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ABSTRACT 

 

 

Persistent infections by Pseudomonas aeruginosa are initiated by interaction of a 

type IV pilus (T4P) with receptors on the mucosal cells of susceptible hosts. Here, we 

examine the structural changes occurring between the monomeric and dimeric states of 

K122 using time-resolved electrospray ionization hydrogen-deuterium exchange mass 

spectrometry (TRESI-HDX-MS). Based on levels of deuterium uptake, the N-terminal -

helix and the loop connecting the second and third strands of the anti-parallel -sheet 

contribute significantly to pilin dimerization. Conversely, the antiparallel β-sheet and αβ 

loop region exhibit increased flexibility, while the receptor binding domain retains a rigid 

conformation in the equilibrium state. Additionally, Escherichia coli are able to adapt to 

changing environmental conditions and develop antibiotic resistance through a process 

called F-plasmid conjugation, carried out through a type IV secretion system (T4SS). The 

F-T4SS protein TraF is of particular interest due to its involvement in pilus assembly to 

mediate the transfer of DNA. Dynamic analysis of a GST-TraF construct through TRESI-

HDX-MS was performed to gain further insights on its structure. These studies have 

revealed that the C-terminal region predicted to contain the thioredoxin-like domain is 

quite structured compared to the more solvent accessible N-terminal region predicted to 

form a protein-protein interaction with companion T4SS protein TraH. Structural analysis 

of a GST-TraF construct is on-going to further characterize the regions responsible for 

protein-protein interaction and the elucidation of its three-dimensional structure. 
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Chapter 1: Introduction 
 
1.1. Multi-Drug Resistant Bacteria and Bacterial Infections 

 

Bacteria are resilient organisms that have existed long before the rise of humans 

with their evolution being a well-documented and remarkable phenomenon. While 

advantageous to the organism, the adaptability of bacteria poses significant challenges to 

human health and allows for the rapid spread of infectious diseases, which make up 25% 

of annual deaths worldwide1 – and this number is only predicted to get worse with the 

emergence of new pathogens and the increase of antibiotic resistance. It is therefore of no 

great surprise that research in understanding the intricate mechanisms behind bacterial 

pathogenesis is a critical field of research in the twenty-first century. 

 

1.1.1. Bacterial Gene Transfer 

 

The exchange of genetic material from a donor to a recipient cell is responsible 

for adaptation to changes in the environment and bacterial evolution. Most importantly to 

human health, it allows for the rapid spread of antibiotic resistant genes and the 

development of multi-drug resistant (Mdr) bacteria.2 The physical process for the transfer 

of genetic material between cells occurs through one of three pathways: 1) uptake of 

DNA from the environment by transformation, 2) direct contact between cells by 

conjugation and 3) bacteriophage transduction (Figure 1.1).2 

Transformation was the first type of horizontal gene transfer discovered,2 

whereby the intercellular transfer of non-specific DNA occurs (Figure 1.1a). It involves 

the direct uptake of naked DNA from the surroundings by competent bacterial cells 

through a permeable membrane. It is important to note that the proteins mediating this 
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process are chromosomally encoded and found in naturally transformable bacteria. In 

contrast, conjugation (Figure 1.1b) requires direct cell-to-cell connection whereby 

independent replicating elements in the form of plasmids encode for proteins that 

facilitate their own transfer. Finally, transduction is defined as DNA transfer mediated by 

independently replicating bacterial viruses known as bacteriophages (Figure 1.1c).2 A 

portion of the research detailed herein (detailed in Chapter 4) has focussed on one of the 

bacterial secretion systems responsible for bacterial conjugation. 

 

 

Figure 1.1: Horizontal gene transfer between bacteria. a) In transformation, the donor 

cell releases antibiotic-resistance genes into the extracellular matrix, which are taken up 

by the permeable membrane of the recipient. b) Conjugation occurs through direct cell 

contact between the donor and recipient cell. The plasmid that is transferred contains 

independent replicating elements and encodes for proteins mediating its own transfer. c) 

In transduction, DNA transfer is mediated by bacteriophages allowing for integration of 

antibiotic-resistance genes into the chromosome of the recipient cell (lysogeny). Adapted 

from Furuya and Lowy, 2006.3 
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1.2. Bacterial Secretion Systems 

 Bacteria have evolved to respond to their environmental conditions through the 

emergence of secretion systems that affect the transfer of macromolecules, DNA, or 

toxins across their cellular membranes. Different secretion systems are composed of 

specific genes and virulence factors and are numbered types I through VIII.2,4 While type 

I and type V secretion systems are relatively simple and composed of 1 to 3 component 

proteins, types II, III and IV are much more complex. The type IV secretion system 

(T4SS) is the most complex and is composed of between 8 to 20 core proteins.5 For these 

more complex secretion systems, individual studies on component proteins have started 

to piece together how proteins in the cytoplasm, inner membrane, periplasmic space, 

outer membrane and extracellular space come together in order to drive pilus assembly 

and DNA transfer.5 

 

1.2.1. Type IV Secretion System (T4SS) 

Bioinformatics has shown that T4SSs are evolutionarily related to bacterial 

conjugation systems, which are found in most gram-negative and gram-positive 

bacteria.6-8 As mentioned, bacterial conjugation is the unidirectional transfer of single-

stranded DNA between bacterial cells by a direct cell-to-cell connection, and is the main 

driving force for infection and the spread of antibiotic resistance genes. Another class of 

T4SSs are those involved in DNA release and uptake from the extracellular space without 

the need for a cell-to-cell connection or specific target cell. This relatively recently 

discovered subclass is composed of two DNA-uptake systems (found in Campylobacter 

jejuni and Helicobactor pylori) and one DNA-release system (found in Neisseria 
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gonorrhoeae).9 T4SSs are also used for the transfer of DNA or protein substrates, known 

as effector or virulence factors, to target cells during the infection process.10 Well-studied 

examples of such systems include the oncoprotein CagA in H. pylori, the pertussis toxin 

of Bordetella pertussis, and the oncogenic Ti plasmid of Agrobacterium tumefaciens 

(Figure 1.2).9 

 

 
 

 

Figure 1.2: Schematic representation of the different T4SS mechanisms. 

a) Conjugation systems deliver DNA to recipient cells via a direct cell-to-cell connection. 

b) DNA uptake and release systems exchange genetic material with the extracellular 

space. c) Effector translocators deliver DNA or protein substrates to eukaryotic cells 

during the infection process. Adapted from Cascales and Christie, 2003.9 
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Although they deliver different factors, many of the T4SSs are closely related to 

one another forming a similar translocation apparatus. The most studied T4SS is the 

tumour inducing (Ti) system found in A. tumefaciens consisting of 12 core proteins 

named VirB1-VirB11 and VirD4, and the Escherichia coli conjugative systems encoded 

by F, R1, and pKM101 plasmids with up to 20 conserved proteins.6,8,11 Detailed structural 

studies of conjugative T4SSs are only recently becoming available despite the wealth of 

biochemical knowledge.5,7-9,11,12  For example, in the T4SS encoded by the pKM101 

plasmid, the core complex of TraF-N-O was studied by cryo-electron microscopy and X-

ray crystallography. Together, the trimer was found to be present in 14 copies forming a 

1.1 MDa complex enabling substrate passage.13 It is believed that F-pilus assembly likely 

relies on a core complex that is structurally similar to that solved for the pKM101 system.

 

1.2.1.1. A Closer Look at the F-Plasmid Conjugative System 

In 1946, Lederberg and Tatum first described the phenomenon of conjugation 

using E. coli as a model system.14 E. coli is the most common pathogen affecting hospital 

patients causing various illnesses such as pneumonia, meningitis, and urinary tract 

infections often leading to death.15 Bacterial conjugation is a plasmid-driven process2,16,17 

initiated by the interaction of the conjugative pilus of a donor cell with the cell surface of 

a recipient.18 The extension and retraction of the pilus is a dynamic process19 that actively 

identifies potential recipient cells. After attaching to a recipient, the pilus is retracted by 

the conjugative T4SS, resulting in the intimate association between donor and recipient 

cell, known as a mating pair.20-22 Plasmid DNA is then transferred through a membrane-
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associated supramolecular structure known as the mating pair formation (Mpf) complex, 

composed of T4SS proteins. Essentially, conjugative DNA transfer can be thought of as a 

protein secretion system that happens to also transport DNA. 

While a class of conjugative plasmids are responsible for driving the process of 

bacterial gene transfer in E. coli, the first of these plasmids discovered and consequently 

the most well studied is the fertility factor or sex factor (F). E. coli cells containing the F-

plasmid (F+) act as donors while those lacking the F-plasmid (F-) are recipients. 

Following stabilization of the mating pair by the Mpf complex, ATP-dependent transfer 

of the ssDNA occurs and the recipient cell is released. A newly synthesized 

complementary strand is produced with the recipient cell now becoming a potential donor 

(Figure 1.3).18 

 
 

Figure 1.3: The stages of F mediated plasmid transfer. The pilus tip from the F+ donor 

cells extends and attaches to the F- recipient cell. The retraction (depolymerisation) of the 

F pilin subunit draws the donor and recipient in close proximity. The F-plasmid DNA 

replicates and the newly synthesized copy is transferred to a recipient cell with a copy 

always remaining in the donor cell. Adapted from Firth et al. 1996.23 

 

The F-plasmid is approximately 100 kb in size, with a portion responsible for 

encoding proteins making up the T4SS. In fact, transfer (tra and trb) proteins making up 

the T4SS are encoded for by the transfer operon region spanning 33 kb of the F-plasmid 

(Figure 1.4).24 Genetic studies have shown that the majority of F-tra proteins are 
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involved in pilus biogenesis, with other proteins involved in surface exclusion, mating-

aggregate stabilization, regulation and DNA metabolism.23 The F-pilus is composed 

primarily of the 121 amino acid traA gene, with processing of the precursor pilin subunit 

carried out by traX and traQ.23 The pilus was observed to exhibit two subunit packing 

schemes using cryo-electron microscopy corresponding to a left-handed seven-start helix 

and a right-handed four-start helix.25 

  

Figure 1.4: Physical and genetic map of the F-plasmid transfer region. Kilobase 

coordinates are indicated at the top, with transcription initiation of the promoter regions 

depicted with arrows. The functional class of each gene is depicted as coloured boxes; 

blue = pilus biogenesis, red = surface exclusion, magenta = mating-aggregate 

stabilization, green = regulation, yellow = DNA metabolism, black = 

unknown/nonessential. Capital and lowercase letters are used to label tra and trb genes, 

respectively. Adapted from Firth et al. 1996.23 

 

T4SSs are membrane associated transport complexes spanning the inner and outer 

membrane of E. coli responsible for horizontal DNA transfer to target cells (Figure 1.5). 

There are a total of 9 hallmark proteins making up the F-plasmid T4SS and they are TraF, 

TraG (C-terminal domain), TraH, TraN, TraU, TraW, TrbB, TrbC, and TrbI.8,26 

Mutations in traL, -E, -K, -B, -V, -C, -W, -U, -F, -H, -G, trbC and trbI have been shown 

to create an accumulation of the pilin protein in the membrane, and therefore are required 

for pilus assembly.27 Within the aforementioned proteins, an interaction group 

responsible for F-pilus extension is composed of TraF, TraH, TrbI, TraU, TraW, and 
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TrbB.28 The mating pair is stabilized through interaction between TraN and TraG,29 with 

the F-plasmid DNA being transferred from donor to recipient through a TraB-K-V core 

complex by the ATP-dependent coupling protein TraD.2 

 
 

Figure 1.5: Signature T4SS proteins responsible for F-plasmid conjugation in gram 

negative bacteria. The double membrane spanning complex is composed of transfer (tra 

and trb) proteins responsible for mediating the passage of DNA between bacterial cells. 

Tra proteins are labelled in uppercase letters and Trb proteins are labelled in lowercase 

letters. The mating pair is stabilized through interaction between TraN and TraG, and the 

F-plasmid DNA is transferred from donor to recipient through a TraB-K-V core complex 

by the ATP-dependent coupling protein TraD. The pilus is composed of repeating TraA 

subunits processed by TraX and TraQ. An interaction group responsible for F-pilus 

extension is composed of TrbI, TraU, TraW, and TrbB. Proteins of interest TraF and 

TraH are located within this group with the processed periplasmic forms being 26 kDa 

and 48 kDa in size, respectively. Adapted from Frost et al. 2005.2 
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1.2.1.2. The TraF and TraH Interaction 

TraF, one of six hallmark proteins of the F-like T4SS, is a 25.9 kDa protein linked 

with both pilus assembly and F-plasmid transfer. TraF contains a predicted thioredoxin 

domain but does not contain the characteristic CxxC active site of other thioredoxins;30 

there is currently no three-dimensional structure of TraF available, although its 

crystallization has been reported.31 It is predicted that the thioredoxin domain is made up 

of at least three α-helices flanked by a four-stranded antiparallel β-sheet.32 It is expected 

that TraF acts as a chaperone, assisting in other conjugative proteins such as TraH, -U 

and -N to achieve their correct conformation. A predicted structure of the C-terminal (a.a. 

132 – 247) region of TraF is shown in Figure 1.6. 

 

Figure 1.6: Predicted structure of the C-terminal TraF region. The structure of the C-

terminal domain of TraF was predicted using the Phyre233 server, and is a homolog of 

TraF spanning amino acid residues 132-247. The image was rendered using Pymol.34 
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TraH is 47.8 kDa in size and one of three cysteine rich T4SS proteins also 

required for pilus assembly. TraH spans the periplasmic and outer membrane space and 

contains 6 cysteine residues suggesting potential disulfide bond isomerase activity.35 In 

addition, it contains a C-terminal coiled-coil domain contributing to its oligomerization 

and interaction with other T4SS proteins.8 There is currently no solved structure for the 

protein, as well as no solved homolog of high sequence similarity. Membrane 

hydrophobicity prediction software suggests that TraH is likely rich in amphipathic 

helices. 

