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Abstract

HPV is a common sexually transmitted infection found worldwide which can lead to serious
health effects. While HPV has a high regression rate, if it does progress, it can cause various
cancers (i.e. cervical, penile, throat). It is possible to minimize the mal-effects of HPV with
tools such as screening, vaccination and treatment. Three sets of compartmental models were
developed to study various aspects of HPV infection and progression. The first set of models
studies which parameters are relevant in screening and vaccination programs and compares
four different programs: a no intervention program, a screening only intervention program,
a vaccination only program, and a screening and vaccination program. The second set of
models compares various screening programs, including a co-screening program. The purpose
of this set of models is to complete a cost analysis on the models, as well as to compare them
epidemiologically. The third set of models studies the phenomenon of infection and re-
infection with HPV. This chapter includes both single HPV type models and multi-type
HPV models. All three sets of models lead to the same conclusions that HPV screening is
essential in the minimization of HPV and cervical cancer. Furthermore, both screening and
vaccination are essential in lowering the basic reproduction number.
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1 Introduction

Mathematical epidemiology is a field that studies the epidemiology of diseases from a mathe-

matical standpoint. The field stemmed from early childhood diseases, including measles and

smallpox [64]. In 1706, Daniel Bernouilli defended the practice of inoculating individuals

against small pox. This contributes to the first known result of mathematical epidemiology.

However, mathematical epidemiology as it is known today is attributed to P.D. En’ko be-

tween the years of 1873 and 1894 and the foundations of mathematical epidemiology with

compartmental models is attributed to physicians such as Sir R.A. Ross, W.H. Hamer, A.G.

McKendrick and W.O. Kermack between the years of 1900-1935 [7]. Dr. Ross’s model of

the interaction between mosquitoes and humans in the transmission of malaria received the

second Nobel Prize in Medicine. The results of his model were then implemented into society

in an attempt to control mosquitoes.

Since the introduction of mathematical epidemiology in the early 20th century, it has been

used to study many different diseases including HPV, measles, malaria, tuberculosis, etc. [7].

The results have been applied to health care programs in different parts of the world to under-

stand the evolution and persistence of a disease both within an individual (in-host modelling)

and within a population (population level modelling), as well as to answer questions on the

projected costs and effectiveness of health programs, and provide program comparison stud-

ies [7, 28,55].

The results of models in mathematical epidemiology have been applied to various settings

that have different environmental inputs. An example is third world countries [29]. This

thesis in particular will use mathematical epidemiology to study HPV and cervical cancer.

It will make use of the statistics and demographics of the third world country, Nepal.
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1.1 What is HPV?

Human papillomavirus (HPV) is a sexually transmitted infection (STI) [52]. There are ap-

proximately 200 strains of HPV, where the genomes of about 100 of these strains have been

sequenced [4]. Figure 1.1 shows various HPV types by prevalence within the world as well

as within third and first world countries. Most HPV types are low risk with 13-18 high risk

cancer causing types [4]. While HPV has a high infection rate, it also has a high regression

rate [54]. This means that most people will contract HPV at some point in their lifetime,

however, it most likely will not progress to cancer. This STI has a worldwide prevalence of

over 50% [48].

As stated previously, HPV can cause cancer. While it is a necessary cause of cervical

cancer, this is not the only cancer caused by HPV [48]. Other cancers include but are not

limited to penile, anal and oral cancers [8], however, these are rare in comparison to the

prevalence of cervical cancer globally [3]. Cervical cancer is the third most common cancer

found amongst women worldwide. Approximately 70% of cervical cancers are caused by

HPV types 16/18. These two HPV types are the two most common worldwide, followed by

HPV types 31, 33, 35, 45, 52 and 58, which collectively contribute to approximately 20% of

cervical cancers worldwide [8].

There are various stages to HPV/cervical cancer progression. HPV is relatively common

and easy to contract. Once contracted, there is a high chance that the HPV infection will

regress. However, if it does not, it can progress to a stage 1 pre-cancer called CIN1 and then

further progress to CIN2, CIN3 and finally to cancer. There are between 2 and 4 decades

between the peak of the infection and the onset of the cancer [6]. The possibility of regression

continues throughout the CIN1,CIN2 and CIN3 time-line, however, the chances of regression

get smaller the further along the chain the disease progresses [68].

HPV disease progression need not be linear, as once a person is infected, they can jump

straight to the CIN2/3 stage [16]. Figure 1.2 illustrates the natural history of an HPV in-

fection.

There are various co-factors that can contribute to infection susceptibility and infection du-

ration of HPV. Table 1.1, adapted from Burchell et al. [9], summarizes the HPV co-factors,

2
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Factor Effect on
suscepti-
bility

Effect
on dura-
tion of
infection

Prevalence
in Nepal

Prevalence
in
Canada

Reference

Earlier age of
sexual début

Increase ≈ 16− 17 [9, 31]

Concurrent
infection with
another STI

Increase Increase [9]

Male circumci-
sion

Decrease Decrease < 20% 20− 80% [9,19,79]

Immune sup-
pression, ie.
HIV infection

Increase .5% (HIV
preva-
lence)

.3% (HIV
preva-
lence)

[8, 9]

Hormonal con-
traceptive

Increase Increase [9]

Smoking Increase Increase 22.6%
women

25.7% [8,9, 50]

Total fertility
rate

Increase 3.3
(year−1)

1.6
(year−1)

[8]

Oral contracep-
tive use

Increase 3.5% 21% [8]

Table 1.1: Factors affecting the susceptibility and duration of an HPV infection

including co-infection with HIV, smoking and age of sexual début.

There are approximately 2540.9 million women at risk of cervical cancer worldwide. Every

year, approximately 527, 624 women are diagnosed with cervical cancer, and approximately

265, 653 women die from it [8]. Having said this, it is not impossible to lower these numbers

through techniques such as vaccination, screening and treatment.

1.2 HPV and cervical cancer in Canada and Nepal

In Canada there are approximately 14.92 million woman at risk for cervical cancer over the

age of 15. It is estimated that about 9.9% of Canadian women have an HPV infection at any

given time, with the most common being HPV types 16 and 18. Approximately 1408 women

are diagnosed with cervical cancer per year, of which 503 women die from it. In 2012, there

were an estimated 83195 new cases of which 35673 resulted in death. Cervical cancer ranks

5



the 13th most common cancer amongst women and the 3rd most common cancer for women

between the ages of 15 and 44 [8].

As of 2007, there has been a national vaccination program (with Gardasil as the vaccine) in

Canada that targets school girls between the ages of 9 − 14. The coverage of this program

is province dependent, but is approximately 50− 86% [8].

Nepal, a third world country, has a population of approximately 26.5 million people. Of

this population, approximately 8.53 million women are at risk for cervical cancer. There are

approximately 3504 cases of cervical cancer per year, of which just over half result in death.

There is currently no vaccination program in Nepal [8].

1.3 Vaccination, screening and treatment

While there is currently no cure for HPV or its succeeding stages, there are various ways

in which an individual can prevent infection and treat infections leading to cancer. These

include: vaccination, screening and treatment.

Vaccination

There are currently two vaccines in use, a bivalent vaccine called Cervarix, and a quadriva-

lent vaccine called Gardasil. Both vaccines are administered in three doses by injection and

cost roughly $120 CAD [12]. Cervarix by GlaxoSmithKline protects against HPV types 16

and 18, the most common HPV types causing cervical cancer [21]. Gardasil by Merck & Co

protects against four HPV types: 16, 18, 6, and 11 [21]. There is also a third vaccine, cur-

rently in clinical trials. This nonavalent vaccine protects against the following nine strains:

6, 11, 16, 18, 31, 33, 45, 52, and 58 [20]. Since this vaccine is still in trials, it is currently un-

known how much it will cost or what its efficacy will be.

Both Cervarix and Gardasil have been proven thus far to be almost 100% effective in pre-

venting cervical cancer for 9 years following vaccination [15, 77]. This is true as long as

the individual does not have a pre-existing infection. If an infected individual is given the

vaccine, it will have no impact on their current situation other than to prevent them from

re-infection [11]. Although costly, vaccination has proven to be a useful form of prevention

6



for HPV [24].

It is not completely known how the HPV vaccines work, however, studies suggest that the

primary method of fighting HPV is through neutralizing antibodies [17]. Currently, scientists

do not know the total extent of protection afforded by either of the two available vaccines [21].

Screening

Effective screening techniques/programs have the capability of preventing cancer, allow-

ing for the early detection and treatment of an HPV or carcinoma infection. While more

hands on in terms of the number of visits required, screening has the potential to catch an

HPV infection during its progression from HPV to cervical cancer. This is important both

clinically and financially.

Clinically, early detection and monitoring of the disease allows for treatment before the

onset of cancer. This improves the chances of survival. While it may not be necessary to

treat an individual at the HPV infection stage, continuous monitoring of the situation al-

lows treatment if the disease progresses to a more serious stage. On the other hand, if, for

example, an individual is screened and found to have pre-cancer CIN3, they may be treated

immediately, improving their chances of survival.

Financially, screening is important as treating cancer comes with many costs: treatment,

hospitalization, doctor visits, and hospital resources such as beds. For the patient it in-

cludes additional costs such as work time missed, and transportation costs. While screening

does cost money, over the long run, it may prove to be more economically efficient depending

on the screening intervals [51].

There are various types of screening techniques. These range in differences from time spent

taking the test, to time spent processing the test, to the cost of the test, to the technology

used. Some tests are more simplistic and utilize fewer personnel, or personnel with less

training. This is primarily due to the fact that the different tests utilize different biological

techniques. Table 1.2 lists a sample of screening techniques and some of their properties.
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Screening test Specificity Sensitivity Comments Reference
HC2 (Qiagen) 68.8−

82
78−
100

Tests for 13 carcinogenic HPV
types (16, 18, 31, 33, 35, 39, 45,
51, 52, 56, 58, 59, and 68) and
five low risk types

[18, 61, 72,
80]

APTIMA
(Gen Probe)

52.3−
92

84.9−
99

Can detect the mRNA of 14
high risk types however, it does
not indicate which high risk
HPV type it identified

[18]

Cobas 4800
(Roche
Molecular
Systems)

20.9−
27.2

92.5−
97.2

Can specifically check for HPV
16/18 and check that there
are other carcinogenic types
present

[73]

Cervista (Ho-
logic)

65.7−
72.6

56.6−
78.7

Detects DNA from
14 carcinogenic types
(16, 18, 31, 33, 35, 39, 45,
51, 52, 56, 58, 59, 66, and 68)

[44,80]

Papillocheck
(Greiner
Bio-one)

60.2 96.1 PCR based test which de-
tects 24 genotypes: 18
high/probable high risk and 6
low risk types

[69]

Linear ar-
ray (Roche
Molecular
Systems)

29.2−
36.5

95.8−
99.4

Tests for 37 high and low risk
HPV types

[73]

Abbot RT
PCR (Abbott
Laboratories)

24.1−
30.7

90.1−
95.6

Tests for 14 high
risk HPV types
(16, 18, 31, 33, 35, 39, 45, 51, 52,
56, 58, 59, 66, and 68)

[73,78]

Amplicor
(Roche
Molecular
Systems)

18.6−
25

96.8−
99.8

Tests for 13 high risk carcino-
genic types

[73]

PAP smear 97−
97.9

26.4−
62.3

Detects abnormal cervical cells [26,45]

CareHPV
(PATH and
Qiagen)

96.9−
97.9

34.7−
70.9

Detects 14 different
high risk HPV types
(16, 18, 31, 33, 35, 39, 45, 51, 52,
56, 58, 59, 66, and 68)

[45,62]

VIA 93.9−
95.2

9.3−
40

Visual inspection of the cervix
for abnormal cells using acetic
acid

[30,45]

Table 1.2: HPV screening techniques
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Treatment

While vaccination and screening are useful in the prevention and detection of an HPV in-

fection, a patient may still become infected with HPV and have it progress to the cervical

cancer stage. If this occurs, then depending on the stage of infection, the patient will undergo

a colposcopy, a procedure that enables the gynaecologist to examine the cervix for abnormal

cells. Based on the results, the patient may go for further treatment such as chemotherapy,

radiation therapy, surgery etc.

There are two types of treatment that focus on treating the affected area. These are ablative

and excisional therapies. Ablative treatment includes procedures such as: cryotherapy, or

freezing of the area, laser ablation, and cold coagulation. Excisional treatment includes cold

knife conization, loop electrosurgical excision procedures (LEEP) and conization, either by

laser or electrosurgical needle. Both excisional and ablative methods are said to have similar

efficacies of removing the tumour and setting back the disease. Failure rates are reported to

be between 5− 15% [39].

Vaccination, screening and treatment should be considered to help prevent cervical can-

cer, as well as minimize cancer costs, especially since there are between 2 and 4 decades

between the peak of the infection and the onset of the cancer. Hence, an efficient screening

technique must be used [6].

1.3.1 Type replacement

HPV types 16 and 18 are the most common HPV types worldwide. This includes both

developed and undeveloped regions. Together, they cause 70% of cervical cancers. Figure

1.1 summarizes the prevalence of various HPV types.

It is evident that in more developed regions, once HPV types 16/18 have been eradicated,

HPV type 33 can rise as a dominant infecting type. In under-developed regions, HPV type

45 will replace types 16/18 [8]. Both types 33 and 45 are carcinogenic.

Studies by Day and Bauch [5, 53] have examined the idea of type replacement. While this

thesis will not model type replacement, it should be considered as future work.
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1.4 What is a mathematical model?

Mathematical models are forecasting tools used in various areas of application, including

public health. Amongst other things, these models are used to inform health policy, vaccina-

tion programs, and help minimize governmental and individual costs. When implementing

a new health regime, or when dealing with a new disease, it is important to get an idea of

the possible outcomes of implementing a program. These include answering questions such

as:

• Will a vaccination program make a significant difference to the outcome of the disease?

• What percentage of the population must be vaccinated in order to eradicate or control

a disease?

• If you don’t vaccinate a population, what course can you expect the disease to take in

the long and short term?

• What is the most cost effective way to treat a disease?

All of these questions are important for policy makers to consider and can be studied using

mathematical models. There are different types of models, such as Markov models and de-

terministic compartmental models; this paper will focus on compartmental models.

A compartmental model examines population classes and their interactions to forecast pat-

terns in population sizes over time. This can be used to identify information concerning

possible epidemics such as: start and end times, the magnitude of the epidemics, the amount

of people affected etc. An example of a simple compartmental model is the S-I-R model,

pioneered by Kermack and McKendrick circa 1927, where “S” represents the susceptible

individuals, “I” represents the infected individuals, and “R” represents the recovered or re-

moved individuals [37].

The SIR model is shown in Figure 1.3. Here the β term represents the infection rate as

infected individuals (I) interact with susceptible individuals (S). Hence, it impacts the rate

of change of both the susceptible individuals as they leave the susceptible compartment,

and the infected population as the newly infected individuals enter this compartment. The

γ term represents the recovery rate of the infected individuals. This impacts the infected

individual’s population size, as individuals are removed from the infected compartment, and
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Figure 1.3: Basic SIR model where “S” represents the susceptible population, “I” represents
the infected class and “R” represents the recovered class. This compartmental model can be
modelled using a system of ODEs as shown in Eq.(1.1).
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the recovered individual’s population size as they enter this compartment. The δ term rep-

resents the disease induced death rate of the infected individuals while the dS, dI, and dR

terms represent the number of natural deaths of each class. Finally, the λ term represents

the birth rate.

The SIR model shown in Figure 1.3 can be written as:

S ′ = λ− βSI − dS
I ′ = βSI − γI − δI − dI
R′ = γI − dR

(1.1)

where S ′, I ′ and R′ represent the rate of change of the susceptible, infected and recovered

populations respectively.

The idea of SIR compartmental modelling can be broadened to include any disease stage,

for example, individuals who have been exposed to a disease but are not yet infectious and

individuals who have been treated for a disease. It can also take into account an individual’s

gender, age and vaccination status. The model need not be linear, as individuals may skip

compartments or approach the same compartment from various sources. Finally, an individ-

ual may go backwards in the model, for example, once “recovered”, an individual may lose

immunity to the disease and may enter the susceptible compartment, or, he/she may recover

with life long immunity after the infectious period.

1.4.1 Ordinary Differential Equations

Often, biological phenomena are modelled using compartmental models. These models are

composed of systems of differential equations. We employ ordinary differential equations

(ODE) in this work. An ODE is an equation representing the rate of change of a certain

quantity. In other words,

change = inflow − outflow. (1.2)

ODEs in compartmental modelling make use of the assumption that individuals mix with

each other with an equal probability. This is called a homogeneous mixing assumption. In

the SIR model, this is represented by the βSI term. Furthermore, a system of ODEs does

not depend on past events. In other words, what happens at time t+1 depends only what
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happens at time t. This is referred to as a Markov property.

ODEs can be solved to provide a population size at a certain time, usually a disease free

equilibrium point and one infected equilibrium point can be found. However, depending on

the parameter values being used, it may be possible to find many infected equilibria.

1.4.2 Basic reproduction numbers

The basic reproduction number (R0) is defined as the average number of secondary infections

generated by a single infectious individual in a totally susceptible population [35]. It is a

measure that is used to predict whether or not an epidemic will occur. If R0 > 1 then an

epidemic will occur, and if R0 < 1 then the disease will be contained. There are various

methods that can be used to calculate R0. These include but are not limited to: the Jacobian

method, the survival function and the next generation method. A review of these methods

can be found in Heffernan et al. [35]. This thesis will use the Jacobian and next generation

methods. In the Jacobian method, the Jacobian matrix of the system is found. The charac-

teristic polynomial of the Jacobian is calculated and the constant term in the characteristic

polynomial is said to be R0. In the next generation method, two matrices are created. The

first matrix, F , contains terms that indicate the rate of appearance of new infections in the

model. The matrix V contains terms describing the rate of transfer of individuals into a

compartment. The largest eigenvalue of FV −1 is the basic reproduction number [35].

The basic reproduction number has been used in disease modelling for various diseases.

See articles by Heesterbeek et al. [32, 33], Heffernan et al. [35], and Arino et al. [2], for

models in which R0 has been computed for various diseases such as influenza and West Nile

Virus, as well as the various methodologies for calculating the basic reproduction number.

