pair of simple, distinct 

geometric shapes (green triangle and orange square) without any decision-making 

element. One of the two shapes was presented on screen for 75ms, followed by 

presentation of the correct checkerboard block, which had to be ifixated in order to 

receive the juice reward. Trials were separated into training sets by shape, such that 

subjects would complete a series of consecutive trials with one shape presented before 
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alternating to a series in which the second shape was presented. In this phase of 

training, the goal was to instill in the subjects the idea that each of the shape cues was 

associated with a subsequent fixation location to either the left or right checkerboard 

block when only one option - at the correct location - was presented on the screen. This 

continued until the subjects surpassed an accuracy threshold of more than 85% correct 

trials, at which point choice behaviour was introduced. 

In this phase of training, subjects were still only presented with one shape 

stimulus in any given block of trials, but both checkerboards response squares followed 

the shape cue, thus the subjects to choose the correct one to fixate to get rewarded. 

Again, after reaching the accuracy threshold, block lengths were continuously reduced 

until the subject was able to meet the accuracy threshold while pre~sentation of the two 

shapes alternated randomly with replacement (as seen in the final version of the task). 

After establishing this choice behaviour with the pair of simple geometric shapes, 

new pairs of stimuli of increasing complexity were introduced in steps, always waiting 

for the accuracy threshold to be surpassed before moving forward. The 'steps' of 

complexity of stimulus pairs were as follows: 1) an animal and an inorganic object (a 

bus and a cow), 2) visually distinct animals (a cheetah and a sheep), 3) animals similar 

in appearance (a red panda and a fox), and finally 4) unfamiliar conspecific faces. It was 

determined that subjects had completed preliminary training and w«~re ready to begin 
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working with the test stimuli when performance on multiple diffe1rent pairs of conspecific 

faces consistently surpassed the accuracy threshold of 85%. 

In addition to gradually increasing the complexity of the task in this manner, there 

were a few different trial variables that could be manipulated to facilitate training, 

namely the presence of the buzzer on incorrect trials, the length of the delay (or black 

screen) after incorrect trials, and juice reward levels. As is the case with all behavioural 

training, manipulation of these variables was tailored to the individual and varied 

throughout the training process. For instance, early on in trainin~1, limiting the number of 

trials presented played a key role in maintaining consistent behaviour and motivation, 

while later on in the training process juice reward levels played a larger role in this 

process. It is important to note, however, that these variables were only manipulated 

during preliminary training; all variables were held constant during the training sessions 

involving morph lines that were later to be tested. 

Testing paradigm. Each subject was tested on three different morph lines: a 

female familiar-familiar morph line, a female familiar-unfamiliar morph line, and a male 

familiar-unfamiliar morph line (see Figure 4). The identity of the familiar female faces in 

these morph lines was dependent on the subject's level of visual 1exposure to the other 

subjects, balancing for degree of familiarity. The female familiar-unfamiliar morph line 

featured the familiar female to whom the subject had the most visual exposure, with the 

other two familiar female faces comprising the female familiar-familiar morph line. As 
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such, LE was presented with the AN-unfamiliar and RI-LU morph lines, LU was 

presented with the RI-unfamiliar and LE-AN morph lines, and RI was presented with the 

LU-unfamiliar and AN-LE morph lines. As AN was equally exposed to all three familiar 

female faces, she was presented with the LE-unfamiliar and LU-RI morph lines to 

ensure proper balancing of stimuli across subjects. All subjects were presented with the 

same male familiar-unfamiliar morph line. 

For each morph line, one endpoint image (i.e. 100% face identity) is associated 

with either the left or right checkerboard block; therefore, for morph lines presented to 

more than one subject, the correct response location was swapped. For example, LE 

was presented with the RI-LU morph line in which RI cued a left fixation, whereas AN 

saw the same morph line, but for her, RI cued a right fixation. In the case of the male 

familiar-unfamiliar morph line, two subjects were presented with a morph line in which 

the familiar male face was paired with the left checkerboard block, while the other two 

subjects were presented with a morph line in which the familiar male face was paired 

with the right checkerboard block. 

The testing paradigm is outlined in Table 1. After 10 months of training efforts, 

only subjects AN and LU reached test level criteria and thus only their data are 

presented here. Both LU and AN were trained on each morph line using the training 

version of the task until their performance exceeded the 85% accuracy threshold. For 

most morph lines, subjects reached this threshold in the first training session over three 
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sets of 120 trials. Afterwards, three testing sessions were compleited on separate testing 

days using the testing version of the task. To ensure the accuracy threshold was being 

met during testing, each test session was preceded by a short trial set of the training 

version of the task. Considering each morph line had nine morphs and two endpoints, 

and that each testing session was comprised of 360 trials of which 85% were endpoint 

and 15% were morph trials, 162 morph trials (18 presentations/morph image) and 918 

endpoint trials were presented for each morph line to each subject over the three testing 

sessions. 

Data analysis 

Previous studies investigating categorical perception of faces along morph lines 

gathered data for a particular morph line from a number of human participants. Each 

participant's mean response values regarding their perception of th13 identity of morph 

images in a morph line served as data points within the sample dist1ribution instead of 

having to treat their individual categorical responses as sample points themselves- the 

statistic tested in these studies was the mean of all mean response values across 

participants and not the mean of their binomial responses. In such a case, the sample 

distribution is no longer binomial and can be analyzed with traditionatl parametric (or 

nonparametric) statistical tests. In the case of these data, each indiv1idual's morph line 

data must be analyzed separately, with their mean response for each morph image on 

the morph line serving as the statistic to be analyzed. As such, the sample distribution 

23 



of data points for that mean response are binomial and must be treated as such when 

analyzed statistically. For this reason, certain limitations are imposed on the analysis of 

this data. Firstly, only two individuals, LU and AN, were successfully trained on the task 

and, aside from being shown the same familiar/unfamiliar male face morph line, were 

otherwise shown unique morph lines. This was necessary given the pool of familiar 

faces I was able to pull from, but it prohibits pooling data across subjects. Even if data 

had been collected from all individuals and it was possible to show them all the same 

set of morph images, the power of the statistical analyses with a sample size of four is 

limited, even when using nonparametric measures. Given these· limitations, I have 

created analyses that attempt to address the same core concepts of categorical 

perception, albeit from a slightly different angle. These analyses along with the rationale 

for using them are described below. 

