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ABSTRACT 

 

Lipid mediator prostaglandin E2 (PGE2) plays a pivotal role in early development of the 

nervous system. Abnormal PGE2 signaling in neurodevelopment has also been implicated in 

autism. Increased levels of PGE2 have been attributed to maternal infection and the 

inflammatory response. My in vitro work shows that elevated levels of PGE2 cause an increase 

in cytosolic and growth cone calcium levels in differentiated neuroectodermal (NE-4C) cells 

and a dose- and time-dependent effect on neurite extension length. Furthermore, PGE2 induced 

subcellular localization of the EP4 receptor to the plasma membrane in NE-4C stem cells and 

growth cones of differentiated NE-4C cells. My in vivo work shows that prenatal exposure to 

PGE2 results in differential mRNA levels of two important developmental genes Wnt3a and 

Fosl1 in the mouse brain at various embryonic stages. This furthers our understanding of the 

functional implications of abnormal PGE2 signaling in the neurodevelopment of autism.   
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CHAPTER 1. INTRODUCTION 

 

	  
1.1. Environment and autism 

Prenatal development of the brain is a critical period in which intricate processes may 

be disturbed by an imbalance of environmental stimuli. Autism is a heterogeneous 

neurodevelopmental disorder with a great range in presentation and severity of symptoms, thus 

may be referred to collectively as Autism Spectrum Disorders (ASD)[1]. The disorder affects 

as many as 1 in 68 children, and is almost five times more likely in boys than girls [2]. 

Although autism is believed to be primarily genetic in origin, an increasing amount of evidence 

suggests that autism is in fact a complex interaction between genes and environmental 

insult[3]. It is likely that many genes are involved in the etiology of autism along with a 

number of implicated environmental risk factors like infections such as the rubella virus [4], 

[5], mercury, oxidative stress [6]–[10], immunological factors [11], [12], dysfunctional calcium 

(Ca2+) regulation [13], [14], and altered lipid metabolism [15], [16].  

Drug use during pregnancy has also been linked to ASD including the anti-nausea 

medication used by pregnant women in 1957-1962, thalidomide [17], and an anticonvulsant 

and mood-stabilizing drug, valproic acid (VPA) [18]. Likewise, a drug administered to women 

to induce uterine contractions for early pregnancy termination [19] called misoprostol resulted 

in autism related characteristics termed Mobius syndrome [20]. Exposure to these drugs during 

the first trimester of pregnancy, more specifically around weeks five to eight of gestation, has 

been implicated in abnormalities of neurodevelopmental [21]. The brain undergoes its most 

rapid development from the prenatal period to the early postnatal period. Thus during this 

critical period, the brain is most vulnerable to environmental insults because it depends on 
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precisely regulated temporal and spatial developmental processes [22]. Neural development 

encompasses the process of neurogenesis, proliferation, migration, differentiation, synapse 

formation, and myelination [23]. Disruption at any point can have long lasting detrimental 

effects. Collectively, these findings suggest that the window of susceptibility for autism 

induction may be very early in gestation.  

 

1.2. Lipid signaling in the nervous system 

The human brain, by weight, is composed of approximately 60% lipids with over 20% 

polyunsaturated fatty acids (PUFAs) [24]–[26]. PUFAs are major components of the neural 

cell membrane phospholipids. Arachadonic acid (AA), eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) are the predominant PUFAs which are derived mainly from 

omega-6 lineolic acid (LA) and omega-3 alpha-lineolic acid (ALA), respectively [27], [28]. 

The conversion of these lipids is crucial for the integrity and proper functioning of the plasma 

membrane, such as modulation of ion channels, enzymes and receptor activity [29], [30]. It is 

also possible for AA to be synthesized from membrane phospholipids via phospholipase A2 

(PLA2) where subsequent reactions can take place to make various prostanoids. 

Cyclooxygenase-1 enzyme (COX-1), constitutive form in the body, and cyclooxygenase-2 

(COX-2), inducible form in body and constitutive form in the brain, metabolizes AA to the 

unstable PGG2 and PGH2 intermediates to five primary prostanoids via prostaglandin (PG) or 

thromboxane synthases: PGE2, PGF2α, PGD2, PGI2, and thromboxane A2 (TxA2), whereby 

PGE2 is the major signaling prostanoid. These lipid mediators interact with specific members 

of a family of distinct G-protein-coupled prostanoid receptors (GPCRs), designated EP, FP, 

DP, IP and TP receptors, respectively (Figure 1) [31], [32].  
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The released prostanoids play important roles in normal neural function including sleep 

induction, spatial learning, synaptic plasticity and long-term potentiation or inflammation [26], 

[33]. Of these, PGE2 signaling has gained considerable attention for its involvement in activity-

dependent synaptic plasticity [34], [35].   

Clinical studies have reported significantly higher concentrations of PLA2 in the red 

blood cells of individuals with autism and Asperger’s syndrome compared to healthy 

individuals [25].  Moreover, ASDs have been associated with the gene encoding the COX-2 

protein [36]. Several studies have reported altered AA, DHA, and EPA levels in patients with 

autism. Children with autism have a higher AA: DHA ratio [24] and a higher AA: EPA ratio 

[37]. Significantly lower-than-normal levels of AA and DHA have also been found in blood 

plasma of individuals with autism [38], [39] (Figure 1).   
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Figure 1. The lipid signaling pathway. Prostanoids (PGI2, PGE2, PGF2α, PGD2) and 

thromboxane A2 (TxA2) are bioactive lipid metabolites that elicit cellular events through the 

action of their respective receptors (IP, EP, FP, DP, and TP). They are derived from a series of 

conversions from membrane phospholipids. PGE2 is the major lipid signaling pathway. (Red 

arrows indicate an increase or decrease level in individuals with ASD; asterisks indicate a link 

to ASD). This figure was adapted from Wong and Crawford (2014) [16]. 
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1.3. Autism and lipids in the brain 

The cellular signaling and molecular mechanisms involved in the pathology of autism 

must be better understood to prevent or treat the disorder. Lipid signaling is involved in early 

brain development and maintaining its function. Abnormal lipid signaling due to genetic 

causes or environmental influences has been implicated in ASD [15], [17], [20] (Figure 1). 

Prostaglandin E2 (PGE2) is the natural, endogenous analogue of a drug implicated in ASD, 

misoprostol. Therefore the endogenous PGE2 signaling pathway is a good candidate pathway 

to assess the neurodevelopment of autism. PGE2 is the major lipid mediator in the brain and 

synthesized in the cell from phospholipids found in cell membranes. It typically acts within the 

local environmental to provide autocrine and paracrine stimulation to a number of signaling 

pathways in the nervous system.  

 

1.4. Prostaglandin E2 and development 

During the embryonic stage of the development, there is an increase in the levels PGE2 

messenger ribonucleic acid (mRNA) [40]. Many physiologically important functions, such as 

synaptic plasticity [34], [35], dendritic spine formation, refining of mature neuronal 

connections [41]–[43], pain transmission [44], and cell survival [45] or death [46] are 

medicated by PGE2 in the nervous system. Early research has reported abnormalities in mice 

offspring when exposed to PGE2 during the embryonic stages [47]. Activation of the PGE2 

signaling pathway regulates the inflammatory response, fever, pain and sleep, including 

inflammation upon maternal infection [16], [48]. Elevation of endogenous PGE2 levels has 

been found during events such as inflammatory response and oxidative stress [49]. It is 

possible that heightened inflammatory response during early development may lead to nervous 

system defects. The disruption of PGE2 signaling could result in abnormal cellular functioning 
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throughout development. Research shows that immune activators such as prenatal exposure to 

rubella infections, anticonvulsants, perinatal hypoxia, and postnatal infections have all been 

identified as putative contributors to ASD [50]. Increased occurrence of maternal immune 

abnormalities during early pregnancy and greater incidence of familial autoimmunity have 

been suggested to alter fetal brain development and as ASD predisposing factors [51], [52], 

suggesting a role for dysregulation in PGE2 signaling in the pathology of autism.  

 

1.5. Prostaglandin E2 signaling via EP receptors 

PGE2 acts on four cell surface GPCRs designated EP1-4[31, 32] depending on receptor 

binding affinity, receptor expression profile, differential coupling to signal transduction 

pathways, and cellular context [48]. PGE2 binds to its four EP receptors at different affinities, 

predominantly on EP3 and EP4 (EP3>EP4>>EP2>EP1) [53], [54]. Ligand-dependent 

activation of each EP receptor promotes the activity of specific kinases and their constitutive 

metabolic pathways to result in either neuroprotection or neurotoxicity [55]. The EP2 and EP4 

receptors can play a neuroprotective or neurotoxic role [56]–[58]. Disturbances in PGE2 

signaling as a result of altered level of endogenous PGE2, due to inflammation or infection, or 

exposure to drugs such as misoprostol might have an adverse effect on various developmental 

stages due to differential expression and activation of the EP receptors [40].  

 

1.6. EP receptor cellular localization  

 Neuroectodermal (NE-4C) stem cells endogenously express the four EP receptors. In 

NE-4C cells, EP2 has the highest mRNA expression followed by EP3γ and EP4 receptors. The 

endogenous EP1 and EP3β receptor expression is considerably low. These results were 

consistent for EP receptor protein expression as well [3]. In NE-4C cells, EP1 is localized in 
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the ER membrane; EP2 receptors are uniformly expressed around the nucleus and co-localized 

with the nuclear envelope; EP3 receptors were located at the plasma membrane; and EP4 

receptors at the Golgi apparatus [3]. However, the localization of the EP receptors has not yet 

been studied in differentiated NE-4C neuronal cells.   

In primary sensory neurons, the EP4 receptor is also localized in the Golgi apparatus 

[59]. Furthermore, it has been shown that PGE2/EP4 signaling induces EP4 externalization, 

from the Golgi apparatus to the plasma membrane, during the inflammatory response in dorsal 

root ganglion (DRG) neurons [59]. It has been suggested that PGE2-prolonged sensitization of 

DRG neurons may contribute to the transition from acute to chronic pain by facilitating EP4 

receptor synthesis and anterograde axonal trafficking to the plasma membrane [60]. Thus the 

EP4 receptor trafficking in response to PGE2 suggests EP4 likely plays a functional role.  

 

1.7. EP receptors in the brain  

The expression of EP receptors’ mRNA in mouse embryonic development (E7, E11, 

E15, E17) is ubiquitously expressed within eight major regions of the brain (cortex, frontal 

cortex, thalamus, hypothalamus, hippocampus, brain stem, medulla and cerebellum). Most of 

the receptors including EP1, EP2, EP3α and EP3β were highest at E15, which is the peak of 

neurogenesis. Notably, the highest increase was the EP4 receptor at E7 followed by E15. This 

indicates that PGE2 signaling may play an important role during early neuronal development 

via activation of these receptors [40].  

Beginning early in the first month of gestation in humans, specific areas of the central 

nervous system begin to form with the neurogenesis and migration of cells in the forebrain, 

midbrain, and hindbrain [23]. Development of brain structures, such as medulla, pons, and 

cerebellum, which start at the early stages of the neurogenesis, followed by other areas, such as 
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the hippocampus, hypothalamus, thalamus, and entorhinal cortex [23], may potentially be 

affected by abnormal PGE2 signaling via EP receptor activation. Zhu et al (2008) found that the 

four EP receptors are heterogeneously expressed in the hippocampus and their expression is 

differentially regulated by neuronal activities, suggesting that EPs may actively participate in 

hippocampus synaptic transmission and plasticity in rat pups [57]. 

Within the adult mouse brain, the EP1 and EP4 are more highly expressed in the frontal 

cortex compared to the entire cortex suggesting their potentially important role in this brain 

region [40]. Autism is a disorder that markedly affects executive function and high-order 

integration processes such as complex social interaction, associative thinking, and appropriate 

emotional reactions [61]. Given the higher expression of EP1 and EP4 receptors in the frontal 

cortex, it is possible these receptors play a role in higher functions, and may be dysregulated in 

autism contributing to the characteristic social deficits. Moreover, all of the EP receptors’ 

mRNA was highly expressed in the medulla oblongata [40]. The medulla oblongata is a 

portion of the hindbrain that controls autonomic functions such as breathing, digestion and 

heart rate. This highlights the importance of EP receptors.  

 

1.8. Prostaglandin E2 and EP receptor signaling  

The EP subtypes bind most potently to the prostaglandin PGE2, with their signal 

transduction pathways being identified as Gi, Gs or Gq proteins (Figure 2). EP1 receptor 

activation results in a release of intracellular calcium from inositol triphosphate (IP3) via the 

Gq-phospholipase C (PLC) - IP3 and activation of PKC. EP4 receptor has been associated with 

an increase in cAMP in cells, however with much less affinity than EP2 [62]. EP2 and EP4, are 

coupled to the stimulatory Gs protein and mainly mediate the increase in cAMP through 

activation of adenylate cyclase (AC) [63], [64], which in turn activates protein kinase A (PKA) 
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and mediates phosphorylation of cAMP response element binding the protein (CREB) 

transcription factor [54] (Figure 2). We recently also showed novel findings that it is also 

possible for EP4 signaling pathways to operate via Gi proteins as well [65]. Moreover, in 

response to PGE2, EP2 and EP4 receptors demonstrate dissimilar patterns of desensitization 

and internalization [66]. The various EP3 receptor splice variants act to either inhibit or 

increase cAMP synthesis via Gi or Gs proteins, respectively. It has also been noted, however, 

that the EP receptors do not couple exclusively to the pathways described but often to more 

than one G protein and signal transduction pathway [48]. Ultimately PGE2 activation of the EP 

receptors acts to regulate calcium levels, which will be discussed further below.  

Short term PGE2 exposure, due to environmental stimuli or drug exposure, may be 

detrimental to the developing embryo or nervous system since calcium homeostasis has been 

implicated in cellular functions such as differentiation and growth, membrane excitability, 

exocytosis, and synaptic activity [67]. Our lab has previously shown that misoprostol, a 

prostaglandin type E analogue, alters the calcium level in the cytosol via PKA-mediated 

pathway carried out by EP4 receptor signaling [65]. Tamiji and Crawford (2010) showed that 

blocking EP4 receptor or PI3K resulted in greater elevation of intracellular calcium in response 

to PGE2 and misoprostol due to activation of the remaining EP receptors (EP1-3) [65]. 

