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Abstract

Recently, automatic speech recognition (ASR) systems that use deep neural

networks (DNNs) for acoustic modeling have attracted huge research interest.

This is due to the recent results that have significantly raised the state of

the art performance of ASR systems. This dissertation proposes a number of

new methods to improve the state of the art ASR performance by exploiting

the power of DNNs.

The first method exploits domain knowledge in designing a special neural

network (NN) structure called a convolutional neural network (CNN). This

dissertation proposes to use the CNN in a way that applies convolution and

pooling operations along frequency to handle frequency variations that com-

monly happen due to speaker and pronunciation differences in speech signals.

Moreover, a new CNN structure called limited weight sharing is proposed to

better suit special spectral characteristics of speech signals. Our experimen-

tal results have shown that the use of a CNN leads to 6-9% relative reduction

in error rate.

The second proposed method deals with speaker variations in a more ex-

plicit way through using a new speaker code based adaptation. This method

adapts the speech acoustic model to a new speaker by learning a suitable

speaker representation based on a small amount of adaptation data from

each target speaker. This method alleviates the need to modify any model

parameters as is done with other commonly used adaptation methods for

neural networks. This greatly reduces the number of parameters to estimate
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during adaptation; hence, it allows rapid speaker adaptation.

The third proposed method aims to handle the temporal structure within

speech segments by using a deep segmental neural network (DSNN). The

DSNN model alleviates the need to use an HMM model as it directly models

the posterior probability of the label sequence. Moreover, a segment-aware

NN structure has been proposed. It is able to model the dependency among

speech frames within each segment and performs better than the conven-

tional frame based DNNs. Experimental results show that the proposed

DSNN can significantly improve recognition performance as compared with

the conventional frame based models.

iii



Acknowledgments

Foremost, I would like to express my sincere gratitude to my advisor Professor

Hui Jiang for the continuous support of my Ph.D. study and research. He

allowed me freedom to pursue the research direction I like and in the same

time provided me with guidance based on his great knowledge and experience.

I am thankful for the time we spent discussing various aspects of my research.

I am thankful to all professors who taught me during my undergraduate

study in Cairo University and during my PhD at York University and who

helped me grasp different scientific topics.

I would like to express gratitude to York University and the department

of computer science for the support and its providing all the needed facilities

during the course of my PhD.

I am especially grateful to my wife Mona who accompanied me during

the course of my PhD, supported and encouraged me, and filled my days

with happiness and joy.

My warm and sincere thanks also go to my friends and colleagues for all

the assistance in my research, fruitful discussions and encouragement during

my stay at York. I would like to especially mention my friend Abdel-rahman

Mohamed for the fruitful deep discussions and for sharing exciting pieces of

information in the field of research.

I would like to express gratitude to my parents who planted love of sci-

ence inside me and the attitude towards excellence through hard work and

provided me with encouragement, love, and prayers.

iv



Acronyms

ANN Artificial neural network

ASR Automatic speech recognition

BP Back propagation

CMLLR Constrained maximum likelihood linear regression

CMVN Cepstral mean and variance normalization

CNN Convolutional neural network

CPU Central processing unit

DBN Deep belief network

DNN Deep neural network

DSNN Deep segmental neural network

EM Expectation maximization

FFT Fast Fourier transform

fSA-SC Feature space speaker adaptation based on speaker code

GMM Gaussian mixture model

GPU Graphics processing unit

HMM Hidden Markov model

LM Language model

LVASR Large vocabulary automatic speech recognition

MAP Maximum a posteriori

MFCC Mel-frequency cepstral coefficients

MFSC Mel-frequency spectral coefficients

MLE Maximum likelihood estimation

v



MLLR Maximum likelihood linear regression
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Chapter 1

Introduction

Automatic speech recognition (ASR) aims to recognize human speech, trans-

forming an audio input into a sequence of words. It is a very challenging task

because an ASR system has to convert a variable length speech signal into a

variable length sequence of words. Moreover, a successful speaker indepen-

dent ASR system has to handle variations coming from differences between

speakers, in addition to uncertain environmental noises, different speaking

styles, and different accents.

Hidden Markov models (HMMs), which model the temporal behavior

of speech signals using a sequence of latent states, handle variable-length

sequences naturally. Each state is associated with a particular probability

distribution of observations. Gaussian mixture models (GMMs) have been,

until very recently, regarded as the most powerful model for estimating the

probabilistic distribution of speech signals associated with each of these HMM

states.

Very recently, HMM models that use artificial neural networks (ANNs)

instead of GMMs have witnessed a significant resurgence of research interest.

These models have shown significant performance improvement over GMM

based models especially when deep neural networks (DNNs) are used. The

multiple layers of a DNN allow it to model complex structures of the speech
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signals and perform complex processing towards more accurate classification.

Moreover, it has been found that the upper layers can learn more invariant

representations of the speech signals. Thus, it handles noise and speaker

variations in a better way. However, current state of the art systems are still

bound to methods and frameworks similar to those that have been developed

for GMM-HMM models. DNNs are more powerful and can be used to com-

bine different information sources and predict arbitrary outputs that are not

limited to classifications.

1.1 Contributions

This dissertation proposes a number of novel methods that exploit the power

of DNNs for improving different aspects of acoustic modeling in ASR.

First of all, the dissertation proposes to use convolutional neural networks

(CNNs) to better handle certain variations in the speech signal, improving

the speaker invariance of the acoustic model. CNNs have been applied to im-

age analysis tasks to provide invariance to translation and small deformations

of images, leading to the state of the art performance on a number of image

recognition tasks. This is possible due to the use of convolution and pooling

operations. Convolution applies the same filter to different locations. This

use of convolution is motivated by translation invariance of certain patterns

within different images. Convolution leads to a reduced number of parame-

ters and improved learning of filter weights. The pooling operation reduces

the resolution of computed features, and leads to more stability against small

deformations of the image.

Similar properties may be important in ASR tasks. Speech signals have

certain variations caused by differences in vocal tract length among differ-

ent speakers. This makes the same speech patterns that result from the

same speech units to appear in slightly different frequencies according to the

speaker’s vocal tract shape. By applying convolution and pooling along the
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frequency axis, the resulting neural network enjoys more stability against

these variations, leading to better performance. Moreover, the convolution

layer neurons receive input from local frequency regions. This results in bet-

ter stability against band-limited noise. The use of CNNs moves away from

a black-box view of neural networks because this design uses domain knowl-

edge to improve the processing of speech signals. The use of CNNs in ASR is

described in detail in Chapter 4. Additionally, a novel CNN structure called

limited weight sharing that better suits speech signals and leads to better

and more efficient modeling is proposed.

Another more explicit method to handle speaker and environment vari-

ations is to use speaker and environment adaptation. Chapter 5 presents a

novel speaker adaptation method that is based on a learning speaker codes.

Speaker adaptation methods aim at optimizing the performance of a speaker

independent model towards any target speaker. Traditionally, this is achieved

by modifying the model parameters to match the target speaker based on a

small amount of adaptation data from the target speaker. Other widely used

methods depend on transforming the speech features themselves to match

a canonical speaker to which the speech model is optimized. Alternatively,

the proposed speaker code based adaptation learns a speaker specific rep-

resentation that is fed to the DNN along with the speech features without

modifying any DNN model parameters. This reduces the number of param-

eters to learn and allows rapid speaker adaptation that improves the ASR

performance with only a very small amount of adaptation data. Addition-

ally, a simple method of scaling features computed by different DNN layers

is proposed. It has similar advantages in that it modifies only a relatively

small number of parameters. This method can be directly combined with

the speaker code based adaptation to achieve further improvement of perfor-

mance in speaker adaptation.

Chapter 6 focuses on segmental modeling of speech signals. It pro-

poses a deep segmental NN model that is able to model speech variations
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within a variable length segment that may represent a sub-word acoustic

unit. This method attempts to overcome one of the greatest limitations of

frame-based HMM methods: the unrealistic assumption of conditional in-

dependence within an HMM state. Moreover, the proposed deep segmental

model optimizes NN outputs directly to maximize the posterior probability

of the reference label sequence given the whole speech utterance.

1.2 Outline

The first two chapters present background information related to DNNs and

ASR. Chapter 2 describes NNs and the advantages of using a deep struc-

ture in the NN. Moreover, it describes supervised and unsupervised train-

ing algorithms for DNNs. Chapter 3 explains automatic speech recognition

(ASR) and the components of an ASR system. It further describes the Hid-

den Markov Model (HMM) and how it can be used for ASR. Moreover, it

surveys different NN based ASR models and how an NN can be combined

with an HMM to achieve state of the art ASR performance. The next three

chapters describe the three proposed methods to improve the performance of

ASR through some innovative uses of NNs. Chapter 4 describes CNN models

and how they differ from standard fully connected NNs. Moreover, it pro-

poses using CNNs for acoustic modeling of speech signals and describes the

proposed limited weight sharing. Chapter 5 describes the proposed speaker

adaptation methods: speaker code based adaptation and a simple speaker

adaptive scaling of the DNN activations. Chapter 6 presents the proposed

deep segmental neural network model, as well as how it can be learned and

used for ASR. Finally, chapter 7 draws all conclusions of this dissertation

and discusses possible future work.
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Chapter 2

Deep Neural Networks

2.1 Artificial Neural Networks

The ideas of neural networks (NNs) originated from attempts to understand

the biological information processing systems in the late 19th century. The

concept of a neural network was possibly first published in 1943 in [1]. How-

ever, artifical neural networks were not widely used until the 1980s, following

publication of the back-propagation algorithm for training a multi-layered

feed-forward ANN [2].

Although they are inspired by biological neural systems, ANN models do

not necessarily mimic the workings of biological networks, which are still not

fully understood. ANNs have many architectures and training algorithms.

An ANN has a number of neuron-like nodes (called artificial neurons or sim-

ply neurons) that process information coming to them from other intercon-

nected nodes. Usually the connections have adaptive weights to be estimated

during learning.

ANN models have shown success in many diverse applications, including

• object classification like face and character recognition,

• function approximation and regression, and
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• data processing such as clustering and filtering.

One of the most successful examples of an ANN is the feed-forward NN

which is also called a multi-layer perceptron (MLP). It can be used to perform

classification or regression. The network usually has an input layer, one or

more intermediate hidden layers, and an output layer. The network neurons

have an activation function that defines the neuron output as a function of

the input coming from the neuron connections that transfer (and modify)

the output of other connected neurons in the lower layer(s). A network of

one hidden layer that has a finite (but big enough) number of neurons with

a sigmoid activation function is proved by George Cybenko to be a universal

approximator in [3]. Moreover, other forms of activation function are proved

to be universal approximators as in [4].

Learning of a multi-layer feed-forward NN is usually done using the

back-propagation algorithm where the error from the target output is back-

propagated through the hidden layers to update the connection weights in all

layers simultaneously. But having one or more hidden layers makes the learn-

ing objective function non-convex, which implies the risk of being stuck in a

bad local minimum during model learning. Another problem is over-fitting

which means that the network generalizes badly on other samples not seen in

the training set. This problem happens when a network that has a relatively

large number of free parameters is trained using a small training set. To solve

this problem, either the network size is reduced or a regularization term is

added to the objective function to reduce its complexity. Another possible

solution is early stopping, where the learning is stopped earlier during train-

ing when the network performance decreases on a held-out validation data

set. However, these solutions may lead to non-optimal values of the weights.

In addition to being a universal function approximator, a NN can be used

to model data distributions as a generative model. A deep generative multi-

layer NN that has stochastic binary neurons (given it has enough depth and

width) is proven to be a universal distribution approximator for binary multi-
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Figure 2.1: Examples of neural network models. a. A standard shallow feed-
forward NN. b. A deep feed-forward NN. c. A restricted Boltzmann machine
which has undirected connections. d. Deep belief network that has a top
layer with undirected weights (an associative memory) that sends signals
down through the generative directed weights.
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variate data in [5] and [6]. This form of NN is called a deep belief network

which is described in more detail in section 2.4.4.

Fig.2.1 shows a number of examples of NN models. These models in-

clude discriminative feed forward NNs shown in (a) and (b), and generative

NNs such as the restricted Boltzmann machine (RBM) in (c), and deep be-

lief network in (d). More details about these models are given in the next

sections.

2.2 Feed Forward Neural Networks

2.2.1 Formulation

A feed forward neural network has one or more hidden layers in addition to

the output layer. Each layer has a number of units (or neurons), each of

which takes outputs of the lower layer as input, multiplies them by a weight

vector, sums the result and passes it through a non-linear activation function

such as sigmoid or tanh. The output of a unit of a fully connected layer is

computed as follows:

o
(l)
i = σ(

∑
j

o
(l−1)
j w

(l)
ji + w

(l)
0i ) (2.1)

where o
(l)
i denotes output of i-th unit in l-th layer, w

(l)
ji denotes the connecting

weight from j-th unit in the layer l − 1 to i-th unit in the l-th layer, w
(l)
0i is

a bias added to the i-th unit, and σ(x) is a non-linear activation function.

A sigmoid function is a common choice of the activation function which is

defined as follows:

σ(x) = 1/(1 + exp(−x)) (2.2)

In this work, a sigmoid function is assumed by default unless mentioned

otherwise.

For simplicity of notation, the above computation can be represented in
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vector form as follows:

o
(l)
i = σ(o(l−1) ·w(l)

i ) (2.3)

where the bias term is absorbed in the column weight vector w
(l)
i by expand-

ing the vector o(l−1) with an extra dimension of 1. Furthermore, all neuron

activities in each layer can be represented as the following matrix form:

o(l) = σ(o(l−1)W(l)) (l = 1, 2, · · · , L− 1) (2.4)

where W(l) denotes weight matrix in the l-th layer and the ith column is the

weight vector w
(l)
i for all i.

The first (bottom) layer is the input layer and the topmost layer is the

output layer. For a multi-class classification problem, the posterior prob-

ability of each class can be estimated using the output softmax layer as:

yi =
exp

(
o

(L)
i

)
∑

j exp
(
o

(L)
j

) (2.5)

where o
(L)
i is computed as o

(L)
i = o(L−1) ·w(L)

i . Another option for the output

layer is to use sigmoid or linear activation functions.

2.2.2 Learning

To learn the weights of a feed forward NN, a labeled training data set is

needed. The aim is to minimize the errors in the NN output given the

training inputs. At the same time, the NN predictions should be general,

that is able to correctly predict the output for unseen samples. A number of

objective functions can be used. One that is widely used is the mean squared

error. Another more successful objective function for classification problems

(when a softmax output layer is used) is the cross entropy which is defined
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as follows:

Q({W(l)}) = −
∑
k

∑
i

d
(k)
i log y

(k)
i , (2.6)

where yki represents the NN ith output given the features of the kth sample

and d
(k)
i is the target output. The weights are chosen such that the total cross

entropy over the training data set is minimized. The cross entropy decreases

when the discrepancy between the reference target d and the softmax layer

prediction y decreases.

The derivative of Q with respect to each weight matrix, W(l), can be effi-

ciently computed based on the well-known error back-propagation algorithm.

If we use the stochastic gradient descent algorithm to minimize the objective

function, for each training sample or mini-batch, each weight matrix update

can be computed as:

∆W(l) = ε ·
(
o(l−1)

)′
e(l) (l = 1, 2, · · · , L) (2.7)

where ε is learning rate and the error signal vector in l-th layer, e(l), is

computed backwards for the sigmoid hidden unit as follows:

e(L) = d− y (2.8)

e(l) =
(
e(l+1)

(
W(l+1)

)′) • o(l) •
(
1− o(l)

)
(l = L− 1, · · · , 2, 1) (2.9)

where • represents element-wise multiplication of two equally sized matrices

or vectors.
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2.3 Going Deep

Although a shallow feed-forward NN with two layers (one hidden layer and

one output layer) is proved to be a universal function approximator, it may

not be efficient in terms of representation or computational complexity [7].

A deep neural network (DNN) having more than two layers can provide a

more compact method to process inputs. For example, suppose an NN is

to be trained to classify objects from images. Lower layers can work to

extract low level features like edges. Intermediate layers can combine these

edges into more complex shapes. Then top layers do the final classification.

Therefore, higher levels of abstraction are generated in the higher layers that

may exploit the low level processing done in the lower layers. A shallow

architecture may do the same classification but may need to repeat doing

the same computations many times in one layer instead of doing it once then

exploiting it in higher layers.

Parity computation is demonstrated in [8] as an example that motivates

deep architectures. The following are three ways to construct circuits that

compute the N-bit boolean parity function:

1. N chained XOR gates which can be thought of as having N layers with

each layer having size 1.

2. N − 1 XOR gates arranged in a tree that has log2N layers and each

layer has log2 l gates.

3. a DNF formula (disjunctive normal terms i.e. AND minterms in the

first layer then an OR function of the results) that has O(2N) minterms.

It can be seen from this example that although a shallow architecture can

do the job, it needs an exponential number of components, while a deep

architecture needs only N − 1 components. A similar argument applies to

other problems in pattern classification and recognition. If these components
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are to be trained, more training examples will be needed to train the higher

number of components.

However, training a DNN is a difficult problem. For example, empirical

results suggest that training a DNN using back-propagation is more difficult

than training a shallow network [9, 10]. The objective function will be highly

non-convex and it will be easy to get stuck in a bad local minimum. In some

earlier cases, learning a deeper NN may have yielded worse results than a

shallow one [11]. The work in [12] studies why it is more difficult to train

a deep NN. An important reason is that many hidden and output units

are saturated from the beginning and change slowly with training especially

when a sigmoid non-linearity is used. Careful initialization of the weights

and choice of the activation function can help in training these deep models.

In spite of this difficulty, there have been some successful examples of

learning DNN architectures by stochastic gradient descent. For example, a

deep convolutional NN [13] (to be described in chapter 4) can be learned eas-

ily using back-propagation. One of the factors that makes convolutional NNs

easier to train is the use of weight sharing which reduces the number of free

parameters to be learned. The use of weight sharing is based on the transla-

tion invariance property of images. The architecture of a convolutional NN

makes the network learn low level features that process smaller areas of the

image in more details in the low layers, while nodes in higher layers process

larger areas with less details resulting in more abstract features. Moreover,

the use of pooling layers provides more robustness to small deformations of

image parts.

Another successful example of DNNs trained using back-propagation is

shown in [14] where a deep multi-layer feed-forward NN could be trained on

an OCR dataset by continuously applying automatic elastic deformations to

the training set. Therefore, it can be thought of as training the network on an

infinite training set which may get rid of the problem of over-fitting. Moreover

in this case the objective function is changing in each training iteration that
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includes a number of training samples. This can help in escaping from bad

local minima.

2.4 Unsupervised Learning

Previous studies showed difficulty in training deep NNs directly with back-

propagation [10, 11]. This difficulty arises from the fact that the back-

propagation signal gets weaker (in some other cases the signal explodes, for

example when linear activation functions are used) as it goes back towards

the lower layers, leaving the bottom layers badly trained. This weakened the

interest in studying deep models.

In 2006, Hinton et al. [15] showed that a deep NN model can be trained

easily by pre-training the model using unsupervised learning. This pre-

training was done by using the weights of a deep belief network created

by stacking multiple RBMs as described next. After that, more interest

has grown on building deep models and supervised and unsupervised train-

ing of them. A number of empirical studies have shown that unsupervised

pre-training of feed-forward NNs (both deep and shallow) improves their

performance [10, 9, 16].

Unsupervised learning of NNs can benefit from unlabeled data in terms

of improving the overall classification performance. Moreover, it can im-

prove the supervised learning signals when the generative and discriminative

learning signals are combined in a semi-supervised setting [17].

There are a number of other applications of unsupervised learning. Fea-

ture learning is an important one among many others. [18] shows that stacked

RBMs can learn more expressive and invariant features that improve the

classification performance of a support vector machine. Moreover, genera-

tive models trained using unsupervised learning can model the probability

distribution of the training data. This can be used to synthesize random

samples, correct noisy samples, and to complete missing data.
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Figure 2.2: RBM

2.4.1 Restricted Boltzmann Machine (RBM)

A restricted Boltzmann machine (RBM) is an undirected graphical model

organized as a bipartite graph with undirected connections [15, 19]. The

lower layer has visible units that represent the raw data (observations), and

the higher layer has hidden units that represent hidden features (or latent

variables) as shown in figure 2.2. The model is restricted in the sense that

it has weighted connections only between visible and hidden units and no

connections among visible units nor among hidden units. In the simplest

form, the model has binary units in both the visible and hidden layers. The

model defines a probabilistic distribution of the joint states of visible and

hidden units using an energy function defined using the weights and biases

as follows:

E(v,h|θ) = −
V∑
i=1

H∑
j=1

wijvihj −
V∑
i=1

bivi −
H∑
j=1

ajhj (2.10)

where v = [v1...vV ]> represents the states of the visible units, h = [h1...hH ]>

represents the states of the hidden units, wij is the symmetric weight between

the ith visible unit and the jth hidden unit, ai is the bias term of the ith

visible unit, and bj is the bias of the jth hidden unit. θ represents the

combined set of parameters W, b, and a.
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The probability of the joint states of v and h is:

p(v,h|θ) =
e−E(v,h|θ)

Z(θ)
(2.11)

where Z(θ) is the partition function which equals the sum of energies of all

states:

Z(θ) =
∑
v

∑
h

e−E(v,h|θ) (2.12)

The last equation shows that computing the partition function is in-

tractable because the number of terms to sum grows exponentially as the

number of the model elements. Fortunately, many practical applications do

not need the estimation of the partition function. Given the state of the vis-

ible units of the RBM, the hidden units become independent and a factorial

probability distribution can be computed easily as follows:

p(hj = 1|v, θ) = σ(
V∑
i=1

wijvi + ai) (2.13)

where σ(x) =
1

1 + e−x
. Similarly, given the hidden states, the probability

distribution over the visible units is:

p(vi = 1|h, θ) = σ(
H∑
j=1

wijhj + bj) (2.14)

Computing the probability distribution of visibles can be done by marginal-

izing over h in Eq. 2.11 as follows:

p(v|θ) =

∑
h e
−E(v,h|θ)∑

v̂

∑
h e
−E(v̂,h|θ) (2.15)

Since the above summation is not tractable, it is not practical to use the last

equation to generate random samples of the visibles. Instead, Monte Carlo
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sampling methods can be used with the conditional probability equations.

Good samples can be generated using prolonged iterations of block Gibbs

sampling. This can be done starting from random states, then alternating

the application of the conditional equations 2.13 and 2.14 to update the states

of the visible and hidden units.