1.4.3 Bifurcations

A bifurcation is a change in the stability of a system. There are many different types of

bifurcations including transcritical bifurcations and backward bifurcations (illustrated in

Figure 1.4). In disease modelling, a transcritical bifurcation represents the intersection of

two curves, one of which is the DFE and the second is the EE. This can be seen in the top

panel of Figure 1.4 where the top branches are stable and the bottom branch is unstable.

Here, the unstable region of the EE falls in an area which is not biologically viable, and
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hence is not shown. The change in stability occurs when R0 = 1.

A backward bifurcation is a bifurcation in which there are a minimum of three equilib-

ria, the stable disease free equilibrium point, a stable endemic equilibrium point and an

unstable endemic equilibrium point, when R0 < 1. This is illustrated in Figure 1.4 where

E1 represents the stable endemic equilibrium point and E2 represents the unstable endemic

equilibrium point.

While a transcritical bifurcation often occurs in disease models, a backward bifurcation

will occur when there are two susceptible populations, for example, a non-vaccinated and a

vaccinated population [42].

1.4.4 Latin Hypercube Sampling

Latin Hypercube Sampling is a statistical method used to create different parameter sets

from various parameter ranges. It was proposed by McKay in 1979 and has since been mod-

ified by various researchers to serve a particular purpose in their respective research [59].

Two of these such researchers, Sanchez and Blower, adapted Latin Hypercube Sampling to

be applicable to disease modelling, including the modelling of tuberculosis and HIV [66].

The algorithm partitions the range of N variables into M equally probable partitions. M

points are taken from the grid, so that there is no overlap in points, creating M different

parameter sets.

1.4.5 Sensitivity analysis:

A model may contain many variables, not all of which will be of equal significance, if any

at all. Latin Hypercube Sampling, along with partial rank correlation coefficient (PRCC)

is used to determine which values play a significant role in the outcome of any particular

model. This helps inform the modeller which variables are important to keep in the model,

as well as the health care professional which aspects of the proposed health care program to

use in order to obtain an optimal result. When performing a PRCC analysis, if p > |.5| then

the result is said to be significant [47]. The correlation between the two variables can either

be positive or negative, where a positive correlation indicates that an increase (or decrease)

in one variable will cause an increase (or decrease) in the second variable, and a negative
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Figure 1.4: Trans-critical (top) and backward bifurcation (bottom) diagrams. The solid line
represents a stable solution while the dotted lines represent an unstable solution. The x-axis
represents the bifurcation parameter (µ) while the y-axis represents the force of infection.
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correlation indicates that an increase in one variable (or a decrease) will cause a decrease in

the second variable (or an increase).

1.5 Literature review

There are many articles which discuss various aspects of HPV vaccination and screening

programs. These include articles by Garnett et al. [25], Shaban et al. [70], Obeng-Denteh et

al. [56] and Lee et al. [46] with respect to the basic reproduction number, as well as, Elbasha

et al. [22], Ribassin-Majed et al. [63], Goldie et al. [27], and Dasbach et al. [14] who create

mathematical models to study the dynamics of HPV transmission. Some articles that focus

on cost analysis include those by Goldie et al. [27], Mandelblatt et al. [49] and Kulasingam

et al. [43].

The basic reproduction number for HPV has been determined with a range of [.070249 −
2.285]. Various studies have been completed on HPV transmission models. The following

summarize the results for the basic reproduction number. Garnett et al. [25], create an SIS

model with an R0 of 1.25. Shaban et al. [70], create a model where the R0 = 2.285, while

Obeng-Denteh et al. [56] find R0 = 1.66. Lee et al. [46] on the other hand calculate two

different values for the basic reproduction number, one for treated individuals and the second

for untreated individuals. Both values are less than one. They calculated these values to be

.070249 and .519798 respectively .

Elbasha et al. [22], create a transmission dynamic model that models the cost effectiveness

and epidemiological consequences of administering the prophylactic quadrivalent vaccine to

girls and boys by age 12. They examined four different scenarios in which boys had a catchup

vaccination, girls had a catch up vaccination, both girls and boys had a catchup vaccination

and the final scenario where there is no catch up vaccination. They conclude that vaccinating

females is the most cost effective, however, vaccinating males as well as females is the most

effective in terms of CIN outcome.

Ribassin-Majed et al. [63], examine the effect of the quadrivalent vaccine on the preva-

lence of HPV types 6/11. They use a non-linear, deterministic model. They conclude that

after 10 years, the prevalence of the aforementioned HPV types will be halved in females

and reduced by 1
4

in males so long as there is a 30% vaccine coverage by females. These two

16



HPV types can be eradicated as long as the vaccine coverage is kept above 12%.

Goldie et al. [27], examine the cost effectiveness of various triage methods making use of

a combination of screening techniques combined with vaccination. They focus their model

on developing countries. They conclude that incorporating VIA (visual inspection with

acetic acid) or DNA testing in one or two visits is the most cost effective strategy.

Dasbach et al. [14], provide three models (cohort, hybrid and population dynamic) that

evaluate the effect of vaccination and the cost effectiveness of the vaccine on the propagation

of HPV. They conclude that vaccinating females can be cost effective.

Mandelblatt et al. [49], also experiment with various screening strategies to compare costs

and benefits. They compare pap smear with HPV testing, pap smear only and HPV testing

only. They conclude that co-testing with an HPV test and pap smears “saves additional

years of life at reasonable costs compared with pap testing alone”.

Kulasingam et al. [43], created a Markov model with the goal of evaluating the benefits

and harms of DNA testing as well as cytology as opposed to cytology only.

They conclude that cytological testing every three years followed by co-testing every 5 years

results in fewer colposcopies and greater life expectancy than when compared to cytology

only.

1.6 Scope of thesis

The purpose of this project is to analyze the various combinations of treatment and screen-

ing strategies in order to find the most efficient program to treat HPV victims in Nepal. In

this case, efficiency refers to medical outcome, as well as, cost. Deterministic models will be

used, as well as, a linear progression of the disease stages.

This will be completed in three sets of models. The first set, found in Chapter 2, con-

sists of four models and examines the significance of various parameters used in screening

and vaccination models. These models include:

• A no intervention model.

17



• A screening only intervention model.

• A vaccination only intervention model.

• Both screening and vaccination as interventions.

The second set of models focuses on various screening techniques, including co-screening.

Chapter 3 compares simulations and completes a cost analysis between the various models.

This chapter includes the following four models:

• A model in which all infected individuals are treated.

• A model in which only those who may have a carcinogenic type of HPV are treated.

• A co-screening model with HC2 and cobas4800. Individuals are treated if they are

HPV 16/18 positive.

• A co-screening model with a pap smear and cobas4800. Indiviudals are treated if they

are HPV 16/18 positive.

The final set of models, found in Chapter 4 aims to elucidate the idea of infection versus

re-infection with HPV. This is studied through a series of five models, each increasing in

complexity. The models that are analyzed include:

• A single HPV-type model with no disease related deaths. In this model, there is no

difference between infection and re-infection.

• A single HPV-type model with different compartments for infected and re-infected

individuals. In this model, individuals do not die from HPV related disease.

• A model that is the same as the previous model, however, here individuals can die

from cancer caused by HPV.

• A model comprised of two types of HPV and multiple infection classes. In this model,

individuals do not die from disease related causes.

• A model that is the same as the previous model, however, here individuals can develop

cancer, which is assumed to be fatal.
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1.7 Methods

This thesis contains three modelling chapters. The methods for all three chapters are

recorded here. All the numerical analysis is completed using parameter values for HPV

16.

Compartmental models are created (using a system of ODEs) to model various concepts

in the question of HPV infection and its progression to cervical cancer. The models are ana-

lyzed through both analytical and numerical methods in order to elucidate various concepts

regarding the models and about HPV/cervical cancer, including:

• Equilibrium points

• Stability of the equilibria

• Basic reproduction number

• Simulations

• Sensitivity analysis

1.7.1 Equilibrium points and stability

Conventional methods are used to find and calculate the stability of the equilibrium points.

This involves, solving the system of ordinary differential equations to find the equilibrium

points, and evaluating the Jacobian of the system at the equilibrium points to find the

eigenvalues. If at least one of the eigenvalues is positive, the equilibrium point is said to be

unstable or should be further analyzed. If all of the eigenvalues for the equilibrium point are

found to be negative, the equilibrium point is said to be stable.

1.7.2 Basic reproduction number

The basic reproduction number is calculated using the next generation method for Chapters

2 and 3 and the Jacobian method is used for Chapter 4. A review of these methods is

presented in Heffernan et al. [35]. An example of the next generation method is as follows
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for the SEIR model represented by Eq.(1.3):

S ′ = λ− dS − βIS
E ′ = βIS − dE − σE + φI

I ′ = σE − φI − dI − γI + φ1R

R′ = γI − dR− φ1R

(1.3)

Let:

F =

∣∣∣∣∣∣∣
0 βS + φ 0

0 0 φ1

0 0 0

∣∣∣∣∣∣∣ ,

V =

∣∣∣∣∣∣∣
d+ σ 0 0

−σ φ+ d+ γ 0

0 −γ d+ φ1

∣∣∣∣∣∣∣ .
Then the spectral radius of FV −1 = R0, where

FV −1 =

∣∣∣∣∣∣∣∣
σ(βS+φ)

(d+σ)(φ+d+γ)
βS+φ
φ+d+γ

0
φ1σγ

(d+φ1)(φ+d+γ)(d+σ)
φ1γ

(d+φ1)(φ+d+γ)
φ1
d+φ1

0 0 0

∣∣∣∣∣∣∣∣ .
An example using the Jacobian method for Eq.(1.3) is as follows:

J =

∣∣∣∣∣∣∣
−d− σ βS + φ 0

σ −(φ+ d+ γ) φ1

0 γ −(d+ φ1)

∣∣∣∣∣∣∣ .
Solving the constant term of the characteristic polynomial gives: R0 = φγ

(d+φ1)(φ+d+γ)
σ(βS+φ)

(d+σ)(σ+d+γ
.

1.7.3 Sensitivity analysis and numerical analysis

In instances where the basic reproduction number, eigenvalues or their stability cannot be

calculated due to the complexity of the system, the quantity in question is calculated by

substituting parameter values obtained through Latin Hypercube Sampling into the system

and then calculating the desired quantity. A sensitivity analysis is run using the parameter

values calculated from the Latin Hypercube Sampling parameter sets.
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Simulations are run using Matlab’s ODE45 function. A separate function is run to pro-

vide PRCC plots to measure the significance of each parameter in Chapter 2. The code was

created by Simeone Marino in 2007.
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2 Single type models

2.1 Introduction

HPV treatment and prevention is a complex matter involving vaccination, screening and

treatment. Modelling all of these factors can be difficult to do in a single model, however,

understanding the big picture of how all of the prevention and treatment factors work to-

gether is an important aspect in the minimization of cervical cancer. This chapter explores

the concepts of screening and vaccination by attempting to understand the relative signifi-

cance of each parameter in relation to the total population sizes through the use of various

control strategies in an attempt to minimize HPV infection and its progression to cancer.

This is accomplished through the creation and analysis of four sub-models. The first model

consists of no intervention, the second of a screening only intervention, the third consists of a

vaccination only intervention, and the final model consists of both screening and vaccination.

2.2 Model

The models track individuals in compartments related to susceptible and disease stages.

These include both susceptible individuals who are not vaccinated (S), and those who are

vaccinated (SV ). All susceptible individuals may become infected. Once infected, the in-

dividuals fall into one of three infected classes which are further divided into three stages

of disease progression: those who know their infection status (In), those who are unaware

of their infection status (An), and those who are vaccinated and unaware of their infection

status (Vn), where n=0,1,2 depending on the disease stage. If an individual’s infection does

not regress, it may progress to a pre-cancer stage (C1), or to the cancer stage (C2).
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Figure 2.1: Diagram for Eq.s (2.1)-(2.4). This model represents the no intervention case
when the screening sensitivity, φ, and the vaccine uptake, ρ, are zero. It represents the
screening only model when the vaccine uptake, ρ, is zero, and it represents the vaccination
only model when the screening sensitivity, φ, is zero.
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2.2.1 Equations

The systems of equations that represent the four models depicted in Figure 2.1 are presented

in Eq.’s (2.1)-(2.4).

The equations that represent the no intervention case are:

S ′ = λ+ γA0A0 + (γI0 + ψγI0)I0 − FβS

N
− dS

A′0 =
FβS

N
− (γA0 + αA0 + d)A0 + γA1A1

A′1 = αA0A0 − (γA1 + αA1 + d)A1 + γA2A2

A′2 = αA1A1 − (γA2 + αA2 + d)A2

I ′0 = −(γI0 + ψγI0 + αI0 + d)I0 + (γI1 + ψγI1)I1

I ′1 = −(γI1 + ψγI1 + αI1 + d)I1 + (γI2 + ψγI2)I2 + αI0I0

I ′2 = −(γI2 + ψγI2 + αI2 + d)I2 + (γC1 + ψγC1)C1 + αI1I1

C ′1 = αA2A2 + αI2I2 − (γC1 + ψγC1 + αC1 + d)C1

C ′2 = αC1C1 − (d+ δ)C2

Fβ = β((A0 + A1 + A2) + qI(I0 + I1 + I2))

(2.1)

The equations that represent the screening only case are:

S ′ = λ+ γA0A0 + (γI0 + ψγI0)I0 − FβS

N
− dS

A′0 =
FβS

N
− (γA0 + αA0 + ζφ+ d)A0 + γA1A1

A′1 = αA0A0 − (γA1 + αA1 + ζφ+ d)A1 + γA2A2

A′2 = αA1A1 − (γA2 + αA2 + ζφ+ d)A2

I ′0 = ζφ(A0)− (γI0 + ψγI0 + αI0 + d)I0 + (γI1 + ψγI1)I1

I ′1 = ζφ(A1)− (γI1 + ψγI1 + αI1 + d)I1 + (γI2 + ψγI2)I2 + αI0I0

I ′2 = ζφ(A2)− (γI2 + ψγI2 + αI2 + d)I2 + (γC1 + ψγC1)C1 + αI1I1

C ′1 = αA2A2 + αI2I2 − (γC1 + ψγC1 + αC1 + d)C1

C ′2 = αC1C1 − (d+ δC2)C2

Fβ = β(qA(A0 + A1 + A2) + qI(I0 + I1 + I2))

(2.2)
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The equations that represent the vaccination only case are:

S ′ = λ+ γA0A0 + (γI0 + ψγI0)I0 − FβS

N
− νρεS − dS

A′0 =
FβS

N
− (γA0 + αA0 + d)A0 + γA1A1

A′1 = αA0A0 − (γA1 + αA1 + d)A1 + γA2A2

A′2 = αA1A1 − (γA2 + αA2 + d)A2

I ′0 = −(γI0 + ψγI0 + αI0 + d)I0 + (γI1 + ψγI1)I1

I ′1 = −(γI1 + ψγI1 + αI1 + d)I1 + (γI2 + ψγI2)I2 + αI0I0

I ′2 = −(γI2 + ψγI2 + αI2 + d)I2 + (γC1 + ψγC1)C1 + αI1I1

C ′1 = αA2A2 + αI2I2 + αV 2V2 − (γC1 + ψγC1 + αC1 + d)C1

C ′2 = αC1C1 − (d+ δ)C2

S ′V = νρεS + γV 0V0 − qFβSV
N
− dSV

V ′0 =
qFβSV
N
− (γV 0 + αV 0 + d)V0 + γV 1V1

V ′1 = αV 0V0 − (γV 1 + αV 1 + d)V1 + γV 2V2

V ′2 = αV 1V1 − (γV 2 + αV 2 + d)V2

Fβ = β((A0 + A1 + A2) + qI(I0 + I1 + I2) + qV (V0 + V1 + V2))

(2.3)

The equations that represent the screening and vaccination case are:

S ′ = λ+ γA0A0 + (γI0 + ψγI0)I0 − FβS

N
− νρεS − dS

A′0 =
FβS

N
− (γA0 + αA0 + ζφ+ d)A0 + γA1A1

A′1 = αA0A0 − (γA1 + αA1 + ζφ+ d)A1 + γA2A2

A′2 = αA1A1 − (γA2 + αA2 + ζφ+ d)A2

I ′0 = ζφA0 + ζ2φV0 − (γI0 + ψγI0 + αI0 + d)I0 + (γI1 + ψγI1)I1

I ′1 = ζφA1 + ζ2φV1 − (γI1 + ψγI1 + αI1 + d)I1 + (γI2 + ψγI2)I2 + αI0I0

I ′2 = ζφA2 + ζ2φV2 − (γI2 + ψγI2 + αI2 + d)I2 + (γC1 + ψγC1)C1 + αI1I1

C ′1 = αA2A2 + αI2I2 + αV 2V2 − (γC1 + ψγC1 + αC1 + d)C1

C ′2 = αC1C1 − (d+ δ)C2

S ′V = νρεS + γV 0V0 − qFβSV
N
− dSV

V ′0 =
qFβSV
N
− (γV 0 + αV 0 + ζ2φ+ d)V0 + γV 1V1

V ′1 = αV 0V0 − (γV 1 + αV 1 + ζ2φ+ d)V1 + γV 2V2

V ′2 = αV 1V1 − (γV 2 + αV 2 + ζ2φ+ d)V2

Fβ = β((A0 + A1 + A2) + qI(I0 + I1 + I2) + qV (V0 + V1 + V2)

(2.4)
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Figure 2.1 represents the models used in this chapter. The model as is depicted in its entirety

in Figure 2.1 represents the screening and vaccination as interventions model (Eq.(2.4)). The

most basic model, corresponding to Eq.(2.1), represents a no intervention model and is ob-

tained when both the screening sensitivity, φ, and the vaccine uptake rate, ρ, are zero. When

only ρ, the vaccine uptake rate, is zero, the diagram represents the screening only scenario

corresponding to Eq.(2.2), and when only φ, the screening sensitivity, is zero, the diagram

represents the vaccination only scenario, corresponding to Eq.(2.3).

The system of ODEs found in Eq.’s (2.1)-(2.4) include the following assumptions:

• Treatment compartments are not included, rather, treatment can be modelled as an

increased rate of regression.

