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ABSTRACT 

Recent trends suggest GNSS receiver technology has tremendous scope for satellite 

applications such as radio occultation, precise orbit determination and reflectometry. 

GNSS receivers developed for satellite applications have several additional hardware and 

software specifications when compared to their terrestrial counterparts. Spaceborne 

receivers are characterised by low power requirements, high processing speed and radiation 

resistant electronic components. Such sophisticated receivers, also called hardware GNSS 

receivers, are fabricated for specific applications and hence lack design flexibility. On the 

other hand, a software GNSS receiver allows easy design modifications without any 

hardware component replacement. Software receivers employ reconfigurable hardware 

elements called Field Programmable Gate Arrays (FPGAs). Hardware designs can be 

implemented or modified in FPGAs using Hardware Description Language (HDL).  

In this research, a low-power, low-cost software GNSS receiver has been designed and 

developed using a combination of a microprocessor and FPGA (System-on-Chip or SoC). 

The developed software GNSS receiver is capable of detecting GPS satellites, tracking 

these signals and computing receiver position estimates. Efficient task partitioning is 

achieved by implementing operations in both the FPGA and the microprocessor. Also 

demonstrated is the improvement of processing speed by 20% when certain GNSS receiver 

operations are performed in the FPGA instead of the microprocessor. 
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Chapter One: Introduction  

Global Navigation Satellite System (GNSS) receivers are currently used for various 

applications such as navigation, geodetic science, atmospheric science and other space 

applications. Even though the vast majority of users are land-based, trends over the past 

decade suggests that there is tremendous scope for application in the aviation and space 

industry. Receiver specifications vary greatly depending on usage. As an example, 

receivers built for space application draw low power and have mass and size constraints 

that significantly differ from their terrestrial counterparts. 

Receivers designed to suit only certain categories of applications are called Application 

Specific Integrated Circuit (ASIC)-based receivers. ASIC-based receivers use hardware 

components for signal processing and are hence called hardware receivers. Such receivers 

do not permit any design or functional changes once they are fabricated. Aforesaid design 

inflexibility can be a hindrance when new algorithms are to be implemented as 

modifications would require a re-fabrication of the receiver from scratch, increasing costs 

and development time. As a solution to this problem, software GNSS receivers were 

introduced. Dennis Akos (1997) described the first complete Global Positioning System 

(GPS) software receiver (Borre et al., 2007).  

A software receiver typically consists of a processor responsible for all the system 

functions. Any design changes leading to algorithm modifications can be made easily in 



 

2 

 

software, without requiring any hardware changes (unlike ASIC-based receivers). This 

feature is of great benefit for space applications especially as software upgrades can be 

made when the receiver is in the field. The only drawback of such an implementation is 

that the computational load on the processor is very high and at times beyond its capability, 

leading to an undesirable processor slowdown. As a work around to this problem, hardware 

components known as Field Programmable Gate Arrays (FPGAs) are used alongside 

processors. These components, although hardware, are software reconfigurable 

components, hence maintaining the definition of a “software receiver”. 

Specific to space applications, hardware receivers are still preferred due to their higher 

processing power. However, with the tremendous advancement made in the field of 

software receiver technology over the past decade, FPGA-based software GNSS receivers 

seem promising and may in time be the preferred option. 

Overview of GNSS Constellations 

GNSSs are constellations of satellites that allow users on Earth and space to use the timing 

information transmitted by them to determine user position and time. The constellations 

that are operational are the GPS developed by the U.S. and the Global’naya 

Navigatsionnaya Sputnikova Sistema (GLONASS) developed by Russia. China is in the 

process of expanding its regional navigation system BeiDou to a global system and the 

European Union is developing Galileo. Amongst all of these constellations, by far the most 

widely used is GPS.  
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Figure 1: GPS constellation (Kaplan and Hegarty, 2006) 

GPS was initiated by the U.S. Department of Defense in 1973 and has more than 24 

operational Medium Earth Orbit (MEO) satellites. Figure 1: GPS constellation Figure 1 

depicts the GPS constellation. GPS transmits navigation data on three different frequencies 

L1 (1575.42 MHz), L2 (1227.6 MHz) and L5 (1176.45 MHz). The L1 signal consists of 

the Coarse/Acquisition (C/A)-code, which is a unique sequence of bits also known as a 

pseudo random noise (PRN) code (Kaplan and Hegarty, 2006). At the receiver end, satellite 

signals can be identified by recognizing a particular PRN sequence. Each of these PRN 

sequences highly correlate only when matched with the same aligned sequence and does 

not correlate with any other satellite’s PRN. Since all the GPS satellite signals operate at 

the same frequency, data are transmitted using Code Division Multiple Access (CDMA).  

CDMA allows several signals to be transmitted in the same frequency channel while 

distinguishing each one of them using unique code modulations. The satellite signal also 
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consists of the P(Y)-code; however, this code is encrypted and not available for civilian 

applications. Most importantly, GPS signals carry navigation and other timing information 

that is used to compute the user position.   

Software GNSS Receivers 

As mentioned earlier, satellite signals carry vital navigation data. GNSS receivers are used 

to process these satellite signals and decode the underlying navigation message to compute 

various parameters such as position, velocity of the receiver and obtain timing information. 

These receivers can be used for a multiple frequency signals (L1, L2, L5) or even multiple 

constellations (GPS, GLONASS, etc.). 

Until the late 1980s, GNSS receivers completely relied on hardware components. Over the 

next few decades, with significant advancement in computing power of CPUs and 

processors, it became possible to implement, if not all, but some of the receiver components 

in software. This development led to reduction in receiver size and mass while maintaining 

functionality. Consequently, development costs were also lowered and algorithm testing 

became more efficient. It became possible to implement design changes even after 

receivers were placed in the field, significantly reducing development time. The flexibility 

demonstrated by software receivers is one of the main reasons they have generated much 

research interest in the academic and industrial communities.  

However, using software receivers has its own set of challenges. A pure software receiver 

must single-handedly take responsibility of the complete signal processing activity. 
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However, the increased processing load lowers the performance of the receiver. Also, since 

software receivers are based on generic processors, the power consumption of the chipset 

may be higher than the hardware receivers. Research to improve software GNSS receiver 

performance is ongoing and has given rise to many design alternatives as discussed in 

Chapter 2.   

Field Programmable Gate Array  

The increased software computation load is a serious problem due to which alternate 

processing methods must be considered. Traditional hardware receivers (ASIC-based), 

have excellent performance in terms processing speed and have low power requirements. 

A major drawback however is that the design cannot be changed once the ASIC is 

fabricated. Also, since the ASIC is a specialised chip, its development cost is also high (Ma 

et al., 2004). 

More recently, Field Programmable Gate Arrays (FPGAs) have been introduced as a 

substitute for ASICs. Even though FPGAs have lower computational capabilities than 

ASICs, an FPGA is a software reconfigurable type of hardware. This feature allows the 

user/developer to make hardware design changes in software using Hardware Description 

Language (HDL) without making external hardware changes. Software upgrades resulting 

in hardware changes is extremely beneficial and developer-friendly as design 

modifications can then also be implemented post-development of the receiver (Ma et al., 

2004).  With the introduction of new GNSS signals, such a feature becomes very valuable. 
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FPGAs consist of large arrays of logic blocks which can be used to compute multiple 

functions making FPGAs capable of performing several tasks in parallel. This feature is of 

great value as GNSS signal processing can then be performed in parallel channels in 

contrast to sequential processing in software (processors) therefore speeding up the overall 

process.  

As shown in Figure 2, FPGAs offer optimum flexibility and processing rate. Recent trends 

suggest the use of a processor along with FPGA, enhancing the receiver flexibility further 

(Hein et al., 2006). Several FPGA manufacturers have noted this added benefit and now 

FPGAs are available with embedded processors, also referred to as a System-on-Chip 

(SoC). SoCs offer single chip solution with low power requirements, easy integration and 

better performance. They have software (such as embedded processors) and hardware 

components (such as FPGAs) that interact to complete assigned tasks (Ben Salem et al., 

2008). 

 

Figure 2: Processing rate versus flexibility (Baracchi-Frei, 2010). 

Figure 3 illustrates the most common types of software GNSS receivers used. PC-based 

post-processing of sample GNSS signals is performed generally for algorithm testing 
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(Gleason and Gebre-Egziabher, 2009). Real-time software receivers can also be PC-based, 

however more interest lies in their application as embedded systems. Software receivers 

can also be based purely on FPGAs. As mentioned earlier, although they illustrate high 

task parallelism, it is more efficient to use them alongside a processor.  

 

Figure 3: Types of software receivers. 

Software GNSS Receiver for Satellite Applications 

GNSS receivers hold many promising applications for Low Earth Orbit (LEO) satellites. 

In addition to providing positioning and tracking information of the LEO satellites, GNSS 

receivers can also serve as an instrument to determine various geodetic and atmospheric 

parameters (Montenbruck et al., 2008). Some of the applications are precise orbit 

determination, ocean altimetry, tide height determination in coastal regions, determination 

of ionospheric delay over the ocean, radio occultation and reflectometry (Zavorotny and 

Voronovich, 2000). 
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However, GNSS receiver operation in space poses as a unique challenge when compared 

to its equivalent terrestrial use. The hardware and software components must be modified 

and tested for various additional conditions that are often not considered when building for 

land-based applications. One of the challenges is the limited resources available on-board 

the satellite. Power consumption of the receiver must be low, while having no adverse 

effect on the receiver performance and reliability. They must also fit the size and weight 

constraints that are typically low for LEO satellite payloads. Additionally, the developed 

GNSS receiver must withstand mechanical vibrations and stress during the launch of the 

satellite. Temperature in the space environment may vary widely leading to thermal stress 

and failures of receiver components. Heat dissipation in vacuum is another critical design 

challenge. Also, electronic components might malfunction if the receiver is not resistant to 

radiation effects in space (Parkinson et al., 2011). Such specifications increases the overall 

receiver development cost as well.  

Some other considerations are that the GNSS receiver will observe significantly higher 

Doppler rate than what would be observed on the Earth’s surface, due to the relative motion 

of satellite in orbit, hence requiring a wider Doppler frequency search range. Another 

challenge is that a solution must be calculated faster as the orbital speed of LEO satellite 

is high, resulting in faster rising and setting of available GNSS satellites.  

The above mentioned challenges have successfully been overcome with the use of 

sophisticated hardware GNSS receivers and hence are preferred for spaceflight. Although 

there are some software GNSS receivers that have successfully flown in space (discussed 
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in Chapter 2) there are some technical aspects that still need advancement before they can 

successfully compete with hardware receivers in space.  

Problem Statement  

As mentioned earlier, FPGA-based software GNSS receivers built for space applications 

require customization and represents a design challenge as compared to hardware 

receivers. GNSS signals require intense signal processing before the navigation messages 

are processed. Such complex computations increase the software load on the embedded 

processor and often reduces system efficiency. Even with the use of FPGA with an 

embedded processor, appropriate task partitioning between the hardware and software 

components remains a technical challenge.   

Thesis Objectives 

The main objective of this research is to design and develop a low power, low cost FPGA-

based software GNSS receiver for satellite applications. A novel approach to the 

implementation is demonstrated using a SoC processing platform. The results of this 

implementation are then examined. Also presented is efficient task partitioning between 

software and hardware components and its effect on overall processing speed of the 

receiver.  Finally, various parameters and aspects to consider before selecting a processor 

for receiver implementation has been discussed. 
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Thesis Outline 

Chapter 1 introduces the concept of software GNSS receivers and the challenges with using 

them. The chapter also describes the FPGA and how its use benefits the software receiver 

processing. Finally, the research problem is discussed followed by the research objectives.  

Chapter 2 presents a general description of software GNSS receiver architecture and signal 

characteristics. Also discussed are the benefits and drawbacks of using such a receiver for 

space applications followed by a brief summary of the state of current research and 

solutions that have been proposed by researchers. The chapter also introduces FPGAs, 

embedded processors and SoC technology.  

