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Abstract

Customers are getting increasingly involved in the design of the products and services they

choose by specifying their desired characteristics. As a result, configuration systems have become

essential technologies to support the development of mass-customization business models. These

technologies facilitate the configuration of complex products and services that otherwise could

generate many incorrect configurations and overwhelm users with confusion. This thesis studies

the problem of optimizing the user interaction in a configuration process—as in minimizing

the number of questions asked to a user in order to obtain a fully-specified product or service

configuration. The work carried out builds upon a previously existing framework to optimize the

process of configuring a software system, and focuses on improving its efficiency and generalizing

its application to a wider range of configuration domains. Two solution methods along with two

alternative ways of specifying the configuration models are proposed and studied on different

configuration scenarios. The experimental study evidences that the introduced solutions overcome

the limitations of the existing framework, resulting in more suitable algorithms to work with

models involving a large number of configuration variables.
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1 Introduction

More than fifty percent of global consumers are more likely to buy from companies that allow them

to shape products and services to their particular needs11. The world has been increasingly moving

away form the mass-production business model introduced in the first half of the 20th century,

and has entered the new frontier of mass customization [11]. This paradigm’s goal is to combine

the low costs of mass-production processes with the flexibility of individual customization [22].

Instead of choosing pre-built products from a catalog, customers are allowed to participate in

the design process of the products they choose by specifying their desired characteristics. In this

context, configuration systems have become leading technologies supporting the development of

mass-customization business models.

1.1 Knowledge-Based Configuration

The literature has not shown much consensus on an academic definition of the process of con-

figuration [33]. A widely-accepted informal definition given by Sabin and Weigel [44] describes

configuration as “a special case of design activity, where the artifact being configured is assembled

from instances of a fixed set of well-defined component types which can be composed conforming

to a set of constraints”. Two important elements can be identified from this definition:

i. the component types, which determine the aspects that can be configured (for example,

a cellphone display may be in color or monochrome); and

ii. the constraints, which regulate the way in which the components interact with each other

(for example, a color display may not work with Ni-Cd batteries).

1See Microsoft’s white paper Digital Trends 2015 at http://advertising.microsoft.com/en/digital-trendshttp://advertising.microsoft.com/en/digital-trends.
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Both elements together constitute a knowledge-based configuration model that serves as the input

to a configuration process. The outcome of this configuration process is an artifact instantiation

or configuration that satisfies all the constraints (for example, a working cellphone with a color

display and a Li-Ion battery, among other components).

This implicit modelling approach contrasts with an explicit enumeration of all the valid

artifacts that can be assembled, and it makes knowledge-based configuration a major artificial

intelligence application area. ‘Intelligent’ configuration systems, commonly known as configurators

or mass-customization toolkits, use some representation of the configuration model and diverse

reasoning techniques to provide assistance at both ends of the configuration activity—i.e., when

the configuration system is being developed, and during the course of the configuration process.

The assistance may involve, for example, the efficient maintenance of the configuration models,

the development of well-informed interfaces to guide the users in the search for a configuration

that meets their needs, and checking the consistency of the user requirements with the constraints

of the configuration model. These technologies facilitate the configuration of complex products

and services that otherwise could generate many erroneous or suboptimal configurations, and

overwhelm users with confusion.

1.2 Precedent and Objectives

This thesis has an important precedent in the work of Hamidi et al. [55]. These authors introduced

a framework effectively implementing a configurator for calculating the shortest sequence of

questions to be presented to the users of a software system in order to customize it to their

needs. Most modern software systems can be adapted to best fit the user’s individual skills and

preferences through a number of configuration options. This characteristic offers great flexibility

to the users, but as the amount and complexity of the options offered by the system grow, so does

the space of configuration possibilities. As a result, the users have to deal with an increasingly

overwhelming task when they attempt to configure the software. Some studies have shown

that most people rarely change the default configuration options [66], which is understandable

considering that they not only need to be familiar with the technical options, but also aware of

the frequently unstated implications of each alternative [77].
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The approach presented by Hamidi et al. [55] relies on information obtained from user prefer-

ences frequently used together by other (possibly expert) users to recommend default configuration

options and avoid asking some of the questions explicitly. The proposed framework is based on two

techniques: association rule mining [88] and Markov decision processes (MDPs) [99]. Association

rule mining is used to analyze frequently co-occurring configuration options in order to predict

a group of options based on the occurrence of another group—by means of an association rule

discovered between them. The sequential process of asking the user a value for every configuration

option is represented by an MDP, which provides a mathematical model for the uncertainty in the

user’s response. The MDP represents transitions from an initial configuration state in which all

options are unknown to a terminal state where all the options are known, possibly skipping some

questions in between because their answers can be predicted using the discovered association rules.

By using dynamic programming methods to solve the MDP rewarding shorter paths towards

the terminal state, the authors are able to calculate the shortest sequence of questions to be

presented to the users. The solution of the MDP is expressed in terms of an optimal policy that

dictates which question should be asked at each state, according to the knowledge acquired so

far about the user’s preferred configuration. This policy is optimal in the sense that it minimizes

the expected number of questions to be asked to the users.

The applicability of this framework was evaluated in a two-part experimental study whose

results were reported in detail by Hamidi [1010]. The first part evaluated its use in a small case

study according to the utility that it brings to the problem of configuring a software system.

The case study employed configuration records from the privacy settings of the Facebook social

network platform and showed that the technique reduced the number of questions asked to the

users in this scenario. In the second part of the study, an artificial data set was used to evaluate

the scalability of the approach in terms of the number of configuration options. This scalability

study evidenced that the running time of the introduced technique grows exponentially in terms

of the number of options. In fact, the approach in its original formulation seems feasible for

handling only up to the equivalent of 14 binary configuration options within reasonable time.

This situation constitutes a strong limitation for the use of the proposed framework in real-world

scenarios with a considerable number of configuration options, where setting a large number of

options automatically becomes increasingly important.
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Drawing from these experiences, this thesis is tasked with the following objectives:

i. The first objective is to propose and evaluate empirically alternative methods for solving

the formulated MDP to allow the scalability limitations of the framework introduced by

Hamidi et al. [55] to be overcome.

ii. The second objective involves the generalization of the configuration model considered by

Hamidi et al. [55] to enable using the framework in scenarios other than the recommendation

of default options for the configuration of software systems. The assumption of a model

based on association rules is rather restrictive and leaves out configuration processes that rely

on constraints that cannot be expressed as simple rules. For greater flexibility, it is desirable

to be able to specify the constraints that regulate the interactions of the configuration

components as arbitrary Boolean expressions.

1.3 Outline of the Proposed Solutions

This thesis studies the problem of optimizing the user interaction in a broader class of configuration

processes, not necessarily related to the configuration of software systems. An arbitrary artifact

may be described in terms of two alternative configuration models. In the first model, the

constraints that regulate the interactions between the aspects of the artifact that can be configured

are given in the form of if-then rules comparable to the association rules used by Hamidi et al. [55].

In the second supported specification, the constraints are given as part of a formulation of the

configuration model as a constraint satisfaction problem (CSP) [1111].

As it was done by Hamidi et al. [55], the problem of minimizing the sequence of questions to

be presented to the users is formulated as an MDP. However, a different approach is followed for

finding the optimal policy. Hamidi et al. [55] use classical dynamic programming algorithms such

as policy iteration [1212] and value iteration [99], which require operating on a complete specification

of the dynamics of the MDP. A configuration process formulated as an MDP will have an

exponential number of states in terms of the number of components that can be configured, and

this characteristic restricts the application of the dynamic programming algorithms to very small

configuration models—an issue coined in the literature as the curse of dimensionality [99].
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Reinforcement learning techniques [1313] are employed in this thesis to overcome the afore-

mentioned limitations. These solutions methods do not require a complete specification of the

dynamics of the MDP and they rely instead on simulating interactions with the environment

described by the MDP. This property makes reinforcement learning more suitable for dealing

with problems with large state spaces. Two reinforcement learning solution methods are studied

in this thesis. The first one constructs an artificial neural network that computes an estimate

of the expected number of questions that could be skipped by asking one specific question. The

second solution method solves the reinforcement learning problem as a stochastic optimization

problem, relying on an evolutionary optimization algorithm to find a good approximation of the

optimal solution.

1.4 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 22 provides the necessary background

for understanding the models and techniques that are employed, including several references for

additional information. Specifically, the chapter covers the topics of configuration knowledge

representation and the reinforcement learning approach for the solution of sequential decision-

making problems. Chapter 33 presents the configuration models considered in the thesis as well

as the proposed solution methods for the optimization of the user interaction in a configuration

process. The results of a group of experiments performed to evaluate the introduced techniques

are reported in Chapter 44. These experiments consider a diverse assortment of configuration

models including artificially-generated configuration problems, a case study on a small real-world

example, and a number of publicly-available configuration models from different domains. Finally,

Chapter 55 summarizes the presented results, discusses how the current work compares to similar

studies and gives an outlook of the future work.
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2 Background

This chapter provides a description of the models and techniques that constitute the foundations

of the solutions developed for the optimization of the user interaction in a configuration process.

The presentation of the configuration topics follows Felfernig et al. [1414], while the description of

the reinforcement learning approach for the solution of sequential decision-making processes is

mainly based on Sutton and Barto [1313], and Wiering and van Otterlo [1515].

2.1 Configuration Knowledge Representation

One important issue in configuration design is selecting a correct representation for expressing the

characteristics of the component types and constraints, considering that there may exist a large

number of possible configurations and/or complex constraint interactions. This section presents

an overview of the two representations studied in the thesis: rule-based and constraint-based

configuration models. In both cases, the study is restricted to component types with discrete

domains—i.e., a selection among a finite set of possible choices.

2.1.1 Rule-Based Representation

The use of rule-based models dates back to the late 1970s with the introduction of the R1 sys-

tem (later called XCON, for eXpert Configure) developed to support the customization of VAX

computer orders [1616]. Knowledge representation is based on if-then rules that encode legal con-

figuration steps (in the more modern cellphone example, selecting Bluetooth wireless connection

capabilities in a configuration may by implication mean that a Li-Ion battery is also chosen).

The rules operate on a working memory of configured component types that represent the

stage in the configuration process. The memory is initially empty and each configuration decision

triggers a revision of the rules. If a rule is activated (provided that the preconditions listed in the
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if part of the rule are satisfied), it modifies the content of the working memory by including all

the assignments listed in the then part of the rule.

Although configuration systems with rule-based representations (such as the R1/XCON sys-

tem) were very successful and are still used in practice, they present some major drawbacks.

The application of the rules strongly depends on the order in which the component types are

considered for configuration, and more importantly, this order may have a strong influence on the

outcome of the configuration process. In the interest of achieving certain outcomes, heuristics had

to be developed to ensure that the rules were activated in a particular order [1717]. Furthermore,

rule-based representations are often hard to maintain due to the lack of appropriate methods to

check for hidden interactions between different rules.

Rule-based models are nonetheless well-suited for certain tasks within the configuration process,

such as the recommendation of default values. As the number and complexity of the component

types that can be specified with a configurator may be high, users are often overwhelmed by the

large amount of configuration options [1818]. Also, confronting users with too much information

is known to lead to a decreased decision performance [1919]. The recommendation of default

configuration values can assist the users in the specification of their requirements and thus help

to achieve higher user satisfaction.

The use of default configuration values supports the idea of the users specifying only those

component types that are most important to them and letting the system automatically determine

values for the remaining ones. The selection of the default configuration values can be based

on previously-observed user requirements (for example, users who prefer a cellphone with a

color display, generally select some form of wireless connectivity—such as Bluetooth). This

approach becomes particularly relevant in a collaborative setting based on exploiting information

from configuration sessions completed by other users to provide a personalized configuration

experience for new users. Collaborative filtering, content-based filtering, and association rule

mining are some of the technologies that support the construction of recommender systems (see

Ricci et al. [2020] for a comprehensive handbook on the topic).
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2.1.2 Constraint-Based Representation

The shortcomings of the rule-based approach mentioned in the previous section motivated the

development of representations supporting a clear separation between the domain knowledge

and the problem-solving knowledge [2121]. In a constraint-based knowledge representation, the

information about when the constraints are checked is independent of the configuration model

itself, and consequently, the order in which the constraints are enforced has no effect on the

outcome of the configuration process. This thesis focuses on (static) CSPs as a prominent

example of model-based knowledge representation in configuration.

2.1.2.1 Constraint Satisfaction Problems

The solution of a CSP involves finding values for a group of variables subject to limitations

on which combination of values are allowed (see Tsang [1111] for a rigorous book on CSPs, or

Russell and Norvig [2222] for a more didactic introduction). A CSP is defined by a set of variables

V = {V1, V2, . . . , Vn}, a nonempty domain Di of the possible values for each variable Vi ∈ V ,

and a set of constraints C = {C1, C2, . . . , Cm}. Each constraint in C involves some subset of the

variables (the number of variables involved determines the cardinality of the constraint), and they

specify the allowable combinations of the values for that subset, either extensionally (as a subset

of the Cartesian product) or in terms of predicates (i.e., Boolean functions).

CSPs have been a widely-used formalism for describing configuration knowledge. In addition

to providing a natural declarative representation for configuration models (with the component

types as variables), their multidirectionality allows overcoming one of the central problems of

rule-based approaches. While the use of a rule-based representation presupposes a direction from

the if part to the then part, CSP solvers can propagate the consequences of the assignments to

any other variable—and the order of the variable assignments does not affect the semantics of

the constraints. Moreover, given an existing configuration (partially or completely specified), its

correctness can be verified by checking the corresponding CSP for consistency.

