
AN APPROACH TO DESIGNING CLUSTERS FOR LARGE DATA 
PROCESSING 

 

 

 

RONI SANDEL 

 

 

 

A THESIS SUBMITTED TO 

THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

MASTER OF ARTS 

 

 

GRADUATE PROGRAM IN INFORMATION SYSTEMS AND 
TECHNOLOGY 

YORK UNIVERSITY 

TORONTO, ONTARIO 

 

NOVEMBER 2014 

 

© RONI SANDEL, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by YorkSpace

https://core.ac.uk/display/77104385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii 

 

 

Abstract 

Cloud computing is increasingly being adopted due to its cost savings and abilities to 

scale. As data continues to grow rapidly, an increasing amount of institutions are 

adopting non standard SQL clusters to address the storage and processing demands of 

large data. However, evaluating and modelling non SQL clusters presents many 

challenges. In order to address some of these challenges, this thesis proposes a 

methodology for designing and modelling large scale processing configurations that 

respond to the end user requirements.  Firstly, goals are established for the big data 

cluster. In this thesis, we use performance and cost as our goals. Secondly, the data is 

transformed from relational data schema to an appropriate HBase schema. In the third 

step, we iteratively deploy different clusters. We then model the clusters and evaluate 

different topologies (size of instances, number of instances, number of clusters, etc.).  We 

use HBase as the large data processing cluster and we evaluate our methodology on 

traffic data from a large city and on a distributed community cloud infrastructure.   
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1. Introduction 

1.1 Problem and Motivation 

Enterprises are increasingly adopting cloud computing because of its economic 

advantage and its ability to scale [2],[3],[4]. By eliminating up-front costs, the cloud 

allows companies to scale hardware and software resources on a demands-need basis [2], 

[5]. These benefits have also allowed for improved management of Big Data. 

Today, Big Data is a popular term to describe the exponential growth and 

availability of data, both structured and unstructured [6]. The characteristics of Big Data 

are commonly described as variety, volume, and velocity [7]. As systems are becoming 

more and more complex, data is increasing in size and thus effective data management of 

large data sets has been a major research problem. According to Agrawal et al. [8], 

researchers have been seeking to manage Big Data through both distribution and scaling 

for more than three decades.  

This need has led to the birth of a new class of systems referred to as NoSQL 

which are being widely adopted by various organizations [9]–[12]. These types of 

databases are different than traditional relational databases. NoSQL removes support that 

is found in traditional relational databases, such as SQL language, transactions,  and other 

additional features found in traditional relational databases in exchange for faster reading, 

faster writing, larger storage, ease of expansion, and low cost [13]. It is also important to 

note that open source relational database management systems have a shortage of cloud 
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features and organizations have to opt for commercial solutions, which can get very 

costly making NoSQL databases more attractive [8].  In the domain of NoSQL, the 

MapReduce application [14] and the open source implementation known as Hadoop [15] 

has also seen widespread adoption in industry and academia alike. Hadoop is an open-

source framework that was designed for distributed processing of large data sets across 

clusters of machines. MapReduce is a library developed by Google research lab to 

process large amounts of data. These tools will be explained further in the background 

sections of the thesis. 

Due to early stages in development of these applications, organizations have been 

increasingly facing challenges pertaining to Big Data environments. The first challenge is 

coming up with an objective way to evaluate the HBase clusters with faster performance. 

There is a high number of possible ways to configure HBase clusters which leaves open 

the question of what approach should be taken to address this challenge and how can the 

complexities of this challenge be controlled in a reasonable way.  

 This leads to the second challenge of finding which factors would have an impact 

on the performance of the HBase cluster. For instance, will having larger number of 

machines verses smaller number of machines affect performance? Will having a 

particular HBase data schema influence performance over choosing a different data 

schema? 

 Furthermore, measuring response times over a larger space can take an extensive 

amount of time. As an outcome of this, these experiments can limit resource availability 
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on a resource-limited cloud service and can be very costly in terms of dollars on a paid 

cloud service due to the amount of instances running over a longer period of time. This 

leads us to the third and final challenge, which is extrapolating a model that can help us 

predict response times in a larger space. Having a predictive model would enable 

researchers to have the option of approximating response times with only a smaller space, 

allowing for shorter periods of experimentation. 

This thesis addresses these questions by illustrating the process in a transportation 

traffic domain scenario. Furthermore, this thesis provides a framework for optimizing Big 

Data topologies by comparing different metrics and extrapolating a model from these 

metrics. 

1.2 Research Objectives 

The main research objective is to quantify and model the performance of HBase 

clusters.  

To reach the research objective we are going to focus on the following research 

questions: 

 Research Question 1: How do we objectively compare the performance of 

different HBase clusters? 

 Research Question 2: Which factors have an impact on performance for HBase? 

 Research Question 3: How can we model the response time of an HBase cluster? 

To answer the questions above we start with the following hypotheses: 
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 Hypothesis 1: To answer the first question, we have to consider that there are a large 

number of possibilities for constructing the clusters. If we consider all clusters have the 

same cost, then we can limit their numbers; therefore starting with a cost we hypothesize 

that we can build a set of configurations that can be compared.  

Hypothesis 2: To answer the second question, we hypothesise that the schema and the 

nature of the configuration of the database is going to have an impact on the response 

time.  

Hypothesis 3: For the third question, our hypothesis is that we can build an 

experimental model (linear or non-linear) and use it for prediction. 

1.3 Methodology and Research Contributions 

Our research methodology is based on experimentation and the use of public 

traffic data and public cloud infrastructure. Based on the experiments, we made the we 

made the following contributions: 

We demonstrated that we can model the response time of an HBase cluster as a 

linear model. The parameters of the model depend on the cluster type and schema. We 

show that the model can be constructed with few experiments and then can be used 

across a large space to predict the response times. We found that we can abstract all our 

experiments by providing a linear regression formula.  

A process methodology was introduced for evaluating clusters with faster 

performance and modelling the clusters. We also utilized this methodology in real-

time. This methodology consists of three main steps and two iterative processes. First, 
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data files are imported into a MySQL database in bulk.  Secondly, the data from MySQL 

is then migrated to HBase. This part is repeatable in order for comparing different data 

schemas after the best cluster has been found. Lastly, workloads are executed on the 

clusters, in which response times are compared and modelled. This process is also 

repeatable so that response times are compared for different topologies and a regression 

model can be extrapolated.  

Adding MD5 to the Row-Key of a 2-Dimensional schema resulted in significant 

improvement in response time. Due to HBase ordering row-keys in lexicographical 

order and the way HBase groups keys per region, a row-key without an MD5 is known to 

cause what is called “region hotspotting”. Region hotspotting is the phenomenon where 

one or only a few machines (or RegionServers) get large amounts of client traffic 

therefore causing performance degradation and potentially leading to region 

unavailability [16]. We found that overall performance was dramatically affected and that 

adding an MD5 resulted in significantly faster results. 

Larger clusters were found to perform faster with out-of-the-box Cloudera settings. 

When executing workloads on different clusters, we found that clusters with the most 

instances performed the fastest in terms of response time while clusters with the lowest 

amount of instances performed the slowest. Clusters were configured to have the same 

maximum capacities but different amounts and types of instances. This means that the 

out-of-the-box settings do not fully utilize clusters and more research needs to be done in 

the future to better configure these clusters for maximum utilization. 
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1.4 Thesis Organization 

The thesis is structured as follows. Chapter 2 provides a background on important 

concepts related to this research. Chapter 3 presents related research in the Big Data field. 

Chapter 4 presents the details about the methodology for comparing clusters and presents 

our original contributions. Chapter 5 describes the experiments and results that validate 

the methodology. Lastly, we summarize the thesis and present possible work for the 

future in Chapter 6. 
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2. Background 

This chapter describes the background work, specifically the concepts and tools 

that are used in this thesis. We provide a brief overview of the main areas, namely cloud 

computing, SAVI, Hadoop, HBase, and Cloudera as well as how these concepts and tools 

are used in our thesis. 

2.1 Cloud Computing 

According to the National Institute of Standards and Technology (NIST), cloud 

computing is a “model for enabling ubiquitous, convenient, on-demand network access to 

a shared pool of configurable computing resources (eg. networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction.” [17]  

Developers with innovative ideas for new Internet services no longer require large 

capital in order to purchase hardware or the human expense to operate it nor do they need 

to be concerned about buying more network capacity than they need to in order to meet 

user expectations. Rather, they pay for resources as they need them or in other words, 

“pay-as-you-go” [18]. The NIST calls this “On-demand self-service” and extends the 

definition by saying that consumers can do this automatically without requiring human 

interaction with each service provider [17]. 

Another characteristic of cloud, according to NIST, is that capabilities can be 

accessed through standard mechanisms that promote use by heterogeneous thin or thick 
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client platforms (eg., mobile phones, tablets, laptops, and workstations) as they are 

available across the network. This is a feature known as “Broad network access” [17]. 

In Cloud Computing, the provider’s computing resources are pooled to serve 

multiple consumers, with different physical and virtual resources dynamically assigned 

and reassigned according to consumer demand. Customers generally have no control or 

knowledge over the exact location of the provided resources but may be able to specify 

the location of these resources at a higher level (eg. country, state, or datacenter). This is 

known as “resource pooling” [17]. Examples of resources include storage, processing, 

memory, and network bandwidth.  

  Cloud computing has also allowed for rapid elasticity of capabilities, meaning 

that their systems are able to adapt to workload changes by provisioning and de-

provisioning resources in an autonomic fashion, such that at each point in time the 

available resources are comparable to the current demand as closely as possible [17],[18].  

Cloud systems can also automatically control and optimize resource use (eg. 

storage, processing, bandwidth, and active user accounts) by a measurement (such as 

pay-per-use). This is known as a “measured service” [17].  

 The three most popular cloud service models are [8],[17]:  

1) Infrastructure as a Service (IaaS) 

2) Platform as a Service (PaaS) 

3) Software as a Service (SaaS)  
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IaaS is a capability to provision processing, storage, networks, and other 

computing resources where consumer is able to deploy and run software, which can 

include operating systems and applications [8],[17]. The consumer does not manage or 

control the underlying infrastructure but has control over operating systems, storage, and 

deployed applications, as well as possible limited control over other select networking 

components such as host firewalls. 

Moreover, PaaS is where a provider gives the consumer the capability to deploy 

onto the cloud infrastructure applications created using programming languages, libraries, 

services, and tools supported by the provider [8],[17]. The consumer however does not 

manage or control the underlying cloud infrastructure which includes network, servers, 

operating systems, or storage, but has control over the deployed applications and possibly 

settings for the application-hosting environment. 

