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Abstract 

Vection is an illusion of visually-induced self-motion in a stationary observer.  I used 

different types of vection stimuli in a functional magnetic resonance imaging (fMRI) 

study to determine the interaction between cortical visual regions and cortical vestibular 

regions during vection.  My findings suggest that the cingulate sulcus visual area is 

heavily involved in self-motion processing.  The parieto-insular vestibular cortex, showed 

a significant change in blood oxygenation level dependent signal activity during vection 

but to a lesser extent than CSv.  Behavioural data correlated with the neuroimaging data 

(in CSv and PIVC) as both show a significant difference when comparing the radial 

oscillating condition to the radial smooth condition in CSv and PIVC - suggesting a 

neural correlate of the jitter effect.  My results suggest that the brain region of primary 

importance in the self-motion debate is CSv - a region that has received little attention in 

the vection literature to date.  

 

Keywords: Vection; optic flow; fMRI; BOLD; visual-vestibular integration; CSv; PIVC; 

MT; VIP; Pc; V6; jitter 
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1. Introduction 

1.1 - Introduction to Vection  

  We receive many cues that make us constantly aware of our active or passive self-

motions through the environment.  These include visual cues such as the global optic 

flow during self-motion (Helmholtz, 1867/1925; Gibson, 1964), vestibular cues that 

indicate direction of passive and active acceleration of the head (Howard, 1982), as well 

as proprioception/somatosensory cues (Lishman and Lee, 1973) and kinesthesia. 

Vection is an illusion of visually-induced self-motion in a stationary observer.  An 

example of vection is when an individual on a stationary train watches an adjacent train 

moving past them but feels as though he/she is moving (Mach, 1875). Vection occurs 

because the optic flow sensed when a stationary individual observes a moving adjacent 

train is similar to real self-motion past a stationary adjacent train.   

In this illusion there is a conflict between the visual system receiving stimulation 

indicating self-motion and other sensory systems indicating one is not moving (Reason, 

1978).  It is important to understand the sensitivity of the sensory systems involved in 

processing self-motion, particularly the visual and vestibular systems as these are the 

most critical for self-motion processing.  The visual system is most sensitive in 

processing constant velocity self and object motion (Previc, 2003).  On the other hand, 

the vestibular system is sensitive to passive and active acceleration of the head (Howard, 

1982).  Unlike the visual system, the vestibular system is unable to differentiate constant 

velocity motion from being stationary (Lishman and Lee, 1973).  The strengths and 

weaknesses of both these systems reflect their anatomical and physiological properties.   
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1.2 – Anatomical and Physiological Properties of Visual and Vestibular Systems in 

Relation to Optic Flow, Object Motion, and Self-Motion  

The Visual System 

In humans, visual motion signals begin to be processed cortically in V1, the most 

posterior region of the occipital cortex and are relayed to higher-level visual processing 

regions of the occipital, parietal, and temporal lobes specialized for egomotion/self-

motion and coherent motion processing.  These brain regions include but are not limited 

to the medial temporal gyrus (MT/V5), medial superior temporal region (MST+), V6, 

cingulate sulcus visual area (CSv), precuneus motion area (Pc) as well as parieto-

occipital regions parieto-insular vestibular cortex (PIVC) and ventral intraparietal region 

(VIP).  The relative motion pattern produced by a moving observer is known as the optic 

flow (Gibson, 1964).  During forward self-motion, the images of objects in the scene 

radiate from the focus of expansion which lies in the direction of the travel, assuming no 

rotation.  

 

The Vestibular Peripheral System 

The peripheral vestibular apparatus is located in the bony labyrinth of the inner 

ear.  The vestibular apparatus has two main structures that detect acceleration.  These 

structures are the otolith organs and the semi-circular canals (SCCs).  The otolith organs 

of each ear consist of two separate sensors - the saccule and the utricle.  These respond to 

linear acceleration from translational self-motion and gravity.  The semi-circular canals 

respond to angular acceleration.  The three orthogonal canals and the pair of otolith 
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organs in each inner ear create a 3-dimensional configuration that permits detection of 

head acceleration with six degrees of freedom. 

The SCCs are filled with endolymph fluid and are blocked by the cupular 

membrane in which hair cells are embedded.  When the head moves, the endolymph fluid 

lags, causing mechanical pressure/movement of the cupula sensed by the hairs cells in the 

sensory endothelium.  Bending of the stereocilia causes K+, Ca++ and Cl- graded ion 

channel currents.  Once there is a strong enough graded response from the ion channel 

currents, the vestibulocochlear (8th) cranial nerve is stimulated, signaling head motion 

(Cohen and Raphan, 2004). In the otolith organs, the otoconia are salt crystals that move 

when the head moves.    

Vestibular signals are cortically processed in the parietoinsular vestibular cortex 

(PIVC) and ventral intraparietal region (VIP).  Recently these areas have been identified 

in imaging experiments during stimulation of the peripheral vestibular system. To 

stimulate PIVC, methods such as caloric stimulation, which stimulates the semicircular 

canals with thermal gradients, and galvanic vestibular stimulation (GVS), which uses 

electric currents to stimulate the 8th nerve, have been employed.  According to Fasold et 

al.(2002), GVS does not allow distinct and clear stimulation of vestibular organs 

independently, instead the entire vestibular apparatus is activated simultaneously.  This 

creates neural noise and increased variability in corresponding BOLD signals during 

fMRI.  Alternatively, caloric irrigation permits clear and direct stimulation of the 

horizontal semicircular canals independently when in the supine posture.     

Fasold and colleagues (2002) located PIVC in the posterior insula, and reported 

that posterior insular BOLD signal increases were significant when caloric stimulation 
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evoked disorientation.  Insular BOLD increases were stronger in the right hemisphere.  

This asymmetry in BOLD signal change in the insular gyrus replicated findings of Suzuki 

and colleagues (2001).  An important point to note is that these two caloric irrigation 

studies in fMRI stimulated different regions in the insula.  Additionally, Fasold et al., 

reported that insular stimulation by caloric irrigation results indicated that many 

independent clusters in the insular gyrus were stimulated.    

 

1.3 – Cortical Regions Related to Vection 

Medial Temporal Complex (MT+) 

Area MT+ is the cortical region most widely accepted as being involved in 

processing general visual coherent motion.  Many studies have reported its preference for 

coherent motion compared with incoherent motion or static stimulus displays in both 

humans and monkeys.  Studies on visual motion processing in monkeys’ area MT  

(Rodman, 1989) were extended to humans by Zeki and colleagues (1991) and Watson et 

al. (1993).  They observed a visual motion sensitive region homologous to monkeys 

V5/MT using PET in humans.  Zeki found that V5/MT prefers motion over stationary 

stimuli.  Tootell et al., (1995) replicated the findings of Zeki on area MT in fMRI and 

confirmed the same spatial coordinates for MT as Zeki.     

Importantly, in an fMRI Morrone et al. (2000) reported that V5/MT is activated 

by changes in optic flow, and to continuous translation.  Huk and Heger (2001) 

concluded that MT in humans has pattern motion cells that prefer perceived coherent 

motion compared with incoherent motion, but did not specify the spatial coordinates of 

this region in their study in fMRI.  Similar to Morrone et al., Pitzalis et al (2013) reported 
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greater activity in MT+ for translational, and looming egomotion displays than for 

spiraling egomotion displays. 

 

 

Medial Superior Temporal Region (MST+) 

MST+ (see Figure 1), a subregion of MT+, has neurons with larger receptive 

fields than the rest of MT+, (Pitzalis et al., 2013).  In attempt to functionally localize 

MST+, Pitzalis and colleagues argued that a stimulus that restricts optic flow to an 

aperture in the left or right hemifield should show increased BOLD activity in the 

contralateral hemifield only for area MT+, but for both the contralateral and ipsilateral 

hemifields for area MST+ because of the neurons in this region have larger receptive 

fields.  To test this hypothesis, Pitzalis et al. developed a hemifield-specific stimulus.  As 

hypothesized, they found higher activation in MST+ for ipsilateral displays than in MT+, 

whereas MT+ only responded to motion in the contralateral hemifield.   Thus, MST+ 

responds to visual motion in both contralateral and ipsilateral hemifields, whereas MT+ is 

sensitive only to motion in the contralateral hemifield.    This finding suggests that MST+ 

is functionally and anatomically defined independently within the wider MT+ complex.   
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Figure 1.  MST+ is shown in orange in coronal (top-left), sagittal (top-right) and axial (bottom-left) slices of the right 
hemisphere in an MNI standard brain.  Coordinates are based on findings of Pitzalis et al., (2013). 

 

 

Precuneus Motion Area (Pc) 

The precuneus is located in the posterior, medial region of the parietal lobe (see 

Figure 2).  Cavanna and Timble (2006) reported precuneus involvement in cognitive 

functions related to consciousness, episodic memory and visuo-spatial imagery.  In 

relation to vection, Wolbers et al., (2007) conducted an fMRI study in which they 

reported heightened BOLD signal in Pc during path-integration - a cognitive task that 

may require self-orientation updating.  In a later study, Wolbers et al., (2008) expanded 

on the functional role of Pc during vection and concluded that Pc is involved in 

subserving spatial updating.  Later studies also show increased BOLD activity in Pc 

during egomotion-compatible, and decreased BOLD activity with egomotion-

incompatible stimuli (Cardin and Smith, 2010; Billington et al., 2013) and report roughly 

the same spatial coordinates.  Therefore, it seems likely that Pc is not explicitly involved 

in perceiving self-motion, but rather higher-level cognitive aspects of vection processing.      
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Figure 2.  MNI standard image of Pc in left hemisphere.  Coordinates based on Wolbers et al., (2008) 

 

V6 

Pitzalis and colleagues confirmed that the human homologue to monkey V6 is 

located posterior to the dorsal end of the parieto-occipital sulcus (see Figure 3; POs; 

Pitzalis et al., 2013).  There is variability in explaining the precise functional role of V6 

as some studies show that V6 is sensitive to translational egomotion and is thought to be 

involved in visually-guided motor control and distinguishing visually-induced self-

motion from object motion (Pitzalis et al., 2010).   Other studies have suggested that it is 

involved in obstacle avoidance (Cardin et al., 2012) and others still reporting its 

importance for estimating egomotion (Pitzalis et al., 2013).  Pitzalis and colleagues 

(2013) compared BOLD response to five types of optic flow; translational, circular, 

radial, spiral, as well as random motion and static dots.  They found that % BOLD signal 

change in V6 was largest for translational optic flow displays compared to circular, 

radial, spiral, random motion, or static dots.   
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A functional difference distinguishing MT+ from V6 is that MT+ prefers flow in 

the center of fixation, whereas V6 is preferentially activated by wide-field stimulation 

(Pitzalis, et al., 2006).  Another difference between MT+ and V6 is that V6 is believed to 

be retinopically organized while MT+ is not.  However, there is still disagreement on this 

point (Pitzalis et al., 2013).  Research comparing V6 function to MT+ (VonPfostl et al., 

2009; Ciavarro, M., 2013) suggests that V6 may be involved in motor activity linked to 

obstacle avoidance or grasping near-by objects.  This hypothesis is supported by the fact 

that area V1 and V6 seem to show almost identical BOLD activity onset times to visual 

motion stimuli.   This lends support to the notion that V6 is involved in ‘online’ 

processing of visually guided behaviour (Galetti et al, 2001).  Alternatively, the time 

course of a visually evoked potential (VEP) in electroencephalography (EEG) signal 

change to visual motion stimuli in both MT and V6 are very similar during obstacle 

avoidance tasks (Pitzalis et al., 2013).  This suggests that MT is also involved in obstacle 

avoidance, or that neither V6 nor MT are involved in obstacle avoidance.   