The goal when solving a CSP is to assign a value to each variable, such that all the constraints

are simultaneously satisfied. Constraint satisfaction is NP-complete in general, with polynomial-

time algorithms existing to solve particular problem subclasses (such as acyclic constraint networks
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of binary constraints) [2323]. The basic approach to solve a CSP is to apply backtracking search—i.e.,

a depth-first search that chooses values for one variable at a time and backtracks when a variable

has no legal values left to assign—combined with some form of constraint propagation to detect

inconsistencies in advance and reduce the search branching factor. Constraint propagation is the

general term for techniques that propagate the implications of a constraint on one variable onto

other variables. Once an assignment is made to a variable, the domains of the unassigned variables

can be pruned from values that are known to lead to inconsistent assignments by enforcing some

level of consistency on the CSP.

Consistency can be established at different levels. The weakest form of (local) consistency is

node consistency, which dictates that every unary constraint on a variable must be satisfied by

all values in the domain of the variable. Node consistency can be enforced simply by restricting

the domain of each variable to the values that satisfy all unary constraints on that variable—

as a result, unary constraints are usually incorporated into the variable domains. A more powerful

and commonly-used form of local consistency is generalized arc-consistency; which requires that

for any constraint, the current assignment could be extended by some values for the unassigned

variables in the constraint so that the constraint will be satisfied. There are several methods

available for enforcing generalized arc-consistency derived from a group of algorithms for binary

constraints (simply arc consistency) [2424] and their generalizations to constraints involving more

than two variables. There also exist other forms of domain-filtering local consistencies (see a

review by Debruyne and Bessiere [2525]), and each alternative comes with a trade-off between the

computational cost of the algorithms that propagate the constraints and their pruning efficiency—

since local consistency mechanisms does not necessarily remove all possible search dead-ends. The

strongest form of consistency is global consistency, which implies that every value in the domain

of the unassigned variables appears in at least one solution of the CSP. Therefore, it effectively

guarantees that there exists at least one solution that satisfies all the constraints and it can be

thought of as being equivalent to solving the CSP.

Constraint-propagation methods are essential for supporting configuration processes [2626],

given that they allow inferring information about unassigned variables from a group of previously-

given user decisions. These inference mechanisms facilitate, for example, removing values that

are incompatible with the current partial configuration from the domains of the unassigned

9



variables, and also detecting inconsistent decisions potentially early in the configuration process.

An inconsistent decision will cause a variable domain to become empty, therefore creating a

dead-end in the configuration process.

2.1.3 Feature Models and Decision Models

Certain configuration application domains have prompted the development of specific models for

configuration knowledge representation. One example of such domains is the software product

lines paradigm for the efficient development of software-intensive systems sharing a common,

managed group of features [2727]. This section discusses how the semantics of some of these domain-

specific representations can be transformed into the more general configuration models presented

in the previous sections (CSPs in particular).

An increasing trend observed in software engineering is the need for building multiple, similar

software systems instead of just individual unrelated products. Software product lines constitute

a systematic framework for modelling and exploiting the common and variable aspects of the

software systems in order to support deriving products tailored to the specific needs of different

customers—which effectively results in a configuration process during the product-derivation

phase. Feature models and decision models are among the most commonly-used approaches for

modelling the commonality and variability in software product lines [2828].

Feature models [3030] are hierarchical tree-based structures represented graphically as the

example in Figure 2.12.1 (additional extensions are possible [3131, 3232], but will not be covered in

the thesis). Each node in the tree corresponds to a feature that can be selected as part of the

product (i.e., an aspect or characteristic of the system, for example, the type of display on a

cellphone), and a distinctive feature represented by the root node is assumed to be part of all the

derived systems. The connections between a parent node and its children denote different types

of relations: ‘mandatory’ (the children are required), ‘optional’ (the children may be selected

or not), ‘or’ (at least one of the children must be selected), and ‘exclusive or’ (only one of the

children can be selected). In addition to the connections supporting the tree structure, a group

of cross-tree constraints are also allowed—the most common being ‘implication’ (the selection of

one feature implies the selection of another), and ‘mutual exclusion’ (which indicates that two

features cannot be part of the same product). The transformation of a feature model into an

10



Mandatory

Optional

Or
Exclusive or
Implication

Mutual exclusion

Cellphone

Wireless Display

Infrared Bluetooth Color Monochrome

Battery

Li-Ion Ni-MH Ni-Cd

Figure 2.1: Example of a feature model for a cellphone (adapted from von der Maßen
and Lichter [2929]).

equivalent CSP involves representing each feature node as binary variable and translating the

node connections into Boolean predicates with the same semantics as they have in the tree (for a

detailed explanation, see Benavides et al. [3333]).

Decision models, on the other hand, present a more diverse structure (see Schmid et al.

[3434] for a comparison of representative modelling approaches). Probably the most distinctive

characteristic of these models is that they focus on supporting product derivation as opposed to

describing the problem domain. As a consequence, decision models represent only the decisions

that must be made to derive a specific product from the product line. The decisions are generally

represented in the form of questions with a defined set of possible answers (but not necessarily

binary as in feature models). The hierarchy among the questions is secondary in decision models,

but they do support defining relations between the questions similarly to the cross-tree constraints

in feature models. In spite of having a more diverse structure, the semantics of the decision models

can be traced back to a CSP with the questions as variables and constraints representing the

relations between those questions.
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2.2 Sequential Decision Making Under Uncertainty

In order to optimize the interaction of a user in a configuration process, it is necessary to rely on a

model able to properly represent the users’ sequential decisions and in particular the uncertainty

in their response. This section presents the fundamental formalism for reasoning about sequential

decision-making problems and a group of techniques that can be used to design optimal plans to

act in uncertain environments—such as a configuration process.

2.2.1 Markov Decision Processes

MDPs constitute an integral formalism for modelling sequential decision-making problems (see

Puterman [3535] for an extensive book on MDPs, or Russell and Norvig [3636] for a more gentle

introduction). In these models, the environment is represented by a set of states along with a set

of actions that can be performed to potentially modify the current state. A defining characteristic

of the environment is that it has a stochastic nature, i.e., there is a certain level of uncertainty

about the effect of the actions. The goal in this context is to design a strategy to operate on the

environment such that some reward criterion is maximized.

More formally, a (finite, fully-observable) MDP is defined by the following components:

i. A finite set of states S. Each state s ∈ S characterizes the environment of the problem

being modelled at a particular moment in time.

ii. A finite set of actions A. When an action a ∈ A is performed while being at a state s ∈ S,

the environment responds by transitioning to a (potentially different) state s′ ∈ S.

iii. A transition function T (s, a, s′) that specifies the probability of reaching state s′ ∈ S from

state s ∈ S by performing action a ∈ A. By this definition, it is assumed that the result of an

action depends only on the current state and not on the previous actions and visited states.

The transition function is generally stored in a table with one entry for every combination

of s, a, and s′.

iv. A reward function R(s, a, s′) that returns a scalar value corresponding to the immediate

reward received from leaving state s ∈ S by taking action a ∈ A and reaching state s′ ∈ S.

As with the transition function, the reward function is usually stored in tabular form.
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Among the different variations of MDPs that can be modelled by this definition, this thesis

focuses on a particular group called episodic MDPs. In these processes, there is a notion of

episodic tasks in which the intention is to transition from an initial state to a certain terminal

state, while progressing through a finite sequence of intermediate states based on the actions

performed. As each task ends when the terminal state is reached, all transitions from the terminal

state move to that same state with probability one (so, for a terminal state s ∈ S in an episodic

MDP, it holds that T (s, a, s) = 1 for all actions a ∈ A). The rewards at the terminal state are

also adjusted accordingly.

When an MDP is solved, the goal is to find a function π : S → A that returns an action a ∈ A

for each state s ∈ S. This function is called a (deterministic) policy and it dictates the action

that must be taken at each state to operate successfully on the environment. The execution of a

policy is done in the following way. First, the environment begins at an initial state s0. Then,

the policy π dictates the action a0 = π(s0) and this action is performed. Based on the transition

and the reward functions T and R, a transition is made to a state s1 with probability T (s0, a0, s1)

and a reward R(s0, a0, s1) is received. This process continues producing an environment history

s0, a0, r0, s1, a1, r1, s2, a2, . . . , sn; where sn is a terminal state.

Each time a given policy is executed starting from an initial state, the stochastic nature

of the environment will lead to a different sequence of transitions to the terminal state. The

quality of a policy is therefore measured by the expected reward of the possible environment

histories generated by that policy. Consequently, an optimal policy (denoted by π∗) is a policy that

yields the highest expected reward. Although there are different ways of combining the immediate

rewards, this thesis concentrates on an additive rewards model in which all the immediate rewards

are summed together. The upcoming sections describe a group of algorithms designed to find

optimal policies for problems formulated as MDPs.

2.2.2 Dynamic Programming and Value Iteration

Dynamic programming refers to a class of algorithms that can be used to compute optimal policies

given complete information about the environment represented as an MDP. The key idea is to

use so-called value functions to organize the search for good policies. A value function quantifies

the importance of the different states and this information can be used to select the best action
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to be performed at a given state by considering the possible transitions to the other states.

Value functions are defined in terms of a policy, given that they depend on a sequence of

transitions. The value of a state s under a policy π, denoted as V π(s), is the expected reward

when starting in s and following π thereafter:

V π(s) = E
[ ∞∑
t=0

γtrt | π, s0 = s

]
. (2.1)

In the formula, γ ∈ [0, 1] denotes a discount factor that diminishes the importance of future

rewards and it guarantees that the rewards sum is finite even for infinite transition sequences.

In the case of episodic MDPs γ can be set to 1, given that the tasks will always reach the terminal

state in a finite number of transitions.

A fundamental characteristic of the value functions is that they satisfy a recursive property

known as the Bellman equations [99]. In particular, given that the goal when solving an MDP is

to find the policy with the highest reward, it can be proven that the value function V π∗ for an

optimal policy π∗ can be written as follows:

V π∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′)
(
R(s, a, s′) + γV π∗(s′)

)
, (2.2)

which means that the value of a state under the optimal policy must be equal to the expected

reward from selecting the best action in that state and continuing to act optimally in the future.

Consequently, given the optimal value function V π∗ , it is possible to compute a corresponding

optimal policy by greedily selecting the action to be performed at each state s:

π∗(s) = argmax
a∈A

∑
s′∈S

T (s, a, s′)
(
R(s, a, s′) + γV π∗(s′)

)
. (2.3)

The Bellman equations are the basis of the value iteration algorithm for solving MDPs [99].

Its general idea is turning Equation (2.22.2) into an update rule for improving successive approx-

imations of the optimal value function. The algorithm begins with an arbitrary initial approx-

imation V0 (e.g., with all entries set to zero), and iteratively updates the value of each state s

according to the following assignment:

Vk+1(s) = max
a∈A

∑
s′∈S

T (s, a, s′)
(
R(s, a, s′) + γVk(s′)

)
, (2.4)

which produces a sequence that converges in the limit to the optimal value function. A practical

stopping condition is to measure the quantity maxs∈S |Vk+1(s)− Vk(s)| after each iteration and
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Agent Environment

Action at

Reward rt

State st+1

Figure 2.2: The reinforcement learning scenario (adapted from Sutton and Barto [1313]).

stop when it becomes sufficiently small. Once a good approximation is computed, a corresponding

optimal policy can be derived by means of Equation 2.32.3.

A major drawback of value iteration, and dynamic programming methods in general, is that

they involve repeated operations over all the states of the MDP. In problems in which the state

space is considerably large, even a single operation over the entire set S can be prohibitively

expensive. Besides, the complete definition of the functions T and R may be difficult if an analytic

representation of the environment cannot be fully-computed in advance. As an alternative, the

algorithms presented in the remaining two sections do not require a complete specification of the

MDP, they rely instead on simulating interactions with the environment.

2.2.3 Value-Based Reinforcement Learning

Reinforcement learning [1313] is a machine learning and artificial intelligence paradigm that deals

with learning in sequential decision-making problems in which there is limited feedback. The class

of problems that can be solved with reinforcement learning techniques are often the same that

can be represented as MDPs, but contrary to the dynamic programming methods, reinforcement

learning algorithms do not require a complete specification of the environment (i.e., they are

model-free). This characteristic makes reinforcement learning a more suitable solution technique

for problems with large state spaces or incomplete information.

Figure 2.22.2 illustrates the interaction between an agent and the environment in a reinforcement

learning scenario. At a given time step t, the environment is assumed to be in a state st and the

agent performs the action at. Then, the environment responds by transitioning to an updated

state st+1 and it returns this information to the agent along with an immediate reward rt for the
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action at. In an episodic task, this interaction loop is repeated until the terminal state is reached.

The current state and the reward information constitute the only perceptions that the agent gets

from the environment. The goal of the agent is to learn the actions that it must perform to

maximize the long-term expected reward.

Given that there is limited information about the environment, the optimal policy must be

learned by trial-and-error. The agent has to explore the environment by performing actions and

perceiving their consequences in order to learn the best action to be performed at each state.

This learning approach comes with certain challenges. At some point in the interaction loop, the

agent faces a decision between reinforcing the knowledge it has already acquired about what it

believes to be the best action in a given state, or trying out other less explored actions that could

lead to higher rewards. A simple and popular way of balancing this exploration and exploitation

trade-off is to use the so-called ε-greedy exploration criterion, in which the agent chooses the best

action with probability 1 − ε, and a new action uniformly at random with probability ε. The

value ε ∈ [0, 1] is a parameter that weighs the relative importance of exploration and exploitation.