Lastly, SaaS is the ability for the consumer to use the provider’s running 

applications on the cloud infrastructure [8],[17]. The applications can be accessed from 

various client devices through either a thin client interface such as web browser or a 

program interface. The consumer does not manage or control the underlying 

infrastructure, including network, servers, operating systems, storage, or individual 

application capabilities, unless the application includes user specific application 

configuration settings. 

Cloud Computing also includes several different deployment models [17]: 

1) Private Cloud 
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2) Community cloud 

3) Public cloud 

4) Hybrid cloud 

Private cloud is a cloud infrastructure for exclusive use by a single organization 

comprising multiple consumers (eg. business units) [17],[18]. It may be owned, managed, 

and operated by the organization, a third party, or a combination of them. It may also 

exist on or off the organization’s premises. Examples of private cloud vendors include 

Rackspace Private Cloud
1
 and HP Helion

2
. 

Furthermore, community cloud is a cloud infrastructure used exclusively by a 

specific community of consumers from organizations that have shared goals [17]. It may 

be owned, managed, and operated by one or more of the organizations in the community, 

a third party, or some of them.  

Thirdly, a public cloud is a cloud infrastructure open for use by the general public 

[17],[18]. It may be owned, managed, and operated by a business, academic, or 

government organization, as well as a combination of them. It exists on the premises of 

the cloud provider. Examples of public cloud include Amazon EC2
3
 and Rackspace1. 

A combination of the above models (two or more) is known as a hybrid cloud 

[17]. These models are bound together by standardized technology that enables data and 

application portability (eg. load balancing between two clouds). 

                                                 
1
 http://www.rackspace.com 

2
 http://www8.hp.com/ca/en/cloud/helion-overview.html 

3
 http://aws.amazon.com/ec2 
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In this thesis, we use a PaaS known as Smart Application Virtual Infrastructure 

(SAVI)
4
 testbed (described in the next section) to provision and decommission instances 

(which are also known as virtual machines) with varying flavors (medium, large, and 

extra large). The flavors of these instances will be explained in the Chapter 6 

(experiments and results) portion of this thesis. We describe SAVI in the next section. 

2.1.1 Smart Application Virtual Infrastructure (SAVI) 

According to Pan et. al., numerous nations are investing into national-scale 

research programs focused on the Future Internet and applications [19]. These research 

programs have been addressing content oriented paradigms, mobility, and ubiquitous 

access to networks, cloud-computing-centric architectures, security, and experimental 

testbeds. In Canada, Smart Application Virtual Infrastructure (SAVI) project (involving 

several universities and industrial partners) was established to address the design of 

future application platforms built on flexible, versatile, and evolvable infrastructure that 

can be readily deployed, maintained, and decommissioned. These applications can be 

large in scale, short-lived, and distributed [20].  

A platform known as Smart Application Virtual Infrastructure (SAVI) testbed 

(TB) is used for deploying the virtual machines. The SAVI TB platform architecture 

includes components and interfaces. The interfaces are for both internal and external 

communications.  

The SAVI TB is comprised of the following physical entities: 

                                                 
4
 www.savinetwork.ca 
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1) Core Nodes 

2) Edge Nodes 

3) SAVI Network 

4) SAVI TB Control Center 

Resources on Core nodes and Edge nodes are used to create applications. These 

resources include computations, storages, networks, optical access, wireless access, and 

reconfigurable hardware resources. The Core nodes are contained by conventional cloud 

computing resources (compute, storage, and basic networking). On the other hand, the 

Edge nodes include more advanced resources such as reconfigurable hardware resources. 

The SAVI network is also considered a resource in the SAVI TB.  

Core nodes, Edge nodes, and SAVI TB control center are all unified by the SAVI 

network which is a dedicated research network. Core and Edge Nodes together are 

referred to as the extended cloud in SAVI.  

Edge Nodes are deployed on sites located at participating universities (including 

York University). The Core Nodes are deployed in fewer universities compared to the 

Edge Nodes. For instance there can be one or two Core nodes across SAVI TB platform. 

For this thesis, the Core node is used, which is hosted in University of Toronto.  

SAVI testbed uses Open Stack
5
, which is open source software for building 

clouds. This software also includes a “portal” user interface, accessible by any browser, 

allowing for easy provisioning and decommissioning of machines for building 

                                                 
5
 http://www.openstack.org/ 
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applications and experiments. These applications and experiments can be deployed to 

different components of the SAVI TB [20]. In SAVI, applications and experiments are 

different. Applications are aimed at delivering features to end users and need to guarantee 

a service level where as experiments are shorter-lived, used by researchers, and aimed at 

gathering measurement data or user feedback. However, both applications and 

experiments are treated equally by SAVI TB.  

An application or experiment is deployed on SAVI TB by allocating slices of 

resources to that application or experiment. All SAVI resources are virtualized in SAVI 

TB and allocation to each application or experiment is performed by the SAVI TB 

Control and Management plane. 

2.2 Big Data 

 Big data is a term used for massive data sets having large, varied and complex 

structure that pose difficulties in storing, analyzing, and visualizing for further processes 

or results [6][21]. It is also a popular term to describe the exponential growth and 

availability of data, both structured and unstructured [6].  

The characteristics of Big Data were first described in 2001 by Laney as variety, 

volume, and velocity [7]. Variety is the different varieties of data (such as photos, audio, 

video, etc). Volume is the amount of data storage needed for the data (terabytes, 

petabytes, etc). The velocity is the speed of data coming in and going out (real time, 

periodic, batch, etc). To date, these attributes have become the defining attributes of Big 

Data. However, authors and business specialists extended these defining attributes with 
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further aspects such as dedicated storage, management, and analysis techniques 

[22],[23],[24]. IBM further added a fourth V known as veracity, emphasizing the aspect 

of data quality [25]. Ebner et al. [26] has taken these extensions into account and has 

defined Big Data as “as a phenomenon characterized by an ongoing increase in volume, 

variety, velocity, and veracity of data that requires advanced techniques and technologies 

to capture, store, distribute, manage, and analyze these data”. 

The quest for conquering challenges posed by management of big data has led to 

a wide range of systems [8] such as Hadoop and HBase. In this thesis we use Hadoop, 

HBase and Cloudera, which are talked about in the next sections. 

2.2.1 Hadoop 

The Apache Hadoop software library
6
 is a framework that allows for distributed 

processing of large data sets across many instances and consists of several modules 

(including HDFS and MapReduce). It is designed to scale from single to thousands of 

nodes, each offering local computation and storage. Rather than relying on hardware to 

deliver high-availability, HDFS itself is designed to detect and handle failures at the 

application layer [15]. 

Moreover,  HDFS consists of the Master/Slave architecture [27] in which a master 

server controls the overall distributed file system spanning many servers. The HDFS 

architecture is divided into nodes called Name nodes and Data nodes. The architecture is 

illustrated in Figure 1 [27].  

                                                 
6
 http://hadoop.apache.org/ 
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Figure 1. HDFS Architecture 

 

Furthermore, the Name node contains all information of HDFS metadata, 

including where these data nodes are and controlling the replication of the data blocks. 

Blocks of data are replicated across data nodes so that if any block fails, data is not lost. 

This includes data nodes that are on a different rack (physical location of machine). Each 

Data node runs on a separate machine and stores HDFS data in files in its local file 

system [27].  

The Data node has no knowledge about HDFS files and stores each block of 

HDFS data in a separate file in its local file system. The Data node does not create all 

files in the same directory but rather uses an algorithm to determine the optimal number 
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of files per directory and creates subdirectories appropriately. Creating all local files in 

the same directory may not be optimal because the local file system might not be able to 

efficiently support a huge number of files in a single directory. When a Data node starts 

up, it scans through its local file system and generates a list of all HDFS data blocks that 

correspond to each of these local files. It then sends this report to the Name node [15]. 

Next we are going to look at MapReduce. 

 MapReduce is a library developed by the Google research lab to process large 

amounts of data [14]. Hadoop has a variation of the MapReduce known as the Hadoop 

MapReduce framework which works on HDFS [27]. When using MapReduce, the user of 

the library expresses two functions: map and reduce. Map, written by the programmer, 

takes an input pair and produces a set of intermediate key/value pairs. The MapReduce 

library then groups together all intermediate values associated with the same intermediate 

key and passes them to the Reduce function. The Reduce function, also written by 

programmer, accepts an intermediate key and a set of values for that key. It merges 

together these values to form a possibly smaller set of values. This allows users to handle 

lists of values that are too large to fit in memory [14]. In the next section, we look at 

HBase and how it improves upon HDFS. 

2.2.2 HBase 

According to HBase documentation, HDFS is well suited for storage of large files 

but HDFS documentation states that it is not a general purpose file system and does not 

provide fast individual record lookups in files [28]. HBase, on the other hand, provides 

fast record loops and updates for large tables.  
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HBase
7
 is an open-source database modeled after Google’s BigTable [29]. HBase 

is currently being used in large data centric applications such as Facebook and Twitter 

because of its portability and massive scalability [11], [12]. It is part of Apache Hadoop 

project and runs on top of HDFS, providing capabilities found in Google BigTable, 

including fault tolerance when storing large quantities of sparse data. It also adds to 

HDFS functionality by allowing for random, real time, read and write access to large 

data. HBase applications are written in Java utilizing HBase API. 

Moreover, HBase has what are called RegionServers, which are built on top of the 

data nodes of HDFS and a Master which is built on top of the Name node of HDFS. This 

is illustrated in Figure 2. The master is in charge of coordinating and monitoring the 

RegionServers in the cluster. RegionServers in turn, are responsible for serving and 

managing regions. Regions are chunks of rows of a table.  

                                                 
7
 http://hbase.apache.org/ 
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Figure 2. HBase Architecture 

 

Furthermore, HBase is made up of a table, which is made up of multiple rows. 

Each row contains a row key. Rows are sorted alphabetically by the row key as they are 

stored, therefore the row key design is important as the goal is to store data in such a way 

that related rows are grouped together by row keys. Rows also contain one or more 

columns. Columns include a column family and a column qualifier, delimited by a colon 

character. Column families group a set of columns and their values. Each column family 

has a set of properties relating to storage, such as how data should be compressed, 
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whether values should be memory cached, etc. Each row in the table has the same 

column families, but a given row might not store anything in a given column family if 

there is no data. Column families are specified when the HBase table is created.  Column 

qualifiers are added to column families to provide the index for a given piece of data. As 

column qualifiers can change greatly between rows, they are considered mutable. The 

combination of a row, column family, and column qualifier is a cell. A cell contains a 

value and a timestamp, which represents the value’s version. Timestamps by default are 

represented by the time on the region server when the data was written and is written 

alongside the value [30]. 