A great deal of data processing occurs between the initial! representation of the 

raw data as text files written by iView software during experimentation and the statistical 

analysis of variables of interest. All processing and analyses were conducted using 

MATLAB TM software. An initial script was written to read through the raw data from 

iView; identify all fixations, saccades, behavioural data points and descriptors of trial 

type; and then use the time points to which these various elements were anchored to 

create a structure in MATLAB that has all these data points sorte!d by trial. Scripts were 

then written to take pertinent information for each analysis from tlhis large initial 
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structure. These scripts conducted the necessary computations to get data points of 

interest collapsed across sessions, morph lines, and eventually individuals. Finally, a 

last set of scripts was written to perform the statistical analyses referenced in my 

results. 

Identification function. Investigating whether these data demonstrate the two 

main hallmarks of categorical perception previously mentioned, identification and 

discrimination, required two separate analyses. Identification is characterized by the 

aforementioned sigmoid or step function, the identification (ID) function (see Figure 1 ). 

Typically, the ID function results from plotting proportion of trials ini which an image was 

identified or 'perceived' as one of the endpoint stimuli. The shape of these plots can be 

quantified by fitting different linear and nonlinear curve functions to the data and testing 

for the best fits. Given my y-axis represents proportions, curve fitting is not a statistically 

appropriate modeling tool, as it does not restrict points along the modeled curve to 

remain between 0 and 1 (as all proportion data points would). That said, a series of 

different curves were fitted to the data (linear, quadratic and exponential) to at least 

describe the overall shape of the response curve. A specific kind of regression analysis 

does exist to analyze whether a continuous variable (morph images along a morph line 

in this case) significantly predicts a categorical or binomial outcome variable (in this 

case the perception of endpoint stimulus one or two). This form of regression uses a 

sigmoid link function known as a logit function to transform the data and uncover a 
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linear regression line between these two variables. Although I was not particularly 

interested in whether morph image significantly predicts perception per se, it does give 

a goodness of fit statistic for the logit function, which indirectly speaks to whether the ID 

function is sigmoidal. Therefore, a logistic regression analysis was performed on all the 

morph lines in this experiment. There is debate in the statistical community as to 

whether typical measures of goodness of fit for regression lines, such as Ff, are 

applicable to logistic regression lines (Peng, Lee, & Ingersoll, 2002). Peng and 

colleagues suggest that the best method is the Hosmer & Lemeshow test. It too has its 

limitations, the most considerable being that it is only a significance test and therefore 

only provides information about whether the fit is good or not. It does not provide insight 

as to how good (or poor) the fit is. Regardless, it is this statistic that I will report in this 

experiment. A significant result would indicate that the fit is not sound. 

In MATLAB, a script was written to sort through all trials and parse them into 

sessions. For each morph image within a session, the number o1r 'left choices'- the 

number of times a subject 'perceived' the endpoint stimulus associated with the left 

checkerboard- was found. These data were then organized into morph lines, resulting in 

a structure with each element containing pertinent descriptors of the morph line along 

with the number of left choices made for each morph image across sessions. The mean 

response values were then plotted in a different script and fit to the aforementioned 
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curves using the cftool in MATLAB. This script also performed a lo9istic regression on 

each of the morph line data and plotted the resulting fit. 

Discrimination. The second hallmark of categorical perceiption, namely 

discrimination, is normally tested in a separate paradigm (Etcoff ~~Magee, 1992). Most 

studies, after collecting identification data and determining the caiteg:ory boundary 

across individuals, test a paradigm in which a separate sample of participants perform 

the discrimination task outlined earlier. Although I was not able to run a separate 

experiment to test for discrimination, I was able to do a proxy measure of the same 

phenomenon. In my data analysis, I compared mean response values for one morph 

image versus those for another. Two comparisons were made for each morph line- one 

that crossed the category boundary and another that fell to one side of the category 

boundary. The pairs of morph images that were being compared in either case were 

spaced equally along the morph line (see Figure 5). Placement of the category 

boundary can be difficult in data like these, but here I defined its position as the point 

along the morph line at which the mean response values crossed the 0.5 proportion 

mark (i.e., the transition point at which the subject stopped predominantly perceiving 

one endpoint image and began to predominantly perceive the other. This method of 

placement closely resembles that seen in the human literature (see Beale & Keil, 1995; 

Cheal & Rutherford, 2010), where the raw data, the ID function, is used to define the 

category boundary and not the curve fittings they used to assess the shape of the ID 
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function. If stimuli were perceived categorically, one would expE~ct the mean response 

values to be significantly different for the two images that straddle the category 

boundary but not so for the two images on the same side of cate~gory boundary. This 

comparison was evaluated using the following test statistic that transforms proportions 

to z scores: 

Z = (p hat1) - (p hat2) I "1(p hat(1-p hat) (11n1 + 11n2)) 

Where, 
p hat= ( Y1 + Y2) I ( nt + n2) 
p hat1 =the first sample's proportion value 
p hat2 = the second sample's proportion value 
nt = sample one's size 
n2 = sample two's size 

Familiarity effect. Data will be analyzed to determine whether familiarity pulled 

the category boundary away from the familiar individual; a prediction based on the 

human categorization literature, which suggests that categorical p4~rception is more 

clearly demonstrated when endpoint images are familiar, canonical images. In order to 

conduct analyses of the effect of familiarity, response curves across morph lines had to 

be lined up. A script was written to conduct both horizontal and vertical graphical flips of 
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the ID functions such that the x and y axes of the familiar/unfamiliiar ID functions lined 

up with one another. 

