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Abstract

This research is focused on high dimensional data integration by combing test statistics or

information criteria. Our research contains four projects.

In the first project, we propose an integration method to perform hypothesis testing

and biomarkers selection based on multi-platform data sets observed from normal and

diseased populations. The types of test statistics can vary across the platforms and their

marginal distributions can be different. The observed test statistics are aggregated across

different data platforms in a weighted scheme, where the weights take into account differ-

ent variabilities possessed by test statistics. The overall decision is based on the empirical

distribution of the aggregated statistic obtained through random permutations. In both sim-

ulation studies and real biological data analyses, our proposed method has better control

over false discovery rates and higher positive selection rates than the uncombined method.

In mixed data clustering project, we propose a non-parametric clustering method for

handling mixed data with both continuous and discrete random variables. The product

space of the continuous and discrete sample space is transformed into a new product space
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based on adaptive quantization on the continuous part. Cluster patterns are detected locally

by using a weighted modified Chi-squared test. Results from simulation studies and real

data analysis have shown that our method out-performs the benchmark method, AutoClass,

in various settings.

In the multiple data sets model selection project, we propose weighted integrative AICs

as a model selection criterion. Our method combines AICs with different weights across

multiple data sets. The weights are chosen to minimize the variance of integrative AICs.

In the simulation studies, we compare our method with individual AIC method and in-

tegrative AICs with equal weights method. Our method has the better performance over

false negative numbers and false detected numbers of the selected variables.

In the last project, we extend Linharts and Shirmodarias test statistics under composite

likelihood function with local alternatives for correlated data set. Comparing to first order

method, our simulation results show that our second order method improves the accuracy

for estimating the variance of difference of AICs and reduces the error probability when

conduct model comparison test.
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1 Combining two t-test statistics.

1.1 Introduction

In gene expression experiments, the expression levels of thousands of genes are simul-

taneously monitored to study the underlying biological process. In proteomic data, the

protein levels or protein counts are measured for thousands of genes simultaneously. In

addition, there are other types of genomic data with different sizes, formats and structures.

Each distinct data type, such as gene expression, protein counts, or single nucleotide poly-

morphisms, provide potentially valuable and complementary information regarding the

involvement of a given gene in a biological process. Many biomarkers that play impor-

tant roles in biological processes behave differently in treatment versus control groups;

this phenomenon can be observed consistently across various data platforms. Therefore,

integrating related data sets from different sources is crucial to correctly identify the sig-

nificant underlying biomarkers. Integrative analysis of multiple data types would improve

the identification of biomarkers of clinical end points (Reif et al., 2004). However, the
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integration of data from different sources poses a number of challenges. First, genomic

data come in a wide variety of data formats. For example, expression data are recorded

as continuous measurements, whereas proteomic data often consist of discrete counting

variables. One may wish to convert data into a common format and common dimension,

but this is not always practical or feasible (Hamid et al., 2009). Second, different data

sets are collected under different experimental settings. Therefore, the distribution of the

measurements as well as the quality of the experiments may vary from data set to data set.

Third, measurements obtained across different data platforms could be collected from the

same or related biological samples. Therefore, measurements across different data types

could have complicated dependency relationships.

The practice of combining different data sources to perform classification analysis has

been considered in the literature. Efforts to integrate data and improve classification accu-

racy are widely seen in recent studies (Lanckriet et al., 2004; Daemen et al., 2008; Buness

et al., 2009). In contrast to performing classification on biological samples, our main ob-

jective is to select important biomarkers for an underlying biological process. Correlation

analysis has been proposed to integrate diverse data types and assimilate them into biologi-

cal models for the prediction of cellular behaviour and clinical outcome. Tian et al. (2004)

performed a correlation analysis of protein and mRNA expression data using the cosine

correlation metric for comparison. Bussey et al. (2006) integrated data on DNA copy
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number with gene expression levels and drug sensitivities in cancer cell lines based on

Pearson’s correlation coefficients. Adourian et al. (2008) presented a cross-compartment

correlation network approach to integrate proteomic, metabolomic, and transcriptomic

data for selecting circulating biomarkers; partial pairwise Pearson’s correlations control-

ling for treatment group means were calculated. The markers with concordant RNA and

protein expression were included in the prediction models, while discordant ones were ex-

cluded. However, this approach might miss some important biological information, such

as protein-protein interactions and protein-gene interactions (Ma et al., 2009). Another

limitation is that correlation analysis mainly captures the strength of the correlation among

measurements across different platforms; however, strong correlation only demonstrates

consistent outcome across different platforms and does not directly translate to significant

involvement in a biological process. Furthermore, statistical evidence from complicated

data sets, such as factorial experiments, times series, or longitudinal data, cannot be sum-

marized.

The problem of how to reliably combine data from different experiment platforms to

identify significant biomarkers has recently received considerable attention in the bioin-

formatics literature. The rank aggregation method (Aerts et al., 2006) has been proposed

for ranking genes by similarity to the disease genes in Gene Ontology, pathways, tran-

scription factor binding sites, and sequence, then aggregating this rankings to get the final
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result. Rhodes et al. (2004) combined four independent data sets to identify genes dereg-

ulated in prostate cancer. For each gene in each data set, a p-value was obtained as an

indication of the probability that the gene was differentially expressed. P-values for dif-

ferent data sets were subsequently aggregated to provide an overall estimate of the genes’

significance of being differentially expressed during prostate cancer. However, combining

genes’ ranks in the rank aggregation approach or p-values in the meta-profiling method

ignores the underlying multivariate distributions of the ranks or p-values. Furthermore,

data quality may vary across different data sources. The two aggregation methods detailed

above essentially give equal weights to different data sets. Thus, we propose to combine

statistical evidence across different platforms through summary statistics instead of raw

data. For each experimental platform, we formulate a null hypothesis and construct the

summary test statistic. By randomization, we obtain the null distribution of the vector

of statistics across different platforms. The test statistics are summarized across different

platforms in a weighted scheme, where the weights take into account different variabili-

ties possessed by the statistics. The method allows the use of different types of summary

statistics from different platforms, which gives great flexibility and generality with respect

to its application.

The proposed method is similar in spirit to a meta-analysis. Both methods combine

statistical evidence across multiple data sets. However, in meta-analysis different data

4



sets are based on the same type of experiments or observational studies, and therefore the

measurements are the same variables. Across different data sets, the quality of the data

may vary. The goal of meta-analysis is to fully utilize all the information from different

data sets and construct a weighted estimate of the effect size. Different weighting schemes

are available depending on the statistical models (Hu et al., 2006). On the other hand, data

integration focuses on integrating statistical evidence across different experimental types.

There is no common effect size to estimate across various data sets. In our proposed

method, we use a weighted average of the test statistics across different data platforms,

but the test statistics are summaries of evidence towards different sub-hypotheses rather

than summaries of common effect size as in fixed effect meta-analysis. The proposed

integration method does not check for differences across the platforms.

1.2 Methods

The aim of our multi-platform integration method is to select a set of significant biomark-

ers that are involved in a biological process and thus behave differently in the treatment

group and the control group. In order to combine statistical evidence across different

platforms, our method requires that analogous hypotheses based on the features being

measured are formulated for each platform. Each null analogous hypothesis specifies the

unrelatedness of the biomarker in that particular experimental setting, but all of them infer
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the unrelatedness of the biomarker to the biological process being investigated. Based on

the set of Q analogous hypotheses for Q data sources, we construct a set of Q correspond-

ing test statistics for each type of data. The test statistics can be different and tailored to the

specific experimental settings. For example, if the microarray experiment has a multifac-

torial design, the appropriate test statistic can be an F statistic based on an ANOVA test. If

the proteomics experiment generates counting data for diseased versus normal groups, the

appropriate test statistic can be a nonparametric Wilcoxon rank sum test. A vector of ob-

served statistics across multi-platforms is obtained. We then randomly permute data across

diseased and control groups. All measurements from different platforms are permuted. In

this way, we obtain an empirical null distribution of the vector of test statistics. In order

to pool the randomized values of the statistics across the biomarkers to form the empirical

null distribution, we assume data from different biomarkers are independent or have an

exchangeable correlation structure. For the validity of the randomization procedure, we

assume an exchangeable covariance structure for the measurements within each platform.

Finally, we construct a weighted sum of the test statistics across different platforms with

the weights being the inverse of the empirical standard deviation of each statistic. We

determine a set of significant biomarkers based on the aggregated test statistic.

In the following, we demonstrate our method by integrating microarray expression

data and proteomic data as an example. We consider two experiments, the first having
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microarray expression data measured on l1 diseased samples and l2 control samples and the

second having proteomic data measured on m1 diseased samples and m2 control samples.

The objective is to find biomarkers significantly involved in disease development.

Step 1): Define two analogous null hypotheses. For microarray data, the null hypothe-

sis would be H01 : the gene’s mRNA level is the same in diseased and normal populations;

for proteomic data, the null hypothesis would be H02 : the protein level is the same in

diseased and normal populations.

Step 2): Based on the hypotheses, construct two test statistics, tm and tp, tailored to each

type of data. Consequently, we obtain a vector of two observed statistics (tm, tp)T across

two data platforms. The test statistics can be of any type as long as they summarize infor-

mation from the data and can be used to assess the statistical significance of the data toward

the hypotheses. Let x1 = (x11, . . . , x1l1)
T denote the l1 gene expression measurements in

the disease group, x2 = (x21, . . . , x2l2)
T denote the l2 gene expression measurements in the

control group, x1 =
∑l1

j=1 x1 j/l1, and x2 =
∑l2

j=1 x2 j/l2. Similarly, y1 = (y11, . . . , y1m1)
T de-

notes the m1 protein measurements in the disease group and y2 = (y21, . . . , y2m2)
T denotes

the m2 protein measurements in the control group, y1 =
∑m1

j=1 y1 j/m1, and y2 =
∑m2

j=1 y2 j/m2.

For illustration purpose, we adopt Behrens-Fisher test statistics for each of the data:

tm =
x2 − x1√

s2(x1)
l1

+
s2(x2)

l2

,
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and

tp =
y2 − y1√

s2(y1)
m1

+
s2(y2)

m2

,

where s2 denotes the sample variance. The test statistics should be formulated so that a

larger test statistic in the positive direction indicates more evidence towards the alternative

hypotheses. For example, if Student’s t-statistic is used, then a one-sided alternative hy-

pothesis corresponds to a one-sided t-statistic, whereas the two-sided alternative leads to

the absolute value of the t-statistic. Consider n genes being measured in the experiments

and we obtain n vectors of test statistics (tmi, tpi)T , i = 1, . . . , n, from the data sets.

Step 3): The samples are randomly permuted across diseased and control groups. If the

same sample is being measured across different platforms, all the measurements from the

different platform are permuted simultaneously. The simultaneous permutation preserves

the dependency relationship among the measurements from different platforms. Based on

random permutation, we obtain an empirical null distribution of the vector (tm, tp)T .

Step 4): The aggregated test statistic will be:

tA =
tm

σ̂1
+

tp

σ̂2
,

where σ̂1 and σ̂2 are the estimated standard deviations of tm and tp based on the empirical

null distribution, and tm and tp are the test statistics or the absolute values of the test statis-

tics based on the direction of the alternative hypotheses. The average estimated weights

can be included because it reflects the variability of the test statistic. Our weights are cho-

8



sen as the standard deviations. The weights allow to assign larger weight to the test statistic

with smaller variation, and assign smaller weight to the test statistic with larger variation.

At significance level α, we choose a threshold Cα, such that PH01∩H02(tA > Cα) = α. Specif-

ically, Cα is the 100(1 − α)% percentile of tA, which can be obtained from the empirical

null distribution. Construct a decision line that separates selected significant biomarkers

and nonsignificant biomarkers. The resulting separation line is:

tm

σ̂1
+

tp

σ̂2
= Cα.

All the biomarkers with (tm, tp) above the separation line will be declared as significantly

involved in the disease development.

In the more general case, suppose we have Q data platforms with the observed test

statistics (t1, . . . , tQ)T . From random permutation, we obtain the joint empirical distribution

of this vector of test statistics under the global null hypothesis. Let σ̂2
1, . . . , σ̂

2
Q denote the

estimated variance of the individual test statistics.The aggregated test statistic takes the

form:

tA =

Q∑
i=1

ti

σ̂i
.

The resulting critical region will take the form:

t1

σ̂1
+ .... +

tQ

σ̂Q
> Cα,

where Cα is the 100(1−α)% percentile of tA. Any biomarker with tA > Cα will be selected
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as behaving significantly differently between the diseased group and control group.

Our method aggregates actual values of the test statistics across different data plat-

forms, which preserves more information compared to the rank aggregation method. More-

over, our method assigns different weights to each data set according to the variability of

the test statistics: the larger the variation in the test statistic, the smaller the weight as-

signed to it, and vice versa. The threshold Cα is determined based on the empirical null

distribution of the aggregated test statistics, which implicitly takes into account the de-

pendency relationships among the test statistics. Furthermore, our method can deal with

different data types and formats generated by various experimental settings.

There are two major ways to perform the multiplicity adjustment. The first is the

Bonferroni correction. If we wish to control the familywise type I error rate at α∗, then the

individual level α = α∗/n, where n is the total number of biomarkers. When n is large, the

Bonferroni correction leads to very stringent tests with α being very small. Alternatively,

we can control the number of false discoveries. To set the number of false discoveries to

be equal to or less than f , then α = f /(nπ̂), where π̂ is the estimated proportion of non-

differentially expressed biomarkers. If there is no π̂ available, we use π̂ = 1 and that gives

a conservative value for α.

Different platforms can be used to test different sub-hypothesis. All of these sub-

hypotheses should be concordant in supporting the overall biological hypothesis. For ex-
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ample, the involvement of a gene in disease development can be supported by both mRNA

expression level changes and proteomic level changes. In most cases, changes in mea-

surements from different platforms are expected to occur in the same direction. However,

our method is also applicable even if the changes are in different directions, as long as

the statistical evidence from both sources can be combined. For example, consider H10 :

mRNA is increasing in normal group; H20: antibody count is decreasing in normal group.

Even though the actual measurements from two platforms are negatively correlated, we

can construct the test statistics t1 and t2 so that the positive value of the statistics supports

the alternative hypotheses and the weighted average can be used as combined evidence of

the involvement of the biomarker in the process.

1.3 Simulation Study Results

1.3.1 Results on Simulated Data

In this section, we examine the performance of our proposed method by examining its pos-

itive selection rates and false discovery rates under various testing scenarios. We simulate

data sets from Q different platforms. The number Q is set to be either 2 or 5. For the qth

experiment, the data set is denoted as Xq. For each data set, we assume that n different

biomarkers are measured, Xq = (XT
q1, ..., X

T
qn)T . For the ith biomarker, Xqi = (XT

qi1, X
T
qi2)T ,

where Xqi1 denotes data from the control group with mean µqi1 and Xqi2 denotes data from
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the diseased group with mean µqi2. The total number of biomarkers is set to be n = 1000.

Among the n biomarkers, let g denote the number of biomarkers that are related to the

biological process of interest, i.e. µqi1 , µqi2. The number g of differentially expressed

(DE) biomarkers is set to be 200. The number of measurements for each biomarker ob-

tained from each platform is set to be 10, in which 5 are from the control group and the

other 5 are from the disease group. We also consider different effect sizes. For continuous

data, we generate Xqi ∼ MVN( (µT
qi1, µ

T
qi2)T , Σ), where Σ has an exchangeable correlation

structure with correlation ρ. The correlation ρ is set to be either 0 or 0.5. For differentially

expressed markers, µqi1 = 0 × 1m, µqi2 = e × 1m, where e is the effect size and m = 5 is

number of measurements. Discrete data Xqi is generated from a Poisson(λ) distribution,

where λqi1 = µqi1 for the control group and µqi2 = µqi1 + e for the diseased group. The g

differentially expressed markers are divided into two groups with g1 = 100 and g2 = 100.

Each group is assigned a different effect size e. For each platform, the alternative hypoth-

esis can be either left-sided, right-sided or two-sided. The number of permutation is 100.

All of the permuted values from the n biomarkers are pooled together to form the empirical

null distribution. The results are summarized for 100 simulated data sets.

To compare our multi-platform integration method with the individual platform anal-

ysis method, the positive selection rate (PSR) and false discovery rate (FDR) are calcu-

lated to assess the performance of each method for selecting the differentially expressed
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biomarkers:

PSR =
# of correctly identified DE biomarkers

# of DE biomarkers

and

FDR =
# of falsely identified DE biomarkers

# of identified DE biomarkers

Tables 1.1, 1.2, and 1.3 provide detailed simulation settings and results at the α = 0.05

significance level. From the results, we can see that our multi-platform integration method

has the highest PSR and the lowest FDR with the smallest variance compared to all other

individual platform analyses in all scenarios. In addition, such advantage is consistently

observed regardless of whether or not there is correlation among the measurements ob-

tained for each biomarkers. Table 1.1 summarizes the results for the integrative analysis

based on two different platforms. Given different effect sizes, one or two sided alternatives,

and different correlations, the increase in PSR is consistently about 40% and the decrease

in FDR is about 30% compared to the results from individual platforms. Table 1.2 sum-

marizes the results for the integrative analysis based on five different platforms. Given

different simulation scenarios, the increase in PSR for most cases is about 60% and the de-

crease in FDR is about 40% compared to the results from individual platforms. This shows

that by integrating more data from different sources, we are improving the sensitivity and

selectivity of the proposed method. Table 1.3 summarizes the results for the integrative

analysis based on two different platforms, where the first consists of continuous data and
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the second consists of discrete data. Similar to the setting with two continuous data sets,

the increase in PSR is about 40% and the decrease in FDR is about 30% compared to the

results from individual platforms.

Figure 1.1 demonstrates decision lines from different methods. The plot is constructed

based on the results from one simulated data set and contains three decision lines: the ver-

tical line using data from the first individual platform, the horizontal line using data from

the second individual platform, and the dashed line based on our multi-platform integra-

tion method. Our decision line provides a greatly improved separation of the differentially

and non-differentially expressed biomarkers. Moreover, the individual platform analysis

misidentifies some of the data points compared to our method.

As we examine a large number of biomarkers, we need to investigate the control of

the false discovery rate of the proposed method with regards to multiple hypothesis testing

(Gao, 2006). Given a fixed cut-off value of α, we obtain the realized false discovery rate

FDR = (FP)/( ˆT P) and its estimates ˆFDR = (F̂P)/( ˆT P), where FP denotes the number of

false positive biomarkers, F̂P = nπα is the estimated number of false positive biomarkers,

ˆT P is the total number of biomarkers claimed as positive, π is the proportion of non-

differentially expressed genes, and π̂ is its estimator. We can control the estimated number

of false positive discoveries by selecting the significance level of the approaches. We

expect that the estimated F̂P should be close to the true FP; the ˆFDR should be close to the
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Table 1.1: The simulation results for two platforms with continuous data.

Methods
multi-platform 1st Platform 2nd Platform

Scenario 1: ρ = 0; g = g1 + g2 = 200
Right-side Platform1: e = 0.5 for g1 = 100; e = 2 for g2 = 100

Platform2: e = 1.5 for g1 = 100; e = 1 for g2 = 100
PS R Mean 0.7895 0.5372 0.5588
PS R Var 0.0007 0.0007 0.0010
FDR Mean 0.1907 0.2680 0.2600
FDR Var 0.0007 0.0013 0.0009

Left-side Platform1: e = -0.5 for g1 = 100; e = -2 for g2 = 100
Platform2: e = -1.5 for g1 = 100; e = -1 for g2 = 100
PS R Mean 0.7908 0.5330 0.5556
PS R Var 0.0006 0.0006 0.0012
FDR Mean 0.1891 0.2673 0.2649
FDR Var 0.0006 0.0009 0.0011

Two-sided Platform1: e = -1 for g1 = 100; e = 1.5 for g2 = 100
Platform2: e = 2 for g1 = 100; e = -1 for g2 = 100
PS R Mean 0.6988 0.4113 0.5403
PS R Var 0.0011 0.0011 0.0010
FDR Mean 0.2145 0.3202 0.2694
FDR Var 0.0007 0.0016 0.0012

Scenario 2: ρ = 0.5; g = g1 + g2 = 200
Right-side Platform1: e = 0.5 for g1 = 100; e = 2 for g2 = 100

Platform2: e = 1.5 for g1 = 100; e = 1 for g2 = 100
PS R Mean 0.9405 0.6319 0.7819
PS R Var 0.0003 0.0005 0.0007
FDR Mean 0.1560 0.2410 0.2051
FDR Var 0.0005 0.0009 0.0007

Left-side Platform1: e = -0.5 for g1 = 100; e = -2 for g2 = 100
Platform2: e = -1.5 for g1 = 100; e = -1 for g2 = 100
PS R Mean 0.9400 0.6316 0.7871
PS R Var 0.0002 0.0004 0.0006
FDR Mean 0.1605 0.2419 0.2024
FDR Var 0.0005 0.0007 0.0006

Two-sided Platform1: e = -1 for g1 = 100; e = 1.5 for g2 = 100
Platform2: e = 2 for g1 = 100; e = -1 for g2 = 100
PS R Mean 0.9377 0.6670 0.7327
PS R Var 0.0003 0.0010 0.0007
FDR Mean 0.1622 0.2270 0.2122
FDR Var 0.0005 0.0009 0.0007
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Table 1.2: The simulation settings and results for five platforms with continuous data.

Method Multi-plat 1st Platform. 2nd Platform. 3rd Platform. 4th Platform. 5th Platform.

Scenario 1: ρ = 0; g = g1 + g2 = 200

Platform1: e = 1.5 for g = 200

Platform2: e = 1.5 for g1 = 100; e = 1 for g2 = 100

Platform3: e = -0.5 for g1 = 100; e = -2 for g2 = 100

Platform4: e = -1 for g1 = 100; e = 1.5 for g2 = 100

Platform5: e = 2 for g1 = 100; e = -1 for g2 = 100

PS R Mean 0.9517 0.5601 0.4130 0.4464 0.4213 0.4471

PS R Var 0.0002 0.0012 0.0011 0.0004 0.0010 0.0005

FDR Mean 0.1572 0.2605 0.3299 0.3108 0.3205 0.2727

FDR Var 0.0004 0.0011 0.0018 0.0009 0.0010 0.0010

Scenario 2: ρ = 0.5; g = g1 + g2 = 200

Platform1: e = 1.5 for g = 200

Platform2: e = 1.5 for g1 = 100; e = 1 for g2 = 100

Platform3: e = -0.5 for g1 = 100; e = -2 for g2 = 100

Platform4: e = -1 for g1 = 100; e = 1.5 for g2 = 100

Platform5: e = 2 for g1 = 100; e = -1 for g2 = 100

PS R Mean 0.9998 0.8360 0.6655 0.5682 0.6712 0.5699

PS R Var 2.7e-06 0.0006 0.0010 0.0004 0.0010 0.0008

FDR Mean 0.1281 0.1898 0.2217 0.2593 0.2314 0.2093

FDR Var 0.0004 0.0006 0.0009 0.0007 0.0007 0.0008
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Table 1.3: The simulation settings and results for two platforms with continuous data and

discrete data.