Although V6’s function is not yet clearly defined, the dominant view is that it is 

involved in 1) processing wide-field visual stimulation, 2) disambiguating different types 

of optic flow, and 3) visually-guiding motor control.  Moreover, there is a functional 

distinction made between V6, and neighbouring V6a in which activity is driven by 

pointing and reaching and is located in the anterior bank of the parieto-occipital lobe 

(Pitzalis et al., 2013).    
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Figure 3. V6 displayed in MNI standard space in the left hemisphere.   Coordinates taken from Wall and Smith (2012).   

 

VIP 

The ventral intraparietal region (VIP) in macaques is regarded as a polysensory 

region because it responds to visual, (see Figure 4; Shaafsma and Duysens, 1996) 

vestibular and somatosensory stimuli (Duhamel et al., 1998).  In a fMRI study, Bremmer 

et al., (2001) functionally localized VIP visually, using optic flow in the frontal plane.  

Later studies also confirmed visual sensitivity of VIP (Cardin and Smith, 2010; Smith et 

al., 2012), but reported slightly different coordinates for this region.  Vestibular 

stimulation during fMRI in humans suggests that VIP is not a vestibular processing 

region (Fasold et al., 2002).  Notably, Fasold’s group (2002) functionally localized 

vestibular regions in humans by stimulating the inner ear with cold nitrogen calorics in 

fMRI.  Fasold and colleagues’ results point to strong involvement of PIVC in vestibular 

processing of caloric stimulation, but not VIP.  Similarly in an fMRI study, Eickhoff and 

colleagues (2006) showed a significant change in BOLD activity compared to baseline in 
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the parieto-insular cortex (approximating PIVC), but not in VIP, during galvanic 

vestibular stimulation.   

In sum, VIP in humans does not seem to be directly activated by vestibular 

stimulation (Fasold, et al., 2002; Eickhoff et al., 2006; Pitzalis et al., 2013).  Therefore, 

rather than a general polysensory integration area for self-motion signals, VIP could be 

principally involved in visually-guided obstacle avoidance. 

 

Figure 4. Area VIP highlighted using coordinates from Cardin and Smith (2010) in MNI standard brain.   

 

 

Cingulate Sulcus Visual Area (CSv) 

CSv is the cortical region reported to be involved in heading estimation and 

anatomically separates the boundaries of the parietal and occipital lobes (see Figure 5).  

Wall and Smith (2008) reported that BOLD activity in CSv was greater with a full-field 

stimulus signaling self-motion than during a stimulus containing 9 smaller patches of the 

same display.  According to Furlan et al.,(2013) activity in CSv seems to be correlated 
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with activity in VIP.  Smith (2014) argues that CSv is involved in motor planning, as 

opposed to motion perception, based on its anatomical and functional connectivity.   

Furlan et al. (2013) noted that CSv responds particularly well to changes of 

heading compared with other visual motion processing regions such as MST+ and V6.  In 

contrast, MST+ responds better to continuous heading than to changes of heading. 

Fischer et al. (2012) demonstrated the importance of CSv for processing visual self-

motion during eye movements, compared with other known visual motion sensitive 

cortical regions and argued that CSv integrates eye movements with retinal motion during 

self-motion displays.  In sum these features suggest that CSv plays a role in estimating 

heading direction. 

 

Figure 5. Area CSv illustrated in a MNI standard brain.   

 

PIVC 

 PIVC is widely accepted as a polysensory region in both non-human (see Figure 

6; Guldin and Grusser, 1998) and human (Fasold et al., 2002) primates and is known to 

be primarily involved in vestibular signal processing.  For instance, in PET studies, 
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caloric irrigation has been used to localize PIVC (Bottini et al., 1994) and in fMRI, PIVC 

was functionally localized using GVS (Bense et al., 2001; Eickhoff et al., 2006).  There 

have been reports of functionally localizing PIVC both with vestibular stimulation and 

visual stimulation separately.  

Cardin and Smith (2010) reported increased PIVC activity during a visual 

stimulus signaling egomotion.  In their experiment, they contrasted an ‘egomotion-

compatible (EC)’ display, with an ‘egomotion-incompatible (EI)’ display.  Their EC 

stimuli were wide-field optic flow displays that lasted 3s, and therefore were unlikely to 

induce vection because vection takes time to build (see section 3.1).  Furthermore, the 

authors did not measure vection and the display was not consistent with real motion 

through a stable environment.  Cardin and Smith found a significant change in activity 

for EC compared to EI stimuli in PIVC.  In line with this finding, Antal et al. (2008) 

reported that coherent optic flow displays activate similar insular areas to PIVC in a 

human fMRI study.  Similar to Cardin and Smith, Antal et al. did not record participant 

vection experience.  However, there are fMRI studies that measured vection and reported 

increased PIVC activity during vection (Beer et al., 2002; Kovacs et al., 2008; Indovina 

et al., 2013).  As such, PIVC may not be spatially well defined, but there is convincing 

evidence of insular cortex activation during visual stimulation of this region.    
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Figure 6. Parieto-insular vestibular cortex (PIVC).  Coordinates taken from Cardin and Smith (2010).   

 

 

1.4 - Vestibular Facilitation and Vestibular Inhibition During Vection 

A large amount of the vection literature focuses on the sensory integration of the 

visual system with the vestibular system.  This is because the visual and vestibular 

systems often undergo significant conflict during vection (Reason, 1978; Oman 1982).  

Specifically, during vection the visual system receives input consistent with self-motion 

but vestibular self-motion signals indicate no change in motion.  An expected, but absent 

vestibular signal consistent with the visual signal causes a conflict between the two 

systems.  Moreover, the degree and duration of the conflict depend on whether the 

visually simulated self-motion is of a smooth (low conflict) or accelerating (high conflict) 

scene (Palmisano et al., 2011).   

Visual and vestibular signals are integrated at the earliest sites of central processing 

in the primate brainstem (Waspe & Henn, 1977). Early studies reported that almost all 

units responded to both vestibular and visual signals although a recent study suggests that 
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not all cells are visually responsive (Bryan & Angelaki, 2009). These visual signals are 

processed by the same circuitry which drives vestibular responses and thus visual and 

vestibular self-motion signals share a common and synergistic representation at this level 

of the brainstem (Robinson, 1977). Thus, we might expect analogous synergistic 

representation of visual signals at higher levels of the visual system, for example in 

vestibular cortical regions. In this case visual self-motion signals would also be 

represented in vestibular cortex increasing neural activity in these areas. 

From a neuroimaging standpoint, one might expect that during vection, there would 

be increased blood flow in visual and non-visual cortical regions involved in processing 

self-motion stimuli.  Increased blood flow can be represented as BOLD signals in fMRI, 

H2
15O-bolus levels in positron emission tomography (PET) or magnetic fields in 

magnetoencephalography (MEG).  An increase blood flow in a specified brain region 

during a vection display compared to a non-vection display would presumably reflect 

these regions’ sensitivity to processing vection, or some component of vection such as 

optic flow, or coherent motion. However, it is unclear if any change in blood flow during 

vection displays occurs in vestibularly sensitive cortical regions.  Alternatively, it is 

plausible to assume a suppression of vestibular cortical activity during vection because it 

is a visual illusion.  These two possibilities are discussed in detail below as I evaluate the 

potential involvement of cortical vestibular regions PIVC and VIP during vection.       

 

Vestibular Facilitation 

Because visual self-motion generally occurs during real motion, vection should 

induce an expectation of concomitant signals from other senses.  Moreover, self-motion 
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perception may require multi-modal integration and processing (Palmisano et al., 2011).  

Thus, vestibular regions in the cortex could be involved in processing and updating this 

expected self-motion information which would result in higher blood flow during 

vection.  This would be due to visually evoked signals induced in vestibular regions that 

produce the expected activation corresponding to real self-motion, despite the vestibular 

system not actually receiving input. 

In a MEG study by Nishiike et al., (2002) participants sat upright and visual stimuli 

were displayed in complete darkness.  Researchers used two egomotion-compatible 

conditions.  One condition was a baseline with a set of concentric circles centered on the 

display that expanded at a constant rate.  The other condition was experimental and had 

concentric rectangles that expanded at a faster rate than in the control condition. The 

stimuli randomly changed from the baseline to the experimental condition.  Because 

condition 1 and condition 2 had different rates of expansion, this created stepwise 

acceleration in the optic flow when conditions spontaneously switched.  Subjects were 

instructed to discriminate stimulus change from ‘circle’ to ‘rectangle’ by raising their 

index finger as quickly as possible.  Authors reported that subjects experienced vection 

when the stimulus changed from the control condition to the experimental condition, but 

only a vague vection measurement technique was described.  In this study Nishiike and 

colleagues reported increased activation in posterior-insular regions (qualifying as 

vestibular cortical areas) during vection and therefore provided support for a vestibular 

facilitation hypothesis.   

Despite Nishiike’s group (2002) not explicitly measuring vection, their vestibular 

facilitation finding is consistent with previous studies that explicitly measured vection.  
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Previc (2000) used Positron Emission Tomography (PET) a technique that measures 

regional cerebral blood flow (rCBF) by injecting a tracer that measures H2
15O-bolus 

activity in the brain in a vection experiment.  Previc reported an increase of H2
15O-bolus 

tracer signal in the insula during wide-field circular vection (CV) displays consisting of 

clock-wise or counter-clockwise moving dots, coherently moving dot display compared 

with incoherent dot motion displays.  Similarly, Cardin and Smith (2010) reported 

increased parieto-insular vestibular cortex (PIVC) BOLD signal when participants 

viewed an egomotion-compatible stimulus in an fMRI experiment.  Additionally, Kovacs 

and colleagues (2008) reported heightened BOLD signal in vestibular regions during 

stimuli that produced vection in depth versus object motion stimuli that did not produce 

vection in an fMRI study.  In addition, Beer et al. (2002) report increased right insular 

activity in a PET study comparing coherent motion displays with incoherent motion 

displays. Based on all these studies, it appears that vection correlates with increased 

cerebral blood flow in vestibular regions of the brain, supporting the vestibular 

facilitation hypothesis.  On the other hand, there are many studies supporting a decrease 

in blood flow in vestibular regions during vection (Brandt et al., 1998).    

 

Vestibular Inhibition 

According to Brandt and colleagues (1998), an alternative way to deal with visual-

vestibular conflict during vection would be to inhibit vestibular processing by visual 

dominance. Visual dominance is the strong activation of visual areas that simultaneously 

drive a decrease in activity, or inhibition of blood flow to vestibular cortical regions.  