Mean locations of the category boundaries in familiar/familiar versus 

familiar/unfamiliar response curves were compared using a Stude!nt's t test. 

Additionally, further analyses were conducted to measure qualitative differences 

between familiar/familiar and familiar/unfamiliar ID functions. One such qualitative 

difference was that familiar/unfamiliar ID functions appeared to have a more step-like, 

distinct ID function; a greater proportion of the mean response values were extreme. To 

statistically analyze this difference, mean response values were compared to their 

associated probability of occurrence using the binomial distribution for that particular 

sample size (n=18). The number of morph images with mean response values whose 

probability of occurrence by chance exceeded 0.001 (representing P< 0.001) was tallied 

and compared across familiarity conditions. It was thought that this; analysis could be 

considered a measure of consistency in their perception of a certain morph image as 

belong to one identity or the other. Mean number of mean respons,e values exceeding 

the aforementioned p value were compared across familiarity conditions using the 

aforementioned test statistic for comparing proportions. Upon insp,ection of the data, a 

second qualitative difference was noted. It appeared as though the category boundaries 

were more distinct. In other words, the number of mean response values around the 

category boundaries with chance level proportions were greater for familiar/familiar 
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morph lines than those in familiar/unfamiliar morph lines. To explore this observation 

quantitatively, a Mann-Whittney U test was used to compare the mean number of 

chance level data points surrounding the category boundary across familiarity 

conditions. 

Adaptation. Lastly, I was interested in looking at whether some sort of hysteresis 

inherent to the structure of the paradigm was causing a response bias. That is, whether 

endpoint trials directly preceding morph image trials were functioning as adapters, 

influencing the subject's perception of the morph image. There is a body of literature 

looking at adaptation effects in categorical perception (Daelli, 201 ·1; Daelli, Rijsbergen, 

& Treves, 201 O; Webster, Kaping, Mizokami, & Duhamel, 2004), 9iving reason for 

concern and validating exploration of this possibility in these data. A script was written in 

MATLAB creating a structure that pulled all morph trials that were preceded by an 

endpoint trial, along with the identity of the preceding endpoint trial! and the choice 

behaviour of the morph trial. The number of 'matches' versus 'non··matches' with each 

of the two possible endpoint identities were then tallied in a separate structure for each 

morph image in each morph line. A 'match' was defined as a morph trial in which the 

choice behaviour indicated that the subject perceived the morph image to belong to the 

same identity as the preceding endpoint trial. It would follow that, if the identity of the 

preceding endpoint trial had no effect on the perceived identity of the current morph 

image, the proportion of 'matches' versus 'non-matches' for each identity would not 
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significantly differ from chance. In this case, chance would be the mean response value 

for that morph image across trials. For example, if for a particular morph image endpoint 

stimulus one was perceived 14 out of 18 times, chance would dictate that the proportion 

of endpoint stimulus one matches (an endpoint one trial preceded the morph image) 

would also be 0.7778 (14/18). If the proportion of endpoint stimulus one matches for 

trials in which that morph image was presented significantly differed from 0.7778 (with a 

two-tailed alpha level of 0.05), presentation of endpoint stimulus one directly before the 

morph image was either pulling or repulsing the perception of eindpoint one in the morph 

trial. This difference was analyzed using the following test statistic, which computes the 

probability that the proportion of matches for a given morph image belongs to a 

population distribution with a mean proportion identical to the mean response value: 

Z = (p hat) - Po I ..J (Po ( 1-Po ) I n) 

Where, 
p hat = the sample proportion value 
Po =the expected proportion value dictated by chance 
n = sample size 
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Results 

Only individuals LU and AN reached the necessary thresholds to complete the 

training paradigm. LU was the first individual to successfully complete training and the 

first morph line tested with her was the familiar LE/familiar AN morph line {see Figure 

8a). It was surprising to see the bias in her perception of LE versus AN. The ID function 

appeared more like that which had been predicted for morph lines in the 

familiar/unfamiliar condition. A different familiar/familiar morph line~ was run with her 

{familiar AN/familiar RI) to test whether this bias was the result of the particular stimuli 

themselves. This morph line produced a more centralized category boundary as 

expected (see Figure 9a), however, upon collecting AN's data, it appeared that the 

mere presence of a bias may not necessarily be the product of a familiarity effect. LU 

was then run on the planned familiar/unfamiliar morph lines. AN was only tested on the 

planned morph lines outlined earlier. 

Identification function 

For each morph line, mean response values were calculated and ID functions were 

plotted {see Figures 6a-12a). Contradictory to previous evidence from pilot studies and 

published literature, most ID functions in this study demonstrated a bias in the 

perception of one identity or endpoint image over another, regardless of famHiarity. 

Category boundaries were not centralized, aside from the LU's familiar AN/familiar RI 

female ID function (see Figure 9a), and some of the analyses had to be adjusted to 
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account for this shift. With regards to the analysis of the shape of the ID functions, this 

perceptual bias affected the goodness of the fit of the logit function in the logistic 

regression analysis. Adding extra pseudo data points on the stunted end of the ID 

functions did not improve the fit. Logistical regression analyses were nonetheless 

conducted on all ID functions (see Figure 13a for an exemplar fit) and Hosmer

Lemeshow statistics for these analyses are summarized in Table 2. Significant results 

were found for LU's familiar DO/unfamiliar male and familiar RI/unfamiliar female morph 

lines with the conservative alpha level of 0.01. Additional curve ·fits were conducted to 

test which best described the data and goodness of fit values are summarized in Table 

3. Of these, quadratic and exponential functions fit the ID functions better than a linear 

function. 

