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Abstract

This dissertation focuses on strongly summable ultrafilters, which are ultrafilters

that are related to Hindman’s theorem in much the same way that Ramsey ul-

trafilters are related to Ramsey’s theorem. Recall that Hindman’s theorem states

that whenever we partition the set of natural numbers into two (or any finite num-

ber of) cells, one of the cells must entirely contain a set of the form FS(X) for

some infinite X ⊆ N (here FS(X) is the collection of all finite sums of the form∑
x∈a x where a ⊆ X is finite and nonempty). A nonprincipal ultrafilter on N is

said to be strongly summable if it has a base of sets of the form FS(X), this is, if

(∀A ∈ p)(∃X ∈ [N]ℵ0)(FS(X) ⊆ A and FS(X) ∈ p). These ultrafilters were first

introduced by Hindman, and subsequently studied by people such as Blass, Eis-

worth, Hindman, Krautzberger, Matet, Protasov and others. Now, from the view-

point of the definitions, there is nothing special about N, and analogous definitions

for FS(X) and strongly summable ultrafilter can be considered for any semigroup

(in the non-abelian case, one must first fix an ordering for X on order-type ω). It is
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not immediate, however, that the results that hold for strongly summable ultrafil-

ters on N are still satisfied in general. Some of the main results of this dissertation

are generalizations of these properties for all abelian groups and some non-abelian

cases as well. Notably among these, a strongly summable ultrafilter p on an abelian

group G has the so-called trivial sums property: whenever q, r are ultrafilters on

G such that q + r = p, it must be the case that for some g ∈ G, q = p + g and

r = −g + p (this is all in the context of the right-topological semigroup βG of all

ultrafilters on G). The other significant result from this dissertation is a consistency

result. It has long been known that the existence of strongly summable ultrafilters

(on any abelian group) is not provable from the ZFC axioms, for it implies the

existence of P-points. It is also known, however, that (at least on N) the existence

of strongly summable ultrafilters follows from the equality of cardinal invariants

cov(M) = c, which is equivalent to Martin’s axiom restricted to countable forcing

notions. We prove here that there exist models of ZFC that satisfy cov(M) < c yet

there exist strongly summable ultrafilters on all abelian groups. This can be done

using iterations, both with finite or with countable support, of σ-centred forcing

notions which resemble Mathias’s or Laver’s forcing.

iii



To Rocio, Natán, Tizne and Melissa

who stuck with me throughout this adventure.

iv



Acknowledgements

I would like to start by emphasizing that the following list will always be, as is

any acknowledgements section by its very nature, quite incomplete. Moreover, the

ordering chosen here is in no way intended to reflect any kind of “priority” or

“ranking”, as I really am grateful to all mentioned here in a non-quantifiable way.

Let me mention first and foremost my wife Rocio. I simply cannot find the words

(in any language I can think of) to thank her for her complete, unrestricted and

unconditional support to take on this insane adventure of moving to a strange land

(where people speak a very strange language) for a few years (over four of them)

just so I could learn a bunch of math. Having her by my side during all these years

has made the happy moments even more intense, and the tough moments quite a

bit softer. And I am equally grateful to her and to “life” (or to “the Universe”, if

you will) for having given me the opportunity to embark in an “adventure within

the adventure”, namely that of learning to be a father while in the middle of my

PhD. studies. Obviously I’m not done with learning that just yet, but Natán knows

v



I do my best every single day.

In a well-defined sense, I think I would not be here if it were not for the help of

my former (master’s degree) supervisor Fernando Hernández-Hernández. His advice

in many matters, and even recommendation letters, during the PhD. application

process were very valuable. And he really hit on target when suggesting me who

I should choose as my PhD. supervisor, as it turned out to be a great choice of

crucial importance for my being able to properly finish my studies, and we were

a great fit for each other. While we are at it, I will of course immensely thank
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Preface

Uno de los hábitos de la mente es la invención de imaginaciones horribles.

Ha inventado el Infierno, ha inventado la predestinación al Infierno, ha imagi-

nado las ideas platónicas, la quimera, la esfinge, los anormales números transfinitos

(donde la parte no es menos copiosa que el todo), las máscaras, los espejos, las

óperas, la teratológica Trinidad: el Padre, el Hijo y el Espectro insoluble, articula-

dos en un solo organismo...

Jorge Luis Borges, La biblioteca total.

Had the above quotation been mine, I would have added “y los ultrafiltros, en

especial los fuertemente sumables” among the list of ubiquitous “horrible imagina-

tions”. When I started my Ph. D. studies, slightly over four years ago, I used to

conceive of a PhD dissertation in Mathematics as mainly an aggregate of theorems

(or more precisely, of proofs of theorems), a considerable amount of which are sup-

posed to be original and due to the dissertator. Today, of course, I know much

better. I can see how a Dissertation is, above all, the story of a struggle, the strug-
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gle of a mathematics-loving person to determine the scope of her theorem-proving

skill. It is the end result of a give-and-take back-and-forth process, whereby the

dissertator constantly oscillates between trivial problems and too complicated ones,

until she finally finds those that are right for her, in the sense that, while being

within reach, they do demand a considerable amount of effort and perseverance

(stubbornness) on her part to be able to solve them. The PhD journey is thus, in a

sense, a particular case of fullfillment of the old Delphian motto: “Know thyself”.

Throughout this life-changing four-year-long adventure, I was very fortunate to be

able to witness my own transition from a person who learns mathematics to a per-

son who does mathematics, to the extent that I now very much look forward to

the new mathematical problems and challenges that await me after the PhD. The

old doubts and self-questioning (will I really be able to...?) have receded and now

it feels as though the world of Mathematics (more specifically, the Paradise that

Cantor constructed for us) has its doors wide open for me to dive in it, rejoicing

in the trial-and-error (and very, very seldom, also trial-and-success) process which

is the necessary (although by no means sufficient!) condition for mathematical

problem-solving. Doing research (in general, but in Mathematics in particular) in-

volves being lost an overwhelming majority of the time spent in such endeavor. For

me (as I think for most people), the main offshot of the time spent during my PhD

was not so much that I now spend any less time being completely lost, but that
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I now feel much more comfortable being lost. Before that, being lost was almost

unbearable and at some points I did feel that, in spite of my passionate fondness of

Set Theory, the enterprise that I had set myself on was similar to trying to climb

an unclimbable mountain. If Jörg Brendle once found himself “strolling through

paradise” [7], during the middle stages of my PhD studies I certainly found myself

struggling through paradise. This documentary evidence of such a struggle goes as

follows: in Chapter 1 I state the main definitions and the context (this is, the ele-

mentary results and definitions which it is assumed the reader should know) for this

work. Chapter 2 is mainly a friendly exposition of some results from my joint paper

[13] with Martino Lupini, although I added two more sections at the beginning with

some results that highlight the importance of idempotent and strongly summable

ultrafilters. Chapter 3 contains the answer to two questions of Hindman, Steprāns

and Strauss from [20], as well as the necessary theory and preliminary results to

achieve such an answer. Most of the material from this chapter also appears in

[11, 12]. Finally, in Chapter 4 I extend some results of Blass and others which

will prompt a study of certain forcing extensions and whether there are strongly

summable ultrafilters in these extensions. It could also be said, in a sense, that

this is the chapter which deals with constructions: we construct strongly summable

ultrafilters by using several different forcing techniques.
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1 Preliminary Remarks

This chapter introduces the definitions for the main concepts that will occupy us

throughout this dissertation, and contains a few theorems or lemmas that will be

needed in different parts of this work. Most of the results from this chapter are not

original, and in several cases we do not write a complete proof (or sometimes even

any proof at all) of the claims that we make.

1.1 Notation and Terminology

This dissertation is full of standard set-theoretic notation, in most cases similar to

what can be found in standard Set Theory textbooks such as [26]. We reserve the

lowercase roman letters p, q, r, u, v for ultrafilters, and the uppercase roman letters

A,B,C,D,W,X, Y, Z, with or without subscripts, will always denote subsets of

the semigroup at hand. Lowercase letters w, x, y, z will typically denote elements

of the semigroup that is being dealt with, and the “vector” notation will be used

for sequences of elements of the semigroup, e.g. ~x = 〈xn
∣∣n < ω〉. When the
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sequences are finite, we use the symbol _ to denote their concatenation, as in

~x _ ~y. If G is a group and x ∈ G, the symbol o(x) will denote the order of x,

i.e. the least natural number n such that xn = e. We make liberal use of the

von Neumann ordinals, usually denoted by Greek letters α, β, γ, ζ, η, ξ; thus for two

ordinals α, β, the expressions α < β and α ∈ β are interchangeable. Cardinals

are nothing but initial ordinals (this is, ordinals that are not in bijection with any

of their predecessors) and will typically be denoted by the greek letters κ, µ, λ.

As a particular case of an ordinal (and at the same time, a cardinal), a natural

number n is conceived as the set {0, . . . , n − 1} of its predecessors, with 0 being

equal to the empty set ∅; and ω denotes the set of finite ordinals, i.e. the set

N ∪ {0}. The lowercase roman letters i, j, k, l,m, n, with or without subscript,

will be reserved to denote elements of ω. The letters M and N , with or without

subscripts, will in general be reserved for denoting subsets of ω (finite or infinite),

although occasionally they might denote natural numbers as well (typically, in these

situations we will have e.g. that N denotes a natural number that is “much larger”

than n). The lowercase roman letters a, b, c, d, with or without subscript, will stand

for elements of [ω]<ω, i.e. for finite subsets of ω. Given any set X, [X]n will denote

the set of subsets of X with n elements, [X]<ω =
⋃
n<ω

[X]n will denote the set of

finite subsets of X, and [X]ω denotes the set of infinite subsets of X. The set

of finite sequences of elements from X is denoted by X<ω and the set of infinite
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sequences, by ωX.

The cardinal invariant cov(M) (read “covering of meagre”) is the least cardinal

for which Martin’s Axiom fails at a countable partial order. This is, cov(M) is

the least κ such that one can find κ-many dense subsets of some countable partial

order with no filter meeting them all (this notation is explained by the fact that

this cardinal is also the least possible number of meagre sets needed to cover all

of the real line). Thus the equality cov(M) = c means that Martin’s Axiom holds

for countable partial orders, whilst the failure of this principle is expressed by the

inequality cov(M) < c. The invariant p, on the other hand, is the least cardinality

of a centred family without a pseudointersection, and coincides with the least car-

dinal for which Martin’s Axiom fails at a σ-centred partial (and, as was recently

discovered [28, 29], is also equal to the tower number t). Thus the principle p = c

is nothing but Martin’s Axiom for σ-centred partial orders.

When dealing with abelian groups, one that will be of utmost importance

throughout this work is is the so-called circle group, or 1-dimensional torus, T =

R/Z. The reason for its importance is that (as mentioned in [19, p. 123, Section 1],

and thoroughly discussed at the beginning of [12, Section 3]) every abelian group

can be embedded in a direct sum of circle groups
⊕

α<κ T (for some infinite cardinal

κ), hence these direct sums will be used ubiquitously in this work. When talking

about the group T, we will freely identify real numbers with their corresponding
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cosets modulo Z, and conversely we will identify elements of T –which are cosets

modulo Z– with any of the elements of R representing them. It is therefore possible

that we might write something like t = 0 and really mean that t ∈ Z, since in the

context of working with T, we talk about the real number t when we actually mean

the coset of t modulo Z. This should not cause confusion as the context will always

clearly indicate whether we are viewing a real number t as a real number or as an

element of T. If there is the need to specify a single representative for an element

of T, we will pick the unique representative t satisfying −1
2
< t ≤ 1

2
. In fact, a lot

of the time we will be working with direct sums of several copies of T, i.e. with

the group
⊕

α<κ T for some (infinite) cardinal κ. In this context, given an ordinal

β < κ we will denote the β-th projection map by πβ.

When doing forcing, we will denote the ground model by V , and the forcing

relation by 
. We force “downwards”, this is, for conditions p, q the expression

p ≤ q means that p extends q. We try not to reserve a letter for the V -generic filter

added by a certain forcing notion, since we will always specify how we are going to

denote the relevant generic object.

1.2 Ultrafilters and the Čech-Stone Compactification

This section contains a very basic and standard introduction to ultrafilters and the

Čech-Stone compactification. This can be found with more detail in [21], or in any
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standard introductory course (and even some introductory textbooks) in General

Topology.

Given a nonempty set X, a subset F ⊆ P(X) is called a filter if it is nonempty

(equivalently X ∈ F , given the next requirement), closed under finite intersections

and supersets, and not all of P(X) (equivalently ∅ /∈ F ). If F is a filter and it is

⊆-maximal among filters (equivalently, whenever X = X0 ∪X1 there is i ∈ 2 with

Xi ∈ F ), we will say that F is an ultrafilter.

Given a filter F , we say that a subset B ⊆ F is a base for F if the latter

coincides with the upwards closure of B, in symbols: F = B+ = {A ⊆ X
∣∣(∃B ∈

B)(B ⊆ A)}. We say that a subset S ⊆ F is a subbase for F if the upwards

closure of its closure under finite intersections coincides with F , this is, if F =

{
⋂
B∈F

B
∣∣F ∈ [S ]<ω}+ = {A ⊆ X

∣∣(∃F ∈ [S ]<ω)(
⋂
B∈F

B ⊆ A)}. It is easy to prove

that every base for a given filter is always a subbase for it too.

We will now say a few words about the Čech-Stone compactification of a topo-

logical space. Throughout this dissertation, all hypothesized spaces will be assumed

to be Hausdorff. If X is a topological space (when talking about topological spaces,

we will usually symbolize their underlying sets only and leave their topologies im-

plicit), a Čech-Stone compactification for X is a compact topological space βX

together with an embedding ι : X −→ βX (this is, ι is an injective continuous

mapping and it is a homeomorphism between X and ι[X]) such that ι[X] is dense
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in βX and that satisfies the following universal property: whenever K is a compact

and f : X −→ K is a continuous function, there exists a unique continuous function

βf : βX −→ K that renders the following diagram commutative:

βX
βf

''
X

ι

OO

f
// K

In this case, we typically think of X as being a dense subspace of βX, and of

ι as being the inclusion mapping. The above universal property implies that, if X

has any Čech-Stone compactification at all, then that compactification is unique up

to a homeomorphism fixing X. It is possible to prove that a topological space has a

Čech-Stone compactification if and only if it is T3 1
2
. Hence it can be verified that the

symbol β actually denotes a covariant functor from the category of T3 1
2

spaces (also

known as completely regular spaces, or Tychonov spaces, or uniformizable spaces)

to the category of compact Hausdorff spaces (where we consider all continuous

mappings to be the arrows for both categories).

When X is just a “bare” set, without any topological structure, we will au-

tomatically equip it with the discrete topology. In this case, it is possible to re-

alize the Čech-Stone compactification βX of X as the set of all ultrafilters on X

equipped with the topology that has as a basis the collection of all sets of the form

6



Ā = {p ∈ βX
∣∣A ∈ p}, for A ⊆ X; and the inclusion mapping ι that sends every

x ∈ X to its corresponding principal ultrafilter, i.e. ι(x) = {A ⊆ X
∣∣x ∈ A}. Under

these circumstances, what we originally denoted by Ā is really the closure in βX

of the set ι[A] (which we identify with A itself).

If F is a filter, it is not hard to see that F̂ = {p ∈ βX
∣∣F ⊆ p} is a closed

subset of βX. Conversely, if F ⊆ βX is a closed set then
⋂
F is a filter, and it is

possible to check that
⋂̂
F = F and

⋂
F̂ = F . So it is possible to identify filters

on X with closed subsets of βX. A good example is the so-called Čech-Stone

remainder X∗ = βX \X which equals F̂ where F is the Fréchet filter consisting

of all cofinite subsets of X.

There is also a neat characterization of the continuous extension of functions.

Whenever we have a function f : X −→ Y between two sets, if p is an ultrafilter

in X then the family f(p) = {A ⊆ Y
∣∣f−1[A] ∈ p} is an ultrafilter on Y , for which

the family {f [A]
∣∣A ∈ p} is a base. Now if K is a compact Hausdorff space, and

f : X −→ K is any mapping (which is automatically continuous as X is discrete),

then the continuous extension βf : βX −→ K given by the universal property is

as follows: (βf)(p) is the (unique, as K is Hausdorff) limit of the ultrafilter f(p)

in K (which exists since K is compact).

In particular, we can get a nice description of β as a functor, when its domain

is restricted to the category of discrete spaces (which is really just the category of
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sets). For any mapping f : X −→ Y between two sets, one can think of it as a

mapping f : X −→ βY , in which case (βf)(p) is just f(p) (since the limit in βY of

any ultrafilter on Y is itself). The ultrafilter f(p) is called the Rudin-Keisler image

of p under f .

We will now turn our attention to semigroups. If (S, ∗) is a semigroup, to

its algebraic structure we will add a topological one by, again, equipping S with

the discrete topology. This turns S into a topological semigroup, meaning that

the semigroup operation ∗ : S × S −→ S is continuous. We will now extend the

semigroup operation to all of βS as follows. First we consider, for any x ∈ S,

the left translation λx : S −→ S ⊆ βS given by λx(y) = x ∗ y. Then the unique

extension βλx : βS −→ βS allows us to define the product of an element x ∈ S

by an ultrafilter p ∈ βS as x ∗ p = (βλx)(p). That allows us to define, for every

p ∈ βS, the right-translation function ρp : S −→ βS by ρp(x) = x ∗ p, whereby

the continuous extension βρp : βS −→ βS gives us a way of multiplying any two

ultrafilters q, p ∈ βS by defining q ∗ p = (βρp)(q). If we calculate what this means

in purely combinatorial terms, we get the following formula for the product of two

ultrafilters:

p ∗ q = {A ⊆ S
∣∣{x ∈ S∣∣{y ∈ S∣∣x ∗ y ∈ A} ∈ q} ∈ p}.

Usually we will, for short, denote x−1 ∗A = {y ∈ S
∣∣x∗y ∈ A}, so that p∗q = {A ⊆
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S|{x ∈ S|x−1∗A ∈ q} ∈ p}. It is useful to note that this product is just a particular

case of the so-called Arens product in the Banach algebra `∞(S)∗. Without diving

into the deep details of this construction, we can just say that, if we think of an

ultrafilter as a two-valued measure on S (given by assigning any A ⊆ S measure 1

if and only if A belongs to the given ultrafilter, and measure zero otherwise), then

p ∗ q is the new measure which is given by assigning to any A ⊆ S the measure

(p ∗ q)(A) =

∫
x∈G

∫
y∈G

χA(x ∗ y) dq(y) dp(x),

where χA denotes the characteristic function of A.

Equipped with the operation ∗ defined in this way, βS becomes a right topo-

logical semigroup. This means that for each p ∈ βS, the right-translation mapping

ρp : βG −→ βG given by ρp(q) = q ∗ p is continuous, although the left-translation

mappings λp : βG −→ βG (λp(q) = p ∗ q) are not continuous in general. It is

important to note that, even when (S, ∗) is a commutative semigroup, the ex-

tended operation ∗ is in general not commutative, and nonprincipal ultrafilters

p ∈ S∗ do not have inverses even when (S, ∗) is a group. However, whenever

S, T are semigroups and f : S −→ T is a semigroup homomorphism (this is,

(∀x, y ∈ S)(f(x ∗ y) = f(x) ∗ f(y))) then so is βf : βS −→ βT , which means that

f(p ∗ q) = f(p) ∗ f(q) for all p, q ∈ βS. In most cases (the exact hypotheses needed

to ensure this are stated in [21, Theorem 4.28], and are satisfied by all semigroups

considered here) the Čech-Stone remainder S∗ is a subsemigroup of βS. Being (al-
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ways) also a closed subset of the compact space βS, we conclude that, in the cases

that we are concerned with here, S∗ is itself a compact right-topological semigroup.

Now we turn to another useful notion that happens to be quite closely related

to ultrafilters. Let X be a set and suppose that we have a family A ⊆ P(X) of

subsets of X. Then we say that A is partition regular, or a coideal, if A is

closed under supersets and, whenever an element of A is partitioned into two cells,

the family A necessarily contains at least one of the cells. One of the main reasons

that this notion is relevant for our study of ultrafilters, is that the following three

conditions are equivalent for a family A ⊆ P(X) of subsets of X.

(i) A is partition regular,

(ii) there exists an ultrafilter p all of whose elements belong to the family A (this

is, p ⊆ A ); and

(iii) whenever F is a filter all of whose elements belong to the family A (i.e.

F ⊆ A ), then there exists an ultrafilter p extending F all of whose elements

belong to the family A (this is, F ⊆ p ⊆ A ).

10



1.3 Finite Products, Strongly Productive Ultrafilters

Let (S, ∗) be a semigroup and α an ordinal. Whenever we have a sequence ~x =

〈xξ
∣∣ξ < α〉 of elements of S, we will define the set of finite products of ~x as

FP(~x) =

{∏
ξ∈a

xξ

∣∣∣∣a ∈ [α]<ω \ {∅}

}
,

where the products are computed in increasing order of indices (i.e. if a = {ξ0, . . . , ξn}

with ξ0 < ξ1 < · · · < ξn then
∏

ξ∈a xξ = ξ0 ∗ ξ1 ∗ · · · ∗ ξn). The ordinal index α of our

sequences will typically be at most ω. When we have an α-sequence ~x of elements

of a semigroup S, and β < α, we will also use the notation FPβ(~x) to denote the set

FP(~y) where ~y is the β-sequence given by yγ = xβ+γ. If we allow a certain degree

of informality and language abuse, we can simply think that

FPβ(~x) = FP(〈xγ
∣∣β ≤ γ < α〉).

Definition 1.1. An ultrafilter p ∈ βS will be called strongly productive if for

every A ∈ p there exists an ω-sequence ~x of elements of S such that p 3 FP(~x) ⊆ A.

It is not hard to see that elements x ∈ S are strongly productive if and only if

they are idempotent (i.e. x ∗ x = x). We will see in Chapter 2 that, for a good

amount of semigroups S, nonprincipal strongly productive ultrafilters p ∈ βS must

also satisfy the equation p ∗ p = p, i.e. they are idempotents as well.

If our semigroup is abelian, we will typically use “additive notation”, meaning

that we will denote the semigroup operation by + (hence our semigroup will now be

11



(S,+)). Accordingly, we will also write FS(~x) instead of FP(~x) (“finite sums” rather

than “finite products”); and notice that, in this case, we can forget all requirements

having to do with the order in which we add the elements of the sequence, so it

is possible to “rearrange” a given sequence ~x and still get the same FS-set. This

means that, if ~x and ~y are two sequences (not necessarily indexed by the same

ordinal) with the same range and such that, for every z in the common range, the

cardinality of the fiber of z is the same with respect to both sequences (this is, if

|{α < dom(~x)
∣∣xα = z}| = |{α < dom(~y)

∣∣yα = z}|), then FS(~x) = FS(~y). Hence it

makes sense to define, for every X ⊆ S, FS(X) to be the set FS(~x) where ~x is any

injective sequence with range X. In this context, we state the following definition.

Definition 1.2. A strongly summable ultrafilter is just a strongly productive

ultrafilter on an additively denoted commutative semigroup (S,+). This is, p ∈ βS

is strongly summable if for every A ∈ p there exists an ω-sequence ~x of elements of

S such that p 3 FS(~x) ⊆ A.

The concept of strongly summable ultrafilter was first introduced in the case of

the additive semigroup of positive integers (N,+) in [17, Definition 2.1] by Hindman

upon suggestion of van Douwen (cf. also the notes at the end of [21, Chapter 12]),

although Hindman had already (inadvertently) proved in [15, Theorem 3.3] that

the existence of strongly summable ultrafilters on N follows from CH. They were

also considered (independently) by Matet [31].

12



From now on, we will assume that all of our semigroups have an identity, which

we denote by e when the semigroup is multiplicatively denoted and by 0 when it is

additively denoted. When dealing with strongly productive (or strongly summable,

accordingly) ultrafilters, it will of course be of crucial importance to determine

when two of them “look the same”, in a sense that takes into account the algebraic

structure of the FP-sets involved. The relevant definition was introduced in [6, p.

84]. Before we present it, we need to talk about a further notion, which stems

from the fact that, when dealing with sets of the form FP(~x), if each finite product

from this set can be expressed uniquely as such then the situation is much more

comfortable. To simplify notation, we make the convention that for any α-sequence

~x of elements of some semigroup S, the empty product (respectively empty sum)

equals the identity element:

∏
n∈∅

xn = e (respectively
∑
n∈∅

xn = 0).

Definition 1.3. An α-sequence ~x of elements of a semigroup S is said to satisfy

uniqueness of products (respectively uniqueness of sums) if whenever a, b ∈

[α]<ω are such that

∏
n∈a

xn =
∏
n∈b

xn (respectively
∑
n∈a

xn =
∑
n∈b

xn),

it must be the case that a = b.

In particular, if ~x satisfies uniqueness of products (respectively uniqueness of
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sums) then ~x is injective, and e /∈ FP(~x) (respectively 0 /∈ FS(~x)). We now fi-

nally have under our belt the appropriate terminology needed to express our very

particular notion of isomorphism.

Definition 1.4. Let S, T be semigroups and p ∈ βS, q ∈ βT be strongly productive

ultrafilters. We say that p and q are multiplicatively isomorphic if there are

sequences ~x ∈ ωS, ~y ∈ ωT satisfying uniqueness of products, such that FP(~x) ∈ p,

FP(~y) ∈ q, and the mapping ϕ : FP(~x) 7−→ FP(~y) given by ϕ(
∏

n∈a xn) =
∏

n∈a yn

sends p to q (this is, ϕ(p) = q). We say that the mapping ϕ is a multiplicative

isomorphism.

(If either of the semigroups S or T is additively denoted, replace “products” by

“sums”, FP by FS, and so on, accordingly. If both semigroups S and T are additively

denoted then we talk about additively isomorphic and additive isomorphism.)

Thus, the notion of a multiplicative (respectively additive) isomorphism is a

very natural strengthening of the notion of Rudin-Keisler equivalence, which incor-

porates the fact that we are interested in the algebraic structure of FP- (respectively

FS-) sets.

Next, we mention a concept that will be useful in several places of this work.

Definition 1.5. Given a semigroup S and a sequence ~x (indexed by some ordinal

α) of elements from S that satisfies uniqueness of sums, we say that the sequence ~y
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(indexed by some ordinal δ) is a product subsystem of the sequence ~x if FP(~y) ⊆

FP(~x) and, if for every β < δ we let aβ ∈ [α]<ω be such that yβ =
∏

ξ∈aβ xξ, then

β < γ < δ implies that max(aβ) < min(aγ). If the semigroup is additively denoted

then we will say that ~y is a sum subsystem.

We finish this section by mentioning a significant lemma which will be of use

throughout the rest of this thesis.

Lemma 1.6. Let S be a semigroup, and let ~x be an ω-sequence of elements of S.

Then the set FP∞(~x) = {p ∈ βS
∣∣(∀n < ω)(FPn(~x) ∈ p)} is a nonempty closed

subsemigroup of βS. Moreover, if the sequence ~x satisfies uniqueness of products,

then FP∞(~x) ⊆ S∗.

Proof. It is clear that the family {FPn(~x)
∣∣n < ω} is a filter base, thus FP∞(~x) is a

closed subset of βS. To see that it is also a subsemigroup, we let p, q ∈ FP∞(~x) and

aim to prove that, for every n < ω, FPn(~x) ∈ p ∗ q. Since FPn(~x) ∈ p, it suffices

to show that, for every x ∈ FPn(~x), the set {y ∈ S
∣∣x ∗ y ∈ FPn(~x)} ∈ q. So let

x ∈ FPn(~x) and assume that x =
∏

i∈a xi (a ⊆ ω, n ≤ min(a)). Let m = max(a)+1,

then FPm(~x) ∈ q, so it suffices to show that, for every y ∈ FPm(~x), x ∗ y ∈ FPn(~x).