Methods

multi-platform 1st Platform 2nd Platform

Platform1: Continuous; ρ = 0; e = 0.5 for g1 = 100; e = 2 for g2 = 100

Platform2: Discrete; µqn1 = 5, e = 3 for g = 200

PS R Mean 0.7356 0.5327 0.5228

PS R Var 0.0008 0.0004 0.0012

FDR Mean 0.1967 0.2702 0.2763

FDR Var 0.0008 0.0012 0.0012
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Figure 1.1: Decision lines for comparing methods.
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Vertical lines use data from the first individual platform, horizontal lines use data from the second individual

platform, and dashed lines use our multi-platform integration method. Circles represent non-differentially

expressed biomarkers and triangles represent differentially expressed biomarkers. Plots are based on one

simulated data set and 100 permutations.
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true FDR as well. Under the simulation setting of scenario 2 left-sided case in Table 1.4,

the control of the false discovery rate of our proposed method under different significance

levels is examined and presented in Table 1.4. With π = 0.8 and α = 0.005, F̂P is aimed to

be controlled at 4. On average, our method produces 3.84 false positives, whereas the first

and second individual platform analyses have 4.65 and 5.00 false positives, respectively.

The corresponding average ˆFDR of our method is 0.0225, which is close to the true FDR

of 0.0214. This demonstrates the integrative analysis yields satisfactory control of false

discovery rate, which is improved compared to individual platform analyses.

An ongoing problem in proteomics is that extremely small sample sizes often occur,

largely due to biological reasons. To investigate the performance of our method in such

situations, we consider a case for each platform where in the control and the diseased

groups each has only two measurements. Our method is applied and the simulation results

are shown in Table 1.5, scenario 1. Due to the small sample size, the positive selection rate

is rather low and the false discovery rate rather high. Nevertheless, the combined method

still outperforms the single platform method.

We also consider the situation in which data on the same biomarker from n platforms

have a multivariate distribution and the data from the diseased group are independent of

those from the control group. The new simulation results are summarized in Table 1.5,

scenario 2. The correlation between the platforms is set to 0.5, and the other parameters
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Table 1.4: True positives and false discovery rates with π = 0.8.

Methods α 0.05 0.01 0.005

F̂P 40 8 4

multi-platform ˆT P 224 165 143

(std) 6.5547 6.0820 5.5202

FP 44.8125 8.0250 3.8375

(std) 7.3348 3.4778 2.263

FDR 0.1563 0.0386 0.0214

(std) 0.0219 0.0161 0.0125

ˆFDR 0.1428 0.0388 0.0225

(std) 0.0041 0.0014 0.0009

1st individual ˆT P 165 107 91

(std) 8.8797 5.3066 4.9031

FP 50.5125 9.9000 4.6500

(std) 8.9101 3.4982 2.1766

FDR 0.2431 0.0736 0.0406

(std) 0.0326 0.0246 0.0183

ˆFDR 0.1940 0.0600 0.0353

(std) 0.0103 0.0030 0.0019

2nd individual ˆT P 197 106 79

(std) 7.2442 8.2303 6.3222

FP 48.9250 9.6000 5.000

(std) 7.1862 3.5750 2.5376

FDR 0.1986 0.0721 0.0506

(std) 0.0245 0.0258 0.0251

ˆFDR 0.1630 0.0607 0.0408

(std) 0.0060 0.0048 0.0033
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Table 1.5: Additional simulations.

Method multi-plat 1st ind. 2nd ind.

Scenario 1: Extremely small sample size

two measurements from each group

PS R Mean 0.3022 0.2363 0.2179

PS R Var 0.0009 0.0006 0.0007

FDR Mean 0.3782 0.4436 0.4694

FDR Var 0.0023 0.0025 0.0027

Scenario 2: Correlation among platforms set to 0.5

Disease and normal groups are independent

PS R Mean 0.6689 0.5365 0.5578

PS R Var 0.0009 0.0008 0.0011

FDR Mean 0.2255 0.2690 0.2641

FDR Var 0.0008 0.0010 0.0010

Scenario 3: Non-standardized version of tm and tp

i.e. tm = x2 − x1, tp = y2 − y1

PS R Mean 0.8142 0.5479 0.5992

PS R Var 0.0009 0.0005 0.0010

FDR Mean 0.1586 0.2358 0.2235

FDR Var 0.0006 0.0011 0.0010
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are the same as in Table 1.1, scenario 1, right-sided test. Due to the high correlation

among the platforms, the gain in power of the aggregated method is less pronounced than

that of the independence case. This is because different platforms contribute overlapping

information when they are highly correlated.

The proposed method allows different ways of constructing tm and tp as long as they

provide summarized statistical evidence for that platform. The Student’s t-statistic is

adopted in the paper simply for illustration purpose. Alternatively, we can simply use

the unstandardized differences: tm = x1 − x2, and tp = y1 − y2. Then we proceed with the

randomization, obtain the estimated variances for tm and tp and form a weighted linear sum

statistic. To compare the empirical performance of the standardized versus unstandardized

versions, we conduct simulations under the setting 1 of Table 1.1 with right-sided test. The

results are summarized in Table 5, scenario 3. The two versions have comparable perfor-

mance in terms of PSR and FDR. The unstandardized version of tm and tp has a slightly

higher PSR and a slightly lower FDR.

Our method can be extended to multivariate situation by taking covariance matrix into

account. An alternative way of combining test statistics across different platforms is to

form a multivariate quadratic statistic. Given two platforms, for example, we consider an

alternative test statistic

tQ = (tm, tp)T Σ̂−1(tm, tp),
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where Σ̂ is the estimated covariance matrix of the vector (tm, tp) obtained from the empirical

null distribution. When tm and tp are highly correlated, such multivariate statistic is good

to use. This multivariate statistic can be used to test the overall null hypothesis against

two-sided alternatives, while the weighted linear statistic that we propose can be used to

test one-sided alternatives or two-sided alternatives. Thus, our method is more broadly

applicable. We further conduct simulations to compare the multivariate quadratic form

with our proposed weighted linear statistic for two-sided tests under the setting of scenario

2, Table 1.1, with results included in Table 1.6. For two-sided alternatives, the quadratic

statistic has very similar performance to our proposed weighted linear statistic, with a

slightly lower PSR and a slightly higher FDR.

Finally, we compare our method with the existing robust rank aggregation method

(Kolde et al., 2012) with results included in Table 1.7. The inference from rank aggrega-

tion method is based on the ranks of the test statistics. The ranking can in some degree

reflect the significance of the test statistics. But the position of the rank does not always

translate into the relatedness of the biomarker to the underlying biological mechanism.

The rank aggregation method assigns p-values of the observed ranks under the null hy-

pothesis that the normalized ranks of all biomarkers are uniformly distributed. But this is

a null hypothesis which can correspond to two totally different situations: all the biomark-

ers are not related to the biological process or all of them are related with equal effect size.
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Table 1.6: Comparison with the quadratic test statistic tQ.

Method multi-plat Quadratic

PS R Mean 0.9377 0.9155

PS R Var 0.0003 0.0004

FDR Mean 0.1622 0.1804

FDR Var 0.0005 0.0005

Quadratic: Exp1: e = -1 for g1 = 100; e = 1.5 for g2 = 100

Exp2: e = 2 for g1 = 100; e = -1 for g2 = 100

This evaluation of p-values under such global null hypothesis has two implications. First

of all, if all the biomarkers are related to the biological process with equal or similar effect

sizes, the observed ranks will appear non-informative and thus the method will have little

power to detect them. Secondly, the p-value of each observed rank is calculated under the

global null hypothesis. Thus, the rank aggregation has a correct error control under the

global null hypothesis but has no correct error control under other configurations of the

individual hypotheses. In other words, it lack the strong control of the error rate under

different configurations of the individual hypothesis (Hochberg and Tamhane, 1987). On

the other hand, our method assigns p-values under the individual null hypotheses and thus

have a strong control of the error rate. This means our method’s actual false discovery

24



rate and estimated false discovery rate will be in good agreement no matter how many

of the genes belong to the null situation and how many belong to the alternative situa-

tion. While in contrast, the rank aggregation will tend to be very conservative if there are

many biomarkers belonging to the alternative situation. To demonstrate this, we choose

the number of significant markers ranging from 100, 200 to 400. It is shown in Table 1.7

that the rank aggregation behaves very conservatively in the presence of large number of

significant markers. For instance, with five platforms and 200 significant biomarkers, our

proposed method has a PSR of 0.9995 and a FDR of 0.1399, while the competing rank

aggregation method has a much lower PSR of 0.4995 and FDR of 0.0823. This compar-

ison further demonstrates the advantage of the proposed method. The rank aggregation

method relies on the ranking of the test statistics. The higher ranking is, the more impor-

tant biomarker is. Therefore, the rank aggregation method doesn’t work well for some

extreme cases. For example, if none of biomarkers are significant, it’s hard to distinguish

top biomarkers among all biomarkers. However, the rank aggregation method still rank

test statistics in order to identify important biomarkers, even in fact all biomarkers are

non-significant. Similarly, the rank aggregation method ranks test statistics to identify top

biomarkers in the case of all biomarkers are significant.

25



Table 1.7: Comparison with Robust Rank Aggregation Method.

Setting: Method multi-plat RRA

1. ρ = 0.5; g = g1 + g2 = 100

Exp1: e = 1.5 for g = 200 PS R Mean 1.000 0.7497

Exp2: e = 1.5 for g1 = 100; e = 1 for g2 = 100 PS R Var 1.98e-6 0.0012

Exp3: e = -0.5 for g1 = 100; e = -2 for g2 = 100 FDR Mean 0.2803 0.0912

Exp4: e = -1 for g1 = 100; e = 1.5 for g2 = 100 FDR Var 0.0011 0.0003

Exp5: e = 2 for g1 = 100; e = -1 for g2 = 100

2. ρ = 0.5; g = g1 + g2 = 200

Exp1: e = 1.5 for g = 100 PS R Mean 0.9995 0.4995

Exp2: e = 1.5 for g1 = 50; e = 1 for g2 = 50 PS R Var 0.23e-06 0.0008

Exp3: e = -0.5 for g1 = 50; e = -2 for g2 = 50 FDR Mean 0.1399 0.0823

Exp4: e = -1 for g1 = 50; e = 1.5 for g2 = 50 FDR Var 0.0004 0.0004

Exp5: e = 2 for g1 = 50; e = -1 for g2 = 50

3. ρ = 0.5; g = g1 + g2 = 400

Exp1: e = 1.5 for g = 100 PS R Mean 0.9992 0.1133

Exp2: e = 1.5 for g1 = 50; e = 1 for g2 = 50 PS R Var 2.23e-6 0.0002

Exp3: e = -0.5 for g1 = 50; e = -2 for g2 = 50 FDR Mean 0.0402 0.0796

Exp4: e = -1 for g1 = 50; e = 1.5 for g2 = 50 FDR Var 0.0001 0.0015

Exp5: e = 2 for g1 = 50; e = -1 for g2 = 50
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1.3.2 Results on Real Data

In this section, we apply our method to data from a study of growth and stationary phase

adaption in Streptomyces coelicolor provided by Jayapal (2008). The data set contains

both isobaric stable isotope labeled peptide (iTRAQT M)-derived shotgun proteomic data

and DNA microarray transcriptome data. To study different growth stages of S. coelicolor

M145 cells, eight time point cell samples (7, 11, 14, 16, 22, 26, 34, and 38 h) were col-

lected. Because the iTRQA T Msystem can only analyze four distinct samples in a single

experiment, the eight protein samples were distributed across three runs of mass spectro-

metric (MS) analysis. The protein sample from 11h was run in three MS experiments,

so it serves as a reference. Therefore, protein abundance ratios ri
j/11hr,k were obtained

from experimental run k for protein i in sample jhr with respect to the 11 h reference.

Protein identification and quantification were carried out by comparing the raw spectral

data against a theoretical proteome of S. coelicolor using proteinPilotT M software and the

inbuilt ParagonT M search engine. Only proteins identified with ≥ 99% confidence were

considered for further analysis. Finally, all identified proteins were further processed to

yield a protein abundance ratio with respect to the first time point (7 h) sample using

ri
j/7hr = ri

j/11hr/r
i
7hr/11hr. Ultimately, only 886 proteins identified in the 7 h sample could be

used for our analysis.

For microarray data, total mRNA from the same eight time point samples were isolated
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and a spotted DNA microarray experiment was conducted. Hybridization was performed

using genomic DNA (gDNA) as a reference. The mRNA abundance was obtained using

log2[cDNA/gDNA]. To be consistent with the protein data, mRNA abundance data from

different samples were processed to calculate log2[cDNAi/cDNA7hr] for each sample with

respect to the first time point sample. Only gene expression values with protein values (894

genes) were analyzed. To deal with missing values, we deleted genes that had no values

for mRNA at all or had at least five missing values in the protein data set. The rest of the

missing values for genes were imputed by using R package MICE. In total, the number of

genes suitable for the subsequent integrative analysis was 886. Based on the growth curve,

time points were divided into two groups; those from 7, 11, 14 and 16 h represented the

growth phase and those from 22, 26, 34 and 38 h represented the stationary phase.

The objective of our analysis is now to select the biomarkers that are differentially

expressed between the two phases. We apply our multi-platform integration method to

identify differentially expressed biomarkers. For the mRNA data, we formulate the null

hypothesis as H0: the mRNA expression level is the same between the two phases. Simi-

larly, for protein data, the null hypothesis is formulated as H0 : the protein ratio is the same

between the two phases. For both mRNA data and protein data, two-sided alternatives are

considered in the analysis. For each platform, we use Behrens-Fisher test statistics to sum-

marize the statistical evidence, which are denoted as tm and tp. To obtain the multivariate
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Figure 1.2: Decision lines.
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Vertical lines use the mRNA data, horizontal lines use the protein data, and dashed lines use our multi-

platform integration method.

null distribution, 100 permutations are conducted. The overall correlation between tm and

tp is 0.2787. The variances of tm and tp are 3.0489 and 3.6411, respectively. Based on the

decision line constructed at the significance level α = 0.05, our method detects 172 differ-

ential expressed genes with an estimated F̂P equal to 44. Individual analysis on the mRNA

data and the protein data detects 137 and 143 genes, respectively. Figure 1.2 depicts the

decision lines for all three comparative analyses: the vertical lines using the mRNA data,

the horizontal lines using the protein data, and the dashed lines using our multi-platform

integration method.
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Nine differentially expressed genes are identified by our method but not by the other

two methods. Among these, we identify biosynthetic enzymes (SCO5080 actVA5, SCO5072

actVIORFI) involved in actinorhodin production. These genes are up-regulated only at

late stages of the culture and produce antibiotics during the stationary phase. Expression

of two genes encoding malate oxidoreductase (SCO2951) and translation elongation fac-

tor G (SCO4661) have been found to be depressed during the stationary phase compared

with the growth phase (Manteca et al., 2010). Table 1.8 summarizes the nine genes and

the associated literature confirmations (Bentley et al., 2002; Mehra et al., 2006; Manteca

et al., 2010; Jayapal et al., 2010; Jayapal et al., 2008; Nieselt et al., 2010).

1.4 Conclusion

With the advent of various types of genomic technologies, it is imperative to develop a

method that can integrate different types of genomic data to solve biological questions.

We develop a general framework for data integration across multiple data platforms. For

each data set, a test statistic is formed to summarize the statistic evidence toward the spe-

cific null hypothesis tailored to the data platform. The types of test statistics can vary

and their marginal distributions can be different. The observed test statistics can then be

aggregated across different data platforms. The overall decision is based on the empir-

ical distribution of the aggregated statistic obtained through random permutations. The

30



Table 1.8: SCO Summaries for the 9 genes which are identified by multi-platform integra-

tion method but not by individual platform analysis.

SCO Sanger

Abbreviation

Sanger Annotation Sanger Category Sanger Subcategory TIGR Category related

paper*
SCO1958 uvrA ABC excision nuclease

subunit A

Macromolecule

metabolism

DNA-replication, re-

pair, restr./modific’n

excinuclease ABC, A

subunit

[1]

SCO2940 other putative oxidoreduc-

tase

Not classified (in-

cluded putative

assignments)

Not classified (in-

cluded putative

assignments)

xanthine dehydroge-

nase, putative

[1]

SCO2951 other putative malate oxi-

doreductase

Central intermediary

metabolisms

Other central inter-

mediary metabolism

malate oxidoreduc-

tase

[1,3,4]

SCO3094 other conserved hypothetical

protein

hypothetical protein Conserved in organ-

ism other than Es-

cherichia coli

conserved hypotheti-

cal protein

[1]

SCO4661 fusA elongation factor G Macromolecule

metabolism

Proteins - translation

and modification

translation elonga-

tion factor G

[1,3,4]

SCO5072 actVIORF1 hydroxylacyl-CoA de-

hydrogenase

Secondary

metabolism

PKS hydroxylacyl-CoA

dehydrogenase

[1,3,6]

SCO5080 actVA5 putative hydrolase Secondary

metabolism

PKS putative hydrolase [1,5]

SCO6219 Other putative ATP/GTP

binding protein,

putative serine

Protein kinases Serine/threonine [1]

SCO6222 other putative aminotrans-

ferase

Not classified (in-

cluded putative

assignments)

Not classified (in-

cluded putative

assignments)

aminotransferase,

class I

[1, 2]

*1. Bentley et al.(2002). Complete genome sequence of the model actiononomycete Streptomyces coelicolor A3(2), nature, 414,141-147;
*2. Jayapal et al.(2008). Uncovering genes with divergent mRNA-Protein dynamics in Streptomyces coelicolor, Plos One, 3,e2097;
*3. Jayapal et al.(2010). Multiagging proteomic strategy to estimate protein turnover rates in dynamic systems,J. Proteome Res., 9(5);
*4. Manteca et al.(2010). Quantitative proteomics analysis of Streptomyces coelicolor development demonstrates that onset of secondary metabolism
coincides with hypha differentiation,Mo Cell Proteomics, 9(7):1423-36;
*5. Mehra et al.(2006). Aframe work to analyze multiple time series data: A case study with Streptomyces coelicolor,J Ind Mirobio Biotechnol,
33(2),189-72;
*6. Nieselt et al.(2010). The dynamic architecture of the metabolic switch in Streptomyces coelicolor, BMC Genomics,11:10;
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symmetric correlation between measurements is required. Our method can accommodate

different experimental designs and various data types across platforms. The optimal num-

ber of platforms depends on the effect size. The lager effect size is, the less platforms are

required, and vice versa. Although including more platforms can increase the power of

the method, the cost of the experiments will be increased as well. We need to balance the

power and the cost.
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2 Combining two chi-squared test statistics.

2.1 Introduction

Mixed data which contain both continuous and discrete data are abundant in scientific

research especially in medical or biological studies. An effective clustering method for

mixed data should partition a large complex data set into homogeneous subgroups that are

manageable in statistical inference. Clustering methods thus have a wide range applica-

tions in almost all scientific studies including financial risk analysis, genetic analysis and

medical studies. They are essential tools in analyzing large data sets.

Most of the clustering methods in the literature have been mainly focused on either

continuous data or categorical data alone. K-means algorithm has been widely used in in-

dustrial applications for a long time. Detailed description and discussions can be found in

Kaufman and Rousseeuw (2005). Non-Euclidean distances such as Manhattan distance or

Mahoblis distance have also been used. Model-based clustering methods for continuous

data have been proposed in the literature, see for example Banfield and Raftery (1993).
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One of the most prominent methods in parametric clustering based on mixture model is

proposed by Bradley et al. (1998). The number of clusters and outliers can be handled

simultaneously by the mixture model. Fraley and Raftery (1998) propose to choose the

number of clusters automatically using model-based clustering method. For clustering cat-

egorical data, there are far fewer reliable methods. K-modes algorithm has been proposed

by Huang (1997) to extend the K-means to clustering categorical data. AutoClass method

proposed by Cheeseman and Stutz (1995) is a well known method in clustering. Auto-

Class takes a data set containing both real and discrete valued attributes, and automatically

computes the number of clusters and group memberships. This method has been used in

NASA and helped to find infra-red stars in the IRAS Low Resolution Spectral catalogue

and discovery of classes of proteins (Cheeseman and Stutz 1995).

In clustering mixed data, the main difficulty lies in the fact that continuous and cate-

gorical sample spaces are intrinsically different. Although both can be made into metric

spaces, the continuous sample space resides on a differentiable manifold while the cate-

gorical one is defined entirely on a lattice. Attempts have been made in the literature to

combine the two spaces by using a global and general distance function (Ahmad and Dey,

2007) ). This naive approach ignores the fact that the two sample spaces are topologically

incompatible. Alternatively, AutoClass combines information across probability spaces.

However, the effectiveness of AutoClass depends on the validity of the assumed paramet-
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ric model. Zhang et al. (2005) showed that both K-modes and AutoClass do not perform

very well when applied to benchmark categorical data sets from UCI machine learning

depository. Therefore, there is a need for a non-parametric clustering method for mixed

data.

We extend the work by Zhang et al. (2005) to cluster mixed data by using adaptive

quantization of the continuous sample space. The quantization process was developed in

1950’s and it partitions the sample space through a discrete valued map (Gersho and Gray,

1992). For univariate case, the quantization is known as the vector quantization and it is

the fundamental process for converting analog signals or information into digital forms

(Gersho and Gray, 1992). It has been used in studying pricing in finance as well as en-

gineering. Theoretical properties of quantization in probability distributions can be found

in Graf and Luschgy (2000). The process of clustering mixed data is then performed on

the quantized product space. The key idea is inspired by the fact that any manifold can be

locally modelled by a Euclidian space. Therefore, each neighbourhood in the transformed

product space can be locally characterized a fine grid endowed with a Hamming Distance.