Chapter 3 presents detailed description of the receiver implementation. The first section 

provides an overview of the software development aspect of the receiver. The chapter 

describes the input data format, processing techniques used, available software libraries 

and the algorithm flow of each of the different processing blocks implemented. The second 

section focuses on the hardware components pertaining to the receiver. The hardware 

requirements of the receiver are examined and the features of the selected processor are 

explained. Hardware/software task partitioning using the selected processor is also 

discussed followed by the final hardware design implementation. 

Chapter 4 presents the tests and results from the implementation described in Chapter 3. 

The advantages and limitations of the current implementation are also discussed. 
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Finally, Chapter 5 concludes the research thesis providing an overview of the research 

performed and also includes recommendations for potential future work. 
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Chapter Two: Software GNSS Receiver 

Using System On Chip 

Software receivers imply that all the digital signal processing is performed using a 

programmable processor. However, in recent times, due to increasing software processing 

load, FPGA (hardware) elements are used. Such receivers are still defined as software 

receivers as they are still reconfigurable, maintaining design flexibility.  

Brief History of Software GNSS Receivers 

After Akos (1997) first applied the concept of software radio to GNSS receivers 

successfully, it generated tremendous research interest. He also implemented a PC-based 

real-time software receiver soon after (Akos et al., 2001). Ledvina et al. (2003) improved 

the algorithms to include more tracking channels and also significantly accelerated the 

processing speed.  

These developments led to a very active research interest in implementing the receiver as 

an embedded system. Humphreys et al. (2006) implemented the software receiver using 

only a Digital Signal Processor (DSP) that manipulates digital data and performs more 

specific tasks than what a microprocessor or a CPU typically would (Hein et al., 2006). In 

the DSP implementation, Fast Fourier Transform (FFT) techniques were used to speed up 

the processing, and based on the results, it was concluded that a high performance DSP can 

be used to compete against ASIC technology.    
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In an effort to replace ASIC-based receivers with an FPGA equivalent, Ganguly (2004)   

implemented correlators using an FPGA, but major software processing still required a PC. 

Enge et al. (2004) then introduced FPGA-based GPS receivers and successfully verified 

implementation of different emerging algorithms on a FPGA-based receiver.  

Another emerging trend is to use a combination of processors to realize an overall optimum 

system. As shown in the comparison in Figure 4, different processing platforms are 

compared in terms of their processing power and flexibility. Processing power refers to the 

computational capabilities of the processor whereas flexibility refers to the extent of design 

modification the processor permits. According to Dovis et al. (2005) and Hein et al. (2006), 

use of a hybrid processing platform is strongly recommended as hybrid FPGA/DSP 

platforms  reduce power consumption by 50 percent and increase the performance by a 

factor of 10 (Hein et al., 2006). Such a platform can be especially beneficial in the case of 

GNSS signal processing, where large data rates are required. 

Design of a software GNSS receiver for space applications can be a challenge in terms of 

processing capabilities, power consumption, size, mass and space readiness. Since the 

processing chip requires a high level of specialisation, one approach is to design a system 

very specific to the application. 
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Figure 4: Processing power versus flexibility (Dovis et al., 2005). 

BlackJack, a spaceborne GPS receiver developed by NASA’s Jet Propulsion Laboratory 

(JPL) is one of the first few receivers to have successfully flown on numerous satellites 

such as Oersted, Champ, SAC-C, ICEsat and GRACE. The newer version of BlackJack, 

Integrated GPS Receiver and Occultation Receiver (IGOR) has been built with improved 

space hardness (Montenbruck et al., 2006). But such an investment would mean high 

development costs (in millions) and exceeds most small mission satellite budgets. 

Therefore, there has been a search for affordable alternatives and a growing interest to use 

existing commercial-off-the-shelf (COTS) GNSS receivers for space applications 

(Montenbruck et al., 2006). 

Montenbruck (2008) lists commercial GPS receivers developed for space application and 

provides an insightful comparison. Among the recommendations listed for future receivers, 

the author explains the need for miniaturization of the receivers. Satellite missions with 
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limited budget can greatly benefit from reduction in size, mass and power consumption. 

Considering these factors, a software GNSS receiver can be used as an easy replacement.  

In more recent developments, several software GNSS receivers are commercially 

available. However, their target market is primarily for land-based users and educational 

purposes (GNSS SDR Front End and Receiver, Nottingham Scientific Ltd.). On the other 

hand, there is also extensive research and development for spaceborne software receivers. 

Namuru V3, developed by the University of New South Wales (Parkinson et al., 2011), is 

a software GNSS receiver that is specifically designed for use on LEO satellites. Namuru 

V3 uses an FPGA manufactured by Actel with an embedded ARM processor. Additionally, 

it also uses a second FPGA board (external), increasing the size of the overall receiver.  

Even though the Namuru hasn’t been tested on a spaceflight yet, it has been lab-tested for 

various space scenarios (Choudhury et al., 2013). It is also part of a project named Biarri 

that forms a part of an international space mission (Glennon et al., 2013; Biarri GPS Receiver 

Project, 2013).  

Considering all the design limitations discussed above, an FPGA-based software GNSS 

receiver can be used as a reasonable replacement. Overall hardware components are 

reduced when compared to an ASIC, resulting in smaller sized receivers. Since a general 

chip can be used for the receiver, the development cost is extremely low as compared to 

the hardware GNSS receivers. This cost-effective solution, however, does not compromise 

the receiver performance.  
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GPS Signal Characteristics 

The focus of the research is to design and develop a software GNSS receiver specifically 

for GPS L1 Coarse/Acquisition (C/A-code) signal. It is necessary to understand the signal 

structure before a receiver is designed. The L1 signal is comprised of three components, 

carrier signal, navigation data and spreading sequence C/A-code modulation. The carrier 

signal is simply the carrier wave transmitted at the respective frequency, in this case L1 

(1575.42 MHz). Navigation data carries information about satellite orbits and timing 

information. These data are decoded and read by the receivers. GPS signals consist of two 

spreading sequences: the C/A-code and encrypted precision code-P(Y).  Since the receiver 

implementation is developed for C/A-code, only this sequence will be discussed in detail.  

C/A-Code   

The C/A-code is a unique sequence of bits also referred to as pseudo random noise (PRN) 

codes. They have noise-like properties but at the same time have deterministic sequences. 

Each satellite has a unique PRN code that is 1023 bits long and is repeated every 1 ms.  

Equation 1 represents the signal transmitted by satellite k. Terms 𝑃𝑐, 𝑃𝑃𝐿1and 𝑃𝑃𝐿2 

represents the power of the C/A-code or P-code at frequency L1 and L2. As observed in 

the equation, C/A-code is modulated onto the L1 signal only whereas P-code is modulated 

onto both L1 and L2 signals. 𝐶𝑘 and 𝑃𝑘 represent the C/A-code and P-code sequence, 

respectively. The navigation message is represented by 𝐷𝑘, whereas 𝑓𝐿1, 𝑓𝐿2 represents the 

carrier frequency L1 and L2, respectively (Borre et al., 2007). 
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sk(t)=√2Pc (Ck(t)⊕Dk(t)) cos(2πfL1t) 

+ √2PPL1 (Pk(t)⊕Dk(t)) sin(2πfL1t) 

+√2PPL2 (Pk(t)⊕Dk(t)) sin(2πfL2t) 

Equation 1 

Following are the unique correlation properties that C/A-codes exhibit (Borre et al., 2007). 

1. Cross-correlation properties: Cross-correlation is the measure of similarity of two C/A-

code sequences, with lag applied to one of them. It is represented by the following 

equation: 

rik(m)= ∑ Ci(l)Ck(l+m)

1022

l=0

 ≈0 for all m 

Equation 2 

𝐶𝑖 and 𝐶𝑘 represents the C/A-codes of satellite i and k, respectively. C/A-codes of two 

different satellites do not correlate with each other (rik = 0). Such a property ensures the  

receiver identifies the PRN code accurately during acquisition. 

2. Auto-correlation properties: Auto-correlation is a measure of the similarity of the C/A-

code sequence with itself but with a lag. It is represented by the equation given below: 
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rkk(m)= ∑ Ck(l)Ck(l+m)

1022

l=0

 ≈0 for |m|≥1 

Equation 3 

𝐶𝑘 represents the C/A-code of satellite k. According to the equation, C/A-code is 

almost uncorrelated with itself except at zero lag. They have high correlation only 

when they are exactly aligned at zero delay. 

Referring to Equation 1, only the component containing the C/A-code, 𝐶𝑘 is used for signal 

processing in this research. L2 frequency components are filtered out by the front end and 

the L1 frequency is down-converted to an intermediate frequency (𝜔𝐼𝐹). Equation 4 

represents the filtered signal.  

sk(t)=√2PcCk(t)Dk(t) cos(ωIFt) + √2PPL1Pk(t)Dk(t) sin(ωIFt) 

Equation 4 

The P-code is distorted after the narrow band pass filtering around the C/A-code and hence 

cannot be demodulated. For this reason, the component containing the P-code can be 

considered as noise and filtered out. In order to read the navigation data 𝐷𝑘, as represented 

in Equation 4Error! Reference source not found.,  the signal 𝑠𝑘 is multiplied with 

replicas of the carrier signal cos 𝜔𝐼𝐹𝑡 and C/A-code 𝐶𝑘 so that the only component 

remaining is the navigation message, 𝐷𝑘.  
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Figure 5: Incoming signal demodulation (Borre et al., 2007). 

Navigation Data 

Navigation data transmitted by the satellites are received in the form of structured data 

frames. These frames are further divided into sub-frames. Each frame is repeated every 30 

seconds and an entire navigation message lasts 12.5 minutes, after which it is repeated 

again.  

Table 1 lists the contents of one data frame. Every subframe contains 10 words, each word 

having a length of 30 bits. Telemetry (TLM) and Handover Word (HOW) form part of 

every subframe. TLM contains an 8-bit preamble that is used by the receiver for frame 

synchronization, whereas HOW contains a truncated version of the time of the week 

(TOW). It also contains the subframe ID which is used to identify the subframe that HOW 

belongs to. The following is a brief description of each subframe and its contents. 

1. Subframe 1, Satellite Clock and Health Data: This subframe contains all clock 

information that is required to compute the time the navigation message was 

transmitted from the satellite. 
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2. Subframe 2 and 3, Satellite Ephemeris Data: These two subframes contain all 

information related to satellite orbits that is used to compute satellite position.  

3. Subframes 4 and 5, Support Data: These subframes contain almanac data, i.e., less 

precise version of ephemeris and clock data.  Additionally, they also contain health 

indicators, ionospheric and UTC parameters. 

Table 1: Navigation message frame structure (Kaplan and Hegarty, 2006). 

 

Software GNSS Receiver Architecture 

Unlike traditional hardware-based receivers, except for the antenna and the radio frequency 

(RF) front end, all other components are software-based. Figure 6 represents the ideal 

software GNSS receiver.   
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Figure 6: Ideal software GNSS receiver (Gleason and Gebre-Egziabher, 2009). 

The RF front end is responsible for the analog to digital signal conversion of the incoming 

GPS signal. The first processing block of acquisition determines all the satellites visible to 

the receiver followed by the tracking block that keeps track of these detected satellite 

signals. The tracking block also demodulates the GPS signal to read the navigation data. 

The final processing block reads this navigation data and computes the navigation solution. 

Each processing block is discussed in detail below.  

Acquisition 

Acquisition is the process of detecting GPS satellites visible to the receiver. It also 

determines the carrier frequency and phase of each satellite signal. The GPS signal has 3 

components, the carrier signal, PRN code and the navigation data. In order to extract the 

navigation data, the carrier signal and PRN code must be completely cancelled out from 

the incoming signal. The navigation message can be retained by generating local replicas 

of carrier signal and PRN code within the receiver and multiplying this with the GPS signal. 