So let y ∈ FPm(~x) and assume that y =
∏

j∈b xj (b ⊆ ω, min(b) ≥ m). Then we

have that max(a) < min(b), thus

x ∗ y =

(∏
i∈a

xi

)
∗

(∏
j∈b

xj

)
=
∏
k∈a∪b

xk ∈ FPn(~x)
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and we are done.

The “moreover” part follows quite easily from the main statement of the lemma,

for if ~x satisfies uniqueness of products then the filter generated by the sets FPn(~x)

is free (meaning its intersection is empty).

Corollary 1.7. Let S be a semigroup, and let { ~xα
∣∣α < κ} be a family of ω-sequences

of elements of S. Then the set

{p ∈ βS
∣∣{FPn( ~xα)

∣∣α < κ ∧ n < ω} ⊆ p}

is a closed subsemigroup of βS.

1.4 The Boolean Group

Recall that a Boolean Group is a group that contains only (except for the identity)

elements of order 2. It is well-known that every Boolean group is abelian and that,

in fact, for every infinite cardinal κ there is a unique (up to isomorphism) Boolean

group of cardinality κ (meanwhile, for a finite cardinal n, there exists a Boolean

group of cardinality n if and only if n is a power of two, in which case this Boolean

group is unique up to isomorphism). Throughout this work, we will denote the

Boolean group of cardinality κ by Bκ. Our favourite realization for this group –

our favourite way of thinking of it– is as the collection of finite subsets of κ with

the symmetric difference as group operation ([κ]<ω,4). Sometimes we will also
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encounter the group Bκ realized as the subgroup{
x ∈

⊕
α<κ

T
∣∣∣∣(∀α < κ)

(
πα(x) ∈

{
0,

1

2

})}
of the direct sum

⊕
α<κ T of κ copies of T.

We pay particular attention to the Boolean group of cardinality ω. From now on,

the words “the Boolean group” (without reference to any cardinality) will always

refer to this group, which we denote by B (without a cardinal in the subindex).

Usually we will think of this group as being just ([ω]<ω,4). One of the main offshots

of this dissertation work is that strongly summable ultrafilters on an arbitrary

abelian group G (and also many strongly productive ultrafilters in several important

noncommutative semigroups), in a sense, essentially look like strongly summable

ultrafilters on B. More concretely, one of the main results from Chapter 3 (namely,

Corollary 3.28) will show that one does not really lose generality by considering

only strongly summable ultrafilters on B.

When dealing with the Boolean group and considering sets of finite sums, we

will write F4(X) instead of FS(X) to emphasize that the group operation is the

symmetric difference. Notice that the fact that every element has order 2 implies

that for any sequence ~x, F4(~x) is essentially equal to F4(ran(~x)). By this we mean

that F4(~x) is equal to either F4(ran(~x)) or F4(ran(~x))∪{0} (the latter case can

happen, for example, if ~x is not injective). Hence a nonprincipal ultrafilter p ∈ B∗

is strongly summable if and only if for every A ∈ p there is an infinite set X ⊆ B
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such that p 3 F4(X) ⊆ A.

We will use the fact that Bκ has a structure of κ-dimensional vector space over

the field with two elements F2 = Z/2Z (scalar multiplication being the obvious

one). Note that for X ⊆ Bκ, the subspace spanned by X, which is the same as the

subgroup generated by X, is exactly F4(X)∪ {∅}, because nontrivial linear com-

binations (i.e. linear combinations in which not all scalars equal zero) of elements

of X are exactly finite sums (or symmetric differences) of elements of X. We can

use this to figure out how do subsets X ⊆ Bκ satisfying uniqueness of sums look

like.

Proposition 1.8. For X ⊆ B, the following are equivalent:

(i) X satisfies uniqueness of finite sums.

(ii) ∅ /∈ F4(X).

(iii) X is linearly independent.

Proof. Given the observation from the previous paragraph relating finite sums and

nontrivial linear combinations, it is straightforward to see that (ii) is equivalent to

(iii). That either of these is equivalent to (i) is as follows. If X does not satisfy

uniqueness of finite sums, then there are two distinct nonempty A,B ∈ [X]<ω such

that4
x∈A

x =4
x∈B

x, whereby adding4
x∈B

x to both sides of this equation yields
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4
x∈A4B

x = ∅, and since A 6= B this sum is nonempty, i.e. A 4 B 6= ∅, so that

∅ ∈ F4(X). Conversely, if ∅ ∈ F4(X), i.e. if there is a nonempty A such that

4
x∈A

x = ∅, then by picking any nonempty B disjoint from A we get that B 6= B∪A

but nevertheless

4
x∈B∪A

x =

(
4
x∈B

x

)
4
(
4
x∈A

x

)
=4

x∈B
x.

Thus when we have a set F4(Y ) such that Y is not linearly independent, we can

always choose a basis X for the subspace F4(Y ) spanned by Y , and we will have

that F4(X) = F4(Y ) \ {∅}. This means that, when considering sets of the form

F4(X), we can assume without loss of generality that X is linearly independent.

Another way to see this is the following: let p ∈ B∗ be a strongly summable

ultrafilter, and let A ∈ p. Since p is nonprincipal, {∅} /∈ p and hence A \ {∅} ∈ p.

Therefore we can choose an X such that p 3 F4(X) ⊆ A \ {0}, so F4(X) ⊆ A

and X must be linearly independent.

We need to also introduce the notion of support.

Definition 1.9. For a linearly independent set X ⊆ B, we define for an element

y ∈ F4(X) the X-support of y, denoted by suppX(y), as the (unique, by linear

independence of X) finite set of elements of X whose sum equals y. This is,

y = 4
x∈suppX(y)

x.
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If Y ⊆ F4(X) then, we also define the X-support of Y as

suppX(Y ) =
⋃
y∈Y

suppX(y).

Similarly, we define the X-support of a sequence of elements of F4(X) as the

X-support of its range.

It will be convenient to stipulate the convention that suppX(∅) = ∅. Then it is

readily checked that the function suppX : F4(X)∪ {∅} −→ ([X]<ω,4) is a group

isomorphism (in fact, a linear transformation between the two vector spaces), in

other words, suppX(x4y) = suppX(x)4 suppX(y) for all x, y ∈ F4(X); and more

generally suppX

(
4
x∈A

x

)
=4

x∈A
suppX(x) for all A ∈ [F4(X)]<ω. This is the

really crucial feature of the X-support, and it will be used ubiquitously throughout

this work.

When dealing with the extension of the operation 4 to all of βB, in order to

avoid confusion we will use the symbol N to denote the aforementioned extension.

We will also use that symbol to denote translates of sets, xNA = {x4 y
∣∣y ∈ A}.

Thus, with this notation,

pNq = {A ⊆ B
∣∣{x ∈ B

∣∣xNA ∈ q} ∈ p}
for any two p, q ∈ βB.

We will now present some important notions first introduced by Blass in [3,

p. 92] (an article that appeared in the same volume as that of Hindman’s [17]
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where strongly summable ultrafilters are first defined). Ever since their inception,

strongly summable ultrafilters have always been inextricably related to the notions

that we will present in what follows.

Definition 1.10.

(i) A family X ⊆ B is said to be disjoint if its elements are pairwise disjoint (as

anyone would expect). It is said to be ordered or in block position if for

every two distinct x, y ∈ X, either max(x) < min(y) or max(y) < min(x).

(ii) An ultrafilter p ∈ B∗ is said to be a union ultrafilter if for every A ∈ p there

exists a disjoint family X such that p 3 F4(X) ⊆ A, and p is an ordered

union ultrafilter if for every A ∈ p there exists an ordered family X such

that p 3 F4(X) ⊆ A. Thus, notice that union and ordered union ultrafilters

are particular cases of strongly summable ultrafilters on B.

Notice that the only idempotent of B, namely 0 = ∅, is a strongly summable

ultrafilter but not a union ultrafilter. For nonprincipal strongly summable ultra-

filters on B, however, it is not obvious that the two notions are distinct. We will

show in Chapter 4 that it is consistent that there exists a nonprincipal strongly

summable ultrafilter on B which is not a union ultrafilter (in fact, this ultrafilter is

not even additively isomorphic to any union ultrafilter).

The reason that union ultrafilters are so important in this realm is that sig-
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nificantly many strongly productive ultrafilters are multiplicatively isomorphic to

union ultrafilters (but not all, as we remarked in the previous paragraph). We will

see next that when this is the case, the multiplicative isomorphism witnessing this

fact is actually very simple.

Proposition 1.11. Let p be a strongly productive ultrafilter on some semigroup

S. If p is multiplicatively isomorphic to a union ultrafilter, and this is witnessed

by the mapping
∏

n∈a xn 7−→
⋃
n∈a

yn from FP(~x) to F4(Y ), then the mapping ψ :

FP(~x) −→ [ω]<ω given by ψ(
∏

n∈a xn) = a also maps p to a union ultrafilter.

Proof. We only need to show that for any union ultrafilter q and any pairwise

disjoint Y = {yn
∣∣n < ω} such that F4(Y ) ∈ q, the mapping ϕ given by

⋃
n∈a

yn 7−→ a

maps q to another union ultrafilter. Once we prove this, then given the hypothesis

of the theorem we can just compose the mapping ϕ with the original isomorphism

to get the ψ that we need. So let r be the image of q under such mapping, and

let A ∈ r. Then since B = ϕ−1[A] ∈ q, there is a pairwise disjoint X such that

q 3 F4(X) ⊆ B ∩ F4(Y ). Since X is pairwise disjoint and contained in F4(Y ),

it is readily checked that for distinct x,w ∈ X, if x =
⋃
n∈a

yn and w =
⋃
n∈b

yn then

a∩ b = ∅. Hence the family Z = {a ∈ [ω]<ω
∣∣ ⋃
n∈a

yn ∈ X} is pairwise disjoint. Note

moreover that all finite unions are preserved in the sense that, for x0, . . . , xn ∈ X

such that xi =
⋃
k∈ai

yk, we have that
n⋃
i=0

xi =
⋃
k∈a

yk where a =
n⋃
i=0

ai, i.e. ϕ

(
n⋃
i=0

xi

)
=
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n⋃
i=0

ϕ(xi). This means that ϕ[F4(X)] = F4(Z), thus r 3 F4(Z) ⊆ A and we are

done.
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2 Strongly Productive Ultrafilters: Basic

Properties

This chapter outlines some basic results that deal with strongly productive/summable

ultrafilters. It should be mentioned that all of the results from Sections 2.3, 2.4

and 2.5 arose from a joint work with Martino Lupini, and they can be found in

greater generality in the paper [13].

2.1 Idempotent ultrafilters

Of special importance for the present study are idempotent ultrafilters on semi-

groups. In a sense, these objects have been historically intertwined with strongly

productive ultrafilters. An idempotent ultrafilter on a semigroup S is just an ul-

trafilter satisfying the equation p = p ∗ p. If we recall that the Čech-Stone com-

pactification βS of S is a right-topological compact semigroup, then the following

classical result, whose proof we include just for convenience of the reader, implies

the existence of idempotent ultrafilters. Moreover, since the Čech-Stone remainder

24



S∗ = βS \S is a closed subsemigroup of βS, we ensure the existence of nonprincipal

idempotent ultrafilters as well.

Lemma 2.1 (Ellis). Every compact right-topological semigroup has idempotents.

Proof. Let S be a compact right-topological semigroup. Let P be the preorder

whose conditions are nonempty compact subsemigroups of S, with T ′ ≤ T ⇐⇒

T ′ ⊆ T . Then every chain C ⊆ P has the finite intersection property, whereby com-

pactness of S ensures that
⋂
C (which is, of course, compact as well) is nonempty.

Since it is also clearly a subsemigroup of S, we conclude that
⋂
C ∈ P is a lower

bound for C, hence Zorn’s Lemma gives us a minimal element T ∈ P.

Grab any x ∈ T (at the end of the argument we will actually have shown that

T = {x}), and consider the shift, or translate, T ∗x of T by x. This is the continouos

image of a compact set, hence compact, and it is very easy to check that it is a

(clearly nonempty) subsemigroup of S. Thus T ∗ x ∈ P, while at the same time

T ∗x ⊆ T , so by minimality of T we must have that T = T ∗x. In particular, there

is a y ∈ T such that y ∗ x = x.

The previous paragraph ensures that the following set is nonempty:

T ′ = {y ∈ T
∣∣y ∗ x = x} = ρ−1x [{x}].

Now T ′ is the continuous preimage of a closed set, hence closed, hence compact.

And it is not at all hard to check that it is a subsemigroup. Thus T ′ ∈ P, and
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T ′ ⊆ T so by minimality of T we get that T = T ′ and, in particular (since x ∈ T ),

we get x ∗ x = x so x is the idempotent that testifies for our statement.

Next, we aim to prove Hindman’s finite sums theorem. Since we want to prove

it in full generality, it will be phrased in the form of finite products on a semigroup.

We introduce some useful notation: If p ∈ βS is an ultrafilter, and A ⊆ S, we let

A?(p) = {x ∈ A
∣∣x−1 ∗ A ∈ p}. We will drop p from the notation when it is clear

from the context. The really important property about this operation, is that if p

is an idempotent and A ∈ p, then A? ∈ p and (A?)? = A? [21, Lemma 4.14].

The following proof will be useful as a “template” when we try, later on, to

prove the existence of certain kinds of ultrafilters.

Theorem 2.2 (Hindman). Let ~x be an ω-sequence of elements of a semigroup S

with an infinite range, and suppose that we have a partition FP(~x) = A0 ∪ A1.

Then there exists an i ∈ 2 and an injective ω-sequence ~y such that FP(~y) ⊆ Ai. In

particular, whenever we partition an infinite semigroup into finitely many pieces,

one of the pieces must contain an FP-set.

Proof. Use the Ellis-Numakura lemma together with Lemma 1.6 to find an idem-

potent nonprincipal ultrafilter p = p ∗ p ∈ FP∞(~x) ∩ S∗. Let i ∈ 2 be such that

Ai ∈ p. We will inductively construct the sequence ~y, but instead of aiming for

FP(~x) to be a subset of Ai, we will make it a subset of B0 = A?i . First we no-
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tice that, if we had chosen the sequence ~y already, we would have the equality

FP(~y) = y0 ∗ FP1(~y) ∪ FP1(~y). Thus it is sufficient to require that y0 ∈ B0,

as long as we also have that FP1(~y) ⊆ B0 ∩ y−10 ∗ B0. This transfers the prob-

lem of choosing the sequence ~y in such a way that FP(~y) ⊆ B0 to the prob-

lem of choosing the tail end of the sequence, 〈yn
∣∣n ≥ 1〉, in such a way that

FP1(~y) = FP(〈yn
∣∣n ≥ 1〉 ⊆ B0 ∩ y−10 ∗ B0, which we will achieve by transfer-

ring again the problem: choosing y1 ∈ B1 = (B0 ∩ y−10 ∗ B0)
? and making sure

that FP2(~y) = FP(〈yn
∣∣n ≥ 2〉) ⊆ B1 ∩ y−11 ∗ B1 will do. As can be expected by

now, we transfer again the problem, meaning that it suffices to choose y2 ∈ B2 =

(B1 ∩ y−11 ∗ B1)
? and to make sure that FP3(~y) = FP(〈yn

∣∣n ≥ 3〉 ⊆ B2 ∩ y−12 ∗ B2,

which we will ensure by picking y3 ∈ B3 = (B2 ∩ y−12 ∗ B2)
? and making sure that

FP4(~y) = FP(〈yn
∣∣n ≥ 4〉) ⊆ B3 ∩ y−13 ∗ B3, and so on; this process will in the end

(after ω many steps) yield the desired sequence ~y.

For the “in particular” claim, just grab your favourite countably infinite subset

of S and arrange it in an ω-sequence ~x, and let the given partition of S induce a

corresponding partition on FP(~x).

Note that, if we additionally assume that ~x satisfies the uniqueness of sums,

then it is easy to slightly modify the proof of the previous theorem in such a way

that the chosen sequence ~y is a product subsystem of the sequence ~x. All one

needs to do is ensure that, at the n-th step, we choose yn to be an element of
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Bn \ FP(〈xk
∣∣k ≤ m〉) rather than Bn, where m = max(

⋃
i<n

ai) if we assume that

yi =
∏

j∈ai xj for all i < n (this set is still an element of p, since we were assuming

that p was nonprincipal).

As a particular case, we get Hindman’s theorem, which was originally proved

[16, Theorem 3.1] by combinatorial methods. For a short combinatorial proof see

[2].

Corollary 2.3 (Hindman). Whenever we partition N = A0 ∪ A1, there exists an

i ∈ 2 and an injective ω-sequence ~x such that FS(~x) ⊆ Ai.

Proof. In the previous theorem, just let N = S (or let ~x be given by xn = 2n and

notice that in this case N = FS(~x)).

This motivates the following definition.

Definition 2.4. An ultrafilter p on a semigroup S is called weakly productive

(or weakly summable if the semigroup is additively denoted) if for every A ∈ p

there exists an injective ω-sequence of elements of S such that FP(~x) ⊆ A.

The proof of Hindman’s theorem actually shows that idempotent ultrafilters

are weakly productive. In fact, it is easy to argue that being weakly productive is

equivalent to belonging to the closure in βS of the set of all idempotents, for a set

A ⊆ S contains an FP-set if and only if its closure Ā in βS contains an idempotent
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(one of the implications on this statement is given by Hindman’s theorem, whilst

the other is Lemma 1.6).

2.2 Existence (Consistently)

We are aiming to prove that, if S is a semigroup, then it is consistent that there

exists a strongly productive (or summable) ultrafilter on S. We were not able to

get a statement in such great generality (in particular, for all we know it is possible

that in ZFC there is a semigroup without strongly summable ultrafilters), but we

have been able to isolate a reasonably broad class of semigroups for which the result

holds. Along the way, we will also see that for some semigroups the existence of

strongly summable ultrafilters can actually be proved in ZFC (in fact we will look

at two examples of semigroups on which every ultrafilter is strongly summable).

Definition 2.5. Let S be a semigroup. We say that S is

(i) left cancellative if whenever x ∗ y = x ∗ z (x, y, z ∈ S) we have that y = z.

(ii) right cancellative if whenever y ∗x = z ∗x (x, y, z ∈ S) we have that y = z.

(iii) weakly left cancellative if for every u, v ∈ S there are only finitely many

x ∈ S such that u ∗ x = v.

(iv) weakly right cancellative if for every u, v ∈ S there are only finitely many

x ∈ S such that x ∗ u = v.
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These definitions will allow us to delineate the class of semigroups S for which

we can show, under certain set-theoretic hypotheses, that strongly productive ul-

trafilters exist on S. We first note, however, that [21, Theorem 6.35] establishes

that if S is right cancellative and weakly left cancellative, then S∗ ∗ S∗ (this is, the

collection of all products of two nonprincipal ultrafilters) is nowhere dense in S∗.

It will be shown in Sections 2.3, 2.4 and 2.5 that, for a large class of semigroups

S (all of which are right cancellative and weakly left cancellative), every strongly

productive ultrafilter p on S is idempotent, in particular p = p ∗ p ∈ S∗ ∗ S∗. Thus

for these semigroups, there are lots (from a topological perspective) of ultrafilters

that are not strongly productive (the set of such ultrafilters is dense in S∗).

Example 2.6. Consider the semigroup (N, ∗) where n ∗ m = min{n,m} for all

n,m ∈ N. Then given any finite a ⊆ N, we have that
∏

n∈a n = min(a). Hence if

p ∈ βN is any ultrafilter and A ∈ p, letting ~x = 〈xn
∣∣n < ω〉 be any enumeration of

the set A we get that p 3 FP(~x) ⊆ A, because FP(~x) = A. Thus every ultrafilter on

this semigroup is strongly productive. Note that this semigroup is neither weakly

left cancellative nor right cancellative. In an entirely analogous way it is possible to

prove that every ultrafilter on the semigroup (N,max) is strongly productive. Note

that this semigroup is weakly left cancellative but not right cancellative (although

it is weakly right cancellative). Thus the conditions mentioned in the previous

paragraph seem to be necessary to ensure that some ultrafilters will not be strongly
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summable. Note that neither of these two semigroups have sequences of elements

with the uniqueness of sums, which shows that the hypotheses from the following

proposition (which is a particular case of [21, Lemma 6.31]) are also necessary.

Proposition 2.7. Let S be an infinite semigroup that is right cancellative and

weakly left cancellative. Then there exists a sequence ~x ∈ ωS satisfying uniqueness

of products.

Proof. We will recursively construct the terms xn of the sequence. We let x0 be

any element of S \{e}. Now assume that we have already chosen a partial sequence

〈xk
∣∣k < n〉 which satisfies the uniqueness of products, this is, the elements

∏
i∈a xi

for ∅ 6= a ⊆ n are 2n − 1 pairwise distinct elements of S. Since S is weakly

left cancellative, for each fixed a, b ⊆ n, a 6= ∅ 6= b, there are only finitely many

solutions to the equation (on the variable x)(∏
i∈a

xi

)
∗ x =

∏
j∈b

xj

Thus (since S is infinite) it is possible to choose an xn which is not a solution of

any of those equations for any a, b. This means that the set FP(〈xk
∣∣k < n〉) ∗ xn is

disjoint from FP(〈xk
∣∣k < n〉). Moreover, for any two distinct a, b ⊆ n (a 6= ∅ 6= b)

we have that
(∏

i∈a xi
)
∗ xn 6=

(∏
j∈b xj

)
∗ xn because S is right cancellative and

〈xk
∣∣k < n〉 satisfies uniqueness of products. All of this together means that the

new (slightly longer) sequence 〈xk
∣∣k < n〉_ 〈xn〉 = 〈xk

∣∣k ≤ n〉 satisfies uniqueness
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of products, so the induction can continue and we are done.

We will now proceed to prove our existence result.

Theorem 2.8. Assume that cov(M) = c, and let S be an infinite semigroup such

that there exists a sequence ~x ∈ ωS satisfying uniqueness of products. Then there

exists a nonprincipal strongly productive ultrafilter on S.

Proof. It suffices to construct the ultrafilter on the subsemigroup S ′ generated by

the range of the sequence ~x. Notice that S ′ is countable, so we can enumerate all

subsets of S ′ in a c-sequence, 〈Aα
∣∣α < c〉. We recursively construct ω-sequences ~xα

that are product subsystems of FP(~x) (note that the ~xα will automatically satisfy

uniqueness of products) such that, for every α < c:

(i) (∃B ∈ {Aα, S ′ \ Aα})(FP(~xα) ⊆ B)

(ii) {FPn(~xξ)
∣∣ξ < α ∧ n < ω} has the strong finite intersection property.

We assume (by induction) that we have already constructed the ~xξ, for ξ < α,

satisfying (i) and (ii); and show how to construct ~xα. Let us further assume (in-

nocuously) that A0 = S ′ and ~x0 = ~x. Corollary 1.7 together with clause (ii)

ensures that there exists an idempotent ultrafilter q ∗ q = q ∈ S∗ containing all of

the FPn(~xξ) for n < ω and ξ < α. We let B ∈ {Aα, S ′\Aα} be such that B ∈ q. We

will show how to construct (by using the hypothesis that cov(M) = c) a sequence
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~y = 〈yn
∣∣n < ω〉 of elements of S ′ which is a product subsystem of ~x and such that

FP(~y) ⊆ B, and for every finitely many ξ1, . . . , ξk < α and n1, . . . , nk < ω, the

sequence ~y contains infinitely many elements from
k⋂
i=1

FPni( ~xξi). If we succeed to

do this, it is clear that making ~xα = ~y does the job and allows us to continue with

the induction.

Hence we define the partial order P whose elements are all finite product subsys-

tems of ~x, 〈yi
∣∣i < k〉, such that FP(〈yi

∣∣i < k〉) ⊆ B?. The ordering is end-extension.

Since S ′ is countable (hence forcing equivalent to Cohen forcing) and we are as-

suming that cov(M) = c, then we have Martin’s axiom satisfied for this particular

forcing notion. We fix finitely many ordinals ξ1, . . . , ξk < α and finite ordinals

n, n1, . . . , nk < ω and claim that the set

D(ξ1, . . . , ξk;n;n1, . . . , nk) =

{
〈yi|i < n〉 ∈ P

∣∣∣∣
∣∣∣∣∣{yi|i < n} ∩

(
k⋂
i=1

FPni( ~xξi)

)∣∣∣∣∣ ≥ n

}

is dense in P. If we prove the claim, we will be done, since there are only |α| <

c = cov(M) many such dense sets, so it is possible to find a filter on P meeting

them all, and this filter will yield our desired sequence ~y. So let us prove that

D(ξ1, . . . , ξk;n;n1, . . . , nk) is dense in P. Grab any condition 〈yi|i < k〉 ∈ P. If

yk−1 =
∏

j∈a xj then we let m = max(a) + 1. Since our condition was assumed to

be a product subsystem of ~x, then every yi can be written as a product that only
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contains xj with j < m (if k = 0 then we just let m = 0). Now note that the set

FPm(~x) ∩B∗ ∩

 ⋂
y∈FP(〈yi|i<k〉)

y−1 ∗B?

 ∩( k⋂
i=1

FPni( ~xξi)

)
∈ q.

Looking back at the proof of Theorem 2.2 and the paragraph that follows that

theorem, we see that there exists an infinite sequence ~z which is a product subsystem

of ~x and such that FP(~z) is contained in the above set. Now we only need to grab

the first n elements z0, . . . , zn−1 of the sequence ~z and extend our original condition

to the condition ~w = 〈yi|i < k〉 _ 〈zj|j < n〉. It is clear from the choice of ~z that

FP(~w) ⊆ B?, so ~w ∈ P and actually ~w ∈ D(ξ1, . . . , ξk;n;n1, . . . , nk) and we are

done.

In the end, clearly the family {FPn( ~xα)|α < c∧n < ω} is a free ultrafilter base,

generating a nonprincipal strongly productive ultrafilter p ∈ S∗.

Corollary 2.9. Let S be a right cancellative and weakly left cancellative semigroup.

Then, assuming cov(M) = c, there exist strongly productive ultrafilters on S.

Proof. Proposition 2.7 and Theorem 2.8.

The existence, under certain set-theoretic assumptions in addition to ZFC, of

strongly summable ultrafilters was first established by Hindman in the case of N [15,

Theorem 3.3], on the Boolean group by Malyhin [30, Theorem 3], and finally on all

abelian groups by Hindman, Protasov and Strauss [19, Theorem 2.8]. The reader

might wonder whether it really is necessary to assume any additional hypothesis to
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the ZFC axioms. It was shown by Blass and Hindman [6, Theorem 2] that such a

hypothesis is really necessary on N, and later on Hindman, Protasov and Strauss

[19, Theorem 3.6] extended that result to all abelian groups. In Chapter 4 we will

show in a couple of different ways that, for a lot of semigroups (in particular for all

abelian groups), the existence of strongly productive ultrafilters cannot be proved

in ZFC. It is, however, still possible that we could eventually find some nontrivial

(i.e. more complicated than those from Example 2.6) ZFC examples of semigroups

that carry a strongly summable ultrafilter.

2.3 Superstrongly Productive Ultrafilters and IP-regular

Sets

In this section we aim to prove that in most reasonable semigroups, all strongly

productive ultrafilters are idempotent.

We will first introduce an apparent strengthening of the notion of a strongly

productive ultrafilter, which will make the situation more comfortable with regards

to talking about idempotents.

Definition 2.10. If S is a semigroup, we say that a nonprincipal ultrafilter p ∈ S∗

is superstrongly productive (and if the semigroup is additively denoted then we

say superstrongly summable) if for every A ∈ p there exists an ω-sequence ~x of
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elements of S with the property that FP(~x) ⊆ A and (∀n < ω)(FPn(~x) ∈ p).

The main reason for stating the preceding definition is that it allows us to easily

prove the following proposition.

Proposition 2.11. Let S be a semigroup, and let p ∈ S∗ be a superstrongly pro-

ductive ultrafilter. Then p is idempotent.

