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ABSTRACT 
 
 

We investigated the effects of a single Dancing with Parkinson’s (DwP) class on 

behavior (balance, walking speed, depression) and electroencephalography (resting 

state - rsEEG) in individuals with Parkinson’s disease (PD) and age-matched controls 

(CONs). Following a single 75-minute DwP class, individuals with PD demonstrated 

significant improvements in balance and depression, and CONs showed improvements in 

walking speed. The rsEEG also showed significant changes in both individual alpha 

peak frequency (iAPF) and individual alpha peak power (iAPP). CONs showed a global 

increase in iAPF during eyes open (EO) rsEEG and in iAPP during both eyes closed 

(EC) and EO conditions. Individuals with PD showed an increase in iAPP lateralized to 

right frontal areas, while this increase was lateralized to the left in CONs. We provide 

novel evidence for change in motor and non-motor functions with modulation of rsEEG 

alpha activity following dance class in individuals with PD and CONs. 
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1. INTRODUCTION 

1.1 PARKINSON’S DISEASE 

1.1.1 OVERVIEW 

Parkinson’s disease (PD) is a common hypokinetic movement disorder of the 

central nervous system (CNS) primarily associated with dysfunction of the basal ganglia 

(BG) and frontostriatal circuits (Tröster & Fields, 2008). This neurodegenerative disease 

affects about 1% of the worldwide population over 55 years of age (Han et al. 2013), 

and is believed to be present in the brain for many years before the development of 

motor symptoms (Gershanik, 2012). It is estimated that by the time overt motor 

symptoms develop, 70-80% of dopamine-producing striatal cells have been lost 

(Graybiel, 2000; Brown, 2003; Obeso et al. 2008; Tröster & Fields, 2008). 

Individuals with PD face a plethora of motor impairments, including difficulties 

with transfers (i.e. sitting to standing), walking, and balance (Earhart, 2009; de Dreu et 

al. 2012), postural instability, rest tremor, muscle rigidity, freezing of gait, and 

asymmetric bradykinesia (slowness of movement) (Keus et al. 2007; Earhart, 2009; 

Heiberger et al. 2011; Gershanik, 2012, George et al. 2013), all of which rarely occur in 

individuals with PD before the age of 50 (Tröster & Fields, 2008). Resulting immobility 

may give rise to many non-motor symptoms as well, including osteoporosis, muscle 

weakness and/or cardiovascular disease, and may ultimately lead to social isolation, 

low self-esteem, and decreased quality of life (QofL) (Keus et al. 2007; Earhart, 2009; 

Heiberger et al. 2011). Patients can also experience non-motor symptoms such as 

cognitive impairments (Graybiel, 2000; Gershanik, 2012; Hashimoto et al. 2015; 

Sandoval-Rincón et al. 2015) within executive functions including working memory and 
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attention (Tröster & Fields, 2008) early in the course of their illness (Bassett, 2005), in 

addition to major depressive disorder (Hashimoto et al. 2015), which affects anywhere 

from 7 to 76% of individuals with PD (Sandoval-Rincón et al. 2015). 

1.1.2 BRIEF HISTORY 

In 1817 James Parkinson wrote ‘An Essay on the Shaking Palsy’, which included 

the description of six individual cases of what he termed ‘Shaking Palsy’ or Paralysis 

Agitans (Parkinson, 1817). These subjects suffered a range of slowly progressing 

symptoms including muscle weakness, unilateral trembling of the extremities, problems 

with voluntary movement initiation and gait (such as shuffling of the feet), stooped 

posture, and problems with speech and swallowing. Parkinson’s essay was notably the 

first well-detailed description of what would later be coined maladie de Parkinson, or 

Parkinson’s disease by the father of neurology Jean Martin-Charcot (Lees, 2007). 

Parkinson had hoped that through his description of these symptoms, physicians of the 

day would begin to search for its causes within the brain, having thought himself that it 

was potentially caused by trauma to the top of the cervical cord (Lees, 2007). 

“ … it has not yet obtained a place in the classification of 

nosologists; some have regarded its characteristic symptoms as 

distinct and different diseases, and others have given its name to 

diseases differing essentially from it;” – James Parkinson, 1817. 

Approximately 80 years later, Edouard Brissaud speculated that the localization of PD 

must stem from a subthalamic or peduncular region (Brissaud, 1895; Lees, 2007). His 

speculation was based on Parkinsonian symptoms being noted in a case report by 

Blocq and Marinesc (Blocq & Marinesc, 1894; Lees, 2007) in a patient suffering from a 
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tuberculomatous noisette [necrotic tissue caused by tuberculosis] in the midbrain. 

Another 50 years passed, during which time Tretiakoff reported nine damaged 

substantia nigras in Parkinsonian patients in his doctoral thesis (Lees, 2007, Tretiakoff, 

1919), after which Hassler (1938) and Greenfield and Bosanquet (1953) solidified that 

Parkinson’s related damage stemmed more specifically from the pars compacta region 

of the substantia nigra (Lees, 2007). With the realization that the pigmented cells of the 

substantia nigra were almost entirely depleted in individuals with PD, George C. Cotzias 

and colleagues began testing the hypothesis that Parkinsonian symptoms were a result 

of depleted neuromelanin (Fahn & Poewe, 2014). They attempted to replace the 

missing pigment and resultantly alleviate Parkinsonian symptoms by using three 

separate drugs in their 1967 study, namely, melanocyte stimulating hormone, D,L-

phenylalanine (both of which were unsuccessful), and finally D,L-dopa, which provided 

some benefit to the patients. Having known that L-dopa (Figure 1a) was a precursor to 

dopamine (Figure 1b), and that earlier papers had reported a depletion of dopamine in 

the striatum of individuals with PD (Ehringer et al. 1960), Cotzias published a follow-up 

study in 1969, in which L-dopa was given to patients, rather than D,L-dopa (Cotzias et 

al. 1969), and the results were remarkable (Fahn & Poewe, 2014). It seemed that a 

larger dosage of L-dopa was necessary to alleviate symptoms, and after a follow up 

study by Yahr in 1969 confirming Cotzias’ findings (Yahr et al. 1969), the use of this 

revolutionary drug for treating Parkinsonian symptoms gained acceptance (Fahn & 

Poewe, 2014), and research in to the neurodegenerative circuitry of PD burgeoned. 
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L-DOPA: (S)-2-Amino-3-(3,4-dihydroxyphenyl)propanoic acid 
 
 
 

 
DOPAMINE: 4-(2-Aminoethyl) benzene-1,2-diol 
 
Figure 1. L-Dopa is a precursor molecule to Dopamine. A. L-Dopa molecule. B.  
Dopamine Molecule.  
 

1.1.3 SIMPLISTIC PATHWAY OF NEURODEGENERATION  

A simplified schematic of the ‘classical’ proposed mechanism underlying the 

dopamine denervation-based pathway in PD has been suggested (Figure 2), resulting in 

the variety of motor and cognitive symptoms often observed. Pathological deviations 

found in PD stem from dopamine denervation along two neural pathways that compete 

with each other to functionally release movement (Graybiel 2000): the direct and indirect 

striato-pallidal pathways, both of which cause excessive inhibition of thalamo-cortical 
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nuclei (Obseo et al. 2008). Lack of dopamine in the substantia nigra affects the direct 

pathway via decreased gamma-aminobutyric acid (GABA) -ergic inhibition of the globus 

pallidus interna (GPi) in PD (Braak & Del Tredici, 2008; Obeso et al. 2008). Whereas, 

lack of dopamine in the indirect pathway results in excessive GABAergic inhibition of the 

globus pallidus externa (GPe), as well as decreased GABAergic inhibition of the 

subthalamic nucleus (STN), resulting in greater Glutamatergic excitation of the of the 

GPi (Braak & Del Tredici, 2008; Obeso et al. 2008). Combined, a much stronger 

GABAergic inhibition of the thalamus via an overstimulated GPi is observed in PD 

patients compared to non-diseased individuals. This results in decreased excitation of 

various brain regions such as the supplementary motor area, which is responsible for 

voluntary motion (Braak & Del Tredici, 2008; Tröster & Fields, 2008). 
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Figure 2. 1Striato-Pallidal Pathway in healthy individuals and in individuals with PD. In 
the healthy brain (left), dopamine from the substantia nigra pars compacta (SNc) is 
released along two pathways, the direct and indirect. In the direct pathway, dopamine 
from SNc flows to Dopamine 1 (D1) receptors in the striatum, after which GABA 
neurotransmitters inhibit the Globus Pallidus Interna (GPi) and substantia nigra pars 
reticulata (SNr), allowing for a decreased inhibitory signal to be sent to the thalamus. In 
the indirect pathway, the SNc sends dopamine to Dopamine 2 (D2) receptors in the 
striatum, which send inhibitory GABA to the globus pallidus externa (GPe), which in turn 
decreases GABA inhibition of the subthalamic nucleus (STN), allowing for greater 
glutaminergic excitation of the GPi/SNr, and greater inhibitory GABA to the thalamus. In 
the Parkinsonian brain (right), decreased dopamine in both pathways results in a 
combined increase in inhibition of the thalamus.  

