
AN APPROACH TO DESIGNING CLUSTERS FOR LARGE DATA
PROCESSING

RONI SANDEL

A THESIS SUBMITTED TO

THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF ARTS

GRADUATE PROGRAM IN INFORMATION SYSTEMS AND
TECHNOLOGY

YORK UNIVERSITY

TORONTO, ONTARIO

NOVEMBER 2014

© RONI SANDEL, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by YorkSpace

https://core.ac.uk/display/77104385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract

Cloud computing is increasingly being adopted due to its cost savings and abilities to

scale. As data continues to grow rapidly, an increasing amount of institutions are

adopting non standard SQL clusters to address the storage and processing demands of

large data. However, evaluating and modelling non SQL clusters presents many

challenges. In order to address some of these challenges, this thesis proposes a

methodology for designing and modelling large scale processing configurations that

respond to the end user requirements. Firstly, goals are established for the big data

cluster. In this thesis, we use performance and cost as our goals. Secondly, the data is

transformed from relational data schema to an appropriate HBase schema. In the third

step, we iteratively deploy different clusters. We then model the clusters and evaluate

different topologies (size of instances, number of instances, number of clusters, etc.). We

use HBase as the large data processing cluster and we evaluate our methodology on

traffic data from a large city and on a distributed community cloud infrastructure.

iii

Acknowledgements

I would like to first and foremost express the deepest appreciation to my

supervisor, Professor Marin Litoiu for not only being an incredible supervisor, but also

giving me the opportunity to learn new technologies and giving me valuable experience. I

would also like to thank him for his guidance and persistent help with this thesis. It was

truly an honour.

Furthermore I want to also thank Professor Radu Campeanu (who is also the

Chair of the committee) for his mentorship throughout my undergraduate studies at York

University and for introducing me to the MAIST program at York University.

My gratitude goes to Professor Sotirios Liaskos who is part of my supervisory

committee for all the help he has given me throughout my Graduate Studies, as well as

giving me a better understanding of Software Architecture and Requirements

Engineering.

Moreover, I would like to thank Professor Henry Kim for his insightful comments

and interest in my topic, as well as taking on the role as an external examiner for my

defense.

I would also like to express my gratitude to Dr. Mark Shtern for being an

outstanding mentor and being there whenever I had a problem. He has been my mentor

throughout my thesis adventure. During my time as a Masters student, I worked closely

with Dr. Mark Shtern and Dr. Marin Litoiu to publish a position paper on mitigating Low

iv

and Slow Distributed Denial of Service Attacks aimed at the application layer and had the

privilege to present it at a conference in Boston [1].

I give my appreciation to Dr. Rizwan Mian, who was also my thesis mentor for all

the excellent help he has given me and for teaching me strategies for approaching

complex problems. He was my thesis mentor for a shorter period of time but he has

helped me tremendously.

I am so thankful for the support of Professor Younes Benslimane for being a great

supervisor and a mentor during my teaching assistantship.

I want to express my gratitude to Dr. Mike Smit for introducing me to Amazon

EC2, for advising me to use Cloudera, and for his expertise. I want to thank Brad for

introducing me to Hadoop Distributed File System and Map/Reduce, as well as helping

me with some of my rookie technical issues when I first started.

Moreover, I want to thank Dr. Hadi Bannazadeh for providing me with the Smart

Application Virtual Infrastructure Test Bed to perform my experiments for free and

helping me whenever I had any problems with the machines. This thesis would have been

too expensive to produce had it not been for the availability of the SAVI cloud. I also

want to thank Thomas Lin for also helping me with SAVI-related issues.

I want to thank the Connected Vehicles and Smart Transportation (CVST) team at

University of Toronto, especially Dr. Ali Tizghadam, Ali Shariat, and Mohamed

Elshenawy for introducing me to the traffic domain and providing me with the data that I

needed to carry out my experiments, as well as giving me a walkthrough of this data.

v

 I would also like to thank my other fellow lab mates: Hamoun Ghanbari, Cornel

Barna, Przemyslaw Pawluk, Parisa Zoghi, Vasileios Theodorou, Hongbin Lu, and Saeed

Zareian.

I want to send my gratitude to York University Graduate Scholarship, CVST, and

Ontario Graduate Scholarship Program for their generous financial support during my

research.

Last but certainly not least, I would like to thank my family, friends, and

girlfriend for all the support they have given me throughout this process. I want to

especially thank both my mother and father, Arie and Hadasa Sandel, who helped get me

where I am.

vi

Table of Contents

Abstract ... ii

Acknowledgements .. iii

Table of Contents ... vi

List of Tables ... ix

List of Figures ... x

1. Introduction ... 1

1.1 Problem and Motivation .. 1

1.2 Research Objectives .. 3

1.3 Methodology and Research Contributions .. 4

1.4 Thesis Organization... 6

2. Background ... 7

2.1 Cloud Computing .. 7

2.1.1 Smart Application Virtual Infrastructure (SAVI) ... 11

2.2 Big Data... 13

2.2.1 Hadoop.. 14

2.2.2 HBase.. 16

2.2.3 Cloudera.. 20

vii

2.3 Summary ... 22

3. Related Work .. 23

3.1 Data Schemas for Big Data ... 23

3.2 Configuring Topologies for Processing Big Data ... 27

3.3 Modeling ... 30

3.4 Summary ... 31

4. A Process for Designing Big Data Configurations ... 32

4.1 An Iterative Process .. 33

4.2 Cost and Configurations .. 38

4.3 Modeling the Cluster ... 42

4.4 Summary ... 47

5. Experiments and Results ... 49

5.1 Importing and migrating data .. 49

5.1.1 Discussion .. 57

5.2 Validating the performance models .. 58

5.2.1 Experimental Setup .. 59

5.2.2 Comparing configurations .. 63

5.2.3 Comparing Schemas ... 66

5.2.4 Models .. 71

viii

5.3 Summary ... 81

6. Conclusion .. 82

References ... 85

Appendix A (Normal Distribution for t-Test) ... 93

Appendix B (Model Assumptions) ... 99

ix

List of Tables

Table 1. Amazon EC2 prices for each instance .. 39

Table 2. Rackspace prices for each instance ... 40

Table 3. Calculation Table for Prediction Modeller ... 45

Table 4.Table with Predicted Values .. 46

Table 5. Amazon EC2 Pricing for different instances comparable to SAVI 60

Table 6. t-test for noMD5 vs default for No Compression ... 70

Table 7. t-test for noMD5 vs default with Compression .. 70

Table 8. Correlations for e2 .. 71

Table 9. Model Summary for e2 ... 72

Table 10. ANOVA for e2.. 73

Table 11. Coefficients for e2 .. 73

Table 12. Measured vs Predicted Values - e1 ... 75

Table 13. Measured vs. Predicted Values - e8 .. 77

Table 14. Measured vs Predicted Values - e6 ... 79

Table 15. Descriptives .. 94

Table 16. Descriptives (second part) .. 95

Table 17. Test of Normality .. 95

Table 18. Residual Statistics for e2... 99

x

List of Figures

Figure 1. HDFS Architecture .. 15

Figure 2. HBase Architecture ... 18

Figure 3. Iterative Process... 34

Figure 4. Cluster example line graph .. 47

Figure 5. Warehouse Schema ... 52

Figure 6. Schema Transformation... 56

Figure 7. Experiments ... 61

Figure 8. Response Times for Queries on non-Compress Tables for all topologies 65

Figure 9. Response Times for Queries on Compression Tables for all topologies 66

Figure 10. Non-Compression graph illustrating response times for different schemas 67

Figure 11. Compression graph illustrating response time for different schemas 68

Figure 12. Measured vs Predicted Response Time for e1 Graph 76

Figure 13. Measured vs Predicted Response Time for e8 Graph 78

Figure 14. Measured vs Predicted Response Time for e6 Graph 80

Figure 15. Default Normal Distribution Graphs without Compression 96

Figure 16. Default schema with Compression Normal Distribution Graphs 96

Figure 17. noMD5 with Compression Normal Distribution Graphs 97

Figure 18. NoMD5 without Compression Normal Distribution Graphs 98

Figure 19. e2 Standardized Regression Histogram ... 100

Figure 20. Normal P-P Plot and Scatterplot.. 101

1

1. Introduction

1.1 Problem and Motivation

Enterprises are increasingly adopting cloud computing because of its economic

advantage and its ability to scale [2],[3],[4]. By eliminating up-front costs, the cloud

allows companies to scale hardware and software resources on a demands-need basis [2],

[5]. These benefits have also allowed for improved management of Big Data.

Today, Big Data is a popular term to describe the exponential growth and

availability of data, both structured and unstructured [6]. The characteristics of Big Data

are commonly described as variety, volume, and velocity [7]. As systems are becoming

more and more complex, data is increasing in size and thus effective data management of

large data sets has been a major research problem. According to Agrawal et al. [8],

researchers have been seeking to manage Big Data through both distribution and scaling

for more than three decades.

This need has led to the birth of a new class of systems referred to as NoSQL

which are being widely adopted by various organizations [9]–[12]. These types of

databases are different than traditional relational databases. NoSQL removes support that

is found in traditional relational databases, such as SQL language, transactions, and other

additional features found in traditional relational databases in exchange for faster reading,

faster writing, larger storage, ease of expansion, and low cost [13]. It is also important to

note that open source relational database management systems have a shortage of cloud

2

features and organizations have to opt for commercial solutions, which can get very

costly making NoSQL databases more attractive [8]. In the domain of NoSQL, the

MapReduce application [14] and the open source implementation known as Hadoop [15]

has also seen widespread adoption in industry and academia alike. Hadoop is an open-

source framework that was designed for distributed processing of large data sets across

clusters of machines. MapReduce is a library developed by Google research lab to

process large amounts of data. These tools will be explained further in the background

sections of the thesis.

Due to early stages in development of these applications, organizations have been

increasingly facing challenges pertaining to Big Data environments. The first challenge is

coming up with an objective way to evaluate the HBase clusters with faster performance.

There is a high number of possible ways to configure HBase clusters which leaves open

the question of what approach should be taken to address this challenge and how can the

complexities of this challenge be controlled in a reasonable way.

 This leads to the second challenge of finding which factors would have an impact

on the performance of the HBase cluster. For instance, will having larger number of

machines verses smaller number of machines affect performance? Will having a

particular HBase data schema influence performance over choosing a different data

schema?

 Furthermore, measuring response times over a larger space can take an extensive

amount of time. As an outcome of this, these experiments can limit resource availability

3

on a resource-limited cloud service and can be very costly in terms of dollars on a paid

cloud service due to the amount of instances running over a longer period of time. This

leads us to the third and final challenge, which is extrapolating a model that can help us

predict response times in a larger space. Having a predictive model would enable

researchers to have the option of approximating response times with only a smaller space,

allowing for shorter periods of experimentation.

This thesis addresses these questions by illustrating the process in a transportation

traffic domain scenario. Furthermore, this thesis provides a framework for optimizing Big

Data topologies by comparing different metrics and extrapolating a model from these

metrics.

1.2 Research Objectives

The main research objective is to quantify and model the performance of HBase

clusters.

To reach the research objective we are going to focus on the following research

questions:

 Research Question 1: How do we objectively compare the performance of

different HBase clusters?

 Research Question 2: Which factors have an impact on performance for HBase?

 Research Question 3: How can we model the response time of an HBase cluster?

To answer the questions above we start with the following hypotheses:

4

 Hypothesis 1: To answer the first question, we have to consider that there are a large

number of possibilities for constructing the clusters. If we consider all clusters have the

same cost, then we can limit their numbers; therefore starting with a cost we hypothesize

that we can build a set of configurations that can be compared.

Hypothesis 2: To answer the second question, we hypothesise that the schema and the

nature of the configuration of the database is going to have an impact on the response

time.

Hypothesis 3: For the third question, our hypothesis is that we can build an

experimental model (linear or non-linear) and use it for prediction.

1.3 Methodology and Research Contributions

Our research methodology is based on experimentation and the use of public

traffic data and public cloud infrastructure. Based on the experiments, we made the we

made the following contributions:

We demonstrated that we can model the response time of an HBase cluster as a

linear model. The parameters of the model depend on the cluster type and schema. We

show that the model can be constructed with few experiments and then can be used

across a large space to predict the response times. We found that we can abstract all our

experiments by providing a linear regression formula.