As in dynamic programming, many reinforcement learning algorithms proceed to solve the

problem by estimating a value function—although an alternative representation is used in this

scenario. Instead of learning an optimal state-value function such as Equation 2.22.2, the targeted

function is an analogous optimal action-value function defined as:

Qπ
∗(s, a) =

∑
s′∈S

T (s, a, s′)
(
R(s, a, s′) + γmax

a′∈A
Qπ
∗(s′, a′)

)
, (2.5)

which returns the expected cumulative reward from performing an action a in the state s and

continuing to act optimally according to the policy π∗ thereafter. Given an estimation of Qπ∗(s, a),

a corresponding optimal policy π∗ can be calculated similarly to Equation 2.32.3:

π∗(s) = argmax
a∈A

Qπ
∗(s, a). (2.6)

However, in this case the definition of the transition function T is not necessary, given that all the

required information is obtained through the Q function. The remaining of this section describes

two different algorithmic approaches for the estimation of optimal action-value functions.

16



2.2.3.1 Q-learning

One of the most popular model-free methods to estimate an optimal action-value function for a

reinforcement learning problem is the Q-learning algorithm [3737]. The basic idea of Q-learning is

to use a similar update rule as in value iteration to adjust the estimated value of state-action

pairs based on the immediate rewards and the current estimated value of the best future actions:

Qk+1(st, at) = (1− α)Qk(st, at) + α

(
rt + γmax

a′∈A
Qk(st+1, a

′)
)
. (2.7)

The parameter α ∈ [0, 1] is a learning rate that balances the the influence of the previous

estimation and the newly-acquired information.

In episodic tasks, the update rule can be executed either online, at the time each reward is

received during the interaction loop, or offline at the end of an episode when a complete environ-

ment history has been collected (the latter is the approach followed in this thesis). Q-learning

will converge to the optimal policy under the assumption that each state-action pair is visited

an infinite number of times (hence the need for a separate exploration mechanism) and that the

learning parameter α is sufficiently small [3838]. In practice, the algorithm is generally run for a

fixed number of simulated episodes.

Although Q-learning does not require a complete representation of the environment to learn

an optimal policy, in its basic form it is still unsuitable for solving MDPs with a large number of

states. The problem is that, as in value iteration, it is assumed that the estimates of the value

function are stored in a look-up table with one entry for each state-action pair. This assumption

causes problems, not only with the amount of memory necessary to store large tables, but also

with the number of simulated episodes needed to fill them accurately. This situation motivates the

use of function approximation techniques to build more compact representations of the Q function,

which are both smaller in size than the tabular representation and that may potentially generalize

information from one state onto others. The idea of using a function approximation technique

is not to store the Q(s, a) values for every state-action pair separately, but to store them as a

function of the state and action. The next section presents one way of achieving this goal through

the use of artificial neural networks.
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2.2.3.2 Neural Fitted Q-iteration

Neural fitted Q-iteration (NFQ) [3939], which in turn is a realization of the fitted Q-iteration

model [4040], is a reinforcement learning method that can be used to efficiently learn an action-

value function represented by an artificial neural network. This algorithm follows an alternative

learning process for estimating the Q function. Instead of discarding each transition after updating

the Q function as it is done in the basic Q-learning, all previous transitions are stored and this

information is reused every time the Q function is updated. The consideration of the entire

transition history instead of a single online sample enables the application of advanced supervised

learning methods to train the Q function, hence requiring fewer episodes to obtain sufficiently

good approximations.

Specifically, NFQ operates in a so-called growing-batch learning process (see Lange et al. [4141]

for a review), which consists of two phases repeated one after the other. The first phase is

an exploration phase where interactions with the environment are simulated following some

exploration policy. During this phase, the Q function remains unchanged and it is only used to

guide the interaction with the environment. After enough transitions are collected, the interaction

with the environment stops and a learning phase begins in which the Q function is updated

considering all the previous history of transitions. These two phases are repeated iteratively, thus

incrementally growing the batch of stored transitions using intermediate policies.

Figure 2.32.3 shows the main loop of the NFQ algorithm, which runs during the learning phase

of the growing-batch learning process. It consists of two major steps: the generation of the set of

training patterns P and the training of a neural network with those patterns. Each pattern in P

corresponds to an input to the neural network and its corresponding target output generated

from a transition 〈s, a, r, s′〉 in the data set D. The input is the state-action pair 〈s, a〉 and the

target output is computed using the formula:

r + γmax
a′∈A

Qk(s′, a′), (2.8)

which is essentially the Q-learning update rule from Equation 2.72.7 except that it does not include

the learning rate parameter α. The use of a learning rate is not necessary in this case, given that

all previous transitions are remembered. The RPROP algorithm [4242] is used for the supervised

training of the neural network. The Q function is represented using a multilayer perceptron,
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Input: A data set D of transition samples 〈s, a, r, s′〉.
Output: An approximation of the Q action-value function
represented by a neural network.

1: Initialize Q0 arbitrarily.
2: k ← 0
3: repeat
4: Generate a set of training patterns P from D and Qk.
5: Use RPROP and P to train a neural network representation of Qk+1.
6: k ← k + 1
7: until a maximum number of iterations is reached.
8: return the action-value function Qk.

Figure 2.3: Main loop of neural fitted Q-iteration (adapted from Riedmiller [3939]).

which is a type of feedforward artificial neural network. Section 3.3.23.3.2 gives additional information

about the particular neural network structure used in this thesis.

2.2.4 Evolutionary Algorithms for Reinforcement Learning

An alternative method to find a good policy is to search directly in the policy space, in which

case the reinforcement learning problem can be expressed as a stochastic optimization problem.

Under this formulation, the goal is to find a policy π∗ that maximizes an objective function f

among all possible policies π ∈ Π. Given the stochastic nature of the environment, f(π) can be

thought as a random variable, and the optimal policy becomes:

π∗ = argmax
π∈Π

E [f(π)] , (2.9)

i.e., the policy that maximizes the expected value of the objective function. In an episodic MDP,

the objective function may be defined as the expected cumulative reward obtained in an episode

executed following the policy, and it can be approximated by the average cumulative reward

obtained in a number of simulated episodes. This thesis focuses on evolutionary algorithms

among the different optimization methods available to solve this problem (see Moriarty et al. [4343]

and Whiteson [4444] for surveys on the use of evolutionary optimization for reinforcement learning).

Genetic algorithms (GA) [4545, 4646] are one of the earliest and most representative examples of

evolutionary computation. These algorithms approach the problem of finding the global optimum
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Input: A fitness function f and a group of control parameters—e.g.,
population size (N), crossover probability (pc), mutation probability (pm).
Output: A solution that maximizes the fitness function f .

1: Randomly generate an initial population P0 with N solutions.
2: g ← 0
3: repeat
4: Calculate the fitness of the solutions in Pg according to f .
5: Initialize a new empty population Pg+1.
6: Copy the best solution from Pg into Pg+1 (elitism).
7: repeat
8: Choose parent solutions according to a selection operator.
9: With probability pc, apply the crossover operator.

10: With probability pm, apply the mutation operator.
11: Add the resulting solutions to the new population Pg+1.
12: until the new population Pg+1 contains N solutions.
13: g ← g + 1
14: until a termination criterion is satisfied.
15: return the solution with the maximum fitness in Pg.

Figure 2.4: Pseudocode of a genetic algorithm.

of a function by following a procedure inspired by the process of natural selection—i.e., survival

of the fittest. GAs iteratively improve a population of solutions, by creating new solutions that

share characteristics of the best solutions in the population. The general idea is that structures

associated with good solutions can be combined to form even better solutions.

Figure 2.42.4 shows the pseudocode of a GA as used in this thesis. The algorithm starts by

generating an initial population of solutions and evaluating each generated solution in the objective

function (i.e., computing their fitness). Then, a group of parent solutions are selected from the

population by using a selection operator. Various selection operators can be used, but all share

the basic idea of promoting the selection of better solutions with higher probability. Once the

parent solutions have been selected, new candidate solutions are created by applying crossover

and mutation operators. The crossover operator combines subsets of the parent solutions by

exchanging some of their parts, while mutation slightly perturbs the recombined solutions to

introduce variation in the population. The crossover and mutation steps can be skipped with

certain probabilities, which offers the possibility of copying unmodified parents or offspring that
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did not suffer mutation into the new population. Each newly created solution becomes part of a

new population and this completes an iteration (referred to as a generation). The best-performing

solution is always kept across generations, as part of a mechanism known as elitism that ensures

that it is never lost because of the effect of the selection operator. After a generation is completed,

the new population replaces the current population and the next iteration is executed (starting

with the evaluation), unless a termination criterion is satisfied.

Direct policy-search methods maintain explicit representations of the policies and consider

only their overall performance, without computing value estimates for each state-action pair.

The selection against poor individual actions is implicitly made by selecting against poorly-

performing policies. As a consequence, evolutionary computation methods for reinforcement

learning sometimes require more interactions with the environment than value-based methods

to find a good policy—especially in highly stochastic environments in which many simulated

episodes may be necessary to obtain reliable estimations of the expected cumulative reward of the

policies [4747]. However, since policies need only to specify an action for each state instead of the

value of each state-action pair, direct policy-search methods facilitate the design of representations

tailored to the problem at hand—especially with the use of evolutionary optimization techniques,

such as GAs, that give great flexibility for choosing a solution representation.

2.3 Summary

This chapter presented an overview of the models and techniques supporting the solution methods

developed in this thesis. The first part introduced two models for configuration knowledge

representation: rule-based and constraint-based models. The latter model based on CSPs offers

greater flexibility given that it allows specifying the constraints as arbitrary Boolean expressions

and the order of the variable assignments does not affect the model semantics. In the second

part of the chapter, the MDP formalism for sequential decision-making problems and a group of

techniques for solving these problems were described. The techniques based on the reinforcement

learning paradigm (in particular, NFQ and the GA-based approach) are the most relevant to this

thesis, given that they facilitate solving MDPs with a large number of states. In the next chapter,

those two MDP solution methods and the described configuration models are combined into a

framework for calculating optimal configuration processes efficiently.
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3 Proposed Solutions

This chapter introduces the proposed techniques to calculate optimal configuration processes

efficiently. The first section begins by defining the configuration models studied in this thesis,

along with a configuration process and some necessary terminology. In the remainder of the

chapter, the problem of optimizing the user interaction is formulated as an MDP, and two

solution methods are presented.

3.1 Configuration Models

As considered in this thesis, a configuration model for an arbitrary artifact consists of a tuple with

three elements. The first and second elements are a set of variables defining the aspects that can

be configured and their possible choices, respectively. The third element is a set of restrictions

that determines how the different variables interact with each other to form a valid instantiation

of the artifact. The term artifact refers to anything that can be subject to configuration, for

example, an object such as a cellphone or a software system.

Each configuration variable Vi, from the set V = {V1, V2, . . . , Vn} that constitutes the first

element of the configuration model, has an associated nonempty discrete set Di containing the

|Di| possible values in the domain of the variable. Moreover, a configuration is defined as a

set of assignments of specific values to some or all of the variables in V, where each individual

assignment formed by a variable and its corresponding value is called a configuration decision.

A configuration without any decision is said to be empty, and a configuration is considered to

be complete if it contains a decision for each one of the n variables in the model. Consequently,

a partial configuration has at least one unassigned variable.

The restrictions, on the other hand, can be specified in one of two alternative forms—resulting

in either a rule-based or a constraint-based configuration model:
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i. In rule-based models, the restrictions are given as a set R of if-then rules of the form X → Y,

where both the if part (i.e., X) and the then part (i.e., Y ) are sets of variable assignments.

The semantics of each rule are such that, if the decisions in a partial configuration satisfy

the assignments in the if part of the rule (i.e., each variable has assigned the same value),

then the rule is applied by extending the configuration to include the decisions dictated

by the then part of the rule. It is assumed that all the rules have an associated priority

that allows resolving any possible inconsistencies among the dictated configuration deci-

sions. This specification corresponds to an implementation of the rule-based configuration

representation discussed in Section 2.1.12.1.1.

ii. Constraint-based configuration models offer a more flexible representation. In this case,

restrictions are given as a set C of constraints in the form of arbitrary Boolean predicates

defined for subsets of the configuration variables in V. As it was explained in Section 2.1.22.1.2,

this formulation of the configuration model corresponds to a CSP. Notice that constraint-

based models generalize rule-based models, since any rule of the form X → Y can be

transformed to the logically equivalent predicate ¬X ∨ Y . Given as a predicate in a CSP,

this representation has the added benefit of inference being performed from Y onto X, in

addition to from X onto Y as it is only done with the rule-based representation.

A partial or complete configuration is said to be consistent if it satisfies all the restrictions in

the configuration model, particularly in the case of constraint-based models. Therefore, the goal of

the configuration process is to generate complete and consistent sets of variable assignments, that

correspond to correct configurations of the given artifact. The process of configuring an artifact

consists of starting with an empty configuration and making sequential configuration decisions

about variables that have not yet been decided upon, until a complete configuration is obtained.

Figures 3.13.1 and 3.23.2 illustrate the configuration processes for rule-based and constraint-based

configuration models, respectively. Both procedures follow the same general structure: they start

with an empty set of variable assignments and make a configuration decision about an unassigned

variable at each iteration of the main configuration loop. After the main loop ends, the set of

assignments A contains a complete configuration of the artifact described by the input model.
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Input: A rule-based configuration model 〈V,D,R〉.
Output: A complete configuration of the variables in V.

1: Initialize an empty set of assignments A← {}.
2: q ← 0
3: repeat
4: Choose an unassigned variable Vi from V.
5: Select a value vi ∈ Di for Vi.
6: A← A ∪ {Vi = vi}
7: repeat
8: for each X → Y ∈ R do
9: if A satisfies X then

10: A← A ∪ Y
11: end if
12: end for
13: until no new assignments are added to A.
14: q ← q + 1
15: until A is complete.
16: return the complete configuration A.