 

1.1.4 TREATMENTS I – L-DOPA & DBS 

Typical treatments for PD to date aim to restore equilibrium between the indirect 

and direct neural pathways implicated in PD (Braak & Del Tredici 2008). These include 

pharmacological and surgical interventions such as L-Dopa replacement and deep brain 

stimulation (DBS), respectively (Heiberger, 2011). Dopamine, taken in its precursor L-

Dopa form, passes through the blood-brain-barrier in order to elevate the depleted 

dopamine levels in the striatum without significantly changing levels of noradrenaline or 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Figure 2 is an altered Figure 1a from Braak & Del Tredici (2008), with adjustments from Graybiel (2000) and Obeso et al. (2008).	
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serotonin (Brown, 2003). Unlike targeted DBS, dopamine replacements commonly 

prescribed for PD, such as levodopa and carbidopa, may have adverse side effects 

such as hallucinations, delusions, confusion, depression, anxiety, agitation, nightmares, 

and cognitive ‘frontal’ effects (Tröster & Fields, 2008), resulting from its widespread 

modulation of cortical and subcortical areas (George et al. 2013). Although chronic high-

frequency DBS in pathologically overactive brain circuits of PD patients, such as the 

STN and GPi, has been found to produce profound clinical benefits (Graybiel, 2000; 

Mayberg et al., 2005), this procedure is highly invasive. It should also be noted that 

many of the balance, gait, and freezing problems are not alleviated by pharmacological 

and/or surgical treatments (de Dreu et al. 2012; Earhart, 2009). Between the adverse 

side effects of pharmacological interventions, the invasiveness and exclusivity of DBS, 

and the uncertainty that either of these treatments will significantly diminish symptoms, 

scientific research has turned to examining the motor and cognitive benefits of 

physiotherapy with particular emphasis on dance for individuals with PD. 

1.1.5 TREATMENTS II - PHYSIOTHERAPY 

While there is currently no widely accepted physiotherapy guideline for PD 

patients based on practical recommendations from scientific literature, researchers have 

outlined necessary components of physiotherapy for PD. Keus et al. (2007) believe that 

although physical therapy is unlikely to influence the disease process itself, it can 

improve daily functioning by teaching and training PD patients in the use of 

compensatory movement strategies. The necessary components of physical therapy for 

PD include cueing strategies, such as visual or auditory cues. Cues facilitate automatic 

and repetitive movements (de Dreu et al. 2012) and heighten awareness of all parts of 
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the body (Westheimer, 2008), which may allow for bypass of the dysfunctional loop from 

the BG while correcting for the improperly supplied internal rhythm (Earhart, 2009; 

Heiberger et al., 2011).  

Other components of physiotherapy for PD are cognitive movement strategies 

(complex automated movements transformed into a series of sub-movements that must 

be executed in a fixed order in order to improve transfers), balance training, and 

improvements in physical capacity (through improving joint mobility and muscle power) 

(Keus et al. 2007; Earhart, 2009). In a review of dance therapy for PD, Earhart (2009) 

explains that dance incorporates all of the abovementioned requirements set forth by 

Keus et al. (2007), with its combined inclusion of both physical and cognitive stimulation 

(Dhami et al. 2015). Interest has shifted from standard physiotherapy practices to dance 

therapy due to the lack of compliance and regular participation from PD patients during 

physiotherapy. Additionally, dance is an enjoyable alternative to regular physiotherapy 

and has been found to improve adherence to a physical multifaceted exercise 

(Heiberger et al. 2011; Houston & McGill, 2013; Dhami et al. 2015), and to contribute to 

the mental, emotional, and physical well being of elderly (da Silva Borges et al. 2014).  

1.1.6 TREATMENTS III - DANCE 

Several studies have investigated the effects of dance in a PD population. In one 

study, the immediate benefits of a single dance class in PD patients who had been 

participating in said class for 8 months were investigated (Heiberger et al. 2011). This 

study examined motor control and QofL of PD patients before and after a single dance 

class. They found strongest improvements in rigidity scores of the limbs and not the 

neck, which may be a direct consequence of better proprioceptive-motor integration, as 
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well as improvements in hand movements, finger taps, and facial expression as 

measured by the Unified Parkinson’s Disease Rating Scale (UPDRS-III). With regards 

to the QofL examination, PD patients noted improvements after 8-month participation in 

the dance class in categories such as active recreation, mobility, socializing, health, 

relationships, helping others, and expressing oneself creatively, as measured by the 

Oregon Health Science QofL Questionnaire. In a 17-month dance for PD study, 

Westheimer (2008) had participants fill out the QofL Questionnaire and they were also 

asked to indicate whether any items changed for the better as a result of attending the 

dance class. The two items that received the highest number of responses were 

Socializing and Health, both of which are problematic areas for individuals with PD.  

Dance therapy can either be applied in the form of individual gait training or in a 

group setting. A meta-analysis of six studies that totaled 168 PD patients by de Dreu et 

al. (2012) looked at the benefits of dance therapy in PD patients, both individually and in 

groups, when compared to conventional physiotherapy therapy or no therapy. They 

examined standing balance, transfers, gait performance, severity of freezing, and QofL. 

The results showed relevant improvements in standing balance control due to partnered 

dance as measured by the Berg Balance Scale (BBS), improvements in activities of 

daily life as measured by the Time Up and Go (TUG), and finally, normalization and 

stabilization of walking pattern as measured by stride length. Additionally, a preliminary 

study in our lab examining the effects of dance in individuals with PD showed a 

reduction in TUG speed and improvement in the BBS (McDonald et al. 2014), and was 

the shortest reported dance intervention to date for PD (11 weeks between testing 

sessions) (Westheimer, 2008; Heiberger et al. 2011).  
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With the growing number of studies indicating positive benefits of recreational 

exercise for PD patients, such as improved gait speed, strength, balance, and QofL 

(Earhart, 2009), combined with the knowledge that dance therapy results in more 

significant improvements than other types of exercise and/or no exercise (Westbrook & 

McKibben, 1989; Hackney et al., 2007; de Dreu et al. 2012), our next step in this line of 

research is to examine brain-related plasticity as a function of dance for PD, as few 

studies have examined the neural correlates of dance class participation (Karpati et al. 

2015; Li et al. 2015). To date, no studies investigating the effects of dance on rsEEG 

exist in the literature. 

1.2 ELECTROENCEPHALOGRAPHY 

1.2.1 WHAT DOES IT MEASURE? 

Electroencephalography (EEG) is a non-invasive technique of recording natural 

oscillations of neural electrical potential activity in the brain, using electrodes placed on 

the human scalp (Buzsáki, 2006; Nunez & Srinivasan, 2006; Han et al. 2013). EEG is 

used in research for its excellent temporal resolution and high test-retest reliability (Han 

et al. 2013). However, it lacks spatial resolution (Buzsáki, 2006), making it difficult to 

allocate the underlying structural source of oscillatory activity (known as the ‘inverse’ 

problem, Lopes Da Silva & Storm Van Leeuwen, 1977; Goldman et al. 2002). There is 

however a fundamental assumption in EEG research that the location of sensors can be 

correlated to underlying cerebral structures, with increasing electrode number allowing 

for better spatial resolution (Koessler et al. 2009). The mean field activity measured by 

EEG is the average behavior of roughly 100 million to 1 billion neurons (Nunez & 

Srinivasan, 2006), with the superficial layers of the cortex generating most of the 



 11 

synaptic electric potential activity measured on the scalp (Goldman et al. 2002; Buzsáki, 

2006; Nunez & Srinivasan, 2006). From a cellular level, the field potentials recorded by 

EEG are a linear sum of numerous overlapping fields generated by current sources (i.e. 

ions moving from intracellular to extracellular space) and sinks (i.e. ions moving from 

extracellular to intracellular space). These mostly reflect post-synaptic potentials, both 

excitatory and inhibitory, stemming from cortical pyramidal cells arranged in parallel and 

space-averaged over cortex (Lopes Da Silva & Storm Van Leeuwen, 1977; Buzsáki, 

2006; Han et al. 2013).  

Spontaneous scalp EEG, or resting state EEG (rsEEG), is recorded in the 

absence of any external stimuli and has been an important tool for diagnosing, 

monitoring, and treating certain illnesses, such as brain tumors, strokes, epilepsies, 

severe head injury, sleep disorders, and brain death (Nunez & Srinivasan, 2006; Han et 

al. 2013). rsEEG reflects a state of highly organized processes within neuronal circuits 

and systems influenced by activation of voltage-gated channels, availability of 

neurotransmitters and neuromodulators, and distribution of synaptic weights (Buzsáki, 

2006). EEG oscillations are typically labeled according to the frequency ranges of delta 

(1 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 13 Hz), beta (13 – 20 Hz), and gamma ( > 20 Hz) 

(Han et al. 2013); however, for our purposes, we will only be focusing on the alpha 

rhythm.  

1.2.2 ALPHA RHYTHMS 

Sometime in the late 1920s, German neurologist and inventor Hans Berger 

noticed a sinusoidal wave of roughly 10 cycles per second (Hz) while recording from 

scalp EEG (Berger 1920); he later named this the alpha rhythm (also known today as 
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the posterior dominant rhythm) (Goldman et al. 2002; Bazanova & Vernon, 2014). Alpha 

amplitude is highest when an individual is awake and relaxed with EC, and is attenuated 

when eyes are opened, when mental effort is applied, and/or when an individual feels 

drowsy or sleeps (Goldman et al. 2002; Han et al. 2013). No firm explanation exists 

regarding the origin of alpha rhythms (Lopes Da Silva & Storm Van Leeuwen, 1977; 

Goldman et al. 2002), however multiple hypotheses exist (Buzsáki 2006). The 

“Pacemaker” hypothesis suggests that alpha rhythms originate from a central source of 

cortical or thalamic neurons which entrain other thalamocortical neural populations, 

whereas an alternative hypothesis suggests that there is no single group responsible for 

the rhythm but rather that alpha oscillations come from synaptic coupling of neural 

sources widely distributed over the neocortical surface (Buzsáki, 2006; Han et al. 2013). 