A process methodology was introduced for evaluating clusters with faster

performance and modelling the clusters. We also utilized this methodology in real-

time. This methodology consists of three main steps and two iterative processes. First,

5

data files are imported into a MySQL database in bulk. Secondly, the data from MySQL

is then migrated to HBase. This part is repeatable in order for comparing different data

schemas after the best cluster has been found. Lastly, workloads are executed on the

clusters, in which response times are compared and modelled. This process is also

repeatable so that response times are compared for different topologies and a regression

model can be extrapolated.

Adding MD5 to the Row-Key of a 2-Dimensional schema resulted in significant

improvement in response time. Due to HBase ordering row-keys in lexicographical

order and the way HBase groups keys per region, a row-key without an MD5 is known to

cause what is called “region hotspotting”. Region hotspotting is the phenomenon where

one or only a few machines (or RegionServers) get large amounts of client traffic

therefore causing performance degradation and potentially leading to region

unavailability [16]. We found that overall performance was dramatically affected and that

adding an MD5 resulted in significantly faster results.

Larger clusters were found to perform faster with out-of-the-box Cloudera settings.

When executing workloads on different clusters, we found that clusters with the most

instances performed the fastest in terms of response time while clusters with the lowest

amount of instances performed the slowest. Clusters were configured to have the same

maximum capacities but different amounts and types of instances. This means that the

out-of-the-box settings do not fully utilize clusters and more research needs to be done in

the future to better configure these clusters for maximum utilization.

6

1.4 Thesis Organization

The thesis is structured as follows. Chapter 2 provides a background on important

concepts related to this research. Chapter 3 presents related research in the Big Data field.

Chapter 4 presents the details about the methodology for comparing clusters and presents

our original contributions. Chapter 5 describes the experiments and results that validate

the methodology. Lastly, we summarize the thesis and present possible work for the

future in Chapter 6.

7

2. Background

This chapter describes the background work, specifically the concepts and tools

that are used in this thesis. We provide a brief overview of the main areas, namely cloud

computing, SAVI, Hadoop, HBase, and Cloudera as well as how these concepts and tools

are used in our thesis.

2.1 Cloud Computing

According to the National Institute of Standards and Technology (NIST), cloud

computing is a “model for enabling ubiquitous, convenient, on-demand network access to

a shared pool of configurable computing resources (eg. networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.” [17]

Developers with innovative ideas for new Internet services no longer require large

capital in order to purchase hardware or the human expense to operate it nor do they need

to be concerned about buying more network capacity than they need to in order to meet

user expectations. Rather, they pay for resources as they need them or in other words,

“pay-as-you-go” [18]. The NIST calls this “On-demand self-service” and extends the

definition by saying that consumers can do this automatically without requiring human

interaction with each service provider [17].

Another characteristic of cloud, according to NIST, is that capabilities can be

accessed through standard mechanisms that promote use by heterogeneous thin or thick

8

client platforms (eg., mobile phones, tablets, laptops, and workstations) as they are

available across the network. This is a feature known as “Broad network access” [17].

In Cloud Computing, the provider’s computing resources are pooled to serve

multiple consumers, with different physical and virtual resources dynamically assigned

and reassigned according to consumer demand. Customers generally have no control or

knowledge over the exact location of the provided resources but may be able to specify

the location of these resources at a higher level (eg. country, state, or datacenter). This is

known as “resource pooling” [17]. Examples of resources include storage, processing,

memory, and network bandwidth.

 Cloud computing has also allowed for rapid elasticity of capabilities, meaning

that their systems are able to adapt to workload changes by provisioning and de-

provisioning resources in an autonomic fashion, such that at each point in time the

available resources are comparable to the current demand as closely as possible [17],[18].

Cloud systems can also automatically control and optimize resource use (eg.

storage, processing, bandwidth, and active user accounts) by a measurement (such as

pay-per-use). This is known as a “measured service” [17].

 The three most popular cloud service models are [8],[17]:

1) Infrastructure as a Service (IaaS)

2) Platform as a Service (PaaS)

3) Software as a Service (SaaS)

9

IaaS is a capability to provision processing, storage, networks, and other

computing resources where consumer is able to deploy and run software, which can

include operating systems and applications [8],[17]. The consumer does not manage or

control the underlying infrastructure but has control over operating systems, storage, and

deployed applications, as well as possible limited control over other select networking

components such as host firewalls.

Moreover, PaaS is where a provider gives the consumer the capability to deploy

onto the cloud infrastructure applications created using programming languages, libraries,

services, and tools supported by the provider [8],[17]. The consumer however does not

manage or control the underlying cloud infrastructure which includes network, servers,

operating systems, or storage, but has control over the deployed applications and possibly

settings for the application-hosting environment.

Lastly, SaaS is the ability for the consumer to use the provider’s running

applications on the cloud infrastructure [8],[17]. The applications can be accessed from

various client devices through either a thin client interface such as web browser or a

program interface. The consumer does not manage or control the underlying

infrastructure, including network, servers, operating systems, storage, or individual

application capabilities, unless the application includes user specific application

configuration settings.

Cloud Computing also includes several different deployment models [17]:

1) Private Cloud

10

2) Community cloud

3) Public cloud

4) Hybrid cloud

Private cloud is a cloud infrastructure for exclusive use by a single organization

comprising multiple consumers (eg. business units) [17],[18]. It may be owned, managed,

and operated by the organization, a third party, or a combination of them. It may also

exist on or off the organization’s premises. Examples of private cloud vendors include

Rackspace Private Cloud
1
 and HP Helion

2
.

Furthermore, community cloud is a cloud infrastructure used exclusively by a

specific community of consumers from organizations that have shared goals [17]. It may

be owned, managed, and operated by one or more of the organizations in the community,

a third party, or some of them.

Thirdly, a public cloud is a cloud infrastructure open for use by the general public

[17],[18]. It may be owned, managed, and operated by a business, academic, or

government organization, as well as a combination of them. It exists on the premises of

the cloud provider. Examples of public cloud include Amazon EC2
3
 and Rackspace1.

A combination of the above models (two or more) is known as a hybrid cloud

[17]. These models are bound together by standardized technology that enables data and

application portability (eg. load balancing between two clouds).

1
 http://www.rackspace.com

2
 http://www8.hp.com/ca/en/cloud/helion-overview.html

3
 http://aws.amazon.com/ec2

11

In this thesis, we use a PaaS known as Smart Application Virtual Infrastructure

(SAVI)
4
 testbed (described in the next section) to provision and decommission instances

(which are also known as virtual machines) with varying flavors (medium, large, and

extra large). The flavors of these instances will be explained in the Chapter 6

(experiments and results) portion of this thesis. We describe SAVI in the next section.

2.1.1 Smart Application Virtual Infrastructure (SAVI)

According to Pan et. al., numerous nations are investing into national-scale

research programs focused on the Future Internet and applications [19]. These research

programs have been addressing content oriented paradigms, mobility, and ubiquitous

access to networks, cloud-computing-centric architectures, security, and experimental

testbeds. In Canada, Smart Application Virtual Infrastructure (SAVI) project (involving

several universities and industrial partners) was established to address the design of

future application platforms built on flexible, versatile, and evolvable infrastructure that

can be readily deployed, maintained, and decommissioned. These applications can be

large in scale, short-lived, and distributed [20].

A platform known as Smart Application Virtual Infrastructure (SAVI) testbed

(TB) is used for deploying the virtual machines. The SAVI TB platform architecture

includes components and interfaces. The interfaces are for both internal and external

communications.

The SAVI TB is comprised of the following physical entities:

4
 www.savinetwork.ca

12

1) Core Nodes

2) Edge Nodes

3) SAVI Network

4) SAVI TB Control Center

Resources on Core nodes and Edge nodes are used to create applications. These

resources include computations, storages, networks, optical access, wireless access, and

reconfigurable hardware resources. The Core nodes are contained by conventional cloud

computing resources (compute, storage, and basic networking). On the other hand, the

Edge nodes include more advanced resources such as reconfigurable hardware resources.

The SAVI network is also considered a resource in the SAVI TB.

Core nodes, Edge nodes, and SAVI TB control center are all unified by the SAVI

network which is a dedicated research network. Core and Edge Nodes together are

referred to as the extended cloud in SAVI.

Edge Nodes are deployed on sites located at participating universities (including

York University). The Core Nodes are deployed in fewer universities compared to the

Edge Nodes. For instance there can be one or two Core nodes across SAVI TB platform.

For this thesis, the Core node is used, which is hosted in University of Toronto.

SAVI testbed uses Open Stack
5
, which is open source software for building

clouds. This software also includes a “portal” user interface, accessible by any browser,

allowing for easy provisioning and decommissioning of machines for building

5
 http://www.openstack.org/

13

applications and experiments. These applications and experiments can be deployed to

different components of the SAVI TB [20]. In SAVI, applications and experiments are

different. Applications are aimed at delivering features to end users and need to guarantee

a service level where as experiments are shorter-lived, used by researchers, and aimed at

gathering measurement data or user feedback. However, both applications and

experiments are treated equally by SAVI TB.

An application or experiment is deployed on SAVI TB by allocating slices of

resources to that application or experiment. All SAVI resources are virtualized in SAVI

TB and allocation to each application or experiment is performed by the SAVI TB

Control and Management plane.

2.2 Big Data

 Big data is a term used for massive data sets having large, varied and complex

structure that pose difficulties in storing, analyzing, and visualizing for further processes

or results [6][21]. It is also a popular term to describe the exponential growth and

availability of data, both structured and unstructured [6].

The characteristics of Big Data were first described in 2001 by Laney as variety,

volume, and velocity [7]. Variety is the different varieties of data (such as photos, audio,

video, etc). Volume is the amount of data storage needed for the data (terabytes,

petabytes, etc). The velocity is the speed of data coming in and going out (real time,

periodic, batch, etc). To date, these attributes have become the defining attributes of Big

Data. However, authors and business specialists extended these defining attributes with

14

further aspects such as dedicated storage, management, and analysis techniques

[22],[23],[24]. IBM further added a fourth V known as veracity, emphasizing the aspect

of data quality [25]. Ebner et al. [26] has taken these extensions into account and has

defined Big Data as “as a phenomenon characterized by an ongoing increase in volume,

variety, velocity, and veracity of data that requires advanced techniques and technologies

to capture, store, distribute, manage, and analyze these data”.

The quest for conquering challenges posed by management of big data has led to

a wide range of systems [8] such as Hadoop and HBase. In this thesis we use Hadoop,

HBase and Cloudera, which are talked about in the next sections.

2.2.1 Hadoop

The Apache Hadoop software library
6
 is a framework that allows for distributed

processing of large data sets across many instances and consists of several modules

(including HDFS and MapReduce). It is designed to scale from single to thousands of

nodes, each offering local computation and storage. Rather than relying on hardware to

deliver high-availability, HDFS itself is designed to detect and handle failures at the

application layer [15].

Moreover, HDFS consists of the Master/Slave architecture [27] in which a master

server controls the overall distributed file system spanning many servers. The HDFS

architecture is divided into nodes called Name nodes and Data nodes. The architecture is

illustrated in Figure 1 [27].

6
 http://hadoop.apache.org/

15

Figure 1. HDFS Architecture

Furthermore, the Name node contains all information of HDFS metadata,

including where these data nodes are and controlling the replication of the data blocks.

Blocks of data are replicated across data nodes so that if any block fails, data is not lost.

This includes data nodes that are on a different rack (physical location of machine). Each

Data node runs on a separate machine and stores HDFS data in files in its local file

system [27].

The Data node has no knowledge about HDFS files and stores each block of

HDFS data in a separate file in its local file system. The Data node does not create all

files in the same directory but rather uses an algorithm to determine the optimal number

16

of files per directory and creates subdirectories appropriately. Creating all local files in

the same directory may not be optimal because the local file system might not be able to

efficiently support a huge number of files in a single directory. When a Data node starts

up, it scans through its local file system and generates a list of all HDFS data blocks that

correspond to each of these local files. It then sends this report to the Name node [15].

Next we are going to look at MapReduce.

 MapReduce is a library developed by the Google research lab to process large

amounts of data [14]. Hadoop has a variation of the MapReduce known as the Hadoop

MapReduce framework which works on HDFS [27]. When using MapReduce, the user of

the library expresses two functions: map and reduce. Map, written by the programmer,

takes an input pair and produces a set of intermediate key/value pairs. The MapReduce

library then groups together all intermediate values associated with the same intermediate

key and passes them to the Reduce function. The Reduce function, also written by

programmer, accepts an intermediate key and a set of values for that key. It merges

together these values to form a possibly smaller set of values. This allows users to handle

lists of values that are too large to fit in memory [14]. In the next section, we look at

HBase and how it improves upon HDFS.