Category boundaries 

An attempt was made to adhere to the original definition for the placement of the 

category boundary, where possible. There were two morph lines, however, for which 

this definition did not seem appropriate. These morph lines were looked at individually 

when determining the most appropriate placement of their respective category 

boundaries. LU's familiar AN/familiar RI ID function had two morph images with mean 

response values of 0.5 (see Figure 9b). In this case, it was decided that the category 

boundary should be placed in between the two. The other morph line in question was 

AN's familiar DO/unfamiliar male (see Figure 1 Ob). Optimal placement of the category 
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boundary in this case was slightly more ambiguous. It was decided that the greatest 

emphasis should be placed on the statistically significant mean response values and 

thus the mean response value associated with the 50% 'familiar DO' morph image was 

taken out of consideration. The category boundary was placed between the morph 

images that AN strongly associated with each of the two endpoint identities (see Figure 

10b). 

As previously mentioned, raw binomial data are used to define the category 

boundary in this study in accordance with previous practice in the literature. If one were 

to use the fitted logit functions to define the category boundaries for these ID functions, 

placement of the category boundaries would be shifted from the above defined 

boundaries into the flattened, within-category boundary area of tlhe ID function and 

would not accurately represent the step in the function (number of steps shifted along 

morph line: µ=1.71, S= 0.7). Alternatively, fitting sigmoidal functions to the data and 

using these to define category boundaries would result in the same locations as those 

described above, with the exception of AN's familiar DO/unfamiliar male morphline (see 

Figures 14-20), which is shifted in the direction of the unfamiliar female face and 

thereby demonstrating a bias in favour of familiar face DO. 

Discrimination 

Due to the perceptual biases seen in these ID functions, the sHlection of an 

appropriate reference morph image and interval length required careful consideration so 
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as to accurately represent the ID functions obtained. It was decided that a two-step 

interval would be most appropriate, such that if the 50/50 morph was selected as the 

reference morph it would be compared to both the 30/70 morph and the 70/30 morph 

(with one of these morphs lying directly after the assigned category boundary and the 

other on the same side of the category boundary as the referencH morph image). This 

placement accounted for the perceptual biases in most of these ID functions. The 

'across-boundary' morph image was always the morph image closest to the category 

boundary on the side of the morph line associated with the endpoint .identity least often 

seen in the morph images. This is graphically illustrated in Figure 5. For AN's familiar 

DO/unfamiliar male morph line, the interval was increased to a 3-step difference to 

account for the assumedly anomalous data point associated with morph image 50% 

'familiar DO' (see Figure 1 Ob). 

For all morph lines except LU's familiar AN/familiar RI morph line, across-boundary 

comparisons of proportions were significantly different from each other and within

boundary comparison were not. These data are summarized in Table 4. In the case of 

LU's familiar AN/familiar RI female morph line, an inversed effect was observed. The 

across-boundary comparison was not significant, z=1.014, P= 0.1562, while the within

boundary comparison was, z=2.12, P= 0.0170. 
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Familiarity effect 

Given the biases seen in the positioning of the category boundaries of most of 

the ID functions (see Figures 6b-12b), including those associated with familiar/familiar 

morphlines, the original hypothesized effect of familiarity had to be revisited. A 

significant shift in the position of the category· boundary in ID functions associated with 

familiar/unfamiliar morph lines versus those associated with familiar/familiar morph lines 

was no longer demonstrable- the category boundaries of familiar/familiar ID functions 

were already shifted considerably in one direction such that little space was left to show 

a significantly greater shift in a given direction for familiar/unfamiliar ID functions, 

especially with such a small n {three and four, respectively). Although a shift in mean 

category boundary location was seen between ID functions associated with 

familiar/familiar morph lines (µ=3.1, sd=0.98, df=2) versus those associated with 

familiar/unfamiliar morphlines (µ=2, sd=1, df=3), this difference was not significant (t(5)= 

1.33, sd= 0.83, p > 0.05). Additionally, the shift favoured the familiar endpoint stimulus 

in only three of the four familiar/unfamiliar ID functions. AN demonstrated a perceptual 

bias for the unfamiliar male over the familiar male, DO. 

Visual comparison of familiar/familiar versus familiar/unfamiliar ID functions did, 

however, suggest qualitative differences between the two, namely the ID functions 

associated with familiar/unfamiliar morph lines appeared to be more demonstrative of 

distinct, categorical perception. This led to the additional analyses described earlier. 
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The mean number of mean response values that did not significantly exceed chance 

were compared across familiarity conditions (familiar/familiar: m=2.3, sd=1.528, df=2; 

familiar/unfamiliar: m=1.2, sd=0.5, df=3). Due to unequal variances and sample sizes of 

less than 10, a nonparametric Mann-Whitney U test was conduct on the means using 

an alpha level of 0.05 and the mean ranks did not differ significantly, U=11, crit value=O, 

p > 0.05. Cumulative number of mean response values not significantly exceeding 

chance for each of the familiarity conditions (familiar/familiar: 7/:~7; familiar/unfamiliar: 

5/36) were also compared to see whether the proportions diffemd significantly using the 

aforementioned test statistic for comparing proportions. Again, the difference was not 

significant, z = 0.52, P=0.3015. 

Lastly, the probability of obtaining each mean value by chance was computed 

and mean response values with probabilities that significantly exceeded chance at p 

values of 0.05, 0.01, and 0.001 were labeled according in Figureis 6b-12b. A 

comparison of the proportion of mean response values exceeding p<0.001 across 

familiarity conditions was conducted. This analysis uncovered a statisticaUy significant 

difference between the cumulative number of values exceeding JX0.001 in 

familiar/familiar ID functions (10/27) versus those in familiar/unfamiliar ID functions 

(25/36), .z=-2.5617, p=0.0052. The same test was conducted to include data points 

exceeding a p value of 0.01, but this difference was no longer statistically significant 

with an alpha of 0.05, .z= -1.2881, P=0.0985. 
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Adaptation 

To evaluate whether the identities of endpoint stimuli wem having an adaptation 

effect on the morph trials they preceded, the proportion of morph trials for each morph 

image in which the perceived ID of the morph image matched the ID of preceding 

endpoint stimuli were calculated. Z scores for all matches did not deviate s~ignificantly 

from that which would be expected by chance, aside from the match scores associated 

with the 10% 'familiar DO' morph image in LU's ID function (ID 'DO' match: z= -2.0125, 

P= 0.0222; ID 'unfamiliar male' match: z= -2.4508, P= 0.0071 ). 