2.4.2 RBM Training

A natural way to learn the RBM parameters would be to maximize the log

likelihood of data. Suppose having a data sample v, the log likelihood of v

is:

log p(v|θ) = log
∑
h

e−E(v,h|θ) − log
∑
v̂

∑
h

e−E(v̂,h|θ) (2.16)

Unfortunately there is no known analytical solution that can find the model

parameters that maximize the above log likelihood function. Instead, a gra-

dient descent optimization can be used by following the first derivative of the

log likelihood function. Differentiating Eq. 2.16 with respect to all weights

wij gives:

∆wij ∝ 〈vihj〉data − 〈vihj〉model (2.17)

Where 〈x〉 is the expectation of the variable x. The first term is the expecta-

tion that vi and hj are both 1 in the training data, which can be computed

easily as the average of the value of visible elements of each data sample mul-

tiplied by the probability of hiddens taking the value of 1 given that sample.

The second term is the expected value of the model generating samples hav-

ing vi = 1 and hj = 1. This is not tractable to compute accurately as it

requires the averaging over infinite number of samples generated using Gibbs

sampling. Instead, the contrastive divergence (CD) algorithm [20, 15] can be

used to compute an approximate update value by applying one or a limited

number of iterations of Gibbs sampling to compute an approximate average.

In this way, for each data sample one or more iterations of Gibbs sampling
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iterations are applied to get new states of the visible units that are closer to

the expected value of the visible units according to the model distribution.

Contrastive divergence gives a biased estimate of the objective func-

tion. Other training algorithms that better approximate the maximum log

likelihood objective function have been proposed. For example, Persistent

Contrastive Divergence (PCD) has been shown to improve the likelihood

estimation[21, 22]. Also, Particle Filtered MCMC-MLE has been shown to

improve over CD [23].

2.4.3 RBM with continuous valued visible data

For continuous valued data, a binary RBM is not suitable. A simple heuristic

can be used by normalizing data between 0 and 1 and considering the data

values to be visible units activation probabilities as done in [15]. A better

solution is to use a continuous data probability distribution like the Gaussian

distribution [24, 19, 10, 25]. In this case, the energy function is defined as:

E(v,h|θ) = −
V∑
i=1

H∑
j=1

wijvihj −
H∑
j=1

ajhj +
1

2

V∑
i=1

(vi − bi)2 (2.18)

In this case, the conditional probability of visible states given the hidden

states follows a Gaussian density function as:

p(vi|h, θ) = N

(
H∑
j=1

wijhj + bi, 1

)
(2.19)

whereN (µ, σ) denotes a Gaussian distribution with a mean µ and a standard

deviation σ.

The training procedure is the same except that during Gibbs sampling of

visible units the samples are drawn according to Eq. 2.19 instead of equation

2.14. Usually with these models, a fixed variance of one is used, which is not

optimal. Moreover, modeling the conditional distribution of the visible units
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as independent factors may lead to noisy samples and may not be suitable to

model low level structures of data like images where pixel values are highly

correlated.

A simple modification to solve this dependency problem is to include lat-

eral connections within the visible layer to create a semi-restricted Boltzmann

Machine (SRBM) [26]. More sophisticated variants are described next, which

model both the mean and covariance in a better way.

Factored Three Way RBM

The three way RBM [27] includes weights to specify the relations between

three units at the same time instead of two (one visible and one hidden units)

as the regular RBM. The model energy function is defined as:

E(x,y,h) = −
∑
i,j,k

xiyjhkwijk (2.20)

where x and y are two observation vectors whose interactions are to be

modeled along with the hidden units h. The biases in the previous equation

are omitted for simplicity.

The second observation vector can represent a previous observation where

the model can be used to model the conditional relation between consecutive

observations as in [27]. It can also be used to model a symbolic state of

the model. For example, [28] used it to model the relation between the

observation and a style label for modeling different motion styles.

Moreover, the second observation vector may be identical to the first to

better model the dependency between different components of the observa-

tion. This model is shown in [29] to be able to better model natural images

by making each weight specify the interaction between a pixel, a hidden unit,

and another pixel at the same time. This will enable it to model the complex

structure of images and the dependency between pixels.

The drawback of the definition in Eq. 2.20 is that the model will have
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too many weights to learn. A better idea is to factor these weights as a

sum of factors, each of which is a three way outer product, so that wijk =∑
f bifcjfpkf where bif , cjf , and pkf are the elements of the weight matrices

B, C, and P corresponding to the interaction of the three units with factor

f , creating a factored three way RBM [30, 29]. In this case, Eq. 2.20 is

approximated by:

E(x,y,h) = −
∑
f

(∑
i

xibif

)(∑
j

yjcjf

)(∑
k

hkpkf

)
(2.21)

Learning of the model parameters can be done in a similar way to the

standard RBM by using gradient ascent to maximize the log likelihood. In

the case of modeling the conditional relationship of y given x the objective

function is the conditional log likelihood: L =
∑

α log p(yα|xα). To update

a weight wif which can represent any of the three sets of the parameters B,

C, or P the following update rule can be used:

∆wif ∝ 〈
∂E(y,h; x)

∂wif
〉data − 〈

∂E(y,h; x)

∂wif
〉model (2.22)

The second term is not tractable but the contrastive divergence algorithm

can be used to approximate it. It should be noted that only y and h need

to be sampled using Gibbs sampling as x is always visible. In this case the

components of y or h would be factorial given the other two vectors and

sampling would be easy.

Learning in the non-conditional case is more challenging because we will

need to get samples of observations given the hidden states. In this case, the

observation components are not factorial. But since contrastive divergence

training is used, the samples of observations need not to be accurate. They

just need to be closer to the joint distribution of the visibles given the hid-

dens. For the binary case, a mean field approximation can be used [31]. For

the continuous case, a covariance matrix of the Gaussian visibles based on
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the model weights can be computed easily and inverted to generate a sample

given the hiddens but this would be time consuming. More efficiently, an ap-

proximate sample can be generated using the hybrid Monte Carlo algorithm

[32] as done in [29].

Mean-Covariance RBM

In a factored three way RBM, the states of the hidden units define the co-

variance of the visible units when two sets of the same visible units are used.

To better model both the mean and covariance of a Gaussian model using

the hidden units, a mean-covariance RBM (mcRBM) can be used, where

two sets of hidden units are used. One set defines the means using a stan-

dard RBM and the other set defines the covariance using a factored three

way RBM [33]. For training, contrastive divergence is used, but it is more

challenging since the visible units are not factorial given the hidden units.

Hence, hybrid Monte Carlo sampling is used to get random samples of the

visible units given the hidden ones.

A similar model where the Gaussian distribution is replaced with a Stu-

dent’s t distribution (which is a better distribution for modeling images) is

proposed by Ranzato et al. [34] and it is called mPoT.

Spike and Slab RBM

The spike and slab RBM (ssRBM) improves over the standard RBM with

Gaussian visible units by including two sets of hidden units: real valued slab

units and binary valued spike units [35]. It has the advantage of enabling

the spike units to define a Gaussian distribution covariance matrix over the

visible units. At the same time, its energy function enables easy Gibbs block

sampling and hence simpler contrastive divergence training than mcRBM

which requires the use of slower sampling techniques like hybrid Monte Carlo.

It is shown in [36] that this model can learn better features than the mcRBM

and other RBM variants.
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2.4.4 Deep Belief Network

The simplest method to learn a deep model is to stack separately trained

layers where the hidden representations of one layer are considered as the

input of the next layer. The intuition behind this method is simple: since

the simple models presented in section 2.4 can learn good representations

of raw data, these representations can act as raw data for another model to

generate even better representations using the more complex transformation

of the combined two layers. Theoretical and empirical results show that this

method works well.

A deep belief network (DBN) is a good example of this method [15]. It’s a

generative model that learns a probabilistic distribution of the training data.

It consists of a number of layers with directed top-down weights and one top

layer having undirected weights. The states of a layer in DBN other than

the top two layers follows a factorial probability distribution that depends

on the states of the layer above and the top down weights between the two

layers as follows:

p(h
(l)
i |h(l+1)) = σ(

∑
j

h
(l+1)
j w

(l+1)
ji + b

(l+1)
i ) (2.23)

where h(l) represents the state of the lth layer, w
(l+1)
ij is the weight connecting

the jth node of the l + 1th layer and the ith node of the lth layer. The

undirected weights between the top two layers of a DBN constitutes an RBM.

To generate a sample from the DBN, first a large enough number of Gibbs

sampling iterations are performed to get a sample of the state of the top two

layers, then an ancestral top down pass is done to generate samples of the

lower layers given the state of the layer above using Eq. 2.23.

Learning of a DBN is done as follows. First learn an RBM using the

training data. Use the RBM weights as the weights of the first layer and

use them in both bottom-up and top-down directions to generate samples

of the hidden units and to reconstruct visible units states given the hidden
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Figure 2.3: Training of DBN. The figure shows the training of a DBN that has
three hidden layers. The top two layers have undirected weights in-between.
The other weights are directed. The blue arrows represent the weights of
the generative model. The red arrows represent inference weights used to
approximate the hidden states posteriors efficiently.
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states. Use the first layer weights to generate samples of the hidden layer

and consider these samples as training data of a second RBM. Repeat this

process until all the layers of the DBN are learned as shown in figure 2.3.

Hinton et al. proved in [15] that adding a hidden layer is guaranteed

to maximize a lower bound on the likelihood. This happens because as we

add more hidden layers a better prior of the hidden layers can be learned.

However, this greedy training is not optimal because it does not optimize

all the layers together. Fine tuning of the DBN as a whole can bring more

gain. The DBN can be initialized using this greedy layer-wise training then

the Up-Down algorithm [15] can be used afterwards to fine tune all of the

layers together to have a better model of the data. The Up-Down algorithm

is a modified version of the Wake-Sleep algorithm that has been proposed to

train the Helmholtz machine [37]. The wake-sleep algorithm suffers from slow

convergence and the mode-averaging problem. With the use of pre-training

the convergence of fine tuning is much faster and the use of a small number

of Gibbs sampling iterations for the top-down pass makes the model to pick

one mode, hence solving the mode averaging problem.

If a DBN is to be used for classification, label units can be added to the

units of the layer below the topmost so that the relation between these labels

and the features computed at this layer can be captured by the top RBM.

Then an estimate of the conditional probability of the label given a data vec-

tor can be either computed using sampling techniques or approximated using

mean-field estimations. Otherwise, the DBN weights can be used as a pre-

trained feed-forward NN that can be fine tuned using the back-propagation

algorithm by adding a top softmax layer for labels as described later.

Lee et al. [18] proposed another method of stacking pre-trained RBMs

by keeping the connections between stacked layers undirected. This makes

generating samples from the model more difficult, though, as each hidden

layer can receive inputs from the layers above and beneath it. As a result, a

large number of Gibbs sampling iterations are needed to get unbiased samples
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from the model or even to compute activations of the topmost hidden layer

given a data vector. Otherwise, a mean-field approximation can be used to

compute the hidden activations using a relatively small number of iterations.

It is empirically shown in [18] that this method can learn complex generative

models and generate better features to achieve better classification accuracy.

2.4.5 Pre-training of feed-forward NNs

A feed-forward NN can be trained using the back-propagation algorithm.

The back-propagation algorithm depends on the existence of target outputs

or labels used to compute the error in the NN output. This error is back-

propagated through the network layers and the weights are updated in order

to minimize this error.

The back-propagation algorithm can suffer from over-fitting when a small

number of training examples are available or when the NN has too many

parameters. Moreover, there are other cases when there are many unla-

beled training examples and a small number of labeled examples where semi-

supervised training can use the unlabeled examples to get a better model by

understanding the structure inherent in the data.

Pre-training of the NN can be done by stacking models trained in an

unsupervised fashion as described in section 2.4.4. Then a softmax layer

can be added for classification and the model is fine tuned to minimize the

classification error or the cross entropy using the standard back-propagation

algorithm. Actually, this is the most common application of unsupervised

learning methods. Many publications have empirically shown the benefit of

unsupervised pre-training in training DNNs [15, 10, 16, 38, 39].

Erhan et al. have done extensive experiments to study the gain obtained

with using unsupervised pre-training [40]. They concluded the following:

• There’s a consistent improvement with unsupervised pre-training.

• The pre-training has a regularization effect. It can achieve better re-
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sults with large networks but it can slightly harm the performance when

there is a small number of parameters in small NNs. However, the per-

formance gained by using pre-training can’t be achieved by using only

standard L1/L2 regularization techniques.

• Using 2D visualization techniques of network weights like tSNE and

ISOMAP shows that the pre-trained network learns different weights

in points of space disjoint from those learned without using pre-training

as shown in figure 2.4. ISOMAP - which is a dimensionality reduction

algorithm that preserves the global structure - shows that pre-trained

NNs seem to be more similar and the self-similarity increases during

training.

• They propose that non-convex optimization of NN weights is a com-

plex process and the initial point largely affects the overall optimization

performance. Thus, the use of pre-training helps in bringing the net-

work weights to a starting point that leads to a better generalization

performance.

• They propose the hypothesis that the unsupervised pre-training learns

more robust disentangled representations of the factors of variations in

the data. This makes it easier to combine these factors for classification.

But the problem of unsupervised pre-training is that it has no hint of

which factors are more important for classification. Thus, supervised

training helps in extracting these factors after they are disentangled

using unsupervised pre-training. There is a risk, however, that some

factors are lost in the lower layers and are not preserved in higher layers.

As a result, supervised training may not be able to recover them. This

may explain the loss in performance when using pre-training with very

deep networks or when a small number of units are used per layer.
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(a) tSNE Visualization

(b) ISOMAP Visualization

Figure 2.4: 2D Visualization of network outputs trained with and without
unsupervised pre-training. The networks outputs generated given the test set
inputs are concatenated then dimensions are reduced to 2 using tSNE in (a)
and ISOMAP in (b). tSNE preserves local structure and ISOMAP preserves
global structure. The points are generated for each training epoch to show
the trajectory through training with colors representing training epochs from
dark blue to green. The figures are taken from [40].
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Chapter 3

Automatic Speech Recognition

3.1 Introduction

Automatic speech recognition (ASR) aims at transcribing human speech into

words. It is a very challenging task since human speech signals are highly

variable due to various speaker attributes, different speaking styles, uncertain

environmental noises and so on. Moreover, ASR needs to map variable length

speech signals into variable length sequences of words or labels. The ASR

problem can be formulated as follows:

L∗ = argmax
L

p(L|X) (3.1)

where L is a hypothesized label (word or phone) sequence and X is the

input speech observation sequence that represents the given speech utterance

where X = [x1...xT ]. Hence, the task of an ASR system is to find the

most probable label sequence L∗ that represents the linguistic content of

the given observation sequence. Usually, the speech recognition problem is
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reformulated using Bayes’ rule as follows:

L∗ = argmax
L

p(L|X) = argmax
L

p(X|L)p(L)

p(X)
= argmax

L
p(X|L)p(L) (3.2)

An ASR system has a number of components. First of all, the speech

signal is recorded through a microphone and is represented in digital format.

The speech signal is non-stationary and highly variable. Hence, the signal

is divided into small chunks called frames so that the signal within each

frame is more stationary (because the signal in one frame is usually a part

of an acoustic unit) and its features can be represented using a fixed length

feature vector. This process is called feature extraction and the component

that performs feature extraction is called the front end. The output of the

front end is the observation sequence X, where each observation is a feature

vector representing one frame.

Another important component of an ASR system is the acoustic model.

The acoustic model aims at modeling the acoustic properties of different

speech units and modeling the relation of the acoustic features of the whole

speech utterance with the utterance label sequence or text. This relation

is formulated as p(X|L) in Eq. 3.2. A popular and successful model for

the speech acoustic signal is the hidden Markov model (HMM). The HMM

is very flexible in modeling variable length sequences and tolerates differ-

ences in speaking speeds. It models the likelihood of generating the speech

observation sequence given a sequence of latent (hidden) discrete states. A

Gaussian mixture model (GMM) has been widely used to model the rela-

tion between an HMM state and the speech observations that belong to this

state. More recently, better performance has been obtained when a deep

neural network replaces the GMM in modeling state observations within the

hybrid DNN-HMM model [41, 42].

The language model is another component that helps in improving the

ASR performance. The language model specifies the allowed or more prob-

28



able word or label sequences. This is important to reduce errors when there

is acoustic ambiguity or noises. The language model is represented by p(L)

in Eq. 3.2. N-Gram language models [43] are widely used in ASR systems.

More recently, the recurrent neural network (RNN) language model is proved

to further improve the performance of speech recognition [44]. The RNN has

a form of memory by having recurrent connections with the previous states

of the hidden units.

Based on the acoustic and language models, speech recognition is achieved

by using a decoder. The decoder component searches for the best label

sequence that maximizes the scores computed by the acoustic and language

models for a given speech utterance. It corresponds to the argmax operation

in Eq. 3.2. Since the number of possible label sequences grows exponentially

with the length of the input feature sequence, the efficiency and the speed of

the decoder are important characteristics of a successful ASR system.

3.2 Feature Extraction

The first step in speech recognition is the extraction of a sequence of feature

vectors X that represents the input speech signal. There are different kinds

of feature vectors. A good feature vector needs to contain all relevant infor-

mation for classification of the input signal in a form that is suitable for the

acoustic model. Moreover, it is desirable to discard all non-relevant informa-

tion. This section will focus on the details of two examples of feature vectors

that are widely used in academic and commercial ASR systems, namely Mel

frequency spectral coefficients (MFSC) and Mel-frequency cepstral coefficients

(MFCC).

The first step is to take small overlapping windows of the speech signal

so that the signal is quasi-stationary and contains features that are localized

to single speech units. Usually the windows are taken every 10 milliseconds

(ms) and each window has a length of 25 ms. This speech window is multi-
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plied by a Hamming window (or similar bell shaped functions) to reduce the

effect of discontinuity at the two edges of the window. Since different speech

units and sounds differ mainly in the distribution of energy along different

frequencies, then it is a common practice to convert the speech time domain

signal into a frequency domain signal using FFT analysis. Afterwards, filter

bank analysis is performed to measure energy in a small number of frequency

ranges. These filters are distributed along the Mel scale frequency to simulate

the human ear sensitivity to frequency differences. In Mel frequency filter

bank analysis, triangular filters as shown in Fig.3.1 are used. The energy in

each filter is computed to estimate the MFSC feature. In practice, the log

is taken to compute the log-MFSC features which are more similar to the

sensitivity of the human ear and allows a better discrimination ability. The

log-MFSC feature works well in practice with neural network based models

especially convolutional neural networks. However, the log-MFSC features

are highly correlated because the spectral envelop changes smoothly along

frequency and neighboring filters have some overlap. Hence, the discrete

cosine transform is taken to reduce this correlation to generate MFCC fea-

tures. This is important to achieve good performance with Gaussian Mixture

Models (GMMs) especially when a diagonal covariance matrix is used.

In practice, the higher MFCC coefficients are discarded since most of in-

formation related to the vocal tract shape exists in the lower coefficients,

while other information related to the voice pitch and intonation are concen-

trated in the higher coefficients. While this reduces variability, it also loses

some information, which may be one reason why lower performance is ob-

served when MFCC features are used instead of MFSC features with models

such as DNNs that do not require uncorrelated features.

A simple feature that is added to the MFCC or the MFSC is the frame

log energy. Moreover, it can be normalized to have a maximum value of one

which leads to slight performance improvements in practice when the speech

signal is clean. Otherwise, the energy can be normalized to have a zero mean.
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Figure 3.1: Mel scale filter bank analysis. The figure shows the boundaries of
10 filters. Each triangle represents the weights of one filter in the frequency
domain based on Mel scale.

An HMM processes a sequence of frames, where each feature vector is

computed from the speech signal within the frame boundaries. In practice,

it is found that adding information about the temporal dynamics of the

features is beneficial. This is done by adding the first and second order

deltas. The first order delta ∆xt is computed as:

∆xt =

∑Θ
θ=1 θ(xt+θ − xt−θ)

2
∑Θ

θ=1 θ
2

, (3.3)

where Θ controls the size of the analysis window of delta and it usually takes

the value of one or two. In this work, Θ is always set with two. The second

order delta ∆2xt is computed in the same way but using the values of ∆xt.

Throughout this dissertation, MFCC features are used with GMM based

models, while log-MFSC features are used with neural network based models.

In all cases, the first and second order deltas are appended in addition to the

frame log energy. For MFCC features, 13 coefficients are computed from

20 Mel frequency filter bank filters (by taking the first 13 coefficients after

applying the DCT). For log-MFSC features, 40 coefficients/filters are used.
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3.3 The Hidden Markov Model

The Hidden Markov Model (HMM) is a statistical model suitable for mod-

eling variable length sequential data especially time varying signals. It has

been used in ASR systems since the seventies [45] and it is currently the most

widely used model for ASR. Moreover, it has been used successfully for other

applications that use sequential data such as DNA [46], protein analysis [47],

and handwriting recognition [48].

The HMM is a finite state machine. At each discrete time instant t,

the HMM is assumed to be in one state i and generates an observation

ot depending on the output probability distribution of this state bi(ot). The

HMM states are assumed to be unobserved and hidden. At each time instant,

the HMM transitions from one state j to another state i (it can be the same

state) with a probability aij. The HMM makes the following assumptions:

• First-order Markov assumption: The probability of transitioning to a

certain state depends only on the previous state.

p(qt+1 = j|qt = i, qt−1 = k, ...) = p(qt+1 = j|qt = i) = aij (3.4)

• Conditional independence of observations: This means that an obser-

vation at time t is independent from other observations given the state

at time t. That is:

p(ot|o1...ot−1ot+1...oT , q1 = k, ..., qt = i, ..., qT = j) = p(ot|qt = i) = bi(ot)

(3.5)

These assumptions help in efficient computation of the observation sequence

likelihood and training of the HMM model. However, consecutive speech

frames are highly correlated so these are not realistic assumptions about

speech signals. Despite these discrepancies, the HMM works very well in

practice in ASR applications.
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The HMM can have a number of different topologies of state transitions.

In the ergodic topology, all states are connected together. In ASR applica-

tions, a left to right topology such as the one shown in figure 3.2 is used,

where each state represents an acoustic unit in a word or an utterance and

the HMM is not allowed to move backwards. The HMM is allowed to tran-

sition either towards the state on the right or to stay in the same state. In

this way, each state generates one or more observations or frames.

The observations of the HMM can be discrete or continuous. Speech

features are normally continuous and multivariate. The Guassian Mixture

Model (GMM) is a suitable model for the state output and it is widely used

in ASR systems. The GMM defines the output probability distribution as:

bi(o) =
∑
k

cikN (o, µik,Σik), (3.6)

where N (o, µ,Σ) is the Gaussian distribution and it is defined as:

N (o, µ,Σ) =
1√

(2π)D|Σ|
exp

(
−1

2
(o− µ)>Σ−1 (o− µ)

)
, (3.7)

and o ∈ RD.