Moreover, this suggests an unique involvement of the EP4 receptor in the inhibition of calcium 

intracellular levels in neuroblastoma (neuro-2a) cells.  
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Figure 2. The PGE2 signaling pathway. Stimulation of EP1-4 via PGE2 leads to activation of 

PKC, PKA, or PI-3K via Gq, Gs, or Gi mechanisms. This figure has been adapted from Tamiji 

and Crawford (2010) [65] and Wong and Crawford (2014) [16]. 
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1.9. Calcium signaling in the developing nervous system 

Calcium plays a pivotal role in the early development of the brain [68]. Normally, 

calcium ions are key mediators to multiple cellular processes in early neuronal development 

including cell growth, differentiation, synaptic activity, gene expression, activity dependent 

signaling, and cell death [69]–[74]. In neurons, the level of calcium ions is very tightly 

regulated with a very low basal level (100 nanomolar (nM)) in the cytosol compared to up to 

20 000-fold gradient in extracellular concentration (millimolar (mM)) [67], [75]–[77]. This 

allows minor perturbations or localized Ca2+ elevations to efficiently activate enzymes or 

neighboring ion channels that may result in profound pathological/physiological effects either 

short or long term [67], [78]. 

Environmental cues like growth factors and neurotransmitters modulate calcium 

homeostasis, which is a crucial component of neuronal development and signaling [69], [79]. 

Previous studies have revealed that the calcium oscillatory frequency (also referred to as 

transients), which is the influx and efflux of calcium, is regulated by neurotransmitters, growth 

factors and cytokines [80]–[82]. The calcium transients play equally important roles in the 

control of cell fate specification in the nervous system, cellular phenotypes and axon path 

finding [70], [83], [84]. During neural development in vivo, growth cone calcium transients are 

influenced and modulated by environmental factors like laminin, a suppressor molecule, 

expressed on axons, and stimulating molecules such as netrin which are expressed on the floor 

plate [28], [85], [86]. The growth cone is the motile tip of an axon that is responsible for 

responding to environmental guidance cues. 

During neuronal differentiation in cultured mouse neural crest-derived cells, transient 

increases in intracellular calcium concentration ([Ca2+]i) occurs followed by a decline in 

spiking frequency as neurogenic activity declines [70]. This increase in calcium transient 
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activity and frequency was also observed in neocortical ventricular zone cells (neuronal 

precursors) [87]. Additionally, rapid calcium increases can induce differentiation of neuronal 

cells [88]. Calcium wave frequency, size and distance also increase in late neurogenesis [84], 

[89]. At later stages of development, regulation of expression of transcripts encoding cell 

adhesion molecules is partly achieved by calcium transients in cultured mouse DRG neurons 

[90]–[92]. Overall, calcium transients are fundamental in modulating neuronal differentiation, 

axonal extension, migration, gene transcription, and protein interactions during early neuronal 

development [69], [79].   

 

1.10. Calcium localization in neurons 

Calcium signaling in neurons is characterized by high spatial compartmentalization, which 

plays very different roles in information coding depending on the neuronal region affected, 

such as in the entire neuron versus localized signals in the growth cone [93]. It has been 

demonstrated both in vitro and in vivo that the global calcium increases usually control the 

production of neurotransmitters and maturation of potassium channels, while local calcium 

waves in the growth cone regulate neurite extension [70], [94], [95]. Decreased presynaptic 

calcium causes short-term depression, whereas elevated levels contribute to forms of synaptic 

enhancement like facilitation, augmentation, and post-tetanic potentiation [96], [97]. 

The calcium concentration in growth cones is regulated by both calcium influx through 

the plasma membrane and release from intracellular calcium stores [98], [99]. Neuronal growth 

cones maintain a baseline intracellular calcium concentration at the resting state, termed the 

resting [Ca2+]i [100]. Neurons require high frequency, brief spiking along with intracellular 

calcium buffering in order to restrict calcium entry [101]. This calcium mediated signaling 

involves fluctuations of [Ca2+]i above the resting level, which is observed as calcium 
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fluctuations and also referred to as transients. These [Ca2+]i transients regulate motility in vitro 

and extracellular cues may modulate in vivo migration [94], [102]–[104]. 

 

1.11. Calcium’s role in growth cones 

Growth cone behaviours depend on various factors of calcium signaling including the 

global or local spatial distribution of calcium, the temporal dynamics of calcium changes, the 

resting [Ca2+]i, and effector molecules the growth cone may encounter, such as guidance cues. 

These oscillatory patterns and their spontaneous spiking frequency have been shown to 

regulate neurite outgrowth and migration [80], [103]. For example, it is the temporal [Ca2+]i 

signaling pattern that regulates axon outgrowth and growth cone mobility [95], and localized 

[Ca2+]i signaling serves as a directional cue for guidance of neurite extension [77], [105], [106]  

and branching [107]–[110].  

It has previously been found when growth cones are exposed to stimuli that produce a 

large, sudden global [Ca2+]i elevation, they usually slow down, stop, or retract in a calcium-

dependent manner [100], [111], [112]. However, different neurons have optimal calcium 

ranges whereby lower and higher [Ca2+]i concentrations slow outgrowth [104]. In Xenopus, 

localized calcium signals provide the intracellular directional cues for extension that is 

sufficient to initiate both attraction and repulsion of the growth cones [85].  

By generating both global and local calcium signals, a growth cone could generate different 

turning responses under different environmental conditions during guidance [105]. In fact, the 

direction of growth cone steering is regulated by local [Ca2+]i elevation in addition to the 

baseline [Ca2+]i [85], [113], [114].The magnitude of each [Ca2+]i elevation can cause both 

attraction or repulsion cues, depending the baseline [Ca2+]i [85]. In contrast, other studies have 

also found that elevating [Ca2+]i in growth cones can promote neurite outgrowth [115], [116]. 
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This discrepancy in [Ca2+]i regulation of extension length may be due to differences in the 

resting [Ca2+]i level relative to its optimal resting level [100]. Growth cones have been shown 

to adapt to elevated baseline [Ca2+]i conditions, which suggests that the Ca2+-dependent targets 

that define the ‘optimal range’ can adjust their sensitivity or be down regulated [100], [104], 

[117].  

 

1.12. Calcium signaling and disorders of the nervous system 

Strict calcium regulatory mechanisms exist to ensure a low intracellular level that when 

altered may contribute to neuropathies. Disruption of calcium homeostasis influences both 

short and long term neuronal maturation and thus may promote pathological changes resulting 

in altered network organization [68].  

Neurodegenerative disorders have been linked to calcium dis-homeostasis in different 

regions of the brain and cellular compartments including Huntington’s disease, cerebellar 

ataxia, Alzheimer’s disease, and Parkinson’s disease[118].  For example, increases in [Ca2+]i of 

substansia nigra pars compacta dopaminergic neurons in Parkinson’s Disease have been 

attributed to slow, broad Ca2+ spiking and a lack of intrinsic buffering [119].  

Calcium dysregulation is also present in autism. Mutations in genes encoding L- and T-

type voltage-gated channels have been identified in individuals with autism [120]. A member 

of the novel P5 subfamily of transporters involved in calcium transport across biological 

membranes, ATP13A4, has also been implicated in autism [121]. Moreover, calcium dis-

homeostasis and abnormal PGE2 levels have been implicated in autism [16], [121]. Excessive 

calcium levels have been shown to be responsible for boosting mitochondrial 

aspartate/glutamate carrier activity, mitochondrial metabolism and oxidative stress in post-

mortem temporocortical gray matter of autistic brains [122].  
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1.13. Objectives  

The overall objective of my Master of Science research is to investigate the molecular 

basis of PGE2 signaling in the early development of the nervous system using an in vitro 

experimental model system. More specifically, I will be looking at the effect of increased 

levels of PGE2 on (1) mobilization of the intracellular calcium levels in differentiated neuronal 

cells (Chapter 2, Appendix A), (2) subcellular localization of the EP4 receptor in 

undifferentiated NE-4C stem cells and differentiated NE-4C neuronal cells (Chapter 3, 

Appendix B), and (3) expression of specific early developmental Wnt (wingless-type MMTV 

integration site family)-target genes in the mouse model after prenatal exposure to PGE2 

(Appendix C). 

 

1.14. Hypotheses 

The PGE2 signaling pathway plays an important role in the early development of the 

nervous system. My current study stems from our previous findings in our lab that show that 

PGE2 involvement in regulation of calcium homeostasis in mouse neuroblastoma (Neuro-2a) 

cells. We showed that increased level of PGE2 resulted in an increase in intracellular calcium 

levels in differentiated neuronal Neuro-2a cells [65],  and a decrease in neurite extension length 

[40]. Our lab also determined that the PGE2 dependent intracellular calcium regulation occurs 

via an EP4-PI3K inhibitory mechanism [65]. In this study I use mouse neuroectodermal (NE-

4C) stem cells as an experimental model of early development (see section 1.15). These cells 

are a good model for neuronal stem cells as they are also capable of differentiation to neurons 

and astrocytes.  
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Based on our previous findings I hypothesize that: 

1. Increased level of PGE2 can alter calcium homeostasis in differentiating NE-4C 

cells. More specifically, I hypothesize that PGE2 can 

a. alter basal cytosolic and growth cone calcium level, 

b. affect growth cone calcium fluctuation amplitude 

c. influence length of neurite extension 

(Study 1 – Submitted manuscript in Chapter 2 and additional data in Appendix A) 

 

We have also previously shown that the EP4 receptor can regulate calcium homeostasis 

in neuronal Neuro-2a cells via PI3K inhibitory mechanism [65]. In addition, other studies show 

that the functional role of the PGE2/EP4 signaling may depend on subcellular localization of 

the EP4 receptor [60]. Given the previous findings I hypothesize that  

2. Elevated levels of PGE2 can induce subcellular trafficking of the EP4 receptor 

from it’s normal location in the Golgi apparatus to  

a. the plasma membrane of undifferentiated NE-4C stem cells and NE-4C 

differentiating neuronal cells, and  

b. to the growth cones of differentiating NE4C neuronal cells 

(Study 2 – Submitted manuscript in Chapter 3 and additional data in Appendix B) 

 

Additionally, our lab has shown first evidence of crosstalk between the PGE2 signaling 

and developmental Wnt pathways in the nervous system using NE-4C stem cells [3]. I 

contributed to a study conducted by a PhD student in our lab using genetically identical mouse 

off-springs (C57BL/6) prenatally affected with higher level of PGE2 during the critical 

developmental period. The objective was to confirm that the interaction between PGE2 and 
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Wnt also exists in vivo.  Moreover, we intended to answer a fundamental question of whether 

external environmental risk factors (that are capable of increasing the level of PGE2 during 

development) (i) can affect expression of early developmental genes, and (ii) if the expression 

varies between genetically identical pups. The general hypothesis for this study is that 

3. Prenatal exposure to higher PGE2 level can influence Wnt pathway in vivo via 

affecting expression of Wnt-target genes  differently in each genetically identical 

off-spring (I characterized two genes Wnt3a and Fosl1) 

(Study 3 – Manuscript in preparation as co-author in Appendix C) 

 

1.15. Experimental model system  

For in vitro studies, I will use NE-4C stem cells as my experimental model (Chapter 2, 

3, Appendices A, B). NE-4C cells were obtained from American Tissue Culture Collection 

(ATCC), which were cloned from primary brain cell cultures prepared from the for- and 

midbrain vesicles of 9-day old transgenic mouse embryos lacking functional p53 tumor 

suppressor protein. These NE-4C cells divide continuously and are able to differentiate into 

distinct neural cell types upon appropriate induction [123]. For in vivo studies, I will use 

mRNA collected from embryonic mouse brain as my experimental model (Appendix C). 
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2.1. Abstract 

Lipid mediator prostaglandin E2 (PGE2) is an endogenous signaling molecule that plays 

an important role during early development of the nervous system. Abnormalities in the PGE2 

signaling pathway due to genetic or environmental factors have been associated with 

neurodevelopmental disorders. Previous studies have shown that stimuli that can affect PGE2 

levels such as infections, inflammations, toxic chemicals or exposure to some drugs all are 

associated with Autism Spectrum Disorders. Our previous study shows that higher PGE2 levels 

can affect migration, proliferation and differentiation of neuroectodermal (NE-4C) stem cells 

through cross-talk with another pathway crucial in early development, called the canonical Wnt 

signaling pathway. In this study we use ratiometric fura-2AM calcium imaging to show that 

increased concentrations of PGE2 elevates basal cytosolic and growth cone intracellular 

calcium levels in NE-4C stem cells differentiated to neurons. PGE2 also increased the 

minimum and maximum level as well as amplitude of calcium fluctuation in the neuronal 

growth cones. Furthermore, we found that PGE2 affected the neurite extension length in cells 

with the highest growth cone calcium amplitude. In summary, our results show that PGE2 may 

adversely impact intracellular calcium dynamics in differentiated neuronal cells and affect 

early development of the nervous system. 
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2.2. Introduction  

Proper development and function of the nervous system relies greatly on the release of 

bioactive lipid metabolites such as prostaglandin E2 (PGE2) from membrane phospholipids 

[31].  PGE2 is the major lipid mediator critical in the developing nervous system. During 

embryonic brain development, PGE2 is involved in synaptic plasticity, dendritic spine 

formation, refining of mature neuronal connections, and cell survival and death [124]–[126]. 

PGE2 signaling also regulates important biological functions such as the inflammatory 

response, fever, pain and sleep, whereby elevation of endogenous PGE2 levels has been found 

during inflammatory response and oxidative stress [16], [127], [128].  Abnormalities in the 

PGE2 signaling pathway due to genetic or environmental causes have been implicated in 

Autism Spectrum Disorders (ASD) [15], [16].  

PGE2 level in the brain is regulated by the activity of phospholipase A2 and 

cyclooxygenase -1 or -2, (PLA2, COX-1, COX-2) enzymes that regulate its release from 

phospholipid membranes and synthesis, respectively [31]. PGE2 exerts its diverse effects 

through four G protein-coupled E-prostanoid receptors designated EP1-4 [129]. EP1 receptor 

activation results in a release of intracellular calcium from inositol triphosphate (IP3) via the 

Gq-PLC-IP3 and activation of PKC. The remaining receptors EP2, EP3 and EP4 mainly 

mediate the increase of cAMP via Gs-cAMP/PKA pathway. EP4 receptor activation can also 

result in the decrease or increase of Ca2+ levels via Gi or Gs, respectively [65]. We have 

previously shown that changes in PGE2 level can cause neurite retraction and affect calcium 

transients in differentiated neuroblastoma (Neuro-2a) cells [40], [65].  We have also 

determined that increased PGE2 level can alter migration, proliferation and differentiation of 

neuroectodermal stem (NE-4C) cells through cross-talk with the Wnt pathway, which is crucial 

for early brain development [3].  
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This study investigates the effect of PGE2 on Ca2+ dynamics in differentiated NE-4C 

cells used here as an experimental model system for early neurogenesis [130], [131]. Our 

results show that PGE2 elevates the cytosolic calcium level and the calcium fluctuations in the 

growth cones. This study adds further insight into the contribution of PGE2 in regulation of 

calcium dynamics in neuronal cells during early developmental events such as differentiation. 