The aforementioned F-plasmid proteins TraF and TraH have been identified as 

forming an interaction group allowing for extension of the F pilus. This interaction group 

also includes proteins TrbI, TraU, TraW, and TrbB which are all predicted to be 

periplasmic with the exception of TrbI. Although located within the inner membrane, 

TrbI has a large periplasmic domain allowing for its involvement in the interaction group. 

It was also found that TraH is the most connected node with direct attachment to TraF, 

TraU and TrbI (Figure 1.7a).28 Furthermore, mutations in TraF and TraH have been 

shown to abolish the ability of F+ cells to form extended pili structures observed through 

electron microscopy. Yeast-two hybrid analysis has shown that the C-terminus of TraH 

contains a binding site responsible for its interaction with TraF.26 It has been proposed 

that the region of the TraF protein responsible for interaction with TraH spans the 

segment 64-88 while TraH contains a TraF binding site between amino acid residues 

315-458 on the C-terminus (Figure 1.7b).28 
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Figure 1.7: Protein interaction group of Tra proteins required for the formation of 

F pili. a) Arrows connect proteins shown to interact with one another through yeast-two 

hybrid analysis, with arrowheads pointing to the prey. Adapted from Harris and 

Silverman, 2004.28 b) A prediction28 of the segments of TraH and TraF that are proposed 

to interact with one another. 

 

 

1.2.2. Type II Secretion System (T2SS) 

 First discovered in the 1980s in the genus Klebsiella oxytoca,36 the type II 

secretion system (T2SS) is responsible for the specific transfer of folded periplasmic 

proteins in gram-negative bacteria. These secreted proteins released into the extracellular 

space or displayed on the cell surface allow the bacterium to survive and adapt to various 

environments ranging from deep-sea waters to animal and plant tissues.37 The main 
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function of these exoproteins is for nutrient acquisition, as the majority are classed as 

hydrolytic enzymes that degrade biopolymers. In addition to these, T2SSs are responsible 

for promoting the secretion of toxins, such as the cholera toxin – a multimeric protein 

complex secreted by the human pathogen Vibrio cholerae causing serious and life-

threating infections.38 Up to 15 genes are responsible for encoding T2SS machinery in 

gram-negative bacteria, the components of which are currently the subject of many 

structural and functional studies.37 A current understanding of the proteins involved in the 

T2SS of gram negative bacteria is shown in Figure 1.8. 

 

Figure 1.8: Localization and interactions of the T2SS in gram negative bacteria. 
Components of known structure are shown in cartoon representation, with proteins and 

parts of unknown structure represented as cylinders. Established interactions are depicted 

with double-ended arrows. Adapted from Mangayarkarasi and Francetic, 2014.37 

 

 T2SS are highly similar in composition and structure to systems that produce 

archaeal pili, flagella, as well as the bacterial type 4 pilus (T4P), suggesting a common 
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ancestral origin. The T4P is a surface-exposed nanofiber composed of multiple protein 

subunits that perform a range of bacterial functions. 

 

1.2.2.1. The Type IV Pilus (T4P) 

 

Opportunistic infections by Pseudomonas aeruginosa are prevalent in patients 

with compromised immune systems including those recovering from burn wounds39-41 

and organ transplants,42,43 as well as in individuals suffering from cystic fibrosis,44,45 

acute leukemia46 and HIV.47 These persistent infections are initiated by interaction of a 

type IV pilus (T4P) with receptors on the mucosal cells of susceptible hosts.48-53 For 

example, in P. aeruginosa, fibrous T4P extend from the poles of the bacterium and attach 

to glycosphingolipids asialo-GM1 and asialo-GM2 present on epithelial cells (Figure 1.9). 

In addition, P. aeruginosa accounts for 10% of all hospital infections including lung, 

urinary tract and blood infections.54 T4P are also responsible for a variety of bacterial 

processes including surface motility,52,55-58 microcolony and biofilm formation,52,59-62 

cell-host adhesion,53 cell signalling63 and DNA uptake (transformation).64,65 Indeed, T4P 

are important structures found across a wide range of gram-negative and gram-positive 

bacteria, and disruption of the pilus leads to decreased bacterial virulence in many gram-

negative pathogens.40,51,52,66,67 
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Figure 1.9: Negatively stained transmission electron micrograph of T4P from P. 

aeruginosa. a) The thin fibers that extend from the poles of the bacteria are T4P, with the 

thick fibers representing flagella. b) Magnified view of the bacterial pole, with a better 

view of the T4P fibers. Adapted from Audette and Hazes, 2007.68 

 

 

1.2.2.2. The Assembly of T4P 

 As briefly mentioned earlier, T4P are assembled by systems that are 

evolutionarily related to T2SSs and archaeal systems. The assembly of T4P has several 

key players: the pilin subunit itself, an inner membrane prepilin peptidase, an assembly 

ATPase, an integral membrane protein, an outer membrane secretin, and a retraction 

ATPase.69 The mechanism of T4P formation in P. aeruginosa is very similar to that of N. 

gonorrhoeae depicted in Figure 1.10.70 

In P. aeruginosa, individual pilin subunits (PilA) are synthesized in the cytosol 

and are referred to as prepilins, that is, precursors with a leader peptide signalling 

transport to the inner membrane. The pilins remain anchored to the inner membrane by 

their hydrophobic α-helix prior to processing. The prepilin peptidase (PilD), which is 

associated with the cytoplasmic side of the inner membrane, is an aspartic protease 

responsible for removal of the leader peptide and addition of a methyl group to the N-

terminal amine.69 This process produces mature pilin subunits and facilitates their 
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transport through the integral membrane protein PilC. Assembly is driven through ATP 

hydrolysis by the ATPase PilB, which is recruited to the inner membrane by PilC. 

Secretins are multimeric structures composed of 12-14 subunits and often require the 

presence of a lipoprotein known as the pilot protein in order to ensure correct assembly 

and insertion into the outer membrane. A second ATPase is responsible for 

depolymerisation or retraction of the pilus, which allows for the twitching motility 

involved in bacterial translocation and rapid colonization of large surface areas.70 

 

 
 

Figure 1.10: Schematic model of T4P formation in N. gonorrhoeae. Pilin subunits 

(PilE) are processed by the prepilin peptidase (PilD) prior to assembly of the pilus fibre. 

The ATPase (PilF) is responsible for pilus biogenesis with assistance from the polytopic 

membrane protein (PilG). The pilus crosses the outer membrane through the channel 

formed by multimeric secretin (PilQ) with the assistance of pilot protein (PilP). Adhesin 

protein (PilC) is associated with the outer membrane and is believed to stabilize the pilus 

filament. A second ATPase (PilT) is required for depolymerisation/retraction of the pilus 

as well as for twitching motility.70 
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1.2.2.3. The Structure of T4P 

The T4P is a filamentous protein polymer of a single monomeric unit, the type 4 

pilin. These subunits are arranged in a helical conformation with 5 subunits per turn, a 4.1 

nm pitch and a diameter of approximately 6.0 nm.53,71 The majority of type IV pilin 

subunits have a length ranging from 145-160 amino acids corresponding to a molecular 

weight of approximately 12-15 kDa.55 Atomic models for pilins from several bacteria 

have been characterized, including: P. aeruginosa strains PAK, PAO, and K122-4,        

N. gonorrhoeae (GC) strain MS11, V. cholerae toxin coregulated pilin (TcpA), and the 

pilin from Salmonella typhi. Based on sequence similarities/differences in the pilin 

protein, there are two main pili sub-types, the IVa (T4aP) and IVb (T4bP) pili.52 The T4b 

pilins are a heterogeneous group common in enteric species such as V. cholerae and S. 

typhi whereas T4a pilins, including those observed in P. aeruginosa, are more broadly 

distributed.52 In addition, T4a pilins have a shorter leader sequence (5-6 amino acids) 

compared to T4b pilins (15-30 amino acids) and a shorter mature sequence (average of 

~150 amino acids compared to ~190 amino acids for T4bP).53 Structurally, the type IV 

pilin (PilA) monomer is comprised of an α-helix connected by a variable αβ-loop to a 

four-stranded antiparallel β-sheet; surface and cellular adherence is mediated through a 

conserved C-terminal loop known as the receptor binding domain (RBD) or D-region 

(Figure 1.11).72-80 
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Figure 1.11: Conserved structural domains of T4P. The a) front and b) back view of 

superimposed PAK (blue), GC (white) and TcpA (red) pilins showing the conserved 

structural core and the variable αβ-loop and D-region. c) Structural alignment of T4Ps 

showing relative leader sequence lengths (black) and the positions of the αβ-loop (green) 

and D-region (magenta). The coloured bar above the GC pilin indicates areas of 

conserved (blue), variable (green) and hypervariable (red) sequence. Adapted from Craig 

et al. 2004.53 

 

 

It is believed that there is a common pilus assembly mechanism across the 

different T4P, with the RBD identifying the same glycosphingolipid receptors. However, 

there is very little sequence homology when the primary sequences of various strains of 

T4P are compared. The main area of sequence conservation occurs at the N-terminal end 

of the α-helix with little to no sequence homology in the RBD. In fact, the only conserved 

amino acids in this domain are Cys 129 and Cys 142 forming a disulphide bond, as well 

as Pro 139 providing further structural rigidity.81 In addition, the side chains of these 

cysteine and proline residues are buried within the core of the interior suggesting a 

structural rather than functional role.31 
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In the P. aeruginosa pilins, the N-terminal region of the -helix (1-N) is both 

highly conserved and hydrophobic whereas the C-terminal region of the helix (1-C) is 

amphipathic and packs onto the -sheet forming the globular domain.73-76 The globular 

domain folds in the periplasm and disulfide bond formation is mediated by an 

oxidoreductase enzyme.82,83 The pilins are assembled/disassembled by a membrane-

spanning complex into a pilus several microns in length with an approximate outer 

diameter of 6-8 nm.52,53,55,69,80,84-86 Cryo-electron microscopy71,79,80 and fibre diffraction87 

studies of P. aeruginosa T4P have shown that assembly is through a three-start helical 

assembly of pilin monomers to the base of the pilus.53,69,71 

 

1.2.2.4. Applications of T4P in Bionanotechnology 

 

From a bionanotechnology perspective, T4P form robust nanofibers with the 

ability to bind biotic and abiotic surfaces via their tips, interactions which have been 

mapped to the D-region of the pilin.50 It has been estimated that the attractive force 

between the native T4P tip and steel is in excess of 100 pN/molecular interaction88 and 

for in vitro derived D-region peptides and protein nanotubes is in the range of 26-55 and 

78-165 pN/molecular interaction, respectively.89,90 Due to the self-assembling nature of 

T4P, functional nanostructures have been generated from native bacterial pili and 

explored for their potential use as biological nanowires. The development of protein-

based nanofibres and nanotubes have several advantages when compared to their 

inorganic counterparts such as carbon nanotubes (CNTs), which are significantly more 

cytotoxic and pose compatibility issues. While the strength and stability of protein-based 

nanotubes are not expected to match those of CNTs, modifications can be made such as 
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the addition of disulphide bonds or the insertion of loop peptides. Studies have shown 

that cultures of G. sulfurreducens produce biofilms with one of the highest known current 

densities in microbial-based fuel cells,91,92 and are capable of long-range metallic-like 

conductivity93 and supercapacitor behaviour94 through a T4P network. These properties 

make microbial biofilms and T4P exciting prospects for use as a low cost and 

environmentally sustainable form of energy storage. Additionally, the β-sheet and 

connecting loops that form the surface of T4P show extremely high sequence variability, 

which allows for the use of protein engineering strategies to design fibers with altered 

surface characteristics. Also, if we consider binding of T4P to biotic surfaces such as 

epithelial cells, this opens an exciting area for further research in therapeutics. As is the 

case with binding to abiotic surfaces, the D-region of the pilin is responsible for forming 

specific interactions with cellular glycolipids.89 This receptor-specific interaction could 

allow for targeted drug delivery of the therapeutic-loaded T4P-based nanocarriers. 

 

1.2.2.5. The K122 Pilin from P. aeruginosa as a Model System 

While there are several structural studies of pilins and T4P, the end points of 

assembly, structural studies of the initial to intermediate stages of pilus assembly have 

been more challenging. Current T4P models53,69,71,80 place the α-helix within the interior 

of the fibril; T4P formation is driven by the hydrophobic α1-N region of the helix, and 

the -sheet of the globular head domain defines the outer face of the pilus. In this way, 

the N-terminal α-helix is protected from identification by the immune system and acts as 

a conserved oligomerization domain.68 The αβ-loop of the pilin is predicted to interact 

with neighbouring subunits due to its size and position with respect to the globular 
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domain,53,69,71 while the D-region is predicted to be occluded and only exposed at the tip 

in order to bind receptors on epithelial cells.50  

Recently, a truncated form of the pilin from P. aeruginosa strain K122-4 (K122) 

lacking the conserved 1-N region of the helix has been shown to form T4P-like 

structures, so called protein nanotubes (PNTs), both in solution and at surfaces.90,95-97 As 

this truncated form of the pilin lacks the predicted main driving force for pilus 

oligomerization, namely, the conserved 1-N region, other protein-protein interactions 

are required to stabilize the structure during the oligomerization process. It has also been 

observed that the K122 pilin forms a monomer-dimer equilibrium in solution prior to 

fibril/PNT oligomerization upon incubation with hydrophobic initiators (Figure 1.12).97 

 
 

Figure 1.12: Schematic representation of the truncated pilin monomer and its 

proposed assembly mechanism. The common structural features of type IV pilins are 

highlighted on the K122 monomer (PDB ID: 1QVE)75: the four-stranded antiparallel β-

sheet (green), the truncated N-terminal α-helix (cyan), connecting loop regions (yellow), 

and the RBD (purple). The K122 pilin exists as a monomer-dimer equilibrium and in 

the presence of hydrophobic imitators such as MPD forms fibrils that coalesce into PNTs 

by a 3-start assembly model. Adapted from Petrov et al. 2013.97 
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1.3. Time-Resolved Electrospray Mass Spectrometry as a Tool for Probing Protein 

Structure and Protein-Protein Interaction 

 
 Mass spectrometry (MS) has become one of the most sensitive bioanalytical tools 

for the structural characterization of (bio)molecules, driven by continual instrumental 

advancements since its origin stemming from the work of J.J. Thomson.98,99 The 

development of soft ionization techniques, such as ElectroSpray Ionization (ESI) was a 

critical advance in mass spectrometry, paving the way for a multitude of new 

applications, particularly in biomolecular analysis.100,101 A particular advantage of ESI 

was that it  could be directly coupled to solution phase processes, making it suitable for 

integration with liquid separation techniques (principally HPLC)102 and, of particular 

importance to time-resolved studies, rapid mixing. 