In clinical settings, using EEG examination of the alpha rhythm is often a starting point 

(Han et al. 2013), as increased alpha activity is believed to correlate with decreased 

functional activity in underlying cortical areas (Goldman et al. 2002; Bazanova & 

Vernon, 2014). To test this hypothesis, researchers have begun using medical imaging 

techniques (i.e. Positron Emission Tomography and functional Magnetic Resonance 

Imaging) in combination with EEG in order to determine the cortical and subcortical 

sources of the alpha rhythm in humans (Goldman et al. 2002). Researchers have 

associated increases in resting alpha power with increased relative cerebral blood flow 

(rCBF) in areas including the thalamus, pons and midbrain, the basal frontal cortex 

(Sadato et al. 1998; Goldman et al. 2002; Bazanova & Vernon, 2014), and insula 

(Goldman et al. 2002). Additionally, decreased blood oxygen level dependent (BOLD) 

response has been associated with increased alpha power during rest in the parietal 
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and occipital lobes (Singh et al. 1998; Goldman et al. 2002), and in superior temporal, 

inferior frontal, and anterior cingulate regions (Goldman et al, 2002). Decreases in 

resting alpha power have been associated with decreased rCBF in bilateral occipital 

cortex and left dorsomedial prefrontal cortex (Sadato et al. 1998; Goldman et al. 2002). 

Unfortunately, as the mode of oscillatory generation is not entirely understood, 

correlations between alpha power and changes in rCBF and BOLD signal should be 

interpreted with caution. Correlations may stem from generator regions (as in the 

“Pacemaker” hypothesis), regions that are part of the generating regions but do not 

themselves generate the oscillations (alternate hypothesis), and/or regions where 

activity is correlated but not causally linked to rhythm generation (Goldman et al. 2002; 

Bazanova & Vernon, 2014).  

1.3 RESTING STATE EEG 

1.3.1 … AND PARKINSON’S DISEASE 

According to the “Pacemaker” hypothesis, one would expect abnormal alpha 

activity in the rsEEG of individuals with PD, as their thalamocortical network is working 

inefficiently due to the over inhibition of the thalamus via the striato-pallidal pathway. 

Consequently, several studies have examined differences in rsEEG between people 

with PD and CONs, and the results are inconsistent (Stoffers et al. 2007). Some studies 

show decreased resting alpha (8-13Hz) (Soikkeli et al. 1991) and beta (13-30Hz) power 

in PD (Soikkeli et al. 1991; Bosboom et al. 2006; Stoffers et al. 2007) when compared to 

CONS, whereas others show increased alpha (Bosboom et al. 2006; Stoffers et al. 2007) 

and beta power in PD (Moazami-Goudarzi et al. 2008). These inconsistencies likely 

stem from methodological differences (Moazami-Goudarzi et al. 2008) such as cortical 
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area/electrodes examined (i.e. frontal electrodes vs. occipital electrodes) (Bazanova & 

Vernon, 2014), calculations used to derive power (i.e. peak power vs. averaged power), 

and even eye state during rsEEG (EO vs. EC). One rsEEG difference between 

individuals with PD and CONS that remains consistent throughout the literature, even 

with methodological differences, is found in the examination of resting iAPF. Namely, 

individuals with PD are consistently found to have a lower iAPF when compared to CONs 

(Soikkeli et al. 1991; Moazami-Goudarzi et al. 2008). Lower frequencies are suggested 

to correlate to longer windows of phasic suppression (Haegens et al. 2014), a probable 

consequence of over inhibition of the thalamus reflected in rsEEG.  

1.3.2 … AND DOPAMINE 

Differences in oscillatory activity between individuals with PD and CONS may be a 

result of two mechanisms stemming from dopamine degeneration in the striatum, 

namely abnormal basal ganglia outflow to the frontal cortex and/or a loss of dopamine 

terminals in the frontal cortex itself (Stoffers et al. 2007). This being said, one might 

predict that dopamine replacement would return oscillatory activity to more normal 

levels, or change the oscillatory nature of the rsEEG. This however, is not necessarily 

the case; dopamine replacement does not normalize the firing pattern of the basal 

ganglia (Obeso et al. 2008), and several studies have demonstrated a lack of 

dopamine-induced alpha oscillatory modulation when specifically comparing rsEEG 

oscillatory power in PD patients ON and OFF levodopa (Stoffers et al. 2007; George et 

al. 2013). It should be noted, however, that local field potential studies during DBS 

surgery examining oscillatory activity in STN or GPi have revealed changes in neural 

synchronization and discharge patterns resulting from dopamine replacement, however 
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this was in beta and gamma bands only (Obeso et al. 2008). Thus, dopamine 

replacements will have no effect on alpha rhythm in our study. 

1.3.3 … AND EXERCISE 

Since dance is considered an exercise (Dhami et al. 2015), or physical activity 

(da Silva Borges et al. 2014) one can turn to studies examining exercise-induced 

changes in rsEEG to hypothesize the expected changes in the present study. Typically 

these studies report an exercise-induced increase in alpha power (Lardon & Polich, 

1996, Kubitz & Pothakos, 1997, Schneider et al. 2009) and iAPF (Gutmann et al. 2015) 

while the underlying causes for the influence of physical exercise on the EEG remain 

unclear. In a study by Lardon and Polich (1996), rsEEG was compared between young 

adults who engaged in high levels of physical exercise and CONS subjects that 

performed comparatively little exercise. They found increased low alpha, high alpha, 

and high beta power in avid exercisers when compared to CONS. They also found higher 

mean frequency values in low, and high beta in avid exercisers compared to CONS. The 

researchers postulate that this may be due to the promotion of rCBF but its relation to 

increasing or decreasing rhythms is uncertain. A comprehensive review by Dustman et 

al. (1994) notes that there is evidence for a positive relationship between physical 

exercise and CNS health in animals, which occurs at least in part because of improved 

neurotransmitter functioning and preservation of dopaminergic cells (Lardon & Polich, 

1996; Ermutlu et al. 2015).  

Researchers have also examined changes in rsEEG, affect, and cognition in a 

cycling versus no exercise group, with results showing increased alpha and decreased 

beta power in exercisers versus CONS (Kubitz & Pothakos, 1997). Using activation 
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theory, the authors suggest that the meaning of shifts in alpha power can be understood 

by examining shifts in other EEG frequencies. For example, activation theory stipulates 

that increases in alpha power accompanied by increased theta or decreased beta, or 

both, would indicate decreased brain activation, whereas alpha increases accompanied 

by decreased theta or increased beta activity, or both, would indicate increased brain 

activation (Kubitz & Pothakos, 1997). Their findings imply that there is a period of 

decreased brain activation after exercise (i.e. within the first 15 minutes), contrary to 

previous research (Lardon & Polich, 1996). Interestingly, their participants felt more 

energetic and activated after exercise, while showing a temporary decline in cognitive 

function (Kubitz & Pothakos, 1997). These findings suggest that there is a negative 

correlation between physical energy and brain function immediately post-exercise. 

However, teasing apart the meaning of exercise-induced increases in overall cortical 

activation is very difficult, especially because emotional processes are tightly connected 

to changes in frontal alpha activity. 

Further investigations on changes in rsEEG after intensive exercise have been 

conducted with respect to treadmill use (Schneider et al. 2009). Pre-exercise, 

immediately post-exercise, and 15 minutes post-exercise rsEEG measurements were 

obtained, and exercise-induced changes were anatomically localized. Researchers 

found increases in low alpha power in the left middle frontal gyrus immediately after 

exercising (unlike Kubitz & Pathakos, 1997). In the 15 minutes post-exercise condition, 

decreases in high alpha in one voxel of the left inferior temporal gyrus were found, and 

decreases in low beta power in the left inferior middle and superior temporal gyri were 

found when compared to the pre-exercise condition. Observed increases in frontal low 
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alpha power were associated with emotional effects of exercise, as the frontal cortex is 

strongly connected to emotional processing. Specifically, the authors postulate that 

greater left frontal lobe activity may serve as a marker of positive emotions. This is a 

key component of the well-documented model of frontal asymmetry (Wheeler et al. 

1993). Schneider et al. (2009) also found decreased low beta power in the temporal 

cortex and similar decrease of gamma 15 minutes after exercise, which might reflect 

transformation of slow EEG rhythms into faster oscillations characteristic of aroused and 

alert states. 

1.4 OBJECTIVES AND HYPOTHESES 

1.4.1 OBJECTIVES 

In our lab, we have begun to address the neural mechanisms of learning a dance 

in expert individuals through the use of functional magnetic resonance imaging (Bar & 

DeSouza, 2012; Olshansky et al. 2014), and now we plan to apply this line of research 

to individuals with PD, specifically through the use of behavioural measures and EEG. 