 

2.3. Materials and Methods  

 

2.3.1. Cell Culture 

 Mouse NE-4C cells were obtained from American Tissue Culture Collection (ATCC) 

and grown in Minimum Essential Medium (MEM) supplemented with 10% fetal bovine serum, 

2 mM glutamine, 1X penicillin-streptomycin mixture (Invitrogen). Cells were maintained in an 

incubator containing 5% CO2 at 95% humidity at 37°C. Cells were plated on 0.01% poly-L-

lysine (Sigma) coated 100mm culture plate (BD Falcon) and were subcultured at a 1:10 ratio. 

Supplemented MEM was changed every 2 days.   

 

2.3.2. Differentiation and PGE2 treatment 

Differentiation of NE-4C cells was induced on day 0 using Neurobasal media (NBM; 

supplemented with L-glutamate, 1× Pen Strep, and 1 × B-27; Invitrogen) in poly-L-lysine 

(Sigma, MW 70000–150000 kDa) pre-coated 100mm culture plates. By day 6, neurospheres 

(clusters of neural stem cells) (unpublished results) were mechanically dissociated, seeded onto 

glass chamber slides (BD Falcon) and differentiated until day 12. Supplemented differentiating 

media was replaced every 2 days. Pou Class 5 homeobox 1 (Pou5f1) and Tubulin beta-3 chain 

protein (Tubb3) were used on day 12 as stem cell and late neuronal cell markers to confirm 
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differentiation using PCR. PCR primers are as follows: Pou5f1 forward 5’- 

ctggctaagcttccaagggc-3’ and reverse 5’-ccagggtctccgatttgcat-3’; Tubb3 5’- 

agcagctacttcgtggagtg -3’ and reverse 5’- gggcttccgattcctcgtca -3’. As compared to day 0, which 

showed presence of the Pou5f1 marker, we confirmed that on day 12 only the Tubb3 marker 

was detected (data not shown). On day 12 NE-4C cells were treated with 0.1 micromolar (µM), 

1 µM, and 10 µM PGE2 (Sigma) for 3 and 24 hours (3 h and 24 h). Control and treatment 

groups had media changed every 2 days.  

 

2.3.3. Calcium Imaging 

Real-time calcium imaging was performed using the ratiometric method of intracellular 

calcium ([Ca2+]i) measurement with fura-2-acetoxymethyl ester (fura-2AM, Invitrogen) 

calcium indicator with a Nikon Eclipse Ti-E microscope as we previously described [40], 

[121]. To ensure suitable physiological conditions while completing analysis, conditions were 

replicated from our previous experiments. The fluorescence ratio of 340/380 in fura-2AM 

loaded (Ca2+-bound to Ca2+-free fura-2) in differentiated NE-4C cells was measured for a 

minimum of 120 seconds to establish a stable baseline level prior to determining the Rmax and 

Rmin value. The ratio values were then converted to calcium concentration using the following 

formula as we previously described [121].  

 

2.3.4. Cytosolic and growth cone calcium level in differentiated NE-4C cells 

On day 12, the basal 340/380 ratio value was measured for 60 seconds. We determined 

60 seconds was a sufficient recording time to represent a stable baseline of calcium level based 

on our preliminary recordings, whereby the baseline was recorded for 2 minutes, followed by a 

further 10 minutes once the Rmax was determined. The cytosolic and growth cone regions were 
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selected using NIS Elements software (Nikon). Mean basal calcium levels were found by 

calculating the mean of 340/380 ratio values obtained at each 5-second time intervals for 60 

seconds. Global changes in growth cone calcium fluctuation dynamics were determined by 

measuring the amplitude, maximum (max) and minimum (min) 340/380 ratio values in the 

entire growth cone. The max and min values of the 340/380 ratios were averaged (Δ340/380max 

and Δ340/380min) in untreated and PGE2-treated groups. The Δ340/380max PGE2-treated cells 

were compared to the untreated cells followed by the same assessment for Δ340/380min. Next, 

the differences between the Δ340/380max and Δ340/380min (Δ340/380max-min) was obtained in 

the PGE2-treated cells and compared to the Δ340/380max-min in the untreated cells to determine 

the change in growth cone fluctuation amplitude. A minimum of 3 independent experiments 

were completed for each treatment group. The total number of cells and growth cones (N), and 

original 340/380 ratio values were used for statistical analysis.  

 

2.3.5. Data Analysis and Statistics 

Statistical analysis was performed by one-way analysis of variance (ANOVA) followed 

by a Tukey post-hoc comparison test. Differences were considered statistically significant at 

*p<0.05, **p<0.01, or ***p<0.0001.  
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2.4 Results  

2.4.1. Effects of PGE2 on cytosolic intracellular free calcium concentration  

In this study we measured cytosolic and growth cone intracellular calcium 

concentration ([Ca2+]i) using ratiometric real-time calcium imaging as previously described  

[66, 124]. PGE2 concentrations of 0.1, 1 and 10 µM were added on day 12 of differentiation 

(see methods 2.3.2.) for 3 h and 24 h exposure. The Rmin and Rmax values in untreated NE-4C 

cells were 0.33 and 4.25, respectively. These values were applied to the calculation of the 

340/380 ratios and the [Ca2+]i  [124]. The basal cytosolic [Ca2+]i for differentiated NE-4C cells 

(serum free media (SFM) condition) was 80.5 nanomolar (nM) (N = 270). This corresponds to 

values normally found in neuronal cells  [78, 79]. All concentrations of PGE2 treatment used 

for 3 h and 24 h on day 12 of differentiation resulted in significantly increased mean basal 

cytosolic [Ca2+]i (Figure 3A). Exposure to 0.1, 1 and 10 µM PGE2 for 3 h increased the mean 

basal cytosolic [Ca2+]i to 187, 184, and 134 nM, respectively. This corresponds to a significant 

132% (N = 95, p = 4.44 x 10-13), 129% (N = 91, p = 4.44 x 10-13) and 66% (N = 144, p = 4.44 x 

10-13) increase (Figure 3A). Exposure to the same concentrations of PGE2 for 24 h increased 

the mean basal cytosolic [Ca2+]i to 173, 165, and 141 nM, respectively. This corresponds to a 

significant 114% (N= 79, p = 2.63 x 10-13), 105% (N = 76, p = 2.63 x 10-13) and 76% (N = 39, 

p = 2.63 x 10-13) increase in [Ca2+]i (Figure 3A).  
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2.4.2. Effects of PGE2 on global growth cone intracellular free calcium concentration 

Spontaneous [Ca2+]i transients in growth cones are important for early neuronal 

development such as axonal outgrowth or early synapse formation [85], [132], [133]. 

Therefore, we measured whether PGE2 treatment will have an effect on baseline [Ca2+]i level in 

the whole growth cone in differentiated NE-4C cells. The mean basal growth cone [Ca2+]i level 

for untreated differentiated NE-4C cells (SFM) was 501 nM (N = 247). Growth cone calcium 

levels in PGE2 treated cells were compared to the untreated group. Similar to the cytosolic 

results, there was a significant increase in the average growth cone calcium levels in all PGE2 

concentration used. Upon 0.1, 1 and 10 µM PGE2 treatment for 3 h, the basal growth cone 

[Ca2+]i increased to 805, 1010, and 617 nM, respectively. This represents a 60% (N = 149, p = 

5.18 x 10-13), 101% (N = 123, p = 5.18 x 10-13) and 23% (N = 123, p = 4.88 x 10-3) increase, 

respectively (Figure 3B). Exposure to the same concentrations of PGE2 for 24 h also increased 

[Ca2+]i to 808, 697, and 746 nM, respectively. This corresponds to a 61% (N = 118, p = 6.06 x 

10-13), 39% (N = 125, p = 2.18 x 10-7) and 49% (N = 97, p = 2.14 x 10-11) increase in mean 

basal growth cone [Ca2+]i (Figure 3B).  
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Figure 3. Exposure time dependent increase in basal (A) cytosolic and (B) growth cone 

[Ca2+]i in response to PGE2 exposure. A. Treatments with 0.1, 1 and 10 µM PGE2 for 3 h 

elevated [Ca2+]i by 132% (N = 95), 129% (N = 91) and 66% (N = 144); for 24 h elevated 

[Ca2+]i by 114% (N = 79), 105% (N = 76) and 76% (N = 39). B. Treatments with 0.1, 1 and 10 

µM PGE2 for 3 h elevated [Ca2+]i by  60% (N = 149), 101% (N = 123) and 23% (N = 123), 

respectively; for 24 h elevated [Ca2+]i by 61% (N = 118), 39% (N = 125) and 49% (N = 97), 

respectively. The y-axes represents the % change in [Ca2+]i (nM) and x-axes depict the time of 

PGE2 exposure, with all tested concentrations grouped by exposure time. Results represent a 

minimum of three independent experiments. [Ca2+]i = intracellular calcium concentration; 

PGE2 = prostaglandin E2; SFM = serum free media; **p<0.01; ***p<0.0001. 
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2.4.3. PGE2 affects intracellular minimum and maximum [Ca2+]i fluctuation in growth 

cones 

Minimum ([Ca2+]i (min)) and maximum ([Ca2+]i (max)) spontaneous fluctuation levels in 

growth cones are physiologically important in neuronal development [70], [83]–[85]. In our 

study we found that exposure to various concentrations of PGE2 for 3 h or 24 h adversely 

impacts differentiated NE-4C growth cone [Ca2+]i fluctuation. Figure 4 A and B depicts 

individual traces of [Ca2+]i fluctuation. There is a clear difference in the [Ca2+]i (min) and [Ca2+]i 

(max) values and amplitude of fluctuation with 0.1, 1 and 10 µM PGE2 treatment as compared to 

the control condition (SFM). We quantified the average minimum ([Ca2+]i (min)) and maximum 

([Ca2+]i (max)) fluctuation peaks across growth cones. All values of PGE2-treated groups were 

compared to the [Ca2+]i (min) and [Ca2+]i (max) of the untreated group (SFM), which was 146 nM 

(N = 247) and 1479 nM (N = 247), respectively. Differentiated NE-4C cells exposed to 3 h 

PGE2 show a significant increase in [Ca2+]i (min) by 0.1 µM of PGE2, whereas after 24 h PGE2 

exposure all concentrations tested resulted in significant increases. After 3 h 0.1, 1 and 10 µM 

PGE2 treatments, the growth cone [Ca2+]i (min) were 220 nM (N = 149, p = 3.44 x 10-13), 178 

nM (N = 123, p = 2.19 x 10-1) and 147 nM (N = 123, p = 9.90 x 10-1), respectively. After 24 h, 

resulting [Ca2+]i (min) increased to 223 nM (N = 118, p = 3.02 x 10-13), 204 nM (N = 125, 7.71 x 

10-10) and 182 nM (N = 97, 3.00 x 10-3), respectively (Figure 4C). PGE2 also significantly 

increased the [Ca2+]i (max) in all conditions (Figure 4C). After exposure to 0.1, 1 and 10 µM 

PGE2 concentrations for 3 h the [Ca2+]i (max) reached 2308 nM (N = 149, p = 4.56 x 10-17), 3350 

nM  (N = 123, p = 5.35 x 10-13) and 2183 nM  (N = 123, p = 1.31 x 10-2), respectively. After 

24 h exposure to the same concentration the [Ca2+]i (max) were 2189 nM (N = 118, p = 1.33 x 

10-9), 1917 nM (N = 125, p = 7.67 x 10-3) and 2500 nM (N = 97, p = 2.11 x 10-8), respectively. 
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Overall, we determined that application of various concentrations of PGE2 to differentiated 

NE-4C cells results in significant changes in the level of [Ca2+]i (min) and [Ca2+]i (max) 

fluctuations. 

 

2.4.4. PGE2 treatment results in global changes of growth cone [Ca2+]i amplitude 

The amplitude (or range) of calcium fluctuation in growth cones is also known to play 

critical roles in early neuronal development [95]. We determined that the [Ca2+]i amplitude  in 

growth cones (see methods) of differentiated NE-4C cells was 1333 nM (N = 247) (Figure 

4D). In differentiated cells exposed to PGE2, the calcium fluctuation amplitude was 

significantly increased in all concentrations used (Figure 4D). The [Ca2+]i amplitude after 0.1, 

1 and 10 µM PGE2 exposure for 3 h was 2088 nM (N = 149, p = 1.00 x 10-5), 3172 nM (N = 

123, p = 8.19 x 10-13) and 2037 nM (N = 123, p = 1.39 x 10-2), which represents an increase by 

82%, 137% and 54%, respectively. Similarly, the [Ca2+]i amplitude after 24 h PGE2 exposure 

was 1966 nM (N = 118, p = 7.62 x 10-8), 1714 nM (N = 125, p = 3.88 x 10-2) and 2318 nM (N 

= 97, p = 1.95 x 10-7), respectively, in response to the same concentrations of PGE2. This 

represents 87%, 40% and 93% increase in calcium fluctuation for the corresponding PGE2 

concentrations. Overall, these results demonstrate that PGE2 exposure has a significant effect 

on the range of growth cone calcium dynamics in differentiated NE-4C cells.  
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Figure 4. PGE2 exposure time dependent change in the dynamics of growth cone 

fluctuation [Ca2+]i levels in response to PGE2 exposure. A, B. Traces of spontaneous 

intracellular [Ca2+]i fluctuations in migrating growth cones after 3 h and 24 h PGE2 exposure, 

respectively. C. Minimum [Ca2+]i levels increased after 3 h of 0.1 and 1 µM to 220 nM (N = 

149) and 178 nM (N = 123) but did not change with 10 µM being 147 nM (N = 123), 

respectively, and after 24 h increased to 223 nM (N = 118), 204 nM (N = 125) and 182 nM (N 

= 97). Maximum [Ca2+]i levels increased after 3 h to 2308 nM (N = 149), 3350 nM (N = 123) 

and 2183 nM (N = 125), and after 24 h to 2189 nM (N = 118), 1917 nM (N = 125) and 2500 

nM (N = 97). D. Fluctuation amplitude increased from 0.1, 1, and 10 µM after 3 h to 2088 nM 
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(N = 149), 3172 nM (N = 123) and 2037 nM (N = 123), and after 24 h to 1966 nM (N = 118), 

1714 nM (N = 125) and 2318 nM (N = 97), respectively. The y-axes represent the [Ca2+]i (nM) 

and x-axes depict A, B the measurement time (seconds) taken at 5-second intervals, and C, D 

the time of PGE2 exposure, with all tested concentrations grouped by exposure time. Results 

represent a minimum of three independent experiments. [Ca2+]i = intracellular calcium 

concentration; PGE2 = prostaglandin E2; Minimum and maximum [Ca2+]i are shown by 

triangles and circles, respectively; *p<0.05; ***p<0.0001. 
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2.4.5. PGE2 treatment affects neurite extension in differentiated NE-4C cells  

We also measured whether PGE2 had an effect on neurite extension length in 

differentiated NE-4C cells on day 12 since neuronal outgrowth requires proper growth cone 

calcium dynamics [109]. The mean neurite extension length of untreated cells was 32.6 µm (N 

= 342). After 3 hours exposure to 0.1, 1 and 10 µM PGE2 the extension lengths were 38.5 µm 

(N = 264), 24.1 µm (N = 197), and 39.8 µm (N = 210), respectively. Significantly shorter 

extension length was detected for the 1 µM PGE2 treatment (p = 0.03) (Figure 5). 