In ESI-MS, ions are generated by passing solution through a capillary held at a 

high electric potential (2 – 6 kV). The high electric potential created at the tip of the 

capillary causes the dispersion of the sample creating a Taylor cone. In positive ion mode 

charging of the protein occurs via protonation, while in negative ion mode charging 

occurs via deprotonation.103 It is widely accepted that globular species such as natively 

folded proteins follow the charged residue model (CRM) of gas phase ion formation. This 

model involves two major steps: the production of charged droplets followed by solvent 

evaporation.104 As the radius of the droplet shrinks, the Coulomb force between the 

positive ions increases due to their proximity, with the electrostatic repulsion causing 

droplet fission.105 This phenomenon is described by the Rayleigh equation; QRy: charge 

on the droplet, ε0: electrical permittivity, γ: surface tension, R: radius of the droplet. 

QRy = 8π(ε0γR3)1/2 
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When the charge exceeds the Rayleigh limit, the droplets explosively dissociate 

producing charged ions containing single molecules of analyte (Figure 1.13). 

Following solvent evaporation, the ions then travel through the mass analyzer 

where they are separated based on their mass-to-charge (m/z) ratio. A detector converts 

the signal into a mass spectrum. Due to the multiple charging that occurs for the majority 

of proteins, the m/z values tend to fall within the range of most mass analyzers. ESI-MS 

can be used to obtain information on various protein properties including their three-

dimensional structure,106,107 posttranslational modifications,108 amino acid sequence,109 

and noncovalent interactions that have been shown to persist in the gas phase.110,111 

 
 

Figure 1.13: Schematic depiction of an ESI source operated in positive mode. 

Analyte solution passes through a metal capillary whose tip is held at a high voltage (2-6 

kV). The electric potential created at the capillary tip causes the dispersion of the sample 

solution creating a Taylor cone. A sheath gas (N2) that flows around the capillary results 

in more efficient nebulization of the analyte. The charged droplets diminish in size by 

solvent evaporation and pass through the sampling cone into the mass analyzer. Adapted 

from Lamond, 2010.112 
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Characterization of rapid biochemical processes and intermediates such as 

structural transitions during protein folding, ligand binding and enzymatic “pre-steady” 

states have proven challenging over the years, because of the need to monitor the reaction 

under pre-equilibrium conditions, which often persist for less than one second. Analytical 

techniques allowing for the detection of transient intermediates under pre-equilibrium 

conditions are referred to as time-resolved, implying that the analysis begins within 

milliseconds (or microseconds) of reaction initiation. Typically a rapid mixing apparatus 

is employed to efficiently mix the reactants of interest followed by transfer into an 

analytical cell. These set-ups usually consist of either stopped-flow or continuous-flow 

rapid mixers. Stopped-flow devices use a two-step approach, where reactants are first 

flushed at high flow rates through the mixer and observation cell clearing the contents 

from previous experiments. Once enough new volume of solution has entered the cell, the 

flow is stopped and observation begins.113 Analysis of stopped-flow experiments are 

classically carried out using spectroscopic methods such as fluorescence and UV-visible 

absorbance. 

Optical detection by fluorescence is suitable for the millisecond time scale mostly 

thanks to its high sensitivity. However, the main disadvantage of the method is low 

selectivity leading to an inability to study more than a few species simultaneously. Most 

optical studies involve the detection of one or two species assuming the availability of a 

chromophore, making them unsuitable for unravelling complex, multi-step reactions with 

a large number of reactive species. The use of artificial chromophoric substrate analogues 

is problematic because there is no guarantee that they exhibit the same kinetics as the 

natural substrate.114 Alternatively, circular dichroism (CD) spectroscopy can be used to 
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study protein unfolding, or melting, as well as protein-protein interactions by measuring 

the changes that occur in the secondary and tertiary structure of proteins.115 However, this 

method has low sensitivity and probes only global structure changes of the protein, 

making it difficult to pinpoint specific locations of change. 

Time-resolved electrospray ionization mass spectrometry (TRESI-MS) allows for 

kinetic experiments to be carried out with a dead-time ranging from a few milliseconds to 

seconds.116,117 The sensitivity and selectivity associated with this technique makes it a 

promising and often superior approach for studying reactions at sub-second time scales. 

In addition, TRESI-MS allows for the simultaneous detection of virtually all mass-

distinguishable species. Incorporation of a kinetic mixer onto a microfluidic chip in 

combination with hydrogen-deuterium exchange (HDX) studies has allowed for the local 

dynamic analysis of proteins undergoing biologically-relevant conformational transitions. 

 

1.3.1. Early Work 

One of the earliest continuous-flow capillary-based devices consisted of a static 

mixing tee followed by a reaction capillary whose fixed internal volume regulated the 

reaction time (Figure 1.14a).118 Different time points were obtained by ‘switching out’ 

the reaction capillary for one of different length or by varying the flow rates. One of the 

disadvantages of this system was that different time points could only be obtained in 

separate experiments. Stopped-flow rapid mixing was implemented for ESI-MS (where a 

reaction capillary replaces the optical cell) as an alternative that would allow continuous 

reaction monitoring, however, the open system caused considerable pressure when 

switching from the initial high-flow rate phase to the low flow-rate injection into the ESI 
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source, which ultimately had a substantially negative impact on time-resolution.119 This 

shifted the focus to the advancement of TRESI based on continuous-flow rapid mixers, 

which ultimately allowed for substantially decreased dead-times. 

 

 
 

Figure 1.14: Schematic depiction of early continuous-flow capillary-based devices. 
a) Syringes carrying the reactants of interest meet and react within a static, or fixed, 

mixing tee. b) Adjustable reaction chamber within two concentric capillaries where 

multiple time points can be obtained by manual or automated pullback. Adapted from 

Konermann et al. 1997 and Wilson and Konermann, 2003.118,120 

 

The ‘fixed mixer’ continuous-flow set-up was subsequently improved to include 

an adjustable reaction chamber in order to measure  various reaction times in a single 

experiment (Figure 1.14b).120 In this set-up, the reactants were flowed through concentric 

capillaries where the outer capillary served as the ESI source and solution was allowed to 

exit the inner capillary through a notch produced 2 mm from the inner capillary tip. The 

end of the inner capillary was initially lined up with the outer capillary, allowing for a 
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minimum observable reaction time of around 8 ms. Later, reaction times were monitored 

by withdrawing the inner capillary within the outer capillary, increasing the dead-volume 

between the mixing point and the onset of ESI. The capillary could be withdrawn 

continuously (kinetic mode), or in discrete steps (spectral mode) to allow for longer 

acquisitions at specific time points. 

 

1.3.2. Microfluidics Coupled to TRESI-MS/HDX 

 Microfluidics refers to the etching of microscale features onto polymer, glass, or 

silicone substrates for the handling of small-volume liquid samples. The coupling of 

microfluidics to ESI-MS provides two main benefits. First, it allows for the possibility of 

integrating several electrospray emitters on the same chip and increasing the 

experimental throughput. Secondly, the chip can be used as a platform to carry out a 

variety of manipulations on the sample before analysis, including separation and 

proteolysis.121 Early work in the fabrication of a microfluidic chip to study time-resolved 

reactions was undertaken by Rob and Wilson in 2009.122 Here, a simple two-channel 

design was incorporated into a polymethyl methacrylate (PMMA) chip and used to study 

the unfolding intermediates of cytochrome c. The design has been modified over the 

years to accommodate a proteolysis chamber in order to carry out local HDX 

experiments.123,124 

 Briefly, HDX relies on the ability of backbone amide hydrogens to undergo 

exchange with deuterium atoms in solution.125,126 At physiological pH, the exchange is 

base-catalyzed although acid-catalysis becomes dominant below pH 2.6. The rate of 

exchange is dependent on four main factors: pH, temperature, solvent accessibility and 
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intramolecular hydrogen bonding.127 Tightly folded regions with extensive hydrogen 

bonding networks characteristic of α-helices and β-sheets are generally less dynamic than 

loops or disordered regions, and thus typically exhibit drastically reduced HDX rates 

(Figure 1.15).128 Global HDX-MS experiments give information about the overall 

flexibility of proteins which can be monitored under various solution conditions and is 

often predictive of protein stability. 

 

  
 

Figure 1.15: Schematic depiction of a protein undergoing hydrogen-deuterium 

exchange (HDX) prior to mass spectrometry analysis. The protein of interest is diluted 

into a solution of deuterium oxide (D2O) where labile backbone amide hydrogens will 

exchange with deuterium. In highly dynamic unstructured regions, the exchange can be 

monitored on the millisecond to second time-scale while amides that are part of hydrogen 

bonding networks will exchange more slowly. HDX is followed by quenching of the 

reaction with acidification at approximately pH 2.5 and proteolysis with pepsin. This is 

referred to “local” HDX as it localizes the exchange to specific peptide fragments. 

Adapted from Weis, 2013.129 

 

Alternatively, local HDX-MS experiments allow for the identification of specific 

stretches of amino acids undergoing dynamic change.130 To achieve local TRESI-HDX 

measurements, the protein is incubated with deuterium at sub-second time scales and then 
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enters a proteolysis microreactor which is held at low pH in order to quench the exchange 

reaction. The proteolysis microreactor is functionalized with an acid protease, most 

commonly pepsin, which digests the labelled protein prior to direct transfer into the ESI 

source.124 In both global and local experiments, the mass spectrometer monitors 

deuterium uptake as a function of time, either in the intact protein (global) or individual 

peptide fragments (local).130 Typically, proteins under physiological conditions follow 

EX2 kinetics depicted in equation (1), where F and U are the folded and unfolded states 

subscripted with hydrogen and deuterium.  Under EX2 kinetics the rate of refolding is 

much greater than the rate of unfolding (k-1 >> k2) and thus the rate of deuteration is a 

function of solvent accessibility over time.125 

 

 

 

(1) 

 

 

TRESI-HDX, while still a recently emerging technique, has led to a wealth of 

knowledge on the dynamic nature of proteins which can be coupled to structural 

information acquired through NMR and X-ray crystallography. Monitoring backbone 

exchange at millisecond to second time scales allows for the characterization of 

conformational changes that occur in loop regions, molten globules, and intrinsically 

disordered proteins which are difficult to analyze using conventional HDX methods. 

 The TRESI-HDX device developed by Rob et al.124 consists of a capillary-based 

rapid mixer integrated into a PMMA microfluidic chip etched with additional acid 

channels and a reaction chamber filled with pepsin agarose beads (Figure 1.16). Several 

systems have been explored with this apparatus including studies on weakly structured 
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and intrinsically disordered proteins. For example, a single time-point (100 ms) was used 

to obtain the HDX profile for the secondary structure of ubiquitin where there was a 

significant difference in the uptake levels between secondary structures and loop 

regions.124 

 

 

Figure 1.16: Experimental setup for time-resolved HDX-MS. A static kinetic mixer is 

integrated onto a microfluidic chip along with acid quenching channels and a downstream 

proteolytic chamber containing pepsin agarose beads. The distal capillary is used as an 

ESI source. Adapted from Rob et al. 2013.131 

 

Similarly, conformational dynamics were studied in the weakly structured loop 

regions of cytochrome c. The analysis was based on ‘segment-averaged’ protection 

factors, which compare the observed rate of deuterium uptake to the rate that would be 

expected in the absence of structure (the latter ‘intrinsic’ rate has a known primary 

sequence dependence and can be calculated manually or using web tools).132 The 

protection factors were in agreement with previous predicted properties of the loop 

regions, and were largely dependent on the extent of interaction with the heme prosthetic 

group.124
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1.3.3. Applications 

The microfluidic TRESI-HDX device can also be used to characterize proteins 

that currently do not have a solved atomic structure through the methods of X-ray 

crystallography and NMR. Many of these include intrinsically disordered proteins, such 

as the neuronal tau protein, which is involved in the formation of amyloid fibrils 

associated with Alzheimer’s disease.133 Currently, the tau protein is being studied under 

native (non-amyloidogenic) and hyperphosphorylated (amyloidogenic) conditions in 

order to localize which regions undergo dynamic change when transitioning into the 

pathogenic state.134 One of the great advantages of TRESI-MS/HDX is that it is a very 

general approach that can be applied to virtually any protein and is not limited by size. 

For example, the same microfluidic device was used to study the large homotetrameric 

enzyme 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase, which is 154 

kDa in size.124 In addition, proteins that are difficult to study by NMR due to solubility 

issues can be analyzed using this technique. 

 

1.4. Research Objectives 

 
The main objective of this thesis is to gain a deeper understanding of how large 

protein complexes come together to drive important biological events using time-resolved 

electrospray ionization hydrogen-deuterium exchange mass spectrometry (TRESI-HDX-

MS). This method has the ability to provide insight on protein structure – including 

conformational dynamics, solvent exposure, and areas of protein-protein interaction – 

together leading to a better understanding of overall function. As mentioned, HDX-MS is 

a sensitive technique that can be used to study protein-protein interactions of large 
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macromolecular protein complexes.135,136 These interactions regulate virtually all aspects 

of cellular function and the aim is to understand the structural changes that occur upon 

interaction. 

The use of local TRESI-HDX-MS will provide a more detailed structural 

characterization of TraF, a critical protein involved in the assembly of the F-plasmid 

T4SS apparatus, as well as a truncated type IV pilin protein (ΔK122) from P. aeruginosa. 