Proof. Given any fixed A ∈ p, pick an ω-sequence ~xA of elements of S such that

FP( ~xA) ⊆ A and (∀n < ω)(FPn( ~xA) ∈ p). Then Corollary 1.7 ensures that the

collection

⋂
A∈p

FP∞( ~xA) = {q ∈ βS
∣∣{FPn( ~xA)

∣∣A ∈ p ∧ n < ω} ⊆ q}

is a subsemigroup of S∗, which means that it is closed under the semigroup operation

∗. However, it is readily checked that
⋂
A∈p

FP∞( ~xA) = {p}, whereby we must have

that p ∗ p = p.

In order to analyse strongly and superstrongly productive ultrafilters on semi-

groups, it is useful to introduce the following notions. This notions capture, in a

sense, some combinatorial-algebraic idea of “largeness”.

Definition 2.12. A subset A of a semigroup S is called an IP-set if it contains an

FS-set, this is, if there exists an ω-sequence ~x of elements of S with infinite range

such that FP(~x) ⊆ A.
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This notion allows us to reformulate Hindman’s theorem in a much less verbose

way: Hindman’s theorem, in its most general version (this is, as in Theorem 2.2)

simply states that, in any semigroup, the family of IP-sets is partition regular.

Those ultrafilters all of whose elements are IP-sets are what we called weakly pro-

ductive ultrafilters in the previous section.

We will now introduce a notion which will be crucial for establishing the idem-

potency of strongly productive ultrafilters.

Definition 2.13. Given a semigroup S, a subset A ⊆ S is said to be IP-regular

if, whenever we have an ω-sequence ~x such that FP(~x) ⊆ A, then the set

x0 ∗ FP1(~x)

is not an IP-set.

Notice that singletons {x} are (vacuously) IP-regular if and only if x is not an

idempotent. The language of IP-regular sets is at the very core of our proof of

idempotency of strongly productive ultrafilters.

Theorem 2.14. Let S be a semigroup and p ∈ S∗ a strongly productive ultrafilter. If

there is an IP-regular set A ⊆ S such that A ∈ p, then p is superstrongly productive.

Proof. Let S,A, p be as in the hypothesis, and let B ∈ p. Since p is strongly

productive, we can pick an ω-sequence ~x of elements of S such that p 3 FP(~x) ⊆

37



A ∩ B. We will argue that FPn(~x) ∈ p for every n < ω. Recall that strongly

summable ultrafilters, being in particular weakly summable, have the property

that they consist of IP-sets only. Then notice that

FP(~x) = {x0} ∪ (x0 ∗ FP1(~x)) ∪ (FP1(~x)) ,

whereby, given that p is nonprincipal (hence {x0} /∈ p) and that A is IP-regular

(hence x0 ∗ FP1(~x) is not an IP-set and so cannot be an element of p), it follows

that FP1(~x) ∈ p. Repeated use of this argument allows us to conclude by induction

on n that FPn(~x) ∈ p for every n < ω.

Corollary 2.15. Let S be a semigroup and p ∈ S∗ a strongly productive ultrafilter.

If there is an IP-regular set A ⊆ S such that A ∈ p, then p is idempotent.

Proof. Theorem 2.14 and Proposition 2.11.

We now introduce the notation E(S) for the set of idempotent elements of a

semigroup S. This notation is fairly standard and will allow us to state the following

corollary.

Corollary 2.16. Let S be a semigroup such that E(S) is finite and S \ E(S) can

be partitioned into finitely many IP-regular cells. Then every strongly productive

ultrafilter on S is idempotent.
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Proof. The hypothesis implies that every strongly productive ultrafilter on S is

either in E(S) or a nonprincipal ultrafilter that contains an IP-regular set, whereby

Corollary 2.15 does the job.

If G is a group with identity e, then E(G) = {e} and so the previous corollary

lets us conclude that, if G \ {e} can be partitioned into finitely many IP-regular

cells, then every strongly productive ultrafilter on G is idempotent. We will show

an argument that follows this line of reasoning in the next two sections.

2.4 Strongly Summable Ultrafilters on
⊕
α<κ

T

Throughout this section, G will always denote the group
⊕

α<κ T (the definition of

T, as well as some notations for working with G, can be found in Section 1.1), for

a given (infinite) cardinal κ. It is now time to “do the hard work” by proving that

(if we denote the identity element of G by 0) the set G \ {0} can be partitioned

into finitely many (at most 15, actually) IP-regular pieces. In the next section

we extract a host of consequences of this fact, which by themselves will constitute

an explanation of why the group G is so important. The reader should bear in

mind that, since G is in fact abelian and additively denoted, we will be talking

about strongly summable (rather than strongly productive) ultrafilters, and FS-

sets (rather than FP-sets).
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First of all, we introduce a notion that will be reasonably helpful when estab-

lishing that certain subsets of G are IP-regular.

Definition 2.17. Given a subset A ⊆ G and an ordinal α, we say that a function

ρ : A −→ α is a rank function if, whenever ~x is a sequence of elements of G such

that FS(~x) ⊆ A, the following two conditions are satisfied:

(i) The restriction ρ � {xn
∣∣n ∈ ω} of ρ to the range of the sequence ~x is finite-to-

one, and

(ii) if ρ(xn) ≥ ρ(x0) for every n < ω then x0 + FS1(~x) is not an IP-set.

As an example, suppose that ρ : A −→ α (where A ⊆ G and α is an ordinal) is

a function such that ρ(x + y) = min{ρ(x), ρ(y)} for all x, y ∈ A; and furthermore

ρ(x) 6= ρ(y) whenever x, y, x+y ∈ A. Then it is easy to see that ρ is a rank function

on A. Later in this section we will encounter some functions ρ that satisfy these

exact properties. The relevance of rank functions for the proof of our main result

is stated in the following lemma.

Lemma 2.18. If we have a subset A ⊆ G such that there is a rank function

ρ : A −→ α on it (α an ordinal), then A is IP-regular.

Proof. Suppose that ~x is an ω-sequence of elements of G such that FS(~x) ⊆ A.

We claim that x0 + FS1(~x) is not an IP-set. Since ρ � ran(~x) is finite-to-one, it is
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possible to pick a permutation σ of ω such that, whenever n < m < ω,

ρ(xσ(n)) ≤ ρ(xσ(m)).

Let the ω-sequence ~y be defined by yn = xσ(n) (hence if n < m < ω then ρ(yn) ≤

ρ(ym)). Now observe that, if k = σ−1(0) (so that x0 = yk), then

x0 + FS1(~x) =

(
yk + FSk+1(~y)

)
∪
(
yk + FS(〈yi

∣∣i < k〉)
)
∪(

yk + FS(〈yi
∣∣i < k〉) + FSk+1(~y)

)
.

Since ρ is a rank function and ρ(yn) ≥ ρ(yk) for n ≥ k, it follows that

yk + FSk+1(~y)

is not an IP-set. Now for every y =
∑

n∈a yn ∈ FS(〈yi
∣∣i < k〉), if m = min(a) then

we have that

yk + y + FSk+1(~y) ⊆ ym + FSm+1(~y)

and since the latter is not an IP-set (because ρ is a rank function and ρ(yn) ≥ ρ(ym)

for n ≥ m), neither is the former. Hence the set yk+FS(〈yi
∣∣i < k〉)+FSk+1(~y), being

a finite union of sets that are not IP, is itself not an IP-set (because of Hindman’s

theorem). Finally, the set yk + FS(〈yi
∣∣i < k〉) is finite and hence not an IP-set.

Using Hindman’s theorem again, we conclude that

x0 + FS1(~x)

is not an IP-set, because it is a finite union of non-IP-sets, and we are done.
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Recall that, in any abelian group, the only idempotent element is the identity of

the group. Thus, as we remarked at the end of the previous section, in order to prove

that every strongly summable ultrafilter on G is superstrongly summable, it suffices

to partition G \ {0} into finitely many IP-regular pieces, because of Corollary 2.16.

We aim to do this in the following series of lemmas.

Lemma 2.19. Let

B =

{
x ∈ G \ {0}

∣∣∣∣(∀α < κ)

(
πα(x) ∈

{
0,

1

2

})}
.

Then B is IP-regular.

Proof. Observe that the subgroup B ∪ {0} of G really is (isomorphic to) Bκ, the

Boolean group on cardinality κ. Hence, as was explained in Section 1.4, this sub-

group has a structure of κ-dimensional vector space over the field with two elements

F = Z/Z2, and if ~x is a sequence in B then FS(~x)∪{0} is the vector space generated

by ~x. Moreover the sequence ~x is linearly independent if and only if 0 /∈ FS(~x).

Thus if ~x is a sequence in B such that FS(~x) ⊆ B then ~x is a linearly independent

sequence, and hence every element of FS(~x) can be written in a unique way as a

sum of elements of the sequence ~x. In particular x0 + FS1(~x) consists of those finite

sums
∑

i∈a xi such that 0 ∈ a. Given two finite a, b ⊆ ω such that 0 ∈ a∩ b, we get

that (since under these conditions 0 /∈ a4 b)

∑
i∈a

xi +
∑
i∈b

xi =
∑
i∈a4b

xi /∈ x0 + FS1(~x).
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This implies that x0 + FS1(~x) cannot be an IP-set, hence B is IP-regular.

It remains to show now that C = G \ (B ∪ {0}) (where B is defined as in the

previous lemma) can be partitioned into finitely many IP-regular cells. Elements

x ∈ C have order strictly greater than 2, thus there is at least one α < κ such that

πα(x) /∈
{

0, 1
2

}
. Therefore it is possible to define the function µ : C → κ by

µ(x) = min

{
α < κ

∣∣∣∣πα(x) /∈
{

0,
1

2

}}
.

Consider the partition of C into four cells C = C1 ∪ C2 ∪ C3, where

C1 =

{
x ∈ C

∣∣∣∣πµ(x)(x) =
1

4

}
,

C3 =

{
x ∈ C

∣∣∣∣πµ(x)(x) =
3

4

}
, and

C2 =

{
x ∈ C

∣∣∣∣πµ(x)(x) /∈
{

1

4
,
3

4

}}
.

Lemma 2.20. The functions µ � C1 and µ � C3 are rank functions (on C1 and C3,

respectively).

Proof. We first prove the statement for µ � C1. So suppose that ~x is a sequence

in G such that FS(~x) ⊆ C1. We will show that the function µ � {xn
∣∣n < ω} is

at-most-two-to-one, in particular finite-to-one. This is because if n,m, k < ω are

three distinct numbers such that µ(xn) = µ(xm) = µ(xk) = α, then for β < α we

get that πβ(xn+xm+xk) ∈
{

0, 1
2

}
(because so are πβ(xn), πβ(xm), πβ(xk)); while on
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the other hand πα(xn+xm+xk) = 3
4
/∈
{

0, 1
2

}
. This shows that µ(xn+xm+xk) = α

and xn + xm + xk ∈ C3, which is a contradiction.

Now add in the assumption that α = µ(x0) ≤ µ(xk) for every k < ω. By the

previous paragraph, there is at most one n ∈ N such that µ(xn) = µ(x0) = α.

We thus split the proof into two cases, according to whether or not there exists

such an n. In the case where this n exists, the first thing to notice is that for

each k ∈ ω \ {0, n}, πα(xk) = 0. This is because otherwise, since µ(xk) > α we

would have that πα(xk) = 1
2

and so πα(x0 + xk) = 3
4
; so arguing as in the previous

paragraph we get that x0 + xk ∈ C3, a contradiction. Now write

x0 + FS1(~x) = {x0 + xn} ∪
(
x0 + FS(〈xk

∣∣k ∈ ω \ {0, n}〉))
∪
(
x0 + xn + FS(〈xk

∣∣k ∈ ω \ {0, n}〉)).
Clearly {x0 + x1} is not an IP-set, as it is finite. Now since πα(xk) = 0 for k /∈

ω\{0, n}, it follows that every element x ∈ x0+FS(〈xk
∣∣k ∈ ω\{0, n}〉) must satisfy

πα(x) = 1
4
, which implies that x0 + FS(〈xk

∣∣k ∈ ω \ {0, n}〉) cannot contain the sum

of any two of its elements and consequently it is not an IP-set. By the same token,

every element x ∈ x0 + xn + FS(〈xk
∣∣k ∈ ω \ {0, n}〉) satisfies that πα(x) = 1

2
, so

this set is (by the same argument) not an IP-set either. Hence x0 + FS1(~x) is not

an IP-set.

Now if there is no such n, i.e. if µ(xk) > µ(x0) = α for all k > 0, then it is
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possible to repeat the argument from the previous paragraph except that we delete

every reference to xn. This is, we first get that πα(xk) = 0 for all k > 0; from which

we derive that every element x ∈ x0 + FS1(~x) satisfies πα(x) = 1
4
. This implies that

the set x0 + FS1(~x) cannot be an IP-set, hence in any case µ is a rank function on

C1.

In order to see that the same holds for µ � C3, one just needs to consider the

fact that the function t 7−→ −t is an automorphism of G which maps C1 onto C3

and preserves µ.

Given the previous results, in order to have our desired result it suffices to show

that C2 is a union of finitely many IP-regular sets.

Define

Qi,j =

{
x ∈ C2 : πµ(x)(x) ∈

⋃
m∈ω

[
i

4
+

1

23m+j+3
,
i

4
+

1

23m+j+2

)}

for i ∈ 4 and j ∈ 3. This defines a partition C2 =
⋃
i∈4
⋃
j∈3Qi,j of C2 into 12 cells.

We claim that for every i ∈ 4 and j ∈ 3, the set Qi,j is IP-regular. This will follow

from the following lemma.

Lemma 2.21. Consider κ × ω equipped with the lexicographic order (which well-

orders this set). The function ρ : Qi,j → κ × ω defined by ρ(x) = (µ(x),m) where

m is the unique element of ω such that

πµ(x)(x) ∈
[
i

4
+

1

23m+j+3
,
i

4
+

1

23m+j+2

)
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is a rank function on Qi,j.

Proof. In order to simplify notation, we will run the proof in the case when i = j = 0

and mention in passing that the proof in the other cases is entirely analogous. We

mentioned earlier (in the example right after Definition 2.17) that it suffices to show

the following: if x and y are such that x, y, x + y ∈ Q0,0, then ρ(x) 6= ρ(y) and

ρ(x + y) = min{ρ(x), ρ(y)}. So suppose that x, y ∈ Q0,0 are such that x + y ∈

Q0,0 and assume by contradiction that ρ(x) = ρ(y) = (α,m). This entails that

µ(x+ y) = α and

πα(x), πα(y) ∈
[

1

23m+3
,

1

23m+2

)
and hence

πα(x+ y) ∈
[

1

23m+2
,

1

23m+1

)
.

If m = 0 then

πα (x+ y) ∈
[

1

4
,
1

2

)
,

which implies that

x+ y ∈ C1 ∪Q1,0 ∪Q1,1 ∪Q1,3

On the other hand, if m > 0 then

πα(x+ y) ∈
[

1

23(m−1)+2+3
,

1

23(m−1)+2+2

)
and therefore

x+ y ∈ Q0,2.
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In either case one obtains a contradiction from the assumption that x + y ∈ Q0,0.

This concludes the proof that ρ(x) 6= ρ(y). We now claim that ρ(x + y) =

min{ρ(x), ρ(y)}. Define ρ(x) = (α,m) and ρ(y) = (β, n). Let us first consider

the case when α = β and without loss of generality m > n. In this case

πξ(x+ y) ∈
{

0,
1

2

}

for ξ < α, while

πα(x+ y) ∈
[

1

23m+3
+

1

23n+3
,

1

23m+2
+

1

23n+2

)

where

1

23m+2
+

1

23n+2
<

1

23n+1
<

1

23(n−1)+3
.

This shows that ρ(x+ y) = (α, n) = min{ρ(x), ρ(y)}. Let us now consider the case

when α 6= β and without loss of generality α > β. In this case

πξ(x+ y) ∈
{

0,
1

2

}

for ξ < β while

πβ(x) = 0

(because if not then πβ(x) = 1
2

and that would imply that x+ y ∈
⋃
j∈3Q1,j), and

hence

πβ(x+ y) = πβ(y).
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This shows that ρ(x+ y) = (β, n) = min{ρ(x), ρ(y)} and hence concludes the proof

of the fact that ρ is a rank function on Q0,0.

Corollary 2.22. The group G can be partitioned, after removing the identity ele-

ment, into at most 15 IP-regular cells.

Proof. Put together Lemmas 2.19, 2.20 and 2.21.

We will now proceed to extract the consequences of Corollary 2.22 in the fol-

lowing section.

2.5 Consequences on Miscellaneous Semigroups

Recall that E(S) denotes the set of idempotent elements of a given semigroup S.

Throughout this section, we will let Γ stand for the class of all semigroups S such

that E(S) is finite and S \ E(S) can be partitioned into finitely many IP-regular

cells. The importance of the class Γ is, of course, that elements S ∈ Γ satisfy

that every strongly productive ultrafilter p ∈ S∗ is idempotent, but the reason that

we define Γ as we do is that, as we will see in this section, the class Γ has some

significant closure properties. The main result from the previous section (namely,

Corollary 2.22) establishes that, for every infinite cardinal κ, the group
⊕

α<κ T ∈ Γ.

Suppose that S, T are semigroups and f : S → T is a semigroup homomorphism.

It is easy to see that, if A ⊆ T is IP-regular, then so is f−1[A]. This implies that, if
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T \E(T ) can be partitioned into finitely many IP-regular sets, then so can S\E(S).

More concretely, we have the following straightforward lemma.

Lemma 2.23. Let S and T be semigroups such that E(S) is finite and T ∈ Γ.

Let f be a semigroup homomorphism such that f−1[E(T )] is a subsemigroup and

moreover f−1[E(T )] ∈ Γ. Then S ∈ Γ as well.

Hindman, Protasov and Strauss [19, Theorem 2.3] proved that every strongly

summable ultrafilter on an abelian group is idempotent. The proof was significantly

involved, and an attempt to simplify that proof was what originally triggered the

study [13]. The next corollary closes the circle by establishing that our method

embraces the result of Hindman, Protasov and Strauss as a particular case.

Corollary 2.24. Every commutative cancellative semigroup belongs to the class Γ.

In particular every abelian group belongs to Γ.

Proof. It is well-known that every commutative cancellative semigroup can be em-

bedded in an abelian group, which in turn (as mentioned in the Introduction) can be

embedded into the group
⊕

α<κ T for some infinite cardinal κ. Hence Corollary 2.22

together with Lemma 2.23 do the job together.

In the particular context of groups, Lemma 2.23 guarantees that the extension of

a group G ∈ Γ by another group H ∈ Γ is itself an element of Γ. In other words, if K

is a group containing a normal subgroup H ∈ Γ in such a way that K/H ∈ Γ, then
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K ∈ Γ as well (by Lemma 2.23 applied to the projection mapping π : K −→ K/H).

Thus, for example, one can consider groups admitting a subnormal series with factor

groups that are elements of Γ. Recall that a subnormal series of a group G is a

finite sequence G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = 〈e〉 of subgroups of G such that for

each k < n, Gk+1 E Gk. The quotients Gk/Gk+1 are the factor groups of the

series.

Proposition 2.25. Let G be a group admitting a subnormal series G = G0 ⊇ G1 ⊇

· · · ⊇ Gn = 〈e〉 such that all of the factor groups Gk/Gk+1 are elements of Γ. Then

G ∈ Γ.

Proof. Lemma 2.23 (used as in the remark from the previous paragraph) and in-

duction on the length of the subnormal series.

Corollary 2.26. All solvable groups are elements of Γ.

Proof. Recall that solvable groups are exactly those groups that admit a subnormal

series in which all factor groups are abelian. Hence, Corollary 2.24 and Proposi-

tion 2.25 together do the job.

The class Γ is, in fact, reasonably large. Notice that it has nice closure proper-

ties: it is closed with respect to taking subsemigroups (Lemma 2.23 applied to the

inclusion mapping) and contains all finite semigroups. This, together with Propo-

sition 2.25, means that all virtually solvable groups and their subgroups belong to
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the class Γ. We will see next that Γ is (in a sense) closed with respect to free

products.

Proposition 2.27. Let S, T be semigroups. If S, T ∈ Γ and T has no idempotent

elements, then the free product S ∗ T ∈ Γ.

Proof. Denote by Te the semigroup obtained from T by adjoining an identity ele-

ment e. Consider the semigroup homomorphism f : S ∗ T −→ Te given by sending

every word w to the product of the sequence of letters appearing in w that are

elements of T (in the same order in which they appear in w, and remembering

that the empty product is just the identity element e). Observe that f−1[{e}] is

isomorphic to S ∈ Γ. Hence S ∗ T ∈ Γ by Lemma 2.23.

The particular case of Proposition 2.27 when S = T = N yields that the free

semigroup on 2 generators is an element of Γ. In fact, we can obtain a much more

general result.

Theorem 2.28. Every free semigroup S (regardless of the number of generators)

is an element of Γ.

Proof. Consider the function ` : S −→ N mapping each word w ∈ S to its length.

Since ` is a semigroup homomorphism and N ∈ Γ (being a cancellative abelian

semigroup), the result follows from Lemma 2.23.
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Theorem 2.28 was originally proved by Hindman and Jones [18, Lemma 2.2] (in

their hypothesis that p is a very strongly productive ultrafilter, the “very” part is

not really used). To the author, it was immediately apparent that the idea for the

proof of Hindman and Jones could easily be applied to the more general context of

the class Γ, as we just did in Theorem 2.28.

The intention here was just to show some nice examples of semigroups and

groups that belong to the class Γ. A much broader class of semigroups has been

proven to belong to Γ in [13]. To the best of my knowledge, it is currently not known

whether the existence of a semigroup S and a nonprincipal strongly productive

ultrafilter on S that is not idempotent is consistent with the usual axioms of set

theory. We believe that the answer should be negative, as was stated in the following

conjecture from [13].

Conjecture 2.29. If S is any semigroup and p ∈ S∗ is strongly productive, then p

is idempotent.
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3 Sparseness and the Trivial Sums Property

In this chapter we prove that all strongly summable ultrafilters on abelian groups,

and a restricted class of strongly productive ultrafilters on the free semigroup, are

sparse and moreover they can only be decomposed as a sum (product in the case of

the free semigroup) in a trivial way. The new results (i.e., the original contributions

from the author) in this chapter can be found in [11] if they refer to abelian groups,

and in [13] if they refer to the free semigroup.

3.1 Sparseness, Trivial Sums and Trivial Products

We will introduce an important notion. To motivate it, we urge the reader to

think of the uniqueness of sums of a sequence ~x as a requirement that deals with

combinations of elements of ~x with coefficients equal to 1.

Definition 3.1. Given an n ∈ N, a sequence ~x on an abelian group G is said

to satisfy the n-uniqueness of sums if whenever a, b ∈ [ω]<ω and ε : a −→
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{1, 2, . . . , n}, δ : b −→ {1, 2, . . . , n} are such that

∑
i∈a

ε(i)xi =
∑
i∈b

δ(i)xi,

it must be the case that a = b and ε = δ.

The reader that is familiar with the notations used in Gowers’s theorem will

notice that ~x satisfies the n-uniqueness of sums if and only if the mapping

ϕ : FIN[1,n] −→ G

f 7−→
∑
i<ω

f(i)xi

is injective. Notice that, in particular, if ~x satisfies n-uniqueness of sums then no

element of ~x can have order n. Thus, in particular, Boolean groups do not contain

sequences satisfying 2-uniqueness of sums. For the results of this thesis we only

need to consider the case n = 2.

Proposition 3.2. For a sequence ~x on an abelian group G, the following are equiv-

alent.

(i) ~x satisfies the 2-uniqueness of sums.

(ii) Whenever a, b, c, d ∈ [ω]<ω are such that a ∩ b = ∅ = c ∩ d, if

2
∑
n∈a

xn +
∑
n∈b

xn = 2
∑
n∈c

xn +
∑
n∈d

xn

then a = c and b = d.
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(iii) Whenever a, b, c, d ∈ [ω]<ω are such that

∑
n∈a

xn +
∑
n∈b

xn =
∑
n∈c

xn +
∑
n∈d

xn,

it must be the case that a4 b = c4 d and a ∩ b = c ∩ d.

Proof. Straightforward.

We now see an important application of this concept. The following result can

be traced back to [6, Theorem 1] (that is, the cited result uses the same main ideas)

although it appeared in full form as half of [20, Theorem 3.2].

Theorem 3.3. Let p be a strongly summable ultrafilter such that for some ~x satis-

fying 2-uniqueness of sums, FS(~x) ∈ p. Then p is additively isomorphic to a union

ultrafilter.

Proof. We just need to check that the mapping ϕ given by ϕ(
∑

n∈a xn) = a sends

p to a union ultrafilter. So let A ∈ q = ϕ(p). Pick a sequence ~y such that

p 3 FS(~y) ⊆ ϕ−1[A]. Then ϕ[FS(~y)] ⊆ A. Now ϕ−1[A] ⊆ FS(~x), thus for each

n < ω we can define cn ∈ [ω]<ω by cn = ϕ(yn) or, equivalently, by yn =
∑

i∈cn xi.

We claim that the family C = {cn
∣∣n < ω} is pairwise disjoint. This is because if

n 6= m, since yn + ym ∈ FS(~y) ⊆ FS(~x), then there must be a c ∈ [ω]<ω such that

∑
i∈c

xi = yn + ym =
∑
i∈cn

xi +
∑
i∈cm

xi.
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Since ~x satisfies 2-uniqueness of sums, by Proposition 3.2 we can conclude that

c = cn ∪ cm and cn ∩ cm = ∅. This argument shows at once that C is a pairwise

disjoint family, and that ϕ(yn + ym) = cn ∪ cm = ϕ(yn) ∪ ϕ(ym). From this it is

easy to prove by induction that ϕ
(∑

n∈a yn
)

=
⋃
n∈a

ϕ(yn), for all a ∈ [ω]<ω, hence

ϕ[FS(~y)] = F4(C), therefore q 3 F4(C) ⊆ A and we are done.

We next present two old results to illustrate that sequences satisfying 2-uniqueness

of sums are quite ubiquitous. These results will refer to the restricted context of

ultrafilters on N. Some of the relevant ideas for these results will be used later on,

in Section 3.3. The first result is the following theorem, originally due to Blass and

Hindman [6, Lemma 1C] (although at the time, the terminology of 2-uniqueness of

sums was not in use).

Theorem 3.4. Let p ∈ N∗ be a strongly summable ultrafilter. Then, there exists a

sequence ~x satisfying 2-uniqueness of sums such that FS(~x) ∈ p.

Proof. Partition N into the three cells A0, A1, A2, where

Ai = {n ∈ N
∣∣blog2(n)c ≡ i mod 3}.

In order to properly visualize things, just notice that Ai is the set of natural numbers

whose binary expansion has its leftmost nonzero digit in a position (counting from

the right) which is i modulo 3. Pick an i ∈ 3 such that Ai ∈ p and let ~x be such

that p 3 FS(~x) ⊆ Ai. Now notice that for j < k < ω, it is not possible that
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blog2(xj)c = blog2(xk)c (otherwise we would get blog2(xj + xk)c = blog2(xj)c + 1

thus xj + xk ∈ Ai+1 mod 3, a contradiction). Hence, by reordering the sequence if

necessary, we may assume that for j < k < ω we have blog2(xj)c < blog2(xk)c. This

implies that, for all n < ω, xn+1 > 4xn (for since blog2(xn)c < blog2(xn+1)c and

xn, xn+1 ∈ Ai, we actually get that blog2(xn)c < blog2(xn+1)c + 2), and the latter

inequality allows us to prove by induction that, for all n < ω, xn+1 > 2
∑

k≤n xk.

This can easily be seen to imply that the sequence ~x satisfies 2-uniqueness of sums,

and we are done.

This allows us to conclude the following corollary which is [6, Theorem 1].