The hierarchy of the region is as follows [28]: 

 Table (HBase Table) 

o Region (Regions for the table) 

 Store (Store per ColumnFamily for each Region for the table) 

 MemStore (One MemStore for each Store for each Region for the 

table)  

 StoreFile (0 or more StoreFiles for each Store for each Region for the 

table) 

o Block (Blocks within a StoreFile within a Store for each 

region for each table) 

 

When data is imported, it writes to the region’s MemStore (in-memory space) and 

when the MemStore gets full, it is flushed to StoreFiles on HDFS [31]. A StoreFiles is a 
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façade of HFile (in HDFS). 

 As data increases, there may be many StoreFiles in HDFS which can degrade 

read/write performance. Thus HBase will automatically pick two smaller StoreFiles and 

rewrite them into a bigger one in a process known as “minor compaction” [31]. For some 

situations, or when triggered by a configured interval (once a day by default), a major 

compaction runs automatically. Major compactions will drop the deleted or expired cells 

and rewrite all the StoreFiles, which will usually improve performance. However, during 

this process, a major compaction rewrites all of the Stores’ data and therefore a heavy 

volume of disk I/O utilization and network traffic might occur during the process. This 

would not be acceptable on a heavy load system with many users.  Along with each 

RegionServer, there is a log file known as a “HLog”. A “HLog” records all edits to the 

StoreFiles. It is also called the HBase “write-ahead-log” [32]. 

2.2.3 Cloudera 

“Cloudera Distribution Including Apache Hadoop” (CDH) or “Cloudera” 
8
 is a 

distribution of open-source Apache Hadoop-based tools. It comes in both  free version 

and paid version. The paid version is known as Cloudera Enterprise and the free version 

is known as Cloudera Express. Cloudera Express is used in this thesis. Cloudera Express 

uses Hadoop Distributed File System (HDFS) and Hadoop MapReduce as the main core 

elements.  

The remaining tools of Cloudera Express allow for easy integration between Big 

Data Tools, as well as support for data management (including monitoring tools), data 

                                                 
8
 http://www.cloudera.com/ 
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accessibility, data migration, and querying. In this thesis, we use Cloudera Express 

Manager to set up, monitor, and manage the Hadoop clusters.  

These tools include: 

1) Hadoop Distributed File System 

2) Hadoop MapReduce 

3) HBase  

4) ZooKeeper
9
 

5) Sqoop
10

 

 

The first three tools are described in previous sections under Hadoop and HBase 

respectively. ZooKeeper is an open-source centralized service used to enable highly 

reliable distributed coordination. It acts as a centralized manager for the entire cluster in 

terms of electing a master server, managing group membership, and managing metadata 

[33]. It was designed for developers to focus mainly on their application logic rather than 

coordination. 

Sqoop is short for “SQL to Hadoop” [34]. It is service used to transfer bulk data from 

relational databases such as MySQL to Apache Hadoop data stores (such as HDFS and 

HBase) and vice versa. Taking advantage of MapReduce, Hadoop’s execution engine, 

Sqoop performs the transfers in a parallel manner. Sqoop is executed using command-line 

statements in shell. 

                                                 
9
 http://zookeeper.apache.org 

10
 http://sqoop.apache.org 
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2.3 Summary 

 In this chapter, we gave a background about relevant concepts regarding this 

research. We described how cloud computing allows for on-demand resources over the 

internet and saves on cost. We also talked about SAVI testbed, a cloud computing 

platform, which is used in this thesis. Lastly, we went over the concept of Big Data and 

described the software that facilitate in its management (Hadoop, HBase, and Cloudera).  
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3. Related Work 

In the last chapter we provided an in-depth background of Big Data. However, 

there are many challenges facing the Big Data research field. In this chapter, we are 

going to analyze these challenges and the existing contributions made by the research 

community.  

The chapter is organized as follows: 

Firstly, in section 3.1 we review different approaches to modelling data schemas 

and how this relates to our research. Secondly, in Section 3.2, we present literature 

relevant to Big Data configurations for large data processing. Lastly, in Section 3.3, we 

look at how existing literature shows that certain performances in Big Data clusters can 

be modelled and used to predict values in a larger space. 

3.1 Data Schemas for Big Data 

Researchers have looked at which data schemas would be optimal for querying 

data in a Big Data context. Hadoop allows for relatively more data structure flexibility as 

it does not have the traditional column and rows structures, which can cause confusion as 

to which data schema would be suitable for different data domains. It is important to also 

note that an unsuitable data structure may cause poor performance. For instance, HBase 

currently does not perform well with anything above two or three column families [35]. 

This calls for a structural systematic method for NoSQL database design as it is an 

important problem for researchers and practitioners.  
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Han and Stroulia [36] have studied performance of data schemas by running 

workloads on two different datasets. The first dataset was a cosmology dataset and 

consisted of 321,065,547 particles from 9 snapshots with a total size of approximately 14 

GB binary format. Another dataset they used was Bixi, a public dataset collected by a 

bicycle renting service in Montreal, Quebec, Canada which totaled 12 GB and contained 

96,842 data-points for all the stations.  

Three schemas were used to test performance of queries on the data sets where the 

second two schemas would be three dimensional. The version dimension would act as the 

third dimension. A version dimension specifies a cell and by default, HBase has 3 

versions maximum per cell. If data with the same row-key and column as another data is 

imported, that older data will not be replaced, rather it will be “versioned”.  In the case of 

Bixi data, if they wanted to store values by day, they would use the date and station id as 

their row-key (no time/hours/minutes). All the 1440 records for one day would be stored 

on the same cell through “versions” (hence there would 1440 versions for each cell). Han 

and Stroulia found that using the third dimension of HBase improves performance and 

that the distribution of data across cluster nodes highly impacts performance [36].  

However, Han and Stroulia also mention that in HBase “many functions are not 

very stable, including functionalities around versioning”. According to HBase’s official 

website book regarding schema design, it is not recommended setting number of max 

versions to a level exceeding hundreds of versions or more as this will greatly increase 

the store file size [37].  
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In their section entitled “Schema Smackdown”, HBase authors specify that rows 

should generally be used over versions if the versions would be significantly over the 

maximum versions (being 3). They also give preference to rows over columns in extreme 

cases when deciding between wide tables such as having 1 row with 1 million attributes 

or having tall tables such as 1 million rows with 1 column apiece [38]. 

In addition to this, transforming complex relational databases into HBase is 

another problem that is increasingly faced among organizations as not only does the 

schema impact performance, but the data representation may have to be consistent with 

the database it is migrating from. Chongxin Li presented an approach for this problem 

and demonstrated how to follow this approach in a case study [39]. This approach 

comprised of two phases.  

The first phase would have the relational schema transformed into an HBase 

schema utilizing a set of guidelines. The first rule in these guidelines is to group 

correlated data in a column family.  Li refers to user information, access patterns, and 

write patterns in a blog domain as examples of grouping correlated data.  

However, relationships between tables need to be taken into account which leads 

to the second rule, which is for each side of a relationship one must add the foreign key 

references of the other side if it needs to access the other side’s objects. In relational 

tables, foreign keys are used to maintain a relation (one-to-one, one-to-many/many-to-

one, and many-to-many). They are also used to reference parent and child objects. For 

One-To-One relationship we do not worry about such a relationship as the foreign key is 
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treated as an ordinary column in HBase and can be grouped with other columns based on 

the first rule of these guidelines. In One-to-Many relationships, foreign keys are only put 

on the “many” side of a one-to-many relationship since multiple values are not allowed in 

RDBMS because of Normal Form 1 however HBase allows multiple values to be 

grouped together in a column family. To reference objects on the “many” side, Li 

suggests a new column family to be created on the “one” side to contain a set of foreign 

keys of the “many” side. For a Many-To-Many relationship, Li suggests using a third 

table to manage this relationship where foreign keys for both tables are kept or to create 

new column families to capture row keys of both sides.  

Although these references are still referred to as foreign keys by Li, they are 

different from those of a relational database as in a RDBMS these relationships are 

guaranteed by the database itself that data is always in a consistent state and the user data 

cannot violate the foreign key constraint however in HBase, applications have to ensure 

these references instead. 

The third rule is to merge attached data tables to reduce foreign keys. This can be 

done by using a table that contains the most important data as the “main table” if it can be 

used independently in the application. If a table has only one foreign key and this must be 

used, then a reference table is created known as an “attached table”. Data with the same 

foreign key in the “attached table” can be combined into a single row of the “main table” 

based on the foreign key.  
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In the second phase, relationships between the source and destination schemas are 

expressed as a set of nested schema mappings which would be employed to create a set of 

queries or programs to transform the source data into the target representation. Li gives a 

practical example of this by using Tableau to represent mapping algorithms for a basic 

blog. Tableau is a way of describing all the basic concepts and relationships that exist in a 

schema. He then shows these nested mapping representations in query-like notations as a 

way for the expressions to be employed in a query.  

3.2 Configuring Topologies for Processing Big Data 

Configuring cloud clusters for large data has also been a growing issue. It is 

important to understand what the trade offs are for deploying fewer machines with higher 

resources per machine versus deploying more machines with fewer resources per 

machine as this decision can have an impact on both performance and cost.  

To begin with, the cloud environment allows for heterogeneous hardware and 

resource demands. Lee et al. have found that it is important to exploit these features to 

make data analytics in cloud efficient [40].  They present a system architecture to allocate 

resources to a Hadoop data cluster in a cost effective manner. In this architecture, nodes 

are grouped into one of two pools: (1) long-living core nodes to host both data and 

computations and (2) accelerator nodes that are added temporarily to the cluster when 

more computing power is needed for workloads. A cloud driver is used to manage these 

nodes and makes decisions on adding/removing nodes based on the hints provided by the 
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users when they submit the job. Hints include memory requirements, ability to use 

special features like GPUs, and the deadline.  

They experimented with two queries and found that using certain configurations 

had higher performance per cost compared to other configurations because some 

machines had faster CPUs at lower prices than “larger” machines [40]. However, the 

machines with the lower price point had less memory, which might be of no use for jobs 

requiring a large amount of memory per machine. They also found that using more 

accelerators can cost less while having faster performance due to the fact that the 

instances are not being used for so long. The number of users who would use the data 

was not addressed, which can make a significant difference in how the topology should 

be created.  

Furthermore, in another contribution, Zaharia et al. [41] found that MapReduce 

does not perform well in heterogeneous Hadoop clusters. Hadoop assumes that any 

detectably slow node is faulty. However, nodes can be slow for other reasons. According 

to Zaharia et al. in a non-virtualized data center, there may be multiple generations of 

hardware. In a virtualized data center where multiple virtual machines run on each 

physical host, such as Amazon EC2, co-location of VMs may cause heterogeneity. 

Although virtualization isolates CPU and memory performance, VMs compete for disk 

and network bandwidth.  