In conjunction, crystallography trials were performed on TraF as a solved crystal 

structure for the protein is currently not available. Ultimately, this information will 

provide a clearer picture of the individual components behind these complex protein 

assembly systems. This will lead to the targeted development of novel inhibitory agents 

to block bacterial conjugation as well as pili expression, assembly and attachment. 
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Chapter 2: Experimental Methods 

2.1. Chemicals and Supplies 

 All chemicals were purchased from Sigma-Aldrich, Thermo Fischer Scientific, or 

BioBasic unless otherwise indicated, and were of ACS grade or higher. Ultrapure water 

was generated in-house on a Millipore Milli-Q Advantage A10 system or Barnstead 

Diamond Nanopure system from Thermo Scientific. The E. coli ER2507 and BL21 

(DE3) cells as well as pT7.7-GST-TraF plasmids were obtained from laboratory stocks. 

The pMAL p2X and c5X plasmids along with amylose resin were purchased from New 

England Biolabs. Vivaspin concentrators and glutathione Sepharose 4B resin were 

purchased from GE Healthcare. All liquid chromatography was carried out using an 

ÄKTA Purifier 10 under the control of the Unicorn 5 software package. Purification 

columns were purchased from GE Healthcare and Bio-Rad. A Nikon SMZ1500-Fiber 

Lite MI-150 microscope was used to observe crystallization plates. 

 

2.2. Expression and Protein Purification 

2.2.1. E. coli ER2507 containing MBP-ΔK122 in pMAL-p2X 

2.2.1.1. Cell Growth and Expression 

Truncated monomeric type IV pilin from P. aeruginosa strain K122-4 (pilA, Δ1-

28) was expressed as an MBP fusion protein under the control of a lac operon. It is of 

note that the ΔK122 pilin is truncated 28 amino acids to remove the hydrophobic first 

half of the N-terminal α-helix and improve solubility. Glycerol stocks transformed with 

vector pMAL-p2X encoding for MBP-ΔK122 in E. coli strain ER2507 were used to 

streak LB + Amp (100 µg/mL) agar plates and incubated overnight at 37⁰C. Overnight 
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cultures were made from single colonies where the cells were grown in Luria Bertani 

(LB) broth (1% Tryptone, 0.5% Yeast Extract, 1% NaCl) along with 1M glucose (1:100 

v/v ratio with LB) and 50 µg/mL of ampicillin (1:1000 v/v ratio with LB) with shaking at 

200 rpm at 37⁰C for 18 hours. The overnight cultures were transferred to 1L expression 

volumes at a 1:100 v/v ratio to LB and grown at 37⁰C to an optical density (OD600) of 0.5 

– 0.7 at 600 nm corresponding to mid-log phase growth. At this point, 1M of IPTG at a 

1:1000 v/v ratio was added with continued induction for 3 hours at 30⁰C. Cell pellets 

were then collected through centrifugation of the cultures for 20 minutes at 6,000 x g at 

4°C and stored at 4°C overnight. 

 

2.2.1.2. Periplasmic Protein Release Using Osmotic Shock and Affinity Purification 

The release of proteins from the periplasm was conducted using the osmotic 

shock method.137 The process involves two steps, one in which the bacterial cell pellets 

are resuspended in a 50 mL solution of 10 mM tris(hydroxymethyl)aminomethane (Tris; 

pH = 7.4) and 20% sucrose. This allows for the movement of water from the periplasmic 

space outward into the extracellular environment of the cells due to the high 

concentration of sucrose. The resuspended cells were incubated on ice for 25 minutes 

with gentle shaking. The cells were then centrifuged at 7,000 x g for 20 minutes at 4⁰C. 

The second step involves removal of the supernatant and resuspension of the remaining 

pellets in 50 mL of 5 mM magnesium sulphate (MgSO4). Transfer of the cells to a low 

osmotic strength solution and the sudden reduction of osmotic pressure causes the outer 

membrane to rupture, releasing the contents of the periplasmic space where MBP-ΔK122 

has been exported to. The resuspended cells were incubated on ice for 25 minutes with 



34 

 

 

gentle shaking. The cells were then centrifuged at 35,000 x g for 20 minutes at 4⁰C. The 

supernatant was syringe filtered using a 0.45 µm membrane and purified by affinity 

chromatography. The periplasmic solution containing MBP-K122 was loaded onto 

amylose beads equilibrated with 20 mM Tris-HCl pH 7.4, 200 mM NaCl and 1 mM 

EDTA. Following washing of the column with several columns of loading buffer, MBP-

K122 was eluted from the column with an elution buffer containing 20 mM Tris-HCl 

pH 7.4, 10 mM maltose and 1 mM EDTA. The flow through was collected in 45 mL 

fractions and the elution samples were collected in 5 mL fractions. 

 

2.2.1.3. Cation Exchange Chromatography (CIEX) 

 Ion exchange chromatography separates proteins based on their net surface 

charge. While MPB is a large protein with an isoelectric point (pI) of 5.08, ΔK122 is a 

much smaller protein with a pI of 8.31. Due to the significant different in these values, 

ΔK122 will be positively charged in a Tris-HCl pH 7.4 buffer while MBP will be 

negatively charged. The ΔK122 protein was released from the MBP affinity tag through 

the process of trypsin digestion. The fusion protein was incubated on ice for 10 minutes 

at a 1:500 v/v ratio of trypsin to protein ratio. Proteolysis was quenched by the addition 

of phenylmethylsulphonyl fluoride (PMSF) protease inhibitor at a 10:1 v/v ratio of PMSF 

to trypsin. ΔK122 was purified from the digestion mixture by cation exchange 

chromatography (CIEX). The column was equilibrated with CIEX loading buffer 

followed by loading of the protein sample which was eluted in a linear 0 – 100% gradient 

with CIEX elution buffer (see Table 2.1). The flow through was collected in 45 mL 

fractions and the elution samples were collected in 5 mL fractions. 



35 

 

 

2.2.2. E. coli BL21 containing GST-TraF in pT7.7 

2.2.2.1. Cell Growth and Expression 

Glycerol stocks transformed with vector pT7.7 encoding for GST-TraF in E. coli 

strain BL21(DE3) were used to streak LB + Amp (100 µg/mL) agar plates and incubated 

overnight at 37⁰C. Cell growth and expression was undertaken as per Section 2.2.1.1. 

 

2.2.2.2. Cell Re-suspension and Sonication 

 Cell pellets were resuspended in a 1:10 ratio of lysis buffer (see Table 2.1) until a 

homogenous solution was obtained. The cell suspension was then disrupted using the 

Fisher Model 500 Sonic Dismembrator with brief pulses on ice for 5 minutes (at 30% 

amplitude for 15 seconds on, 30 seconds off). The cytoplasmic fraction was collected 

through centrifugation at 35,000 x g for 30 minutes at 4°C. The supernatant was syringe 

filtered using a 0.45 µm membrane and purified by affinity chromatography. 

 

2.2.2.3. Affinity Purification 

The released cytoplasmic sample was loaded onto a glutathione Sepharose 4B 

column pre-equilibrated with 50 mM Tris-HCl pH 7.5, 150 mM NaCl and 1 mM EDTA. 

The column was then washed with three CV of loading buffer to remove the unbound 

sample. Finally, GST-TraF was eluted with two CV of elution buffer containing 20 mM 

Tris-HCl pH 8.0 and 10 mM glutathione. The flow through was collected in 45 mL 

fractions and the elution samples were collected in 5 mL fractions. 
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2.2.3. E. coli ER2507 containing MBP-TraH in pMAL-c5X 

2.2.3.1. Cell Growth and Expression 

Glycerol stocks transformed with vector pMAL-c5X encoding for MBP-TraH in 

E. coli strain ER2507 were used to streak LB + Amp (100 µg/mL) agar plates and 

incubated overnight at 37⁰C. Cell growth and expression was undertaken as per Section 

2.2.1.1. 

 

2.2.3.2. Cell Re-suspension and Sonication 

Cell disruption was undertaken as per Section 2.2.2.2.  

 

2.2.3.3. Affinity Purification 

The released cytoplasmic sample was loaded onto amylose beads equilibrated 

with 10 mM Tris-HCl pH 7.5, 50 mM NaCl and 1 mM EDTA. Following washing of the 

column with 3 CV of loading buffer, MBP-TraH was eluted from the column with an 

elution buffer containing 10 mM Tris-HCl pH 7.5, 50 mM NaCl, 10 mM maltose and

1 mM EDTA. The flow through was collected in 45 mL fractions and the elution samples 

were collected in 5 mL fractions. The purification buffer recipes used for the various 

protein constructs in this study can be found in Table 2.1. 

 

2.2.3.4. MBP-TraH-TraF Pull Down Assay 

 The glutathione Sepharose 4B column with bound GST-TraF was pre-equilibrated 

with PreScission Protease Buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 1 mM EDTA,
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1 mM DTT). PreScission Protease (GE Healthcare) was added in the amount of 2-units 

enzyme/100 µg of bound GST-TraF and incubated overnight at 4°C. The cleaved TraF 

protein was then collected and concentrated to 1 mg/mL before incubation with amylose 

beads bound to MBP-TraH. This was followed by a wash and elution step with maltose in 

order to determine if TraF would successfully bind to MBP-TraH. 

 

Table 2.1: Purification and exchange buffers for proteins used in this study. 

Protein Construct Lysis/Loading Buffer Elution Buffer 

Buffer For 

MS/Crystallization 

Trials 

 

MBP-K122 (Affinity) 

20 mM Tris (pH = 7.4) 

200 mM NaCl 

1 mM EDTA 

 

20 mM Tris (pH = 7.4) 

10 mM maltose 

1 mM EDTA 

 

10 mM ammonium 

acetate (MS) 

K122 (CIEX) 10 mM Tris (pH = 7.4) 

 

10 mM Tris (pH = 7.4) 

1 M NaCl 

 

50 mM ammonium 

acetate (MS) 

GST-TraF 

 

50 mM Tris (pH = 7.5) 

150 mM NaCl 

1 mM EDTA 

 

20 mM Tris (pH = 8.0) 

10 mM glutathione 

 

50 mM sodium 

phosphate 

(crystallization) 

 

10 mM ammonium 

acetate (MS) 

 

MBP-TraH 

10 mM Tris (pH = 7.5) 

50 mM NaCl 

1 mM EDTA 

 

10 mM Tris (pH = 7.5) 

50 mM NaCl 

10 mM maltose 

1 mM EDTA 

 

150 mM ammonium 

acetate (MS) 

 

 

 

 



38 

 

 

2.3. Protein Visualization 

Fractions containing protein were further analyzed by loading onto a 12.5% 

polyacrylamide gel and subjected to electrophoresis (PAGE). Native-PAGE analysis of 

ΔK122 was performed as follows: purified protein (1 mg/mL) was mixed with 2X 

loading dye (62.5 mM Tris-HCl pH 6.8, 1% bromophenol blue, 25% glycerol). The 

native gel prepared contains a 12.5% acrylamide:bis-acrylamide (29:1) resolving gel, and 

a 4% stacking gel. After loading the protein samples, they were electrophoresed at 200V 

for 45 minutes using a native running buffer (25 mM Tris-HCl pH 8.3, and 192 mM 

glycine), and stained with Coomassie blue (40% methanol, 10% glacial acetic acid, 500 

mg Coomassie blue G250) for visualization. For denaturing PAGE conditions, sodium 

dodecyl sulphate (SDS) was added to the loading dye and resolving/stacking gels. 

Thermo Scientific unstained Molecular Weight Marker (MWM) #26630 was used for 

size estimation. 

 

2.4. Sample Concentration and Buffer Exchange 

 The proteins were concentrated to various target amounts using an appropriate 

MWCO (5K, 10K, or 30K) concentrator. The various protein samples in their respective 

elution buffers were centrifuged at 4,000 x g and at 4⁰C through the anisotropic semi-

permeable membrane allowing solvents and low molecular weight solutes to escape 

while retaining high molecular weight proteins above the molecular weight cut-off. 

Protein concentration was determined using the absorbance at 280 nm and the following 

extinction coefficients (ε280 nm): MBP-ΔK122 = 1.47 mL/mg·cm, ΔK122 = 0.75 

mL/mg·cm, GST-TraF = 0.93 mL/mg·cm and MBP-TraH = 0.78 mL/mg·cm. Unless 



39 

 

 

otherwise specified, all buffer exchanges were also performed using appropriate MWCO 

Vivaspin concentrators. 

 

2.5. Electrospray Ionization Mass Spectrometry (ESI-MS) and Ion-Mobility 

Spectrometry (IMS) 

Molecules of interest are introduced into the ionization source of the Waters 

SYNAPT G1 and analyzed in positive mode, where the ions acquire net positive charges. 

Charged droplets are produced through injection of the sample through a capillary and 

application of a positive potential to create an electric field. Solvent evaporation of the 

charged droplets leads to the formation of gas-phase ions. The ions enter the mass 

spectrometer through electrostatic attraction and a vacuum, then travel through the mass 

analyzer where they are separated based on their m/z ratio.105,138 

 

Freshly purified ΔK122 was prepared for ESI-MS by buffer exchanging the 

protein into 50 mM ammonium acetate using Slide-Analyzer 3.5K Dialysis Cassettes 

(Thermo Scientific). The protein was dialyzed in a series of 2 hour, overnight, and 1 hour 

buffer exchanges. The sample was then collected for analysis on the Waters Synapt G1 

High Definition Mass Spectrometer (Figure 2.1). 
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Figure 2.1: Schematic representation of the Synapt G1 High Definition Mass 

Spectrometer. The T-wave ion guide focuses incoming ions for mass selection by the 

quadrupole. Each travelling wave performs a specific function; with the first trapping and 

releasing parent ions, the second allowing for ion mobility separation, and the third 

responsible for transferring the ions to the TOF mass analyser. Ion mobility separation 

allows for the detection of ions not only by mass but also by size which is ideal for 

studying the topology of large protein complexes. Collision-induced-dissociation (CID) 

can be performed before or after ion mobility. 