The Hamming Distance is widely used in information and coding theory (Roman,1992;

Laboulias et al., 2002). The statistical significance of a detected cluster is determined by

a weighted local Chi-squared test. The advantage of our proposed method over AutoClass

is demonstrated in simulations and by using two benchmark data sets from UCI machine
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learning depository.

This chapter of the dissertation is organized as follows. The method is proposed in

Section 2.2. The clustering algorithm is presented in Section 2.3. Simulation results are

provided in Section 2.4.

2.2 Clustering Methodology

In this section, we introduce quantization of the mixed sample space on which we adopt

the Hamming Distance function to measure the relative positions of two data points. We

also define a distance vector and an optimal separation point which are essential to measure

spatial patterns as well as the size of any detected clusters. Separation points are introduced

in order to extract detected cluster patterns.

2.2.1 Joint Sample Space of Mixed Data

Consider a general data structure for a mixed data set with p nominal categorical attributes

and q continuous attributes. The categorical sample space is defined on Ωp = Rp while the

continuous one is defined on Ωq. The product space for mixed data is then defined on the

product space Ωp ⊗Ωq. The sample size is denoted by n.

The categorical part of mixed data is represented by X = (X j
i ), with i = 1, 2, . . . , n and

j = 1, · · · , p. Furthermore, row and column vectors in the categorical portion are denoted
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by X[·]
i and X j

[·]. The jth categorical attribute is categorized by m j levels defined by set

A j = (a j1, · · · , a jm j), j = 1, · · · , p.

We denote the continuous part of a mixed sample with size n by Z = (Zk
i ), with i =

1, 2, . . . , n and k = 1, · · · , q. Furthermore, we denote the row and column vectors in the

categorical portion by Z[·]
i and Zk

[·]. The kth attribute is a continuous random variable.

2.2.2 Quantization of Continuous Sample Space

Continuous data and discrete data are fundamentally different. Although the description

provided by the continuous portion can be very detailed, they could carry excessive infor-

mation that are not important for the clustering purpose. Furthermore, any pattern derived

from the categorical part is based on a much coarse topology than the continuous counter-

part. Since it is impossible to define a meaningful and objective manifold from a coarse

data structure, the continuous one then must be mapped into a grid that is compatible with

the relatively coarse topology from the categorical one.

The quantization is achieved in two steps. Firstly for observed realization z j
i , contin-

uous data are mapped onto the unit interval between 0 to 1 by applying the following

formula:

z̃k
i =

zk
i − zk

min

zk
max − zk

min

, k = 1, ..., q; i = 1, ..., n

where zk
min and zk

max represent the minimum and maximum values of k column. Secondly,
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for the standardized observations, the continuous random variable is then mapped or quan-

tized into a discrete random variable with M levels by following way:

Q(z̃k
i ) = m, i f (m − 1)/M ≤ z̃k

i < m/M

where m = 1, 2, · · · ,M, where M can be any positive integer value. Different numerical

value of M could have impact on the quality of quantization and consequently the cluster-

ing result. Finer quantization grid might not be useful and could be more computationally

intensive than a coarse one.

The number of levels M can be difficult to specify by a user with no prior information.

Thus we propose to choose the level M adaptively by using F statistics based on the clus-

tering results. For any fixed value of M that are reasonable, clustering memberships will

then be used to perform ANOVA test by partioning the data into individual groups from

which the F-statistic can be derived accordingly. The numerical value of a quantization

which generates the largest value among calculated F-statistics is then selected as the ap-

propriate number needed for quantization. Numerical results of quantization level will be

illustrated in Section 2.4.1

2.2.3 Distance Vectors on Quantized Product Space

We use Hamming Distance (HD) to measure the relative separation of two categorical

data points. To be more specific, for any two positions in the categorical sample space Ωp,

38



Q[·]
h = (Q[1]

h , · · · ,Q[p]
h ) and Q[·]

i = (Q[1]
i , · · · ,Q[p]

i ), the HD between Q[ j]
h and Q[ j]

i on the jth

attribute is

d(Q j
h,Q

j
i ) =


0 i f Q j

h = Q j
i ,

1 i f Q j
h , Q j

i ;

Further, we define the distance between the two positions, that is, the summation of dis-

tance from each pair of the components. Therefore, we have the following:

HD(Q[·]
h ,Q

[·]
i ) =

p∑
j=1

d(Q j
h,Q

j
i ).

After quantization, the new product space now resides on a high dimensional grid.

Since for a grid, there is no natural origin. We can define a reference point (S,T) in the

quantized product space with S = (s1, · · · , sp) ∈ Rp and T = (t1, · · · , tq) ∈ Rq. For the

categorical portion, HDC(Xi,S) can take values ranging from 0 to p; and for quantized

continuous data, we have HDQ(Zi,T) can take values ranging from 0 to q.

We then define the Distance Vector (DV) based on Hamming distance for the categor-

ical and quantized continuous portion, respectively. We define two individual vectors to

record the frequencies of each categorical and quantized continuous distance value accord-

ingly, that is, a (p + 1)-element vector DVC(S) for categorical data and a (q + 1)-element

vector DVQ(T) for quantized part. To be more specific, DVC is defined as

DVC(S) = (DV [0]
C (S),DV [1]

C (S), · · · ,DV [p]
C (S))
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and DVQ is defined as

DVQ(T) = (DV [0]
Q (T),DV [1]

Q (T), · · · ,DV [q]
Q (T)).

The jth component in DVC and hth component in DVQ are given as the following:

DV [ j]
C (S ) =

n∑
i=1

I [HDC(X[·]
i ,S) = j], j = 0, 1, · · · p;

DV [h]
Q (T ) =

n∑
i=1

I [HDQ(Q[·]
i ,T) = h], h = 0, 1, · · · q;

where I(A) is the indicator function that takes value 1 when event A happens and 0 other-

wise.

If there is no cluster pattern at all, we would expect a uniform distribution of all possi-

ble cases. Then it is equally likely for a randomly chosen data point to take any possible

position in the joint sample space. The DV vectors under uniform distribution are referred

as uniform distance vector (UDV). Thus, a UDV records the expected frequencies under

the null hypothesis that there are no clustering patterns in data. Let X be a categorical por-

tion of data and Z be a continuous portion of the data from a sample of size n, with each

observation having an equal probability of locating at any position on space Ωp ⊗Ωq. The

expected value of DV and DV associated with the null hypothesis are denoted by UDVC,

U = (U0, · · · ,Up) for categorical data and UDVQ, V = (V0, · · · ,Vq) for continuous data,

respectively.
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Zhang et al. (2005) provides the exact form of UDVC = n
M1

U∗, where M1 =
∏p

j=1 m j, j =

1, 2, · · · , p ; m j is the number of states in set A j for the jth attribute; and U∗ = (U∗0,U
∗
1, · · · ,U

∗
p)

with

U∗0 = 1;

U∗1 = (m1 − 1) + (m2 − 1) + · · · + (mp − 1);

U∗2 =
∑p

i< j(mi − 1)(m j − 1);

...

U∗p = (m1 − 1)(m2 − 1) · · · (mp − 1).

Similarly, we obtain the exact form of the UDVQ for the quantized continuous part of

data. UDVQ = N
M2

V∗, where M2 =
∏q

j=1 l j, j = 1, 2, · · · , q ; l j is the the number of levels

of quantization for the jth continuous attribute; and V∗ = (V∗0 ,V
∗
1 , · · · ,V

∗
q) with

V∗0 = 1;

V∗1 = (l1 − 1) + (l2 − 1) + · · · + (lq − 1);

V∗2 =
∑q

i< j(li − 1)(l j − 1);

...

V∗q = (l1 − 1)(l2 − 1) · · · (lp − 1).

2.2.4 Optimal Separation Point

If the initial starting point is chosen to be the center of one particular cluster, then the

frequency of HD should demonstrate a decreasing pattern in a local region as the HD
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function records the frequency of data points from the center of cluster and outwards.

Small local bumps at the beginning part of the HD curve are expected if the initial starting

point deviate slightly from the cluster center. The recorded frequencies might increase

afterwards when the function begins to record distances from another cluster. Therefore,

the valley area indicates a natural places to separate one cluster from the rest. Separation

points are, therefore, defined for this identification purpose.

Assume that the categorical data X and quantized continuous data Z are not uniformly

distributed in the sample space Ωp⊗Ωq. Let DVC(S) = (DV [0]
C (S),DV [1]

C (S), · · · ,DV [p]
C (S))T ,

S ∈ Ωp be the collection of all (p + 1)-element DVC in the space Ωp and DVQ(T) =

(DV [0]
Q (T),DV [1]

Q (T), · · · ,DV [q]
Q (T))T , T ∈ Ωq be the collection of all (q + 1)-element DVQ

in the space Ωq, and let U = (U0,U1, · · · ,Up)T be the DVC vector and V = (V0,V1, · · · ,Vq)T

be the DVQ vector defined in the previous subsection. For a given distance value jC, jC =

0, 1, · · · , p, for categorical distance values and jQ, jQ = 0, 1, · · · , q, for quantized contin-

uous distance values, there always exists at least one position (S,T) ∈ Ωp ⊗ Ωq, such that

the frequency at this distance value is lager than the corresponding component, U j of the

UDVC vector and V j of the UDVQ vector.

In order to proceed to a comparison between DVC and UDVC and between DVQ and

UDVC, we introduce a selection criterion for an optimal cut-off r∗. The categorical cut-off

point was defined and proved by Zhang et al. (2005). Because our quantized continuous
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data behaves as categorical data, we extend that concept to quantized portion of the data. If

the cluster structure is present, the early segment of an DVC and DVQ with respect to a data

center should contain substantially larger frequencies than the corresponding frequencies

of the UDVC vector and UDVQ vector. Therefore, the range corresponding frequencies

of the UDVV vector and UDVQ vector that are consistently larger than the UDVC vector

and UDVQ vector gives a reasonable indication of the r. This leads to an optimal r∗C for

categorical portion of data:

r∗C(S) = min
jC>0
{ jC |

DV [ jC]
C (S)
U jC

< 1} − 1,S ∈ Ωp

Similarly, optimal r∗Q for quantized portion of data be:

r∗Q(T) = min
jQ>1
{ jQ|

DV [ jQ]
Q (T)

V jQ
< 1} − 1,T ∈ Ωq

2.3 Algorithm

There are two key parts of the algorithm. Firstly, we detect whether there exists any sta-

tistically significant clustering patterns. We propose a weighted local Chi-squared test to

determine if the observed distance vectors differ significantly from the uniform distance

vectors associated with no cluster pattern. Secondly, if the patterns are significant, we fur-

ther extract the clusters based on the optimal separation strategies described in the previous

section.
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We consider the null hypothesis H0: There is no clustering pattern in data set. The

weighted local Chi-squared test statistic χ2∗
w (S,T) is defined as:

χ2∗
w (S,T) =

pq
p + q

1
p
χ2∗

C (S) +
pq

p + q
1
q
χ2∗

Q (T), (S,T) ∈ Ωp⊗q

where the categorical part χ2∗
C (S) takes form as:

χ2∗
C (S) =

r∗C∑
j=0

(DV [ j]
C (S) − U j)2

U j
+

(
∑r∗C

j=0 DV [ j]
C (S) −

∑r∗C
j=0 U j)2∑p

j=r∗C+1 U j
(2.1)

and the quantized continuous part χ2∗
Q (T) takes the form:

χ2∗
Q (T) =

r∗Q∑
j=1

(DV [ j]
Q (T) − V j)2

V j
+

(
∑r∗Q

j=1 DV [ j]
Q (T) −

∑r∗Q
j=1 V j)2∑q

j=r∗Q+1 V j

where p and q are number of attributes from categorical and continuous data, respectively.

If the detected pattern passes a statistical test, we then proceed to extract a cluster by

determining the cluster center C and estimate cluster radius R for mixed data. Therefore,

a cluster center C is chosen where the χ2
w has the maximum value. It is chosen to be:

C = arg max
(S,T)

χ2
w

Zhang et al. (2005) gave the definition of radius which is the maximum distance of the

data points in this cluster to its center. Radius is the distance at which the DV has its very

first local minimum. Therefore, it is defined categorical Radius RC(C) as:

RC(C) = mim
0< j<pC

{ j|DVC j(C) < mim(DVC j−1(C),DVC j+1(C))} − 1;
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For quantized continuous part of the data, the optimal cut-off point is used as quantized

continuous radius RQ(C).

The step-by-step guide to our method is

Step 1. For each position S, we calculate HD in the categorical data; further, we obtain DVC.

Step 2. Standardize the continuous data and quantize the standardized data at a selected

level. For each position calculate Hamming distance for quantized continuous data

to obtain DVQ.

Step 3. Compare DVC, DVQ with corresponding expected values UDVC and UDVQ;

Step 4. Determine cut-off point r∗C(S) and r∗Q(T) for categorical and quantized continuous

data respectively; and further calculate the corresponding modified Chi-squared

statistic χ2∗
C (S) and χ2∗

Q (T) and obtain the weighted local chi-square test statistic

χ2∗
w (S,T) =

q
p + q

χ2∗
C (S) +

p
p + q

χ2∗
Q (T);

Step 5. Corresponding to the weighted local Chi-squared test, select the largest test statistic

χ2∗
w (S,T); compare it with critical value χ2∗

(0.05) at right tail. If the max(χ2∗
w (S,T)) is

smaller than χ2∗
(0.05), stop the algorithm; otherwise, continue to step 6;

Step 6. Assign the position who has the largest test statistic χ2∗
w (S,T) as a center. Categorical

data and continuous data share the same center position but with their own data

points;
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Step 7. Calculate categorical radius RC and continuous radius RQ; label all data points within

radius in the cluster; recorder corresponding χ2∗
C (S) and χ2∗

Q (T); remove them from

the current data set;

Step 8. Repeat Step 1 to 6 until no more significant clusters are detected.

Step 9. Prune the membership assignment by calculating the minimum distance from each

data point to center positions; If the membership is assigned differently to categorical

data and continuous data, we further compare their p-values which are calculated

from χ2∗
C (S ) and χ2∗

Q (S ); Re-assign the membership to the one with the larger p-

value by the one with the smaller p-value.

Step 10. Compute F test statistic to choose the best quantized level and corresponding clus-

tering results as the final results.

2.4 Numerical Results

We conduct simulation studies and real data analysis to examine the performance of our

proposed method. Classification rates and information gains are calculated to compare the

performance from our proposed method with AutoClass.
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2.4.1 Simulation Studies

In this section, we compare our method with AutoClass under various simulation settings.

The simulation results are shown in Tables 2.1 - 2.4. All attributes are generated indepen-

dently. The simulation setting is as the following:

1. Set the number of categorical attributes p = 10 and each attribute takes m j lev-

els which is randomly selected from the set {4, 5, 6}; Set the number of continuous

attributes q = 9.

2. Set the number of clusters KC = KQ = 3 or KC = KQ = 5. The 3 cluster centers

Ck are denoted as Ck = (ck,1, · · · , ck,10), k = 1, · · · , 3. The 5 cluster centers Ck are

denoted as Ck = (ck,1, · · · , ck,10), k = 1, · · · , 3. For categorical centers, ensure the

Hamming distance between any two of the centers are at least great than 5. For the

continuous portion of data, choose a set of cluster mean as 2, 8, and 16 for 3 clusters,

or 2, 8, 16, 20 and 35 for 5 clusters;

3. Set sample size N = 200 with cluster size n1 = 130, n2 = 45, and n3 = 25; or set

sample size N = 100 with the cluster size n1 = 40, n2 = 25, n3 = 15, n4 = 10, and

n5 = 10; or set sample size N = 1000 with the cluster size n1 = 500, n2 = 200,

n3 = 100, n4 = 100, and n5 = 100;

4. For categorical data, in the kth cluster with center Ck, generate nk 10-attributes vec-
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tors independently. More specifically, generate for each attribute from a multinomial

distribution with center probability 0.7 and the rest probabilities are identically equal

to 0.3/(m j−1); For continuous data, nk 9-attributes vectors are 9 independent normal

random variables with µ = Ck and σ2 ranging from 0.25, 0.5 and 1, respectively.

In our numerical results, average classification rate (CR) and information gain (IG) rate

with their corresponding standard deviations are used to evaluate methods performance.

The CR measures the accuracy of an algorithm to assign data points into correct clusters.

With given K clusters, the CR is defined by

CR(K) =

K∑
k=1

ñk

n
,

where n is total number of data points and ñk is the number of data points that have been

correctly assigned to cluster k by an algorithm. Obviously, 0 ≤ CR(K) ≤ 1, and a larger

CR(K) value indicates better performance of clustering. The information gain is an al-

ternative criterion for assessing the performance of clustering algorithm. It is so-called

cluster purity proposed by Bradley et al. (1998). Cluster purity essentially measures the

information gain, which is the difference between the total entropy and weighted entropy

for a given data partition, namely

in f ormation gain(IG(K)) = total entropy − weighted entropy(K),
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where the weighted entropy is calculated by

weighted entropy(K) =

K∑
k=1

nk

n
× cluster entropy(k),

with

cluster entropy = −

L∑
l=1

ñk
l

nk
log2

{
ñk

l

nk

}
,

where ñk
l is the number of data points with true label l in cluster k, nk is the number of data

points known in cluster k, and L is the known number of classes. In this chapter, we take

a ration of IG(K)/total entropy, named information gain rate (IGR), which is similar to the

classification rate between 0 to 1. It is necessary to point out that in some situations, the

information gain may lead to misleading. For example, in our simulation studies, IG may

be equal to 1 which means perfect clustering. But, in fact, it splits each true cluster into

two clusters which is obviously a wrong classification. This misleading situation happens

in Table 2.2 and 2.2

Table 2.1 shows the selection of quantization levels for continuous portion of the data.

As mentioned in section 2.2.2, we use the largest F values to choose the selected quanti-

zation level which gives the best classification rate. Table 2.2 to Table 2.4 provide results

from simulated data with various settings of different sample sizes, number of clusters

and cluster sizes. The number of replications is 500. Table 2.2 is obtained by analyzing

simulated data with a sample size of 200 with 3 clusters of the sizes of 130, 45 and 25.

Simulated data for Table 2.3 has sample size 1000 and number of clusters is 5, and each
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cluster size is 500, 200, 100, 100 and 100, respectively. Table 2.4 provides results from

simulated data having sample size 10000 with 3 clusters and each cluster size 5500, 3000,

and 1500, respectively.

As shown by Table 2.2 to 2.4, our proposed algorithm consistently has higher classifi-

cation rate in comparison with that from AutoClass in all three different settings. For the

three chosen settings, the mean classification rates and information gain rates of the two

algorithms are getting closer to each other and could even be identical. Table 2.3 shows

us that our algorithm has higher IG rates comparing to AutoClass. In Table 2.2 and 2.4,

our algorithm has IG rates varying from 0.8923 to 0.93333. Although AutoClass could

achieve one in some cases, this does not imply a perfect clustering due to the fact that

AutoClass tends to split each true cluster into unnecessary more clusters. Hence, overall,

all tables show us that our algorithm has better performance in terms of CR and IGR by

comparing to AutoClass. The variances of classification rates and information rates of our

algorithm decreases when the sample sizes increases. This is expected since the accuracy

should increase with the sample size. The same pattern, however, is not observed for the

AutoClass.
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2.4.2 Real Data Analysis

We applied our method on to two real data sets. Both dat sets are Machine Learning Repos-

itory website. One is Heart Data Set and the other one is Australian Credit Approval Data

Set. All these data sets are download form Machine Learning Depository at the University

of California at Irvine. Heart data contains 7 categorical, 6 continuous attributes and 270

observations. The data provided the memberships for each observation. There are 2 clus-

ters, absence or presence. The cluster sizes are 120 and 150, respectively. In Australian

Credit Approval Data Set, there are 8 categorical attributes and 6 continuous attributes.

The data set contains 2 clusters positive or negative with corresponding cluster size 307

and 383. We compared our method with AutoClass. Table 2.5 shows the results from

these two real data sets. From the table, we can tell that our method correctly identified

the number of clusters for both data sets, while, AutoClass couldn’t detect correct cluster

numbers. In addition, our method has higher classification rate comparing to AutoClass.

Our method has classification rate 81.48% for Heart data and 73.62% for Credit data. But,

AutoClass has 44.44% and 52.71%.

2.5 Conclusion

Mixed data are prolific in scientific research such as in business, engineering, life sciences

and so on. It is imperative to develop a method that can cluster mixed data in order to
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discover true and significant underlying structures of a dataset and classify observations

into different subsets. We propose a non-parametric method that uses a local weighted chi-

squared statistic to determine underlying clusters. The proposed algorithm does not require

any model assumption for attributes or any expensive numerical optimization procedures.

Because the proposed algorithm extracts clusters sequentially with one cluster at each

iteration, it does not need any convergence criterion. The algorithm is terminated when

all data points have been used and no more cluster center can be detected. Consequently

our algorithm automatically produce the number of clusters, and the resulting partition is

unique. When compared with benchmark clustering algorithm for mixed data, AutoClass,

we find that our algorithm out-performs AutoClass in various settings and produce similar

accuracy in other settings.
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Table 2.1: Quantization levels. The means of F statistics, CR and IG are obtained based

on 500 replications.

Discretized Levels Mean(F) Mean(CR) Mean(IGR)

5 630.1573 0.8302 0.7130

6 1523.4557 0.8455 0.7667

7 1722.3260 0.8227 0.6960

8 3223.9477 0.8635 0.7729

9 3916.3388 0.8816 0.7958

10 3708.5293 0.8682 0.7689

11 6444.7055 0.9085 0.8573

12 4778.9851 0.8893 0.8114

13 4912.8477 0.8907 0.8116

14 4262.3990 0.8907 0.8135

15 4000.3948 0.8879 0.8095

16 4234.9993 0.8863 0.7992

17 3549.8632 0.8787 0.7853

18 4042.0805 0.8785 0.7833

19 3657.4556 0.8768 0.7785

20 4303.8698 0.8872 0.8010
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Table 2.2: Average CR and IGR with corresponding standard deviation for each method

based on the simulated data of sample size 200 with 3 clusters; each cluster has size 130,

45 and 25, respectively. The mean values for each cluster are 2, 8 and 16, respectively.