Due to the velocity of the satellite with respect to the receiver, there is a Doppler shift in 

the carrier frequency causing it to be higher or lower than the actual nominal carrier 

frequency. This maximum shift in worst conditions can be within the range of ±10 KHz 
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(Akos, 1997). Additionally, the start of the received PRN code sequence can be any of the 

1023 bits that constitutes the PRN code sequence. Hence there can be 1023 possible code 

phases of the PRN sequence that needs to be searched for as well.  

Therefore, to correctly cancel out the carrier signal and PRN code from the incoming 

signal, a range of ±10 KHz (in steps of 500 Hz) must be searched as well as 1023 possible 

code phases of the PRN sequence must be checked. Equation 5 (Borre et. al, 2007) 

estimates the number of search combinations required to detect the correct incoming carrier 

signal frequency and PRN code phase. An optimal step size of 500 Hz has been chosen as 

a step size any smaller would lead to a larger number of combinations and a step size much 

greater than 500 Hz might lead to unsuccessful acquisition. 

1023 (2
10,000

500
+1) =1023×41=41,943 combinations 

Equation 5 

As noticed, the number of combinations is very high. There are three different standard 

approaches usually used to solve this problem which are summarised in Table 2 (Borre et. 

al, 2007) below.  

Table 2: Comparison of acquisition search methods. 

Algorithm 
Relative 

Execution Time 
Repetitions Complexity 

Serial Search 87 41,943 Low 

Parallel Frequency Space Search 10 1023 Medium 

Parallel Code Phase Search 1 41 High 
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In the serial search algorithm, every possible carrier frequency and code phase combination 

is correlated with the GPS signal. Although it is a simple technique, the number of resulting 

combinations is very high and hence is an exhaustive search method. Another method is to 

implement the Parallel Frequency Space Search algorithm. In this method, the frequency 

search is performed in parallel, therefore speeding up the acquisition process. Parallel 

frequency search can be implemented using the Fast Fourier Transform (FFT), where time 

domain signals are converted to their equivalent frequency domain components.  This 

method is more efficient than the first algorithm but has higher complexity. 

The final listed method, Parallel Code Phase Search is the most efficient. The number of 

computations is reduced from 1023 to 41 and is deemed as the most efficient algorithm 

among them all (Borre et al., 2007).  Since this algorithm is used in the receiver 

implementation in this thesis, only this one will be discussed in detail. 

Parallel Code Phase Search Algorithm 

The number of search steps is drastically reduced (from 41,943 to 41) when this method is 

used. Parallel Code Phase Search algorithm uses circular correlation of the PRN code as it 

is more convenient than multiplying with 1023 code phases of the PRN code. If 𝑥(𝑛) and 

𝑦(𝑛) represent sequences of length N, then the discrete transforms can be described in the 

following equation (Borre et al., 2007): 

X(k)= ∑ x(n)e-j2πkn/N

N-1

n=0

 and   Y(k)= ∑ y(n)e-j2πkn/N

N-1

n=0

 

Equation 6 
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The cross correlation of the two sequences 𝑥(𝑛) and 𝑦(𝑛) with periodic repetition can be 

represented with 𝑧(𝑛) in Equation 7 (Tsui, 2000): 

z(n)=
1

N
∑ x(m)y(m+n)=

1

N
∑ x(-m)y(m-n)

N-1

m=0

N-1

m=0

 

Equation 7 

If the scaling factor 
1

𝑁
 is omitted, the N-point Fourier transform of 𝑧(𝑛) can be represented 

as 

Z(k)= ∑ ∑ x(-m)y(m-n)e-
j2πkn

N

N-1

m=0

N-1

n=0

 

Equation 8 

= ∑ x(m)

N-1

m=0

ej2πkm/N ∑ y(m+n)e-
j2πk(m+n)

N =X*(k)Y(k)

N-1

n=0

 

Equation 9 

In Equation 9, 𝑋∗(𝑘) represents the complex conjugate of 𝑋(𝑘). From the above derivation, 

it can be concluded that circular correlation of two sequences in the time-domain is 

equivalent to multiplication of the two sequences in frequency domain, one sequence being 

a complex conjugate.  
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Applying this concept for acquisition, referring to the block diagram in Figure 7, the 

incoming signal is multiplied with a locally generated carrier signal. It is also multiplied 

with a 90 degree phase shifted version of the same carrier signal. This results in two signals, 

In-phase (I) signal and Quadrature phase (Q) signal that forms a part of a complex signal 

and can be expressed as in Equation 10: 

x(n)=I(n)+jQ(n) 

Equation 10 

The real and imaginary components are then transformed to the frequency domain using 

the Fourier transform. The PRN code also undergoes Fourier Transformation and is 

complex conjugated before being multiplied with the Fourier transform of the input signal. 

This result is then transformed back to time domain using the Inverse Fourier transform. 

The absolute value of the output is then a measure of correlation of the incoming signal 

and locally generated PRN code. If there is a peak in the final output signal, it indicates 

high correlation and the index of this peak marks the code phase of the incoming PRN code 

(Kaplan and Hegarty, 2006). 

This method significantly reduces the search steps when searching for the PRN code 

phases. However, the 41 frequency combinations must still be serially searched. Therefore 

for every frequency step, a Fourier transform and Inverse Fourier transform must be 

performed. 
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Figure 7: Parallel Code Phase Search Algorithm (Borre et al., 2007). 

Tracking 

On completion of acquisition, the satellites visible to the receiver are known and so are 

their coarse frequency and code phase signal values.  This information is then transferred 

to the tracking block where each individual satellite signal is continuously tracked until it 

is no longer visible. The main purpose of this processing block is to demodulate the 

navigation data, which can be performed only if the signal frequency and code phase are 

accurately tracked. Carrier signal replica and PRN code replicas are generated so that these 

components can be removed from the incoming signal frequency, leaving behind only the 

navigation data.  

Figure 8 (Petovello et al., 2008) demonstrates the functioning of the tracking process for 

one satellite signal. Each satellite signal is assigned a channel and consequently a receiver 
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can have multiple tracking channels performing the same process. Since the first step is to 

remove the carrier signal and the PRN code, the incoming signal is multiplied with the 

locally generated replicas. If there is a difference between the replica and the incoming 

signal, it is considered as an error and the replicas are then immediately corrected to again 

accurately match the incoming signal. This repetitive process ensures correct extraction of 

navigation message.  

 

Figure 8: Functional block diagram for tracking (Petovello et al., 2008). 

When the navigation messages are correctly read, the subframes are identified and satellite 

positions are computed. Since the timing information is also obtained, an estimate of the 

distance between the corresponding satellite and receiver can be made which is also known 

as the pseudorange. These measurements are then transferred to the final processing block 
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of navigation solution, where the receiver position is estimated. In the following 

subsections, tracking of code phase and carrier signal is described in detail. 

Carrier Tracking 

To generate the exact carrier replicas a Phase Lock Loop (PLL) or Frequency Lock Loop 

(FLL) is used. These loops track the difference between the incoming signal and the locally 

generated replica. In Figure 9, a type of FLL is described. It is also called as Costas loop. 

This particular tracking loop has been used in the developed receiver as it is insensitive to 

the 180o phase shift in the signal that is typically caused due to navigation bit transitions.  

 

Figure 9: Costas loop (Borre et al., 2007). 

In the Costas Loop block diagram, after the first multiplication, assuming the PRN code 

replica is accurate, the PRN code from the input signal is removed (referring to Equation 

4). The resulting signal can be represented in the following form: 
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s(k)=Dkcos(ωIFn) 

Equation 11 

This signal is then again multiplied with a carrier signal. It is also multiplied by a 90o phase 

shifted version of the same carrier signal. This creates the two signal components I and Q 

expressed in the Equation 12 and Equation 13, respectively. The variable 𝜑 represents the 

phase difference between the incoming signal and the locally generated signal. The goal of 

the Costas loop is to keep 𝜑 to a minimum (ideally zero). 

Dk(n) cos(ωIFn) cos(ωIFn+φ) =
1

2
Dk(n) cos(φ) +

1

2
Dk(n) cos(2ωIFn+φ) 

Equation 12 

Dk(n) cos(ωIFn) sin(ωIFn+φ) =
1

2
Dk(n) sin(φ) +

1

2
Dk(n) sin(2ωIFn+φ) 

Equation 13 

These two signals, one in the in-phase (I) arm and the other in the quadrature (Q) arm, are 

then passed through a Low Pass Filter (LPF) so that the unwanted signal components are 

removed. The resulting signal is now as in Equation 14. 

Ik=
1

2
Dk(n) cos(φ)  and  Qk=

1

2
Dk(n) sin(φ) 

Equation 14 
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As seen in Figure 9 above, a feedback system consisting of a carrier loop discriminator and 

filter is used. The term used as feedback is described in Equation 16 (Kaplan and Hegarty, 

2006): 

Qk

Ik
=

1
2 Dk(n) sin(φ)

1
2 Dk(n) cos(φ)

= tan(φ) 

Equation 15 

φ=tan-1 (
Qk

Ik
) 

Equation 16 

To keep 𝜑 to a minimum, the Quadrature component must be minimum and the In-phase 

component must be maximum. The final block is the Numerically Controlled Oscillator 

(NCO) that adjusts the carrier replica frequency according to the feedback factor it 

receives. Accuracy of the carrier tracking loop can be examined by assessing the phase 

difference (𝜑) value. 

Code Tracking 

The code tracking loop is responsible for accurately tracking the code phase of the signal. 

The loop used in a GPS receiver is the Delay Lock Loop (DLL). In this loop, the incoming 

signal is correlated with three different locally generated code replicas. The replicas are 
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named: ‘early’, ‘prompt’ and ‘late’ and have a spacing of ±
1

2
 chip where a chip corresponds 

to a bit (Borre et al., 2007). These signals are represented in Figure 10. 

As seen in Figure 10, the code phase of the incoming signal and the prompt replica are 

exactly aligned resulting in a high correlation value which indicates the code phase is being 

accurately tracked. There may be a possibility that the correlation is high for the late replica 

instead. A high correlation value for any signal other than the prompt replica would mean 

that there is a phase error and the code phase replica must be corrected. 

 

 

Figure 10:  Code tracking correlation with ‘early’, ‘late’ and ‘prompt’ replicas (Kaplan and 

Hegarty, 2006). 
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Figure 11 demonstrates the DLL design that has been implemented in the GPS receiver. 

The incoming signal is first multiplied with a carrier signal replica. I and Q components 

are then multiplied with early, late and prompt versions of the PRN code replicas. If the 

locally generated signals are accurate replicas of the input signal, all the energy will be in 

the in-phase arm of the signal. If the code tracking is not accurate then the energy spreads 

across both the in-phase and the quadrature arm. 

 

Figure 11: Delay Lock Loop for code tracking (Borre et al., 2007). 

Pseudorange Measurements and Navigation Solution 

During tracking of the satellite signal, the navigation data are demodulated simultaneously. 

The decoded subframe parameters hold important satellite orbit information. Using this 

information, also known as emphemeris data, satellite position can be estimated (GPS 

Navstar, 1995). Since the navigation message also holds timing information, the time at 
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which the message was transmitted from the satellite is known. The receiver then estimates 

accurately when the start of the data frame arrives at the receiver end. The time difference 

between the satellite signal transmission and arrival of the signal at the receiver end is used 

to compute pseudoranges.  

Receiver Position Estimates 

The pseudorange is an estimate of the distance between the satellite and the receiver. With 

known pseudoranges and satellite position, receiver position can then be estimated. 