Our study will examine changes in balance, walking speed, depression, and rsEEG 

associated with dance in those with PD as well as in healthy age matched CONS, by 

examining these measures immediately before and after participation in one 75-minute 

dance class. We will examine changes in iAPP and iAPF rather than averaging alpha 

power over a pre-determined range (i.e. 8 – 12 Hz), as these values give a more 

accurate estimate of alpha modulated activity (Bazanova & Vernon, 2014; Haegens et 

al. 2014) 
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1.4.2 HYPOTHESES 

A high degree of variability exists in the aforementioned studies examining 

exercise-induced changes in rsEEG. Extrapolating a directional hypothesis from the 

abovementioned studies should be done with caution as these studies examined 

healthy young adults exercising without music, whereas the present study will examine 

changes in rsEEG in an elderly and clinical sample before and after dance 

accompanied by music. An important property of dance is its inherent synchronization of 

movements to a rhythmic timekeeper (Brown et al. 2005), made possible with the help 

of the basal ganglia (more specifically the putamen) which aids in the selection and 

organization of predictable, and regularly timed movements (Brown et al. 2005) such as 

walking. Indeed, research has shown strong activity in the putamen resulting from 

dance movements made to metric rhythms (Brown et al. 2005; Hashimoto et al. 2015) 

We hypothesize that dance will produce improvements in balance, walking 

speed, and depression scores, and that dance will induce changes in resting alpha, 

both in frequency peak (Hz) and it’s associated power (µV2), as both are hypothesized 

to be involved in changes in arousal, attention, and information processing (Gutmann et 

al. 2015). Specifically we expect to find changes in resting iAPP and iAPF; however the 

directionality of these changes remains elusive. We also expect to replicate lower iAPF 

in PD when compared to CONS, consistent with that which is shown in the literature. 

Additionally, we will investigate the influence of electrode position, and eye state on the 

rsEEG analysis while exploring effects of dance. 

By examining these changes, we can begin to understand the neural 

mechanisms underlying the dance-induced behavioral improvements demonstrated in 
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the literature, and in our own evaluations of dance-induced changes in motor and non-

motor symptoms. Observed dance-induced EEG changes will be related to the existing 

literature, and we will propose a neural model and hypothesize whether these changes 

reflect modulation of affect (through presence of lateralized differences), are associated 

with exercise more generally (no presence of lateralized differences), or perhaps reflect 

a return to more normal oscillatory activity as seen in the baseline rsEEG of our CONs 

(i.e. lower iAPP and higher iAPF). 

2. METHODS 

2.1 PARTICIPANTS 

A total of 47 people participating in a Dancing with Parkinson’s Program at 

Canada’s National Ballet School (DwP@NBS) volunteered to participate in our study.  

Of these, 24 were individuals with PD (mean age = 68 ± 8.1 years), and 23 were CONS 

(mean age 62 ± 10.8 years) that comprised of spouses, caregivers, relatives, and 

volunteers at DwP@NBS. All participants were compensated $25/hour for their time and 

involvement in the study. In addition to the rsEEG component of our study, participants 

completed the TUG, the BBS, and the Geriatric Depression Scale (GDS), and were 

asked to fill out demographic and medical questionnaires (See Table 1, Appendix A, 

and, Appendix B). The behavioral and rsEEG measures were collected on different 

dates, and some participants did not complete all four measures (See Table 2).  
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Table 1. Medication information for individuals with PD participating in rsEEG. All 
participants were taking some form of L-Dopa replacement, while eight of 20 
participants were taking antidepressants and/or antianxiety medication. 
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Table 2. Sample size for each motor, non-motor, and rsEEG measure. 

Group BBS TUG GDS rsEEG 
PD n = 16 n = 16 n = 18 n = 20 

CONS n = 6 n = 6 n = 8 n = 21 
 

2.2 BEHAVIORAL PROTOCOL 

2.2.1 DATA COLLECTION 

The TUG and BBS were performed before and after a single dance class on 

three separate dates, one in January 2014, one in April 2014, and one in June 2014. 

Nineteen out of 24 participants with PD, and 6 CONS out of the 23 completed the BBS 

and TUG scales during 1, 2 or 3 of the time points. Three participants with PD were 

excluded from this analysis, as they did not complete both a pre- and post- dance class 

evaluation during any of the time points, leaving 16 individuals with PD (mean age = 

69.7 ± 7.1 years), and 6 CONS (mean age = 68.5 ± 5.02 years). 

The GDS was completed before and after a single dance class on three separate 

dates, one in March 2014, one in April 2014, and one in June 2014. Nineteen out of 24 

participants with PD (mean age = 68.6 ± 8.2 years), and 8 CONS (mean age = 64.6 ± 6.7 

years) out of the 23 completed the GDS during 1, 2 or 3 of the time points. 

2.2.2 DATA ANALYSIS 

For those participants that completed more than 1 pre-/post-dance class 

evaluation (i.e. participated in April 2014 and June 2014), scores were averaged across 

time points in order to create a single score for each participant for each of the TUGavg, 

BBSavg, and GDSavg measures, pre- and post-dance class. Statistical analyses were 

conducted with SPSS (Version 20, IBM Corp, 2011, Armonk, NY). 
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2.3 RESTING STATE EEG PROTOCOL 

2.3.1 DATA COLLECTION 

To obtain rsEEG data, subjects were asked to remain as still as possible and let 

their mind wander for two three-minute recording epochs: once with their EO, and once 

with their EC. The presented order of these conditions was randomized within and 

between subjects. Subjects performed the rsEEG paradigm before and after a single 

75-minute dance class in a quiet, closed-door study room at NBS. Earphones with ear 

buds were provided to minimize any external noise and to ensure that participants 

heard the auditory prompts to open and close their eyes during the paradigm. All rsEEG 

recordings were acquired in the morning between 9:00am and 10:00am for the pre-

dance class condition and between 11:30am and 12:30pm for the post-dance class 

condition. This recording schedule controlled for potential confounds of circadian factors 

on EEG activity (Moazami-Goudarzi et al. 2008). Subjects were also asked to refrain 

from consuming caffeinated beverages on the day of recording to avoid caffeine-

induced alpha and theta decreases in EEG (Newman et al. 1992; Dimpfel et al. 1993; 

Moazami-Goudarzi et al. 2008). Researchers made note of what the subjects thought 

about during each session, and noted whether the participants felt drowsiness. This 

information is important as it may account for any unusual observations in the recorded 

waveform profiles. Data was collected once a week, from 1 to 2 participants, from 

January 2014 to December 2014. 

EEG data was acquired using a wireless 14-channel Emotiv EPOC® EEG 

Neuroheadset and recorded with TestBench software (Emotiv Systems, 2012, San 

Fransisco, CA). The Emotiv EPOC® is an EEG system used both for gaming and 
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research purposes, and has been validated against a purely research based EEG 

system (Neuroscan system) for collection of auditory event-related potentials (ERPs) 

(Badcock et al. 2013) 2 . Emotiv EPOC® electrode sites are in accordance to the 

International 10-20 System and include AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, 

F4, F8, and AF4 electrode sites. The headset has two reference electrodes (CMS and 

DRL) at P3 and P4 and samples at a rate of 128Hz with 16-bit ADC resolution and 0.02 

to 45 Hz resolution, with digital notch filters at 50 and 60 Hz. All stimuli were created in 

and presented by MediaLab (v2012.4.119, Blair Jarvis for Empirisoft Co., New York, 

NY). Data markers were sent from MediaLab to TestBench via Virtual Serial Port Driver 

(Version 7.1, Eltima Software, 2013, Bellevue, WA).  

2.3.2 DATA PREPROCESSING 

Preprocessing of EEG data was conducted offline in Matlab (Version 7.10.0.99 

R2010a, The Mathworks, Inc., Natick, MA) using the Fieldtrip toolbox (Oostenveld et al. 

2011). Steps taken for data pre-processing are as follows:  

Step 1: The .edf files from TestBench were converted to .mat files. 

The data was converted from a 3D matrix (Channel, Samples, Epochs) to a 2D matrix 

(Channel, Samples) because a single Epoch was recorded for each participant and thus 

this dimension could be dropped. This was done in order to utilize Matlab software. 

Step 2: Data markers were identified. 

The Eltima software allowed numerical markers to be sent to the EMOTIV software 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  Badcock et al. (2013) recorded EEG from participants listening to standard and deviant auditory tones in active and 

passive listening conditions whilst participants simultaneously wore the Emotiv EPOC® (gaming and research EEG) and the 
Neuroscan system (research EEG). Late ERP waveforms were created for each EEG system, for each combination of conditions 
(i.e. standard passive tones, standard active tones, deviant passive tones, and deviant active tones), and similarity of waveform 
peaks were compared. The study concluded that the waveforms derived from the Emotiv EPOC® EEG system compared well with 
the Neuroscan EEG system for the procurement of reliable auditory ERPs measuring P1, N2, P2, N2, and P3 peaks at frontal 
electrode sites (Badcock et al. 2013). 
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during recording. At the start of the EO rsEEG segment, the number 98 appears in the 

data. At the start of the EC rsEEG segment, the number 100 appears in the data. The 

code identified the start of each segment (via numbered marker), and the point 180 

seconds after each segment began. 

Step 3: Epoching segmentation: redefining in to EO and EC segments. 

The data was then epoched in to a 3-minute EO segment and a 3-minute EC segment. 

3Step 4: Epoching segmentation: redefining in to 2-second bins. 

Each 180-second rsEEG segment was redefined in to 2 second bins, creating 90, 2 

second bins for each rsEEG segment (EO and EC).  

Step 5: Preprocessing for visualization 

A twopass Butterworth filter was applied from 1 - 50 Hz. Demean (baseline correction) 

and detrend (removal of mean value or linear trend) corrections were applied.  