Corollary 3.5. Every strongly summable ultrafilter on N is additively isomorphic

to a union ultrafilter. �

We will now see how the notion of 2-uniqueness of sums yields what is known

in the literature as strong maximal idempotent elements in Čech-Stone compactifi-

cation. The following result is [19, Theorem 4.3].

Theorem 3.6. Let G be an abelian group, and let p ∈ G∗ be a strongly summable

ultrafilter such that FS(~x) ∈ p for some ~x satisfying 2-uniqueness of sums. If q ∈ G∗

is such that q + p = p, then it must be the case that q = p.

Proof. Let G, p, q, ~x be as in the hypotheses and suppose that q 6= p. We will show

that q + p 6= p. Start by choosing an A ∈ p \ q. Grab a sequence ~y such that
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p 3 FS(~y) ⊆ A ∩ FS(~x) (notice that ~y will automatically satisfy 2-uniqueness of

sums). Then of course we have that FS(~y) /∈ q. We claim that

{y ∈ G
∣∣− y + FS(~y) ∈ p} ⊆ FS(~y),

so the set on the left of this expression cannot belong to q, but this means that

FS(~y) cannot belong to q+p and therefore we must have q+p 6= p. In order to prove

the claim, let y ∈ G be such that −y + FS(~y) ∈ p. Now p is weakly summable, so

the set (−y+FS(~y))∩FS(~y) ∈ p should be an IP-set and in particular it is possible

to find two elements z, w ∈ FS(~y) such that y+z, y+w, z+w ∈ FS(~y). This means

that we can pick elements a, b, c, d ∈ [ω]<ω such that z =
∑

n∈a yn, w =
∑

n∈b yn,

y + z =
∑

n∈c yn and y + w =
∑

n∈d yn. We thus get that

y =
∑
n∈c

yn −
∑
n∈a

yn =
∑
n∈d

yn −
∑
n∈b

yn,

which leads to ∑
n∈a

yn +
∑
n∈d

yn =
∑
n∈b

yn +
∑
n∈c

yn.

Since ~y satisfies 2-uniqueness of sums, we conclude that a∩d = b∩c and a4d = b4c.

Now notice that, since z + w ∈ FS(~y) and ~y satisfies 2-uniqueness of sums, we can

conclude that a ∩ b = ∅, which together with the previous equalities of sets leads

to the conclusion that a ⊆ c. This implies that y =
∑

n∈c\a yn ∈ FS(~y).

The last three results are illustrations of the importance of the concept of 2-

uniqueness of sums. We will now introduce a couple of further notions that are of

58



central importance in this dissertation. Without fear of exaggerating, we can con-

fidently state that the following two definitions are the most important ones within

this thesis (at the very least, they are certainly the ones whose study originally

prompted all of the results presented here).

Definition 3.7. Let G be an abelian group.

(i) We say that an idempotent p + p = p ∈ G∗ has the trivial sums property

if, whenever q, r ∈ G∗ are such that q + r = p, it must be the case that

q, r ∈ G+ p (more specifically, there must exist an x ∈ G such that q = p+ x

and r = −x+ p).

(ii) We say that a strongly summable ultrafilter p ∈ G∗ is sparse if for every

A ∈ p there exists a sequence ~x such that FS(~x) ⊆ A and a subsequence ~y

of ~x such that {xn
∣∣n < ω} \ {yn

∣∣n < ω} is infinite and FS(~y) ∈ p. (Slang:

“we can drop infinitely many generators of FS(~x) and still remain within the

ultrafilter”).

These two notions are related by a result of Hindman, Protasov and Strauss

[19, Theorem 4.5] stating that if G ⊆ T and p ∈ G∗ is sparse, then p has the trivial

sums property. A good portion of the remainder of this section will be devoted to

presenting our own proof of the following result of Hindman, Steprāns and Strauss

[20, Theorem 4.8] which relates the two notions in question with the 2-uniqueness
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of sums.

Theorem 3.8. Let G be an abelian group and let p ∈ G∗ be a sparse ultrafilter

such that FS(~x) ∈ p for some sequence ~x satisfying the 2-uniqueness of finite sums.

Then p has the trivial sums property.

We will now start working towards a proof of Theorem 3.8, and in order to do

this we will need to introduce yet some more notation (which we will be able to

completely forget once we are done with this proof). Given a sequence ~x of elements

of our abelian group G, we denote by FS±(~x) = FS(~x)∪(−FS(~x))∪(FS(~x)−FS(~x)).

In other words, FS±(~x) is the set consisting of all elements of the form
∑

n∈a ε(n)xn,

where a ∈ [ω]<ω and ε : a −→ {−1, 1}. Equivalently, FS±(~x) is the set of all

elements of the form ∑
n∈a

xn −
∑
n∈b

xn,

where a, b ∈ [ω]<ω and we can always assume without loss of generality that a∩ b =

∅. The following lemma establishes that the 2-uniqueness of sums is also, in a

sense, some sort of “±-uniqueness of sums”.

Lemma 3.9. Let ~x be a sequence of elements of G satisfying the 2-uniqueness of

sums. Then, the representation of an element of FS±(~x) as a difference
∑

n∈a xn−∑
n∈b xn for two disjoint a, b ∈ [ω]<ω is unique.
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Proof. Suppose that a, b, c, d ∈ [ω]<ω are such that a ∩ b = ∅ = c ∩ d and

∑
n∈a

xn −
∑
n∈b

xn =
∑
n∈c

xn −
∑
n∈d

xn.

We let e = (a ∩ c) ∪ (b ∩ d). We define a′ = a \ e and c′ = c \ e, and similarly we

let b′ = b \ e and d′ = d \ e. Then we have that a′ ∩ c′ = ∅ = b′ ∩ d′. From the

hypothesis, by cancelling all terms of the form ±xn, for n ∈ e, from both sides of

the equation, we arrive at

∑
n∈a′

xn −
∑
n∈b′

xn =
∑
n∈c′

xn −
∑
n∈d′

xn,

which implies that ∑
n∈a′

xn +
∑
n∈d′

xn =
∑
n∈c′

xn +
∑
n∈b′

xn.

Now ~x has the 2-uniqueness of sums, so we can conclude from the previous equation

that a′4 d′ = b′4 c′ and a′ ∩ d′ = b′ ∩ c′. But a′ is disjoint from both b′ and c′, and

also d′ is disjoint from both b′ and c′; so the conclusion is that a′ 4 d′ = b′ 4 c′ =

a′ ∩ d′ = b′ ∩ c′ = ∅. This certainly implies that a′ = b′ = c′ = d′ = ∅, which in

turn yields that a = c and b = d, and we are done.

At some point during the proof that we are currently working towards, we

will also need the following property that sequences with the 2-uniqueness of sums

satisfy.
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Lemma 3.10. Let ~x be a sequence of elements of G satisfying the 2-uniqueness of

sums. Let a, b, c ∈ [ω]<ω be pairwise disjoint such that

2
∑
n∈a

xn +
∑
n∈b

xn −
∑
n∈c

xn ∈ FS(~x).

Then it must be the case that a = c = ∅.

Proof. Let d ∈ [ω]<ω \∅ be such that

2
∑
n∈a

xn +
∑
n∈b

xn −
∑
n∈c

xn =
∑
n∈d

xn.

Cancelling terms in common from both sides of this equation yields

2
∑
n∈a′

xn +
∑
n∈b′

xn −
∑
n∈c

xn =
∑
n∈d′

xn,

where a′ = a \ d, b′ = (b \ d) ∪ (a ∩ d) and d′ = d \ (a ∪ b). Note that a′, b′, d′ are

pairwise disjoint. The last equation can be turned into

2
∑
n∈a′

xn +
∑
n∈b′

xn =
∑
n∈d′

xn +
∑
n∈c

xn,

whereby we can conclude, since ~x satisfies the 2-uniqueness of sums, that a′ = c∩d′

and b′ = c 4 d′. Since a′ is disjoint from both c and d′, we conclude that a′ =

∅ = c ∩ d′, so c 4 d′ = c ∪ d′ = b′, however b′ is disjoint from both c and d′ so

b′ = c = d′ = ∅. From this it is not hard to conclude that a = c = ∅ and, of

course, b = d.
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Lemma 3.11. Let p, q, r ∈ βG be ultrafilters such that q+ r = p. If ~y is a sequence

such that FS(~y) ∈ p ∩ r, then FS±(~y) ∈ q.

Proof. The assumption is that

{y ∈ G
∣∣− y + FS(~y) ∈ r} ∈ q,

so it suffices to show that every y ∈ G which is such that −y + FS(~y) ∈ r will

also satisfy that y ∈ FS±(~y). In order to argue that, notice first that for every

such y we have that (−y + FS(~y)) ∩ FS(~y) ∈ r, in particular this set is nonempty

and so it is possible to find x, z ∈ FS(~y) such that −y + x = z which means that

y = x− z ∈ FS±(~y).

The following is the last lemma before we can actually state the proof of Theo-

rem 3.8.

Lemma 3.12. Suppose that p ∈ G∗ is a strongly summable ultrafilter and q, r ∈ βG

are such that q + r = p and ~x is a sequence satisfying 2-uniqueness of sums with

FS(~x) ∈ p. If (∀n < ω)(FSn(~x) ∈ r), then r = q = p.

Proof. The first step for this proof is to notice that, under the stated hypotheses,

we have that FS(~x) ∈ q. It is certainly the case that FS±(~x) ∈ q because of

Lemma 3.11, hence {y ∈ FS±(~x)
∣∣− y + FS(~x) ∈ r} ∈ q, so it suffices to show that

this set is a subset of FS(~x) in order to establish our claim. So let y ∈ FS±(~x) be
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such that −y+FS(~x) ∈ r, and assume that y =
∑

n∈a xn−
∑

n∈b xn with a∩ b = ∅.

We let m = max(a∪ b) + 1 and note that (−y+ FS(~x))∩FSm(~x) ∈ r, in particular

this set is nonempty so we can take a z ∈ FSm(~x) such that z + y ∈ FS(~x). Say

that z =
∑

n∈c xn, with min(c) ≥ m > max(a ∪ b), then

z + y =
∑
n∈a∪c

xn −
∑
n∈b

xn,

which immediately implies, by Lemma 3.10, that b = ∅ and so y =
∑

n∈a xn ∈

FS(~x).

Now for proving the current lemma, Theorem 3.6 ensures that it suffices to

prove that q = p, so assume that this is not the case, i.e. q 6= p and let A ∈ p \ q.

Let B = FS(~x) \A and pick a sequence ~y such that p 3 FS(~y) ⊆ FS(~x)∩A. Define

an ∈ [ω]<ω \ ∅ by yn =
∑

i∈an xi (notice that the an must be pairwise disjoint).

Now since FS(~y) ∈ p, we have that

{y ∈ FS(~x)
∣∣− y + FS(~y) ∈ r} ∈ q,

in particular the set is nonempty and so we can pick a y ∈ FS(~x) such that −y +

FS(~y) ∈ r. Say that y =
∑

i∈a xi and note that (−y + FS(~y)) ∩ B ∈ r, so it is

possible to choose a z ∈ B with y + z ∈ FS(~y). This means that, if z =
∑

i∈b xi

then a∩ b = ∅ and a∪ b is a union of some of the ai, however z /∈ FS(~y) so one can

conclude that for at least one ai we have ai ⊆ a ∪ b and ai ∩ a 6= ∅ 6= ai ∩ b. Thus

ai 6⊆ a. Let m = max(ai)+1 and note that (−y+FS(~y))∩FSm(~x) ∈ r, in particular
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the set is nonempty and so we can choose a w ∈ FS(~x) such that y + w ∈ FS(~y).

However, if w =
∑

j∈c xj with min(c) ≥ m > max(ai), then y + w =
∑

j∈a∪c xj

which cannot be an element of FS(~y) because ai ∩ (a ∪ c) 6= ∅ but ai 6⊆ (a ∪ c).

This is a contradiction, and we are done.

We are now ready for proving the result that we have been slowly approaching.

Proof of Theorem 3.8. Let p be a sparse ultrafilter such that FS(~x) ∈ p for some ~x

satisfying 2-uniqueness of sums; and let q, r ∈ G∗ be such that q + r = p. There

are two cases: if there exists a translate x + r of r (where x ∈ G) such that for

some m < ω we have that (∀n ≥ m)(FSn(~x) ∈ x + r), then Lemma 3.12 applied

to q − x, x + r and the sequence 〈xn
∣∣n ≥ m〉 shows that q − x = x + r = p, which

means that q = p+x and r = −x+p and we are done. So the difficult case is when

the opposite happens, namely for every x ∈ G the translate x+ r does not contain

FSn(~x) for infinitely many n < ω.

Notice first of all that, since {y ∈ G
∣∣− y + FS(~x) ∈ r} ∈ q, in particular there

exists a y ∈ G such that FS(~x) ∈ r+ y. We define r′ = r+ y and q′ = q− y, so that

q′+r′ = p; and we note that q, r ∈ G+p if and only if q′, r′ ∈ G+p. Hence, from now

on (switching to q′ and r′) we will assume that FS(~x) ∈ r, and so by Lemma 3.11

we can also assume that FS±(~x) ∈ q. Now the assumption for this case implies that

for some n < ω we have that FSn+1(~x) /∈ r, letting n0 be the least such n yields

65



that xn0 + FSn0+1(~x) ∈ r. Recursively, if we have picked n0 < n1 < · · ·nk such that

xn0 + · · ·+ xnk + FSxnk+1(~x) ∈ r, the relevant assumption allows us to let nk+1 be

the least n > nk satisfying that FSn+1(~x) /∈ −(xn0 + · · ·+xnk) + r, and we will then

have that xn0 + · · · + xnk + xnk+1
+ FSnk+1+1(~x) ∈ r. This way we are recursively

constructing an increasing sequence 〈nk
∣∣k < ω〉 such that, for all n < ω,(∑

i≤n

xki

)
+ FSkn+1(~x) ∈ r.

It is not hard to show that we also have, for every n < ω, that −
(∑

i≤n xki
)

+

FS±(~x) ∈ q, but we will not use that fact for the current argument.

Claim 3.1.

FS(〈xkn
∣∣n < ω〉) ∈ p

Proof of Claim. Without loss of generality assume that {kn
∣∣n < ω} is coinfinite

(otherwise there is nothing to prove). We will first of all argue that A = FS(〈xi
∣∣i /∈

{kn
∣∣n < ω}〉) /∈ p, since if A belonged to p then there would be a y ∈ FS±(~x)

(there would actually be q-many of them) such that −y + A ∈ r. Say that y =∑
i∈a xi −

∑
i∈b xi with a ∩ b = ∅ and let n be such that kn > max(a ∪ b). We can

now pick (r-many) z =
∑

i≤n xki +
∑

i∈c xi, with min(c) > kn, such that y+ z ∈ A.

However,

y + z =
∑
i∈a

xi −
∑
i∈b

xi +
∑
i≤n

xki +
∑
i∈c

xi ∈ A ⊆ FS(~x)
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hence by Lemma 3.10, we must have that b ⊆ {ki
∣∣i ≤ n} and a ∩ {ki

∣∣i ≤ n} = ∅,

therefore y + z =
∑

i∈d xi where d = a ∪ c ∪ {ki
∣∣i ≤ n} \ b. But since kn > max(b),

this means that y + z cannot be an element of A because kn ∈ d.

We now suppose that the conclusion of the claim is false. Given what we just

proved in the previous paragraph, we have now that

B =

{∑
i∈a

xi ∈ FS(~x)

∣∣∣∣a ∩ {kn∣∣n < ω} 6= ∅ and a 6⊆ {kn
∣∣n < ω}

}
∈ p,

so we can pick a sequence ~y satisfying that p 3 FS(~y) ⊆ FS(~x) ∩ B. Under

these conditions, if we let an be given by yn =
∑

i∈an xi, then the an will be

pairwise disjoint, and each of them will contain some kj, but at the same time we

will have that an 6⊆ {kn
∣∣n < ω}. Now, there are q many y ∈ FS±(~x) such that

−y + FS(~y) ∈ r, and if such a y is written as y =
∑

i∈a xi −
∑

i∈b xi for a ∩ b = ∅,

then picking any m big enough so that min(am) > max(a ∪ b) and picking n such

that kn > max(am), we have that for r many z ∈
(∑

i≤n xki
)

+ FSkn+1(~x) it will be

the case that y+ z ∈ FS(~y). However, z must be written as z =
∑

i≤n xki +
∑

i∈c xi

with min(c) > kn, so that

y + z =
∑
i∈a

xi −
∑
i∈b

xi +
∑
i≤n

xki +
∑
i∈c

xi,

which makes it impossible for y+ z to be an element of FS(~y), since by choice of n,

there will be a j < n with kj ∈ am and so the composition of y + z as a finite sum

from the sequence ~x will include some elements of am, but not all of them since
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am 6⊆ {kn
∣∣n < ω}.

We will now finally make use of the hypothesis that p is sparse. By Claim 3.1,

together with the sparseness of p, it is possible to find a sequence ~y and a sub-

sequence of it ~z such that {yn
∣∣n < ω} \ {zn

∣∣n < ω} is infinite, FS(~z) ∈ p and

FS(~y) ⊆ FS(〈xkn
∣∣n < ω〉). If we write each zn =

∑
i∈an xki and we letM =

⋃
n<ω

an, it

is not hard to see that M must be a coinfinite subset of ω, and FS(〈xkn
∣∣n ∈M〉) ∈ p

(since this set is a superset of FS(~z)). This in turn implies that

{y ∈ FS±(~x)
∣∣− y + FS(〈xkn

∣∣n ∈M〉) ∈ r} ∈ q,
in particular the above set contains at least one element y, which we can write

in the form y =
∑

i∈a xi −
∑

i∈b xi for a ∩ b = ∅. Let m ∈ ω \M be such that

km > max(a ∪ b) and notice that

(
−y + FS(〈xkn

∣∣n ∈M〉)) ∩((∑
i≤m

xki

)
+ FSkm+1(~x)

)
∈ r,

in particular the above set is nonempty and so we can pick some w, with w =∑
i≤n xki+

∑
i∈c xi where min(c) > km, such that y+w ∈ FS(〈xkn

∣∣n ∈M〉) ⊆ FS(~x).

However,

y + w =
∑
i∈a

xi −
∑
i∈b

xi +
∑
i≤n

xki +
∑
i∈c

xi

where min(c) > km > max(a ∪ b). Hence by Lemma 3.10 we must have that

b ⊆ {ki
∣∣i ≤ m} and a ∩ {ki

∣∣i ≤ m} = ∅, so that y + w =
∑

i∈d xi, where

d = a∪c∪{ki
∣∣i ≤ m}\ b. But this is a contradiction since km ∈ d but km /∈M .
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It will be shown in Section 4.1 that the existence of strongly summable ultra-

filters on abelian groups (in particular, the existence of ultrafilters satisfying the

hypothesis of Theorem 3.8) cannot be proved in ZFC. It is still open whether one

can prove in ZFC alone that there exist idempotent ultrafilters (on some abelian

group G) satisfying the trivial sums property.

We now turn to the noncommutative analogue of these notions and results.

Definition 3.13. A sequence ~x in a semigroup S satisfies the ordered uniqueness

of products if it satisfies the uniqueness of products, and additionally, whenever

a, b ∈ [ω]<ω are such that(∏
n∈a

xn

)
∗

(∏
n∈b

xn

)
∈ FP(~x),

it must be the case that max(a) < min(b)

This notion is clearly only worth looking at for noncommutative semigroups, as

no commutative semigroup can possibly have any sequence of elements satisfying

the ordered uniqueness of products. But, for example, if S is the free semigroup on

the (countably many) generators {sn
∣∣n < ω}, then it is not terribly hard to check

that the sequence 〈sn
∣∣n < ω〉 of generators of S satisfies the ordered uniqueness of

products. This notion is important because of the following reason.

Lemma 3.14. Let S be some semigroup and let p ∈ S∗ be a strongly productive ul-

trafilter such that for some sequence ~x satisfying the ordered uniqueness of products
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we have that FP(~x) ∈ p. Then p is multiplicatively isomorphic to an ordered union

ultrafilter.

Proof. Reasoning as in the proof of Theorem 3.3, it is straightforward to verify that

the mapping

ϕ : FP(~x) −→ B∏
n∈a

xn 7−→ a

will map p to an ordered union ultrafilter.

We now think about the free group G on the countably many generators {sn
∣∣n <

ω}. This guy contains the free semigroup S on the same generators as a subsemi-

group. L. Legette [27, Definition 3.2] defined a very strongly productive ul-

trafilter to be a strongly productive ultrafilter on G wich has a base of sets of

the form FP(~x) where ~x is a product subsystem of ~s. It is easy to see that this is

equivalent to just demanding that p is a strongly productive ultrafilter on G such

that FP(~s) ∈ p. Lemma 3.14 implies that every very strongly productive ultrafilter

on S is multiplicatively isomorphic to some ordered union ultrafilter.

One of the reasons why this notion is important is the result [27, Theorem 3.10]

that if p ∈ S∗ is very strongly productive and q, r ∈ βS are such that q ∗ r = p,

then q = r = p. If we allow q and r to be elements of the larger semigroup βG, we
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need to pay with a stronger hypothesis in order to keep the same thesis (although

admittedly it is not clear at all to whom we are paying, nor with what currency).

Definition 3.15. Let S be a non-commutative semigroup.

(i) We say that an idempotent p∗p = p ∈ S∗ has the trivial products property

if, whenever q, r ∈ S∗ are such that q ∗ r = p, there must exist an x ∈ S such

that q = p ∗ x and r = x−1 ∗ p = {x−1 ∗ A
∣∣A ∈ p}.

(ii) We say that a strongly productive ultrafilter p ∈ S∗ is sparse if for every

A ∈ p there exists a sequence ~x of elements of S such that FP(~x) ⊆ A and an

infinite co-infinite subset M ⊆ ω such that FP(〈xn
∣∣n ∈M〉) ∈ p.

Note that the previous definition is different from the simple translation of

Definition 3.7. In particular, for a group G, the (principal ultrafilter generated by

the) identity element of G is sparse if G is non-abelian but not if G is abelian.

However, this apparent anomaly vanishes when we restrict our attention to very

strongly productive ultrafilters on the free semigroup.

We close this section by stating without proof the following result, due to N.

Hindman and L. Jones [18, Theorem 3.10]. It is worth noting that its proof is quite

similar to the proof of Theorem 3.8 presented here, with the caveat that it becomes

necessary to do some modifications to take into account the noncommutativity of

the situation. In fact, it would probably be more accurate to say that the proof of
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Theorem 3.8 presented here borrows lots of ideas from the proof of the following

theorem that appears in [18], although it does introduce some modifications in order

to adapt to the commutativity of that situation.

Theorem 3.16. Let p be a sparse very strongly productive ultrafilter on the free

semigroup S. Then p has the trivial products property in the free group G.

3.2 Sparseness for Ultrafilters on the Boolean Group

Our study of sparse ultrafilters will focus first on the Boolean group B. Given

that FS(~x) = F4(ran(~x)) for every sequence ~x of elements of B = [ω]<ω, we can

conclude that an ultrafilter p ∈ B∗ is sparse if and only if for every A ∈ p there

exists a linearly independent set X and an infinite co-infinite subset of it Y ⊆ X

such that F4(Y ) ∈ p and F4(X) ⊆ A. Although the notion of sparse seems at first

sight stronger than the notion of strongly summable, we can right away establish

that this is not so for the Boolean group.

Theorem 3.17. Every strongly summable ultrafilter on B is sparse.

Proof. Let p ∈ B∗ be a strongly summable ultrafilter, and let A ∈ p. Because

of strong summability, there is an infinite linearly independent Z such that p 3

F4(Z) ⊆ A. We claim that there is a B ∈ p such that for some infinite W ⊆ Z,

F4(W ) ∩ B = ∅. Notice that the result follows easily from the claim: just pick a
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linearly independent Y such that p 3 F4(Y ) ⊆ B ∩ F4(Z), and let X = Y ∪W .

Then it is straightforward to prove that X is linearly independent, since so are Y

and W , and F4(W ) is disjoint from F4(Y ). Since X \ Y = W we also have that

|X \ Y | = ω; and since Y,W ⊆ F4(Z), we will have that F4(X) ⊆ F4(Z) ⊆ A

and we are done.

Thus we now proceed to prove our claim, since that will immediately establish

the theorem. In order to do that, let Z ′ be an infinite co-infinite subset of Z. Let

B0 = {w ∈ F4(Z)|suppZ(w) ∩ Z ′ 6= ∅} ,

and

B1 = F4(Z) \B0 = {w ∈ F4(Z)|suppZ(w) ∩ Z ′ = ∅} .

There is i ∈ 2 such that Bi ∈ p. If B0 ∈ p then we let W = Z \ Z ′; otherwise if

B1 ∈ p we let W = Z ′. In any case it is easy to see that F4(W ) ∩Bi = ∅.

In particular, union and ordered union ultrafilters are sparse. In general, strongly

summable ultrafilter on the Boolean group are particularly well-behaved, as the fol-

lowing result of Protasov’s [33, Corollary 4.4] shows.

Theorem 3.18. Every strongly summable ultrafilter on the Boolean group B has

the trivial sums property.

At the end of the day, this chapter is all about proving that most strongly

productive ultrafilters (especially strongly summable ultrafilters on abelian groups)

73



are sparse. Hence it makes sense to try and establish a simple condition that will

ensure sparseness on a given strongly productive ultrafilter. For this we need some

more theory.

Definition 3.19.

(i) Given a set M ⊆ ω, a block of M is a maximal interval contained in M . For

example, if M = {0, 1, 2, 6, 7, 10, 14, 15, 16, 17} then the blocks of M are the

sets {0, 1, 2}, {6, 7}, {10}, {14, 15, 16, 17}.

(ii) If M is finite, then a gap of M is a maximal interval contained in max(M)\M .

For example, if M is as above then its gaps are {3, 4, 5}, {8, 9}, {11, 12, 13}.

(iii) Given a finite set a ∈ B we let N.B.(a) denote the number of blocks that a

has. For example, if M is as above then N.B.(M) = 4. This defines a function

N.B. : B −→ ω.

(iv) We could analogously define the number of gaps of a finite set a ∈ B, but we

will instead just note that this number equals N.B.(a) if 0 /∈ a and N.B.(a)−1

otherwise.

The following lemma is due to Hindman, Steprāns and Strauss [20, Theorem

2.5]. We present our own proof here.
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Lemma 3.20. Whenever X ⊆ B is a pairwise disjoint family such that (∃i ∈

2)(∀x ∈ F4(X))(N.B.(x) ≡ i mod 2), then
⋃
X is coinfinite.

Proof. We prove the case i = 0 and emphasize that the case i = 1 is entirely

analogous. So assume by way of contradiction that X is a pairwise disjoint family

such that
⋃
X is cofinite and N.B.(x) is even for every x ∈ F4(X). We first notice

that it is possible to assume without loss of generality that 0 ∈
⋃
X (just pick the

x ∈ X with least minimum and replace it by x ∪ min(x), which shall not change

the number of blocks of any element of F4(X)).