The number of replications is 500.

AutoClass Ours AutoClass Ours AutoClass Ours

(Var=0.25) (Var=0.5) (Var=1)

CR Mean 0.6424 0.9556 0.6335 0.9292 0.6325 0.9370

CR Std 0.0021 0.0035 0.0015 0.0069 0.0015 0.0060

IGR Mean 1.0000 0.8923 1.0000 0.9085 1.0000 0.9148

IGR Std <0.0001 0.0148 <0.0001 0.0094 <0.0001 0.0070
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Table 2.3: Average CR and IGR with corresponding standard deviation for each method

based on the simulated data of sample size 1000 with 5 clusters; each cluster has size 500,

200, 100, 100 and 100, respectively. The mean values for each cluster are 2, 8, 16,20 and

35, respectively. The number of replications is 500.

AutoClass Our AutoClass Ours AutoClass Ours

(Var=0.25) (Var=0.5) (Var=1)

CR Mean 0.5638 0.8747 0.5598 0.8792 0.5615 0.8777

CR Std 0.0016 0.0185 0.0015 0.0179 0.0014 0.0189

IGR Mean 0.7337 0.9228 0.7338 0.9174 0.7338 0.9235

IGR Std <0.0001 0.0021 <0.0001 0.0049 <0.0001 0.0037
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Table 2.4: Average CR and IGR with corresponding standard deviation for each method

based on the simulated data of sample size 10000 with 3 clusters; each cluster has size

5500, 3000 and 1500, respectively. Continuous data are from multivariate t distribution

with degree freedom 5, 15 and 30, respectively. The number of replications is 100.

AutoClass Ours AutoClass Ours AutoClass Ours

(Var=0.25) (Var=0.5) (Var=1)

CR Mean 0.8120 0.9689 0.8231 0.9689 0.8202 0.9641

CR Std 0.0019 0.0031 0.0023 0.0031 0.0033 0.0034

IGR Mean 1.0000 0.9333 1.0000 0.9333 1.0000 0.9323

IGR Std <0.0001 0.0067 <0.0001 0.0067 <0.0001 0.0048
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Table 2.5: Two Real Data Results from two comparison methods. Heart data has 2 clusters

with sample size 270 and Australian data has 2 clusters with sample size 690.

Heart Australian

AutoClass Ours AutoClass Ours

CR 0.4444 0.8148 0.5217 0.7362

IGR 0.2754 0.6975 0.2761 0.8314

Number of clusters 5 2 7 2
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3 Weighted integrative AICs criterion for model

selection

3.1 Introduction and Literature Review

Models are essential in statistical analysis. Once a model has been established, various

forms of inference, such as information extraction, model validation, risk assessment and

prediction can be performed. Due to model uncertainty, a true model is often out of reach.

Therefore, we have to choose an approximate model in order to conduct statistical infer-

ence. How to choose a suitable approximate model among a class of competing models by

suitable model evaluation criteria become a crucial issue. Akaike’s entropy information

criterion (AIC) (Akaike, 1973) is one of the commonly used model evaluation criteria.

AIC selects the best model based on information containing one single data set. However,

information could come from multiple data sets that are too different to be merged into

one. How to effectively perform model selection by integrating information from different
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data sets is main focus of this chapter.

We propose a weighted integrative AICs as a model evaluation criterion. Our proposed

method combines AICs across multiple data sets with different weights that minimize the

variance of the integrative AICs. Simulation studies show that, in the context in variable

selection, our proposed method has the lowest false negative numbers and false detected

numbers comparing with individual test and equal weights combining test.

3.1.1 Kullback-Leibler(K-L) divergence and AIC

We first review Kullback-Leibler (K-L) (Kullback and Leibler, 1951) divergence and AIC.

Let X1, · · · , Xn be identically independent distributed from unknown true probability

distribution function f and denote X = (X1, · · · , Xn). Let g(x; θ) be a specified model with

parameter θ. The validity of an assumed model must be assessed in term of its closeness to

true probability distribution f . The best model is then chosen to be the probability density

function that minimizes a chosen divergence function defined in the functional space of

probability density functions. K-L divergence is widely used in model selection and it is

defined as the following

I( f , g) = EX

[
log

{
f (X)

g(X; θ)

}]
=

∫ ∞

−∞

f (x) log
(

f (x)
g(x; θ)

)
dx

= EX log( f (X)) − EX log(g(X; θ)),
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where EX is the expectation with respect to the true probability distribution function f .

The first expectation is constant for any given f (x), and the second expectation determines

the goodness-of-fit of g(x; θ) with respect to f (x). We can re-write the above equation to

I( f , g) − constant = −EX
[
log(g(X; θ))

]
.

Properties of I( f ; g) include:

(i). I( f , g) ≥ 0;

(ii). I( f , g) = 0, if and only if f (x) = g(x);

(iii). if X1, · · · , Xn are independent and identically distributed random variables, then the

K-L divergence is additive for the whole sample i.e. In( f , g) = nI( f , g).

Akaike (1973) proposes a model selection criterion based on K-L divergence theory.

In reality, K-L divergence is not directly observable or estimable because it depends on

the true distribution and consequently on the unknown true parameter. But the expected

K-L divergence EX[I( f , g(X′|θ̂(X)))] can be estimated, where X and X′ are both gener-

ated from f (x), i.e. X′ is a future copy of current data X, and θ̂(X) estimates θ based on

X. Note that the expectation is taken with respect to the true probability density func-

tion f of observations X′. Let θ∗ = arg minθ EX[log(g(X; θ))] and θ̂ be the maximum

likelihood estimator (MLE) using likelihood defined by g(X; θ). Let L(θ̂; X) denote like-

lihood based on g(X; θ). An asymptotically unbiased estimator of expected K-L diver-
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gence is log(L(θ̂; X)) + tr(J(θ∗)H(θ∗)−1), where J(θ∗) = EX

[(
∂ log(g(X;θ∗))

∂θ∗

) (
∂ log(g(X;θ∗))

∂θ∗

)′]
and

H(θ∗) = EX

[
∂2 log(g(X;θ∗))

∂θ∗∂θ
′
∗

]
(Takeuchi, 1976). When the model is correctly specified, i.e.

g ≡ f , then J(θ∗) = −H(θ∗), tr(J(θ∗)H(θ∗)−1) = −p, where p is the number of estimable

parameters in the model g. Akaike (1973) then defined an information criterion, named

AIC, multiplying the estimated expected K-L divergence by −2,

AIC = −2 log(L(θ̂|X)) + 2p.

AIC model selection procedure selects the model with the smallest AIC value because this

model is estimated to be closest to the unknown true model.

In more general cases, the equality of J matrix and H matrix doesn’t hold, i.e. J(θ∗) ,

H(θ∗). Takeuchi (1976) proposed a robust AIC, which is known as Takeuchi Information

Criterion (TIC):

T IC = −2 log(L(θ̂|X)) + 2tr(Ĵ(θ)Ĥ(θ)−1),

where Ĵ(θ) and Ĥ(θ) are consistent estimators forJ(θ∗) and H(θ∗), respectively. Stone

(1977) and Shibata (1989) showed that the TIC is asymptotically equivalent to the cross-

validation.

Based on K-L divergence and AIC, Varin and Vidoni (2005) introduced an informa-

tion criterion for model selection based on composite likelihood, which is the extension

of TIC. Varin’s composite likelihood information criterion selects the model maximising

log(LC(θ̂MCL|X)) + tr(Ĵ(θ)Ĥ(θ)−1), where LC(θ̂MCL|X) is composite likelihood, θ̂MCL is de-
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fined as a solution to the composite likelihood equation, Ĵ(θ) and Ĥ(θ) are consistent,

first-order unbiased estimator for J(θ∗) and H(θ∗).

There are many variants information criteria based on AIC, such as AICc (Hurvich

and Tsai, 1989), which is a modified AIC with a second order correction for small sample

sizes; QAIC and QAICc, Quasi-likelihood modification to AIC and AICc (Lebreton et

al., 1992) and so on. However, all these existing information criteria compare models by

using single data set. In reality, data can come from several different data sets. How to

efficiently combine information criteria to perform the model selection procedures across

different data sets is of interest to us.

We propose a model evaluation criterion based on weighted integrative AICs. Our

proposed method combines AICs with different weights across multiple data sets. The

weights are chosen to minimize the variance of the integrative AICs. Our simulation stud-

ies show that, comparing with individual test and equal weights combining criterion, our

criterion has better performance in terms of false detected numbers and false negative

numbers.

The next section illustrates the developed method. Simulation results are shown in

Section 3.3.
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3.2 Method

The aim of our weighted integrative AICs method is to select the best model among com-

peting models across multiple data sets. If there exists Q different data sets, our proposed

information criterion integrates a set of Q AICs across multiple data sets with the weights

chosen to minimize the variance of the integrated AICs. For simplicity, in the following,

we demonstrate our method by considering two independent data sets that were generated

using the same model with different numeric values for the coefficients.

3.2.1 Integrative AICs

Let X1, · · · , Xn and Y1, · · · ,Yn be i.i.d. from same family of unknown true density functions

f (X; φ1) and f (Y; φ2), respectively, and φ1 , φ2. Denote X = (X1, · · · , Xn) and Y =

(Y1, · · · ,Yn). We consider a family of density functions g(·; θ) to approximate the true

density f (·; φ). Let the approximated density function for X be g(X; θ1) and for Y be

g(Y; θ2). We would like to choose the model which offers the most satisfactory predictive

description of the observed data X and Y . To be more precise, if X′ and Y ′ are future

random variables, defined as independent copies of X and Y , we are interested in the

choice of best model for forecasting X′ and Y ′, as a realization of X and Y . As usual for

an information criterion, model selection can be approached on the basis of the expected

K-L divergence.

63



Consider a weighted linear combination of K-L divergence from Q data sets

IQ( f , g) =

Q∑
q=1

wqIq( f , g(·; θq)),

where wq denotes assigned weights. In our illustration example with two data sets X and

Y, the weighted integrative K-L divergence is written as follows,

I( f , g) =

2∑
q=1

wqIq( f , g)

= Constant −
{
w1EX log(g(X|θ1)) + w2EY log(g(Y |θ2)

}
.

The I( f , g) is not available because g has to rely estimate based on current data X and Y . As

usual for an information criterion, model selection can be approached on the basis of the

expected K-L divergence between the true densities f (X) and f (Y) and estimated densities

g(X′, θ̂(X)) and g(Y ′, θ̂(Y)). Let ϕX = EXEX′ log(g(X′|θ̂(X))), ϕY = EY EY′ log(g(Y ′|θ̂(Y))),

and ϕ( f , g) = w1ϕX + w2ϕY . We select the model with minimise w1EX[I( f , g(θ̂(X))] +

w2EY[I( f , g(θ̂(Y))] or, equivalently, which maximises

ϕ( f , g) = w1ϕX + w2ϕY

= w1EXEX′ log(g(X′|θ̂1)) + w2EY EY′ log(g(Y ′|θ̂2)).

The above equation defines a theoretical criterion to select the best predictive model. How-

ever, it requires the knowledge of the unknown true densities. In practice we should maxi-

mize a selection statistic ϕ̂( f , g), defined as a suitable estimator for ϕ( f , g) based on X and
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Y . Denote `(θ̂1; X) = log L(θ̂1; X) and `(θ̂2; Y) = log L(θ̂2; Y). We look for estimators that

are unbiased. A natural estimator is

`(θ̂1, θ̂2; X,Y) = w1`(θ̂1; X) + w2`(θ̂2; Y)

In the following Lemmas, we show that `(θ̂1, θ̂2; X,Y) is biased and we introduce a modi-

fication with corrects the bias.

We state several regularity assumptions as follows:

Assumption 3.2.1. The parameter space Θ1 and Θ2 are compact subsets of Rp(p ≥ 1)

and, for every fixed x and y, L(θ1; x) and L(θ2, y) are twice differentiable with respect to θ1

and θ2, respectively.

Assumption 3.2.2. The maximum likelihood estimators θ̂1 and θ̂2 are defined as solu-

tions to the likelihood equations and there exists vector θ1∗, θ2∗ ∈ int(Θ), such that, ex-

actly or with an error term that is negligible as n goes to infinity, EX

[
∂`(θ1∗;X)
∂θ1∗

]
= 0 and

EY

[
∂`(θ2∗;Y)
∂θ2∗

]
= 0

Assumption 3.2.3. The estimator θ̂1 and θ̂2 converge in probability to θ1∗ and θ2∗ respec-

tively as n goes to infinity.

Assumption 3.2.4. when n → +∞, the distribution of
√

n(θ̂ − θ∗) with respect to the

maximum likelihood estimator θ̂ converges in law to the normal distribution with mean
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vector 0 and the variance covariance matrix H(θ∗)−1J(θ∗)H(θ∗)−1, i.e. as n → +∞, the

following holds:

√
n(θ̂ − θ∗)→ N(0,H(θ∗)−1J(θ∗)H(θ∗)−1).

Lemma 3.2.1. Under Assumption 3.2.1 - 3.2.3, we have

ϕ( f , g) = w1ϕX + w2ϕY

= w1

{
EX[`(θ1∗; X)] +

1
2

tr[J(θ1∗)H−1(θ1∗)]
}

+

w2

{
EY[`(θ2∗; Y)] +

1
2

tr[J(θ2∗)H−1(θ2∗)]
}

+ o(1)

with J(θ1∗) = var
[
∂`(θ1∗;X)
∂θ1∗

]
, J(θ2∗) = var

[
∂`(θ2∗;Y)
∂θ2∗

]
, H(θ1∗) = E

[
∂`2(θ1∗;X)
∂θ1∗∂θ

′
1∗

]
, and H(θ2∗) =

E
[
∂`2(θ2∗;Y)
∂θ2∗∂θ

′
2∗

]
.

When J(θ∗) = −H(θ∗), Lemma 3.2.1 is reduced to

ϕ( f , g) = w1

{
EX`(θ1∗; X) −

1
2

pX

}
+ w2

{
EY`(θ2∗; Y) −

1
2

pY

}
+ o(1).

Let ζX = EX[`(θ̂(X); X)], ζY = EY[`(θ̂(Y); Y)] and ζ = w1ζX + w2ζY . The ζ is weighted

linear combination of expectations of log likelihoods at MLE’s.

Lemma 3.2.2. Under Assumptions 3.2.1 - 3.2.4, we have that

ζ( f , g) = w1

{
EX[`(θ1∗; X)] −

1
2

tr[J(θ1∗)H−1(θ1∗)]
}

+w2

{
EY[`(θ2∗; Y)] −

1
2

tr[J(θ2∗)H−1(θ2∗)]
}

+ o(1).
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When J(θ∗) = −H(θ∗), Lemma 3.2.2 is reduced to

ζ = w1ζX + w2ζY

= w1

{
EX[`(θ1∗; X)] +

1
2

pX

}
+ w2

{
EY[`(θ2∗; Y)] +

1
2

pY

}
+ o(1).

The proof of the above Lemmas take similar approach as Varin and Vidoni (2005) and is

shown in Appendix A.

From the Lemmas we can immediately see that `(θ̂1, θ̂2; X,Y) is biased and that, under

the standard regularity conditions, the following defined information criterion is a first-

order unbiased estimators for ϕ(g, f ), and selects the model that maximizes the information

criterion

w1

[
`(θ̂1; X) + tr(Ĵ(X)Ĥ(X)−1)

]
+ w2

[
`(θ̂2; Y) + tr(Ĵ(Y)Ĥ(Y)−1)

]
,

where Ĵ(X), Ĥ(X), Ĵ(Y), and Ĥ(Y) are consistent, first-order unbiased estimators for

JX(θ1∗), HX(θ1∗), JY(θ2∗) and HY(θ2∗), respectively. It is equivalent to minimize

w1AICX + w2AICY .

In general, we are able to write our criterion for the case with Q data sets as the follows

Q∑
q=1

wqAICq, (3.1)

where q = 1, · · · ,Q indicates the number of data sets.
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3.2.2 Weighted integrative AICs

In practice, data may come from variety sources which have different sizes, formats and

qualities. The variability of AIC comes from these differences. One may wish to take into

account these differences. Therefore, we assign different weights to different data sets.

Our objective is to define the weights to minimize the variance of the weighted integrative

AICs. The proof of the following Lemma takes similar approach as Fraser (1976) and

is shown in Appendix A. Consider the case of two data sets with two independent test

statistic t1 and t2.

Lemma 3.2.3. Given two test statistics t1 and t2, a weighted sum of the test statistics is

wt1 + (1 − w)t2,

where the sum of weights is 1. The weight to minimize the variance is

w =
var(t2)

var(t1) + var(t2)
. (3.2)

In more general cases, if there exists Q data sets, the qth weight wq is the variance of

the qth test statistic proportion to the total variance of the test statistics from the all Q data

sets. In other words, we can write equation (3.2) as

wq =
var(tq)∑Q

q=1 var(tq)
, q = 1, · · · ,Q.
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Consequently, our information criterion in equation (3.1) can be rewritten as minimizing

the following criterion

Q∑
q=1

wqAICq, (3.3)

where wq =
var(AICq)∑Q

q=1 var(AICq)
. Since AIC is based on models, first we need to find an ap-

proximated true model under w ≡ 1. Based on the approximated true model, we esti-

mate the variance of AIC and further choose our weights. In practice, in order to obtain

the weights, we need to estimate the variance of AICs by applying bootstrap. Let AIC1

be obtained from data X and AIC1B be obtained from bootstrap. First, we resample the

data set with replacement by N times. N should be large enough. Second, compute

AIC1B = (AIC[1]
1 , AIC[2]

1 , · · · , AIC[N]
1 ) by using the same computing formula as the one

used for AIC1, i.e. AIC[k]
1 , k = 1, 2, · · · ,N, are bootstrap copies of AIC1. Third, we are

able to calculate the variance of AIC1 according to AIC1B. We repeat the same procedures

for Q data sets in order to obtain var(AIC) for Q data sets.

3.3 Simulation Data Results

In this section, we perform simulation experiments to compare our proposed weighted

integrative AIC method with individual AICs and equal weights integrated AIC method.

The result shows our method has the best performance in terms of false detected numbers

(FD) and false negative numbers (FN). We simulate two different scenarios. In the first
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scenario, we simulate true variables with large coefficients and all rest coefficients are set

to be zeros. In the second scenario, the true model contains several covariates with very

small coefficients. In this way, we can find our whether our method can correctly detect

minor effected covariates.

Consider two data sets share the same regression model

Y = β0 + β1x1 + · · · + βpxp + ε.

In the first scenario, the sample sizes for two data sets are 100 and 200. The number

of variables p is set 80 for both data sets. The true model contains first 10 independent

variables in the model. We generate X from normal distribution N(3, 10) for the first data

set and N(5, 6) for the second data set. For the first data set, there are 10 coefficient βs

generated from uniform U(−2, 5), and the rest of βs are set to be 0. For the second data

set, 10 βs are generated from U(−2, 1), and the rest of βs are set to be 0. The error ε is i.i.d

from N(0, 2) for the first data set and N(0, 1) for the second data set. The simulation results

are shown in Table 3.1. In the second scenario, the sample size for two data sets are 100 and

200. The number of variables p is set 80 for both data sets. The true model contains first

50 independent variables in the model. We generate X from normal distribution N(3, 5)

for the first data set and N(−5, 6) for the second data set. For 1st data set, there are 47 βs

generated from U(10, 30), 3 βs from U(0.05, 0.5), and the rest of βs are set to be zero. For

2nd data set, there are 47 βs generated from uniform U(5, 25), 3 βs from U(0.02, 0.3), and
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the rest of βs are set to be zero. The error ε is i.i.d from N(0, 1) for the first data set and

N(0, 2) for the second data set. The simulation results are shown in Table 3.2.

The first step in our simulation experiment is applying least absolute shrinkage and

selection operator (LASSO) regression method to selected sub-sets. The LASSO proposed

by Tibshirani (1996) is a promising variable selection technique, which is a penalized

least squares method, imposing a constraint on the L1 norm of the regression coefficients.

We used the statistical R package ”lars” to obtain regression coefficients β̂lasso, β̂lasso =

arg minβ
∣∣∣∣Y −∑p

j=1 X jβ j

∣∣∣∣2 = λ
∑p

j=1 |β j|, where λ takes non-negative values. After LASSO

selected subsets, we calculate AICs and apply our proposed weighted integrative AICs

to select the best model among all competing models. The prediction model is fitted by

multiple linear regression model. We compare our proposed weighted integrative AICs

method with individual AIC method and equal weights AIC method, respectively. Let

AIC1 and AIC2 denote AIC values from data set 1 and data set 2. We are minimizing the

following information criteria, respectively, i.e. individual AIC, equal weights AIC and

weighted integrative AIC:

AIC1 = −2`(β̂1; X1) + p1,

AIC2 = −2`(β̂2; X2) + p2,

AICeq = −2`(β̂1; X1) + p1 + −2`(β̂2; X2) + p2,

AICw = wAIC1 + (1 − w)AIC2,

71



where p is the number of parameters in the subset models, β is the unpenalized regression

coefficient based on the subset models and w =
var(AIC1)

var(AIC1+AIC2) .

In the weighted integrative AICs method, the variance of AIC is obtained by boot-

strap. We resample 100 times for two data sets respectively with replacement. For each

resampled data, we include LASSO selected variables and fit model by multiple linear

regression. Then, we calculate AIC1 and AIC2 according to the above formulas. Accord-

ingly, we can further obtain the variance of AIC1 and AIC2.

Table 3.1 and Table 3.2 show our simulation results based on 100 simulations. In the

tables, we compare three methods, individual AIC (AIC1, AIC2), equal weights integrative

AICs (AICeq) and weighted integrative AICs (AICw). We report, on average, how many

number of variables are false detected(FD) and false negative (FN) selected by the selected

best model among the competing models according to three methods, respectively. The

corresponding standard deviation values are reported in the table as well. The better the

method performs, the smaller values should be shown in the corresponding method. We

can see that among these three methods, in the first scenario, our proposed method has the

lowest mean of FD with small variance. In the second scenario, for FD, our method falsely

detects the number of true variables is 18 less than individual AIC1, 2 less than individual

AIC2 and 14 less than AICeq on average. For FN, our method has only 0.11 higher FN

detected true variable numbers than AIC1 and 0.1 higher than AICeq. Comparing to the
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FD, the FN is much smaller. Hence, overall, our method out-performs the individual

methods and equal weights method.