2.2.2 HBase

According to HBase documentation, HDFS is well suited for storage of large files

but HDFS documentation states that it is not a general purpose file system and does not

provide fast individual record lookups in files [28]. HBase, on the other hand, provides

fast record loops and updates for large tables.

17

HBase
7
 is an open-source database modeled after Google’s BigTable [29]. HBase

is currently being used in large data centric applications such as Facebook and Twitter

because of its portability and massive scalability [11], [12]. It is part of Apache Hadoop

project and runs on top of HDFS, providing capabilities found in Google BigTable,

including fault tolerance when storing large quantities of sparse data. It also adds to

HDFS functionality by allowing for random, real time, read and write access to large

data. HBase applications are written in Java utilizing HBase API.

Moreover, HBase has what are called RegionServers, which are built on top of the

data nodes of HDFS and a Master which is built on top of the Name node of HDFS. This

is illustrated in Figure 2. The master is in charge of coordinating and monitoring the

RegionServers in the cluster. RegionServers in turn, are responsible for serving and

managing regions. Regions are chunks of rows of a table.

7
 http://hbase.apache.org/

18

Figure 2. HBase Architecture

Furthermore, HBase is made up of a table, which is made up of multiple rows.

Each row contains a row key. Rows are sorted alphabetically by the row key as they are

stored, therefore the row key design is important as the goal is to store data in such a way

that related rows are grouped together by row keys. Rows also contain one or more

columns. Columns include a column family and a column qualifier, delimited by a colon

character. Column families group a set of columns and their values. Each column family

has a set of properties relating to storage, such as how data should be compressed,

19

whether values should be memory cached, etc. Each row in the table has the same

column families, but a given row might not store anything in a given column family if

there is no data. Column families are specified when the HBase table is created. Column

qualifiers are added to column families to provide the index for a given piece of data. As

column qualifiers can change greatly between rows, they are considered mutable. The

combination of a row, column family, and column qualifier is a cell. A cell contains a

value and a timestamp, which represents the value’s version. Timestamps by default are

represented by the time on the region server when the data was written and is written

alongside the value [30].

The hierarchy of the region is as follows [28]:

 Table (HBase Table)

o Region (Regions for the table)

 Store (Store per ColumnFamily for each Region for the table)

 MemStore (One MemStore for each Store for each Region for the

table)

 StoreFile (0 or more StoreFiles for each Store for each Region for the

table)

o Block (Blocks within a StoreFile within a Store for each

region for each table)

When data is imported, it writes to the region’s MemStore (in-memory space) and

when the MemStore gets full, it is flushed to StoreFiles on HDFS [31]. A StoreFiles is a

20

façade of HFile (in HDFS).

 As data increases, there may be many StoreFiles in HDFS which can degrade

read/write performance. Thus HBase will automatically pick two smaller StoreFiles and

rewrite them into a bigger one in a process known as “minor compaction” [31]. For some

situations, or when triggered by a configured interval (once a day by default), a major

compaction runs automatically. Major compactions will drop the deleted or expired cells

and rewrite all the StoreFiles, which will usually improve performance. However, during

this process, a major compaction rewrites all of the Stores’ data and therefore a heavy

volume of disk I/O utilization and network traffic might occur during the process. This

would not be acceptable on a heavy load system with many users. Along with each

RegionServer, there is a log file known as a “HLog”. A “HLog” records all edits to the

StoreFiles. It is also called the HBase “write-ahead-log” [32].

2.2.3 Cloudera

“Cloudera Distribution Including Apache Hadoop” (CDH) or “Cloudera”
8
 is a

distribution of open-source Apache Hadoop-based tools. It comes in both free version

and paid version. The paid version is known as Cloudera Enterprise and the free version

is known as Cloudera Express. Cloudera Express is used in this thesis. Cloudera Express

uses Hadoop Distributed File System (HDFS) and Hadoop MapReduce as the main core

elements.

The remaining tools of Cloudera Express allow for easy integration between Big

Data Tools, as well as support for data management (including monitoring tools), data

8
 http://www.cloudera.com/

21

accessibility, data migration, and querying. In this thesis, we use Cloudera Express

Manager to set up, monitor, and manage the Hadoop clusters.

These tools include:

1) Hadoop Distributed File System

2) Hadoop MapReduce

3) HBase

4) ZooKeeper
9

5) Sqoop
10

The first three tools are described in previous sections under Hadoop and HBase

respectively. ZooKeeper is an open-source centralized service used to enable highly

reliable distributed coordination. It acts as a centralized manager for the entire cluster in

terms of electing a master server, managing group membership, and managing metadata

[33]. It was designed for developers to focus mainly on their application logic rather than

coordination.

Sqoop is short for “SQL to Hadoop” [34]. It is service used to transfer bulk data from

relational databases such as MySQL to Apache Hadoop data stores (such as HDFS and

HBase) and vice versa. Taking advantage of MapReduce, Hadoop’s execution engine,

Sqoop performs the transfers in a parallel manner. Sqoop is executed using command-line

statements in shell.

9
 http://zookeeper.apache.org

10
 http://sqoop.apache.org

22

2.3 Summary

 In this chapter, we gave a background about relevant concepts regarding this

research. We described how cloud computing allows for on-demand resources over the

internet and saves on cost. We also talked about SAVI testbed, a cloud computing

platform, which is used in this thesis. Lastly, we went over the concept of Big Data and

described the software that facilitate in its management (Hadoop, HBase, and Cloudera).

23

3. Related Work

In the last chapter we provided an in-depth background of Big Data. However,

there are many challenges facing the Big Data research field. In this chapter, we are

going to analyze these challenges and the existing contributions made by the research

community.

The chapter is organized as follows:

Firstly, in section 3.1 we review different approaches to modelling data schemas

and how this relates to our research. Secondly, in Section 3.2, we present literature

relevant to Big Data configurations for large data processing. Lastly, in Section 3.3, we

look at how existing literature shows that certain performances in Big Data clusters can

be modelled and used to predict values in a larger space.

3.1 Data Schemas for Big Data

Researchers have looked at which data schemas would be optimal for querying

data in a Big Data context. Hadoop allows for relatively more data structure flexibility as

it does not have the traditional column and rows structures, which can cause confusion as

to which data schema would be suitable for different data domains. It is important to also

note that an unsuitable data structure may cause poor performance. For instance, HBase

currently does not perform well with anything above two or three column families [35].

This calls for a structural systematic method for NoSQL database design as it is an

important problem for researchers and practitioners.

24

Han and Stroulia [36] have studied performance of data schemas by running

workloads on two different datasets. The first dataset was a cosmology dataset and

consisted of 321,065,547 particles from 9 snapshots with a total size of approximately 14

GB binary format. Another dataset they used was Bixi, a public dataset collected by a

bicycle renting service in Montreal, Quebec, Canada which totaled 12 GB and contained

96,842 data-points for all the stations.

Three schemas were used to test performance of queries on the data sets where the

second two schemas would be three dimensional. The version dimension would act as the

third dimension. A version dimension specifies a cell and by default, HBase has 3

versions maximum per cell. If data with the same row-key and column as another data is

imported, that older data will not be replaced, rather it will be “versioned”. In the case of

Bixi data, if they wanted to store values by day, they would use the date and station id as

their row-key (no time/hours/minutes). All the 1440 records for one day would be stored

on the same cell through “versions” (hence there would 1440 versions for each cell). Han

and Stroulia found that using the third dimension of HBase improves performance and

that the distribution of data across cluster nodes highly impacts performance [36].

However, Han and Stroulia also mention that in HBase “many functions are not

very stable, including functionalities around versioning”. According to HBase’s official

website book regarding schema design, it is not recommended setting number of max

versions to a level exceeding hundreds of versions or more as this will greatly increase

the store file size [37].

25

In their section entitled “Schema Smackdown”, HBase authors specify that rows

should generally be used over versions if the versions would be significantly over the

maximum versions (being 3). They also give preference to rows over columns in extreme

cases when deciding between wide tables such as having 1 row with 1 million attributes

or having tall tables such as 1 million rows with 1 column apiece [38].

In addition to this, transforming complex relational databases into HBase is

another problem that is increasingly faced among organizations as not only does the

schema impact performance, but the data representation may have to be consistent with

the database it is migrating from. Chongxin Li presented an approach for this problem

and demonstrated how to follow this approach in a case study [39]. This approach

comprised of two phases.

The first phase would have the relational schema transformed into an HBase

schema utilizing a set of guidelines. The first rule in these guidelines is to group

correlated data in a column family. Li refers to user information, access patterns, and

write patterns in a blog domain as examples of grouping correlated data.

However, relationships between tables need to be taken into account which leads

to the second rule, which is for each side of a relationship one must add the foreign key

references of the other side if it needs to access the other side’s objects. In relational

tables, foreign keys are used to maintain a relation (one-to-one, one-to-many/many-to-

one, and many-to-many). They are also used to reference parent and child objects. For

One-To-One relationship we do not worry about such a relationship as the foreign key is

26

treated as an ordinary column in HBase and can be grouped with other columns based on

the first rule of these guidelines. In One-to-Many relationships, foreign keys are only put

on the “many” side of a one-to-many relationship since multiple values are not allowed in

RDBMS because of Normal Form 1 however HBase allows multiple values to be

grouped together in a column family. To reference objects on the “many” side, Li

suggests a new column family to be created on the “one” side to contain a set of foreign

keys of the “many” side. For a Many-To-Many relationship, Li suggests using a third

table to manage this relationship where foreign keys for both tables are kept or to create

new column families to capture row keys of both sides.

Although these references are still referred to as foreign keys by Li, they are

different from those of a relational database as in a RDBMS these relationships are

guaranteed by the database itself that data is always in a consistent state and the user data

cannot violate the foreign key constraint however in HBase, applications have to ensure

these references instead.

The third rule is to merge attached data tables to reduce foreign keys. This can be

done by using a table that contains the most important data as the “main table” if it can be

used independently in the application. If a table has only one foreign key and this must be

used, then a reference table is created known as an “attached table”. Data with the same

foreign key in the “attached table” can be combined into a single row of the “main table”

based on the foreign key.

27

In the second phase, relationships between the source and destination schemas are

expressed as a set of nested schema mappings which would be employed to create a set of

queries or programs to transform the source data into the target representation. Li gives a

practical example of this by using Tableau to represent mapping algorithms for a basic

blog. Tableau is a way of describing all the basic concepts and relationships that exist in a

schema. He then shows these nested mapping representations in query-like notations as a

way for the expressions to be employed in a query.

3.2 Configuring Topologies for Processing Big Data

Configuring cloud clusters for large data has also been a growing issue. It is

important to understand what the trade offs are for deploying fewer machines with higher

resources per machine versus deploying more machines with fewer resources per

machine as this decision can have an impact on both performance and cost.

To begin with, the cloud environment allows for heterogeneous hardware and

resource demands. Lee et al. have found that it is important to exploit these features to

make data analytics in cloud efficient [40]. They present a system architecture to allocate

resources to a Hadoop data cluster in a cost effective manner. In this architecture, nodes

are grouped into one of two pools: (1) long-living core nodes to host both data and

computations and (2) accelerator nodes that are added temporarily to the cluster when

more computing power is needed for workloads. A cloud driver is used to manage these

nodes and makes decisions on adding/removing nodes based on the hints provided by the

28

users when they submit the job. Hints include memory requirements, ability to use

special features like GPUs, and the deadline.

They experimented with two queries and found that using certain configurations

had higher performance per cost compared to other configurations because some

machines had faster CPUs at lower prices than “larger” machines [40]. However, the

machines with the lower price point had less memory, which might be of no use for jobs

requiring a large amount of memory per machine. They also found that using more

accelerators can cost less while having faster performance due to the fact that the

instances are not being used for so long. The number of users who would use the data

was not addressed, which can make a significant difference in how the topology should

be created.

Furthermore, in another contribution, Zaharia et al. [41] found that MapReduce

does not perform well in heterogeneous Hadoop clusters. Hadoop assumes that any

detectably slow node is faulty. However, nodes can be slow for other reasons. According

to Zaharia et al. in a non-virtualized data center, there may be multiple generations of

hardware. In a virtualized data center where multiple virtual machines run on each

physical host, such as Amazon EC2, co-location of VMs may cause heterogeneity.

Although virtualization isolates CPU and memory performance, VMs compete for disk

and network bandwidth.

Zaharia et al. state that heterogeneity of machines (mixed instances with various

sizes) seriously impacts Hadoop’s scheduler [41]. The scheduler uses a fixed threshold

29

for selecting tasks to speculate (that is, if a node happens to be slow, the tasks are copied

to a faster node to finish the computation sooner) and therefore, too many speculative

tasks may be launched, taking away resources from useful tasks. Also, the wrong tasks

may be chosen for speculation first because the scheduler ranks candidates by locality.