 

 

Following buffer exchange, ΔK122 concentrated to 100 µM was mixed in a 15:1 

(v/v) ratio of protein to 2-methyl-2,4-pentanedial (MPD) and in a 3:1 (v/v) ratio of 

methanol to MPD. Readings were taken immediately after triggering and every two hours 

for 8 hours at a low mass (1000-3000 m/z) and high mass (3000-5000 m/z) range. The 

protein was injected at 5 µL/min at different settings optimized for each mass window. 

For the low mass region the following settings were used: ion source capillary voltage of 

2.00 to 3.00 kV, Sampling Cone of 50, and Extraction Cone of 2.0. The high mass region 

was obtained under the same conditions except for an increased Sampling Cone of 200. 

Operating pressures (Torr) of the Trap: 7.87 x 10-3, IMS cell: 3.18 x 10-4 and TOF: 4.40 x 

10-7 remained the same between low and high mass readings. The backing pressure (Torr) 
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was increased for the high mass to allow for better desolvation: 1.87 (low mass), 4.20 

(high mass). 

 

2.6. Time-Resolved Electrospray Ionization Mass Spectrometry (TRESI-MS) 

 The Synapt G1 equipped with a custom-made time-resolved ESI source120 was 

used to carry out global HDX on ΔK122 as well as monitoring of the oligomerization 

reaction at the millisecond time-scale. Briefly, a mobile polyamide-coated glass capillary 

with an outer diameter (o.d.) of 109.2 µm was inserted into a metal capillary with an 

inner diameter (i.d.) of 132.6 µm. A 2 mm notch was made from the end of the glass 

capillary in order to seal the end and allow for efficient mixing of the reagents. This 

kinetic mixer was integrated onto the Synapt G1 in order to carry out time-resolved 

hydrogen-deuterium exchange on the equilibrium state of ΔK122 (20 µM) as well as the 

triggered state (20 µM) after an incubation of 24 hours with 15% MPD. In addition, 

triggering of the ΔK122 protein on the millisecond time scale was attempted using the 

same device, using 2 µL of 20 µM ΔK122 with 2 µL of 30% MPD in methanol. 

 

2.7. Microfluidic Device Fabrication 

The microfluidic device was made on a blank poly(methyl methacrylate) or 

PMMA substrate purchased from Professional Plastics (Fullerton, CA) measuring 8.9 cm 

x 3.8 cm x 0.6 cm. The microfluidic channels outlining the protein channel, two acid 

channels, and the pepsin reaction chamber was etched onto the PMMA chip by laser 

ablation using the VersaLaserTM laser engraver (Universal Laser, Scottsdale, AZ). The 

microfluidic channel design was generated in CorelDraw X3 (Corel, Ottawa, ON) as 
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previously described124 with a few modifications. A 28RW sized metal capillary was 

incorporated into the central channel of the device using a soldering iron. Two additional 

27RW sized metal capillaries for acid delivery were incorporated in similar fashion on 

both sides of the central channel. A mobile polyamide-coated glass capillary with an 

outer diameter (o.d.) of 153 µm was inserted into the central 28RW metal capillary with 

an inner diameter (i.d.) of 178 µm. Again, a 2 mm notch was made from the end of the 

glass capillary. A deuterium oxide (D2O) channel was connected to the central capillary 

via a T-junction (Figure 2.2). Polyimide coated glass capillaries were supplied by 

Polymicro Technologies (Phoenix, AZ) and metal capillaries (28RW, 27RW) were 

supplied by McMaster-Carr (Aurora, OH). 

 

2.8. H/D Exchange of MBP-ΔK122, ΔK122 and GST-TraF 

Once the chip is constructed, pepsin agarose beads are placed in the reaction well 

and activated using hydrochloric acid (pH 1.8) at a combined flow rate of 10 µl/min for 

one hour followed by acetic acid (pH 2.3) for one hour. Silicone rubber cut with an 

outline of the reaction well was placed between the fabricated PMMA chip and a blank 

chip. In this way, a liquid-tight seal can be obtained between the two blocks to prevent 

leaking. The sandwich is then placed in a metal clamp (LAC Machine & Tooling 

Limited, ON) to pressure-seal the microfluidic device. All acid, protein, and deuterium 

channels were connected to Harvard 11+ infusion syringe pumps (Holliston, MA) used to 

administer respective flow rates. 
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Freshly prepared protein is passed through the inner glass capillary, exits through 

the notch and mixes with the incoming deuterium. This creates an orthogonal flow from 

the inner glass capillary to meet the laminar flow coming through the outer channel to 

create efficient mixing through turbulent flow. The protein and deuterium were flowed at 

various ratios ranging from 0.5 uL protein and 3.5 uL D2O to 2 uL protein and 2 uL D2O. 

All deuterium uptake values were normalized to 100% for comparison. The total volume 

of this mixing region is approximately 13 nL (see Appendix). Previous work determined 

that the volume required for efficient mixing is approximately 10 nL, which is why 

placing the notch at 2 mm from the end of the capillary is required to allow for complete 

mixing before transfer to the reaction channel.122 Moving the inner glass capillary within 

the central channel changes the reaction volume and allows one to track a reaction 

through various time points between mixing and ESI (Figure 2.2). In this study, labelling 

times ranging from 200 to 2000 ms were acquired (see Appendix). 
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Figure 2.2: Experimental setup for time-resolved HDX-MS. The kinetic mixer is 

integrated into a microfluidic chip along with acid quenching channels and a downstream 

proteolytic chamber containing pepsin agarose beads. The distal capillary is used as an 

ESI source. A zoomed in view of the kinetic mixer with adjustable reaction volume is 

also shown. Two concentric capillaries are injected with reactants from syringe 1 

(containing protein) and syringe 2 (containing deuterium). A notch is made 2 mm from 

the end of the inner capillary and plugged at the end allowing for protein to exit from the 

inner capillary and efficiently mix with the incoming deuterium. Changing the position of 

the inner capillary within the outer capillary changes the volume between mixing and ESI 

detection allowing for the continuous tracking of the reaction over various time points. 

 

2.9. Data Acquisition 

 Time-resolved hydrogen-deuterium exchange mass spectrometry was carried out 

on a Q-Star Elite quadrupole time-of-flight (Q-TOF) instrument (MDS Analytical 

Technologies, Concord, ON). The instrument consists of three quadrupoles, Q0, Q1, and 

Q2, followed by a TOF analyzer (Figure 2.3). The instrument was operated in positive 

mode with a source voltage of 2600 V. Optimal positioning of the electrospray tip was 
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achieved using an adjustable stage. All data were acquired at a rate of 1s-1 and the 

samples were scanned over the 350 – 2000 m/z range. 

 

 

Figure 2.3: Schematic representation of a Q-TOF mass spectrometer. When Q0, Q1 

and Q2 are set in RF-only mode, the ions pass through and the TOF analyzer records the 

spectrum. For MS/MS measurements, Q0 and Q2 are operated in the RF-only mode 

while Q1 is operated in the mass selective mode to transmit the interested parent ion into 

the collision cell Q2, where it undergoes CID. Adapted from Chernushevich et al. 

2001.139 

 

2.10. Data Analysis 

 The resulting protein digests of MBP-ΔK122, ΔK122, and GST-TraF were 

analyzed using the FindPept tool on the ExPASy Proteomics server (Swiss Institute of 

Bioinformatics, Basel). Search fields were set to pepsin (porcine A) at pH > 2 with a 
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mass tolerance of ±0.5 Da. The experimental deuterium uptake of each peptide obtained 

was calculated using the custom built software program (DJW, unpublished results). In 

parallel, the intrinsic rates of each peptide were calculated using SPHERE, an online 

server program for hydrogen-deuterium exchange rate estimation. The observed 

experimental and intrinsic uptake values were plotted as a function of reaction time and 

fit to a single exponential expression in order to obtain curves that best fit the kint and kobs 

rates of exchange. Error bars represent standard deviation values where at least 3 

replicate runs were obtained. Due to the nature of the method and low sequence 

specificity of pepsin cleavage, low intensity peptides are sometimes lost during some 

intervals of the experiment and thus only 1 or 2 data points were obtained. 

 

2.11. GST-TraF Crystallization Trials 

 The crystallization and preliminary diffraction analysis of TraF has been reported 

by Audette and colleagues.31 However due to very small crystals at the time, suitably 

diffracting crystals of heavy atom derivatives were not obtained, and therefore additional 

information is required to solve for the TraF structure. To this end, crystallization trials of 

the fusion protein GST-TraF was attempted at room temperature (20°C). Initial 

crystallization experiments were set up using the Microlytics MCSG Core I-IV screening 

kit in 96-well sitting drop plates (Axygen Biosciences, Inc). In addition, a batch of 

purified GST-TraF (6.4 mg/mL) was sent to the Hauptman-Woodward Medical Research 

Institute (Buffalo, New York) for high-throughput crystallization screening. 

Crystallization solutions consist of varying concentrations of precipitating agents, salts, 

as well as differing physical conditions such as pH. Buffers that are commonly used 
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include Tris or HEPES to help maintain a particular pH, while a variety of different salts 

and precipitants such as polyethylene glycol (PEG) or ammonium sulphate serve to 

compete for association with water and excludes the protein from the solvent leading to 

phase separation. 

 

 Both sitting and hanging drop geometries were used for crystallization. For the 

96-well screening plates, the sitting drop method was used. This technique involves the 

deposition of a 1 µL of protein with 1 µL of the crystallization reagent on an elevated 

platform in vapour equilibrium with a reservoir of the crystallization reagent. The 

concentration of the reagents in the sitting drop is initially half that of the reservoir 

concentration, and over time, vapour diffusion occurs. Vapour diffusion is the process 

whereby the reservoir will pull water from the droplet in a vapour phase until it reaches 

an equilibrium state. This process will also simultaneously increase the concentration of 

the protein sample increasing the supersaturation of the sample in the drop. The hanging 

drop technique is based on the same principles of vapour diffusion with the only 

difference being that the droplet is placed on a glass cover slide and inverted over the 

reservoir. 

 

The fusion protein was concentrated to various concentrations ranging from 3.6 to 

11.6 mg/mL. All sitting drops contained 1 µL of purified protein (either in elution buffer 

or exchanged into 50 mM sodium phosphate) with 1 µL of reservoir solution equilibrated 

over 100 µL of reservoir. When immediate precipitation was observed the addition of 1 

µL of dH2O took place. For the first two weeks, crystal plates were monitored daily using 
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a Nikon SMZ1500-Fiber Lite MI-150 light microscope. After the first two weeks, plates 

were monitored for crystal growth every 2-3 days. Optimization trials were conducted in 

24 well plates using the hanging drop method and reservoir solutions were made 

according to crystallization conditions observed in the screening kits. Following 

identification of possible leads, protein concentration, precipitant concentration, pH, and 

temperature were varied within the optimization screens. 
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Results and Discussion 

 

Chapter 3: Structural Changes During Dimerization of the Type IV 

Pilin from Pseudomonas aeruginosa Strain K122-4 Measured by Time-

Resolved Hydrogen-Deuterium Exchange 
 

3.1. Purification of MBP-ΔK122 and ΔK122 

The truncated (Δ1-28) K122 pilin was previously cloned into the pMAL-p2X 

vector and transformed into E. coli strain ER2507.140 Optimal expression of MBP-ΔK122 

after induction with IPTG was observed in one-hour increments for a total of 3 hours at 

30°C (data not shown). After lysis of the periplasmic components by osmotic shock, 

MBP-ΔK122 (~55 kDa) was purified using amylose affinity chromatography. As can be 

seen in Figure 3.1, the MBP-ΔK122 fusion eluted at a peak maximum absorption of 

approximately 1000 mAU and at 100% elution buffer containing 10 mM maltose. The 

blue line represents UV absorbance at 280 nm and the red line represents absorbance at 

215 nm. The corresponding SDS-PAGE gel is shown in Figure 3.2. Since E. coli strain 

ER2507 is engineered not to express endogenous MBP, the secondary MBP band 

visualized on the gel (~42 kDa) is due to the cleavage of the fusion by proteases in the 

periplasm, and is often seen when expressing the MBP-pilins (GFA, personal 

communication). It was also found that performing the purification at 4°C decreased 

proteolysis of the MBP tag significantly. 
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Figure 3.1: Affinity chromatogram of MBP-ΔK122. The MBP-ΔK122 protein eluted 

at a peak maximum absorption of ~ 1500 mAU and 100% elution buffer. The blue line is 

absorbance at 280 nm, the red line is absorbance at 215 nm and the green line is the 

elution buffer concentration. 
 

 

 

 
 

Figure 3.2: SDS-PAGE gel of MBP-ΔK122 affinity purification. Lane 1: periplasmic 

solution after osmotic shock. Lane 2: flow through. Lanes 3-7: elution samples containing 

the protein of interest MBP-ΔK122 at approximately 55 kDa and a secondary MBP band 

at approximately 42 kDa. 
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The pMAL-p2X plasmid contains a Factor Xa cut site to facilitate the cleavage of 

MBP from ΔK122, however, efficient cleavage occurs over several days of incubation. 

The Factor Xa cut site is a strict recognition sequence composed of Ile-Glu (or Asp)-Gly-

Arg with cleavage occurring after the arginine as long as it is not followed by a 

proline.141 Trypsin is another protease which has the ability to cleave on the carboxyl side 

of lysine or arginine residues. A previous study140 on ΔK122 has shown that the protein 

itself is quite resistant to trypsin digestion when the protein-to-protease ratio is 500:1 and 

with a cleavage time of 10 minutes on ice before trypsin inactivation with PMSF. 

Therefore optimal cleavage at the Factor Xa cut site occurs releasing ΔK122 from MBP. 