• Individuals regress from the C1 stage to the I2 stage as it is assumed that by the time

the individual reaches the C1 stage, they are aware of their disease status.

• The progression rates are such that: αV i < αIi < αAi as the disease progression for

individuals who are not vaccinated and do not know their disease status will be higher

than those who are vaccinated and know their disease status as they will not practice

safe sex and have no protection from the vaccine.

• qI > qV as people who are vaccinated will be less likely to pass on HPV.

• Individuals may be screened at any stage of his/her disease.

• Screening has the same sensitivity at any time during the disease progression.

• Individuals are vaccinated before getting infected with HPV.

2.3 Parameters

The variables and parameter descriptions can be found in Tables 2.1 and 2.2. Parameter

values are also listed in Table 2.2.

Tables 2.1 and 2.2 provide a comprehensive list of all parameters and variables used in

Eq.’s (2.1)-(2.4). Latin Hypercube Sampling was used to sample and provide parameter

values for the models. The populations sizes used are representative of those of the female
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Variable Definition
S Susceptible individuals
A0 Individuals with HPV, disease status unknown
A1 Individuals with CIN1 (pre-cancer), disease status unknown
A2 Individuals with CIN2 (pre-cancer), disease status unknown
C1 Individuals with CIN3 (pre-cancer), disease status assumed to be known
C2 Individuals with cancer, disease status known
I0 Individuals with HPV, disease status known
I1 Individuals with CIN1 (pre-cancer), disease status known
I2 Individuals with CIN2 (pre-cancer), disease status known
Sv Susceptible, vaccinated individuals
V0 Vaccinated individuals with HPV, disease status unknown
V1 Vaccinated individuals with CIN1 (pre-cancer), disease status unknown
V2 Vaccinated individuals with CIN2 (pre-cancer), disease status unknown

Table 2.1: Variables used in Eq.’s (2.1)-(2.4).

population in Nepal. The progression rates (αn) and the regression rates (γn) were obtained

from a portion of the ranges found in literature and represent 80− 180% boundaries for the

mean value used in Latin Hypercube Sampling [16,38]. The boundaries for ρ, the proportion

of individuals vaccinated, are 40 − 180% of the mean value (assumed) and the boundary

values for ε, the screening efficacy, is 80− 105% of the mean value [40]. The screening sen-

sitivity, φ, range was calculated as 40− 117.5% of the mean value (see Table 1.2), while the

added regression rate, ψ [39], and the proportion of individuals screened , ζ and ζ2 (assumed)

represent 95−105% and 40−200% respectively. All ranges fall within accepted ranges found

in literature.
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Parameter Description Range Source
αA0 Progression rate from HPV to CIN1 [.02-.045](year−1) [16,38]
αI0 Progression rate from HPV to CIN1 [.016-.036](year−1) [16,38]
αV 0 Progression rate HPV to CIN1 [.012-.027](year−1) [16,38]
αA1 Progression rate from CIN1 to CIN2 [.0336-

.0756](year−1)
[38]

αI1 Progression rate from CIN1 to CIN2 [.028-.063](year−1) [38]
αV 1 Progression rate from CIN1 to CIN2 [.024-.054](year−1) [38]
αA2 Progression rate from CIN2 to CIN2 [.092-.207](year−1) [38]
αI2 Progression rate from CIN2 to CIN2 [.08-.18](year−1) [38]
αV 2 Progression rate from CIN2 to CIN2 [.072-.162](year−1) [38]
αC1 Progression rate from CIN3 to cancer [.024-.054](year−1) [38]
γA2 Regression rate from CIN2/3 to CIN1 [.048-.108](year−1) [16]
γI2 Regression rate from CIN2/3 to CIN1 [.048-.108](year−1) [16]
γV 2 Regression rate from CIN2/3 to CIN1 [.064-.144](year−1) [16]
γA1 Regression rate from CIN1 to HPV [.4-.9](year−1) [16]
γI1 Regression rate from CIN1 to HPV [.4-.9](year−1) [16]
γV 1 Regression rate from CIN1 to HPV [.44-.99](year−1) [16]
γA0 Regression rate from HPV to susceptible [.16-.36](year−1) [16]
γI0 Regression rate from HPV to susceptible [.16-.36](year−1) [16]
γV 0 Regression rate from HPV to susceptible [.2-.45](year−1) [16]
γC1 Regression rate from CIN3 to CIN2 .02(year−1) [58]
qI Scaling constant [.32− .72] assumed
qV Scaling constant [.16− .36] assumed
ρ Vaccine uptake [.2− .9](year−1) assumed
ε Probability of vaccine success [.76− .9975] [40]
β Infection rate [.001− .8](year−1) [16,41,71,74]
φ Screening sensitivity see Table 1.2
Cost of
screening

4− 15 USD assumed

d Natural death rate 68 year−1 [60]
δ Death due to disease 1

54∗12(year−1)[0-
.0998]

[13,46]

ψ Added regression rate due to treatment [.81− .945%] [39]
ζ, ζ2 Proportion of individuals who get

screened per year
0-1 assumed

ν Number of 13 year old girls 313763/N [57]
N Female population of Nepal 13607013 [57]
q Scaling constant to account of unknown

affect of neutralization antibodies
[.001− 1] assumed

Table 2.2: Parameters used in Eq.’s (2.1)-(2.4). The subscript represents the population
class for which the transition rate is relevant. *Note: These rates are for HPV 16 only.
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2.4 Results

2.4.1 Analytical results

2.4.1.1 Equilibrium points

All four models have a disease free equilibrium point and one biologically viable endemic

equilibrium point. The disease free equilibrium point for the models in which there is only

one susceptible class, ie. for Eq.’s (2.1) and (2.2) is:

(S, 0, 0, 0, 0, 0, 0, 0, 0) = (λ
d
, 0, 0, 0, 0, 0, 0, 0, 0) (2.5)

and the disease free equilibrium point for Eq.’s (2.3) and (2.4) is:

(S, 0, 0, 0, 0, 0, 0, 0, 0, Sv, 0, 0) = ( λ
νρε+d

, 0, 0, 0, 0, 0, 0, 0, 0, νρελ
d(νρε+d)

, 0, 0, 0) (2.6)

Eq.’s (2.1)-(2.4) are too complex to calculate the the endemic equilibrium point analytically,

hence it will be analyzed numerically.

2.4.1.2 Stability

The Jacobian (J) must be evaluated at the various equilibrium points in order to calculate

the stability of the respective equilibrium point. Although not shown in this document for all

of the models, the Jacobian was calculated for Eq.’s (2.1)-(2.4) and analyzed to understand

the stability conditions of all model equilibria. Eq.’s (2.1)-(2.4) are high in dimension and

complexity. In some cases the stability conditions can be found using analytical methods,

however, numerical methods are required for much of this study.

Substituting values for the disease free equilibrium point into the Jacobian for Eq.s (2.1)-

(2.4) gives the following eigenvalues:

No intervention model, Eq.(2.1)

• λ1 = −d < 0 (Entry (1,1) of J(DFE))

• λ2 = −(d+ δ) < 0 (Entry (9,9) of J(DFE))
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• The third eigenvalue is a polynomial of degree 7. It is too large to calculate numerically,

however, it can be related to Eq.(2.7) as was done with λ1,2.

As the first two eigenvalues are always negative, the stability of the system is dependent on

the third eigenvalue.

J(DFE) =

−dγA0 −
βqAS
N

−βqAS
N

−βqAS
N

γI0 +

γI0ψ −
βqIS
N

−βqIS
N

−βqIS
N

0 0

0 βqAS
N

−
γA0 −
αA0 − d

βqAS
N

+

γA1

βqAS
N

βqIS
N

βqIS
N

βqIS
N

0 0

0 αA0 −(γA1 +

αA1 + d)

γA2 0 0 0 0 0

0 0 αA1 −(γA2 +

αA2 + d)

0 0 0 0 0

0 0 0 0 −(γI0 +

ψγI0 +

αI0 + d)

γI1 +

ψγI1

0 0 0

0 0 0 0 αI0 −(γI1 +

ψγI1 +

αI1 + d)

γI2 +

ψγI2

0 0

0 0 0 0 0 αI1 −(γI2 +

ψγI2 +

αI2 + d)

γC1 +

ψγC1

0

0 0 0 αA2 0 0 αI2 −(γC1 +

ψγC1 +

αC1 + d)

0

0 0 0 0 0 0 0 αC1 −(d +

δ)

(2.7)
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Screening only model, Eq.(2.2)

Calculating the eigenvalues at the disease free equilibrium point of the Jacobian gives:

• λ1 = 0

• λ2 = −d < 0

• λ3 = −(d+ δ) < 0

• λ4 = −(γA2 + αA2 + d+ φζ) < 0

• The last eigenvalues can be calculated from a 5th degree polynomial. It is too difficult

to compute λ5−9 analytically, hence they will be analyzed numerically in Section 2.4.2.

The stability of Eq.(2.2) depends on the final eigenvalue, as the remaining eigenvalues are

negative.

Vaccination only model, Eq.(2.3), and screening and vaccination model, Eq.(2.4)

Eq.’s (2.3) and (2.4) are too large to calculate the eigenvalues explicitly, hence they will

be analyzed numerically in Section 2.4.2.

2.4.2 Numerical simulations

2.4.2.1 Simulations

A sample simulation of the four models in this chapter created using a single parameter set

generated by Latin Hypercube Sampling is shown in Figure 2.2. The parameters used can

be found in Table 6.1 in the appendix. From the simulations, it is possible to compare the

various prevention strategies. All models had the initial conditions S(0) = N and A0(0) = 1.

The first simulation, the no-intervention model corresponding to Eq.(2.1), agrees with the

current data saying that it can take 20-40 years for cancer to manifest [6]. Furthermore, all

the intervention programs reduce the cancer incidence compared with the no-intervention

model. The models including vaccination cause a steep drop in the susceptible population,

however, this is because a proportion of the susceptible population transfer to the susceptible

vaccinated class. The vaccination and screening model is the best in terms of minimizing all
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of the infected class sizes. Finally, when screening is implemented (versus vaccination), it

takes longer for the infected class sizes to increase.

2.4.2.2 Basic reproduction number

Numerical methods were used to calculate R0. Using the parameter ranges found in Table

2.2, 5000 parameter sets were created using Latin Hypercube Sampling. Of these, only those

that satisfied the model assumptions were used. Hence, the basic reproduction number for

Eq.(2.1) was calculated using 1708 viable parameter sets. The basic reproduction number

for Eq.(2.2) was calculated using 1733 parameter sets. 385 parameter sets were used to

calculate the basic reproduction number for Eq.’s (2.3) and (2.4).

Figure 2.3 shows R0 with respect to various transmission rates, β, for the different mod-

els. R0 = 1 when β ≈ .2 year−1 for the no intervention model, β ≈ .3 year−1 for the

screening only model, and β ≈ .3 year−1 and ≈ .4 year−1 for the vaccination model and

the screening and vaccination model respectively. When the transmission rate, β, is less

than the aforementioned values, the DFE will be stable. It will be unstable for all β values

larger than the aforementioned values for the respective models. Similarly, for Eq.’s (2.1)

and (2.2), the EE will be stable when R0 > 1 and unstable otherwise. See Section 2.4.2.3

for an analysis of the stability at the EE for Eq.’s (2.3) and (2.4).

When R0 < 1, there will be no epidemic. Hence, it should be possible to decrease the

transmission rate, β, so that it is less than the threshold rate, (mentioned above) through

vaccination and screening practices, as vaccination should prevent an HPV infection while

positive screening results should influence the individual to practice safe sex.

2.4.2.3 Stability of the equilibria

Using 5000 LHS parameter sets, 1708 fitted the criteria such that αAn > αIn for Eq.(2.1),

1733 for Eq.(2.2), and 385 for Eq.’s (2.3) and (2.4). These were used to find the eigenvalues

of the Jacobian evaluated at the DFE and to calculate R0. Figure 2.4 shows R0 values with

respect to the eigenvalues of the system for the LHS filtered parameter sets for all models

(Eq.’s (2.1)-(2.4)).

As expected, the DFE is always stable when R0 < 1 (signified by all negative eigenval-
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Figure 2.2: Numerical simulations for Eq.’s (2.1)-(2.4), the no-intervention, screening only,
vaccination only and screening and vaccination models with the disease free equilibrium and
one infected individual as the initial conditions. The x-axis represents the time, measured
in years, while the y-axis represents the population size.
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Figure 2.3: R0 with respect to the transmission rate, β, using multiple parameter sets
generated by LHS for Eq.’s (2.1)-(2.4). The no intervention model used 1708 parameter
sets, the screening only model used 1733 parameter sets and the vaccination model and
vaccination and screening models both used 385 parameter sets. Each point represents R0

calculated with a different transmission rate, β. The vertical bar depicts R0 = 1
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Figure 2.4: Stability of DFE with respect to R0 for Eq.’s (2.1)-(2.4). The DFE is always
stable when R0 < 1. The x-axis represents the basic reproduction number and the y-
axis represents the eigenvalues. Each point on the plot represents an eigenvalue. Positive
eigenvalues are indicative of an unstable equilibrium point. The vertical bar depicts R0 = 1.
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ues). This implies that the final eigenvalue λ3 < 0 is equivalent to R0 < 1.

Stability analysis of the endemic equilibrium point was conducted using numerical meth-

ods. 5000 LHS parameter sets were used. Of these, only 1181 gave non-negative population

sizes for Eq.(2.1), 818 for Eq.(2.2), 177 for Eq.(2.3) and 107 for Eq.(2.4). It was found that

all eigenvalues had negative values corresponding to R0 > 1 for Eq.’s (2.1) and (2.2).

Of the 177 parameter sets used to analyze the stability of Eq (2.3), all of them returned

unstable endemic equilibria. ie. one of the 13 eigenvalues for the system was shown to be

non-negative, indicating instability of the equilibrium point. A numerical bifurcation anal-

ysis was completed on this model. Of the 13 eigenvalues, only one presents a positive value

(close to zero), implying that the endemic equilibrium is weakly unstable, hence solutions

tend towards stability, creating a transcritical bifurcation. Bifurcation diagrams were cre-

ated using XPPAUT, a bifurcation diagram software [1].

We now discuss one parameter set as an example that has a small positive eigenvalue for

the infected equilibrium. Figure 2.5 shows the bifurcation diagram (top) and R0 (bottom)

for I0 with respect to β (the transmission rate) for Eq.(2.3) (vaccination only model). Here,

R0 = 1 when β ≈ .55 year−1 and this corresponds to the appearance of a stable infected

equilibrium (top panel).

More complicated dynamics were found for Eq.(2.4), the model incorporating both vac-

cination and screening. Here, however, of the 107 parameter sets, 88 were shown to be

stable and 19 parameter sets were shown to be unstable. A similar bifurcation analysis was

completed as that for Eq.(2.3) that resulted in slightly different outcomes. This can be seen

in Figure 2.6, which shows a bi-stable, backward bifurcation. This means that Rc
0, which

represents the value that indicates eradication of the disease, is less than R0 = 1. In terms

of the I0 population, the endemic equilibrium point has two regions of stability, one in the

biologically non-viable area and the second in a biologically viable area. This second stable

area changes stability at the node (Rc
0). If a solution lands on the unstable area, it will either

move towards the top stable branch (of the EE) or the bottom stable branch of the DFE (as

shown in the top corner of the I0 plot). This however will take a long time. If the solution

does not land on the unstable branch, it will move towards one of the stable equilibria. The

backward bifurcation means that, in terms of HPV dynamics, a higher level of control must
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Figure 2.5: Bifurcation diagram for the infected population, I0, with respect to the trans-
mission rate, β, for a single LHS generated parameter set of the vaccination only model
(top panel) (Eq.(2.3)). The top branch represents a stable solution and the bottom branch
represents an unstable solution. The bifurcation here is transcritical, however, the unstable
endemic equilibrium point has negative values, which are not biologically viable. Hence, the
endemic equilibrium only exists when R0 ≥ 1, where it is stable, while the DFE always exists.
The bottom panel confirms that R0 = 1 when the transmission rate, β, is approximately .55
year−1.

37



Figure 2.6: Bifurcation diagram for the screened, HPV positive (I0) class with respect to the
transmission rate, β, for Eq.(2.4). A bi-stable, backward bifurcation is shown. Vaccination
and screening practices should be implemented to push the solution beyond Rc

0 in order to
eradicate HPV.
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Positive correlation Negative correlation
HPV
(A0)

HPV
(I0)

Cancer
(C2)

HPV
(A0)

HPV
(I0)

Cancer
(C2)

γI1 3

γA0 3 3 3

β 3 3 3

Table 2.3: Significance of the parameters in Eq.(2.1), the no intervention model, correspond-
ing to Figure 2.7.

be applied through screening and vaccination practices to eliminate a possible epidemic. ie.

to move to a a parameter space past Rc
0.

2.4.2.4 Sensitivity analysis

PRCC values are used to calculate the significance of a certain parameters. Moreover, they

can be used to understand the relative significance of the parameters used in the model in a

certain context. The PRCC plots generated in this section relate to the HPV infected (A0,

I0, and V0) and cancerous classes (C2) as the goal of an intervention/prevention program is

to prevent HPV infection as well as to minimize its progression to the cancer stage.

All parameter sets generated by LHS that satisfy the model assumptions were used to gen-

erate the PRCC plots.

No intervention model, Eq.(2.1)

Figure 2.7 shows the PRCC values for the A0, I0, and C2 populations. Table 2.3 sum-

marizes the parameters that are significant in the model.

β, the transmission rate, is always significant with a positive correlation. Similarly, γA0,

the regression rate from the A0 compartment to the S compartment, is always significant,

however, with a negative correlation. Finally, γI1 has a significant positive correlation, how-

ever, only with respect to the A0 population. In other words, an increase in the transmission

rate, β, will cause an increase in the size of the infected and cancerous classes. An increase in

the regression rate, γA0, will cause a decrease in the infected classes (including the cancerous

class). Finally, an increase in the regression rate for the I1 class, will cause an increase in
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Figure 2.7: PRCC results for the no intervention model (Eq.(2.1)) with respect to the total
number of HPV positive and cancer positive cases. A bar whose magnitude is larger than .5
is deemed statistically significant with either a positive correlation to the population size (a
bar to the right of the y-axis) or a negative correlation to the population size (a bar to the
left of the y-axis).
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Positive correlation Negative correlation
HPV
(A0)

HPV
(I0)

Cancer
(C2)

HPV
(A0)

HPV
(I0)

Cancer
(C2)

γA0 3 3 3

γI0 3

β 3 3 3

φ 3 3

ζ 3 3

Table 2.4: Significance of the parameters in Eq.(2.2), a screening only model corresponding
to Figure 2.8.

the infected population (A0).