Interestingly, we also detected the highest [Ca2+]i amplitude after 3 h treatment with the 1 µM 

PGE2 concentration (Figure 4D). After 24 h of PGE2 exposure the extension lengths were 35.1 

µm (N = 323), 38.2 µm (N = 377), and 52.0 µm (N = 241), respectively with significantly 

increased extension length by 10 µM PGE2 (p = 8.11 x 10-10) (Figure 5). The 10 µM PGE2 

treatment also showed the highest [Ca2+]i amplitude change after 24 h (Figure 4D). These 

results demonstrate a PGE2 time- and concentration- dependent change in neurite extensions.  

  



	   32	  

 

Figure 5. PGE2 exposure time- and concentration- dependent change in neurite extension 

length. Mean neurite extension length in the SFM group was 32.6 µm (N = 342) and after 3 h 

PGE2 decreased from 1 µM PGE2 to 24.1 µm (N = 197), but did not change by 0.1 and 10 µM 

being 38.5 µm (N = 264), 39.8 µm (N = 210) respectively, and after 24 h did not change by 0.1 

and 1 µM but increased by 10 µM being 35.1 µm (N = 323), 38.2 µm (N = 377), and 52.0 µm 

(N = 241), respectively. The y-axis represents the extension length (µm) and x-axis depicts the 

time of PGE2 exposure, with all tested concentrations grouped by exposure time. Results 

represent a minimum of three independent experiments. PGE2 = prostaglandin E2; SFM = 

serum free media; *p<0.05; ***p<0.0001. 
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2.5. Discussion 

This study provides molecular evidence that the lipid mediator prostaglandin E2 can 

influence calcium homeostasis in differentiated neuroectodermal (NE-4C) stem cells. We show 

that PGE2 can alter the cytosolic and growth cone [Ca2+]i dynamics, and alter neurite extension 

length in a time- and concentration- dependent manner, indicating that PGE2 may have diverse 

effects on the developing nervous system.  

PGE2 plays a significant role in many events during early neuronal development such 

as synaptic plasticity, dendritic spine formation, refining of mature neuronal connections, and 

cell survival and death [124]–[126]. Our previous reviews discuss the abnormalities in the 

PGE2 signaling pathways due to genetic or environmental causes that leads to ASD [15], [16]. 

Many environmental risk factors such as infections, inflammation or misoprostol 

(prostaglandin E analogue and a drug used for termination of pregnancy) can affect the level of 

prenatal PGE2 and result in pathologies of the nervous system [15], [16]. Our previous in vitro 

studies in mouse neuroblastoma (Neuro-2a) cells already showed that an elevated level of 

PGE2 and misoprostol alter cytosolic Ca2+ regulation in differentiated Neuro-2a cells [40].  

Defects in calcium regulation have been previously linked to neurodevelopmental disorders 

such as ASD [121], [122], [134] or neurodegenerative disorders including Alzheimer’s disease, 

Parkinson’s disease, and Huntington’s disease [119], [135]–[137].  

Considering the pivotal role of calcium in the early brain development [68], in this 

study we investigated the effect of PGE2 on Ca2+ homeostasis in differentiated 

neuroectodermal (NE-4C) stem cells as a model for early neurogenesis [130]. Normally, Ca2+ 

ions are key mediators to multiple cellular processes in early neuronal development including 

cell growth, differentiation, synaptic activity, gene expression, activity dependent signaling, 

and cell death [69]–[74]. In neurons, the level of Ca2+ ions is very tightly regulated with a very 



	   34	  

low basal level in the cytosol compared to extracellular concentration [85]. Any changes in 

frequency and amplitude of Ca2+ transients in the cytosol can affect gene expression [72], [73], 

[138], [139]. In this study we show that exposure to various concentrations of PGE2 causes a 

significant increase in mean basal cytosolic [Ca2+]i in differentiated NE-4C cells. Given the 

importance of Ca2+ in major developmental processes and its concentration-sensitive function, 

disrupted [Ca2+]i  due to changes in the PGE2 level could lead to altered gene expression. In 

fact, we have already shown in previous studies that in NE-4C cells, higher PGE2 

concentrations affect expression of genes that belong to a major pathway involved in early 

development called the Wnt pathway and consequently alter Wnt-dependent cell proliferation, 

migration and differentiation [3].  

A large body of evidence indicates that growth cone [Ca2+]i has diverse roles in the control 

of axonal growth and guidance. During development, Ca2+ signals are involved in the control 

of elongation, orientation and arrest of growth cones in neurite extension, leading to the 

establishment of neuronal networks [109], [140], [141]. We show that PGE2 significantly 

increases the mean basal Ca2+ levels globally in the growth cones of differentiated NE-4C cells 

for all tested concentrations. Since axon guidance via growth cone turning is heavily dependent 

on Ca2+ concentrations [85], [132], [133], it is feasible that  abnormal PGE2 signaling could 

contribute to underlying brain pathologies through changes in growth cone Ca2+ during early 

neuronal development. 

Calcium signaling in neurons is characterized by high spatial compartmentalization, which 

plays very different roles in information coding depending on the neuronal region affected, 

such as in the entire neuron versus localized signals in the growth cone [93]. Calcium 

concentration in growth cones is regulated by both Ca2+ influx through the plasma membrane 

and release from intracellular Ca2+ stores [98], [99]. Neuronal growth cones maintain a 
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baseline intracellular Ca2+ concentration at the resting state, termed the resting [Ca2+]i [100]. 

Calcium mediated signaling involves fluctuations of [Ca2+]i above the resting level, which can 

be observed as Ca2+ fluctuations. Interestingly, we found that PGE2 significantly increases the 

basal [Ca2+]i fluctuations in growth cones of NE-4C cells.  

Growth cone behaviours also depend on various factors of Ca2+ signaling including the 

global or local spatial distribution of Ca2+, the temporal dynamics of Ca2+ changes, the resting 

[Ca2+]i, and effector molecules the growth cone may encounter, such as guidance cues. For 

example, temporal [Ca2+]i signaling regulates axon outgrowth and growth cone mobility [95], 

and localized [Ca2+]i serves as a directional cue for guidance of neurite extension [77], [105], 

[106] and branching [107]–[110]. Given the importance of Ca2+ signaling in determining 

growth cone behaviour, we assessed how PGE2 affects various components of the Ca2+ 

transients.   

By generating both global and local Ca2+ signals, a growth cone could generate different 

turning responses under different environmental conditions during guidance [105]. In fact, the 

direction of growth cone steering is regulated by local [Ca2+]i elevation in addition to the 

baseline [Ca2+]i [85], [113], [114].The magnitude of each [Ca2+]i elevation can cause both 

attraction or repulsion cues, depending the baseline [Ca2+]i [85]. In this study we found that 

higher level of PGE2 caused an increase in the [Ca2+]i(min) and [Ca2+]i (max)levels. PGE2 –

dependent alterations in the [Ca2+]i(min) and [Ca2+]i(max)  fluctuations could affect activation of 

signaling molecules and result in abnormal growth cone turning [85]. 

Calcium signals usually have an oscillatory pattern, and their spontaneous spiking 

frequency has been shown to regulate neurite outgrowth and migration [80], [103]. It has 

previously been found when growth cones are exposed to stimuli that produce a large, sudden 

global [Ca2+]i elevation, they usually slow down, stop, or retract in a Ca2+-dependent manner 
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[100], [111], [112]. We found that all tested concentrations of PGE2 elevated the basal 

amplitude of the Ca2+ fluctuation, whereby the greatest elevation in Ca2+ amplitude after 3h of 

PGE2 exposure corresponded to a decrease in neurite extension length, consistent with our 

previous findings [40]. This is also consistent with the idea that Ca2+ serves as a negative 

regulator of neurite extension [102], [140] both in culture [102], [103], [140] and in vivo [95]. 

However, other studies have found that elevating [Ca2+]i in growth cones can also promote 

neurite outgrowth [115], [116]. Interestingly, after 24h PGE2 exposure, we found the greatest 

[Ca2+]i amplitude corresponded to an increase in extension length. This discrepancy in [Ca2+]i 

regulation of extension length may be due to differences in the resting [Ca2+]i level relative to 

its optimal resting level [100]. Growth cones have been shown to adapt to elevated baseline 

[Ca2+]i conditions, which suggests that the Ca2+-dependent targets that define the ‘optimal 

range’ can adjust their sensitivity or be down regulated [100], [104], [117]. Therefore, it is 

possible that the 24h of PGE2 exposure allowed the growth cone to adapt to its elevated 

baseline ([Ca2+]i(min)). Here we show that extension length was altered by PGE2 and suggest it 

occurs via Ca2+ dynamics. Our research suggests it is that the basal amplitude [Ca2+]i 

fluctuation also contributes to regulation of neurite extension length. 

In summary, our study shows that PGE2 induces changes in cytosolic and growth cone 

[Ca2+]i levels and neurite extension length in differentiated NE-4C cells. We found that all 

tested PGE2 concentrations and exposure times generally contributed to the same outcome of 

an increase in [Ca2+]i levels. Moreover, neuronal extension length was modified by an increase 

in growth cone calcium amplitude in a PGE2 time- and concentration-dependent manner. This 

study furthers our understanding of the role PGE2 plays in neuronal cells and its importance in 

calcium signaling in the developing nervous system.  
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CHAPTER 3. PROSTAGLANDIN E2 FACILITATES SUBCELLULAR 

TRANSLOCATION OF THE EP4 RECEPTOR IN NEUROECTODERMAL NE-4C 

STEM CELLS 
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 3.1. Abstract 
 
Prostaglandin E2 (PGE2) is a lipid mediator released from the phospholipid membranes that 

mediates important physiological functions in the nervous system via activation of four EP 

receptors (EP1-4). There is growing evidence for the important role of the PGE2/EP4 signaling 

in the developing nervous system. Previous studies in our lab show that the expression of the 

EP4 receptor is significantly higher during the neurogenesis period in mouse. In mouse 

neuroblastoma cells the PGE2/EP4 receptor signaling pathway plays a role in regulation of 

intracellular calcium via a phosphoinositide 3-kinase (PI3K)-dependent mechanism. New 

research indicates that the functional importance of the EP4 receptor depends on its subcellular 

localization. PGE2-induced EP4 externalization to the plasma membrane of primary sensory 

neurons has been shown to play a role in the pain pathway. In the present study, we detected a 

novel PGE2–dependent subcellular trafficking of the EP4 receptor in neuroectodermal (NE-4C) 

stem cells and differentiated NE-4C neuronal cells. We show that PGE2 induces EP4 

externalization from the Golgi apparatus to the plasma membrane in NE-4C stem cells. We 

also determined that PGE2 enhanced EP4 translocation to the growth cones of differentiated 

NE-4C neuronal cells. These results demonstrate that the EP4 receptor relocation to the plasma 

membrane and growth cones in NE-4C cells is PGE2 dependent. Thus the functional role of the 

PGE2/EP4 pathway in the developing nervous system may depend on the subcellular 

localization of the EP4 receptor. 
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3.2. Introduction 

Prostaglandin E2 (PGE2) is a bioactive lipid derived from plasma membrane 

phospholipids, through enzymatic metabolism of arachidonic acid by cyclooxygenases -1 and -

2 (COX -1, -2) and prostaglandin synthase [31]. PGE2 mediates biosynthetic pathways that 

regulate biological functions such as sleep, fever, inflammation, and pain [48].  PGE2 also 

plays a critical role in the proper development of the nervous system. It induces differentiation 

of neuronal cells [142] and plays a regulatory role in membrane excitability and synaptic 

transmission in neurons [143]. PGE2 can also increase dendritic length and alter neuronal firing 

activity in the brain [144].  

PGE2 exerts it physiological function through its four cell surface G protein-coupled 

receptors (GPCRs) designated EP (E-Prostanoid) 1-4 with a different affinity [31], [32], [145]. 

Activation of EP1 receptor is associated with an increase of intracellular calcium [Ca2+]i, 

mediated by phospholipase C and inositol 1,4,5-triphosphate (IP3) [32], [53]. EP2 and EP4 are 

coupled to the stimulatory Gs protein and cause an increase in cAMP through activation of 

adenylate cyclase [64], which in turn activates protein kinase A (PKA) and mediates 

phosphorylation of cAMP response element binding the protein (CREB) transcription factor 

[54]. Activation of a specific EP3 isoform, can both decrease and increase cyclic AMP (cAMP) 

and IP3. It is also shown that the EP4 receptor signaling can operate via Gi proteins- 

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathways [66], [146].  

 Interest in the PGE2/EP4 pathway is increasing given its diverse capability of regulating 

central nervous system activity [147]. EP4 has a protective function by reducing cerebral injury 

and improving functional outcome after stroke [148], and in suppressing brain inflammation 

[149]. The EP4 receptor has been suggested to contribute to PGE2-induced changes in body 

temperature [150]. Furthermore, EP4 activation can decrease the level of amyloid-beta in the 
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brain and improve behavioural performance in a murine model of Alzheimer’s disease [151]. 

In sensory neurons the EP4 receptor along with the EP3C (EP3γ) mediates PGE2-induced 

sensitization of sensory neurons [152]. PGE2-prolonged sensitization of nociceptive dorsal root 

ganglion (DRG) neurons may also contribute to the transition from acute to chronic pain by 

facilitating EP4 receptor synthesis and anterograde axonal trafficking [60]. We have previously 

found that the PGE2/EP4 pathway plays an inhibitory role in regulating the intracellular 

calcium homeostasis in mouse neuroblastoma (Neuro-2a) cells via PI3K mechanism [65].  

Expression of the EP4 receptor is higher during early neurogenesis as compared to later 

embryonic stages in mouse embryos suggesting its importance in the developing nervous 

system [40].  

Recent research shows that the subcellular trafficking of the EP4 receptor may have 

functional implications. It has been shown that PGE2-induced EP4 externalization to the 

plasma membrane in DRG neurons is important for the inflammatory pain response [59]. The 

goal of this study was to determine whether PGE2 can also induce EP4 receptor trafficking in 

neuroectodermal (NE-4C) stem cells used as an experimental model system for early neuronal 

development. We show that PGE2 causes translocation of the EP4 receptor from its normal 

location in the Golgi apparatus [3] to the plasma membrane in undifferentiated NE-4C stem 

cells. This was confirmed with a specific EP4 receptor agonist. We also show for the first time 

that PGE2 can enhance trafficking of the EP4 receptor to growth cones of differentiated 

neuronal NE-4C cells. This study shows that PGE2 can influence the subcellular localization of 

the EP4 receptor in neuronal stem cells and differentiated neuronal cells.  
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3.3. Methods 

 

3.3.1. Cell cultures 

Mouse NE-4C cells were obtained from American Tissue Culture Collection (ATCC) 

and grown in Minimum Essential Medium (MEM) supplemented with 10% fetal bovine serum, 

2 mM glutamine, 1X penicillin-streptomycin mixture (Invitrogen). Cells were maintained in an 

incubator containing 5% CO2 at 95% humidity at 37°C. Cells were plated on 0.01% poly-L-

lysine (Sigma) coated 100mm culture plate (BD Falcon) and subcultured at a 1:10 ratio. 