38 



Discussion 

Despite some variation in the data, these results demonstrate that rhesus macaques 

perceive conspecific faces in a categorical manner. Evidence of both hallmarks of 

categorical perception, namely identification and discrimination, was found when two 

rhesus macaques were asked to identify morphed images varyin~J along a computer

generated morph continuum between two photographed conspecific faces. This study 

employed a two-forced-choice visual paradigm akin to those previously used to 

demonstrate categorical perception of conspecific faces in humans. This phenomenon 

becomes more distinct when one, but not both, of the conspecific faces presented in the 

morph line are personally familiar to the individual. These results appear to be the 

product of underlying neural mechanisms of visual perception that cannot be accounted 

for by response bias or inter-trial adaptation effects. Given the small sample size in this 

study and some of the unexpected idiosyncrasies of these data, further studies are 

required to strengthen the evidence found here and confirm whether the qualitative 

differences between the ID functions produced by subjects in this experiment and those 

presented in human literature can be generalized as interspecies differences. As these 

data are the first of their kind to be collected from non-human primates, no within

species comparisons are possible. Regardless, this study has laid down the behavioural 

foundation for future exploration of the neural underpinnings of the phenomenon known 

as categorical perception. 
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Although these data strongly suggest rhesus macaques perceive faces categorically, 

a few key characteristics of these data qualitatively separate thiem from those reported 

in human literature. The most notable departure was the perceptual bias evident in all 

but one (LU's familiar AN/familiar RI) of the ID functions collectHd from subjects- there is 

no indication from previous research that category boundaries of familiarrfamiliar morph 

lines should not be centralized on the morph continuum. The extreme values I report 

here could represent a fundamental, qualitative difference in categorical perception in 

human versus non-human primates. Given a previous study that demonstrated humans 

and rhesus macaques perform similarly on an object categorization task (Fabre-Thorpe 

et al., 1998), these differences are more likely attributable to subtle methodological 

differences that separate this study from those previously conducted with humans or 

individual differences amplified by a small sample size. 

Although all attempts were made to model this study after the human literature, the 

face stimuli used here did vary from those in the literature with regards to familiarity. 

Familiar faces used in most human studies are canonical images of famous people that 

are assumedly acquired semantically through exposure to them in the media. 

Campanella, Hanoteau, Seron, Joassin & Bruyer (2003) tested categorical perception of 

personally familiar faces in humans using both an identification and discrimination task. 

The resulting ID functions mirrored the rest of the literature, repo1ting category 

boundaries falling between 42-58% along the morph line. That said, the 'familiar' 
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images used in their study depicted professors in the same university program as the 

students tested and the morphlines were much shorter (5 morplh images in length). The 

level of personal familiarity of conspecific faces used here is much greater and could be 

likened to that of immediate family members or long-term roommates. It is possible that 

judgments of perception may vary for faces we are exposed to and interact with on a 

daily basis. This difference in perceptual processing along with the use of a more 

sensitive 9-point morph scale could be responsible for the perceptual bias seen in this 

study. To test whether this differentiation between the personal relevance of the familiar 

face influences categorization, it would be interesting to try to implement more 

semantically acquired familiar faces with rhesus macaques. Thifi could be achieved by 

displaying pictures of the faces in their living quarters and exposing them to videos of 

the same individual extensively over a long period of time before testing took place. 

Beyond these speculations, it is important to note that this perceptual bias is not 

due to a simple response bias in choice behaviour. If these biase~s were attributable to a 

side bias alone, endpoint mean response values would not reach the accuracy levels 

they did and endpoint stimuli associated with the same checkerboard stimulus side 

would mirror the direction of bias in the data. LU would be expected to show the same 

biases for LE, AN, DO and the unfamiliar female face and AN would show the same 

biases for LU, DO and the unfamiliar female face, which simply was not the case. 

Additionally, adaption effects of preceding endpoint trial identity were explored and 
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found to be largely insignificant (with the exception of one of 63 morph images 

presented showing significant results that could represent an adaptation effect for this 

particular morph). Regardless, more data would need to be collE~cted before claims 

could be made with respect to fundamental differences in categorical perception 

between species. 

Selection of an appropriate method to analyze whether the ID function was indeed 

sigmoidal proved difficult given the nature of these data. It is arguable based on visual 

inspection of the id functions that all, including the two morph lines tlilat did not fit the 

logistic regression line, are indeed sigmoidal. The use of logistic regression in this case 

is problematic for a few different reasons. Firstly, my major interest was not to measure 

predictability, which is what logistic regression analyses are designed to do. The 

perceptual biases shift the ID functions drastically enough that the stunted end did not 

really allow for the logit function to truly capture the data. Elaborate curve fitting 

analyses would have been more sensitive to truly capturing the datta and modeling the 

ID function. In retrospect, it would have been more appropriate to write sigmoidal 

functions for each in MATLAB, optimize them, and then test them for goodness of fit, 

such as those displayed in Figures 14-20. Overall, these data seem more like step 

rather than sigmoid functions. This would imply that the categorical perception reported 

was more distinct and therefore requires different statistical analys19s than those 

conducted. Accordingly, fitting a step function to the ID functions and testing goodness 
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of fit would be a prudent analysis to conduct. The curve fitting that was conducted on 

the ID functions was only intended as a tangential measure of best fit and was not 

expected to optimally model the data. Specifically, it was important to demonstrate that 

a linear fit does not model the data optimally. This was shown to be true for all ID 

functions arising from the morph lines tested. 