Mathematically, it is defined in Equation 17: 

Pi
k=τi

kc 

Equation 17 

Where Pi
k denotes the pseudorange,  τi

k represents the travelling time between the satellite 

k and the receiver i and c is the speed of light in vacuum. This equation is however not used 

practically as there are timing errors to consider as well. For the receiver implementation 

in this thesis, least squares algorithm is used. Equation 18 defines the observation equation 

used in the algorithm: 

𝑃𝑖
𝑘 = 𝜌𝑖

𝑘 + 𝑐(𝑑𝑡𝑖 − 𝑑𝑡𝑘) + 𝑇𝑖
𝑘 + 𝐼𝑖

𝑘 + 𝑒𝑖
𝑘 

Equation 18 

Where, 𝜌𝑖
𝑘 is the geometrical range between satellite k and receiver i, c denotes the speed 

of light, 𝑑𝑡𝑖 and 𝑑𝑡𝑘 represent receiver and satellite clock offset, respectively. 𝑇𝑖
𝑘 is the 
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tropospheric delay, 𝐼𝑖
𝑘 denotes the ionospheric delay and 𝑒𝑖

𝑘 is the observational 

pseudorange error. Troposphere and ionosphere causes signal delay due to various 

atmospheric conditions and these biases must be accounted for. 

𝜌𝑖
𝑘 is further represented as: 

𝜌𝑖
𝑘 = √(𝑋𝑘 − 𝑋𝑖)2 + (𝑌𝑘 − 𝑌𝑖)2 + (𝑍𝑘 − 𝑍𝑖)2 

Equation 19 

Where, satellite position is (𝑋𝑘, 𝑌𝑘 , 𝑍𝑘) and the receiver position is denoted as (𝑋𝑖, 𝑌𝑖, 𝑍𝑖). 

Equation 18 and Equation 19 are then used find the three unknowns 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 . Another 

unknown parameter is the receiver clock bias 𝑑𝑡𝑖. To solve for four unknown variables, a 

minimum of 4 pseudorange observation equations are necessary. Hence, to obtain a 

receiver position estimate, at least 4 satellites must be available.  

System-on-Chip Technology 

GNSS signal processing is computationally intensive and can be a tedious and slow task 

for the processors. Therefore it is crucial that a processor is selected that will suit the 

application and final receiver requirements. The processor selection can be based on 

various parameters such as computational capabilities, design flexibility, power 

consumption etc. Computational capabilities of the processor is an important selection 

criterion as GNSS receivers demands heavy signal processing. Also, since the objective of 
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this research is to develop a software GNSS receiver, the second processor selection is 

based on the flexibility of the processor.  

Figure 12 demonstrates the comparison of different processing platforms that are available. 

In the comparison, performance of a processor is a measure of the processing speed and 

computational capabilities whereas flexibility is a measure of design reprogrammability/ 

reconfigurability the processor permits. 

 

Figure 12: Processor performance vs. flexibility. 

As described earlier, an ASIC is a processor chip designed specifically for an application 

and hence has the most optimum performance. It is also designed such that the power 

consumption is a minimum. However, once an ASIC is fabricated, hardware design 
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changes and modifications cannot be made. Hence, an ASIC exhibits minimum design 

flexibility.  

On the other hand, an FPGA has higher flexibility when compared to an ASIC. An FPGA 

also consists of hardware components but unlike an ASIC, they are reconfigurable. Using 

the reconfigurability feature, design upgrades to a FPGA-based system can be made even 

after post-production. This attribute is especially useful for satellite applications. When 

compared to an ASIC, an FPGA consumes more power and has lower processing speed.  

Signal processing can be implemented using components like Digital Signal Processors 

(DSP) and microprocessors (𝜇Ps) as well. Since processing is performed using 

programming language like C/C++, these processors are categorised as software 

components.  A system design change simply requires change in software algorithm 

without any hardware modifications. For these reasons, DSP and microprocessor offer 

higher design flexibility when compared an FPGA or ASIC. However, when a comparison 

is made between DSP and microprocessor with respect to their computational capabilities 

and processing speed, DSP performs better (Hein et al., 2006). Graphics Processing Unit 

(GPU) is another platform that has recently become very popular for applications other 

than video and image processing. Even though GPUs have extremely high computational 

speed they are not considered for this research as they are not suitable for satellite 

applications, primarily because they have very high power requirements (Ramesh et. al, 

2014). Since every processing platform has a certain trade-off, developers often use a 

combination of processors resulting in a very robust and highly optimum system.  
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One very popular combination is to use FPGA and microprocessor together (Hein et al., 

2006). FPGA manufacturers realize the benefit and now provide embedded softcore 

processors (like Nios II, Microblaze). Such embedded processors can be used to control 

and monitor the heavy signal processing that the FPGA performs. However, developers 

may want to use more powerful and efficient embedded processors. For such possibilities, 

FPGA is also available with embedded hardcore processors (like ARM, PowerPC) that are 

3-4 times faster than softcore processors (Weber and Chin, 2006). This aspect can be 

especially beneficial for GNSS signal processing. 

SoC is the integration of both software and hardware processing elements on the same chip. 

In the case of this software GNSS receiver implementation, the SoC processing platform 

preferred has FPGA and embedded hardcore processor fabricated on the same silicon chip. 

Using SoC provides huge benefits as they have lower power requirements, are more 

efficient, occupy lesser board area and facilitates easier integration (Ben Salem et al., 

2008). Figure 13 demonstrates the basic architecture of a type of SoC. It consists of FPGA 

and a hardcore processor, linked together with the interconnect that forms a strong 

communication bridge between these two entities. 
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Figure 13: Basic architecture of a System-on-Chip. 
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Chapter Three: Receiver Implementation 

This chapter provides an overview of the techniques and algorithms used to implement the 

software GNSS receiver. The chapter has been divided into two main sections with the first 

section focusing on the software components including the algorithmic flow of acquisition, 

tracking and navigation solution. The second section describes the processor used and also 

the hardware logic implemented. It also details the software/hardware partitioning of the 

system components. 

Software Implementation 

As discussed in the previous chapter, software processing includes the following 

processing blocks: acquisition, tracking and navigation solution. The complete software 

has been developed in C/C++. This programming language has been used as it makes the 

software portable to various processing platforms.  

Input Data Format 

The complete software receiver development has been divided into various functions that 

process different datasets. Data files provided in Gleason (2009) have been used for testing 

and verification purposes. According to Gleason (2009), the 25-second long dataset was 

collected and processed by SiGe portable L1 data sampler (SiGe GN3S Sampler v3, 

Sparkfun Electronics).  The carrier signal frequency (IF) is 4.1304 MHz whereas the 

sampling frequency is 16.3676 MHz. The data samples in the file has a 2-bit resolution and 

are hence represented with four different values as shown in Table 3. The dataset contains 
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samples in the hexadecimal format and needs to be stored as signed integer prior to their 

use in different functions.  

Table 3: Hexadecimal representation of data and its equivalent integer representation.  

Hexadecimal Representation Signed Integer 

01 1 

03 3 

FF -1 

FD -3 

 

Acquisition Algorithm 

The main purpose of the acquisition step is to detect the visible satellites and estimate the 

coarse values of signal frequency and phase. As discussed in the previous chapter, there 

are various acquisition methods available. The Parallel Phase Search Method is 

implemented in this thesis as it is the most efficient (Borre et al., 2007). 

Referring to Figure 14, a C/A-code Look-up Table (LUT) is used which is a sequence of 

the 1023 C/A-code bits for every PRN. The LUT is pre-compiled (as a header file) to save 

computational time. All the C/A-code sequences for each satellite are transformed to the 

frequency domain equivalent using the FFT technique and saved for later reference.   

The first 2 ms of the dataset (32,735 samples) is initially read, decoded (converted from 

hex to int) and stored. As shown in Figure 14, each sample from the dataset is multiplied 

with a carrier signal replica resulting in In-phase (I) and Quadrature (Q) phase components. 

To convert these into frequency domain components, again the FFT is used. The product 
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of the output signals from identical blocks FFT 1 and FFT 2 are computed and transformed 

back to time domain using Inverse Fast Fourier Transform (IFFT). 

 

Figure 14: Acquisition algorithm implemented using Parallel Code Phase Search method. 

Since the output of the IFFT block is a complex signal and has I and Q components, the 

absolute value of the signal is considered. This amplitude is then compared to a pre-set 

threshold value. If the absolute signal value exceeds the threshold mark, the satellite is 

considered to be detected. If not, then the next combination of PRN and Doppler is 
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considered and the above described algorithm is repeated until all the satellites have been 

checked for availability. 

For every FFT operation, the transform length (𝑁) is considered as 2𝑛 where n is a positive 

integer. In this case, 𝑛 = 15,  hence 𝑁 = 32768 (value closest to 32735 dataset samples). 

Since the number of sample bits (32735) is less than N, the remaining transform length 

sequence is padded with zeros. To implement the FFT function in software (C/C++), the 

Keep It Simple Stupid FFT (KissFFT) (KissFFT, Source Forge, 2014) library has been 

used. This library is also used by software receiver developed in Gleason (2009), as it is 

simple and has a small file size compared to other libraries such as FFTW (Frigo and 

Johnson, 1998). 

Tracking Algorithm 

To track the satellite signals, initial carrier frequency and phase value is read from the 

previous step of acquisition. Tracking continues read 

ing data samples (post 2 ms of initial acquisition data) and performs various operations on 

the samples. The samples are multiplied with accurate carrier and code replicas so that 

navigation data can be extracted from the signal. Due to the presence of multiple satellite 

signals, there is a need to track all these signals efficiently. 

Humphreys (2009), suggested that task parallelism is best for maximizing execution speed 

up. Considering this recommendation, the concept of ‘multi-threads’ has been incorporated 

into the tracking processing block. 
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As seen in Figure 15, after acquisition is complete, a new processing thread is created for 

every acquired satellite. If ‘n’ satellites are detected, the same number of tracking threads 

are created. Each thread calls the same tracking function but is executed independently. 

For the given dataset used in this research, given the dataset, at least 9 satellites are tracked 

simultaneously. Without such an implementation, the receiver would be able to track only 

one satellite at any given time and would fail to read signal information from the rest of 

the satellites. Additional advantages of multi-threading is also listed in Butenhof (1997). 

 

Figure 15: Tracking with multiple n channels. 

POSIX Threads 

Portable Operating System Interface (POSIX) threads, also known as Pthreads, is an IEEE 

standard that allows execution of several instructions in parallel. The three aspects that 

need to be managed with POSIX implementation are the execution context, scheduling and 

synchronization. This standard allows prioritization of certain threads that are more critical 

than the others and also allows the user to pause a certain thread process. These features 
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provide design flexibility that is greatly beneficial in the case of tracking algorithm 

development (Butenhof, 1997). 

Post-acquisition of all the available satellites, threads are created according to the number 

of satellites detected. As shown in Figure 16, threads when created are initially in the ready 

state and remain in this state until the assigned thread function is called after which it enters 

the running state. Once in the running state, it can be blocked or terminated. 

 

Figure 16: State transitions using POSIX threads (Butenhof, 1997). 

When running multiple threads, the processes may try to access and modify the same 

memory space which may lead to corruption of data. To avoid uncontrolled modification 

of global variables and shared memory spaces, mutex is introduced.  Only the thread that 

possesses the mutex has the permission to access a particular memory space or will be 

permitted to modify a certain global variable. As an example, if Channel 1 and 2 share 
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common variables and Channel 1 obtains a mutex, Channel 2 cannot modify the shared 

variables unless Channel 1 releases the mutex back. Use of a mutex during parallel 

processing, prevents mishandling of the data and corruption of data. 

Tracking Loops 

To accurately track the carrier signal and code phase of the incoming signal, the frequency 

and phase need to be continuously monitored and corrected. As explained in Chapter 2, 

Frequency/Phase Lock Loop (FLL/PLL) and Delay Lock Loop (DLL) are used for carrier 

signal and code phase tracking, respectively. Coarse frequency and code phase values from 

the acquisition step is used in tracking as well. The locally generated replicas may have 

large errors (due to initial coarse estimation) when compared to the incoming signal 

parameters. To quickly nullify the errors, high-gain filters that form a part of FLL/PLL are 

initially used. 