Supplemented MEM was changed every 2 days.  NE-4C cells were seeded onto culture plates 

containing poly-L-lysine and incubated overnight at 37°C before treatment. 

 

3.3.2. Differentiation of NE-4C stem cells into neurons 

Differentiation of NE-4C cells was induced on day 0 using Neurobasal media (NBM; 

supplemented with L-glutamate, 1× Pen Strep, and 1 × B-27; Invitrogen) in poly-L-lysine 

(Sigma, MW 70000–150000 kDa) pre-coated 100mm culture plates. By day 6, neurospheres 

(clusters of neural stem cells) were dissociated, seeded onto 35 mm culture plates containing 

poly-L-lysine coated coverslips and grown until day 12. Supplemented differentiating media 

was replaced every 2 days. Pou Class 5 homeobox 1 (Pou5f1) and Mouse BIII tubulin (Tubb3) 

were used on day 12 as stem cell and late neuronal cell markers to confirm differentiation 

using PCR. PCR primers are as follows: Pou5f1 forward 5’- ctggctaagcttccaagggc-3’ and 

reverse 5’-ccagggtctccgatttgcat-3’; Tubb3 5’- AGCAGCTACTTCGTGGAGTG -3’ and 

reverse 5’- GGGCTTCCGATTCCTCGTCA -3’. As compared to day 0, which showed 

presence of the Pou5f1 marker, we confirmed that on day 12 only the Tubb3 marker was 

detected (data not shown).  
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3.3.3. Cell culture treatments 

To explore the time course of PGE2-induced EP4 externalization, we subjected NE-4C 

cells to 10µM PGE2 (Sigma) for 1, 3 and 24 hours (h). The abundance of EP4 at the plasma 

membrane appeared after 3h, thus we selected the 3h time for the following experiments. We 

also subjected NE-4C cells to 1 and 10µM concentration of PGE2 for 3h (no effect seen by 

1µM). Controls contained a corresponding concentration of the PGE2 organic solvent DMSO 

(dimethyl sulfoxide). 

PGE2-dependent EP4 externalization was confirmed using EP4 agonist (CAY10580; 

Cayman Chemicals; 10, 50, 100µM) for 3h, with representative figures presented. Specificity 

of this externalization was confirmed through use of EP4 antagonist (AH23848; Cayman 

Chemicals; 100µM) alone. To ensure sufficient EP4 receptor blocking prior to co-treatment 

with the agonist or PGE2, a pre-treatment (1hour) was applied followed by co-treatment (3 

hours) with CAY10580 (100µM) and PGE2 (10µM). PGE2-induced EP4 translocation was 

also performed in NE-4C cells differentiated into neurons after 12 days. PGE2 (1 and 10µM) 

was applied to differentiated cells for 3 and 24 hours, and compared to the untreated group 

(DMSO).  

 

3.3.4. Immunocytochemistry 

The cells were fixed with 4% paraformaldehyde (PFA) in phosphate buffered saline 

(4.3 mM Na2HPO4, 137 mM NaCl, 2.7 mM KCl, 1.4 mM KH2PO4) for 20 minutes at 4°C 

and washed twice with phosphate buffered saline (PBS). Cells were then incubated with 

primary antibodies in PBS with 0.3% Triton-X 100 and 2% normal goat serum (NGS). Cellular 

localization of the EP4 receptor was determined by incubation with anti-rabbit EP4 primary 
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antibody (1:60; Santa Cruz Biotechnologies) along with monoclonal anti-mouse PMCA1 

plasma membrane marker (1:500; Abcam), at room temperature for 2 hours. Following 

primary antibody incubation, cells were washed three times with PBS for 15 min and incubated 

with secondary antibodies in Tris-Buffered Saline and Tween 20 (TBS-Tween 20, 0.05%) and 

2% NGS for 1 hour at room temperature in the dark.  

Secondary antibodies used were anti-rabbit fluorescein isothiocyanate (FITC) (1:100; 

Jackson ImmunoResearch Laboratories) and anti-mouse Texas Red (1:200; Jackson 

ImmunoResearch Laboratories). Cells were then washed three times with PBS for 15 min, 

followed by a 10 minute incubation of 4′,6-diamidino-2-phenylindole (DAPI) (1:10000; 

Molecular Probes) at room temperature in the dark. Cells were washed three times with PBS 

for 15 min and coverslips were mounted on glass microscope slides with anti-fade mounting 

media (Invitrogen). The staining was visualized and captured using an Olympus Fluoview 300 

Confocal Laser Scanning Microscope. Secondary antibodies were used without primary 

antibodies to serve as a control for specificity (not shown).  

 

3.3.5. Immunocytochemistry quantification  

NIS Elements software (Nikon) was used to measure the signal intensity of EP4 

receptor at the plasma membrane in undifferentiated NE-4C stem cells. A line of 3pt width was 

drawn around the plasma membrane (perimeter of the cell) using the PMCA1 marker to define 

the perimeter. Once the plasma membrane was outlined, the region of interest (ROI) was 

overlaid on the EP4 image in the same location, and then the mean signal intensity was 

measured. The mean signal intensity accounts for the area of the ROI (line; length x width) 

overlaying the plasma membrane. The EP4 signal intensity is presented as a ratio in 

comparison to the control. Growth cone signal intensity was measured using the same 
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technique with ImageJ software [153]. Growth cone EP4 receptor intensity at the growth cone 

was taken as a mean for each treatment and compared to the mean of the control (DMSO, 

vehicle), and presented as a ratio value in comparison to the control. Background signals were 

subtracted from the signal intensity measurements for each cell and growth cone. Treatment 

groups were compared to the untreated group and was considered statistically significant at 

p<0.05 by ANOVA and/or a student’s t-test.   

 

3.4. Results 

 

3.4.1. PGE2 induces EP4 externalization to the plasma membrane in undifferentiated NE-

4C stem cells. 

We previously found that in NE-4C cells the EP4 receptor is normally localized in the 

Golgi apparatus [3]. To determine if PGE2 can induce EP4 cell surface externalization in NE-

4C cells, similar to in PGE2-treated DRG neurons [59], undifferentiated NE-4C cells were 

treated with 1 and 10µM of PGE2. Similar to untreated NE-4C cells the 1µM PGE2-treated 

cells show EP4 present in the Golgi apparatus (not shown). However, with 10µM PGE2 EP4-

immunoreactivity (IR) co-localized in the peripheral region with the PMCA1 (plasma 

membrane Ca2+-ATPase) marker, suggesting dose-dependent PGE2-induced EP4 translocation 

toward the plasma membrane (Figure 6A). The EP4 plasma membrane externalization in NE-

4C cells became apparent after 3 hours exposure to 10µM PGE2. 

The observed PGE2-induced EP4 externalization to the plasma membrane was inhibited 

by a selective EP4 antagonist, AH23848, and AH23848 alone had no effect on the EP4 

trafficking (Figure 6A). This indicates that the trafficking occurred through the EP4 receptor. 

We verified the increased abundance of EP4 receptor at the plasma membrane through 
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immunofluorescence quantification (Figure 6B). These results show a novel PGE2-dependent 

subcellular translocalization of the EP4 receptor in NE-4C stem cells. 
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Figure 6. PGE2–induced EP4 localization at the plasma membrane in undifferentiated 

NE-4C stem cells. A. Immunocytochemistry visualization of EP4 receptor. The EP4 receptor 

(Anti-EP4; top panel); plasma membrane marker (anti-PMCA1; middle panel); merged images 

(the nucleus marker DAPI; lower panel). EP4 localizes to the Golgi apparatus in no PGE2 
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control and at the plasma membrane with 10µM PGE2. The plasma membrane localization was 

blocked by the EP4 antagonist (10µM PGE2+100µM AH), and there was no effect with 

antagonist alone (100µM AH). The scale bar represents 10µm. B. Quantification of 

immunofluorescent EP4 receptor localization at the plasma membrane depicted as a ratio value 

in comparison to no PGE2 group (set at 1.0); 10µM PGE2 significantly increased the EP4 at the 

plasma membrane (p<0.05). PGE2=prostaglandin E2. 
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3.4.2. EP4 receptor agonist induces EP4 externalization to the plasma membrane in 

undifferentiated NE-4C stem cells. 

The PGE2-induced EP4 externalization in undifferentiated NE-4C cells was confirmed 

with a selective EP4 agonist (CAY10580). We used 10, 50 and 100µM treatment with 

CAY10580 for 3h [59]. Similar to PGE2, the CAY10580 also induced EP4 externalization to 

the plasma membrane.  All CAY10580 concentrations tested show the Golgi expression 

whereas the 100µM significantly increased the EP4 externalization to the plasma membrane 

(Figure 7A). AH23848 blocked CAY10580-induced EP4 externalization (Figure 7A), which 

was confirmed through immunofluorescence quantification (Figure 7B). Overall, these results 

suggest that the EP4 receptor subcellular re-location from the Golgi apparatus to the plasma 

membrane is regulated though the EP4 signaling pathway. 
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Figure 7. Agonist–induced EP4 localization at the plasma membrane in undifferentiated 

NE-4C stem cells.  A. Immunocytochemistry visualization of EP4 receptor. The EP4 receptor 
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(Anti-EP4; top panel); plasma membrane marker (anti-PMCA1; middle panel); merged images 

(the nucleus marker DAPI; lower panel). EP4 receptor localization at the plasma membrane 

with EP4 agonist (100µM CAY) was blocked with EP4 antagonist (100µM CAY+100µM AH). 

The scale bar represents 10µm. B. Quantification of immunofluorescent EP4 receptor 

localization at the plasma membrane depicted as a ratio value in comparison to no PGE2 group 

(set at 1.0); 100µM CAY significantly increased the EP4 at the plasma membrane (p<0.05). 

PGE2=prostaglandin E2. 
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3.4.3. PGE2 dependent EP4 receptor localization in differentiated NE-4C neuronal cells.  

Given the increasingly important role of EP4 in the developing nervous system, we also 

assessed the localization of the EP4 receptor in differentiated NE-4C neuronal cells. Similar to 

NE-4C stem cells, we still observe typical Golgi localization in the untreated differentiated 

NE-4C cells (Figure 8).   

   

  



	   52	  

 

Figure 8. EP4 receptor is localized in the Golgi apparatus in differentiated NE-4C 

neuronal cells. The EP4 receptor (Anti-EP4; left panel); plasma membrane marker (anti-

PMCA1; middle panel); merge images (the nucleus marker DAPI; right panel). Scale bar 

represents 10µm. Arrows show plasma membrane localization with PGE2. PGE2=prostaglandin 

E2.   
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 Interestingly, we show for the first time that the endogenous EP4 receptor was also 

present in the growth cones of untreated differentiated NE-4C cells (Figure 9A). Exposure of 

differentiated NE-4C cells to 1 and 10µM concentrations of PGE2 resulted in significantly 

increased localization of EP4 in the growth cones after 3h and remain unchanged for the 

duration of 24h (Figure 9A and B). 
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Figure 9. EP4 Receptor localization in the growth cones of differentiated NE-4C cells. A. 

The EP4 receptor (Anti-EP4) merged image with plasma membrane marker (Anti-PMCA1). 

1µM and 10µM PGE2 treatment for 3 hours (top row), 24 hours (bottom row). Scale bar 

represents 5µm. B. Quantification of immunofluorescent EP4 receptor localization in the 

growth cones depicted as a ratio value in comparison to no PGE2 group (set at 1.0); Both 1µM 

and 10µM PGE2 significantly increased the EP4 in the growth cones after 3 and 24h (p<0.05). 

PGE2=prostaglandin E2. 
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3.5. Discussion 

The results of this study show that PGE2 induces EP4 externalization from its 

previously characterized localization in the Golgi apparatus [3] to the plasma membrane in 

undifferentiated NE-4C stem cells.  Interestingly, we also found that in differentiated NE-4C 

neuronal cells PGE2 enhanced EP4 trafficking to the growth cones. The observed subcellular 

translocation of the EP4 receptor from its normal location in the Golgi apparatus to the plasma 

membrane and growth cones indicates that it may play an important role in early function of 

neuronal cells.  

The functional importance of PGE2-induced subcellular localization of the EP4 receptor 

in the developing nervous system is still largely unknown. It also needs to be investigated 

whether the EP4 signaling in various subcellular compartments is regulated by Gs and/or Gi 

proteins. However, there is growing evidence for the functional importance of the PGE2/EP4 

signaling in the developing nervous system. The PGE2/EP4 pathway has been suggested to 

play a role in the transition from acute to chronic pain in nociceptive DRG neurons [60]. St. 

Jacques and Ma (2014) found that PGE2-prolonged sensitization of DRG neurons facilitated 

the synthesis and anterograde axonal trafficking of EP4 receptors [60]. Our previous study 

shows that EP4 is involved in PGE2-dependent regulation of intracellular calcium level through 

a novel PI3K inhibitory mechanism and it also reduces neurite lengths in differentiated Neuro-

2a cells [65]. This is interesting because calcium ions are key mediators to multiple cellular 

processes in early neuronal development. For example, in neuronal growth cones calcium 

contributes to axonal growth and guidance, which must be strictly regulated during neuronal 

development [109], [140], [141]. Interestingly, we also showed that the level of the EP4 

receptor is higher in the mouse embryo (embryonic stage 7, 11 and 15) as compared to the later 

stage E17 [40], indicating it’s important role in early development.  
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PGE2-EP4 activation has been found to attenuate the activation of microglia and to 

prevent lipid peroxidation and pro-inflammatory gene expression in a murine model of 

lipopolysaccharide (LPS)-induced brain inflammation [149]. Moreover, PGE2/EP4 signaling 

has elicited a protective function in reducing injury and improving functional recovery after 

stroke via dual and independent cell-specific mechanisms of neuroprotection and enhanced 

vascular perfusion [148]. In contrast, genetic and pharmacologic inhibition of EP4 receptor, via 

EP4 deficiency or antagonist respectively, in a murine mouse model of Alzheimer’s disease 

decreased amyloid-β levels in the brain and improved the behavioral performance of the 

animals [151]. EP4 receptors are the most widely expressed PGE2 receptors in the body [147], 

and the various biological effects observed due to PGE2 signaling via EP4 may be mediated by 

the externalization of EP4 to the plasma membrane and growth cones.  