There are three problems to be solved when using HMMs:

1. Estimation of the likelihood of a given observation sequence p(O|λ)

2. Estimation of the best state sequence q∗: q∗ = argmaxq p(O,q|λ)

3. Estimation of the model parameters that maximize the likelihood of

the training data λ∗ = argmaxλ
∏

d p(Od|λ)

3.3.1 Estimation of the observation sequence likelihood

Given an observation sequence O = [o1,o2...oT ], we would like to estimate

the likelihood that this observation sequence was generated from a certain
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model λ, that is p(O|λ). Since the model state sequence is hidden, all possible

state sequences should be considered:

p(O|λ) =
∑
q

p(O,q|λ) (3.8)

=
∑
q

∏
t

p(qt|qt−1)p(ot|qt) (3.9)

(3.10)

where q is the state sequence and q = [q1, q2, ..., qT ]. There are an expo-

nentially large number of possible state sequences. It would be impractical

to directly sum over all of them. But, since it is a summation of multiplied

terms and different state sequences share many terms, the multiplication dis-

tribution property can be used to reduce the number of computations. The

forward algorithm does this. The forward probability αj(t) is defined as the

sum of the likelihoods of partial paths that end in state j at time t. It can

be computed recursively as:

αj(t) =
∑
i

αi(t− 1)aijbj(ot) (3.11)

Assuming that the model is allowed to start only at one start state s and

ends at one terminal state e, the initial values will be:

αs(1) = bs(o1) (3.12)

αi(1) = 0 for i 6= s (3.13)

Finally, the observation sequence likelihood is:

p(O|λ) = αe(T ) (3.14)

Similarly, the likelihood can be computed recursively in the backward
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direction by computing the backward probability βi(t), which is the likeli-

hood of generating the observations ot+1...oT and being at state i at time t.

This backward probability plays an important role in learning of HMM pa-

rameters. The backward probability can be computed recursively as follows:

βi(t) =
∑
j

βj(t+ 1)aijbj(ot+1) (3.15)

with the initial conditions

βe(T ) = 1 (3.16)

βi(T ) = 0 for i 6= e (3.17)

and final likelihood computation as:

p(O|λ) = βs(1)bs(o1) (3.18)

3.3.2 Finding the best state sequence

The best state sequence is used in many applications, in training of the HMM

model and in decoding of speech input to find the best state sequence that

maps to the label sequence as will be described later.

The best state sequence can be optimally found using the Viterbi algo-

rithm. The Viterbi algorithm recursively computes the following quantities:

δj(t) = max
i
δi(t− 1)aijbj(ot) (3.19)

ψj(t) = argmax
i

δi(t− 1)aij (3.20)

where δj(t) is the likelihood of the best state sequence from time 1 to t and

ends at state j, and ψj(t) holds the previous state of this sequence at time
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t− 1. The algorithm is initialized as:

δs(1) = bs(o1) (3.21)

δi(1) = 0 for i 6= s (3.22)

At the end, the best state sequence q∗ can be found by backtracking from

state e and time T , until reaching the start state s at time 1 as follows:

q∗T = e; (3.23)

q∗t = ψq∗t+1
(t+ 1) for t = t− 1, t− 2, ..., 1 (3.24)

and the likelihood of this best state sequence is:

p(O,q∗|λ) = δe(T ) (3.25)

3.3.3 Learning model parameters

A common approach to learn the HMM model parameters is to use the

Maximum Likelihood Estimation (MLE). Assuming that a model λ is to

be trained on a training data set D = {O(1), ...,O(N)}, where O(n) is the

nth training sequence. The MLE training is achieved by finding the model

parameters λ∗ that maximize the likelihood of training data:

λ∗ = argmax
λ

∏
n

p(O(n)|λ) (3.26)

= argmax
λ

∑
n

log p(O(n)|λ) (3.27)

There is no known analytical method that can estimate model parame-

ters in Eq. 3.27 directly. Instead, Baum-Welch [49] algorithm is used which

works iteratively to find a local maximum of the mentioned criterion. The

Baum-Welch algorithm is considered a special case of the Expectation Maxi-

mization (EM) algorithm. The details of the Baum-Welch algorithm can be
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found in [50]. Given a version of the HMM model λl with output likelihood

modeled using a GMM, an iteration of the Baum-Welch algorithm computes

an improved set of model parameter λl+1 as follows: First, in the expectation

step, the forward-backward algorithm is performed to compute the forward

and backward probabilities. The following quantities are estimated based on

the current model parameters λl:

γ
(n)
i (t) = p

(
qt = i|O(n), λl

)
=
α

(n)
i (t)β

(n)
i (t)

p(O(n)|λl)
(3.28)

η
(n)
ij (t) = p

(
qt = i, qt+1 = j|O(n), λl

)
=
α

(n)
i (t)aijbj(o

(n)
t+1)β

(n)
j (t+ 1)

p(O(n)|λl)
(3.29)

In the previous equations, the superscript (n) represents the quantities re-

lated to the nth training sequence. Moreover, for a GMM model that has

multiple Gaussians, the occupation probability can be computed for the mth

Gaussian component in a state using:

γ
(n)
im (t) =

α
(n)
i (t)β

(n)
i (t)

p(O(n)|λl)
cimN (o

(n)
t , µim,Σim)∑

k cikN (o
(n)
t , µik,Σik)

(3.30)

In the maximization step, an improved set of parameters (the set of pa-

rameters number l + 1) are estimated as follows:

aij =

∑
n

∑
t η

(n)
ij (t)∑

n

∑
t

∑
k η

(n)
ik (t)

(3.31)

µim =

∑
n

∑
t γ

(n)
im (t)o

(n)
t∑

n

∑
t

∑
k γ

(n)
ik (t)

(3.32)
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Σim =

∑
n

∑
t γ

(n)
im (t)

(
o

(n)
t − µim

)(
o

(n)
t − µim

)>
∑

n

∑
t

∑
k γ

(n)
ik (t)

(3.33)

cim =

∑
n

∑
t γ

(n)
im (t)∑

n

∑
t

∑
k γ

(n)
ik (t)

(3.34)

3.4 Language Modeling

The language model helps in improving the overall ASR performance by fa-

voring more probable word sequences. Given a word sequenceW = [w1, w2, ..., wK ],

the language model estimates the joint probability:

p(W ) = p(w1, w2, ..., wK) =
∏
k

p(wk|wk−1, wk−2, ..., w1) (3.35)

The N-gram language model simplifies the estimation of the joint probability

by assuming independance of words that came N words or more before the

current word. That is to take into account only the previous N − 1 words as

follows:

p(W ) ≈ pN−gram(W ) =
∏
k

p(wk|wk−1, ..., wk−N+1) (3.36)

where N is the degree of the model. Bigram and Trigram language models are

commonly used. Increasing the degree of the model gives lower perplexity and

higher accuracy. Though, in practice as N increases, much larger training

data is needed to get good estimates of N-gram conditional probabilities.

Moreover, many N-grams will not be seen in the training corpus which might

appear during speech recognition. One method to solve this problem is to

use discounting and smoothing. It allocates a small probability for unseen

word sequences. Another method is backoff, which backs off to lower order

N-grams for word sequences that did not appear enough number of times

during training.
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Figure 3.2: HMM word models for disconnected speech recognition.

3.5 HMM based ASR System

An HMM can be used for speech recognition in a number of ways. The

simplest form is when an isolated speech recognition is used, where the task

of the system is to classify separate words. In this case, each word is modeled

using a different HMM model as shown in Fig. 3.2. Each HMM model has a

number of states that’s equivalent to the number of different acoustic parts

of the word. To classify a given speech segment, the likelihood is computed

given each model. The segment is classified by the word associated with the

model that has the highest likelihood. In this case, the likelihood is either

exactly estimated using the forward probability, or approximated with the

likelihood of the best state sequence computed using the Viterbi algorithm.

A more advanced system allows connected (continuous) speech recogni-

tion, where the speaker can pronounce multiple words continuously. In this

case, different word models are connected to form one big composite HMM

as shown in Fig.3.3. A grammar defines the allowable transitions between

different words. Moreover, a language model is usually used to give differ-
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Figure 3.3: Composite HMM that is composed by connecting different word
models.

ent weights to different word transitions. Performing speech recognition is

achieved by finding the most likely state sequence and mapping this sequence

into a word sequence representing the uttered sentence. The disadvantage of

this model is that large amount of training data is needed to learn a good

model of each word. Moreover, the model cannot recognize unseen words

that did not appear in the training data. To solve theses problems, models

that represent sub-word units like phonemes can be used. In these models,

each phoneme is modeled as a sequence of three states which are meant to

represent the transitional beginning and end of the phoneme in addition to

the middle stationary state. Word models are formed by composing a se-

quence of phoneme models that represent the word as shown in Fig. 3.4. A

dictionary is used to specify the phoneme models that represent a word. This

model has the advantage of sharing training data of each phoneme among

different words, hence reducing the amount of training data. Moreover, it can

recognize unseen words if they have corresponding entries in the dictionary.

If each phoneme has one HMM model, the used models are called mono-

phone models. In reality, a phoneme may be pronounced differently in differ-
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Figure 3.4: Word models composed by concatenating different phone models.
a. shows a typical phone model that has three emmiting states and start and
end non-emmitting states (colored black). b. shows a composite word model
for ”one” composed of three phonemes.

ent contexts. Triphone models solve this problem by using a different HMM

model for each triphone context. Though, this results in a huge number of

different models that are very difficult to obtain enough amounts of train-

ing data to learn each one of them. To solve this problem, states belonging

to different triphones of the same phoneme that are similar acoustically are

shared. Decision tree based clustering can be used to cluster states of differ-

ent triphones based on the context. The number of generated state clusters

can be controlled based on the available training data.

To train such a model, a composite left to right HMM model is created for

each utterance by concatenating the states of all triphones that represent the

label sequence of this utterance. The Baum-Welch algorithm is applied on

these composite models on all training utterances to obtain a new improved
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set of parameters. The training iterations are repeated a small number of

times until convergence.

During speech recognition, all word models are composed from their tri-

phones. Moreover, the words are connected with arcs that are weighted by

the probability obtained from the language model. For N-gram language

models, the decoder needs to keep track of word history during decoding.

Hence, a huge lattice is built where different nodes represent different words

with different histories as needed according to the N-gram language model.

The decoder uses the Viterbi algorithm to find the state sequence that gives

the maximum likelihood. This state sequence defines the desired output word

sequence. Though, the decoding lattice may be so huge that special pruning

algorithms are applied to speed up the decoding process.

3.6 Discriminative Training

In ASR, the aim is to minimize recognition error rates, like word error rate

or phone error rate. However, MLE maximizes the training data likelihood.

This may lead to sub-optimal performance. Moreover, the conditional inde-

pendence assumption is known to be violated in speech signals. Additionally,

the EM training of the HMM model finds a local maximum and does not

guarantee optimality.

Alternatively, discriminative training can be used to directly optimize

criteria more related to the ASR objective of minimizing the error rate or

maximizing the accuracy of the recognition output. A number of different

discriminative training criteria were proposed in literature.

A commonly used criterion is the Maximum Mutual Information (MMI)

[51]. It maximizes the mutual information between the model prediction and

the reference labels. This is actually achieved by maximizing the posterior

probability of the reference label sequence. The MMI objective function can

42



be formulated as follows:

FMMI(λ) =
∑
n

log p
(
W

(n)
ref |O

(n), λ
)

(3.37)

=
∑
n

log
p
(
O(n)|W (n)

ref , λ
)
p
(
W

(n)
ref |λ

)
∑

W p (O(n)|W,λ) p (W |λ)
(3.38)

The numerator represents the reference correct label sequence and the de-

numerator represents the summation of all possible label sequences. Hence,

maximizing the MMI objective function requires maximizing the likelihood

of the correct label sequence while minimizing all other competing sequences.

A number of other discriminative criteria were proposed that use slightly

different objective functions. Minimum Classification Error was proposed

in [52, 53], where a smooth error function on the sentence level is used and

optimized. The work in [54] computed the error on the level of phonemes

and words and used Minimum Phone Error (MPE) or Minimum Word Error

(MWE) criteria. A more recent work employed Large Margin criteria as in

[55, 56].

Since it is impractical to minimize all possible label sequences, an N-best

list or a lattice of the competing hypotheses are used instead. A number of

different optimization methods can be used to optimize the model parame-

ters. A simple method is to use Gradient Ascent algorithm as in the early

discriminative training work in [51]. Another more successful method is the

extended Baum-Welch Algorithm (EBW) [57]. In practice, HMM parameters

are estimated first using the MLE. Afterwards, the parameters are optimized

using a few iterations of discriminative training.

3.7 Neural Network based ASR

Recently, deep neural network models (DNNs) gained renewed interest be-

cause they showed better performance on various speech recognition tasks
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[58].

Early works of using NNs for acoustic modeling attempted to use the NN

as a standalone model for recognizing simple speech units. In [59], Lippmann

and Gold proposed a recurrent neural architecture, called Viterbi net, to

emulate the work of the Viterbi algorithm. Hence it can recognize speech

directly. However, it didn’t have a training algorithm. The RNN weights

were computed from a trained HMM model. The work in [60], proposed a

neural network architecture called the Time Delay Neural Network (TDNN).

The TDNN combines longer input contexts by a number of consecutive input

frames and hidden activations to upper layers. The model was used to classify

a small number of phonemes. Other similar models can be found in [61, 62,

63, 64, 65, 66].

Successful use of NNs for ASR was possible when a hybrid NN-HMM

model is used [67, 68, 69, 70, 71, 72, 73, 74]. In one form of the model that

became very successful recently, the NN replaces the GMM in scoring speech

frames, and the HMM is used to model the sequential temporal behavior of

the speech signal. The NN within this model predicts the posterior proba-

bility p(q|xt) of an HMM state q given the frame xt. The frame likelihood is

estimated using the Bayes’ rule:

p(xt|q) =
p(q|xt)p(xt)

p(q)
(3.39)

To train the hybrid model, state labels of each frame are needed. Usually

in speech data sets, only phone or word sequences are available for each

utterance, as it is hard to obtain frame labels for a large or a medium size

training data set. Instead, a trained initial HMM model can be used to obtain

label alignments using the Viterbi algorithm. The resulting frame labels are

used afterwards to train the NN based on either the mean squared error or

the cross entropy criteria.

In early works [68], the NN predicts the states of context independent
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phones. Moreover, a window over input frames yt = xt+lt−l is used and leads

to better frame classification and overall recognition performance. In this

case, the system estimates frame likelihoods from the posterior probability

p(q|xt+lt−l). Despite the improved performance, this deviates more from the

frame conditional independence assumption of the HMM. In other works, an

RNN is used instead of the feed forward one (sometimes called a Multilayer

perceptron) as in [75]. In this case, the RNN receives frames sequentially

to classify each frame while taking into consideration the previous context.

Moreover, the RNN can work bidirectionally by taking both previous and

future frames. In more recent works [67, 76, 74], a context class based on the

phonetic context is used to increase the power of the acoustic model. Context

classes are found by clustering phonetic contexts found during training. A

survey of similar models can be found in [77].

Another more recent approach that uses NNs is the TANDEM approach.

This approach keeps using a GMM for modeling frame likelihoods within the

HMM model. Instead of directly using MFCC features, it uses the NN to

compute better features that are modeled using the GMM. In [78], the NN is

trained to predict phoneme label distributions which may be augmented to

other standard features like MFCC or PLP. Before feeding the NN outputs, a

decorrelating transformation is applied to get features that are more suitable

to a GMM with a diagonal covariance.

In [79], the so-called bottleneck features computed by a hidden layer of the

NN is used instead of the output layer activations. The bottleneck features

are computed by a hidden layer that has a relatively small number of nodes,

so that the resulting feature vector is compact. The TANDEM approach

has been applied to larger data-sets in [80, 81, 82]. Although the TANDEM

approach does not benefit directly from posteriors computed by the NN other

than as a feature vector as done in the hybrid models, it has the advantage of

directly benefiting from all algorithms and models developed for the GMM

model, like those used in speaker adaptation and GMM based discriminative

45



training.

Although all works mentioned above, the GMM-HMM models remained

more popular and were used in the state of the art ASR systems. Only

recently, NN based acoustic models received significant increase in inter-

est due to recent improved results on a number of different ASR tasks

[83, 84, 85, 86, 87, 88]. The work was motivated by the recent success of

pre-trained deep neural network models used in different problems [89]. Ini-

tially, Mohamed et. al. [90] showed that a generatively pre-trained deep

neural network hybrid HMM model can achieve a better performance than

all previous results achieved by other models on the TIMIT phone recogni-

tion task. In this work, a Deep Belief Network (DBN) is trained to model

the distribution of MFCC feature vectors of the speech training data set in

an unsupervised way. The weights of the DBN are used as initial values of

a similar feed forward NN. The DBN weights are learned by stacking the

weights of multiple Ristricted Boltzmann Machines (RBMs). Each RBM is

trained to model the features computed by the lower layer or the raw speech

input. Thus, the process is called RBM based pre-training. The NN is used

to predict posterior probabilities of HMM state labels of a mono-phone based

model, where each phone is modeled by three states. The experiments show

that more gains are obtained with deeper models that have in the range

of five to eight hidden layers. Shortly thereafter, the work has been ex-

tended to several large vocabulary ASR tasks with triphone HMM models

[85, 86, 91, 42, 92, 93, 58]. In these models, the DNN predicts the poste-

rior probabilities of the states of tri-phone HMM models which are called

senons. These models achieve better performance than the GMM based

models for large vocabulary tasks. This resulted in wide adoption of these

DNN based models in various ASR systems. Moreover, more improvement is

obtained with sequence based discriminative training using criteria like max-

imum mutual information, minimum bayes risk, and minimum phone error

[94, 95, 96, 97, 98]. Moreover, similar improvements has been obtained with
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TANDEM bottleneck features approach when a DNN is used [99].

The improvement of hardware especially the use of Graphical Process-

ing Units (GPUs) resulted in speedup of training of bigger and deeper DNN

models in a way that would take prohibitively long time in the past. This con-

tributes to the ability to better optimize the structure and meta-parameters

of these DNNs. Moreover, these more powerful DNNs allow both using richer

features like MFSC and classifying the input into one of a large number of

classes that matches the number of senons in an HMM model. All these fac-

tors in addition to the use of pre-training and better training algorithms re-

sulted in the described significant performance improvement in speech recog-

nition.
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Chapter 4

Convolutional Neural Networks

for ASR

Speech signals can have many variations that are unrelated to the linguistic

content in speech. For example, different speakers can have different voice

characteristics. Even for the same speaker, many variations can happen. Ex-

amples of these variations include: speaking speed, pitch, formant frequencies

due to differences in vocal tract length, and even background noise.

A number of different techniques have been proposed to handle these

variations. These techniques can be divided into two classes: passive and

active. Passive techniques try to normalize the speech variations. This can

be done by designing special features, such as MFCCs, that discard infor-

mation not related to the speech linguistic content. The HMM is tolerant

to differences in speaking speed and hence normalizes variations in rate. Ac-

tive techniques try to estimate some parameters that transform the speech

signal or adjust the trained speech models to work better in the new condi-

tions. For example, in some speaker adaptation techniques, the HMM model

parameters are modified to match the characteristics of a new speaker. In

other speaker adaptation techniques, the speech signal of a new speaker is

transformed into a canonical speaker that has been used to train the acoustic
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model. In both cases, the new model or transformation parameters are first

estimated from some speech adaptation data obtained from the new speaker

before performing speech recognition of this speaker.

The DNN, as shown in section 3.7, can learn to handle some variations

and learn more speaker invariant features at the upper layers. These invari-

ant features are learned implicitly in the DNN weights. However even better

performance may be obtained if these variations are explicitly handled in

certain ways. For instance, vocal tract length normalization (VTLN) explic-

itly warps the frequency axis based on a single learnable warping factor to

normalize speaker variations in speech signals that result from different vo-

cal tract lengths among different speakers. As shown in [84, 93], VTLN can

further improve recognition performance of the DNN-HMM hybrid models

when applied to process input features prior to DNN modeling.

Alternatively, these variations can be handled directly under the frame-

work of neural networks by employing a special NN structure called the con-

volutional neural network (CNN) [100]. The main advantage of the CNN is

that domain knowledge can be explicitly used to design the CNN structure to

handle application-specific variations. CNNs have achieved the state of the

art performance in a number of image recognition applications [101, 13, 102].

In these applications, CNNs are designed to exploit translation invariance

and tolerate small shifts of image patterns along various directions. As op-

posed to regular NNs, CNNs use unique network structures such as weight

sharing, local connectivity, and pooling. As a result, the CNN is more ro-

bust against object translation, small image deformations and noise as well

as small rotations and scaling. These invariances are hard to learn auto-

matically in standard NNs. More recently, CNN ideas have been similarly

applied to speech processing. In [103] and [104], the CNN structure has been

used to learn acoustic features in an unsupervised way. These works apply

convolution over time to handle small time shifts for better speech feature

representations for speaker, gender, and phonetic classification, but without
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successful results on speech recognition tasks.

The CNN structure allows us to obtain features that are invariant to fre-

quency differences when it is applied along the frequency axis [105, 106, 107].

Moreover, a CNN can handle temporal variations when it is applied along

the time axis and hence better handle speaking speed differences [108]. How-

ever, the HMM can handle these variations within the hybrid NN-HMM

model and reduces the benefit of applying convolution and pooling along

time. This chapter describes the CNN structure and how it can be used for

speech recognition. Moreover, a new CNN structure with a limited weight

sharing (LWS) is described. This LWS better suits the speech signal where

different patterns appear in different frequencies [109]. Then, this chapter

presents experimental work for comparing different CNN and DNN struc-

tures. Finally, the conclusion is presented at the end.

4.1 Convolutional Neural Networks (CNN)

for ASR

The convolutional neural network (CNN) is regarded as a successful variant of

the standard neural network. Instead of using fully connected hidden layers,

the CNN introduces a special network structure, which includes convolution

and pooling layers to achieve translation invariance and tolerance to small

deformations in patterns. The CNN was initially motivated by image pro-

cessing and it has yielded excellent results in a number of image recognition

tasks [100, 13].

4.1.1 Input Data Organization in CNN

The CNN requires the input data to be organized in a certain way. Each

different feature is presented in a different feature map. A feature map rep-

resents the values of the same feature along different locations. For example,

50



Static, ∆, ∆∆

Utterance 

Frames

15 frame context

window

40 frequency 

bands

a. Input utterance

15th frame

1st frame

∆∆
∆

Static

∆∆
∆

Static
45 feature maps

40 frequency 

bands

c. Input features organized in

1D feature maps.

Static

∆

∆∆

1st frame

15th frame

1st frame

15th frame

1st frame

15th frame

3 feature maps

40 frequency 

bands

b. Input features organized in

2D feature maps.

Figure 4.1: Two different ways to organize speech input features to be fed
into CNN. The above example assumes that 40 MFB features with first and
second derivatives and a context window of 15 frames are used as the input.

in image processing applications, it is intuitive to organize each feature map

as a two-dimensional (2-D) array including all pixel values in x and y (hor-

izontal and vertical) coordinates. For color images, RGB (red, green, blue)

values can be viewed as three different 2-D feature maps.

