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ABSTRACT 
 

The objective of this thesis is to develop a novel beamforming technique for 

ultrasound machines that enables field reconstruction at sampling rates much 

lower than the Nyquist rate. In our simulations, we use Field II, a MATLAB based 

program for simulating transducer fields and models of biological tissues for 

imaging applications. Field II is capable of generating the emitted and pulse-echo 

fields for a large number of transducers configurations, including linear, circular, 

and rectangular arrays. Once the ultrasound field is determined, the proposed 

imaging technique is applied to the received signals to reconstruct the image for 

reference biological tissues. Applying different adaptive beamforming techniques, 

including the delay and sum (DAS) and Capon algorithms, the received signals 

from Field II simulation program are used to render the ultrasound images. A 

second goal of the thesis is to apply compressive sensing (CS) on received signals 

to reconstruct full-length signals from a reduced number of samples. A third goal 

is to couple the principal of time reversal (TR) with compressive sensing to extend 

the CAPON beamformer for reconstructing images of biological tissues at low 

sampling frequencies in rich multipath environments. The outputs of compressive 

sensing and CAPON-based algorithms, alone or in conjunction with each other, 

are severely degraded in such environments. Through numerical simulations, I 
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illustrate an enhancement in reconstructed quality of images depicting biological 

tissues with my time-reversal based compressive sensing, CAPON approach. 
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  Chapter 1
Introduction  

Ultrasound imaging uses high-frequency sound waves to view soft tissues 

such as body muscles and internal human organs. Because ultrasound images are 

captured in real-time, they can show snapshots of the body's internal organs in 

addition to be used for monitoring circulation of blood through arteries and veins 

within a human body. 

In an ultrasound exam, a series of hand-held transducers are typically 

placed adjacent to the human body against the skin. Depending on the mode of 

operation, a subset of transducer elements send out high frequency sound waves 

that reflect off the body structures. The reflected sound waves, also referred to as 

backscatters or echoes, are recorded and processed using sophisticated signal 

processing algorithms to be displayed as an image that provides a fairly accurate 

representation of the internal human anatomy. Such ultrasound images are used by 

physicians in medical examinations. The signal processing algorithms use the 

frequency and strength (amplitude) of the backscatters, the time they take to 

return, and the change in the properties of the waveforms to generate the image of 
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the internal organs. In signal processing, the process of forming images of the 

probed environment from backscattered signals is referred to as Beamforming. 

Typically, an ultrasound transducer element works both as a transmitter 

(that generates sound waves) and a receiver (that observes sound waves). The 

ultrasound pulse is quite short in duration. Since it traverses in a straight path, it is 

often referred to as an ultrasound beam. The direction of ultrasound propagation 

along the beam is called the axial direction, and the direction in the image plane 

perpendicular to the axial direction is referred to as the lateral direction. Usually 

only a fraction of the transmitted pulse is reflected from the body tissues and 

returns as backscatters, while the remainder of the pulse continues to propagate 

along the axial direction to traverse greater tissue depths. 

In this thesis, two different beamforming algorithms, namely, the Delay and 

Sum (DAS) algorithm and Capon algorithm, are implemented. Although the DAS 

beamforming algorithm is used in a variety of ultrasound machines, it does not the 

perceived image quality of the reconstructed images is poor, especially in complex 

environments, as is the case in imaging cysts or real body parts as compared to 

medium with point targets. I show reconstructed results of both algorithms to 

illustrate the superiority of the Capon algorithm over the DAS algorithm. 



3 

 

Another goal of this thesis is to apply compressive sensing (CS) on the raw 

radio frequency (RF) data received at each transducer element prior to the 

beamforming stage. Compressive sensing allows reconstruction of signal from a 

reduced number of samples, much lower than those obtained on the basis of the 

classical Nyquist rate. In the thesis, I investigate how well the CS algorithm works 

with different types of sensing matrices used to subsample the recorded data. Two 

types of sensing matrices tested in the thesis are the Binary matrix and Bernoulli 

matrix. 

The third goal of the thesis is to apply the principal of time reversal (TR) to 

the CS, CAPON beamforming algorithm. On its own, the CS, CAPON algorithm 

is negatively impaired in environments with rich multipath. Coupling TR with the 

algorithm improves the quality of reconstruction of biological tissues. TR is 

applied for two different setups. The first setup is the Single Input Multiple Output 

(SIMO) configuration, where a single transducer element illuminates a section of 

the human body with the backscatters collected by the entire transducer array. The 

second setup is the Multiple Input Multiple Output (MIMO) configuration, where 

a larger number of transducer elements probes the human body. In my research, I 

show that images reconstructed using the MIMO configuration are of much better 

quality than images reconstructed using the SIMO configuration. Compressive 
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sensing is applied in conjunction with TR to acquire data at a much reduced 

sampling rate. I compare the quality of the beamformed images obtained using 

compressive sensing alone (i.e., without TR) with images obtained by applying 

compressive sensing with TR. In both cases, the CAPON beamforming algorithm 

is applied to reconstruct the image of the reference body organ. 

The simulation environment used to generate the backscatter observations 

is based on a customized MATLAB tool, Field II, which is a free software made 

available for educational research. I compare the beamformed images based on 

both perceived quality by including the actual images and quantitative measures, 

such as the structural similarity index (SSIM). The later criteria assesses the 

quality of the images based on the degradation of structural information in the 

reconstructed image as compared to the original image. 

Organization of the thesis: 

The thesis is organized as follows: 

 Chapter 2 reviews two beamforming algorithms, namely the Delay-and-Sum 

(DAS) algorithm and the Capon algorithm. Field-II is introduced along with 

the five setups used to test the performance of the approaches presented in the 

thesis. The simulation setups used in the thesis include the 2-point and 10-point 

scatters field, 5-cyst and 10-cyst framework, the kidney phantom, and the fetus 



5 

 

phantom within the human body. I also show the results of the beamforming 

algorithms using the entire dataset (without any compression) to provide the 

reference quality of reconstructed images used in the rest of the thesis. 

 Chapter 3 introduces the concept of compressive sensing and how it is applied 

to the radio-frequency (RF) data. Different types of sensing matrix , including 

the Binary and Bernoulli matrices, are tested. Also, different types of basis 

matrices are tested showing the quality of the reconstructed data in each case. 

Beamformed images using data at different sampling rates are included for the 

setups implemented in Chapter 2. 