These results confirm that the EP4 externalization from the Golgi apparatus to the 

plasma membrane in NE-4C stem cells is PGE2-induced. Furthermore, this study provides the 

first evidence that PGE2 can also enhance the growth cone localization of the EP4 receptor in 

differentiating NE-4C neuronal cells. Our results show that the important role of the PGE2/EP4 

pathway in the developing nervous system may depend on the subcellular localization of the 

EP4 receptor.  
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CHAPTER 4. DISCUSSION 

 

4.1 Discussion 

The PGE2 signaling pathway is critical in regulating many important physiological 

functions such as synaptic plasticity [34], [35], dendritic spine formation, refining of mature 

neuronal connections [41]–[43], pain transmission [44], and cell survival [45] or death [46]. 

Elevation of endogenous PGE2 has been found during events such as inflammatory response 

and oxidative stress [49] and can be detrimental to the developing central nervous system. It is 

possible that heightened inflammatory response during early development may lead to nervous 

system defects. Our lab has previously shown that elevated levels of PGE2 cause an increase in 

basal calcium levels [65] and neurite retraction [40] in Neuro-2a cells. Moreover, our lab also 

suggested that the EP4 receptor plays an inhibitory role in calcium homeostasis [65]. Here, I 

have shown that increased levels of PGE2 for both 3 and 24h increase the basal cytosolic and 

growth cone calcium levels in differentiated NE-4C cells, and that the growth cone calcium 

fluctuations, including the maximum and minimum levels and amplitude of fluctuation are 

increased regardless of PGE2 dose (Chapter 2). Calcium signaling is critically regulated during 

development of the nervous system and any insults may adversely impact the downstream 

signaling that control functions such as neurite extension length. I have also shown that PGE2 

causes a time- and dose-dependent change in neurite extension length (Chapter 2). Since 

axonal growth is regulated by calcium signalling [95], it is possible that PGE2 altered the 

extension lengths via altered calcium signaling. It is possible that increased level of PGE2 

exposure from maternal infection or drug exposure during neurodevelopment may contribute to 

the altered calcium signaling found. If PGE2 were to alter calcium dynamics during 

neurodevelopment, it is possible that it may alter the axon lengths and thus the proper wiring of 
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areas in the brain. In fact, hyperconnectivity of brain structures has been found in individuals 

with autism [154]. It would be interesting to determine if prenatal PGE2 exposure contributed 

to hyperconnectivity in the brain by use of a mouse model. Furthermore, my results suggest 

that PGE2 exposure since the initiation of differentiation (Appendix A) may not be as 

detrimental with respect to calcium signaling. Although calcium levels in the cytosol were 

differentially affected by PGE2 dose, the chronic PGE2 exposure did not alter calcium levels in 

the growth cones. These results suggest neurons may have a compensatory mechanism to 

adjust for the elevated levels observed after short-term exposure (3 and 24h, Chapter 2), 

which is consistent with previous literature. If altered PGE2 signaling during development 

contributes to ASD, it is promising that the neurons may be able to adapt to chronic PGE2 

exposure and not be as adversely affected. However, the neurite extension length was altered in 

a dose-dependent manner. If PGE2 does indeed alter extension length via calcium signaling, 

this suggests that elevated PGE2 levels already contributed to the signaling that causes neurite 

extension prior to measuring the growth cone calcium levels on day 12. Therefore the period of 

neurogenesis is important for proper regulation of PGE2 signaling. These results provide a 

basis of which to begin future investigations.  

 The EP4 receptor was of particular interest in my research given our lab’s previous 

findings that the EP4 receptor plays an inhibitory role in calcium homeostasis [65]. The 

PGE2/EP4 signaling pathway has also plays a functional role in pain signaling [59], [60]. In 

DRG neurons, PGE2 induces EP4 receptor externalization to the plasma membrane to facilitate 

pain signaling via the EP4 receptor [59]. My results also show that PGE2/EP4 signaling 

facilitates EP4 subcellular localization to the plasma membrane and growth cones in NE-4C 

stem cells (Chapter 3) and in differentiated neuronal cells (Appendix B), respectively. Given 

its functional role in DRG neurons, it is likely that the trafficking of the EP4 receptor in NE-4C 
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cells also plays a functional role. It is possible that EP4 is trafficked to the plasma membrane 

and growth cones to regulate calcium levels. The increase in calcium levels observed in 

differentiated NE-4C neuronal cells was observed after 3 hours exposure, which was the same 

time required to observe EP4 receptor at the plasma membrane in NE-4C cells. The EP4 

receptor may be trafficked to the plasma membrane and growth cones to act as a Gi in response 

to the increase in calcium levels. The novel findings that the EP4 receptor is localized in 

growth cones is also interesting since PGE2 induced increased EP4 localization in the growth 

cones. The growth cone calcium signaling plays a pivotal role in axonal growth and guidance 

[77], [105], [106]. Thus the EP4 may be contributing the proper calcium regulation in response 

to the PGE2-induced elevated calcium levels in the growth cone.  

 Evidence supporting the involvement of PGE2 signaling abnormalities of the nervous 

system stems from the connection between the usage of the drug misoprostol during the first 

trimester of pregnancy, and the consequence of Mobius syndrome and autism [155]. I have 

contributed to another in vivo study that shows elevated levels of PGE2 exposure during 

embryonic development effects mRNA expression of Wnt-target genes in the brain (Appendix 

C). This in vivo study confirms our labs previous in vitro research that suggests there is 

crosstalk between the Wnt and PGE2 signaling pathways during neurodevelopmental periods 

such as neurogenesis [3]. In this study, although the mice are genetically identical, each are 

encased in an amniotic sac and have separately attached placentas. Therefore, even the same 

maternal environmental exposure to PGE2 can have a different impact on each pup of the 

pregnancy. This further emphasizes the point that environmental factors influence the Wnt-

pathway during development, and thus its interaction with autism.  
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4.2. Limitations and future areas of study 

There are many molecules involved in the PGE2 signaling pathway, and various cellular 

functions are modulated by changes in PGE2 levels. In this study only some of the effects were 

examined, such as calcium homeostasis and receptor localization. The present study used an 

increase in PGE2 levels to investigate the functional effects of increased PGE2 exposure on NE-

4C stem cells and neuronal cells. Thus, the results only pertain to the regulation of downstream 

effects on calcium regulation and EP4 receptor localization under artificial conditions of 

increased levels of PGE2. One should be cautious interpreting the results as there may be 

differences in sensitivity and viability of NE-4C stem cells and differentiated NE-4C neuronal 

cells and primary neuronal cells. However, similar results have been found in primary neurons 

(DRG) thus it is likely an effective preliminary model.  

In regards to the ratiometric method of calcium imaging, the calcium level in the whole 

cell is measured and a distinction between the calcium homeostasis of different organelles was 

not made. Thus, it is only possible to determine the effect of increased PGE2 on the calcium 

levels in the cell as a whole. 

Additionally, the quantification of the EP4 receptor externalization to the plasma 

membrane in differentiated NE-4C neuronal cells similar to the NE-4C stem cells was not 

possible. Despite disrupting the neurospheres to obtain individual neurons for analysis, the 

cells were mostly still attached to other cells, making individual cell plasma membrane 

measurements not possible.  

Calcium homeostasis was previously shown to be altered by increased levels of PGE2 

exposure in Neuro-2a cells, and that the EP4 receptor can play both an inhibitory and 

excitatory role [65]. Here, it was shown that PGE2 also affects calcium levels in differentiated 

NE-4C neuronal cells. For future experiments, it would be interesting to determine if the EP4 
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receptor plays an inhibitory role in NE-4C neuronal cells as well. To determine this, the 

calcium imaging experiment could be repeated with the addition of a selective EP4 antagonist.  

 Furthermore, given the PGE2-induced externalization of the EP4 receptor to the plasma 

membrane and growth cones in the NE-4C stem cells and neuronal cells, it is likely that EP4 is 

trafficked to play a functional role. Considering the importance of calcium signaling in the 

developing nervous system for regulated gene transcription, and axonal guidance and steering 

in the growth cones, it is possible EP4 receptor is trafficked to the plasma membrane and 

growth cones to modulate calcium homeostasis in response to increased PGE2levels. Since it 

was found that EP4 externalization was induced via PGE2/EP4 signaling, the localization of the 

EP4 receptor could be identified via ICC in experiments with an EP4 agonist and antagonist. 

Future research should investigate whether the calcium response is being modulated by the 

EP4 receptor in neuronal cells and if its localization plays a role. The evidence obtained will 

likely continue to provide new insights into the neural mechanisms behind neuronal 

development.  

 

4.3. Conclusions  

This research has provided results that suggest the PGE2 lipid signaling pathway is 

critical in early neuronal development. The in vitro studies will help identify the effect of PGE2 

on calcium homeostasis in differentiated NE-4C neuronal cells, which possibly includes the 

translocation of EP4 receptor to the plasma membrane in response to altered PGE2 levels. 

Comparisons made between PGE2-induced EP4 receptor localization in NE-4C stem cells and 

differentiated NE-4C neuronal cells will help contribute to the identification of an EP4 receptor 

functional role. My contribution to the in vivo study helps identify which genes are 

differentially regulated in the brain in response to prenatal PGE2 exposure. This confirms our 
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previous findings that the early development Wnt-pathway crosstalks with the PGE2 signaling 

pathway, and confirms our suggestion that autism is a complex interaction between the 

environment and genetics. Abnormal alterations in the PGE2 exposure may have profound 

effects on the sensitive period of embryogenesis severely influencing the proper development 

of the nervous system. These could include but are not limited to environmental, genetic, 

and/or immunological factors.  
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APPENDICES 

 

A.1. Appendix A 

 

A.1.1 Calcium Imaging  

To determine if PGE2 modulates calcium mobilization in NE-4C neuronal cells, the 

esterified, membrane derivative 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2’-

amino-5’-methylphenoxy) ethane-N,N,N’,N’-tetraacertic acid, acetoxylmethyl ester (fura-2 

AM) real-time calcium imaging was used to determine intracellular free calcium ([Ca2+]i). 

Fura-2 AM is hydrolyzed by cytosolic esterases to an impermeable fura-2 form, which 

facilitates chelation of free [Ca2+]i. The ratio (R) fluorescent intensity obtained at 340 

nanometer (nm) excitation (fura-2-Ca2+-bound complex) to that at 380nm (Ca2+-free fura-2) 

was used as a measure of [Ca2+]i. The emission wavelength for both compounds is 520nm. 

Using the ratiometric fura-2 AM calcium indicator, the maximum 340/380 ratio (Rmax) and 

minimum 340/380 ratio (Rmin) were determined (see methods). Ionomycin was used to 

determine the Rmax to stimulate [Ca2+]i release and facilitate extracellular calcium ([Ca2+]E) 

entry. Ethylene glycol tetraacetic acid (EGTA) was used to determine the Rmin. Intracellular 

calcium was estimated from the following equation: 

[Ca2+]i = B Kd (R-Rmin) / (Rmax-R), 

whereby Kd is the dissociation constant for fura-2 (224nm under standard conditions), R is any 

given 340/380 ratio value of fluorescence measured for Ca2+-free and Ca2+-bound fura-2, Rmin 

is the 340/380 intensity ratio in the absence of Ca2+ and presence of EGTA, Rmax the 340/380 

intensity ratio when the cells were exposed to ionomycin, and β is the ratio of fluorescence 

measured at 380nm in calcium-depleted and calcium-saturated solution [124, 163]. 
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Untreated differentiated NE-4C neuronal cells were loaded with 5uM of the Ca2+-

sensitive fura-2AM and an equal volume of 20% pluronic acid F127 (Invitrogen) to minimize 

compartmentalization of the dye. Cells were incubated for fura-2 AM for 45 mins at 37C, 5% 

CO2, washed with Hanks balanced salt solution with no phenol red (HBSSred-free) and further 

incubated in fresh HBSSred-free at 37C, 5% CO2 for an additional 20 mins to de-esterify fura-2 

AM. Cells were washed once with HBSSred-free and the basal 340/380 nm ratio was measured 

[121].  

Measurements were taken in 5 sec intervals. After recording the basal level for a 

minimum of one minute, 4µM of the Ca2+ ionophore, ionomycin (Santa Cruz) was added to the 

media to determine the Rmax value, and activity was recorded until a decrease in ratio was 

observed. Next, 15mM ethylene glycol tetraacetic acid (EGTA) was added and recorded for a 

further 10 minutes to determine the minimum 340/380 ratio (Rmin) value. The Rmax and Rmin 

were recorded for untreated differentiated neuronal cells to subsequently use for the calculation 

of cytosolic and growth cone (differentiated only) [Ca2+]i. 

 

A.2. Expanded Calcium Results  

 

A.2.1 Determining 340/380 ratio maximum and minimum    

After addition of 4µM ionomycin the Rmax was found to be 4.249 and following the 

addition of 15 mM EGTA the Rmin was found to be 0.334 (Figure 10). The Rmax and Rmin 

values were then used as parameters to determine the [Ca2+]i in the PGE2 treated groups 

(Figure 11). A minimum of three experimental replicates were completed with similar results, 

and the total number of individual cells was used for statistical analysis.  



	   81	  

 

 

 

Figure 10. Obtaining Rmax and Rmin values. 340/380 ratio (R) tracing showing the baseline R 

value, the maximum R value (Rmax) and the minimum R value (Rmin) following the addition of 

4µM ionomycin and 15mM EGTA to the medium, respectively. The baseline R value was 

recorded for 1 minute. Once the Rmax value was obtained, the recording was continued for until 

the 12 minute time point.   
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Figure 11. Ratiometric imaging 340/380 nm ratio (R) in fura-2-AM-loaded differentiated 

NE-4C neuronal cells in response to PGE2 exposure on day 12. (Top row) Phase-contrast 20 

X (Phase20) objective long working distance (LWD) of differentiated NE-4C cells. (Bottom 

row) 340/380 nm fluorescent image of cytosol. A, B serum free media (SFM), untreated cells 

differentiated for 12 days, C, D 3h PGE2 exposure and E, F 24h PGE2 exposure on day 12, G, 

H 12 days of PGE2 exposure. Scale bar represents 50 µm. 
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A.2.2. Effects of PGE2 since the initiation of differentiation on cytosolic and global growth 

cone intracellular free calcium concentration 

When NE-4C cells were differentiated in the presence of PGE2 from day 0 to day 12, 

we found that all concentrations of PGE2 resulted in significant changes in the mean basal 

cytosolic [Ca2+]i but no significant change was noted in the growth cone [Ca2+]i. Exposure to 

0.1 and 10µM PGE2 increased the mean basal cytosolic [Ca2+]i by a 74.46% (N = 156, p = 2.44 

x 10-13) and 70.7% (N = 166, p = 2.44 x 10-13), and 1µM PGE2 resulted in a 17.1% (N = 166, p 

= 4.37 x 10-4) decrease in mean basal cytosolic [Ca2+]i (Figure 12A). The results show a dose-

dependent response to PGE2. No significant change in [Ca2+]i was observed after exposure for 

12 days of the same concentrations of PGE2 (N = 152, p = 0.29; N = 264, p = 0.99; N = 137, p 

= 0.18, respectively) (Figure 12B).  
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Figure 12. Exposure time dependent increase in basal (A) cytosolic and (B) growth cone 

[Ca2+]i in response to PGE2 exposure. A. Treatments with 0.1 and 10 µM PGE2 for 12 days 

significantly increased the cytosolic [Ca2+]i  by 74.46% (N = 156) and 70.7% (N = 166), and 1 

µM PGE2 resulted in a 17.1% (N = 166) decrease. B. No significant changes in global growth 

cone [Ca2+]i  was  observed after exposure for 12 days of the same concentrations of PGE2. 