To process speech signals, we need to use features that are organized

along frequency or time (or both) so that the convolution operation can

be correctly applied. In this sense, the well-known MFCC features are not

appropriate for convolution over frequency because the decorrelating discrete

cosine transform projects the data into a new basis that doesn’t enjoy locality

along the frequency axis. In other words, each MFC coefficient represents a

feature extracted from the whole frequency spectrum. On the other hand,

the log-energy computed from a set of Mel filter banks (denoted as log-

MFSC features) can be used because each value represents the energy in a

different frequency band. Hence, we get data locality. In this chapter we
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will assume using log-MFSC features as the CNN input. Moreover, their

first and second temporal derivatives can be appended. And, similar to the

framework described in chapter 3, features from a number of consecutive

frames representing a context window of 11-15 frames are included as an

input to the CNN.

There are several different methods to organize these log-MFSC features

as different maps for a CNN. Firstly, as shown in Fig. 4.1.b, they can be

arranged as three 2-D feature maps, corresponding to the static, the first

derivative and the second derivative features. Each feature map represents

the same feature along the frequency (filter band index) and time (frames

within each context window) axes. In this case, a two-dimensional convolu-

tion is performed (explained later) to normalize both frequency and temporal

variations at the same time.

A different choice is to consider frequency variations only. In this case, a

number of one-dimensional (1-D) feature maps are used. In this case, differ-

ent frames and different feature orders (static, first, and second derivatives)

belong to different feature maps. Each feature map represents the values of

same feature along different frequency bands (filter bank indexes), as shown

in Fig. 4.1.c. For example, if the context window contains 15 frames and 40

filter banks are used for each frame, we get 45 (15 × 3) 1-D feature maps

and each map has 40 dimensions as shown in Fig. 4.1.c. In this case, 1-D

convolution will be applied along frequency axis. In this chapter, we mainly

focus on this arrangement and conduct 1-D convolution along frequency.

Once input feature maps are formed, convolution and pooling operations

are applied to generate the convolution and pooling layers activations in

sequence as in Fig. 4.2. Similar to the input layer, each one of them contains

a number of feature maps as well. A pair of convolution and pooling layers

in Fig. 4.2 is usually called one CNN layer. Obviously, more CNN layers can

be added one by one to construct a deep CNN.
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Figure 4.2: An illustration of one CNN layer consisting of a convolution
layer and a pooling layer, where the mapping from the input layer to the
convolution layer is based on Eq. 4.2 and the mapping from the convolution
layer to the pooling layer is based on Eq. 4.3.

4.1.2 Convolution Layer

As shown in Fig. 4.2, all input feature maps (assume I in total), Oi (i =

1, · · · , I) are mapped into a number of feature maps (assume J in total),

Qj (j = 1, · · · , J) in the convolution layers based on a number of local filters

(I × J in total), wij (i = 1, · · · , I; j = 1, · · · , J). The mapping can be

represented as the well-known convolution operation in signal processing.

Assuming input feature maps are all one dimensional, each unit of one feature

map in the convolution layer can be computed as:

qj,m = σ(
∑
i

F∑
n=1

oi,n+m−1wi,j,n + w0,j), (4.1)

where o
(c)
i,m is the m-th unit of the i-th input feature map Oi, qj,m is the m-

th unit of the j-th feature map Qj of the convolution layer, wi,j,n is the nth

element of the weight vector, wi,j, connecting the ith feature map of the input
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to the jth feature map of the convolution layer, and F is called the filter size

which is the number of input bands that each unit of the convolution layer

receives. The previous equation can be written as a more concise matrix

form using the convolution operator ∗ as:

Qj = σ(
∑
i

Oi ∗wi,j + w0,j) (4.2)

where Oi represents the i-th input feature map and wi,j represents each local

filter with the weights flipped to adhere to the convolution operation defini-

tion. Both Oi and wi,j are vectors if one dimensional feature maps are used

or they are matrices if two dimensional feature maps are used as described

in the previous section (where 2-D convolution is applied to the above equa-

tion). The number of feature maps in the convolution layer depends on how

many sets of local filters are used in the convolutional mapping. Obviously,

feature maps become smaller after each convolution operation, i.e., each di-

mension decreases by the filter size minus one due to convolution. On the

other hand, if we want to get the same size of the feature maps after convo-

lution, the input feature maps can be padded with dummy locations on both

sides (dummy frequency bands and/or frames).

A convolution layer is different from a standard fully connected layer in

a number of aspects. Firstly, each unit receives input from a local area of

the input, so the computed features have a locality property and thus each

unit represents features of a local region of the input. Secondly, the units are

organized in a number of feature maps, where all units in the same feature

map share the same weights but receive input from different locations of the

lower layer. Each feature map computes one feature of the input over all

possible locations by applying the local filter defined by the map weights to

the input through the convolution operation. This weight sharing scheme is

called full weight sharing. Other weight sharing schemes will be described

later in the chapter.
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Figure 4.3: An illustration of the regular CNN that uses the full weight
sharing scheme, where 1-D convolution is applied along frequency bands.

4.1.3 Pooling Layer

As shown in Fig. 4.2, a pooling operation is applied to the convolution layer

to generate the pooling layer above each convolution layer. The pooling layer

is organized as a number of feature maps that is equal to the number of the

feature maps in the convolution layer. The pooling layer serves two purposes.

Firstly, it reduces resolution of feature maps to minimize the number of values

to be fed into upper layers. Secondly, it adds invariance to small variations in

location. This is achieved by applying some pooling function at every location

of the convolution feature map. The pooling function computes some overall

property of a local region by using a simple function like maximization or

averaging. The pooling function is applied to each convolution feature map

independently so that each pooling unit applies the pooling function to a

local range. If the max-pooling function is used, the pooling layer is defined
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as:

pi,m =
G

max
n=1

qi,(m−1)×s+n (4.3)

where G is the pooling size, and s is a sub-sampling factor representing the

shift between adjacent pooling regions. Similarly, if the average function is

used, the output is calculated as:

pi,m = r
G∑
n=1

qi,(m−1)×s+n (4.4)

where r is a scaling factor that can be learned. It has been shown that

max-pooling performs better than the average function in image recognition

applications [110]. In image processing applications, G and s are usually set

to have the same value, but in this work, they are adjusted independently.

Moreover, a non-linear activation function can be applied to the above pi,m

to generate the final output. Figure 4.3 shows a pooling layer with a pooling

size of 3. Each pooling unit receives input from three convolution layer units

in the same feature map. As a result, the pooling layer has the same number

of feature maps but with a lower resolution and it becomes more invariant

to small shifts in input features.

4.1.4 Learning of CNN layers

All weights in the convolution layer can be learned using the same error back-

propagation algorithm but some special treatments are needed to take care

of sparse connection and weight sharing. In order to illustrate the learning

algorithm for CNN layers, let’s first represent the convolution operation in

Eq. 4.2 in the same mathematical form as the fully connected NN layer so

that the same learning algorithm in section 2.2 can be similarly applied.

If one dimensional feature maps are used, the convolution operations in

Eq. 4.2 can be represented as a simple matrix multiplication by introducing

a large sparse weight matrix Ŵ as shown in Fig. 4.4, which is formed by
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Figure 4.4: All convolution operations in each convolution layer can be equiv-
alently represented as one large matrix multiplication using a sparse weight
matrix, where local connectivity and weight sharing are represented in the
above matrix form. The above figure assumes filter size of 5 and 45 input
feature maps, and 80 feature maps in the convolution layer. The matrix W
has 45×5 rows (for 45 input feature maps and filter size of 5) and 80 columns
(for the 80 feature mas of the convolution layer).

replicating a basic weight matrix W as in Fig. 4.4 a. The basic matrix W
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is constructed from all local filter weights, wi,j as follows:

W =



w1,1,1 w1,2,1 · · · w1,J,1

...
...

. . .
...

wI,1,1 wI,2,1 · · · wI,J,1
...

...
. . .

...

wI,1,2 wI,2,2 · · · wI,J,2
...

...
. . .

...

wI,1,F wI,2,F · · · wI,J,F


I·F×J

(4.5)

where W has I · F rows and J columns where F denotes the filter size (the

number of bands) and each band contains I rows for I input feature maps,

and J is the number of feature maps in the convolution layer.

Meanwhile, the input and the convolution feature maps are also vectorized

as row vectors ô and q̂. One single row vector ô is created from all input

feature maps Oi (i = 1, · · · , I) as follows:

ô = [ v1 |v2 | ... |vM ] , (4.6)

where vm is a row vector containing the values of the mth frequency band

along all I feature maps, and M is the number of frequency bands in the

input layer. Therefore, the convolution layer outputs computed in Eq. 4.2

can be equivalently expressed by the sparse weight matrix as follows:

q̂ = σ
(
ôŴ

)
(4.7)

This equation has the same mathematical form as a regular fully connected

hidden layer as in Eq. 2.3. Therefore, the convolution layer weights can be

updated using the back-propagation algorithm as in Eq. 2.7. The update for

Ŵ is similarly calculated as:

∆Ŵ = ε · ô′e. (4.8)
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where e is the back-propagated error coming from the upper layer. Since the

weights are shared, the updates over these shared weights should be summed

up as:

∆wi,j,n =
∑
m

∆Ŵi+(m+n−2)×I,j+(m−1)×J (4.9)

where I and J are the number of feature maps in the input and convolution

layers.

Since the pooling layer has no weights, no learning is needed here. How-

ever, the error signals should be back-propagated to lower layers through

the pooling function. In the case of max-pooling, the error signal is back-

propagated only to the most active (largest) unit among each group of pooled

units. The error signal reaching the lower convolution layer can be computed

as:

elow
i,n =

∑
m

ei,m · δ(ui,m + (m− 1)× s− n), (4.10)

where δ(x) is the delta function and it has the value of 1 if x is 0 and zero

otherwise, and ui,m is the index of the unit with the maximum value among

the pooled units and it is defined as:

ui,m =
G

argmax
n=1

qi,(m−1)×s+n (4.11)

4.1.5 Pre-training CNN Layers

RBM-based pre-training improves DNN performance especially when the

training set is small. Pre-training initializes DNN weights to a proper range

that leads to better learning. For convolutional structures, a convolutional

RBM (CRBM) has been proposed in [18]. Similar to an RBM, training of

a CRBM aims at maximizing the likelihood function of training data using

the approximate contrastive divergence (CD) algorithm. In a CRBM, the

convolutional layer activations are stochastic. A CRBM defines a multinom-

inal distribution over the pooled hidden nodes. Hence, at most one unit in
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each pooled set of units can be active. This requires either having no over-

lap between pooled units (i.e., the pooling size should be the same as the

sub-sampling factor) or having different convolutional units attached to each

pooling unit as in limited weight sharing as described in Sec. 4.2. Refer to

[18] for more details on CRBM-based pre-training.

4.1.6 Treatment of Energy Features

In ASR, the log energy is usually calculated per frame and appended to other

spectral features. In a CNN, it is not suitable to treat energy the same way as

other filter bank energies since it is the sum of energy in all frequency bands

and it is not local to any frequency. In this work, the log energy features are

appended as extra inputs to all convolution units as in Fig. 4.4.b. Other non-

localized features can be similarly treated in this way. Experimental results

in section 4.3 show that using the energy feature consistently improves the

overall system performance.

4.1.7 Overall Architecture

The basic building block of the CNN is a pair of hidden layers: a convolutional

layer and a pooling layer. The input contains a number of localized features

organized as a number of feature maps. The size (resolution) of feature maps

gets smaller at upper layers as more convolution and pooling operations are

applied. Usually one or more fully connected hidden layers are added on top

to combine the features at all locations before feeding to the output layer.

In the hybrid NN-HMM model framework, the topmost layer is a softmax

layer that computes the posterior probabilities for all HMM states. These

posteriors are used to estimate the scaled likelihoods of all HMM states per

frame by dividing by the state prior probabilities. Finally, the likelihoods of

all HMM states are sent to a Viterbi decoder for recognition.
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4.1.8 Benefits of Using CNNs for ASR

The CNN has three properties: locality, weight sharing, and pooling. Each of

them has a good potential to improve speech recognition performance. Local-

ity in convolution layer units allows more robustness against non-white noise

where some frequency bands are cleaner than the others. This is because fea-

tures computed in cleaner parts are less contaminated by noise. Noise only

affects speech features in noisy frequency bands in the lower layers while

noise can be better dealt with in the upper layers, which combine different

frequency bands. This is clearly better than simply handling the noise in the

lower layers as in the standard NNs. Moreover, locality reduces the number

of NN weights to be learned and hence decreases overfitting. Weight shar-

ing may improve model robustness and reduce overfitting as each weight is

learned from all locations in the input instead of just one location. Both lo-

cality and weight sharing are needed for pooling. In pooling, the same feature

values computed at different locations are pooled together and represented by

one value. This leads to minimal differences in the computed features when

the input patterns are shifted, especially when max-pooling is used. This is

very helpful in handling small frequency shifts that are common in speech sig-

nals. These frequency shifts may result from differences in vocal tract lengths

of different speakers. Even for the same speaker, small frequency shifts may

often occur. These shifts are difficult to handle within other models like the

GMM or the DNN where many Gaussians/hidden units are needed to han-

dle all possible combinations of shifts in different frequencies. Moreover, it

is difficult to learn an operation like max-pooling in standard NNs.

The same applies to temporal differences as well. In the hybrid NN-HMM

model, a number of frames within a context window are usually processed by

the NNs. Temporal variability due to varying speaking rate may be difficult

to handle in standard NNs. CNNs can inherently handle this variability when

convolution is applied along the context window frames. However, since the

CNN computes an output for each frame for decoding, pooling and sub-
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Figure 4.5: An illustration of CNN using the limited weight sharing scheme,
where 1D convolution is applied along the frequency bands.

sampling may affect the fine temporal resolution seen by the higher layers

of the CNN. A large pooling size may affect temporal localization of state

labels. Hence, a suitable pooling size should be chosen to balance temporal

invariance and temporal localization of output labels.

4.2 Limited Weight Sharing (LWS) CNN for

ASR

4.2.1 Limited Weight Sharing (LWS)

We call the weight sharing scheme in Fig. 4.3, as described in the previous

section, the full weight sharing (FWS) scheme. This is the standard CNN

scheme used in image processing since the same patterns may appear at any

location in an image. However, speech signals typically behave quite differ-
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ently in various frequency bands. Using different sets of weights for different

frequency bands may be more suitable since it allows the detection of differ-

ent feature patterns at different frequencies. Fig. 4.5 shows an example of a

limited weight sharing (LWS) scheme for CNNs, where only the convolution

units that are attached to the same pooling unit share the same weights.

These convolution units need to share the weights so that they compute the

same features, but at different locations. The features are then pooled to-

gether in the upper pooling layer. In other words, each frequency band can

be considered as a separate subnet with its own convolution weights. We

call each of these subnets a section for notational convenience. Each section

contains a number of feature maps in the convolution layer as well as in the

pooling layer. But the pooling layer feature maps contain only one location

while the convolution layer maps contain a number of locations that is equal

to the pooling size. In mathematical terms, the convolution and pooling layer

activations can be computed as:

qk,j,m = σ(
∑
i

F∑
n=1

oi,(k−1)×s+n+m−1 · wk,i,j,n + wk,0,j) (4.12)

where wk,i,j,n denotes n-th convolution weight, mapping from the i-th input

feature map to the j-th convolution map in the k-th section, and m can take

values from 1 up to G (pooling size). The pooling layer activations in this

case can be computed using:

pk,j =
G

max
m=1

qk,j,m. (4.13)

Similar to the FWS convolution matrix representation, the above LWS

convolution can also be represented as a matrix multiplication using a large

sparse matrix as in Eq. 4.7 but both ô and Ŵ need to be constructed in a

slightly different way. First of all, the sparse matrix Ŵ is constructed as Fig.
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4.6, where each Wk is formed based on filter weights, wk,i,j,n, as follows:

Wk =



wk,1,1,1 wk,1,2,1 · · · wk,1,J,1
...

...
. . .

...

wk,I,1,1 wk,I,2,1 · · · wk,I,J,1
...

...
. . .

...

wk,I,1,2 wk,I,2,2 · · · wk,I,J,2
...

...
. . .

...

wk,I,1,F wk,I,2,F · · · wk,I,J,F


I·F×J

(k = 1, 2, · · · , K) (4.14)

where these matrices Wk are different for each section and the same weight

matrix is replicated G times within each section. Secondly, the convolution

layer input is vectorized as described in Eq. 4.6 and the computed feature

maps are organized as a large row vector q̂ by concatenating all values in

each section as follows:

q̂ = [ v1,1 | ... |v1,G | ... |vK,1 | ... |vK,G ], (4.15)

where K is the total number of sections, G is pooling size and vk,m is a row

vector containing the values of the units in the m-th band of the k-th section

along all feature maps of the convolution layer as:

v̂k,m = [ qk,1,m, qk,2,m, ... qk,I,m ] (4.16)

where I is the total number of input feature maps within each section.

Learning of the weights in the case of limited weight sharing can be done

using the same eqs. (4.7) and (4.8) with Ŵ and q̂ as defined above. Mean-

while, error vectors are propagated through the max pooling function as

follows:

elowk,i,n = ek,i · δ(uk,i − n) (4.17)
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Figure 4.6: The CNN layer using limited weight sharing (LWS) scheme can
also be represented as matrix multiplication using a large sparse weight where
local connectivity and weight sharing are represented in the above matrix
form. The above figure assumes filter size of 5, pooling size of 4, 45 input
feature maps, and 80 feature maps in the convolution layer.

with

uk,i =
G

argmax
m=1

qk,i,m. (4.18)

This LWS scheme also helps to reduce the total number of units in the

pooling layer because each frequency band uses special weights that consider

only the patterns appearing in the corresponding frequency range. As a

result, a smaller number of feature maps per band should be sufficient. On
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the other hand, this limited weight sharing scheme does not allow for addition

of more convolution layers on top of it since the features in different pooling

layer sections are unrelated and cannot be convolved locally. If it is necessary

to have more than one convolution layer, however, it is possible to place a

limited weight sharing convolution layer on top of a regular full weight sharing

convolution layer.

4.2.2 Pre-training of LWS-CNN

In this section, we propose to modify the CRBM model in [18] for pre-training

limited weight sharing (LWS) CNNs. For learning the CRBM parameters, we

need to define the conditional probability of states of the hidden units given

the visible ones and vice versa. The conditional probability of activation of

a hidden unit hk,j,m, that represents the m-th frequency band of the j-th

feature map from the k-th section, given the CRBM input v, is defined by

the following softmax function:

P (hk,j,m = 1|v) =
exp

(
I(hk,j,m)

)∑p
n=1 exp

(
I(hk,j,n)

) , (4.19)

where I(hk,j,m) is the summation of weighted signal reaching node hk,j,m from

the input layer and it is defined as:

I(hk,j,m) =
∑
i

f∑
n=1

vi,(k−1)×s+n+m−1wk,i,j,n + wk,0,j (4.20)

The conditional probability distribution of vi,n, which is the visible unit

at the nth frequency band of the ith feature map, given the hidden unit

states can be computed by the following Gaussian distribution:

P (vi,n|h) = N (vi,n;
∑

j,(k,m)∈C(i,n)

hk,j,mwk,i,j,f(n,k,m) , σ
2) (4.21)
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where the mean of the above distribution is the summation of the weighted

signal arriving from the hidden units that are connected to the visible units,

C(i, n) represents these connections as the set of indices of convolution bands

and sections that receive input from the visible unit vi,n, wk,i,j,f(n,k,m) is the

weight on the link from the n-th band of the i-th input feature map to the m-

th band and the j-th feature map of the k-th convolution section, f(n, k,m) is

a mapping function from the indices of connected nodes to the corresponding

index of the filter element, and σ2 is the variance of the Gaussian distribution,

which is a fixed model parameter.

Based on the above two conditional probabilities, all connection weights

of the above CRBM can be iteratively estimated by using the contrastive

divergence (CD) algorithm. The weights of the trained CRBMs can be used

as good initial values for the convolution layer in the LWS scheme. After

the first convolution layer weights are learned, they are used to compute the

convolution and pooling layer outputs using eqs. (4.12) and (4.13). The

outputs of the pooling layer are used as inputs for pretraining the next layer,

as is done in deep belief network training [41].

4.3 Experiments

In this section, experiments are conducted on two speech recognition tasks

to evaluate the effectiveness of CNNs in ASR: TIMIT which is a small-scale

phone recognition task, and VS which is a large vocabulary voice search task.

4.3.1 Experimental setup

The feature extraction is similar in these two data sets. Speech is analyzed

using a 25-ms Hamming window with a fixed 10-ms frame rate. Speech

feature vectors are generated by Fourier transform based filter bank analysis,

which includes 40 log filter bank energy coefficients distributed on a Mel scale

to generate the log-MFSC features, along with their first and second temporal
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derivatives. Log energy per frame is added to the TIMIT feature vector,

while VS does not use an energy component. All features are normalized

over the whole training dataset so that each coefficient has zero mean and

unit variance.

4.3.2 TIMIT Experiments

The TIMIT training dataset has 462-speaker, each of whom produces eight

utterances (after discarding the two SA utterances from each speaker because

they have the same labels and can bias the trained models). A separate set of

50 speakers is used for development, i.e. estimating the meta parameters that

include language model scale, word insertion penalty, learning rate progress,

and early stopping. Results are reported using the 24-speaker core test set,

which has no overlap with the development set or training set.

Each of the 61 TIMIT phonemes is represented using a 3-state left-to-right

HMM. The NN used in the hybrid NN-HMM model uses 183 classes which

represent the HMM state labels. To prepare the NN targets, a mono-phone

HMM model is trained on the training data set, and it is used to generate

state-level labels based on forced alignment. For neural network training,

learning rate annealing and early stopping strategies are utilized as in [41].

In the performed experiments a bi-gram language model is used to model the

phonetic label sequence. For evaluation, the original 61 phoneme classes are

mapped into a set of 39 classes as described in [111] for final scoring. This

mapping is shown in table 4.1. HTK [112, 113] is used to compute speech

features, and train the HMM and the language model. Special Matlab and

C++ codes are written to train the NN models.