Figure 3.1: Configuration process with a rule-based configuration model.

Input: A constraint-based configuration model 〈V,D,C〉.
Output: A complete configuration of the variables in V.

1: Initialize an empty set of assignments A← {}.
2: q ← 0
3: repeat
4: Choose an unassigned variable Vi from V.
5: Select a value vi ∈ Di for Vi.
6: Di ← {vi}
7: Enforce consistency in the CSP 〈V,D,C〉.
8: for j = 1, . . . , |V | do
9: if Vj is unassigned and |Dj | == 1 then
10: A← A ∪ {Vj = vj ∈ Dj}
11: end if
12: end for
13: q ← q + 1
14: until A is complete.
15: return the complete configuration A.

Figure 3.2: Configuration process with a constraint-based configuration model.
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The procedures differ in the way they propagate the implications of each configuration decision

(i.e., lines 6–13 in Figure 3.13.1 versus lines 6–12 in Figure 3.23.2). In rule-based models (Figure 3.13.1),

each rule is considered for application after a configuration decision has been added to the set of

assignments. Notice that this must be done also for decisions dictated by the then part of a rule,

and thus a loop is introduced in line 7 to revise the rules again in that case. In constraint-based

models (Figure 3.23.2), a configuration decision on a variable essentially reduces the domain of the

variable to a single value for the rest of the configuration process. A certain level of consistency is

then enforced in the corresponding CSP to propagate the effect of each decision onto the domains

of the unassigned variables. If as the result of the constraint-propagation mechanism, the domain

of an unassigned variable is reduced to a single value, then the corresponding decision is added

back to the set of assignments in line 10. This situation means that the value of an unassigned

variable was automatically inferred from the set of currently assigned variables. Ideally, global

consistency should be enforced after every configuration decision, but generally only a weaker

form of consistency can be used in practice due to the high computational cost of the algorithms

that propagate the implications of the assignments.

In an interactive configuration process (i.e., with a ‘human in the loop’), the step in line 5

of both Figure 3.13.1 and 3.23.2 is generally implemented by asking the users a question about their

desired value for the chosen configuration variable. In both procedures, the variable q counts

the number of questions that were asked to obtain a complete configuration of the artifact. This

value is an indication of the user’s involvement in the configuration process, and it is precisely

the target for minimizing the user interaction in the study carried out in this thesis. In the next

section, this optimization problem is formulated as an MDP.

3.2 Markov Decision Process Formulation

As mentioned in the previous section, the aim pursued for optimizing the user interaction in a

configuration process is to minimize the number of questions being asked to the user (i.e., the

final value of the variable q in Figures 3.13.1 and 3.23.2). The rule-based and constraint-based models

considered in this thesis offer mechanisms that allow inferring the values of unassigned variables

from a group of previously-assigned variables. In rule-based models, inference is performed by

expanding the then part of a rule, while constraint-based models rely on constraint-propagation
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algorithms. These mechanisms can be used to avoid asking questions to the user about variables

that could potentially be answered automatically from other user’s decisions.

This optimization problem can be formulated as a sequential decision-making task, where it

must be decided which question to ask to the user at each step of the configuration process (i.e.,

choosing an unassigned variable in line 4 of Figures 3.13.1 and 3.23.2). Clearly, the sequential decisions

depend on the user’s responses, and thus it is not generally possible to establish a particular

order for asking the questions that minimizes all possible user interactions. Therefore, solution

methods for this problem must act by optimizing the expected performance criterion considering

the uncertainty in the user’s responses. MDPs offer a well-suited formalism for describing this

task in terms of a set of states S, a set of actions A, and transition and reward functions T and

R, respectively (see Section 2.2.12.2.1).

An episodic MDP can be used to model the task of optimizing the user interaction in a

configuration process. The states in the set S capture the knowledge that has been acquired

so far about the user’s configuration decisions (represented as a set of variable assignments),

while each action in A denotes asking a question to the user about a configuration variable. The

initial state in the MDP corresponds to an empty configuration, given that no decision has been

made at the time. A single terminal state is used to represent the situation in which a complete

configuration of the artifact is known. It is not necessary to have separate states for every possible

complete configuration, given that no questions are asked after the configuration is complete.

However, there is one state for every possible partial configuration of the variables, where the

intermediate decisions of which question to ask next take place.

When a question about an unassigned variable is asked in a given state, an answer is received

back from the user and it causes a transition to another state in which the value of a greater

number of configuration variables is known. Given that each user’s configuration decision (and

consequently, the resulting state) is not known beforehand, the uncertainty in the user’s responses

is modelled in the MDP as a transition function T (s, a, s′) that gives the probability of leaving the

state s by performing an action a and moving to a state s′. Specifically, each entry in the transition

function of the MDP is determined by the conditional probability of receiving a particular answer

from the user, given his or her current configuration decisions. This probability distribution

gives great flexibility for modelling the users’ preferences in the configuration process. If no prior
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information is available about the users’ intentions, the probability distribution may be defined

as returning the same value for every possible answer. However, in situations where configuration

records from previous users are available, this information can be used to compute the conditional

probabilities from the data, reflecting the actual interests of the users configuring the artifact.

The destination state s′ in a transition is the result of both the configuration decision made by

the user and the application of the inference mechanisms of the configuration model. Due to the

effect of the expansion of the then part of the rules in rule-based models and the use of constraint-

propagation in constraint-based models, more than one variable may be assigned after a transition

is completed. Given that the goal is to minimize the user interaction in the configuration process,

the rewards in the MDP are defined in terms of the number of variables that are automatically

discovered in each transition. By solving the formulated MDP towards actions (i.e., questions

asked to the users) that maximize the expected reward (i.e., number of configuration variables

automatically discovered), the expected user interaction is minimized. The user will not need to

provide a decision for the configuration variables that were automatically discovered.

Each entry of the the reward function R(s, a, s′) is thus given by the difference |s′| − |s| − 1,

where |s| and |s′| denote the number of variable assignments in the states s and s′, respectively.

For transitions in which only the user-given configuration decision becomes known, the immediate

reward will be zero. Moreover, all transitions that go from a state s to the same state s will be

assigned a reward R(s, s) = −1 (except in the terminal state, where the usual convention for

episodic MDPs of having zero rewards for all transitions is followed in order to ensure that the

cumulative rewards sum is finite). Although it is assumed by this definition of R(s, a, s′) that every

question asked to the users comes with a constant cost of one unit of reward, more elaborated

reward models could be employed. For example, questions associated with variables that demand

a considerable effort from the user in order to come up with a configuration decision (because, e.g.,

they involve a large number of possible answers) might be penalized in the R(s, a, s′) function with

the goal of promoting policies that try to avoid overwhelming the users with difficult decisions.

The solution of the MDP is expressed in terms of a policy that dictates which question should

be asked at each state of the configuration process, considering the knowledge acquired so far

about the user’s preferred configuration. As the result of the rewards being defined in terms of the

number of automatically-discovered variables, this policy is optimal in the sense that it minimizes
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the expected number of questions to be asked to the users in order to obtain a fully-specified

configuration. However, given that the policy is defined for every possible configuration state, the

user still has complete control over the order in which he or she answers the questions if inclined

to do so. At any point of the configuration process, the user can safely ignore the suggested

question and answer a different one, continuing later with an optimized sequence of questions

for the remainder of the configuration process. This additional flexibility can help to deal with

situations in which the sequence of questions proposed by the optimized policy results unnatural

or not logically evident to the user.

3.3 Solution Methods

The number of states in the formulated MDP grows exponentially with the number of configuration

variables. As an illustrative example, the MDP corresponding to a configuration problem with n

binary variables would have (2 + 1)n − 2n + 1 states in total. In this formula, one is added to the

possible values of the variables to account for the states in which the variables have not yet been

assigned, and the terminal state is counted only once for all the 2n possible complete configurations.

As it will be evidenced in Section 4.2.14.2.1, an MDP with this many states imposes serious scalability

limitations for solution methods that keep track of pieces of information regarding every individual

state. On the one hand, the computation of a complete definition of the functions T andR becomes

a prohibitively expensive task, given that it is necessary to compute and evaluate all possible

transitions beforehand. On the other hand, even if model-free techniques are used, it becomes

rapidly unmanageable to store any explicit information for every possible state in the MDP.

In order to solve the optimization problem associated with minimizing the user interaction in

a configuration process efficiently, it is necessary to employ methods that simulate interactions

with the environment described by the MDP, and are able to learn effectively from a limited

number of experienced transitions compared to the total number of states in the MDP. The study

presented in this thesis focuses on the use of the NFQ algorithm and a GA to solve the resulting

reinforcement learning problem (see Sections 2.2.3.22.2.3.2 and 2.2.42.2.4, respectively). The remainder of

this section discusses how to adapt these techniques for the problem in question. Given that both

algorithms rely on an existing method for simulating interactions with the environment, the first

part of the section briefly describes the simulation of a configuration process.
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3.3.1 Simulation of a Configuration Episode

Figures 3.13.1 and 3.23.2 outline the processes of instantiating an artifact described in terms of the

configuration models studied in this thesis. The configuration processes guide the user starting

with an empty assignment of the variables and ending up with a complete configuration of

the artifact, while transitioning through a number of intermediate partial configurations. The

resulting set of transitions corresponds precisely to an episode in the MDP formulated for the

optimization of the user interaction in the process. The initial state corresponds to the empty

configuration at the beginning, and the terminal state to a complete configuration being obtained

in the end. Given that the only required user interaction is to provide an answer to the question

asked in line 5, a configuration episode can be easily simulated by sampling the user’s responses to

the questions. The answers can be generated according to the individual conditional probabilities

of the user’s responses, given his or her current configuration decisions as discussed in Section 3.23.2.

Each transition in the simulated configuration process corresponds to an experienced transition

〈s, a, r, s′〉 in the MDP. These transitions serve as the input to the NFQ algorithm and the GA

for collecting information about the environment and deciding on an optimal policy.

3.3.2 Neural Fitted Q-iteration

In NFQ, all the generated transitions 〈s, a, r, s′〉 resulting from the simulated configuration

episodes are stored in a data set. This data set is used throughout the execution of the al-

gorithm to train an artificial neural network approximation of the action-value function Q(s, a)

(see Section 2.2.3.22.2.3.2 for details). The function Q(s, a) returns the expected cumulative reward

(i.e., the total number of automatically-discovered answers) that can be obtained from asking

the question corresponding to the action a in the configuration state s. This information can be

used to derive an optimal policy for minimizing the user interaction in the configuration process.

The only aspect of the NFQ algorithm that needs to be adapted to the problem at hand is the

structure of the artificial neural network representing the Q action-value function. A feedforward

neural network with a single hidden layer is used in this thesis. The general inner workings of this

model as a function approximation technique are presented first, before explaining the structure

of the specific network used to represent the action-value function for the formulated MDP.
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Figure 3.3: Feedforward neural network with a single hidden layer (adapted from van
Eck and van Wezel [4949]).

3.3.2.1 Feedforward Neural Network with a Single Hidden Layer

Artificial neural networks are function approximation techniques inspired by the way biological

neural networks work in the brain (see Bishop [4848] for a good introduction to the topic). They

are generally represented as a system of interconnected units (also called neurons) which pass

information to each other. Although their structure may vary, the neurons are usually arranged

together forming a number of network layers. One of the layers is distinguished as receiving the

input of the function represented by the network, and another as returning the computed output.

The connections go from one neuron to another and they have associated numeric weights that

can be adjusted to obtain an approximation of a function implicitly given by pairs of input and

output training examples.

Feedforward neural networks (also known as multilayer perceptrons), are a commonly-used

type of artificial neural networks. In these models, the neurons that form the different layers

have connections that go only in one direction: from the input layer, passing through a number

of intermediate hidden layers, and going into the output layer. Figure 3.33.3 shows a graphical

representation of a feedforward neural network with a single hidden layer, such as the one used
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Figure 3.4: Plot of the hyperbolic tangent activation function.

in this thesis. The input layer contains n units denoted by x1, . . . , xn which are all connected

to the l units h1, . . . , hl in the hidden layer. Each unit in the hidden layer is in turn connected

to the m units y1, . . . , ym that constitute the output layer of the network. The network also

contains two additional neurons x0 and h0 (called bias units) connected to the hidden and output

layers, respectively. The weights associated with the connections that go into the hidden layer

are denoted by w(1)
ji , and the ones that go into the output layer by w(2)

kj .

Given the network structure described above, the function approximated by the artificial

neural network is evaluated as follows. Each neuron in the network has an associated function

(called the activation function) that is used to compute the output of the unit. The output of

each neuron is computed by calculating first the sum of its input values scaled by their respective

connection weights, and then applying the activation function to this sum. In the experiments

performed in this thesis, identity activation functions are employed with the neurons in the input

layer, and the hyperbolic tangent activation function given by

tanh(x) = ex − e−x

ex + e−x
(3.1)

is used in the hidden and output layers (see Figure 3.43.4). The bias units use an activation function

that returns a constant value of 1 to allow obtaining a nonzero output from the input and hidden

layers even if the the output of all the neurons in these layers is zero. Overall, the value of each
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output unit yk ∈ {y1, . . . , ym} shown in Figure 3.33.3 is calculated as follows:

yk = tanh

 l∑
j=0

w
(2)
kj tanh

(
n∑
i=0

w
(1)
ji xi

). (3.2)

When the network is trained with a set of input and output examples (such as the patterns

generated from the 〈s, a, r, s′〉 transitions in the NFQ algorithm), the weights w(1)
ji and w(2)

kj are

adjusted to make it return the same output observed in the training data. This training process

can be seen as an optimization process in which the error between the returned values and the

desired output must be minimized. In the context of artificial neural networks, this minimization

is carried out by specialized gradient-descent algorithms (such as the RPROP algorithm [4242] used

in NFQ) that propagate the error backwards through the network and adjust the weights in the

direction of the negative gradient of the error.