After digestion with trypsin, MBP was separated from ΔK122 using cation 

exchange chromatography (CIEX). CIEX employs a negatively charged resin to attract 

positively charged molecules. As mentioned, MBP is a large protein with a pI of 5.08 

while ΔK122 is a much smaller protein in comparison with a pI of 8.31. Using a 10 mM 

Tris buffer maintained at pH 7.4, MBP (~42 kDa) becomes negatively charged and 

appears in the flow through, while the positively charge ΔK122 pilin binds to the 

negatively charged resin forming a strong ionic interaction. Elution occurs through 

displacement of the positively charged protein from the column using a linear 0–1 M 

NaCl gradient. As can be seen in Figure 3.3, ΔK122 (~13 kDa) eluted at a peak 

maximum absorption of approximately 2500 mAU and at approximately 22-25% elution 

buffer corresponding to 220–250 mM NaCl. The blue line represents absorbance at 280 

nm and the red line represents absorbance at 215 nm. The corresponding SDS-PAGE gel 

is shown in Figure 3.4. 
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Figure 3.3: Cation exchange chromatogram of MBP-K122. The MBP protein eluted 

in flow-through samples X1-X2. The K122 protein eluted at a peak maximum 

absorption of ~ 2500 mAU. The blue line is absorbance at 280 nm, the red line is 

absorbance at 215 nm and the green line is the elution buffer concentration. 
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Figure 3.4: Native PAGE analysis of K122 following cation exchange purification. 
Lane 1: pooled fraction from amylose resin purification. Lane 2: flow through of the 

cation exchange purification. Lane 3: purified K122 (100 M) showing the presence of 

a monomer (13 kDa) and dimer (26 kDa) equilibrium in solution. 
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3.2. Characterization of the Monomer-Dimer Equilibrium 
 

 A previous study by Petrov and colleagues showed that following removal of the 

MBP fusion partner, K122 exists in a monomer-dimer equilibrium in solution and that 

upon incubation with 2-methyl-2,4-pentanediol (MPD), high molecular weight oligomers 

(fibrils and PNTs) are formed.97 This monomer-dimer equilibrium can be observed in a 

native PAGE gel, which shows two distinct bands at approximately 13 and 26 kDa 

immediately after CIEX purification (Figure 3.4). To further confirm the presence of this 

equilibrium, native ESI-IMS-MS was employed. A sample of 10 µM K122 shows two 

conformations present at the +4 monomeric charge state corresponding to an m/z charge 

of 3210, as well as low-abundance species at m/z 2869 and 3669, which correspond to 

K122 dimers with odd charge states (Figure 3.5). 

 

Figure 3.5: Observance of the monomer-dimer equilibrium by ESI-IMS-MS via a 

3D Driftscope plot (m/z vs. drift time vs. intensity). Monomer peaks corresponding to 

the +5 (m/z = 2568) and +4 (m/z = 3210) charge states are predominant. In addition, there 

are faint dimer peaks present in between the monomer peaks in the spectrum as well as 

ion mobility plot. 
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3.3. Time-Resolved ElectroSpray Ionization Hydrogen-Deuterium eXchange 

(TRESI-HDX) Mass Spectrometry on the K122 Pilin 

 

The observation that the MBP tag facilitates the maintenance of the K122 pilin 

as a monomer, and removal of the MBP results in K122 entering into a monomer-dimer 

equilibrium is advantageous for the characterization of each state via local hydrogen-

deuterium exchange.  The MBP-K122 fusion acts as the "time 0" monomer, while 

analysis of K122 following removal of MBP provides details on the monomer-dimer 

equilibrium. Analysis of the digested MBP-K122 fusion protein proved challenging due 

to spectral overlap of peptides originating from the large MBP tag. Despite these 

challenges, a 59% sequence coverage for the monomer was obtained. Removal of the tag 

and analysis of the monomer-dimer equilibrium state allowed for 73% sequence coverage 

(Figure 3.6). 

 

 
 

 

Figure 3.6: Structural elements of the K122 pilin, and the peptides analyzed in this 

study. a) The common structural features of type IV pilins are highlighted on the K122 

monomer: the four-stranded antiparallel β-sheet (cyan), the truncated N-terminal α-helix 

(green), connecting loop regions (yellow), and the receptor binding D-region (purple). b) 

The secondary sequence is numbered taking into account the truncated portion of the α-

helix. The peptic peptides obtained in this study are highlighted using red and black 

double ended arrows. 
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The mapped structure for the monomeric state of the pilin is colour-coded based 

on the deuterium uptake at the final time point obtained, corresponding to a labelling time 

of 2000 ms (Figure 3.7b). The N-terminal region of the amphipathic α-helix, in particular 

the peptide FARAQLSEA (a.a. 28-36), shows high dynamic flexibility; this peptide is 

close to Gly42 (Figure 3.6b), which induces a kink in the helix due to its increased 

stereochemical flexibility.75 The observed dynamic flexibility of this peptide is consistent 

with NMR data for the K122 pilin (K122NMR),74 which showed that the N-terminal 

end of the 1-C helix is deflected away from the β-sheet. In addition, terminal bulky 

substituents within α-helices are unable to fulfill the hydrogen bonding requirements due 

to steric hindrances. Accordingly, a comparison of K122NMR and crystallographically 

determined structures of the protein75 reveals that an otherwise conserved hydrogen bond 

between the side chain Oε of Gln 32 and the amide nitrogen of Ala 105 is missing.  This 

could partially account for the observed high exchange rate as the helix is afforded more 

relative motion from the -sheet and has less local i+4 hydrogen bond stability. These 

data suggest that the packing of the hydrophobic core in K122, specifically the N-

terminal end of the helix, is less tight thereby allowing for structural flexibility. In 

contrast, the C-terminal region of the helix exhibits relatively low deuterium uptake, 

suggesting that this end of the helix exhibits more stable hydrogen bonding and is more 

tightly packed alongside one or more strands of the β-sheet. 
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Figure 3.7: HDX analysis of the K122 monomer. a) Representative kinetic plots of % 

deuterium uptake vs. time for 6 peptides from K122. The intrinsic rate of the peptide is 

shown in black while the experimental uptake is shown in colour. Error bars represent 

standard deviation values where 3 or more replicates were obtained. b) Differing levels of 

deuterium uptake for the monomer mapped onto the structure of K122. The measured 

profiles are coloured according to total deuterium uptake:  red (61-100%), yellow (51-

60%), green (41-50%) and blue (0-40%); regions for which no peptides were observed 

are coloured in grey. 

b) 

a) 
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The connecting loop between the second and third strands of the antiparallel β-

sheet also exhibits some of the highest exchange rates in the monomer, which is not 

surprising due to the lack of a stabilizing H-bonding network between structural 

elements. The second strand of the sheet shows moderate-to-high deuterium uptake 

throughout. The moderate-to-high uptake may be a the result of the α-helix lying at a 45° 

angle relative to the surface of the β-sheet, as observed in K122NMR,74 allowing for more 

overall solvent exposure in parts of the network. The low level of exchange for the 

NTAATAGIE peptide (a.a. 60-68) located within the αβ-loop was unexpected, and 

suggests that it is tightly packed in the monomeric state forming a loop-protein packing 

interface. Finally, the C-terminal end of the protein shows complete deuterium uptake, 

which is consistent with NMR observations74 suggesting that this region of the protein is 

highly mobile in solution. Representative kinetic plots for the monomeric peptides are 

shown in Figure 3.7a. 

Following removal of the MBP tag, K122 enters a monomer-dimer equilibrium; 

TRESI-HDX analysis of the protein results in a sequence coverage of 73% (Figure 3.8a). 

Examination of the relative deuterium uptake levels of the protein in this state can 

provide insight on the changes in dynamic flexibility, solvent exposure, and the domains 

likely involved in protein-protein interactions. Representative spectra of peptides 

obtained over the time course of the reaction exhibiting shifts in isotopic distribution 

upon exposure to deuterium are shown (Figure 3.8b). The amphipathic α-helix (the 1-C 

region of the protein) shows a considerable decrease in deuterium uptake compared to the 

monomer. Indeed, the FARAQLSEA (a.a. 28-36) peptide shows a decrease from 64% ± 

2.29 to 49% ± 4.50, and the region spanning ASGLKTKVSDIF (a.a. 40-51) shows a 
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decrease from 48% ± 1.52 to 32% ± 2.12. These data suggest that stabilization of the 

truncated monomer is a result of interaction along the α-helix. Interestingly, the 

connecting loop region spanning KASDVATPLRG (a.a. 100-110) also shows a 

significant decrease in uptake, suggesting that it is either directly involved in protein-

protein interaction within the dimer or serves to stabilize the interaction. 

In the equilibrium state, the antiparallel β-sheet network shows variable exchange 

rates ranging from low to high deuterium uptake. In particular, the GCTI (a.a. 92-95) and 

TLGNA (a.a. 116-120) peptides exhibit increased uptake in the monomer-dimer 

equilibrium.  This may be the result of destabilization of the hydrogen bonding network 

as the α-helix involved in protein-protein interactions moves away from the -sheet. It is 

possible that the truncated helix shifts outward in order to form the interaction required 

for dimerization prior to fibril assembly. This is consistent with NMR data of the pilin,74 

which shows that the α-helix is less tightly packed on the β-sheet prior to 

oligomerization. In addition, the ATAGI (63-67) peptide within the αβ-loop shows high 

uptake relative to the monomer, indicating a state of increased dynamic flexibility. This 

could be the result of the loop having to move away in order to accommodate the 

incoming protein for dimerization. Representative kinetic plots of deuterium uptake over 

time for the peptides showing either a decrease or increase relative to the monomer are 

shown (Figure 3.8c). 
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Figure 3.8: HDX analysis of the K122 monomer-dimer equilibrium. a) Differing 

levels of deuterium uptake for the monomer-dimer equilibrium mapped onto the solution 

structure of K122. The measured profiles are coloured according to total deuterium 

uptake: red (61-100%), yellow (51-60%), green (41-50%) and blue (0-40%); regions for 

which no peptides were observed are coloured in grey. b) Site-specific HDX analysis for 

the equilibrium state. Representative spectra of peptides for non-deuterated K122 (top 

panel), and upon incubation with deuterium at 0.571 seconds and 2.060 seconds. Raw 

spectra exhibit shifts in isotopic distribution upon exposure to deuterium. Percent 

deuterium uptake is indicated on each spectrum. c) Representative kinetic plots of % 

deuterium uptake vs. time for 6 peptides from K122. The intrinsic rate of the peptide is 

shown in black while the experimental uptake is shown in colour. The top three panels 

represent peptides that show a decrease in deuterium uptake in the monomer-dimer 

equilibrium while the bottom three panels represent peptides that show an increase in 

deuterium uptake. Error bars represent standard deviation values where 3 or more 

replicates were obtained. 

a) b) 

c) 
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One of the regions that was not analyzed in the monomeric protein but appears for 

the equilibrium state is the disulfide bonded receptor binding domain, or D-region. The 

D-region consists of a type I followed by a type II turn forming a V-shaped groove whose 

side chains protrude toward the protein interior, in particular toward the 1-C helix, 

stabilizing the double-turn conformation.73,74 Accordingly, the peptide 

CTSNADNKYLPKTC (a.a. 129-142), which falls within the D-region, displays some of 

the lowest uptake levels of the protein. This indicates that the backbone amide hydrogens 

are hidden from the solvent and point up into the pocket, which correlates with 

crystallographic observations of K122.75 It is interesting to note that of the seven 

conserved residues in the globular domain of pilins originating from Pseudomonas three 

are located within the D-region, Cys 129 and Cys 142, which form a disulfide bridge that 

bounds the D-region, and Pro 139, which initiates the second -turn of this region.65,73,75 

It is therefore not surprising that the disulfide bond and proline residue would increase 

the rigidity of this region as they restrict conformational flexibility. In previously solved 

pilin structures, the side chains of the cysteine and proline residues are buried towards the 

core of the protein, defining a packing interface.75 This agrees with previous NMR data 

showing that the disulfide loop exhibits a rigid backbone conformation essential for 

attachment to host cell receptors.142 In addition, interactions between the αβ-loop and D-

region have been proposed for the K122-4 pilus based on the charge complementarity in 

these regions.51,69,71,74,80 Following the D-region is the disordered C-terminal loop which 

continues to show high deuterium uptake at equilibrium, albeit slightly lower compared 

to it being fully saturated in the monomer. 
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Figure 3.9: A close-up view of the CTSNADNKYLPKTC (a.a. 129-142) D-region 

peptide. Conserved peptides are highlighted, Cys129 and Cys142 forming a disulfide 

bridge and Pro139, all of which contribute to the structural rigidity of the D-region. 

 

 

The use of pilin-derived PNTs for biomedical applications is attractive due to 

their well-defined structures, assembly under physiologically relevant conditions, and 

easy manipulation through protein engineering approaches. However, in order to fully 

exploit these structures, an understanding of their assembly from monomer (pilin) to 

polymer (pilus) is required. Currently, there are structural models for the monomer (the 

pilin) and the polymer (the pilus), and the generation of the T4P from the monomeric 

pilin by the bacterium is reasonably well understood. On the other hand, the truncated 

K122 pilin does not have (a) the bacterial machinery to guide assembly nor (b) the 

hydrophobic N-terminal region of the α-helix to hydrophobically drive pilin 
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oligomerization into PNTs. An experimentally derived structure of a full length pilin-

derived PNT remains elusive, and the mechanism of oligomerization is less well 

understood, although it has been shown that it follows a fibril-mediated process.97 Our 

observation that the pilin enters a monomer-dimer equilibrium upon purification away 

from its MBP fusion partner (Figure 3.4, 3.5) allowed us to explore a very early time 

point in the oligomerization process. It was not fully unexpected to observe the rigidity of 

the receptor binding D-region (Figure 3.9), especially noting that this region is 

structurally maintained for receptor binding despite sequence diversity among the P. 

aeruginosa pilins.75 The observation that peptides from the N-terminal region of the α-

helix, in particular the FARAQLSEA (a.a. 28-36) peptide, show a decrease in deuterium 

uptake and therefore reduced flexibility, indicates that while the full helix is not present, 

this portion of the helix plays an important role in the early points of pilin fibril 

formation. In addition, the increased stability of the loop connecting the second and third 

strands of the anti-parallel -sheet suggests that it also plays a role in dimerization of the 

pilin, perhaps through increased interaction with the N-terminal region of the α-helix. 