Brandt and colleagues’ reciprocal visual-vestibular inhibition hypothesis suggests that the 
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deep insular cortex (including PIVC) becomes deactivated from blood flow during 

constant-velocity circular vection even as visual cortical self-motion centers increase in 

blood flow.    

In Brandt and colleagues’ PET experiment (1998), participants laid in a supine 

posture, and viewed a circular vection (CV) stimulus through a head-mounted display.  

There were 3 relevant conditions.  1) A static grey square on a black background; 2) a 

non-vection condition in which randomly-moving red dots were overlaid on the baseline 

display; and 3) a clockwise vection condition where the red dots move coherently.  To 

measure vection, the researchers asked participants to rank their feeling of self-motion on 

a 1-5 scale after each trial.  They found heightened H2
15O-bolus levels in visual regions 

and a reduction of H2
15O-bolus in vestibular regions during condition 3 (the vection 

condition) compared with the non-vection conditions.   

Brandt’s inhibition hypothesis (1998) has been supported in follow-up studies from 

the same laboratory (Dietrich et al., 1998, Brandt et al., 2002, Deutshlander et al., 2002, 

Dietrich et al., 2003, Deutshlander et al., 2004), and others.  Deutschlander and 

colleagues’ (2004) PET study is notable for two reasons.  First, this experiment replicated 

the findings of Brandt et al. (1998) suggesting an inhibitory interaction between visual 

and vestibular cortical regions represented by decreased blood flow in parieto-insular 

regions when viewing CV displays.  Second, responses during CV and looming vection 

displays were compared in order to investigate how both types of vection displays 

activated brain regions.  They reported similar activation patterns during both types of 

vection displays in parieto-insular regions.  



 

 18 
	
  

In Nishiike and colleagues (2002) the authors discuss the discrepancy in their 

vestibular facilitation results compared to Brandt et al. (1998) vestibular inhibition 

results.  Nishiike and colleagues note that first, circular vection, and looming vection may 

be processed differently in the brain, particularly in vestibular regions.  However, 

Deutshlander et al’s. (2004) study (mentioned above) discounts this argument because  

they reported similar activation for CV and for looming vection in their PET study.  

Second, Brandt hypothesized that an increase in blood flow in both visual and vestibular 

regions could occur if the stimulus display possessed ‘unexpected transitions’.  

According to Nishiike, in this case the change of rate of expansion of the 

circular/rectangular stimulus to the other’s rate of expansion could qualify as an 

unexpected transition, explaining their observed increase in vestibular activation. 

Cardin and Smith (2010) also noted that their finding of increased PIVC activity 

during egomotion-compatible (EC) displays conflicts with Brandt’s reciprocal vestibular 

inhibition hypothesis.  Cardin and Smith did not measure vection and the short duration 

stimulus was unlikely to have induced vection.  However, other studies that did measure 

vection reported facilitation of vestibularly-sensitive areas during vection (Kovacs et al., 

2008; Indovina et al., 2013; Beer et al.,2002; Previc et al., 2000).   

The inconsistent findings between Nishiike (2002) and Brandt et al., (1998) are likely due 

to three important differences.  First, characteristics of the stimuli used in each 

experiment differ.  Stimuli signaling circular vection, arguably appear different and 

produce different percepts than stimuli inducing looming vection, making the studies 

difficult to compare.  Second, behavioural vection measurements were made differently 

in both studies.  Finally, the studies used different brain imaging techniques (PET vs. 
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MEG) which differ in imaging parameters, specifications, as well as spatial and temporal 

resolution capabilities.  Taken together, the sizeable amount of research on brain activity 

in vestibular regions during vection is difficult to reconcile due to limitations in defining 

and measuring vection.  As a result, the functional role of vestibular cortical regions 

during vection remains unclear.     

 

 

1.5 – Hypotheses and Contributions  

The neuroimaging literature on vection is polarized by the vestibular 

inhibition/facilitation debate (Brandt et al., 1998, Nishiike et al., 2002, Deuthschlander et 

al., 2004, Cadrin and Smith, 2010; Indovina et al., 2013).  Furthermore, because MRI 

research capable of localizing brain regions involved in vection is relatively new, there is 

a fair amount of disagreement on exact visual regions involved and in their specific role 

during vection.  Moreover, I use a unique set of displays that are hypothesized to induce 

different levels of vection and are presumed to induce different levels of sensory conflict 

(Palmisano et al., 2011).  In all, the goal of this thesis is threefold.  1) To identify those 

brain regions responsive to vection stimuli.  2) To clarify the vestibular 

inhibition/facilitation debate by understanding the function of vestibular cortical regions 

during vection.  3) To determine if there is neurophysiological data that parallels 

behavioural data of vection strength sensation.   

 

Hypotheses 
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I hypothesize that the two radial conditions will induce vection and that the two 

scrambled conditions will not induce vection (See Methods).   

Second, I hypothesize that vection ratings made in the fMRI experiment will be 

consistent with vection ratings obtained in the psychophysical lab experiments, 

supporting that the visual displays are equivalent.   

Third, I hypothesize that there will be a significant difference in vection rating 

between the two vection displays (a radial smooth condition, and a radial oscillating 

condition), with the radial oscillating condition predicted to be rated significantly higher. 

This hypothesis is based on a phenomenon known as the jitter effect (Palmisano et al., 

2000) which can be defined as a stronger perception of vection created by up/down 

oscillation or jitter in a scene.  I hypothesize that stronger vection (behavioural measure) 

will be reflected in cortical activity (neurophysiological measure).   

Assuming that visual-vestibular conflict is related to vestibular facilitation, my 

fourth hypothesis is that vestibular facilitation will occur during radial oscillating vection 

displays, but not in radial smooth vection displays.  This is because the oscillating radial 

display is conceptually similar to Nishiike et al’s (2002) in that both use variable speeds, 

and therefore, our result will be similar.    

  

Contributions 

The novelty in my thesis is that I am comparing vection inducing-stimuli with non-

vection inducing stimuli while holding other elements of my stimuli constant, limiting 

unwanted artifacts.  In addition one of my stimuli has an acceleration component (radial 

oscillation) that will allow me to compare varying levels of sensory conflict during 
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vection (ie. radial oscillating condition compared with radial smooth condition). Second, 

I have used a replicated and reliable vection measurement technique (Stevens, 1959; 

Allison et al., 2012) and ensured that all participants understood what vection is and how 

to express their sensation of the illusion accurately.  Third, I have conducted my main 

fMRI experiment under unvarying protocols and scanning parameters, facilitating 

comparisons between conditions.  This methodical research design, allowed me to isolate 

my questions of interest – what is the role of visual and vestibular regions during vection, 

and how are they integrated?   
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2. Methods 

2.1. Experiment 1 – fMRI Vection 

Apparatus and Scanning Parameters 

I used a Siemens 3-Tesla Magnetom MRI Scanner (Erlangen, Germany) for two 

of the three experiments in this thesis.  This scanner was equipped with a 32-channel 

radio-frequency head coil that maximizes signal-to-noise ratio to acquire anatomical and 

functional images.  An Avotec projector inside the magnet room displayed images onto a 

screen inside the scanner bore.  The projector had a 1024 by 768 pixel resolution and 60 

Hz refresh rate.  The screen was 25 cm wide and 18.8 cm long.  To view the display, 

which was placed above the observers’ heads, a mirror was angled at 45º to the face.  The 

displayed images subtended 36˚ horizontally and 27˚ vertically at the 38 cm optical 

distance.  Stimuli were generated by a T61 Lenovo ThinkPad equipped with an Intel Core 

2 Duo processor and a NVidia Quadro FX 570M graphics processor.  Scanner 

configuration is displayed below in figure 7.   

 

Figure 7.  Experiment 1 setup. 
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A high-resolution T1-weighted MPRAGE sequence anatomical scan was obtained 

for each participant to which all subsequent functional images were registered.  For the 

high-resolution anatomical scans, voxel size was 1.0 x 1.0 x 0.95 mm, TR=1900 ms, 

TE=2.52 ms, flip angle of 9˚ and FOV=256 mm. Functional runs all shared the following 

parameters: T2*-weighted, voxel size=3.0 x 3.0 x 3.5 mm, TR=2000 ms, TE=30ms, flip 

angle of 90˚ and FOV of 240 mm.  

 

Data Preprocessing 

A general linear model (GLM) was run in Fossil’s (FSL) (5.0.1) FEAT functional 

MRI tool (v6.00).  General linear model (GLM) is the modeling method used in FSL’s 

FEAT.  GLM allows users to model the behavior of a voxel in a given time course and fit 

it to the real data.  Z-tests are then automatically implemented by FEAT.  The GLM in 

FEAT has many robust regressors built in to cancel noise created by head motion, 

physiological changes and magnetic properties of the scanner.  For my manipulation, I 

created 6 explanatory variables (EVs).  These were the modulus stimulus (explained in 

the ‘Stimuli and Conditions’ section on page 35), 4 experimental conditions (1 EV each) 

and 1 EV for response intervals in which participants rated their sensation of vection after 

each trial.  Static periods of each stimulus were used as the baseline in the GLM.  EVs 

were represented in a raw text file making up the event-related design for the experiment.  

Conditions were labeled as ‘ON’ phases and static periods before the motion of stimuli 

began were treated as the ‘OFF’ phases/baseline.    

All data were spatially smoothed using estimates from random-field theory (RFT) 

at the full-width half maximum (FWHM) value of 5 mm of the Gaussian kernel 
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smoothing process applied prior to processing the functional localizer data (Worseley et 

al., 1992).  Participants remained stationary throughout the experiment.  However, brain 

images were motion corrected using the MCFLIRT tool set in FEAT to reduce the effect 

of any minor participant head motion (ie. resulting from respiration).  Non-brain tissue 

was filtered from the images using the BET brain extraction tool also built into FEAT.  

Functional data were overlaid on a standard 1mm MNI brain, as well as each subject’s 

structural image which also had a voxel size of 1mm x 1mm x 1mm, and corrected for 

accidental head motion in 12 degrees of freedom.  All data were modeled using a double-

gamma hemodynamic response function (HRF) that takes into account the late onset of 

the BOLD signal (typically estimated to be approximately a 5-6 s lag) as well as the late 

undershoot known to follow stimulus presentation.    

 

Participants 

Eight members of the York University community participated in the study (6 

males and 2 females).  The mean age of participants was M=31.5 and SD=8.4.  Six 

participants were right-handed and two participants were left-handed.  All participants 

reported no history of abnormal vestibular function.  Seven participants had normal or 

corrected to normal vision with aided vision.  One participant did not wear his habitual 

eyeglasses but could see the stimuli clearly at the near distance.   

Five subjects had previously participated in vection experiments, using similar 

stimuli.   The three participants that had never been in a vection experiment underwent 

several practice runs to ensure that they understood what vection was, experienced clear 

vection and understood the task.  Prior to the experiment, participants provided their 
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informed consent in accordance with a protocol approved by York University’s Ethics 

Committee.  Subjects participated on a voluntary basis.   