Step 6: Visual inspection and data checking 

Each 2-second epoch of data was visually inspected using variance, amplitude 

maximums and max z values. Obvious outliers in the data were rejected. In the PD 

group, in the pre-dance condition, an average of 14.5 ± 7.7 two-second epochs were 

rejected in the EO condition, and 13.7 ± 6.9 two-second epochs were rejected in the EC 

condition. This resulted in 151 ± 15.4 seconds (2.52 mins) of useable rsEEG data in the 

pre-dance EO condition, and 152.6 ± 13.7 seconds (2.54 mins) of useable rsEEG data 

in the pre-dance EC condition. In the CONS group, in the pre-dance condition, an 

average of 12.4 ± 4.3 two-second epochs were rejected in the EO condition, and 13.4 ± 

6.2 two-second epochs were rejected in the EC condition. This resulted in 155.2 ± 8.6 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  Steps 4 – 10 are completed for each participant, one at a time, for each pre- and post-dance class .mat files. 
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seconds (2.59 mins) of useable rsEEG data in the pre-dance EO condition, and 153.2 ± 

12.3 seconds (2.55 mins) of useable rsEEG data in the pre-dance EC condition. In the 

PD group, in the post-dance condition, an average of 12.9 ± 7 two-second epochs were 

rejected in the EO condition, and 11.8 ± 8.2 two-second epochs were rejected in the EC 

condition. This resulted in 154.2 ± 14 seconds (2.57 mins) of useable rsEEG data in the 

post-dance EO condition, and 156.4 ± 16.5 (2.61 mins) seconds of useable rsEEG data 

in the post-dance EC condition. In the CONS group, in the post-dance condition, an 

average of 12.6 ± 7.1 two-second epochs were rejected in the EO condition, and 14.2 ± 

7.1 two-second epochs were rejected in the EC condition. This resulted in 154.9 ± 14.2 

seconds (2.58 mins) of useable rsEEG data in the post-dance EO condition, and 151.6 

± 18.9 seconds (2.53 mins) of useable rsEEG data in the post-dance EC condition. 

Step 7: Independent Component Analysis (ICA) 

To further clean the data, the raw signal was mathematically divided in to 14 

independent components depending on naturally recurring variances in the data. The 

first few components house the largest variances, and are typically where artifacts such 

as eyes blinks, eyes movements, and/or noise are found.  

Step 8: Visual inspection of the topographical disposition of the components 

Topographic dispositions of each component were inspected for possible artifact 

profiles (Figure 3) such as eye blinks, eye movements, or noise (Figure 4). 
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Figure 3: Sample topographic disposition of components. Components 1 to 14 created 
by ICA. All components are inspected for potential eye movements, eye blinks, or noise 
profiles.  
 

	
  

E.g. Eye Movement          E.g. Eye Blink 

Figure 4: Identified components of interest. Component 3 is a typical profile of an eye 
movement, with a hot spot polarized by a cold spot in the frontal area. Component 6 is a 
typical eye blink profile, with a centralized hotspot in the frontal region. 
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Step 9: Component Inspection 

Using channels AF3 and AF4 (black and blue), each 2-second epoch within identified 

components of interest (Step 8) is inspected for eye-blinks and/or eye-movements 

(Figure 5). 

 
 

Figure 5. A two-second epoch within channels AF3 and AF4 containing a potential eye 
movement. This sample epoch shows a potential eye movement in the two-second bin 
of raw data from 38-40 seconds of recording. Resultantly, this epoch will be further 
investigated within component 3 (Figure 4) in Step 9. 

 
When a two-second epoch containing one or all of these artifacts is identified, this 

specific epoch is examined within each identified components of interest (i.e. 

component 3 in our example, as this appears to be an eye movement) (Figure 6). This 

is done in order to ensure that the previously identified components of interest do in fact 

contain artifacts, before their removal in step 10. For each potential artifact identified in 

Step 8, a minimum of three, two-second epochs containing this artifact must be 

identified before a component is removed. 
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Figure 6. Component 3 houses noise created by eye movements. After identifying a 
two-second epoch in Step 8 that potentially contained an eye movement, this notion 
was confirmed through an examination of that specific 2-second epoch of raw data in 
only component 3. Here we see that noise caused by eye movements is housed in 
component 3, and thus, component 3 should be removed.  
 

Step 10: Component removal 

Components containing confirmed artifacts are removed from the data, and a 

component rejected .mat file is created. 

Step 11: Re-reference  

To clean the signal further, the average signal across all electrodes is computed and 

subtracted from each electrode, for each time point.  

Step 12: Frequency Analysis – Power Spectra Computed 

A multitaper Fast Fourier Transformation (FFT) was applied, in which the entire 

spectrum for the entire data length was analyzed. Frequencies of interested were 

organized in to 0.5 Hz increments from 1 to 50 Hz, and a Hanning window was applied 
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in order to correct for leakage in the FFT.  

Step 13: Alpha Peak Search 

The alpha frequency peak (y-axis) and associated power (x-axis) are identified for each 

subject for EO and EC separately (see Appendix C for sample individual powerspectra), 

for each individual electrode in the pre-dance, and post-dance rsEEG. Data are 

exported to SPSS for statistical analyses.  

2.3.3 DATA ANALYSIS 

All iAPP values were log transformed before undergoing any statistical tests in 

order to be able to use normal statistical measures. Statistical analyses were conducted 

offline in SPSS (Version 20, IBM Corp, 2011, Armonk, NY). 
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3. RESULTS 

3.1 BEHAVIORAL 

3.1.1 Berg Balance Scale 

A 2 (Time) x 2 (Group) repeated Measures ANOVA revealed that BBSavg scores 

did not improve after a single dance class (F(1,20) = 1.700, p = 0.207, η2 = 0.078). 

Additionally, there was only a trend approaching significance indicating that the CONS 

group had higher BBS scores than the PD group (F(1,20) = 4.027, p = 0.058, η2 = 

0.168). When groups were analyzed separately, the PD group demonstrated a 

significant increase in BBSavg scores (F(1,15) = 5.223, *p < 0.05, η2 = 0.258). BBSavg 

scores did not improve significantly in the CONS group (F(1,5) = 0, p = 1, η2 = 0) (Figure 

7A). 

3.1.2 Timed Up and Go 

A 2 (Time) x 2 (Group) repeated Measures ANOVA revealed that TUGavg scores 

improved significantly after a single dance class (F(1,20) = 9.088, p < 0.01, η2 = 0.312). 

There were no significant group differences (F(1,20) = 2.489, p = 0.13, η2 = 0.111)  

When groups were analyzed separately, the CONS group demonstrated a significant 

increase in TUGavg scores (F(1,5) = 13.965, *p < 0.05, η2 = 0.736), whereas the PD 

group did not (F(1,15) = 1.435, p = 0.249, η2 = 0.087) (Figure 7B). 

3.1.3 Geriatric Depression Scale 

A 2 (Time) x 2 (Group) repeated Measures ANOVA revealed that GDSavg scores 

improved after a single dance class (F(1,25) = 4.240, *p = 0.05, η2 = 0.145). 

Additionally, there was only a trend approaching significance indicating that the PD 

group had higher GDS scores than the CONS group (F(1,25) = 3.932, p = 0.058, η2 = 
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0.136).  When groups were analyzed separately, the PD group demonstrated a 

significant decrease in GDSavg scores (F(1,18) = 9.617, **p < 0.01, η2 = 0.348). GDSavg 

scores did not improve significantly in the CONS group (F(1,7) = 0.118, p = 0.741, η2 = 

0.017) (Figure 7C). 
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Figure 7. Behavioral Results. (A) BBSavg scores improved after a single dance class in 
the PD group (F(1,15) = 5.223, *p < 0.05, η2 = 0.258). (B) TUGavg scores decreased 
significantly after a single dance class in the CONS group (F(1,5) = 13.965, *p < 0.05, η2 
= 0.736). (C) GDSavg scores improved after a single dance class in the PD group 
(F(1,18) = 9.617, **p < 0.01, η2 = 0.348). Black = PD, White = CONS, Bars = SEM. 

 



 33 

3.2 RESTING STATE EEG: ALPHA (5.5 – 12.5 Hz) 

3.2.1 INDIVIDUAL ALPHA PEAK FREQUENCY 

A 2 (Group) x 2 (Eye State) x 2 (Time) x 14 (Electrode) repeated measures 

ANOVA revealed a main effect of Group (F (1, 39) = 25.863, p < 0.01, η2=0.399), in 

which CONS exhibited a higher iAPF when compared to individuals with PD (Figure 8), a 

main effect of Electrode (F (6.081, 237.152) = 6.972, p < 0.01, η2=0.152) (see Appendix 

H for Bonferroni corrected pairwise comparisons), and an increasing trend for Time (F 

(1, 39) = 3.593, p = 0.065, η2=0.084). Additionally, an interaction between Eye State 

and Group (F (1, 29) =36.589, p < 0.01, η2=0.152) was revealed in which pairwise 

comparisons showed that the EO and EC conditions were not significantly different in 

PD (pB =0.480) when compared to CONS in which the EC condition had a higher iAPF 

than the EO condition (pB <0.01). An interaction between Time and Eye State (F (1, 39) 

= 5.965, p < 0.01, η2=0.133) demonstrated that iAPF in the EO condition increased (pB 

<0.01) from pre- to post- dance class whereas iAPF in the EC did not change as a result 

of dance (pB =0.573). As there was an interaction between Eye state and Group, we 

investigated the Time x Eye State interaction in each Group. This analysis revealed that 

the Time x Eye state interaction was only present in the CONS group (F (1, 20) = 6.494, p 

< 0.05, η2=0.245), in which only the iAPF in the EO condition increased from pre- to 

post- dance class (pB <0.01), whereas the EC condition did not (pB =0.329) (Figure 9). 