 Chapter 4 explains the principle of time reversal and explains how it is 

implemented. Two configurations, namely SIMO and MIMO, are physically 

implemented using Field II. Beamformed images based on the time reversal 

observations are also presented in this chapter. I illustrate the improvement in 

the image quality obtained using time reversal over images reconstructed form 

the conventional data acquisition approach.. 

 Chapter 5 illustrates how time reversal and compressive sensing are coupled to 

effectivity reduce the sampling rate at which date is being acquired. SSIM 

compares beamformed images reconstructed using compressive sensing 
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coupled with time reversal versus images reconstructed using compressive 

sensing only. 

 Chapter 6 concludes the thesis and presents directions for future work that can 

be considered an extension of this research. 
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  Chapter 2
Introduction to Beamforming 

As previously mentioned, a series of transducer elements can be configured 

as a linear transducer array to record the backscatters at several locations in close 

proximity to each other, which enables a more accurate and detailed representation 

of the human body. Likewise, during the transmitting stage, the probing signal can 

originate from a single transducer element in the Single Input Multiple Output 

(SIMO) configuration or from some combination of elements simultaneously in 

the multiple-input, multiple-output (MIMO) configuration. 

Different beamforming algorithms have been proposed to reconstruct the 

beamformed image for localizing point targets or scatters within the human body. 

The point targets are of special interest to the physicians since they can potentially 

represent unnatural deformations or growths like cancer cells or tumours. In this 

thesis, we are implementing two beamforming (BF) algorithms, namely the delay-

and-sum (DAS) and Capon [1] algorithms.  

The input of any beamforming algorithm is the set of backscatters recorded 

by a linear array of transducer elements and the output is the reconstructed image 

of the section of the human body being examined. The region of interest includes 
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anomalies in the human body behaving as acoustic scatters, which reflect the 

probing signal(s) transmitted to them due to the difference between the acoustic 

properties of the medium and scatters. The goal is to beamform the received 

signals and produce an image, which shows the locations of these scatters as 

accurately as possible in a two dimensional (2D) space. 

2.1 Models Implemented Using Field II  

In this thesis, the radio frequency (RF) data was simulated using Field II 

[2], a toolbox in MATLAB used for simulating ultrasound transducer fields and 

ultrasound models of biological tissues. Field II simulates the emitted and pulse-

echo fields for both the pulsed and continuous form of waves for an array of 

transducers.  Once the acoustic field is determined, an imaging technique such as 

the DAS or Capon is applied to the received signals in order to produce the image 

representing the modeled biological tissue. 

Field II is capable of modeling different configurations of transducer arrays 

as well as different shapes, including linear, circular, and rectangular arrays. The 

program computes the ultrasounds field through the spatial impulse response. 

When the transducer is excited by a Dirac delta function, this response assigns the 

emitted ultrasound field at a specific point in space as a function of time. The 



9 

 

probing signals for all kinds of excitation functions are calculated by convolving 

the spatial impulse response with the excitation function. The impulse response 

changes as a function of position relative to the transducer. The backscatters 

response in pulse-echo is calculated by convolving the transducer excitation 

function first with the spatial impulse response of the emitting aperture and a 

second time  with the spatial impulse response of the receiving aperture. Finally, 

the electro-mechanical transfer function is also considered. 

2.1.1 Test Environment 

 

Figure 1: Linear geometry of the transducer array used in the thesis. 

In all the experiments conducted in this thesis, a linear array of transducers 

as illustrated in Fig.1 is used. The array consists of 128 or 160 transducer elements 

arranged along the horizontal axis (x-axis) of the two dimensional (2D) domain. 
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For a 128-element array, the array starts from -31.1mm to 31.1mm along the x-

axis with kerf (the distance between two consecutive transducer elements) equal to 

0.5 mm. The width and height of each element is lambda  and 5mm respectively, 

where  is the wavelength and is equal to c/f0, c is the propagation speed of sound 

in water and is equal to 1540 m/sec. Each transducer element emits a probing 

signal with a centre frequency (f0) of 3.5MHz and a sampling frequency (fs) of 100 

MHz. 

All experiments conducted in this thesis use a linear array of transducers. 

Using more complicated array configuration such as two or three dimensional,  

circular, or triangular configuration provides more accurate and robust 

observations. These, however, result in much more computationally intensive 

beamforming algorithms. Since the focus of the thesis is real-time implementation 

of the ultrasound machines at a much low cost, I restrict myself to the linear array 

configuration. 

Using Field II, different models were implemented to simulate the region of 

interest. Fig. 2 shows the image truth for the 2-point target and 10-point target. 

Fig. 3 shows the image truth for a section of simulated setup with 5 cysts and 10  
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(a) 2-Point scatters based image truth 

 
(b) 10-Point scatters based image truth. 

Figure 2: Point scatter models implemented using Field II. 
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cysts. Figs. 4 and 5 represent more complicated scenarios based on phantoms for a 

kidney and a fetus within a human body. 

For the 2-point target model (Fig. 2a), the region of interest is a (60 × 30) 

mm rectangle located 35mm below the transducer array. It is composed of 201 x-

coordinates and 101 z-coordinates, which makes a total of 20301 grid points. The 

grid points start from 30mm to 30mm along the x-direction with a spatial spacing 

of 0.3mm. Similarly, the grid starts from 35mm to 65mm in the z-direction with 

spacing of 0.3mm. The two targets are located at (0, 40) mm and (0, 50) mm, 

respectively.  

For the 10-point scatter model (Fig. 2b), the region is a (60 × 40) mm 

rectangle located 35mm below the transducer array. It is composed of 201 x-

coordinates and 101 z-coordinates, which makes a total of 20301 scatter (reflector) 

points. The scatter points start from 30mm to 30mm along the x-direction with a 

horizontal spacing of 0.3mm and starts from 35mm to 75mm in the z-direction 

with a spacing of 0.4mm. The targets are located at (20, 45) mm ,  (20, 55) mm, 

(1.2, 45) mm, (1.2, 55) mm, (1.2, 65) mm, (10.2, 45) mm, (10.2, 55) mm, 

(10.2, 65) mm, (20.1, 45) mm, and (20.1, 55) mm, respectively. 
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(a) 5-Cyst phantom image truth 

 
(b) 10-Cyst phantom image truth 

Figure 3: Cyst models implemented using Field II. 
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The 5-cyst phantom model (Fig. 3a) is based on a rectangular region of (60 

× 30) mm mm, located 35mm under the transducer array. It is composed of 201 x-

coordinates and 101 z-coordinates, which makes a total of 20301 scatter (reflector) 

points. The scatter points start from 30mm to 30mm in the x-direction with a 

spacing of 0.3 mm and starts from 35mm to 75mm in the z-direction with a 

spacing of 0.4mm. The cysts are circular regions with radius of 1.5mm centered at 

(10, 45) mm, (10, 45) mm, (20, 55) mm, (0, 55) mm and (20, 55) mm. 