Screening only model, Eq.(2.2)

The PRCC plots for the screening as intervention model can be found in Figure 2.8. Table

2.4 summarizes the PRCC plots. β, the transmission rate, is significant with a positive corre-

lation for all three quantities indicating that an increase or decrease in the transmission rate

will cause a similar change in the infected population size. Furthermore, γA0, the regression

rate for individuals from the HPV positive compartment to the susceptible compartment

has a negative significance for all three compartments, while γI0 is significant for only the

I0 compartment. Both φ, the screening sensitivity, and ζ, the proportion of individuals

screened, have a negative significance for the A0 and C2 classes. This means that an increase

or decrease in the screening sensitivity or amount of individuals screened will have an inverse

affect on the A0 and C2 classes.

Vaccination only model, Eq. (2.3)

Two cases were studied in order to compare the PRCC results when various initial con-

ditions are implemented:

1. Starting at the DFE and adding A0 = 1 at time 0

2. Starting at S(0) = N − 1 and add A0 = 1 at time 0

Figure 2.9 shows the PRCC plots when the initial conditions consist of those found in 2.

above. Table 2.5 summarizes the PRCC plots found in Figure 2.9. All the classes have
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Figure 2.8: PRCC results for the screening only model, Eq.(2.2), with respect to the outcome
of the HPV positive and cancer positive cases. A bar whose magnitude is larger than .5 is
deemed statistically significant with either a positive correlation to the population size (a
bar to the right of the y-axis) or a negative correlation to the population size (a bar to the
left of the y-axis).
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Figure 2.9: PRCC plots for total HPV and cancer cases, when a vaccination program is
implemented (Eq.(2.3)). The initial conditions are S(0) = N − 1 and A0(0) = 1.
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Positive correlation Negative correlation
HPV
(A0)

HPV
(I0)

HPV
(V0)

Cancer
(C2)

HPV
(A0)

HPV
(I0)

HPV
(V0)

Cancer
(C2)

γA0 3 3 3 3

β 3 3 3 3

ρ 3 3

q 3

Table 2.5: Summary of parameter significance for Eq.(2.3), where the initial conditions
consist of a fully susceptible population, non-vaccinated, with one infected individual.

Positive correlation Negative correlation
HPV
(A0)

HPV
(I0)

HPV
(V0)

Cancer
(C2)

HPV
(A0)

HPV
(I0)

HPV
(V0)

Cancer
(C2)

γV 0 3

γI0 3

γA0 3 3 3

β 3 3 3 3

ρ 3 3

q 3

Table 2.6: Significance of the parameters in the vaccination only model, Eq.(2.3), when the
initial conditions are the DFE.

a negative, significant correlation with the regression rate, γA0, and a positive, significant

correlation with the transmission rate, β. In other words, an increase or decrease in the

regression rate will have an inverse effect on the size of the A0, I0, V0, and C2 classes, and

an increase or decrease in the transmission rate will have a similar effect on the size of the

class in question. Furthermore, both the total HPV positive (A0) and cancer classes have

a significant, negative correlation with ρ, the proportion of individuals who are screened.

Hence, a change in ρ will cause an inverse change in the HPV positive (A0) and cancer

classes. q, the scaling coefficient relating to the neutralizing antibodies from the vaccine has

a positive, significant, correlation with the total HPV cases for vaccinated individuals, V0.

When the initial conditions for the simulation are the disease free equilibrium, Figure 2.10

is generated. Table 2.6 is generated based on Figure 2.10.

From Table 2.6 it is possible to see that there is a slight difference in the significance of

the parameters when the initial conditions are changed. Here, β, the transmission rate,
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Figure 2.10: PRCC plots for total HPV and cancer cases when a vaccination program
(Eq.(2.3)) is implemented and the initial conditions are those of the DFE.
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Positive correlation Negative correlation
HPV
(A0)

HPV
(I0)

HPV
(V0)

Cancer
(C2)

HPV
(A0)

HPV
(I0)

HPV
(V0)

Cancer
(C2)

γA0 3 3

β 3 3 3 3

q 3

ζ 3 3 3

φ 3 3

Table 2.7: Summary of the significance of the parameters in the screening and the vaccination
model ( Eq.(2.4)). Here the initial conditions consist of a fully susceptible, non-vaccinated,
population with one infected individual.

is always significant with a positive correlation. ρ, the proportion of individuals who get

screened, is significant with a negative correlation in terms of the total A0 and cancer cases.

The regression rate, γA0, is significant for all quantities other than the total I0 cases, in which

case, the regression rate, γI0, has a significant negative correlation. Finally, the regression

rate, γV 0, is significant in terms of the total V0 cases.

Screening and vaccination model, Eq.(2.4)

Two cases were studied in order to compare the PRCC results when various initial con-

ditions are implemented:

1. Starting at the DFE and adding A0 = 1 at time 0

2. Starting at S(0) = N − 1 and add A0 = 1 at time 0

The PRCC plots for this model, with the initial values S(0) = N − 1 and A0(0) = 1 are

found in Figure 2.11.

Table 2.7 was generated from Figure 2.11. In this simulation, with these initial condi-

tions, the transmission rate, β, is always significant implying and increase or decrease in

the transmission rate will cause a similar change in the respective class size. The regression

rate, γA0, is significant for both the total A0 and cancer populations. This is similar to the

significance of ζ and φ, the proportion of individuals screened and the screening sensitivity,

however, ζ, the proportion of individuals screened, is also significant with respect to the total

V0 population. The regression rate, γA0, the proportion of individuals screened, ζ, and the
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Figure 2.11: PRCC plots for total HPV and cancer cases, when a screening and vaccination
program (Eq.(2.4)) is implemented and the initial conditions consists of a totally susceptible,
un-vaccinated population with one infected individual.
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Positive correlation Negative correlation
HPV
(A0)

HPV
(I0)

HPV
(V0)

Cancer
(C2)

HPV
(A0)

HPV
(I0)

HPV
(V0)

Cancer
(C2)

γI1 3

γI0 3

γA0 3

β 3 3 3 3

q 3

ζ 3 3

Table 2.8: Summary of the significant parameters used in Eq.(2.4), where the initial condi-
tions are the DFE.

screening sensitivity, φ, will all have an inverse effect on their respective classes. Finally, as

can be expected, q, the added effect of neutralizing antibodies in the vaccine, is significant

for the total V0 population only.

The same analysis can be done when the initial conditions are the disease free equilibrium

with one infected individual. These results are shown in Figure 2.12.

Table 2.8 is generated from Figure 2.12. This table is somewhat different from the first

table, the main difference being that when the initial conditions are the DFE, the screening

sensitivity (φ) is not significant.
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Figure 2.12: PRCC plots for total HPV and cancer cases, when a screening and vaccination
program (Eq.(2.4)) is implemented with the initial values being the DFE.
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2.5 Discussion

Four models were analyzed with the goal of understanding which parameters are the most

important in the question of screening and vaccination in order to minimize the effects of

HPV. These include no intervention, screening only intervention, vaccination only interven-

tion, and both screening and vaccination as intervention models. Two aspects were analyzed

for each scenario: analytical information, including the equilibria and their stability with

respect to the basic reproduction ratio, and PRCC plots.

Table 2.9 summarizes the data with respect to the analytical part of the analysis. Briefly,

the implementation of either screening or vaccination into a totally susceptible population

will decrease the basic reproductive number for the same transmission rate, β. In other

words, the implementation of either of these techniques will allow for a higher transmission

rate before causing an epidemic. This is followed by the logical conclusion that the imple-

mentation of both screening and vaccination will further increase the accepted transmission

rate before creating an epidemic. These results are logical.

All of the models follow the expected stability of the disease free equilibrium point with

respect to the basic reproduction number. All of the disease free equilibrium points are

stable when R0 < 1. The endemic equilibrium points, however, do not all initially follow

the expected stability outcomes. While the no intervention case and the screening only case

present a stable endemic equilibrium point, implying a forwards bifurcation, both models

involving vaccination are not as straight forward. A numerical bifurcation analysis was com-

pleted on these models using the set of 5000 parameter sets created by Latin Hypercube

Sampling.

Eq.(2.3) produces 13 eigenvalues of which one is positive but close to 0, suggesting a weak

instability. However, if the initial conditions of the system are those of the endemic equi-

librium, the solution will plateau, indicating a stable solution. Hence, it is fair to conclude

from the bifurcation analysis that the endemic equilibria of the system are stable, presenting

a trans-critical bifurcation.

Eq.(2.4) takes a different course. Figure 2.6 shows a backward bifurcation. This means

that in order to prevent an epidemic, more control in terms of screening and vaccination
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β s.t.
R0 = 1

DFE
stable
when
R0 < 1

EE sta-
ble

No interven-
tion model

≈ .2 3 3

Screening only
model

≈ .3 3 3

Vaccination
only model

≈ .3 3 3(weak
instabil-
ity)

Screening and
vaccination
model

≈ .4 3 3 (bi-
stability)

Table 2.9: Summary of analytical results for Eq.’s (2.1)-(2.4).

must be implemented so that the Rc
0 < R0. This is interesting as it implies that the addition

of vaccination to a population will influence the epidemiology in such a drastic way. Hence,

it is possible to conclude that the incorporation of a vaccine into a population will only be

successful in eradicating disease if enough individuals are vaccinated, such that the critical

value, Rc
0 is surpassed.

The parameters deemed significant by the PRCC analysis are summarized in Table 2.10.

These parameters were deemed significant with respect to the outcomes in the HPV infected

(A0, I0, and V0) populations as well as the cancerous population (C2), as the goal of a screen-

ing/vaccination program is to prevent infection with HPV and to minimize cervical cancer

through screening and treatment practices.

Table 2.10 shows some expected and unexpected trends. Keeping in mind which popu-

lation classes were studied, one would expect the progression terms, αn, to be significant for

at least the total number of cancer cases (this is accounted for in the Fβ term in the A0 and

V0 quantities). However, there is no significance for these variables in any of the models.

Rather, the only progression rate that is significant is the transmission rate, β, (found in the

Fβ term). This is the main trend that occurs over all four models.

In terms of the models incorporating vaccination, two trials were run. One using the disease
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Positive significance Negative significance
A0 I0 V0 C2 A0 I0 V0 C2

No intervention

γI1 3 N/A N/A
γA0 3 3 3

β 3 3 3

Screening only

γA0 N/A 3 3 N/A 3

γI0 3

β 3 3 3

φ 3 3

ζ 3 3

Vaccine only

γA0 3 3 3 3 3 3 3

β 3 3 3 3 3 3 3 3

ρ 3 3 3 3

q 3 3

γV 0
3

γI0
3

Vaccine and screening

γI1
3

γI0 3 3

γA0 3 3 3

β 3 3 3 3 3 3 3 3

q 3 3

ζ 3 3 3 3 3

φ 3 3

Table 2.10: Summary of the PRCC results for Eq.’s (2.1)-(2.4). Analysis using the DFE as
the initial conditions are shown in red.
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free equilibrium point as the initial conditions and the other starting at S(0) = N − 1 and

A0(0) = 1. While the PRCC results were very similar between the two runs, there were some

differences. These are summarized in the following list:

• With respect to the I0 class, the regression rate, γA0, is only significant when the initial

conditions are those where S = N .

• The regression rate, γV 0, has a negative significance in relation to the total HPV

positive, vaccinated (V0) population when the initial conditions are those of the DFE.

• The regression rate, γI0, has a negative significance with respect to the total HPV

positive (I0) population when the initial conditions are the DFE.

With respect to the screening and vaccination model the following differences between the

two runs were found:

• The regression rate, γA0, has a negative significance with respect to the cancer class

when the initial conditions are S = N

• The screening sensitivity, φ, is only significant when S = N with respect to the HPV

positive (A0) and cancer quantities.

• The regression rate γI1 has a positive significance only when the initial conditions are

those of the DFE.

These results are significant as it shows that the various initial conditions will have a slight

difference on the outcome of the simulation in terms of parameter significance. This is an

important result as it relates to the socio-economic state of the region in question. If one

were to implement a vaccination/screening program into a more developed country such as

Canada, the initial conditions would be different than those of a developing country such

as Nepal, where a very low percentage of individuals will be vaccinated at the start of the

program.

The second aspect to consider is that of the type of program implemented. The above

four models represent three different possible programs. For example, in a screening only

program, screening will be significant to minimizing the effects of HPV (and likewise for

vaccination programs where, q, the effect of the vaccine’s neutralizing antibodies, and ρ, the

vaccine uptake, are significant). However, it is not so clear what will be the most significant
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aspect in a mixed strategy program. Here, the screening sensitivity, φ, and the proportion

of individuals screened, ζ, are significant. Both of these parameters are related to screening.

Here ρ, the vaccine uptake, is not significant at all. However, q, the effect of the neutralizing

antibodies is significant (less so than the screening parameters).

To conclude, while a mixed strategy is clearly beneficial in terms of lowering R0, it is im-

portant to understand the individual factors that contribute to this reduction in R0. From

this study, both screening and vaccination play a part in minimizing the effects of HPV.

While vaccination prevents HPV infection, it is costly and most effective before infection.

Screening itself does not prevent or lower the effects of HPV. However, the knowledge that

the individual is infected will enable him/her to treat the infection, decreasing the severity

of the lesion in question, which, in turn increases the regression rate. This is important as it

will cause an immediate response in the health care system, while the effects of vaccination

will only be seen much later.
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3 Co-screening models

3.1 Introduction

HPV treatment and prevention is a complicated matter with many different aspects. This

chapter will examine various screening techniques, including that of co-screening, which

means re-screening individuals whose initial screening results are positive.

There are many different methods for screening of HPV and its progressive stages. Each

method has a specific sensitivity and specificity. This allows for the chance of false positives

and false negatives. See Table 1.2 in Section 1.3 for a list of various screening methods and

their properties.

Different countries employ different screening guidelines. These guidelines can vary through-

out the country by province or state. Table 3.1 summarizes the screening programs for a

selection of countries.

While a screening method may result in an HPV positive reading, sometimes it may be

more cost efficient and clinically efficient to perform a second test to confirm this result,

instead of treating the individual straight away [36]. The first test would be a general test

whereas the second one would be a more specific test. This way only individuals with a high

risk type of HPV will receive treatment. This decreases the chance of treating false positives

which can be a costly exercise both in terms of money and resources. Various models have

been used to examine the effect/logic of double testing individuals who test positive the first

time. These include articles by Goldie et al. [27], Mandelblatt et al. [49], and Kulasingam

et al. [43].

This chapter contains four different models to study the concept of co-screening, ie. re-

screening and treating individuals who were screened positive with a “basic” screening test,
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from a costing point of view, as well as, analytically and epidemiologically.

A set of parameters from the ranges found in Table 2.2 in Section 2.3 will be used to

conduct numerical simulations (and can be found in Table 6.2 in the appendix). One of the

purposes of the chapter is to compare the various screening techniques. Hence, the model

ignores variation in the screening sensitivity, φ, by keeping it constant.
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Country Age to
screen

Screening strategy Repetitions of
screening

Comments

North United
States

From 30
years old

Co-testing with PAP/ cy-
tology (HC2)

Every 5 years

Cytology Every 3 years
America Canada

(Ontario)
From 30
years of
age

HPV test followed by cytol-
ogy if the first test is posi-
tive

Every five years if
HPV test is negative
until age of 65

21-29 years
old

Cytology Every three years

Italy From 30
years of
age

HPV testing for manage-
ment of ASC-US

Europe HPV testing as a follow up
after treatment of CIN2/3
as screening instead of cy-
tology

For positive screening, HPV
tests or cytology are to be used
as a follow up test

Spain From the
age of 35
years

Co-testing Every 5 years

China Pap smear or VIA There is no country wide cervi-
cal cancer screening program.
There have been various pilot
projects such as the ones men-
tioned here

Asia India VIA or HPV screening There is no country wide cervi-
cal cancer screening program.
There have been various pilot
projects such as the ones men-
tioned here

Afirca South Africa From 30 HPV DNA testing or cytol- Every 10 years
years of
age

ogy (where they exist and
are functional)

Table 3.1: Screening guidelines in selected countries [10]
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3.2 Model

The models track individuals in compartments related to susceptible and disease stages. The

disease stages include infected individuals who are unaware of their disease status (An), as

well as individuals who are aware of their disease status through screening (In). In the case

that an individual’s infection does not regress, it may progress to the pre-cancer (CIN3)

stage (C1 compartment) or to the cancer compartment (C2).