Calcium levels only increased by 7.67%, decreased by 4.04%, and increased by 5.94%, 

respectively (N = 152; N = 264; N = 137, respectively). The y-axes represents the % change in 

[Ca2+]i (nM) and x-axes depict the time of PGE2 exposure. Results represent a minimum of 

three independent experiments. [Ca2+]i = intracellular calcium concentration; PGE2 = 

prostaglandin E2; SFM = serum free media; **p<0.01; ***p<0.0001. 
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A.2.3. Calcium dynamics in growth cones of differentiated NE-4C cells exposed to PGE2 

since the initiation of differentiation 

The growth cone [Ca2+]i fluctuations were also assessed (Figure 13A). [Ca2+]i (min)  

levels was significantly changed from 146 nM in untreated cells to 164 nM, 132 nM and 176 

nM (p = 2.01 x 10-2, 2.41 x 10-2, 7.52 x 10-4 in cells treated with 0.1, 1 and 10 µM PGE2 

concentrations, respectively (Figure 13B). However, the corresponding concentrations of 

PGE2 did not significantly change the [Ca2+]i (max) value, which was 1479 nM in untreated cells. 

The [Ca2+]i (max)  values were 1697 nM, 1459 nM and 1673 nM (p = 8.74 x 10-1, 3.09 x 10-1, 

7.59 x 10-1, respectively) with 0.1, 1 and 10 µM PGE2 concentrations, respectively (Figure 

13B). 

The continuous exposure to 0.1, 1 and 10 µM PGE2 resulted the [Ca2+]i amplitude to be 

1533 nM, 1325 nM and 1497 nM (p = 9.29 x 10-1, 2.30 x 10-1, 8.59 x 10-1, respectively). This 

represents a 13%, 36%, and 18% increase, respectively, which was not significantly different 

from the amplitude found in untreated cells (Figure 13C). In summary, we have shown the 

short-term exposure to PGE2 induces greater changes in calcium dynamics than the continuous 

exposure.  

To determine if chronic PGE2 exposure affected neurite extension length, PGE2-

exposed groups were compared to untreated (SFM). Only 1µM PGE2 exposure resulted in 

significantly increased extension length to 43 µm (N = 383, p<0.0001), whereas 0.1 and 10 µm 

PGE2 remained unchanged at 33 µm and 36 µm, respectively (N = 195; N = 201) (Figure 

13D). 
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Figure 13. PGE2 exposure time dependent change in the dynamics of growth cone 

fluctuation [Ca2+]i levels and neurite extension length in response to PGE2 exposure. A. 

Traces of spontaneous intracellular [Ca2+]i fluctuations in migrating growth cones after 12 days 

(12 d) PGE2 exposure. B. Minimum [Ca2+]i levels were significantly changed from 146 nM in 

untreated cells to 164 nM, 132 nM and 176 nM in cells treated with 0.1, 1 and 10 µM PGE2 

concentrations, respectively. However, the corresponding concentrations of PGE2 did not 

significantly change the Maximum [Ca2+]i levels, which was 1479 nM in untreated cells. The 

[Ca2+]i (max) values were 1697 nM, 1459 nM and 1673 nM with 0.1, 1 and 10 µM PGE2 

concentrations, respectively. C. The continuous exposure to 0.1, 1 and 10 µM PGE2 resulted 

the [Ca2+]i amplitude to be 1533 nM, 1325 nM and 1497 nM, respectively, which was not 

significantly different from the amplitude found in untreated cells. D. Mean neurite extension 

length in the SFM group was 32.6 µm (N = 342) and after 12 days (12 d) PGE2 increased from 

1 µM PGE2 to 43  µm (N = 383, p<0.0001), but did not change by 0.1 and 10 µM being 33 µm 
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(N = 195), 36 µm (N = 201) respectively. The y-axes represent A, B, C the [Ca2+]i (nM) and D 

extension length (µm), and x-axes depict, A the measurement time (seconds) taken at 5-second 

intervals, and B, C, D the time of PGE2 exposure. Results represent a minimum of three 

independent experiments. [Ca2+]i = intracellular calcium concentration; PGE2 = prostaglandin 

E2; SFM = serum free media. Minimum and maximum [Ca2+]i are shown by triangles and 

circles, respectively; *p<0.05; ***p<0.0001. 
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A.3.2. Manuscript permission 
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Hongyan Li  
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web search engines. I will be granting Library and Archives Canada a non-exclusive 
license to reproduce, loan, distribute, or sell single copies of my thesis by any means and 
in any form or format. 
Could you please confirm in writing by email that these arrangements meet with your 
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Thank you very much. 
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Jennilee Davidson 
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B.1. Appendix B 

 

B.1.1. Immunocytochemistry secondary antibody only controls 

 Specificity of the EP4 antibody in NE-4C stem cells was confirmed using a secondary 

antibody only control. Trials with omission of the EP4 antibody were run in parallel with the 

control (no PGE2) and 3 hours of PGE2 exposure (Figure 14). The EP4 receptor was not 

visualized in the Golgi apparatus as expected without the primary antibody.  
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Figure 14: Immunocytochemistry visualization of EP4 receptor antibody specificity in 

NE-4C cells. Secondary antibody only controls (first and third rows) were run in parallel with 

no PGE2 control (second row) and 3 hours of 10µM PGE2 treatments (fourth row). The EP4 

receptor was not visualized in the Golgi apparatus without the EP4 antibody, confirming its 

specificity. EP4 receptor (FITC; green) is the first panel, PMCA1 (TR; red) is the second 

panel, nuclear marker (DAPI; blue) is the third panel, and merged in the last panel. The scale 

bar represents 10µm.   
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B.1.2. EP4 agonist induces EP4 receptor externalization to the plasma membrane  

To see whether the EP4 receptor agonist induces EP4 externalization to the plasma 

membrane in NE-4C stem cells similar to after 10µM PGE2 exposure, immunofluorescence 

quantification was conducted. It was confirmed that PGE2 acts through EP4 receptor to 

translocate EP4 to the plasma membrane by use of EP4 agonist (CAY10580) treatments. 

Increasing concentrations of CAY10580 (10, 50, and 100µM) were applied for 3h to NE-4C 

cells and found that 100µM CAY10580 was required to significantly increase the EP4 

translocation to the plasma membrane (Figure 15), which is consistent with previous literature 

[59]. 
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Figure 15. Immunofluorescence quantification of EP4 receptor at plasma membrane in 

NE-4C cells. Only 100µM CAY10580 and 10µM PGE2 significantly increased the EP4 at the 

plasma membrane. All treatments were applied for 3 hours. *denotes significance (p<0.05) in 

comparison to the control (No PGE2 exposure) by ANOVA and t-test. Quantification was 

conducted using NIS Elements Software (Nikon).   
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B.1.3. Subcellular Localization of EP4 Receptor in Differentiated NE-4C Cells 

Previous research in our lab shows that differentiated NE-4C cells express increased 

EP4 mRNA four days after differentiation, when compared to day 0 (induction) (unpublished). 

Other studies have also shown that EP4 externalization has been observed in DRG neurons in 

response to PGE2 [59]. Here, it was tested whether PGE2 induces EP4 externalization in 

differentiated NE-4C cells. Visualizing EP4 receptor externalization to the plasma membrane, 

and possibly to the growth cones, would suggest a possible involvement in the altered PGE2 

signaling pathway and also a role in calcium mobilization [65].  

ICC visualization results suggest that EP4 receptor localization was present in the Golgi 

apparatus with and without PGE2 exposure (Figure 16). Furthermore, PGE2 induces EP4 

receptor externalization to the plasma membrane (Figure 17), which is consistent with EP4 

externalization in NE-4C stem cells (chapter 4) and DRG neurons [59].  
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Figure 16. Immunocytochemistry visualization of EP4 Receptor in Differentiated NE-4C 

cells. The EP4 receptor (FITC; green) is visible in the Golgi apparatus of untreated cells (top 

row) and PGE2 exposed cells (second, third, bottom row). Day 12 neuronal cells both untreated 

and exposed to different concentrations and times of PGE2 appear to have EP4 present in 

similar locations. Plasma membrane marker (anti-PMCAI-Texas Red; red); nucleus marker 

(DAPI; blue); or merged images. Scale bar represents 10µm. 
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Figure 17. Immunocytochemistry visualization of EP4 receptor in differentiated neuronal 

NE-4C cells. The EP4 receptor (FITC; green) is visible in the plasma membrane of day 12 

PGE2-exposed neuronal cells. Plasma membrane marker (anti-PMCAI-Texas Red; red); 

nucleus marker (DAPI; blue, merged images). Scale bar represents 10µm.  
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C.3. Appendix C  

 

C.1.1. Prostaglandin signaling and Wnt signaling crosstalk in autism  

Evidence supporting the involvement of COX/PGE2 signaling abnormalities of the 

nervous system stems from the connection between the usage of the drug misoprostol during 

the first trimester of pregnancy, and the consequence of Mobius syndrome and autism [155]. 

Previous work done in our lab has shown that PGE2 can affect cell function through various 

molecular events. For example, PGE2 or misoprostol induced alteration of calcium fluctuation 

in growth cones was previously shown by Tamiji and Crawford [65]. We have also shown that 

PGE2 interacts with the Wnt signaling pathway in an in vitro (NE-4C cells) system. PGE2 

affects Wnt-dependent migration and proliferation of NE-4C cells [3].  

Wnt signaling is involved with the determination of cell fates by activating 

transcription of various target genes [156], [157]. Moreover, our lab has recently shown that 

higher levels of PGE2 can also change expression of wnt-regulated genes such as b-catenin, 

COX-2, cyclin D1, and Mmp9, which have been implicated in autism [3]. The Wnt signaling 

pathway is of particular interest because it is involved in early embryonic development and 

recent literature suggests that the wnt canonical pathway is involved in development of ASDs 

[158], [159]. Our lab recently proposed this pathway as a possible autism candidate pathway 

[3]. Proper signaling through wnt ligands during early embryonic and neuronal development is 

crucial for the outcome of the nervous system [160], and abnormal interference through the 

PGE2 pathway can lead to changes of the regulation of cells and gene expression. Therefore, 

during pregnancy, any mechanisms at the level of genetics, the environment, or a combination, 

can abnormally modulate levels of PGE2, may be detrimental to the development of the 

offspring during a critical sensitive window.  
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Wnt-target genes that are implicated in either autism or development were selected by a 

previous graduate student in the lab. Two of those genes that were the most downregulated, 

Wnt3a and Fosl1, were chosen for further analysis of the effect of PGE2 on mRNA expression 

at various developmental stages.  

WNT3A is a member of the Wnt protein family and may be involved in the fate 

decision of stem/progenitor cells [161]. Wnt3a can stimulate proliferation and enhance the 

neurogenesis of neonatal neural progenitor cultures isolated from the cerebral cortices of 

newborn mice [162]. However, recombinant WNT3A protein promotes differentiation of 

neural stem cells but has a negative effect on proliferation [163], [164]. Autism is a 

neurodevelopmental disorder, thus Wnt3a’s role in neurogenesis may be a contributing factor 

to the dysregulation observed in central nervous system development.  

FOSL1 is a basic leucine zipper transcription factor that can distinctly regulate both cell 

type and stimulus-specific gene expression involved in various physiologic and pathologic 

processes, including in utero embryonic development [165]. Several studies have shown that 

Fosl1 regulates gene expression involved in cell cycle progression, cell motility and invasion 

in several cancer cell types [41], [166]. This gene is a known target of the canonical Wnt 

signaling pathway. Fosl1 may be one of the downstream genes regulated by b-catenin-

dependent transcription in hippocampal neurons. The expression of Fosl1 is very low in 

various adult tissues with elevated levels seen in the brain, bladder, breast, pancreas, skin and 

lung, but its transcription is strongly inducible by mitogens and inflammatory cytokines as well 

by various environmental toxicants, carcinogens and pathogens [167], [168], mainly at the 

transcriptional level [175]. The induction of Fosl1 is notably delayed (peaking at 90-180 min) 

by various mitogenic and stressful stimuli [169]. 
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C.1.2. Background Methods  

 

C.1.2.1. Gene Selection 

For in vivo studies, I will use mRNA collected from embryonic mouse brain as my 

experimental model. A mouse model was used since 99% of mouse genes have analogues in 

humans. A previous graduate student in the lab selected 44 Wnt-target genes that are 

implicated in either autism or developmental pathways. mRNA expression analysis using 

Custom TaqMan® Array Plates showed downregulation of the Fosl1 and Wnt3a genes from 

0.2µM dmPGE2 treated mouse brain samples across different developmental stages (E16, E19, 

P8, adult). Based on microarray results, differentially regulated genes only with a fold change 

above 1.5 were further characterized using mouse as an experimental model system. To 

confirm the results I ran real time PCR using SYBR green reagent. 

 

C.1.2.2. Animals 

Male and female mice (C57BL/6) were obtained from Charles River Laboratories. 

C57BL/6 colonies are inbred and thus are considered as genetically identical. Upon arrival, 

they are maintained at the animal facility at York University, kept at a 12 h light/dark cycle, 

and provided with unlimited food and water. All protocols for animal procedures used in this 

study were approved by the Animal Care Committee (ACC). This was carried out by a PhD 

student in our lab.  

 

C.1.2.3. Maternal Injections 

Male and female mice were mated overnight, and the females were checked every 

morning until a vaginal plug was observed. The day of a vaginal plug was considered as 
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embryonic day 1 (E1), and the females were housed separately for the remaining time. On 

embryonic day 11 (E11), the pregnant females were weighed, and injected subcutaneously with 

0.2mg/kg concentration of 16,16-dimethyl prostaglandin E2 (dmPGE2; Cayman Chemical) in 

saline. Controls were injected with saline only. This was carried out by a PhD student in our 

lab.  

 

C.1.2.4. Sample Collection 

Brain tissue and tail samples were collected from all pups of each litter, at embryonic 

day 16 (E16), embryonic day 19 (E19), and postnatal day 8 (P8), from maternal treatment of 

saline, or dmPGE2. Total RNA and protein were extracted from brain tissue using the trizol 

(Sigma) method for further quantification of mRNA using quantitative real-time polymerase 

chain reaction (qRT-PCR). This was carried out by a PhD student in our lab.  