Referring Figure 17, coarse tracking using FLL is performed in the first 500 ms using a 

filter gain factor of 1.15. At FLL switch time, tracking switches to a finer FLL with a lower 

gain factor of 0.10 to correct for smaller errors. The fine FLL runs for another 500 ms 

which is enough for the replica frequency to be almost the same as the real value. At PLL 

switch time, PLL tracking begins. This second order loop, with gain factors 0.10 and 0.93, 

closely tracks the incoming signal frequency and maintains the error to a minimum. Such 

combination of gain factors highlight the dependence of the tracking loops on the initial 

frequency estimated by acquisition. This loop runs for another 500 ms before the filter 

stops oscillating and settles. After the filter settles, the navigation bit decoding can begin 
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(Gleason and Gebre-Egziabher, 2009). The performance of these filters will be discussed 

in Chapter 4.  

 

Figure 17: Tracking loop timeline (Gleason and Gebre-Egziabher, 2009) 

As shown in Figure 18, the first step in tracking is to remove the carrier signal and PRN 

code from the incoming signal. Navigation data are then read from the remaining signal 

components. To detect the start of the navigation subframes, preambles are searched for. 

A preamble is a sequence of 1 and 0’s (in this case 10001011) and marks the beginning of 

a subframe (Borre et al., 2007). Once the first preamble is detected, it is expected to be 

found every 300 bits (as the subframe is repeated). If the preamble is found again in the 

expected position, it confirms correct reading of navigation data. For additional checks, 

HOW and TLM words within the subframe also consist of parity words which must match 

expected values. Once these tests are passed, the information can be trusted and further 

processing can be performed.  
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Figure 18: Tracking algorithm implemented with multiple processing threads. 

After the presence of correct navigation message is confirmed, the subframes within the 

message are extracted by recognizing the ‘subframe ID’. Each subframe ID contains unique 

satellite and timing information. Following the recognition of subframe ID, the key 

parameter, Time of the Week (TOW) is read which is used to estimate the signal transmit 

and receive time. When the signal transmit and receive time is estimated, pseudoranges can 

be computed as shown in Equation 20.  

Pseudorange=(signal receive time-signal transmit time)×speed of light 

Equation 20 
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Navigation Solution Algorithm 

Each processing thread/channel in tracking computes pseudoranges and these values are 

stored in a global database so that it can be accessed later by other threads as well. A final 

processing thread is thus created that runs parallel to the rest of the tracking threads. This 

new thread reads pseudoranges computed by the ‘n’ tracking channels and estimates 

receiver position without interrupting the tracking process. 

The processing ‘navigation solution’ thread is shown in Figure 19. This thread waits until 

the first set of pseudoranges is generated by each thread/channel and then starts position 

estimation. This added feature is an advantage over the reference software receiver fastgps 

where position computations do not begin until all the satellites are tracked for a duration 

of 25 seconds. 

 

Figure 19: Simultaneous channel tracking and receiver position computation using 

POSIX threads. 

The logic flow of the navigation solution thread is illustrated in Figure 20. Pseudoranges 

and satellite information (from the subframes) generated by the tracking loops is initially 
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read. Based on this ephemeris data, position of every satellite detected is determined. These 

calculated satellite positions and pseudoranges are then used to compute receiver position. 

The algorithm used for this purpose is least squares algorithm. Referring to Figure 21, the 

pseudo distance between the receiver and satellite, pseudorange, is already known from 

previous calculations and so is the satellite position. As described in chapter 2, Equation 

18 and Equation 19 are used to find the unknown receiver position coordinates 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 

and the receiver clock error. 

 

Figure 20: Navigation Solution: Processing steps for receiver position computation. 

Some error corrections can also be applied at this stage of calculation. For this receiver 

implementation, the data file used was 25 seconds in duration, containing only 3 subframes 

and did not contain essential parameters from subframe 4 and 5 that are required in order 
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to apply ionospheric corrections. Hence corrections have not been applied during position 

computation.   

 

Figure 21: Pseudorange measurement between satellite and receiver. 

Hardware Implementation 

The software component design described in the previous section has been developed on a 

desktop computer (PC). Since the targeted application of the receiver is for space use, there 

is a need to implement the software on a space-ready processing platform. As discussed in 

Chapter 2, a comparison of various processors has been presented. For the receiver 

implementation in this research, a combination of a microprocessor and FPGA is used. 

Such a combination is manufactured by various companies like Altera, Xilinx, Actel, etc. 

with varying specifications. Hence it becomes critical to examine all the commercially 

available products and select one that would best suit the application. 

Processor Selection 

A comparison of software receivers developed is shown in Table 4. These receivers have 

also been compared with the design target of this thesis. As observed, the trend is to use a 
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hybrid processing platform of microprocessor and FPGA. Manufacturers such as Xilinx 

and Altera fabricate such platforms that provide a combination of software and hardware 

processors in the form of SoC. For this research, Altera’s Cyclone V SoC is used as it 

complies with all the hardware requirements of the target receiver design and also costs 

lower than other similar products (Xilinx’s Zynq SoC). Altera’s Cyclone V SoC has an 

embedded (hardcore) ARM processor that functions at a satisfying frequency when 

compared with other processing platforms. The FPGA components and peripherals can be 

easily accessed by the microprocessor via the AXI bridges provided by Altera. FPGA also 

has the capability to access microprocessor peripherals using the same aforementioned 

bridge. Such a well-established communication bridge between the FPGA and 

microprocessor ensures high speed data transfer among the two components and avoids the 

need for the developer to set custom communication protocols. 

The ARM processor that forms a part of Altera’s Cyclone V SoC has a higher operating 

frequency as compared to other receiver platforms listed in Table 4. A higher operating 

frequency proves to be a major benefit as it indicates high processing speed. Even with this 

advantage, the SoC does not process in real time due to certain hardware limitations 

(discussed in Section 3.2.4.) but this capability can be incorporated with additional research 

work.  Also the power consumption of the SoC is within an acceptable range of 2 to 5 

Watts.  

Table 4: Comparison of target design and recent software receiver design specifications 
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WARP based 

GPS 

Receiver 

(Hershberger, 

2013) 

Software 

Receiver 

for 

ALMASat 

(Avanzi 

2010) 

  

Modular 

GPS Bistatic 

Radar 

Receiver 

(Esterhuizen 

2006) 

Namuru 

V3.2 

(Glennon 

2011)  

Target 

Design 

Processor 

type 

FPGA + 

embedded 

processor 

(PowerPC 

405) 

FPGA+ 

embedded 

processor 

(PowerPC 

440) 

Single Board 

Computer/ 

VIA 

CoreFusion 

Processor 

FPGA + 

ARM A3 

Cortex 

FPGA + 

embedded 

processor 

(Dual-

core 

ARM A9) 

 

Processor 

operating 

frequency 

Max 400 

MHz 

Max 550 

MHz 
Max 1 GHz 

Max 200 

MHz 
Max 925 

MHz 

Multiple 

tracking 

channels 

No Yes Yes Yes Yes 

Position 

Estimates 
No Yes Yes Yes Yes 

Real Time Yes Yes No Yes No 

Programming 

language 

MATLAB/ 

Simulink 

MATLAB/ 

Simulink 
C++ C C/C++ 

Space 

Applications 
No Yes Yes Yes Yes 

Power 

Consumption 
- <10 W <18W ~1W 2-5W 

 

Embedded ARM  

Similar to a computer requiring an operating system (OS) to run various applications, the 

embedded processor ARM also requires an OS before it can execute applications. Altera’s 

Cyclone V SoC community strongly suggests using Embedded Linux linaro-gcc-arm as 

the OS (Altera, 2014a). To boot the ARM processor with this OS, a compressed image file 
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must first be created that can be run on the processor. The image file contains all of the 

information regarding the Linux drivers and modules. Another important file is the Device 

Tree Blob (DTB), containing information regarding all the relevant board peripheral 

attributes and addresses. As an example, if a LED is to be switched on, the OS will refer to 

the address of that particular LED from the DTB and then communicate to that address 

space.  

Altera provides extensive information regarding generation of these essential files. These 

files are downloaded to an external SD card and then inserted into the card slot provided 

on the board. The processor is then powered up with embedded Linux (from the image 

file).  

With Linux running on the processor, various applications can now be executed. Eclipse 

DS-5, a PC based application provided by Altera, allows for software development in 

C/C++ environment. Using Eclipse, C/C++ applications can also be run as Linux 

applications. The major advantage of using Eclipse is that it allows Linux application 

debugging as well. This way hardware and software parameters can be monitored in real-

time and system faults can be narrowed down to certain part of the software/hardware. 

Software/Hardware Partitioning 

The software developed using the programming language C/C++ can run independently on 

the ARM processor that forms a part of the SoC. However, as the operating frequency of 

the microprocessor (900 MHz) is relatively low (when compared to a standard PC’s 1.2 
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GHz oscillator) the application requires longer execution time. Many functions and 

operations in software require multiple clock cycles to complete and since they must be 

performed sequentially, additional time is required. Sequential software processing can be 

avoided by implementing the processes in parallel using FPGA (hardware).  

There is no precise method for deciding which operations must be implemented in the 

FPGA instead of the microprocessor. Generally, the bottlenecks of a software process are 

ported over to the FPGA. By implementing certain operations in FPGA, processing load is 

taken off the microprocessor and allows task parallelism in the FPGA, saving several clock 

cycles and hence execution time.  

Considering the software GNSS receiver, parallel phase search method has been 

implemented for acquisition. This method uses Fast Fourier Transform (FFT) and Inverse 

Fast Fourier Transform (IFFT) functions. Various FFT libraries are available as open 

source, such as FFTW (Frigo and Johnson, 1998) but the routine known as KissFFT 

(KissFFT, Source Forge, 2014) is used for this receiver implementation as it is simple and 

has a small file size.  

After the implementation of the KissFFT library, a profiler tool named Gprof (GNU gprof: 

the GNU profiler) was used to analyze the complexity of software developed and also the 

execution time of each function. Such a tool aids in identifying which sections or operations 

of the software program should be implemented in hardware (FPGA). This way software 

load can be reduced and task parallelism can be achieved, improving overall execution 
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time. Results obtained from the Gprof tool indicates that the software FFT function alone 

requires 70% of the total program execution time. These results are further discussed in 

Chapter 4. 

Due to the complexity of FFT/IFFT functions, along with the high execution time, it was 

decided to implement these functions in hardware (FPGA), instead of software 

(microprocessor). Referring to Figure 22, the highlighted area is now implemented in the 

FPGA. 

 

Figure 22: Highlighted region (FFT operations) implemented in the FPGA. 

To implement the partial design in hardware, Altera’s FFT IP (Intellectual Property) cores 

were used. FFT IP cores can be customised by the developer according to the required 

design specifications. For the hardware implementation in Figure 22, two FFT IP cores, 

one IFFT IP core, a multiplier (for complex signals) is required. The resulting hardware 

design is illustrated in Figure 23.  
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Figure 23: Altera IP Core Implementation in the FPGA. 

Although Altera’s Cyclone V FPGA has a total block memory bits of 5662K, it imposes a 

limitation as the proposed design in Figure 23 does not fit successfully due to insufficient 

block memory bits. Part of the reason is that for acquisition, 2 ms of data results in a 32,735 

bit long data sequence, making the FFT transform length of (215) 32768. Moreover, the 

data transfer width between the FPGA and ARM is 8 bit (minimum). This problem is 

discussed in detail in the following subsection. 

FFT Core 

Altera’s FFT IP offers different specifications and types of cores that can be implemented 

in the FPGA as a hardware component. Of the total memory bits available (5662K) the 

percent occupied by each type is listed in Table 5. Transform Calculation Cycle indicates 
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the total number of cycles required by the FFT block to transform the given input data 

sequence. Block Throughput Cycle indicates the total number of cycles required by the 

FFT to output the complete bit sequence. The memory bits, transform calculation cycle and 

block throughput cycle in Table 5 have been estimated using Altera’s development tool, 

Quartus II.  