A number of experiments have been conducted on CNNs by using both

the full weight sharing (FWS) and limited weight sharing (LWS) schemes. In

this section, the performance of the CNN models is measured and compared

against a DNN baseline. Moreover, the effect of changing different CNN

parameters is studied as well. In these experiments, the following parameters
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Table 4.1: The original 61 phonemes in the TIMIT dataset and their mapping
into 39 classes

class phonemes class phonemes
1 aa ao 21 l el
2 ae 22 m em
3 ah ax axh 23 n en nx
4 aw 24 ng eng
5 ay 25 ow
6 b 26 oy
7 ch 27 p
8 d 28 pau pcl tcl kcl q bcl dcl gcl epi h#
9 dh 29 r
10 dx 30 s
11 eh 31 sh zh
12 er axr 32 t
13 ey 33 th
14 f 34 uh
15 g 35 uw ux
16 hh hv 36 v
17 ih ix 37 w
18 iy 38 y
19 jh 39 z
20 k

are used unless mentioned otherwise. The CNN has one pair of convolution

and pooling layers and two fully connected hidden layers on the top. Each

fully connected layer has 1000 units. The convolution and pooling parameters

are: pooling size of 6, sub-sampling factor of 2, filter size of 8, and 150

feature maps for FWS and 84 feature maps per section for LWS. These

parameters are selected because they led to good performance in preliminary

experiments.
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Effect of different CNN parameters

In this section, a set of experiments is conducted to measure the effect of

changing various CNN parameters. The results are shown in figures 4.7–4.10.

The figures show that both pooling size and the number of feature maps have

the most significant impact on the final ASR performance. Fig. 4.7 shows

that the configurations that has fixed pooling shift yield better performance

by increasing the pooling size up to 6. LWS yields better performance with

bigger pooling sizes. When there is no overlap between pooling windows

(SS configurations), The improvement is not consistently better with bigger

pooling sizes. Generally, overlapping the pooling windows result in slightly

better performance; however, it leads to increased complexity of the model.

Fig. 4.8 shows that a bigger number of feature maps usually leads to better

performance especially with FWS. It also shows that LWS can achieve better

performance with a smaller number of feature maps due to its ability to learn

different filters for different frequency bands. This indicates that the LWS

scheme is more efficient in terms of the number of hidden units. Fig. 4.9

shows that good performance is still obtained with smaller overlap which

leads to simpler models which are smaller in size and computationally faster

to use. It shows that as expected skipping bands by having a sub-sampling

factor bigger than the pooling size harms the performance. Fig. 4.10 does

not show consistent effect for different filter sizes. However, the performance

starts to degrade with very big sizes starting from 16.

Energy Features

Table 4.2 shows the benefit of using energy features. It shows a significant

improvement for adding energy features especially with FWS. Theoretically,

energy can be estimated from the other MFSC features. Adding it to the

convolution filters results in more discriminative power and provides a way

to compare the local frequency bands processed by the filter with the overall

spectrum.
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Figure 4.7: Effects of different pooling sizes of CNN on recognition perfor-
mance (PER in %) for both limited weight sharing (LWS) and full weight
sharing schemes (FWS). (SS) indicates that pooling windows do not overlap
by using equal values for the pooling size and the sub-sampling factor.
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Figure 4.8: Effects of different numbers of feature maps of CNN on recog-
nition performance (PER in %) for both limited weight sharing (LWS) and
full weight sharing schemes (FWS).
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Figure 4.9: Effects of different sub-sampling factors of CNN on recognition
performance (PER in %) for both limited weight sharing (LWS) and full
weight sharing schemes (FWS).
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Figure 4.10: Effects of different filter sizes of CNN on recognition performance
(PER in %) for both limited weight sharing (LWS) and full weight sharing
schemes (FWS).

Table 4.2: Effect of using energy features on the core test set in PER.

No Energy Energy
LWS 20.61% 20.39%
FWS 21.19% 20.55%

Table 4.3: Performance of different pooling functions in PER.

Average Max
Development Set 19.63% 18.56%
Test Set 21.6% 20.39%

Pooling Function

Table 4.3 shows that max-pooling function performs better than the average

function. The results are reported only for the LWS scheme. These results

are consistent with what has been observed in image recognition applications

[110].

Overall Performance

In this section, the overall performance of different CNN configurations and

a baseline DNN is compared. All comparison results are listed in Table 4.4.

To reduce variability due to different random initialization of the weights,
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the table shows the performance in PER averaged over three models trained

from different initial weights. The first row shows recognition performance of

a DNN that has three hidden layers. Its first layer has 2000 units (to match

the number of units in the CNNs). The other hidden layers have 1000 units

each. The parameters of the CNNs in rows 2 and 3 are chosen based on

the performance obtained in the previous sections on the development set.

Both have a filter size of 8, a pooling size of 6, and a sub-sampling factor

of 2. The number of feature maps is 150 for LWS and 360 for FWS. The

table shows that CNN performance is much better than that of the DNN.

LWS is slightly better than FWS even with less than half the number of

units in the pooling layer. Although the number of parameters in the LWS

convolution layer is slightly bigger than that of the FWS, the LWS-CNN gives

a much smaller model size since LWS results in fewer weights in the upper

fully connected layer. The CNN with LWS brings more than 8% relative

reduction in PER versus the DNN. The last two rows show the performance

of using two CNN layers. The fourth row shows the performance of using

FWS for both convolution layers, and the fifth row shows that of using LWS

in the second convolution layer. The parameters of the two CNN layers are

only coarsely tuned on the development set. Although they do not show

improvements over using one CNN layer, they use a much smaller number of

parameters.

Statistical significance tests are performed to confirm the results shown

in Table 4.4. The performed test is a form of matched pair test that is

called matched pairs segment sentence word error rate [114]. The tests were

conducted using the NIST SCTK scoring toolkit which is developed by the

American National Institute of Standards and Technology (NIST). The test

showed significance statistical differences between the CNN (both FWS and

LWS) and the DNN models at a level of p=0.001. On the other hand, the

test showed that the difference between the LWS-CNN and FWS-CNN is not

statistically significant at a level of p=0.05. To conduct the tests, the best
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Table 4.4: Performance on TIMIT of different CNN configurations, compared
with DNNs, along with the size of the model in total number of parameters,
and the speed in total number of multiply-and-accumulate operations. Av-
erage PERs were computed over 3 runs with different random seeds.

ID Network structure Average PER # params # ops
1 DNN 22.02% 6.9M 6.9M
2 CNN (LWS) 20.17% 5.4M 10.7M
3 CNN (FWS) 20.31% 8.5M 13.6M
4 CNN (FWS + FWS) 20.23% 4.5M 11.7M
5 CNN (FWS + LWS) 20.36% 4.1M 7.5M

performing CNNs and DNNs of the performed three runs are used which

have the PERs of 21.86%, 20.16%, and 19.92% for the DNN, FWS-CNN,

and LWS-CNN in order.

4.3.3 Large Vocabulary Results

This section shows the results of experiments conducted to measure the CNN

performance on a large vocabulary ASR task. A voice search dataset (VS)

containing 18 hours of speech data is used. Initially, a conventional tied-state

triphone GMM/HMM is built. The HMM state labels are used as the targets

for training the DNN and the CNN, where the training procedure of both

the DNN and the CNN follows a standard recipe. First 15 iterations are run

with a learning rate of 0.08 and then 10 more epochs are run with a learning

rate of 0.002. In this section, the effect of pre-training is investigated as well.

Pre-training is done using an RBM for fully connected layers and using a

CRBM (as described in section 4.2.2) for convolution and pooling layers.

Table 4.5 shows that using a CNN improves the performance over a DNN

whether pre-training is used or not. Similar to TIMIT, the CNN improves

performance by about 8% relative over the DNN for the VS task without

pre-training. With pre-training, the relative reduction in PER is about 6%.

Moreover, the table shows that pretraining of the CNN can improve ASR
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Table 4.5: Performance on the VS large vocabulary data set in WER% with
and without pre-training (PT).

No PT With PT
DNN 37.1% 35.4%
CNN 34.2% 33.4%

performance although the effect of pre-training on the CNN is not as dramatic

as it is on the DNN.

4.4 Conclusion

This chapter has presented a concise description of how to apply CNNs to

speech recognition in such a way that CNN structures can explicitly handle

certain speech variations. It has been shown that it is more beneficial to ap-

ply convolution through the frequency axis since it leads to models that are

invariant to small frequency shifts, which normally occur in speech signals

due to speaker differences. In addition, a new limited weight sharing scheme

has been proposed which can handle speech features in a better way. Ex-

perimental results show that this limited weight sharing provides a slightly

better performance than the standard full weight sharing scheme originally

used in image recognition applications. Moreover, the limited weight shar-

ing scheme leads to a much smaller number of units in the pooling layer,

resulting in a smaller model size and lower computational complexity versus

the full weight sharing scheme. The experimental results show that CNNs

can yield significantly better performance than the popular DNN. The im-

proved performance (about 6-9% relative error reduction) has been observed

on two ASR tasks, namely the TIMIT phone recognition dataset and a large

vocabulary voice search dataset. Moreover, a set of experiments has been

conducted to investigate the effects of various CNN parameters and design

settings. Results show that energy information is very beneficial in the CNN.
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Moreover, the ASR performance is sensitive to pooling size and it improves

a lot as the pooling size increases up to 6. The results also show that an

overlap between pooling units is not needed, which leads to better efficiency

in storage and computation. Finally, pre-training of CNNs based on the

convolutional RBM yields better performance in the large vocabulary voice

search dataset.
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Chapter 5

Fast Adaptation of DNNs for

ASR

Chapter 4 discussed one method of handling the variations in the speech

signal by using the CNN. A CNN helps by computing features that are more

robust to some speaker variations. This chapter discusses a different method

for handling these variations: speaker adaptation.

5.1 Speaker Adaptation in ASR

Speaker adaptation techniques try to optimize system performance towards

one target speaker (or a group of speakers). This is done by either modifying

the model parameters to match the target speaker or modifying the target

speaker’s features to match the model. Adaptation depends on collecting a

limited amount of adaptation data from each speaker. In most applications,

it is desirable to achieve better performance with only a small amount of

adaptation data. In supervised adaptation, the labels of the adaptation ut-

terances are assumed to be known. In unsupervised adaptation, the labels are

unknown beforehand, and they are either not required or are automatically

estimated using a speaker independent ASR system. From the perspective
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of the ASR system user, it is more desirable to use unsupervised adaptation;

however, unsupervised adaptation is more difficult and more prone to errors.

A lot of research work has been done in speaker adaptation of GMM/HMM

models. One popular method is maximum a posteriori (MAP) speaker adap-

tation [115, 116], in which all HMM parameters are re-estimated to optimize

the model for the target speaker. MAP adaptation achieves good perfor-

mance when a large amount of adaptation data is available. In contrast, max-

imum likelihood linear regression (MLLR) [117, 118] and constrained MLLR

(CMLLR) [119] work much better when only a small amount of adaptation

data is used [120]. In these methods, all trained HMM parameters are trans-

formed by a linear transform function that is learned from adaptation data.

In CMLLR, this transform can also be viewed as transforming the data itself

to match the HMM model. In VTLN [121], a parametric frequency warping

function is used to normalize speech features among different speakers. This

method is successful and robust since only one free parameter needs to be

optimized per speaker. However, its performance is dependent on a manually

designed frequency warping function.

5.2 Related Works: NN Adaptation

Recently, the hybrid NN-HMM model has gained more research interest in

speech recognition because it has achieved very good performance in both

small tasks like TIMIT [90] and large vocabulary tasks [42, 91, 92, 93] es-

pecially when a deep NN (DNN) is used. However, speaker adaptation for

DNN-HMM models is still a challenging task and it has not received enough

attention yet. Some of the adaptation techniques that have been developed

for the GMM-HMM can be used with the NN-HMM model if they only trans-

form speech features towards the target speaker without modifying the HMM

model. [87, 93] show improvement by using various conventional adaptation

techniques like HLDA [122], VTLN, and fMLLR that were developed for the
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GMM-HMM models. Though, using DNNs for speech recognition opens the

door for different adaptation techniques that are developed especially for the

DNN-HMM models and can exploit the potential of the DNN.

A number of attempts have been made to adapt hybrid NN-HMM mod-

els. The simplest method is to modify all NN weights using the available

adaptation data based on the standard back-propagation (BP) training pro-

cedure [123]. But this method is very prone to over-fitting especially when

some class labels do not appear in the adaptation data. Another more suc-

cessful method is to add a linear input network (LIN) to transform the NN

input as in [123] (also in [124] named as a transformation network and in

[125] an earlier simpler version is presented). During adaptation, only those

weights of this linear layer are learned based on the adaptation data. This

reduces the number of adaptation parameters and hence reduces the over-

fitting problem to some extent. This method is similar to the regression

methods that transform speech features with a linear transform. Though,

speaker variations are more complex than linear changes. In the linear hid-

den network method (LHN) [126], the linear transformation layer is inserted

above the hidden layers, to transform the features computed by these layers.

This can generate a similar effect to non-linear transformation of the speech

features. Similarly, the NN outputs are transformed in [127] before comput-

ing the normalized softmax output in a method called linear output network

(LON). Instead of inserting new layers, a parallel hidden network (PHN) can

be added as in [123] where a small number of hidden units are inserted and

connect the input and output layers through weights to be learned from the

adaptation data. This method reduces the number of trainable parameters

compared to LIN and LHN. In [128], a parametric NN activation function is

adapted instead of the NN weights. In [129], an affine transformation is used

to transform features computed by different DNN layers or the input.

In the previous methods a relatively large number of NN weights need

to be estimated from the adaptation data which is relatively small. To re-
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duce over-fitting, a number of techniques have been proposed. For example,

conservative training in [126] helps to handle missing classes in the adapta-

tion data. Another form of conservative adaptation is proposed in [130] by

using a Kullback-Leibler divergence (KLD) regularization which is added to

the adaptation criterion. In [131], weight interpolation method is proposed,

which is similar to the MAP adaptation in using the SI model as a prior of the

new adapted parameters. The effect of L2 regularization (weight decay), and

momentum on the adaptation generalization is studied in [132]. Moreover,

some constraints on the adapted weights can be imposed to reduce the total

number of free parameters to learn from the adaptation data. [127] compares

the performance of using a number of structural constraints. The structural

constraints aim at discarding or tying some weights based on the domain

expert knowledge. In [133], data driven constraints are imposed by using a

set of bases to represent the adapted parameters. These bases are estimated

using principal component analysis (PCA). During adaptation, the adapted

model parameters are estimated by only estimating a small set of weights to

estimate the new parameters as a sum of weighted bases.

Most of the above mentioned NN adaptation methods use discriminative

training. [127] compares a number of discriminative adaptation techniques,

including LIN and LON, to the generative feature space CMLLR technique.

It shows that the discriminative techniques generally perform better in su-

pervised adaptation when the correct target labels are available. For unsu-

pervised adaptation, the generative techniques like CMLLR are more robust

unless special tricks are performed to reduce the overfitting problem when

discriminative techniques are used.

Despite all the previous work on NN-HMM adaptation, fast adaptation,

where only a few (from 1 to 10) adaptation utterances are available, is still

a challenging problem. In this chapter, we focus on performing fast adap-

tation and we propose using two new adaptation methods: speaker code

based adaptation and adaptive feature scaling weights. These methods aim
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at performing fast speaker adaptation while trying to avoid the over-fitting

problem. This is achieved by using a relatively small speaker code that can

largely reduce the number of adaptation parameters [134, 135, 136] or using

scaling weights that are attached to the hidden units’ outputs instead of the

connections, thus using a much smaller number of weights [137].

5.3 Speaker Code Based Adaptation

The methods described in the previous section perform speaker adaptation

by either modifying the model to match the new speaker or learning a new

transformation of the new speaker features. In this section we present a

different method, that estimates a speaker representation which can be used

by the NN to do a better speech recognition exploiting the knowledge of the

speaker without modifying the NN itself. The posterior probability of the

frame class label depends on information other than the acoustic features of

the current frame. For example, in the hybrid DNN-HMM model, it has been

found that the performance of classifying the current frame improves when

using a wider context window that includes a few frames before and after

the current frame, i.e. computing p(qt|Xt+r
t−r). Another kind of information

that can help classifying a frame is the speaker ID. In this section we will

represent the speaker c using a speaker code s(c) and estimate the probability:

p(qt|Xt+r
t−r, s

(c)).

An early trial of using a speaker representation within the hybrid NN-

HMM model for the simpler task of isolated word recognition has been pro-

posed in [138]. They proposed using a low dimensional speaker represen-

tation that is fed to the hidden layer of a NN that has only one hidden

layer. In supervised adaptation, the speaker representation can be estimated

directly using the error back-propagation algorithm. Their method can be

used in unsupervised adaptation as well by integrating over selected points

of the speaker space while maintaining the assumption that the utterance
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(or group of utterances) come(s) from the same speaker. In [139], hidden

factors are used in the top layer to represent speaker and environment in a

factorial NN model. The probability distribution of frame labels and these

factors given the feature vector can be estimated from the model. The label

posterior probability is estimated by marginalizing over all possible factor

values but this is done for each frame separately. The work in [140, 141]

represent the speaker using i-vectors which are computed directly from the

acoustic signal and supplied to the DNN. This method does not require any

adaptation utterances.

In this section, we propose performing speaker adaptation of the hybrid

DNN-HMM model using a speaker code that represents the speaker features.

This speaker code is fed to the DNN along with the frame features. Given the

speaker code, the DNN can perform better classification of the given speech

frame because it can learn the relation between the speaker features, received

speech features, and the target class labels. Two methods are proposed

here for feeding this speaker code: direct speaker code based adaptation by

feeding the speaker code directly to all or some of the DNN layers through

weighted connections, or by using a transformation NN to transform the

speech features before feeding them to a speaker independent NN.

To benefit from the speaker code, the DNN needs to learn speaker varia-

tions and how they are represented using the speaker code from the training

speakers. During adaptation, only the speaker code of the new speaker needs

to be estimated. Since speaker variations are learned, the DNN can generalize

to new speakers faster, allowing it to perform fast speaker adaptation.

5.3.1 Model Space Speaker Adaptation mSA-SC

Model Structure

In this model, the speaker code is fed as an extra input to all layers of the

DNN (or some of them). Fig. 5.1 shows the structure of the model. It shows
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Figure 5.1: Model space - speaker code based adaptation. The figure shows
the model structure for a DNN with k + 1 layers, where the speaker code is
fed to all hidden and output layers.

that the model has two sets of weights: the DNN weights Wl and the speaker

code weights Bl. The DNN weights connect the nodes of the lower layer l−1

with the current layer l. The speaker code weights connect the speaker code

with the current layer l. The activations of the lth layer are computed as

follows (as compared to Eq. 2.4):

o(l) = σ(o(l−1)W(l) + s(c)B(l)) (l = 1, 2, · · · , L− 1) (5.1)

As can be deduced from Eq. 5.1, the speaker code results in a fixed bias

added to the input received from the lower layer. Since the DNN has multiple

layers and different biases are added to all of them (depending on the speaker

code and the adaptation weights attached to each layer), this can allow the

DNN to handle non-linear speaker variations. Since this model is changing

the model’s hidden layer activations, we will call it Model Space - Speaker

Adaptation Based on Speaker Code (mSA-SC).

The speaker code is a real vector. The size of the vector is freely specified

based on the amount of the adaptation data. Each speaker has a different
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speaker code. The speaker code is learned from the speaker adaptation data.

The DNN weights and the adaptation weights are fixed among all speakers

and are not modified during adaptation. The adaptation weights are learned

from all training speakers along with their speaker codes during the training

phase. This results in adaptation weights that can learn to handle speaker

variations based on the given speaker code. The adaptation weights trans-

form the speaker code into biases that lead to improved performance for the

target speaker.

Model Training

During training, the DNN weights Wl and the adaptation weights Bl are

learned and shared among all speakers. Moreover, a speaker code s(c) is

learned for each different speaker in the training set. All these parameters

are learned using the same error back-propagation algorithm.

Assuming that we have a trained speaker independent model along with

the DNN weights Wl, 1 ≤ l ≤ L, the adaptation weights Bl ∈ RS×|ol| are

added and initialized randomly, where S is the speaker code size. Addi-

tionally, each speaker in the training data set has a different speaker code

s(c) ∈ RS that’s initialized randomly.

Training proceeds using the stochastic gradient descent (SGD) algorithm,

where each mini-batch is used to compute the gradient and update both the

speaker code and the adaptation weights. The derivative of the objective

function F with respect to the k-th element of the speaker code s
(c)
k can be

computed as:

∂F
∂s

(c)
k

=
∑
l

∑
j

∂F
∂olj

olj(1− olj)Bl
kj =

∑
l

∑
j

eljB
l
kj, (5.2)

where elj is the j-th element of the error vector of the l-th layer el, as defined

in Eq. 2.8 and Eq. 2.9.

Similarly, the derivative with respect to the weight Bl
kj that connects the
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k-th element of the speaker code with the j-th node in the l-th layer can be

computed as:
∂F
Bl
kj

=
∂F
∂olj

olj(1− olj)s
(c)
k = eljs

(c)
k (5.3)

A number of strategies can be used to handle the DNN weights Wl. The

first strategy is to first learn all DNN weights without any speaker labels and

before adding the adaptation weights, and then keeping them fixed during

learning of the adaptation weights. A second strategy is to tune them during

learning of the adaptation weights. A third strategy is to learn them together

with the adaptation weights, starting from a random initialization. The

second and third strategies represent a form of speaker adaptive training,

where the DNN weights are learned given the speaker IDs and their codes.

An empirical comparison of the three training strategies is provided in the

experiments section.

Instead of using the minimum cross entropy criterion for training the

adaptation weights, an MMI criterion can be used (or any other sequence

based discriminative criterion). In MMI, the weights are modified to opti-

mize the recognition accuracy (instead of frame classification accuracy). As

will be shown in the experiments section, using MMI improves the overall

performance.

Model Adaptation

The model adapts to a new speaker by learning a speaker code for the

new speaker. The new speaker code is learned using the same error back-

propagation procedure to update the speaker code without changing any

weights. The adaptation is performed using a few adaptation utterances

that have a known label sequence assuming a supervised adaptation. The

frame classification targets are estimated using a forced alignment procedure

to align the target label sequence with the speech frames. This can be done

using a speaker independent model. After finding each frame class label,
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a cross entropy criterion can be minimized by adjusting the speaker code.

After the speaker code is learned, it can be used to recognize new utterances

from the same speaker.

Other objective functions can be used instead of cross entropy. In [136],

it has been shown that using an MMI criterion improves the adaptation

performance.

Advantages of the model

The speaker code based adaptation proposed in this section is appealing be-

cause adaptation weights which constitute most of the adaptation related pa-

rameters are learned from all training speakers, while only a relatively small

speaker code is learned for each speaker. This enables rapid speaker adapta-

tion. The adaptation weights learn to handle speaker variations represented

using the speaker codes. On the other hand, the speaker representation is

learned automatically within the same training procedure. This allows the

model to learn other arbitrary variations rather than the speaker as well,

given that they are well represented and labeled in the training data. More-

over, a complex non-linear relation between the features, speaker, and class

labels can be modeled within the overall DNN and adaptation weights.