 

Stimuli and Conditions  

 The 4 conditions were 1) Smooth radial optic flow.  In this condition, all elements 

in the display move coherently in a radially expanding flow pattern (velocity of elements 

depended on their simulated distance as well) simulating smooth, forward self-motion 

(Figure 8). 2) Radial optic flow with spinal-axis oscillation.  This is similar to condition 1 

with the addition of simulated coherent, spinal-axis oscillating motion of the computer 

graphics camera used to render the scene (Figure 9).  3) Smooth local optic flow.  This 

display is identical to condition 1, but the coherent display is evenly segmented into six 

panels (3 panels in the top half of the screen and 3 panels in the bottom half), which are 

reordered (scrambled) to scramble the radial optic flow (Figure 10) and no longer 

simulated forward self-motion.  Condition 4 - spinal-axis, oscillating, local optic flow. 

This condition is identical to condition 2, but is segmented into a scrambled 6-panel 

arrangement (Figure 11) and should also no longer simulated forward self-motion.  All 

displays included a centered stationary green fixation dot.  Displays began with a 5-

second static frame of the scene before simulated motion began.  Simulated motion of 

objects in the scene lasted 20 seconds each.  
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Condition 1 

 

 

Figure 8. Illustrations of all 4 conditions are adapted from Palmisano et al., (2011).  Condition 1 - Smooth Global 
Motion: Note that the red arrows indicate smooth global self-motion is in the forward direction opposite to the 
simulated motion of the elements in the display.   
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Condition 2 

 

 

Figure 9. Condition 2 - Oscillating Global Motion: The top image illustrates a view of the stimulus at the highest virtual 
amplitude.  The red arrows indicate spinal-axis oscillation in the forward direction.  
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Condition 3 

 

 

 

Figure 10. Condition 3 - Smooth Local Motion	
  

Condition 4 

 

Figure 11. Condition 4 - Oscillating Local Motion. 

 

Stimuli were developed in Pyglet, rendering a virtual world 15 m wide, 15 m high, and 

40 m deep.  The computer graphics were rendered with a perspective projection 

appropriate for the distance and size of the display.  In this virtual world there were 7000 

evenly distributed textured blue spheres (diameter 15 cm) each.  All spheres moved at a 
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speed of 0.08 meters per frame (60Hz) in the virtual world.  Sphere size, density, and 

velocity in the image varied as a function of simulated distance from the viewer 

according to perspective projection.  Spheres were not placed within 28 cm of the path of 

the camera to prevent collisions with the face.  As each sphere passed behind the observer 

it was replaced by a new sphere at the far end of the simulated volume.  Soft fog 

simulated in the environment caused contrast to decrease in the distance which made 

their reappearance less distracting.  Oscillation in conditions 2 and 4 was given by the 

formula 0.16  ×  sin  (2𝜋𝑓𝑡) in which 0.16 m/s is the peak speed in the up/down direction 

of the virtual camera, f = 1.2 is the oscillation frequency and t is the time since the start of 

the motion (time progresses on each frame, that is, in discrete steps of 1/60 s).  In 

conditions 3 and 4, the local motion conditions, identical images to conditions 1 and 2 

respectively were presented in scrambled order.  Therefore, sphere size, speed, density, 

velocity, frequency and amplitude remained the same as in the global motion conditions, 

but scrambled into 6 panels creating the local motion displays.  Luminance values for 

conditions 1 and 2 were calculated using a photometer positioned slightly to the right of 

the center of the projected display and had a value of 0.24 cd/m2.  Scrambled conditions 

had a luminance value of 0.29cd/m2.   

 

Procedure  

Each session consisted of 37 trials in which the first trial was a ‘standard display’ 

(modulus). Subjects were told to monitor their sensation of vection during this standard 

and to assign its strength a value of ‘50’ on a 0-100 scale.  The standard display was 

identical to condition 1.  Subjects were to rate all subsequent trials relative to the vection 
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perception experienced on this standard trial (Stevens, 1959) such that on a subsequent 

trial, if a participant experienced half the strength of vection, he/she would rate that ‘25’.  

Subjects gave ratings verbally after each trial.  They viewed 12 repeats of Condition 1, 12 

repeats of Condition 2, 6 repeats of Condition 3, and 6 repeats of Condition 4.  These 

were pseudo-randomized in blocks of 6.  Subjects were instructed to stay fixated on the 

centered green sphere throughout all trials.  
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2.2. Experiment 2 - Functional Localizer Scans 

I used the same projector, MRI scanner, scanning parameters, and high-resolution, 

T1-weighted images from Experiment 1 in this experiment.  Stimuli were generated on an 

iMac equipped with a 3.2 GHz Intel Core i3 processor and Radeon HD 5670, 512 MB 

graphics card.  

 

Data Preprocessing 

I conducted a series of localizer tests in which seven participants watched video 

clips that functionally localized regions MT, MST+ and V6 individually.  Functional data 

were analyzed in FEAT.  Stimuli were modeled with a square wave function for V6, 

MST+, and MT+ localizers.  For V6 and MT+ stimuli, the static periods were used as the 

baseline, and stimulus motion was used as the ON period.  For the MST+ stimulus, static 

periods were the baseline, but leftward motion, and rightward motion were modeled 

separately and contrasted against one another to investigate the reported effects of larger 

receptive fields in the ipsilateral hemifield of MST+ (Pitzalis et al., 2013).  Localizer data 

for V6 and MT+ were collected in a single run, and therefore were only analyzed in a 

first-level analysis.  Data collected for the MST+ contrasts were recorded in two four-

minute scanner runs.  This was done to allow for equal amounts of repetitions for right 

ON (moving), right OFF (static), left ON (moving), and left OFF (static) periods with 

reasonable run durations and were analyzed in a second-level analysis.  All localizer data 

were thresholded with a minimum Z-score value of 2.3 at the p<0.05 corrected 

confidence level.  In other words, BOLD data was only deemed significant if greater than 

Z=2.3 at the p<0.05 two-tailed alpha level.  A cluster threshold was implemented as a 
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permutation method to correct for multiple comparisons (for details see Winkler et al., 

2014).   

 

Participants 

7 of the 8 participants in Experiment 1 took part in Experiment 2.  One participant 

was unavailable during the time period in which we were conducting Experiment 2.  

Thus, we had n=7 participants with an average age of M=29.7 and SD=7.5.   

 

Stimuli and Conditions 

MT+ Localizer 

To functionally isolate the MT+ complex, we used the low-contrast Radial Rings 

display used by Pitzalis and colleagues (2010).  This display features light grey 

concentric rings overlaid on a darker grey background, with a small, red fixation cross in 

the center.  In order to better isolate MT from the wider MT+ complex, we set a 1.5% 

luminance contrast between the background and rings (Tootell et al., 1995).  Average 

luminance was 8 cd/m2.  This was much brighter (gray and white) than our experimental 

stimuli (black and dark blue) and therefore had a much larger luminance value.   

 

Figure 12.  Radial Rings Stimulus - during the ON phase, the display alternated between 1 sec outward motion (left) 
and 1 sec inward motion (right) of the concentric rings. 
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The stimulus consisted of eight ‘ON’ sequences alternating with eight ‘OFF’ 

sequences.  ON sequences were 16-second periods in which the concentric rings 

alternatively expanded for 1 second and contracted for 1 second.  This was done to 

minimize motion adaptation effects.  OFF sequences were 16-second periods of a static 

image of the concentric rings.  Participants were instructed to fixate the centered red 

cross throughout.  This display lasted a total of 4 minutes and 16 seconds.   

 

MST+ localizer 

 We replicated Pitzalis et al’s. (2013) display designed to differentiate MT from 

MST+ using a patch of an expanding or contracting optic flow field.  This display 

featured white dots on a black background in a circular window located either to the left 

or right of a centered, blue fixation cross.  The visual angle of the display was identical to 

that of the vection display (36˚ horizontally, 27˚ vertically) and eccentricity of the 

circular window was scaled to this display, as Pitzalis’ study did not give an indication of 

the visual angle of their native display1.  These dots moved in the right or left hemifield 

in a way that simulated forward or backward looming motion through a volume of dots.  

Motion of the dots emanated from the center of the display, rather than from the center of 

the circular window.  The dots alternated between moving and static on both the right and 

left of the centered blue fixation cross.  Motion periods on the right and left side of the 

centered fixation cross were coded as the ON phases.  These lasted 16 s each and 

consisted of alternations of 2 s inward looming motion with 2 s outward looming motion.  

There were eight repeats of these ON phases in one run. (4 displayed on left, 4 displayed 

                                                
1 It is highly probable that this discrepancy in MST+ size and eccentricity of our display accounts for its 
ineffectiveness in functionally localizing MST+ in subjects in the Results section.   
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on right).  OFF phases were 8 repeats of a static shot of the display (4 on left, 4 on right).  

The stimulus lasted a total of 4 min 16 sec.  We repeated this display in a second run for 

each participant in order to obtain 8 phases of right-hemifield motion and 8 phases of 

left-hemifield motion.   

 

Figure 13. MST+ localizer – right hemifield motion.  Participants fixated on center cross at all times.  Motion alternated 
in the forward and backward direction in the left and right hemifields.  Motion emanated from the center of the display.   

 

V6 localizer 

We used Pitzalis et al’s’ (2013) ‘flow fields’ stimulus to functionally localize V6 

as they have found this display to induce strong activity in V6.  This display was 

composed of white dots set on a black background with a centered, red fixation cross.  

During the ON phase, the display presented spiral motion optic flow display continuously 

varying from pure radial to spiral to pure rotational optic flow in black and white with a 
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red fixation cross.  These dynamic elements of the display simulated self-motion.  During 

the OFF phases the white dots moved randomly and incoherently on the black 

background with the red fixation cross still present.  Thus, this OFF phase possessed only 

local motion/object motion components and should not have induced the perception of 

self-motion.  The display consisted of 8, 16-sec ON phases alternated with 8, 16-sec OFF 

phases, and lasted 4 minutes and 16 seconds in total.  Participants were instructed to stay 

fixated on the red cross at all times during the display.  

 

Anatomical Localizers for PIVC, VIP, CSv 

Anatomical localizers were used in identifying PIVC, VIP, and CSv because these 

are more difficult to isolate with functional techniques such as by visual stimulus 

presentation.  Therefore, spatial coordinates of these areas from various sources were 

collected (Cardin and Smith, 2010; Bremmer et al., 2001).  Subsequently, we used our 

experimental vection stimuli to identify if these regions became functionally activated by 

our display.  Our vection displays from Experiment 1 were successful in identifying these 

regions because coordinates that matched those previously reported were found.   

 

Procedure 

At the beginning of the experiment, participants were informed that they would 

view a series of visual motion displays.  Before each stimulus we described the display 

they were about to see and the length of the stimulus.  They were instructed to stay 

fixated.  The entire experiment consisted of approximately 30 minutes of scanning, but 
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took almost an hour with set up time and occasional unforeseen circumstances (for 

example coughing or sneezing which required rerunning a localizer).   