3.2.1 Equations

The equations that represent the screen and treat model are:

S ′ = λ+ γA0A0 − FβS

N
− dS

A′0 =
FβS

N
+ γA1A1 − (γA0 + αA0 + φζ + d)A0

A′1 = αA0A0 + γA2A2 − (γA1 + αA1 + φζ + d)A1

A′2 = αA1A1 − (γA2 + αA2 + φζ + d)A2

C ′1 = αA2A2 − (αC1 + γC1 + d)C1

C ′2 = αC1C1 − (d+ δ)C2

I ′0p = φζA0 − (κ+ d)I0p

I ′1p = φζA1 − (κ+ d)I1p

I ′2p = φζA2 − (κ+ d)I2p + γC1C1

R′ = (I0p + I1p + I2p)κ− dR

Fβ = β((A0 + A1 + A2) + qIp(I0p + I1p + I2p))

(3.1)
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Figure 3.1: Flow diagram for Eq.’s (3.1)-(3.4). This diagram summarizes four different
models. The first model, corresponding to Eq.(3.1), consists of the base model (unboxed)
as well as the enclosed space 1. The second model, corresponding to Eq.(3.2) consists of
the base model as well as the enclosed spaces 1 and 2. The third model, corresponding to
Eq.(3.3) consists of the base model as well as enclosed spaces 1,2,and 3. Finally,in the last
model, the base model is used as well as the enclosed spaces 1 and 3, however, here, the
compartments in box 1 are entitled Inpap instead of Inp.
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Figure 3.2: This figure summarizes Eq.’s (3.1)-(3.4). The top panel represents the model
involving a single screening test where all individuals who are screened positive are treated.
The second panel represents the model in which there is a single screening event where all
individuals infected with a carcinogenic type of HPV are treated. The third panel rep-
resents the co-screening model where the first test is HC2 followed by cobas4800 for all
positively screened individuals. The final panel represents the co-screening model where
the first screening event uses a pap smear followed by cobas4800 for all positively screened
individuals
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The equations that represent the model in which only those individuals who have a high risk

type of HPV are treated are:

S ′ = λ+ γA0A0 + γI0pI0p − FβS

N
− dS

A′0 =
FβS

N
+ γA1A1 − (γA0 + αA0 + ζφ+ d)A0

A′1 = αA0A0 + γA2A2 − (γA1 + αA1 + φζ + d)A1

A′2 = αA1A1 − (γA2 + αA2 + φζ + d)A2

C ′1 = αA2A2 + αI2pI2p − (αC1 + γC1 + d)C1

C ′2 = αC1C1 − (d+ δ)C2

I ′0p = φζA0 + γI1pI1p − (γI0p + αI0p + η + d)I0p

I ′1p = φζA1 + γI2pI2p + αI0pI0p − (γI1p + αI1p + η + d)I1p

I ′2p = φζA2 + αI1pI1p − (γI2p + αI2p + η + d)I2p

I ′0pT = ηI0p − (κ+ d)I0pT

I ′1pT = ηI1p − (κ+ d)I1pT

I ′2pT = ηI2p + γC1C1 − (κ+ d)I2pT

R′ = (I0pT + I1pT + I2pT )κ− dR

Fβ =
β((A0 + A1 + A2) + qIp(I0p + I1p + I2p)

+qIpT (I0pT + I1pT + I2pT ))

(3.2)

61



The equations that represent the model in which there is co-screening with HC2 and cobas4800

are:

S ′ = λ+ γA0A0 + γI0pI0p + γI0pT I0pT − FβS

N
− dS

A′0 =
FβS

N
+ γA1A1 − (γA0 + αA0 + ζφ+ d)A0

A′1 = αA0A0 + γA2A2 − (γA1 + αA1 + φζ + d)A1

A′2 = αA1A1 − (γA2 + αA2 + φζ + d)A2

C ′1 = αA2A2 + αI2pI2p + αI2pT I2pT − (αC1 + γC1 + d)C1

C ′2 = αC1C1 − (d+ δ)C2

I ′0p = φζA0 + γI1pI1p − (γI0p + αI0p + η + d)I0p

I ′1p = φζA1 + γI2pI2p + αI0pI0p − (γI1p + αI1p + η + d)I1p

I ′2p = φζA2 + αI1pI1p − (γI2p + αI2p + η + d)I2p

I ′0pT = ηI0p + γI1pT I1pT − (γI0pT + αI0pT + η2φ2 + d)I0pT

I ′1pT = ηI1p + γI2pT I2pT + αI0pT I0pT − (γI1pT + αI1pT + η2φ2 + d)I1pT

I ′2pT = ηI2p + αI1pT I1pT + γC1C1 − (γI2pT + αI2pT + η2φ2 + d)I2pT

I ′0pTy = η2φ2I0pT − (κ+ d)I0pTy

I ′1pTy = η2φ2I1pT − (κ+ d)I1pTy

I ′2pTy = η2φ2I2pT − (κ+ d)I2pTy

R′ = (I0pTy + I1pTy + I2pTy)κ− dR

Fβ =
β((A0 + A1 + A2) + qIp(I0p + I1p + I2p) + qIpT (I0pT + I1pT + I2pT )

+qIpTy(I0pTy + I1pTy + I2pTy))

(3.3)
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The equations that represent co-testing with a pap smear and cobas4800 are:

S ′ = λ+ γA0A0 + γI0papI0pap − FβS

N
− dS

A′0 =
FβS

N
+ γA1A1 − (γA0 + αA0 + ζφ1a + d)A0

A′1 = αA0A0 + γA2A2 − (γA1 + αA1 + φ1aζ + d)A1

A′2 = αA1A1 − (γA2 + αA2 + φ1bζ + d)A2

C ′1 = αA2A2 + αI2papI2pap − (αC1 + γC1 + d)C1

C ′2 = αC1C1 − (d+ δ)C2

I ′0pap = φ1aζA0 + γI1papI1pap − (γI0pap + αI0pap + φ2η + d)I0pap

I ′1pap = φ1aζA1 + γI2papI2pap + αI0papI0pap − (γI1pap + αI1pap + φ2η + d)I1pap

I ′2pap = φ1bζA2 + αI1papI1pap − (γI2pap + αI2pap + φ2η + d)I2pap

I ′0pTy = φ2ηI0pap − (κ+ d)I0pTy

I ′1pTy = φ2ηI1pap − (κ+ d)I1pTy

I ′2pTy = φ2ηI2pap + γC1C1 − (κ+ d)I2pTy

R′ = (I0pTy + I1pTy + I2pTy)κ− dR
Fβ = β((A0 + A1 + A2) + qIp(I0pap + I1pap + I2pap) + qIpT (I0pTy + I1pTy + I2pTy))

(3.4)

Figure 3.1 represents the flow diagram for four different models, each of which represents a

different screening scenario. The unboxed area is common to Eq.’s (3.1)-(3.4). Each model

is summarized in Figure 3.2.

The first model, which involves treating all infected individuals (Eq.(3.1)) corresponds to

Section 1 in Figure 3.1. Eq.(3.2) corresponds to Sections 1 and 2 of Figure 3.1 and involves

treating only those individuals who have a carcinogenic type of HPV. These individuals know

their disease status through one screening event. The third model, corresponding to Eq.(3.3)

and Sections 1,2, and 3 on Figure 3.1, involves co-screening infected individuals with HC2

and cobas4800 screening tests. Only high risk individuals are treated. Eq.(3.4) corresponds

to Sections 1 and 3 on Figure 3.1. This model consists of co-screening with a pap smear, as

well as, cobas4800. Only high risk individuals are treated.

Eq.’s (3.1)-(3.4) include the following assumptions:

• A 10% screening rate, φ.
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• The general screening test is HC2 with a sensitivity of 90.4%. This test tests for both

high and low risk HPV types.

• The specific screening test is cobas4800 (with a sensitivity of 89.9%) as it has the

capability to specifically check for HPV types 16/18.

• The sensitivity of the pap smear for HPV and CIN1 is: 45% and 69% for CIN2.

• qIp = qIpT = qIpTy. Since all of the individuals in these classes are diligent enough to

get screened, it is assumed that there will be little difference in how they act once they

know their infection status.

3.3 Parameters

The variables and parameters that will be used in this chapter can be found in Table 3.2.

These include multiple infected stages, An, Inp, InpT , InpTy, Inpap, and Cn, as well as, a sus-

ceptible class, S. The different In classes represent a different “infection status”, however,

all of the In classes are aware of their infection status. The An class is unaware of their

infection status. The “R” class, the reduced severity class, represents individuals who have

been treated and whose infection is therefore less severe.

A set of parameters created by LHS will be used to calculate the stability of the equi-

libria as well as the basic reproduction number. These ranges can be found in Table 3.2.

The simulations will be run using a fixed parameter set chosen from the LHS set of parame-

ters created with the ranges in Table 3.2. These can be found in Table 6.2 in the appendix.

Additional parameters used in the cost analysis can be found in Table 3.2. As costs of these

tests differ depending on location, they will be represented here as parameters in US dollars.

S represents the cost of a pap smear, T , the cost of treatment, P the cost of a general

screening test and Q, the cost of a typing test.

3.4 Results

Numerical and analytical results are presented. Numerical results were run using parameter

sets created with Latin Hypercube Sampling, except for the simulations, in which a fixed

parameter set was used. Parameter values from Table 3.2 were considered.
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Term Definition Range Reference
T Cost of treating the lesion ($)
P Cost of a general screening test (assumed to be

HC2)($)
Q Cost of a more specific, typing test (assumed to be

Cobas 4800) ($)
S Cost of a pap smear ($)
S Susceptible individuals
An Infected individuals whose disease status is unknown
Inp Infected individuals who know their “infected” status

through one screening event
InpT Proportion of the infected individuals who have a

high risk type of HPV
InpTy Proportion of the infected population with HPV type

16/18
Inpap Individuals who are aware of their infection status

through screening with a pap smear
C1 Individuals with pre-cancer, CIN3
C2 Individuals with cancer
R Individuals who were treated for HPV and are there-

fore in a “reduced severity” state
qIp, qIpT ,
qIpTy

Scaling constant [.32− .72] assumed

β Infection rate [.001 −
.8](year−1)

[16, 41,
71,74]

φ, φ2,
φ1a, φ1b

Screening sensitivity see Table 1.2

Cost of
screening

4− 15 USD assumed

d Natural death rate 68 year−1 [60]
δ Death due to disease 1

54∗12year−1[0-
.0998]

[13,46]

ζ Proportion of individuals who get screened per year 0− 1 (year−1) assumed
N Female population of Nepal 13607013 [57]
q Scaling constant to account for the unknown effect of

neutralization antibodies
[.001− 1] assumed

η, η2 Proportion of individuals who have a high risk type
of HPV

0− 1 assumed

κ Regression rate due to treatment .81− .945 [39]
αn Progression rate see Table 2.2
γn regression rate see Table 2.2

Table 3.2: Table of variables used in Eq.’s (3.1)-(3.4).
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3.4.1 Analytical results

3.4.1.1 Equilibrium points

Eq.’s (3.1)-(3.4) have the same DFE:

(S,An, Inp, InpT , InpTy, Inpap, C1, C2, R) = (λ
d
, 0, 0, 0, 0, 0, 0, 0, 0) (3.5)

Eq.’s (3.1)-(3.4) are high dimensional, and do not lead to analytical determination of the

endemic equilibrium. The endemic equilibrium will be determined numerically.

The stability of the DFE and the endemic equilibrium point is too complex to analyze

analytically, hence they will both be analyzed numerically.

3.4.2 Numerical simulations

3.4.2.1 Simulations

A parameter set (found in Table 6.2) generated by Latin Hypercube Sampling, and deemed

significant by a correlation plot was used to simulate the model. Throughout all the simu-

lations, the proportion of individuals screened, ζ, was varied to see the effect of screening

uptake on the epidemiology of HPV. The following ζ values were used: 1 (everyone gets

screened), .5 (half the infected class gets screened), .1 (ten percent of the infected class gets

screened), .05 (five percent of the infected class gets screened) and 0 (no one is screened).

Figures 3.4- 3.7 show the simulations for the S,A0, I0p, I0pT , R, and C2 groups.

In terms of the susceptible simulations, as the S class population decreases, so does the

proportion of individuals screened, ζ. Furthermore, when ζ 6= 1, the simulations result in

oscillations that decrease in size as ζ decreases. Similar trends can be seen in the HPV pos-

itive (A0) class. In the I0 and R simulations, there is overlap between the simulations using

the intermediate ζ values. Furthermore, ζ values of 0 and 1 give rise to roughly the same

population sizes in the I0 simulations. In terms of the cancerous population, the population

size gets larger as the proportion of individuals screened, ζ, gets smaller.

Eq.(3.3) is similar to Eq.’s (3.1) and (3.2), however, there is a greater overlap in the simula-

tions for ζ = .5 and those for ζ = .1 and .05 in the I0p, I0pT and I0pTy classes. Furthermore,

66



the simulations for the aforementioned classes follow the same trends. The population sizes

for I0p are larger than the corresponding population sizes for the I0pT and I0pTy classes, which

are the same.

Although the simulations for Eq.(3.4), found in Figure 3.7, are quantitatively similar to the

simulations for Eq.(3.2) which can be found in Figure 3.5, the results are different. While the

susceptible class follows the same trends in terms of the order of the population size (ζ = 1

gives the largest population size, etc.), there is a larger dip when ζ = 1. Furthermore, there

is a larger gap in the population size between the simulations when ζ = 1 and ζ = .5. In the

A0 simulation, there is a larger difference in the population size between the ζ = 1 and ζ = .5

simulations. There is overlap between all the simulations in the I0pap and I0pTy classes. At

the equilibrium point however, the same trend is present in the two simulations where the

population sizes range in size from largest to smallest for ζ = .1, .5, .05, 1 and 0 respectively.

This shows that while the screening program implemented will cause similar end results,

they will impact the solutions for the intermediate years (time from implementation until

time to the endemic equilibrium) in different ways. As it can take a long time for a system

to reach an equilibrium, it is important to choose a screening program based on the short

term results, as well as, the long term results.

The cancerous population simulation is the same as that for the previous models, how-

ever, there is a larger discrepancy between population sizes at the endemic equilibrium when

ζ = .1 and ζ = .5. The most significant difference in the “R” class simulations is that in

this model, the population size when the model is run for ζ = .5 is in between that of when

ζ = .1 and ζ = .05. Furthermore, the end result of the simulation when ζ = 1 is much larger

than in the other models.

3.4.2.2 Basic reproduction number

Numerical methods were used to calculate R0. Using the parameter ranges found in Table

3.2, 5000 parameter sets were created using Latin Hypercube Sampling. Figure 3.3 shows R0

with respect to various transmission rates, β, for the different models. R0 = 1 when β ≈ .25,

.2, .25 and .2 year−1 for Eq.’s (3.1), (3.2), (3.3) and (3.4) respectively, indicating that the

type of screening program implemented will have similar effects on the basic reproduction

number.
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Figure 3.3: Basic reproduction number of 5000 different parameter sets with respect to the
transmission rate, β, for Eq.(3.1)-(3.4). The x-axis represents the various transmission rates
used to calculate the basic reproduction number. An epidemic will be avoided when R0 < 1.
The vertical bar depicts where R0 = 1.

68



Figure 3.4: Simulations of Eq.(3.1), with a fixed parameter set where all HPV positive
individuals are screened. ζ, the proportion of individuals screened, was varied for each of
the five simulations.— : ζ = 1, —: ζ = .5, —: ζ = .1, —:ζ = .05 and — ζ = 0.
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Figure 3.5: Simulation of Eq.(3.2), with a fixed parameter set where only high risk individuals
are screened. ζ was varied for each of the five simulations. — : ζ = 1, —: ζ = .5, —: ζ = .1,
—:ζ = .05 and — ζ = 0.
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Figure 3.6: Simulation of Eq. (3.3) with a fixed parameter set when co-screening with HC2 and cobas4800 is used. ζ
was varied for each of the five simulations. — : ζ = 1, —: ζ = .5, —: ζ = .1, —:ζ = .05 and — ζ = 0.
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3.4.2.3 Stability of the equilibria

5000 parameter sets (in which the screening sensitivity was kept constant) were used to an-

alyze the stability of the DFE and the endemic equilibrium point for Eq.’s (3.1)-(3.4). Only

those parameters that provided a biologically viable endemic equilibrium point were used.

Figure 3.8 shows the disease free equilibrium point with respect to the basic reproduction

number for all four models. The disease free equilibrium point is stable when R0 < 1 and

unstable otherwise.

With respect to the endemic equilibrium point, 2920 parameter sets were used to test the

stability of Eq.(3.1), 3025 parameter sets were used to test the stability of Eq.(3.2) and 3056

and 3186 parameter sets were used to test the stability of Eq.’s (3.3) and (3.4) respectively.

All four models had a stable endemic equilibrium point.

3.4.2.4 Cost analysis

The cost of implementing each program must take two points into consideration:

• The cost of the screening test

• The cost of treating the individual

These costs will differ depending on the country in question, hence a direct cost comparison

cannot be completed.

The first model, in which all infected individuals are treated includes the cost of one screen-

ing event and treatment. The total cost (denoted by “costM1”) can be represented as:

costM1 = Pζ(A0 + A1 + A2) + T (I0p + I1p + I2p) (3.6)

Similar to Eq.(3.1), Eq.(3.2) also only consists of one screening event and treatment, however,

here, not all infected individuals are treated. Rather, only those who have a high risk type of

HPV are treated. Hence, the total cost (denoted by “costM2”) of the prevention/screening

plan can be represented as:

costM2 = Pζ(A0 + A1 + A2) + T (I0pT + I1pT + I2pT )

= Pζ(A0 + A1 + A2) + Tη(I0p + I1p + I2p)
(3.7)
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Figure 3.7: Simulation of Eq.(3.4) with a fixed parameter set when co-screening with a pap
smear and cobas4800 is used. ζ was varied for each of the five simulations. — : ζ = 1, —:
ζ = .5, —: ζ = .1, —:ζ = .05 and — ζ = 0.
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Figure 3.8: Stability of the disease free equilibrium point with respect to the basic repro-
duction number for Eq.’s (3.1)-(3.4). 5000 parameter sets were used.The x-axis represents
the basic reproduction number, while the y-axis represents the eigenvalues of the system.
Positive eigenvalues are indicative of an unstable system. The vertical bar depicts R0 = 1.
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The final two models, corresponding to Eq.(3.3) and (3.4) both use co-screening (with dif-

ferent sets of screening tests). Hence, the costing here consists of two screening events and

treatment. The total cost (denoted by “costM3” and “costM4” respectively) can be written

as:

costM3 = Pζ(A0 + A1 + A2) +Q(I0pT + I1pT + I2pT ) + T (I0pTy + I1pTy + I2pTy)

= Pζ(A0 + A1 + A2) +Qη(I0p + I1p + I2p) + T (I0pTy + I1pTy + I2pTy)
(3.8)

and the cost of Eq.(3.4) can be written as:

costM4 = Sζ(A0 + A1 + A2) +Q(I0pap + I1pap + I2pap) + T (I0pTy + I1pTy + I2pTy) (3.9)

A cost comparison of Eq.’s (3.1) and (3.4) is not simple, as most of the parameters are un-

known. Tables 3.3 and 3.4 summarize the cost comparison in terms of the relative magnitude

of the costing parameters.

The cost comparisons depend on the comparison of various costing parameters, for example,

whether or not Q, the cost of a typing test, is larger or smaller than T, the cost of treat-

ment. An example of this can be seen in Figure 3.9, where the HPV prevention plans are

implemented at the endemic equilibrium for a fixed set of parameters for Eq.’s (3.1) and (3.2).