5.3.2 Feature Space Speaker Adaptation fSA-SC

Instead of modifying the activations of the DNN layers, we propose to modify

the features themselves (i.e. the DNN input) without explicit modification

of the hidden layer activations. This can be done by adding an adapta-

tion NN that transforms speech features into a more speaker independent

space. By using a multi-layer adaptation NN, this transformation can be

non-linear. Thus, it can handle complex variations between different speak-

ers. The transformed features are given as an input to the original speaker

independent DNN (possibly after tuning). Moreover, since each speaker has
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Figure 5.2: Feature transformation - speaker code based adaptation. The
figure shows the speaker independent model on the left and the speaker
adapted model after adding the adaptation NN on the right.

different features, the speaker code can be fed to the adaptation NN to con-

trol the performed transformation. As a result, the adaptation NN can nor-

malize some speaker related variations and present the speech features in

a better form for phonetic classification. We will call this method Feature

Space Speaker Adaptation Based on Speaker Code, denoted as fSA-SC.

The structure of the model is depicted in Fig. 5.2. The figure shows two

additional sets of adaptation weights. The adaptation NN weights Al and

the speaker code weights Bl (which have been used in the previous section).

The adaptation NN weights connect consecutive adaptation NN layers. The

speaker code weights connect the speaker code only to the nodes of the

adaptation NN. The original speaker independent DNN is kept the same.

The only change is that it takes the transformed input instead of the original
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input. The activations of the adaptation NN layers can be computed as:

ô(l̂) = σ(ô(l̂−1)A(l̂) + s(c)B(l̂)) (l̂ = 1, 2, · · · , L̂), (5.4)

where L̂ is the number of layers of the adaptation NN (excluding the input

layer).

The output layer (the L̂-th layer) of the adaptation NN has the same

size as the input. To make the output of the adaptation NN more similar to

the input a linear activation function can be used in the output layer. An

empirical comparison of sigmoid and linear activation functions in the output

layer is presented in the experiments section.

Learning of the adaptation weights is like in the mSA-SC model except

that we have two sets of weights. Similar to Eq. 5.2 the speaker code can be

updated as:

∂F
∂s

(c)
k

=
L̂∑
l̂=1

∑
j

∂F
∂ôl̂j

ôl̂j(1− ôl̂j)B l̂
kj =

∑
l̂

∑
j

êl̂jB
l̂
kj, (5.5)

where êl̂j is j-th element of the error vector of the l̂-th layer of the adaptation

NN.

The derivative with respect to the weight B l̂
kj that connects the k-th

element of the speaker code with the j-th node in the l̂-th layer can be

computed as:
∂F
B l̂
kj

=
∂F
∂ôl̂j

ôl̂j(1− ôl̂j)s
(c)
k = êl̂js

(c)
k (5.6)

Similarly, the derivative with respect to the weight Al̂kj that connects the

k-th node of the (l̂ − 1)-th layer to the j-th node of the l̂-th layer can be

computed as:
∂F
Al̂kj

= êl̂j ô
l̂−1
k (5.7)

The original speaker independent DNN weights can be handled in dif-
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ferent ways. Either they can be learned completely before learning of the

adaptation weights, or they can be tuned or learned from random initializa-

tion together with the adaptation weights. Moreover, a good strategy may be

to tune only the weights of the first layer to cope with the transformed input.

The experiments section shows a comparison between all of these strategies.

During adaptation, only the speaker code of the new speaker needs to be

learned. All adaptation weights are kept fixed and shared among all speakers.

In both the mSA-SC and fSA-SC methods, the speaker code size is a

design parameter, and it is relatively small. This allows rapid speaker adap-

tation using only a few adaptation utterances. The fSA-SC method has the

advantage of applying all modifications to the features independently of the

classification model. For example, the speaker independent DNN can be

improved without the need to modify the adaptation NN nor the learned

speaker codes. On the other hand, the mSA-SC method has the advantage

of direct connection between the DNN nodes and the speaker code. This

make learning of the adaptation weights and the speaker codes easier since

there are only a fewer layers between the output and the speaker code. In

contrast, for the fSA-SC method the error signal has to be back-propagated

through multiple layers before reaching the adaptation weights or the speaker

code.

5.3.3 Speaker Adaptation of CNNs

Although convolutional neural networks (CNNs) try to normalize speaker

variations by adding invariance to small shifts along frequency, explicit speaker

adaptation may bring further benefits. The same speaker code based adap-

tation can be applied to CNNs as well. However, for the fSA-SC method,

experiments have shown it is difficult to train the adaptation NN beneath

the pooling and convolution layers. A small change in the structure of the

fSA-SC method is proposed to overcome this difficulty.

Fig. 5.3 shows the modified structure. It shows that the adaptation NN
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Figure 5.3: Modified feature space speaker code based adaptation for CNNs.

transforms the features generated by the CNN layer instead of transforming

the input features. This normalizes other speaker variations that are not

handled by the CNN layer, but it makes the adaptation NN dependent on

the features computed by the CNN layer.

The CNN cannot handle all forms of speaker variations. That is because

complete handling of these variations requires information that exists outside

the bounds of the input context window that is fed to the CNN. This extra

information is given to the adaptation NN in the form of a speaker code.

Given the speaker code, the adaptation NN can normalize more speaker

variations and improve the overall performance.

Another possibility is to use a CNN as the adaptation NN to adapt a

standard speaker independent DNN. The CNN layers can benefit from the

speaker code while they also perform speaker normalization through convo-

lution and pooling. In this case, the CNN serves as an independent speaker

normalization system that transforms the speech features into a better form
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that is more suitable for classification by any model.

5.4 Adaptive Feature Scaling Weights

A different method to adjust a small number of parameters for speaker adap-

tation is to add adaptive feature scaling weights. These adaptive weights may

further help in adapting DNN or CNN models towards the target speaker.

These weights scale either the output generated by a NN node after applying

the activation function as shown in Fig. 5.4 or the input features. These

weights can be viewed as an extra linear layer with a diagonal weight ma-

trix. These weights can be applied to the features computed by any layer

of the DNN or the input layer. In the case of standard fully connected lay-

ers, these weights simply increase or decrease the activities of different nodes

from layer to layer. In the case of convolution layers, these adaptive weights

may serve as a mechanism to force the pooling operations towards certain

more preferable frequency shifts. For example, for a male speaker there may

be a tendency to decrease activations of nodes representing shifts towards

higher frequencies of the same feature map kernels. This may adaptively de-

crease the effective pooling size, and hence reduce confusion between similar

phonemes that sometimes happen when using the CNN [107].

Let’s assume that the ith node in a certain NN layer has the output oi.

The scaled output (after multiplying by the scaling weight, vi) is:

ôi = oi exp(vi) (5.8)

Note that the scaling weight is represented as an exponential of the parameter

vi to guarantee that it is positive during training. The derivative ∂E
∂ôi

will be

the same as the standard derivative computed using the back-propagation

algorithm. But, when the scaling weight is used, the derivative of oi and vi
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Figure 5.4: Feature scaling weights. The figure shows a scaling weight applied
to a hidden node output.

can be computed using:

∂E

∂oi
=
∂E

∂ôi
exp(vi) (5.9)

and
∂E

∂vi
=
∂E

∂ôi
oi exp(vi) (5.10)

For a convolution layer the output of the ith feature map of the jth band

at the sth shift location after applying the scaling weight is:

ôi,j,s = oi,j,s exp(vi,j,s) (5.11)

And after applying max pooling it becomes:

pi,j = max
s
ôi,j,s = max

s
oi,j,s exp(vi,j,s) (5.12)

Eq. 5.12 shows that if the weight exp(vi,j,s) is very small for some s, this

sth shift will not have any significant effect on the maximization operation.

This will force the maximization operation towards certain shifts depending
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on the speaker characteristics. Similarly, the scaling weights can be applied

after the pooling layer as well.

The introduced scaling weights will be optimized using the speaker adap-

tation sentences in the same way as the speaker codes in the previous section,

except that there is no need to use an adaptation NN. The weight parameters

vi will be initialized with zero then optimized using a number of stochastic

gradient descent epochs. Obviously, both the speaker code based adaptation

and feature scaling weights adaptation can be combined, where both the

speaker code and the scaling weights are jointly learned based on adaptation

data in the adaptation stage.

5.5 Experiments

In this section, an experimental evaluation of the proposed adaptation meth-

ods is provided. First, the small scale TIMIT phone recognition task is used

to compare different methods using the frame level CE training criterion. Af-

terwards, experiments using the large scale Switchboard task are conducted

to measure the performance on large scale large vocabulary speech recog-

nition tasks. Moreover, the MMI sequence training criterion is used and

evaluated on the Switchboard task.

5.5.1 TIMIT Phone Recognition

The experiments in this section are performed on the TIMIT phone recogni-

tion data set to evaluate the performance of the proposed adaptation tech-

niques.

The experimental setup used here is the same as used in section 4.3, except

that user IDs are used to train the adaptation weights and the speaker codes.

The same training procedures are used to obtain the speaker independent

models.
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The training data set has 462 speakers. The development set has 50

speakers, which is used to control the progress of the learning rate and the

number of training and adaptation epochs. Adaptation performance results

are reported on the core test set which has 24 speakers. Each speaker in all

data sets has 8 utterances (after removing the two SA utterances for each

speaker).

For training the weights of the original NN and the adaptation NN, the

same learning rate annealing and early stopping strategies as in section 4.3

are used. During adaptation, fixed learning rates of 0.1 and 0.025 are used

for sigmoid layers and linear layers respectively. The number of epochs is

determined using the development set and it is optimized independently for

each adaptation data set size. Since each test speaker has eight utterances

in total, testing is conducted for each speaker based on a cross validation

method. In each run, for each speaker, eight utterances are divided into na

utterances for adaptation and the remaining 8 − na utterances for testing.

This is repeated eight times for each speaker. Each time, different adaptation

and test utterances are randomly selected in such a way that each utterance

is assigned the same number of times for both adaptation and testing. The

overall recognition performance is the average of all eight runs.

Performance of Different Sizes of the Adaptation Set

In the first set of experiments, the performance of the proposed fast adap-

tation method is measured using different amounts of adaptation data. In

this experiment, a baseline NN with two hidden layers is first trained. The

fSA-SC adaptation is used. The adaptation NN has two hidden layers in ad-

dition to the output layer, which has a linear activation function. All hidden

layers have 1000 nodes each. A speaker code size of 50 is used. The bottom

layer of the baseline NN is fine-tuned during learning of the adaptation NN.

Fig. 5.5 shows the adaptation performance using different numbers of

adaptation utterances (varying na from 0 to 7). With only one adaptation
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Figure 5.5: Adaptation performance of fSA-SC adaptation (in percent phone
error rate) as a function of the number of adaptation utterances.

utterance, the phone error rate is reduced by 1.3% (5.7% relative). After

using seven utterances for adaptation, phone error rate (PER) drops from

22.83% to 20.5%. The ”dummy” adaptation means that an adaptation NN is

added without feeding any speaker codes. The results show that adding these

dummy layers achieves only a minor improvement. This confirms that the

gain is obtained actually from adaptation not from just adding more layers.

Using zero adaptation utterances means that the speaker code is not tuned

during adaptation and left as zeros. It indicates that this kind of adaptive

training even without adaptation during testing may be a little bit helpful.

The oracle score is the PER when the same eight utterances per speaker are

used for both adaptation and testing.

Fine-Tuning of the Speaker Independent NN

Here, different schemes of fine-tuning the original speaker independent NN

are compared. Since the original NN was trained on the features before adap-

tation, using it with the adapted features may limit the benefit of the trans-

formed features. As a result, fine-tuning the original NN may improve the
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performance. To compare different fine tuning schemes, the same structure

as the previous section is used here. Table 5.1 shows the different fine-tuning

schemes. It shows that fine tuning only the first layer results in the best

performance. Fine-tuning the whole network either from random weights or

starting from the baseline NN weights is worse than fine tuning only the first

layer. There are a number of possible reasons for this result. One reason is

that fine tuning the whole NN may cause faster over-fitting since there are

more parameters to tune. Another possible explanation is that the higher

DNN layers receive a stronger error signal; thus, the higher layers could fit

the input features before the lower layers adjust the adaptation weights and

update the speaker code. Further investigation may be required to test the

validity of these explanations.

The other observation is that fine-tuning the first layer of the original NN

is better than fixing all of its weights during the learning of the adaptation

weights. Though, both approaches improve performance. This indicates

that the adaptation NN learns to generate different enhanced features that

requires changing the original NN to cope with them.

The results shown in this section are only for the fSA-SC adaptation. For

the mSA-SC adaption, different results may be obtained. That’s because in

the mSA-SC model, the speaker code is directly connected to the top layers

of the DNN. This may balance the learning of the speaker code and their

connecting weights with the DNN weights. The results for the mSA-SC are

shown for the switchboard data set.

Linear vs Sigmoid Output Layers of the Adaptation NN

The aim of the adaptation NN is to transform the input features from the

speaker space into a speaker-independent space that is more suitable for

recognition. This section compares using linear and sigmoid activation func-

tions for the adaptation network’s top layer, with and without fine-tuning

of the first layer of the original NN. The results in Table 5.2 show that a
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Table 5.1: Comparison of different fine-tuning schemes.

Fine tuning scheme PER

No fine tuning 21.24%
Fine tune first layer 20.50%
Fine tune the whole NN 21.34%
randomly initialized NN 21.48%

Table 5.2: PER (in %) of different activation functions used in the top layer
of the adaptation NN. Results are shown for 1 and 7 adaptation utterances.

Activation function 1 utt. 7 utt.

Linear 21.75% 21.24%
Sigmoid 22.21% 21.61%
Linear + fine tune first layer 21.53% 20.50%
Sigmoid + fine tune first layer 21.65% 20.91%

linear top layer yields a slightly better performance. This is because the lin-

ear layer can generate features in the same domain as the original features.

Hence these features will better suit the original NN weights.

The table also shows that fine tuning the first layer of the original NN

is much better because it reduces the discrepancy between the transformed

features and the original NN weights.

Speaker Code based Speaker Adaptation of CNNs

This set of experiments evaluates the performance of the speaker code based

adaptation method with the adaptation NN re-configuration as proposed in

section 5.3.3. The baseline speaker independent CNN has one pair of convo-

lution and pooling layers and two fully connected hidden layers. The CNN

uses limited weight sharing and has the following parameters: filter size of
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Table 5.3: PER (Phone error rate in %) of CNN adaptation based on speaker
code (fSA-SC). The first column shows whether the adaptation NN is added
above the convolution layer (Reordering) or not (No reordering), and whether
the convolution layer receives the speaker code (SC) or not. The “FT” col-
umn shows the index of the fine tuned layers of the original CNN. “1” refers
to the convolution layer, and “2” refers to the second hidden layer of original
speaker independent CNN.

# Configuration FT PER

1 CNN Baseline None 20.07%
2 No reordering 1 24.57%
3 Reordering 1 19.14%
4 Reordering + CNN gets SC 1 19.25%
5 Reordering + CNN gets SC 2 19.44%
6 Reordering + CNN gets SC 1, 2 19.55%
7 Reordering + CNN gets SC None 19.31%

8, pooling size of 6, and pooling shift of 2, and it uses 84 feature maps.

These experiments test different design and tuning options. The results are

listed in Table 5.3, where rows 3 and 4 compare the performance of feeding

the speaker code to the convolution layer, and rows 4 to 7 compare differ-

ent fine-tuning options for the original CNN weights. The table shows that

adding the adaptation NN before the CNN layer worsens the performance.

Meanwhile, using the adaptation NN to transform the features computed

after the pooling layer yields a significant performance gain, namely improv-

ing the PER from 20.07% to 19.14% by using only 7 adaptation utterances.

The table shows that no gain is obtained by feeding the speaker code to the

convolution layer.

Performance of Speaker Code Based Speaker Adaptation with Dif-

ferent Model Architectures

This section compares the improvement of using the proposed adaptation

techniques with different baseline model architectures. Both fSA-SC and
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mSA-SC are compared with both a relatively small NN with two hidden

layers and a deeper NN with five hidden layers. All fully connected layers

have 1000 hidden nodes each. Moreover, the performance with CNNs is

measured. The CNN structure used is the same as the one used in the

experiments in the previous section. The speaker codes sizes are 50 for the

fSA-SC model and 300 for the mSA-SC model.

Table 5.4 shows the results. The first three rows show that feature space

adaptation works better with the shallower model, while the rows 4 to 7 show

that the model space adaptation works better with the deeper model. This

can be attributed to the difficulty of learning the adaptation NN when there

are many layers separating the output layer and the adaptation NN as the

training signal becomes weaker. Moreover, row 7 shows that using a deeper

adaptation NN doesn’t help. On the other hand, model space adaptation

benefits from having deeper models, as this allows the adaptation weights to

learn better transformations where the relative reduction of PER increased

from 5.4% to 6.2% even with using an improved baseline speaker independent

model as in row 5.

The use of a CNN improves the performance either when it’s used as the

speaker independent model or when it is used as an adaptation NN. Rows 8

and 10 show that adapting a speaker independent CNN using an adaptation

NN with fully connected layers achieves better overall performance than using

a CNN for adaptation. The best overall performance is obtained in row 10

with a PER of 19.14%.

Performance of Using Adaptive Feature Scaling Weights

This section contains experiments that evaluate the performance of the speaker

adaptation using adaptive feature scaling weights as described in section 5.4.

Table 5.5 shows the results of the first set of experiments which compare the

performance of adding the scaling weights to different layers of a CNN. The

same CNN structure is used as in the previous experiment where one pair of
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Table 5.4: Comparison of different adaptation model structures. The table
shows the performance of adapting three different models: a DNN with 2
hidden layers in rows 1-3, a DNN with 5 hidden layers in rows 4-8, and a CNN
in rows 9-10. The third column shows the PER. The fourth column shows
the relative reduction in PER as compared with the speaker independent
baseline.

Model PER rel. error reduction

1 NN (2×1000) 22.8% -
2 (1) + mSA-SC 21.6% 5.4%
3 (1) + fSA-SC (2×1000) 20.5% 10.2%

4 NN (5×1000) + PreTraining 21.61% -
5 (4) + mSA-SC 20.3% 6.2%
6 (4) + fSA-SC (2×1000) 20.70% 4.2%
7 (4) + fSA-SC (4×1000) 20.73% 4.1%
8 (4) + CNN 19.77% 8.5%

9 CNN 20.07% -
10 (9) + fSA-SC (2×1000) 19.14% 4.6%

convolution and pooling layers is used in addition to two fully connected hid-

den layers. The second column mentions the indexes of the layers to which

scaling weights are added, where 0 indicates multiplying the input features

by adaptive scaling weights, and 1 indicates scaling the features computed

by the convolution layer. The table shows that adaptively scaling the input

features is not helpful while adding the scaling weights to layers 1 and 2

yields the biggest improvement (from 20.07% for the baseline to 19.2% after

adaptation).

The second set of experiments aims at measuring the performance of

combining the two adaptation methods of speaker code and scaling weights.

The results are shown in table 5.6. The experiments consider adapting both

a DNN with 2 hidden layers and the same CNN structure as in the first set

of experiments.
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Table 5.5: Adaptation performance based on adaptive scaling weights, which
are applied to various layers of the baseline CNN. The second column in-
dicates to which layers the speaker code added. The “layer 0” indicates
multiplying the input features by the scalar weights directly.

# Configuration PER

0 baseline 20.07%
1 layer 0 20.28%
2 layer 0+1 19.79%
3 layer 0+1+2 19.65%
4 layer 1 19.64%
5 layer 1+2 19.20%
6 layer 2 19.21%

For the DNN, the table shows an improvement of using the scaling weights.

However the speaker code based method alone yields a better performance,

even better than combining the scaling weights method with it. While for

the CNN, the scaling weights works equally well as the speaker code method,

and combining the two methods brings even more improvement and reaches

a PER of 18.86%. These results show that the scaling weights provide an

alternative rapid adaptation method that can work with both DNNs and

CNNs without the need of training special adaptation weights. Though, the

performance is not as good as the speaker code based method. This can be

attributed to the lack of generic adaptation weights that can learn a generic

transformation function and benefit from the training speakers.

Furthermore, statistical significance tests are performed to confirm the

improvement obtained by using the proposed speaker adaptation techniques.

Similar to section 4.3, a matched pairs segment sentence word error rate test

[114] is performed. The tests show that all adaptation techniques presented in

table 5.6 show significant improvement over the the corresponding unadapted

model at level p = 0.001. Though, the tests on TIMIT do not show significant

differences between different adapted models that belong to the same row of

the table.
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Table 5.6: Adaptation performance by combining and the speaker code based
adaptation (SC) and the adaptive scaling weights (SW) methods for both
DNN and CNN.

Model Baseline SC OW SC+OW

DNN 22.83 20.47 21.56 20.69
CNN 20.07 19.14 19.20 18.86

5.5.2 Switchboard Experiments

Experimental Setup

In order to confirm the obtained results on TIMIT for the speaker code based

adaptation, a set of LVASR experiments have been conducted in [136] on the

Switchboard dataset (SWB). The SWB data set consists of the 309 hour

Switchboard-I set and the 20 hour Call Home English set, which contain

about 1540 speakers in total. In this work, the standard NIST 2000 Hub5e

set is used for evaluation which contains 1831 utterances from 40 speakers

different from the speakers in the training data set.

For all SWB experiments, PLP features are used to represent the speech

signal including the static, first and second derivatives. The speech features

are pre-processed with cepstral mean and variance normalization (CMVN)

per conversation side. A baseline GMM-HMM with 8,991 tied states and 40

Gaussians per state is first trained based on maximum likelihood estimation

(MLE) and then discriminatively trained using the minimum phone error

(MPE) criterion. A trigram language model (LM) is trained using 3M words

of the training transcripts and 11M words of the “Fisher English Part 1”

transcripts. The baseline triphone GMM-HMM model is used to obtain the

state level alignment labels for both training and evaluation sets for DNN

training and adaptation. The baseline DNNs are trained as described in [93]

with the RBM-based pre-training and the BP-based fine-tuning using the

frame-level CE criterion.

In the evaluation set (Hub5e00), each test speaker has a different number
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of utterances. Two different cross-validation (CV) configurations for adap-

tation and testing are used. In the first configuration, in each CV run, a

fixed number of utterances (10 or 20) are used as adaptation data and the

remaining utterances from the same speaker are used to evaluate recognition

performance. The process is rotated for many runs until all test utterances

are covered. The overall recognition performance is computed as the average

of all runs. In the second configuration, the maximum number of utterances

per speaker are used for adaptation, called max adaptation. For every test

utterance in Hub5e00, all remaining utterances from the same speaker are

used to adapt the DNN. Then, the adapted model is used to test this single

utterance. The process is repeated for all utterances in Hub5e00. Since the

number of utterances is different for each speaker in the test set, the number

of adaptation utterances used in this case varies from minimum 25 utter-

ances to maximum 67 utterances per speaker (46 utterances per speaker on

average). During adaptation, a fixed learning rate of 0.02 is used to update

the speaker code and using a mini-batch of 128 samples. Five epochs are

used to learn the speaker codes.