Table 5: Comparison of available FFT IP configurations. 

FFT IP 

 

Memory 

Bits 

Percent of 

Total 

Memory Bits 

Transform 

Calculation 

Cycle 

Block 

Throughput 

Cycle 

Streaming 2752K 48% 32768 32768 

Variable Streaming 4455K 78% 65536 32768 

 Buffered Burst 2281K 40% 28796 36864 

Burst 1277K 23% 28818 94355 

The first type of FFT IP offered by Altera, Streaming FFT, allows a continuous input data 

sequence of a fixed transform length. The disadvantage of using Streaming FFT is that it 

occupies almost half of the total available memory bits although the total throughput and 

transform cycle is a minimum of 32768. Variable Streaming allows the developer to change 

the transform length in between FFT sequences. Variable transform length is an 

unnecessary feature for the current receiver implementation and it also occupies a 

significant percent of the available FPGA space. Buffered Burst and Burst methods require 

fewer memory resources but on the other hand requires more number of cycles to 

throughput the output sequence. 
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For the receiver implementation in this thesis, FFT of the type Buffered Burst has been 

used. It occupies a total of 40% of memory bits and has a reasonable Block Throughput. 

The total memory bits required for the design implementation (3 FFT IP cores) shown in 

Figure 23 is then estimated as: 

3×2281K=6843K 

Equation 21 

The estimated required memory bits (6843K) exceeds the available memory bits (5662K) 

and hence this poses as a major design limitation. As a workaround to this problem, only 

one FFT core is implemented. The same FFT will be used to transform the reference signal 

and input signal, sequentially. IFFT can also be performed using the same block by 

changing certain FFT IP control signals.  

Figure 24 shows the FFT block and all involved interface signals. Signals on the left side 

of the block are inputs and signals on the right are the outputs. If the FFT block is enabled, 

for every clock cycle, input data sequence (for the transform length 32768) is read using 

the signal ports named as sink_imag (imaginary component Q) and sink_real (real 

component I). The user indicates the validity of the inputs by setting the signal sink_valid. 

The start of the valid input data sequence is indicated by setting the signal sink_sop (start 

of packet) and the end is indicated by setting the signal sink_eop (end of packet). The input 

signal inverse is used to indicate to the transform block to perform whether FFT 

(inverse=0) or IFFT (inverse=1). 
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Similarly, at the output port, source_imag and source_real are the transformed data 

sequence. The signal source_exp (exponent) is used for output scaling purposes. The 

beginning and end of the output data sequence is indicated by source_sop and source_eop, 

respectively. The validity of the output signals is marked by source_valid, whereas 

source_error signal values can be used to interpret the type of errors being caused during 

the transformation (FFT MegaCore Function: User Guide, Altera, 2014). 

 

Figure 24: Data and control signal interface for MegaCore FFT IP (using Quartus RTL 

viewer). 

The input control signals clk, clk_ena, sink_sop, sink_eop, sink_valid, source_ready are all 

set and reset in hardware (FPGA), designed using Verilog Hardware Description Language 

(HDL). However, signals sink_imag, sink_real, inverse are controlled from microprocessor 

also referred to as the Hard Processor System (HPS).  
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HPS-FPGA Interconnect 

The digital data transfer between software-hardware components takes place over the 

communication bridges as shown in Figure 25. This interconnect uses the Advanced 

Microcontroller Bus Architecture (AMBA) Advanced eXtensible Interface (AXI) protocol 

for communication (HPS-FPGA bridges, Cyclone V SoC Technical Reference Manual, 

2014). 

 

Figure 25: HPS-FPGA Bridges (Altera, 2014a). 

Referring Figure 25, the three bridges that form part of the AMBA bridge are HPS-to-

FPGA bridge, Lightweight HPS-to-FPGA bridge and the FPGA-to-HPS bridge. The L3 

Interconnect forms a part of the ARM architecture. The lightweight (LW) HPS-to-FPGA 

bridge is 32 bits wide, whereas the HPS-to-FPGA bridge is 64 bits wide. For the receiver 
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implementation in this thesis, the LW bridge is sufficient for data transfer and hence the 

other bridges remain unused. 

ParalIel Input/Output Peripherals 

When transferring data from the HPS to the FPGA, the data must be assigned to a particular 

address in the FPGA fabric. For this purpose, Parallel Input/Output (PIO) pins are 

implemented in the FPGA. Figure 26 shows the address map of each of the pins and Figure 

27 shows the data flow direction between the FPGA and HPS.  

The data width of the signals hps2fftcontrol1 and fft2hpscontrol is 8 bits each, whereas 

input_data2 and output_data are 16 bits wide each. 

 

Figure 26: Address map of PIO pins 

Since the FFT block requires imaginary and real components as input, input_data2 contains 

both, 8 bits for each component. Similarly, output_data contains an 8-bit imaginary 

component and an 8-bit real component, concatenated as one signal. It is illustrated in 

Table 6. 
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Figure 27: PIO data flow direction between FPGA and HPS. 

Table 6: 8-bit real and imaginary bit assignment. 

real 0-7 bits 

imaginary 8-15 bits 

The possible values for each signal component (real/imaginary) is -3, -1, 1 or 3 (due to the 

sample data file format).  These values are interpreted differently by the bridge and the 

FPGA fabric. The representation of these integer values is as shown in Table 7.  

Table 7: Binary and hexadecimal representation of integer data samples. 

Integer 

Representation 

8-bit 

Hexadecimal 

Equivalent 

8-bit Binary 

Equivalent 

1 0x01 0000 0001 

3 0x03 0000 0011 

-1 0xFF 1111 1111 

-3 0xFD 1111 1101 

When developing the software in C/C++, values can be assigned to the PIO pins defined 

in the FPGA, by mapping them over the LW bridge. Address mapping is done by using the 
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predefined LW bridge base address (0xFF200000) and adding this to the base address of 

the respective PIO pin. As an example, to assign a value to the input_data2 pin (Figure 26), 

the address used will be 0x000100D0 + 0xFF20000 = 0xFF2100D0. 

However, data transfer cannot be made directly from the HPS to the FFT block (via LW 

bridge) as a statement written in C/C++ in software can require more clock cycles for 

execution whereas operations in FPGA are performed in parallel and hence require fewer 

clock cycles. Simply put, there is a need to synchronize the data transfer between the FPGA 

and HPS to avoid data loss or corruption.  

FIFO Core 

For data synchronization between HPS and FPGA, Altera’s SCFIFO IP core is used. 

SCFIFO stands for ‘Single Clock First In, First Out’. FIFO acts like a buffer and is capable 

of temporarily storing data. Using a FIFO in the design ensures that all the data being 

transferred over the bridge is not corrupted or lost due to unsynchronized clocks between 

the FPGA and the HPS.  

The FIFO implemented in the design has a depth of 32768 words and a signal width of 16 

bits. Referring Figure 28, the signal aclr (asynchronous clear) is used to clear the contents 

of the buffer. When the wrreq (write request) signal is set, for every clock cycle, data are 

read and stored into the FIFO. When processed data are to be read from the FIFO at the q 

port, rdreq (read request) must be set. Signals full and empty indicate the state of the buffer 

whereas almost_full and almost_empty can be used to mark the state of the FIFO before it 
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is full or empty, respectively. The usedw signal indicates the count of words that have been 

stored in the FIFO. For an empty buffer usedw is 0 and when full it indicates 32767. Using 

these FIFO cores, a final hardware implementation has been illustrated in Figure 29. 

 

Figure 28: SCFIFO control and data interface signals (using Quartus RTL viewer) 

 

Figure 29: Final hardware design implemented in the FPGA using FFT and FIFO cores.  

The two FIFO cores are used at the input and output port of the FFT block. However, FFT 

output contains an additional scaling signal named exp which also requires a FIFO block. 

Since the exp signal is 6 bit wide, a new FIFO is instantiated in the FPGA with a 6-bit 
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input/output signal width while maintaining the depth as 32768. The final hardware module 

developed in Figure 29 is used multiple times to perform FFT/IFFT for any data sequence 

of length 32768. Figure 30 illustrates the final block diagram of the acquisition routine that 

has been implemented, that contains both software and hardware components. The 

advantage of using such a system is discussed in Chapter 4. 

 

Figure 30: Final acquisition algorithm using FPGA components for FFT and IFFT 

operations.  
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Chapter Four: Receiver Performance Tests 

And Analysis 

To assess the performance of the software GNSS receiver implemented in this research, 

several tests were performed. Since the complete receiver has several processing blocks, 

tests were implemented for each block independently. The results obtained are discussed 

in the following sections.  

Test Setup 

The developed software GNSS receiver was tested in two phases. In the first phase, 

receiver algorithm developed on a desktop computer was tested using data files provided 

by Gleason and Gebre-Egziabher (2009). These results were then compared to the results 

obtained using the reference software receiver fastgps provided by the same source, 

Gleason and Gebre-Egziabher (2009). Algorithm testing of the software module was the 

main focus of this testing phase. 

In the second phase of testing, competency of the developed receiver algorithm was tested 

on the selected processing platform (Altera’s Cyclone 5) instead of the desktop computer. 

Since Cyclone 5 has hardware (FPGA) and software (ARM) components, 

hardware/software synchronisation was also verified and analysed.  
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Figure 31 shows the test setup used. An Ethernet connection is required for Linux 

application debugging purposes. USB Blaster and UART connect to the desktop computer 

and facilitate FPGA programming. The SD card holds important Linux boot information 

and the Warm Reset button is used to reset the ARM processor. 

 

Figure 31: Cyclone V SoC board and desktop computer interface signals. 

Signal Acquisition 

GNSS signals operate on several frequencies corresponding to the multiple constellations. 

For the receiver implementation in this thesis, the focus is on the GPS constellation. GPS 

has a total of 32 satellites (24 satellites in the nominal operating constellation) and each of 

them have a unique PRN code that is transmitted in the GPS signal. Of the two GPS signals 
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L1 C/A-code and P(Y)-code (discussed in Chapter 2), L1 C/A-code signal is the focus of 

this research thesis and hence only this signal is processed and tested.  

The input data format used is discussed in Chapter 3. It has four data levels of 1, 3, -1, and 

-3, as observed in the plot in Figure 32. The pre-calculated PRN code for a satellite is 

plotted in Figure 33 and as observed, has two data levels, 1 and -1. These two signals act 

as input to the FFT processing block.  

 

Figure 32: Input sample data with four amplitude levels of -3, -1, 1 and 3. 

 

Figure 33: C/A-code for PRN 1 with two amplitude levels of -1 and 1. 
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Acquisition Result 

The purpose of acquisition is to determine the visible satellites and the coarse values of the 

respective satellite signal frequency and phase. During the data processing of the first 4 

milliseconds of data, on detecting a satellite, the calculated coarse and fine Doppler 

frequencies (in KHz), magnitude and code phase (in chips) of the acquired satellite signal 

is published in the console (Figure 34).  

 

Figure 34: Acquisition: List of detected satellites along with signal parameters like coarse 

frequency, fine frequency, magnitude and code phase of the incoming signal (console 

screenshot). 

The information obtained during acquisition is plotted in Figure 35. The plot also provides 

a comparison of the satellite signal strengths. Only the satellites with signal strength 

exceeding the acquisition threshold value were considered to be acquired. In this case, the 

threshold value is 19 and signal strength exceeding this value indicates presence of the 

corresponding satellite (Kaplan and Hegarty, 2006; Bastide et al., 2002). Available 

satellites are highlighted in Figure 35. A total of 9 satellites were acquired at the end of 
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acquisition. These results have been verified with results obtained from the software 

receiver fastgps for the same data set and hence it is verified that the acquisition functions 

as expected. 

 

Figure 35: Acquisition plot – signal magnitude versus satellite number. 

Doppler frequency is the shift of the incoming signal frequency from its true value due to 

the relative motion between the satellite and receiver due to Doppler effect. Figure 36 

demonstrates the extent of Doppler frequency shift from the true value. Only the 

frequencies of the acquired satellites is depicted.  