Zaharia et al. state that heterogeneity of machines (mixed instances with various 

sizes) seriously impacts Hadoop’s scheduler [41]. The scheduler uses a fixed threshold 



29 

 

for selecting tasks to speculate (that is, if a node happens to be slow, the tasks are copied 

to a faster node to finish the computation sooner) and therefore, too many speculative 

tasks may be launched, taking away resources from useful tasks. Also, the wrong tasks 

may be chosen for speculation first because the scheduler ranks candidates by locality.  

For example, if the average progress was 70% and there was a 2x slower task at 35% 

progress and a 10x slower task at 7% progress, then the 2x slower task might be 

speculated before the 10x slower task if its input data was available on an idle node.  

Zaharia et al. designed a Longest Approximate Time to End (LATE) scheduler 

which is a new speculative task scheduler to try to compete with this issue, which adds 

features to the Hadoop task scheduler [41]. The primary feature behind this algorithm is 

that it always speculatively executes the task that the system thinks will finish farthest 

into the future, because this task provides the greatest opportunity for a speculative copy 

to overtake the original and reduce the job’s response time. This is contrast to the original 

heuristic that was used which was comparing each task’s progress to the average progress 

which would have worked well for homogeneous environments where poorly performing 

nodes (stragglers) were obvious. In this case, LATE is robust to node heterogeneity as it 

only relaunches slowest tasks and only small number of tasks. It also takes into account 

node heterogeneity when deciding where to run speculative tasks. Lastly, LAST focuses 

on estimated time left rather than the progress rate. LATE speculatively executes tasks 

that will improve job response time rather than individual slow tasks’ response time. 

According to Zaheria et al. LATE can improve Hadoop response times by a factor of 2 in 

clusters with 200 virtual machines on Amazon EC2. 
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3.3 Modeling 

 Researchers have also focused on modeling performance in Hadoop clusters. 

Song et al. looked at proposing a simple framework to predict performance of Hadoop 

jobs [42]. They found that the execution time for map and reduce had a linear relationship 

with the amount of data (64M to 8G for 4 different kinds of jobs). They did this through 

modeling the relationship through linear regression. They also compared the prediction 

from smaller samples for both map and reduce tasks to actual values from the larger 

samples in order to see what the error rate is. The error rate was minimal, meaning that 

they can approximately predict the execution time for both map and reduce tasks. 

 In another research contribution, Bortnikov et al. explores performance 

bottlenecks in MapReduce tasks. According to Bortnikov et al., extremely slow tasks are 

a major performance bottleneck in MapReduce systems [43]. These researchers came up 

with a way to predict execution bottlenecks in MapReduce clusters. They came up with 

the slowdown predictor model, which is a “machine-learned oracle for MapReduce 

systems forecasting execution bottlenecks”. The predictor takes profiles of the tasks and 

the hardware, and then estimates the task’s slow down. The predictor can be applied 

during the assignment of the task or during the execution. The predictor employs a 

popular gradient-boosted decision tree algorithm [44], which is an “additive regression 

model comprised of an ensemble of binary decision trees.” [43] In the case of the 

slowdown predictor model, each binary tree is split on some feature at a specific value, 
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with a branch for each of the possible outcomes. Each leaf node contains a score, which 

corresponds to the decision path. The resulting prediction is the sum of the scores 

returned by individual decision trees. They evaluate their model on real-time data sets on 

a production Hadoop cluster at Yahoo!
11

. They found that the prediction for mappers was 

more accurate than for reducers.  

3.4 Summary 

 In this section we talked about current research that relates to this thesis. We 

firstly spoke about data schemas and how they influence performance of an HBase 

cluster. We then talked about how researchers have developed approaches for improving 

data processing for Big Data through cluster configurations in addressing its challenges. 

Lastly, we illustrated how existing literature allows for modeling performances of 

Hadoop clusters, which can be used to objectively evaluate performances of existing 

clusters.  

                                                 
11

 www.yahoo.com 
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4. A Process for Designing Big Data Configurations 

One of the main challenges in designing big data solutions is the design of the 

physical configurations. By configuration we mean the definition of the schema and the 

runtime components to access the data. In case of HBase, a configuration is made of the 

HBase schema and the physical topology of Hadoop.  When designing the configurations, 

cost and performance are two main and conflicting goals.  Design decisions include the 

number and the type of VM instances that Hadoop uses.  For example, is it better in terms 

of cost and performance, to have a larger instance, a large amount of small instances, or a 

combination of both?  

To characterize the performance of configurations, many experiments are needed. 

Experiments are costly, in terms of time and in terms of infrastructure since they are 

performed in cloud as well. Therefore, a natural question is: can we deduce a 

performance model for a given configuration? Also, how can someone extrapolate a 

model from a limited number of users to predict the response time for a larger number of 

users? This is also important as how you decide to deploy your topology will not only 

impact performance, but also cost. 

This chapter addresses the above challenges by focusing on the following research 

questions: 

 How do we compare different HBase clusters to objectively evaluate topologies 

with fastest performance? 
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 Which factors have higher influence on performance for HBase? 

 How can we model the response time of an HBase cluster? 

The remainder of this chapter is organized as follows: Section 4.1 presents a general 

high-level repeatable methodology that can be used to generate a configuration and 

characterize performance.  Section 4.2 focuses on a method to generate configurations. 

Section 4.3 illustrates performance characterization and modelling. Section 4.4 presents a 

summary and the conclusions. 

4.1 An Iterative Process 

In this section, we describe the iterative process, which is the methodology we use 

to compare performance of big data configurations. This methodology consists of steps 

for transforming the data from non-relational databases to relational database. 

The process is shown in Figure 3 on the next page. It has two iterative sub-processes: 

Topology design. For a given schema, we iterate experimentally between different HBase 

topologies until we obtain the desired results, that is, the performance and cost specified 

by the requirements. 

Data schema design. Based on the SQL schema, a set of possible HBase schemas are 

generated as being possible solutions to design requirements.
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Figure 3. Iterative Process 
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Firstly, we assume we have the big data configurations goals already in place, 

which are the results of the requirements engineering phase. These goals are either 

retrieved from an end-user, an internal source, or are mutually agreed upon by many 

different stakeholders. Examples of these goals can include fast performance and low 

cost. These goals can also be very specific (that is, they can include a budget and specific 

service level agreements). During this first step, we also retrieve large bulk data files 

from a data source in order to use existing real data. The source for this data could be 

either internal or external to the organization or company.  We expect a large amount of 

real data to give a more accurate picture when assessing the schemas and clusters. The 

non-relational database (HBase) used in this thesis distributes rows across machines, 

which also means that different data can have different distributions.  We assume in our 

method that we have real data. Having data that is not real (synthetic data that is 

generated randomly) is an option as long as it is generated to be similar to real data.  In 

order to have an accurate reading of how the non relational database will perform in a 

production environment, it is imperative to have a large set of real data.  

Furthermore, the bulk data files are then converted and imported into a relational 

database.  This relational database acts as a “back up” for the data and for verifying query 

results on the non relational database. We also use a relational database as it only requires 

one machine (whereas a non relational database like HBase may require many machines) 

and therefore is a less costly way to have a backup of the data. The data is then copied 
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from the relational database to the non-relational database. In this step we can either 

adopt a commercial off-the-shelf product or create an application in house for loading the 

data. In our thesis we use a tool known as Sqoop that has a built-in MapReduce for faster 

transfer of data. By having a standardized tool to transfer data from one database to 

another in a quick fashion allows for researchers to save time in this regard. This is 

another benefit to having the data stored into the “back up” database, as the alternative 

would be to repeatedly import large data files individually or merge these files together 

before importing which would be otherwise heavily time consuming. Instead, we do the 

bulk loading process once for the relational database side, as this relational database 

includes an easy to use built-in tool for importing individual large data files and a simple 

bash script can import all these files at once into the relational database. This step also 

involves transforming the data and storing it into the database with a proper schema.  

When speaking about transformation, we look at how the data should be 

represented. It is important to choose a proper schema for the relational database to 

quickly verify query results from the non relational database. An appropriate data schema 

for the non relational database is also needed as this can influence the performance. Even 

though schemas are compared on the fastest cluster after the performance comparisons 

(as will be illustrated later), there needs to be a proper distribution of keys across the 

cluster in order to utilize all machines. This is important for when coming up with the 

initial schema design as the baseline. The transfer of data happens twice for both 

compressed and non-compressed data. Compression allows for the data to be reduced in 

size allowing for the clusters to store more data without having to commission more 
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instances. In this thesis we use compression on data as the defining differentiating 

characteristic between two workloads but for other cases, researchers can use different 

types of workloads and can use more than two workloads. 

After the data is transferred to the non relational database, the next step is to 

create different topologies by utilizing different machines from a set budget. These 

topologies can be deployed one at a time to save cost (if deployed on a public cloud) and 

physical resources (if deployed on a private cloud). Two workloads are executed on each 

of the individual clusters by utilizing what’s known as a “scan” query in HBase on both 

“compression” and “non-compression” data. Scan queries retrieve records sequentially 

[45]. These workloads are executed by an application (written in Java) that allows for 

inputting a maximum number of users and an increment number of users. For example, 

we might want to test 1,500 users and increment by 500 therefore the application will 

execute 500 users first, then 1000 users, and then 1,500 users. We assume that there will 

be a linear relationship between number of users and response time due to the sequential 

nature of the scan queries (we explain more in section 4.3) thus we use the maximum 

number of users we would have wanted to execute, reduce that number by a large 

percentage (enough to save enough time and resources but also enough to create a 

relatively close approximation). We keep the same iterations that we would have done 

before for this maximum number of users. We do this because we can predict future 

results after constructing a performance model thus saving time. For example, let’s say 

we would like to have a graph of the response time for 5000 users with iterations of 500 

users executing workloads. Instead, we can reduce the number of 5000 to 2500 and 
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approximate the rest of the results using a prediction model in order to save time and 

resources. When we talk about resources we talk about both physical resource and cost of 

having the instances running for a certain amount of time. If the workloads were to be 

executed over the entire 5000 users, all these workloads can take days depending on the 

queries and the data size. This translates to a higher cost if a public cloud is used or 

higher resource consumption if a private cloud is used which would restrict other 

people’s usage of the same infrastructure. Therefore reducing the workloads and 

approximating the response times saves both time and resource. 

To create the prediction model, we take the results of a fewer numbers of users 

and use a linear regression algorithm to create the formula in order to find response times 

given a certain number of users as will be discussed in Section 4.3. 

 

4.2 Cost and Configurations 

In this section, we describe how we define a set of topologies based on a given set 

budget. We also describe how we compare the topologies for the first iterative process 

and for the second iterative process we describe how we compare the different schemas. 