Table 3.1: Simulation Results: Mean and standard deviation of FD and FN for 1st scenario.

AIC1 AIC2 AICeq AICw

FD Mean 54.57 15.45 19.07 6.21

FD std 27.31 5.55 21.38 6.90

FN Mean 0 0 0 0

FN std 0 0 0 0

Table 3.2: Simulation Results: Mean and standard deviation of FD and FN for 2nd scenario.

AIC1 AIC2 AICeq AICw

FD Mean 26.43 10.60 21.77 8.15

FD std 6.03 4.28 7.14 6.23

FN Mean 0.01 0.23 0.02 0.12

FN std 0.10 0.49 0.14 0.38
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3.4 Conclusion

When a true statistical model can not be specified, we propose to choose an approximate

model in order to conduct statistical inference. Akaike’s information criterion (AIC) is one

of the commonly used model evaluation criteria based on one single data set. When in-

formation come from multiple different data sets, we propose a weighted integrative AICs

method for a model evaluation criterion. Our proposed method combines AICs across mul-

tiple data sets with different weights that minimize the variance of the integrative AICs. In

the simulation studies, the proposed method provides better performance than individual

method or equal weights method in terms of false detected and false negative selected of

true variable numbers. The disadvantage of the method is that weights are not easy to com-

pute. The possible application could be that the data sets contain same observations and

measurements, but measurements are measured at different time points. One may wish to

find a common predict model across multiple data sets.
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4 Model Comparison Test

4.1 Introduction

Model selection is an important topic in statistical inference. When there exist a class of

competing models, we are interested in choosing the best model by a suitable model eval-

uation criterion. Many methods are developed in statistical literature, such as Mallows Cp,

stepwise, backward and forward selection procedures, Akaike information criterion (AIC),

Bayesian information criterion (BIC), cross-validation, and so on. Model comparison is

usually performed by comparing some information criteria like AIC or BIC. AIC and BIC

compare a collection of models. But, neither AIC nor BIC gives p-value or reflects the

sampling variance. Hypotheses test is able to take into account sampling variance and

report p-values when two models are compared.

For fixed alternative hypothesis under which the distance between two models is inde-

pendent of sample size, Linhart (1988) proposed a test of whether AICs differ significantly

associated with two candidate models for non-nested model. Contrary to fixed alternatives,
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the local alternatives means under which the distance between the alternative and the null

can decrease when sample size goes large. For example, as sample size getting larger, the

collection of predictors (which is not the true model) can predict the response better. Shi-

modaira (1998) proposed a modification of Linhart’s test statistic by adding a second order

term for local alternatives and developed corresponding asymptotic theory. Both Linhart

test statistic and Shirmodaria’s modified test statistic are based on full likelihood func-

tion. However, the full likelihood function can be difficult to specify in high dimension.

Therefore, composite likelihood is useful in these situations.

We extend Linhart’s and Shimodaira’s test statistic by using composite likelihood func-

tion for correlated data sets. In our proposed method, we aim to improve the accuracy for

estimating the variance of difference of two AICs and perform model comparison test.

Indeed, the second order term in our proposed test offers improvement in both variance

estimation and test error probability especially for small samples. In our simulation, we

compare our proposed methods with Linhart’s method and Shimodaira’s method. In vari-

ance estimation of the difference of two AICs, second order method has better variance

estimation than first order method by taking bootstrapped variance as threshold. In assess-

ing error probability for model comparison test, our method has lower error probability in

fixed and local alternatives.

In the next section, we review Linhart’s test statistic, Shimodaira’s modification of
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Linhart’s test statistic and composite likelihood function. In Section 4.3, we illustrate our

proposed methods in details. Our simulation experiments settings and results are shown

in Section 4.4. Appendix B lists terminologies and notations for this chapter. Proofs for

fix alternative scenario are shown in Appendix C. Lemmas and proofs for local alternative

scenario are shown in Appendix D.

4.2 Literature Reviews

4.2.1 Linhart’s Test Statistic and Modification of Linhart’s Test Statistic

Linhart (1988) considered a test of whether two AICs differ significantly. The test statistic

is a standardized difference of AIC between the two models. It asymptotically converges

to a standard normal distribution N(0, 1), as the sample size n goes to infinity under the

null hypothesis that the two expected discrepancies are equal. In Linhart’s test, f is the

true distribution function and g is an approximating distribution function. The test statistic

is based on K-L divergence defined in Chapter 3. Under certain regularity conditions and

misspecification for both models, Linhart’s hypothesis about the expected discrepancies

for model 1 and model 2 is stated as the following:

EX

[
EX′(log g(1)(X′|θ̂(1)(X)))

]
≤ EX

[
EX′(log g(2)(X′|θ̂(2)(X)))

]
,
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where g(1)(X′|θ̂(1)(X)) and g(2)(X′|θ̂(2)(X)) are two competing models. This is equivalent to

say that model 1 fits better than model 2. Linhart proposes the test statistic

Z =

√
n(AIC(1) − AIC(2))√
λ̂(1,1) + λ̂(2,2) − 2λ̂(1,2)

,

where the elements λ(i, j) and λ̂(i, j), i, j = 1, 2 are defind, respectively, as the following:

λ(i, j) = EX

[
log g(i)(X; θ̂(i)) log g( j)(X; θ̂( j))

]
− EX

[
log g(i)(X; θ̂(i))

]
EX

[
log g( j)(X; θ̂( j))

]
,

λ̂(i, j) = n−1
n∑

t=1

log g(i)(Xt; θ̂(i)) log g( j)(Xt; θ̂( j)) − n−2
n∑

t=1

log g(i)(Xt; θ̂(1))
n∑

t=1

log g( j)(Xt; θ̂(2))

The test statistic converges to N(0, 1), when sample size n goes to infinity.

Shimodaira (1997) considered a sequence of densities converging to O(1/
√

n) so that

the test statistic will be bounded in probability even if n goes to infinity. In Shimodaira’s

test statistic, the second order term is added to the variance estimator of the difference

between the two AIC’s. The proposed estimator of the var(AIC(1) − AIC(2)) takes form as

(V (1,2)/n + ν(1,2)/n2), and V (1,2) and ν(1,2) are described below

V (1,2) = n−1
n∑

t=1

(
log g(1)(Xt; θ̂(1)) − log g(2)(Xt; θ̂(2))

)2

−

n−1
n∑

t=1

log g(1)(Xt; θ̂(1)) − n−1
n∑

t=1

log g(2)(Xt; θ̂(2))

2

,

and

ν(1,2) = (p(1) + p(2))/2 − tr(G(1,2)G(2,2)−1
G(2,1)G(1,1)−1

),
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where p(1) and p(2) are the numbers of parameters in model 1 and model 2, and

G(i, j) = n−1
n∑

t=1

{
∂ log g(i)(xt; θ̂(i))

∂θ(i) ·
∂ log g( j)(xt; θ̂( j))

∂θ( j)

}
, i, j = 1, 2.

The modification of Linhart test statistic by Shimodaria is defined as

T =
AIC(1) − AIC(2)√
V (1,2)/n + ν(1,2)/n2

.

Shimodaira’s test statistic improves the variance estimation and model comparison test,

especially, for small sample size and local alternative situations.

4.2.2 Composite Likelihood

Composite likelihood methods are extensions of the Fisherian likelihood theory, one of

the most influential approaches in statistics. Such extensions are generally motivated by

the issue of computational feasibility arising in the application of the likelihood method

in high-dimensional data analysis. It is methodologically appealing in projecting high-

dimensional complicated likelihood functions to low-dimensional computationally fea-

sible likelihood objects. Composite likelihood inherits many of the good properties of

inference based on the full likelihood function, but is more easily implemented with high-

dimensional data sets.

In general formulation of composite likelihood, we can group composite likelihoods

into two main groups. The first includes subsetting method, which is pseudo-likelihood
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constructed from lower dimensional densities. For example, the pairwise likelihood (Cox

and Reid, 2004), which is based on marginal events related to pairs of observations. Simi-

larly, we may define the tripletwise likelihood and so on. The other class is based on omis-

sion method, which the composite likelihoods are obtained by omitting some components

in the full likelihood to simplify the evaluation. Examples include mth-order likelihood for

stationary processes (Azzalini, 1983), partial likelihood (Cox, 1975), pseudo likelihood

(Besag, 1974), and so on.

In our research, we focus on the subsetting method. Let Y be a p-dimensional random

vector with probability density function f (y; θ), where θ ∈ Θ is a d-dimension parameter

vector of interest. Suppose {A1, · · · , AK} is a set of events with associated likelihood func-

tion Lk(θ; y) ∝ f (y ∈ Ak; θ), k = 1, 2, · · · ,K. Following Lindsay (1988), the composite

likelihood function is defined as

CL(θ; y) =

K∏
k=1

Lk(θ; y)wk ,

where {wk} is a set of positive weights assigned to each component in order to improve

estimation efficiency.

There are two general types of composite likelihood: conditional and marginal com-

posite likelihood. The conditional type of composite likelihood method was first proposed

by Besag (1974). The idea is to specify the joint probability distribution by conditional
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probability functions,

CCL(θ; y) =

p∏
i=1

f (yi|y−i; θ)wi ,

where y−i denotes the random vector yi deleted. In the type of marginal composite like-

lihood, the simplest composite likelihood is the one constructed under the independence

assumption:

Lind(θ; Y) =

p∏
i=1

f (yi; θ)wi .

The most popular form in the current literature is pairwise composite likelihood. It con-

tains the minimal modeling blocks of marginal and dependence parameters, essential for

correlated data analysis (Cox and Reid, 2004; Varin, 2008),

Lpair(θ; y) =

p−1∏
i=1

p∏
j=r+1

f (yi, y j; θ)wi j .

There are many other designed composite likelihoods such as tripletwise likelihood, block-

wise likelihood, pairwise differences likelihood and so on. One may also combine com-

posite conditional likelihoods and composite marginal likelihoods (Cox and Reid, 2004).

With a sample of independent observations y = (y(1), · · · , y(n)), the overall composite

log likelihood function is

c`(θ; y) =

n∑
i=1

c`(θ; y(i)) =

n∑
i=1

log CL(θ; y(i)).

The maximum composite likelihood estimator (MCLE) is defined by

θ̂CL = arg maxθ c`(θ; y).
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We suppose the random vector Y has distribution function F(y); the marginal distribu-

tion function for a sub-vector Yk ⊂ Y is Fk(yk) and the corresponding density function is

fk(yk), k = 1, · · · ,K. Now consider the family of modelled distributions for Yk, with com-

mon support and family of density functions {gk(yk; θ); θ ∈ Ω}. We are interesting in the

weighted composite marginal likelihood and its corresponding log liklihood function:

CL(θ; y) =

K∏
k=1

gk(yk; θ)wk ,

and

c`(θ; y) =

K∑
k=1

c`k(θ; yk)

=

K∑
k=1

wk log(gk(yk; θ)). (4.1)

For misspecified composite likelihood, θ∗ is a parameter point which minimizes the

composite K-L distance (Varin and Vidoni, 2005):

θ∗ = arg minθ EY

{
log

∏K
k=1 fk(Yk)

CL(θ; Y)

}
= arg minθ

K∑
k=1

EY

{
log

fk(Yk)
gk(Yk; θ)

}
.

The maximum composite likelihood estimator (MCLE) θ̂ solves the composite likelihood

score function u(θ; Yk), which is defined as

u(θ; Yk) =

K∑
k=1

∂c`k(θ; Yk)
∂θ

=

K∑
k=1

wk
∂ log gk(Yk; θ))

∂θ
.

We solve it at
K∑

k=1

wk
∂ log gk(Yk; θ)

∂θ
= 0.
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Although the composite likelihood is not a real likelihood, the maximum composite like-

lihood estimate is still consistent for θ∗. This is because the composite score function is a

linear combination of several valid likelihood score functions. Under the usual regularity

conditions, it is still unbiased (Gao and Song, 2011). The asymptotic covariance matrix

of maximum composite likelihood estimator takes the form of the inverse of the Godambe

information (Godambe, 1960):

G(θ) = H(θ)J−1(θ)H(θ), (4.2)

where H(θ) = E
[
−

∑K
k=1 ∂

2c`k(θ;Yk)
∂θ∂θ′

]
is the sensitivity matrix, and J(θ) = var

[∑K
k=1

∂c`k(θ;Yk)
∂θ

]
is the variability matrix. In the full likelihood, the Godambe information becomes Fisher

information since H(θ) = J−1(θ). However, when using composite likelihood methods,

we have to consider likelihood theory under misspecification even if the true model for

the data is taken into account. As the result, the identity of H(θ) and J(θ) doesn’t hold,

i.e. H(θ) , J−1(θ), leading to the loss of efficiency compared to the maximum likelihood

estimation (Song, 2007, Chapter3).

4.3 Method

This section illustrates our approaches to develop variance estimators of the difference

between AICs and model comparison test statistics under full or composite likelihood

with local alternative or fixed alternative setting for correlated data sets. Our theoretical
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proofs take similar approaches as Linhart’s (1988) and Shimodaira’s (1997). Section 4.3.1

extends Linhart method to composite likelihood with fixed alternative setting. The corre-

sponding proofs are shown in Appendix C. Section 4.3.2 extends Shimodaira’s method to

composite likelihood with local alternative setting. The corresponding proofs are shown

in Appendix D. The related notations and terminologies are listed in Appendix B.

4.3.1 Composite Likelihood with Fixed Alternative Setting

Consider a parametric family of densities of random variable Y, f (·) = f (Y; φ) where φ ∈

Φ ⊂ Rd is the parameter value. Let Y = (Y (1), · · · ,Y (n)) be independently and identically

distributed with unknown true distribution function f (Y; φ). Let the approximated density

function for Y under model α be g(Y; θα) and under model β be g(Y; θβ), respectively. As

defined in Section 4.2.2, the overall composite log likelihood function is

c`(n)(φ; Y) =

n∑
i=1

c`(φ; Y (i))

=

n∑
i=1

K∑
k=1

wk log gk(Y
(i)
k ; φ).

The sensitivity matrix H and variability matrix J for each data point are written as Hi j(φ) =

E
[
−

∑K
k=1 ∂

2c`k(φ;Yk)
∂φi∂φ j

]
and Ji j(φ) =

[∑K
k=1

(
∂c`k(φ;Yk)

∂φi

) (
∂c`k(φ;Yk)

∂φ j

)′]
, respectively. Assume φ̂ is de-

fined as a solution to the composite likelihood equation, i.e. φ̂ = arg supφ c`(n)(φ; Y). Let

AICc` = −2c`(n)(φ̂; Y) + 2tr(J∗H∗−1) denotes composite likelihood information criterion as
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Varin(2005). Under model α and β and dividing AICc` by 2n, we have

C(n)
α = −c`(n)

α (θ̂α; Y)/n + tr(J∗αH−1∗
α )/n

and

C(n)
β = −c`(n)

β (θ̂β; Y)/n + tr(J∗βH∗−1
β )/n.

For analytical proofs, there are several regularity assumptions need to be introduced.

First, we borrow the assumptions 1-8 from Xu and Reid(2011). We also assume that, for

every fixed y ∈ Y , c`(n)(φ; Y) is twice differentiable with continuity with respect to φ. Let

plim denotes the convergence in probability. Under model α and β, our null hypothesis is

H0 : EY

[
1
n

c`(n)(θ̂α; Y)
]
≤ EY

[
1
n

c`(n)(θ̂β; Y)
]
.

Theorem 4.3.1. For model α, β ∈ M, the estimation of the variance and test statistic are

as the following:

plim
n→∞

nVαβ = plim
n→∞

var
(
C(n)
α −C(n)

β

)
, (4.3a)

Tαβ =
C(n)
α −C(n)

β√
V (n)
αβ /n

, (4.3b)

where

V (n)
αβ = n−1

n∑
i=1

[
c`(θ̂α; Y (i)) − c`(θ̂β; Y (i))

]2
−

[
c`(n)

α (θ̂α; Y (i))/n − c`(n)
β (θ̂β; Y (i))/n

]2
.
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4.3.2 Composite Likelihood with Local Alternative Setting

Let Y = (Y (1), · · · ,Y (n)) be independently and identically distributed with unknown true

distribution function f (Y; φ(n)), where φ(n) ∈ Φ is true parameter value. We consider φ(n)

depends on the number of observations n, and it converges to φ∗, an interior of Φ. The rate

of the convergence is of order O(1/
√

n), that is limn→∞
√

n(φ(n) − φ∗) = φ� ∈ Rd. Let Φ∗

denote a generic neighborhood of φ∗ ∈ Φ, whose scale is magnified by
√

n times. Later,

we will see the space of distribution in Φ∗, whose scale is magnified by
√

n times, reduces

asymptotically to a linear space as n → ∞. The composite likelihood function, H and J

matrices are defined as in previous section. Except assumptions stated in Section 4.3.1,

there are two additional assumptions as follows:

Assumption 4.3.1. Assume
√

n(φ̂(n)−φ(n)) d
∼ N(0,G−1), where G is Godambe information

matrix defined in equation (4.2).

Assumption 4.3.2. Assume
√

n(φ(n) − φ∗) = φ�, and assume CMLE is asymptotically

bounded in probability. That is, plimn→∞
√

n(φ̂(n) − φ∗) = φ̂� = Op(1).

Let M be the set of α’s for the candidate models, where α indexes models. Under

model α, consider a parametric family of density functions fα(Y; θα). We assume fα(·) is a

subset of f (·) and f (Y; φ∗) is interior to fα(·). For each α ∈ M, we consider a composite

log likelihood function c`α(θα; Y), θα ∈ Θα. Using a function φα : Θα → Φ, for nota-
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tion convenience, we write c`α(θα; Y) = c`(φα(θα); Y), φ̂(n)
α = φα(θ̂(n)

α ) and under the local

alternative setting φ∗ = φα(θ∗α) for some θ∗α ∈ Θα, where θ∗α is interior to Θα.

To estimate var
(
C(n)
α −C(n)

β

)
, we are going to investigate an estimate which takes form

V (n)
αβ /n + ν(n)

αβ/n
2,

where two terms V (n)
αβ and ν(n)

αβ are:

V (n)
αβ = n−1

n∑
i=1

[
c`(φ̂(n)

α ; Y) − c`(φ̂(n)
β ; Y (i))

]2
−

[
c`(n)

α (φ̂(n)
α ; Y)/n − c`(n)

β (φ̂(n)
β ; Y)/n

]2
, (4.4)

and

ν(n)
αβ = tr

(
H(n)−1
αα J(n)

ααH(n)−1
αα J(n)

αα + H(n)−1
ββ J(n)

ββ H(n)−1
ββ J(n)

ββ

)
/2 (4.5)

−tr(H(n)−1
αα J(n)

αβH(n)−1
ββ J(n)

βα ).
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Each element in H(n)
αα, H(n)

ββ , J(n)
αα , J(n)

ββ and J(n)
αβ is as the following

(H(n)
αα)i j =

∂2c`(n)(φα(θ̂(n)
α ); Y)

∂θi
α∂θ

j′
α

,

(H(n)
ββ )i j =

∂2c`(n)(φβ(θ̂
(n)
β ); Y)

∂θi
β∂θ

j′
β

,

(J(n)
αα)i j =

(
∂c`(n)(φα(θ̂(n)

α ); Y)
∂θi

α

) (
∂c`(n)(φα(θ̂(n)

α ); Y)

∂θ
j
α

)′
,

(J(n)
ββ )i j =

∂c`(n)(φβ(θ̂
(n)
β ); Y)

∂θi
β


∂c`(n)(φβ(θ̂

(n)
β ); Y)

∂θ
j
β


′

,

(J(n)
αβ )i j =

(
∂c`(n)(φα(θ̂(n)

α ); Y)
∂θi

α

) ∂c`(n)(φβ(θ̂
(n)
β ); Y)

∂θ
j
β


′

,

(J(n)
βα )i j =

∂c`(n)(φβ(θ̂
(n)
β ); Y)

∂θi
β

 (∂c`(n)(φα(θ̂(n)
α ); Y)

∂θ
j
α

)′
.

Under model α and β, our null hypothesis is

EY

[
1
n

c`(n)(φα(θ̂(n)
α ); Y)

]
≤ EY

[
1
n

c`(n)(φβ(θ̂
(n)
β ); Y)

]
.

Theorem 4.3.2. For model α, β ∈ M, the estimation of the variance and test statistic are

as the following:

plim
n→∞

(nVαβ + ναβ) = plim
n→∞

var
(
C(n)
α −C(n)

β

)
, (4.7a)

Tαβ =
C(n)
α −C(n)

β√
V (n)
αβ /n + ν(n)

αβ/n2
. (4.7b)

Note, in the full likelihood function, the J matrix is equal to the H matrix which is

known as Fisher’s expected information matrix. We denote it as I. Therefore, our second
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term can be simplified as

ναβ = tr(mα + mβ)/2 + tr(I(n)−1
αα I

(n)
αβI

(n)−1
ββ I

(n)
βα), (4.8)

where mα and mβ are the number of parameters in the model α and β respectively. The

model comparison test is derived under assumptions that (4.7b) is normally distributed

with unit variance.

4.4 Simulation Results

In this section we present our main results from simulation studies. Firstly, we evaluate the

accuracy of estimation of the variance of the difference of two AICs, and then we assess the

error probability for model comparison test. We compare our second order method with

first order method under various simulation settings, such as, independent and correlate

case under fix or local alternatives.

4.4.1 Data Generation

(i). Data Generation with Independent Case

Consider regression model

Y = β0 + β1x1 + · · · + βpxp + ε,
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where ε is i.i.d. from N(0, σ2). We set σ2 = 1. The number of covariates p is set

to be 30. The true model contains 15 covariates. All covariates are generated from

normal distribution with mean 0 and variance 1. The sample sizes n = 40, 50, 60,

70, 80, 100, 300 and 500 are considered.

(ii). Data Generation with Multivariate Correlated Case

Denote the numbers of families by n and members in each family by s. The re-

sponse vector of measurements for the ith family is denoted by Yi = (yi1, · · · , yim)′.

Associated is a set of covariates at individual level, Xi = (xi1, · · · , xik)′, with xi j =

(xi j1, ..., xi jp)′, representing the p covariates observed for the jth individual in the ith

family. The response vector for ith family, Yi, follows a multivariate normal distri-

bution MVNs(µi,Σ), where the mean vector is governed by a linear model, µi = Xiβ,

with β = (β1, · · · , βp)′. The covariance matrix Σ is specified according to an ex-

changeable dependence structure, σ j, j′ = ρ.