 

C.1.3. Methods 

 

C.1.3.1. RNA Sample Concentrations 

 To ensure RNA samples that had been stored in -80C freezer were still useable and to 

obtain more current and accurate RNA concentrations, the total RNA yield was assessed on the 

NanoDrop ND-1000 Spectrophotometer.  

 

C.1.3.2. Pooling RNA Samples  

 To determine the mean gene of interest expression in each litter, equal concentrations 

of brain RNA samples from each pup, as determined by the NanoDrop ND-1000, was 

combined into a pooled sample.  
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C.1.3.3. Reverse Transcription Polymerase Chain Reaction and Gel Electrophoresis  

Reverse transcription polymerase chain reaction (RT-PCR) was used to determine if the genes 

of interest were expressed in the wild-type and prenatally PGE2-exposed mouse brain. First, 

4µg of RNA was treated with 4µL of 10X DNAse I Buffer and ddH2O (up to a total of 20µL). 

The mixture was incubated at 37°C for 10 minutes, then 2µL of ethylenediaminetetraacetic 

acid (EDTA) was added to the mixture and incubated for an additional 10 minutes at 75°C. 

The treated RNA was combined with 46µM Oligo dT, 2mM (10X) dNTP mix, and incubated 

at 65°C for 5 minutes, then briefly put on ice. Reverse transcription (RT) was performed with 

M-MuLV Reverse Transcriptase  (200units/µL; New England Biolabs) in accordance with the 

manufacturer’s instructions. The reaction was mixed with 10x RT Buffer and ddH2O. The 

mixture was then incubated at 42°C for one hour and then at 90°C for 10 minutes to deactivate 

the enzyme. The success of the RT reaction was confirmed by polymerase chain reaction 

(PCR) with Gapdh (Glyceraldehyde 3-phosphate dehydrogenase) primers.  

The PCR reaction contained complementary DNA, 10X Taq Reaction buffer, forward 

and reverse primers (10µM), dNTP mix (2.5mM), MgSO4 (20mM), Taq DNA Polymerase 

(5units/µL; Biobasic) and ddH2O. The thermal cycler was programmed for 1 cycle of 94°C for 

30 seconds followed by 30 cycles of PCR amplification at 94°C for 30 seconds for 

denaturation; 55°C for 30 seconds for annealing; and 72°C for 30 seconds for primer 

extension, and then 1 cycle at 72°C for 5 minutes. The PCR products were then verified by gel 

electrophoresis. A gel contained 1.2% agarose in 1X TAE buffer with SafeView Nucleic Acid 

Stain. The samples were mixed with 6X nucleic acid loading buffer and loaded into the wells 

of the gel. Electrophoresis was conducted at 100V on a Basic Power Supply. An ultraviolet 

Transilluminator was utilized to visualize the size of the deoxynucleic acid (DNA) bands. A 
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100 base pair DNA standard ladder was used to estimate the size of the DNA bands by 

comparison.  

 

C.1.3.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

 The expression level of the two selected genes of interest, Wnt3a and Fosl1, chosen 

based on functional relevance in the central nervous system and associated with ASD, were 

quantified using the 7500 Fast Real-Time PCR System with SYBR Green reagent (Applied 

Biosystems). Primers were previously designed and used by a lab member (Table 1). 

Quantitative values were obtained using the threshold cycle (CT) number. Raw CT values from 

the experimental (PGE2 exposure) samples were normalized using the geometric mean of the 

housekeeping genes Hprt (hypoxanthine phosphoribosyl transferase) and Pgk1 

(phosphoglycerate kinase) to obtain the ΔCT values. The ΔCT values of the smaples were 

compared with a calibrator (saline exposure) to generate the relative quantity (RQ) value, 

which represents the fold change expression of each target sample compared to the reference 

sample. Statistical analysis was conducted using ANOVA and t-test.  
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Table 1: qRT-PCR primer sequences for microarray genes of interest. 

Gene Primer Sequence (5’ ! 3’) Amplicaon Size 

(base pair) 

Hprt F: TCCATTCCTATGACTGTAGATTTTATCAG 

R: AACTTTTATGTCCCCCGTTGACT 

75 

Pgk1 F: CAGTTGCTGCTGAACTCAAATCTC 

R: GCCCACACAATCCTTCAAGAA 

65 

Wnt3a F: GCACCACCGTCAGCAACAG 

R: GCACCACCGTCAGCAACAG 

57 

Fosl1 F: ACCGAAGAAAGGAGCTGACAGA 

R: CGATTTCTCATCCTCCAATTTGT 

65 
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C.1.4. Results 

 

C.1.4.1. mRNA expression of Wnt3a and Fosl1 at E16, E19, and P8 brain development  

The mouse E16 stage is a critical time in development for neurogenesis, E19 is one day 

prior to birth, and P8 is 8 days post-birth. For normal brain development, in comparison to the 

expression of Wnt3a in the adult mouse brain, the Wnt3a expression was significantly higher 

for all developmental stages tested. The highest expression was found in the earliest stage 

(E16) followed by E19 and P8; with RQ values of 16.6 (p<0.005), 14.3 (p<0.005) and 8.3 

(p=0.005), respectively (Figure 18A). 

For normal brain development, in comparison to the adult Fosl1 brain expression, 

Fosl1 was significantly decreased in all developmental stages tested. The RQ values for E16, 

E19, and P8 were 0.3 (p<0.005), 0.6 (p<0.05), 0.3(p<0.001), respectively (Figure 18B).  
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Figure 18. mRNA RQ values of normal brain development for three developmental 

stages tested. A. Wnt3a mRNA RQ values were significantly increased in all developmental 

stages tested but was greatest at E16, followed by E19 and P8, respectively. B. Fosl1 mRNA 

RQ values were significantly downregulated in normal brain development for all stages tested. 

P8 was the most downregulated followed by E16, then E19. * denotes p<0.05, ** p<0.01, 

***p<0.001.   
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C.1.4.2. Pre-natal PGE2 exposure effects mRNA expression of Wnt3a at E16, E19, and P8 

brain development 

At stage E16 (Figure 19A), in litter 1 there were 6 pups with RQ values of 1.7, 2.9, 2.3, 

1.3, 1.2 and 1.1, respectively (none were significantly different than control), and the mean of 

litter 1 was 1.8. Of 8 pups in litter 2 the mean RQ for Wnt3a expression was 1.2, and all pups, 

except for Pup 4 and 8, had higher Wnt3a expression with RQ values of 1.8, 1.8, 1.4, 0.9, 1.2, 

1.1, 1.0 and 0.6, respectively. Similarly, in the third litter the mean RQ increased to 2.9, 

whereby all 7 pups had increased Wnt3a expression with RQ values of 1.3, 6.1, 1.8, 4.7, 2.7, 

1.8 and 1.7, respectively. Only pup 2 and pup 4 were significantly greater (p<0.05 and p<0.05, 

respectively). Overall, the mean Wnt3a expression at E16 for all three litters was increased 

with a mean RQ value of 1.9 (p<0.005) (Figure 19D). 

At stage E19 (Figure 19B), in the first litter the mean RQ was 1.1, whereby half of the 

pups were increased, while the other half had decreased expression. The RQ values were 0.7, 

2.2, 1.6, 0.8, 1.6 and 0.9, respectively. Three were significantly increased: pup 2 (p<0.05), pup 

3 (p<0.05), pup 5 (p<0.05). Pup 1 was significantly decreased (p<0.005). In the second litter 

the mean RQ was 1.5, and all of the pups had increased expression with RQ values of 1.2, 1.5, 

1.6, 1.3, 1.6, 1.8, 1.8 and 1.1, respectively. Half of this litter was significantly increased: pup 3 

(p<0.05), 5 (p<0.005), 6 (p<0.005), 8 (p<0.05).In the third litter the mean RQ value was 

increased to 1.3. Similarly to the first litter, three pups from the third E19 litter had increased 

Wnt3a expression with RQ values of 1.6, 1.1 and 1.2; two pups had decreased expression with 

RQ values of 0.8 and 0.8; and one pup was unchanged with a RQ value of 1.0. The overall 

expression of Wnt3a (all three litters combined) was increased with a mean RQ value of 1.3 

(p<0.005) in comparison to the adult (Figure 19D). 
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At stage P8 (Figure 19C) interestingly, not all three litters had increased Wnt3a 

expression; two litters had increased expression while the third litter had decreased expression. 

The first litter had an increased mean RQ of 1.5 whereby individual pups had RQ values of 1.0, 

2.2, 1.5, respectively where only pup 2 had significantly increased expression (p<0.0005). The 

second litter had an overall increase in expression with an RQ value of 2.5. All 9 pups in litter 

2 had increased expression with RQ values of 2.8, 2.8, 2.4, 1.7, 1.8, 2.0, 2.9, 3.3, and 2.6, 

respectively (p<0.05). The third litter had decreased expression with a mean RQ value of 0.4. 

Five of seven pups in the third litter were significantly decreased with RQ values of 0.2 

(p<0.005), 0.1 (p<0.0005), 0.2 (p<0.000005), 0.2 (p<0.00005), 0.6, 0.7 and 0.5 (p<0.005), 

respectively. The overall mean RQ value was 1.6 (p<0.05) (Figure 19D). 

Overall the mean trends from each developmental stage appear to be increased in 

Wnt3a brain expression (Figure 19D). 
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Figure 19. Wnt3a mRNA RQ values for three developmental stages tested. Individual pups 

and the pooled sample RQ values were normalized to the control (saline; RQ = 1) group. A. 

The Wnt3a mRNA expression from E16 appears to be upregulated in most litters,  upregulated 

in E19, but not as great as in the earlier developmental stage, C and two litters upregulated and 

one litter downregulated at P8, and D the mean trends from all litters combined at each 

developmental stage appear to be upregulated.  
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C.1.4.3. Pre-natal PGE2 exposure effects mRNA expression of Fosl1 at E16, E19, and P8 

brain development 

At E16 (Figure 20A), in litter 1 the mean RQ value was 1.0, and only 2 of 6 pups had 

increased Fosl1 expression with RQ values of 1.4, 0.8, 1.8, 1.0, 0.7 and 0.5, respectively. Of 8 

pups in the second litter, the mean litter RQ was 0.6, and all had decreased expression with RQ 

values of 0.4, 0.4, 0.8, 0.6, 0.5, 0.5, 0.6, and 0.6, respectively. The third litter had a mean RQ 

of 1.1, with all 7 pups having similarly unchanged RQ values of 1.2, 1.3, 1.4, 1.2, 1.0, 0.9, and 

0.7, respectively. The mean Fosl1 expression at E16 for all three litters was decreased with a 

mean RQ value of 0.87 (p=0.13) (Figure 20D). 

At stage E19 (Figure 20B), Fosl1 expression was too low to detect for one litter, but of 

the other two, there was an overall mean RQ value of 0.9 (p=0.06) in comparison to the adult 

(Figure 20D). At E19 (Figure 20B), the first litter had 6 pups and a mean RQ of 0.9, whereby 

4 were decreased and 2 were increased. Individual pups had RQ values of 0.67, 0.2, 0.9, 0.8, 

0.9, and 1.1, respectively. The second litter Fosl1 expression was too low to detect. The third 

litter had 6 pups: pup 6 had an RQ value of 19 and was not included in the mean values for 

overall E19 Fosl1 expression or for the third litter mean RQ. Most of the pups had decreased 

expression with RQ values of 0.8, 0.7, 0.6, 1.0, and 1.1, respectively.  

At stage P8 (Figure 20C), the first litter had a mean RQ of 1.2 and individual pups had 

RQ values of 1.2, 1.2, and 1.2. In the second litter the mean RQ was 1.0, but 3 of 9 were 

increased and the remainder had decreased expression. The RQ values were 0.6, 0.9, 0.8, 0.8, 

1.3, 0.6, 2.3, 0.8, and 1.2, respectively. The third litter had a mean RQ of 1.5 with only 1 pup 

having decreased expression, and the remainders were increased. RQ values were 1.0, 0.9, 1.2, 

2.8, 1.2, 2.1, and 1.5, respectively. The overall Fosl1 expression was not changed with an RQ 

value of 1.2 (p=0.08) (Figure 20D). 
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Figure 20. Fosl1 mRNA RQ values for three developmental stages tested. Individual pups 

and the pooled sample RQ values were normalized to the control (saline; RQ = 1) group. A. 

The Fosl1 mRNA expression from E16 appears to be unchanged except for the second litter, B 

unchanged in E19, C and some litters upregulated at P8, and D the mean trends from all litters 

combined at each developmental stage.  
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C.1.5. Discussion 

This research shows that genetically identical mice offspring can have variable mRNA 

expression of Wnt-target genes after prenatal exposure to PGE2. This further emphasizes the 

point that environmental factors influence the Wnt-pathway during development, and thus its 

interaction with autism. 

My current results in the mouse brain show that maternal exposure to PGE2 during 

critical prenatal development result in differential regulation of Wnt-target genes in the 

genetically identical offspring at various developmental stages. I show that the exposure to 

PGE2 effects the expression of two genes Wnt3a and Fosl1.  

In human twin studies, it has been established that there is a genetic component to the 

etiology of ASD by testing the concordance rates between monozygotic and dizygotic twins. 

The concordance is 32-88% in monozygotic twins, compared to 0-31% in dizygotic twins 

[170]–[173]. However, even in monozygotic twins, the severity of symptoms observed in each 

child may be different [174]. Monozygotic twins that share the same placenta (monochorionic) 

are more likely to have high concordance compared to monozygotic-dichorionic twins [175]. 

In our study, although the mice are genetically identical, each are encased in an amniotic sac 

and have separately attached placentas. Therefore, even the same maternal environmental 

exposure can have a different impact on each pup of the pregnancy. 

There is also evidence that misoprostol is not neurodevelopmentally toxic at birth. 

Misoprostol was injected in mice on postnatal day 7, the approximate developmental stage in 

mice of human birth, and no significant effects of exposure were found for any measure of 

development or behavioural endpoints [176]. However, this confirms our findings that the 

PGE2 signaling pathway plays a critical role during neurodevelopment prenatally.  
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C.1.6. Conclusion 

Overall, this study contributes to the first in vivo evidence in the mouse for the 

interaction of two critical developmental pathways PGE2 and Wnt. This research identifies the 

expression levels of Wnt-target genes, Fosl1 and Wnt3a, in the brain after prenatal exposure to 

PGE2. Assessing different developmental stages will help us better understand the influence of 

PGE2 on the Wnt signaling pathway during critical periods of development. This study furthers 

our knowledge that a maternal increase in PGE2, during a vulnerable window in brain 

development can affect the expression of genes crucial to the development of the nervous 

system, and potentially contribute to pathology of neurodevelopmental disorders such as 

autism. Based on the previous literature and our current findings, PGE2 should be considered 

an autism candidate signaling pathway.  

 

 

 