Other considerations that influence the cost of the screening program implemented include

the amount of individuals infected and the proportion of individuals who have a high risk

type of HPV.

75



Figure 3.9: Comparison of the screen and treat model (Eq.(3.1)) versus treating high risk
individuals only (Eq.(3.2)) in terms of the implementation costs.
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Eq.(3.1) vs. Eq.(3.2)
The model in which only high risk individuals are treated (Eq.(3.2)) will always
be less expensive to implement

Eq.(3.2) vs. Eq.(3.3)
Q = T Q < T Q > T
If Y > 0 then
costM3 > costM2,
otherwise, costM3 =
costM2

If Y = 0 then costM3 >
costM2, otherwise, the rel-
ative costs depend on the
relationship between T and
ηX(T−Q)

Y

costM3 > costM2

Eq.(3.1) vs. Eq.(3.3)
Q = T Q < T Q > T
The relative costs de-
pend on the relation-
ship between Y and
X(1− η)

The relative costs depend
on the relationship between
T and X

Y
(T −Qη)

The relative costs depend
on the relationship between
Q and T

η
(1− Y

X
)

Table 3.3: Comparison of costs of the models including the following scenarios: screen and
treat (Eq.(3.1)), screen and treat only high risk individuals (Eq.(3.2)), and co-screening with

HC2 and cobas4800 (Eq.(3.3)). Here, X =
2∑

n=0

Inp, Y =
2∑

n=0

InpTy.
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Eq.(3.1) vs. Eq.(3.4)
If P = S

If Q = T If Q 6= T
If Z = X If Z < X If Z = X If Z < X
costM4 >
costM1

Depends on the size
of TZ in relation to
T (X − Y )

costM4 > costM1 Depends on the
size of Z in rela-
tion to T

Q
(X−Y )

If P < S
If Z = X If Z < X

If Q ≥ T If Q < T Q = T Q 6= T
costM4 >
costM1

Depends on parameter
sizes

costM4 > costM1 Depends on pa-
rameter sizes

If P > S
Depends on the size of QZ in relation to ζA(P − S) + T (X − Y )

Eq.(3.4) vs. Eq.(3.3)
If P = S

If Z = X If X > Z
costM4 > costM3 Depends on the size of ηX with respect to Z

If P < S
If Z = X If X > Z

costM4 > costM3 Depends on parameter sizes
If P > S

If Z = X If X > Z
Depends on parameter sizes

Eq.(3.4) vs. Eq.(3.2)
If P = S

Q = T Q 6= T
If Z = X If Z < X If Z = X If Z < X
costM4 >
costM2

Depends on parameter
sizes

If Q < T then it depends
on parameter sizes. Oth-
erwise, costM4 > costM2

Depends on the
magnitude of η

P < S
Q = T Q 6= T

If Z = X If Z < X If Z = X If Z < X
costM4 >
costM2

Depends on the mag-
nitude of η

Depends on the magnitude of η

P > S
Q = T Q 6= T

If Z = X If Z < X If Z = X If Z < X
Depends on the magnitude of η

Table 3.4: Comparison of costs of Eq.’s (3.1)-(3.3) with the co-screening model using a

pap smear and cobas4800 (Eq.(3.4)). Here, X =
2∑

n=0

Inp, Y =
2∑

n=0

InpTy, A =
2∑

n=0

An and

Z =
2∑

n=0

Inpap.
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3.5 Discussion

This chapter is comprised of four different models. The first model, corresponding to Eq.(3.1)

is a simple model where everyone who is aware that they are infected (after one screening

event) is treated, regardless of HPV type. In the second model corresponding to Eq.(3.2),

only those individuals who have a carcinogenic type of HPV receive treatment. The third

and least simplistic model, corresponding to Eq.(3.3) involves co-screening with HC2 and

cobas4800 and treating only those individuals who have HPV types 16/18. The final model,

corresponding to Eq.(3.4) uses a general pap smear to test individuals initially and a more

specific test (cobas4800) to find and treat those individuals with HPV types 16/18. Each

prevention plan gives rise to a different overall cost that is both model dependent and country

dependent. The goal of this chapter is to compare screening techniques, both epidemiologi-

cally and through a cost analysis.

Numerical methods were used to analyze the basic reproduction number and the stabil-

ity of the disease free and endemic equilibrium of Eq.’s (3.1)-(3.4). All four models follow

the expected stability of a forward, transcritical bifurcation, which means that all four mod-

els’ disease free equilibrium points are stable when R0 < 1, and unstable otherwise. The

endemic equilibrium point for all four models is stable.

Table 3.5 summarizes the outcomes of the analytical analysis for all four models. The

required transmission rate, β, so that R0 = 1 is relatively similar throughout the four mod-

els (for a 10% screening rate). Although this screening rate may or may not be realistic, the

result is significant as it shows that implementation of any screening program regardless of

the strategy will cause similar effects in the outcome of the predicted R0. There is, however,

no consensus in literature on the value for the basic reproduction number. As mentioned in

Section 1.4.2, some authors calculate it to be greater than 1 while others calculate it to be

Screen and treat
model (Eq.(3.1))

Treatment of
high risk in-
dividuals only
(Eq.(3.2))

Co-screening
with HC2
and cobas4800
(Eq.(3.3))

Co-screening
with a pap smear
and cobas4800
(Eq.(3.4))

β ≈ .25 ≈ .2 ≈ .25 ≈ .2

Table 3.5: Summary of the transmission rates, β, when R0 = 1 for Eq.’s (3.1)-(3.4).
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Cost of screening
costM1 Pζ(A0 + A1 + A2) + T (I0p + I1p + I2p)
costM1alt Pζ(A0 + A1 + A2) + T (I1p + I2p)
costM2 Pζ(A0 + A1 + A2) + Tη(I0p + I1p + I2p)
costM2alt Pζ(A0 + A1 + A2) + Tη(I1p + I2p)
costM3 Pζ(A0 + A1 + A2) +Qη(I0p + I1p + I2p) + T (I0pTy + I1pTy + I2pTy)
costM3alt Pζ(A0 + A1 + A2) +Qη(I1p + I2p) + T (I1pTy + I2pTy)
costM4 Sζ(A0 + A1 + A2) +Q(I0pap + I1pap + I2pap) + T (I0pTy + I1pTy + I2pTy)
costM4alt Sζ(A0 + A1 + A2) +Q(I1pap + I2pap) + T (I1pTy + I2pTy)

Table 3.6: Summary of the cost functions for Eq.’s (3.1)-(3.4). costM1 represents the cost
function for Eq.(3.1), costM2 represents the cost function for Eq.(3.2), costM3 represents
the cost function for Eq.(3.3), and costM4 represents the cost function for Eq.(3.4). The
costMnalt equations represent the cost functions when HPV positive individuals are not
treated.

less than 1, implying no epidemic. From this set of models, it is possible to observe that

when a screening program is implemented, the proportion of individuals who progress to the

cancer stage is relatively low, leading to the implication of no epidemic.

With every screening program comes additional costs, a summary of which can be found

in Table 3.6. Once screened, it is up to the discretion of the specialist together with the

patient in question to decide whether the resulting infection is worth treating. HPV has a

high regression rate, although, the further it progresses, the smaller the chances are of the

infection regressing [68]. Hence, if a patient was to be screened and found to have HPV,

they may or may not choose to treat it. These models however, assume that everyone gets

treated, regardless of the stage of HPV progression. An alternative cost function can be

found in Table 3.6 which assumes that individuals are only treated if they are found to have

progressed from the HPV positive stage to the CIN1 or a later stage. Table 3.6 summarizes

the cost functions as they pertain to this thesis, denoted by costMn, where n=1 denotes

the screen and treat model, n=2 denotes the model in which only high risk individuals are

treated, n=3 denotes the model in which co-screening with HC2 and cobas4800 are used and

n=4 denotes the model in which co-screening with a pap smear and cobas4800 are used. The

alternative cost functions, also found in Table 3.6, do not include individuals infected with

HPV and is denoted by “costMnalt”.

Clearly, for a specific screening program, not treating individuals infected with HPV will
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be cheaper than treating all infected individuals. However, if these individuals happen to

progress to a pre-cancer stage (which is relatively unlikely), this can become more costly,

as treating individuals at this stage of their infection will only reduce the severity of the

infection rather than get rid of it. Furthermore, an infection can then metastasize, spreading

to other regions of the body which will involve additional screening and treatment costs.

Secondly, the further along an infection progresses, the smaller the chance is of regressing.

Hence, it may be more cost effective to treat an individual before they progress too far in

order to reduce the severity of the lesion and increase the chances of regression.

To summarize, each of the models will be cost efficient depending on the parameter val-

ues used. As each country’s economy is different, it is difficult to predict the costs of the

various screening tests. For this reason, it is difficult to determine which model will be the

most cost efficient. Hence, the models should be examined in a specific context with a spe-

cific set of parameters to be able to fully understand their cost dynamics.

The final part of this discussion will revolve around the topic of the model simulations

in Section 3.4.2.1. There are two main goals when considering the simulations. These in-

clude minimizing the total HPV positive and cancerous populations as well as maximizing

the “reduced severity” and susceptible populations. When trying to achieve these goals, it

is important to keep in mind both the possible long term and short term outcomes of the

proposed program as each model produces various differences in the simulations over time.

Finally, in order to optimize the screening program implemented it is crucial to choose a

screening program based on a realistic screening rate, φ. Hence, the simulations where φ = 1

should be disregarded in terms of their epidemiological outcome, as a 100% screening rate is

unrealistic.
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4 Re-infection with multiple HPV types models

4.1 Introduction

There is much debate over the topic of HPV infection and re-infection, both in terms of re-

infection with the same genotype (type) of HPV, as well as, with different types of HPV [75].

While it is agreed upon that an individual who has seemingly cleared their infection, in other

words is asymptomatic or has no visual infection, can get infected again, there is no consensus

on the method of their re-infection [75]. One possibility is that the initial infection is always

present, however in a latent form. Hence, the individual is not being re-infected with HPV,

rather, the infection is switching from the latent to active form. The second opinion is that

the individual does completely clear the infection but is not left with sufficient antibodies to

fight off a second round of HPV infection after sexual intercourse with a carrier [75]. There

is further debate regarding the rate of re-infection. Trottier et al. [75] conclude that rates

of infection and re-infection are comparable, while Safaeian et al. [65] conclude that higher

titers of HPV 16 and HPV 18 antibodies (due to infection) will decrease the re-infection

rate (50% and 64% respectively) regardless of sexual activity [65]. Alternatively, Trottier

et al. [75] conclude that new sexual partners increase re-infection rates. Hence,it is hypoth-

esized that an individual who has seemingly cleared their infection and is re-infected with

HPV has a lowered immunity.

The purpose of this chapter is to study the concept of initial infections with HPV with

respect to subsequent infections with HPV, both with the same and different types of HPV.

This will be accomplished by starting with a simple, single type model and expanding this

model to include multiple HPV types.
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Figure 4.1: Flow diagram for Eq.’s (4.1)-(4.5), the models incorporating re-infection with
multiple HPV types. The blue compartments represent a base case model in which there is
no difference in compartments between the initial infection and individuals who have been
infected multiple times. The red represents a model in which infection and re-infection are
differentiated between. The red model with the addition of the C1 class represents a model
in which individuals can progress to the cancer stage. The red,blue and black portions
(excluding the Cn classes) represent the first multi-type model, and the entire diagram
represents a multi type model in which individuals can progress to the cancer stage.
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4.2 Model

The models are composed of the basic compartmental states of susceptible (S), infected

(I), recovered (R)(should be thought of as cleared), latently infected (L) and cancerous (C).

Here, the infected compartment is representative of all of the HPV disease progression stages.

Infected individuals can either clear their infection (R) or the infection can go into latency

(L). Both recovered and latently infected individuals can become re-infected with HPV (In2 ).

4.2.1 Equations

This chapter involves five different models, each growing in complexity to examine the phe-

nomenon of re-infection with HPV.

The base case scenario in which there is no differentiation between infection and re-infection

can be represented as follows:

S ′ = λ− β
N
SI11 − dS

I11
′

= β
N
I11(τrR + S)− σI11 + τlL− dI11

R1′ = pσI11 − τr
β
N
RI11 − dR

L1′ = (1− p)σI11 − τlL− dL
(4.1)

The equations that represent the single-type model in which in which there is a differentiation

between infected and re-infected individuals are:

S ′ = λ− β
N
S(I11 + I12)− dS

I11
′

= β
N
S(I11 + I12)− σI11 − dI11

I12
′

= τlL
1 + τr

β
N
R1(I11 + I12 )− σI12 − dI12

R1′ = pσI11 − τr
β
N
R1(I11 + I12) + pσI12 − dR1

L1′ = (1− p)σI11 − τlL1 + (1− p)σI12 − dL1

(4.2)
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The equations that represent the single type model in which individuals can progress to the

cancer stage are:

S ′ = λ− β
N
S(I11 + I12)− dS

I11
′

= β
N
S(I11 + I12)− σI11 − αi1.1I11 − dI11

I12
′

= τlL
1 + τr

β
N
R1(I11 + I12)− σI12 − αi1.2I12 − dI12

R1′ = pσI11 − τr
β
N
R1(I11 + I12) + pσI12 − dR1

L1′ = (1− p)σI11 − τlL1 + (1− p)σI12 − αl1L1 − dL1

C ′ = αi1.2I
1
2 + αi1.1I

1
1 + αl1L

1 − dC

(4.3)

The equations for the multi-type model are:

S ′ = λ− S( β
N

(I∗1 + I∗2 ) + d)

I11
′

= β
N
SI∗1 − I11(σ + d)

I12
′

= τlL
1 + τr

β
N
R1I∗1 − I12(σ + d)

R1′ = pσI11 + pσI12 −R1(τr
β
N

(I∗1 + I∗2 ) + d)

L1′ = (1− p)σI11 − L1(τl + d) + (1− p)σI12
I121
′

= I∗2τr
β
N
R1 − I121 (σ + d)

L12′ = (1− p)σI121 + (1− p)σI122 − L12(τl + d)

I122
′

= τlL
12 + τr

β
N
R12I∗2 − I122 (σ + d)

R12′ = pσI121 + pσI122 −R12(τr
β
N
I∗2 + d)

I21
′

= β
N
SI∗2 − I21(σ + d)

I22
′

= τlL
2 + τr

β
N
R2I∗2 − I22(σ + d)

R2′ = pσI21 + pσI22 −R2(τr
β
N

(I∗1 + I∗2 ) + d)

L2′ = (1− p)σI21 + (1− p)σI22 − L2(τl + d)

I211
′

= τr
β
N
R2I∗2 − I211 (σ + d)

L21′ = (1− p)σI211 + (1− p)σI212 − L21(τl + d)

I212
′

= τr
β
N
R21I∗1 − I212 d+ τlL

21 − σI212
R21′ = pσI211 + pσI212 −R21(τr

β
N
I∗1 + d)

where :

I∗1 = I11 + I12 + I211 + I212

I∗2 = I21 + I22 + I121 + I122

(4.4)
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The final multi-type model in which individuals can progress to the cancer stage can be

represented as follows:

S ′ = λ− S( β
N

(I∗1 + I∗2 ) + d)

I11
′

= β
N
SI∗1 − I11(σ + αi1.1 + d)

I12
′

= τlL
1 + τr

β
N
R1I∗1 − I12(σ + αi1.2 + d)

R1′ = pσI11 + pσI12 −R1(τr
β
N

(I∗2 + I∗1 ) + d)

L1′ = (1− p)σI11 − L1(τl + αl1 + d) + (1− p)σI12
C1′ = αi1.1I

1
1 + αl1L

1 + αi1.2I
1
2 − dC1

I121
′

= τr
β
N
R1I∗2 − I121 (σ + αi12.1 + d)

L12′ = (1− p)σI121 + (1− p)σI122 − L12(τl + αl12 + d)

I122
′

= τlL
12 + τr

β
N
R12I∗2 − I122 (σ + αi12.2 + d)

R12′ = pσI121 + pσI122 −R12(τr
β
N
I∗2 + d)

C12′ = αi12.1I
12
1 + αl12L

12 + αi12.2I
12
2 − dC12

I21
′

= β
N
SI∗2 − I21(σ + αi2.1 + d)

I22
′

= τlL
2 + τr

β
N
R2I∗2 − I22(σ + αi2.2 + d)

R2′ = pσI21 + pσI22 −R2(τr
β
N

(I∗2 + I∗1 ) + d)

L2′ = (1− p)σI21 + (1− p)σI22 − L2(τl + αl2 + d)

C2′ = αi2.1I
2
1 + αl2L

2 + αi2.2I
2
2 − dC2

I211
′

= τr
β
N
R2I∗2 − I211 (σ + αi21.1 + d)

L21′ = (1− p)σI211 + (1− p)σI212 − L21(τl + αl21 + d)

I212
′

= τr
β
N
R21I∗1 − I212 (αi21.2 + d+ σ) + τlL

21

R21′ = pσI211 + pσI212 −R21(τr
β
N
I∗1 + d)

C21′ = αi21.1I
21
1 + αl21L

21 + αi21.2I
21
2 − dC21

where :

I∗1 = I11 + I12 + I211 + I212

I∗2 = I21 + I22 + I121 + I122

(4.5)

Figure 4.1 represents the models used in this chapter. Eq.(4.1) represents the model used as

a base case model. This model includes only one infected compartment and is represented

by the blue boxes as well as the dotted blue lines. Eq.(4.2) corresponds to the compartments

in Figure 4.1 in which the class name is written in red. These represent the second model

in which the re-infected class is differentiated from the infected class. This model and the

C1 compartment make up the third model, corresponding to Eq.(4.3). It differs from the
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previous model in that individuals can transfer to the cancer class, which is assumed to

be fatal. Eq.(4.4) corresponds to Figure 4.1 as it is presented excluding the C1 and C12

classes. This is the first model that takes multiple HPV types into consideration. The fi-

nal model, corresponding to Eq.(4.5) includes the model as is shown in Figure 4.1. In this

model, individuals can transfer to the cancer class after being infected with any type of HPV.