The 10-cyst phantom model (Fig. 3b) comprises a rectangular region of 

(100 × 50) mm, located 35mm under the transducer array. It is composed of 201 

x-coordinates and 101 z-coordinates, which makes a total of 20301 grid points. 

The grid points start from 50mm to 50mm in the x-direction with a spacing of 0.5 

mm and starts from 35mm to 85mm in the z-direction with a spacing of 0.5mm. 

The cysts are circular regions with radius of 3mm centered at (40, 45) mm, (20, 

45) mm, (0, 45) mm, (20, 45) mm, (40, 45) mm, (40, 65) mm, (20, 65) mm, (0, 

65) mm, (20, 65) mm, and (40, 65) mm, respectively. 

In Figs. 2 and 3, the parts circled in black are point/cysts targets which have 

the highest intensity in the region of interest. All other grid points have random 
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Gaussian intensities with a standard deviation of 0.01 except for the point/cyst 

scatters, which have intensities of 100. 

Fig. 4 shows a phantom for a 3 months old fetus made up of 200,000 grid 

points, randomly distributed within the phantom. The phantom was scanned with a 

64 element transducer array at a frequency of 5MHz. A rectangular region of (100 

× 60) mm located 20mm under the transducer array is simulated using a scatter 

map, which is composed of 512 x-coordinates and 512 z-coordinates. The grid 

points start from 50mm to 50mm in the x-direction from 20mm to 80mm in the z-

direction. 

 

Figure 4: An example of the fetus phantom simulated using Field II. 
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Figure 5: An example of the kidney phantom simulated using Field II. 

 

Figure 5 shows a phantom for the left kidney constructed using 1,000,000 

scatter points randomly distributed within the phantom. The phantom was scanned 

with a 128 element transducer array at 7MHz. A rectangular region of (100 × 85) 

mm located 20mm under the transducer array is simulated using a scatter map, 

which is composed of 512 x-coordinates and 512 z-coordinates. The scatter points 

start from 50mm to 50mm in the x-direction and from 20mm to 105mm in the z-

direction. 
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2.2 Beamforming Algorithms 

With Field II, each transmit element probes the region of interest one after 

the other and the backscatters for each probe is recorded by all receiving elements. 

With an M-element transducer the recorded signals can therefore be arranged in a 

	 	 	matrix. For a high quality image, we use all the 	 	 elements of 

the observed matrix in the beamforming algorithms. 

The following section explains how the two beamforming algorithms, 

namely the Delay-and-Sum and Capon algorithms, process the M backscattered 

signals to yield the beamformed image showing the differences in the performance 

of each algorithm. 

2.2.1 Delay and Sum Beamforming Algorithm 

The Delay-and-Sum (DAS) beamforming algorithm is a technique based on 

constructive and destructive interference. Each received signal at a transducer 

element is delayed by the duration corresponding to the time it takes for a 

backscatter to arrive from the reference pixel to the transducer element. The delay 

is, therefore, proportional to the distance between the reference pixel and the 

transducer element. After delaying all signals, they are added for each pixel. Fig. 6 

represents the DAS algorithm for one pixel within the region of interest. 
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Figure 6: Block diagram illustrating the principal of the DAS beamformer. 

 

For an M-element array, the equations below show how the beamformed 

signal for each scatter point is computed. Assuming xm is the signal observed at 

element m of the transducer array, we get 

, 	 	 	 	,																																																																																 1.1  

, 2 ∗ , ∗ ,																																																																																																					 1.2  

and	 	 , ,			 																																																																									 1.3  

where rm,p is the distance between the reference pixel p and transducer element m. 

Since the imaging scene is a 2D model so the x and z components of the transducer 

elements and the grid points (pixels) have to be taken into consideration. Notation 
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 and  are the x and z components of the reference pixel, respectively. Since 

the transducer array is located on the x-axis, the z component of the transducer 

element is always zero and its x component is . Symbol Dm,p is the time delay 

between the reference pixel p and transducer element m  in terms of the number of 

samples.  BFp denotes an array of length N showing the beamformed signal for 

pixel p. Finally, symbol 

	,																																																																																															 1.4  

where Ip is the intensity value of the pixel p, which shows the location of the high 

scattering regions in the image.  

The DAS algorithm is independent of the second order statistics of data, 

therefore, the side lobes are high and the algorithm is very sensitive to the 

transducer location. The Capon beamforming algorithm will be explained in the 

next section that overcomes these limitations of the DAS algorithm. 

2.2.2 Capon Algorithm 

Capon beamforming relies on wave propagation and phase relationships. 

Using the principals of superimposing waves, a higher or lower amplitude wave is 
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created (e.g., by delaying and weighting the signal received). The Capon 

beamforming system dynamically adapts in order to maximize or minimize a 

desired parameter, such as the signal to noise ratio (SNR) [3] – [6]. 

Using the same setup and notation as was used for the DAS beamformer, the 

output using the Capon beamformer is given by [7] – [8] 

	 _ ,																																																																							 1.5  

, , 	 , ,				… , 	

, 		 ,																																																																																										 1.6 	

and  is the time-varying weight at scattering point p. The Capon beamformer 

works by minimizing the variance of  given by 

min 	 min  

subject	to	 1																																																																																																 1.7  

where E[.] is the expectation operator. The sample covariance matrix is computed 

as 		 	 _ 		 _  and symbol a denotes the 

steering vector. Since the data has already been pre-beamformed then a is simply a 

vector of ones. The analytical solution [8] for Eq. (1.7) is given by 
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.																																																																																																	 1.8  

After applying the weights to Eq. (1.5), the beamformed intensity of each 

scattering point p is max	 . 

2.3 Results of DAS Vs. CAPON algorithms 

In this section, the results of the DAS algorithm are compared with those 

obtained from the Capon beamformer at a SNR of 40dB for all of the simulation 

environments presented in Section 1.1. I illustrate the difference in the 

performance of both algorithms especially when environment gets complicated as 

is the case for the cyst phantoms. 