Now let m = max(ω \
⋃
X) and, for every i < m such that i ∈

⋃
X pick an

xi ∈ X such that i ∈ xi. Note that x =
⋃
i<m
i∈

⋃
X

xi ∈ F4(X). Now let n = max(x)

and, for every j < n such that j ∈
⋃
X \ x, pick a yj ∈ X such that j ∈ yj (notice

that every such yj must be disjoint from x). Let y =
⋃
j<n
j∈

⋃
X

yj ∈ F4(X). Then

x and y are mutually disjoint and z = x 4 y = x
⋃
y ∈ F4(X). Consequently

N.B.(x),N.B.(y),N.B.(z) are all even.

x

y

z = x4 y

0 j gaps k gaps l gapsm n

Let j = N.B.(ω \
⋃
X) (which is the number of gaps that x has below m),

let k = N.B.(x) − j − 1 (which counts the number of gaps of x that are located
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between m and n, since x has N.B.(x)−1 gaps); and let l be the number of gaps of

y ∪ (n+ 1) (the number of gaps of y that are past n). We see (e.g. in the picture)

that, for each gap of y that is below n, we can count exactly one block of x that

is between m and n, hence there are k + 1 such gaps and so the total number of

gaps of y is l+ k+ 1. Since 0 /∈ y, then y has the same number of gaps as it has of

blocks, thus l+k+ 1 = N.B.(y) which is an even number and so k and l have to be

of opposite parity. Now notice that j and k are of opposite parity (since N.B.(x) is

even), hence j and l have the same parity and so j + l is even. On the other hand,

z = x4 y has j + l gaps (an even number), but at the same it has (since 0 ∈ z)

N.B.(z)− 1 gaps (an odd number), which is a contradiction.

The following theorem originally appeared in [20, Theorem 2.6], and can be

traced back to [22, Theorem 4].

Theorem 3.21. If p is a union ultrafilter and M ⊆ ω then there exists an A ∈ p

such that M \
⋃
A is infinite.

Proof. We first treat the case where M = ω. Just choose i ∈ 2 such that Ai =

{x ∈ B
∣∣N.B.(x) ≡ i mod 2} ∈ p and let X be a pairwise disjoint family such that

p 3 F4(X) ⊆ Ai. Declaring A = F4(X) does the job because of Lemma 3.20.

Now for arbitrary M ⊆ ω, if [ω \ M ]<ω ∈ p then we are done. Otherwise

B = {a ∈ B
∣∣a∩M 6= ∅} ∈ p, and let us note that q = {{a∩M

∣∣a ∈ A}∣∣A ∈ p � B}
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is a union ultrafilter on [M ]<ω, so if we let M = {mn

∣∣n < ω} be any enumeration of

M then the function {mn1 , . . . ,mnk} 7−→ {n1, . . . , nk} will map q to another union

ultrafilter which must have an element C such that
⋃
C is coinfinite in ω. There

must be an A ∈ p � B ⊆ p such that the preimage of C under this mapping is

exactly {a ∩M
∣∣a ∈ A}, and it must be the case that M \

⋃
A is infinite (since

ω \
⋃
C is infinite). Thus, we are done.

At this point, in order to apply Theorem 3.21, we need to distinguish between

the commutative and the noncommutative case. First the commutative one.

Theorem 3.22. Let p be a strongly summable ultrafilter on some abelian semigroup

S. If p is additively isomorphic to a union ultrafilter then p is sparse.

Proof. If p is additively isomorphic to some union ultrafilter, by Proposition 1.11

we can pick a sequence ~x satisfying uniqueness of finite sums such that FS(~x) ∈ p,

and such that the mapping ϕ given by ϕ(
∑

n∈a xn) = a maps p to a union ultrafilter

q. Let A ∈ p, and let X be pairwise disjoint such that q 3 F4(X) ⊆ ϕ[A∩FS(~x)].

Now let M =
⋃
X. Since q is a union ultrafilter, Theorem 3.21 ensures that there

is B ∈ q such that M \
⋃
B is infinite. Without loss of generality we can assume

B ⊆ F4(X), so that
⋃
B is a coinfinite subset ofM . Grab a pairwise disjoint family

Y such that q 3 F4(Y ) ⊆ B, then
⋃
Y is a coinfinite subset of M =

⋃
X and thus

there are infinitely many x ∈ X that do not intersect
⋃
Y (because Y ⊆ F4(X)
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and X is a pairwise disjoint family, so if x ∈ X intersects
⋃
Y then x ⊆

⋃
Y ).

Thus if we let Z = {x ∈ X
∣∣x ∩⋃Y = ∅} ∪ Y then Z is a pairwise disjoint family

and F4(Z) ⊆ F4(X) ⊆ ϕ[A ∩ FS(~x)]. Enumerate Z = {zn
∣∣n < ω} in such a way

that Y = {z2n
∣∣n < ω} and {x ∈ X

∣∣x ∩ ⋃Y = ∅} = {z2n+1

∣∣n < ω}. Then let ~w

be given by wn =
∑

i∈zn xi. We get that FS(~w) = ϕ−1[F4(Z)] ⊆ A, and if ~y is the

subsequence of even elements of ~w, then we will have that |{wn
∣∣n < ω}\{yn

∣∣n < ω}|

is infinite and FS(~y) = ϕ−1[F4(Y )] ∈ p.

From this we can easily conclude [20, Theorem 3.2.] which will be instrumental

in what follows.

Corollary 3.23. Let p be a strongly summable ultrafilter on some abelian group

G such that there exists a sequence ~x satisfying the 2-uniqueness of sums with

FS(~x) ∈ p. Then p is sparse. �

Corollary 3.24. Every strongly summable ultrafilter on N is sparse. �

We will also be able to deduce the noncommutative equivalent of Corollary 3.23.

Corollary 3.25. Let p be a strongly productive ultrafilter on some semigroup S. If

p is multiplicatively isomorphic to an ordered union ultrafilter then p is sparse.

Proof. If p is multiplicatively isomorphic to an ordered union ultrafilter, by Propo-

sition 1.11 we can assume that there is a sequence ~x such that FP(~x) ∈ S and the
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function ϕ : FP(~x) −→ B given by ϕ(
∏

n∈a xn) = a is the witnessing multiplicatively

isomorphism mapping p to an ordered union ultrafilter q. Given any A ∈ p, observe

that ϕ[A] ∈ q, so we can pick an ordered family Z in B such that q 3 F4(Z) ⊆ ϕ[A].

Moreover by Theorem 3.21 there is an elementB ∈ q, which (without loss of general-

ity) is a subset of F4(Z) such that
⋃
Z\
⋃
B is infinite. Let Z = {zn

∣∣n < ω} be the

increasing enumeration of Z (i.e. max(zn) < min(zn+1) for all n < ω) and denote by

M = {n < ω
∣∣zn ⊆ ⋃B}. Observe that

⋃
n∈M zn =

⋃
B and B ⊆ F4({zn

∣∣n ∈M}).
In particular M is a coinfinite subset of ω and F4({zn

∣∣n ∈M}) ∈ q. Therefore, if

we define the sequence ~y by yn =
∏

i∈zn xi, then we will get that FP(~y) ⊆ A and

FP(〈yn
∣∣n ∈M〉) ∈ p, hence p is sparse strongly productive.

We will use Corollary 3.23 at the end of next section in order to extract some

consequences for strongly summable ultrafilters on abelian groups. However, Corol-

lary 3.25 can be used right away to obtain a very interesting property of very

strongly productive ultrafilters on the free semigroup.

Corollary 3.26. Every very strongly productive ultrafilter on the free semigroup S

is sparse and hence it has the trivial products property. �
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3.3 Sparseness and Trivial Sums on Abelian Groups

The main result of this section tells us that almost all strongly summable ultrafilters

on abelian groups have FS-sets generated from sequences that satisfy 2-uniqueness

of finite sums. As a consequence of that, almost all strongly summable ultrafilters

on abelian groups are essentially (that is, additively isomorphic to) union ultrafilters

(because of Theorem 3.3), and this helps solve [20, Questions 4.11 and 4.12]. More

precisely, we have the following theorem and corollary.

Theorem 3.27. Let G be an abelian group, and let p ∈ G∗ be a strongly summable

ultrafilter such that

{x ∈ G
∣∣o(x) = 2} /∈ p.

Then, there exists a sequence ~x of elements of G satisfying the 2-uniqueness of finite

sums such that FS(~x) ∈ p.

Corollary 3.28. Let G be an abelian group, and let p ∈ G∗ be a strongly summable

ultrafilter such that

{x ∈ G
∣∣o(x) = 2} /∈ p.

Then p is additively isomorphic to some union ultrafilter.

In order to prove this result, we will need to break the proof down into several

subcases.
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Lemma 3.29. Let G be an abelian group, and let X = {x ∈ G
∣∣o(x) = 4}. If ~x is a

sequence of elements of G such that FS(~x) ⊆ X, then ~x must satisfy 2-uniqueness

of finite sums.

Proof. Assume that ~x is such that FS(~x) ⊆ X. By Proposition 3.2, in order to

prove that ~x satisfies 2-uniqueness of finite sums, it suffices to show that whenever

a, b, c, d are such that a ∩ b = ∅ = c ∩ d and

2
∑
n∈a

xn +
∑
n∈b

xn = 2
∑
n∈c

xn +
∑
n∈d

xn,

then a = c and b = d. Now for each n ∈ b∩ d we can cancel the term xn from both

sides of the previous equation; and similarly for each n ∈ a ∩ c we can cancel the

term 2xn from both sides of the equation, which thus becomes

2
∑
n∈a′

xn +
∑
n∈b′

xn = 2
∑
n∈c′

xn +
∑
n∈d′

xn, (3.1)

where a′ = a \ (a ∩ c), b′ = b \ (b ∩ d), c′ = c \ (a ∩ c) and d′ = d \ (b ∩ d). Since b′

is disjoint from d′, Equation (3.1) yields

∑
n∈b′∪d′

xn =
∑
n∈b′

xn +
∑
n∈d′

xn = −2
∑
n∈a′

xn + 2
∑
n∈c′

xn + 2
∑
n∈d′

xn,

where each of the terms from the right-hand side is either the identity (if the

corresponding sum happens to be an empty sum) or has order 2 (because if the

corresponding sum is nonempty then it has order 4), so the right-hand side of the

previous equation is either the identity or has order 2. If b′ ∪ d′ was nonempty, the
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left-hand side of this equation would be a legitimate element of FS(~x), thus of order

4, and this is impossible. Hence we must have that b′ = d′ = ∅, which means that

b = b ∩ d = d. Therefore (3.1) becomes

2
∑
n∈a′

xn = 2
∑
n∈c′

xn,

which in turn implies that

2

(∑
n∈a′

xn −
∑
n∈c′

xn

)
= 0,

and this means that the element x =
∑

n∈a′ xn −
∑

n∈c′ xn is either the identity, or

of order 2. Now since a′ is disjoint from c′, we get

∑
n∈a′∪c′

xn =
∑
n∈a′

xn +
∑
n∈c′

xn = x+ 2
∑
n∈c′

xn.

Again, each term on the right-hand side is either the identity or has order 2, so

the whole right-hand side is either the identity or of order 2. So, arguing as we

did before, we conclude that a′ = c′ = ∅, which means that a = a ∩ c = d, and

therefore ~x satisfies 2-uniqueness of finite sums.

If G is any abelian group, and p ∈ G∗ is strongly summable, then there must

be a countable subgroup H such that H ∈ p (e.g. take any FS set in p because of

strong summability, and then let H be the subgroup generated by such FS set), and

certainly the restricted ultrafilter p � H = p∩P(H) will also be strongly summable.

If we prove that p � H contains a set of the form FS(~x) for a sequence ~x satisfying
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2-uniqueness of finite sums, then certainly so does p itself, because p is just the

ultrafilter generated in G by p � H and in particular p � H ⊆ p. Hence in order to

prove Theorem 3.27, it suffices to consider only countable abelian groups G, and

we will do so in the remainder of this section. This simplifies matters because (as

discussed in the Introduction) every countable abelian group G can be embedded

in the group
⊕

n<ω T, and any strongly summable ultrafilter on G generates a

strongly summable ultrafilter on
⊕

n<ω T, which will contain some FS(~x) for some

~x satisfying 2-uniqueness of sums if and only if the original ultrafilter does. Thus

from now on we will only deal with G =
⊕

n<ω T.

Definition 3.30. In the remainder of this section, we will denote by

Q(G) = {x ∈ G
∣∣o(x) ∈ {1, 2, 4}}

for all n < ω. Note that Q(G) is the subgroup of G consisting of those elements

satisfying that πn(x) ∈
{

0, 1
2
, 1
4
,−1

4

}
. Thus for x /∈ Q(G) then there is an n < ω

such that πn(x) /∈
{

0, 1
4
,−1

4
, 1
2

}
. We will denote the least such n by ρ(x).

The following theorem subsumes as a particular case a theorem of Hindman,

Steprāns and Strauss [20, Theorem 4.5].

Theorem 3.31. Let G be an abelian group, and let p ∈ G∗ be a strongly summable

ultrafilter. If {
x ∈ G \Q(G)

∣∣∣∣πρ(x)(x) /∈
{

1

8
,−1

8
,
3

8
,−3

8

}}
∈ p,
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then there exists a set X ∈ p such that for every sequence ~x of elements of
⊕

n<ω T,

if FS(~x) ⊆ X then ~x must satisfy 2-uniqueness of finite sums.

Proof. Note that, if p is as in the hypotheses, then p must contain as an element

one of the sets {
x ∈ G \Q(G)

∣∣∣∣πρ(x)(x) ∈ I
}

where I is either
(
0, 1

8

)
,
(
1
8
, 1
4

)
,
(
1
4
, 3
8

)
,
(
3
8
, 1
2

)
,
(
−1

8
, 0
)
,
(
−1

4
,−1

8

)
,
(
−3

8
,−1

4

)
, or(

−1
2
,−3

8

)
. We will assume that I =

(
0, 1

8

)
, the proof in all other cases being

entirely analogous. We note that we can partition I = I0 ∪ I1 ∪ I2, where

Ii =
⋃
m∈N

[
1

23m+1+i
,

1

23m+i+2

)

This is, Ii consists of those real numbers t ∈
(
0, 1

8

)
whose first nonzero digit, in the

binary expansion, lies in a position that is ≡ i mod 3 (note that this first nonzero

digit lies at least in the fourth position since t < 1
8
). Note that if r, t ∈ Ii and

r + t ∈ Ii, then r cannot have its first nonzero digit in the same position as t does

so if r > t then actually r > 4t.

We grab an i ∈ 3 such that X = {x ∈ G \ Q(G)
∣∣πρ(x)(x) ∈ Ii} ∈ p, and we

claim that X is as desired in the conclusion of the theorem. So assume that ~x

is such that FS(~x) ⊆ X. For each i < ω, we let Mi = {n < ω
∣∣ρ(xn) = i} and

M = {i < ω
∣∣Mi 6= ∅}. The observation from the previous paragraph implies that

if n,m ∈Mi then πi(xn) 6= πi(xm) and actually one of these numbers is greater than
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4 times the other. Thus, rearranging the sequence ~x if necessary, we can always

assume that n < m and n,m ∈ Mi implies that πi(xn) > 4πi(xm). In fact, from

this it follows that, for any n ∈Mi, we have that

πi(xn) > 3
∑
n<m
m∈Mi

πi(xm). (3.2)

Now notice that, if i < j and i ∈ M and n ∈ Mj, then πi(xn) = 0; since this

is the only way that πi(xn + xm) ∈ I if m ∈ Mi. Hence, whenever we have sets

a, b ∈ [ω]<ω \ {∅} and functions ε : a −→ {1, 2}, δ : b −→ {1, 2}; if

∑
n∈a

xn =
∑
n∈b

xn,

letting i be least such that (a ∪ b) ∩Mi 6= ∅ we get that

∑
n∈a∩Mi

πi(xn) =
∑

n∈b∩Mi

πi(xn),

which, because of Equation (3.2), can only happen if a∩Mi = b∩Mi and ε �Mi =

δ � Mi. This allows us to cancel the terms corresponding to Mi, continuing with

the process yields, after finitely many steps, that a = b and ε = δ.

The following theorem is the last piece needed for proving Theorem 3.27.

Theorem 3.32. Let G be an abelian group, and let p ∈ G∗ be a strongly summable

ultrafilter. If {
x ∈ Q(G)

∣∣∣∣πρ(x)(x) ∈
{

1

8
,−1

8
,
3

8
,−3

8

}}
∈ p,
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then there exists a set X ∈ p such that for every sequence ~x of elements of
⊕

n<ω T,

if FS(~x) ⊆ X then ~x must satisfy 2-uniqueness of finite sums.

Proof. If p ∈ G∗ is as described in the hypothesis, then there is an i ∈ {1,−1, 3,−3}

such that

Qi =

{
x ∈ Q(G)

∣∣∣∣πρ(x)(x) =
i

8

}
∈ p.

Let ~x be such that p 3 FS(~x) ⊆ Qi. For j < ω let Mj = {n < ω
∣∣ρ(xn) = j}.

Claim 3.2. For each j < ω, |Mj| ≤ 2.

Proof of Claim. Assume, by way of contradiction, that there are three distinct

n,m, k ∈ Mj, and let x = xn + xm + xk. For l < j, πl(x) must be an element

of
{

0, 1
4
,−1

4
, 1
2

}
, because so are πl(xn), πl(xm) and πl(xk). On the other hand,

πj(xn) = πj(xm) = πj(xk) = i
8
, so ρ(x) = j but πj(x) = 3i

8
6= i

8
.

Thus we can rearrange the sequence ~x in such a way that n < m implies ρ(xn) ≤

ρ(xm), where the inequality is strict if m > n+ 1. Let M = {ρ(xn)
∣∣n < ω}.

Claim 3.3. Let n < m < ω and assume that j = ρ(xn) < ρ(xm) (which may or

may not hold if m = n+ 1, but must hold if m > n+ 1). Then πj(xm) = 0.

Proof of Claim. Let x = xn+xm. Arguing as in the proof of Claim 3.2, we get that

ρ(x) = j and thus since x ∈ Qi, πj(xn)+πj(xm) = πj(x) = i
8
. Now on the one hand

we know that πj(xm) ∈
{

0, 1
4
,−1

4
, 1
2

}
, while on the other hand πj(xn) = i

8
. Hence

the only possibility that does not lead to contradiction is that πj(xm) = 0.
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Claim 3.4. For every x ∈ FS(~x) there is a j ∈ M such that πj(x) 6= 0. Moreover

for the least such j we actually have that πj(x) ∈
{
i
8
, 2i
8

}
.

Proof of Claim. For if x =
∑

n∈a xn and if m = min(a), then we can let j = ρ(xm) ∈

M , so that for every n ∈ a we have ρ(xn) ≥ j, with a strict inequality if n > m+ 1.

Now, we have that

πj(x) =
∑
n∈a

πj(x),

where, by Claim 3.3, each of the terms on the right-hand side of this expression

are zero, except for πj(xm) = 1
8

and possibly πj(xm+1) (which will appear on the

summation only if m+ 1 ∈ a, and if so it will equal 1
8

if ρ(xm+1) = ρ(xm), and zero

otherwise). Thus πj(x) ∈
{
i
8
, 2i
8

}
. In particular πj(x) 6= 0, now in order to prove

the “moreover” part, we will argue that for all l < j such that l ∈ M , πl(x) = 0.

This is because if l ∈M , then there is k < ω such that ρ(xk) = l, and if l < j then

we must necessarily have k < m because of the way we arranged our sequence ~x.

Hence, again by Claim 3.3 and since m = min(a), it will be the case that πl(xn) = 0

for all n ∈ a, and hence

πl(x) =
∑
n∈a

πl(xn) = 0,

therefore j is actually the least l ∈M such that πl(x) 6= 0 and we are done.

The previous claim allows us to define τ : FS(~x) 7−→ M by τ(x) = min{j ∈
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M
∣∣πj(x) 6= 0}, and ensures that πτ(x)(x) ∈

{
i
8
, 2i
8

}
. We can thus let

Ck =

{
x ∈ FS(~x)

∣∣∣∣πτ(x)(x) =
ki

8

}
for k ∈ {1, 2}, and choose from among those the k such that Ck ∈ p. We let X = Ck

and claim that X is as in the conclusion of the theorem. In order to see this, let ~y

be such that FS(~y) ⊆ Ck.

Notice first that for distinct n,m < ω we must have τ(yn) 6= τ(ym), for otherwise

we would get, arguing in a similar way as in the proofs of Claims 3.2 and 3.3, that

τ(yn + ym) = τ(yn) = τ(ym) and πτ(yn+ym)(yn + ym) = 2ki
8
6= ki

8
, a contradiction.

Thus by rearranging ~y if necessary, we can assume that n < m implies τ(yn) <

τ(ym).

Now an observation is in order. Consider a ∈ [ω]<ω \ ∅ and ε : a −→ {1, 2}.

Let m = min(a) and j = τ(ym). Since τ is increasing on ~y, πj(yn) = 0 for all

n ∈ a \ {m}, while πj(ym) = ki
8

. Thus

πj

(∑
n∈a

ε(n)yn

)
= ε(m)

ki

8
6= 0.

From this we can conclude that ~y satisfies 2-uniqueness of finite sums. Assume

that a, b ∈ [ω]<ω and ε : a −→ {1, 2}, δ : b −→ {1, 2} are such that

∑
n∈a

ε(n)xn =
∑
n∈b

δ(n)xn. (3.3)

We will proceed by induction on min{|a|, |b|}. If a = b = ∅ we are done. Otherwise

let m = min(a ∪ b). Assume without loss of generality that m ∈ a, so that m =
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min(a). Let j = τ(ym). Then by the previous observation, the value of each side

of (3.3) under πj is nonzero, while πj(yn) = 0 for all n > m, thus by looking at the

right-hand side of (3.3) we conclude that we must have m ∈ b as well. Then it is

also the case that min(b) = m. Now again, by the observation from last paragraph

we get that the value of each side of (3.3) under the function πj must equal, at the

same time, ε(m)ki
8

and δ(m)ki
8

. This can only happen if ε(m) = δ(m), therefore we

can cancel the term ε(m)ym from both sides of (3.3) and get

∑
n∈a\{m}

ε(n)xn =
∑

n∈b\{m}

δ(n)xn,

now we can apply the inductive hypothesis and conclude that a \ {m} = b \ {m}

and ε � (a \ {m}) = δ � (b \ {m}). Since m is an element of both a and b, with

ε(m) = δ(m), we have proved that a = b and ε = δ, and we are done.

Proof of Theorem 3.27. Let G be an abelian group, and p ∈ G∗ be a strongly

summable ultrafilter such that {x ∈ G
∣∣o(x) = 2} /∈ p. Since p is nonprincipal and

the only x ∈ G with o(x) = 1 is 0, we have that B = {x ∈ G
∣∣o(x) > 2} ∈ p.

Hence, there are two possibilities: If C = {x ∈ G
∣∣o(x) = 4} ∈ p, then we can pick a

sequence ~x such that p 3 FS(~x) ⊆ C, so by Lemma 3.29 this sequence must satisfy

2-uniqueness of finite sums and we are done. Otherwise, if C /∈ p then we have that

(since C ∪B ∪ {0} = Q(G))

G \Q(G) = {x ∈ G
∣∣o(x) /∈ {1, 2, 4}} ∈ p.
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Now G \Q(G) = Q0 ∪Q1, where

Q0 =

{
x ∈ G \Q(G)

∣∣∣∣πρ(x)(x) /∈
{

1

8
,−1

8
,
3

8
,−3

8

}}
,

and

Q1 =

{
x ∈ G \Q(G)

∣∣∣∣πρ(x)(x) ∈
{

1

8
,−1

8
,
3

8
,−3

8

}}
,

so pick i ∈ 2 such that Qi ∈ p. If i = 0 apply Theorem 3.31 and if i = 1 apply

Theorem 3.32, in either case, there is an X ∈ p such that whenever ~x is such that

FS(~x) ⊆ X, then ~x must satisfy 2-uniqueness of finite sums. By strong summability

of p there is such a sequence ~x which additionally satisfies FS(~x) ∈ p, and we are

done.

Corollary 3.33 ([20], Question 4.12). Let p be a nonprincipal strongly summable

ultrafilter on an abelian group G. Then p is sparse.

Proof. Let G be any abelian group, and let p ∈ G∗ be a strongly summable ultra-

filter. Let

B = {x ∈ G
∣∣o(x) ≤ 2}.

Then B is a subgroup of G. If B ∈ p then since p is nonprincipal, B must be

infinite; and since G is countable, B must be isomorphic to the (unique up to

isomorphism) countably infinite Boolean group. Consider the restricted ultrafilter

q = p � B = p ∩ P(B). Then q is also strongly summable, so q is a nonprincipal
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strongly summable ultrafilter on the Boolean group and therefore by Theorem 3.17

it is sparse. It is easy to see that this implies that p is sparse as well. Thus the only

case that remains to be proved is when B /∈ p, but this is handled by Theorem 3.27

together with Corollary 3.23, and we are done.

Corollary 3.34 ([20], Question 4.11). Let p be a nonprincipal strongly summable

ultrafilter on an abelian group G. Then p has the trivial sums property.

Proof. Let G be any abelian group, and let p ∈ G∗ be a strongly summable ultra-

filter. If p does not contain the subgroup B = {x ∈ G
∣∣o(x) ≤ 2}, then we just need

to apply Theorems 3.27 and 3.8. So assume that B ∈ p and let q, r ∈ βG be such

that q + r = p. Then we have that

{x ∈ G
∣∣B − x ∈ r} ∈ q,

in particular this set is nonempty and so we can pick an x ∈ G such that B−x ∈ r,

or equivalently B ∈ r + x. Since x ∈ G (hence it commutes with all ultrafilters),

the equation (q − x) + (r + x) = p holds, thus

A = {y ∈ G
∣∣B − y ∈ r + x} ∈ q − x.

Notice that A ⊆ B, because if y ∈ G is such that B− y ∈ r+x then B ∩ (B− y) ∈

r + x, in particular the latter set is nonempty and so there are z, w ∈ B such that

z = w− y which means that y = w− z ∈ B. Therefore B ∈ q− x, so we can define
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u = (q − x) � B and v = (r + x) � B. We then get that u, v ∈ βB and p � B ∈ B∗

is a strongly summable ultrafilter such that u + v = p � B. By Theorem 3.18, we

conclude that u, v ∈ B+p � B, which is easily seen to imply that q−x, r+x ∈ B+p,

and therefore, since x ∈ G, we conclude that q, r ∈ G+ p and we are done.
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4 Finer Existence Results

We turn our eye again to existence questions. Because of the results from the

previous chapter, we do not suffer a terrible loss of generality if we focus exclusively

on the Boolean group, so the first thing we do is show some properties of strongly

summable ultrafilters on this group. We then establish that the statement “there

exists a strongly summable ultrafilter on the Boolean group” is consistent with

cov(M) < c together with each of the assumptions d = c = ω2 and d < c (recall

that this statement was already known to follow from just cov(M) < c, although

its negation is also known to be consistent with ZFC). To close this dissertation,

we prove that, assuming cov(M) = c, there exists on the Boolean group a strongly

summable ultrafilter that is not additively isomorphic to any union ultrafilter.

4.1 Strongly Summable Ultrafilters on the Boolean group

In this section we will focus on the Boolean group, and on the properties of strongly

summable ultrafilters on this group. Most of these results had already been proved
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for the case of union ultrafilters, which are particular cases of strongly summable

ultrafilters on B. The slightly more general theorems that we present here are

proved in much the same way as in the particular cases for union ultrafilters, with

help from the following lemma which will reveal some of the internal structure of

sets F4(X). We will be using the functions max : B −→ ω and min : B −→ ω

(recall that the group B has [ω]<ω as its underlying set).

Lemma 4.1. Let X ⊆ B be a linearly independent set. It is possible to find a

linearly independent Y such that F4(Y ) = F4(X) and max � Y , min � Y are

injective (in particular, max[F4(Y )] = max[Y ] and min[F4(Y )] = min[Y ]).

Proof. Let X ∈ [B]ω be linearly independent. Fix an increasing enumeration

{nk
∣∣k < ω} of max[F4(X)].

Claim 4.1. For each k < ω, the set Xk = {z ∈ F4(X)
∣∣max(z) = nk} has exactly

2k elements.