The system of ODE’s found in Eq.’s (4.1)-(4.5) employ the following assumptions:

• “Re-infected” individuals consist of both those individuals who have cleared their infec-

tion and developed a second infection, as well as, those whose infection has re-activated

after a period of latency.

• The model assumes a probability p of a full recovery, implying a probability (1− p) of

the disease going into latency.

• The same reduced rate of re-infection and re-activation (τ).

• The progression rate to cancer (αn) is assumed to be the same from all infected stages.

• The cancer stage is assumed to be fatal.

4.3 Parameters

Table 4.1 describes the variables used in Eq.(4.1)-(4.5). The nomenclature throughout the

chapter works as follows: the subscript indicates the infection time (ie. 2 means that this

is the second time that the individual has been infected) and the superscript indicates the

HPV type that the individual is infected with.

As the mechanism of re-infection is unknown, τ , the decreased rate of infection, is assumed

to be the same for all new infections. Furthermore, as the method of re-infection is unknown,

we assume a that an individual’s infection will clear with a probability p, and will go into

latency with a probability 1− p.
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Term Definition Value Reference
S Susceptible population
Ii Population infected with HPV for

the I(th) time
Iki Population infected with HPV

type k for the i(th) time

Ikji Population infected first with
HPV type k and then with type j
for the i(th) time

Rk Population recovered from HPV
type k

Rkj Recovered population who was
infected first with HPV type k
and then with type j

Lk Population with latent infection
from HPV type k

Lkj Population with latent infection
who was infected first with HPV
type k and then with type j

C Population with cancer
Ck Population with cancer, who as

infected with HPV type k
Ckj Population with cancer who was

infected first with HPV type k
and then with type j

β Infection rate 0− .8 (year−1) [16,41,71,74]
αij.k Progression rate (to cancer) from

infected stage, HPV type j,time
being infected, k

0.0001− .5 (year−1) inferred

αlj Progression rate (to cancer)from
latent stage, HPV type j

0− 1(year−1) inferred

σ Recovery rate 0.1− 1 (year−1) inferred
τl Decreased rate of reinfection from

latent stage
50%[.3− .6] [65]

τr Decreased rate of reinfection from
recovered stage

50%[.3− .6] [65]

p Probability of full recovery 0.1− 1

Table 4.1: Variables and parameters used in Eq.’s (4.1)-(4.5).
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4.4 Results

4.4.1 Analytical results

4.4.1.1 Basic reproduction number

*Note: the α term is only included in the models that include the cancer stage.

Single type models, Eq.’s (4.1)-(4.3)

The Jacobian method was used to calculate R0.

R0 = βS
N(σ+αi1.1+d)

+ (1−p)στl
(τl+αl1+d)(σ+αi1.2+d)

.

The assumption that αi1.1 = αl1 = αi1.2 = α causes R0 to become:

R0 = βS
N(σ+α+d)

+ (1−p)στl
(τl+α+d)(σ+α+d)

. The disease will be contained when R0 < 1.

Biologically, R0 can be interpreted as follows: βS
N(σ+αi1.1+d)

represents the newly infected

individuals by a previously infected individual in his lifetime. Here, the lifetime is deter-

mined by 1
σ+αi1.1+d

, where σ represents the individual’s duration in the infected compartment

before recovering or moving to the latently infected compartment, αi1.1 is the duration of

the individual in the infected compartment before moving to the cancer compartment and d

is the duration of the individual in the infected compartment before dying by natural causes.

The second term, (1−p)στ
(τ+αl1+d)(σ+αi1.2+d)

, represents the movement of individuals from the in-

fected stage to the latently infected stage ((1 − p)σ) in their lifetime (σ + αi1.2 + d) and to

the second infected stage (τl), in their lifetime (τl + αl1 + d).

Multi-type models, Eq.’s (4.4) and (4.5)

Although the models differentiate between the progression rates of infected and latently

infected individuals to cancer, the following simplifying assumption will be made:

αi21.1 = αl21 = αi21.2 = αi2.1 = αl2 = αi2.2 = αi12.1 = αl12 = αi12.2 = αi1.1 = αl1 = αi1.2 = α.
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Using the Jacobian method, the basic reproduction number was calculated to be:

R0 = 1
2

(1−p)4σ4τ4

(τ+d+α)4(σ+d+α)4( βS
N(σ+d+α)

+2
(1−p)στ

(τ+d+α)(σ+d+α)
)(

(1−p)στ
(τ+d+α)(σ+d+α)

βS
N(σ+d+α)

+
(1−p)2σ2τ2

(τ+d+α)2(σ+d+α)2
+1)

+ 1
2

βS
N(σ+d+α)

(1−p)2σ2τ2

N(σ+d+α)2(τ+d+α)2(
(1−p)στ

(τ+d+α)(σ+d+α)
βS

N(σ+d+α)
+

(1−p)2σ2τ2
(σ+d+α)2(τ+d+α)2

+1)

+ 3(1−p)2σ2τ2

(σ+d+α)2(τ+d+α)2( βS
N(σ+d+α)

+
2(1−p)στ

(τ+d+α)(σ+d+α)
)( βS
N(σ+d+α)

(1−p)στ
(σ+d+α)(τ+d+α)

+
(1−p)2σ2τ2

(τ+d+α)2(σ+d+α)2
+1)

+ 1
2

( βS
N(σ+d+α)

)2+ βS
N(σ+d+α)

6(1−p)στ
(σ+d+α)(τ+d+α)

+1

( βS
N(σ+d+α)

+
2(1−p)στ

(σ+d+α)(τ+d+α)
)( βS
N(σ+d+α)

(1−p)στ
(σ+d+α)(τ+d+α)

+
(1−p)2σ2τ2

(σ+d+α)2(τ+d+α)2
+1)

.

This represents the number of newly infected individuals by an infected individual in a

totally susceptible population. This R0 is a polynomial of four terms. Although interpreting

an R0 of this complexity is beyond the scope of this thesis, each individual term can be

interpreted in the following way:

• βS
N(σ+d+α)

where:

– βS represents the infection of a susceptible individual

– 1
σ+d+α

represents the infected individual’s lifetime: σ represents the amount of

time they spend in the infected class before moving to the latent or recovered

classes. d represents their natural death rate and 1
α

represents the time before

progressing to the cancer stage.

• τl
τl+d+α

where:

– τl represents the flow of individuals from the latently infected compartment to an

infected compartment.

– 1
τl+d+α

represents the individual’s lifetime before leaving the latently infected com-

partment ( 1
τl

), natural death (1
d
) or progression to the cancer stage ( 1

α
).

• (1−p)σ
σ+d+α

where:

– (1 − p)σ represents the flow of individuals from an infected compartment to a

latently infected compartment.

– 1
σ+d+α

represents the individual’s lifetime: 1
σ

represents the time it takes for an

individual to move to the latently infected class or the recovered class, 1
d

represents
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the individual’s lifetime before death by natural causes and 1
α

represents the

average time it takes to move to the cancer compartment.

The basic reproduction number consists of infection terms from both the infected stage

and the latently infected stage and is heavily dependent on the regression rate, σ, and the

transmission rate, β.

4.4.1.2 Equilibrium points

The disease free equilibrium point is the same throughout the five models. It is:

(S, Ikji , R
kj, Lkj, Ckj) = (λ

d
, 0, 0, 0, 0) (4.6)

The endemic equilibrium point for the single-type, single infection model (Eq.(4.1)) can be

written as: (S∗, R∗, L∗) where:

• S∗ = λ
βI11
′

N
+d

• R∗ =
pσI11

′

τrβI
1
1
′

N
+d

• L∗ =
(1−p)σI11

′

τl+d

where:

• I11
′
= I11(

β
N

( λ
βI11
N

+d
+

τrpσI11
τrβI

1
1
′

N
+d

)− (σ + d) + τl(1−p)σ
(τl+d)

).

The endemic equilibrium point for the single type models in which infection and re-infection

are differentiated between (Eq.’s (4.2) and (4.3)) is (S∗, R1∗, L1∗, C∗), where:

• S∗ = λ
β
N
(I11
′
+I12

′
)+d

• R1∗ =
pσ(I11

′
+I12

′
)

τr
β
N
(I11
′
+I12

′
)+d

• L1∗ =
(1−p)σ(I11

′
+I12

′
)

τl+αl1+d

• C∗ = 1
d
(αi1.2I

1
2
′
+ αi1.1I

1
1
′
+ αl1

(1−p)σ(I11
′
+I12

′
)

τ+αl1+d
)

where:

• I11
′
= β

N
λ

β
N
(I11
′
+I12

′
)+d

(I11
′
+ I12

′
)− I11

′
(σ + αi1.1 + d)
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• I12
′
=

τl(1−p)σ(I11
′
+I12

′
)

τl+αl+d
+

τrβpσ(I11
′
+I12

′
)2

N(τr
β
N
(I11
′
+I12

′
)+d)
− I12

′
(σ + αi1.2 + d)

The endemic equilibrium point for the multi-type models (Eq.’s (4.4) and (4.5)) is:

(S∗, R1∗, L1∗, C1∗, L12∗, R12∗, C12∗, R2∗, L2∗, C2∗, L21∗, R21∗, C21∗),
where:

• S∗ = λ
β
N
(I∗1+I

∗
2 )+d

• R1∗ =
pσ(I11

′
+I12

′
)

τr
β
N
(I∗2+I

∗
1 )+d

• L1∗ =
(1−p)σ(I11

′
+I12

′
)

τl+αl1+d

• C1∗ =
αi1.1I

1
1
′
+αl1L

1′+αi1.2I12
′

d

• L12∗ =
(1−p)σ(I121

′
I122
′
)

τl+αl12+d

• R12∗ =
pσ(I121

′
+I122

′
)

τr
β
N
I∗2+d

• C12∗ =
αi12.1I

12
1
′
+αl12L

12′+αi12.2I122
′

d

• R2∗ =
pσ(I21

′
+I22

′
)

τr
β
N
(I∗2+I

∗
1 )+d

• L2∗ =
(1−p)σ(I21

′
+I22

′
)

τl+αl2+d

• C2∗ =
αi2.1I

2
1
′
+αl2L

2′+αi2.2I22
′

d

• L21∗ =
(1−p)σ(I211

′
I212
′
)

τl+αl21+d

• R21∗ =
pσ(I211

′
+I212

′
)

τr
β
N
I∗1+d

• C21∗ =
αi21.1I

21
1
′
+αl21L

21′+αi21.2I212
′

d

where:

• I11
′
= β

N

λI∗1
β
N
(I∗1+I

∗
2 )+d
− I11

′
(σ + αi1.1 + d)

• I12
′
= τl

(1−p)σ(I11
′
+I12

′
)

τl+αl1+d
+ τr

β
N

I∗1 pσ(I
1
1
′
+I12

′
)

τrβ
N

(I∗1+I
∗
2 )+d
− I12

′
(σ + αi1.2 + d)

• I121
′
= τr

β
N

I∗2 pσ(I
1
1
′
+I12

′
)

τr
β
N
(I∗2+I

∗
1 )+d)

− I121 (σ + αi12.1 + d)
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• I122
′
=

τl(1−p)σ(I121
′
+I122

′
)

τl+αl12+d
+

τr
β
N
I∗2 pσ(I

12
1
′
+I122

′
)

τr
β
N
I∗2+d

− I122 (σ + αi12.2 + d)

• I21
′
= β

N

λI∗2
β
N
(I∗1+I

∗
2 )+d
− I21

′
(σ + +αi2.1 + d)

• I22
′
=

τl(1−p)σ(I21
′
+I22

′
)

τl+αl2+d
+ τrβ

N

I∗2 pσ(I
2
1
′
+I22

′
)

τrβ
N

(I∗1+I
∗
2 )+d
− I22

′
(σ + αi2.2 + d)

• I211
′
=

τr
β
N
I∗2 pσ(I

2
1
′
+I22

′
)

τr
β
N
(I∗2+I

∗
1 )+d

− I211
′
(σ + αi21.1 + d)

• I212
′
=

τl(1−p)σ(I211
′
+I212

′
)

τl+αl21+d
+

τr
β
N
I∗1 pσ(I

21
1
′
+I212

′
)

τr
β
N
I∗1+d

− I21′2 (σ + αi21.2 + d)

*note that the Cjk and α terms are only applicable in the models in which individuals can

progress to the cancer stage.

4.4.1.3 Stability

To determine the stability of the system, one must first find the Jacobian and then evaluate

the Jacobian at the equilibrium point. Substituting in the disease free equilibrium point and

calculating the characteristic polynomial gives the following eigenvalues for the single-type

models represented by Eq.’s (4.1)-(4.3). Note that the α terms are only applicable in the

models including the cancer stage, namely, Eq.(4.3). Eq.(4.1) only consists of λ1−4 and Eq.’s

(4.2) and (4.3) consists of λ1−5.

• λ1,2 = −d < 0

• λ3,4 = −1
2
(((σ + αi1.1 + d) + (τl + αl + d)− βS

N
)±√

((σ + αi1.1 + d) + (τl + αl1 + d)− βS
N

)2 + 4(−(σ + αi1.1 + d)(τl + αl1 + d) + (1− p)στl+

(τl + αl1 + d)βS
N

))

= −1
2
((σ + α + d) + (τl + α + d)− βS

N
)

±
√

((σ + α + d) + (τl + α + d)− βS
N

)2 + 4(1−R0)(σ + α + d)(τl + α + d))

• λ5 = −(σ + αi1.1 + d) < 0

Since d > 0, λ1,2 < 0. λ5 < 0 as both σ and d > 0.

The calculations for the stability of λ3,4 are as follows:
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∣∣(τl + α + d) + (σ + α + d)− βS
N

∣∣ =
√

((τl + α + d) + (σ + α + d)− βS
N

)2. Therefore, if 4((τl+

α+d)βS
N
−(τl+α+d)(σ+α+d)+(1−p)στl) > 0 the square root term will be larger than the

non-square root term. This happens when (τl+α+d)βS
N

+(1−p)στl > (τl+α+d)(σ+α+d),

in other words, when (1−p)στl
(τl+α+d)(σ+α+d)

+ βS
N(σ+α+d)

= R0 > 1. When R0 > 1, then λ3 < 0 and

λ4 > 0 causing the the equilibrium point to be unstable. However, when R0 < 1, and the non-

root term is negative, then λ3,4 < 0 and when it’s positive then λ3,4 > 0. To conclude, the dis-

ease free equilibrium point is stable, provided thatR0 < 1 and βS
N
< (τl+αl+d)+(σ+αi1.1+d).

Numerical methods will be used to analyze the endemic equilibrium point.

The eigenvalues for Eq.’s (4.4) and (4.5) are:

• λ1,2,3,4,5 = −d < 0

• λ6,7,8,9 = −(σ + α + d) < 0

• λ10,11,12,13 = −1
2
(((τl + α + d) + (σ + α + d))

±
√

((τl + α + d) + (σ + α + d))2 + 4((1− p)στl − (τl + α + d)(σ + α + d)))

• λ14,15,16,17 = −1
2
(((τl + α + d) + (σ + α + d)− βS

N
)

±
√

((τl + α + d) + (σ + α + d)− βS
N

)2 + 4((τl + α + d)βS
N

+ (1− p)στl−
(τl + α + d)(σ + α + d)))

If in λ10−13, (1 − p)στl < (τl + α + d)(σ + α + d) → (1−p)στl
(τl+α+d)(σ+α+d)

< 1 then λ10−13 < 0.

Similarly, for λ14−17, the eigenvalue will be negative if (τl + α + d)βS
N

+ (1 − p)στl <

(τl+α+d)(σ+α+d)→ βS
N(σ+α+d)

+ (1−p)στl
(τl+α+d)(σ+α+d)

< 1 AND βS
N
< (τl+α+d)+(σ+α+d).

Note that the α terms only apply to Eq.(4.5)

4.4.2 Numerical simulations

4.4.2.1 Simulations

1000 LHS parameter sets were used to examine the population sizes at the endemic equilib-

rium point for Eq.’s (4.1)-(4.5).
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Base case model, Eq.(4.1)

The relationship between the various populations with respect to the transmission rate,

β, and the regression rate, σ, is illustrated in its entirety in Figure 4.2 for Eq.(4.1). Figure

4.3 represents sub-plots of Figure 4.2. The susceptible population is always the largest. Fur-

thermore, the recovered population and the infected population represent the second largest

group depending on the independent variable. The infected and latently infected popula-

tions are close to equal in population size depending on the independent variable. Varying

the regression rate, σ, causes a larger change on the infected population size compared to

varying the transmission rate, β. This is important as it means that in terms of a screening

or vaccination program, one should concentrate on increasing the regression rate, as it will

have a larger impact on the infected population size than decreasing the transmission rate.

This can be accomplished through screening and treatment practices.

Single-type models, Eq.’s (4.2) and (4.3)

Figures 4.4-4.5 represent the population sizes at the endemic equilibrium point for Eq.(4.2)

while Figures 4.6-4.7 represent the population sizes at the endemic equilibrium point for

Eq.(4.3). The figures illustrate this with respect to the various regression (σ) and trans-

mission (β) rates used. The following trends are evident from the numerical analysis: for

the most part, the re-infected population is larger than the population of individuals who

have only been infected once. Varying the regression rate, σ, causes a larger change in the

infected population’s size than varying the transmission rate, β. Furthermore, there is a

more dramatic change in the infected population’s size when varying the regression rate, σ,

than in the re-infected population’s size.

In the simulation of 1000 parameter sets, 687 of them resulted in all non-negative pop-

ulation sizes for Eq.(4.2) and 296 resulted in non-negative population sizes for Eq.(4.3).

There were only five population sets in which I11∗ > I12∗.

The consequences of these results are that it is more efficient to vary the regression rate,

through screening and treatment practices, than it is to vary the transmission rate through

vaccination practices. Furthermore, it is important to model HPV infection and re-infection

in future models as opposed to just a single infection, as the re-infected class is larger than

95



the infected class.

Multi-type models, Eq.’s (4.4) and (4.5)

Figures 4.8-4.10 represent the population sizes at the endemic equilibrium point for Eq.(4.4)

while Figures 4.11-4.13 represent the population sizes at the endemic equilibrium point for

Eq.(4.5). All of the aforementioned figures present the following trends:

• At the endemic equilibrium point, a re-infected population (in these cases, I12∗ ) repre-

sents the largest population size for any given transmission rate, β, or regression rate,

σ.