In order to quantitatively compare the resulting images, we used structural 

similarity (SSIM) index, commonly used for measuring the similarity between two 

images [9]. The SSIM index can be viewed as a quality measure of one of the 

images in comparison to another image that is regarded to be of perfect quality. 

The higher the SSIM, the higher is the similarity between the two images. The 

maximum value of SSIM is, therefore, 1 representing perfect alignment. 

All the SSIM values calculated in the images below are between the image 

truth and the beamformed image using either the DAS or Capon algorithm. 
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Images for 2-Point Scatters: 

(a) DAS Algorithm,  
SSIM = 0.9289 

(b) CAPON Algorithm,  
SSIM = 0.9615 

Figure 7: Beamformed Images for the 2-point scatter using (a) DAS algorithm, (b) 
CAPON algorithm 

 

Images for 10-Point Scatters: 

(a) DAS Algorithm,  
SSIM = 0.7194 

(b) CAPON Algorithm,  
SSIM = 0.7630 

Figure 8: Beamformed Images for the 10-point scatter using: (a) DAS algorithm, 
and (b) CAPON algorithm. 
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Images for 5-Cysts Phantom: 

(a) DAS Algorithm,  
SSIM = 0.2096 

(b) CAPON Algorithm,  
SSIM = 0.7727 

Figure 9: Beamformed Images for the 5-Cyst phantom using: (a) DAS algorithm, 
and (b) CAPON algorithm. 

 
 
Images for 10-Cysts Phantom: 
 

(a) DAS Algorithm,  
SSIM = 0.1099 

(b) CAPON Algorithm,  
SSIM = 0.6841 

Figure 10: Beamformed Images for the 10-Cyst phantom using: (a) DAS 
algorithm, and (b) CAPON algorithm. 



24 

 

As seen from the images above, the Capon beamforming is performing  

much better reconstruction than the DAS beamforming algorithm, especially for 

more complicated environments. For each image, the SSIM value is calculated 

with respect to the image truth. In all cases, the Capon algorithm has a higher 

value of SSIM as compared to the DAS algorithm illustrating the superiority of the 

Capon beamformer. The superior performance of the Capon beamformer is also 

evident from the perceptual quality of the reconstructed images. 
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  Chapter 3
Introduction to Compressive Sensing 

To achieve clarity in the reconstructed image, an ultrasound machine uses a 

large number of transducer elements to collect the backscatter reflections. This 

leads to a large amount of data when the backscatter reflections are sampled at the 

classical Nyquist rate, i.e., at twice the maximum frequency present in the 

recorded signal. To prevent aliasing and for perfect reconstruction, the 

Shannon/Nyquist theorem states that the minimum sampling rate of a signal 

should be 2W samples/second (where W is the highest frequency of the signal). 

The notion behind compressive sensing (CS) is to sample the signals at a rate 

below the Nyquist rate and still produce a reconstructed signal of reasonable 

quality CS offloads the memory requirements from the signal acquisition stage to 

signal reconstruction stage which gives an advantage of fast data acquisition. 

Moreover, it reduces the processing speed of the analog to digital converter which 

is the most expensive part in the ultrasound machine since less amounts of data are 

being acquired. CS exploits the fact that the signal is sparse in a certain domain 

and, therefore, has a concise representation. Chapter 3 introduces CS and applies it 

to the ultrasound signals with sparse representation. 
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3.1 What is Compressive Sensing? 

As previously mentioned, CS is based on the notion that a small number 

ofmeasurements of a compressible signal contains enough information for 

reconstruction and processing of the signal. 

In this thesis, we apply CS to raw radio frequency (RF) data, obtained as 

backscatters from simulated human tissues. The data received at each transducer 

element has N samples. We want to reconstruct these N samples from only M 

samples using CS. Beamforming is then applied to reconstruct the image using the 

reconstructed RF data, [10]–[11], [21]. Fig. 11 shows the various steps used in the 

CS calculations. 

 

Figure 11: Schematic diagram representing compressive sampling. 

In summary, in order to apply CS to RF signals we need: 

 Prior knowledge that the data has sparse representation in some basis Ψ. 

 CS dictionary, which is incoherent with the basis function Ψ. 
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 Appropriate sensing matrix Φ, which is guaranteed by randomness. 

 Optimization for recovering the signal. 

The sensing matrix Φ is designed such that the sparse signal a can be 

recovered exactly from a reduced number of measurements y. This can be 

achieved by using a sensing matrix, which is highly incoherent to the basis matrix 

Ψ. Using a random matrix, we are able to closely reconstruct the k-sparse vector a 

with high probability with just  random measurements. Note that 

the notation k is the number of non-zero entries in the sparse vector a. Sensing 

matrices will be explained further in Section 2.2. 

As for the basis matrix, we use the waveatom transform, which represents the 

time-dependent Green's function in a tight frame of multi-scale, directional wave 

packets. Briefly, waveatom is the transform that finds the exact relationship 

between the directional wavelets and the Gabor transform in the sense that the 

period of the oscillations of each wave packet is linked to the size of the essential 

support region of the parabolic scaling wavelength wavelength ~ (diameter)2. 

The name Waveatom comes from its inherent property of providing an optimally 

sparse representation of wave propagators [12]–[14].  
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For simplicity, wave atoms below are defined for α =β =1/2, where α indexes the 

multiscale nature of the transform. From α = 0, which is considered uniform can 

range to 1, which is considered dyadic. Parameter β measures the wave packet’s 

directional selectivity, where 0 and 1 indicate best to poor selectivity. 

In one dimension (1D), the wave atoms formulation is defined as follows. 

Consider f(x) and (w) as a 1D Fourier transform pair, x and w correspond to the 

coordinates in the time domain and the frequency domain, respectively. Define 

wave atoms as ,	where , , . Then the indexed point ,  in the 

phase-space domain is defined by [22]-[23]: 

	 2 					 						 	 2  

The elements of  are called Waveatoms and have the values 

^ 2 1 2 +	 2 1 2  

and 2 1 2  for all M > 0. 

 Section 2.3 shows the difference between reconstructed signals using 

waveatom basis versus the discrete cosine transform (DCT) basis. 

The last step in CS is the recovery of the signal a. Since	 , the 

reconstruction is ill-conditioned and there are infinitely many Ψ such that 
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	 . So, the recovery of the signal must be done by solving the minimization 

problem [5] given below 

arg 	min	 	|| || 	such	that		 	 	 																																																									 2.1  

Once the signal a is recovered, we can apply the inverse of the basis Ψ to obtain 

the original RF signal. 