As stated in the last section, we define our goals as our baseline. In our thesis, we 

focus on performance and cost as being our goals. From this cost, we then construct 

different variations of topologies with different machine capacities and number of 

machines. We assume that the cost will equal the same across different clusters, which 
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have a set maximum capacity. We can see this from looking at the Amazon [46] and 

Rackspace [47] prices displayed in Table 1 and Table 2 respectively.  

 

Instance Type VCPU Random Access 

Memory 

Solid State 

Drive Size 

Price 

c3.large 2 3.75 GB 32 GB $0.105 per hour 

c3.xlarge 4 7.5 GB 80 GB $0.210 per hour 

c3.2xlarge 8 15 GB 160 GB $0.420 per hour 

C3.4xlarge 16 30 GB 320 GB $0.840 per hour 

C3.8xlarge 32 60 GB 640 GB $1.680 per hour 

Table 1. Amazon EC2 prices for each instance 

  

From Table 1, we see that the prices for Amazon EC2 instances are the same for 

cost per capacity (with the exception of solid state drive space). The instances with names 

c3.xlarge, c3.2xlarge, c3.4xlarge, and c3.8xlarge are double, quadruple, and octuple  the 

capacity size and price of c3.large respectively. For example, c3.xlarge has 4 CPUs and 

7.5 GB of RAM which is double that of c3.large which only contains 2 CPUs and 3.75 

GB of RAM. The storage difference is negligible as storage space for each cluster should 

have more than enough space for holding existing and future data. The VCPU and RAM 

are the most important parameters when determining performance. 
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Instance Type VCPU Random Access 

Memory 

Solid State 

Drive Size 

Price 

Performance1-1 1 1 GB 20 GB $0.037 per hour 

Performance1-2 2 2 GB 60 GB $0.074 per hour 

Performance1-3 4 4 GB 80 GB $0.148 per hour 

Performance1-4 8 8 GB 120 GB $0.296 per hour 

Table 2. Rackspace prices for each instance 

 

Table 2 shows that besides the drive size, the capacities per price (that is, the 

parameters that influence response times) are the same once again but for a different 

cloud service provider. Performance1-2, Performance1-3, and Performance1-4 are 

double, quadruple, and octuple the size of Performance 1-1 respectively. Here we see 

more proof that maximum capacity will have the same cost across clusters. 

While constructing our topologies, we ensure that the machines running the 

Master nodes and Name nodes are the same capacity per machine across experiments but 

the RegionServer’s and Data node’s capacity can change from one experiment to the 

next, as well as the number of machines. This is done to define a scope that ensures that 

the comparisons are objective.  

After these topologies are designed, a new topology is deployed on the cloud by 

using a platform such as Open Stack that allows for deployment of instances. As 

mentioned before, these topologies are created one at a time to save on cost and 

resources. Once a new topology is created, the appropriate tools are then installed on the 
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cluster of machines. These tools include Cloudera (HDFS, Hadoop MapReduce, HBase, 

ZooKeeper, and Sqoop). The data is transferred to the newly created HBase cluster with 

an appropriate schema.  

An application is then deployed on an extra large instance external to the cluster 

and used to execute representative workloads (workloads are combinations of number of 

users and query types). After the workloads have finished, the application generates a 

data file, which shows the response times for each workload. The experiment is executed 

several times to reduce cloud variability in which performance can change time to time 

depending on the amount of traffic on the cloud, how many users are using the same 

physical machine, or any other factors that may influence performance. 

In the next step, the results of the experiments are processed and used to create a   

Prediction Model that will be used to predict future results (Predicted Results in Fig 3). 

After this is done, the results are plotted onto a line graph and this process is iterated until 

desirable results are achieved. The process that is iterated includes: Generating new 

configurations, deploying them, running the same workloads, rebuilding the performance 

model, and graphing the new results with both the observed and predicted values. 

After the desired results have been achieved, we further try to improve 

performance by comparing different schemas on the fastest cluster. Data is repeatedly 

transferred from MySQL to HBase with different transformations. We then use the same 

application to execute the same maximum number of workloads along with the same 

number of iterations as we did before for the topologies. The results are then inputted into 



42 

 

the performance model and a formula is outputted that allows seeing what the response 

time will be for a larger space of users. All the schemas are graphed onto a line graph and 

whichever one performs the fastest is chosen. 

4.3 Modeling the Cluster 

This section proposes a model for performance of the cluster, namely a 

quantitative relationship between the response time, number of users, and the type of 

configurations.  

We propose the following model:  

              ( 1 ) 

where x is the number of users, C is the configuration, AC is the slope of the 

configuration, βC is the intercept of the configuration, and R(C) is the predicted response 

time for the particular configuration. We assume the model is linear because we use scan 

queries, which we found returned results on a first in first out (FIFO) basis due to the 

query’s sequential nature [45]. This means, that there is a notion of queuing happening at 

each ServerRegion of the HBase cluster.  

In order to quantify the configuration, we assume that AC and BC depend on the 

configuration and that the coefficients have to be determined experimentally in order to 

get these values.  

To find the predictor equation for a set of data, we assume that we have a sample 

of n data points consisting of pairs of values of x and y, say (                       . 
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For example, if n=3 data points they could be (500, 23.1988), (1000, 40.3606), (1500, 

63.84427) where 500, 1000, and 1500 are the users (x values) and the y values are the 

response times. 

In order to use these sample values to estimate the model parameters, we want to 

find estimators     and    that minimize the sum of squared errors. By minimizing sum 

of squared errors, we mean that we want to produce a line closest to all n observations 

[48]. This means that we find the line that minimizes the distances of each observation to 

the line.  

The method that produces these estimators is called the method of least squares. 

For a given data point, say the point       , the observed value of R(C) is    and the 

predicted value of R(C) would be obtained by substituting    into the prediction equation: 

                ( 2 ) 

The deviation of the ith value from y from its predicted response time value is 

[48]: 

                        ( 3 ) 

Therefore the sum of squares of errors (SSE) of the y-values about their predicted 

values for all the n points is defined as: 

                       
( 4 ) 

 

The quantities of    and    that make the sum of squared errors (SSE) minimum 

are called the least squared estimates of the parameters. 
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Before finding the values of    and    we must first find the values of the sum of cross-

deviations for x and y and the squared deviations of x. The line over the x (  ) and the y (  ) 

represent the averages of all x’s and all y’s respectively. These are calculated by using the 

following formulas: 

                      
( 5 ) 

 

                
( 6 ) 

 

Alternatively, the following “shortcut” formulas can be used (n is the number of 

observations or sample size) [48]: 

 
           

          

 
 

( 7 ) 

 

 
        

  
     

 

 
 

( 8 ) 

 

The values of    and    that minimize the SSE are given by the following 

formulas [48]: 

 
           

    

    
 

( 9 ) 

 

                          ( 10 ) 

 

We can illustrate the use of these formulas using the example data points that 

were mentioned earlier and construct the following table where x is the number of users 

and y is the response time: 
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 x y                                     

 500 23.1988 -500 -19.26908889 9634.544445 250000 

 1000 40.3606 0 -2.107288889 0 0 

 1500 63.84427 500 21.37637778 10688.18889 250000 

Average 1000 42.46789  Sum 20322.73333 500000 

 

Table 3. Calculation Table for Prediction Modeller 

 

The mean of x (    is 1000 and the mean of y (    is 42.46789 and are used to 

calculate the values for the four different columns. In the next step we calculate slope by 

using the slope formula. We take the sums of the last two columns which represent      

and      respectively. These sums are divided as such: 

 
    

           

      
 

( 11 ) 

 

We then find that    = 0.040645467. From this value, we can then easily find the 

y intercept given the mean of y and the mean of x: 

                              ( 12 ) 

 

We find    to be 1.822423. From this we can then construct our prediction model 

as: 

                             ( 13 ) 

 



46 

 

This means that if we would like to know what the response time would be for a 

larger number of users (like 3000) we can substitute the value for the number of users we 

want to predict for x. This is illustrated in Table 4.  

x y 

500 23.1988 

1000 40.3606 

1500 63.84427 

2000 83.11336 

2500 103.4361 

3000 123.7588 

3500 144.0816 

4000 164.4043 

4500 184.727 

5000 205.0498 

Table 4.Table with Predicted Values 

 The gray portion represents the values that are observed while the white portion 

represents the predicted response times for the given cluster configurations. We can then 

plot these values onto a line graph as shown in Figure 4.  
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Figure 4. Cluster example line graph 

  

As shown above, the line represents a particular cluster. The x axis represents the 

number of users and the y axis represents response time in seconds. As more and more 

clusters are modelled for performance predictions, more lines will appear on this line 

graph, allowing for researchers to objectively evaluate the performances of different 

clusters. 

4.4 Summary 

 In the first part of this section we discussed the iterative process methodology, in 

which we described the methodology and the rationale for the components of the 

methodology. The second part described the cost and configurations for the experiments, 
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which looked at how to design the different topologies given a maximum capacity and set 

cost. The last section proposes a model for performance of the cluster. In the next 

chapter, we validate this approach. 
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5. Experiments and Results 

The goal of this chapter is to  

• Illustrate the importing and migration phase of the proposed process 

• Validate the hypotheses that each configuration is characterized by a linear model 

• Validate the accuracy of predictions 

The chapter is organized as follows: Section 5.1 illustrates through an example 

how the import and transfer of data is implemented; Section 5.2 presents the validation of 

the models. Section 5.3 presents a summary and conclusions. 

5.1 Importing and migrating data 

This section describes how we import data into MySQL from a source data file 

and how data is transferred from MySQL to HBase, the first steps of the iterative process 

illustrated in Fig. 3. We evaluate this process on a real case scenario. Besides validating 

part of our process, the real case scenario gathers quantitative and qualitative guidelines 

using the process as well as evaluates tools for supporting the process. 

The primary focus is on spatial-temporal data, using a set of traffic data as the 

data set. We have gathered 3 months (256 GB) worth of real data from the Ministry of 

Transportation for Ontario (through the Toronto Intelligent Transportation Systems 

Society of Canada) which are stored in XML format. This project is part of a bigger 

project known as the Connected Vehicles and Smart Transportation (CVST) project [49] 
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and aims to allow for data miners to quickly and easily analyze Big Data. The Big Data 

will be stored on Smart Applications on Virtual Infrastructure (SAVI) testbed [20] acting 

as the cloud.  

Following the iterative process described in Chapter 4, firstly, we have to import 

XML data into a relational database. In this case, we convert the XML files into CSV 

files and store it into a MySQL database. The first step is to choose as data schema in 

order to understand how to transform this data. The data contains large amounts of 

“simple data”such as date, sensor IDs, average speeds, occupancy, and vehicle lengths.  