For example, if the average progress was 70% and there was a 2x slower task at 35%

progress and a 10x slower task at 7% progress, then the 2x slower task might be

speculated before the 10x slower task if its input data was available on an idle node.

Zaharia et al. designed a Longest Approximate Time to End (LATE) scheduler

which is a new speculative task scheduler to try to compete with this issue, which adds

features to the Hadoop task scheduler [41]. The primary feature behind this algorithm is

that it always speculatively executes the task that the system thinks will finish farthest

into the future, because this task provides the greatest opportunity for a speculative copy

to overtake the original and reduce the job’s response time. This is contrast to the original

heuristic that was used which was comparing each task’s progress to the average progress

which would have worked well for homogeneous environments where poorly performing

nodes (stragglers) were obvious. In this case, LATE is robust to node heterogeneity as it

only relaunches slowest tasks and only small number of tasks. It also takes into account

node heterogeneity when deciding where to run speculative tasks. Lastly, LAST focuses

on estimated time left rather than the progress rate. LATE speculatively executes tasks

that will improve job response time rather than individual slow tasks’ response time.

According to Zaheria et al. LATE can improve Hadoop response times by a factor of 2 in

clusters with 200 virtual machines on Amazon EC2.

30

3.3 Modeling

 Researchers have also focused on modeling performance in Hadoop clusters.

Song et al. looked at proposing a simple framework to predict performance of Hadoop

jobs [42]. They found that the execution time for map and reduce had a linear relationship

with the amount of data (64M to 8G for 4 different kinds of jobs). They did this through

modeling the relationship through linear regression. They also compared the prediction

from smaller samples for both map and reduce tasks to actual values from the larger

samples in order to see what the error rate is. The error rate was minimal, meaning that

they can approximately predict the execution time for both map and reduce tasks.

 In another research contribution, Bortnikov et al. explores performance

bottlenecks in MapReduce tasks. According to Bortnikov et al., extremely slow tasks are

a major performance bottleneck in MapReduce systems [43]. These researchers came up

with a way to predict execution bottlenecks in MapReduce clusters. They came up with

the slowdown predictor model, which is a “machine-learned oracle for MapReduce

systems forecasting execution bottlenecks”. The predictor takes profiles of the tasks and

the hardware, and then estimates the task’s slow down. The predictor can be applied

during the assignment of the task or during the execution. The predictor employs a

popular gradient-boosted decision tree algorithm [44], which is an “additive regression

model comprised of an ensemble of binary decision trees.” [43] In the case of the

slowdown predictor model, each binary tree is split on some feature at a specific value,

31

with a branch for each of the possible outcomes. Each leaf node contains a score, which

corresponds to the decision path. The resulting prediction is the sum of the scores

returned by individual decision trees. They evaluate their model on real-time data sets on

a production Hadoop cluster at Yahoo!
11

. They found that the prediction for mappers was

more accurate than for reducers.

3.4 Summary

 In this section we talked about current research that relates to this thesis. We

firstly spoke about data schemas and how they influence performance of an HBase

cluster. We then talked about how researchers have developed approaches for improving

data processing for Big Data through cluster configurations in addressing its challenges.

Lastly, we illustrated how existing literature allows for modeling performances of

Hadoop clusters, which can be used to objectively evaluate performances of existing

clusters.

11

 www.yahoo.com

32

4. A Process for Designing Big Data Configurations

One of the main challenges in designing big data solutions is the design of the

physical configurations. By configuration we mean the definition of the schema and the

runtime components to access the data. In case of HBase, a configuration is made of the

HBase schema and the physical topology of Hadoop. When designing the configurations,

cost and performance are two main and conflicting goals. Design decisions include the

number and the type of VM instances that Hadoop uses. For example, is it better in terms

of cost and performance, to have a larger instance, a large amount of small instances, or a

combination of both?

To characterize the performance of configurations, many experiments are needed.

Experiments are costly, in terms of time and in terms of infrastructure since they are

performed in cloud as well. Therefore, a natural question is: can we deduce a

performance model for a given configuration? Also, how can someone extrapolate a

model from a limited number of users to predict the response time for a larger number of

users? This is also important as how you decide to deploy your topology will not only

impact performance, but also cost.

This chapter addresses the above challenges by focusing on the following research

questions:

 How do we compare different HBase clusters to objectively evaluate topologies

with fastest performance?

33

 Which factors have higher influence on performance for HBase?

 How can we model the response time of an HBase cluster?

The remainder of this chapter is organized as follows: Section 4.1 presents a general

high-level repeatable methodology that can be used to generate a configuration and

characterize performance. Section 4.2 focuses on a method to generate configurations.

Section 4.3 illustrates performance characterization and modelling. Section 4.4 presents a

summary and the conclusions.

4.1 An Iterative Process

In this section, we describe the iterative process, which is the methodology we use

to compare performance of big data configurations. This methodology consists of steps

for transforming the data from non-relational databases to relational database.

The process is shown in Figure 3 on the next page. It has two iterative sub-processes:

Topology design. For a given schema, we iterate experimentally between different HBase

topologies until we obtain the desired results, that is, the performance and cost specified

by the requirements.

Data schema design. Based on the SQL schema, a set of possible HBase schemas are

generated as being possible solutions to design requirements.

34

Figure 3. Iterative Process

35

Firstly, we assume we have the big data configurations goals already in place,

which are the results of the requirements engineering phase. These goals are either

retrieved from an end-user, an internal source, or are mutually agreed upon by many

different stakeholders. Examples of these goals can include fast performance and low

cost. These goals can also be very specific (that is, they can include a budget and specific

service level agreements). During this first step, we also retrieve large bulk data files

from a data source in order to use existing real data. The source for this data could be

either internal or external to the organization or company. We expect a large amount of

real data to give a more accurate picture when assessing the schemas and clusters. The

non-relational database (HBase) used in this thesis distributes rows across machines,

which also means that different data can have different distributions. We assume in our

method that we have real data. Having data that is not real (synthetic data that is

generated randomly) is an option as long as it is generated to be similar to real data. In

order to have an accurate reading of how the non relational database will perform in a

production environment, it is imperative to have a large set of real data.

Furthermore, the bulk data files are then converted and imported into a relational

database. This relational database acts as a “back up” for the data and for verifying query

results on the non relational database. We also use a relational database as it only requires

one machine (whereas a non relational database like HBase may require many machines)

and therefore is a less costly way to have a backup of the data. The data is then copied

36

from the relational database to the non-relational database. In this step we can either

adopt a commercial off-the-shelf product or create an application in house for loading the

data. In our thesis we use a tool known as Sqoop that has a built-in MapReduce for faster

transfer of data. By having a standardized tool to transfer data from one database to

another in a quick fashion allows for researchers to save time in this regard. This is

another benefit to having the data stored into the “back up” database, as the alternative

would be to repeatedly import large data files individually or merge these files together

before importing which would be otherwise heavily time consuming. Instead, we do the

bulk loading process once for the relational database side, as this relational database

includes an easy to use built-in tool for importing individual large data files and a simple

bash script can import all these files at once into the relational database. This step also

involves transforming the data and storing it into the database with a proper schema.

When speaking about transformation, we look at how the data should be

represented. It is important to choose a proper schema for the relational database to

quickly verify query results from the non relational database. An appropriate data schema

for the non relational database is also needed as this can influence the performance. Even

though schemas are compared on the fastest cluster after the performance comparisons

(as will be illustrated later), there needs to be a proper distribution of keys across the

cluster in order to utilize all machines. This is important for when coming up with the

initial schema design as the baseline. The transfer of data happens twice for both

compressed and non-compressed data. Compression allows for the data to be reduced in

size allowing for the clusters to store more data without having to commission more

37

instances. In this thesis we use compression on data as the defining differentiating

characteristic between two workloads but for other cases, researchers can use different

types of workloads and can use more than two workloads.

After the data is transferred to the non relational database, the next step is to

create different topologies by utilizing different machines from a set budget. These

topologies can be deployed one at a time to save cost (if deployed on a public cloud) and

physical resources (if deployed on a private cloud). Two workloads are executed on each

of the individual clusters by utilizing what’s known as a “scan” query in HBase on both

“compression” and “non-compression” data. Scan queries retrieve records sequentially

[45]. These workloads are executed by an application (written in Java) that allows for

inputting a maximum number of users and an increment number of users. For example,

we might want to test 1,500 users and increment by 500 therefore the application will

execute 500 users first, then 1000 users, and then 1,500 users. We assume that there will

be a linear relationship between number of users and response time due to the sequential

nature of the scan queries (we explain more in section 4.3) thus we use the maximum

number of users we would have wanted to execute, reduce that number by a large

percentage (enough to save enough time and resources but also enough to create a

relatively close approximation). We keep the same iterations that we would have done

before for this maximum number of users. We do this because we can predict future

results after constructing a performance model thus saving time. For example, let’s say

we would like to have a graph of the response time for 5000 users with iterations of 500

users executing workloads. Instead, we can reduce the number of 5000 to 2500 and

38

approximate the rest of the results using a prediction model in order to save time and

resources. When we talk about resources we talk about both physical resource and cost of

having the instances running for a certain amount of time. If the workloads were to be

executed over the entire 5000 users, all these workloads can take days depending on the

queries and the data size. This translates to a higher cost if a public cloud is used or

higher resource consumption if a private cloud is used which would restrict other

people’s usage of the same infrastructure. Therefore reducing the workloads and

approximating the response times saves both time and resource.

To create the prediction model, we take the results of a fewer numbers of users

and use a linear regression algorithm to create the formula in order to find response times

given a certain number of users as will be discussed in Section 4.3.

4.2 Cost and Configurations

In this section, we describe how we define a set of topologies based on a given set

budget. We also describe how we compare the topologies for the first iterative process

and for the second iterative process we describe how we compare the different schemas.

As stated in the last section, we define our goals as our baseline. In our thesis, we

focus on performance and cost as being our goals. From this cost, we then construct

different variations of topologies with different machine capacities and number of

machines. We assume that the cost will equal the same across different clusters, which

39

have a set maximum capacity. We can see this from looking at the Amazon [46] and

Rackspace [47] prices displayed in Table 1 and Table 2 respectively.

Instance Type VCPU Random Access

Memory

Solid State

Drive Size

Price

c3.large 2 3.75 GB 32 GB $0.105 per hour

c3.xlarge 4 7.5 GB 80 GB $0.210 per hour

c3.2xlarge 8 15 GB 160 GB $0.420 per hour

C3.4xlarge 16 30 GB 320 GB $0.840 per hour

C3.8xlarge 32 60 GB 640 GB $1.680 per hour

Table 1. Amazon EC2 prices for each instance

From Table 1, we see that the prices for Amazon EC2 instances are the same for

cost per capacity (with the exception of solid state drive space). The instances with names

c3.xlarge, c3.2xlarge, c3.4xlarge, and c3.8xlarge are double, quadruple, and octuple the

capacity size and price of c3.large respectively. For example, c3.xlarge has 4 CPUs and

7.5 GB of RAM which is double that of c3.large which only contains 2 CPUs and 3.75

GB of RAM. The storage difference is negligible as storage space for each cluster should

have more than enough space for holding existing and future data. The VCPU and RAM

are the most important parameters when determining performance.

40

Instance Type VCPU Random Access

Memory

Solid State

Drive Size

Price

Performance1-1 1 1 GB 20 GB $0.037 per hour

Performance1-2 2 2 GB 60 GB $0.074 per hour

Performance1-3 4 4 GB 80 GB $0.148 per hour

Performance1-4 8 8 GB 120 GB $0.296 per hour

Table 2. Rackspace prices for each instance

Table 2 shows that besides the drive size, the capacities per price (that is, the

parameters that influence response times) are the same once again but for a different

cloud service provider. Performance1-2, Performance1-3, and Performance1-4 are

double, quadruple, and octuple the size of Performance 1-1 respectively. Here we see

more proof that maximum capacity will have the same cost across clusters.

While constructing our topologies, we ensure that the machines running the

Master nodes and Name nodes are the same capacity per machine across experiments but

the RegionServer’s and Data node’s capacity can change from one experiment to the

next, as well as the number of machines. This is done to define a scope that ensures that

the comparisons are objective.