In the following two sections, the sensing and basis matrices will be 

explained. In each case, the root mean squared error (RMSE) between the original 

and reconstructed RF signals are calculated based on the formula 

	
∑

																																																																																																		 2.2                       

to compare the quality  of reconstruction. In Eq. (2.2), notation   and  represent 

the original and reconstructed signals respectively and N is the total number of 

samples within a signal. 

3.2 Sensing Matrices 

The sensing matrix  is designed such that sparse/compressible signals can 

be recovered exactly from the measurements y. This can be achieved by using a 

sensing matrix, which is highly incoherent to the sparse representation achieved by 

matrix Ψ. In order to identify samples that are not all zeros with high probability, 
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we need a sensing matrix where the samples have dense representation. This is 

achieved by choosing a matrix that is “not similar” or incoherent to the sparsity 

inducing matrix . Using random matrices, we are able to perfectly reconstruct 

sparse vectors with high probability with M < N random measurements since it is 

experimentally proven that fixed basis are highly incoherent with random 

matrices. Furthermore, the measurement process is non-adaptive, so that the 

sensing matrix  does not depend in any way on the input RF signals. 

3.2.1 Binary Sensing Matrices 

The first type of sensing matrices used is the binary sensing matrix, where 

all row entries of  are zeros except for one, where location is chosen randomly. It 

has the value of one. Therefore, the resulting decimation factor for each RF signal 

is M. 

Fig. 12 shows the comparison between the original and reconstructed data 

using 90% subsampling rate with the binary sensing matrix for the signal received 

at one transducer element for a 5-Cysts phantom. A 90% subsampling rate implies 

that only 10% of the original samples are maintained in vector y. In Fig. 12, I 

selected a backscatter waveform recorded at the transducer element, applied 

compressive sensing by randomly picking only 10% of the samples, and then 



31 

 

reconstructed the signal by solving the optimization problem, Eq. (12). The 

resulting RMSE is 0.5646. 

 

Figure 12: Signal reconstructed using the binary sensing matrix  
versus the original signal 

3.2.2 Bernoulli Sensing Matrices 

Assuming that i,j is the i'th  row, j’th column entry of the Hadamard 

matrix. We generate a new matrix by removing all negative values in the 

Hadamard matrix and name the resulting matrix as the semi-Hadamard matrix 

with the form [15]: 
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,
2/√ 													 , 1

0																									 , 1
																																																																																 2.3  

The semi-Hadamard matrices are a special kind of binary matrices, which 

preserve the binary performance in CS. Fig. 13 compares the original and 

reconstructed signals using 90% subsampling rate with the Bernoulli sensing matrix for 

the signals recorded at a transducer element for a 5-Cysts simulation. The resulting 

RMSE is 0.1248, which is less than the one obtained from the binary sensing matrix. 

Therefore, the Bernoulli sensing matrix provides superior performance than the binary 

sensing matrix.  
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Figure 13: Signal reconstructed using the Bernoulli sensing matrix 
 versus the original signal 

3.3 Basis Matrices 

The quality of the CS reconstruction depends on the sparsity of the data. 

Due to the oscillatory pattern of the RF data in ultrasound, it is difficult to find a 

sparse representation in any basis. We tried different basis functions and came to 

the conclusion that the wavetom transform (WAT) results in much higher 

performance compared to the the discrete cosine transform (DCT). Figs. 14 and 15 
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shows the difference between the quality of reconstructed signals using the DCT 

and WAT basis using 90% subsampling rate. In each simulation, the Bernoulli 

sensing matrix is applied to the signal recorded at one transducer element for a 5-

cyst phantom. The resulting RMSE for the DCT basis function is 6.6425 and for 

the waveatom basis function is 0.3443. 

As can be seen from the figures below, the WA basis works much better 

than the DCT basis. 

 
Figure 14: Reconstruction using the DCT basis function. 
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Figure 15: Reconstruction using the WA basis function. 

3.4 Compressive Sensing Results 

This section shows the beamformed images obtained after applying CS on 

the raw RF signals for each of the models presented in Chapter 2. Namely, the 

models considered are: 

1. 2-point scatter simulation. 

2. 10-point scatter simulation. 

3. 5-cyst phantom simulation. 

4. 10-cyst phantom simulation. 

5. Fetus phantom simulation. 
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6. Kidney phantom simulation. 

The recorded elements at the transducer elements are compressed using 

different decimation factors, ranging from 4 to 10. Recall that the decimation 

factor is the fraction of original samples retained for reconstruction. Lesser the 

number of samples retained, worse is the reconstruction in the beamformed image.  

As explained in Chapter 2, for an M element transducer array the recorded 

signals can be arranged in a 	 	  matrix. The previous chapter showed the 

BF images using the all the 	 	  recorded signals. To provide additional 

saving in the computational time, the beamformed images presented in this chapter 

use only the diagonal entries. In the next chapter, we compare these images with 

images obtained from a combination of compressive sensing and time reversal. 

The later technique is specially beneficial in environment with rich multipath that 

adversely affects the performance of compressive sensing. 

We use a Bernoulli random sensing matrix to reduce the sampling rate by 

the selected decimation factor. For sparse representation, a waveatom basis is 

used. Generally speaking, waveatoms interpolates between directional wavelets 

and Gabor. An optimization problem based on regularized l1-norm is solved, as 

given in Eq. (2.1), and used to reconstruct the signals. Finally, the reconstructed 

signals are beamformed using the Capon algorithm. The block diagram 
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representation of the process used to derive the results in this section is given in 

Fig. 16.  In order to show how well compressive sensing works, the images using 

original RF data with diagonal entries and the images using the reconstructed RF 

data were compared using the structural similarity (SSIM) index assuming the 

images obtained using the original RF data are of perfect quality. 

 

Figure 16: Implementation block diagram for compressive sensing.  

 

Besides the SSIM index, another parameter used to quantitatively assess the 

quality of reconstructed images is the Mean Absolute Error (MAE) in dBs 

between the two images, which is defined as,  
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1

| _ _ |																																																 2.4  

where D is the total number of pixels in the 2D image, while I_Originali  and  

I_Reconstructedi are the intensities of the beamformed images reconstructed using 

the original and reconstructed RF data, respectively. 
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Images using Reconstructed RF data: 

(a) Beamformed Image with original 
RF data using the diagonal entries only.

 

(b) Beamformed Image with decimation 
factor 4: SSIM = 0.9966,  

MAE = -7.5507 dB. 