Now that it has been demonstrated that stimuli of varying levels of complexity, from 

the chromaticity of light to conspecific faces, are perceived cate~Jorically, perhaps the 

most prudent next step in the exploration of categorical perception is to search for some 

sort of stimuli that are not perceived categorically. If they do exist, it could test the merit 

or validity of this paradigm; stimuli that are not perceived categoirically should result in 

linear ID functions. If not, it would speak volumes about perceptual processing, 

supporting the concept that neurophysiology is fractal in nature; mechanisms underlying 

lower level processes are repeated in higher level processes. This concept is already 

demonstrated by the fact that low level stimuli, like light chromaticity, are categorically 

perceived in much the same manner as highly complex visual stimuli, like faces; some 

inherent mechanism occurs in perception that is best plotted with a sigmoid function and 

can be seen at various levels of perception, from detection of difforences in light to 

categorizing complex objects such as faces. Attracter dynamics may play a key role in 

conceptualizing this common mechanism. 
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The discrimination measure used here, although not the same as used in other 

studies of categorical perception, possibly provides stronger evidence that these 

subjects perceived the conspecific face stimuli categorically, as it adopts a more 

binomial perspective when characterizing the step in perception from one face to the 

perception of another. In some ways, it measures whether the assigned category 

boundary truly represents a significant shift in perception. Results from thi·s task were 

indicative of categorical perception for all but one ID function, LU's fami'liar AN/familiar 

RI ID function. 

The ID function associated with this morph line was dissimilar to the others in many 

ways. Despite its category boundary being more centralized as seen in the human 

literature and although its fit with the logit function was considered 'good' by the 

Hosmer-Lemeshow test, it failed to display a discrimination effec1t, which may be 

considered a more hardy test of categorization in this case. This .anomalous finding is 

difficult to account for. Considering the level of exposure to the individual LU 

demonstrated a perceptual bias towards in her LE/AN morph line, namely LE (with 

whom she has equal or less visual exposure to than to AN), and the fact that LU did not 

show a bias in Al's direction (the individual with whom she shares her living quarters) 

when paired with AN, this anomalous finding cannot be attributed to an effect of varying 

levels of familiarity. Again, due to a small sample size, I cannot rule out that this ID 

function's peculiar shape is simply due to noise in the signal. 
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Perhaps some of the most interesting results reported here regard the effect of 

familiarity on the ID functions. Although the initial hypothesis became difficult to test due 

to the perceptual biases found across familiarity conditions, statistically significant 

differences in the structure of the ID functions were found. To my knowledge, no 

previous study of human or non-human primates has investigated mixed-familiarity 

morph lines. Investigations of the effect of familiarity on categorical perception have 

always compared familiar face morph lines to unfamiliar face morph lines. Studies have 

suggested that familiarity results in a more distinct categorical perception (see Beale & 

Keil, 1995; but see Campanella et al., 2003). As such, it was hypothesized that 

providing one familiar stimulus would create a perceptual bias in ·favour of the familiar 

face. As the ID functions in this experiment from both familiarity conditions 

demonstrated perceptual biases and the sample size was extremely small, the 

necessary statistical power was lacking to uncover any significant effects in this 

perceptual bias between conditions. Regardless, the direction of the 'bias was consistent 

with my hypothesis in only three of the four familiar/unfamiliar morph lines. AN's familiar 

DO/unfamiliar male ID function demonstrated a perceptual bias in favour of the 

unfamiliar male. It is disconcerting that this shift was seen in the one morph line that 

was presented to both individuals. If this finding is not anomalous, it would imply that 

one cannot assume all individuals exposed to that same morph lin1e would provide 

similar ID functions and calls into question whether the perceptual biases seen in these 

ID functions are the result of individual differences. Alternatively, if category boundary 
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placement was determined by the fitted sigmoid functions seen in Figure 18, the bias 

would be in the predicted direction, favouring DO. Again, I am limited in my ability to 

draw conclusions about this finding due to the small sample size. 

The significant difference across familiarity conditions in the consistency of 

identification was unexpected. If anything, the literature would suggest that pairing a 

familiar face with an unfamiliar face might introduce more noise into the data than that 

present in familiar/familiar pairings. Regardless, a clear, statistically significant 

difference was found describing the consistency of their perceptual appraisals of the 

morph image's identity. Familiar/unfamiliar ID functions resulted in more significantly

higher-than-chance mean response values at an alpha level of 0.001 than 

familiar/familiar ID functions and approached significance with val1Ues at an alpha level 

of 0.01. Although this is not consistent with what one might expect given the literature, it 

could be rationalized, albeit it feebly, from a biological evolutionary standpoint. One 

could argue that rapid discrimination between a familiar face and a complete stranger 

would facilitate an abrupt fight-or-flight response- we fear what we do not know. 

Additionally, it was argued based on familiarity effects reported els1ewhere in the 

literature that categorical perception is not an innate property of the visual system but 

rather is reliant on heavy exposure to the stimuli. Findings from thi~; study along with 

Campanella and colleagues' (2003) provide contradictory evidence to this hy,pothesis. 

Consistent perceptual appraisals were not limited to the side of the ID function 
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associated with the familiar individual; unfamiliar individuals were consistently perceived 

in morph images to the left of the category boundary, as well. 

It is important to preface further discussion of the implications of this study by 

acknowledging the difficulties associated with collecting behavioural data from an 

animal model, especially when a considerable amount of trainin!~ is required before the 

animal can perform the experimental task. For this reason, sample sizes are generally 

fairly small, especially in non-human primate literature. Unfortunately, this study is no 

exception. Extensive efforts were made to collect data from four subjects, but limitations 

in time and trainability only allowed for collection from two individuals. Equally 

unfortunate is the fact that statistical power is linked to sample size- extremely small 

sample sizes as seen in this study limit its capacity to uncover effects, if present. For 

this reason, the major limitation of this study is its restricted capacity to allow for broad 

claims to be made based on the results found. Additionally, constraints in the pool of 

familiar individuals that could be pulled from necessitated the use of unique pairings 

across individuals. Ideally, all subjects should be shown the same morph lines of faces 

thought to be equally familiar to all subjects tested. For this reason, the only strong 

claim I can make is that categorical perception of conspecific faces can be 

demonstrated in rhesus macaques using similar methods as those seen in humans. 