After these topologies are designed, a new topology is deployed on the cloud by

using a platform such as Open Stack that allows for deployment of instances. As

mentioned before, these topologies are created one at a time to save on cost and

resources. Once a new topology is created, the appropriate tools are then installed on the

41

cluster of machines. These tools include Cloudera (HDFS, Hadoop MapReduce, HBase,

ZooKeeper, and Sqoop). The data is transferred to the newly created HBase cluster with

an appropriate schema.

An application is then deployed on an extra large instance external to the cluster

and used to execute representative workloads (workloads are combinations of number of

users and query types). After the workloads have finished, the application generates a

data file, which shows the response times for each workload. The experiment is executed

several times to reduce cloud variability in which performance can change time to time

depending on the amount of traffic on the cloud, how many users are using the same

physical machine, or any other factors that may influence performance.

In the next step, the results of the experiments are processed and used to create a

Prediction Model that will be used to predict future results (Predicted Results in Fig 3).

After this is done, the results are plotted onto a line graph and this process is iterated until

desirable results are achieved. The process that is iterated includes: Generating new

configurations, deploying them, running the same workloads, rebuilding the performance

model, and graphing the new results with both the observed and predicted values.

After the desired results have been achieved, we further try to improve

performance by comparing different schemas on the fastest cluster. Data is repeatedly

transferred from MySQL to HBase with different transformations. We then use the same

application to execute the same maximum number of workloads along with the same

number of iterations as we did before for the topologies. The results are then inputted into

42

the performance model and a formula is outputted that allows seeing what the response

time will be for a larger space of users. All the schemas are graphed onto a line graph and

whichever one performs the fastest is chosen.

4.3 Modeling the Cluster

This section proposes a model for performance of the cluster, namely a

quantitative relationship between the response time, number of users, and the type of

configurations.

We propose the following model:

 (1)

where x is the number of users, C is the configuration, AC is the slope of the

configuration, βC is the intercept of the configuration, and R(C) is the predicted response

time for the particular configuration. We assume the model is linear because we use scan

queries, which we found returned results on a first in first out (FIFO) basis due to the

query’s sequential nature [45]. This means, that there is a notion of queuing happening at

each ServerRegion of the HBase cluster.

In order to quantify the configuration, we assume that AC and BC depend on the

configuration and that the coefficients have to be determined experimentally in order to

get these values.

To find the predictor equation for a set of data, we assume that we have a sample

of n data points consisting of pairs of values of x and y, say (.

43

For example, if n=3 data points they could be (500, 23.1988), (1000, 40.3606), (1500,

63.84427) where 500, 1000, and 1500 are the users (x values) and the y values are the

response times.

In order to use these sample values to estimate the model parameters, we want to

find estimators and that minimize the sum of squared errors. By minimizing sum

of squared errors, we mean that we want to produce a line closest to all n observations

[48]. This means that we find the line that minimizes the distances of each observation to

the line.

The method that produces these estimators is called the method of least squares.

For a given data point, say the point , the observed value of R(C) is and the

predicted value of R(C) would be obtained by substituting into the prediction equation:

 (2)

The deviation of the ith value from y from its predicted response time value is

[48]:

 (3)

Therefore the sum of squares of errors (SSE) of the y-values about their predicted

values for all the n points is defined as:

(4)

The quantities of and that make the sum of squared errors (SSE) minimum

are called the least squared estimates of the parameters.

44

Before finding the values of and we must first find the values of the sum of cross-

deviations for x and y and the squared deviations of x. The line over the x () and the y ()

represent the averages of all x’s and all y’s respectively. These are calculated by using the

following formulas:

(5)

(6)

Alternatively, the following “shortcut” formulas can be used (n is the number of

observations or sample size) [48]:

(7)

(8)

The values of and that minimize the SSE are given by the following

formulas [48]:

(9)

 (10)

We can illustrate the use of these formulas using the example data points that

were mentioned earlier and construct the following table where x is the number of users

and y is the response time:

45

 x y

 500 23.1988 -500 -19.26908889 9634.544445 250000

 1000 40.3606 0 -2.107288889 0 0

 1500 63.84427 500 21.37637778 10688.18889 250000

Average 1000 42.46789 Sum 20322.73333 500000

Table 3. Calculation Table for Prediction Modeller

The mean of x (is 1000 and the mean of y (is 42.46789 and are used to

calculate the values for the four different columns. In the next step we calculate slope by

using the slope formula. We take the sums of the last two columns which represent

and respectively. These sums are divided as such:

(11)

We then find that = 0.040645467. From this value, we can then easily find the

y intercept given the mean of y and the mean of x:

 (12)

We find to be 1.822423. From this we can then construct our prediction model

as:

 (13)

46

This means that if we would like to know what the response time would be for a

larger number of users (like 3000) we can substitute the value for the number of users we

want to predict for x. This is illustrated in Table 4.

x y

500 23.1988

1000 40.3606

1500 63.84427

2000 83.11336

2500 103.4361

3000 123.7588

3500 144.0816

4000 164.4043

4500 184.727

5000 205.0498

Table 4.Table with Predicted Values

 The gray portion represents the values that are observed while the white portion

represents the predicted response times for the given cluster configurations. We can then

plot these values onto a line graph as shown in Figure 4.

47

Figure 4. Cluster example line graph

As shown above, the line represents a particular cluster. The x axis represents the

number of users and the y axis represents response time in seconds. As more and more

clusters are modelled for performance predictions, more lines will appear on this line

graph, allowing for researchers to objectively evaluate the performances of different

clusters.

4.4 Summary

 In the first part of this section we discussed the iterative process methodology, in

which we described the methodology and the rationale for the components of the

methodology. The second part described the cost and configurations for the experiments,

0

50

100

150

200

250
R

e
sp

o
n

se
 T

im
e

 (
se

co
n

d
s)

Number of Users

Response Time vs. Number of Users
for Cluster Example

Cluster_Example

48

which looked at how to design the different topologies given a maximum capacity and set

cost. The last section proposes a model for performance of the cluster. In the next

chapter, we validate this approach.

49

5. Experiments and Results

The goal of this chapter is to

• Illustrate the importing and migration phase of the proposed process

• Validate the hypotheses that each configuration is characterized by a linear model

• Validate the accuracy of predictions

The chapter is organized as follows: Section 5.1 illustrates through an example

how the import and transfer of data is implemented; Section 5.2 presents the validation of

the models. Section 5.3 presents a summary and conclusions.

5.1 Importing and migrating data

This section describes how we import data into MySQL from a source data file

and how data is transferred from MySQL to HBase, the first steps of the iterative process

illustrated in Fig. 3. We evaluate this process on a real case scenario. Besides validating

part of our process, the real case scenario gathers quantitative and qualitative guidelines

using the process as well as evaluates tools for supporting the process.

The primary focus is on spatial-temporal data, using a set of traffic data as the

data set. We have gathered 3 months (256 GB) worth of real data from the Ministry of

Transportation for Ontario (through the Toronto Intelligent Transportation Systems

Society of Canada) which are stored in XML format. This project is part of a bigger

project known as the Connected Vehicles and Smart Transportation (CVST) project [49]

50

and aims to allow for data miners to quickly and easily analyze Big Data. The Big Data

will be stored on Smart Applications on Virtual Infrastructure (SAVI) testbed [20] acting

as the cloud.

Following the iterative process described in Chapter 4, firstly, we have to import

XML data into a relational database. In this case, we convert the XML files into CSV

files and store it into a MySQL database. The first step is to choose as data schema in

order to understand how to transform this data. The data contains large amounts of

“simple data”such as date, sensor IDs, average speeds, occupancy, and vehicle lengths.

In order to choose a proper data schema, there has to be a decision about whether

or not the schema would be data warehouse or online transaction processing system

(OLTP). The decision is that this schema will be a data warehouse due to several

requirements [50] : Firstly, the database had to accommodate ad hoc queries as

workloads may not be known in advance when dealing with traffic patterns. Secondly,

the database is updated on a regular basis by Extract-Transform-Load process using bulk

data modification technique which would not be directly updated by end-users. Thirdly,

the schema needs to be denormalized to optimize query performance as opposed to

optimizing update/insert/delete performance and guaranteeing data consistency. Lastly,

the queries would involve scans of hundreds of thousands of records as opposed to a

handful records. Therefore, we use a data warehouse.

As for the specific data warehouse schema, a star schema is chosen. A star

schema consists of one fact table with one or more dimension tables [51]. The reason for

51

choosing a star schema is because the data contains a large amount of “simple data”

such as date, sensor IDs, average speeds, occupancy, and vehicle length. Only one

dimension (description of data) is needed, which is where the sensors were located. The

overall schema is kept on a smaller scale for faster querying of data and overall

performance. Ideally, we want to put a primary key on the date, contract ID, and

periodNum but the files sent had duplicates in the invalid values (that is the date, contract

IDs and periodNums were all the same). However, this comprised less than 1% of all

data. Also, having an id as the primary key allows Sqoop, the tool we use to migrate the

data, to easily split the table in preparation for MapReduce (as will be explained later in

this section). We use indexing on the date, contractId, validThisPeriod, and periodNum in

order to make the queries run quickly for validating HBase queries (are the results from

MySQL and HBase the same given a particular query?). The schema used for the

relational database is illustrated in Figure 5 on the next page.

52

Figure 5. Warehouse Schema

The files are parsed using a Java application which is developed in-house with

Ximpleware parser (more specifically VTD-XML)
12

 to convert from XML to CSV files

in order to import into MySQL. After all files are converted, the CSV files are bulk

loaded using mysqlimport utility in the MySQL database system.

For the first stage, some cross-checking between the XML file and generated

CSV file are performed by visual inspection. This includes verification of boundary cases

(start and end of XML file) and random checking of an XML file in a date file against the

csv file. We also validate the first few and last few files by counting the number of

vdsData elements (a representation for each “all lanes” record) and match them to the

total number of records that the output CSV file has.

12

 http://www.ximpleware.com/

53

For the second stage, we assume that mysqlimport ingests a CSV file into the

highway table without any data corruption. This is reasonable since MySQL and its core

utilities belong to a production strength database system. We run a bash script to import

all files for each month. To ensure each file finished importing into the MySQL database,

we make the system display a message that it is finished along with the timestamp. For

the first file imported, the number of records are counted in the database and compared to

the final number of records in the CSV file, as well as the XML file (by counting vdsData

elements with Java application).

In the next step, we move the valid data from MySQL to HBase with an

appropriate schema. Before the migration step, a set schema is to be chosen based on

common practice for HBase.

Choosing a proper schema in HBase is imperative as this can highly impact

performance and it is important to note that HBase is not a relational database therefore a

relational schema will not work in this context. As such, a data schema is chosen based

on past works and guidelines from other researchers [36], [38], [39]. We decide to choose

a 2-Dimensional schema due to its simplicity and support from built-in tools for

validating that all the data is there in a quick manner of time. Currently, HBase is not

optimized for using versioning, which is why we do not to use this for our application.

HBase’s website currently suggests not using 100s of versions or more [37]. If it was

decided to version records by period number, there would be thousands of versions as

there are thousands of periods in a day. Also, only valid values are imported to HBase,

54

which means it will be hard to distinguish which value belongs to which period as the

concept of period would be replaced with timestamps. Timestamps can also be

customized to be replaced with period numbers but this would further add to the

complexities because we would then have to validate for all records that the correct

values are in the correct periods, which is difficult to do when one has millions, billions,

or even trillions of records. This also adds to the complexities as we have repeatable

processes in our methodology.

For the first iteration of Iteration 2, an MD5 will be added to the key in order to

avoid region hot spotting [45]. Hot spotting occurs when there are too many keys on one

region server and if users are continually querying keys on the same region server. This

phenomenon happens because HBase stores everything in lexicographical order and

when the key is not randomized, you could have an unequal distribution of keys across

region servers. This also results in RegionServers being underutilized. We use MD5 to

randomize the keys so that there is an equal distribution of data across RegionServers in

order to avoid this situation. MD5 is a cryptographic hash function designed by Ron

Rivest in 1991 for producing a 16-byte hash value, expressed in text format as a 32 digit

hexadecimal number [52]. For instance, the MD5 for “Hello” is

“8b1a9953c4611296a827abf8c47804d7”
13

 and the MD5 for “Hello a” is

“fc1a88fc1e6ad7ba6d6814e9d11e6fa0”. We can see how both these strings, though

similar, are completely randomized when utilizing the MD5 hash to convert the text.

13

 http://www.miraclesalad.com/webtools/md5.php

55

The key will consists of an MD5 on the sensor and date, the sensor itself, date

itself, and period number. The reason we put the MD5 on the sensor and date, but not

period number is because we want to have sensors and dates grouped together. Adding an

md5 to the period number would put it in a random order. We also put padding to the

period numbers (0001 instead of just 1) to have these values in order as HBase stores

everything in lexicographical order otherwise, these values will not be properly ordered.