(c) Beamformed Image with decimation 
factor 6: SSIM = 0.8752,  

MAE =  7.5531 dB 

(d) Beamformed Image with decimation 
factor 10:SSIM = 0.8760,  

MAE = -7.5652 dB 
 

Figure 17: Beamformed image reconstructed from decimated data for the 2-point 
scatter simulation: (a) Image using original diagonal data; (b) Decimation factor of 

4; (c) Decimation factor of 6; (d) Decimation factor of 10. 
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(a) Beamformed Image with original RF 
data using only diagonal entries 

(b) Beamformed Image with decimation 
factor 4: SSIM = 0.9845,  

MAE =  -2.3349 dB 
 

(c) Beamformed Image with decimation 
factor 6: SSIM = 0.9836,  

MAE =  -2.2205 dB 

(d)Beamformed Image with decimation 
factor 10: SSIM = 0.8099,  

MAE =  -1.6471 dB 
 

Figure 18: Beamformed image reconstructed from decimated data for the 10-point 
scatter simulation: (a) image using original diagonal data; (b) Decimation factor of 

4; (c) Decimation factor of 6; (d) Decimation factor of 10 
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(a) Beamformed Image with original 
RF data using only diagonal entries 

 

(b) Beamformed Image with decimation 
factor 4: SSIM = 0.9021,  

MAE = 6.3051dB 

(c) Beamformed Image with decimation 
factor 6: SSIM = 0.8871,  

MAE = 5.9761 dB 
 
 

(d) Beamformed Image with decimation 
factor 10: SSIM = 0.8475,  

MAE = 6.6332 dB 

Figure 19: Beamformed image reconstructed from decimated data for the 5-cyst 
phantom simulation: (a) image using original diagonal data; (b) Decimation factor 

of 4; (c) Decimation factor of 6; (d) Decimation factor of 10. 
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(a) Beamformed Image with original 
RF data using only diagonal entries 

(b) Beamformed Image with decimation 
factor 4: SSIM = 0.8790,  

MAE =  3.9407 dB 
 

(c) Beamformed Image with 
decimation factor 6: SSIM = 0.8653,  

MAE =  4.3544 dB 

(d) Beamformed Image with decimation 
factor 10: SSIM = 0.6753,  

MAE = 5.2335 dB 
 

Figure 20: Beamformed image reconstructed from decimated data for the 5-cyst 
phantom simulation: (a) image using original diagonal data; (b) Decimation factor 

of 4; (c) Decimation factor of 6; (d) Decimation factor of 10. 
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Figs. 17, 18, 19 and 20 show the effect of applying CS to RF data using 

simple and complicated environments, the figures show that the higher the signal 

decimation factor, the lower is the SSIM and the higher is the MAE value between 

the image obtained using the original and reconstructed RF data. Figs. 21 and 22 

shows how well CS works with real body parts such as the fetus and kidney 

phantoms presented earlier. 

3.5 Summary 

In summary, compressive sensing is applied on signals received at each 

transducer element. Each signal of length N is reconstructed from only M samples 

using Bernoulli matrix for the sensing and waveatoms for the basis matrix for 

optimum signal reconstruction. The full length reconstructed signal is processed 

using the Capon beamforming algorithm to yield the 2D image of the scene. 

Results show that signal reconstruction is successful with subsampling up to 90% 

for point, cyst, fetus and kidney phantoms. 
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(a) Beamformed Image for Fetus 
Phantom using original RF data 

 
 

(b) Beamformed Image with decimation 
factor 4: SSIM = 0.9710, MAE = 

5.2768 dB 

(c) Beamformed Image with decimation 
factor 6: SSIM = 0.9159, MAE = 

7.9154 dB 

(d) Beamformed Image with decimation 
factor 10: SSIM = 0.7310, MAE = 

10.2748 dB 
 
 

Figure 21: Beamformed image reconstructed from decimated data for the fetus 
phantom simulation: (a) No decimation; (b) Decimation factor of 4; (c) 

Decimation factor of 6; (d) Decimation factor of 10 
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(a) Beamformed Image for Kidney 
Phantom using original RF data 

(b) Beamformed Image with decimation 
factor 4: SSIM = 0.8796, MAE = 

12.8263 dB 
 

(c) Beamformed Image with decimation 
factor 6: SSIM = 0.7632, MAE = 

14.4527 dB 
 

(d) Beamformed Image with decimation 
factor 10: SSIM = 0.6795, MAE = 

15.3618 dB 
 

Figure 22: Beamformed image reconstructed from decimated data for the kidney 
phantom simulation: (a) No decimation; (b) Decimation factor of 4; (c) 

Decimation factor of 6; (d) Decimation factor of 10. 
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  Chapter 4
Introduction to Time Reversal 

A necessary condition for compressive sensing (CS), introduced in Chapter 

3, is channel sparsity, which is satisfied when the number of scatters relative to the 

number of available snapshots is small. Natural mechanisms such as ultrasound 

imaging of a section of a human body include multipath due to secondary 

reflections. Each multipath introduces its own set of unknown parameters 

decreasing the sparsity in the backscatter observations. Multipath has a detrimental 

effect on the performance of the CS based ultrasound imaging mechanism. The 

principle of time reversal (TR) has been applied to multipath scattering medium, 

where explicit modeling of the medium is difficult due to random perturbations in 

the medium. Chapter 4 introduces the principal of time reversal, while Chapter 5 

applies TR to the CS mechanism introduced in Chapter 3 to deal with the 

multipath distortions introduced in scattering environments with rich clutter.  

4.1 What is Time Reversal 

The principle of TR is applicable to waves described by time-reversal-

invariant equations, which contain only derivatives of even orders. TR consists of 



47 

 

two steps. First, the backscatter of the channel probing signal is recorded by an 

array of receiving transducers for duration T. The second step time reverses the 

recorded observations , , which results in the time reversed signal waveform 

, , . The time-reversed signals are then retransmitted into the 

medium. The backscatter observations of the time reversed probing signals 

, 	form the time reversal observations used for beamforming. 

TR is based on the reciprocity property of wave propagation, which states 

that the received signal at location rr reflected from a source located at rs is 

identical to the received signal at location rs originating from a source located at rr 

[16]. In other words, the role of the source and observation sites can be reversed. 

It has also been shown that the time reversed observations converge at the 

location of the source (scatter), when transmitted back into the medium. This 

phenomenon is called “super resolution focusing” with the energy in the recorded 

observations redistributed in favor of direct reflections from the scatters versus the 

secondary multipath [17]–[19]. 