Also, the increased flexibility observed in the αβ-loop region may be a result of a 

structural requirement induced by the altered packing of the α-helix onto the β-sheet in 

the dimer, resulting in the occlusion of the D-region in the PNT structure. Together, these 

observations point to regions of the pilin that may be useful to exploit in terms of varying 

oligomerization kinetics and or fibril/PNT stability; research is on-going to further 

characterize the structural and mechanistic requirements of pilin-derived PNT 

oligomerization, and to develop these structures for biomedical applications. 
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3.4. Discussion 

 In the current study, we analyzed the dynamics the K122 pilin protein, both in 

the monomeric state (as a MBP-K122 fusion protein) and in the pre-fibrillar dimeric 

state at the millisecond time scale using TRESI-HDX-MS. A summary of the regions 

showing significant increases and decreases between the two states is mapped onto the 

protein sequence (Figure 3.10). Results point toward the site of protein interaction mainly 

occurring along the amphipathic α-helix as well as possible involvement of a connecting 

loop. This is consistent with the α-helix having high sequence conservation among the 

pilins (for instance in P. aeruginosa strains K122-4, PAK, PAO, and N. gonorrhoeae 

strain MS-11).74 In addition, variable exchange rates ranging from moderate to high in 

the β-sheet network and αβ-loop indicate that these regions show increased dynamic 

flexibility in the dimer. Finally, the D-region responsible for receptor binding shows low 

deuterium uptake in the monomer-dimer equilibrium and suggests both structural rigidity 

and solvent protection. 
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Figure 3.10: Localization of significant % changes in deuterium uptake occurring in 

the monomer-dimer equilibrium. Significant differences in the relative deuterium 

uptake in overlapping stretches of the protein are shown, with error bars representing the 

standard deviation of 3 or more replicates. 

 

 

Overall, the results indicate that the truncated α-helix shifts in order to increase 

helix-helix interactions in the dimer, imparting stabilization of the dimeric precursor prior 

to coalescence into protein fibrils. The proposed interaction mechanism of dimerization 

(Figure 3.11) results in a stabilization of the α-helix through the protein-protein 

interaction interface. Movement of the helix away from the β-sheet network might 

account for the destabilization seen in peptides falling within this region. 
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Figure 3.11: Proposed interaction mechanism of dimerization for the K122 pilin. 
The structural elements of the monomer are coloured as described in Figure 1. In the 

dimer (right), peptides coloured in blue represent a significant decrease in uptake for the 

equilibrium state, and those in red represent a significant increase in uptake. Based on 

changes in hydrogen-deuterium exchange, interactions occur between the amphipathic α-

helix in the dimer, as well as possible involvement of a connecting loop. The truncated 

helix shifts further outward in order to form the interaction required for dimerization, 

destabilizing the β-sheet network. The model of the dimer was generated using a 3-start 

helical assembly model for the T4P.71 

 

 

Understanding the structural changes that occur when the protein enters its 

dimeric state is of great importance as it is the earliest intermediate leading up to PNT 

formation. Stabilization of the pilin dimer should result in more rapid fibril formation and 

PNT oligomerization. Characterization of the structural changes that occur during the 

formation of pilin-derived PNTs can also provide a greater understanding behind the 

mechanism of T4P formation as well as allowing for the development of these structures 

for applications in bionanotechnology. Efforts are on-going in understanding how the 

pilin oligomerizes from this equilibrium state to higher molecular weight species forming 

protein-derived nanofibrils and eventually PNTs. 
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Chapter 4: Initial Stage Oligomerization of the K122-4 Type IV Pilin 
 

 

4.1. Analysis of Triggered ΔK122 Using ESI-IMS-MS 

 

In the previous chapter, the ΔK122 monomer-dimer equilibrium that occurs 

following the removal of the MBP-fusion tag and prior to the addition of a hydrophobic 

trigger molecule to solution was explored.  The next step in gaining an understanding of 

the mechanism of pilin-derived PNT formation was to explore the oligomerization 

mechanism that occurs upon pilin incubation with a hydrophobic triggering solution 

leading to the formation of extended fibrils. A mass spectrum of the untriggered ΔK122 

sample is shown in Figure 4.1, with monomeric charge states ranging from +8 to +3. The 

presence of the dimer is again confirmed at m/z 3668.5356 with a charge state of +7. 

A previous study confirmed that optimal oligomerization of truncated ΔK122 

occurs using MPD.97 These results were confirmed using transmission electron 

microscopy as well as size exclusion chromatography in conjunction with multi-angle 

light scattering.97 The goal of this study was to use ESI-IMS-MS in order to study the 

intermediates between the monomer-dimer equilibrium and higher order molecular 

weight species leading to fibril formation. 
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Figure 4.1: ESI mass spectrum of native ΔK122 at pH 6.9. Protonation states from +8 

to +3 are observed for the monomer. Presence of the dimer is seen at m/z 3668.5356 with 

a charge state of +7. 

 

ΔK122 concentrated to 20 µM was incubated with MPD at a 15:1 ratio to protein 

and monitored immediately after triggering (5-10 minutes), and hourly for up to 8 hours. 

Triggering with MPD alone caused various issues, including intercapillary clogging and 

extensive degradation of the protein. This degradation could be the result of increased 

shearing forces within the capillary as the protein oligomerizes.143 Little to no significant 

changes were observed as the sample was analyzed at 2 hour intervals for up to 8 hours. 

In order to improve the spray and avoid aggregation, methanol was added along with 
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MPD, at a 3:1 ratio to MPD. High molecular weight species were in low abundance even 

after an 8 hour incubation period but some inferences can be made when analyzing the 

intermediate time points. 

It should be noted that even without the addition of a triggering solution, ΔK122 

oligomerizes to a small extent when stored in polypropylene tubes and to a lesser extent 

when stored in glass tubes. This can be seen in the spectrum acquired for untriggered 

protein which has a small population (ranging from 0.4% to 1.1%) of trimers to 14-mers. 

Previous crystallographic analysis of ΔK122 only shows the monomer, not any dimer or 

higher order fibril species.75 Therefore, studying the process in solution allows us to look 

at the dynamic process that gets selected against in the crystallization process. At the 10-

20 minute time point after triggering, the population of dimers in the 3000-5000 m/z 

range decrease to almost zero while the trimer population reaches 5.4%. At the 4 hour 

mark, there is a decrease in the trimer population with a steady rise in all other oligomeric 

species ranging from tetramers to 14-mers. A summary of the results for one of the 8 

hour time trials is shown in Table 4.1. Comparison of these values to similar runs shows 

variation between the relative abundance of the oligomeric species, which suggests that 

the pathway to fibril formation does not follow a discreet step-by-step pathway in vitro. 

In addition, intercapillary clogging was a persistent issue that was never truly overcome 

even with the addition of methanol and acetonitrile within the triggering solution. 

Noting the intercapillary clogging that was observed during the above 

experiments, it was thought that perhaps a better way to study the early intermediates 

leading to full fibril formation was to perform the experiment using a TRESI mixer, 

where the triggering solution is introduced at the millisecond to second time scale. The 
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results of this experiment are listed in Table 4.2. There were no observed increases in the 

relative abundance of higher molecular weight species across the time points measured 

(up to 4.82 seconds). This suggests that the formation of intermediates leading to fibrils 

likely occurs within the minute time scale and were therefore not detected using the 

TRESI mixer setup. 
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Table 4.1: Relative % of species before and after triggering with a 15:1 (v/v) ratio of MPD to protein and a 3:1 (v/v) ratio of 

methanol to MPD over an 8 hour time course. 

 

 

 

 

 

 Monomer Dimer Trimer Tetramer Pentamer Hexamer Heptamer Octamer Nonamer Decamer 14-mer 

Size (kDa) 12,839.2 25,678.4 38,517.6 51356.8 64,196.0 77,035.2 89,874.4 102,713.6 115552.8 128,392 179,748.8 

Relative % 

Abundance 

Before 

Triggering 

100% 27% 0.4% 1.1% 0.9% 0.5% 0.25% 1.0% 1.1% 0.8% 0.9% 

Relative % 

Abundance 

10-20 min 

100% 0.54% 5.4% 0.21% 0.19% 0.29% 0.29% 0.08% .095% .105% 0.23% 

Relative % 

Abundance 

4 hours 

100% 10% 1.25% 0.56% 0.22% 0.60% 0.44% 0.25% .37% .52% 0.60% 

Relative % 

Abundance 

8 hours 

100% 17% 9% 0.95% 0.33% 1.8% 1.15% 0.50% 1.5% 1.6% 0.46% 
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Table 4.2: Relative % of species before and after triggering with a 15:1 (v/v) ratio of MPD to protein over a milliseconds-

seconds time course. 

 

 Monomer Dimer Trimer Tetramer Pentamer Hexamer Heptamer Octamer Nonamer Decamer 14-mer 

Size (kDa) 12,839.2 25,678.4 38,517.6 51356.8 64,196.0 77,035.2 89,874.4 102,713.6 115552.8 128,392 179,748.8 

Relative % 

Abundance 

Before 

Triggering 

100% 45% 0.49% 0.009% 0.22% 0.36% 0.47% 1.25% 1.40% 0.80% 1.70% 

Relative % 

Abundance 

0.039 sec 

100% 45% 1.15% 0.0095% 0.125% 0.53% 0.24% 0.80% 0.37% 0.39% 0.90% 

Relative % 

Abundance 

0.087 sec 

100% 32% 0.80% 0.0098% 0.165% 0.49% 0.29% 0.80% 0.60% 0.53% 0.75% 

Relative % 

Abundance 

0.183 sec 

100% 35% 0.37% 0.005% 0.04% 0.13% 0.21% 0.54% 0.32% 0.17% 0.22% 

Relative % 

Abundance 

0.518 sec 

100% 43% 0.58% 0.005% 0.04% 0.20% 0.20% 0.51% 0.38% 0.14% 0.24% 

Relative % 

Abundance 

4.822 sec 

100% 29% 0.28% 0.8% 0.06% 0.1% 0.29% 0.45% 0.31% 0.19% 0.48% 
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4.2. Global TRESI-HDX Mass Spectrometry 

 

  To try and obtain insight into the global changes in the structure of the 

monomeric population before and after the oligomerization process, hydrogen-deuterium 

exchange was performed on 20 µM protein in its monomer-dimer equilibrium state and 

20 µM of the protein after incubation with MPD for 24 hours. Concentrations higher than 

this lead to intercapillary clogging. 

 The deuterium uptake for the monomeric charge state of +5 was compared 

between the two states (Figure 4.2). Upon incubation with 80% deuterium, the monomer 

in the monomer-dimer equilibrium state exhibited an average uptake of 32 deuterium 

atoms. On the other hand, the monomers in equilibrium with high-molecular weight fibril 

species in the oligomerized sample exhibited an average uptake of 16 deuterium atoms. 

 

 
 

Figure 4.2: Deuterium uptake of ΔK122 in the monomer-dimer equilibrium and after 24 

hours of incubation with 15% MPD. 
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4.3. Discussion 

 

 This study aimed to characterize the early stages of filament formation of ΔK122 

before association into extended fibres by time course studies using ESI-IMS-MS both on 

the minutes-hours time scale as well as on the millisecond-second time scale. However, 

no conclusions can be made at this time about a discrete mechanism leading to fibril 

formation, as higher molecular weight species are not observed in great abundance and 

no reproducible trends were detected. The fact that the data could not be reproduced 

suggests that there might be multiple distinct pathways leading to fibril coalescence, and 

is much more complex without the presence of an in vivo T2SS. 

One hypothesis for the low abundance of higher molecular weight species 

throughout the 8-hour time course suggests that perhaps the oligomers are broken apart 

during the ESI process. If the interactions that form the fibrils are not stable in the gas 

phase, it wouldn’t be surprising that they are broken down to mostly monomeric species 

during ionization and thus not detected throughout the time trial. 

Analysis of the global TRESI-HDX-MS data suggests that the oligomeric 

structures formed after 24 hours are more compact and have reduced areas available for 

deuterium exchange. Further work will need to be done in order to localize the areas 

affected in the oligomerized species compared to the monomer-dimer equilibrium. One 

problem that will need to be circumvented for local analysis is precipitation of the fibrils 

upon entering the acidic proteolysis chamber. 
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Chapter 5: Structural Studies of TraF, and the TraF-TraH Interaction 
 

5.1. Expression and Purification GST-TraF 

 Optimal expression of GST-TraF after induction with IPTG was observed in one-

hour increments for a total of 4 hours at 30°C (data not shown). GST-TraF (~51 kDa) 

was purified using a column packed with glutathione Sepharose 4B beads. As can be seen 

in Figure 5.1, the GST-TraF protein eluted at a peak maximum absorption of 

approximately 2250 mAU and 100% elution buffer. The blue line represents absorbance 

at 280 nm and the red line represents absorbance at 215 nm. The corresponding SDS-

PAGE gel is shown in Figure 5.2. 

 

 
 

Figure 5.1: Affinity chromatogram of GST-TraF. The GST-TraF protein eluted at a 

peak maximum absorption ~ 2250 mAU. The blue line is absorbance at 280 nm, the red 

line is absorbance at 215 nm and the green line is the elution buffer concentration. 
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Figure 5.2: SDS-PAGE gel of GST-TraF affinity purification and concentration. 
Lane 1: pellet. Lane 2: Supernatant after sonication. Lane 3: Flow through. Lanes 4 and 

5: elution samples containing the protein of interest GST-TraF at approximately 50 kDa. 

Lanes 6 and 7: GST-TraF concentrated to 11.6 mg/mL and 4.6 mg/mL. 