Broad claims about the quality of that categorical perception cannot be made. 
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These limitations considered, the validity of this study remains sound and its impact 

factor is still considerable. Now that behavioural data has been collected confirming 

categorical perception of conspecific faces in rhesus macaques, neural studies can 

follow, elucidating key properties of the neural mechanisms responsible for this 

perceptual phenomenon. As is the case with most of our knowle,dge about 

neurophysiological systems in humans, further exploration is dependent on the use of 

an appropriate animal model. Studies have collected evidence n9garding different brain 

areas that may implicate their importance in the categorical perception of faces, as well. 

The inferior temporal cortex (ITC) has been shown to play a role in object recognition 

and categorization (Freedman, Riesenhuber, Poggio, & Miller, 2003; Kiani, Esteky, 

Mirpour, & Tanaka, 2007; Mruczek & Sheinburg, 2007; Sigala, 2004; Wilson & 

Debauche) in tandem with prefrontal cortex (PFC; Freedman et al., 2002, 2003). The 

superior temporal sulcus (STS) may be responsible for certain aspects of categorization 

(Linden, Turennout, & lndefrey, 2009) and encoding of facial expression (Furl, 

Rijbergen, Treves, Friston and Dolan, 2007). Face discrimination has been associated 

with activity in the fusiform face area (FFA; Dotan, Gelbard-Sagiv!, & Malach, 2009) and, 

given its recognition component, researchers have explored the role different medial 

temporal structures play in rapid categorization (Fize, Boulanouar, Chatel, Ranjeva, 

Fabre-Thorpe & Thorpe, 2000). By demonstrating that rhesus macaques perceive faces 

in a categorical manner, this study validates future electrophysiological studies 
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investigating how these different regions together are responsible for face 

categorization in the brain. 

These neural findings would have clinical relevance, as well. One study has already 

demonstrated that otherwise high functioning adolescents with autism show significant 

impairments in face categorization {Teunisse & Gelder, 2001 ). Nleural findings following 

this study could be used firstly as a biomarker of the condition and secondly as a clue to 

what may be going on in the autistic brain- a question currently on the minds of many 

scientists and granting agencies around the world. Although this study on its own 

provides but a small piece to the behavioural puzzle known as categorical perception, it 

marks a significant step in the direction of understanding mechanisms common to many 

different levels of perceptual processing and opens the door to future 

electrophysiological studies with wide-reaching scientific and clinical implications. 
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Preliminary Training Period Test Day 1 Test Day 2 Test Day 3 

Training Session(s) Booster Training Booster Booster Training 
Training 

(until exceeds 85% (until exceeds (until exceeds 85% 
accuracy) 85% accuracy) accuracy) 

Presented: Test Session 1 Test Session2 Test Session 3 

endpoint stimuli ( 120 trials/set) Presented: Presented: Presented: 

Criterion: 54 morph 54 morph 54 morph 

85% accuracy 306 end point 306 end point 306 end point 

Table 1. Testing paradigm. Structure of both the training and te:sting phases of the 
paradigm for each morph line presented. 
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Morph line Chi-square df Significance 

LU 

Fam 00/unfam 35.358 7 O*** 

Fam Rl/unfam 19.32 7 0.007*** 

Fam LE/fam AN 9.315 7 0.231 

Fam AN/fam RI 4.755 7 0.69 

AN 

Fam 00/unfam 13.302 7 0.502 

Fam LE/unfam 11.248 7 0.129 

Fam LU/fam RI 14.967 7 0.036* 

Table 2. Hosmer-Lemeshow statistics from linear regression analyses for each 
morph line. A significant result indicates an ill fit of the logit function to the ID function 
listed. *p< 0.05 **p< 0.01 ***p< 0.001 
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Goodness of fit 

Subject Morph line Model df If- adjusted 

LU Fam DO/ unfam male Linear 0.6134 9 0.5705 

Quadratic 0.9351 9 0.9188 

Exponential* 0.9605 8 0.9562 

LU Fam RI/ unfam female Linear 0.6173 9 0.5748 

Quadratic 0.8901 9 0.8626 

Exponential* 0.9264 8 0.9182 

LU Fam LE/ tam AN Linear 0.772 9 0.7467 

Quadratic 0.9011 9 0.8764 

Exponential* 0.9126 8 0.9029 

LU Fam AN/tam RI Linear 0.9459 9 0.9399 

Quadratic* 0.9598 9 0.9497 

Exponential 0.9219 8 0.9133 

AN Fam DO/ unfam male Linear 0.8487 9 0.8319 

Quadratic* 0.8839 9 0.8549 

Exponential 0.8458 8 0.8287 

AN Fam LE/ unfam female Linear 0.5646 9 0.5162 

Quadratic 0.8663 9 0.8329 

Exponential* 0.936 8 0.9288 

AN Fam LU/ fam RI Linear 0.7818 9 0.7576 

Quadratic* 0.9274 9 0.9093 

Exponential 0.8986 8 0.8873 

Tab~e 3. Goodness of fit statistics for curve fits. *Model with best fit (highest Ff-) 

58 



Morph lines Across-boundary comparison Within-boundary comparison 

z score pvalue zscom pvalue 

Subject LU 

Fam/unfam male 3.2563 0.006*** 1.014~~ 0.1562 

Fam/unfam female 4.34 <0.00003*** 0.603 0.2743 

Fam/fam (LE/AN) 1.8091 0.0351* -0.421 "I 0.3372 

Fam/fam (AN/RI) 1.0142 0.1562 2.121 ~I 0.0170* 

Subject AN 

Fam/unfam male -3.7187 <0.0001 *** -0.603 0.2743 

Fam/unfam female 3.1229 0.0009*** 0 0.5 

Fam/fam (LU/RI) 3.6723 <0.0002*** 0.4211 0.3372 

Table 4. Across- versus within- boundary comparisons of pl'oportion values for 
morph images separated by two morph levels on their respe1cti1ve morph lines. 
*p<. 0.05 **p< 0.01 ***p<. 0.001 

59 



-~ 0 -
"' (l) 

"' c: 
0 
a. 
(/J 
Q) 

0:: 
c: 
(l) 

~ 
~ .... 
0 
~ 

Wavelength (nm) 

Figure 1. Exemplar identification (ID) function for hue. 
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Figure 2. Exemplar morph line. Familiar LE/familiar AN morph line prE!Sented to subject 
LU with nine morph images along a continuum between the two endpoint images. 