4.2 Time Reversal Implementation Using Field II 

In this thesis, TR was implemented physically using Field II by 

retransmitting the backscatter of the probing signal reflected from the region of 
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interest. TR signals are calculated using two different configurations, namely the 

single input multiple output (SIMO) and multiple input multiple output (MIMO) 

configurations. TR using the SIMO setup is applied using two steps. The first step 

is to collect the backscattered signals from the region of interest at all transducer 

elements when only one transducer element transmits a probing signal as 

illustrated in Fig. 23. The second step time reverses the recorded signals and 

transmits the time-reversed signals again into the region of interest. The 

backscatters of the time-reversed signals are used by the beamforming algorithms. 

 

Figure 23: SIMO configuration: Step 1 of the TR mode of operation. 
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TR using the MIMO configuration is also applied using two steps except 

that all transmit elements probe the channel in Step 1. The first step is shown in 

Fig. 24 with all elements transmitting. The backscattered signals reflected from the 

region of interest are recorded by all transducer elements. The second step is the 

same as the second step in the TR/SIMO configuration, where the diagonal 

element signals recorded by the transducers are time reversed and retransmitted 

again to illuminate the region of interest. 

In order to successfully apply TR processing, the probing signals have to be 

simultaneous and different, they also have to be orthogonal with each other. 

After time reversing the signals and retransmitting them into the medium 

either using the SIMO or MIMO configuration, the backscatters are probed by the 

compressive sensing system described in Chapter 3. Images reconstructed using 

the MIMO setup are of much better quality than the ones reconstructed using the 

SIMO setup as the MIMO backscatters to the transducers array obtained from 

reflections of the probing signals are much stronger than the SIMO backscatters 

[20].  
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Figure 24: MIMO Configuration: Step of the TR mode of operation. 

 

The complete schematic of the time reversal beamforming system is shown 

in Fig. 25.  

 

 

Figure 25: Schematic diagram illustrating how TR is used for beamforming 
ultrasound system. 
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4.3 Time Reversal Results 

In this section, the Capon beamformed images using signals collected by 

the two TR configurations are presented for the 5 cyst phantom setup, showing the 

SSIM and MAE values for a range of SNRs ranging from 20 to 40 dB. For each 

case, we include the actual reconstructed beamformed images for comparison. 

As shown in Figs. 26 and 27, the SSIM values using the MIMO 

configuration is higher than those obtained from the SIMO setup. The pereceived 

image quality of the MIMO configuration is also superior to the image quality 

obtained from the SIMO configuration. 

Fig. 28 plots a bar chart comparing the SSIM values for the 5 cyst phantom 

model using SIMO and MIMO results for reconstructed images with SNRs of 20, 

30, and 40 dB. Again, we see significant improvement with the TR/MIMO as 

compared to the TR/SIMO configuration. 
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5 cysts phantom results: 

 
(a) Beamformed image with SNR 20 dB: 

SSIM =  0.2043 , MAE = 10.4384 dB 
 

(b) Beamformed image with SNR 30 
dB: SSIM = 0.2327, MAE =10.2366 dB 

 

(c) Beamformed image with SNR 40 
dB: SSIM = 0.2462, MAE = 9.1792 dB 

 
Figure 26: Beamformed Images for the 5-Cyst phantom setup using the SIMO TR 

signals for (a) SNR = 20 dB; (b) SNR = 30 dB; (c) SNR = 40 dB. 
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(a) Beamformed image with SNR 20 dB: 
SSIM = 0.6749 , MAE = 4.9111 dB 

(b) Beamformed image with SNR 30 
dB: SSIM = 0.6820 , MAE = 4.8459 dB

(c) Beamformed image with SNR 40 
dB: SSIM = 0.6831, MAE = 4.8357 dB 
 

Figure 27: Beamformed Images for the 5-Cyst phantom setup using the MIMO TR 
signals for (a) SNR = 20 dB; (b) SNR = 30 dB; (c) SNR = 40 dB. 
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Figure 28: Bar chart comparing SSIM values of MIMO and SIMO configurations 
for the 5 cyst phantom setup. 
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  Chapter 5
Time Reversal with Compressive Sensing 

The ultimate goal and contribution of this thesis is to design a prortable 

ultrasound machine by decreasing its cost, which can be achieved by acquiring 

data at low frequencies using Compressive Sensing. This leads to a significant 

decrease in the sampling frequency of the analog to digital converter. Decreasing 

the sampling frequencies has a side effect in terms of poor reconstructed image 

quality due to aliasing. To avoid degraded image quality, the previously explained 

algorithms (Time Reversal, Compressive Sensing, and Beamforming) are 

combined. Fig. 29 shows a block diagram for the beamforming mechanism 

obtained by coupling TR with CS Beamforming.  

 

Figure 29: CS TR/BF mechanism that couples time reversal  
with compressive sensing. 
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The overall system is referred to as CSTR/BF mechanism. 

In Fig. 29, the backscatters received at each transducer element are 

decimated using different decimation factors to obtain the low frequency data, and 

then compressive sensing is applied to those backscatters to reconstruct the 

signals. In order to increase the image quality, the reconstructed signals are time 

reversed and re-transmitted again into the region of interest using Field II using 

either the SIMO or MIMO configuration. In each case, we use either the SIMO or 

MIMO configuration. The backscatters from the time reversed reconstructed 

signals are processed using the Capon BF algorithm to yield the beamformed 

reconstruction of the medium. 

Another reason for coupling TR with CS/MIMO setup is to reduce the 

detrimental impact of multipath on the beamformed image. Multipath violates the 

sparsity condition needed by CS. It is expected that the TR CS/BF algorithm 

produces better reconstruction than CS BF algorithm alone.  

Section 5.1 shows the beamformed images for both the SIMO and MIMO 

configurations. Images are obtained by applying TR to the signals after 

reconstructing them at different sampling frequencies for a SNR of 40 dB. The 

SSIM and MAE values are presented by comparing the reconstructed images of 
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the CS TR/BF mechanism with the image truth for the setup. Section 5.2 compares 

the images obtained using the CS TR/BF mechanism with the MIMO setup versus 

the CS BF mechanism alone. This comparison illustrates the superiority of 

coupling TR with CS. 

5.1 Results  

5 cyst phantom model results 

As shown in Figs. 30, 31 and 32, the SSIM values of the images obtained 

from the MIMO setup are always higher than the ones obtained using SIMO setup. 