 

 

Previous efforts to obtain the full structure solution using molecular replacement 

methods of TraF has been challenging due to the lack of high sequence identity with a 

related thioredoxin of known structure that would represent only 50% of the total 

scattering mass of the protein. To obtain structural insights on the full-length TraF, the 

protein was expressed as a GST-fusion, with the target of utilizing the GST tag as a 

handle for molecular replacement calculations. In addition, inclusion of the tag allows for 

a more soluble protein and concentration to levels required for mass spectrometric 

analysis. The purified fusion was subjected to both TRESI-HDX-MS analysis as well as 

crystallization trials in order to obtain structural insights. 

 

5.2. Dynamic Analysis of GST-TraF 

As mentioned previously (Section 1.2.1.2), TraF has a predicted thioredoxin-like 

fold placing it among the thioredoxin-like superfamily of enzymes. The thioredoxin fold 

consists of at least three α-helices, a four-stranded β-sheet and a CxxC active site. In 

TraF, the fold forms the C-terminal domain which is preceded by a domain of unknown 

1 2 3 4 5 6 7 

 GST-TraF 
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function.31 A previous study on E. coli thioredoxins confirmed that residues incorporated 

in α-helices and β-sheets show low incorporation of deuterium while loops and turns had 

high deuterium incorporation.144 

The isotopic distribution for each peptide was analyzed for each reaction time 

with combined runs yielding an overall sequence coverage of 75%. A homolog of closest 

sequence coverage for the C-terminal domain was acquired using PHYRE 2.0 (Protein 

Homology/analogY Recognition Engine V 2.0).33 This homolog is the thioredoxin of C-

type cytochrome biogenesis protein DipZ from Mycobacterium tuberculosis. Using the 

saturation levels of each peptide, a heat map of the structure for the C-terminal homolog 

is shown in Figure 5.3a. Similarly, a heat map of the predicted full-length secondary 

structure of TraF was generated and is shown in Figure 5.3b. 

In general, the C-terminal region contains most of the peptides observed to have 

low deuterium exchange levels (0-55%). This is expected since it is the region of the 

protein predicted to contain a defined structure. The N-terminal region contains most of 

the peptides observed to take up moderate-high (66-75%) and high deuterium levels (76-

100%). This indicates that the region is much more dynamic relative to the C-terminus, 

either due to lack of structure or by being more exposed to the solvent. In addition, 

peptides falling within the region hypothesized to interact with TraH (a.a. 47-70 and 68-

73) show moderate-high and high deuterium uptakes respectively. 
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Figure 5.3: HDX analysis of GST-TraF. a) Deuterium exchange profile mapped onto 

the crystal structure of a C-terminal homolog for TraF. The structure is coloured based on 

the differences in observed amplitude of deuterium uptake: red (76-100%), yellow (66-

75%), green (55-65%), and blue (0-55%). Regions that were not analyzed are coloured in 

grey. b) Deuterium exchange profile mapped onto the full-length secondary structure for 

TraF. Grey colouring indicates the rapid loss of deuterium label for the first two residues 

in each peptide due to back exchange. 

a) 

b) 
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5.3. Crystallization of GST-TraF 

 

 A complete list of preliminary GST-TraF crystal hits obtained during this research 

project can be found in Table 5.1. A few of the most promising hits are shown in Figure 

5.4. Unfortunately, none of the initial crystal hits screened were suitable for collection of 

diffraction data. The hits obtained from the Hauptman-Woodward Medical Research 

Institute served as screens only and could not be screened for diffraction quality. Needle 

and spherulite crystals obtained in-house were not suitable for data collection and will 

need to be further optimized. 

 

   
 

GST-TraF-02 
MSCG Core III #86 (8.2 mg/mL) 

0.1 M Ammonium Acetate pH 4.5 

3.0 M Sodium Chloride 

 

     

GST-TraF 
MSCG Core II #39 (5.4 mg/mL) 

0.2 M Lithium Sulfate 

0.1 M CAPS:NaOH pH 10.5 

2.0 M Ammonium Sulfate 

GST-TraF 
MSCG Core III #90 (8.2 mg/mL) 

0.2 M Zinc Acetate 

0.1 Imidazole:HCl pH 8.0 

20%  (v/v) 1,4-Butanediol 

GST-TraF-Hauptman 
Cocktail #15_C0938 (6.4 mg/mL) 

0.1 M Manganese Chloride 

Tetrahydrate 

0.1 M Bis-Tris Propane pH 7.0 

80% (w/v) PEG 4000 

 

 

Figure 5.4: GST-TraF protein crystals. The protein concentration and crystallization 

conditions are found within the figure. 
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Table 5.1: Description of conditions for preliminary crystal hits. 

 

 

Sample Name 

(Date Plated) 

X-tal Kit & 

Condition # 

Concentration 

(mg/mL) 

Salt Buffer Precipitant 

GST-TraF-01 

(Sep 18th, 2013) 

MCSG Core I 

#64 
11.6 

0.2 M 

magnesium 

chloride 

0.1 M sodium 

citrate:citric 

acid 

pH 5.5 

40% (v/v) 

PEG 400 

GST-TraF-01 

(Sep 18th, 2013) 

MCSG Core II 

#60 
11.6 

0.2 M 

lithium 

sulfate 

0.1 M sodium 

cacodylate:HCl 

pH 6.5 

30% (v/v) 

PEG 400 

GST-TraF-02 

(Sep 19th, 2013) 

MCSG Core III 

#86 
8.2 - 

0.1 M sodium 

acetate 

pH 4.5 

3.0 M 

sodium 

chloride 

GST-TraF-02 

(Sep 19th, 2013) 

MCSG Core III 

#90 
8.2 

0.2 M zinc 

acetate 

0.1 M 

imidazole:HCl 

pH 8.0 

20% (v/v) 

1,4-

butanediol 

GST-TraF-03 

(Sep. 23rd, 

2013) 

MCSG Core I 

#54 
5.4 

0.2 M 

potassium 

sulfate 

- 
20% (w/v) 

PEG 3500 

GST-TraF-03 

(Sep. 23rd, 

2013) 

MCSG Core I 

#82 
5.4 

0.2 M 

sodium 

chloride 

0.1 M 

CAPS:NaOH 

pH 10.5 

20% (w/v) 

PEG 8000 

GST-TraF-03 

(Sep. 23rd, 

2013) 

MCSG Core II 

#5 
5.4 

0.2 M 

lithium 

sulfate 

0.1 M 

CAPS:NaOH 

pH 10.5 

1.2 M 

NaH2PO4/ 

0.8 M 

K2HPO4 

GST-TraF-03 

(Sep. 23rd, 

2013) 

MCSG Core II 

#39 
5.4 

0.2 M 

lithium 

sulfate 

0.1 M 

CAPS:NaOH 

pH 10.5 

2.0 M 

ammonium 

sulfate 

GST-TraF-03 

(Sep. 23rd, 

2013) 

MCSG Core II 

#96 
5.4 

0.2 M zinc 

acetate 

0.1 M sodium 

acetate:acetic 

acid 

pH 4.5 

10% (w/v) 

PEG 3000 

GST-TraF-04 

(Oct. 8th, 2013) 

MCSG Core I 

#15 
3.6 

0.2 M 

ammonium 

acetate 

0.1 M Bis-

Tris:HCl 

pH 5.5 

25% (w/v) 

PEG 3350 

GST-TraF-04 

(Oct. 8th, 2013) 

MCSG Core I 

#20 
3.6 

0.17 M 

sodium 

acetate 

0.085 Tris:HCl 

pH 8.5 

25.5% (w/v) 

PEG 4000 

15% (w/v) 

glycerol 

GST-TraF-04 

(Oct. 28th, 

2013) 

MCSG Core I 

#17 
3.6 

0.2 M 

magnesium 

chloride 

0.1 M Tris:HCl 

pH 8.5 

25% (w/v) 

PEG 3350 

GST-TraF-05 

(Nov. 5th, 2014) 

Cocktail 

Generation 

#15_C0938 

6.4 

0.1 M 

manganese 

chloride 

tetrahydrate 

0.1 M Bis-Tris 

propane 

pH 7.0 

80% (w/v) 

PEG 4000 

GST-TraF-05 

(Nov. 5th, 2014) 

Cocktail 

Generation 

#15_C0785 

6.4 

0.1 M 

lithium 

chloride 

0.1 M TAPS 

pH 9.0 

40% (w/v) 

PEG 1000 
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5.4. Towards Structural and Protein Interaction Studies with MBP-TraH 

 

 Optimal cell expression of MBP-TraH after induction with IPTG was observed in 

one-hour increments for a total of 3 hours at 30°C (data not shown). MBP-TraH (~90 

kDa) was purified using a gravity column packed with amylose resin at 4°C. Performing 

the purification at a lower temperature decreased both the degradation of the fusion as 

well as the cleavage of MBP. The corresponding SDS-PAGE gel is shown in Figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: SDS-PAGE analysis of MBP-TraH affinity purification. Lanes 2-7: 

elution samples containing the protein of interest MBP-TraH at approximately 90 kDa. 

 

  

Previous studies have failed to show a clear interaction between GST-TraF and 

MBP-TraH using various affinity pull-down methods as well as through size exclusion 

chromatography. It was hypothesized that the N-terminal tags interfere with the binding 

of these two proteins, where the C-terminal region of TraH interacts with the N-terminal 

region of TraF. In the current study, following on-column cleavage of the GST tag from 

TraF and incubation with amylose beads attached to MBP-TraH, no interaction was 

observed. Optimization of various conditions for the pull-down assay will need to be 
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undertaken including varying the pH, salt concentrations, and perhaps the addition of 

micelles or detergents to aid in resembling membrane conditions. Following elucidation 

of favourable interaction conditions, the goal is to localize the area of protein-protein 

interaction using TRESI-HDX-MS. 

 

5.5. Discussion 

 

 The GST-TraF and MBP-TraH protein constructs were successfully expressed 

and purified using affinity chromatography. The main objective of the research was to 

gain structural insights on these two proteins that are predicted to interact with one 

another. Unfortunately, crystallization trials of GST-TraF have not yet yielded diffraction 

quality crystals and the structure of the protein could not be solved at this time. Dynamic 

analysis on the construct did reveal some broad insights on the structure of the protein, 

with the C-terminal domain predicted to be more structured compared to the N-terminal 

domain. Although a yeast-two hybrid assay has demonstrated the interaction between 

TraH and TraF,28 conditions must be optimized in order to reproduce this interaction in 

vitro and localize the area of interaction. 
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Chapter 6: Conclusion and Future Work 

 

6.1. Conclusion 
 

The current study was successful in using TRESI-HDX-MS for the structural 

analysis of key proteins from two biological systems. Atomic structures for the ΔK122 

dimer and TraF have not been able to be solved through X-ray crystallography, and thus 

were studied by mass spectrometry in order to gain insight on the dynamics of the protein 

in solution and gather some conclusions on areas of protein-protein interaction, as well as 

overall structure. 

The main research objective of this Master’s thesis was to obtain insights on the 

oligomerization mechanism behind the ΔK122 pilin, and to identify sites of protein-

protein interaction in the earliest intermediate leading up to fibril formation. Localizing 

the areas that are essential in stabilizing the dimeric state allows for use of the pilin in the 

field of nanobiotechnology and vaccine development. For example, engineered protein 

nanotubes can be used as biological nanowires as well as for drug delivery systems, 

biosensors, and probes. In addition, the proposed interaction thought to occur between 

TraF and TraH was explored, and in order to study the structural characteristics of TraF, 

both TRESI-HDX-MS and crystallization trials were attempted. Insights on the N- and C-

terminal domains of TraF confirm a more structured C-terminal domain which likely 

houses a thioredoxin-like fold. In addition, several promising conditions for the optimal 

crystallization of GST-TraF were identified. 
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6.2. Future Work 
 

 To complement the data obtained from HDX-MS, structure determination from a 

crystallized protein is ideal. Future studies should be centered on the crystallization of a 

truncated and soluble TraF construct preferably containing the less dynamic and more 

structured C-terminus. In order to gain a better understanding of TraH, it is clear that 

optimization of its storage buffer needs to occur in order to prevent it from degradation as 

well as aggregation following purification. Due to its predicted membrane associated 

domain consisting of hydrophobic α-helices and coiled-coil domains, precipitation occurs 

upon removal of the soluble MBP tag. In order to stabilize the protein, the use of 

nanodiscs may have to be explored, allowing for a more native environmental condition 

and friendlier mass spectrometry conditions compared to detergents and liposomes. Due 

to the extensive cleavage of the MBP tag, it is not optimal to carry out crystallization 

studies while there is a large amount of the fusion present. In order to carry out 

crystallographic screenings on the TraH protein, it might be necessary to replace the 

MBP tag with a His-SUMO tag. Additional work needs to be undertaken in order to 

identify the optimal conditions in which a robust interaction occurs between TraF and 

TraH perhaps using isothermal calorimetric experiments, and only when these conditions 

are found can the analytical methods discussed within this thesis (TRESI-HDX-MS and 

X-ray crystallography) be applied in order to obtain localized structural insights on the 

protein complex. 
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Appendix 
 

Sample Calculations: 

 

1) Mixing Time 

 

Inner Glass Capillary (o.d. values for radius): 

h = 2 mm notch 

R1 = .153/2 = .0765 mm 

Area = 𝜋𝑟2ℎ 

= 0.0368 mm3 

 

Outer Metal Capillary (i.d. values for radius): 

h = 2 mm notch 

R2 = .178/2 = 0.089 mm 

Area  = 𝜋𝑟2ℎ 

= 0.0498 mm3 

 

Difference in Area = 0.013 mm3 

 

1 mm3 = 103 nL 

 

Mixing Volume = 13 nL 

 

With a total flow rate (protein + D2O) of 4 μL/min = 66.67 nL/sec 

 

Mixing Time = 13 nL ÷ 66.67 nL/sec = 0.195 sec ~ 200 ms 

 

2) Reaction Time 

 

For 5 mm pullback, Added Volume = π (0.089)2 x 5 mm 

      = 0.124 mm3 = 124 nL 

 

   Total Time  = Mixing Time + Pullback       

= 0.195 sec + (124 nL ÷ 66.67 nL/sec) 

= 2.06 sec 

 