3.3.2.2 Representation of the Action-Value Function

Several alternative artificial neural network architectures can be employed to represent the action-

value function Q(s, a) [5050]. Considering that the neural network must be responsible for mapping

the state-action pairs 〈s, a〉 to their corresponding scalar values Q(s, a), it is possible to use either

one of the following approaches:

i. A separate network for each action with s as input and a single scalar output Q(s, a).

ii. One network with both s and a as input and a single scalar output Q(s, a).

iii. One network with s as input and a separate scalar output Q(s, a) for each action a.

The third approach was selected in this thesis, taking into consideration the experiences

reported by van Eck and van Wezel [4949], Riedmiller [5151], and Mnih et al. [5252]. Specifically, a

single neural network with separate outputs for each action offers two important advantages.

First, because a single network is used to represent the Q function, it is possible to generalize the

information provided by training examples over both states and actions, whereas generalization

is only possible over states when a separate network is used for each action. Secondly, by

having one output for each action in the same network, a single forward evaluation of the neural
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network is sufficient to determine the expected reward of all actions at a given state—reducing

the computational cost of selecting the best action at each state as a result.

Figure 3.53.5 illustrates the architecture of the artificial neural network used along with NFQ

for the optimization of the user interaction in a configuration process. The network is composed

of three layers of neurons: an input layer, one hidden layer, and an output layer connected in

a feedforward network structure as described in the previous section. The input to the neural

network specifies a configuration state s of the MDP, represented with a number of input units

for each configuration variable. The input layer is followed by a single hidden layer with as many

neurons as the number of variables in the configuration model. Lastly, the output layer contains

one output unit for every action a1, . . . , an in the MDP (i.e., also the same as the number of

variables). The output units return the estimated Q values for every action in the state s given

as the input to the network.

The configuration variables in the state s are coded using a number of so-called ‘dummy’

auxiliary variables (see e.g. Draper and Smith [5353] for a detailed explanation). Using this coding

scheme, the values in the domain Di of each variable Vi ∈ V are represented as |Di| binary
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variables, each one corresponding to one of the possible values of the variable. If a variable does

not have a value assigned in the configuration state s, then all the auxiliary variables are set to

zero. Otherwise, only the auxiliary variable corresponding to the assigned value is given the value

one, and the rest is assigned the value zero. As it is usually suggested for improving the training

efficiency of the neural network (e.g., by LeCun et al. [5454]), the input values one and zero are

presented to the neural network as 1 and −1, respectively.

As mentioned in the previous section, the units in the output layer of the neural network use

the hyperbolic tangent activation function. Therefore, the network returns values between −1

and 1 (see Figure 3.43.4), and they must be scaled before being interpreted as cumulative rewards in

the formulated MDP. Given that at least one question must be asked in a configuration episode

with n configuration variables, the cumulative rewards will always be between 0 and n−1. Hence,

the output values are linearly scaled from the [−1, 1] interval to [0, n− 1].

One important remark about this neural network representation of the action-value function

Q(s, a) is that no specially-crafted features about the problem being solved are given to the model.

As it was described above, the input to the neural network is simply the variable assignments in

a particular configuration state, and thus the network has to learn by itself useful features for

assessing the importance of taking each action at every configuration state. Intuitively, the neural

network achieves this goal by discovering interactions between the configuration variables and

how they influence the result of the action-value function. These interactions are represented by

means of the weights assigned to the different connections between the neurons in the network.

3.3.3 Direct Policy Search Using a Genetic Algorithm

Solving a sequential decision-making problem formulated as an MDP using evolutionary algo-

rithms involves choosing an explicit policy representation and searching directly in the policy

space for a solution that gives the highest expected cumulative reward (see Section 2.2.42.2.4 for de-

tails). Each candidate policy is evaluated by considering the average cumulative reward obtained

in a number of simulated episodes as its expected cumulative reward. Under this formulation,

the problem of finding an optimal policy for an MDP becomes a stochastic optimization problem.

The second solution method for the optimization of the user interaction in a configuration

process proposed in this thesis consists of solving the associated MDP using a GA. The first part
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of this section describes the developed solution representation and the fitness evaluation. The

second part provides the details of the genetic operators used in the GA implementation (i.e.,

selection, crossover and mutation).

3.3.3.1 Policy Representation and Fitness Evaluation

The use of a GA to solve an MDP gives great flexibility for choosing a policy representation. The

solution of the MDP associated with the optimization of the user interaction in a configuration

process presented in this section exploits this flexibility to develop a compact policy representation

by considering more closely the underlying structure of the MDP state space.

Following the MDP formulation described in Section 3.23.2, if the action selection is restricted

to questions about variables whose values have not yet been assigned in a given state, then every

transition will lead to a different state in which the value of a greater number of configuration

variables is known. This is a direct consequence of the incremental definition of the configuration

process described in Section 3.13.1. Every interaction with the user produces a new configuration

decision. Therefore, the state space in the formulated MDP is acyclic in the sense that it is not

possible to return to a previously-visited state (or more generally, to a state with fewer known

configuration variables).

This acyclic structure of the MDP, along with the episodic constitution of the configuration

task, motivates the use of a simpler policy representation that is still able to capture the essential

information about the solutions of the problem. In order to minimize the user interaction, the

policy must provide a way of deciding which question (related to an undecided variable) should

be asked at each iteration of the configuration process. This purpose can be achieved by defining

preference relations between the questions, given in terms of their expected cumulative reward

when asked before or after other questions. Specifically, when the GA is used to solve the MDP,

the goal of finding an optimal mapping of every possible state to an action is transformed into

searching for a permutation sequence of the configuration variables producing the highest expected

cumulative reward.

A (permutation) sequence of the configuration variables determines an order that must be

followed for asking their corresponding questions, and this order effectively constitutes a policy

for guiding the configuration process. The first question dictated by the sequence is asked at the
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beginning of the configuration process, followed by the next unassigned variable in the sequence

after receiving each user response and propagating its implications. The GA can evaluate the

fitness of a solution by computing the average cumulative reward (i.e., the number of variables

that are automatically discovered) obtained in a number of simulated episodes following the

permutation sequence. Notice that in this case the values of the variables are not considered as

part of the policy representation, but are nonetheless taken into account indirectly through the

episodes simulated to evaluate the corresponding policy’s performance.

3.3.3.2 Genetic Operators

The remainder of this section presents a description of the genetic operators that work with

the permutation sequence policy representation as part of the complete pseudocode of the GA

presented in Figure 2.42.4. The initial population of solutions evolved by the GA is generated by

sampling uniformly random permutations of the indices 1, 2, . . . , n corresponding to the configu-

ration variables in V. Then, the GA proceeds to produce subsequently improving populations of

candidate solutions after evaluating the existing solutions and generating new ones based on the

best-performing policies in each population.

There are several methods available for selecting the best-performing solutions, given a popu-

lation of solutions and their associated fitness evaluation. The implementation of the GA used

in this thesis relies on binary tournament selection [4646]. This procedure involves randomly se-

lecting two solutions using a uniform probability distribution, and then choosing the best one

(i.e., the one with highest expected cumulative reward) as the tournament winner and considered

for recombination. Two such tournaments are performed to select the parents to be recombined

with the crossover operator. This selection procedure is equivalent to assigning the selection

probability of the solutions linearly according to their fitness rank [5555].

By having the MDP policies encoded as permutation sequences, it is possible to take advantage

of the considerable number of genetic operators that have been proposed and widely studied for

this representation in the context of combinatorial optimization problems [5656, 5757]. However, not

all crossover operators working on permutation sequences seem appropriate for the recombination

of policies as encoded in the problem at hand. As reviewed by Chen and Smith [5858, 5959], some

operators (e.g., order crossover [6060]) were designed for problems in which the solutions are modelled
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Parent 1: 〈2, 5, 1, 3, 4〉
Parent 2: 〈2, 4, 3, 5, 1〉
Parent selection: 1, 2, 1, 2, 2

〈〉
〈2〉
〈2, 4〉
〈2, 4, 5〉
〈2, 4, 5, 3〉

Offspring: 〈2, 4, 5, 3, 1〉

Figure 3.6: Offspring generation using the precedence preservative crossover operator.

as a Hamiltonian cycle, and their cyclic constitution is irrelevant in this scenario. Others, such

as the edge recombination operator [6161], focus on how the different permutation elements occur

side-by-side (i.e., their relative order). Conversely, in a sequence of questions encoding an MDP

policy for optimizing the user interaction in a configuration process, it is of particular interest

to consider how the different permutation elements precede each other regardless of how many

elements may lay in between. Once a question is asked, the value of the associated variable

remains available for all the upcoming configuration decisions. Therefore, an appropriate crossover

operator for this problem must be able to work with the absolute order between the different

elements of the permutation sequence.

The precedence preservative crossover operator (or PPX) introduced by Bierwirth et al. [6262]

in the domain of job-shop scheduling problems [6363] satisfies those requirements. This operator

passes on absolute precedence relations among the elements of two parental solutions to one

offspring as follows. A list of the same length as the solutions is randomly generated by sampling

with replacement over the set {1, 2}. This list serves as a reference that defines the order in which

elements are successively drawn from each one of the parents identified with the numbers 1 and 2,

respectively. The PPX operator first initializes an empty offspring, and then the leftmost element

in one of the two parents is selected in accordance to the sampled reference list. After an element

has been selected, it is deleted from both parents and appended to the offspring. These steps are

repeated until both parental sequences are empty, and hence the offspring contains all elements

in the sequence. Figure 3.63.6 illustrate this procedure with an example.

By using the precedence preservative crossover operator to generate new solutions, it is
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guaranteed that every preference relation encoded in a newly generated solution comes from at

least one of the two parents. Therefore, if it were used as the the only mechanism for generating

new permutation sequences, the evolution of the GA would be restricted only to precedence

relations that occurred in the initial population. This situation may cause the search for good

policies to become stalled because of the lack of diversity in the generated solutions. A mutation

operator is incorporated with low probability to counteract this effect. A simple swap mutation

operator that interchanges the positions of two randomly selected components in the permutation

sequence suffices for this purpose.

Solutions representing the best-performing policies have higher changes of being selected as

tournament winners. Accordingly, they also have higher changes of passing on to new solutions the

good preference relations among the different questions they encode. By repeating this procedure

generation after generation in the GA, the population of solutions is expected to increasingly

improve towards better-performing policies.

3.4 Summary

This chapter introduced the two alternative configuration models considered in the thesis along

with the formulation as an MDP of the problem of optimizing the user interaction in a configuration

process and the proposed solution methods. The introduced framework works in a similar way

with both configuration models, relying on the corresponding inference mechanisms to avoid

asking questions about variables that can be answered automatically from other user’s decisions.

The task of the algorithms solving the formulated MDP is then to find an optimal policy that

dictates which question should be asked at each state of the configuration process in order to

minimize the necessary user interaction.

Two solution methods are proposed for finding an optimal policy, each one employing a

different policy representation. The first one consist of using the NFQ algorithm to train a neural

network receiving a representation of the current configuration state as the input and returning

the expected number of automatically-discovered configuration decisions that can be obtained

from asking each unanswered question at that state as the output. The second solution method

uses a GA to find a permutation sequence of the configuration variables that determines the order

that must be followed for asking their corresponding questions.
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It must be noted that the solution of the MDP (using either NFQ or the GA) takes place

offline and not during the interactive configuration process in which the users intervene. The

optimization problem is solved beforehand by considering all possible configuration scenarios

and finding an optimal policy that minimizes their expected user interaction. The interactive

configuration processes with the users take place afterwards and it simply follows the questions

dictated by the optimal policy at each configuration state (i.e., the optimal neural network or

permutation sequence if NFQ or the GA are used, respectively). This approach means that each

inquired variable is not the result of a decision about which question seems the most appropriate

locally, but a consideration of its global effect in the entire configuration process. The next

chapter evaluates the performance and scalability of the proposed solution methods.
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4 Evaluation

This chapter presents the results of the study conducted for the evaluation of the solution methods

proposed in Chapter 33. The first part of the chapter discusses the evaluation goals and outlines the

experimental setup. The results of the specific experiments are described next, with one section

dedicated to the analysis of rule-based configuration models and another one to constraint-based

models. Lastly, the overall evaluation results are summarized in Section 4.44.4.

4.1 Goals and Experimental Setup

The pursued evaluation goals are directly related to the objectives of the thesis discussed in

Section 1.21.2. The experiments that were carried out aim to validate the following hypotheses:

i. First, that the proposed solution methods overcome the scalability limitations of the frame-

work introduced by Hamidi et al. [55] for rule-based configuration models.

ii. And secondly, that these new techniques are also able to work effectively with the more

general CSP specification of the configuration models.

The study considers a group of rule-based and constraint-based configuration models, while

focusing on two evaluation metrics. The first one is the scalability of the solution methods

measured in terms of the running time of the algorithms versus the number of configuration

variables. The second evaluation metric is the performance of the techniques given by the number

of questions asked to a user during the configuration of an artifact.