Proof. We proceed by induction on k. There cannot be two distinct y, z ∈ X0, for

otherwise ∅ 6= y 4 z ∈ F4(X) and max(y 4 z) < n0, contradicting the definition

of n0. Now assume that we have already proven that |Xj| = 2j for all j < k. Let

{yi
∣∣i <∑j<k 2j = 2k − 1} be an enumeration of

⋃
j<k

Xj. Pick any x ∈ F4(X) such

that max(x) = nk. Then the set {x} ∪ {x4 yi
∣∣i < 2k − 1} consists of 2k distinct

elements of F4(X), all of them with maximum nk. Moreover, if z ∈ F4(X) is
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such that max(z) = nk, then either z = x or max(x4 z) < nk, thus x4 z = yi for

some i < 2k − 1. Then z = x4 yi lies in the aforementioned set. This proves that

Xk = {x} ∪ {x4 yi
∣∣i < 2k − 1} and we are done.

The previous argument shows even more, namely it shows that however we

choose an element xn ∈ Xn for each n < ω, the resulting set Y = {xn
∣∣n < ω} is

linearly independent and F4(Y ) = F4(X). This will allow us to recursively set

up a choice of an xn ∈ Xn, for each n < ω, such that the xn have pairwise disjoint

minima. We first let x0 be the unique element of X0. We now assume that we have

chosen x0, . . . , xk with xi ∈ Xi and pairwise disjoint minima (let mi = min(xi)),

and explain how to choose xk+1. We start by choosing any y ∈ Xk+1. We let

a = y ∩ {mi|i ≤ k} and define

xk+1 = y4
(
4
i∈a

xi

)
.

It is readily checked that xk+1 ∈ Xk+1 and that for all i ≤ k, mi /∈ xk+1, in particular

mk+1 = min(xk+1) 6= mi for any i ≤ k. In the end we just collect what we chose

into the family Y = {mk

∣∣k < ω}, and we are done.

The previous lemma will allow us to extend some results of Blass, for union

ultrafilters, to the more general context of strongly summable ultrafilters on the

Boolean group. Recall that an ultrafilter p ∈ ω∗ is said to be a P-point if whenever

An ∈ p for n < ω, it is possible to find a pseudointersection A for the An (this is,

95



A ⊆ ω is infinite and (∀n < ω)(A ⊆∗ An)) such that A ∈ p. It is not terribly hard

to see [1] that, equivalently, p ∈ ω∗ is a P-point if and only if for every function

f : ω −→ ω there exists an A ∈ p such that f � A is either constant or finite-to-one.

The following theorem was originally proved by Blass and Hindman [6, Theorem 2]

for union ultrafilters only.

Theorem 4.2. If p ∈ B∗ is a strongly summable ultrafilter, then min(p) is a P-

point.

Proof. Let f : ω −→ ω, and we will find an element of min(p) on which f is either

constant or finite-to-one. For x ∈ B \ {∅}, we let ϕ(x) denote the number of

“consecutive pairs” i < j (this means that i, j ∈ x but for every i < k < j, k /∈ x)

such that f(j) ≤ i. Notice that whenever max(x) < min(y), then ϕ(x 4 y) =

ϕ(x) + ϕ(y) + ∆(x, y) where we define ∆(x, y) to equal 1 if f(min(y)) ≤ max(x)

and 0 otherwise. For i ∈ 2, we define

Ai = {x ∈ B
∣∣ϕ(x) ≡ i mod 2}.

Then A0 ∪ A1 defines a partition of B, so we can choose i ∈ 2 such that Ai ∈ p,

and by strong summability we can also pick a linearly independent X such that

p 3 F4(X) ⊆ Ai. Moreover by Lemma 4.1, we can assume that max � X and

min � X are both injective.

Now there are two cases. If i = 1, fixing any x ∈ X we have that, whenever
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y ∈ F4(X) is such that max(x) < min(y), we must have that f(min(y)) ≤ max(x)

because otherwise it would be impossible that all three of ϕ(x), ϕ(y), ϕ(x4 y) are

simultaneously odd. But since min � X is injective, by dropping finitely many

elements from X we can get a Y such that (∀y ∈ F4(Y ))(max(x) < min(y)),

and certainly it will be the case that F4(Y ) ∈ p. Hence for every y ∈ F4(Y ),

we have that f(min(y)) ≤ max(x), so since min[Y ] = min[F4(Y )] we get that

min[Y ] ∈ min(p) and f � min[Y ] has finite range (it can only take values≤ max(x)).

Thus one of the finitely many fibers belongs to min(p) and so we get a set in min(p)

where f is constant.

The second case is when i = 0. Then, in order to preserve the parity, given any

x, y ∈ F4(X) such that max(x) < min(y), we must have that max(x) < f(min(y))

(so that all three of ϕ(x), ϕ(y), ϕ(x4 y) are even). Thus given any k < ω, we can

pick an x ∈ X such that max(x) ≥ k and then we will have that, except for the (at

most) finitely many y ∈ X such that min(y) < max(x), every other y ∈ X has to

satisfy that f(min(y)) > max(x) ≥ k. Hence there are only finitely many elements

from min[X] whose image under f is k; so since min[X] = min[F4(X)] ∈ min(p)

we get our set in p where f is finite-to-one.

Corollary 4.3. It is not possible to prove the existence of strongly summable ul-

trafilters on any abelian group in ZFC.

Proof. Since any strongly summable ultrafilter on an abelian group is additively
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isomorphic to some union ultrafilter, which in turn gives rise (via the mapping

min) to a P-point. However, by a result of Shelah’s (see [1, Theorem 4.4.7] or [35]

for somewhat understandable proofs), there are models of ZFC in which P-point

ultrafilters do not exist.

Recall that a nonprincipal ultrafilter p on ω is called rapid if the collection of all

enumerating functions from elements of p form a dominating family in (ωω,≤). If we

fix beforehand an unbounded function g : ω −→ ω, then rapidity of p is equivalent,

by [8, Lemma 2.2.5], to asking that for every finite-to-one function f : ω −→ ω,

there exists an A ∈ p such that (∀n < ω)(|A ∩ f−1[{n}]| ≤ g(n)) (rephrasing in

terms of partitions, we would say that p is rapid iff for every partition {Fn
∣∣n < ω}

of ω into finite sets, there exists an A ∈ p such that (∀n < ω)(|A ∩ Fn| < g(n))).

Unlike the original definition, the latter characterization does not rely on the way

we choose to order ω, hence it can be taken as definition being of rapid for an

ultrafilter p on any countable set X. For this reason, it is possible to ask the

question of whether an ultrafilter on a countable set is rapid. It is also worth

noticing that if Y ⊆ X are both countable and p is an ultrafilter on X with Y ∈ p,

then p is rapid if and only if so is p � Y .

We will now talk about the image of p under max. In order to do so, we will

need the following lemma.

Lemma 4.4. Let n, i < ω. If we have 2n elements x0, . . . , x2n−1 ∈ B with pairwise

98



distinct maxima, and such that min(xk) ≥ i for all k < 2n, then it is possible to

find n elements y0, . . . , yn−1 ∈ F4(〈xk
∣∣k < 2n〉) with pairwise distinct maxima such

that min(yk) ≥ i+ 1 for all k < n.

Proof. Let m be the amount of those k < 2n such that min(xk) ≥ i+ 1. If m ≥ n

we are done, otherwise there are 2n − m > 2(n − m) elements xk0 , . . . , xk2n−m−1

such that min(xkj) = i for all j < 2n −m. Let yj = xk2j 4 xk2j+1
for j < n −m.

Since the xk have pairwise distinct maxima, it is easy to see that they are linearly

independent, so the yj thus defined are nonzero and elements of F4(〈xk
∣∣k < 2n〉);

also clearly min(yj) ≥ i + 1. Now for n − m ≤ j < n, just let each yj be one of

those xk with min(xk) ≥ i + 1. We are done once we observe that defining the yj

(j < n) this way produces them with pairwise distinct maxima.

The previous lemma allows us to state the following result, which is a generaliza-

tion to all strongly summable ultrafilters on B of a result that Blass and Hindman

[6, Theorem 2] (partially) and Matet [31] proved for union ultrafilters.

Theorem 4.5. If p ∈ B∗ is strongly summable, then max(p) is a rapid P-point.

Proof. We want to show that max(p) is at the same time rapid and a P-point, so it

suffices to show that for every function f : ω −→ ω, one can find an element A ∈ p

such that either f � A is constant, or for every n < ω, the fibre f−1[{n}] ∩max[A]

has cardinality less than 2n (this goes in two steps, as P-pointness allows us to
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pick A ∈ p such that f � A is either constant or finite-to-one, and if the latter

holds then we use rapidity to further shrink A so it satisfies the relevant condition

on the size of the fibres). First let i ∈ 2 be such that Ai ∈ p, where A0 = {x ∈

B
∣∣f(max(x)) ≤ min(x)} and A1 = B\A0. If i = 0, pick X such that p 3 F4(X) ⊆

A0, and then pick any x ∈ X. We certainly have that B = {z ∈ F4(X)
∣∣min(z) >

max(x)} ∈ p. Notice that, for every z ∈ B, x ∪ z = z 4 x ∈ F4(X) ⊆ A0, from

where we conclude that f(max(z)) = f(max(z ∪ x)) ≤ min(z ∪ x) = min(x), so

that f � max[B] is bounded by min(x), which certainly implies that f is constant

at a set in max(p). Hence we are left with the case where i 6= 0, and A1 ∈

p. Now find a linearly independent X with p 3 F4(X) ⊆ A1. Assume that

for some n, the fibre f−1[{n}] ∩ max[F4(X)] has cardinality at least 2n. This

means that it is possible to find 2n elements x0, . . . , x2n−1 ∈ F4(X), with pairwise

distinct maxima, such that f(max(xk)) = n for all k < 2n. Use Lemma 4.4 to get

2n−1 elements y0, . . . , y2n−1−1 ∈ F4(〈xk
∣∣k < 2n〉) ⊆ F4(X), with pairwise distinct

maxima, and such that min(yk) ≥ 1 for k < 2n−1. Notice that, since the yk are linear

combinations of the xk, which in turn have pairwise distinct maxima, we have that

{max(yk)
∣∣k < 2n−1} ⊆ {max(xk)

∣∣k < 2n}, so f(max(yk)) = n for all k < 2n−1. Use

the Lemma again to get now 2n−2 elements z0, . . . , z2n−2−1 ∈ F4(〈yk
∣∣k < 2n−1〉) ⊆

F4(X) with pairwise distinct maxima, such that min(zk) ≥ 2 and f(max(zk)) = n

for all k < 2n−2. Repeat this process, using iteratively Lemma 4.4, and at the n-th
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iteration we will have gotten one (1 = 2n−n) element w ∈ F4(X) ⊆ A1 such that

min(w) ≥ n = f(max(w)), a contradiction.

Corollary 4.6. There are no strongly summable ultrafilters on any abelian group

in Laver’s, Mathias’s, Miller’s or Solovay’s (random) model.

Proof. This follows from the fact that any strongly summable ultrafilter on some

abelian group is additively isomorphic to one on B, which in turn has an image

under max that is a rapid P-point. However, there are no rapid ultrafilters in

Laver’s, Mathias’s or Miller’s models [32]. On the other hand, while there are both

rapid ultrafilters and P-points in Solovay’s model, there are no ultrafilters that are

both rapid and P-points simultaneously [25].

We will now proceed to prove that, if p ∈ B∗ is strongly summable, then p

itself is a rapid ultrafilter. Restricted to union ultrafilters, this result is due to

Krautzberger [24].

Theorem 4.7. If p ∈ B∗ is strongly summable, then it is rapid.

Proof. Let {Fn
∣∣n < ω} be a partition of B = [ω]<ω into finite sets, we will show

that there is an A ∈ p such that (∀n < ω)(|A ∩ Fn| < 2n+1). Let f : ω −→ ω

be given by f(n) = max(
⋃
Fn) = max(max[Fn]). Since max(p) is rapid, we can

find B ∈ max(p) whose enumerating function dominates f . Since p is strongly

summable, and because of Lemma 4.1, we can assume without loss of generality
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that B = max[X] for some linearly independent X ⊆ B such that F4(X) ∈ p,

now we claim that letting A = F4(X) works. In order to see that, let n < ω,

and let {mk

∣∣k < ω} be an increasing enumeration of max[F4(X)] = max[X].

Notice that by definition of f , we must have that max(z) ≤ f(n) if z ∈ Fn;

now (the enumerating function of) B dominates f so mn ≥ f(n). Therefore, if

z ∈ F4(X)∩Fn then max(z) = mk for some k ≤ n. Again by Lemma 4.1, we have

that |{z ∈ F4(X)
∣∣max(z) = mk for some k ≤ n}| =

∑
k≤n 2k = 2n+1 − 1, from

where we can conclude that |F4(X) ∩ Fn| < 2n+1.

Now we turn our attention to the issue of near-coherence. Recall that two

ultrafilters p, q on ω are said to be near-coherent if there exists a finite-to-one

function f : ω −→ ω such that f(p) = f(q). We will state without proof the

following useful characterization of near-coherence of ultrafilters, due to Eisworth

[9, Propositions 2.1 and 2.2].

Lemma 4.8 (Eisworth). Given two ultrafilters p and q on ω, the following three

conditions are equivalent.

(i) p and q are not near coherent,

(ii) For every partition of ω into intervals In, there exist two sets X ∈ p and

Y ∈ q such that, for every two n,m < ω, if X ∩ In 6= ∅ and Y ∩ Im 6= ∅ then

n 6= m.
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(iii) For every partition of ω into intervals In, there exist two sets X ∈ p and Y ∈ q

such that, for every two n,m < ω, if X ∩ In 6= ∅ and Y ∩ Im 6= ∅ then n 6= m

and moreover there exists a k between n and m such that X∩Ik = ∅ = Y ∩Ik

(this is, there is a “buffer” interval Ik which meets neither of X, Y ).

Next, we show that for every strongly summable ultrafilter p ∈ B∗, the ultrafil-

ters max(p) and min(p) are not near-coherent. The proof is a simple modification

of the proof for the particular case of union ultrafilters which is due to Blass [4,

Theorem 38].

Theorem 4.9. If p ∈ B∗ is strongly summable, then max(p) and min(p) are not

near-coherent.

Proof. Assuming the opposite, we would be able to find a partition of ω into inter-

vals, {In
∣∣n < ω}, such that for every set A ∈ p, there are infinitely many n < ω

with max[A] ∩ In 6= ∅ 6= min[A] ∩ In. Given x ∈ B \ {∅}, denote the number

|{n < ω
∣∣In ∩ x 6= ∅}| by ϕ(x). Let B \ {∅} = A0 ∪ A1 ∪ A2, where

Ai = {x ∈ B \ {∅}
∣∣ϕ(x) ≡ i mod 3}.

If i ∈ 3 is such that Ai ∈ p, then it cannot be the case that i 6= 0, for otherwise,

by choosing an X with p 3 F4(X) ⊆ Ai, and finding x, y ∈ F4(X) such that

min(y) > max

( ⋃
In∩x 6=∅

In

)
, we would have that ϕ(x4 y) = ϕ(x) + ϕ(y) ≡ 2i 6≡ i
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mod 3. Hence A0 ∈ p, so let X be a linearly independent set such that p 3

F4(X) ⊆ A0. Then by assumption, we can find an n < ω and x, y ∈ F4(X)

such that max(x) ∈ In and min(y) ∈ In. Then x4 y ∈ F4(X), and ϕ(x4 y) =

ϕ(x) + ϕ(y)− k, where k equals 2 if x ∩ In = y ∩ In, and 1 otherwise. But ϕ(x) ≡

ϕ(y) ≡ 0 mod 3, so in any case, ϕ(x4 y) ≡ −k 6≡ 0 mod 3, thus contradicting

that F4(X) ⊆ A0. Therefore max(p) and min(p) are not near-coherent.

This provides another proof of the part of Corollary 4.6 that refers to Miller’s

model, as this is a model that satisfies NCF, meaning that every two ultrafilters

on this model are near-coherent. It also allows us to give an alternative proof of

Theorem 3.21 for the case of ordered union ultrafilters.

Lemma 4.10. If p ∈ B∗ is an ordered union ultrafilter, then for every A ∈ p it is

possible to find an ordered family X = {xn
∣∣n < ω} (where max(xn) < min(xn+1)

for every n < ω) such that for some coinfinite subfamily Y = {xnk
∣∣k < ω} (i.e.

{nk
∣∣k < ω} is coinfinite) we have that F4(Y ) ∈ p.

Proof. Let p ∈ B∗ be an ordered union ultrafilter and let A ∈ p. Then we can

grab an ordered family X = {xn
∣∣n < ω} ⊆ B (with max(xn) < min(xn+1)) such

that p 3 F4(X) ⊆ A, which very naturally defines a partition into intervals.

More precisely, it is easy to get a partition into intervals ω =
⋃
n<ω

In such that

(∀n < ω)(xn ⊆ In). Therefore, Theorem 4.9 makes it possible to find an ordered
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family Y = {yn
∣∣n < ω} such that F4(Y ) ∈ p, F4(Y ) ⊆ F4(X) and such that,

for every n < ω, if kn is such that max(yn) ∈ Ikn then min(yn+1) /∈ Ikn+1. Hence if

we define Z = Y ∪{xkn
∣∣n < ω}, we will have that Z is an ordered family such that

F4(Z) ⊆ F4(X) ⊆ A and we can still drop infinitely many elements of Z (namely

all of the xkn+1) and get Y with F4(Y ) ∈ p.

We will now address the “classical” models of Set-Theory, by which at this

moment we mean the models that appear on the table at the end of Blass’s article

on Cardinal Invariants in the Handbook of Set Theory [5]. Thus the models we

consider are: MA, Cohen, Random, Sacks, Hechler, Laver, Mathias and Miller.

Notice first of all that, since MA, Cohen and Hechler satisfy cov(M) = c, we settle

at once the question of whether these models have strongly summable ultrafilters in

the affirmative. In the case of Laver’s, Mathias’s, Miller’s and Solovay’s (random)

model, we already pointed out, in Corollary 4.6, that for no abelian group G are

there any nonprincipal strongly summable ultrafilters on G. Thus, it seems that

the question of whether strongly summable ultrafilters exist in these models can

be settled relatively easily except for Sacks model. The author (with the help from

several people, including his supervisor Juris Steprāns) spent some time trying to

settle this question, and has so far been unsuccessful in this enterprise. Thus, we

would like to close this section by stating that question.
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Question 4.11. Are there strongly summable ultrafilters (on some abelian group,

so without loss of generality in B) in Sacks’s model?

4.2 Stability and Games

In this section we introduce a notion which will be important for some results of

Section 4.3. It was originally introduced by Blass [3, p. 94] in the context of union

ultrafilters but we will treat it in full generality.

Definition 4.12. A strongly summable ultrafilter p ∈ B∗ is said to be stable

if whenever {An
∣∣n < ω} ⊆ p, there exists a linearly independent X such that

F4(X) ∈ p and for all n < ω, there exists a finite F ⊆ X with F4(X \ F ) ⊆ An.

It is easy to see that the definition for a stable strongly summable ultrafilter is

equivalent to the following: a strongly summable p ∈ B∗ is stable if and only if,

for every countably many linearly independent sets {Xn

∣∣n < ω} such that (∀n <

ω)(F4(Xn) ∈ p), there exists a linearly independent X such that F4(X) ∈ p and

(∀n < ω)(X ⊆∗ F4(Xn)). We say that X is a common pseudocondensation

for the Xn.

A stable ordered union ultrafilter (this is, an ordered union ultrafilter which

happens to also be stable) is what Matet [31] calls a Milliken-Taylor ultrafilter.

The objective of this section is to develop a characterization of stable ordered

106



union ultrafilters in terms of games, which will be used heavily in Section 4.3. We

warn the reader that our game is different from the one used by Matet [31, p. 548],

and that this characterization is the result of a joint work with David Chodounský

and Peter Krautzberger (still unpublished).

The first tool that we will need for our characterization is a result that was

first proved by Blass [3, Theorem 4.2] for ordered union ultrafilters, and later on

generalized by Krautzberger [23, Theorem 4.2] for union ultrafilters in general. We

note here that, although Krautzberger’s argument actually works for every strongly

summable ultrafilter on B, we were able to get a somewhat simpler (or so we think)

argument.

Definition 4.13. We say that an ultrafilter p ∈ B∗ has the Ramsey property

for pairs if whenever the set B2
< = {(x, y) ∈ B2

∣∣max(x) < min(y)} is coloured into

finitely many colours, there exists an A ∈ p such that A2
< = {(x, y) ∈ A2

∣∣max(x) <

min(y)} is monochromatic.

Theorem 4.14. A strongly summable ultrafilter p ∈ B∗ is stable if and only if it

has the Ramsey property for pairs.

Proof. Assume first that p is strongly summable with the Ramsey property for

pairs, and let {An
∣∣n < ω} ⊆ p. Without loss of generality the An are decreasing

and
⋂
n<ω

An = ∅, so it makes sense to define, for x ∈ A0, the number f(n) to be the
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unique k such that x ∈ Ak\Ak+1. We colour a pair (x, y) ∈ A0
2
< on colour white if an

only if f(x) = f(y) (and in colour black otherwise) and grab a linearly independent

family X such that F4(X) ∈ p, F4(X) ⊆ A0, and F4(X)2< is monochromatic.

We claim that X is a common pseudocondensation. We will prove by induction on

n < ω that there is a cofinite subset Y ⊆ X such that F4(Y ) ⊆ An. Certainly

F4(X) ⊆ A0. Assume that we have the claim proved for n and let Y ⊆ X be

a cofinite subset such that F4(Y ) ⊆ An. If we actually have F4(Y ) ⊆ An+1 we

are done, so we may assume that there is a y ∈ F4(Y ) \ An+1. This means that

f(y) = n. Now, because of Lemma 4.1, the set Z = {z ∈ Y
∣∣max(y) < min(z)} is

cofinite in Y (hence also in X), and all of the pairs (y, z), for z ∈ F4(Z), receive

the same colour. If that colour was white, it would mean that f(y) = f(z) = n

for all z ∈ F4(Z), hence F4(Y ) ⊆ An \ An+1 /∈ p, a contradiction. Therefore the

colour must be black, so f(y) 6= f(z) for all z ∈ F4(Z), and since we know that

F4(Z) ⊆ An, we can conclude that f(y) = n < f(z) for all z ∈ F4(Z). This

means that F4(Z) ⊆ An+1, and we are done.

Conversely, assume that p is a stable strongly summable ultrafilter, and assume

that we have coloured all ordered pairs from B2
< into two colours (say, black or

white). For each x ∈ B we can partition the set {y ∈ B
∣∣min(y) > max(x)} ∈ p

depending on whether the pair (x, y) is black or white. We let p choose an element of

the partition (so, p chooses one of the two colours for x). We have thus partitioned
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B into two cells, according to the colour that p chose for each x ∈ B and now we

let p choose one of those cells. Without loss of generality we assume that p chooses

the colour white. This is, there exists an A ∈ p such that for all x ∈ A, the set

Ax = {y ∈ A
∣∣min(y) > max(x) and (x, y) is white} ∈ p

For each n < ω we pick a linearly independent family Xn such that

p 3 F4(Xn) ⊆
⋂
x∈A

max(x)≤n

Ax.

By stability, we can grab a linearly independent family X such that F4(X) ∈

p, F4(X) ⊆ F4(X0) and for each n < ω, there is a finite F ⊆ X such that

F4(X \ F ) ⊆ F4(Xn). We define a partition of ω into intervals In = [an, an+1) as

follows: a0 = 0 and, knowing an, we let

an+1 = max{min(x)
∣∣x ∈ X and x /∈ F4(Xan)}+ 1.

Lemma 4.1 implies that, without loss of generality, min is injective in X. Hence,

what we get is that, if min(x) ≥ an+1 for x ∈ F4(X), then x ∈ F4(Xan). We

now use Theorem 4.9 to get a condensation Y ⊆ F4(X) such that F4(Y ) ∈ p

and no interval from our partition is hit by both max[Y ] and min[Y ], and moreover

there is always at least one “buffer” interval in between. We can again assume

that min is injective on Y . The claim is that F4(Y )2< is monochromatic in colour

white. This is because, if x, y ∈ F4(Y ) are such that max(x) < min(y) and
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an ≤ max(x) < an+1, since there is always a “buffer” between max[Y ] and min[Y ]

then we know that min(y) ≥ an+2, which by the previous observation implies that

y ∈ F4(Xan+1) ⊆ Ax since max(x) ≤ an+1. By the definition of Ax this means that

(x, y) is coloured in white, and we are done.

It is quite interesting and surprising that, although the definition of stability

resembles that of a P-point, it is equivalent (by Theorem 4.14) to something that

is, in a sense, analogous to the defining property of a Ramsey ultrafilter. This

will be even more apparent in the case of ordered union ultrafilters. We now

observe that, even though the definition of stability does not explicitly state it, it is

in fact possible to choose the common pseudocondensations to be disjoint families

(respectively ordered families) if our ultrafilter is union (respectively ordered union).

Theorem 4.15. If p ∈ B∗ is a stable union ultrafilter (respectively stable ordered

union ultrafilter), then whenever we have {An
∣∣n < ω} ⊆ p, it is possible to choose

a disjoint (respectively pairwise disjoint) common pseudocondensation X as in the

definition of stability. Moreover, if p is stable ordered union and the sequence

of An is descending, then it is possible to choose the ordered pseudocondensation

X = {xn
∣∣n < ω} (where max(xn) < min(xn+1)) in such a way that (∀n < ω)(|X ∩

(An \ An+1)| ≤ 1 and, if we let f(n) denote the unique k such that xn ∈ Ak \ Ak+1

then f is increasing.
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Proof. Given p and {An
∣∣n < ω} as in the hypotheses, we assume without loss of

generality that the sequence of An is decreasing and that
⋂
n<ω

An = ∅. For x ∈ A0

we define f(x) to be the unique k such that x ∈ Ak \Ak+1 (we state the convention

that f(x) = −1 for x /∈ A0). We now colour the pairs (x, y) ∈ B2
< in colour white

if f(y) ≤ f(x), and in colour black otherwise. By Theorem 4.14, p has the Ramsey

property for pairs, thus it is possible to pick a disjoint (respectively ordered) family

X such that p 3 F4(X) ⊆ A0 and the set F4(X)2< is monochromatic. If the colour

for this monochromatic set was white then, given any n < ω, the existence of an

x ∈ X ∩ (An \ An+1) would imply that for all y ∈ F4(X) with min(y) > max(x),

we have f(y) ≤ f(x). This means that y /∈ An+1, which is a contradiction because

there are ultrafilter many such y and An+1 ∈ p. Thus the colour should be black

and so for any n < ω, if x ∈ X ∩ (An \An+1) then for y ∈ X, unless y is one of the

finitely many elements with min(y) ≤ max(x), it will be the case that f(y) > n so

y ∈ An+1 and we are done. For the “moreover” part, we just need to notice that, if

X is ordered then any two x, y ∈ X are comparable. Since we argued that F4(X)2<

is monochromatic in colour black, this means that whenever x, y ∈ X are distinct,

it must be the case that f(x) 6= f(y) and moreover, whether f(x) or f(y) is the

largest is in agreement with whether x or y is the largest.

We are now ready to provide our announced characterization of stable ordered

union ultrafilters in terms of games.
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Definition 4.16. Given an ultrafilter p ∈ B∗, we define a game G (p) as follows:

in the n-th run, player I plays a set An ∈ p and then player II responds with

an element xn ∈ An. After ω moves, we collect player II’s moves into a family

X = {xn
∣∣n < ω}, and player II wins if and only if F4(X) ∈ p.

We should first of all note that, if p is nonprincipal, then it is impossible for

player II to have a winning strategy, because we can imagine players I and II

alternately playing two distinct games. Player I starts by playing any set A0 ∈ p

for the first game, waits for player II’s response x0 ∈ A0, and then plays the set

B0 = A0 \ {x0} for the second game, and waits for player II’s response y0 ∈ B0.