For instance, period 10 will come before 2, which is not the order we would like to have

in our values. The values in the row-keys are separated by underscores. The reason we

decide to put the period numbers as rows rather than columns is for validation purposes

(it is easier to count the rows than the columns), HBase has the ability to skip rows and

StoreFiles (if you want to find specific periods during the day, this will be faster) [45],

and existing migration tools do not support transposition. This would also require more

than one column family to represent the speed and volume, which would be expensive in

terms of memory.

Column names are renamed to single characters in order to conserve hard disk

memory. HBase requires that all columns have at least one column family and in this

case, we only need one generic column family. Figure 6 illustrates the transformation of

the MySQL schema into the HBase schema. The quotation marks represent the actual

name for either the column family or the column qualifiers (“a” is average speed and “v”

is volume) while the values within the RowKey are the actual values.

56

Figure 6. Schema Transformation

Open Source tools (which are in their early stages) are being developed for

facilitating migration of raw data from MySQL to HBase such as Sqoop
14

 and MySQL

Applier (Beta)
15

. We use Sqoop (version 1.4.4) due to its ease of use, ease of installation

(it comes prepackaged with Cloudera toolset), and it has an operational release as

opposed to being in the Beta phase. Sqoop uses MapReduce framework to transfer data

from MySQL to HBase, allowing for a faster process than serially transferring the data.

Sqoop automates most of this process. The only problem encountered is that it requires a

MySQL connector, which is not included in the package due to licensing reasons

therefore the user has to download MySQL connector and put it in the proper directory in

order to use Sqoop for transferring from MySQL databases. In order to speed up the

process of experimentation, we decide to only import the data that will be queried. In this

14

 http://sqoop.apache.com
15

 http://dev.mysql.com/tech-resources/articles/mysql-hadoop-applier.html

57

case, only the volume and the average speed are imported. We also choose to import one

month worth of data for the purpose of testing the behaviour of all the different

topologies because the length of time to import all this data is too long for a repeatable

experimentation process (which is over two hours).

In order to validate that all records were imported, all records are counted using

the built-in counter function of HBase shell and setting caching to 10000 in order to make

the process faster. The total count of all the records is then compared to the records in

MySQL. Basic queries such as average speeds given a sensor or number of people

speeding given particular sensors are executed and compared to results from MySQL in

order to ensure accuracy of results.

5.1.1 Discussion

The main challenges of importing and migrating data is designing a data model

and transferring the data in a short amount of time. To begin with, we learned that it is

imperative to have an optimal schema for MySQL in order to understand what data

schema will be needed for HBase, as well as for comparing both databases' query outputs

in a short amount of time. Furthermore, it is important for the column qualifiers and

column families in HBase to be as short as possible to conserve disk space, as well to

make the migration between databases faster. Lastly, we also found that Sqoop is the

ideal tool to use for transferring data between the two databases due to its use of

MapReduce. In the next sections, we look at how to optimize Hadoop configurations.

58

5.2 Validating the performance models

The purpose of this section is to evaluate different topologies with the same cost

and to validate the performance models.

We assume we have two goals:

 Cost goal, expressed as a fixed budget

 Performance goal: most scalable configuration for the budget

In section 5.2.1, we construct variations of topologies when given a cost goal (as

price per hour). After these topologies are created, a new topology is deployed on the

cloud and a workload generator is used to execute the workloads. After the results are

generated with measured response times for each cluster, we compare the performances

across topologies and schemas in Section 5.2.2 and Section 5.2.3 respectively. A

performance model is then computed for each cluster in Section 5.2.4. We identify the

type of model as linear across all clusters by looking at the graphs with the different

response times over number of users and using regression analysis to illustrate this. We

then take the first three values of selected clusters and construct models. The predicted

response times are then calculated and compared against the real values that were

measured to see how far the predicted values deviate from the observed values.

59

5.2.1 Experimental Setup

 This section will talk about the experimental set up and how to construct

different topologies for deployment. To approach this problem, one workload (or query)

on different variations of topologies are executed for the third process.

On each topology, we compare the performance of utilizing compression for the

data versus not using any compression. The compression that is used for all experiments

will be GZIP as it compresses the data to the smallest size and uses higher CPU

utilization when unzipping the files than other compressions, which may affect behaviour

[45].

The workload tests different performances of the different topologies and find

which topology is optimal, as well as investigate any patterns that may be found. It is

important to note that the cloud may exhibit different behaviours at times (a term known

as “cloud variability”) depending on the number of real users on the same physical

machine and whether or not they are running an I/O intensive task. In order to eliminate

this, the experiments are executed five times for each table (compression and non-

compression table) and an average is taken for all five experiments. This makes a total of

ten experiments for each cluster. The queries are executed in alternate order between

compression and non-compression.

Firstly, we start with a budget from our goals which is $0.84 cents per hour. We

consider the prices from Amazon in order to decide how to form our clusters. Different

costs are evaluated based on current market price values as some topologies may be more

60

expensive than others. Approximate pricing for each instance is taken from Amazon EC2

that is comparable to the SAVI instances [46].

Instance Type VCPU Random Access

Memory

Solid State

Drive Size

Price

c3.large 2 3.75 GB 32 GB $0.105 per hour

c3.xlarge 4 7.5 GB 80 GB $0.210 per hour

c3.2xlarge 8 15 GB 160 GB $0.420 per hour

Table 5. Amazon EC2 Pricing for different instances comparable to SAVI

Secondly, from these price points and our set budget, we then extrapolate the

topologies that will be deployed. Each cluster must total $0.84 an hour. We construct

these topologies so that the clusters fit the out-of-the-box requirements for Cloudera such

as having a minimum of three data nodes/RegionServers.

The topologies for each cluster are shown in Figure 7 on the next page.

61

Figure 7. Experiments

62

Furthermore, all the machines in each cluster will have Linux installed as the

operating system. One large node has Cloudera Hadoop (CDH) Manager running

separately from other nodes so that results are not influenced. Another large node

contains the Name Node (HDFS), the Master Node (HBase), Sqoop, and ZooKeeper.

This setup is for all clusters in order to isolate the experiments to focus on the data nodes

(HDFS)/region servers (HBase), which is what will change throughout the experiments.

All region servers are mapped to the data nodes. All HBase clusters are configured with 1

GB in Java heapsize for the Name Node and Secondary Name Node as Cloudera

recommends. Only one Zookeeper is used but it is important to note that the Hadoop

documentation recommends three Zookeepers when working in production environments

in order to better handle failure [53]. Using multiple ZooKeepers would require running

extra instances (instance availability is limited for experiments) and because the thesis is

focussed mainly on optimizing performance rather than handling mean time between

failures, only one Zookeeper is used. Also, a noticeable characteristic is the different Java

Heap Size for the HBase Region Servers given the size of the instance. For Medium

instances, the Java Heap Size is default set at 531,685,481 bytes, while for large

instances, it is default set at 863,075,931 bytes and for Extra Large instances the default

is set at 715,791,403 bytes. Currently, there is a lack of research regarding configuration

of this metric with a given size instance so the default out of the box Cloudera metrics are

kept. Major compactions are disabled in order for performance not to be influenced and

in order to test in an HBase scenario where records for all sensors are coming in every 20

seconds.

63

Moreover, an in-house application is created in Java with Hadoop API to execute

multiple user queries concurrently from a single m1.xlarge instance to the Hadoop cluster

(the Java Archive or JAR file is placed in the instance away from the Hadoop Cluster).

This is built for convenience purposes to test specific queries onto HBase. This instance

simulates an application server which receives user requests and executes the queries

from these user requests to the Hadoop cluster. The type of query that will be executed is

called a “Scan” query and the application will calculate the traffic volume average for

a particular day at a particular sensor. The day is randomized for each user and the sensor

is fixed. We execute increments of 500 users (500, 1000, 1500, etc.) making queries to

the database until reaching the maximum number of 5000 users (which is around the

maximum that could be handled by the clusters before crashing).

5.2.2 Comparing configurations

After executing all the queries, an average is taken for response times for each

experiment in each cluster and the total average for each cluster is calculated. Figure 8,

on 65, shows the resulting graph from the queries executed on the table without

compression. Each “e” in the graph such as “e1” and “e2”, represents the word

“experiment” and the numbers in which order the experiments were executed in. We can

see in this figure that the larger amount of instances seem to have the fastest response

time where as the lowest amount of instances have the slowest response time in most

cases with the exception of e6 (5 instances) versus e1 and e4 (which both have 4

64

instances). This is explained by Cloudera’s out of the box configuration as the Java

Heap Sizes end up being more on the largest amount of instances than the smallest

amount in total. An example of this is demonstrated with the cluster with the largest

amount of instances totalling 4.25 Gigabytes versus 2.44 Gigabytes in total Java Heap

Size for the cluster with the smallest number of instances. This means that clusters are

underutilized when default Cloudera configurations are used. As mentioned previously,

there are currently no guidelines for setting these heap size configurations.

Each cluster name represents the order of the experiments executed so e1

represents “experiment 1”which represents a cluster with 4 m1.large instances for the

region servers and so on. This means that experiment 1 is the first cluster to be executed.

65

Figure 8. Response Times for Queries on non-Compress Tables for all topologies

We see that the cluster with the largest number of instances, e2, has the fastest

response time. Figure 9, on the next page, shows the graph representing response time for

workloads executed against tables that are compressed. In Figure 9, there is behaviour

change in all clusters but there does not seem to be a trend in which cluster has a faster

response time. The overall response time values of e2 and e7 are closer than e2 and e8 in

the last experiment. Overall, e2 seems to be the cluster with the fastest all around

response time as shown in both graphs when comparing response times for each table.

Even though e7 does perform better in Figure 8, it performs even slower on average than

0

100

200

300

400

500

600

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e

sp
o

n
se

 T
im

e

Number of Users

Non-Compression Average Response Time

e1(4 m1.large)

e2 (8 m1.medium)

e3 (2 m1.large+1m1.xlarge)

e4 (2 m1.medium+ 1
m1.large + 1 m1.xlarge)

e5 (4 m1.medium +1
m1.xlarge)

e6(2 m1.medium+3
m1.large)

e7(4 m1.medium+ 2
m1.large)

e8 (6
m1.medium+1m1.large)

66

e2 in Figure 9. We can see this by calculating the mean differences. The mean difference

for the table without compression is 23.30735 verses 8.478 seconds for compression

table. Therefore e2 is the ideal cluster when assessing the tradeoffs.

Figure 9. Response Times for Queries on Compression Tables for all topologies

5.2.3 Comparing Schemas

In the next step, we take the overall fastest cluster (e2) and execute queries on

different schemas. The results are illustrated in Figure 10 for non-compression and Figure

0

100

200

300

400

500

600

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e

sp
o

n
se

 T
im

e

Number of Users

Compression Average Response Time

e1(4 m1.large)

e2 (8 m1.medium)

e3 (2 m1.large+1m1.xlarge)

e4 (2 m1.medium+ 1
m1.large + 1 m1.xlarge)

e5 (4 m1.medium +1
m1.xlarge)

e6(2 m1.medium+3
m1.large)

e7(4 m1.medium+ 2
m1.large)

e8 (6
m1.medium+1m1.large)

67

11 for compression. In one schema, we switch the date and sensor ID (“switchid” on

the figure), while in another schema, we remove the MD5 (“noMD5”). The schema

chosen earlier is known as “default”, which includes the MD5, the sensor, the date,

and the period number.

Figure 10. Non-Compression graph illustrating response times for different schemas

0

200

400

600

800

1000

1200

1400

1600

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e

sp
o

n
se

 T
im

e
 (

Se
co

n
d

s)

Number of Users

Schema Comparison for Non-Compression

default

switchid

noMD5

68

Figure 11. Compression graph illustrating response time for different schemas

Removing the MD5 confirms that there is region hot spotting as in both cases, the

line begins to spike around 5000 users due to one of the region servers receiving too

many requests. When the MD5 is left in, there is an equal key distribution across the

region servers which allows for elimination of region hot spotting and for region servers

to receive the same load as was shown in the literature section. Also, the graphs

demonstrate that MD5 is much faster in response time than non-MD5. We can also check

this by using a two-sample t-test assuming unequal variances to see if there is a

significant difference in both cases. We find that our values have a normal distribution,

0

200

400

600

800

1000

1200

1400

1600

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e

sp
o

n
se

 T
im

e
 (

Se
co

n
d

s)

Number of users

Schema Comparison For Compression

default

switchid

noMD5

69

which is shown in Appendix A (Normal Distribution for t-Test). Our Normal Distribution

validation is for the 10 observations for schema with MD5 and for the 10 observations for

schema without MD5. This is done for both compression and non-compression

workloads. As stated earlier, we have 10 observations for a schema with MD5 and a

schema without MD5, which represent the average of the five average response times for

x iteration of users. For example, 500 users would have 500 response times generated

from the application. These 500 values are averaged out. We run the experiment four

more times and follow the same process. We should then have five values which

represent five average response times. We then take the average of these five response

times to get the final average response times which would represent one point for 500

users. We do this for 10 iterations of users (500-5000 users). We compare the final 10

averages of a schema with MD5 to a schema without MD5 for both compression and

non-compression workloads.