It is to be noted that the accuracy of the Doppler frequency depends on the length of the 

FFT sequence. For acquisition, 4 ms of data were used, resulting in a 65470 bit long FFT. 

During the second stage of testing using Cyclone 5, the acquisition length was shortened 

to 2 ms (32734 bit FFT) because of hardware limitations when implementing a 65470 bit 
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FFT core. Consequently, the Doppler frequency determined when using 2 ms of input data 

is less accurate than when 4 ms of input data is used.   

 

Figure 36: Satellite acquisition - Doppler frequency versus satellite number. 

Code Profiling Results 

The next step was to optimize the software code (in C/C++) to accelerate the overall 

processing. Prior to code optimization, it was necessary to determine the amount of time 

required by the software functions for complete execution. For this purpose, a code 

profiling tool named gprof was used. Gprof (GNU gprof: the GNU profiler) provides 

detailed information about the time spent in each function of the software application. 

Figure 37 provides a summary of the flat profile generated by gprof application.  

From the timing information in the results obtained, the compiler required 55% of the total 

execution time for the function kf_bfly4.  The function main required 19% of the execution 

time whereas function kf_work required 15%. kf_bfly4 and kf_work both are daughter 
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functions of the primary KissFFT function. Consequently, the total time spent within 

KissFFT function was approximately 70% of the total processing time.  

 

Figure 37: Gprof results enlisting the percent of execution time required by software 

functions. 

Since the software function KissFFT, due to its computational complexity, required 

majority of the execution time, it was decided to replace this software FFT module with its 

equivalent hardware design in the FPGA.  
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Hardware FFT versus Software FFT 

The results from the acquisition stage was obtained by using software components only 

and processed on a desktop computer. The same software, when executed using the 

embedded ARM processor provided in Cyclone 5, had a higher execution time. The 

dissimilarity appears in the execution time due to the differing operating frequencies of the 

ARM processor and the computer. The desktop computer has an operating frequency of 

3.4 GHz, whereas Altera’s Cyclone 5 operates up to a maximum of 900 MHz. Due to the 

lower operating frequency of Cyclone 5, there exists a need to reduce the computational 

load on the ARM processor and replace them with reconfigurable hardware components 

implemented in FPGA. As discussed in the previous section, Fourier transformation proves 

to consume a significant execution time and consequently, the software FFT component 

was replaced with its hardware equivalent in the FPGA.  

According to the acquisition function block diagram in Figure 30, both the signals, input 

data (Figure 32) and the locally generated C/A-code (Figure 33), was transformed using 

FFT block. The transformed spectrum is in accordance with the power spectrum of the 

C/A-code (Kaplan and Hegarty, 2006). The input C/A-code sequence was first transformed 

using the software FFT and then the same input sequence was transformed using hardware 

FFT. A comparison of the quality and resolution of the two transformations is illustrated 

in Figure 38 and Figure 39. As observed from the set of figures, for the same set of input 

data sequences, there is a noticeable difference in the amplitudes of the two FFT outputs. 

Also, the pattern (lobes) of the transform is less prominent when hardware FFT is used. 
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These differences are present due to several limitations when the hardware FFT core is 

implemented.  

 

Figure 38: FFT of C/A-code for PRN 1 using software FFT function. 

 

Figure 39: FFT of C/A-code for PRN 1 using Hardware FFT function. 

The first limitation is introduced as the output port of the hardware FFT block is 

represented with a maximum of 8 bits (FFT core configuration) allowing a maximum 

output signal value within the integer range of -128 to 127. The second limitation of using 

the hardware FFT is that the output data are represented in integers and hence decimal 
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values are truncated. These two factors result in truncation of output values which in turn 

affects the overall FFT performance and accuracy. A similar difference is observed in 

Figure 40 and Figure 41, when the input sample data was transformed using FFT 

components in software and hardware, due to the same configuration limitations discussed 

above. 

 

Figure 40: FFT of sampled GPS data using software FFT function. 

 

Figure 41: FFT of sampled GPS data using hardware FFT function. 
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According to the acquisition block diagram illustrated in Figure 30, the next step was to 

compute the product of the transformed input signal and transformed PRN code. This 

product is then inverse transformed again using the IFFT block. When using the software 

component, an inverse FFT function is called, whereas for the hardware component, the 

same FFT block configured in the FPGA is used to perform inverse FFT as well.  

Seen in Figure 42 is the result of the product of the two FFT components, input signal and 

locally generated signal. This product is inverse transformed back to time domain using 

IFFT function. When hardware FFT is used, this poses as a limitation. The product of the 

FFT components, as seen from Figure 42, ranges between the values of -700 to 900. It is 

impossible to represent all these values with the limited 8 bits (FFT configuration for input 

data width). As discussed earlier, 8 bit signal width represents values ranging from -128 to 

127 only. Hence representing the FFT product is a problem. 

 

Figure 42: Product of FFT outputs (I component) 
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As a solution, the amplitude of the FFT product is scaled.  Ideally, if the amplitude is scaled 

by a factor of 0.13 or (1/7.2), the FFT product is within the range of -128 to 127. Due to 

this scaling factor, FFT product samples below the value of 7.2 are truncated to 0. This 

amplitude truncation has an adverse effect on the FFT product that leads to an incorrect 

IFFT computation. Consequently, acquisition results are inaccurate and incorrect satellites 

are acquired.  

After implementing different scaling values and examining the acquisition results, optimal 

performance was observed for a scaling factor of half (0.5). A comparison of 3 cases of 

acquisition is illustrated in Figure 43 below.  

 

Figure 43: Acquisition – comparison of results obtained when software FFT, scaled and 

unscaled hardware FFT functions are used. 

In case 1, the acquisition results from the software FFT function is plotted. When this 

software component is replaced with hardware FFT, only 2 satellites are correctly acquired 
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(case 2). By scaling the FFT samples by half, 6 satellites are detected (case 3). Among 

these satellites, signal strength of PRN 15 is higher than expected and is acquired 

incorrectly.  A possible reason for the incorrect acquisition of PRN 15 is due to the scaling 

factor mentioned earlier. Scaling alters FFT outputs decreasing acquisition accuracy. This 

extra satellite is assigned a channel for tracking, but due to the absence of navigation data, 

the tracking channel is terminated. Hence, this extra satellite detected costs a channel for a 

short duration and does not affect the performance of the receiver significantly. 

Scaling effect has negative implications on the overall acquisition result quality and can be 

avoided if the signal bit width to the FFT IP core is increased (up to 16 bits). Such a design 

implementation requires higher FPGA resources (memory bits). Due to unavailability of 

sufficient memory bits on the selected FPGA processing platform, the FFT IP core is 

limited to a signal width of 8 bits.  

Processing Time Comparison 

The motivation for replacing software components with its hardware equivalent is to 

reduce the overall processing time. However, synchronizing the software and hardware 

components within the SoC is a challenge.  

During the execution of the receiver application, the C/C++ statements required multiple 

clock cycles for execution, whereas the hardware operations required less. This observation 

is made using the SignalTap software provided by Altera that allows the user to examine 

signals within the FPGA. A comparison of the clock cycles is presented in Figure 44. 
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The two important waveforms to be considered is highlighted by the arrows. The first 

waveform is generated by setting and resetting the hardware Parallel Input/Output (PIO) 

pin using the consecutive statements (in software) written below. The first statement sets 

(‘1’) the pin and the second statement resets it back (‘0’). The bit transition is noticed in 

the waveform and according to the time bar, execution of the two statements requires 2000 

milliseconds.  

 

Figure 44: Software/hardware synchronization - SignalTap waveform comparing 

hardware and software clock cycles 

alt_write_byte (lw_bridge_map+ HPS2FFTCONTROL1, 0x60); //Write Request Pulse  

alt_write_byte (lw_bridge_map+ HPS2FFTCONTROL1, 0x00); 

The second waveform represents the cycles required for one hardware operation. Since the 

time duration from one bit transition to the next is considered, referring to Figure 44, the 
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interval between each transition is 100 milliseconds. This leads to the conclusion that 

hardware operation in the FPGA is 20 times faster than the software operations.    

As described in Chapter 3, the FFT core selected for this receiver design is Buffered Burst 

and requires a total of 36864 clock cycles for complete FFT transformation in hardware. 

Whereas the function KissFFT (software FFT) requires 50000 clock cycles (computed 

using the C function clock) to determine the FFT of a data sequence.  Hence the use of 

hardware FFT must reduce the processing time. However, due to poor synchronization 

during data transfer between the HPS and FPGA, the overall cycles needed for the 

completion of FFT transformation in hardware is higher than expected. 

The transformed data are stored in the output FIFO until they are read by the HPS. For this 

reason, the number of cycles required by the HPS to read the transformed data sequence is 

increased to 40000 cycles. This count is still better than the number of cycles required by 

software FFT. Hence, implementing hardware FFT increases the processing speed by 20%.  

If more FPGA resources are available, multiple FFT cores can be been implemented that 

would allow parallel computations, reducing the processing time even further. FPGA area 

poses as a limitation when FFT IP core is to be implemented on the selected processing 

platform. 
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Signal Tracking 

The purpose of tracking is to accurately replicate the incoming signal frequency and phase 

that would allow accurate navigation data decoding. Following subsections discuss the 

different tests and results that are performed to verify the signal tracking. 

Visual Inspection of In-Phase and Quadrature Signal 

According to the signal structure, all the navigation data lies in the In-phase (I) arm of the 

GPS signal. When the incoming signal is being correctly tracked, all the navigation 

information and signal power appears in the I arm only and the Quadrature (Q) arm has 

only noise like properties. This exact trend is observed when I and Q components of PRN 

8 are compared during tracking. As seen in the plot in Figure 45, signal magnitude in the 

Q arm is very low when compared to the I arm. The navigation data bit transitions are 

observed successfully in the same plot. These transitions are more distinct in Figure 46.  

 

Figure 45: Comparison of I and Q components of the incoming signal 
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Figure 46: I component containing navigation data with bit transitions. 

Code Phase Error 

Code phase error is a measure of the phase difference between the incoming signal code 

and the locally generated code sequence. A Delay Lock Loop (DLL) is used to track the 

incoming signal and correctly replicate the code phase (as explained in Chapter 2). Within 

the DLL, the discriminator measures the error during code phase tracking. The 

discriminator output is plotted in Figure 47. As is seen, the filter requires 3-4 seconds to 

settle and converge to a minimum error value. On correct tracking, the error is maintained 

within the range of ±0.5 chips/s and it remains stable for the rest of the tracking time.  
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Figure 47: Discriminator output - code phase error varying over time. 

Carrier Frequency Error 

The second parameter to be tracked is the carrier frequency of the incoming signal. The 

frequency of the received signal has an offset from the expected value due to the Doppler 

Effect and is called as Doppler frequency. The Frequency Lock Loop (FLL) is responsible 

for tracking the incoming signal frequency correctly.  

 

Figure 48: Carrier frequency error varying over time. 
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As discussed in Chapter 2, FLL also has a carrier discriminator that computes the frequency 

difference between the incoming signal and the locally generated signal. When the 

difference is zero, it can be concluded that the carrier frequency is being accurately tracked. 

The output of this discriminator loop is plotted in Figure 48. As observed, FLL attempts to 

reduce the frequency error to zero and is successful at approximately 2 seconds into the 

sample data set. Errors are initially higher but still within an acceptable range. After the 

FLL settles down and locks onto the incoming signal frequency, the error is maintained 

within the range of ±0.5 degrees and remains stable for the rest of the processing time. 

Doppler Frequency 

Due to Doppler effect there is also a continuous change in incoming signal frequency.  The 

Doppler frequency of PRN 8 has been plotted in Figure 49. In the first couple of seconds, 

the estimated Doppler frequency drastically changes as the tracking loops still have not 

achieved signal lock. When the carrier frequency and code phase are correctly being 

tracked, the receiver is said to have achieved a successful signal lock. 