• There is a larger change in the population size when the regression rate, σ, is varied

than when the transmission rate, β, is varied.

As mentioned in Section 4.4.2.2, there exists equilibrium points at certain parameter sets

that were shown to be unstable. As the only parameters which can biologically be altered

are the regression rate and the infection rate, the unstable equilibrium points were studied

with respect to these two parameters only. Figures 4.14 and 4.15 illustrate this point.

In order to understand the instability in Eq.’s (4.4) and (4.5), perturbations were applied

to various sets of stable and unstable endemic equilibria. The solutions returned to their

pre-perturbation equilibrium, implying a stable equilibria for both the stable and unstable

equilibrium points. This leads to the conclusion that the instability in the system is due to

numerical error, possibly due to the size and complexity of the model.

One final point about Figure 4.15 is that there are two solutions for a single parameter

set. However, it is difficult to differentiate the stable population set from the unstable pop-

ulation set. The aforementioned stability test confirmed that all of the population sets were

stable, indicating that the results of this model confirm those of the previous models.

4.4.2.2 Stability of the endemic equilibria

Latin Hypercube Sampling (1000 runs) was used to create 1000 sets of parameters. Since

it is only realistic to examine populations that are non-negative in size, the parameter sets

created by LHS were fed into the solution of the system and the non-negative population
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sets were used to calculate the eigenvalues of the system. The Jacobian was calculated 687

times for Eq.’s (4.1) and (4.2), 296 times for Eq.(4.3) and 177 and 591 times for Eq.’s (4.4)

and (4.5) respectively, as only the parameter sets where (S∗, I11∗, R∗, L∗) ≥ 0 were used. All

of the eigenvalues for the uninfected equilibrium point were negative for Eq.’s (4.1)-(4.3),

indicating stability. However, the endemic equilibrium point for Eq.’s (4.4) and (4.5) were

shown to be unstable. A perturbation was applied to the unstable solutions. All solutions

returned to their pre-perturbation point, indicating that the instability is due to numerical

error, and the endemic equilibrium is in fact, stable.
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Figure 4.2: Endemic equilibrium population sizes with respect to the transmission rate, β
(top), and the regression rate, σ (bottom), for Eq.(4.1), the base case model.
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Figure 4.3: Endemic equilibrium population sizes with respect to the transmission rate, β, and the regression rate, σ,
for Eq.(4.1), the base case model.
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Figure 4.4: Endemic equilibrium population sizes with respect to the transmission rate, β
(top), and the regression rate, σ (bottom), for Eq.(4.2), the single type model with no cancer
stage.
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Figure 4.5: Endemic equilibrium population sizes with respect to the transmission rate, β
(top), and the regression rate, σ (bottom), for Eq.(4.2), the single type model with no cancer
stage. The sub-plots represent the I11 and I12 population sizes.
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Figure 4.6: Endemic equilibrium populations sizes with respect to the transmission rate, β
(top), and the regression rate, σ (bottom), for Eq.(4.3), the single type model with a cancer
stage.
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Figure 4.7: Endemic equilibrium population sizes with respect to the transmission rate, β
(top), and the regression rate, σ (bottom), for Eq.(4.3), the single type model with a cancer
stage. These sub-plots represent the I11 and the I12 population sizes.
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Figure 4.8: Endemic equilibrium population sizes with respect to the transmission rate, β
(top), and the regression rate, σ (bottom), for Eq.(4.4), the multi-type, no cancer model.
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in

Figure 4.9: Endemic equilibrium population sizes with respect to the transmission rate, β, for Eq.(4.4), the multi-type,
no cancer model.
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Figure 4.10: Endemic equilibrium population sizes with respect to the regression rate, σ, for the Ikji classes in Eq.(4.4),
the multi-type, no cancer model.
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Figure 4.11: Endemic equilibrium population sizes with respect to the transmission rate, β
(top), and the regression rate, σ (bottom), for Eq.(4.5), the multi-type model with a cancer
stage.

107



Figure 4.12: Endemic equilibrium population sizes with respect to the transmission rate, β, for the Ikji classes with
respect to Eq.(4.5), the multi-type model including a cancer stage.
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Figure 4.13: Endemic equilibrium population sizes with respect to the regression rate, σ for the Ikji classes with respect
to Eq.(4.5), the multi-type model including the cancer stage.
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Figure 4.14: Instability of Eq.(4.4), the multi-type model, with respect to the transmission
rate, β (top), and the regression rate, σ (bottom), at the endemic equilibrium point.
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Figure 4.15: Instability of Eq.(4.5), the multi-type model with a cancer stage with respect
to the transmission rate, β (top), and the regression rate, σ (bottom).
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4.5 Discussion

Five models were created and analyzed to better understand the concept of infection with

HPV versus “re-infection” with HPV. Each model increased in complexity with the first

three models (Eq.’s (4.1)-(4.3)) being single genotype models and the final two (Eq.’s (4.4)

and (4.5)) including two types of HPV. Various aspects were analyzed, including R0, the

equilibria and their stability, and the relative population sizes at the endemic equilibria.

The type reproduction number was considered for this chapter, however, while it is use-

ful in order to single out a specific target to control in order to accomplish the larger goal of

minimizing the spread of the disease [34], it does not make sense to use it for Eq.’s (4.1)-(4.5).

The mode of “re-infection” is currently not known which makes it difficult to target individ-

uals who fit either into the latent compartment or the recovered compartment. Therefore,

instead of computing the type reproduction number, the basic reproduction number was

computed.

There are two aspects of HPV progression that can be controlled. These are the regres-

sion rate (σ) and the transmission rate (β). The regression rate can be controlled through

treatment such as excision, or cryotherapy. It is important to note, that treatment will not

cure HPV, rather it will decrease the severity of the infection. Control of the transmission

rate, β, is possible through safe sex practices, vaccination and the knowledge that an individ-

ual carries HPV. By decreasing the transmission rate or increasing the regression rate, it is

possible to decrease the basic reproduction number. This is in agreement with the numerical

results from Eq.’s (4.1)-(4.5).

All of the models have a disease free equilibrium point, the stability of which is depen-

dent on β, the transmission rate. The single-type models’ disease free equilibrium points can

easily be related to their R0. While it may be possible to do this for the multi-type models,

it is beyond the scope of this thesis.

As previously mentioned, altering the regression rate and transmission rate will influence

R0, which in turn influences the stability of the disease free equilibrium point. This points

to two important points in the minimization of the HPV viral spread:

1. An important aspect in the minimization of the infection and re-infection with HPV
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is minimizing the infection rate.

2. A second important aspect in the minimization of the infection and re-infection of HPV

is increasing the regression and clearance rates.

Both of these points are becoming more and more applicable as biotechnology advances.

There are currently two vaccines available for public use (and a third in trials). These will

greatly lower the transmission rate, β. Additionally, safe sex practices should be taught

and practised. Use of condoms as well as monogamy is an additional way to lower the β

value [23]. Corresponding to both points above is screening. Once an individual is aware

that he/she has HPV (through screening), it is more likely that they will practice safe sex

or receive treatment, thus lowering the β value.

There are various treatment options such as excision which should be used to increase the

regression rate, σ. However, regular screening would aid in the knowledge of the existence

of the tumour, thus enabling an individual to treat it. It is important to keep in mind that

treatment does not cure HPV, rather, it decreases the severity of the lesion. While this could

be a good thing, as the less severe the lesion is, the higher chance it has of regressing, it

does not mean that the person is necessarily healthier. There is a possibility that there are

lesions in other parts of the anatomy that cannot or have not been detected.

While not much can be learned from the base case model (Eq.(4.1)) with respect to the

infection and re-infection debate, it is possible to observe that the change in population

size over an increasing regression rate, σ, is larger than the change in population size over

a decreasing transmission rate, β. This implies that changing the regression rate through

screening and treatment will be more beneficial than increasing the transmission rate.

Eq.(4.2) follows the same trend for both the I11∗ and I12∗ classes. Furthermore, an increase

in the regression rate has a more defined effect on the I11∗ class than it does on the I12∗ class.

This suggests that increasing the regression rate will have a larger effect on a population

that is infected for the first time. It also means that the compartment of individuals who are

infected for a second time will always be larger than those infected for the first time. This

trend is similar for all five models, however, for Eq.’s (4.4)-(4.5), it is not seen to the same

degree for all eight infected classes.
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Similar trends can be observed throughout Eq.’s (4.1)-(4.5).

In terms of the relative population sizes with respect to the infected populations, the I12∗
class is always the largest population. This is followed by the I11∗ class, however, the latter is

not much larger than the remaining infected populations which are more or less of a similar

size. This shows that individuals are most likely to become re-infected with their original

HPV type. Furthermore, this shows that it is not necessary to include every combination

of infection/re-infection of HPV types when modelling HPV. Rather, one should include

infection with the original type, as well as, re-infection with the original type. From these

results we can conclude that it is more relevant to model re-infection with the same type

than with different HPV types.

This makes sense as the re-infected compartment includes individuals whose latent infec-

tion has become active again. These individuals will have the same type of HPV as their

“original” type. Hence, it is not surprising that the largest re-infected population is one that

has the same type of HPV as the original infection type.

One difference between the the multi-type models and the single-type models is the sta-

bility of the endemic equilibrium points. In Eq.’s (4.1)-(4.3), the endemic equilibrium points

are always stable. However, in Eq.’s (4.4) and (4.5), the endemic equilibrium points appear

to be unstable. Although the eigenvalues for the system are positive, they are very close to

zero, which leads to two possible conclusions:

• The perceived instability is due to numerical error which indicates that the system at

the endemic equilibrium point is stable, similar to the first three models.

• The instability of the endemic equilibrium point is real. Having said this, there are

still a few transmission and regression rates that are stable, and which have the largest

population as a recovered population, which again, leads to the same conclusions as

the first three models.

A stability analysis was conducted on Eq.’s (4.4) and (4.5) from which it is possible to make

the same conclusions as those of Eq.’s (4.1)-(4.3), indicating that the instability is due to

numerical error.
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Eq.’s (4.1)-(4.5) play an important role in the big picture of understanding the dynam-

ics of HPV, as well as, in the way that we model HPV in general. Multiple infection models

can be complicated to create and analyze. Hence, from this set of models, we can conclude

that it is not necessary to model multiple types of HPV. This is important financially, as it

means that in the case that an individual is re-infected with HPV, it is feasible to assume

that the re-infecting type is the same as the original infection type, which bypasses the costs

of screening.

There is much uncertainty regarding re-infection/re-activation with the HPV virus. These

models help show the importance of prevention and treatment practices. It is important to

use this knowledge to ensure an appropriate public health plan to deal with HPV.
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5 Conclusions

HPV has a high transmission rate and a high regression rate. This can lead to the conclu-

sion contraction of HPV is not such a serious matter, especially since there are relatively few

carcinogenic types. While this last statement is true, it is misleading, as, if a high risk type

of HPV causes an infection that does happen to progress, it can have serious ramifications

such as cancer. Clearly, cancer affects the well being of the patient and their family, but it

can also be costly to treat, both in terms of resources and financially. Hence, it is beneficial

to all parties involved to try to minimize the effects of HPV both through prevention and

through treatment.

Prevention and treatment programs have been implemented in many countries and have

been shown to make a difference in cervical cancer prevalence. It has been shown that since

the implementation of cervical cytology circa 1949, cervical cancer rates have been reduced

by 60− 90% after three years of implementation [67]. The vaccines for HPV are fairly new

(within the last decade) making conclusions about their efficacy relatively difficult [76]. This

is made even more difficult as it can take 20-40 years to see the effects of an HPV infec-

tion [6]. Hence one benefit of screening is that it causes instant effects in the individual’s

health as well as the overall health of a population, while it can take up to four decades to

see the effects of implementing a vaccination program.

The idea of screening versus vaccination corresponds to the results of this thesis in al-

most every model. Chapter 2 examines the significance of the various aspects used in both

a screening and vaccination program. Two things become evident from the results of this

chapter:

1. The basic reproduction number is reduced when either a vaccination or a screening (or

both) program is implemented into a completely susceptible population.

2. The PRCC plots indicate that screening sensitivity and uptake are more significant in
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the minimization of cancer than that of vaccination.

Furthermore, Chapter 3 shows that regardless of the screening program implemented, there

will be a similar effect on the basic reproduction number.

Chapter 4 cements the idea of the importance of screening as it shows that there is a larger

change in the infected population size with an increase in the regression rate (related to

screening), compared to a decrease in the transmission rate (related to vaccination).

Hence, it is fair to conclude that the effects of a screening program are large and instant.

Combining the results of Chapters 3 and 4 implies the following: if it is safe to assume

that an individual who has been re-infected with HPV has the same type as their original

infection, then from a costing point of view, if a typing test is more expensive than a general

test, it is not necessary to use a typing test. Rather, it is important to establish that individ-

uals who have previously been infected, are indeed, re-infected. This can be accomplished

through a general screening test

While vaccination is important too, the current vaccines protect against up to 9 high risk

HPV types only. While they do offer protection against the most common HPV types, there

are still many high risk types which can only be caught and treated through screening.

The cost of implementing a screening and/or vaccination program will vary depend on the

program implemented and the country in question. However, Chapter 4 shows that individ-

uals who are re-infected with HPV are likely to be infected with the original HPV type. This

is important as it means that in low income countries, it may be advisable to skip a typing

test assuming that the individual who has been infected multiple times is infected with their

original HPV type. Hence, if their original HPV infection was with a low risk HPV type,

then there is no point to treating them when they are re-infected.

To conclude, two main topics were examined in this thesis, numerical results such as those of

screening and/or vaccination programs and analytical results such as the basic reproduction

number. The basic reproduction number is less important than the other aspects in the

screening-vaccination program debate as it is debatable what the actual R0 is. Some studies

conclude that it is larger than 1 while other studies conclude that it is less than one. What
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all studies do agree on is that implementation of a screening-vaccination program will reduce

the basic reproduction number. Hence, it is important, especially in developing countries to

implement a screening-vaccination program, as the costs of treating cancer, both mentally

and financially, can be greater than the cost of a screening program.

5.0.1 Future work

Treatment and prevention of HPV is a sizeable topic and difficult to model with a single

model. Hence components of the prevention/treatment program should be analyzed indi-

vidually as was done in this thesis. However, each component leaves a plethora of work to

be modelled. This includes but is not limited to the topics discussed below.

It has been shown that vaccination does play a part in the minimization of cancer, as it

prevents individuals from being infected with certain types of HPV. However, a cost analysis

should be completed to understand if the long term benefits of the vaccine will justify the

costs of the vaccine.

Having said this, an analysis, both in terms of cost and from an epidemiological point of

view should be completed to understand how vaccinating males will effect the outcomes of

these models. Males are a major source of transmission, and by targeting them as well as

females, one should be able to further reduce the prevalence of cancer caused by HPV.

Chapter 4 examines the concept of infection and re-infection with respect to HPV. This

set of models should be expanded to incorporate the tracking of individuals who are re-

infected from the latent class versus those who are re-infected from the recovered class.

Doing this should be able to shed more light on the concept of re-infection, as well as help to

understand whether individuals are generally re-infected with their original HPV type or not.

Furthermore, a sensitivity analysis should be completed on the transmission rate, β, and

the regression rate, σ, to confirm the results found in Chapter 4. A cost analysis should

be considered too, as both prevention and treatment can be pricey and require professional

administration, although prevention may require less professional training than treatment

as it can be administered by a local GP.
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One final topic of discussion is that of type replacement. In the successful eradication

of HPV types 16/18, the next prevalent HPV type will take its place. Studies should be

conducted as to examine what the best way to deal with type replacement and mutation is.

HPV can be a serious virus, and with the advent of new technology, including vaccines,

there is much to learn. Epidemiological modelling can help inform policy makers, as well as

biologists as to the mechanism of transmission and infection.
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6 Appendix

Parameter Value
qI 0.542967837631601
qV 0.204890651199993
αA0 0.0268740801188195 (year−1)
αA1 0.0488320922689987 (year−1)
αA2 0.136188399191519 (year−1)
αI0 0.0171946749370184 (year−1)
αI1 0.0288935517694315 (year−1)
αI2 0.131978515929929 (year−1)
αC1 0.0453153046387752 (year−1)
αV 0 0.0214328598671292 (year−1)
αV 1 0.0509953092464185 (year−1)
αV 2 0.0972134180564544 (year−1)
γV 0 0.328863980677454 (year−1)
γV 1 0.481859598015195 (year−1)
γV 2 0.104291113066865 (year−1)
γI0 0.258380260700360 (year−1)
γI1 0.830242977472094 (year−1)
γI2 0.0786649443042148 (year−1)
γC1 .02(year−1)
γA0 0.348396211517799(year−1)
γA1 0.511231079519821 (year−1)
γA2 0.0984113101456231(year−1)
β 0.527216463327684(year−1)
ρ 0.433642122805760(year−1)
q 0.990032562034885
ε 0.806184405659902
φ 0.471613576241770
ψ 0.891803578133610 (year−1)
ζ 0.664310970748574(year−1)
ζ2 0.795819583971955(year−1)
η 0.448538976348080

Table 6.1: Parameters used in the simulations for Eq.’s (2.1)-(2.4).
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Parameter Value
qIp = qIpT = qIpTy 0.359086208048564

αA0 0.033017864169859 (year−1)
αA1 0.073274891225565(year−1)
αA2 0.196182244734854(year−1)
αI0p 0.030665827414585(year−1)
αI1p 0.044397713496558(year−1)
αI2p 0.158402397571585(year−1)
αC1 0.024068695670569(year−1)
γA0 0.358600801514842(year−1)
γA1 0.667245411708137(year−1)
γA2 0.072536569882527(year−1)
γI0p 0.349893263494934(year−1)
γI1p 0.702039463929003(year−1)
γI2p 0.102806505320276(year−1)
γC1 .02(year−1)
β 0.710588712556604(year−1)
κ 0.860110434299079(year−1)
η 0.504147544669074(year−1)
η2 1(year−1)
φ 0.904
φ2 .898
φ1a .45
φ1b .69
ζ 1, .5, .1, .05, 0(year−1)

Table 6.2: Parameters used in the simulations for Eq.’s (3.1)-(3.4).
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