According to the t-statistic analysis, p is less than α at 5% for non-compression

and compression. The analysis can be found in Table 5 and Table 6. Therefore we can

conclude that there is a significant difference between having MD5 and not having MD5

on the schema.

70

No Compression
 t-Test: Two-Sample Assuming Unequal Variances

 noMD5 default

Mean 653.5575435 100.1812
Variance 164739.5757 3481.974
Observations 10 10
Hypothesized Mean Difference 0

 df 9
 t Stat 4.266578594
 P(T<=t) one-tail 0.001045404
 t Critical one-tail 1.833112923
 P(T<=t) two-tail 0.002090808
 t Critical two-tail 2.262157158

Table 6. t-test for noMD5 vs default for No Compression

Compression
 t-Test: Two-Sample Assuming Unequal Variances

 noMD5 default

Mean 648.504285 154.9088
Variance 161794.2556 8095.16
Observations 10 10
Hypothesized Mean Difference 0

 df 10
 t Stat 3.786936774
 P(T<=t) one-tail 0.001780611
 t Critical one-tail 1.812461102
 P(T<=t) two-tail 0.003561221
 t Critical two-tail 2.228138842

Table 7. t-test for noMD5 vs default with Compression

71

5.2.4 Models

Furthermore, all the results from cluster and schema experiments can be modelled

using a linear regression. As can be shown across schemas and across clusters, we can

see that there is a positive linear relationship between the number of users and the

response time. We will explain how the model demonstrates the linear dependency of

response time on number of users for the fastest cluster, which is e2 (8 m1.medium). The

results are generated using the IBM SPSS tool
16

.

e2 (8 m1.medium) Regression

Table 8. Correlations for e2

16

 http://www-01.ibm.com/software/analytics/spss/

72

The correlations table shows Pearson correlation coefficients and the number of

cases with non-missing values. We see that we have a strong positive correlation (0.998)

between the two variables. From the significance test p-value we see that there is very

strong evidence (p<0.001) to suggest that there is a linear correlation between the two

variables [48].

Table 9. Model Summary for e2

The R from the model summary table is the correlation coefficient which is a

measure of the strength of linear relationship between the response time variable and the

user variables. For simple linear regression, this is the same as Pearson’s correlation

coefficient we have already seen [48].

R Square or coefficient of determination is the proportion of variation in the

response variable explained by the regression model. The values of R square range from

0 to 1; small values indicate that the model does not fit the data well. 99.7% of the

variation in response time values can be explained by a fitted line [48].

The standard error of the estimate is the estimate of the standard deviation of the

error term of the model, σ. This gives an idea of the expected variability of predictions

[48].

73

Table 10. ANOVA for e2

The ANOVA table indicates that the regression model predicts the dependent

variable significantly well as the statistical significance (under “Sig.” Column for

“Regression” row) is p=0, which is less than α at 5%. This indicates that the regression

model significantly predicts the response time variable y and that it is a good fit for the

data [48].

Table 11. Coefficients for e2

The unstandardized coefficients are the coefficients of the estimated regression

model. Thus the expected response time value is given by:

(14)

 We include both the constant and slope as they are significant to the model due to

the fact that the p value is below α at 0.05. As for the values in the equation, 0.039 is the

74

slope, x is the number of users, -6.784 is the intercept, and y is the response time. The

standardized coefficient is the same value as shown before in the first table. We can also

be 95% confident that the slope is within the range of between 0.037 and 0.041. We are

also 95% confident that the intercept will be in the range between -13.213 and -0.356

[48]. We validate the model assumptions in Appendix B (Model Assumptions).

In the next part of the analysis, we can also see that the linear model can be

extrapolated by using just three of the values. In order to show this, we use three of the

clusters as shown in the next page. Two of the clusters are non-compression (e1 and e8)

and the other cluster is compression (e6). We first extrapolate a model by calculating the

slope and intercept for the first three values. After we have these two values, we create an

approximate linear model (eg. as shown in

the next page) [48]. We then calculate all the predicted values for each given number of

users. The difference between the measured y values and predicted y values are then

calculated. We then calculate the percentage of the difference and calculate the mean for

the last seven values to see how accurate the model predicts the values. As can be seen in

the tables and graphs on the next pages, the model relatively approximates the predicted

values. The mean percentage of the seven values is below 12.8% which means that the

average of rate of errors is relatively low. The minimum percentage difference is below

5% and the maximum is approximately 16% for all three clusters, which adds evidence to

the fact that the error rates are relatively low. The next page shows this information in

detail and is graphed to visually show how the model can approximate the values.

75

(15)

e1

Measured y
Values

Predicted y
Values Difference %Difference

27.3896 27.23615573 0.15344427 0.56022823

53.2448 53.55168923 -0.30688923 -0.5763741

80.02066667 79.86722273 0.153443936 0.19175538

111.0799 106.1827562 4.89714377 4.40866779

140.81392 132.4982897 8.31563027 5.90540358

170.9486667 158.8138232 12.13484343 7.09853061

201.6801714 185.1293567 16.55081469 8.206466

229.3647425 211.4448902 17.91985225 7.81281903

268.0817581 237.7604237 30.32133437 11.3104803

317.79912 264.0759572 53.72316277 16.904755

Mean % for last 7
values 8.80673176

Table 12. Measured vs Predicted Values - e1

76

Figure 12. Measured vs Predicted Response Time for e1 Graph

0

50

100

150

200

250

300

350

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e

sp
o

n
se

 T
im

e

Users

Measured vs Predicted Response Time for e1

e1 Measured Values

e1 Predicted Values

77

(16)

e8

Measured Values Predicted Values Difference %Difference

21.2872 20.70657761 0.580622389 2.72756581

37.3436 38.50484411 -1.161244111 -3.1096202

56.88373333 56.30311061 0.580622723 1.02071838

80.3078 74.10137711 6.206422889 7.728294

101.37096 91.89964361 9.471316389 9.34322452

123.7573333 109.6979101 14.05942321 11.3604769

148.4385714 127.4961766 20.94239483 14.1084589

168.8869 145.2944431 23.59245689 13.9693824

195.8008445 163.0927096 32.70813485 16.7047976

217.72192 180.8909761 36.83094389 16.916507

Mean for last 7 values 12.8758773

Table 13. Measured vs. Predicted Values - e8

78

Figure 13. Measured vs Predicted Response Time for e8 Graph

0

50

100

150

200

250

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e

sp
o

n
se

 T
im

e

Users

Measured vs Predicted Response Time for e8

e8 Measured Values

e8 Predicted Values

79

 (17)

e6 Compressed

Measured Values Predicted Values Difference %Difference

37.4056 31.77366667 5.631933333 17.7251602

74.3146 67.89406667 6.420533333 9.45669283

109.6464 104.0144667 5.631933333 5.41456733

151.8334 140.1348667 11.69853333 8.34805328

187.5128 176.2552667 11.25753333 6.3870621

231.7607333 212.3756667 19.38506667 9.12772493

270.0800572 248.4960667 21.58399049 8.68584794

306.63435 284.6164667 22.01788333 7.73598365

353.1127556 320.7368667 32.37588889 10.0942212

386.53388 356.8572667 29.67661333 8.31610173

Mean for last 7 values 8.38499927

Table 14. Measured vs Predicted Values - e6

80

Figure 14. Measured vs Predicted Response Time for e6 Graph

This analysis is valuables for researchers who follow this methodology as it can

save them time and cost. In order to eliminate any potential outliers (as values are very

few), it is very important to run the experiment for each cluster several times (in this case,

we ran the experiments five times) and take the average of these values. It is also

important to note that this shows that we can predict the values for up to 5000 users given

these clusters, but this does not show that we can go above 5000 users.

0

50

100

150

200

250

300

350

400

450

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e

sp
o

n
se

 T
im

e

Users

Measured vs Predicted Response Time for e6
Compressed

e6 Compressed Measured
Values

e6 Predicted Compressed
Values

81

5.3 Summary

 This chapter first showed how we implemented our iterative process methodology

by looking at the import and migration process of an XML big data source. We then

investigated the performance of topologies generated for the same cost and validated our

performance model through the last steps of the methodology. We first illustrated the

experimental setup for executing our workloads. We then showed the response time

comparisons and found that the cluster with the most machines had the quickest response

time. We also showed that there is a significant difference in response time when adding

an MD5 to the row key. We found that there is a linear relationship for all clusters by

performing a linear regression analysis on all clusters. We also found that you can

approximately predict future values by modelling only the first three data points of each

experiment.

82

6. Conclusion

This thesis presented an approach for quantifying and modeling the performance

of HBase clusters. This is demonstrated within the CVST project on SAVI platform

acting as the cloud. All experiments were executed in real time on real data. We

summarize the contributions as follows:

To begin with, we introduced and applied an iterative methodology for evaluating

and characterizing HBase clusters. This iterative methodology consists of several steps:

First, large data documents are stored into the relational database. In this thesis,

our data documents are XML standard and we use MySQL as our relational database. A

set of goals is also established for the non-relational database cluster. In our thesis, we

chose performance and cost as our goals.

Second, the data is transferred from relational database to non-relational database

(HBase), through an iterative process in order to find the best schema after the best

cluster is found. The relational database acts as a “back up” store to save time from re-

importing all individual files and for verification purposes, as well as being supported by

existing migration tools. Also, the relational database only requires one machine where as

HBase would require many machines therefore saving on cost and physical resources.

Thirdly, the last step in the methodology evaluates different topologies based on

performance in real time against different types of workloads and also acts as an iterative

process for finding the best topology of machines. In order to speed this process up, a

83

small sample of workload response times are measured and from these observations, a

prediction model that is linear is formed. Once this prediction model is created, then the

future values can be approximated. This saves time and resource (in terms of cost and

physical resources) for the researcher as they do not have to execute a larger number of

concurrent queries.

Moreover, we demonstrated and validated this linear predictive model behaviour

across clusters and schemas. We constructed a prediction model from a few response

time values and then calculated predicted response times. We then compared the

predicted values from the prediction model with the observed values from our

experiments and found that there was a small percentage in difference between these

values. In addition to this, statistical analysis was used to prove that each cluster

configuration indeed had a linear regression for all observed values. This confirmed our

assumptions that there would be a linear relationship between number of users and

response times due to the sequential nature of the “Scan” workloads that were used [45].

Lastly, we showed that row keys with MD5 were found to be significantly faster

than row keys without MD5. This was due to the RegionServer hotspotting and keys not

having a proper distribution across machines [16]. Furthermore, clusters with higher

number of instances performed consistently faster due to cluster underutilization with

out-of-the-box configuration.

It is important to note however, that the results are valid only for the “scan” type

of requests. Also, different big data sources may yield different results. This can be due to

84

the schema type required for the data or how much data is being stored in each cell (in

our thesis, we only store numbers). Further experiments and statistical analysis may be

required in order to generalize these results. Moreover, how to configure clusters for

maximum cluster utilization remains to be an open question. In the future, we would like

to extend our methodology to facilitate finding the best practice configurations/settings

for different clusters in HBase in order to enable maximum utilization of clusters. After

this is successful, we plan to do similar experiments with the clusters being fully utilized

and see how it would behave. In addition to this, we would like to also see if there are

other HBase functionalities that can be modelled in order to add to our existing

methodology.

85

References

[1] M. Shtern, R. Sandel, M. Litoiu, C. Bachalo, and V. Theodorou, “Towards Mitigation

of Low and Slow Application DDoS Attacks,” in Proceedings of the 2014 IEEE

International Conference on Cloud Engineering, Washington, DC, USA, 2014, pp.

604–609.

[2] M. Litoiu, M. Woodside, J. Wong, J. Ng, and G. Iszlai, “A Business Driven Cloud

Optimization Architecture,” in Proceedings of the 2010 ACM Symposium on Applied

Computing, New York, NY, USA, 2010, pp. 380–385.