The interpretation of the second evaluation metric deserves special attention to ensure that an

adequate assessment is made about the effectiveness of the different techniques. Given a complete

configuration containing the answers of a user to all the configuration variables in a model, the

best of two or more alternative solution methods can be easily selected by choosing the one that

40



requires the fewest questions to replicate that configuration starting from an empty set of variable

assignments. However, this comparison may not provide enough information regarding how well

the techniques solved the problem. It is more useful to work with a performance baseline that

allows evaluating the quality of the solutions provided by each technique taking into consideration

the characteristics of the configuration model. This baseline may be set at either one of the two

extreme performances—i.e., the best or worst attainable performances.

Considering the worst attainable performance looks appropriate and simpler to compute at first

sight, given that it intuitively seems to correspond to the total number of configuration variables

in the model. However, a number of questions may be always skipped because of the effect of the

inference mechanisms, regardless of the order in which the configuration variables are inquired.

As a result, a configuration process that requires asking a question for every configuration variable

may never be attainable in practice. This characteristic may lead to an overestimation of the the

number of questions that are skipped, and a claim about the effectiveness of the algorithms made

considering the total number of configuration variables may not be necessarily meaningful.

A more adequate evaluation can be accomplished by comparing the results of the alternative

solution methods with the best attainable performance on a selected group of complete configu-

rations. From this comparison, it is possible to calculate an error value representing the number

of additional questions asked by each technique. This evaluation criterion depends on having

computed beforehand the shortest sequence of questions that could be asked to a particular user,

based on a complete specification of his or her configuration intentions. This requirement effec-

tively translates into the solution of an optimization problem that involves finding a permutation

of the variables that minimizes the number of questions asked to that specific user. Notice that

this resulting optimization problem is similar to the stochastic optimization problem solved by the

proposed GA-based solution method (see Section 3.3.33.3.3), but with the important difference that

the uncertainty in the user’s responses is removed because they are given beforehand—making it

non-stochastic. The optimal performance on each complete configuration selected for the evalu-

ation of the alternative solution methods can be computed exactly using exhaustive search for

small configuration models (i.e., trying out all possible permutation sequences of the variables),

or approximately if brute-force search is not feasible because of the problem dimensions.
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The overall experimental setup to evaluate the performance of the alternative solution methods

on a particular configuration model proceeds as follows. First, a number of complete configurations

representing the intentions of a group of users are selected for evaluating the techniques. For

each one of these configurations, the minimum number of questions that could be asked to

a user to reproduce it is computed as described in the previous paragraph, and this number

serves as the performance baseline to compare all the alternative solution methods. This group

of selected configurations along with their best attainable performances constitute the testing

data set. Then, each alternative solution method is used to construct a policy for optimizing the

user interaction in the configuration model, and these alternative policies are evaluated according

to their performance when reproducing the configurations in the testing data set. Given that the

proposed solution methods rely on simulations of configuration episodes, the algorithms are run

30 times with different random seeds and their expected performance in the testing data set is

calculated as the average performance observed in the 30 runs. The reported results correspond

to the error values obtained on each configuration in the testing data set.

In addition to the solution methods based on NFQ and the GA proposed in the thesis, the

performance experiments also include the results of a policy that corresponds to asking the

questions in a random order. This solution method intends to represent the idea of not using

an advanced technique to select the order in which the questions are asked. The motivation

for comparing with a random sequence is twofold. On the one hand, it shows statistically that

the techniques exhibit an ‘intelligent’ behaviour in the selection of the sequence of questions

presented to the users—i.e., that the policies capture useful information for the optimization of

the user interaction. On the other hand, it facilitates quantifying the effect of using the proposed

techniques in the studied models. The reported results for the random solution method also

correspond to the average performance observed in 30 independent runs.

Further details are given in the remainder of the chapter along with the description of each

specific experiment. All the alternative solution methods were implemented in the Python

programming language as part of the work carried out in this thesis22. The algorithms were run

on a 32-bit Linux platform with an Intel(R) Xeon(R) CPU E5405 at 2.0 GHz and 2 GB of RAM.

2The source code is available at http://github.com/yasserglez/configuratorhttp://github.com/yasserglez/configurator.
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4.2 Rule-Based Configuration Models

The experiments described in this section are related to the first evaluation goal. Their purpose is

to compare the solution methods proposed in the thesis with the dynamic programming techniques

used by Hamidi et al. [55]. The main consideration is the scalability of the running time of the

algorithms as the number of configuration variables grows. In addition, the case study employing

the configuration records from the Facebook social network platform collected by Hamidi [1010] is

recreated using the techniques proposed in this thesis.

4.2.1 Scalability Results

In the absence of a collection of rule-base configuration models with an increasing number of

variables to support performing a scalability study, Hamidi [1010] resorted to generating artificial

models from a categorical data set known to contain an abundant number of association rules.

Each column in the data set can be interpreted as a configuration variable whose domain is

given by the values of the variable in the data set. In turn, each row can be seen as a complete

configuration; and consequently, it is possible to use association rule mining to discover rules

that are relevant to the (artificial) configuration model. By considering an increasing number of

columns and repeating the association rule mining process, it is possible to generate a collection

of related configuration models with a growing number of variables that facilitate measuring the

scalability of the running time of the algorithms. The same experimental setup was followed to

obtain the results reported in this section.

The selected categorical data set is the mushroom data set available at the UCI Machine

Learning Repository33. This data set contains descriptions given in terms of 23 categorical variables

of hypothetical samples corresponding to different mushroom species. There is a total of 8,124

observations in the original data set, but their use in this thesis was limited to the 5,644 existing

complete observations. After filtering out the observations that have at least one missing value,

the domains of the 23 discrete variables vary form 2 to 9 values.

3 https://archive.ics.uci.edu/ml/datasets/mushroomhttps://archive.ics.uci.edu/ml/datasets/mushroom
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Figure 4.1: Scalability results on the rule-based configuration models artificially gen-
erated using the mushroom UCI data set. The vertical axis is in logarithmic scale to
compensate for the considerable differences in the running time of the algorithms.

The generation of the artificial configuration models to measure the running time of the

alternative solution methods begins with a problem involving two variables from the data set.

Subsequently, one variable is added at a time, resulting in a new configuration model. All the

variables were selected randomly, but the same order was followed for all the solution methods.

For each subset of the variables corresponding to an artificial configuration model, the association

rules were mined using the FP-grow algorithm [6464] (see Borgelt [6565, 6666] for information about the

specific implementation used in the experiments). The rule mining process was targeted at rules

with a minimum support of 50%, a minimum confidence of 90%, and having only one variable in

the if part and the then part of the rule, respectively. The number of rules in the configuration

models ranged from one rule in the smallest model to 70 rules in the largest.

Figure 4.14.1 illustrates the results of the scalability experiments on rule-based configuration

models. The dimensions of the configuration models are given in terms of the number of bi-

nary variables necessary to encode all the possible configurations. This number is calculated as

the logarithm to the base 2 of the total number of configurations, and it facilitates comparing

44



the results obtained on configuration models with different variable domain cardinalities. The

artificially-generated configuration models correspond to models having between 2 and 44 binary

variables. The algorithms were run 30 times on each configuration model, recording the CPU

time elapsed while searching for the optimal policy. The data points in the figure correspond to

the mean CPU time observed in the 30 runs (the error bars were removed from the plot because

they were not visible with the selected scale).

Four algorithms were considered in the comparison. The first one is value iteration, which is

an example of the dynamic programming techniques employed by Hamidi et al. [55]. Q-learning

is the first reinforcement learning technique discussed in Section 2.2.32.2.3, which uses a tabular

representation of the action-value function and is known to have limited applicability in practice

but was included in the study for completeness. The final two algorithms, the GA and NFQ, are

the solution methods proposed in this thesis. Appendix AA includes a table that summarizes the

values of the parameters of each algorithm as they were used in these experiments.

All the algorithms were run on configuration models with an increasing number of variables

until the mean elapsed CPU time for solving one problem surpassed one hour (i.e., roughly 103.5

seconds). Value iteration required approximately 21 hours to solve a problem with 14 binary

variables before it was stopped, and Q-learning 6 hours for solving a problem with 17 variables.

The GA and NFQ both completed the entire experiment, solving the largest configuration problem

with 44 binary variables in approximately 46 and 56 minutes, respectively. More importantly,

the steepness of the curves associated with the different algorithms in Figure 4.14.1 characterizes

the scalability of the different solution techniques. A comparison of the curves corresponding to

value iteration, the GA and NFQ evidences that the former two scale considerably better as the

number of configuration variables in the model becomes larger. This result confirms that the

solution methods proposed in the thesis are more suitable for optimizing the user interaction in

configuration models with a large number of variables. Nevertheless, it must be noted that the

curves corresponding to the GA and NFQ still show a slight linear growth in the logarithmic

scale and this indicates that the algorithms might face scalability limitations for larger models.
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4.2.2 Case Study: Facebook Privacy Settings

The second part of the experiments using rule-based configuration models consists of recreating the

case study conducted as part of the validation of the framework introduced by Hamidi et al. [55].

The authors collected configuration records corresponding to the privacy settings of a group of

users for the Facebook social network platform, and proceeded to study the performance of the

approach based on the dynamic programming solution methods for the optimization of the user

interaction in this configuration scenario. The motivation behind the experiments reported in

this section is to evaluate whether the techniques proposed in this thesis effectively reduce the

number of questions asked to the users in this real-world problem.

Facebook44 is an online social network platform with over 1.4 billion monthly active users as

of the first quarter of 201555. Similar to other social network sites [6767], Facebook allows its users

to create a personal profile with customized visibility, define a list of users with whom they share

a connection, and interact with the resulting network of connections (by e.g. viewing other users’

profiles in the network, posting textual information or in a variety of multimedia formats, and

interacting with what other users have published) [6868]. As a way of controlling the amount of

information a user shares with other users, the platform offers a set of variables that the users

can configure to meet their privacy needs. These configuration variables are set to certain default

values upon creation of a new profile, and at any time the users can adjust them by going to a

settings page where they are presented along with their possible choices.

As surveyed by Hamidi [1010], privacy in Facebook has been a subject of intense academic

research [6868–7575] as well as discussion in mass media communication. Studies have indicated

that not all users are aware of the implications of the privacy settings [7070, 7272], and that they

tend to overestimate the strength of their chosen privacy options [7474]. In addition, the default

values of the configuration variables are targeted mostly at sharing information broadly [7373],

which is concerning given that a considerable number of users have reported to keep the default

settings [7474]. Therefore, the problem of privacy configuration in Facebook constitutes a good

example of the importance of assisting users in the configuration of complex software systems.

4 http://www.facebook.comhttp://www.facebook.com

5See Facebook’s Q1 2015 Earnings report at http://investor.fb.com/eventdetail.cfm?eventid=158508http://investor.fb.com/eventdetail.cfm?eventid=158508.
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Table 4.1: Facebook privacy settings.

Section Question

1. Privacy a) Who can see future posts?
b) Who can look you up using the email address

or phone number you provided?
c) Do you want other search engines to link to

your timeline?

2. Timeline & Tagging a) Who can post on your timeline?
b) Who can see what others post on your timeline?
c) Who can see posts you’ve been tagged in on

your timeline?
d) Review posts friends tag you in before they

appear on your timeline?

3. Friends a) Who can send you friend requests?
b) Who can see friend list?

Hamidi et al. [55] collected a data set with complete configurations of the privacy-related

configuration variables of 45 Facebook users. The participants in the study were at the time

undergraduate students attending the School of Information Technology at York University,

Ontario, Canada. A detailed description of the data collection procedure and summary statistics

about the participants are given by Hamidi [1010]. Table 4.14.1 presents the nine selected privacy

configuration options. As of April 2014, these options were located under the ‘Privacy’, ‘Timeline

& Tagging’, and ‘Friends’ sections of the Facebook settings page. The possible answers for

questions 1c) and 2d) are ‘Yes’ and ‘No’. The other questions refer to access levels in the user’s

connection network and their possible answers are ‘Everyone’, ‘Friends of friends’, ‘Friends’,

‘Custom’, and ‘Only me’. Under the ‘Custom’ answer, the users can specify any subset of their

connections, but it was treated in the study as a single coarse-grained answer.

The nine discrete variables account for a total of 312,500 possible configurations, which is

roughly equivalent to a configuration model with 19 binary variables (log2 312, 500 ≈ 18.25).

However, in the experiments conducted by Hamidi et al. [55], a reduced version of the model was

studied. The authors considered only the values of the variables occurring in the 45 collected

configuration records when defining the domains of the configuration variables in the model.

As a result, the configuration model is reported as having the equivalent of 12 binary variables
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(instead of 19). This consideration translates into an important limitation: the resulting policies

for the optimization of the user interaction in the configuration process cannot be used to guide

the users when they give an answer that is not part of the considered domains. Therefore, in this

replication of the case study the original formulation of the configuration model for the Facebook

privacy settings is used, and not the reduced version. Since it is impractical to solve a configu-

ration problem with 19 binary variables using the dynamic programming techniques employed

by Hamidi et al. [55] (see the scalability results reported in the previous section), this new study

focuses only on the solution methods proposed in the thesis and does not attempt to make a

direct comparison with the performance obtained with value iteration—or the tabular Q-learning

algorithm for that matter.

The solution methods proposed in the thesis rely on simulating configuration episodes in the

form of interactions with the MDP formulated for minimizing the number of questions asked

during a configuration process (see Sections 3.23.2 and 3.33.3). Given that in the case of the Facebook

privacy settings there exists a data set with configuration records from a group of real users, it is

possible to exploit this information and consider the intentions of the users during the simulation

of the configuration episodes. Specifically, the collected configuration records can be used to

compute the conditional probabilities of the user’s responses given each partial configuration

during the simulated episodes. In order to assess whether the constructed policies would be

able to generalize to unseen configuration records, a cross-validation approach is followed for the

evaluation of the performance of the different solution techniques.