 

2.3. Experiment 3 - Psychophysical Vection Experiment 

Experiment 3 was a behavioural, laboratory experiment that took place before 

Experiment 1 to determine if vection could be induced under identical conditions of the 

MRI configuration.  Experiment 3 mimicked important characteristics of the 

MRI/Experiment 1 such as the supine posture, the visual angle of the MRI display, the 

experimental stimuli and instructions for the participants.  All participants of Experiment 

1 were in Experiment 3 to ensure that participants understood the task and that they all 

experienced vection.  Two participants that took part in Experiment 3 were excluded 

from the study because they did not experience vection.  We excluded these participants 

as the experience of vection is an important precondition in assessing BOLD signals in 

Experiment 1, therefore only participants that experienced vection were included in the 

study.    

 

Apparatus 

Participants held a gamepad and laid supine on a massage table and viewed the 

display of a T61 Lenovo ThinkPad, identical to the computer used to produce the vection 

displays in the fMRI scanner.  The display of the computer was frontal at a distance of 38 

cm from the participant’s eyes.  This configuration replicated the distance, and visual 

masking was used to match the visual angle in the scanner (Figure 14).  The computer 

was clamped onto a metal plate held by two upright posts.  Participants viewed the 
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display through thick goggle frames with no lenses.  These frames were used to 

approximate the occlusions caused when the head coil is installed over a participant’s 

face in the MRI.  

 

Figure 14.  Setup of Experiment 3.  Setup mimics that of Experiment 1. 

 

Procedure 

 Experiment 3 allowed me to measure vection duration time and onset time in 

addition to vection magnitude rating by using a gamepad.  Participants were told to press 

and hold the right shoulder button on the gamepad when they experienced vection, and to 

release this button when they did not experience vection.  Therefore vection onset times 

were calculated as the time from the start of the trial when the button was not pressed 

until the participant pressed the shoulder button the first time.  Vection duration time was 

calculated by summing of the total amount of time the shoulder button was pressed 

during each trial.  Vection ratings were calculated by participant input after each trial.  

They used ‘up’ and ‘down’ buttons to navigate on the 0-100 rating scale.  As in 
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Experiment 1, a magnitude estimation scale from 0-100 was used by participants to rate 

vection of a trial in relation to the standard trial.  
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3. Results & Discussion 

3.1 – Psychophysics of Vection 

Magnitude Estimation Ratings for Laboratory Experiment and MRI Experiment 

Bar plot representations of mean magnitude estimation (ME) ratings of vection 

across participants in the psychophysics experiment and in the MRI vection experiment 

are displayed in Figure 15.  The bar plots show that the scrambled smooth condition 

produced the smallest vection ratings followed by the scrambled oscillating condition. 

Figure 1 shows that radial smooth and radial oscillating conditions were rated much 

higher.  Consistent with my third hypothesis, strong vection is experienced during radial 

smooth flow as well as radial oscillating flow.  Little vection, if any, is experienced in the 

scrambled versions of these radial conditions consistent with my first hypothesis. 

 

 

Figure 15.  Bar plot representation of magnitude estimation rating for sensation of vection in each condition for 
psychophyiscal vection experiment and MRI vection experiment.  Error bars indicate standard error of the mean.   

 

Figure 15 demonstrates that there is a higher vection rating for radial oscillating 

than for radial smooth trials and that vection ratings in the psychophysical study are 
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similar to ratings in the MRI study.  This is consistent with hypothesis two.  First there 

was no significant difference between ratings made in Experiment 1 and ratings made in 

Experiment 3.  Second, as I hypothesized, we can observe a jitter effect in our rating data 

because vection ratings are significantly higher with radial oscillating stimuli than with 

radial smooth stimuli.    

I conducted a repeated-measures one factor ANOVA in which the 4 conditions 

were the independent variables, and the rating scores within participants were the 

dependent variables.  This analysis revealed a significant effect of the 4 conditions on 

vection magnitude rating scores with an effect size of R2=0.77.  Pairwise post-hoc 

comparisons were calculated with the Bonferonni correction used to correct for multiple 

comparisons and therefore to avoid a Type 1 error.  Pairwise post-hoc comparisons 

showed that all conditions were significantly different with the exception of the 

Scrambled Smooth > Scrambled Oscillating comparison (Table 1).  Of major importance 

were the contrasts comparing radial (vection-inducing) and scrambled (non vection-

inducing) conditions.   

Hypothesis 3 states that there would be significant differences between radial and 

scrambled conditions because the former were designed to elicit vection and the latter 

were not.  My results are consistent with this hypothesis because post-hoc comparisons 

using t-tests show that for the radial oscillating > scrambled smooth comparison t=-32.94, 

SE=2.07 and p<.05 two-tailed.  For the radial smooth > scrambled smooth contrast t=-

21.09, SE=2.07 and p<.05 two-tailed (Table 1).   

Another hypothesis was that I would find a significant difference for vection 

rating during the radial oscillating condition compared with radial smooth condition.  
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Post-hoc comparisons confirmed that vection magnitude was larger in the radial 

oscillating condition compared to the radial smooth condition (t=9.74, SE=2.03 and 

p<0.05) when comparing these two conditions.  There were no significant differences 

when comparing the two scrambled conditions which both produced low vection 

sensation.  

For the fMRI vection rating data, a repeated-measures one factor ANOVA was 

conducted as in the psychophysical vection experiment.  I found a significant difference 

in vection ratings between conditions (F=485.26, (degrees of freedom) df=3 p<0.05, 

R2=0.84 using a two-tailed alpha-level).  Table 1 shows post-hoc pairwise comparisons 

for the ANOVA with Bonferonni correction.  Note that unlike contrasts for the 

psychophysical analysis, all contrasts in the MRI vection experiment showed a significant 

difference.  This includes the scrambled oscillating > scrambled smooth contrast which 

was not significant in the psychophysical study, however this was a small effect.  A 

significant difference between scrambled oscillating and scrambled smooth conditions is 

caused by the higher vection ratings for scrambled oscillation.  Such is the case because 

only the forward optic flow was scrambled in the scrambled oscillating condition.  

However, the up-down oscillation of the display remained coherent, despite it signaling 

flow in scrambled directions.    

 

 

Table 1.  Post-hoc contrasts for one-factor repeated-measures ANOVA in fMRI Vection Experiment calculated using 
Bonferonni correction.   

Contrast t-value SE p-value 
Radial Smooth - 
Scrambled 
Oscillating 
 

-16.67 
 

2.07 <.0001 
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Radial Smooth - 
Scrambled Smooth 
 

-21.09 
 

2.07 
 

<.0001 
 

Radial Oscillating - 
Scrambled Smooth 
 

-32.94 
 

2.07 
 

<.0001 
 

Radial Oscillating - 
Scrambled 
Oscillating 
 

-28.52 
 

2.07 
 

<.0001 
 

Radial Oscillating - 
Scrambled 
Oscillating 
 

-14.51 
 

1.69 
 

<.0001 
 

Scrambled Smooth - 
Scrambled 
Oscillating 

-3.83 2.40 
 

<.0010 

 

 

Vection onset and duration measurements from vection psychophysics experiment 

An important characteristic of vection is that it takes time to build.  The average 

onset of vection is approximately 3-5 seconds after the start of the radial displays (Figure 

16).  Data for vection duration are displayed in figure 17.   
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Figure 16.  Vection onset times recorded during psychophysical vection experiment.	
  

 

Figure 17.  Vection duration recorded during psychophysical vection experiment.	
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The scrambled smooth condition had the longest onset on average, lasting 

approximately 20s, or the duration of the stimulus.  In contrast, onset times for the radial 

conditions were much shorter indicating that participants experienced vection early into 

these trials.   

Vection duration is shown in Figure 17.  Figure 17 indicates that duration of 

vection on average for the scrambled conditions was very short.  In contrast, vection was 

experienced for much longer intervals for the radial conditions.     

Onset and duration are negatively correlated dependent variables.  That is, when 

onset time increases, duration generally decreases and vice versa.  However, this 

relationship between onset and duration is not perfect, because of vection ‘drop-outs’.  

These are periods where a participant releases the button and then presses it again later 

within the same trial.  Despite this, a longer duration generally results in shorter onset 

time, and longer onsets generally result in shorter durations.   

I conducted a repeated measures ANOVA for vection duration and found that 

there was a significant difference between conditions at the two-tailed p<.05 cut-off 

(F=135.83, df= 3 and p<0.05).  Post-hoc comparisons adjusted for multiple comparisons 

by the Bonferronni procedure revealed that there was a significant difference for vection 

duration between all conditions, with the exception of the scrambled oscillating > 

scrambled smooth comparison (Table 2).   

 

Table 2.  One Factor Within-Subjects repeated measures ANOVA for Vection Duration during vection psychophysics 
experiment. 

Contrast t-value SE p-value 
Radial Smooth - 
Scrambled 
Oscillating 

12.67 

 

2.07 

 

<.0001 
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Radial Smooth - 
Scrambled Smooth 
 

12.78 

 

0.87 

 
 

<.0001 

 
 

Radial Oscillating - 
Scrambled Smooth 
 

15.50 

 

0.87 

 

<.0001 

 
Radial Oscillating - 
Scrambled 
Oscillating 
 

15.37 

 

0.87 

 
 

<.0001 

 
 

Radial Oscillating - 
Scrambled 
Oscillating 
 

3.27 

 

0.72 

 

<.0072 

 

Scrambled Smooth - 
Scrambled 
Oscillating 

0.02 1.00 1.0 

 

Vection onset data are presented in Table 3. As expected, they are complementary 

to the findings for vection duration.  Repeated-measures ANOVA shows a significant 

difference between onset times of vection between conditions (F=94.13, df=3 and p<0.05 

using a two-tailed alpha-level).  Post-hoc pairwise contrasts reveal that there is a 

significant difference for start time between all conditions with the exception of the two 

scrambled conditions (Table 3).   

 

Table 3.  One Factor Within-Subjects repeated measures ANOVA for Vection Onset during vection psychophysics 
experiment. 

Contrast t-value SE p-value 

Radial Smooth - 
Scrambled 
Oscillating 

 

9.77 
 

0.95 
 

<.0001 
 

Radial Smooth - 
Scrambled Smooth 

11.18 
 

0.95 
 

<.0001 
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Radial Oscillating - 
Scrambled Smooth 

 

13.56 
 

0.95 
 

<.0001 
 

Radial Oscillating - 
Scrambled 
Oscillating 

 

12.16 
 

0.95 
 
 

<.0001 
 
 

Radial Oscillating - 
Scrambled 
Oscillating 

 

2.92 
 

0.78 
 

<.02 
 

Scrambled Smooth - 
Scrambled 
Oscillating 

1.21 1.10 1.00 

 

 

3.2 - Localizer Experiment 

V6 

 The V6 localizer showed bilateral activity in the typically reported region of V6 

for 12 of 14 cerebral hemispheres.  Across subjects in the left hemisphere, mean 

coordinates in MNI space were x = -20, y = -83, z = 29 and occupied 3994 voxels.  Mean 

Z-score = 8.34 at the p< 0.05 corrected confidence level.  In the right hemisphere, mean 

coordinates were x = 25, y = -78, z = 31 and occupied 3952 voxels with a mean Z-stat = 

11.0.  Detailed results for each participant are shown in table 4a for left hemisphere data, 

and 4b for right hemisphere.   