The PD group did not demonstrate a Time x Eye State interaction effect (F (1, 19) = 

0.899, p = 0.355, η2=0.045) (Figure 9). 
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Figure 8. CONS exhibit a higher iAPF when compared to individuals with PD, when 
averaged across all electrodes  (F (1, 39) = 25.863, p < 0.01, η2=0.399). Bars = SEM. 
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Figure 9. Time x Group x Eye State iAPF (averaged across all electrodes). CONs 
exhibited a higher resting iAPF when compared to individuals with PD (F (1, 39) = 
25.863, p < 0.01, η2=0.399). Additionally, individuals with PD did not demonstrate a 
significant difference between EO and EC iAPF (pB =0.480), whereas CONs had higher 
iAPF in the EC condition when compared to EO (pB <0.01). Finally, CONs demonstrated 
an increase in iAPF from pre- to post-dance class in the EO condition (pB <0.01), 
whereas individuals with PD did not show any increases in either eye state. Black = PD, 
white = CONs, square = EO, circle = EC, bars = SEM.  

 

3.2.2 Individual Alpha Peak Power 

A 2 (Group) x 2 (Eye State) x 2 (Time) x 14 (Electrode) repeated measures 

ANOVA revealed a main effect of Group (F (1, 39) = 6.061, p < 0.05, η2 = 0.135), in 

which individuals with PD exhibited higher iAPP when compared to CONS, a main effect 

of Electrode (F (4.758, 185.550) = 66.858, p < 0.01, η2 = 0.632) (see Appendix I for 

Bonferroni corrected pairwise comparisons), a main effect of Time (F (1, 39) = 6.359, p 
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< 0.05, η2 = 0.140) in which the post- condition showed greater iAPP when compared to 

the pre-condition, and a main effect of Eye State (F (1, 39) = 63.920, p < 0.01, η2 = 

0.621) in which iAPP was stronger in the EC condition than in the EO condition. 

Additionally there was an interaction between Eye State and Electrode (F (5.808, 

226.524) = 25.004, p < 0.01, η2 = 0.391). 

Although there was no interaction effect for Eye State x Time x Group, there 

were main effects for each variable and thus the interactions were investigated. When 

examining the Group x Eye State interaction within each Time variable, individuals with 

PD exhibited higher iAPP when compared to CONS in both the EC (pB < 0.05) and EO 

(pB < 0.01) conditions pre-dance class, whereas post-dance class, individuals with PD 

exhibited higher iAPP when compared to CONS only in the EO (pB < 0.05) condition 

(Figure 10). When examining the Eye State x Time interaction within each Group, the 

PD group did not show any significant increases from pre- to post-dance class in either 

the EC (pB =0.498) or Eyes EO (pB =0.551) conditions, whereas the CONS group showed 

increases in iAPP from pre- to post-dance class in both EC (pB < 0.01) and EO (pB < 

0.05) conditions (Figure 10). Finally, when examining the Time x Eye State interaction 

within each Group, both the PD group and the CONS group demonstrated stronger iAPP 

in the EC condition over the EO condition in both pre- and post-dance class (all pB < 

0.01) (Figure 10) (See Appendices D and E for corresponding headmaps).  
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Figure 10. Time x Group x Eye State iAPP Interaction (averaged across all electrodes). 
Individuals with PD exhibit higher iAPP when compared to CONs in both the EC (pB < 
0.05) and EO (pB < 0.01) conditions pre-dance class, whereas post-dance class, 
individuals with PD exhibited higher iAPP when compared to CONs only in the EO (pB < 
0.05) condition. Individuals with PD did not show any significant increases from pre- to 
post-dance class in either the EC (pB =0.498) or EO (pB =0.551) conditions, whereas the 
CONs showed increases in iAPP from pre- to post-dance class in both EC (pB < 0.01) 
and EO (pB < 0.05) conditions. Individuals with PD and CONs demonstrate stronger iAPP 
in the EC condition over the EO condition in both pre- and post-dance class (all pB < 
0.01). Bars = SEM. Black = PD, white = CONs, square = EO, circle = EC, bars = SEM. 
 

3.2.3 FRONTAL INDIVIDUAL ALPHA PEAK POWER 

In order to evaluate lateralized differences resulting from dance, an averaged 

frontal alpha power in the EC condition was computed for the left (F3 and F7 

electrodes) and right (F4 and F8 electrodes) hemispheres. A 2 (Time) x 2 (Hemisphere) 

x 2 (Group) repeated measures ANOVA revealed a main effect of Time (F (1, 39) = 

7.406, p < 0.01, η2 = 0.160). Although this analysis only showed a trend towards 

significance between groups (F (1, 39) = 3.081, p = 0.087, η2 = 0.073), groups were 
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then evaluated separately with the intent of uncovering differing dance-induced changes 

in frontal neural networks within each group. For each group, a 2 (Hemisphere) x 2 

(Time) repeated measures ANOVA was performed. In the PD group, there was a main 

effect of Time (F (1, 19) = 6.650, p < 0.05, η2 = 0.259) in which the post-dance condition 

elicited a higher frontal iAPP across both hemispheres. Although there was no 

significant Hemisphere x Time interaction (F (1, 19) = 0.052, p = 0.822, η2 = 0.003), the 

purpose of this analysis was to evaluate asymmetric changes in frontal alpha power, 

and thus a pairwise comparison was performed, which revealed a significant increase in 

the right hemisphere from pre- to post-dance class (pB < 0.05), and only an increasing 

trend towards significance in the left hemisphere (pB = 0.087). The CONS group 

demonstrated a trend towards significance for the effect of Time (F (1, 20) = 3.847, p = 

0.067, η2 = 0.158), and a significant interaction effect for Hemisphere x Time (F (1, 20) 

= 7.177, p < 0.05, η2 = 0.264), with pairwise comparisons revealing increases only in the 

left hemisphere from pre- to post- dance class (pB < 0.05), and no significant increases 

in the right hemisphere (pB = 0.158) (Figure 11). 



 39 

 
 
 
Figure 11. Lateralized dance induced increases in frontal iAPP. Individuals with PD 
demonstrated increases in right frontal iAPP (pB <0.05) whereas CONs demonstrated 
increases in left frontal iAPP (pB <0.05). Bars = SEM. 
 

3.3 FRONTAL INDIVIDUAL ALPHA PEAK POWER CORRELATIONS 

3.3.1 DEMOGRAPHIC 

Correlations with frontal iAPP differences scores (post – pre dance class, left and 

right hemispheres separately) were investigated within each group for the variables of 

disease duration (PD only), age, gender, hours of weekly exercise, and use of 

visualization (all recorded in the Demographic Questionnaire – see Appendix A), in 

order to elucidate whether increases in frontal iAPP are enriched, exacerbated, or 

unaffected by these variables. To correct for multiple comparisons, an adjusted 
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significance value of p = 0.05/20 = 0.0025 was used. Only the following correlations 

were significant or showed a trend towards significance at the uncorrected value (p < 

0.05); left iAPP difference scores showed a trend towards positive correlation with 

disease duration (r(18) = 0.397, p = 0.083), visualization use (r(18) = 0.434, p = 0.056) 

(Figure 12), and with right iAPP difference scores (r(18) = 0.394, p = 0.086). In the CONS 

group, significant positive correlations were found between left iAPP difference scores 

and hours of weekly exercise (r(18) = 0.471, p < 0.05) (Figure 13), between right iAPP 

difference scores and hours of weekly exercise (r(18) = 0.537, p < 0.05), and between 

left and right iAPP difference scores (r(19) = 0.937, p < 0.01). 

 
Figure 12. Left Frontal iAPP correlation trend with weekly visualization. Individuals with 
PD who visualize dancing outside of the dance class show greater dance-induced 
increases in left frontal iAPP (r(18) = 0.434, p = 0.056). 



 41 

 
Figure 13. Left Frontal iAPP correlation with more weekly exercise in CONs. Greater 
number of weekly hours spent exercising correlated to greater changes in left frontal 
iAPP in CONs (r(18) = 0.471, p < 0.05). Bars = SEM. 

 

3.3.2 BEHAVIORAL 

Frontal iAPP difference values (post – pre dance class, left and right 

hemispheres separately) were correlated with changes in BBSavg and GDSavg scores 

within the PD group, and were correlated with changes in TUGavg scores in the CONS 

group. A two-tailed Pearson’s correlation revealed no significant correlations for either 

group, for any of the behavioral measures. 
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4. DISCUSSION 

4.1 SUMMARY 

Here we examined changes in balance, walking speed, depression scores, iAPF 

and iAPP in individuals with PD and CONs resulting from participation in a single 75-

minute dance class. Our results showed improvement in balance and depression scores 

in the PD group and improvement in walking speed in CONs.  

Global examination of iAPF revealed increases in EO iAPF in CONs, whereas EC 

iAPF did not increase from pre- to post-dance class in CONs. Dance did not change iAPF 

in the PD group in either EC or EO conditions. iAPF in CONs was significantly larger than 

iAPF in the PD group, and individuals with PD did not show eye state dependent 

modulation of iAPF, whereas the CONs showed larger EC iAPF when compared to EO 

iAPF.  