In order to choose a proper data schema, there has to be a decision about whether 

or not the schema would be data warehouse or online transaction processing system 

(OLTP). The decision is that this schema will be a data warehouse due to several 

requirements [50] :  Firstly, the database had to accommodate ad hoc queries as 

workloads may not be known in advance when dealing with traffic patterns. Secondly, 

the database is updated on a regular basis by Extract-Transform-Load process using bulk 

data modification technique which would not be directly updated by end-users. Thirdly, 

the schema needs to be denormalized to optimize query performance as opposed to 

optimizing update/insert/delete performance and guaranteeing data consistency. Lastly, 

the queries would involve scans of hundreds of thousands of records as opposed to a 

handful records. Therefore, we use a data warehouse. 

As for the specific data warehouse schema, a star schema is chosen. A star 

schema consists of one fact table with one or more dimension tables [51]. The reason for 
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choosing a star schema is because the data contains a large amount of “simple data” 

such as date, sensor IDs, average speeds, occupancy, and vehicle length. Only one 

dimension (description of data) is needed, which is where the sensors were located. The 

overall schema is kept on a smaller scale for faster querying of data and overall 

performance. Ideally, we want to put a primary key on the date, contract ID, and 

periodNum but the files sent had duplicates in the invalid values (that is the date, contract 

IDs and periodNums were all the same). However, this comprised less than 1% of all 

data. Also, having an id as the primary key allows Sqoop, the tool we use to migrate the 

data, to easily split the table in preparation for MapReduce (as will be explained later in 

this section). We use indexing on the date, contractId, validThisPeriod, and periodNum in 

order to make the queries run quickly for validating HBase queries (are the results from 

MySQL and HBase the same given a particular query?). The schema used for the 

relational database is illustrated in Figure 5 on the next page. 
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Figure 5. Warehouse Schema 

The files are parsed using a Java application which is developed in-house with 

Ximpleware parser (more specifically VTD-XML)
12

 to convert from XML to CSV files 

in order to import into MySQL. After all files are converted, the CSV files are bulk 

loaded using mysqlimport utility in the MySQL database system.  

For the first stage, some cross-checking between the XML file and generated 

CSV file are performed by visual inspection. This includes verification of boundary cases 

(start and end of XML file) and random checking of an XML file in a date file against the 

csv file. We also validate the first few and last few files by counting the number of 

vdsData elements (a representation for each “all lanes” record) and match them to the 

total number of records that the output CSV file has.  

                                                 
12

 http://www.ximpleware.com/ 
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For the second stage, we assume that mysqlimport ingests a CSV file into the 

highway table without any data corruption. This is reasonable since MySQL and its core 

utilities belong to a production strength database system. We run a bash script to import 

all files for each month. To ensure each file finished importing into the MySQL database, 

we make the system display a message that it is finished along with the timestamp. For 

the first file imported, the number of records are counted in the database and compared to 

the final number of records in the CSV file, as well as the XML file (by counting vdsData 

elements with Java application).  

In the next step, we move the valid data from MySQL to HBase with an 

appropriate schema. Before the migration step, a set schema is to be chosen based on 

common practice for HBase.  

Choosing a proper schema in HBase is imperative as this can highly impact 

performance and it is important to note that HBase is not a relational database therefore a 

relational schema will not work in this context. As such, a data schema is chosen based 

on past works and guidelines from other researchers [36], [38], [39]. We decide to choose 

a 2-Dimensional schema due to its simplicity and support from built-in tools for 

validating that all the data is there in a quick manner of time. Currently, HBase is not 

optimized for using versioning, which is why we do not to use this for our application. 

HBase’s website currently suggests not using 100s of versions or more [37].   If it was 

decided to version records by period number, there would be thousands of versions as 

there are thousands of periods in a day. Also, only valid values are imported to HBase, 



54 

 

which means it will be hard to distinguish which value belongs to which period as the 

concept of period would be replaced with timestamps. Timestamps can also be 

customized to be replaced with period numbers but this would further add to the 

complexities because we would then have to validate for all records that the correct 

values are in the correct periods, which is difficult to do when one has millions, billions, 

or even trillions of records. This also adds to the complexities as we have repeatable 

processes in our methodology. 

For the first iteration of Iteration 2, an MD5 will be added to the key in order to 

avoid region hot spotting [45].  Hot spotting occurs when there are too many keys on one 

region server and if users are continually querying keys on the same region server. This 

phenomenon happens because HBase stores everything in lexicographical order and 

when the key is not randomized, you could have an unequal distribution of keys across 

region servers. This also results in RegionServers being underutilized. We use MD5 to 

randomize the keys so that there is an equal distribution of data across RegionServers in 

order to avoid this situation.  MD5 is a cryptographic hash function designed by Ron 

Rivest in 1991 for producing a 16-byte hash value, expressed in text format as a 32 digit 

hexadecimal number [52]. For instance, the MD5 for “Hello” is 

“8b1a9953c4611296a827abf8c47804d7”
13

 and the MD5 for “Hello a” is 

“fc1a88fc1e6ad7ba6d6814e9d11e6fa0”. We can see how both these strings, though 

similar, are completely randomized when utilizing the MD5 hash to convert the text.  

                                                 
13

 http://www.miraclesalad.com/webtools/md5.php 
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The key will consists of an MD5 on the sensor and date, the sensor itself, date 

itself, and period number. The reason we put the MD5 on the sensor and date, but not 

period number is because we want to have sensors and dates grouped together. Adding an 

md5 to the period number would put it in a random order. We also put padding to the 

period numbers (0001 instead of just 1) to have these values in order as HBase stores 

everything in lexicographical order otherwise, these values will not be properly ordered. 

For instance, period 10 will come before 2, which is not the order we would like to have 

in our values. The values in the row-keys are separated by underscores. The reason we 

decide to put the period numbers as rows rather than columns is for validation purposes 

(it is easier to count the rows than the columns), HBase has the ability to skip rows and 

StoreFiles (if you want to find specific periods during the day, this will be faster) [45], 

and existing migration tools do not support transposition. This would also require more 

than one column family to represent the speed and volume, which would be expensive in 

terms of memory.  

Column names are renamed to single characters in order to conserve hard disk 

memory. HBase requires that all columns have at least one column family and in this 

case, we only need one generic column family. Figure 6 illustrates the transformation of 

the MySQL schema into the HBase schema. The quotation marks represent the actual 

name for either the column family or the column qualifiers (“a” is average speed and “v” 

is volume) while the values within the RowKey are the actual values. 
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Figure 6. Schema Transformation 

Open Source tools (which are in their early stages) are being developed for 

facilitating migration of raw data from MySQL to HBase such as Sqoop
14

 and MySQL 

Applier (Beta)
15

. We use Sqoop (version 1.4.4) due to its ease of use, ease of installation 

(it comes prepackaged with Cloudera toolset), and it has an operational release as 

opposed to being in the Beta phase. Sqoop uses MapReduce framework to transfer data 

from MySQL to HBase, allowing for a faster process than serially transferring the data. 

Sqoop automates most of this process. The only problem encountered is that it requires a 

MySQL connector, which is not included in the package due to licensing reasons 

therefore the user has to download MySQL connector and put it in the proper directory in 

order to use Sqoop for transferring from MySQL databases.  In order to speed up the 

process of experimentation, we decide to only import the data that will be queried. In this 

                                                 
14

 http://sqoop.apache.com 
15

 http://dev.mysql.com/tech-resources/articles/mysql-hadoop-applier.html 
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case, only the volume and the average speed are imported. We also choose to import one 

month worth of data for the purpose of testing the behaviour of all the different 

topologies because the length of time to import all this data is too long for a repeatable 

experimentation process (which is over two hours).  

In order to validate that all records were imported, all records are counted using 

the built-in counter function of HBase shell and setting caching to 10000 in order to make 

the process faster. The total count of all the records is then compared to the records in 

MySQL. Basic queries such as average speeds given a sensor or number of people 

speeding given particular sensors are executed and compared to results from MySQL in 

order to ensure accuracy of results.  

5.1.1 Discussion 

The main challenges of importing and migrating data is designing a data model 

and transferring the data in a short amount of time. To begin with, we learned that it is 

imperative to have an optimal schema for MySQL in order to understand what data 

schema will be needed for HBase, as well as for comparing both databases' query outputs 

in a short amount of time. Furthermore, it is important for the column qualifiers and 

column families in HBase to be as short as possible to conserve disk space, as well to 

make the migration between databases faster. Lastly, we also found that Sqoop is the 

ideal tool to use for transferring data between the two databases due to its use of 

MapReduce. In the next sections, we look at how to optimize Hadoop configurations. 
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5.2 Validating the performance models 

The purpose of this section is to evaluate different topologies with the same cost 

and to validate the performance models.  

We assume we have two goals: 

 Cost goal, expressed as a  fixed budget  

 Performance goal: most scalable configuration for the budget 

In section 5.2.1, we construct variations of topologies when given a cost goal (as 

price per hour). After these topologies are created, a new topology is deployed on the 

cloud and a workload generator is used to execute the workloads. After the results are 

generated with measured response times for each cluster, we compare the performances 

across topologies and schemas in Section 5.2.2 and Section 5.2.3 respectively. A 

performance model is then computed for each cluster in Section 5.2.4. We identify the 

type of model as linear across all clusters by looking at the graphs with the different 

response times over number of users and using regression analysis to illustrate this. We 

then take the first three values of selected clusters and construct models. The predicted 

response times are then calculated and compared against the real values that were 

measured to see how far the predicted values deviate from the observed values. 
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5.2.1 Experimental Setup 

 This section will talk about the experimental set up and how to construct 

different topologies for deployment. To approach this problem, one workload (or query) 

on different variations of topologies are executed for the third process.  

On each topology, we compare the performance of utilizing compression for the 

data versus not using any compression. The compression that is used for all experiments 

will be GZIP as it compresses the data to the smallest size and uses higher CPU 

utilization when unzipping the files than other compressions, which may affect behaviour 

[45].  

The workload tests different performances of the different topologies and find 

which topology is optimal, as well as investigate any patterns that may be found. It is 

important to note that the cloud may exhibit different behaviours at times (a term known 

as “cloud variability”) depending on the number of real users on the same physical 

machine and whether or not they are running an I/O intensive task. In order to eliminate 

this, the experiments are executed five times for each table (compression and non-

compression table) and an average is taken for all five experiments. This makes a total of 

ten experiments for each cluster. The queries are executed in alternate order between 

compression and non-compression.  

Firstly, we start with a budget from our goals which is $0.84 cents per hour. We 

consider the prices from Amazon in order to decide how to form our clusters. Different 

costs are evaluated based on current market price values as some topologies may be more 
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expensive than others. Approximate pricing for each instance is taken from Amazon EC2 

that is comparable to the SAVI instances [46]. 