 

MT+ 
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The radial rings display, intended to localize area MT+, activated 11 of 14 

hemispheres bilaterally in the hypothesized MT+ region.  Mean coordinates in the left 

hemisphere were x = -40, y = -73, and z = 10 at 2186 voxels and a Z-stat = 9.93.  In the 

right hemisphere, mean coordinates were x = 46, y = -67, z = 9 for 1921 voxels and Z-stat 

= 10.26 (Supplementary data is in Tables 4a and 4b).   

 

 

MST+ 

Using the same contrast method as Pitzalis et al., (2013), MST+ was localized in 

only 4 of the 14 hemispheres.  No participants showed bilateral activation elicited by the 

MST+ localizer in MST+.  Rather, MST+ was active in the right hemisphere for 3 of the 

4 hemispheres in separate subjects.  In the left hemisphere, MST+ was only activated in 

one participant.  The coordinates for MST+ in the left hemisphere, based on the 1 

hemisphere showing activation, is x = -36, y = -67, z = 11 and Z-stat = 11.8.  In the right 

hemisphere, MST+ is located at x = 57, y = -57, z = 8, and a Z-stat = 5.06.  Interestingly, 

3 of the 4 activations of supposed region MST+ occurred in the opposite hemifield.  

Meaning that in the left hemisphere, activity occurred when contrasting right versus left 

activity, but not in both hemispheres simultaneously.  Similarly, in the right hemisphere, 

2 of the 3 localizations of MST+ occurred when contrasting left versus right activity.  

This is opposite to the findings of Pitzalis et al’s reports because my findings suggest that 

there is increased contralateral activity in MST+.  However, in all, localization of MST+ 

was not robust in our experiment as we had predicted, as only 4 of 14 hemispheres 
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showed activation in this region. Eccentricity of patches in our displays are different than 

those used by Pitzalis, probably accounting for our differing findings.  

To recap, the contrast for the V6 localizer was spiral motion vs. random motion, 

for MST+ left hemifield motion vs. static, for MT+ radial ring motion vs. static.  

However, MST+ ON phases were right hemifield motion vs. right hemifield static 

periods.  Figures 18 a, b and c display each of these three brain regions in a standard 

brain.  Average coordinates and voxel sizes are taken from each participant based on 

activations of each respective functional localizer in Figure 18.   

                   

              Figure 18a MST+ shown in blue          Figure 18b MT shown in burgundy    Figure 18c V6 shown in green 
 

3.3 - Vection MRI Experiment – Z-score data 

In the FEAT analysis, I set up all possible combinations of contrasts comparing 

all 4 conditions to each other.  These contrasts allowed me to identify those that yielded a 

significant difference in BOLD activity, given by z-scores.  Before running these 

contrasts, I made masks for brain regions of interest for each subject using brain atlases in 

FSL View, a drawing/viewing tool in the FSL brain imaging software package.  Masks 

covered larger regions than brain regions of interest.  This was done for two reasons.  

First, the coordinate-space of regions of interest (ROIs) varies across individuals.  
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Second, exact location of ROIs are not well defined in the literature.  Despite these loose 

masks, using a mask based on an atlas is more statistically conservative than a whole-

brain analysis because the GLM runs fewer comparisons, therefore requiring fewer 

corrections.  

Masks were created by registering a subject’s brain with a 1-mm MNI standard 

brain.  The combination of subject brain space with standard brain permits for the use of 

generalized brain atlases in FSL View.  This would not be possible if using only the 

subject’s brain.  I selected the Talairach Daemon Label Atlas in making the masks. 

Below is a table showing the mask used for a given ROI.   

 

Table 4.  The left column contains specific brain regions of interest for our study.  The right column shows the 
corresponding larger masks used in FSL in which our ROIs are found. 

Brain Region of Interest Talairach Daemon Label Mask 
Used 

Medial Temporal Gyrus Medial Temporal Region 

Precuneus Motion Area Precuneus 

V6 Cuneus 

Cingulate Sulcus Visual Area Cingulate Gyrus 

Parieto-insular vestibular cortex Insula 

Ventral Intraparietal Region Superior Parietal Lobe 
 

 

A drawback of using loose masks that covered larger regions than our ROIs was 

that some brain regions that were not of interest within these loose masks showed 

significant activity.  However, regions that had coordinates that were vastly different 

from previous reports of our ROIs were excluded from my report.  
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PIVC Activity 

PIVC showed significant activity for one of our contrasts of interest - Radial 

Oscillating > Radial Smooth.  Results shown in Figures 19 and 20 indicate that in this 

contrast 5 of 8 participants show more PIVC activity during radial oscillating than in 

radial smooth.  A Z-score test was calculated in the FEAT analysis for each subject.  In 

the left hemisphere, Z=5.07, p<0.04 and occupied 2712 voxels at x=44, y=-28.8, and 

z=17.5 on average.  In the right hemisphere, Z=5.01, p<0.045 and represented 837 voxels 

at x=51.7, y=-35 and z=20 on average.  
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Figure 19.  PIVC activity in subjects 2, 4, 5, 6 & 8 in Radial Oscillating > Radial Smooth contrast.  The blue outline 
represents approximate locations of each participant’s custom-made ROI.  Red-yellow colour gradient represents 
above-threshold BOLD activity within looser masks (Table 4).  
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Figure 20. PIVC activity in subjects 2, 4, 5, 6 & 8 in Radial Smooth > Radial Oscillating contrast.  Blue outline 
represents approximate location of each subject’s custom-made ROI mask.   

 

The result of this contrast is important as it points to a jitter effect represented in 

terms of BOLD activity.  Assuming participants experienced vection in both conditions, 

(which ratings showed they did) this result points to a neural correlate for the stronger 

vection experienced during radial oscillating displays than in radial smooth displays.  

Surprisingly, other contrasts comparing vection inducing displays with non-vection 

inducing displays did not show significant differences in BOLD activity in PIVC.  From 
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this result, I conclude that PIVC does not appear to be as strongly involved in vection as 

predicted and demonstrated in other neuroimaging vection studies. 

 

CSv Activity 

Cingulate sulcus visual area showed strong and consistent activity for the Radial 

Oscillating > Scrambled Smooth contrast in all 8 participants (Figure 21).  Figure 22 

shows the reverse of this contrast, and indicates that there was no CSv activity in 

scrambled smooth > radial oscillating contrast.  The radial oscillating condition induced 

the strongest sensation of vection, whereas the scrambled smooth condition induced the 

weakest sensation of vection (or no vection - see section 3.1).  Therefore, this contrast is 

hypothesized to be the clearest indicator of BOLD activity during vection.  A limitation 

of this contrast is that it compares two conditions that differ in local motion properties, 

because there is an oscillating component in the radial oscillating condition that is absent 

in the scrambled smooth condition.  Results show that in this Radial Oscillating > 

Scrambled Smooth contrast, Z=4.03, p<0.049, and occupies 1058 voxels in the left 

hemisphere on average.  In the right hemisphere, Z=3.52, p<0.049 for 1455 voxels in 

CSv.     

Radial Oscillating > Scrambled Smooth 
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Figure 21.  CSv activity in all subjects in Radial Oscillating > Scrambled Smooth contrast.  The blue outline represents 
approximate localtion of ROI.  Red-yellow colour gradient represents above-threshold BOLD activity.  The blue 
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outline represents approximate localtion of subject’s custom made mask.  Red-yellow colour gradient represents above-
threshold BOLD activity within larger mask (Table 4).   
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Figure 22.  CSv activity in all subjects for the Scrambled Smooth >Radial Oscillating contrast. 
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In the Radial Motion > Scrambled Motion contrast, shown in Figure 23, there was 

preference for vection stimuli in 5 of 8 participants in area CSv.  Figure 24 demonstrates 

the opposite of this contrast (Scrambled Motion > Radial Motion) in which there is no 

CSv activity.  A significant change in BOLD activity would be expected in this contrast 

for vection sensitive areas.  This is because this contrast combines both radial conditions 

hypothesized to induce strong vection perception compared to the combined scrambled 

motion conditions that do not induce strong vection.  Illustrations representing BOLD 

activity for this contrast are presented below.   

 

Radial Motion > Scrambled Motion 
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Figure 23.  Radial Motion> Scrambled Motion contrast results for area CSv for 5 subjects with significant CSv activity.   
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Figure 24.  Scrambled Motion > Radial Motion contrast results for area CSv for 5 subjects with significant CSv 
activity.   

 

Of major importance is CSv’s strong response for the Radial Oscillating > Radial 

Smooth contrast.  7 of 8 participants showed significant activity when comparing Radial 

Oscillating to Radial Smooth conditions (Figure 25).  Conversely, there is no CSv 

activity when comparing the radial smooth to the radial oscillating contrast (Figure 26).  

This is important because it relates to the hypothesized jitter effect.  Moreover, this 
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contrast was significant in PIVC.  Thus, from the results of the Radial Oscillating > 

Radial Smooth contrast, CSv demonstrates significant preference for the stronger vection 

display as did PIVC.  

 

Radial Oscillating > Radial Smooth 
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Figure 25. BOLD activity in Radial Oscillating > Radial Smooth contrast in CSv.  These results indicate a jitter effect 
because CSv appears to distinguish a strong vection inducing stimulus from another.   
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Figure 26. BOLD activity in Radial Smooth > Radial Oscillating contrast in CSv.  These results suggest a correlation 
with behaviourally observed jitter effect because CSv apparently becomes active during oscillating radial displays but 
not for the radial smooth display.  	
  

 

Of note is that CSv was the only region that showed the hypothesized preference 

for oscillation in the Radial Oscillating > Scrambled Oscillating contrast, with 5 of 8 

participants having significant Z-scores for this contrast and providing further evidence 

of CSv sensitivity to vection.  This is because the intent of this contrast was to keep all 

factors other than vection perception constant.  We hypothesized that if a brain region 

showed significant activity in this contrast, and in the Radial Smooth > Scrambled 

Smooth contrast, this would indicate a clear vection preference for the region.  Despite 

not finding significance in the Radial Smooth > Scrambled Smooth contrast, CSv appears 

to be a brain region strongly sensitive to vection from radial optic flow stimuli based on 

our results.   

 

VIP Activity 

We obtained inconsistent results for area VIP, known for its involvement in 

egomotion compatible displays.  This is because it showed increased activity for the 
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Radial Motion > Scrambled Motion contrast for 5 of 8 participants but aside from this 

contrast, it showed a slight preference for scrambled motion conditions over radial 

motion conditions.  This is contrary to its hypothesized role in processing visual 

egomotion.  It is possible that lateral intraparietal region (LIP) or medial intraparietal 

region (MIP) which are both object motion regions neighbouring VIP, were activated by 

the scrambled condition contrasts (Colby and Duhamel, 1991).   However, contrary to 

previous findings we did not find evidence for VIP activation during vection-inducing 

stimuli.   