[3] M. Shtern, B. Simmons, M. Smit, and M. Litoiu, “An Architecture for Overlaying

Private Clouds on Public Providers,” in Proceedings of the 8th International

Conference on Network and Service Management, Laxenburg, Austria, Austria, 2013,

pp. 371–377.

[4] D. J. Abadi, “Data Management in the Cloud: Limitations and Opportunities,” IEEE

Data Eng Bull, vol. 32, no. 1, pp. 3–12, 2009.

[5] M. A. Babar and M. A. Chauhan, “A Tale of Migration to Cloud Computing for

Sharing Experiences and Observations,” in Proceedings of the 2Nd International

Workshop on Software Engineering for Cloud Computing, New York, NY, USA,

2011, pp. 50–56.

[6] “What is Big Data? | SAS.” [Online]. Available:

http://www.sas.com/en_us/insights/big-data/what-is-big-data.html. [Accessed: 18-

Mar-2014].

86

[7] D. Laney, “3D data management: Controlling data volume, velocity and variety,”

META Group Res. Note, vol. 6, 2001.

[8] D. Agrawal, S. Das, and A. El Abbadi, “Big Data and Cloud Computing: Current

State and Future Opportunities,” in Proceedings of the 14th International Conference

on Extending Database Technology, New York, NY, USA, 2011, pp. 530–533.

[9] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.

Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “PNUTS: Yahoo!’s Hosted Data

Serving Platform,” Proc VLDB Endow, vol. 1, no. 2, pp. 1277–1288, Aug. 2008.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s Highly

Available Key-value Store,” SIGOPS Oper Syst Rev, vol. 41, no. 6, pp. 205–220, Oct.

2007.

[11] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg, H.

Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, R. Schmidt, and A. Aiyer,

“Apache Hadoop Goes Realtime at Facebook,” in Proceedings of the 2011 ACM

SIGMOD International Conference on Management of Data, New York, NY, USA,

2011, pp. 1071–1080.

[12] J. Huang, X. Ouyang, J. Jose, M. Wasi-ur-Rahman, H. Wang, M. Luo, H.

Subramoni, C. Murthy, and D. K. Panda, “High-Performance Design of HBase with

RDMA over InfiniBand,” in Parallel Distributed Processing Symposium (IPDPS),

2012 IEEE 26th International, 2012, pp. 774–785.

87

[13] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL database,” in Pervasive

Computing and Applications (ICPCA), 2011 6th International Conference on, 2011,

pp. 363–366.

[14] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large

Clusters,” in Proceedings of the 6th Conference on Symposium on Operating Systems

Design & Implementation - Volume 6, Berkeley, CA, USA, 2004, pp. 10–10.

[15] “Welcome to Apache
TM

 Hadoop®!” [Online]. Available:

http://hadoop.apache.org/. [Accessed: 18-Mar-2014].

[16] “6.3. Rowkey Design.” [Online]. Available:

http://hbase.apache.org/book/rowkey.design.html. [Accessed: 07-Oct-2014].

[17] P. M. Mell and T. Grance, “SP 800-145. The NIST Definition of Cloud

Computing,” National Institute of Standards & Technology, Gaithersburg, MD,

United States, 2011.

[18] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, and others, Above the clouds: a Berkeley view of

cloud computing. UC Berkeley Reliable Adaptive Distributed Systems Laboratory.

Technical Report No. UCB/EECS-2009-28, 2009.

[19] J. Pan, S. Paul, and R. Jain, “A survey of the research on future internet

architectures,” Commun. Mag. IEEE, vol. 49, no. 7, pp. 26–36, Jul. 2011.

[20] J.-M. Kang, H. Bannazadeh, and A. Leon-Garcia, “SAVI testbed: Control and

management of converged virtual ICT resources,” in Integrated Network

88

Management (IM 2013), 2013 IFIP/IEEE International Symposium on, 2013, pp.

664–667.

[21] S. Sagiroglu and D. Sinanc, “Big data: A review,” in Collaboration Technologies

and Systems (CTS), 2013 International Conference on, 2013, pp. 42–47.

[22] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. Byers,

“Big data: The next frontier for innovation, competition, and productivity. 2011,”

McKinsey.

[23] H. Chen, R. H. Chiang, and V. C. Storey, “Business Intelligence and Analytics:

From Big Data to Big Impact.,” MIS Q., vol. 36, no. 4, pp. 1165–1188, 2012.

[24] E. Dumbill, “What is big data,” Introd. Big Data Landscapeonline Httpstrata

Oreilly Com201201what--Big-Data Html, 2012.

[25] T. Morgan, “IBM Global Technology Outlook 2012,” Technol. Innov. Exch. IBM

Warwick, 2012.

[26] K. Ebner, T. Buhnen, and N. Urbach, “Think Big with Big Data: Identifying

Suitable Big Data Strategies in Corporate Environments,” in System Sciences

(HICSS), 2014 47th Hawaii International Conference on, 2014, pp. 3748–3757.

[27] “HDFS Architecture Guide.” [Online]. Available:

http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html. [Accessed: 01-Apr-2014].

[28] “Chapter 9. Architecture.” [Online]. Available:

http://hbase.apache.org/book/architecture.html. [Accessed: 09-Sep-2014].

[29] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.

Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A Distributed Storage System for

89

Structured Data,” in Proceedings of the 7th Symposium on Operating Systems Design

and Implementation, Berkeley, CA, USA, 2006, pp. 205–218.

[30] “Chapter 5. Data Model.” [Online]. Available:

http://hbase.apache.org/book/datamodel.html. [Accessed: 09-Sep-2014].

[31] Y. Jiang, HBase Administration Cookbook. Packt Publishing, 2012.

[32] “HLog (HBase 2.0.0-SNAPSHOT API).” [Online]. Available:

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/regionserver/wal/HLog.ht

ml. [Accessed: 29-Sep-2014].

[33] F. Junquira and B. Reed, ZooKeeper: Distributed Process Coordination, 1st ed.

United States of America: O’Reilly Media, 2013.

[34] K. Ting and J. Cecho, Apache Sqoop Cookbook, 1st ed. United States of America:

O’Reilly Media, 2013.

[35] “6.2. On the number of column families.” [Online]. Available:

http://hbase.apache.org/book/number.of.cfs.html. [Accessed: 24-Mar-2014].

[36] D. Han and E. Stroulia, “A three-dimensional data model in HBase for large time-

series dataset analysis,” in Maintenance and Evolution of Service-Oriented and

Cloud-Based Systems (MESOCA), 2012 IEEE 6th International Workshop on the,

2012, pp. 47–56.

[37] “6.4. Number of Versions.” [Online]. Available:

http://hbase.apache.org/book/schema.versions.html. [Accessed: 22-May-2014].

90

[38] “6.10. Schema Design Smackdown.” [Online]. Available:

http://hbase.apache.org/0.94/book/schema.smackdown.html. [Accessed: 15-Sep-

2014].

[39] C. Li, “Transforming relational database into HBase: A case study,” in Software

Engineering and Service Sciences (ICSESS), 2010 IEEE International Conference

on, 2010, pp. 683–687.

[40] G. Lee, B.-G. Chun, and H. Katz, “Heterogeneity-aware Resource Allocation and

Scheduling in the Cloud,” in Proceedings of the 3rd USENIX Conference on Hot

Topics in Cloud Computing, Berkeley, CA, USA, 2011, pp. 4–4.

[41] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, “Improving

MapReduce Performance in Heterogeneous Environments,” in Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation, Berkeley,

CA, USA, 2008, pp. 29–42.

[42] G. Song, Z. Meng, F. Huet, F. Magoules, L. Yu, and X. Lin, “A Hadoop

MapReduce Performance Prediction Method,” in High Performance Computing and

Communications 2013 IEEE International Conference on Embedded and Ubiquitous

Computing (HPCC_EUC), 2013 IEEE 10th International Conference on, 2013, pp.

820–825.

[43] E. Bortnikov, A. Frank, E. Hillel, and S. Rao, “Predicting Execution Bottlenecks

in Map-reduce Clusters,” in Proceedings of the 4th USENIX Conference on Hot

Topics in Cloud Ccomputing, Berkeley, CA, USA, 2012, pp. 18–18.

91

[44] J. H. Friedman, “Greedy function approximation: A gradient boosting machine.,”

Ann. Stat., vol. 29, no. 5, pp. 1189–1232, 2001.

[45] L. George, HBase: The Definitive Guide, 1st ed. O’Reilly Media, 2011.

[46] “AWS | Amazon EC2 | Pricing.” [Online]. Available:

http://aws.amazon.com/ec2/pricing/. [Accessed: 24-Jun-2014].

[47] “Rackspace Public Cloud Pricing.” [Online]. Available:

http://www.rackspace.com/cloud/public-pricing/#cloud-servers. [Accessed: 22-Sep-

2014].

[48] J. McClave, P. G. Benson, and T. Sincich, Statistics for Business and Economics,

11th ed. United States of America: Pearson, 2010.

[49] “Connected Vehicles and Smart Transportation.” [Online]. Available:

http://cvstproject.com/. [Accessed: 25-Mar-2014].

[50] “Data Warehousing Concepts.” [Online]. Available:

http://docs.oracle.com/cd/B10500_01/server.920/a96520/concept.htm. [Accessed:

29-Mar-2014].

[51] J. M. Perez, R. Berlanga, M. J. Aramburu, and T. B. Pedersen, “Integrating Data

Warehouses with Web Data: A Survey,” Knowl. Data Eng. IEEE Trans. On, vol. 20,

no. 7, pp. 940–955, Jul. 2008.

[52] R. L. Rivest, The MD5 Message Digest Algorithm. 1992.

[53] “ZooKeeper Administrator’s Guide.” [Online]. Available:

http://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html. [Accessed: 23-Jun-

2014].

92

[54] S. Chatterjee and J. Simonoff, Handbook of Regression Analysis. Hoboken, New

Jersey: John Wiley and Sons, 2013.

93

Appendix A (Normal Distribution for t-Test)

First we check if both of the dependent variables of compression and non-

compression have normal distribution. On the next pages (Table 6 and Table 7), we can

see that the skewness and kurtosis are between -1.96 and +1.96. It is hard to tell from the

histograms whether or not the data is normally distributed as there is a small amount of

data points so we look at both the Shapiro-Wilk test and Q and Q plots (Table 8). In the

Shapiro-Wilk test, if the p value falls below 0.05, then the data is not normally

distributed. However, if it is above 0.05 it may or may not be normally distributed. This

test is complemented by the Normal Q-Q plot test. We look at the Normal Q-Q plot to see

if the expected values and the normal values match up, which approximately do as

illustrated in the relevant graphs (Figure 12-Figure 15). Also the de-trended normal Q-Q

plot shows that standard deviation is close to 0 and the box and whisker plot is

symmetrical therefore we can conclude that the data for all four scenarios are

approximately normally distributed [48].

94

Normal Distribution Analysis

Table 15. Descriptives

95

Table 16. Descriptives (second part)

Table 17. Test of Normality

Default_Compression graphs

96

Figure 15. Default Normal Distribution Graphs without Compression

Default_compression graphs

Figure 16. Default schema with Compression Normal Distribution Graphs

97

noMD5_compression graphs

Figure 17. noMD5 with Compression Normal Distribution Graphs

98

noMD5 without Compression graphs

Figure 18. NoMD5 without Compression Normal Distribution Graphs

99

Appendix B (Model Assumptions)

We check the following model assumptions about residuals, ε, which are

differences between observed and predicted responses [54]:

Normality: The probability distribution of ε is normal.

Linearity: Residuals should have a straight line relationship with predicted responses. The

mean for probability distribution of ε is 0 over an infinitely long series of experiments for

each setting of independent variable x.

Homoscedasticity: The variance of the probability distribution of ε is constant for all

settings of the independent variable x.

Table 18. Residual Statistics for e2

The Residuals Statistics table summarises standardized, as well as unstandardized

predicted values and residuals [48]. As shown, the mean of the probability distribution of

ε is 0. Given the standardized values, we can also see that there are no outliers as the

standardized values are around 1.5.

100

Figure 19. e2 Standardized Regression Histogram

It is difficult to tell whether or not the histogram is normally distributed due to the

small number of values. If we look at the Normal P-P Plot of Regression Standardized

Residual graph though we can see that the plotted points approximately follow a normal

straight line [48].

101

Figure 20. Normal P-P Plot and Scatterplot

The scatter plot of standardized residuals against predicted values graph shows a

random pattern centred around 0. We can see no clear relationship between the residuals

and predicted values which is consistent with assumption of linearity.