The experiments were carried out following a k-fold cross-validation setup with k = 9. The

45 configuration records available were randomly divided into 9 equal-sized partitions of 5 records.

Then, each individual partition of 5 configurations was considered in turn as a testing data set

for computing the error values in terms of the best attainable performance as discussed in

Section 4.14.1, while using the remaining 40 configuration records as a training data set to compute

the conditional probabilities for finding the optimal policy. Figure 4.24.2 shows a histogram of the

best attainable performance (i.e., the minimum possible number of questions) on the 45 complete

configurations computed exactly using exhaustive search. These results are considered as the

baseline for comparing the performance of the different algorithms.

The mean and standard deviation of the error values (with respect to the performance baseline
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Figure 4.2: Histogram of the best attainable performance (i.e., the minimum possible
number of questions) on the Facebook privacy settings problem.

given by the minimum possible number of questions) obtained by the alternative solution methods

on each fold are given in Table 4.24.2. In addition, Figure 4.34.3 presents a box plot of the distribution of

the errors for each algorithm and cross-validation partition. Similarly, Figure 4.44.4 shows a box plot

of the distribution of the errors obtained by the algorithms on all the individual folds combined

(the corresponding mean and standard deviation values are given in the last row of Table 4.24.2).

As mentioned before, the results of each algorithm on the testing data sets correspond to the

average performance observed in 30 independent runs with the parameters given in Appendix AA.

Overall, the results obtained by all the solution methods on the Facebook privacy settings

problem are very close to the best attainable performance. The mean error on the different

cross-validation folds is always below 0.5, which indicates that the techniques ask a number of

questions that is in all cases less than one question away from the optimal performance on average.

These results also suggest that the solution methods based on NFQ and the GA do not tend to

overfit and are able to generalize from the configurations observed during the simulated episodes.

The mean error values reported in the last row of Table 4.24.2 and the visualization of the combined

error distributions shown in Figure 4.44.4 suggest that the GA-based technique obtains better results

than NFQ, and that using any of these two solution methods is better than asking the questions

in a random order.
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Table 4.2: Error values obtained on the Facebook privacy settings problem.

Fold GA NFQ Random

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 0.23 0.29 0.33 0.25 0.41 0.33
2 0.00 0.00 0.09 0.19 0.19 0.13
3 0.02 0.03 0.20 0.18 0.26 0.11
4 0.16 0.34 0.27 0.25 0.33 0.22
5 0.11 0.24 0.25 0.43 0.37 0.40
6 0.01 0.01 0.03 0.04 0.16 0.13
7 0.00 0.00 0.03 0.03 0.15 0.10
8 0.01 0.01 0.15 0.18 0.23 0.11
9 0.11 0.24 0.13 0.28 0.28 0.22

All 0.07 0.19 0.16 0.23 0.26 0.22
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Figure 4.3: Box plots of the individual cross-validation results on the Facebook privacy
settings problem. The crosses represent the mean error values.
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Figure 4.4: Box plot of the combined cross-validation results on the Facebook privacy
settings problem. The crosses represent the mean error values.

Since asking the questions arbitrarily also seems to produce good results in this problem,

this last conclusion was examined more closely. A statistical analysis was carried out using

non-parametric tests, given that the shape of the distributions shown in Figure 4.44.4 departs

from normality. First, the distributions of the errors obtained by the three solution methods

were compared using the Friedman statistical test [7676] to decide whether statistically significant

differences occur among the examined algorithms. A p-value of 2.14e−14 was obtained, which

suggests that there is strong evidence in the collected results (at the 1% significance level) that

at least one of the algorithms is superior to the others. Then, a number of post-hoc tests were

performed to compare all the pairs of algorithms looking for statistically significant differences.

The error distributions of NFQ vs Random, GA vs Random, and GA vs NFQ were compared using

a paired Wilcoxon signed rank test [7777] obtaining the following p-values adjusted for multiple

comparisons using the Bonferroni correction [7878]: 6.75e−06, 5.06e−08 and 0.000126, respectively.

The null hypothesis that the samples come from the same error distributions can be rejected at

the 1% significance level in all cases. Therefore, the statistical analysis in effect supports the

conclusion that the GA has better performance than NFQ, and in turn the use of any of these

two algorithms produces better results than following an arbitrary order for asking the questions

during the configuration process.
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Table 4.3: Characteristics of the constraint-based benchmark problems.

Problem Variables Constraints Configurations

Discrete Binary Number Cardinality Possible Consistent

Cellphone [2929] 11 10 8 2–4 1,024 14
Text editor [7979] 18 17 15 2–4 13,1072 396
Graph manipulation [8080] 30 29 32 2–3 5.3e+08 192
Dell laptops [8181] 27 57 98 2 7.3e+16 > 1e+06

Given that essentially different interpretations of the configuration model and distinct associ-

ation rules were considered, it is not possible to make a direct comparison of the results reported

by Hamidi et al. [55] on the case study on the Facebook privacy settings and the ones reported

in this thesis. Still, both studies seem to give consistent results in showing that it is possible to

reduce the number of questions asked to the users. Hamidi et al. [55] reports to avoid asking two

questions to the users on average, and in the present study at least one question was skipped on

average. However, it is worth mentioning that considering the total number of variables in the

configuration model as a baseline performance measure does not necessarily reflect the algorithms’

effectiveness as it was discussed in Section 4.14.1.

4.3 Constraint-Based Configuration Models

The group of experiments presented in this section evaluates the proposed solution methods

for the optimization of the user interaction in a configuration process with a constraint-based

configuration model formulated as a CSP. They contribute to the second evaluation goal discussed

in Section 4.14.1. As in the case of rule-base models, the evaluation focuses on the performance of

the techniques in terms of the number of questions asked to reproduce a complete configuration,

and the scalability of the algorithms as the number of configuration variables increases.

4.3.1 Benchmark Problems

Table 4.34.3 describes the four constraint-based configuration models selected for the evaluation of

the algorithms. All the problems except the Dell laptops model were obtained from the Software
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Product Lines Online Tools (S.P.L.O.T.) [8282] feature model repository66 and they cover different

application domains. The cellphone model corresponds to the feature model shown in Figure 2.12.1

and used as illustration throughout the thesis. The text editor model describes a configurable

text editor including features such as syntax highlighting, spell checking and automatic backups.

Graph manipulation is a feature model corresponding to a software for editing graphs with features

associated with deleting and selecting nodes, zooming in and out, etc. The Dell laptops model is

a decision model for a laptop configurator reverse-engineered from the Dell website and available

for download at the C2O (Configurator 2.0) [8383] homepage77. Additionally, the table includes

references to the academic publications that introduced each model (in some cases as simplified

or alternative versions).

All the models were transformed to an equivalent CSP formulation compatible with the

proposed algorithms (see Section 2.1.22.1.2). The following characteristics of the resulting CSP are

summarized in Table 4.34.3: the number of variables, the number of constraints and their minimum

and maximum cardinality (i.e., the number of variables that appear in the constraints), and the

total number of possible and consistent configurations. The reported number of discrete and

binary variables for the feature models differ by one because the root feature must always be

selected and its domain is reduced to a single value after enforcing node consistency in the CSP.

In the Dell laptops model, the enumeration of the consistent solutions was stopped after verifying

that there exist more than one million consistent configurations.

Contrary to the Facebook privacy settings problem, in this case there is no data set available

with configuration records for the models. The complete configurations used for training and

testing the algorithms had to be generated artificially. A data set of interesting configurations

for evaluating the algorithms’ performance was created as follows.

First, an estimation of the best attainable performance was computed (as described earlier

in Section 4.14.1) for each consistent solution on the smaller models, and a random sample of

1,000 consistent solutions on the Dell laptops model. The dimensions of the constraint-based

benchmark problems make it unfeasible to use brute-force search to compute the shortest sequence

of questions that could be asked to reproduce each complete configuration, so an approximation

6 http://www.splot-research.orghttp://www.splot-research.org

7 http://www.jku.at/isse/content/e139529/e126342/e126343http://www.jku.at/isse/content/e139529/e126342/e126343
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Figure 4.5: Histograms of the best attainable performance (i.e., the minimum possible
number of questions) on the constraint-based benchmark problems.

had to be employed. The solution of the optimization problem associated with determining the

optimal performance baseline on each configuration was solved using a GA with the same selection,

crossover and mutation operators described in Section 3.3.3.23.3.3.2; but allocating a total number of

100 generations instead of 50 to facilitate finding the best possible results (cf. Appendix AA).

Finally, 50% of the evaluated configurations on each model were selected as the configuration

sample to evaluate the performance of the algorithms. The selected configurations correspond to

the ones that can be reproduced with the fewest questions—i.e., the configurations associated with

the users that would benefit the most from using the techniques proposed in the thesis. Figure 4.54.5

illustrates the best attainable performance (i.e., the minimum possible number of questions) on the
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selected configurations. The evaluation samples of the cellphone, text editor, graph manipulation

and Dell laptops model have 7, 198, 96, and 500 configurations, respectively. These results are

considered as the performance baseline to compare the algorithms in the experiments reported

in the next section.

4.3.2 Performance Results

The study of the performance of the proposed solution methods based on NFQ and the GA on

the constraint-based configuration models follows the experimental setup discussed in Section 4.14.1.

The algorithms were used to construct policies for optimizing the user interaction in the different

configuration models. Each algorithms’ policy performance was evaluated with respect to the

number of additional questions asked compared to the best attainable performance when repro-

ducing the group of complete configurations shown in the previous section. The same data set of

configurations was used to compute the conditional probabilities of the user’s responses given each

partial configuration during the simulated training episodes. No attempt was made to evaluate

the generalization of the algorithms to unseen configurations during training, given that the

testing data set is intentionally biased towards the configurations that require asking the fewest

questions. As it was done in the experiments with the rule-based models, the algorithms were

run 30 times with different random seeds and the parameters summarized in Appendix AA. The

reported results also include the performance obtained from asking the questions following a

random order.

Table 4.44.4 presents the mean and standard deviation of the error values obtained by the

different solution methods on the four studied constraint-based configuration models. Additionally,

Figure 4.64.6 shows box plots of the distributions of the errors achieved by each algorithm on each

model. In general, the results show that the proposed solution methods work effectively with

constraint-based configuration models, obtaining results that are close to the best attainable

performance on the tested configurations. Both the GA and NFQ require on average a number of

questions that is roughly one question away from the optimal performance on the small models,

and three questions away on the Dell laptops problem. The solution method based on the GA

exhibits the best performance in terms of the mean error values across all four studied models,

and it achieves the most consistent results on the testing sample according to the spread of the
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Table 4.4: Error values obtained on the constraint-based benchmark problems.

Problem GA NFQ Random

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Cellphone 0.80 0.27 1.10 0.39 1.38 0.28
Text editor 0.96 0.85 1.20 0.54 1.51 0.27
Graph manipulation 1.23 0.21 1.65 0.33 1.73 0.43
Dell laptops 3.13 2.08 3.88 1.85 5.24 3.99
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Figure 4.6: Box plots of the results on the constraint-based benchmark problems. The
crosses represent the mean error values.
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Table 4.5: Statistical analysis of the results on the constraint-based benchmark problems.
The p-values of the post-hoc tests have been adjusted for multiple comparisons.

Problem Pre-test Post-tests

NFQ vs Random GA vs Random GA vs NFQ

Cellphone 0.00584 0.103 0.0668 0.325
Text editor < 2e−16 < 2e−16 < 2e−16 < 2e−16
Graph manipulation 7.05e−10 0.000162 8.84e−12 5.24e−12
Dell laptops < 2e−16 < 2e−16 < 2e−16 < 2e−16

error distributions (particularly in the graph manipulation model).

In line with what was observed earlier in the Facebook privacy settings model, asking the

questions in an arbitrary order also seems to produce noticeable good results in the these problems.

Motivated by these results, a statistical analysis of the error distributions was also performed

in this case in order to ensure that there is enough evidence supporting the claim that the GA

and NFQ solution methods produce better results than following a random order for asking

the questions on the studied constraint-based models. Table 4.54.5 summarizes the results of the

analysis on each model. As it was done before, a Friedman test [7676] was applied first to decide

whether statistically significant differences were observed among the three algorithms. If the null

hypothesis was rejected, then a series of post-hoc Wilcoxon signed rank test [7777] were applied to

look for statistically significant differences between the specific pairs of algorithms. The p-values

of the post-hoc tests were adjusted for multiple comparisons using the Bonferroni correction [7878].

In all cases except the post-hoc tests on the results on the cellphone model, the null hypotheses

were rejected at the 1% significance level. Hence, the collected data supports the conclusions

that the GA-based solution method obtains better results than NFQ, and both perform better

than selecting an arbitrary order for asking the questions—except maybe on small configuration

models where their performance is indistinguishable.

As it was explained in Section 3.13.1, a configuration process using a constraint-based model

relies on enforcing a certain level of consistency in the corresponding CSP after every configuration

decision to propagate the implications of one variable assignment onto the unassigned variables

(see Figure 3.23.2). The experiments reported in this section used generalized arc-consistency as

the constraint-propagation mechanism during the simulated training episodes, given that it

provides a good balance between the computational cost of the algorithm and its inference power.
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Figure 4.7: Scalability results on the constraint-based benchmark problems.

Nonetheless, since generalized arc-consistency is a local constraint-propagation mechanism, it

does not necessarily detect all inconsistencies and it is possible to reach dead-ends in the simulated

configuration processes. In these experiments, the training episodes that reached a dead-end

were simply discarded, given that it was observed that they had a minimal impact on the studied

constraint-based configuration models.