 

V6 Activity 

Findings for area V6 are also inconsistent because it responded strongly in the 

Radial Motion > Scrambled Motion contrast, but also to the Scrambled Oscillating > 

Radial Oscillating and Scrambled Smooth > Radial Smooth contrast.  V6 activity in the 

Radial Motion > Scrambled Motion contrast is on the other hand consistent with its 

hypothesized role in wide-field optic flow stimulation (Pitzalis et al., 2006).  The BOLD 

activity for this contrast is shown in figures 27 and 28.  7 of 8 participants had a 

significant Z-score within the V6 region for this contrast. In all, our findings on V6 differ 

from those discussed in the neuroimaging literature on V6 involvement in vection.  

Scrambled motion contrasts showing increased activity in V6 may be caused by 

coincidental localizing of region V6a - a visual object motion region located close to V6 

(Pitzalis et al., 2013).  Unlike for CSv and PIVC, custom-made masks were not made for 

V6.  This is because no other regions were sufficiently responsive to vection displays.  
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Instead here, the blue outline represents region with highest activity within larger mask 

used (Table 4).  

   

 

 

Radial Motion > Scrambled Motion 
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Figure 27.  Figures depicting V6 activity in Radial Motion > Scrambled Motion contrast.  Blue outline represents 
region with highest activity within larger mask used (Table 4).  This is because custom made masks were not made for 
regions other than PIVC and CSv because no other regions were sufficiently responsive to vection displays.   



 

 76 
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Figure 28.  Figures depicting V6 activity in Scrambled Motion > Radial Motion contrast.  Blue outline represents 
region with highest activity within larger mask used (Table 4).  This is because custom made masks were not made for 
regions other than PIVC and CSv because no other regions were sufficiently responsive to vection displays.   

 

Pc Activity 

Precuneus motion area showed preferential activation in the Radial Oscillating > 

Scrambled Smooth comparison, but did not respond differentially for any other contrast, 

with 7 of 8 participants showing activity in this contrast. Consistent with literature 

presented on Pc, this area is active during vection inducing displays, but not as robustly 

as CSv.  Results of this contrast are illustrated in figures 29 and 30 below where figure 29 

illustrates findings of the radial oscillating > scrambled smooth contrast for Pc, and figure 

30 the scrambled smooth > radial oscillating contrast.  Results from figure 30 support 

reports of possible spatial updating involvement of Pc in vection.  Specifically, Pc is 

involved in visual-spatial updating during vection – a cognitive aspect of self-motion 

processing.   Just as in the V6 data presented in Figures 27 and 28, custom-made masks 

were not made for Pc.  The blue outline represents region with highest activity within 

larger mask used (Table 4). 
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Radial Oscillating > Scrambled Smooth 
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Figure 29.  Precuneus activity during Radial Oscillating > Scrambled Smooth contrast.  Results support reports of 
possible spatial updating involvement of Pc in vection.  Blue outline represents region with highest activity within 
larger mask used (Table 4) 
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Figure 30.  Precuneus activity during Scrambled Smooth > Radial Oscillating contrast.  
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MT+ 

Area MT+ showed strong preference for scrambled displays in two comparisons; 

Scrambled Smooth > Radial Smooth and Scrambled Oscillating > Radial Oscillating 

contrasts.  7 of 8 participants showed activity in both these contrasts.  Excluding these 

two comparisons, MT+ showed no preferential activity for any of our planned contrasts.  

This result can be expected as it was stated earlier that MT+ is responsive to many types 

of coherent motion (Morrone et al., 2000).  Though the scrambled conditions are 

segmented versions of the radial conditions, there is still local motion coherence in each 

of the 6 quadrants, but that motion coherence in the scrambled conditions is much lower 

than in the radial conditions.  
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3.4 - BOLD time series data for fMRI Vection Experiment 

In the GLM conducted in FEAT for extracting Z-statistic data in section 3.3 it was 

revealed that there are significant differences between many contrasts of interest.  

However, a significant Z-score is insufficient in determining if there is vestibular 

inhibition or facilitation during vection trials.  Though the sign of the contrast does 

indicate that one condition of the contrast has significantly increased activity relative to 

the other value, Z-scores do not indicate if there is inhibition or facilitation of BOLD 

signal occurring in a brain area.  This is because a Z-score obtained from a contrast in 

FEAT is a relative difference between two conditions.  Therefore, there are two possible 

outcomes that can result in a significant Z-score.   First, BOLD decrease in one condition 

compared to the other even though both may have increase or decrease relative to 

baseline.  Second, a significant Z-score can be observed if there is increase in BOLD 

signal associated with 1 condition, and a decrease in BOLD signal in another condition of 

a contrast relative to baseline.  To determine which one of these possibilities occurs in 

PIVC and CSv during experimental trials, it is necessary to look at mean % BOLD  

signal change time series plots for each condition and observe if % BOLD increased or 

decreased over the course of a trial.  Negative % BOLD signal change signifies decreased 

blood flow to a region (inhibition).  Alternatively, a positive signal % change represents 

increased blood flow to a region (facilitation).  In this section I present BOLD time series 

plots for each condition in functionally activated areas PIVC and CSv.  Regions that were 

not strongly responsive to contrasts of interest such as MT, V6 and Pc had a 0 % signal 

change for each condition and in most contrasts, and for this reason are not included in 

this section.   
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Preprocessing of Time Series BOLD data 

To analyze BOLD time series data for each cortical area, another set of masks 

were made.  Masks were created for each individual based on coordinates of activation in 

the z-stat report and the number of voxels activated in all contrasts where the subject 

showed significant activity in the region.  This allowed me to determine an exact location 

of the brain region of interest within the larger mask used in the previous z-score 

analysis.  This new mask ensured that the functionally localized brain region of interest 

was covered in each subject.   

 Masks were drawn by hand in FSL View on top of a standard 1-mm MNI brain 

template.  Lower-level, whole-brain FEAT analyses were loaded into FEAT Query, a tool 

that allows researchers to extract specific elements of the FEAT analysis, where each 

person’s newly created ROI mask was re-run with their FEAT data.  FEAT Query 

outputs BOLD signal values for each TR of a subject’s lower-level run.  These were 

converted to % BOLD signal change.  % BOLD signal change data for each repeat of a 

condition was averaged by TR (10TR=20 sec, or the length of a trial).  I then generated 

line graphs showing average % BOLD signal change by TR for the 4 conditions of each 

subject (Figures 31 and 32).  % BOLD signal change was relative to the mean % signal 

change of the entire MRI run.   

 

BOLD % Signal Change in PIVC 
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Figure 31.  Mean BOLD signal % change for 5 subjects that showed significant z-scores in the Radial Oscillating > 
Radial Smooth contrast.   % BOLD data recorded during trials within each of the 5 subjects’ PIVC mask.   The yellow 
box indicates the TRs occurring during the motion period of the video clips. 

 

The line graph in Figure 31 shows average % BOLD signal change within each 

participant’s PIVC mask over 10 TRs in all four conditions averaged across the five 

participants.  Figure 31 shows an initial decrease in BOLD activity for all conditions.  

However, there is an increase or plateau in BOLD activity following the decrease.   We 

can conclude that vestibular inhibition occurs in PIVC during all trials, including 

scrambled motion conditions.  Interestingly, this inhibition is stronger (lower % signal 

change value) for radial smooth and radial oscillating than for scrambled smooth and 

scrambled oscillating conditions in Figure 31.  

BOLD % Signal Change in CSv 

CSv showed strong responses to vection displays in all contrasts of interest, as 

discussed in section 3.3.  Figure 32 displays a line graph of average BOLD % signal 

change for each condition across participants at each TR.  Similar to area PIVC, there 
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appears to be an initial decrease in BOLD signal.  Unlike in PIVC, BOLD signal does not 

show a subsequent increase.  This may be associated with higher sensitivity to vection in 

CSV than in PIVC, thus greater inhibition.    

 

Figure 32.  Mean BOLD % signal change within the CSv mask of 7 participants during trials.  

 

We can confirm that there is a consistent decrease in % BOLD signal in these two 

regions during experimental trials and therefore our findings support Brandt’s (1998) 

visual-vestibular reciprocal inhibition hypothesis.  In PIVC, there was a stronger 

inhibition for radial smooth and radial oscillating conditions compared than in scrambled 

smooth and scrambled oscillating conditions (Figure 31).  In CSv, % BOLD signal 

change decrease occurs in all conditions. This may highlight increased sensitivity of CSv 

to motion displays than of PIVC to motion displays. 

  



 

 89 
	
  

4. Discussion 

4.1 Psychophysical Measurement of Vection 

Confirmation of participant experience of vection and its strength is an important 

measure to compare with changes in BOLD activity during vection.  Magnitude 

estimation (Stevens, 1959) allows me to compare vection ratings across participants and 

different types of optic flow displays.  Additionally, measures such as vection onset and 

duration are vital in understanding vection.  

A main issue with the brain-imaging literature on self-motion is that vection is 

often not measured or is imprecisely measured.  For instance, some mentioned studies do 

not measure vection, but assume the illusion is perceived, simply because participants 

were exposed to/attended to optic flow displays.  Many experiments investigated self-

motion without measuring vection (Cardin and Smith, 2010; Cardin and Smith, 2011; 

Cardin et al., 2012), but did not confirm it in the participants.  Nishiike et al., (2002) 

instructed participants to raise their finger when the visual stimulus changed, not when 

vection was experienced, in their MEG vection experiment.  Therefore, participant 

response was not based on perceived vection but on distinguishing between circles and 

squares.  Also, finger motion undoubtedly activated cortical motor pathways related to 

motor control of the finger that may overlap with nearby cortical pathways associated 

with processing vection.  Lastly, Nishiike and colleagues’ method did not quantify 

vection.     

On the other hand, Brandt and colleagues (1998) measured vection intensity using a 

scale ranging from 1 to 5.  This approach gives an approximation of the extent of vection 

experienced, but this method poses some problems.  First, the 1-5 rating scale method 
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assumes participants experience vection.  Second, there is no modulus to which 

participants can compare the strength of one sensation of vection to another.  This can 

create variability in responses because each participant will generate their own baseline to 

which they compare their sensation of vection.  Third, because the 1-5 range is so limited, 

values assigned by participants may not be fully representative of their experience of 

vection and can pose problems for statistical analyses.  Similarly, to Brandt’s group, 

Pitzalis and colleagues (2013) measured vection sensation after each run in their fMRI 

experiment.  However, here like the Brandt et al. (1998), there is no relative measure of 

vection, making the participant rating values ambiguous.   
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4.2 Brain Regions of Interest During Vection 

Results in section 3.3 revealed that CSv responded most strongly to vection-

eliciting stimuli, followed by PIVC.  Some regions did not show any vection preference 

(MT+) and some showed preference for scrambled displays (VIP, V6).  In this section I 

discuss my results in relation to the literature on these regions.   

 

CSv 

My results suggest that CSv plays a role in processing self-motion and vection.  

Evidence for CSv involvement in processing vection stems from our finding of 

significant CSv BOLD activity in the Radial Motion > Scrambled Motion contrast.  This 

is similar to Wall and Smith’s (2008) finding of CSv activity during coherent optic flow 

stimuli compared with 9 simultaneously presented miniature patches of the same display. 