Recursively, assume that the n-th move has been made by both players in both

games, and the last sets played by player I were An in the first game and Bn in

the second, while the collections of player’s II moves are 〈xk
∣∣k ≤ n〉 for the first

game and 〈yk
∣∣k ≤ n〉 for the second. We further assume as an induction hypothesis

that F4({yk
∣∣k ≤ n}) is disjoint from F4({xk

∣∣k ≤ n}). Then we let player I play

the set An+1 = An \ F4({xk
∣∣k ≤ n} ∪ {yk

∣∣k ≤ n}) ∈ p for the first game, wait

for player II’s response xn+1 ∈ An+1, and play the set Bn+1 = Bn \ F4({xk
∣∣k ≤

n + 1} ∪ {yk
∣∣k ≤ n) ∈ p in the second game (and wait for player II’s response

yn+1 ∈ Bn+1 afterwards). Note that in this way we get that F4({yk
∣∣k ≤ n + 1})

is disjoint from F4({xk
∣∣k ≤ n+ 1}), so the induction hypothesis is preserved and

we can continue. In other words, player I is forcing player II to play families X for
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the first game, and Y for the second, in such a way that F4(X) is disjoint from

F4(Y ). So regardless of any possible strategy that player II might be following, it

is impossible for her to win both games, hence the strategy is not winning. Thus,

whether the game G (p) is determined depends entirely on whether player I has

a winning strategy. The following theorem, characterizing when such a strategy

exists, is the main result of this section.

Theorem 4.17. Let p ∈ B∗ be an idempotent ultrafilter. Then, p is a stable ordered

union ultrafilter if and only if player I does not have a winning strategy in the game

G (p).

Proof. We first assume that p is not a stable ordered union ultrafilter, and we will

construct a winning strategy for player I. If p fails to be ordered union, we can pick

an A ∈ p such that no ordered family X with F4(X) ⊆ A can satisfy F4(X) ∈ p.

Now define a strategy for player I is as follows: in the first move she plays A?, and

subsequently in the n-th move she plays ⋂
x∈F4(〈xk

∣∣k<n〉xNA
?

 ∩ {x ∈ A?∣∣min(x) > max{max(xk)
∣∣k < n}} ∈ p,

where 〈xk
∣∣k < n〉 is the sequence of previous moves of player II. This way we

will ensure that, in the end, if X = {xn
∣∣n < ω} is the collection of all moves of

player II, then X is an ordered family such that F4(X) ⊆ A, which implies that

F4(X) /∈ p and so player II loses the game. Now, if p is ordered union but fails
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to be stable, pick a sequence of An ∈ p witnessing the failure of stability (this is,

whenever X is linearly independent and F4(X) ∈ p, there is an n < ω such that

for no cofinite Y ⊆ X do we have F4(Y ) ⊆ An). Further, assume without loss

of generality that each An equals F4(Xn) for some linearly independent family

Xn. Our strategy dictates that player I plays An = F4(Xn) in the n-th move.

So regardless of what player II does, in the end she must have played a sequence

X = {xn
∣∣n < ω} satisfying, for every n < ω, that {xk

∣∣k ≥ n} ⊆ An = F4(Xn).

Hence F4({xk
∣∣k ≥ n}) ⊆ F4(Xn) = An, thus it must be the case that F4(X) /∈ p

and so player I wins.

Conversely, we assume that p is stable and we will show that no strategy for

player I in the game G (p) can be winning. So let s be a strategy for player I, this

is, s is a function that takes finite sequences ~x = 〈xk
∣∣k < n〉 (the sequence of moves

that player II has made so far) as input, and returns some element of p as output

(the element that player I should play at that move, according to the strategy).

Notice that, if s is winning and we modify s into an s′ such that, for every ~x,

we have s′(~x) ⊆ s(~x), then s′ is still a winning strategy (since all we are doing

is restricting the possibilities for player II, who already has no hope of winning).

Thus, we modify the strategy s as follows: First of all, given an n < ω we let Sn be

the set of all finite sequences ~x = 〈xi
∣∣i < k〉 ∈ dom(s) such that max

(⋃
i<k

xi

)
= n,

114



and we let An =
⋂

~x∈
⋃
k≤n

Sn

s(~x) ∈ p (notice that each Sn is finite). We further shrink

An to something of the form F4(Xn) ∈ p, and if we do this recursively we can

ensure that F4(Xn+1) ⊆ F4(Xn). We now define the “shrunk” strategy s′ by

s′(~x) = F4(Xn) whenever ~x ∈ Sn. By the above observation, if we prove that s′ is

not winning, we will be able to conclude that s is not winning either and we will

be done.

Hence we will prove that the strategy s′ is not winning. We first pick, by

Theorem 4.15, an ordered family X = {xn
∣∣n < ω} (where max(xn) < min(xn+1))

such that F4(X) ∈ p, F4(X) ⊆ F4(X0) and, if we define f(x) to be the unique

k with x ∈ F4(Xk) \ F4(Xk+1) for all x ∈ F4(X), then n < m implies f(xn) <

f(xm). At this point, it is worth noting that for x =4
i∈a

xi ∈ F4(X), we will have

that f(x) = f(xmin(a)). We now define a partition of ω into intervals In = [an, an+1)

as follows: a0 = 0, a1 = max(x0) + 1 and, if we know an, we let

an+1 = max

 ⋃
i<ω

f(xi)≤an

xi

+ 1.

Notice that, by the previous observation, if x =4
i∈a

xi ∈ F4(X) and min(x) ≥ an+1

then min(a) is big enough so that f(x) = f(xmin(a)) > an and so, in particular,

x ∈ F4(Xan). We now use Theorem 4.9 to get an ordered condensation Y =

{yn
∣∣n < ω} ⊆ F4(X) (here max(yn) < min(yn+1)) such that F4(Y ) ∈ p and

no interval from our partition is hit by both max[Y ] and min[Y ], and moreover
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there is always at least one “buffer” interval in between. We claim that player

II can play the family Y in response to strategy s′, which would then show that

s′ is not winning. Certainly player II can respond y0 ∈ F4(X) ⊆ F4(X0) in

the first move. Assuming that player II has been successfully able to play the

sequence 〈yk
∣∣k < n〉, we let m be such that 〈yk

∣∣k < n〉 ∈ Sm, so that player I

responds by playing F4(Xm). This means that max(yn−1) = m, since max[Y ]

and min[Y ] cannot simultaneously hit the same interval from our partition and

moreover there is always at least one “buffer” interval in between, we conclude that

if al ≤ m < al+1 then min(yn) ≥ al+2. By the previous observation, this implies

that yn ∈ F4(Xal+1
) ⊆ F4(Xm) and so player II can successfully play the element

yn. This finishes the proof.

After this characterization, we finish the section by showing the construction

of stable ordered union ultrafilters, which we will need to use in the future. In-

terestingly, in order to ensure stability of a strongly summable ultrafilter while

constructing it, it seems that cov(M) = c is not strong enough of an assumption

(unlike the case where we drop the stability requirement).

Theorem 4.18. Assuming p = c, there exists a stable ordered union ultrafilter.

Moreover, every family {F4(Xα)
∣∣α < κ} with the strong finite intersection property

such that κ < p, where each Xα is an ordered family, can be extended to a stable

ordered union ultrafilter.
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Proof. Grab such a family and enumerate 〈Aα
∣∣κ ≤ α < c〉 all subsets of B. We

will recursively choose some more ordered families Xα, for κ ≤ α < c, that satisfy

(∀β < α)(Xα ⊆∗ F4(Xβ)) and such that for some B ∈ {Aα,B \Aα}, F4(X) ⊆ B.

If we furthermore ensure that {F4(Xβ)
∣∣β ≤ α} has the strong finite intersection

property, then in the end clearly the filter p generated by {F4(Xα)
∣∣α < c} will be

as desired.

So assume that we already know Xβ for β < α. Let q be an idempotent ultra-

filter extending {F4(Xβ)
∣∣β < α} (which exists since the collection of ultrafilters

extending this family is a closed subsemigroup of B∗). Pick B ∈ {Aα,B \Aα} such

that B ∈ q. We will let P be the forcing notion whose conditions are all those pairs

(a,A) where a is a finite linearly independent subset of B such that F4(a) ⊆ B?,

and A ∈ q. The order would be (a,A) ≤ (a′, A′) iff A ∪ (a \ a′) ⊆ A′. Notice that

for each β < α, the set

Dβ = {(a,A) ∈ P
∣∣A ⊆ F4(Xβ)}

is dense in P. Since we have |α| ≤ α < c = p many such dense sets, it is possible

to find a filter meeting them all. Quite straightforwardly this filter gives rise to an

Xα satisfying all of the requirements.
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4.3 Strongly Summable Ultrafilters and Small cov(M)

In this section we will show that the existence of strongly summable ultrafilters

on any abelian group is consistent with cov(M) < c. It follows immediately from

Corollary 3.28 that every strongly summable ultrafilter on an abelian group is

additively isomorphic to a strongly summable ultrafilter on the Boolean group B.

In fact, if there is a union ultrafilter then there are strongly summable ultrafilters on

every abelian group G. For this reason, we will focus in this section on constructing

union ultrafilters in the models that we consider. We use two different kinds of

forcing notions The first one will be a variant of the Prikry-Mathias forcing, with

side conditions on a strongly summable ultrafilter.

Definition 4.19. Given a strongly summable ultrafilter p on B, we denote by

M(p) (our own version of the Prikry-Mathias forcing with side conditions in p)

the partial order whose elements are of all pairs (a,A) such that a ∈ [B]<ω is

linearly independent and A ∈ p; and we say that (a,A) ≤ (b, B) iff b ⊆ a and

A ∪ (a \ b) ⊆ B. We call the first coordinate a of a condition (a,A) ∈ M(p) the

stem of the condition.

The only difference with the usual Prikry-Mathias forcing is that we demand

that the stem is a linearly independent set (this is not essential, but it simplifies the

exposition). It is clear that any two conditions with the same stem are compatible,
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hence the preorder M(p) is σ-centred (and hence c.c.c.).

Now we work out some simplifications. First note that, since p is strongly

summable, conditions have the form (a,F4(X)) on a dense set (one can also de-

mand that X is linearly independent, and even that for every x ∈ a and every

y ∈ X, one has max(x) < min(y)), thus we may as well look at conditions of that

form only. Now, when comparing two such conditions (a,F4(X)) and (b,F4(Y )),

we observe that the former extends the latter iff b ⊆ a and X ∪ (a \ b) ⊆ F4(Y ).

Hence, it is also possible to think of a condition in M(p) as given by the information

(a,X), where a and X are two linearly independet subsets of B, the first one finite

and the second infinite, such that F4(X) ∈ p; and that (a,X) ≤ (b, Y ) iff b ⊆ a

and X ∪ (a \ b) ⊆ F4(Y ).

We let X̊ be a M(p)-name for the union of all stems of elements of the generic

filter, which we call the generic linearly independent subset of B added by M(p).

Notice that any condition (b, Y ) forces that “X̊\b̌ ⊆ F4(Y̌ )”. Hence for every A ∈ p

from the ground model, in the generic extension V [G] we have that F4(X \a) ⊆ A

for some finite a ⊆ X. (since it is dense to have conditions (b, Y ) with F4(Y ) ⊆ A).

Thus, in V [G], the countable family {F4(X \ a)
∣∣a ∈ [X]<ω} generates a filter F

with the property that every ground model set A ⊆ B is either in F or in the dual

ideal F ∗.

In what follows we urge the reader to keep in mind that, as a particular case
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of Theorem 2.8 from Chapter 2, under the assumption that cov(M) = c we have

that, if F is a filter generated by a family of the form {F4(Xα)
∣∣α < λ} for some

λ < cov(M) = c and all Xα ⊆ B linearly independent sets then there is a strongly

summable ultrafilter p extending F (the particular case of this statement that

refers to union ultrafilters was first proved in [10]). We are now in a good position

to tackle the iteration of forcings of the form M(p).

Theorem 4.20. Let λ, κ be two regular cardinals such that ω1 ≤ λ < κ = κω (in

the ground model). Then there is a finite support iteration of forcing notions of the

form M(p) such that the generic extension satisfies that cov(M) = λ < κ = c and

there exist strongly summable ultrafilters on B.

Proof. Define the FS iteration iteration P = Pλ with iterands Q̊α (this is, for each

α < λ we let Pα+1 = Pα ? Q̊α and if α =
⋃
α then Pα is the direct limit of the Pξ for

ξ < α) as follows. P0 = Q0 = Fn(κ, 2) ?M(p̊0), where p̊0 is a Fn(κ, 2)-name such

that


 “p̊0 is a strongly summable ultrafilter on B̌”

(notice that after forcing with Fn(κ, 2) we have that cov(M) = c = κ, hence such a

p̊0 is guaranteed to exist). Then we let X̊0 be the P0-name for the generic linearly

independent set added by M(p̊0).
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Now for α < λ, recursively define names p̊α, Q̊α, X̊α (in that order) satisfying:

Pα ? Fn(κ, 2) 
 “p̊α is a strongly summable ultrafilter

extending {F4(X̊ξ \ a)
∣∣a ∈ [X̊ξ]

<ω ∧ ξ < α}”,

(which is possible because Pα ? Fn(κ, 2) 
 “cov(M) = c = κ̌”),

Pα 
 “Q̊α = Fn(κ, 2) ?M(p̊α)”,

and X̊α is the name for the generic linearly independent set added to V Pα?Fn(κ,2)

by M(p̊α). This defines our iteration. (Informally we might phrase this argument

as follows: at each step, we first add κ-many Cohen reals, to ensure that c =

cov(M) = κ, and after that we use Lemma 2.8 to extend “everything we’ve got so

far” to a further strongly summable ultrafilter, which we then plug into our version

of Mathias-Prikry and force with that. Lather, rinse, repeat... λ many times.)

In the end (i.e. at stage λ), since every real added by Pλ actually appears at

an intermediate stage α (after which the next generic linearly independent set Xα

diagonalizes it), we get that in V Pλ , the family

{F4(Xα \ a)
∣∣α < λ ∧ a ∈ [Xα]<ω}

generates an ultrafilter p, which is by definition strongly summable (generated by

F4-sets).

The proof finishes by noticing that, in V Pλ , we have that cov(M) = λ < κ = c.

It is certainly easy to see that c = κ, and in order to calculate the value of cov(M),
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we first notice that the ultrafilter p, being generated by λ many sets, is a witness

that u ≤ λ (recall that the cardinal invariant u is defined as the least cardinality of a

family generating an ultrafilter, and it is well-known that the inequality cov(M) ≤ u

is provable in ZFC). On the other hand, the fact that our iteration of length λ adds

Cohen reals cofinally often (both because of the finite support, and because each

iterand has “add κ-many Cohen reals” as a factor) implies that λ ≤ cov(M) and

hence we conclude that cov(M) = u = λ in our generic extension.

We will now start working with a different forcing notion, which will also use an

ultrafilter as a parameter, and which behaves nicely not only when said ultrafilter

is strongly summable, but even when it is just an idempotent ultrafilter. This

represents a slight advantage with respect to the previous construction because the

existence of idempotent ultrafilters is a ZFC theorem and so we will not need to

add Cohen reals at each stage.

Definition 4.21. Given an ultrafilter p on B, we define the ultraLaver forcing

on p to be the partially ordered set L(p) whose elements are subtrees T of B<ω

(that is, T is closed under initial segments) that have a stem s(T ) (this is, every

node t ∈ T is comparable with s(T )) such that “the branching is in p above s(T )”

(which means: for every t ∈ T such that t ≥ s(T ), the set of immediate successors

succT (t) = {x ∈ B
∣∣t _ x ∈ T} ∈ p). The ordering is given by T ′ ≤ T iff T ′ ⊆ T .

122



Normally this forcing notion is defined on ω rather than B, and with a different

ultrafilter for each node, but the definition as we stated it above is what we will

need for our purpose. The following are well-known properties of ultraLaver forcing

(see for example [14, Section 1A]), and are also not terribly difficult to prove.

• L(P ) is σ-centred (hence c.c.c. and proper).

• L(P ) has the pure decision property: given any statement ϕ in the forcing

language and any condition T ∈ L(P ), it is possible to find a pure extension

T ′ ≤∗ T (this is, T ′ ≤ T and s(T ′) = s(T )) deciding ϕ (i.e. either T ′ 
 ϕ or

T ′ 6
 ϕ).

• As a direct consequence of the previous point, whenever F is a finite set in V

and x̊ is an L(p)-name such that some condition T forces T 
 “x̊ ∈ F̌”, there

is a pure extension T ′ ≤∗ T and an element y ∈ F such that T ′ 
 “x̊ = y̌”.

Note that, at this point, we still do not assume any special property of p other

than its being an ultrafilter. The following lemma shows that the situation becomes

quite interesting when p is idempotent. We will denote by X̊ the L(p)-name for the

generic subset that arises from the generic filter (which is the union of all the stems

of, or equivalently the intersection of all conditions in, the generic filter). Also, recall

that, if p is idempotent and A ∈ p, then we have that A? = {x ∈ A
∣∣xNA ∈ p} ∈ p

and, moreover, for each x ∈ A? it is the case that xNA? ∈ p (i.e. (A?)? = A?).
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Lemma 4.22. Let p ∈ B∗ be an idempotent ultrafilter, and A ∈ p a ground model

set. Then, in the generic extension obtained by forcing with L(p), there is a finite

set a such that F4(X \ a) ⊆ A.

Proof. It suffices to prove that every condition T can be extended to a condition T ′

which will force “ F4(X̊ \ s(T ′)) ⊆ Ǎ”. In order to do that, we reprove Hindman’s

theorem along the condition T , which means we recursively define the levels (T ′)n

of the extension T ′. First we let s(T ′) = s(T ). Assume that we have defined the

n-th level above the stem (T ′)|s(T )|+n. Then the n + 1-st. level above the stem is

given by specifying that, for every t = s(T ) _ 〈x0, . . . , xn〉 ∈ (T ′)|s(T )|+n, with the

additional inductive hypothesis that F4({x0, . . . , xn}) ⊆ A?, we let

succT ′(t) = succT (t) ∩ A? ∩

 ⋂
x∈F4({x0,...,xn})

xNA?


and check that the inductive hypotheses still hold for all of the new nodes t _ x,

so that the construction can continue. What we are doing is basically repeating

Galvin-Glazer’s argument for Hindman’s theorem above the stem of T , and just

as in that argument, it is easy to see that for every branch f of T ′ we have that

F4({f � |s(T )|+ n
∣∣n < ω}) ⊆ A. Note that this also implies that

T ′ 
 “ F4({X \ s(T )}) ⊆ Ǎ”

(since for every finite subset a ⊆ ω, there is an extension T ′′ ≤ T ′ deciding that

the generic set X̊ coincides with some ground-model branch f of T ′ up to the
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|s(T )|+ max(a)-th element), and we are done.

Once we have the previous lemma under our belt, we are ready to state and prove

a result which is analogous to Theorem 4.20 except that it uses ultraLaver forc-

ings with idempotent ultrafilters as parameter, instead of our variation of Prikry-

Mathias forcing with a strongly summable ultrafilter.

Theorem 4.23. Let λ, κ be two regular cardinals such that ω1 ≤ λ < κ = κω (in

the ground model). Then there is a finite support iteration of forcing notions of the

form L(p) such that the generic extension satisfies that cov(M) = λ < κ = c and

there exist strongly summable ultrafilters on B.

Proof. The FS iteration iteration P = Pλ with iterands Q̊α is given by recursively

defining the names p̊α, Q̊α, X̊α (in that order) such that:

Pα 
 “p̊α is an idempotent ultrafilter extending {F4(X̊ξ \a)
∣∣a ∈ [X̊ξ]

<ω∧ξ < α}”,

(which is always possible because of Ellis’s Lemma),

Pα 
 “Q̊α = L(p̊α)”,

and X̊α is the name for the generic linearly independent set added to V Pα by L(p̊α).

At stage λ, every real added by Pλ actually appears at an intermediate stage α

(after which the next generic linearly independent set Xα diagonalizes it), hence in

V Pλ the family

{F4(Xα \ a)
∣∣α < λ ∧ a ∈ [Xα]<ω}
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generates an ultrafilter p, which is by definition strongly summable.

Finally, note that in V Pλ , we have that cov(M) = λ < κ = c (the argument for

this is exactly as in Theorem 4.20).

Both ultraLaver forcing and our version of the Prikry-Mathias forcing could

conceivably be iterated with countable support, since they are σ-centred and hence

proper. However, in order for iterations of proper forcings with countable support

to yield something interesting (i.e. models of ¬CH), it is necessary to do iterations

of length ω2, which leaves us with a value of c = ω2 at the end. Thus we will not be

able to get a model with small cov(M) unless we make sure that the forcing that we

are iterating, as well as its iterations, do not add any Cohen reals. Unfortunately

this means that our version of Prikry-Mathias forcing is bound to yield failure, as

it is easy to see that the forcing notion M(p) adds Cohen reals if and only if p is

not a P-point, and strongly summable ultrafilters (or even idempotent ultrafilters,

for that matter) are never P-points. We will, however, be able to profitably iterate

ultraLaver forcing with countable support, as we now proceed to explain.

Definition 4.24. A forcing notion P satisfies the Laver property if whenever

g : ω −→ ω (in the ground model), q is a condition, and f̊ is a P-name such that

q 
 “f̊ : ω −→ ω and f̊ ≤ ǧ”,

there is F : ω −→ [ω]<ω and r ≤ q such that for every n < ω, |F (n)| ≤ 2n and
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r 
 “ǧ(ň) ∈ F̌ (ň)”.

The Laver property is important because of two reasons. The first is that it is

preserved under CS iterations, and the second is that, whenever P has the Laver

property, it does not add any Cohen reals [1, 34]. Hence if we force with a CS

iteration of forcings satisfying the Laver property, cov(M) in the generic extension

will have the same value that it used to have in the ground model (if our ground

model satisfies CH; then after forcing with a forcing notion that satisfies the Laver

property, we will get that cov(M) = ω1). The following theorem establishes a

condition on the strongly summable ultrafilter p that will ensure that L(p) has the

Laver property. The author has to admit that the proof of the following theorem

is his favourite from among all of the proofs that appear in this dissertation.

Theorem 4.25. If p is a stable ordered union ultrafilter, then L(p) satisfies the

Laver property.

Proof. Let T ∈ L(p), g : ω −→ ω and f̊ ∈ V L(p) be such that

T 
 “f̊ : ω̌ −→ ω̌ and f̊ ≤ ǧ”

We will recursively construct an extension T ′ ≤ T that will satisfy that

T ′ 
 “(∀n < ω̌)(f̊(n) ∈ F̌ (n))”

for some ground-model function F : ω −→ [ω]<ω such that for each n < ω,

|F (n)| ≤ 2n. We first let h(n) be the number of finite sequences of natural numbers
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〈m1, . . . ,mk〉 that satisfy
∑k

i=1blog2(mi)c = n, and we pick and fix any increasing

sequence 〈kn
∣∣n < ω〉 satisfying that 2kn ≥ 2n+1h(n+ 1). We moreover use the fact

that for every Laver condition, there is a natural order-preserving bijection between

ω<ω and the nodes of the condition above the stem.

We now define T ′ by induction on the nodes. This is, if we have already decided

that a certain t ∈ T will belong to T ′, we will show how to pick the set of immediate

succesors succT ′(t). For this, we will assume that not only have we decided that t ∈

T ′, but we have also decided which will be the sequence 〈m1, . . . ,mk〉 associated to t

under the aforementioned order-preserving bijection (between ω<ω and the nodes of

T ′ above the stem) and we also assume that we have picked an auxiliary condition

Tt ≤∗ T � t (here T � t denotes the condition {s ∈ T
∣∣s is comparable with t})

which decides the value of f � kn, where n =
∑k

i=1blog2(mi)c.

Now we play the game G (p). The first thing to do is shrink, if necessary, the set

succT (t) to something of the form F4(Y ), so that it is closed under4. This way, at

the end of the game we will be able to collect player II’s moves X = {xn
∣∣n < ω} and

we will define succT ′(t) = F4(X). Player I will adhere to the following strategy.

First extend, for each s ∈ succT (t) = F4(Y ), the condition Tt � s to some condition

T 0
s with the same stem deciding the value of f̊ � kn+1 to be a certain f 0

s . The

hypothesis that T 
 “f̊ ≤ ǧ” implies that there are only finitely many possible

f 0
s , so there is a set A0 ∈ p such that all T 0

s for s ∈ A1 decide f̊ � kn+1 to be the
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same f0. Player I starts by playing this set, and waits for player II to play some

x0 ∈ A0. The auxiliary condition associated to x0 in order to continue with the

induction later on, will be T 0
x0

. We now extend, for each s ∈ F4(Y ) \ {x0}, the

condition T 0
s to some further condition T 1

s with the same stem which decides the

value of f̊ � kn+2 to be some f 1
s . Now (and here is the interesting twist) to each

such s we associate the couple 〈f 1
s , f

1
s4x0〉, and since there are only finitely many

possibilities for such a couple, there exists a set A1 ∈ p such that for all s ∈ A1 the

aforementioned couple is constantly some fixed couple 〈f1, f2〉. Then we let player

I play the set A1 and wait for player II’s response x1 ∈ A1. We will let the auxiliary

conditions associated to x1 and x04 x1 be T 1
x1

and T 1
x04x1 , respectively.

In general, if we are about to play the m-th inning of the game G (p), we assume

that we know ~x = 〈xi
∣∣i < m〉 and the auxiliary conditions associated to each

x ∈ FS(~x), which decide the value of f̊ � kn+max{i<m|xi∈supp~x(x)}+1. We now extend,

for each s ∈ F4(Y )\F4(~s), the condition Am−1s to some pure extension Ams which

decides the value of f̊ � kn+m+1 to be a certain fms . Since there are only finitely

many possibilities for the vector

〈fms 〉_ 〈fms4x
∣∣x ∈ F4(~x)〉,

then there exists an Am ∈ p such that for all s ∈ Am, the aforementioned vector is

some fixed 〈f2m−1+1, . . . , f2m〉. We let player I play the set Am and wait for player

II’s response xm ∈ Am, and we establish that the auxiliary condition associated to
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xm is Tmxm and the one associated to xm4 x will be Tmxm4x, for each x ∈ F4(~x).

In the end, since the described strategy cannot be winning, there is a possibility

for player II to have won the game, i.e. F4(X) ∈ p. For each x ∈ F4(X), we let

the sequence associated to t _ 〈x〉 (for the order-preserving bijection with [ω]<ω) be

〈m1, . . . ,mk〉 _ 〈
∑

xi∈suppX(x) 2i〉, and the induction can continue. It is important

to note that, for every x ∈ F4(X) and every j ≤ max{i < ω|xi ∈ suppX(x)}, the

auxiliary condition Tt_〈x〉 forces the value of f � kn+j+1 to agree with some entry

of the vector 〈f2t−1+1, . . . , f2t〉 (where t = blog2(j)c) which was chosen during the

t-th run of the game G (p).

This way we get our condition T ′ ≤ T (in fact, T ′ and T have the same stem).

It is straightforward to check that, given any n < ω, if ki−1 ≤ n < ki (with the

convention that k−1 = 0) then T ′ 
 “f̊(ň) ∈ ˇF (n)”, where F (n) is the collection

of all entries from the vectors 〈f2i+1, . . . , f2i+1〉 obtained when doing the induction

over a node t ∈ T ′ whose associated sequence (under the bijection with [ω]<ω) is

some 〈m1, . . . ,mk〉 satisfying
∑k

j=1blog2(mk)c = i. Since there are only h(i) many

such sequences, it follows that |F (n)| ≤ 2ih(i) ≤ 2ki−1 ≤ 2n.