4.3.3 Scalability Results

The running time of NFQ and the GA was studied empirically considering the CPU time elapsed

while searching for the optimal policy on each one of the constraint-based configuration models

listed in Table 4.34.3. This information was recorded during the 30 independent runs executed for

the performance experiments reported in the previous section and it is shown in Figure 4.74.7. The

data points in the figure correspond to the mean CPU time observed in the 30 runs of each

algorithm. The plot also include error bars for the standard error of the mean in the cases where

they were visible with the selected scale.
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The scalability results indicate that the GA solution method is more efficient than NFQ for

the calculation of optimal configuration processes with larger number of variables. The GA was

found to require a greater number of simulated episodes to obtain sufficiently good policies on

the studied problems (see the parameters in Appendix AA); however, the operations performed to

learn the optimal policy are considerably more efficient than the NFQ training procedure. NFQ

relies on a supervised training algorithm for estimating the parameters of the neural network

representing the Q action-value function considering data collected from all previously simulated

episodes, while the GA perform simpler crossover and mutation operations on a more compact

policy representation (see Sections 3.3.23.3.2 and 3.3.33.3.3).

4.4 Summary

This chapter reported the results of a group of experiments performed to evaluate the NFQ and

GA-based solution methods proposed in this thesis for the optimization of the user interaction in a

configuration process. The study focused mainly on two aspects: the scalability of the algorithms

compared to the dynamic programming solution methods employed by Hamidi et al. [55], and

their ability to work with the more general specification of the configuration model based on CSPs.

An analysis carried out on a group of artificially-generated configuration models evidenced

that the proposed techniques overcome the scalability limitations of the framework introduced

by Hamidi et al. [55]. The study of the performance of the proposed algorithms on a collection of

rule-based and constraint-based configuration models showed that they are able to work effectively

with both types of configuration models, obtaining results that were in all cases close to the best

attainable performance. In the rule-based configuration model based on the Facebook privacy

settings, the performance of GA and NFQ was on average 99.1% and 97.8% optimal, respectively.

The performance of GA on the four studied constraint-based models ranged from 77.3% to 89.0%

optimal, and it was 71.2–86.6% optimal for NFQ on average. The lowest percentage values

correspond to the smallest configuration models, where asking one additional question represents

a larger fraction of the entire configuration process. Among the two proposed solution methods,

the GA-based technique obtained better results than NFQ on the studied models in terms of the

performance and the scalability of the algorithms.
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An interesting result was observed in the experiments with both rule-based and constraint-

based configuration models. In addition to the GA and NFQ algorithms, the study considered a

solution method that corresponds to presenting the questions to the users during the configuration

process in an arbitrary order. This random solution method produced noticeable good results

in the the studied models: 96.6% optimal results on the Facebook privacy settings problem,

and between 66.4% and 83.7% optimal on the constraint-based models. Although these results

were confirmed to be statistically significantly worse than the GA and NFQ results, the effect of

using the more ‘intelligent’ techniques may be considered small. For example, the absolute effect

(measured as the difference between the mean error values) of following the sequence of questions

obtained with the GA compared to the random solution method varied roughly between one and

two questions across all the studied configuration models (see Tables 4.24.2 and 4.44.4). Nonetheless,

notice that this situation is to a great extent an inherent characteristic of the studied configuration

problems and not of the proposed solution methods. As an illustration, the absolute effect of the

optimal results compared to the random solution method varied between one and five questions.

The fact that the random solution method shows a good performance suggests that for many

of the tested configurations it is possible to infer the values of a considerable number variables

from the user’s responses, regardless of the order in which the questions are asked. Also, this

comparison only considers the mean error values of the algorithms, but for specific configurations

the differences obtained may be larger.
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5 Conclusions

This final chapter begins with a summary of the results presented in the thesis, followed by a

discussion of the impact of the present work compared to related studies. Lastly, the thesis

concludes with an outline of future work directions.

5.1 Summary

This thesis studied the efficient calculation of optimal configuration processes. Its main motivation

comes from the earlier work of Hamidi et al. [55], in which the authors proposed a framework for

calculating the minimum number of questions asked to the users of a software system in order

to configure it to their needs. Hamidi et al. [55] formulated the problem associated with the

optimization of the user interaction in a configuration process as an MDP and used classical

dynamic programming techniques to solve it. A study of the performance of the techniques

showed that the approach faced considerable scalability limitations, working in practice only with

a very small number of configuration variables. As a consequence, this thesis was tasked with

two objectives. Firstly, to develop and study more efficient and scalable methods to solve the

formulated MDP. And secondly, to generalize the proposal of Hamidi et al. [55] in order to make

it suitable for a broader class of configuration processes.

Two alternative solution methods were proposed as part of the work carried out in this thesis.

The algorithms make use of the reinforcement learning paradigm, which means that they simulate

interactions with the environment described by the associated MDP in order to find a policy

for guiding the configuration process towards minimal user interaction. The new techniques

are able to work with one of two possible configuration model specifications. The first one,

comparable to the model used by Hamidi et al. [55], represents the constraints that regulate

the interactions between the aspects that can be configured as if-then rules. The additional
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supported configuration model is more flexible and it allows using Boolean predicates to specify

the constraints as part of a formulation of the configuration model as a CSP. In both cases,

the configuration processes rely on inference mechanisms to avoid asking questions to the users

about variables that can be answered automatically from the decisions of other users. The first

solution method consists of using the NFQ algorithm to train a neural network representation

of the policy that computes an estimate of the expected number of questions that could be

skipped by asking one particular question. The second solution method represents the policy

simply as a permutation of the configuration variables which dictates the order that must be

followed for asking their associated questions to the users. In this latter case, a GA is used to find

a permutation that maximizes the expected number of automatically-discovered configuration

decisions.

The newly proposed solution methods were evaluated on an experimental study considering

artificially-generated configuration models, a case study on a small real-world example related

to the privacy settings of the Facebook social network platform, and a number of publicly-

available configuration models from different domains. The analysis of the scalability of NFQ

and the GA confirmed that they both overcome the limitations of the framework introduced

by Hamidi et al. [55], resulting in more suitable algorithms to work with configuration models

involving a large number of configuration variables. The study of the performance of the pro-

posed algorithms also showed that they are able to work effectively with both rule-based and

constraint-based models, reducing the number of questions asked to the users and obtaining

results that were in all cases close to the best attainable performance. Among the proposed

techniques, the GA-based approach obtained the best results on the studied models in terms of

the performance and running time of the algorithms. The experimental study also uncovered

some interesting underlying characteristics of the problem of optimizing the user interaction in a

configuration process.

5.2 Contributions

This thesis is framed in the field of artificial intelligence and its application in the area of knowledge-

based configuration—also referred to as product configuration or customization. Additionally, the

thesis touches on aspects of software engineering because of the relevance of configuration-related
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topics in that discipline. The most important contributions are the following:

i. The thesis constitutes one of the first attempts to study the problem of optimizing the

user interaction in a discrete-variable configuration process, independently of a particular

configuration domain. Related works have targeted specific configuration models used in

application domains such as software engineering, but the approach discussed in this thesis—

especially with the specification of the configuration model as a CSP—is applicable to a

wide range of configuration models with discrete variables.

ii. The techniques recommended in the thesis for the efficient calculation of optimal configura-

tion processes offer a global solution of the associated optimization problem, and at the same

time are suitable algorithms to work with models involving a large number of configuration

variables. Also, the simulation-based approach followed by the solution methods provides

a straightforward mechanism to consider previously-existing configuration records in order

to adjust the optimized policies to specific user interests. These characteristics constitute

attractive features for using the proposed techniques in practical configuration scenarios.

iii. Additionally, the thesis reports potentially valuable experiences in the solution of sequential

decision-making problems formulated as MDPs with large state spaces. These experiences

may be useful to practitioners facing similar scalability challenges in other problem domains.

5.3 Related Work and Discussion

The problem of optimizing the user interaction in a configuration process, as in the explicit

minimization of the number of questions necessary to obtain a complete configuration, has not

been widely studied in the literature. The development of techniques to support the users within

the scope of a configuration process has concentrated mostly on the design of user interfaces,

providing explanations in the face of inconsistent decisions, and the application of recommendation

technologies (see e.g. Felfernig et al. [1414]). Apart from the framework proposed by Hamidi

et al. [55], which is the direct precedent of this thesis, an earlier work by Nöhrer and Egyed [8181]

introduced a technique (and later a supporting tool [8383]) for automatically optimizing the order

of the decisions made during the product derivation phase of a software product line.
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The approach followed by Nöhrer and Egyed [8181] does not attempt to solve the associated

optimization problem globally, it relies instead on a local heuristic that guides the users during the

decision-making process. The heuristic consists of calculating a ‘gain’ score for each unanswered

question after every user decision and selecting the question associated with the maximum score

as the next question to be presented the user. The gain score computed for each question reflects

its potential of being automatically answered as well as its impact on reducing the possible choices

of the remaining questions. The configuration model is represented as a decision model involving

a number of questions with discrete choices. Two types of relations between the questions were

considered as part of the initial proposal: ‘constraint’ relations where the choice of one question

restricts the choices of another question, and ‘relevancy’ relations in which the choice of one

question makes another question relevant or irrelevant (the model was extended later to admit

arbitrary relations in conjunctive normal form [8383]). The configuration model is expressed as a

Boolean satisfiability problem for reasoning purposes.

Compared to the previous work of Hamidi et al. [55] and Nöhrer and Egyed [8181], this thesis

considers a more general interpretation of the configuration process that is independent of a

particular configuration domain—i.e., it is not necessarily related to the configuration of software

systems or the derivation of a software product from a software product line. As discussed in

Section 2.1.22.1.2, the formulation of the configuration model as a CSP is a well-studied representation

that is more flexible than a rule-based specification and it is also capable of expressing the feature

models and decision models frequently used in software product line engineering. In relation to

the work of Nöhrer and Egyed [8181], the most significant difference is that the solution methods

studied in this thesis tackle the optimization problem associated with the minimization of the

user interaction globally, instead of looking for a local solution. This approach has two important

consequences. First, each question asked to the users is the result of evaluating all the possible

ramifications of their future decisions and not only the next step in the configuration process.

Second, all the expensive computations for deciding the order in which the questions must be

asked occur separately from the interactive configuration processes where the users intervene.

Therefore, the users do not have to wait for the decisions about the next question to be computed

in real time, ensuring a prompt response of the configuration system. Additionally, the solution

methods studied in this thesis allow the consideration of the user’s configuration interests as
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part of the optimized policies, by relying on the simulation of configuration episodes to solve the

associated optimization problem.

5.4 Future Work

The work presented in this thesis motivates different avenues for future research. This work can

include extending the empirical experimentation with the NFQ and GA-based solution methods

to consider configuration models with a larger number of variables. The S.P.L.O.T. feature

model repository [8282] may constitute a valuable resource for conducting the aforementioned study,

given that at this time it includes eight models with more than 100 variables and as many as

366 variables in the largest model available. In addition, a deeper examination of the influence

of the different algorithm parameters could lead to a better understanding of the capabilities of

the proposed solutions. On a broader scope, it becomes imperative to conduct a careful analysis

of the practical impact of using techniques for optimizing the user interaction in a configuration

process compared to following an arbitrary order for asking the questions, in order to identify

the types of configuration models that would benefit the most from using such techniques.
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A Algorithm Parameters

The following table summarizes the parameters of the algorithms used in the experiments described

in Chapter 44. Each parameter value was determined empirically based on experiences reported in

the literature and limited preliminary experimentation.

Algoritm Parameter Value

Value iteration Maximum number of iterations 1,000
Termination criterion maxs∈S |Vk+1(s)− Vk(s)| < 0.01

Q-learning Total number of simulated episodes 1,000
Exploration ε-greedy with ε = 0.1
Learning rate α = 0.3

NFQ Total number of simulated episodes 1,000
Exploration ε-greedy with ε = 0.1
Learning batch size (i.e., number of
episodes simulated before each
learning phase)

10

Iterations of the NFQ main loop
(i.e., maximum k value in Figure 2.32.3)

1

Maximum number of RPROP
training epochs

300

RPROP termination criterion Mean squared error less than 0.001

GA Total number of simulated episodes 10,000
Number of episodes simulated to
evaluate each policy

10

Total number of generations
(i.e., maximum g value in Figure 2.42.4)

50

Population size N = 20
Selection method Binary tournament selection
Crossover probability 1.0
Mutation probability 0.2

73


	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Knowledge-Based Configuration
	Precedent and Objectives
	Outline of the Proposed Solutions
	Thesis Structure

	Background
	Configuration Knowledge Representation
	Rule-Based Representation
	Constraint-Based Representation
	Feature Models and Decision Models

	Sequential Decision Making Under Uncertainty
	Markov Decision Processes
	Dynamic Programming and Value Iteration
	Value-Based Reinforcement Learning
	Evolutionary Algorithms for Reinforcement Learning

	Summary

	Proposed Solutions
	Configuration Models
	Markov Decision Process Formulation
	Solution Methods
	Simulation of a Configuration Episode
	Neural Fitted Q-iteration
	Direct Policy Search Using a Genetic Algorithm

	Summary

	Evaluation
	Goals and Experimental Setup
	Rule-Based Configuration Models
	Scalability Results
	Case Study: Facebook Privacy Settings

	Constraint-Based Configuration Models
	Benchmark Problems
	Performance Results
	Scalability Results

	Summary

	Conclusions
	Summary
	Contributions
	Related Work and Discussion
	Future Work

	Bibliography
	Algorithm Parameters