We set p = 30 and s = 8. The within-family correlation ρ = 0.8. The covariates are

generated from N(0, 1). The 15 regression coefficients of the true marginal model

are set βtrue ∼ N(2, 5), with the other 15 coefficients set to zero. The number of

families are set to be n = 10, 15, 25, 30, 50, 100, 300, 500, respectively.
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4.4.2 Variance Estimation of the Difference of AICs.

For estimating the variance of the difference of two AICs, we compare Linhart estimation,

Shimodaria estimation and our extended methods to bootstrap values. The comparison are

under independent case and correlated case with fixed or local alternatives.

(i). Fixed Alternatives:

Consider model a and model b denoted as Ma and Mb. Model Ma is an over-

fitted model that contains 15 true covariates and 8 wrong covariates. ModelMb is

a competing model that contains partial true covariates and partial wrong covarites.

Two models are as follows

Ma : E(Y) = β0 + β1x1 + β2x2 + · · · + β23x23,

Mb : E(Y) = β0 + β1x3 + β2x4 + · · · + β21x23.

In bootstrap method, we generate error term from normal distribution with mean 0

and variance 1 for each simulation. We replicate error by generating random error

term 1000 times to obtain variance of the difference for two AICs.

The comparing methods are as follows:

• In the independent case, the comparing methods are

(a) Bootstrap method,
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(b) Linhart method,

(c) extended Shimodaria method.

• In the correlated case, the comparing methods are

(a) Bootstrap method,

(b) extended Linhart method,

(c) extended Shimodaria method,

Figure 4.1 shows the variance estimation results with fixed alternatives. In the left

panel of the figure, we empirically verify that in the independent case our extended

Shimodaria method has better estimation for the variance of the difference two of

AICs than Linhart method because its curve is closer to the bootstrap curve than

Linhart curve. The right panel of the figure shows that in the correlated case our Shi-

modaira method also has better estimation comparing to extended Linhart method.

(ii). Local Alternatives:

Consider local alternatives setting forMa andMb, whereMa is true model andMb

is competing model,

Ma : E(Y) = β0 + β1x1 + β2x2 + · · · + β15x15,

Mb : E(Y) = β0 + β1x1 + β2x2 + · · · + β15xM15.
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We set xM15 = x15 + c
√

n ∗ z, where n takes value as number of clusters, c is a constant

set as 2 and z is from uniform distribution z ∼ U(0.5, 1).

The comparing methods are as follows:

• In the independent case, the comparing methods are

(a) Bootstrap method,

(b) extended Linhart method,

(c) Shimordaira method.

• In the correlated case, the comparing methods are

(a) Boostrap method,

(b) extended Linhart method,

(c) extended Shimodaira method.

Left panel of Figure 4.2 shows the results in the independent case where the bootsrap

method, extended Linhart method and extended Shimodaira method are compared.

Akin to fix alternative, extended Shimodaira method method has better estimation

because its estimation curve is the closest one to the bootstrap curve. In addition,

when the sample size is small, the extended Shimodaira method improves the vari-

ance estimation obviously since its curve is much closer to the bootstrap curve than

the extend Linhart curve. This is because the second order term is added to the
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extended Shimordaria method but not in extend Linhart method.

4.4.3 Error probability assessment

In this section, we assess the error probability for model comparison test. Our null hy-

pothesis is H0: Ma is better than Mb. We calculate the rate for rejection H0 over 1000

simulations. The smaller reject rate means the less error and higher power in model com-

parison test. Same as variance estimate, we evaluate our test statistics under full likelihood

function, composite likelihood function, fixed alternatives or local alternatives. The test

statistic is proposed as equation (4.7b),

T =
AICa/2n − AICb/2n√

Vab/n + νab/n2
.

(i). Fixed Alternatives:

Consider two models under fixed alternative setting. ModelMa is true model con-

taining true 15 covariates. For competing model Mb, we randomly drop one true

covariate, which meansMb containing 14 true covariates.

The comparing methods are as follows:

• In the independent case, the comparing methods are

(a) Linhart test,

(b) extended Linhart test.
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• In the correlated case, the comparing methods are

(a) extended Linhart test,

(b) extended Shimodaira test,

Figure 4.3 shows the simulation results for assessing the error of the test. The left

panel of the figure shows the results under independent case. We empirically verify

that extended Shimodaira test statistic’s rejection rate doesn’t go over 0.05 and it has

lower rejection rate than Linhart has. Hence, extended Shimodaira test has higher

testing power comparing to Linhart method. The right panel presents the results

under correlated scenario. The extended Shimodaira method has lower error proba-

bility and higher testing power comparing to extended Linhart test. Both error rates

from these two tests go down to zero when sample size getting larger as expected.

(ii). Local alternatives:

We are using same local alternatives setting as we did in variance estimation. The

simulation results of the following comparison methods are obtained:

• In the independent case, the comparing methods are

(a) extend Linhart test,

(b) Shimodaira test.

• In the correlated case, the comparing methods are
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(a) extended Linhart test,

(b) extend Shimodaira test,

Figure 4.4 shows the error probability under local alternatives has lower error rate

and high test power. Under independent case, extended Shimodaira method has

lower error probably and reaches to reject rate 0.05 faster than extended Linhart

method as shown in the left panel of the figure. The right panel shows the results

under correlated case, again, extended Shimodaira method has higher testing power

comparing to extended Linhart method.

4.5 Conclusion

We extend Linhart’s and Shimodaira’s test statistics by using composite likelihood func-

tion for correlate data. The asymptotic variance estimation and error probability of Lin-

hart’s and Shimodaira’s model selection test are evaluated. We examine two cases, one is

where the expected discrepancies of the candidate models from the true model are fixed

when sample size goes large. The other case is where the expected discrepancies of the

candidate models from the true model remains unchange when sample size goes large.

In the first case the fixed alternatives method is applied in the limiting operation of the

asymptotic evaluation. In the second case, the local alternatives method is employed in
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Figure 4.1: Plots for variance estimation under fixed alternatives.
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Figure 4.2: Plots for variance estimation under local alternatives.
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Figure 4.3: Plots for for assessing error probability under fixed alternatives.
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Figure 4.4: Plots for assessing error probability under local alternatives.
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the limiting operation of the asymptotic evaluation. The second order term is added to the

variance estimator of the difference between the two AICs, whereas only the first order

term is used in Linhart’s test statistic. This modification improves the variance estimation

and model selection test to a considerable extent, especially for small sample size data set.

The effectiveness of proposed variance estimation and model selection test are confirmed

through analysis and numerical simulation.
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5 Discussion and Future work

In the Multiple-platform data integration project, we proposed integration method involv-

ing aggregated test statistics which is weighted sum of the test statistics across different

platforms with the weights being the inverse of the empirical standard deviation of each

statistic. However, this linear combination of test statistic can be sensitive to the direction

of data sets, but it cannot capture the geometric shape. Our interest is to obtain optimized

aggregated test. With exploration the methods of combine test statistics, we raise an in-

teresting topic which is, in the case of two independent models for investigating the same

population characteristics, we are going to combine log likelihood which is locally defined

canonical parameter (an ingredient for 3rd order asymptotic) when the model is a one pa-

rameter model with no nuisance parameter. Furthermore, we will generalize it to nuisance

parameter case.

In the clustering mixed data project, we have proposed a nonparametric clustering

method for finding group in mixed data. Numerical results show that the proposed method

outperforms the AutoClass algorithm based on examinations of classification rate and en-
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tropy measure. In the future work, in order to increase computation efficiency, instead

of using weighted local Chi-squared test to approximate the distribution of the weighted

Chi-squares, the saddle point method will be applied. We will also extend the proposed

method to cluster spatial and temporal data.

Regarding to model selection criteria, there are extensive model selection literatures,

but many of them focus on the analysis of univariate data set. Relatively limited work has

been done for multiple data sets. AIC is one of the widely used promising model selection

criteria. It is based on the likelihood and asymptotic properties of the maximum likelihood

estimator. The AIC method can only be applied when a full likelihood function is avail-

able. However, if the full likelihood cannot be defined for the data set such as multiple

data sets. Our proposed weighted integrative AICs criterion can perform model selection

across multiple data sets. Simulation studies show us the proposed method has good per-

formance in terms of lower false negative numbers numbers and false detected numbers

by comparing to individual test and equal weights combining test. In the future work, we

may extend our method to highly correlated longitudinal data or clustered data. Further-

more, we will extend the proposed method to data sets with large number of independent

variables but small number of observations.

In model comparison project, we have extended Linhart’s and Shirmodaria’s test statis-

tics by using composite likelihood function with local and fixed alternatives for correlated
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data sets to perform model comparison test. In the future work, we will perform multi-

ple comparison to model selection. Rather than choosing a single model, we consider a

confidence set of models meaning constructed a set of good models.
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A Appendix: Proofs for Section 3.2 Weighted integrative

AICs criterion

Proof. Lemma 3.2.1:

Let’s start from ϕx. Consider the Taylor Expansion for `(θ̂1(X); X′) with respect to θ̂1(X)

around θ1∗, we have

`(θ̂1(X); X′) = `(θ1∗; X′) + (θ̂1(X) − θ1∗)T

(
∂`(θ1∗; X′)

∂θ1∗

)
+

1
2

(θ̂1(X) − θ1∗)T

(
∂2`(θ1∗; X′)
∂θ1∗∂θ

′
1∗

)
(θ̂1(X) − θ1∗) + op(1),

Take expectation with respect to the true distribution of X′. Note X and X′ are i.i.d. and

Assumption 3.2.3 holds, we have

EX′[`(θ̂1(X); X′)] = EX′[`(θ1∗; X)] + (θ̂1(X) − θ1∗)T EX′

[(
`(∂θ1∗; X)
∂θ1∗

)]
+

1
2

(θ̂1(X) − θ1∗)T EX′

[
∂2`(θ1∗; X′)
∂θ1∗∂θ

′
1∗

]
(θ̂1(X) − θ1∗) + op(1)

= EX′[`(θ1∗; X)] +
1
2

(θ̂1(X) − θ1∗)T

EX′

[
∂2`(θ1∗; X′)
∂θ1∗∂θ

′
1∗

]
(θ̂1(X) − θ1∗) + op(1).
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Moreover, take expectation with respect to X. We have

ϕX = EX [EX′[`(θ1∗; X)]] + EX

{
1
2

(θ̂1(X) − θ1∗)T EX′

[
∂2`(θ1∗; X′)
∂θ1∗∂θ

′
1∗

]
(θ̂1(X) − θ1∗)

}
= EX[`(θ1∗; X) +

1
2

tr
{

EX

[
∂2`(θ1∗; X)
∂θ1∗∂θ

′
1∗

]
EX

[
(θ̂1(X) − θ1∗)(θ̂1(X) − θ1∗)T

]}
.

In the above equation, we know EX

[
∂2`(θ1∗;X)
∂θ1∗∂θ

′
1∗

]
is actually H matrix. Now let’s investigate

the term EX

[
(θ̂1(X) − θ1∗)(θ̂1(X) − θ1∗)T

]
. We denote it as V(θ1∗). By the assumption 3.2.4,

we know asymptotically
√

n(θ̂1 − θ1∗) follows normal distribution with mean vector 0 and

the variance covariance matrix H(θ1∗)−1J(θ1∗)H(θ1∗)−1. Therefore, we are able to obtain

V(θ1∗) = H(θ1∗)−1J(θ1∗)H(θ1∗)−1 + o(n). (A.1)

By all above, we are able to obtain

ϕX = EX[`(θ1∗; X)] +
1
2

tr[J(θ1∗)H(θ1∗)−1] + o(1).

By applying the same approaches and arguments, we can derive

ϕY = EY[`(θ2∗; Y)] +
1
2

tr[J(θ2∗)H(θ2∗)−1] + o(1).

Hence,

ϕ( f , g) = w1ϕX + w2ϕY

= w1

{
EX[`(θ1∗; X)] +

1
2

tr[J(θ1∗)H(θ2∗)−1]
}

+w2

{
EY[`(θ2∗; Y)] +

1
2

tr[J(θ2∗)H(θ2∗)−1]
}

+ o(1).

We complete the proof for Lemma 3.2.1. �
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Proof. Lemma 3.2.2:

We start with ζX. Take Taylor expansion to `(θ̂(X); X) with respect to θ̂1(X) around θ1∗, we

have

`(θ̂1(X); X) = `(θ1∗; X) + (θ̂1(X) − θ1∗)T

(
∂`(θ1∗; X)
∂θ1∗

)
+

1
2

(θ̂1(x) − θ1∗)T

(
∂2`(θ1∗; X)
∂θ1∗∂θ1∗

)
(θ̂1(X) − θ1∗) + op(1).

Since asymptotically ∂`(θ1∗;X)
∂θ1∗

≈ −(θ̂1(X) − θ1∗)T
(
∂`2(θ1∗;X)
∂θ1∗∂θ

′
1∗

)
, therefore the above equation

becomes

`(θ̂1(X); X) = `(θ1∗; X) − (θ̂1(X) − θ1∗)T

(
∂2`(θ1∗; X)
∂θ1∗∂θ

′
1∗

)
(θ̂1(X) − θ1∗)

+
1
2

(θ̂1(X) − θ1∗)T

(
∂2`(θ1∗; X)
∂θ1∗∂θ

′
1∗

)
(θ̂1(X) − θ1∗) + op(1)

= `(θ1∗; X) −
1
2

(θ̂1(X) − θ1∗)T

(
∂2`(θ1∗; X)
∂θ1∗∂θ

′
1∗

)
(θ̂1(X) − θ1∗) + op(1).

Take the expectation with respect to the true distribution of X:

EX[`(θ̂1(X); X] = EX[`(θ1∗; X)]

−
1
2

EX

[
(θ̂1(X) − θ1∗)T

(
∂2`(θ1∗; X)
∂θ1∗∂θ

′
1∗

)
(θ̂1(X) − θ1∗)

]
+ o(1).

Note ∂2`(θ1∗;X)
∂θ1∗∂θ

′
1∗

= EX

[(
∂2`(θ1∗;X)
∂θ1∗∂θ

′
1∗

)]
+ o(1) and apply equation (A.1), we derive

ζX = EX[`(θ̂1(X); X] = EX[`(θ1∗; X)] −
1
2

tr[J(θ1∗)H−1(θ1∗)] + o(1).

By applying similarly arguments and approaches, we are able to derive

ζY = EY[`(θ̂2(Y); Y] = EY[`(θ2∗; Y)] −
1
2

tr[J(θ2∗)H−1(θ2∗)] + o(1).
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Therefore, we have

ζ( f , g) = w1ζX + w2ζY

= w1

{
EX[`(θ1∗; X)] −

1
2

tr[J(θ1∗)H−1(θ1∗)]
}

+w2

{
EY[`(θ2∗; Y)] −

1
2

tr[J(θ2∗)H−1(θ2∗)]
}

+ o(1).

This is completed prove of Lemma 3.2.2. �

Proof. Lemma 3.2.3:

Take variance of wt1 + (1 − w)t2. We have

V = var [wt1 + (1 − w)t2]

= w2var(t1) + (1 − w)2var(t2).

Taking the derivative with respect to w and setting equation equal to zero gives

∂V
∂w

= 2wvar(t1) − 2(1 − w)var(t2) = 0

2wvar(t1) = 2(1 − w)var(t2)

w
1 − w

=
var(t2)
var(t1)

w =
var(t2)

var(t1) + var(t2)
.

The equation (3.2) is proved. �
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B Appendix: Terminologies and notations for Chapter 4

The general terminologies and notations are used throughout Chapter 4 and corresponding

Theorem and Lemma proofs in Appendix C and D.

• φ ∈ Φ ⊂ Rd is parameter space;

• Y = (Y (1), · · · ,Y (n)) are i.i.d with unknown true distribution function f (Y; φ), and the

approximating density function is g(Y; φ);

• φ(n) ∈ Φ is true parameter value depending on sample size n and convergence to φ∗;

• limn→∞
√

n(φ(n) − φ∗) = φ�;

• c`(φ; Y) =
∑K

k=1 wk log gk(Yk|φ) is composite log likelihood function for a sub-vector;

• c`(n)(φ; Y) =
∑n

i=1 c`k(φ; Y (i)) is over all composite log likelihood function;

• φ̂(n) is the MLE of the above composite likelihood function;

• Hi j(φ) = E
[
−

∑K
k=1 ∂

2c`k(θ;Yk)
∂φi∂φ j

]
is the sensitivity matrix for each data point
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• Ji j(φ) =
[∑K

k=1

(
∂c`k(φ;Yk)

∂φi

) (
∂c`k(φ;Yk)

∂φ j

)′]
is the variability matrix for each data;

• limn→∞ H(φ(n)) = H∗ and limn→∞ J(φ(n)) = J∗;

•
√

n(φ(n) − φ∗) = φ�.

The following notations are used under model α

• θα : Θα → Ξ is a function;

• θα = φα(θα) , θ∗α ∈ Θα;

• Bi
α j(θα) = ∂φi

α/∂θ
j
α is a Jacobian matrix;

• θ(n)
α = arg supθα∈Θα

KL(φ(n), φα(θα)); KL denotes K-L divergence;

• limn→+∞

√
n(θ(n)

α − θ
∗
α) = θ�α;

• DKL(φ1, φ2) = D(φ1, φ1) − D(φ1, φ2) is K-L distance;

• D(φ1, φ2) = Eφ1

[∑K
k=1 wk log g(yk|φ2)

]
;

• θ̂(n)
α is the MLE under model α

• plimn→∞
√

n(θ̂(n)
α − θ

∗
α) = θ̂�α = Op(1)

• φ̂(n)
α = φα(θ̂(n)

α )

• φ̂�α = plimn→∞
√

n(φ̂(n)
α − φ

∗);
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• B∗α = Bα(θ∗α);

• φ(n)
α = φα(θ(n)

α );

• φ�α = limn→+∞

√
n(φ(n)

α − φ
∗);

• φ†α = H∗1/2φ�α;

• φ̂†α = H∗1/2φ̂�α;

• B†α = H∗1/2B∗α;

• P†α = B†α(B†′α B†α)−1B†′α is the projection operator of ImB†α;

• ĉ`
(n)
α = c`(n)(φ̂(n)

α ; Y);

• C(n)
α = AICc`

2n ;

• C(n)
α = −ĉ`

(n)
α /n + tr(J∗αH∗−1

α )/n.
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C Appendix: Proofs for Section 4.3.1 composite

likelihood with fixed alternative setting

Proof. For this we need at first the joint asymptotic distribution of

√
n
(

1
nc`(n)(θ̂α; Y) − E f [c`(n)(θ∗α; Y)]

)
(C.1)

and

√
n
(

1
nc`(n)(θ̂β; Y) − E f [c`(n)(θ∗β; Y)]

)
.

Consider under model α the equation (C.1) can be write as

√
n
(
1
n

c`(n)(θ̂α; Y) −
1
n

c`(n)(θ∗α; Y)
)

+
√

n
(
1
n

c`(n)(θ∗α; Y) − E f [c`(n)(θ∗α; Y)]
)
.

We want to show the first part of the above equation is negligible,i.e.,
√

n
(

1
nc`(n)(θ̂α; Y) − 1

nc`(n)(θ∗α; Y)
)

=

0. Consider

√
n(θ̂α − θ∗α)

(
1
n
∂c`(n)(θ̄α; Y (i))

∂θ̄α

)
,

where θ̄α is neighborhood of θ∗α and θ̂α. We already know that
√

n(θ̂α − θ∗α) = op(1) and

1
n
∂c`(n)(θ∗α;Y)

∂θ∗α
= 0. Note 1

n
∂c`(n)(θα;Y)

∂θα

a.s
−−→

∂E f [c`(n)(θα;Y)]
∂θα

, uniformly in θ ( Jennrich, 1969, Theorem
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2), thus
(

1
n
∂c`(n)(θ̂α;Y)

∂θ̂α

) a.s
−−→

∂E f [c`(n)(θ∗α;Y)]
∂θ∗α

= 0. Therefore, it’s sufficient to consider

√
n
(
1
n

c`(n)(θ∗α; Y) − E f [c`(n)(θ∗α; Y)]
)

By similar approach, under model β, it’s sufficient to consider

√
n
(
1
n

c`(n)(θ∗β; Y) − E f [c`(n)(θ∗β; Y)]
)
.

By the central limit theorem, we are able to show
√

n
(

1
nc`(n)(θ∗α; Y) − E f [c`(n)(θ∗α; Y)]

)
√

n
(

1
nc`(n)(θ∗β; Y) − E f [c`(n)(θ∗β; Y)]

)
 d
∼ N(0,Λ),

where the elements in Λ are

λαα = E f [c`(n)(θ∗α; Y)2] − (E[c`(n)(θ∗α; Y)])2,

λαβ = E f [c`(n)(θ∗α; Y)c`(n)(θ∗β; Y)] − E[c`(n)(θ∗α; Y)]E[c`(n)(θ∗β; Y)],

λβα = E f [c`(n)(θ∗β; Y)c`(n)(θ∗α; Y)] − E[c`(n)(θ∗β; Y)]E[c`(n)(θ∗α; Y)],

λββ = E f [c`(n)(θ∗β; Y)2] − (E[c`(n)(θ∗β; Y)])2.

Thus,

1
(n)c`

n(θ̂α; Y) − 1
nc`(n)(θ̂β; Y) − E[c`(n)(θ∗α; Y)] + E[c`(n)(θ∗β; Y)]√

(λαα + λββ − 2λαβ)/n
d
∼ N(0, 1).

Note the expected K-L divergences for model α and model β are approximately equal to

E f [c`(n)(θ∗α; Y)] +
trJ∗αH∗−1

α

2n and E f [c`(n)(θ̂∗β; Y)] +
trJ∗βH∗−1

β

2n . Under the hypothesis that the two
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expected K-L information are equal

1
nc`(n)(θ̂α; Y) − 1

nc`(n)(θ̂β; Y) − trJ∗αH∗−1
α

2n +
trJ∗βH∗−1

β

2n√
(λαα + λββ − 2λαβ)/n

d
∼ N(0, 1).

This is,

C(n)
α −C(n)

β√
(λαα + λββ − 2λαβ)/n

d
∼ N(0, 1).