 

Instance Type VCPU Random Access 

Memory 

Solid State 

Drive Size 

Price 

c3.large 2 3.75 GB 32 GB $0.105 per hour 

c3.xlarge 4 7.5 GB 80 GB $0.210 per hour 

c3.2xlarge 8 15 GB 160 GB $0.420 per hour 

Table 5. Amazon EC2 Pricing for different instances comparable to SAVI 

 

Secondly, from these price points and our set budget, we then extrapolate the 

topologies that will be deployed. Each cluster must total $0.84 an hour. We construct 

these topologies so that the clusters fit the out-of-the-box requirements for Cloudera such 

as having a minimum of three data nodes/RegionServers.  

The topologies for each cluster are shown in Figure 7 on the next page. 
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Figure 7. Experiments 
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Furthermore, all the machines in each cluster will have Linux installed as the 

operating system. One large node has Cloudera Hadoop (CDH) Manager running 

separately from other nodes so that results are not influenced. Another large node 

contains the Name Node (HDFS), the Master Node (HBase), Sqoop, and ZooKeeper. 

This setup is for all clusters in order to isolate the experiments to focus on the data nodes 

(HDFS)/region servers (HBase), which is what will change throughout the experiments.  

All region servers are mapped to the data nodes. All HBase clusters are configured with 1 

GB in Java heapsize for the Name Node and Secondary Name Node as Cloudera 

recommends. Only one Zookeeper is used but it is important to note that the Hadoop 

documentation recommends three Zookeepers when working in production environments 

in order to better handle failure  [53]. Using multiple ZooKeepers would require running 

extra instances (instance availability is limited for experiments) and because the thesis is 

focussed mainly on optimizing performance rather than handling mean time between 

failures, only one Zookeeper is used. Also, a noticeable characteristic is the different Java 

Heap Size for the HBase Region Servers given the size of the instance. For Medium 

instances, the Java Heap Size is default set at 531,685,481 bytes, while for large 

instances, it is default set at 863,075,931 bytes and for Extra Large instances the default 

is set at 715,791,403 bytes. Currently, there is a lack of research regarding configuration 

of this metric with a given size instance so the default out of the box Cloudera metrics are 

kept. Major compactions are disabled in order for performance not to be influenced and 

in order to test in an HBase scenario where records for all sensors are coming in every 20 

seconds. 
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Moreover, an in-house application is created in Java with Hadoop API to execute 

multiple user queries concurrently from a single m1.xlarge instance to the Hadoop cluster 

(the Java Archive or JAR file is placed in the instance away from the Hadoop Cluster). 

This is built for convenience purposes to test specific queries onto HBase. This instance 

simulates an application server which receives user requests and executes the queries 

from these user requests to the Hadoop cluster. The type of query that will be executed is 

called a “Scan” query and the application will calculate the traffic volume average for 

a particular day at a particular sensor. The day is randomized for each user and the sensor 

is fixed. We execute increments of 500 users (500, 1000, 1500, etc.) making queries to 

the database until reaching the maximum number of 5000 users (which is around the 

maximum that could be handled by the clusters before crashing). 

  

5.2.2 Comparing configurations 

After executing all the queries, an average is taken for response times for each 

experiment in each cluster and the total average for each cluster is calculated. Figure 8, 

on 65, shows the resulting graph from the queries executed on the table without 

compression. Each “e” in the graph such as “e1” and “e2”, represents the word 

“experiment” and the numbers in which order the experiments were executed in. We can 

see in this figure that the larger amount of instances seem to have the fastest response 

time where as the lowest amount of instances have the slowest response time in most 

cases with the exception of e6 (5 instances) versus e1 and e4 (which both have 4 
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instances). This is explained by Cloudera’s out of the box configuration as the Java 

Heap Sizes end up being more on the largest amount of instances than the smallest 

amount in total. An example of this is demonstrated with the cluster with the largest 

amount of instances totalling 4.25 Gigabytes versus 2.44 Gigabytes in total Java Heap 

Size for the cluster with the smallest number of instances. This means that clusters are 

underutilized when default Cloudera configurations are used. As mentioned previously, 

there are currently no guidelines for setting these heap size configurations.  

Each cluster name represents the order of the experiments executed so e1 

represents “experiment 1”which represents a cluster with 4 m1.large instances for the 

region servers and so on. This means that experiment 1 is the first cluster to be executed. 
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Figure 8. Response Times for Queries on non-Compress Tables for all topologies 

 

We see that the cluster with the largest number of instances, e2, has the fastest 

response time. Figure 9, on the next page, shows the graph representing response time for 

workloads executed against tables that are compressed. In Figure 9, there is behaviour 

change in all clusters but there does not seem to be a trend in which cluster has a faster 

response time. The overall response time values of e2 and e7 are closer than e2 and e8 in 

the last experiment. Overall, e2 seems to be the cluster with the fastest all around 

response time as shown in both graphs when comparing response times for each table. 

Even though e7 does perform better in Figure 8, it performs even slower on average than 
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e2 in Figure 9. We can see this by calculating the mean differences. The mean difference 

for the table without compression is 23.30735 verses 8.478 seconds for compression 

table. Therefore e2 is the ideal cluster when assessing the tradeoffs. 

 

 

Figure 9. Response Times for Queries on Compression Tables for all topologies 

 

5.2.3 Comparing Schemas  

In the next step, we take the overall fastest cluster (e2) and execute queries on 

different schemas. The results are illustrated in Figure 10 for non-compression and Figure 
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11 for compression. In one schema, we switch the date and sensor ID (“switchid” on 

the figure), while in another schema, we remove the MD5 (“noMD5”).  The schema 

chosen earlier is known as “default”, which includes the MD5, the sensor, the date, 

and the period number.  

 

Figure 10. Non-Compression graph illustrating response times for different schemas 
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Figure 11. Compression graph illustrating response time for different schemas 

 

Removing the MD5 confirms that there is region hot spotting as in both cases, the 

line begins to spike around 5000 users due to one of the region servers receiving too 

many requests. When the MD5 is left in, there is an equal key distribution across the 

region servers which allows for elimination of region hot spotting and for region servers 

to receive the same load as was shown in the literature section. Also, the graphs 

demonstrate that MD5 is much faster in response time than non-MD5. We can also check 

this by using a two-sample t-test assuming unequal variances to see if there is a 

significant difference in both cases. We find that our values have a normal distribution, 
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which is shown in Appendix A (Normal Distribution for t-Test). Our Normal Distribution 

validation is for the 10 observations for schema with MD5 and for the 10 observations for 

schema without MD5. This is done for both compression and non-compression 

workloads. As stated earlier, we have 10 observations for a schema with MD5 and a 

schema without MD5, which represent the average of the five average response times for 

x iteration of users. For example, 500 users would have 500 response times generated 

from the application. These 500 values are averaged out. We run the experiment four 

more times and follow the same process. We should then have five values which 

represent five average response times. We then take the average of these five response 

times to get the final average response times which would represent one point for 500 

users. We do this for 10 iterations of users (500-5000 users). We compare the final 10 

averages of a schema with MD5 to a schema without MD5 for both compression and 

non-compression workloads. 

According to the t-statistic analysis, p is less than α at 5% for non-compression 

and compression. The analysis can be found in Table 5 and Table 6. Therefore we can 

conclude that there is a significant difference between having MD5 and not having MD5 

on the schema.  
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No Compression 
  t-Test: Two-Sample Assuming Unequal Variances 

 

     noMD5 default 

Mean 653.5575435 100.1812 
Variance 164739.5757 3481.974 
Observations 10 10 
Hypothesized Mean Difference 0 

 df 9 
 t Stat 4.266578594 
 P(T<=t) one-tail 0.001045404 
 t Critical one-tail 1.833112923 
 P(T<=t) two-tail 0.002090808 
 t Critical two-tail 2.262157158   

Table 6. t-test for noMD5 vs default for No Compression 

 

Compression 
  t-Test: Two-Sample Assuming Unequal Variances 

 

     noMD5 default 

Mean 648.504285 154.9088 
Variance 161794.2556 8095.16 
Observations 10 10 
Hypothesized Mean Difference 0 

 df 10 
 t Stat 3.786936774 
 P(T<=t) one-tail 0.001780611 
 t Critical one-tail 1.812461102 
 P(T<=t) two-tail 0.003561221 
 t Critical two-tail 2.228138842   

Table 7. t-test for noMD5 vs default with Compression 
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5.2.4 Models 

Furthermore, all the results from cluster and schema experiments can be modelled 

using a linear regression. As can be shown across schemas and across clusters, we can 

see that there is a positive linear relationship between the number of users and the 

response time. We will explain how the model demonstrates the linear dependency of 

response time on number of users for the fastest cluster, which is e2 (8 m1.medium). The 

results are generated using the IBM SPSS tool
16

. 

 

 

 

e2 (8 m1.medium) Regression 

 

 

Table 8. Correlations for e2 

                                                 
16

 http://www-01.ibm.com/software/analytics/spss/ 
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The correlations table shows Pearson correlation coefficients and the number of 

cases with non-missing values. We see that we have a strong positive correlation (0.998) 

between the two variables. From the significance test p-value we see that there is very 

strong evidence (p<0.001) to suggest that there is a linear correlation between the two 

variables [48]. 

 

Table 9. Model Summary for e2 

The R from the model summary table is the correlation coefficient which is a 

measure of the strength of linear relationship between the response time variable and the 

user variables. For simple linear regression, this is the same as Pearson’s correlation 

coefficient we have already seen [48].  

R Square or coefficient of determination is the proportion of variation in the 

response variable explained by the regression model. The values of R square range from 

0 to 1; small values indicate that the model does not fit the data well. 99.7% of the 

variation in response time values can be explained by a fitted line [48].  

The standard error of the estimate is the estimate of the standard deviation of the 

error term of the model, σ. This gives an idea of the expected variability of predictions 

[48]. 
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Table 10. ANOVA for e2 

The ANOVA table indicates that the regression model predicts the dependent 

variable significantly well as the statistical significance (under “Sig.” Column for 

“Regression” row) is p=0, which is less than α at 5%. This indicates that the regression 

model significantly predicts the response time variable y and that it is a good fit for the 

data [48]. 

 

Table 11. Coefficients for e2 

The unstandardized coefficients are the coefficients of the estimated regression 

model. Thus the expected response time value is given by: 

                    

 

( 14 ) 

 

 We include both the constant and slope as they are significant to the model due to 

the fact that the p value is below α at 0.05. As for the values in the equation, 0.039 is the 
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slope, x is the number of users, -6.784 is the intercept, and y is the response time. The 

standardized coefficient is the same value as shown before in the first table. We can also 

be 95% confident that the slope is within the range of between 0.037 and 0.041. We are 

also 95% confident that the intercept will be in the range between -13.213 and -0.356 

[48]. We validate the model assumptions in Appendix B (Model Assumptions). 