Wall and Smith’s 9-patch display was a scaled version of the full-field display whereas 

ours was a scrambled version of our full-field display.  This finding directly signifies CSv 

preference for large-field stimulation compared with local motion stimuli.  

Furthermore, CSv had higher activity in the Radial Oscillating > Radial Smooth 

contrast.  This is a key finding because both are wide-field vection stimuli, but the 

oscillating display elicits higher vection ratings.  The significant change in BOLD 

activity in the Radial Oscillating > Radial Smooth contrast suggests CSv preference 

during more compelling vection displays.   

From this contrast alone it is difficult to determine if significant CSv activity results 

in stronger vection, or if it is due to changes in heading direction inherent in an 

oscillating display.  What has led us to believe that CSv explicitly processes vection are 
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results from the Radial Oscillating > Scrambled Oscillating contrast. Because the 

scrambled motion preserves characteristics of the display including oscillation, and 

induces little to no vection, we can conclude that CSv activity is correlated with a 

compelling vection experience. 

Recently, many authors (Fischer, et al., 2012; Billington, et al., 2013; Furlan et al., 

2013) have reported strong links between CSv and VIP for processing self-motion in 

humans.  CSv has an affinity for processing general components of vection such as wide-

field optic flow, heading, or direction change and anticipated locomotion (Zhang and 

Bretten, 2011). According to Furlan and colleagues (2013), CSv activity increases during 

changes in heading direction.  Reports by Smith (2014) suggest that CSv is involved in 

motor planning.  Other reports suggest CSv is activated during vestibular processing 

arising from stimulation via GVS (Smith et al., 2012).   

   

PIVC 

We have functionally localized PIVC with the vection stimuli of Experiment 1 in  

the Radial Oscillating > Radial Smooth contrast and have shown that PIVC activity is 

reduced during vection (Figure 31).  Based on our findings, we conclude that 1) PIVC is 

involved in vection processing but to a much lesser degree than reported previously.  It 

was expected that there would be more significant BOLD activity for all comparisons 

with a vection > non-vection contrast than was actually found.  2) PIVC can be visually 

localized.  This is assumed based on the significant PIVC activity in the Radial 

Oscillating > Radial Smooth contrast, indicating that PIVC activity demonstrates 

significant change in BOLD activity when correlated with a visual, self-motion inducing 
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stimulus.  Most importantly, 3) PIVC shows a decrease in BOLD activity during vection.  

In section 3.4, Figure 31 shows a marked decrease in % BOLD signal change for radial 

conditions.  This decrease in % BOLD signal change is not as strong during the 

scrambled, non-vection conditions which supports Brandt and colleagues (1998) visual-

vestibular reciprocal inhibition hypothesis which predicts decreased blood flow to 

vestibular cortical regions during greater visual-vestibular conflict.       

PIVC was at one time regarded as the principal cortical vestibular region for 

processing vection (Cardin and Smith, 2010).  According to Cardin and Smith, PIVC 

bridges visual and vestibular cortical responses.  For this reason it has been focal in the 

vection debate.  PIVC has been functionally localized using vestibular stimuli in caloric 

irrigation (Suzuki et al., 2001; Fasold et al., 2002) as well as visually with egomotion 

compatible stimuli (Cardin and Smith, 2010).  Ideally, PIVC should be localized using 

caloric irrigation as this is a more direct technique to stimulate vestibular cortical regions 

than the controversial and indirect visual methods.   

Two studies have functionally localized PIVC using caloric irrigation in fMRI, 

and both report discrepant locations in terms of anatomical coordinate values (Suzuki et 

al., 2001; Fasold et al., 2002).  Some studies have successfully identified insular regions 

corresponding to PIVC with visual stimuli similar to those of Cardin and Smith (2010; 

Beer et al., 2002; Kovacs et al., 2008; Indovina et al., 2014). 

 

VIP 

VIP did not show preference for vection in our contrasts and was more responsive 

to scrambled stimuli than to radial stimuli.  This is surprising given that CSv - an area 
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linked to VIP activity – did show vection preference in our findings (Fischer, et al., 2012; 

Billington, et al., 2013; Furlan et al., 2013).  However, it is important to note that these 

VIP-CSv ties are reported in heading estimation experiments as opposed to vection 

experiments specifically.   It may be the case that VIP responds to stimulus features that 

elicit vection such as coherent flow and wide-field stimulation but not to the subjective 

experience of vection.  Another likely possibility is that attempting to localize VIP, 

neighbouring regions LIP and MIP were functionally localized instead.  This would be 

consistent with our finding of a supposed VIP preference for scrambled motion, as MIP 

and LIP are object-motion sensitive regions. 

 

V6 

We successfully localized area V6 in 6 of 7 participants in the localizer 

experiment (Experiment 2).  The display involved varying spiral motion optic flow 

periods, creating wide-field motion - ideal for V6 activity (Pitzalis et al., 2013).  This 

localizer was contrasted against periods of incoherent dot motion.  In our vection 

experiment (Experiment 1), V6 showed activation only in the Radial Motion > Scrambled 

Motion contrast.  Though this contrast has differences in physical characteristics of the 

displays it produces arguably the most robust vection contrasts in our experiment.  There 

was no indication of reliable V6 preference for other radial > scrambled contrasts.  

Moreover, in our experiment V6 activity was quite unusual as there was more preference 

for scrambled conditions compared with radial motion conditions.  This is unexpected 

because V6 reportedly responds to wide-field stimulation (Pitzalis, et al., 2013). Despite 

this unexpected finding, it is important to note that the majority of research on V6 
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involvement in vection does not explicitly measure vection with the exception of a recent 

Pitzalis and colleagues study (2013).  It is also possible that V6 was mistaken for 

neighbouring V6a which is responsive to object motion and not self-motion (Pitzalis, 

2013).    

 

Pc 

 Pc is known for involvement in cognitive aspects of self-motion processing such 

as visual-spatial updating during self-motion.  Pc showed activity for the Radial 

Oscillating > Scrambled Smooth contrast only.  No other contrast supported Pc as a 

vection-related region.  This is consistent with other findings on slight Pc involvement for 

vection, but not as a principal region for vection processing (Previc et al., 2000; Pitzalis 

et al., 2013).  Therefore, it is plausible that Pc is involved in higher-level cognitive 

aspects of self-motion as opposed to self-motion perception (Wolbers et al., 2007; 

Wolbers et al., 2008).  

 

MT+/MST+ 

 In the localizer experiment, the MT+ complex was activated for all participants.  

We used Pitzalis and colleagues (2010) radial rings display to localize this area.  

Coherent motion patterns were contrasted against static frames.  MST+ was separately 

localized but was only identified within four of seven participants.  The literature 

suggests that MT+ is responsible for distinguishing between different types of motion 

patterns (Morrone et al., 2000).  Thus it was robustly localized when coherent motion 

patterns were contrasted against static displays.  However, our conditions in Experiment 
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1 were all defined by coherent motion patterns, therefore, MT activity was non-specific 

as it responded strongly to all types of motion patterns (radial or scrambled).  
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4.3 - Future Work 

 My thesis has highlighted the central role of CSv on vection.  It is important that a 

robust functional localizer for CSv is developed to facilitate further studies.  Smith et al., 

(2012) discuss a visual localizer of CSv. This localizer was very similar to our vection 

stimulus in that it contained a full-field large central optic flow display similar to our 

radial displays.  This display was compared to a display with 9 identical smaller patches 

of the same full-field display.  Conceptually this is similar to our scrambled displays as it 

is a local version of a large full-field display.  However, our scrambled display divided 

the larger display whereas Smith and colleagues used scaled copies of their full-field 

displays.  Thus, it is not clear if CSv responds to their localizer because of vection, or 

because of the wide-field display.   

Further research should be conducted on localizing CSv using caloric irrigation as 

this will determine if CSv has stronger connections to cortical visual pathways, vestibular 

pathways or if it is a region that evenly processes or regulates both types of signals.  If 

CSv does not respond to caloric stimulation, it can be concluded that CSv is a visually 

driven self-motion processing region.  This finding, coupled with our reports of strong 

CSv involvement in vection processing would strongly suggest CSv’s highly specialized 

role in visual self-motion processing.  However, if there is a corresponding significant 

BOLD response in CSv to caloric stimulation, than this will suggest CSv is a polysensory 

region for self-motion processing as it responds to both visual stimuli such as our vection 

displays and vestibular stimuli.  Smith et al. (2012) conducted a GVS experiment and 

reported corresponding coordinates for visual localization of CSv and vestibular 

localization of CSv.  Though GVS is an imprecise and noisy vestibular stimulation 
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technique, this result suggests potential CSv involvement in vestibular processing and 

therefore its role as a polysensory region processing self-motion and vection.  However, 

the specificity of caloric irrigation would appropriately confirm this.     

To better understand anatomical location of CSv and connectivity with other 

visual, vestibular and motor processing regions, diffusion tensor analysis in MRI could be 

performed.  Because we have identified general coordinates of CSv, diffusion tensor 

analysis can help determine this region’s neural connectivity to VIP, PIVC, visual 

cortical regions and motor regions. Moreover, in understanding CSv location and 

function, new imaging techniques should be employed.  BOLD imaging in MRI allows a 

good balance of structural and temporal resolution for functional localization.  However, 

in improving temporal resolution for CSv response to a stimulus, EEG should be used for 

vection displays.  This enhances temporal resolution by avoiding the inherent 

sluggishness of the BOLD response during fMRI.   

In order to establish causal factors linking CSv to vection transcranial magnetic 

stimulation (TMS) can be applied to null signals to CSv when viewing and rating vection 

stimuli.  In doing so, we can more precisely determine the role of CSv in vection.  

Specifically, if vection ratings decreased significantly during TMS disabling CSv 

activity, this would give us direct evidence of CSv involvement for perceiving vection.  

Moreover, TMS would give causal relations on CSv and vection as opposed to fMRI 

correlations.  One caveat is that EEG and TMS may not be effective techniques for 

functionally localizing the deep centers in the cingulate sulcus, however, case studies on 

brain legions to the areas may give insight regarding the causal role of CSv on vection.   

   



 

 99 
	
  

4.4 – Conclusion 

My goals in this thesis were to first identify brain regions and their functions 

involved in vection processing, second to determine if there is inhibition or facilitation in 

these regions during vection, and third to investigate if there is a neural correlate to the 

behaviourally observed jitter effect.  I identified CSv, and to a lesser extent PIVC as 

regions responsive to vection.  Second, CSv showed a strong inhibition during all 

displays and PIVC was inhibited from BOLD activity only for vection conditions.  PIVC 

inhibition occurred to a lesser extent than reported in the neuroimaging vection literature.  

These two findings allowed me to confidently conclude that vestibular inhibition occurs 

in vection sensitive regions during the illusion.  Third, I was able to identify a neural 

correlate to the behavioral findings of a jitter effect.  I found that the higher vection 

ratings during radial oscillating displays compared to radial smooth displays were 

accompanied by a significant z-score in the radial oscillating > radial smooth contrast in 

both CSv and PIVC.  In all, the finding of inhibition during vection is an important result 

as it sheds light on our understanding of visual-vestibular integration and lends support 

for a visual dominance effect during sensory conflict with vestibular regions.    
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