Consistent estimators Λ̂ of Λ are obtained if in the expression for Λ the parameters θ∗α,

θ∗β are replaced by θ̂∗α and θ̂∗β, respectively, and true density function f (·) by the empirical

density function g(·). The asymptotic distribution remains unchanged if Λ is replaced by

Λ̂. Each element in Λ̂ is

λ̂αα =
1
n

n∑
i=1

c`(θ̂α; Y (i))2 −

(
1
n

c`(n)(θ̂α; Y)
)2

,

λ̂αβ =
1
n

n∑
i=1

c`(θ̂α; Y (i))c`(θ̂β; Y (i)) −
(
1
n

c`(n)(θ̂α; Y)
) (

1
n

c`(n)(θ̂β; Y)
)
,

λ̂βα =
1
n

n∑
i=1

c`(θ̂β; Y (i))c`(θ̂α; Y (i)) −
(
1
n

c`(n)(θ̂β; Y)
) (

1
n

c`(n)(θ̂α; Y)
)
,

λ̂ββ =
1
n

n∑
i=1

c`(θ̂β; Y (i))2 −

(
1
n

c`(n)(θ̂β; Y)
)2

.

because Λ̂
a.s
−−→ Λ. This leads our variance estimator for (C(n)

α −C(n)
β ) to be

var(C(n)
α −C(n)

β ) =

1
n

n∑
i=1

(
c`(θ̂α; Y (i)) − c`(θ̂β; Y (i))

)2
−

c`(n)(θ̂α; Y)
n

−
c`(n)(θ̂β; Y)

n

2 /n
= V (n)

αβ /n,
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and the test statistic to be

T =
C(n)
α −C(n)

β√
V (n)
αβ /n

.

�
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D Appendix: Proofs for Section 4.3.2 composite

likelihood with local alternative setting

In a neighborhood of θ∗α, there is a Jacobian matrix for mapping of θα. we denote it as

Bi
α j(θα) = ∂φi

α/∂θ
j
α, where ∂/∂θ j

α denotes the partial differentiation with respect to the j-th

element of θα. The Jacobian matrix is of rank mα. Let θ(n)
α = arg supθα∈Θα

KL(φ(n), φα(θα))

and assume limn→+∞

√
n(θ(n)

α − θ
∗
α) = θ�α exists. Let θ̂(n)

α = arg supθα∈Θα
c`(n)(φα(θα)) denote

the MLE under model α. Assume p limn→∞
√

n(θ̂(n)
α − θ

∗
α) = θ̂�α = Op(1).

For notational simplicity, we write φ̂(n)
α = φα(θ̂(n)

α ), φ̂�α = p limn→∞
√

n(φ̂(n)
α − φ

∗),

B∗α = Bα(θ∗α), φ(n)
α = φα(θ(n)

α ) and φ�α = limn→+∞

√
n(φ(n)

α − φ
∗). The following lemmas

motivate the main result of this paper. The arguments involve expansions that are standard

in full likelihood considerations and are similar to those leading the Linhart’s test statis-

tics discussed previously. However, the results are presented here in more general context

using composite likelihood.

Lemma D.0.1. Let φ(n)
α ∈ Ξ, α = 1, 2 be the sequences converging to φ∗, such that
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limn→∞
√

n(φ(n)
α − φ

∗) = φ�α, α = 1, 2, exist. then we have

lim
n→∞

nDKL(φ(n)
1 , φ(n))

2 ) = (φ�1 − φ
�
2)′H∗(φ�1 − φ

�
2)/2, (D.1)

where H∗ = H(φ∗).

Proof. Lemma D.0.1:

Consider the definition of DKL(ξ1, ξ2) and D(φ1, φ2), we can write

DKL(φ1, φ2) = D(φ1, φ1) − D(φ1, φ2)

= Eφ1

 K∑
k=1

wk log g(Yk|φ1)

 − Eφ1

 K∑
k=1

wk log g(Yk|φ2)


Take Taylor expansion to D(φ1, φ2) with respect to φ2 around φ1,we have

DKL(φ1, φ2) = Eφ1

 K∑
k=1

wk log g(Yk|φ1)

 − Eφ1

 K∑
k=1

wk log g(Yk|φ1)


−(φ2 − φ1)Eφ1

 K∑
k=1

wk
∂ log g(Yk|φ1)

∂φ1


−

1
2

E

 K∑
k=1

wk
∂2 log g(Yk|φ1)

∂φ1∂φ
′
1

 (φ1 − φ2)(φ1 − φ2)′

+o‖φ1 − φ2‖
2.

Note E
[∑K

k=1 wk
∂ log g(Yk |φ1)

∂φ1

]
= 0, and E

[∑K
k=1 wk

∂2 log g(Yk |φ1)
∂φ1∂φ

′
1

]
= H(φ1). Times n to the both

side of the above equation, we get

nDKL(φ1, φ2) = H(φ1)
(√

n(φ1 − φ2)
) (√

n(φ1 − φ2)′
)
/2 + o‖

√
n(φ1 − φ2)‖2.
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Because limn→∞
√

n(φ(n)
1 − φ

(n)
2 ) = φ�1 − φ

�
2, and limn→∞ H(φ(n)

1 ) = H∗, we are able to derive

lim
n→∞

nDKL(φ(n)
1 , φ(n)

2 ) = (φ�1 − φ
�
2)′H∗(φ�1 − φ

�
2)/2.

We complete proof for Lemma D.0.1 equation (D.1). �

Lemma D.0.2. The asymptotic limit φ�α in model-α satisfies

φ�α = B∗αθ
�
α, (D.2a)

B∗′α H∗(φ�α − φ
�) = 0, (D.2b)

θ�α = (B∗′α H∗B∗α)−1B∗′α H∗φ�. (D.2c)

Note that φ�α is the projection of φ� onto ImB∗α, the linear space spanned by the column

vectors of B∗α. Using H∗ as the metric.

Proof. Lemma D.0.2 (D.2a):

Expand φα(θ(n)
α ) at φα(θ∗α), we have

φα(θ(n)
α ) = φα(θ∗α) +

∂φα
∂θα

(θ(n)
α − θ

∗
α) + o‖θ(n)

α − θ
∗
α‖,
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Since Bα(θ∗α) =
∂φα
∂θα

, we have

φα(θ(n)
α ) = φα(θ∗α) + Bα(θ∗α)(θ(n)

α − θ
∗
α) + o(‖θ(n)

α − θ
∗
α‖),

√
nφα(θ(n)

α ) =
√

nφα(θ∗α) +
√

nBα(θ∗α)(θ(n)
α − θ

∗
α) + o(‖θ(n)

α − θ
∗
α‖),

√
n
[
φα(θ(n)

α ) − φα(θ∗α)
]

=
√

nBα(θ∗α)(θ(n)
α − θ

∗
α) + o(‖θ(n)

α − θ
∗
α‖),

limn→∞
√

n
[
φα(θ(n)

α ) − φα(θ∗α)
]

= limn→∞
√

nBα(θ∗α)(θ(n)
α − θ

∗
α),

limn→∞
√

n(φα − φ) = limn→∞
√

nBα(θ∗α)(θ(n)
α − θ

∗
α),

φ�α = B∗α limn→∞
√

n(θ(n)
α − θ

∗
α) = B∗αθ

�
α.

We complete the proof for the first equation (D.2a). �

Proof. Lemma D.0.2 (D.2b):

We have the definition θ�α = limn→∞ arg infu∈Rmα nDKL(φ(n), φα(θ∗α + u/
√

n)). Because of the

smoothness of the K-L discrepancy and ‖θ�α‖ < ∞, the limit and arginf can be exchanged,

that is,

θ�α = arg infu∈Rmα lim
n→∞

nDKL(φ(n), φα(θ∗α + u/
√

n)).

Follow equation (D.1), we obtain

θ�α = arg infu∈Rmα (φ� − B∗αu)′H∗(φ� − B∗αu)

= arg infu∈Rmα (φ�′H∗φ� − φ�′H∗B∗αu − u′B∗′α H∗φ� + u′B∗′α H∗B∗αu).
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Take differential of it at u = θ�, we get

−2B∗′α H∗φ� + 2B∗′α H∗B∗αu = 0,

B∗′α H∗(−φ� + B∗αθ
�
α) = 0.

We known φ�α = B∗αθ
�
α, hence

B∗′α H∗(φ�α − φ
�) = 0.

Equation(D.2b) is proved completely . �

Proof. Lemma D.0.2 (D.2c):

From above, we know B∗′α H∗(−φ� + B∗αθ
�
α) = 0, so

B∗′α H∗B∗αθ
�
α = B∗′α H∗φ�,

θ� = (B∗′α H∗B∗α)−1B∗′α H∗φ�.

We complete proof for the equation (D.2c). �

Lemma D.0.3. Let φ̂(n) be the MLE of φ(n) for g(Y; φ), φ ∈ Ξ. The asymptotic distribution

of the MLE is normal,

φ̂� ∼ N(φ�,G∗−1), (D.3)

where G∗ = H∗J∗−1H∗.
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Proof. Lemma D.0.3:

Note when n is sufficiently large, we have ∂c`(n)(φ̂(n))
∂φ̂(n) = 0, Expand ∂c`(n)(φ̂(n))

∂φ̂(n) around φ(n):

0 =
∂c`(n)(φ(n))
∂φ(n) +

∂2c`(n)(φ(n))
∂φ(n)∂φ(n)′ (φ̂(n) − φ(n)) + oP(1).

We can write above equation as:

√
n(φ̂(n) − φ(n)) =

(
1
√

n
∂c`(n)(φ(n))
∂φ(n)

)
/

(
−

1
n
∂2c`(n)(φ(n))
∂φ(n)∂φ(n)′

)

By the assumption 4.3.1, we know
(

1
√

n
∂c`(n)(φ(n))

∂φ(n)

)
∼ N(0, J∗). By the definition, we know(

−1
n
∂2c`(n)(φ(n))
∂φ(n)∂φ(n)′

) P
−→ H∗. From the assumption 4.3.2, we know p limn→∞

√
n(φ̂(n) − φ∗) = φ̂� =

Op(1). Therefore, φ� ∼ N(φ�,H∗−1J∗H∗−1), which is N(φ�,G∗−1). In deed, G is Godambe

information as shown in equation (4.2). Hence, Lemma D.0.3 is proved. �

Lemma D.0.4. The asymptotic limit φ̂�α of the MLE for model-α satisfies

φ̂�α = B∗αθ̂
�
α, (D.4a)

B∗′α H∗(φ̂�α − φ̂
�) = 0, (D.4b)

θ̂�α = (B∗′α H∗B∗α)−1B∗′α H∗φ̂�. (D.4c)

Proof. Lemma D.0.4 (D.4a):
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This proof is similar to (D.2a) ∼ (D.2c). Expand φα(θ̂(n)
α ) at φα(θ̂∗α), we have

φα(θ̂(n)
α ) = φα(θ̂∗α) +

∂φα
∂θα
|θ∗α(θ̂(n)

α −θ̂
∗
α) + o‖θ̂(n)

α − θ̂
∗
α‖,

φα(θ̂(n)
α ) = φα(θ̂∗α) + B∗α(θ̂α)(θ̂(n)

α − θ̂
∗
α) + o(‖θ̂(n)

α − θ̂
∗
α‖),

√
nφα(θ̂(n)

α ) =
√

nφα(θ̂∗α) +
√

nB∗α(θ̂α)(θ̂(n)
α − θ̂

∗
α) + o(

√
n‖θ̂(n)

α − θ̂
∗
α‖),

√
n[φα(θ̂(n)

α ) − φα(θ̂∗α)] =
√

nB∗α(θ̂α)(θ̂(n)
α − θ̂

∗
α) + op(1),

limn→∞
√

n[φα(θ̂(n)
α ) − φα(θ̂∗α)] = limn→∞

√
nB∗α(θ̂α)(θ̂(n)

α − θ̂
∗
α),

limn→∞
√

n(φ̂α − φ̂∗α) = limn→∞
√

nB∗α(θ̂(n)
α − θ̂

∗
α),

φ̂�α = B∗α limn→∞
√

n(θ̂(n)
α − θ̂

∗
α)

φ̂�α = B∗αθ̂
�
α.

We complete the proof for the first equation (D.4a). �

Proof. Lemma D.0.4 (D.4b):

Consider ∂φi
α

∂θ
j
α

c`(n)(φα(θ̂(n)
α )) =

∑
j B j

αi(θ̂
(n)
α )∂ jc`(n)(φ̂(n)

α )

∂φ̂(n)
α j

= 0 for sufficiently large n. Time it with

√
n and expand it with respect to φ̂(n)

α around φ̂(n) to obtain

√
n
∑

j

B j
αi(θ̂

(n)
α )

∂ jc`(n)(φ̂(n)
α )

∂φ̂(n)
α j

=
∑

j

B j
αi(θ̂

(n)
α )

(
√

n
∂ jc`(n)(φ̂(n))

∂φ̂(n)

)
+

∑
j

∂ jB
j
αi(θ̂

(n)
α )

∂2
jc`

(n)(φ̂(n))

∂φ̂(n)∂φ̂(n)′

√
n(φ̂(n)

α − φ̂
(n)) j + op(1)

=0.
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Note ∂ jc`(n)(φ̂(n))
∂φ̂(n) = 0, E

(
∂2

j c`
(n)(φ̂(n))

∂φ̂(n)∂φ̂(n)′

)
= H∗, φ̂�α = p limn→∞

√
n(φ̂(n)

α −φ
∗
α), and φ̂� = p limn→∞

√
n(φ̂(n)−

φ∗). Therefor, we get

p lim
n→∞

∑
j

B j
αi(θ̂

(n)
α )

∂ jc`(n)(φ̂(n)
α )

∂φ̂(n)
j

= B∗′α H∗(φ̂�α − φ̂
�) = 0.

We proved (D.4b). �

Proof. Lemma D.0.4 (D.4c):

From the above equation B∗′α H∗(φ̂�α − φ̂
�) = 0 and φ̂�α = B∗αθ

�
α, we know

B∗′α H∗φ̂�α = B∗′α H∗φ̂�,

B∗′α H∗B∗αθ̂
�
α = B∗′α H∗φ̂�,

θ̂�α = (B∗′α H∗B∗α)−1B∗′α H∗φ̂�.

We proved equation(D.4c). �

Let φ†α = H∗1/2φ�α, φ̂†α = H∗1/2φ̂�α and B†α = H∗1/2B∗α. Note that H∗ is a square root

decomposition, i.e. H∗ = (H∗1/2)′H∗1/2.

Proposition D.0.1. Define P†α = B†α(B†′α B†α)−1B†′α the projection operator of ImB†α. Letting

φ†α = H∗1/2φ�α, equation (D.1) in Lemma D.0.1, equation (D.2a) in Lemma D.0.2, equa-
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tion(D.4a) in Lemma D.0.4, and equation(D.3) in lemma D.0.3 will be

lim
n→∞

nDKL(φ(n)
1 , φ(n))

2 ) = ‖φ†1 − φ
†

2‖
2/2, (D.5a)

φ†α = P†αφ
†, (D.5b)

φ̂†α = P†αφ̂
†, (D.5c)

φ̂† ∼ N(φ†,W∗). (D.5d)

where W = H∗−
1
2 J∗H∗−

1
2

Proof. Proposition D.0.1 (D.5a):

From equation (D.1) limn→∞ nDKL(φ(n)
1 , φ(n)

2 ) = (φ�1 − φ
�
2)′H∗(φ�1 − φ

�
2)/2, and because φ† =

H∗
1
2φ� and φ� = H∗−

1
2φ†, we can have

lim
n→∞

nDKL(φ(n)
1 , φ(n)

2 ) = (H∗−
1
2φ†1 − H∗−

1
2φ†2)′H∗

1
2 H∗

1
2 (H∗−

1
2φ†1 − H∗−

1
2φ†2)/2

= (φ†1 − φ
†

2)′H∗−
1
2 ′H∗1/2H∗1/2H∗−

1
2 (φ†1 − φ

†

2)/2

= (φ†1 − φ
†

2)′(φ†1 − φ
†

2)/2

= ‖φ†1 − φ
†

2‖
2/2

We proved equation (D.5a). �

Proof. Proposition D.0.1 (D.5b):

We know φ†α = H∗
1
2 B∗αθ

�
α because we have φ†α = H∗

1
2φ�α, and φ�α = B∗αθ

�
α. Also, because

θ�α = (B∗′α H∗B∗α)−1B∗′α H∗φ�, we obtain φ†α = H∗
1
2 B∗α(B∗′α H∗B∗α)−1B∗′α H∗φ�. In addition, note
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B†α = H∗
1
2 B∗α and B∗α = H∗

1
2 B†α. Therefore, we get

φ†α = H∗
1
2 H∗−

1
2 B†α[(H∗−

1
2 B†α)′H∗(H∗−

1
2 B†α)]−1(H∗−

1
2 B†α)′H∗φ�

= B†α[B†′α H∗−
1
2 ′H∗H∗−

1
2 B†α]−1B†′α H∗−

1
2 ′H∗φ�

= B†α[B†′α B†α]−1B†′α H∗
1
2φ�

= B†α[B†′α B†α]−1B†′α H∗
1
2 ′(H∗−

1
2φ†)

= B†α[B†′α B†α]−1B†′α φ
†

= P†αφ
†

We proved equation (D.5b). �

Proof. Proposition D.0.1 (D.5c):

Similar to the proof of equation (D.5b), we know φ̂†α = H∗
1
2 φ̂�α, φ̂� = B∗αθ̂

�
α, θ̂�α = (B∗′α H∗B∗α)−1B∗′α H∗φ̂�,

B∗α = H−
1
2 B†α, and φ̂� = H∗−

1
2φ†. We can get

φ̂†α = H∗
1
2 (B∗αθ̂

�
α)

= H∗
1
2 B∗α(B∗′α H∗Bα)−1B∗′α H∗φ̂�

= H∗
1
2 (H∗−

1
2 B†α)[(H∗−

1
2 B†α)′H∗(H∗−

1
2 B†α)]−1(H∗−

1
2 B†α)′H∗H∗−

1
2 φ̂†

= B†α[B†′α H∗−
1
2 ′H∗H∗−

1
2 B†α]−1B†′α H∗−

1
2 ′H∗H∗−

1
2 φ̂†

= B†α(B†′α B†α)−1B†′α φ̂†

= P†αφ̂
†
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Equation (D.5c) is proved. �

Proof. Proposition D.0.1 (D.5d):

From equation (D.3), we know φ̂� ∼ N(φ†,H∗−1J∗H∗−1), which means var(φ̂�) = H∗−1J∗H∗−1

We also know φ̂† = H∗
1
2 φ̂�. Hence,

var(φ̂†) = var(H∗
1
2 φ̂�)

= H∗
1
2 H−1J∗H∗−1H∗

1
2

= H∗−
1
2 J∗H∗−

1
2

Finally, we obtain φ̂† ∼ N(φ†,W∗), where W∗ = H∗−
1
2 J∗H∗−

1
2 . Equation (D.5d) is proved.

�

Lemma D.0.5. For α, β ∈ M

p lim
n→∞

(
ĉ`

(n)
α − c`(n)(φ∗)

)
= ‖φ̂†α‖

2/2, (D.6a)

p lim
n→∞

(
ĉ`

(n)
β − c`(n)(φ∗)

)
= ‖φ̂†β‖

2/2, (D.6b)

p lim
n→∞

(ĉ`
(n)
α − ĉ`

(n)
β ) = φ̂†′(P†α − P†β)φ̂

†/2, (D.6c)

p lim
n→∞

n(C(n)
α −C(n)

β ) = −φ̂†′(P†α − P†β)φ̂
†/2 + tr[J∗αH∗−1

α − J∗βH∗−1
β ], (D.6d)

c`E(nC(n)
α − nC(n)

β ) = −
[
φ†′(P†α − P†β)φ

†
]
/2 + tr

[
(P†α − P†β)W

∗)
]
/2, (D.6e)

c`V(nC(n)
α − nC(n)

β ) = φ†′(P†α − P†β)
′W∗(P†α − P†β)φ

† + tr[(P†α − P†β)W
∗]2/2. (D.6f)
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where W∗ = H∗−
1
2 J∗H∗−

1
2 , P†α = B†α(B†′α B†α)−1B†′α , P†β = B†β(B

†′

β B†β)
−1B†′β . The asymptotic

expectation and variance are denoted as c`E and c`V, respectively.

Proof. Lemma D.0.5 (D.6a):

Expand c`(n)(φ̂(n)
α )/n with respect to φ̂(n)

α around φ̂(n), we get

c`(n)(φ̂(n)
α )/n = c`(n)/n +

∂c`(n)(φ̂(n))
∂φ̂(n)

(φ̂(n)
α − φ̂

(n))/n +

1
2n

(φ̂(n)
α − φ̂

(n))′
∂2c`(φ̂(n))
∂φ̂(n)∂φ̂(n)′

(φ̂(n)
α − φ̂

(n)) + op(1).