As the carrier and code tracking loops converge and errors are a minimum, the Doppler 

frequency tracking gets smoother. Also observed is the gradual change in Doppler 

frequency corresponding to the satellite’s motion in its orbit with respect to the receiver on 

Earth. As there are no drastic frequency changes after the filters settle down, it can be 

concluded that the tracking loops have had a successful signal lock for the rest of the 

processing time.   
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Figure 49: Doppler frequency for PRN 8 varying gradually over time. 

Navigation Solution 

It is important to note that accurate carrier frequency and code phase tracking is essential 

for decoding the navigation data. As discussed earlier, tracking loops perform well enough 

to make it possible to decode the navigation data. To verify the accuracy of the navigation 

data, preambles in the data frames are detected. Preambles are known bit sequences that 

appear at certain intervals within the data frame. On detecting preambles at expected 

intervals it is concluded that the navigation data are decoded correctly. Additionally, parity 

bits within the data frame are read to confirm the correct decoding of the navigation 

information. 

Navigation solution algorithm has been discussed in Chapter 3 and the results are discussed 

in this section. The result obtained from the implemented algorithm is presented in Table 

8. The position estimates provided by the developed receiver has been compared with the 

results obtained when the same data set is processed using the software receiver fastgps 
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(Gleason and Gebre-Egziabher, 2009). As observed, the errors are higher than expected 

and the quality of the estimates are rather poor.  

Table 8: Position errors 

 Mean Error (m) 
Standard 

Deviation (m) 
RMS Error (m) 

North 6 7 9 

East -121 6 121 

Up -53 3 53 

Unlike fastgps, when developing the navigation algorithm, tropospheric corrections, 

ionospheric corrections and other correction models have been excluded. The data set used 

for testing purposes is only 25 seconds long, whereas to read a complete GPS data frame 

at least 30 second long data set is required. Due to the shorter duration of the data set, only 

subframe number 1, 2, 3 were available and subframe number 4 and 5 were missing. Due 

to the absence of essential information, corrections are not applied for this data set. Since 

the corrections are not accounted for during the receiver position computation, it can be 

one explanation for higher position errors. It is also to be noted that fastgps uses ephemeris 

files for accurate satellite information whereas the developed receiver does not. This could 

be another reason for the low quality position estimates. 

According to Montenbruck (2008), the DORIS tracking system onboard the Jason-1 uses 

DIODE real-time navigation function to achieve a position accuracy of 0.5 m. In another 

study (Fridman and Semenov, 2013), FPGA-based software receiver developed for 

terrestrial applications achieved position accuracy of 3 to 5 m. Considering the accuracies 
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achieved by these software receivers, navigation algorithm in the receiver developed in this 

research, requires further advancement.   
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Chapter Five: Conclusions And 

Recommendations 

The focus of this thesis was to design and implement a software GNSS receiver for satellite 

application. As discussed in the previous chapters, development of such sophisticated 

software receivers has always been a technical challenge. However, with advancing 

technology, receiver designs have also evolved. This thesis provides a novel receiver 

design and implementation method and this chapter summarises the performance of various 

receiver processing blocks. Conclusions formed from the test results are followed by 

recommendations for future developments of FPGA-based software GNSS receivers.  

Conclusions 

In this research, a FPGA-based software GNSS receiver was implemented that is capable 

of computing the receiver position by processing the GPS L1 C/A-code signal. The 

developed receiver successfully determines the available satellites during acquisition and 

continues to track the incoming satellite signals. Altera’s Cyclone V SoC containing both, 

FPGA and microprocessor, has been used for the receiver implementation. It also provides 

a low-cost processing platform of approximately $300, while most receiver kits available 

in the market costs up to 75% more.  

Implementation using SoC results in a unique task distribution between the two distinct 

hardware (FPGA) and software (microprocessor) components. Algorithm profiling tool 
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gprof was used to determine the bottleneck of the developed software functions. To relieve 

the microprocessor’s computational load, such functions were then shifted to the FPGA. 

This reduced the total execution time, as processing in FPGA is highly parallel when 

compared to the microprocessor. Some of the objectives and performance goals 

accomplished are discussed in the following sections. 

Receiver Performance 

The fundamental function of a GNSS receiver is to process the incoming GNSS signals to 

compute entities like receiver position, velocity and time. The software GNSS receiver 

developed in this research serves the same purpose, to compute the receiver position. As 

discussed in Chapter 2, the ideal software GNSS receiver consists of 3 sequential tasks of 

acquisition, tracking and navigation solution, all performed using a software processor.  

Tests were performed at each processing stage to analyse the collective performance of the 

receiver. The results obtained are compared with the reference software receiver fastgps 

(Gleason and Gebre-Egziabher, 2009) and the data files processed are provided by the same 

source. The accomplishments from the implemented receiver are: 

1) In acquisition, the developed software receiver was capable of detecting all 

available satellites, i.e., 9 correctly. It also successfully determined the Doppler 

frequency offset of the corresponding satellite signals.  

2) In the processing stage of tracking, multiple channels (POSIX threads) successfully 

tracked the acquired satellite signals in parallel. These threads also decoded 
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navigation messages from each of the incoming signals and computed 

pseudoranges simultaneously.  During tracking, the carrier frequency error was 

within the range of -3 to 3 degrees initially and converged to a value within the 

range of -1 to 1 degrees within 2 seconds of processing. Similarly, during code 

phase tracking, the errors were in the range of -1 to 4 chips/second. As the tracking 

loop settled down, the error was again limited to a range of -1 to 1 chips/second. 

The loops remains stable and maintain lock on the various satellite signals for the 

complete duration of the dataset. 

3) In the last processing step, receiver position was estimated using the basic least 

squares method. The result was then compared to position estimates computed by 

the reference software receiver fastgps (Gleason and Gebre-Egziabher, 2009). The 

position errors for North, East and Up were estimated as 6, -121, -51 metres, 

respectively. Software GNSS receivers typically exhibit higher position accuracy 

(m level) however, significant errors appear in the position estimates of the 

developed receiver as several atmospheric errors were not accounted for due to 

insufficient information.  

Software/Hardware Partitioning Efficiency 

The software receiver developed for this research purpose has been implemented as a 

C/C++ application using the microprocessor (ARM) provided by Altera’s Cyclone 5 SoC. 

Using gprof profiling tool, it is determined that the mathematical function of FFT in C/C++,  

required 70% of the total execution time. Due to the higher execution time and increased 
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software processing load during FFT, it was decided to implement the FFT function in the 

FPGA instead. Altera’s FFT IP core was implemented in the FPGA (hardware), while other 

functions were still processed in the microprocessor (software). By employing FFT 

components in the FPGA, the overall data processing speed of the receiver improved by 

20%. This leads to the conclusion that task partitioning between hardware and software 

components improves the processing efficiency. Such an implementation is a novel 

approach to the developed software GNSS receiver. 

The FFT routine in acquisition was completed using Altera’s FFT IP core. By replacing 

software FFT with its hardware equivalent, following points are noted: 

1) The input and output signal width of the FFT core was limited to 8 bits. Processed 

GPS signals can however have an amplitude range of -1500 to 1500. Since the FFT 

IP configuration used in the developed receiver does not support floating point 

integers, the input/output values can range from -128 to 127 only. All input values 

outside this range were truncated. This limitation lowered the accuracy and 

resolution of the FFT results. 

2) As a workaround to the above stated problem, signal inputs to the FFT core were 

scaled. After scaling, all the input values ranged between the required values of -

128 to 127. Scaling however has an adverse effect on the acquisition results as 

signal values were no longer accurate. When the hardware FFT was used, a total of 

6 satellites were detected out of the actual 9 that are detected using software FFT. 
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For receiver position estimates, a minimum of 4 satellites are required. Hence this 

method can still be used to compute receiver position. 

Power Requirements 

A software GNSS receiver being developed for satellite applications, must have low power 

requirements pertaining to the limited resources available on board a satellite. The chosen 

processing platform, Altera’s Cyclone V SoC, has relatively low power consumption when 

compared to processors used by other researchers (Table 4). The SoC platform requires 

power in the range of 2-5 W. Since the SoC chip is part of a standard development board, 

the power consumption of the processor can be further reduced by discarding the 

unnecessary board peripherals. 

In summary, a software GNSS receiver for satellite applications has been developed using 

FPGA and a microprocessor. The microprocessor is a dual-core ARM processor that 

operates at a frequency of 925 MHz. Power consumption of the processing platform is 2 to 

5 W which is relatively low when compared to other similar receivers (see Table 4). The 

SoC (manufactured by Altera) used in this research is not radiation resistant but for future 

versions of the receiver a radiation-hardened processor will be considered. The developed 

software receiver successfully detects and tracks multiple GPS satellites and computes a 

navigation solution. It has multiple tracking channels and can track up to 12 satellites at 

any given time. POSIX threads has been implemented to facilitate the parallel tracking 

feature. The receiver components implemented in the FPGA occupies 40% of the total 

FPGA area.  
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Recommendations for Future Work 

This research demonstrates that by using a unique combination of hardware and software 

components on a modern processor such as SoC, an efficient software receiver design can 

be implemented. As more advanced processors become available, receiver architectures 

for satellite applications will become more diverse and flexible in terms of 

hardware/software co-design. Even though the implementation of FFT function in the 

FPGA has resulted in an increase in the processing speed, it is to be further improved by 

considering the recommendations provided for future FPGA-based software GNSS 

receiver implementation.  

This research provides the foundation for future functionalities that are to be added. In the 

long-term, this research aims to implement not only the FFT function but all the remaining 

software algorithms in the FPGA. Recommendations for future work would also entail 

implementation of the receiver design using radiation-hardened components. Current 

receiver also provides a base for features like radio occultation, reflectometry and precise 

orbit determination that can be added in the future versions.  

Sufficient FPGA Resources 

As discussed in Chapter 2, System-on-Chip (SoC) is a suitable processing platform for 

receiver implementation as it accommodates both FPGA and a microprocessor on the same 

chip. Slow processes in the software can be replaced with its hardware equivalent to 

increase the processing speed. Ideally, it is desirable to implement the complete receiver in 

the FPGA component of the SoC however, the memory bits offered by the FPGA is not 
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sufficient to accommodate the entire receiver design and poses as a technical challenge. In 

this study, Altera’s Cyclone V SoC is capable of accommodating only one FFT core out of 

the desired three cores. In future implementations, FPGA offering higher memory bits must 

be considered. For example, Arria SoC, a more recent processor manufactured by Altera 

has 10 times more memory bits than Cyclone SoC (Altera, 2014c). Using such platform 

would allow the user to implement more hardware components in the FPGA. Using 

multiple FPGA (external) chips is also an alternative. 

Improve Positioning Algorithm 

In the current receiver implementation, the computed position estimates have poor quality. 

The results can be improved if the basic algorithm can be replaced with advanced 

positioning algorithm. The future implementation must also include various correction 

models to nullify errors caused by ionosphere, troposphere, etc. These additions will 

improve the quality of navigation solution. 

Multi-Constellation Receiver 

Software receiver developed in this research is capable of processing only GPS L1 C/A-

code signal. However, it would be highly beneficial if the receiver can process signals 

pertaining to different frequencies and constellations including the underlying carrier phase 

measurements. This feature would allow the same receiver to be used for multiple satellite 

applications like reflectometry, radio occultation and orbit determination. 
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Modular Design 

GNSS receivers are used for multiple satellite applications; however, since each 

application requires unique signal processing, several GNSS receivers will be required. 

Use of multiple GNSS receivers can be avoided if one software GNSS receiver can switch 

between a set of predetermined applications. Since a software GNSS receiver exhibits 

design flexibility, the common GNSS receiver can be programmed or reconfigured for 

multiple applications. Implementation of a software GNSS receiver would hence reduce 

the number of overall processors required and would also occupy less space on-board the 

satellite. 
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