In the next part of the analysis, we can also see that the linear model can be 

extrapolated by using just three of the values. In order to show this, we use three of the 

clusters as shown in the next page. Two of the clusters are non-compression (e1 and e8) 

and the other cluster is compression (e6). We first extrapolate a model by calculating the 

slope and intercept for the first three values. After we have these two values, we create an 

approximate linear model (eg.                                as shown in 

the next page) [48].  We then calculate all the predicted values for each given number of 

users. The difference between the measured y values and predicted y values are then 

calculated. We then calculate the percentage of the difference and calculate the mean for 

the last seven values to see how accurate the model predicts the values. As can be seen in 

the tables and graphs on the next pages, the model relatively approximates the predicted 

values. The mean percentage of the seven values is below 12.8% which means that the 

average of rate of errors is relatively low. The minimum percentage difference is below 

5% and the maximum is approximately 16% for all three clusters, which adds evidence to 

the fact that the error rates are relatively low. The next page shows this information in 

detail and is graphed to visually show how the model can approximate the values. 
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( 15 ) 

 

e1 

Measured y 
Values 

Predicted y 
Values Difference %Difference 

27.3896 27.23615573 0.15344427 0.56022823 

53.2448 53.55168923 -0.30688923 -0.5763741 

80.02066667 79.86722273 0.153443936 0.19175538 

111.0799 106.1827562 4.89714377 4.40866779 

140.81392 132.4982897 8.31563027 5.90540358 

170.9486667 158.8138232 12.13484343 7.09853061 

201.6801714 185.1293567 16.55081469 8.206466 

229.3647425 211.4448902 17.91985225 7.81281903 

268.0817581 237.7604237 30.32133437 11.3104803 

317.79912 264.0759572 53.72316277 16.904755 

  

Mean % for last 7 
values 8.80673176 

 

Table 12. Measured vs Predicted Values - e1 
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Figure 12. Measured vs Predicted Response Time for e1 Graph 
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( 16 ) 

 

e8 

Measured Values Predicted Values Difference %Difference 

21.2872 20.70657761 0.580622389 2.72756581 

37.3436 38.50484411 -1.161244111 -3.1096202 

56.88373333 56.30311061 0.580622723 1.02071838 

80.3078 74.10137711 6.206422889 7.728294 

101.37096 91.89964361 9.471316389 9.34322452 

123.7573333 109.6979101 14.05942321 11.3604769 

148.4385714 127.4961766 20.94239483 14.1084589 

168.8869 145.2944431 23.59245689 13.9693824 

195.8008445 163.0927096 32.70813485 16.7047976 

217.72192 180.8909761 36.83094389 16.916507 

  
Mean for last 7 values 12.8758773 

Table 13. Measured vs. Predicted Values - e8 
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Figure 13. Measured vs Predicted Response Time for e8 Graph 
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                                ( 17 ) 

 

e6 Compressed 

Measured Values Predicted  Values Difference %Difference 

37.4056 31.77366667 5.631933333 17.7251602 

74.3146 67.89406667 6.420533333 9.45669283 

109.6464 104.0144667 5.631933333 5.41456733 

151.8334 140.1348667 11.69853333 8.34805328 

187.5128 176.2552667 11.25753333 6.3870621 

231.7607333 212.3756667 19.38506667 9.12772493 

270.0800572 248.4960667 21.58399049 8.68584794 

306.63435 284.6164667 22.01788333 7.73598365 

353.1127556 320.7368667 32.37588889 10.0942212 

386.53388 356.8572667 29.67661333 8.31610173 

  
Mean for last 7 values 8.38499927 

Table 14. Measured vs Predicted Values - e6 

 

 



80 

 

 

Figure 14. Measured vs Predicted Response Time for e6 Graph 

 

This analysis is valuables for researchers who follow this methodology as it can 

save them time and cost. In order to eliminate any potential outliers (as values are very 

few), it is very important to run the experiment for each cluster several times (in this case, 

we ran the experiments five times) and take the average of these values. It is also 

important to note that this shows that we can predict the values for up to 5000 users given 

these clusters, but this does not show that we can go above 5000 users.  
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5.3 Summary 

 This chapter first showed how we implemented our iterative process methodology 

by looking at the import and migration process of an XML big data source. We then 

investigated the performance of topologies generated for the same cost and validated our 

performance model through the last steps of the methodology. We first illustrated the 

experimental setup for executing our workloads. We then showed the response time 

comparisons and found that the cluster with the most machines had the quickest response 

time. We also showed that there is a significant difference in response time when adding 

an MD5 to the row key. We found that there is a linear relationship for all clusters by 

performing a linear regression analysis on all clusters. We also found that you can 

approximately predict future values by modelling only the first three data points of each 

experiment. 
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6. Conclusion 

This thesis presented an approach for quantifying and modeling the performance 

of HBase clusters. This is demonstrated within the CVST project on SAVI platform 

acting as the cloud. All experiments were executed in real time on real data. We 

summarize the contributions as follows: 

To begin with, we introduced and applied an iterative methodology for evaluating 

and characterizing HBase clusters. This iterative methodology consists of several steps:  

First, large data documents are stored into the relational database. In this thesis, 

our data documents are XML standard and we use MySQL as our relational database. A 

set of goals is also established for the non-relational database cluster. In our thesis, we 

chose performance and cost as our goals.  

Second, the data is transferred from relational database to non-relational database 

(HBase), through an iterative process in order to find the best schema after the best 

cluster is found. The relational database acts as a “back up” store to save time from re-

importing all individual files and for verification purposes, as well as being supported by 

existing migration tools. Also, the relational database only requires one machine where as 

HBase would require many machines therefore saving on cost and physical resources. 

Thirdly, the last step in the methodology evaluates different topologies based on 

performance in real time against different types of workloads and also acts as an iterative 

process for finding the best topology of machines. In order to speed this process up, a 
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small sample of workload response times are measured and from these observations, a 

prediction model that is linear is formed. Once this prediction model is created, then the 

future values can be approximated. This saves time and resource (in terms of cost and 

physical resources) for the researcher as they do not have to execute a larger number of 

concurrent queries.  

Moreover, we demonstrated and validated this linear predictive model behaviour 

across clusters and schemas. We constructed a prediction model from a few response 

time values and then calculated predicted response times. We then compared the 

predicted values from the prediction model with the observed values from our 

experiments and found that there was a small percentage in difference between these 

values. In addition to this, statistical analysis was used to prove that each cluster 

configuration indeed had a linear regression for all observed values. This confirmed our 

assumptions that there would be a linear relationship between number of users and 

response times due to the sequential nature of the “Scan” workloads that were used [45]. 

Lastly, we showed that row keys with MD5 were found to be significantly faster 

than row keys without MD5. This was due to the RegionServer hotspotting and keys not 

having a proper distribution across machines [16]. Furthermore, clusters with higher 

number of instances performed consistently faster due to cluster underutilization with 

out-of-the-box configuration.  

It is important to note however, that the results are valid only for the “scan” type 

of requests. Also, different big data sources may yield different results. This can be due to 
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the schema type required for the data or how much data is being stored in each cell (in 

our thesis, we only store numbers). Further experiments and statistical analysis may be 

required in order to generalize these results. Moreover, how to configure clusters for 

maximum cluster utilization remains to be an open question. In the future, we would like 

to extend our methodology to facilitate finding the best practice configurations/settings 

for different clusters in HBase in order to enable maximum utilization of clusters. After 

this is successful, we plan to do similar experiments with the clusters being fully utilized 

and see how it would behave. In addition to this, we would like to also see if there are 

other HBase functionalities that can be modelled in order to add to our existing 

methodology.  
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Appendix A (Normal Distribution for t-Test) 

First we check if both of the dependent variables of compression and non-

compression have normal distribution. On the next pages (Table 6 and Table 7), we can 

see that the skewness and kurtosis are between -1.96 and +1.96. It is hard to tell from the 

histograms whether or not the data is normally distributed as there is a small amount of 

data points so we look at both the Shapiro-Wilk test and Q and Q plots (Table 8). In the 

Shapiro-Wilk test, if the p value falls below 0.05, then the data is not normally 

distributed. However, if it is above 0.05 it may or may not be normally distributed. This 

test is complemented by the Normal Q-Q plot test. We look at the Normal Q-Q plot to see 

if the expected values and the normal values match up, which approximately do as 

illustrated in the relevant graphs (Figure 12-Figure 15). Also the de-trended normal Q-Q 

plot shows that standard deviation is close to 0 and the box and whisker plot is 

symmetrical therefore we can conclude that the data for all four scenarios are 

approximately normally distributed [48]. 
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Normal Distribution Analysis

 

Table 15. Descriptives 
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Table 16. Descriptives (second part) 

 

Table 17. Test of Normality 

Default_Compression graphs 
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Figure 15. Default Normal Distribution Graphs without Compression 

Default_compression graphs 

 

 

Figure 16. Default schema with Compression Normal Distribution Graphs 
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noMD5_compression graphs 

 

 

Figure 17. noMD5 with Compression Normal Distribution Graphs 
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noMD5 without Compression graphs 

 

 

Figure 18. NoMD5 without Compression Normal Distribution Graphs 
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Appendix B (Model Assumptions) 

We check the following model assumptions about residuals, ε, which are 

differences between observed and predicted responses [54]: 

Normality: The probability distribution of ε is normal. 

Linearity: Residuals should have a straight line relationship with predicted responses. The 

mean for probability distribution of ε is 0 over an infinitely long series of experiments for 

each setting of independent variable x. 

Homoscedasticity: The variance of the probability distribution of ε is constant for all 

settings of the independent variable x. 

 

Table 18. Residual Statistics for e2 

 

The Residuals Statistics table summarises standardized, as well as unstandardized 

predicted values and residuals [48]. As shown, the mean of the probability distribution of 

ε is 0. Given the standardized values, we can also see that there are no outliers as the 

standardized values are around 1.5. 
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Figure 19. e2 Standardized Regression Histogram 

 

It is difficult to tell whether or not the histogram is normally distributed due to the 

small number of values. If we look at the Normal P-P Plot of Regression Standardized 

Residual graph though we can see that the plotted points approximately follow a normal 

straight line [48].  
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Figure 20. Normal P-P Plot and Scatterplot 

 

The scatter plot of standardized residuals against predicted values graph shows a 

random pattern centred around 0. We can see no clear relationship between the residuals 

and predicted values which is consistent with assumption of linearity. 

 