61 



250ms 75ms 

Random 
vertical 
displacement 
of !itimutu.<; 
(-83, 83pax<·ls) 

200ms 

..... ·: 
foice :,~IJ 

.l~OOms 

r 

200ms fixation/ (Com:ct 6B, Morph trial) \ 

\ (Incorrect) 
..,,_. . ... 

. : ~ . - . . . ~\.·· . 
-~.·; '· i ' ', 
~ . ' . . . ,,.,,,. 

l..'. ~ - ---· _. • 

Next Trial ... 

I 

Figure 3. Trial Structure. Each square represents what is viewed on the computer screen by a 
subject for each phase of the trial. The yellow arrows are not presented on the screen, but 
rather are shown here to indicate varying vertical displacement of the face stimuli across trials. 
While dashed-line circles are also not presented on the screen, but arn included here to 
indicated fixation of the subject. 
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morph lines planned to be shown to each subject. 
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Figure 5. Method of selection of morph images for discrimination analysis. Arrows indicate 
which morph images' mean response values were compared in the discriminati:on analysis. The 
reference morph image's mean response value was compared to the· across-boundary morph 
image's mean response value and the within-boundary morph image's mean response value in 
separate statistical analyses. 
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Figure 6. ID function produced by LU's responses to familiar DO/unfamiliar male morph 
line stimuli. a Line plot of mean response values used in logistic regression analysis b bar 
graph of proportional data with significance levels and demarkated caitegory boundary used in 
descrimination and familiarity analyses. * P<0.05 ** p<0.01, *** P<0.001 
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Figure 6. Pen:ei..ed identity of conspecific 'fDces along familiar femoJe/unfamiliar femalo morph lina by s&.1bjoct LU. 
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Figure 7. ID function produced by LU's responses to familiar RUunfamiliar female morph 
line stimuli. a Line plot of mean response values used in logistic regression analysis b bar 
graph of proportional data with significance levels and demarkated category boundary used in 
descrimination and familiarity analyses. * p<0.05 ** p<0.01, *** P<0.001 
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Figure 7. Perceived identity of conspecific faces along familiar fomalo LE/familiar temalo AN morph lino by aubfect LU. 
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Figure 8. ID function produced by LU's responses to familiar LE/ifamiliar AN morph line 
stimuli. a Line plot of mean response values used in logistic regression analysis b bar graph of 
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descrimination and familiarity analyses. * p<.0.05 ** p<0.01, *** p<.0.001 
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Figure 8. Percei-.ed identity of conspecific races along familiar temalo AN/familiar ""11ale RI morph llne by subject LU. 
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Figure 9. Percei~ k:lentity of conspecttlo faces along familiar mate/unfamiliar male morph lino by subj DCt TI. 
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line stimuli. a Line plot of mean response values used in logistic regression analysis b bar 
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descrimination and familiarity analyses. * P<0.05 ** p<0.01, *** P<0.001 -
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Figure 10. Pen:eiwtd identity of conspecific faces along familial' female/unfamiliar fernaJo morph lino by subject TI. 
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Figure 11. ID function produced by AN's responses to familiar LE/unfamiliar female 
morph line stimuli. a Line plot of mean response values used in logis1tic regression analysis b 
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in descrimination and familiarity analyses. */J<0.05 **JJ<0.01, ***JJ<0.001 
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Figure 12. ID function produced by AN's responses to familiar LUAamiliar RI morph line 
stimuli. a Line plot of mean response values used in logistic regression analysis b bar graph of 
proportional data with significance levels and demarkated category boundary used in 
descrimination and familiarity analyses. * p<.0.05 ** p<0.01, *** p<.0.001 
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Figure 13. Example of the curve fits and logistic regression line cc•mputed for each ID 
function (LU's familiar LE/familiar AN morph line). a Logistic regression model b linear 
model c quadratic model d exponential model 
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Figure 14. Alternative sigmoid function fit for LU's familiar DO/unfamiliar male morph 
line. The solid black line indicates placement of the category boundary, if determined by this 
sigmoid fit. 
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Figure 15. Alternative sigmoid function fit for LU's familiar RUunfamiliar female morph 
line. The solid black line indicates placement of the category boundary, if determined by this 
sigmoid fit. 
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Figure 16. Alternative sigmoid function fit for LU's familiar LE/familiar AN morph line. The 
solid black line indicates placement of the category boundary, if determined by this sigmoid fit. 
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Figure 17. Alternative sigmoid function fit for LU's familiar ANHamUian RI morph line. The 
solid black line indicates placement of the category boundary, if determined by this sigmoid fit. 
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Figure 18. Alternative sigmoid function fit for AN's familiar DO/unfamiliar male morph 
line. The solid black line indicates placement of the category boundary, 1if determined by this 
sigmoid fit. 
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Figure 19. Alternative sigmoid function fit for AN's familiar LE/unfamiliar female morph 
line. The solid black line indicates placement of the category boundary, if determined by this 
sigmoid fit. 
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Figure 20. Alternative sigmoid function fit for AN's familiar LU/famifiar RI morph line. The 
solid black line indicates placement of the category boundary, if determined by this sigmoid fit. 
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