The adaptation NN used in the fSA-SC model has two hidden layers with

2048 nodes each. The speaker code size is 500. To learn the weights of the

adaptation NN, a learning rate of 0.1 is used with a learning rate annealing

and stopping criterion as the previous section. A learning momentum of 0.9

is used. The used mini-batch size is 1024 samples.

The mSA-SC model uses a similar training procedure, but with a different

learning rate schedule. The initial learning rate is 0.5, and it is halved on

every epoch after the initial three ones. A bigger code size of 1000 is used

due to the lack of the adaptation NN.

Results

The first set of results, obtained by adapting a baseline DNN model that has

three hidden layers with 1024 nodes per layer, is shown in table 5.7. It shows
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Table 5.7: Performance of speaker code based adaptation in WER % on
SWB. The baseline model is a DNN with 3 hidden layers of 1024 nodes each.
The relative reduction in WER to the baseline is shown between brackets.

Baseline WER Adapt. 10 20 max

DNN (3 × 1024) 18.9%
fSA-SC 17.5 17.3 17.0 (10.0%)
mSA-SC 17.8 17.8 17.4 (7.9%)

that the fSA-SC model decreases the word error rate (WER) from 18.9%

to 17.5% using only 10 adaptation utterances, and to 17.0% using the max

setup. The mSA-SC model achieves slightly smaller gains with this baseline.

On the other hand, the first two rows of table 5.8 show a better performance

of the mSA-SC model than the fSA-SC model when a deeper and better

baseline DNN is used that has six hidden layers with 2048 nodes each.

The other rows of table 5.8 show more gains by using a number of en-

hancements to the training and adaptation procedures using the mSA-SC

model. Row 3 shows the result of using better label alignments that are

obtained using the trained baseline DNN used in row 1. The new alignments

are used to train a new speaker independent DNN as a new baseline and

adapting it. The new baseline performance improves from 16.2% to 15.9%.

After speaker adaptation the WER reaches 14.2%.

Row 4 shows that the baseline significantly improves when a MMI se-

quence based criterion is used to learn the DNN weights and reaches an error

rate of 14.0% and of 13.1% after speaker adaptation. When the MMI crite-

rion is used also to learn the adaptation weights, the WER drops to 12.8%

as shown in row 5. In this case, the MMI is used to optimize the weights

after the initial weights learned using the CE criterion.

The last two rows, 6 and 7, show the performance when both the adap-

tation weights Bl and the DNN weights Wl are jointly trained in a speaker

adaptive training scheme (SAT). To train the SAT models, first the DNN

weights Wl are initialized using the RBM based pre-training. Moreover, the

adaptation weights Bl are initialized with the values obtained in the mSA-
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Table 5.8: Performance of speaker code based adaptation with improved
optimization in WER % on SWB. The baseline model is a DNN with 6
hidden layers of 2048 nodes each. The “Baseline” column shows the training
criterion of the baseline model. The “Adapt” column shows the adaptation
model and its training criterion. The last three columns shows the PER %
when 10, 20, or the maximum number of adaptation utterances are used.

Baseline WER Adapt. 10 20 max

1
CE 16.2

fSA-SC 15.7 15.5 15.4 (4.9%)
2 mSA-SC 15.2 15.2 14.9 (8.0%)
3 CE-Realigned 15.9 mSA-SC 15.0 14.7 14.2 (10.7%)
4

MMI 14.0
mSA-SC 13.6 13.3 13.1 (6.4%)

5 + MMI 13.4 13.2 12.8 (8.6%)
6

RBM pre-trained -
mSA-SC + SAT 13.9 13.5 13.3

7 + SAT + MMI 12.6 12.4 12.1

SC model used to obtain the results in row 5 of the table. Row 6 shows

the performance when the whole model is optimized using the CE criterion.

When an MMI criterion is used, SAT training achieves the best performance

of 12.1% as shown in row 7.

5.6 Conclusion

This chapter has proposed two speaker adaptation methods, a speaker code

based speaker adaptation and speaker adaptation using adaptive scaling

weights. Both methods are very effective in performing rapid speaker adap-

tation due to the reduced number of parameters. Experimental results show

that both methods improve the performance of the speaker independent base-

line and that the speaker code based method achieves more improvement.

Two forms of the speaker code based method have been proposed. The

first form performs a model space adaptation where the hidden layer ac-

tivations of the DNN are modified based on additional adaptation weights

that scale the speaker code values reaching each hidden node. The second
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form performs a feature space adaptation. This is achieved by adding an

adaptation NN that non-linearly transforms the input based on the given

speaker code. The original speaker independent DNN (possibly after tuning)

receives the transformed input. Experimental results show that the feature

space adaptation performs better with shallower DNNs while the model space

adaptation performs better with deeper DNNs. A possible interpretation is

that the adaptation NN has the capacity to better model speaker variations,

but that learning becomes more difficult with deeper models because of the

increased number of intermediate layers through which the error signal has to

be backpropagated. On the other hand, the model space adaptation contains

more weights as more layers are added and hence more learning capacity.

The speaker code method is appealing because of its use of two sets

of parameters: a large set of adaptation weights that are learned from all

training speakers, and a small set of speaker code parameters that are learned

for each speaker separately. The adaptation weights can learn the general

variation patterns among different speakers, and thus the personal speaker

characteristics can be represented using a small speaker code. This leads to

the ability to perform rapid speaker adaptation.

Experimental results show that various modifications can be applied dur-

ing training of the weights to obtain more improvements in the performance.

Results show that obtaining better label alignments using a well trained DNN

improves the adaptation performance. Moreover, using an MMI sequence

training criterion improves both the speaker independent and adapted mod-

els’ performance. Finally, they show that a speaker adaptive training strategy

improves the system performance especially when an MMI criterion is used.

Moreover, the speaker code based method is able to improve the performance

of the better performing CNN models.

In addition, the results show that a simple scaling of the DNN features

by using adaptive scaling weights can improve the speech recognition perfor-

mance. This method can be applied to both DNN and CNN models. More-
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over, this method can be combined with the speaker code based method to

improve the overall system performance.

Finally, the results show that even though a CNN can normalize some

speaker variations, more improvements can be obtained when the CNN is

combined with speaker adaptation techniques.
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Chapter 6

Deep Segmental Neural

Network for ASR

6.1 Segmental Models of ASR

All ASR models described in the previous chapters are frame based models

which depend on scoring each frame as belonging to one of a number of tar-

get classes. Each frame score is computed based on a fixed size input. The

final recognition is done by finding the label sequence that has the maximum

total score of all frames. The total score is estimated using the HMM, where

it combines frame scores to estimate the total score of a certain hypothesis.

Typically, the frame scores are the log likelihoods of seeing the observations

related to the frame being scored. The score of the whole sequence is esti-

mated by summing the scores of individual frames. However, this summation

makes the assumption that consecutive frames are independent of each other

given the HMM states, which is unrealistic because consecutive frames are

highly correlated especially within the same acoustic unit. Other well known

limitations of the HMM model include the restriction of using frame level fea-

tures and weak duration modeling. Moreover, the DNN used in the hybrid

DNN-HMM model is used to compute class label posterior probability given
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a fixed size context around the frame. This probability is used to estimate

the likelihood of the observation given the state label. Although it works well

in practice, this architecture deviates more from the frame conditional inde-

pendence assumptions of the HMM, since this estimation depends on a wider

context, most of which is shared between consecutive frames. Moreover, this

conversion from state (senone) label posterior probability to conditional like-

lihood may lead to modeling difficulties. All these problems of the HMM and

frame-based models may impair the performance of these models.

An alternative that has received some attention is to use speech segmental

models [142, 143]. However, segmental models are more complex and they

have achieved less success than frame-based ones. A segmental model esti-

mates scores for whole segments directly. Hence, it handles the dependency

between frames in the segment in a better way. Moreover, it can use differ-

ent kinds of features that depend on the knowledge of segment boundaries

including segment duration. However, segmental models are more compu-

tationally complex to use since all possible segment sizes may have to be

considered during decoding. Moreover, the model should be able to compare

labels of different lengths that map to different numbers of observations in

the form of segments. For some models, this requires using some form of

normalization of scores for sequences of different lengths.

One class of segmental models is generative. Generative segmental mod-

els try to model the likelihood of generating variable length segments given

the segment labels. The HMM is a special case of these models when the

segment frames are conditionally independent. For the sake of comparison,

the HMM computes the likelihood of an observation sequence yT1 given the

label sequence aN1 as:

p(yT1 |aN1 ) =
∑
sT1

p(yT1 |sT1 , aT1 )p(sT1 |aN1 ) (6.1)

where the sum ranges over all state sequences sT1 that are possible for the
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label sequence aN1 . The observation likelihood given the state sequence can

be estimated using:

p(yT1 |sT1 , aT1 ) =
T∏
t=1

p(yt|st) (6.2)

In the HMM, the conditional likelihood of a single frame p(yt|st) can be es-

timated from a GMM or by using an NN in the hybrid model. The factor

p(sT1 |aN1 ) designates the possible pronunciations and transition probabilities

between the HMM states which implicitly models the duration as a geometric

distribution. For a generative segmental model, all frames in each utterance

are grouped into a number of segments. To estimate the likelihood of an ob-

servation sequence, all possible segment lengths, represented as the sequence

lN1 , should be considered. The likelihood can be formulated as described in

[142]:

p(yT1 |aN1 ) =
∑
lN1

p(yT1 |lN1 , aT1 )p(lN1 |aN1 ), (6.3)

where

p(yT1 |lN1 , aT1 ) =
N∏
i=1

p(y
t(i)
t(i−1)+1|li, ai), (6.4)

where y
t(i)
t(i−1)+1 is the sequence of frames that belong to the ith segment. Eq.

6.3 allows the use of an explicit duration model represented as the probability

p(lN1 |aN1 ).

Different models are possible for modeling the segment frames and their

trajectory within the segment. Some techniques try to model the segment

trajectory either as a parameteric model as in [144] and [143] or as a non-

parametric model as in [145, 146, 147]. Other work modeled the relation

between consecutive frames using a conditional Gaussian distribution where

a frame is conditioned on the previous one as done by Wellekens [148]. The

work in [149] used a linear dynamical system while the work in [150, 151]

used a nonlinear dynamical system. [142] presented further discussion of
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different models used for modeling the segment observations. Note that all

these efforts depend on frame-based features.

Other models use variable length features that are called landmarks [152].

A generative probabilistic framework is used to model both segment features

and the landmarks. Moreover, it handles the difference of length between

different label sequence hypotheses by using anti-phones for normalizing the

resultant different score spaces.

Another class of segmental models depends on direct classification mod-

els. The segmental conditional random field (SCRF) model has received

much interest as a successful direct model [153, 154, 155]. It models the

label sequence posterior probability directly without using the Bayes’ rule.

The SCRF uses feature functions that measure the relation between acoustic

and linguistic events and segment labels. The overall posterior probability

of the segment label sequence is modeled as a log linear model of the values

of these functions. The learning in this model is done by finding the optimal

weights that are multiplied with the values of these feature functions. This

model avoids the restrictive conditional frame independence assumption that

is imposed by the HMM. Moreover, it allows using different kinds of features

that are not restricted to single frames and it may benefit from the infor-

mation of segment boundaries. Two disadvantages of the SCRF are that it

depends on a rich set of hand designed features and is a shallow model.

This chapter proposes a new segmental model called a deep segmental

neural network (DSNN) [156]. This model combines both the deep neural

network and the segmental direct model. A deep neural network computes

segment scores for each possible segmentation and label combination given

the frame observations of this variable length segment. The DSNN better

exploits the output of the DNNs without the need of indirect computation

of observation likelihoods from the posteriors estimated from the DNN. It

directly exploits the scores computed from the DNNs. Moreover, this model

does not require any manual tuning of the features, since they are learned
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directly within the DNN. This chapter first describes the formulation of the

model and how segment scores are computed. Then, it describes how learning

of model parameters is performed. The experimental setup and obtained

results are described next. At the end, conclusions are drawn.

6.2 The Deep Segmental Neural Network

6.2.1 Model formulation

The model depends on using a neural network for estimating scores for dif-

ferent labels for variable length segments. These scores are used to estimate

the posterior probability of the whole label sequence. Assuming we are given

a sequence of feature vectors, X, for an utterance, we use L = {l1, · · · , lK}
to represent a sequence of labels, which may be defined at the subphoneme,

phoneme, syllable or even word level, and T = {t0, t1, · · · , tK} to denote one

particular time alignment for the label sequence, i.e. the boundaries of seg-

ments. The label sequence and the associated time sequence form a segment

sequence. The conditional probability for the segment sequence Y given the

speech utterance X is estimated as

P (L, T |X) =
exp

(∑
i s(li, ti−1 + 1, ti|X) + u(L)

)∑
L̂,T̂ exp

(∑
j s(l̂j, t̂j−1 + 1, t̂j|X) + u(L̂)

) , (6.5)

where s(li, ti−1 + 1, ti|X) represents the acoustic score of getting label li for

the segment that has the time boundaries [ti−1+1, ti], and u(L) stands for the

total LM score computed for the entire label sequence L. The denominator

in Eq. 6.5 sums over all possible label sequences L̂ and time alignments T̂ . If

we are only interested in the label sequence L, we can sum over all possible

time alignments to yield the posterior probability of one particular L given

112



X as:

P (L|X) =
∑
T

P (L, T |X)

=

∑
T exp

(∑
i s(li, ti−1 + 1, ti|X) + u(L)

)∑
L̂,T̂ exp

(∑
j s(l̂j, t̂j−1 + 1, t̂j|X) + u(L̂)

) . (6.6)

where the time alignment T is considered as a hidden variable and it is han-

dled by summing over all possible time alignments for a given label sequence.

Another possibility is to consider only the best time alignment as valid, i.e.

maximizing over different time alignment as follows:

P (L|X) =
maxT exp

(∑
i s(li, ti−1 + 1, ti|X) + u(L)

)∑
L̂ maxT̂ exp

(∑
j s(l̂j, t̂j−1 + 1, t̂j|X) + u(L̂)

) . (6.7)

In this work, the first formulation in Eq. 6.6 is called the sum formulation

(SF) while the second formulation in Eq. 6.7 is called the max formulation

(MF). The max formulation is more similar to what is done during decoding

where only the best time alignment is found. The experiments compare the

performance of the two formulations.

In the proposed model, a DNN is used to compute the acoustic scores

for each segment, s(li, ti−1 + 1, ti|X), and thus the model is named the deep

segmental neural network (DSNN). The scores used here may take values

of any suitable range and they do not need to be log probabilities. The

total acoustic and language score of a label and segmentation sequence is

the negated value of the energy function of the model. The DNN learns to

compute the scores that maximize the conditional probability of the label of

the training data. This can be done by using a linear activation function in

the output layer. The probability of classifying the segment with a certain

label increases as the score of this label increases and vice versa.

Typically, the DNN receives a fixed size input. Hence, it is challenging

to feed the segment boundary information and handle the variable length
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feature vectors of the segment. In [157], a segmental neural net model was

proposed, where the variable length segment was sampled to a fixed number

of frames and some frames may be skipped or repeated. In this work, we

propose two methods to compute the segment scores. In the first method

the segment score is computed from a frame-based DNN that receives a fixed

size input and computes a score for each frame of the segment. Afterwards, a

simple aggregation function is used to combine the variable number of scores

and estimates a single score that represents the whole segment. In the second

method, a more complicated and powerful segment aware DNN is used to

compute the whole segment score. The two methods are described in the

following sections.

Note that any type of LM can be used in the above definition. In the

performed experiments, a simple phoneme bigram LM is used to compute

u(L). Other more complex LMs can be used as well but they may require

some approximations such as constraining the search space with word graphs

instead of summing over all possible segment sequences. Moreover, a method

like that in [153] can be used, where different nodes of the language model

representing different n-grams are considered as different states and each

segment is classified to one of these states.

6.2.2 Segment score based on frame-based DNNs

A standard DNN takes a fixed length input while a speech segment has a

variable length. In this section, the DNN computes label scores for each

frame. An aggregation function is used to convert the multiple scores com-

puted for all segment frames into one score for each label that represents

the whole segment. Three different aggregation functions are presented here:

middle frame, last frame, and summation. The three aggregation functions

are shown in Figs. 6.1(a-c). These methods are simple score functions and

they do not benefit from the segment boundary information.

114



a b c d

NN

o

a b c d

NN

o

a b c d

NN

o

NN

.    .  .  .    .

a b c d

NN

o

NN

In Segment Right ContextLeft Context

a. Middle Frame b. Last Frame

c. Segment Sum d. Segment-aware NN

Figure 6.1: Different methods of computing segment scores.

Middle frame

The first method, shown in Fig. 6.1.a, estimates the segment’s score using

the DNN score computed for the middle frame within the segment; i.e.,

s(li, ti−1 + 1, ti|X) = o(li,
ti + ti−1 + 1

2
) (6.8)

This method requires that the DNN receives a large enough fixed length

input that covers all or most of the segment frames. The disadvantage of this

method is that it may prefer deleting segment labels if the score is negative,

which may happen if a certain segment is noisy or is not clear enough. This

leads to increased deletion errors.

Final frame

This method picks an arbitrary frame from the segment as the representative

frame and defines the segment boundaries as starting after the last frame of
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the previous segment and ending at the selected frame as shown in Fig. 6.1.b.

The segment score function is defined as :

s(li, ti−1 + 1, ti|X) = o(li, ti). (6.9)

In this method, the selected segment boundaries are not the true ones.

This is not a problem since the aim of speech recognition is finding the

label sequence and the segment time alignments are not needed for most

applications. This method is more flexible than the previous one and allows

the system to pick the frame that has the maximum score; however, it has

the same problem as the previous one of increased deletion errors.

Summation of segment frames

This method estimates the segment score as the sum of the scores of all

frames in the segment as shown in Fig. 6.1.c. The segment score is defined

as:

s(li, ti−1 + 1, ti|X) =

ti∑
t=ti−1+1

o(li, ti) (6.10)

The advantage of this method is that it considers all frames in the utter-

ance without skipping any. This reduces the number of deletion errors since

if a segment label is deleted, the scores of the frames of this segment will be

added to the wrong segment and the overall score is decreased. This makes

the system prefer to avoid these deletion errors. On the other hand, this

method results in a bigger scale for scores from longer segments, since more

scores are summed.

6.2.3 Segment scores based on a segment-aware DNNs

In order to better exploit segment boundary information, a segment aware

DNN is used. It takes all segment information and directly computes segment

scores. As shown in Fig. 6.1.d, the DNN takes all segment frames in addition
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Figure 6.2: Structure of the deep segmental neural network (DSNN)

to a number of context frames. However, speech segments are of variable

length and the DNN expects fixed-length inputs. To solve this problem,

this section proposes to use the structure shown in Fig. 6.2. Instead of

interpolating the segment frames into a fixed number of frames, a number

of DNNs, which take a fixed size input, are used to compute features of

different parts of the segment. These DNNs are represented as trapezoids

in the lower part of Fig. 6.2 and will be called Feature Extraction Networks

(FENs). Since there are a fixed number of these FENs distributed along

the segment, the features computed by them are concatenated as a fixed

size feature vector that represents the variable size segment. This feature

vector is further analyzed by a number of other upper hidden layers and an

output layer that are shown in the upper part of the figure. The output

layer computes the scores of assigning different labels to the given segment.

The combined upper layers and lower FENs forms a composite DNN that is

called a segment aware DNN.
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In this work, the FENs are distributed along different parts of the segment

as follows: Nc FENs are distributed inside the segment boundaries with equal

space between them. The first and last of these FENs are placed just after

and before the segment boundary (i.e. at time ti−1 + 1 and ti). Nl FENs

process the left context and Nr FENs process the right context and all of

them are equally spaced. The space between the FENs that process the

segment depends on the segment length, while the other FENs that process

the left and right contexts have a fixed space. In Fig. 6.2, the following

values are used: Nc = 4 and Nl = Nr = 2.

The weights of the FENs may be tied. In this work, all FEN weights

are tied except the output layer which may or may not be tied to allow the

computation of different features.

6.3 Learning of DSNN Model

This section describes the training of the DSNN model for either the sum for-

mulation in Eq. 6.6 or the max formulation in Eq. 6.7. In this work, the label

sequence posterior probability in Eqs. 6.6 and 6.7 is maximized. This tech-

nique is called conditional maximum likelihood estimation (CMLE) in the

ASR community. This is considered as a discriminative training technique

where the posterior probability of the correct label sequence is maximized

while the posteriors of incorrect label sequences are minimized. Other ob-

jective functions are possible, like minimum phone or word error criteria or

large margin estimation. The training can either proceed in a stochastic gra-

dient descent method where the NN weights are updated after computing

the derivative for each utterance, or in a batch mode by the summing the

derivatives of all utterances. In either case, the derivative for one utterance

is needed.
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6.3.1 Learning based on the sum formulation

In the sum formulation of Eq. 6.6, all time alignments are considered. As-

sume that X represents the frames of the speech utterance and L is the

correct label sequence. For any particular weight matrix, W, in the DSNN,

the derivative of logarithm of the objective function in Eq. 6.6 can be com-

puted based on the chain rule as follows:

∂ log p(L|X)

∂ W
=
∑
l,ts,te

∂ log p(L|X)

∂ s(l, ts, te)
· ∂ s(l, ts, te)

∂ W
(6.11)

where s(l, ts, te) denotes the segmental acoustic score computed by the DNN

defined by W.

The second derivative in the right hand side of Eq. 6.11 can be computed

directly using the back-propagation algorithm. The first derivative represents

the error signal that reaches the top layer for each input that represents a

different segment label or boundaries. It can be computed based on Eq. 6.6

as follows:

∂ log p(L|X)

∂s(l, ts, te)
=

∑
T∈A(L,l,ts,te) p(L, T |X)

p(L|X)
−

∑
(L̂,T̂ )∈B(l,ts,te)

p(L̂, T̂ |X) (6.12)

where A(L, l, ts, te) denotes the set of time alignments of the label sequence

L that assign time boundaries (ts, te) with label l, and B(l, ts, te) denotes

the set of all possible label sequences and time alignments that embed the

segment (l, ts, te)).

The summations in Eq. 6.12 contain an exponentially increasing number

of terms. However, if a bigram language model is used in Eq. 6.6, these sum-

mations can be recursively evaluated using the forward-backward algorithm.

In this case, the forward backward algorithm is defined slightly differently

than for the HMM. αs(l, t) is defined as the sum of partial scores of all paths

that lead to label l starting at time t excluding the current label score. αe(l, t)
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Figure 6.3: Illustration of recursive “forward” computations of αs and αe.

is the sum of partial scores of all paths that end with a segment label l at

time t. Fig. 6.3 illustrates one step in computing αs(l, t), which accounts for

all labels before time t, and one step in computing αe(l, t), which considers

all different lengths of segment l ending at time t. These two quantities can

be computed recursively according to:

αs(l, t) =
∑
l̂

αe(l̂, t− 1) exp
(
w(l; l̂)

)
(6.13)

and

αe(l, t) =
∑
d

αs(l, t− d+ 1) exp
(
s(l, t− d+ 1, t)

)
(6.14)

where d represents the segment duration that is summed from 1 to the max-

imum duration of segment l, and w(l; l̂) is the language model score for

transitioning from label l̂ to l.