We know n−1 ∂c`(n)(φ̂(n))
∂φ̂(n) = 0. Move c`(n)(φ̂(n))/n to the left side and times n to both side. We

get

n(c`(n)(φ̂(n))/n − c`(n)(φ̂(n)
α )/n) =

1
2
√

n(φ̂(n)
α − φ̂

(n))′n−1 ∂
2c`(φ̂(n))
∂φ̂(n)∂φ̂(n)′

√
n(φ̂(n)

α − φ̂
(n)) + op(1)

Take the limitation for the above equation. Note p limn→∞ n−1 ∂2c`(n)(φ̂(n))
∂φ̂(n)∂φ̂(n)′ = H∗. In addition,

by equation (D.1) and (D.5a), we are able to obtain

p lim
n→∞

n(c`(n)(φ̂(n))/n − c`(n)(φ̂(n)
α )/n)

=p lim
n→∞

[
1
2
√

n(φ̂(n)
α − φ̂

(n))′n−1∂
2c`(n)(φ̂(n))
∂φ̂(n)∂φ̂(n)′

√
n(φ̂(n)

α − φ̂
(n)) j

=(φ̂�α − φ̂
�)′H∗(φ̂�α − φ̂

�)/2

=‖φ̂†α − φ̂
†‖2/2.
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Replacing φ̂(n)
α by φ∗, the above equation becomes

p lim
n→∞

n(c`(n)(φ̂(n))/n − c`(n)(φ∗)/n) = (φ̂�H∗φ̂�)/2

= (H∗1/2φ̂�H∗1/2φ̂�)/2

= (φ̂†φ̂†)/2

= ‖φ̂†‖2/2

Take the difference of these two equations, we obtain

p lim
n→∞

n(c`(n)(φ̂(n))/n − c`(n)(φ∗)/n) − p lim
n→∞

n(c`(n)(φ̂(n))/n − c`(n)(φ̂(n)
α )/n)

p lim
n→∞

(c`(n)(φ̂(n)
α ) − c`(n)(φ∗))

= ‖φ̂†‖2/2 − ‖φ̂†α − φ̂†‖2/2.
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Note φ̂†α = P†αφ̂† and P†2α = P†α. We can rewrite above equation as,

p lim
n→∞

(c`(n)(φ̂(n)
α ) − c`(n)(φ∗))

=

(
‖φ̂†‖2 − ‖φ̂† − φ̂†α‖

2
)
/2

=
(
‖φ̂†‖2 − ‖φ̂† − P†αφ̂

†‖2
)
/2

=
(
‖φ̂†‖2 − ‖(Im − P†α)φ̂†‖2

)
/2

=
(
φ̂†′φ̂† − φ̂†′(Im − P†α)φ̂†

)
/2

=
(
φ̂†′(Im − Im + P†α)φ̂†

)
/2

= ‖P†αφ̂
†‖2/2

= ‖φ̂†α‖
2/2

We proved equation (D.6a). �

Proof. Lemma D.0.5 (D.6b):

By applying exactly same proof approaches as Lemma D.0.5 (D.6b) but under model β,

we can show p limn→∞(c`(n)(φ̂(n)
α ) − c`(n)(φ∗)) = ‖φ̂†β‖

2/2 �

Proof. Lemma D.0.5 (D.6c):

From above proof, we are able to get

p lim
n→∞

(ĉ`
(n)
α − c`(n)(φ∗)) − p lim

n→∞
(ĉ`

(n)
β − c`(n)(φ∗)) = (‖φ̂†α‖2 − ‖φ̂

†

β‖
2)/2
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p lim
n→∞

(ĉ`
(n)
α − ĉ`

(n)
β )

= (‖φ̂†α‖2 − ‖φ̂
†

β‖
2)/2

= (φ̂†α
′

φ̂†α − φ̂
†′

β φ̂
†

β)/2

= [(P†αφ̂
†)′P†αφ̂

† − (P†βφ̂
†)′P†βφ̂

†]/2

= [φ̂†′(P†′α P†α − P†′β P†β)φ̂
†]/2

= φ̂†′(P†α − P†β)φ̂
†/2

We complete the proof for equation (D.6c). �

Proof. Lemma D.0.5 (D.6d):

p lim
n→∞

n(C(n)
α −C(n)

β )

= p lim
n→∞

n[−ĉ`
(n)
α /n + tr(J∗αH∗−1

α )/n + ĉ`
(n)
β /n − tr(J∗βH∗−1

β )/n]

= −p lim
n→∞

(ĉ`
(n)
α − ĉ`

(n)
β ) + p lim

n→∞
[tr(J∗αH∗−1

α ) − tr(J∗βH∗−1
β )]

= −φ̂†′(P†α − P†β)φ̂
†/2 + tr[(J∗αH∗−1

α ) − (J∗βH∗−1
β )].

Equation (D.6d) is proved. �

Proof. Lemma D.0.5 (D.6e):

From equation (D.5d), we know φ̂†α ∼ N(φ†,W∗)). Let η̂† = W∗− 1
2 φ̂†. We have η̂† ∼

N(W∗− 1
2φ†, Im). Because η̂† = W∗− 1

2 φ̂†, we get φ̂† = W∗ 1
2 η̂†. Note E(X′AX) = b′Ab + trA

and Var(X′AX) = 4b′A2b + 2trA2, where X is a m × 1 random vector and distributed as
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N(b, Im), and A is a m × m symmetric matrix.

c`E(nC(n)
α − nC(n)

β )

= E
[
−φ̂†′(P†α − P†β)φ̂

†/2 + tr(J∗αH∗−1
α − J∗βH∗−1

β )
]

= E
[
−(W∗ 1

2 η̂†)′(P†α − P†β)W
∗ 1

2 η̂†/2 + tr(J∗αH∗−1
α − J∗βH∗−1

β )
]

= −E[ η̂†′︸︷︷︸
X

W∗ 1
2 ′(P†α − P†β)W

∗ 1
2︸                  ︷︷                  ︸

A

η̂†︸︷︷︸
X

]/2 + tr(J∗αH∗−1
α − J∗βH∗−1

β )

= −
1
2

[(W∗− 1
2φ†)′(W∗ 1

2 ′(P†α − P†β)W
∗ 1

2 )(W∗− 1
2φ†)

+tr(W∗ 1
2 (P†α − P†β)W

∗ 1
2 )] + tr

(
J∗αH∗−1

α − J∗βH∗−1
β

)
= −φ†′(P†α − P†β)φ

†/2 − tr[(P†α − P†β)W
∗]/2 + tr(J∗αH∗−1

α − J∗βH∗−1
β )

Now, we want to prove tr
[
(P†α − P†β)W

∗
]

= tr
(
J∗αH∗−1

α − J∗βH∗−1
β

)
. This is equivalent to

prove tr(P†αW∗) = tr(J∗αH∗−1
α ), and tr(P†βW

∗) = tr(J∗βH∗−1
β ). Before we start prove, let’s

recall:

P†α = B†α(B†′α B†α)−1B†′α ,

B†α = H∗
1
2 B∗α,

W∗ = H∗−
1
2 J∗H∗−

1
2 .
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So,

tr(P†αW∗) = tr
[
B†α(B†′α B†α)−1B†′α W∗

]
= tr

[
H∗

1
2 B∗α

(
(H∗

1
2 B∗α)′H∗

1
2 B∗α

)−1
(H∗

1
2 B∗α)′H∗−

1
2 J∗H∗−

1
2

]
= tr

[
(B∗′α J∗B∗α)(B∗′α H∗B∗α)−1

]
.

Similarly, we can obtain

tr(P†βW
∗) = tr

[
B†β(B

†′

β B†β)
−1B†′β W∗

]
= tr

[
H∗

1
2 B∗β

(
(H∗

1
2 B∗β)

′H∗
1
2 B∗β

)−1
(H∗

1
2 B∗β)

′H∗−
1
2 J∗H∗−

1
2

]
= tr

[
(B∗′β J∗B∗β)(B

∗′
β H∗B∗β)

−1
]
.

If we can show J∗α = B∗′α J∗B∗α, H∗α = B∗′α H∗B∗α, J∗β = B∗′β J∗B∗β and H∗β = B∗′β H∗B∗β, then the

equation (D.6e) will be proved. Recall B∗α = Bα(θ∗α) =
∂φα
∂θα

andφ∗ = φα(θ∗α). We can derive

B∗′α J∗B∗α =

(
∂φα
∂θα

)′
E

[(
∂c`(φ∗,Y)

∂φ∗

) (
∂c`(φ∗,Y)

∂φ∗

)′] (
∂φα
∂θα

)
J∗α = E

[(
∂c`(φα(θ∗α),Y)

∂φα(θ∗α)

) (
∂c`(φα(θ∗α),Y)

∂φα(θ∗α)

)′]
=

(
∂φα
∂θα

)′
E

[(
∂c`(φ∗,Y)

∂φ∗

) (
∂c`(φ∗,Y)

∂φ∗

′
)] (

∂φα
∂θα

)
= B∗′α J∗B∗α.
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Similarly, we can obtain

B∗′α H∗B∗α =

(
∂φα
∂θα

)′
E

[
∂2c`(φ∗,Y)
∂φ∗φ∗′

] (
∂φα
∂θα

)
H∗α = E

[
∂2c`(φα(θ∗α),Y)
∂φα(θ∗α)φα(θ∗α)′

]
=

(
∂φα
∂θα

)′
E

[
∂2c`(φ∗,Y)
∂φ∗φ∗′

] (
∂φα
∂θα

)
= B∗′α H∗B∗α.

By applying same approach, we can show B∗′β J∗B∗β = J∗β, and B∗′β H∗B∗β = H∗β. Therefore,

we proved tr
(
(P†α − P†β)W

∗
)

= tr(J∗αH∗−1
α − J∗βH∗−1

β ). Consequently,

c`E(nC(n)
α − nC(n)

β ) = −φ†′(P†α − P†β)φ
†/2 − tr

[
(P†α − P†β)W

∗
]
/2 + tr

(
J∗αH∗−1

α − J∗βH∗−1
β

)
= −φ†′(P†α − P†β)φ

†/2 + tr
[
(P†α − P†β)W

∗
]
/2.

Hence, we complete the proof for equation (D.6e). �
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Proof. Lemma D.0.5 (D.6f):

c`V(nC(n)
α − nC(n)

β ) = var[−φ̂†′(P†α − P†β)φ̂
†/2 + tr[(JαH−1

α ) − (JβH−1
β )]]

= var[−(W∗ 1
2 η̂†)′(P†α − P†β)W

∗ 1
2 η̂†/2]

= var[(η̂†′W∗ 1
2 ′(P†α − P†β)W

∗ 1
2 η̂†]/4

= [4(W∗− 1
2φ†)′(W∗ 1

2 ′(P†α − P†β)W
∗ 1

2 )2(W∗− 1
2φ†)

+2tr(W∗ 1
2 (P†α − P†β)W

∗ 1
2 )2]/4

= [φ†′W∗− 1
2 ′W∗ 1

2 ′(P†α − P†β)
′W∗ 1

2 W∗ 1
2 ′(P†α − P†β)W

∗ 1
2 W∗− 1

2φ†

+tr((P†α − P†β)W
∗)2/2]

= φ†′(P†α − P†β)
′W∗(P†α − P†β)φ

† + tr[(P†α − P†β)W
∗]2/2

We complete proof for Equation (D.6f). �

Lemma D.0.6. For α, β ∈ M,

c`E[nDKL(φ(n), φ̂(n)
α )] = ‖φ† − φ†α‖

2/2 + tr(J∗αH∗−1
α )/2, (D.7a)

c`E[nDKL(φ(n), φ̂(n)
α ) − nDKL(φ(n), φ̂(n)

β )] (D.7b)

= −φ†′(P†α − P†β)φ
†/2 + tr

[
(P†α − P†β)W

∗
]
/2.

We verify that equation (D.7b) equals equation (D.6e)

Proof. Lemma D.0.6 (D.7a):

From equation (D.5a), we know p limn→∞ nDKL(φ(n)
1 , φ(n)

1 ) = ‖φ†1 − φ
†

2‖
2/2. We also know
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(φ† − φ†α)′(φ†α − φ̂
†
α) = (φ† − φ†α)′B†α(θ�α − θ̂

�
α) = 0. Therefore,

p lim
n→∞

nD(φ(n), φ̂(n)
α ) = ‖φ† − φ̂†α‖

2/2

= ‖φ† − φ†α‖
2/2 + ‖φ†α − φ̂

†
α‖

2/2.

Noting ‖φ̂†α−φ
†
α‖

2 has weighted χ2 distribution whose expectation value is tr(J∗αH∗−1
α ). This

was proved by Varin et al. (2011). Hence, equation (D.7a) is proved. �

Proof. Lemma D.0.6 (D.7b):

c`E[nDKL(φ(n), φ̂(n)
α ) − nDKL(φ(n), φ̂(n)

β )]

= ‖φ† − φ†α‖
2/2 + tr(J∗αH∗1α )/2 − ‖φ† − φ†β‖

2/2 − tr(J∗βH∗−1
β )/2

= [‖φ† − φ†α‖
2 − ‖φ† − φ†β‖

2]/2 − [tr(J∗αH∗−1
α ) − tr(J∗βH∗−1

β )]/2,
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where

‖φ† − φ†α‖
2 − ‖φ† − φ†β‖

2

= (φ† − φ†α)′(φ† − φ†α) − (φ† − φ†β)
′(φ† − φ†β)

= φ†′φ† − φ†′φ†α − φ
†′
α φ
† + φ†′α φ

†
α − φ

†′φ† + φ†′φ†β + φ†′β φ
† − φ†′β φ

†

β

(∵ φ†α = P†αφ
†)

= −φ†′P†αφ
† − (P†αφ

†)′φ† + (P†αφ
†)′(P†αφ

†) + φ†′P†βφ
† + (P†βφ

†)′φ† − (P†βφ
†)′(P†βφ

†)

= −φ†′P†αφ
† − φ†′P†′α φ

† + φ†′P†′α P†αφ
† + φ†′P†βφ

† + φ†′P†′β φ
† − φ†′P†′β P†βφ

†

(∵ P†2α = P†α)

= −φ†′(P†′α − P†′β )φ† = −φ†′(P†α − P†β)
′φ†

We get

c`E[nDK−L(φ(n), φ̂(n)
α ) − nDKL(φ(n), φ̂(n)

β )]

= −φ†′(P†α − P†β)
′φ†/2 +

[
tr(J∗αH∗−1

α ) − tr(J∗βH∗−1
β )

]
/2

= −φ†′(P†α − P†β)
′φ†/2 + tr

[
(P†α − P†β)W

∗
]
/2

Equation (D.7b) is completely proved. �

Lemma D.0.7. The two terms in equation (4.3.2) are asymptotically

p lim
n→∞

nVαβ = φ̂†′(P†α − P†β)W
∗(P†α − P†β)φ̂

†, (D.8a)

p lim
n→∞

ναβ = tr[(P†α − P†β)W
∗]2/2. (D.8b)
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Proof. Lemma D.0.7 (D.8a):

Expand
√

n
(
c`(φ̂α; Y (i)) − c`(φ̂β; Y (i))

)
with respect to φ̂α and φ̂β around φ̂. We expand

c`(φ̂α; Y (i)) and c`(φ̂β; Y (i)) two terms respectively as the follow,

c`(φ̂α) = c`(φ̂) +
∂c`(φ̂)
∂φ̂

(φ̂α − φ̂) + op(1),

and

c`(φ̂β) = c`(φ̂) +
∂c`(φ̂)
∂φ̂

(φ̂β − φ̂) + op(1).

Subtract above two equations we obtain

√
n
(
c`(φ̂α; Y (i)) − c`(φ̂β; Y (i))

)
=
√

n
(
∂c`(φ̂; Y (i))

∂φ̂
(φ̂ − φ̂β)

)
.

Furthermore, we are able to get

n−1
n∑

i=1

[√
n
(
c`(φ̂α; Y (i)) − c`(φ̂β; Y (i))

)]2

= n−1
n∑

i=1

√
n(φ̂α − φ̂β)′

∂c`(φ̂; Y (i))
∂φ̂

(
∂c`(φ̂; Y (i))

∂φ̂

)′
√

n(φ̂α − φ̂β).

Note 1
n (ĉ`

(n)
α − ĉ`

(n)
β )2 = op(1), and n−1 ∑N

n=1
∂c`(φ̂;Y (i))

∂φ̂

(
∂c`(φ̂;Y (i))

∂φ̂

)′
= J∗. So, we have

p lim
n→∞

 n∑
i=1

(
c`(φ̂α; Y (i)) − c`(φ̂β; Y (i))

)2
−

1
n

 n∑
i=1

c`(φ̂α; Y (i)) −
n∑

i=1

c`(φ̂β; Y (i))

2
= p lim

n→∞

n∑
i=1

√
n(φ̂α − φ̂β)′n−1∂c`(φ̂)

∂φ̂

(
∂c`(φ̂)
∂φ̂

)′
√

n(φ̂α − φ̂β)

= (φ̂�α − φ̂
�
β)
′J∗(φ̂�α − φ̂

�
β).
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We are able to prove that

p lim
n→∞

nVαβ

= p lim
n→∞

n

n−1
n∑

i=1

(
c`(φ̂α; Y (i)) − c`(φ̂β; Y (i))

)2
−

(
ĉ`

(n)
α /n − ĉ`

(n)
β /n

)2


= (φ̂�α − φ̂
�
β)
′J∗(φ̂�α − φ̂

�
β)

= (H∗−
1
2 φ̂†α − H∗−

1
2 φ̂†β)

′J∗(H∗−
1
2 φ̂†α − H∗−

1
2 φ̂†β)

= (φ̂†α − φ̂
†

β)
′H∗−1/2J∗H∗−

1
2 (φ̂†α − φ̂

†

β)

= (P†αφ̂
† − P†βφ̂

†)′W∗(P†αφ̂
† − P†βφ̂

†)

= φ̂†′(P†α − P†β)
′W∗(P†α − P†β)φ̂

†

We proved equation (D.8a). �

Proof. Lemma D.0.7 (D.8b):

To prove (D.8b) is equivalent to prove

tr[(P†α − P†β)W
∗]2/2

= p lim
n→∞

tr
(
H(n)−1
αα J(n)

ααH(n)−1
αα J(n)

αα + H(n)−1
ββ J(n)

ββ H(n)−1
ββ J(n)

ββ

)
/2

− tr(H(n)−1
αα J(n)

αβH(n)−1
ββ J(n)

βα )

Let’s look the left side of the equation first.

tr[(P†α − P†β)W
∗]2/2 = tr

[
P†αW∗P†αW∗ − 2P†αW∗P†βW

∗ + P†βW
∗P†βW

∗
]
/2 (D.9)
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We now calculate each element in the above equation. Note J∗α = B∗′α J∗B∗α and H∗α =

B∗′α H∗B∗α, which are proved when we prove equation (D.6d). By similar approach, we can

prove J∗β = B∗′β J∗B∗β and H∗β = B∗′β H∗B∗β. In addition, it’s easy to verify that

J∗αβ = E
∂c`(φα(θ∗α),Y)

∂φα(θ∗α)

∂c`(φβ(θ∗β),Y)

∂φβ(θ∗β)

′
=

(
∂φα
∂θα

)′
E

[
∂c`(φ∗,Y)

∂φ∗

(
∂c`(φ∗,Y)

∂φ∗

)′] ∂φβ
∂θβ

= B∗′α J∗B∗β,

By applying same approach, we can show J∗βα = B∗′β J∗B∗α. We are now able to calculate

each element in equation (D.9)

tr(P†αW∗P†αW∗)

= tr[
(
B†α(B†′α B†α)−1B†′α H∗−

1
2 J∗H∗−

1
2 B†α(B†′α B†α)−1B†′α H∗−

1
2 J∗H∗−

1
2
)

= tr(H∗
1
2 B∗α)

(
(H∗

1
2 B∗α)′(H∗

1
2 B∗α)

)−1
(H∗

1
2 B∗α)′(H∗−

1
2 J∗H∗−

1
2 )

(H∗
1
2 B∗α)

(
(H∗

1
2 B∗α)′(H∗

1
2 B∗α)

)−1
(H∗−

1
2 B∗α)′(H∗−

1
2 J∗H∗−

1
2 )]

= tr
[
(B∗′α H∗B∗α)−1(B∗′α J∗B∗α)(B∗′α H∗B∗α)−1(B∗′α J∗B∗α)

]
= tr(H∗−1

α J∗αH∗−1
α J∗α)

= p lim
n→∞

tr
(
H(n)−1
αα J(n)

ααH(n)−1
αα J(n)

αα

)
.

Similarly, we can show

tr(P†βW
∗P†βW

∗) = tr(H∗−1
β J∗βH∗−1

β J∗β) = p lim
n→∞

tr
(
H(n)−1
ββ J(n)

ββ H(n)−1
ββ J(n)

ββ

)
.
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We now calculate for tr(P†αW∗P†βW
∗)

tr(P†αW∗P†βW
∗)

= tr[
(
B†α(B†′α B†α)−1B†′α H∗−

1
2 J∗H∗−

1
2 B†β(B

†′

β B†β)
−1B†′β H∗−

1
2 J∗H∗−

1
2
)

= tr(H∗
1
2 B∗α)

(
(H∗

1
2 B∗α)′(H∗

1
2 B∗α)

)−1
(H∗

1
2 B∗α)′(H∗−

1
2 J∗H∗−

1
2 )

(H∗
1
2 B∗β)

(
(H∗

1
2 B∗β)

′(H∗
1
2 B∗β)

)−1
(H∗−

1
2 B∗β)

′(H∗−
1
2 J∗H∗−

1
2 )]

= tr
[
(B∗′α H∗B∗α)−1(B∗′α J∗B∗β)(B

∗′
β H∗B∗β)

−1(B∗′β J∗B∗α)
]

= tr(H∗−1
α J∗αβH

∗−1
β J∗βα)

= p lim
n→∞

tr
(
H(n)−1
αα J(n)

αβH(n)−1
ββ J(n)

βα

)
.

Plug above results into equation (D.9), we show

tr[(P†α − P†β)W
∗]2/2

=

[
p lim

n→∞
tr

(
H(n)−1
αα J(n)

ααH(n)−1
αα J(n)

αα

)
+ p lim

n→∞
tr

(
H(n)−1
ββ J(n)

ββ H(n)−1
ββ J(n)

ββ

)]
/2

− p lim
n→∞

tr
(
H(n)−1
αα J(n)

αβH(n)−1
ββ J(n)

βα

)
,

i.e.

p lim
n→∞

ν(n)
αβ = tr[(P†α − P†β)W

∗]2/2.

We complete proof for equation(D.8b). �

Note that the sum of equation (D.8a) and (D.8b), if φ̂† is replaced with φ†, gives equa-

tion (D.6f). From the Lemma D.0.1 to Lemma D.0.7, consequently, Theorem 4.3.2 can be
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derived.

Proof. : Equation (4.8)

Note H∗ = J∗, tr(Imα
) = mα, and tr(Imβ

) = mβ. Let I denote identical matrix. Hence,

equation (4.5) can be simplified as:

ν(n)
αβ = tr(H(n)−1

αα H(n)
ααH(n)−1

αα H(n)
αα + H(n)−1

ββ H(n)
ββ H(n)−1

ββ H(n)
ββ )/2

−tr(H(n)−1
αα H(n)

αβH(n)−1
ββ H(n)

βα )

= tr(Imα
+ Imβ

)/2 − tr(H(n)−1
αα H(n)

αβH(n)−1
ββ H(n)

βα )

= tr(mα + mβ)/2 − tr(H(n)−1
αα H(n)

αβH(n)−1
ββ H(n)

βα ).

We proved equation (4.8). �
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