Similarly, the MAE values obtained from the MIMO setup are always lower than 

the ones obtained using the SIMO setup. Higher the decimation factor, the lower is 

the image quality because each signal has to be reconstructed from a reduced 

number of samples, resulting in lower SSIM values due to increased noise in the 

reconstructed data. 

5.2 Comparison between CS and TR with CS 

Having demonstrated the enhancement of the performance with the MIMO 

setup, we now compare the reconstruction quality of the CS TR/BF setup with CS 

BF alone. The CS BF reconstruction does not use TR. 
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Images with decimation factor of 4: 

 

 

 

 

 

 

 

 

Figure 30: Beamformed Images for the 5-Cyst phantom using the CS TR/BF 
setup, for (a) the SIMO configuration; (b) the MIMO configuration. The 

decimation factor used in the CS setup is 4. 

 

 

 
 

(a) SIMO setup: SSIM = 0.2691,  
MAE = 8.9311 dB 

 
(b) MIMO setup: SSIM = 0.5708,  

MAE = 6.3677 dB 
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Images with decimation factor of 6: 

 
(a) SIMO setup: SSIM = 0.2680,  

MAE = 7.5568 dB 

 
(b) MIMO setup: SSIM = 0.5685, MAE = 

6.3844 dB 

Figure 31: Beamformed Images for the 5-Cyst phantom using the CS TR/BF 
setup, for (a) the SIMO configuration, (b) the MIMO configuration. The 

decimation factor used in the CS setup is 6. 
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Images with decimation factor of 10: 

 
(a) SIMO setup: SSIM = 0.2450,  

MAE = 8.5345 dB. 
 

 
(b) MIMO setup: SSIM = 0.5485, MAE = 

7.3844 dB 
 

Figure 32: Beamformed Images for the 5-Cyst phantom using the CS TR/BF setup 
for: (a) the SIMO configuration; (b) the MIMO configuration. The decimation 

factor used in the CS setup is 10. 
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In this section, the SSIM and MAE values of images obtained using signals 

reconstructed by CS and CS with TR using the MIMO setup are presented for a 5-

cyst phantom for a variety of decimation factors. The SSIM values are calculated 

as follows: 

 For the beamformed images obtained using CS only, the SSIM values 

are calculated between the image truth of the model and the 

beamformed images obtained after reconstructing the data using CS. 

 For the beamformed images obtained using CS with TR, the SSIM 

values are calculated between the image truth of the model and the 

beamformed images obtained after applying CS with TR. 

Fig. 33 shows that both subjective and objective quality of the beamformed 

images using signals reconstructed using CS then further processed with TR 

techniques is much better than the beamformed images using signals reconstructed 

using CS only without any further processing. 
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(a) Images with decimation factor of 4:  

=[ left SSIM = 0.0998, Right SSIM = 0.5708 

 
(b) Images with decimation factor of 6:  

Left SSIM = 0.0970, Right SSIM = 0.5685 

 
(c) Images with decimation factor of 10:  

Left SSIM = 0.0960, Right SSIM = 0.5485 
 

Figure 33: Comparison between images obtained using reconstructed RF data with 
CS versus reconstructed RF data using CS TR processing for different  
decimation factors: (a) Decimation factor of 4; (b) Decimation factor  

of 6; (c) Decimation factor of 10 
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Summary 

The thesis incorporates the TR principle and CS in CAPON beamforming with a 

linear array using MIMO configuration for ultrasound applications. The proposed 

CS TR /BF algorithm uses multipath constructively to focus the TR probing 

signals on to the targets. The CS TR /BF algorithm system outperforms the CS BF 

system in the Monte Carlo simulations based on Field II for a multicyst setup. 
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  Chapter 6
Conclusions 

In this thesis I used Field II, a MATLAB toolbox as a simulation setup to 

generate ultrasound fields for testing my beamforming algorithms. I focus on two 

beamforming techniques namely, the DAS algorithm and the Capon algorithm for 

a variety of setups, including the 2-point and 10-point scatters field, 5-cyst and 10-

cyst framework, the kidney phantom, and the fetus phantom within the human 

body. The results presented for all implemented models illustrate that the Capon 

algorithm is superior in regards to image reconstruction and localization of the 

abnormalities like cysts in the human body. 

The main goal of this thesis is to acquire data at sampling rates far below 

the Nyquist rate without introducing the aliasing effect. I implemented the recently 

proposed compressive sensing (CS) algorithm for data compression and coupled 

CS with novel data acquisition (sensing) approached and basis representation in 

order to achieve near-optimal full length signal reconstruction. I tested my 

algorithms with simple models as point scatters then complicated the model to 

represent real body parts such as the kidney and fetus phantoms. In each case, 

images were reconstructed using data with different subsampling frequencies. 
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Results show that CS reconstruction is successful with subsampling of up to 90%. 

In other words, the CS data is only 10% of the original data. The quality of the 

reconstruction was tested through the structural similarity index matrix (SSIM) at 

various subsampling rates. 

In order to increase the quality of the images obtained using reconstructed 

signals, the time reversal (TR) processing techniques were physically implemented 

using Field II with two different array setups, namely, the MIMO and SIMO 

configurations, showing that MIMO setup is superior to the SIMO setup. The 

resulting TR CS/BF framework is suitable for complex environments such as 

ultrasound applications on human body that have rich multipath due to clutter 

noise. 

Images using the TR CS/BF framework with MIMO configuration were 

presented for different signal sampling frequencies at a SNR of about 40dB. 

Results show that with a CS subsampling rate of 90%, the SSIM value between 

the image obtained by CS with TR and the model image truth improved by a 

factor of 5.7 as compared to the SSIM of the image derived using reconstructed 

signals based on the CS only. In each case, the model image truth was used for 

reference. 
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Future Work 

There are two main directions in which my research in the TR CS/BF 

framework can be extended. First, applying the beamforming framework to 

reconstruct the representation of complex environments such as the human kidney 

and fetus phantoms is proposed. The second direction is to construct an 

experimental setup based on the Field II simulation environment where the 

proposed algorithms can be applied with real signals and phantom representations 

of the human body. 

 The research presented in this thesis is very much based on simulations. 

More theoretical analysis need to be done to confirm the superiority of the TR 

CS/BF framework over the CS/BF framework without time reversal. Such an 

analysis can, for example, include the Cramer Rao performance bounds for the 

two setups. Finally, the compressibility aspects of CS in the TR CS/BF framework 

can be analyzed to see the extent of compressibility possible in the RF data. 
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