Global iAPP increased after dance class, was greater in the PD group when 

compared to CONS, and greater in the EC condition when compared to the EO condition. 

When examining groups separately, further inspection revealed that iAPP only 

increased globally from pre- to post-dance class in the CON group for both EO and EC 

conditions, and not in the PD group for either the EO or EC conditions.  

Examination of EC frontal iAPP lateralized differences revealed dance-induced 

increases in right frontal iAPP in the PD group (with an increasing trend in left iAPP), 

and increases in left frontal iAPP in CONs.  

Additionally, changes in frontal iAPP were correlated with demographic and 

behavioral (balance, walking speed, depression) measures in the PD and CON groups. 

No significant correlations between changes in frontal iAPP and demographic measures 
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were found, however left iAPP showed a trend towards significantly correlating with 

visualization use in the positive direction. Finally, a significant positive correlation 

between left iAPP and hours of weekly exercise was demonstrated in the CON group. No 

correlations were found between frontal iAPP in PD and balance or depression scores, 

nor were there any correlations demonstrated between frontal iAPP in the CON group 

and walking speed scores.  

4.2 IMPROVEMENTS IN BALANCE (PD) AND IN WALKING SPEED (CONS) 

4.2.1 BALANCE 

Studies have shown that participation in dance class can result in improvements 

in balance in both elderly (Eyigor et al 2009; Hackney & Earhart 2009; de Dreu et al. 

2012; da Silva Borges et al. 2014) and PD populations (Hackney & Earhart 2009), in 

partnered and unpartnered dance class (de Dreu et al. 2012), in short term and long 

term dance interventions. For example, da Silva Borges et al. (2014) showed significant 

improvements in balance, as measured by the Lizard stabilometric and posturometric 

platform after a 12 week ballroom dancing intervention, in which a group of healthy 

elderly individuals participated in a 50-minute dance class 3 times per week. Individuals 

in this study also showed a reduction in fall rate. In both healthy elderly individuals and 

individuals with PD, the immediate improvements in balance could have resulted from 

participants uncovering an ability they already had, for which the dance class served as 

a medium in which they were able to test, and build confidence in these skills (Houston 

& McGill 2011). Another mechanism underlying these improvements may stem from 

induced neuroplasticity from participation in exercise to music (Dhami et al. 2015) in the 

degenerating locomotor apparatus and sensory systems (da Silva Borges et al. 2014). 
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New neural connections between these regions could form from the novel learning 

associated with dance, enabling for better balance control. Additionally, exercise has 

been shown to promote angiogenesis (increased vasculature), which allows for greater 

distribution of nutrients in the motor cortex and cerebellum, two areas implicated in 

balance control (Dhami et al. 2015).  

The reason we believe that we did not observe changes in balance in our elderly 

group was likely that the sample was too small to notice considerable changes (with an 

n=6). Additionally, ceiling and floor effects have been reported for the BBS when used 

with community dwelling older adults post-stroke, suggesting that the BBS may not be 

useful to detect meaningful changes in those with only mild impairments (Blum & 

Korner-Bitensky, 2008)  

4.2.2 WALKING SPEED 

In our study, there was no significant improvement in TUG scores in our PD 

group. In a similar study to ours, Hashimoto et al. (2015) assessed changes in TUG 

scores resulting from either 12 weeks of dance for PD, 12 weeks of exercise for PD, 

and 12 weeks of no intervention in a PD group. Their study showed improvements in 

TUG scores in all three conditions, which they attributed to a practice effect, having had 

a trial run in all three groups before performing the actual task. As there was no trial run 

in our study, another possible explanation is that the TUG may not have been a 

sensitive enough measure to detect changes in walking speed (Heiberger et al. 2011). 

To enhance our investigation, future examinations should additionally include step 

amount (i.e. how many steps taken to walk the 10 meters), as TUG step improvement 
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was larger in the PD group when compared to the exercise group in Hashimoto et al. 

(2015), indicating that it is a more sensitive measure.   

4.3 INDIVIDUAL ALPHA PEAK FREQUENCY 

4.3.1 DANCE-INDUCED INCREASE IN EYES OPEN INDIVIDUAL ALPHA PEAK 

FREQUENCY IN CONs BUT NOT IN PD  

iAPF gradually changes with age, increasing up to adulthood and decreasing 

with older age (Haegens et al. 2014), however, it is usually very stable over long periods 

of time (i.e. over 6 months) in healthy adults up to 80 years of age  (Grandy et al. 2013). 

Grandy et al. (2013) examined iAPF before and after an extensive 6-month cognitive 

intervention with both EO and EC rsEEG data, and demonstrated that although 

significant improvements in cognition ensued, iAPF showed no change longitudinally. 

Although it may not change in the long term, iAPF can change in the short-term with 

increasing cognitive load in healthy young adults (Haegens et al. 2014). Haegens et al. 

(2014) examined event-related changes in iAPF during EO rsEEG, passive visual 

stimulation, and an N-back working memory task in a group of young adults. Their study 

showed significant increases in iAPF in the N-back working memory task when 

compared to baseline and passive visual stimulation, suggesting that iAPF can be 

modulated in the short-term with increased cognitive load (Haegens et al. 2014). We 

postulate that the increase in iAPF in the elderly group could be attributed to an 

increase in cognitive demand during the dance class, as participation in dance class 

has been suggested to influence frontal lobe processing speed and efficiency 

(Hashimoto et al. 2015). Our dance class consisted of 75-minutes of engaging 

challenges to cognition including, but not limited to, learning (new movement 



 46 

sequences, and controlling one’s body in space), attention (watching the dance teacher, 

following instruction, and listening for/following the beat in the music), mental imagery 

(imagining a sequence of steps before executing them), memory (remembering a 

sequence of repeated movements), communication, perception, and emotion (Dhami et 

al. 2015). Hashimoto et al. (2015) hosted a similar DwP program in Japan and reported 

improvements in the Frontal Assessment Battery (FAB) in a group of individuals with PD 

after participation in a 12-week, weekly 60-minute dance class intervention. The FAB is 

a brief battery of six neuropsychological tasks specifically designed to assess frontal 

lobe function (Kopp et al. 2013). Participants also showed improvements in speed 

required to complete a mental rotation task, without changing the number of correct 

responses in this task. Taken together, we suggest that a DwP program may improve 

cognitive processing speed over 12-weeks, however these improvements may not 

necessarily be reflected in long-term iAPF changes. We may however observe 

improvements in cognition resulting from a single dance and correlate these to 

increased iAPF, though a follow up study would be needed to substantiate this 

hypothesis.  

With regards to the PD group not demonstrating increased iAPF after a single 

dance class, a number of reasons could underlie this finding. One explanation, which 

will be addressed in section 4.3.3, is that individuals with PD have a malfunctioning 

iAPF in the EO condition, and thus it cannot be used as an indicator of changes to 

cognition. Additionally, an alternative explanation is that many of the CONs were 

participating in our dance class either for the first time, or did not participate regularly, 

which may have made the class more difficult, or cognitively demanding for this group. 
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The majority of the participants with PD had been regularly attending classes, some 

even before data collection began. Although the instructional material changed form 

week to week, the structure of each class remained the same, and participants may 

have became habituated, thereby reducing their short-term cognitive load. The next 

step in this line of research would be to investigate changes in cognition associated with 

participation in a single dance class, and to correlate these findings to changes in iAPF 

in both individuals with PD and CONs. Additionally, examining iAPF in de novo DwP PD 

participants taking part in their first DwP class could give weight to our hypothesis that 

increases in iAPF in the CONS were due to increased cognitive load resulting from 

unfamiliarity and difficulty level of the dance class. Finally, it would be interesting to 

replicate the Haegens et al. (2014) study in our PD group to better understand whether 

iAPF can in fact be modulated in this group with increased cognitive load. 

4.3.2 INDIVIDUAL ALPHA PEAK FREQUENCY IS LARGER IN CONs THAN IN PD 

Our results suggest a global slowing of iAPF in individuals with PD when 

compared to CONs, consistent with what has been shown previously in the literature 

(Soikkeli et al. 1991; Moazami-Goudarzi, 2008). Lower iAPF in clinical populations has 

been correlated to lower scores in cognitive performance (Soikkeli et al. 1991; 

Angelakis et al. 2004), and individuals with PD are known to show impairments within 

executive functions such as working memory and attention (Troster & Fields 2008). 

Thus, the lower iAPF found in our PD group when compared to the CONS, in both EO 

and EC states may be reflective of impairment in underlying brain networks responsible 

for executive functions.  



 48 

4.3.3 NO EYE STATE DEPENDENT MODULATION OF GLOBAL INDIVIDUAL ALPHA 

PEAK FREQUENCY IN PD 

We have also demonstrated that individuals with PD do not show eye state 

dependent modulation of iAPF peaks in which the EO state elicits a lower iAPF than the 

EC state, a finding only noted once in the literature in healthy individuals (Bazanova 

2011). This potential biomarker for PD could be the result of the disrupted dopaminergic 

processes in the retina, which behaves as though it is improperly dark-adapted (i.e. 

always in EC form) in individuals with PD (Wink & Harris 2000).  In our CONS sample, the 

iAPF decreased in response to light input, whereas in the PD sample, it did not – a 

simple, yet striking indicator of PD. With a larger sample, a predictive model for PD 

based on rsEEG eye-state could be created, which would be an inexpensive diagnostic 

tool for PD. Researchers could search for a lack of within subject differences in EO and 

EC iAPF, in which a lower iAPF in the EO condition could be indicative of low dopamine 

levels in the retina and a predictive tool for PD. Our finding that there may be a 

disrupted network in EO rsEEG in individuals with PD has important methodological 

implications for future studies, as it indicates that perhaps only EC rsEEG should be 

used when examining rsEEG in PD.  