Similarly, βs and βe are defined for the backward direction as:

βe(l, t) =
∑
l̂

βs(l̂, t+ 1) exp
(
w(l̂; l)

)
(6.15)

βs(l, t) =
∑
d

βe(l, t+ d− 1) exp
(
s(l, t, t+ d− 1)

)
(6.16)
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𝛼𝑒 𝑙1, 𝑡𝑠 − 1

𝑤 𝑙1; 𝑙

𝛼𝑠 𝑙, 𝑡𝑠

𝑡𝑠 − 1

𝛽𝑠 𝑙1, 𝑡𝑒 + 1

…

𝑙1

𝑙2

𝑙3

𝑙𝑛

𝑠 𝑙, 𝑡𝑠, 𝑡𝑒|𝑋

Σ Σ

𝛽𝑒 𝑙, 𝑡𝑒

Forward pass

…

𝑡𝑒 + 1

𝑙1

𝑙2

𝑙3

𝑙𝑛

𝑤 𝑙; 𝑙1

Backward pass

… …

Figure 6.4: Illustration of the summation of score paths that include the
segment (l, ts, te).

Based on the above definitions, the terms of Eq. 6.12 can be estimated.

The second term can be estimated as:

∑
(L̂,T̂ )∈B(l,ts,te)

p(L̂, T̂ |X) =
αs(l, ts) exp

(
s(l, ts, te)

)
βe(l, te)∑

l αe(l, |X|)
, (6.17)

where the numerator is the sum of all paths that include the segment (l, ts, te)

based on α and β computations as shown in Fig. 6.4. The denominator is

the total sum of the scores of all labels sequences and time alignments at the

last frame |X|. It is the sum of all possible endings of the label sequence.

Usually, only one label that represents a start/end silence state is allowed for

the beginning or the end of the sequence.

To estimate the first term in Eq. 6.12, the label sequence has to be

restricted to the correct L. This can be done efficiently by redefining α and

β in terms of the index of the label within the correct label sequence instead

of the label itself as follows:

α̂s(i, t) = α̂e(i− 1, t− 1) exp
(
w(li; li−1)

)
, (6.18)
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α̂e(i, t) =
∑
d

α̂s(i, t− d+ 1) exp
(
s(li, t− d+ 1, t)

)
(6.19)

and:

β̂e(i, t) = β̂s(i+ 1, t+ 1) exp
(
w(li+1; li)

)
, (6.20)

β̂s(i, t) =
∑
d

β̂e(i, t+ d− 1) exp
(
s(li, t, t+ d− 1)

)
(6.21)

Hence:∑
T∈A(L,l,ts,te) p(L, T |X)

p(L|X)
=
∑
i|li=l

α̂s(i, ts) exp
(
s(l, ts, te)

)
β̂e(i, te)

α̂e(|L|, |X|)
(6.22)

Model learning requires the computation of s(l, ts, te) for all possible l, ts,

and te, where the duration of each label l is limited to the maximum duration

seen for each label in the training set. This computation has been efficiently

implemented by parallelization in a GPU. After these computations, the

derivatives of the log objective function are back-propagated to all DNNs to

update each weight matrix via stochastic gradient ascent.

6.3.2 Learning based on the max formulation

In order to learn using the gradient descent method, the derivative of Eq.

6.7 is to be estimated as follows:

∂ log p(L|X)

∂ W
=
∑
l,ts,te

∂ log p(L|X)

∂ s(l, ts, te)
· ∂ s(l, ts, te)

∂ W
, (6.23)
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which has the same form as Eq. 6.11. But the first derivative considers only

the maximum time alignment and is estimated as follows:

∂ log p(L|X)

∂ s(l, ts, te)
=


1−

∑
(L̂,T̂ )∈B(l,ts,te)

p(L̂, T̂ |X) if (l, ts, te) ∈ S(L, T ∗)

0−
∑

(L̂,T̂ )∈B(l,ts,te)

p(L̂, T̂ |X) if (l, ts, te) /∈ S(L, T ∗)

(6.24)

where S(L, T ∗) is the set of segments (li, ti−1+1, ti) that are defined by L and

T ∗, and T ∗ is the time alignment of L that has the maximum score. Alter-

natively, T ∗ can be the correct target alignment if it is available. Note that

B(l, ts, te) is defined differently here and it includes only the label sequences

having max time alignments that embed the segment (l, ts, te).

The max formulation depends on finding the best time alignment of the

correct label sequence and also of each alternative label sequence to compute

the posterior probability in Eq. 6.7. The same is also needed during learning

to compute the sum of posterior probabilities in Eq. 6.24. The problem

is that there is an exponentially large number of possible label sequences

and it is not possible to estimate the scores of all these label sequences in a

reasonable time. In practice, however, only a few of these sequences have a

large enough score to affect the total posterior probability or to compete with

the correct label sequence. Hence most of the label sequences can be pruned

in a fairly early stage. A strategy that uses an N-best list of sequences will

give a good approximation of the learning signals. Moreover, these competing

label sequences will have many shared sub-sequences. An efficient solution

is to find a lattice that comprises all competing label sequences and estimate

the scores directly from the lattice. This lattice will include most of the

N-best sequences.

Fig. 6.5 shows a part of a lattice. The lattice has a number of nodes

where each node represents segments that have the same label and end at

the same time. The arcs coming into this node are for the same segment label
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𝑎

𝑏

𝑐

𝑐1 𝑐2 𝑐3

𝑐1 𝑐2 𝑐3

… …

Figure 6.5: Training Lattice with N = 2. It shows two alternative starting
times of segments C1,C2, and C3 (that map to phoneme C) each with a
different history (Phonemes A and B).

but may have different start times and different label histories. To estimate

the posterior probability, the partition function is estimated by summing

the scores of all arcs of the lattice. The sums in Eq. 6.24 are estimated

by summing the scores of all segments in the partial paths that lead to

the segment (l, ts, te) plus the scores of all paths starting at the end of this

segment which can be done efficiently with a linear complexity.

6.4 Decoding

In decoding, the aim is to search for the best label and alignment sequence for

each speech utterance X in the test set. With the use of a bigram language

model, the search can be carried out using the Viterbi version of the forward

algorithm in Eqs. 6.13 and 6.14 by replacing summation with maximization

as follows:

αs(l, t) = max
l̂
αe(l̂, t− 1) exp

(
w(l; l̂)

)
(6.25)

αe(l, t) = max
d
αs(l, t− d+ 1) exp

(
s(l, t− d+ 1, t)

)
(6.26)
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Moreover, in order to be able to recover the best label sequence and time

alignments, the max history should be stored during the iterations of the

Viterbi algorithm as follows:

θs(l, t) = argmax
l̂

αe(l̂, t− 1) exp
(
w(l; l̂)

)
(6.27)

θe(l, t) = max
d
αs(l, t− d+ 1) exp

(
s(l, t− d+ 1, t)

)
(6.28)

This decoding is much slower than the standard HMM Viterbi algorithm

as it requires consideration of all possible segment durations. In the per-

formed experiments, decoding run time is accelerated by parallelizing the

Viterbi search on the CPU cores and the DSNN segment scores computation

on the GPU.

6.5 Experimental Evaluation

6.5.1 Experimental setup

Experiments are performed on the standard TIMIT phone recognition task

using the core test set. The experimental setup of the baseline hybrid DNN-

HMM model is the same as the one used in section 4.3.

The DSNN models 61 phonemes and each phone is modeled as a sequence

of three segments. Hence, a segment represents a sub-phonetic unit similar

to an HMM state. For training the DSNN model, weight derivatives are

computed as described in section 6.3.1 and the weights are updated after

processing each utterance. The same weight annealing and stopping strat-

egy is used as the hybrid DNN-HMM model and as described in section

4.3. The SF-DSNN model doesn’t need any time alignments since it sums

all time alignments for both the correct label sequence and the competing

sequences. Target time alignments may be used for training the MF-DSNN
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model. The time alignments are estimated from a trained HMM model. In

the experiments presented here, time alignments are used during the training

of the MF-DSNN model unless mentioned otherwise. The log probabilities

of a bigram language model are used as the language model scores in DSNN

model unless mentioned otherwise. Duration scores are not used in the DSNN

models.

6.5.2 Results

Experiments are conducted to measure the performance of the proposed

DSNN with different formulations and score functions. Table 6.1 summa-

rizes the results and compares the DSNN to the hybrid DNN/HMM model.

All the models shown in the table have 4 fully connected hidden layers with

1000 nodes. The composite segment aware DNN has eight FENs. Each FEN

has one hidden layer with 1000 nodes and the hidden layer weights are shared

among the eight FENs. Each FEN has 150 units in the output layer with

unshared weights. This leads to 1200 nodes in the second hidden layer of the

composite segment aware DNN after concatenating the FEN outputs (just

slightly bigger than the 1000 nodes of the used DNNs). The FENs are dis-

tributed as described in Fig. 6.2 where four FENs are distributed uniformly

within the segment boundaries and two FENs are placed outside each side

of the segment with a shift of three frames between them. For example, if

a segment starts at time t and ends at time t+ 6, the context FENs will be

placed at times: t− 4, t− 1, t+ 7, and t+ 10, while the segment FENs will

be placed at times: t, t+ 2, t+ 4, and t+ 6.

The first row of table 6.1 shows the performance of the hybrid DNN-

HMM model. Since all DSNN experiments does not use a duration model,

the DNN-HMM model score without using the implicit HMM duration model

(represented as state transition probabilities) is presented in the second row.

Rows from 3 to 5 show the performance of the SF-DSNN model with different

simple aggregation functions when a frame based DNN is used. All of them
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have worse PERs than the DNN-HMM model. This may indicate that there

are some problems with the proposed method as compared with the DNN-

HMM model. The DSNN model training optimizes the sequence posterior

probability as opposed with the frame classification cross entropy criterion

used in the DNN-HMM model. Another factor is that the mini-batch samples

are selected randomly in the case of the DNN-HMM model, while they belong

to same utterance in the case of the DSNN model. This randomization of

batch samples is proven to be better than using samples coming from the

same utterance. On the other hand, the segment aware DNN achieves better

performance than the frame based DNNs and achieves a PER of 22.9%.

This indicates that the segment-aware DNN can benefit from the segment

boundary information and handle the correlation within the segment better

than the simple aggregation within the HMM model or by using the shown

simple aggregation functions. Row 7 shows that when the max formulation is

used with a segment aware DNN using a lattice with size parameter (N) being

16, the performance is significantly improved over either the sum formulation

or the hybrid DNN-HMM model. This shows that the max formulation

performs better than the sum formulation.

Moreover, statistical significance test is performed to confirm the im-

provement obtained by using the MF-DSNN model. Similar to section 4.3, a

matched pairs segment sentence word error rate test [114] is performed. The

test shows that the performance obtained by using the MF-DSNN model

shown in row 7 of the table is significantly better than the DNN models in

rows one and two at level p = 0.05.

Table 6.2 shows the performance of different structures of the segment-

aware DNN when the sum formulation is used. The same FENs distribution

is used as in table 6.1. It shows that using deeper structures is better.

Moreover, the best performance is achieved when the FEN output weights

are not shared. In this case, each FEN is computing a different feature

vector suitable to its location within the segment. Moreover, using a CNN
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Table 6.1: Performance of the proposed DSNN model with different segment
score functions and formulations on the TIMIT data set. The performance
is shown in PER% when a language model is used (LM) and without using
a language model (no LM).

Model LM no LM

1 Hybrid DNN-HMM (with duration) 22.28% -
2 Hybrid DNN-HMM (no duration) 23.31% 24.63%

3 SF-DSNN - Middle Frame 25.61% 24.72%
4 SF-DSNN - Last Frame 24.59% 25.36%
5 SF-DSNN - Segment Sum 25.42% 25.35%

6 SF-DSNN - Segment Aware DNN 22.90% 23.92%
7 MF-DSNN - Segment aware DNN 21.60% 22.13%

layer improves the performance of the model and achieves a PER of 21.87%.

Table 6.3 shows the performance with different numbers of FENs. Gen-

erally, increasing the number of FENs increases the performance. On the

other hand, increasing the size of the FEN output layer does not improve

the performance. Table 6.4 shows that better performance is obtained with

deeper models (both the FENs and the upper hidden layers).

Table 6.5 shows the effect of training lattice size on the performance of

the trained MF-DSNN model. The first column ‘N’ defines the lattice size in

terms of the number of different histories kept at a phone terminating node.

The table shows that a good performance is obtained with N of 4 while

about 24 minutes are taken for one training epoch. This is only about five

times slower than the hybrid DNN-HMM model while significantly better in

performance. Increasing N further prolongs the training time while it just

slightly improves the performance.
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Table 6.2: PER comparisons among different structures of the composite
segment-aware DNN on TIMIT within the SF-DSNN model. The first col-
umn shows the number of hidden units in each hidden layer. The two pairs of
brackets represent the lower FENs and the upper hidden layers, respectively.
The second column shows whether the weights of the FENs output layers
are shared or not. The last row shows the performance when the first hidden
layer is a LWS-CNN layer (a pair of convolution and pooling layers) that has
84 feature maps and computes 20 frequency bands.

Architecture features sharing PER

{300}, {1000} shared 24.15%
{300}, {1000} non-shared 24.40%
{1000,500}, {1000,1000} shared 23.52%
{1000,150}, {1000,1000} non-shared 22.90%
{CNN,150}, {1000,1000} non-shared 21.87%

Table 6.3: Effect of using different number of FENs in the segment aware
DNN on the performance of the MF-DSNN model. The first column shows
the number of FENs inside the segment. The second column shows the
number of FENs on the left or right contexts. The third column shows the
number of units in the FEN output layer.

MF LF/RF FS Test Dev

3 1 150 22.2 20.26
3 1 250 22.75 20.38
3 2 150 22.12 20.12
4 1 150 22.8 20.39
4 2 150 21.79 20.03
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Table 6.4: Effect of the depth of the segment aware DNN on the performance
of the MF-DSNN model. The first two columns show the number of layers
of the FENs (DF) and the number of upper hidden layers (DU).

DF DU Test Dev

1 2 22.47 20.48
2 1 22.15 20.08
2 2 21.79 20.03
3 2 21.75 19.53
3 3 21.26 19.47

Table 6.5: The performance and training time of the MF-DSNN model on
TIMIT dataset with different training lattice sizes (N). The first column
shows the number of different histories kept at each lattice node. The per-
formance is shown for the core test set (Test) and the development set (Dev)
in PER% and the training time in minutes per epoch.

N Test Dev Epoch Time

4 21.79 20.03 24
8 21.79 19.63 33
16 21.60 19.45 44
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6.6 Conclusions

This chapter has presented a novel segmental model — the deep segmental

neural network. The DSNN estimates the acoustic scores for variable-length

segments and models the label sequence conditional probability directly. This

eliminates the assumption that consecutive frames are independent of each

other given the state and thus it has a potential to perform better than the

DNN/HMM hybrid model.

A number of segment scoring functions have been described in this chap-

ter. The segment aware DNN has shown the best performance as compared

with the other frame-based ones. This can be attributed to the improved

capability to handle the dependency between consecutive frames within the

segment when the composite segment aware DNN is used.

Moreover, two mathematical formulations of the label sequence poste-

rior probability have been presented. Experimental results show that the

max-formulation outperforms the sum-formulation. The max-formulation

maximizes only the best time alignment which is more consistent with de-

coding. This may be one reason for the better performance of the MF-DSNN

model. Another reason may be the difficulty of distributing suitable scores

between different time alignments of the same label sequence using the sum

formulation. More experiments are needed to prove the validity of these

interpretations.

Experimental results show that the bi-gram log probabilities can be used

as language scores that lead to improved performance. Other language mod-

els can be used as well, but further research is needed to improve language

modeling within the DSNN model.

Moreover, the current research did not attempt to directly model the

segment duration. Further research is needed to investigate suitable methods

to exploit the duration information and incorporate it within the model.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation has presented a number of novel methods that exploit the

power of DNNs to improve the performance of ASR systems.

Chapter 4 has proposed applying CNNs to speech recognition in such

a way that CNN structures can explicitly handle certain speech variations.

The CNN structure is designed based on the understanding of the nature

of speech signals. Invariance to small frequency shifts is obtained by ap-

plying convolution and pooling along the frequency axis. These frequency

shifts normally occur in speech signals due to speaker differences. In ad-

dition, a new limited weight sharing scheme has been proposed which can

handle speech features in a better way. Experimental results show that it pro-

vides a slightly better accuracy than the standard full weight sharing scheme

originally proposed for image recognition applications. Moreover, the limited

weight sharing scheme leads to a much smaller number of units in the pooling

layer, resulting in a smaller model size and lower computational complexity

than the full weight sharing scheme. Experimental results show that CNNs

can yield significantly better performance than the popular DNNs. The im-

proved performance (about 6-9% relative error reduction) has been observed
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on two ASR tasks, namely the TIMIT phone recognition dataset and a large

vocabulary voice search dataset. Moreover, a set of experiments has been

conducted to investigate the effects of various CNN parameters and design

settings. Results show that (1) energy information is very beneficial in a

CNN; (2) ASR performance is sensitive to pooling size, with a large enough

pooling size being needed to achieve the best accuracy; and (3) pre-training

a CNN using the convolutional RBM can yield better performance.

Chapter 5 has proposed two speaker adaptation methods, one using speaker

codes and one using adaptive scaling weights. Both methods can perform

rapid speaker adaptation due to the reduced number of free parameters in

adaptation. Experimental results show that both methods improve the per-

formance of the speaker independent baseline and that the speaker code

based method achieves better improvement.

Two forms of the speaker code based method have been proposed. The

first form performs a model space adaptation where the hidden layer ac-

tivations of the DNN are modified based on additional adaptation weights

that scale the speaker code values reaching each hidden node. The second

form performs a feature space adaptation. This is achieved by adding an

adaptation NN that non-linearly transforms the input based on the given

speaker code, and the original speaker independent DNN (possibly after tun-

ing) receives the transformed input. Experimental results show that the fea-

ture space adaptation performs better with shallower DNNs while the model

space adaptation performs better with deeper DNNs. A possible interpre-

tation is that the adaptation NN has the capacity to better model speaker

variations, but that the learning of these variations becomes more difficult

with deeper models because of the increased number of intermediate lay-

ers through which the error signal has to be back-propagated. Conversely,

model space adaptation gains weights as more layers are added and hence

more learning capacity.

The speaker code method is appealing because of its use of two sets of pa-
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rameters: a large set of adaptation weights that are learned from all training

speakers, and a small set of speaker code parameters that are learned for each

speaker separately. The adaptation weights can learn the general variation

patterns among different speakers; thus, the personal speaker characteristics

can be represented using a small speaker code. This enables rapid speaker

adaptation.

Experimental results show that certain modifications applied during train-

ing of the weights can lead to more improvements in the performance. The

results show that obtaining better label alignments using a well trained DNN

improves the adaptation performance. Moreover, using an MMI sequence

training criterion improves both the speaker independent and adapted mod-

els’ performance. Finally, they show that a speaker adaptive training strategy

improves the system performance especially when an MMI criterion is used.

Moreover, the speaker code based method is able to improve the performance

of the better performing CNN models.

The results also show that a simple scaling of the DNN features by using

adaptive scaling weights can improve the speech recognition performance.

This method can be applied to both DNN and CNN models. Moreover, this

method can be combined with the speaker code based method to improve

the overall system performance.

Chapter 6 has presented a novel segmental model — the deep segmen-

tal neural network (DSNN). The DSNN estimates the acoustic scores for

variable-length segments and models the label sequence’s conditional proba-

bility directly. This eliminates the assumption that frames are independent

of each other given the state and thus has potential to perform better than

the DNN-HMM hybrid.

A number of segment scoring function are described in this chapter. The

segment aware DNN shows the best performance as compared to the other

frame-based ones. This can be attributed to the improved handling of depen-

dency between consecutive frames within the segment when the composite
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segment aware DNN is used.

Moreover, two mathematical formulations of the label sequence poste-

rior probability are proposed. Experimental results show that the max-

formulation performs better than the sum-formulation. The max-formulation

maximizes only the best time alignment, which is what is done during decod-

ing. This may be one reason for the better performance of the MF-DSNN

model. Another reason may be that it is difficult to assign suitable scores to

different time alignments of the same label sequence using the sum formula-

tion. More experiments are needed to prove the validity of these interpreta-

tions.

Experimental results show that the N-gram log probabilities can be used

as language scores and they lead to improved performance. Other language

models can be used as well. Though, further research is need to improve

language modeling within the DSNN model.

7.2 Future Work

The proposed work in this dissertation may open up some new venues of

research that can lead to even better deep neural network models. The

following list includes a number of related ideas that need further research:

• Applying convolution and pooling through time proved to be benefi-

cial. Further research is needed to enhance the convolution structure

and combine frequency and time convolution. In [158], experimental re-

sults showed improved accuracy when a special structure of convolution

along time is combined with convolution through frequency. Though,

the work does not use pooling along time. I believe that pooling can

help in handling speed variations that lead to temporal shifts, but that

further research is needed to find suitable structures.

• The CNN is believed to provide more robustness against certain kinds
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of noise. Though, further experiments are needed to test the ability of

CNN in handling noisy speech as compared with the DNN. The same

is to be said to compare the improvement obtained by CNN over DNN

with multi-speaker dataset as compared with that of a single speaker

dataset.

• Finding the speaker code through back-propagation may need further

research. As more iterations may lead to over-fitting, the role of regu-

larization in the estimation of speaker codes should be examined.

• Speaker codes may be extended to account for information beyond

speaker characteristics such as environment factors, accent, and other

information that can be inferred from the speech context.

• The proposed segmental DSNN has shown improved performance over

the DNNs that process fixed length inputs on the TIMIT phone recogni-

tion task. Further experiments are needed to confirm the performance

improvement on large vocabulary ASR tasks. Moreover, the model

can be used to re-score N-best lists or recognition lattices generated by

other models, which still needs to be investigated.

• The proposed mathematical formulation of the label sequence posterior

probability in the DSNN model allows integration of arbitrary sources

of information like language and duration. Conducted experiments

showed the benefit of adding language model information. Further

research is needed to measure the effect of adding other sources like

duration.

• In the conducted experiments, a bigram language model is used but

it is not optimized within the DSNN framework. Further research can

find better ways to learn language model parameters.

• The proposed DSNN has been used to model the structure of speech

features within the segment frames. The same method can be extended
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to combine the features of consecutive segments by adding other lay-

ers in a hierarchy that process longer spans. Further research in this

direction is needed.
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