Theorem 4.26. If we have CH (in the ground model), then there exists a count-

able support iteration of forcings of the form L(p) (where each of these p is a

stable ordered union ultrafilter) such that, in the generic extension, we have that

cov(M) = ω1 < ω2 = c and there exists a union ultrafilter.
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Proof. We define the CS iteration 〈Pα
∣∣α < ω2〉 with iterands Q̊α (i.e. for every

α < ω2 we have that Pα+1 = Pα?Q̊α and, if α =
⋃
α, then Pα is the direct or inverse

limit, respectively, of the Pξ (ξ < α), according to whether α has uncountable or

countable cofinality) in such a way that, for each α < ω2, Q̊α is forced to be L(p̊α)

for some specific (name of a) stable ordered union ultrafilter p̊α from V Pα . The main

issue is how to choose the (names for) ultrafilters p̊α. We do this recursively. For

every α < ω2, we denote by X̊α the Pα+1-name for the generic linearly independent

set added by the last factor L(p̊α). Then we let ˚pα+1 be any (name for a) stable

ordered union ultrafilter extending {F4(Xα \ F )
∣∣F ∈ [Xα]<ω} (which exists by

Theorem 4.18). The only problem remaining is how to define p̊α for limit α. If α

has uncountable cofinality, then every real in V Pα has already appeared at some

intermediate stage and hence the family {F4(Xξ\F )
∣∣ξ < α∧F ∈ [Xξ]

<ω} generates

an ultrafilter, which is the one that we take to be pα. Now, for α of cofinality ω, we

pick a cofinal sequence 〈αn
∣∣n < ω〉 converging to α and let pα be any stable ordered

union ultrafilter that extends the filter {F4(Xαn \F )
∣∣n < ω∧F ∈ [Xαn ]<ω} (again

by Theorem 4.18). Note that the construction is performed in such a way that

every pα extends the filter pξ whenever ξ < α. At the end, pω2 is the witness to the

existence of a union ultrafilter in the final extension. And cov(M) = ω1 because

by the previous lemma, Pω2 does not add Cohen reals.

The reader might wonder how do the three different models presented here differ
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from each other. The first thing to notice is that FS iterations are much more flex-

ible in the values that they allow for both c and cov(M). But, assuming that the

FS iterations are carried out with length ω1 in order to get a value of c = ω2, then

it is still possible to find a sensible difference between the two FS models and the

CS one. Notice that in the models that we got by FS-iterations, we get a strongly

summable ultrafilter of character ω1, and also recall that strongly summable ultra-

filters are rapid (i.e. the generators of the ultrafilter form a dominating family),

hence we have ω1 = u = d. In the CS iteration, on the other hand, we have that

ω2 = u = c because each ultraLaver real both adds a dominating real and destroys

all ultrafilters from the ground model. So the FS iterations yield different models

from the one obtained by means of the CS iteration.

Now, as for comparing the two different FS iterations (the one with Prikry-

Mathias forcing and the one that uses ultraLaver), the author has still not been

able to find any statement which holds in one but not in the other. Thus, so far

we still cannot differentiate those two models, although intuitively they should be

very different from each other.
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4.4 A Strongly Summable Ultrafilter that is not a Union

Ultrafilter

Theorem 3.27 from Chapter 3 depends heavily on the hypothesis that the ultrafilter

p at hand does not contain the subgroup B(G) = {x ∈ G
∣∣o(x) = 2}, since there are

no sequences ~x satisfying the 2-uniqueness of finite sums in B(G). Corollary 3.28

also has that B(G) /∈ p as a hypothesis, but it is not entirely clear a priori that

this hypothesis is necessary for the result. The main objective of this section is

to prove that we do in fact need such a hypothesis. This is, if p ∈ G∗ is strongly

summable and B(G) ∈ p, then there is no guarantee that p is additively isomorphic

to a union ultrafilter. For this, of course, we only need to consider the case where

B(G) is infinite (otherwise, the only ultrafilters that can contain it are the principal

ones). And, as noted in Chapter 3, when dealing with strongly summable ultrafilters

we may assume without loss of generality that G (and hence B(G)) is countable.

Hence, by focusing our attention on the restricted ultrafilter p � B(G), all we really

have to do is work on the Boolean group B.

The rest of this section is devoted to showing that the hypothesis that {x ∈

G
∣∣o(x) = 2} /∈ p in Corollary 3.28 is necessary, by constructing a nonprincipal

strongly summable ultrafilter on B that is not additively isomorphic to a union

ultrafilter. This construction borrows lots of ideas from the constructions of un-
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ordered union ultrafilters that can be found in [6, Th. 4] and [23, Cor. 5.2]. It

first appeared in [11, Section 4]. We first show an effective way to look at additive

isomorphisms to union ultrafilters.

Lemma 4.27. Let p ∈ B∗ be a strongly summable ultrafilter that is additively

isomorphic to some union ultrafilter. Then there exists a linearly independent X

such that F4(X) ∈ p and satisfying that whenever A ⊆ F4(X) is such that A ∈ p,

there exists a set Z, whose elements have pairwise disjoint X-supports, with p 3

F4(Z) ⊆ A.

Proof. If the strongly summable ultrafilter p ∈ B∗ is additively isomorphic to a

union ultrafilter, by Propositions 1.11 and 1.8, we have that for some linearly

independent X such that F4(X) ∈ p and for some enumeration of X as X =

{xn
∣∣n < ω}, the mapping ϕ : F4(X) −→ [ω]<ω given by4

n∈a
xn 7−→ a sends p to

a union ultrafilter. Note that the mapping ϕ is a vector space isomorphism from

the subspace spanned by X, to all of B (in fact it is the unique linear extension of

the mapping xn 7−→ {n}). The fact that ϕ(p) is a union ultrafilter means that, for

every A ⊆ F4(X) such that A ∈ p, there is a pairwise disjoint family Y such that

ϕ(p) 3 F4(Y ) ⊆ ϕ[A]. Since Y is pairwise disjoint, we get that F4(Y ) = F4(Y )

and since ϕ is an isomorphism, ϕ−1[F4(Y )] = F4(Z) where Z = ϕ−1[Y ]. Now the

fact that Y is pairwise disjoint means that the X-supports of the elements of Z are

pairwise disjoint, and we have that p 3 F4(Z) ⊆ A.
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Thus our goal is to construct, by a transfinite recursion, a strongly summable

ultrafilter and somehow, at the same time, for each linearly independent X such

that F4(X) will end up in the ultrafilter, at some stage we need to start making

sure that, for every new set of the form F4(Z) that we are adding to the ultrafilter,

the generators Z do not have pairwise disjoint X-support. The notions of suitable

and adequate families for X will precisely code the way in which we are going to

ensure that.

Definition 4.28. For a linearly independent subset X ⊆ G, we will say that a

subset Y ⊆ F4(X) is suitable for X if:

(i) For each m < ω there exists an m-sequence 〈yi
∣∣i < m〉 of elements of Y such

that whenever i < j < m, the set suppX(yi) ∩ suppX(yj) is nonempty. This

sequence will be called an m-witness for suitability.

(ii) Whenever y, y′ ∈ Y are such that suppX(y) ∩ suppX(y′) is nonempty, the set

[suppX(y) ∩ suppX(y′)] \ suppX(Y \ {y, y′}) is also nonempty. (We do not

require here that y 6= y′; in particular, for each y ∈ Y , suppX(y) \ suppX(Y \

{y}) is nonempty, and this is easily seen to imply that Y must be linearly

independent).

Thus a suitable set Y for X contains, in a carefully controlled way, arbitrarily

large bunches of elements whose X-supports always pairwise intersect. Given a
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linearly independent set X, it is easy to inductively build a set Y that is suitable

for X. And once we have such a suitable set, we can look at subsets of F4(Y )

which, in a sense, borrow from Y the non-disjointness of their X-supports. This

is captured in a precise sense by the following definition, which also captures the

fact that we will want to handle the non-disjointness of the X-supports for several

distinct linearly independent sets X simultaneously.

Definition 4.29. Let A ⊆ B and let Y = {(Xi, Yi)
∣∣i < n} be a finite family such

that for each i < n, Xi is a linearly independent subset of G and Yi is suitable for

Xi. Also, let m < ω. Then we will say that A is (Y ,m)-adequate if there exists

an m-sequence 〈aj
∣∣j < m〉, called a (Y ,m)-witness for adequacy, such that for

each i < n,

(i) F4(~a) ⊆ A ∩ F4(Yi) (which is in turn a subset of F4(Xi)),

(ii) There exists an m-witness for the suitability of Yi, 〈yj
∣∣j < m〉, such that for

each two distinct j, k < m, yj ∈ suppYi(aj) and yj /∈ suppYi(ak).

If we are given a family of ordered pairs X all of whose first entries are linearly

independent subsets of B, while every second entry is suitable for the corresponding

first entry, then we will say that A is X -adequate if it is (Y ,m)-adequate for all

finite Y ⊆ X and for all m < ω. When Y is a singleton {(X, Y )}, we will just

say that A is (X, Y )-adequate.
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Requirement (ii) of Definition 4.29 in particular implies that, for j < k < m, the

set suppXi(aj) ∩ suppXi(ak) is nonempty. Thus the Xi-supports of the terms of a

witness for adequacy are not pairwise disjoint, and moreover their non-disjointness

does not happen randomly, but is rather induced by some non-disjointness going

on at the level of Yi. Also, note that if Y is suitable for X then F4(Y ) is (X, Y )-

adequate, with the witnesses for suitability witnessing adequacy at the same time.

The following lemma, along with the observation that an X -adequate set is also

(X, Y )-adequate for each (X, Y ) ∈ X , tells us that this notion of adequacy is

adequate (pun intended) for our purpose of banishing sets of the form F4(Z) for

which the elements of Z have pairwise disjoint X-supports.

Lemma 4.30. Let X and Z be both linearly independent and let Y be suitable

for X. Assume that Z ⊆ F4(Y ). If the elements of Z have pairwise disjoint

X-supports then F4(Z) is not (X, Y )-adequate.

Proof. Clause (ii) from Definition 4.28 implies that, for two distinct z, z′ ∈ Z,

if y ∈ suppY (z) and y′ ∈ suppY (z′) then suppX(y) ∩ suppX(y′) = ∅, for other-

wise suppX(z) would not be disjoint from suppX(z′). Thus 〈z, z′〉 cannot be an

((X, Y ), 2)-witness. More generally, for any two w,w′ ∈ F4(Z), the only way

that there could exist two distinct y ∈ suppY (w) and y′ ∈ suppY (w′) such that

suppX(y) ∩ suppX(y′) 6= ∅ would be if y, y′ ∈ suppY (z) for some z ∈ Z such that

z ∈ suppZ(w) ∩ suppZ(w′). But then y ∈ suppY (w′) and y′ ∈ suppY (w). Hence
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〈w,w′〉 cannot be an ((X, Y ), 2)-witness and we are done.

Given this, the idea for the recursive construction of an ultrafilter would be as

follows: at each stage we choose some set F4(X) that has already been added to

the ultrafilter, and then we choose a suitable (for X) set Y . At every stage we make

sure that the subsets of B that we are adding to the ultrafilter are X -adequate,

where X is the collection of all pairs (X, Y ) that have been thus chosen so far. If

we want to have a hope of succeeding in such a construction, we better make sure

that the notion of being X -adequate behaves well with respect to partitions. For

this we will need the following lemma.

Lemma 4.31. Let Y = {(Xi, Yi)
∣∣i < n} where each Xi is linearly independent and

each Yi is suitable for Xi. Let ~a = 〈aj
∣∣j < M〉 be a (Y ,M)-witness for adequacy,

and let 〈bi
∣∣i < m〉 be an m-sequence of pairwise disjoint subsets of M . If we define

~c = 〈cj
∣∣j < m〉 by cj =4

k∈bj
ak, then ~c will be a (Y ,m)-witness for adequacy.

Proof. Let us check that ~c satisfies both requirements of Definition 4.29 for a

(Y ,m)-witness. Fix i < n. Since the bj are pairwise disjoint, we have that

F4(~c) ⊆ F4(~a) ⊆ A ∩ F4(Yi), thus requirement (i) is satisfied. In order to

see that requirement (ii) holds, grab the corresponding m-witness for suitability,

〈yj
∣∣j < M〉, as in part (ii) of Definition 4.29 for ~a. Now for j < m, pick a

kj ∈ bj and let wj = ykj . Since the wj were chosen from among the yk, the se-
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quence ~w = 〈wj
∣∣j < m〉 is an m-witness for suitability. Now for j < m, since

wj ∈ suppYi(akj) and wj /∈ suppYi(al) for l 6= kj, it follows that wj ∈ suppYi(cj) and

wj /∈ suppYi(cj′) for j 6= j′, and we are done.

An easy consequence of the previous lemma is the observation that any (Y ,M)-

adequate set is also (Y ,m)-adequate for any m ≤M . Lemma 4.31 will allow us to

prove the following lemma, which is crucial.

Lemma 4.32. For each m < ω there is an M < ω such that whenever Y is a

finite family of ordered pairs of the form (X, Y ), with X a linearly independent set

and Y suitable for X, and whenever a (Y ,M)-adequate set is partitioned into two

cells, one of the cells must be (Y ,m)-adequate.

Proof. For this, we will use a theorem of Graham and Rothschild which is a finitary

version of Hindman’s theorem, namely: for every m < ω there is an M < ω

such that whenever we partition P(M) \ {∅} into two cells, then one of the cells

contains F4(~b) for some pairwise disjoint m-sequence ~b = 〈bi
∣∣i < m〉 of nonempty

subsets of M (this result is sometimes referred to as the Folkman-Rado-Saunders

theorem). An elegant proof of this theorem from the infinitary version, using a

so-called compactness argument, can be obtained by following the proof of [21, Th.

5.29] as a template, applied to the semigroup whose underlying set is [ω]<ω and

whose semigroup operation is the union ∪.
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Thus for m < ω, let M be given by this finitary theorem, and let A be a (Y ,M)-

adequate set. Let ~a = 〈aj
∣∣j < M〉 be a (Y ,M)-witness for the adequacy of A. If

A is partitioned into the two cells A0, A1, then since F4(a) ⊆ A, we can induce

a partition of P(M) \ {∅} into the two cells B0, B1 by declaring a subset s ⊆ M

to be an element of Bl iff4
j∈s

aj ∈ Al for l ∈ 2. Then the theorem of Graham

and Rothschild gives us a pairwise disjoint family ~b = 〈bj
∣∣j < m〉 and an l ∈ 2

such that F4(~b) ⊆ Bl. Letting ~c = 〈cj
∣∣j < m〉 be given by cj =4

k∈bj
ak, we get

that F4(~c) ⊆ Al and Lemma 4.31 ensures that ~c is a (Y ,m)-witness for adequacy.

Therefore Al is (Y ,m)-adequate and we are done.

Corollary 4.33. For any family X consisting of ordered pairs of the form (X, Y ),

with X a linearly independent set and Y suitable for X, if we partition an X -

adequate set into two cells, then one of them must be X -adequate.

Proof. If A = A0 ∪ A1 is a partition of the X -adequate set A, and neither A0 nor

A1 are X -adequate, then the reason for this is the existence of finite Y0,Y1 ⊆ X

and m0,m1 < ω such that A0 is not (Y0,m0)-adequate and A1 is not (Y1,m1)-

adequate. Pick the M that works for max{m0,m1} in Lemma 4.32. Then for some

i ∈ 2, Ai is (Y0∪Y1,max{m0,m1})-adequate (because A is (Y0∪Y1,M)-adequate),

in particular Ai is (Yi,mi)-adequate, a contradiction.

With these preliminary results under our belt, we are finally ready to prove the
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main theorem of this section.

Theorem 4.34. If cov(M) = c, then there exists a nonprincipal strongly summable

ultrafilter on B that is not additively isomorphic to any union ultrafilter (in partic-

ular, there is a nonprincipal strongly summable ultrafilter on B that is not a union

ultrafilter).

Proof. Let {Aα
∣∣α < c} be an enumeration of all subsets of B, and let 〈Xα

∣∣α < c〉 be

an enumeration of all infinite linearly independent subsets of B in such a way that

each such set appears cofinally often in the enumeration. Now recursively define

linearly independent sets 〈Yα
∣∣α < c〉 and a strictly increasing sequence of ordinals

〈γα
∣∣α < c〉 satisfying the following conditions for each α < c:

(i) γα is the least η ≥ supξ<α(γξ + 1) such that F4(Yξ) ⊆ F4(Xη) for some

ξ < α.

(ii) Yα is suitable for Xγα .

(iii) F4(Yα) is either contained in or disjoint from Aα.

(iv) The family Fα = {F4(Yξ)
∣∣ξ ≤ α} is centred.

(v) Letting Xα = {(Xγξ , Yξ)
∣∣ξ ≤ α}, the filter generated by Fα consists of Xα-

adequate sets.
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Thus at each stage α, we first use clause (i) to determine what γα will be, and

then we work to find a Yα satisfying (ii)–(v).

Let us first look at what we have at the end of this construction. Clause (iv) tells

us that the family {F4(Yα)
∣∣α < c} generates a filter p, which will be an ultrafilter

because of (iii), and it will obviously be nonprincipal and strongly summable. Now

notice that (v) implies that, if Xc = {(Xγα , Yα)
∣∣α < c}, then each A ∈ p will be

Xc-adequate, because if Y = {(Xγαi
, Yi)

∣∣i < n} is a finite subfamily of Xc, m < ω,

and A ∈ p, then we can grab an α < c larger than all γαi and also larger than the β

witnessing F4(Yβ) ⊆ A. By (v), F4(Yα) ∩ F4(Yβ) is Xα-adequate, in particular

it is (Y ,m)-adequate and thus so is A.

The last observation is crucial for the argument that p cannot be additively

isomorphic to any union ultrafilter. If it was, by Lemma 4.27 there would be

a linearly independent X such that F4(X) ∈ p and such that for each A ∈ p

satisfying A ⊆ F4(X), we would be able to find a family Z whose elements have

pairwise disjoint X-supports and such that p 3 F4(Z) ⊆ A. Now since F4(X) ∈

p, there is an α < c such that F4(Yα) ⊆ F4(X), let η be the least ordinal

≥ supξ≤α(γξ + 1) such that X = Xη. By (i) we will have that γα+1 ≤ η and,

in fact, whenever ξ > α is such that no γβ equals η for any α < β < ξ, then

γξ ≤ η. Thus there will eventually be some ζ > α such that γζ = η, and by (ii)

this means that Yζ is suitable for X. Since every element of p is Xc-adequate, in
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particular (X, Yζ)-adequate, then by Lemma 4.30 we get that for no set Z with

pairwise disjoint X-supports can we have that p 3 F4(Z) ⊆ F4(Yζ). This shows

that p cannot be additively isomorphic to any union ultrafilter, and we are done.

We now proceed to show how is it possible to carry out such a construction.

So let α < c and assume that for all ξ < α, conditions (i)–(v) are satisfied. As

mentioned before, condition (i) uniquely determines γα, so we only need to focus

on constructing Yα satisfying conditions (ii)–(v). Let F = {F4(Yξ)
∣∣ξ < α}, and

X = {(Xγξ , Yξ)
∣∣ξ < α}. Condition (v) implies that the filter generated by F

consists of X -adequate sets, if α is limit, by the same argument as in the proof

that p consists of Xc-adequate sets, and if α = ξ + 1 just because F = Fξ and

X = Xξ. Thus if we define

H =

{
q ∈ βB

∣∣∣∣(q ⊇ F ) ∧ (∀A ∈ q)(A is X −adequate)

}
,

then H will be a nonempty subset of βB by Corollary 4.33. Since finite sets cannot

be X -adequate, we have that, in fact, H ⊆ B∗.

Claim 4.2. H is a closed subsemigroup of B.

Proof of Claim. The fact that H is closed is fairly straightforward and is left to the

reader, and it is also clear (by Theorem 1.7) that H is a subsemigroup.

Now we only need to show that, if A ∈ pNq, then A is X -adequate. So fix

a finite Y = {(Xi, Yi)
∣∣i < n} ⊆ X and an m < ω. We will see that there is a
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(Y ,m)-witness for the adequacy of A. Let B = {x ∈ B
∣∣xNA ∈ q}. We have that

B ∈ p because A ∈ pNq, so B is X -adequate and thus we can grab a (Y ,m)-

witness 〈aj
∣∣j < m〉 for the adequacy of B. For each i < n, F4(~a) ⊆ F4(Yi) so we

can define Zi ∈ [Yi]
<ω by Zi = suppYi(~a). Consider the set

C =
⋂

a∈F4(~a)

aNA,

which is an element of q because F4(~a) ⊆ B and hence it is X -adequate. Therefore

we can grab a (Y , 2
∑
i<n |Zi| + 2m − 1)-witness for the adequacy of C, 〈bj

∣∣j <

2
∑
i<n |Zi| + 2m − 1〉. Associate to any element x ∈

⋂
i<n

F4(Yi) the vector 〈Zi ∩

suppYi(x)
∣∣i < n〉, and notice that there are exactly 2

∑
i<n |Zi| many possible distinct

such vectors. Thus there exist 2m distinct numbers k0, . . . , k2m−1 < 2
∑
i<n |Zi| +

2m− 1 such that for each j < m, the vector associated to bk2j is exactly the same

as the one associated to bk2j+1
, and so if we let cj = bk2j 4 bk2j+1

, then for each

i < n, cj ∈ F4(Yi \Zi). By Lemma 4.31, the m-sequence ~c = 〈cj
∣∣j < m〉 will be an

m-witness for the adequacy of C. Now let ~d = 〈dj
∣∣j < m〉 be given by dj = aj4 cj.

We claim that ~d is a (Y ,m)-witness for the adequacy of A, so let us fix i < n

and let us verify that ~d satisfies conditions (i) and (ii) from Definition 4.29. It is

certainly the case that F4(~c) ⊆ A ∩ F4(Yi), because if d ∈ F4(~d) then there are

a ∈ F4(~a) and c ∈ F4(~c) such that d = a4 c, and since c ∈ C ⊆ aNA, we get

that d ∈ A. Thus requirement (i) is satisfied. Now for requirement (ii), just grab

the m-witness for the suitability of Yi that works for ~a, 〈yj
∣∣j < m〉. We constructed
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the cj in such a way that suppYi(cj) ∩ Zi = ∅, while suppYi(aj) ⊆ Zi. Hence for

each j < m, suppYi(dj) ∩ Zi = suppYi(aj) and so whenever j < m, yj ∈ suppYi(dj),

and yj /∈ suppYi(dk) for k 6= j.

Since H is a closed subset of the compact space βB, then H is compact as

well, and since it is a semigroup in its own right, we can apply the Ellis-Numakura

Lemma and pick an idempotent element qNq = q ∈ H. Let A ∈ {Aα,B \ Aα} be

such that A ∈ q. We will use q to carefully construct Yα. Let X = Xγα .

Claim 4.3. There is a Y , suitable for X, such that:

(i) F4(Y ) ⊆ A, and

(ii) For any finite subfamily Y = {(Xi, Yi)
∣∣i < n} ⊆ X , for any m < ω and for

any finitely many ξ0, . . . , ξk < α, there is a sequence 〈aj
∣∣j < m〉 of elements

of Y that is simultaneously an m-witness for the suitability (for X) of Y and

a (Y ,m)-witness for the adequacy of
⋂
l≤k

F4(Yξl). In particular, ~a witnesses

the (Y ∪ {(X, Y )},m)-adequacy of

(⋂
l≤k

F4(Yξl)

)
∩ F4(Y ).

Proof. This is the only place where we will actually use the hypothesis that

cov(M) = c. Since q is an idempotent and A ∈ q, the set A? = {x ∈ A
∣∣xNA ∈

q} ∈ q and by [21, Lemma 4.14], for every x ∈ A?, xNA? ∈ q. Let P be the partial

order consisting of those finite subsets W ⊆ F4(X) such that F4(W ) ⊆ A? and
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satisfying condition (ii) from the Definition 4.28 of suitability for X, ordered by

reverse inclusion (thus Z ≤ W means that Z ⊇ W ). This is a countable forcing

notion, hence forcing equivalent to Cohen’s forcing. For any finite Y ⊆ X , every

m < ω, and all ξ0, . . . , ξk < α as in part (ii) of the conclusions of this claim, we let

D(Y ,m, ξ0, . . . , ξk) be the set consisting of all conditions Z ∈ P such that there is

an m-sequence ~a of elements of Z that simultaneously witnesses the suitability of

Z for X and the (Y ,m)-adequacy of
⋂
l≤k

F4(Yξl). The heart of this proof will be

the argument that all these sets D(Y ,m, ξ0, . . . , ξk) are dense in P. Once we have

that, we just need to notice that there are |α| < c = cov(M) many such dense

sets, so we can pick a filter G intersecting them all, and we will clearly be done by

defining Y =
⋃
G.

So let us prove that D(Y ,m, ξ0, . . . , ξk) is dense in P. The idea is that we are

given a condition Z ∈ P, and we would like to pick a (Y ,m)-witness ~a for the

adequacy of
⋂
l≤k

F4(Yξl), and extend Z to a stronger condition W by adding the

range of ~a to it. The main difficulty is that we want ~a to be at the same time an m-

witness for suitability (for X) such that the resulting condition W = Z∪{aj
∣∣j < m}

still satisfies condition (ii) of Definition 4.28.

Let us start with a condition Z ∈ P, and let X ′ = X \ suppX(Z). Since
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F4(X ′) ∈ q, we can let

B =

(⋂
l≤k

F4(Yξl)

)
∩ F4(X ′) ∩

 ⋂
z∈F4(Z)

zNA?

 .

Then B? = {x ∈ B
∣∣xNB ∈ q} ∈ q, thus B? is X -adequate, so there is a (Y ,m)-

witness ~a = 〈aj
∣∣j < m〉 for the adequacy of B?. We will now recursively construct

an m +
(
m
2

)
-sequence of elements ~x = 〈xk

∣∣k < m +
(
m
2

)
〉 such that F4(~x) ⊆⋂

a∈F4(~a)

aNB? and such that the X-supports of its elements are pairwise disjoint

and also disjoint from suppX(~a), and whose Yi-supports are disjoint from suppYi(~a)

for each i < n. If we succeed in this construction, picking a bijection f : [m]2 −→

(m+
(
m
2

)
) \m will enable us to define the sequence ~b = 〈bj

∣∣j < m〉 by:

bj = aj 4 xj 4

(
4
k<m
k 6=j

xf({j,k})

)
.

Since the Yi-supports of all the xk are disjoint from suppYi(~a), then arguing as in

the proof of Claim 4.2 we conclude that ~b is a (Y ,m)-witness for the adequacy

of B?, hence also for the adequacy of
⋂
l≤k

F4(Yξl). And the careful choice of the

X-supports of the xk ensures that ~b is at the same time an m-witness for suitability

for X, hence letting W = Z ∪ {bj
∣∣j < m} yields a condition in P (i.e. W satisfies

condition (ii) of Definition 4.28).

Thus, the only remaining issue is that of picking the xk. Assume that we have
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picked xl for l < k, and we will show how to pick xk. Since q is an idempotent and

C =
⋂

a∈F4(~a_〈xl
∣∣l<k〉) aNB

? ∈ q,

then C is an IP-set, so there is a linearly independent family V such that F4(V ) ⊆

C. As in the argument for the proof of Claim 4.2, to each element x ∈ C we

associate the vector

〈suppYi(~a) ∩ suppYi(x)
∣∣i < n〉_

〈suppX({aj
∣∣j < m} ∪ {xl

∣∣l < k}) ∩ suppX(x)〉,

and notice that, since there are only finitely many possible distinct such vectors,

the infinite set V must contain at least one pair of distinct elements v, w that have

the same associated vector. Hence by letting xk = v 4 w ∈ F4(V ) ⊆ C, we get

that suppYi(xk) ∩ suppYi(~a) = ∅ for all i < n, and suppX(xk) ∩ suppX({aj
∣∣j <

m} ∪ {xl
∣∣l < k}) = ∅, so the construction can go on and we are done.

Let Yα = Y . Obviously requirement (ii) is satisfied, and since F4(Yα) ⊆ A ∈

{Aα,B\Aα}, requirement (iii) is satisfied as well. It is easy to see that condition (ii)

from the conclusion of the claim ensures at once that requirements (iv) and (v) are

fulfilled, and we are done.
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