4.4 INDIVIDUAL ALPHA PEAK POWER 

4.4.1 LATERIALIZED DANCE-INDUCED INCREASE IN EYES CLOSED FRONTAL 

INDIVIDUAL ALPHA PEAK POWER 

Our study is the first to demonstrate an exercise-induced iAPP increase in 

individuals with PD and in an elderly sample. Past literature examining exercise-induced 

iAPP changes have not shown significant increases in elderly samples (over age 60), 
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only in adults (between 20 to 30 years of age) (Moraes et al. 2011). Global increases in 

resting iAPP have been correlated to increases in rCBF in the basal frontal cortex and 

thalamus (Sadato et al. 1998; Goldman et al. 2002; Bazanova & Vernon, 2014), 

important areas implicated in the degenerated pathways of PD. When examining frontal 

iAPP specifically, frontal cortex differences and their relation to changes in emotional 

state have been studied extensively (Coan & Allen 2004). It is believed that frontal EEG 

activity reflects prefrontal cortex activity and one’s ability to regulate emotions (Dennis & 

Solomon 2010). Emotion regulation refers to a set of strategies that individuals use in 

order to better control their emotions, including which emotions they experience and 

how they experience and express them (Grecucci et al. 2009). In our study, participation 

in a single dance class produced significant increases in left frontal iAPP in our CONs. 

Increases in left frontal iAPP are associated with positive emotions and enhanced 

emotion regulatory behavior, suggesting that the increases observed could be a result 

of positive emotions evoked during the dance class (Schneider et al. 2009; Dennis & 

Solomon, 2010; Fachner et al. 2013). Our PD group on the other hand, demonstrated 

significant increases in right frontal iAPP, with a trending increase in left frontal iAPP. 

Increases in right frontal activity are often associated with increased withdrawal 

behavior and increases in avoidance related negative emotions such as sadness, fear, 

and anxiety (Dennis & Solomon, 2010). Dennis & Solomon (2010) caution that greater 

right frontal activity could also represent the experience and regulation of negative 

emotions, in actuality representing a reduced negative affect. This rationale falls in line 

with our finding that individuals with PD showed improvements in depression scores 

(decreased negative feelings) after a single dance class. Additionally, the electrodes 
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averaged in our frontal iAPP analysis have been mapped to represent activity 

originating from the areas of the inferior frontal gyrus (F7 and F8), and middle frontal 

gyrus (F3 and F4) (Koessler et al. 2009), both of which are implicated in emotion 

regulation (Grecucci et al. 2013), a similar result to Kubitz & Pathakos (1997) who 

showed increases in low alpha power in left middle frontal gyrus immediately after 

exercising. A follow up study correlating same day dance-induced changes in affect with 

frontal alpha power in PD is underway (Biology Honours Thesis by Kelsi Smith 2015) 

and will help elucidate the significance of these observed asymmetrical changes.  

4.4.2 PD: LEFT INDIVIDUAL ALPHA PEAK POWER CORRELATION TREND WITH 

VISUALIZATION 

At the end of every dance class (last 15 minutes) the participants learned and 

rehearsed a piece of choreographed dance, building on it each week, and they were 

asked to practice visualizing their dance at home during the week. During data 

collection, participants were asked to report whether they visualized dancing their 

choreographed dance outside of class (Appendix A), and those who replied yes 

demonstrated the largest changes in their left frontal iAPP. This suggests that weekly 

visualization and dance class participation combined could elicit larger changes in left 

iAPP in our PD group, when compared to additional exercise (yielding no significant 

correlation in the PD group). As aforementioned, increased left iAPP is strongly tied to 

emotion regulation and positive emotions, thus additional practice at home could 

contribute to a boost in confidence, and resultantly greater positive emotion when 

performing dancing during class.  
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4.4.3 CONS: LEFT INDIVIDUAL ALPHA PEAK POWER CORRELATION WITH HOURS 

OF WEEKLY EXERCISE 

CONs who exercised more on a weekly basis showed higher iAPP values in left 

frontal cortex. This suggests that there is a tie between regular exercise in elderly 

samples and better emotion regulation. What’s interesting is that this correlation did not 

present in the PD group, which suggests that a different mechanism underlies the 

dance-induced changes observed in left frontal iAPP in the PD group and the CON 

group. 

4.5 LIMITATIONS AND FUTURE WORK 

We proposed that many of the spectral dance-induced changes observed 

stemmed from a high cognitive load during the dance class. PD is often associated with 

dementia, and so a limitation of this study would be that we did not test or control for 

dementia, which can contribute to a differing spectral profile in individuals with PD 

(Soikkeli et al. 1991; Stoffers et al. 2007). For instance, studies comparing spectral 

power in those with PD and in those with PD with dementia (PDD) report stronger 

power in lower frequencies for PDD (Soikkeli et al. 1991; Stoffers et al. 2007). Our 

participants did not show any overt signs of dementia, however we now control for this 

in our studies by administering the Mini Mental State Examination to all participants. 

Another limitation would be that the motor and non-motor measures were 

collected on different dates than the rsEEG. Resultantly, we were unable to successfully 

correlate many expected changes in our behavioral measures with changes in rsEEG. 

This limitation is currently being addressed through the implementation of UPDRS-III, a 

comprehensive tool that measures changes in both motor and non-motor symptoms of 
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PD. We have trained multiple researchers in rsEEG and UPDRS-III so that both 

measures can be collected from 1-2 participants before and after a single dance class. 

For future work, there are many directions that this study can take. For example, 

additional neurodegenerative groups can be investigated (i.e. Alzheimer’s, PDD, 

dementia, etc.) in order to better understand the widespread effects of dance, and also 

to further examine the potential EC/EO rsEEG proposed biomarker. We could very well 

find that the EC/EO biomarker is specific to PD, or perhaps a more general indicator of 

neurodegenerative networks. Additionally, examining power in other frequency bands 

would be valuable, as collectively examining alpha, beta, and gamma according to 

activation theory (Kubitz & Pothakos, 1997) could elucidate whether changes observed 

are associated with increased or decreased brain activity. Finally, it would be interesting 

to examine whether movement-related beta desynchronization (i.e. neural processing 

speed leading up to making a movement) changes as a result of dance class.  

5. CONCLUSION 

In this study, we were able to demonstrate that dance is capable of improving 

balance and depression scores for individuals with PD, and walking speed for CONS. 

This is the first study to confirm that there is underlying neuromodulation associated 

with dance, as evidenced by alteration of iAPF and iAPP. We attribute increases in iAPF 

to high cognitive load during dance, whereas increases in iAPP were attributed to 

changes in affect, with increased left iAPP linked to more positive affect in CONS, and 

increased right iAPP linked to regulation of negative emotions in individuals with PD. 

Furthermore, we were able to demonstrate a correlation between hours of weekly 

exercise in CONS and increases in left iAPP. This correlation did not appear in individuals 
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with PD, suggesting that a different mechanism underlies changes in iAPP observed in 

individuals with PD when compared to CONS. Moreover, through the use of both EC and 

EO rsEEG, we uncovered a potential biomarker for PD. We hypothesize that the 

similarity between EC and EO iAPF in PD is due to improper visual encoding in the EO 

condition due to an erroneously dark-adapted retina. Taken all together, by examining 

both behavioral and neural changes associated with participation in a single dance 

class, our findings were able to strengthen and emphasize the importance of dance for 

individuals with PD and healthy elderly. We were able to hypothesize which aspects of 

dance may have contributed to the underlying neural changes, while identifying a 

potential biomarker for PD.  
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APPENDIX B – MEDICATION QUESTIONNAIRE 
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APPENDIX C – SAMPLE POWERSPECTRA 
 

	
  
	
  

 
 
Three pairs of powerspectra in the pre-dance class condition. Each panel shows 
powerspectra from one individual with PD and one CON that are age-matched and 
gender-matched. Top panel shows two male participants aged 52, middle panel shows 
two female participants aged 65, and bottom panel shows two female participants aged 
88. Black line: PD (EC), gray line: CONS (EC), black dotted line: PD (EO), gray dotted 
line (EO). Frequency in Hz and Alpha Peak Power in µV2. 
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APPENDIX D – IAPF MAIN EFFECT OF ELECTRODE: PAIRWISE COMPARISONS 
 

 
 
Yellow indicates pairwise comparisons approaching significance. 
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APPENDIX E – IAPP MAIN EFFECT OF ELECTRODE: PAIRWISE COMPARISONS 
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Yellow indicates pairwise comparisons approaching significance. 
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APPENDIX F – EYES CLOSED HEADMAPS 
 
 

 
 

 
 
 
 

Eyes closed headmaps averaged across participants in each group. Middle bar 
indicates range in alpha peak power measured in µV2. 
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APPENDIX G – EYES OPEN HEADMAPS 
 

 
 
 
 
 
 
Eyes open headmaps averaged across participants in each group. Middle bar indicates 
range in alpha peak power measured in µV2. 
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APPENDIX H – INFORMED CONSENT 
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