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ABSTRACT 
A critical step in object-oriented geospatial analysis (OBIA) is image 

segmentation. A single set of parameters is often not effective segmenting an 

image. To solve this problem, an adaptive approach to image segmentation 

has been proposed, which utilizes segments determined from a lower-spatial 

resolution image as the context to analyse a corresponding image at a higher-

spatial resolution to create multiple sets of segmentation parameters to address 

the needs of different parts of the image. However, due to inherent differences 

in perceptions of a scene at different spatial resolutions and co-registration, 

segment boundaries from the low spatial resolution image need to be adjusted 

before they are applied to the high-spatial resolution image. This is a non-

trivial task due to considerations such as noise, image complexity, and 

determining appropriate boundaries. Accordingly, an innovative method was 

developed. Adjustments were executed for each boundary pixel based on the 

minimization of an energy function characterizing local homogeneity. 

Adjustments are based on a structure which rewarded movement towards 

edges, and superior changes towards homogeneity. The adjusted segments act 

as the basis for the determination of segmentation parameters through a 

variogram based method.  The developed method was tested on a set of 

Quickbird, and ASTER images, from a study area in Ontario, Canada. Results 

showed that the adjusted segmentation boundaries obtained from the lower 

resolution imagery were aligned well with the features in the Quickbird 

imagery, and segmentation maps determined using the adaptive segmentation 

method were superior to those created by a non-adaptive approach. This work 

will allow users to more easily and quickly segment large high resolution 

images.  
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INTRODUCTION 
 

 

When analysing high spatial resolution (less than 5m) remotely sensed imagery, an 

important consideration is that pixel-based analysis may not be adequate [1,2] due 

to the fact that single pixels often represent only a small part of an object of interest 

(e.g. buildings, and tree crowns).  An alternative which has been shown to 

outperform the pixel-based approach, to image analysis, is the object-oriented 

approach [1-3]. A key step in object-oriented image analysis is to segment an image 

into relatively homogeneous regions; these constitute what are often called image 

objects. The spectral, spatial, and textural features of these objects are then used for 

image analysis (such as classification) [1-3].  The accuracy and quality of object-

oriented analysis rely heavily on the proper segmentation of the image. This has 
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driven the development of various segmentation techniques for remote sensing 

applications [1-8].  

 

Existing segmentation methods can be generally grouped into two categories: edge-

based and region-based [9].  With edge-based approaches, edges are usually 

generated first by an edge-detection algorithm and then using post-processing, 

adjusted to continuous boundaries that outline the resulting segments. These types 

of methods are sensitive to noise, and tend to over-segment an image. Region-based 

methods are built on using the similarity among pixels to form homogeneous regions 

in an image. Region growing is the commonly used technique in region-based 

methods. It starts with individual pixels as initial segments and subsequent merging 

of neighboring segments turns them into larger ones according to a pre-determined 

homogeneity criterion. In this way, closed regions are guaranteed to be created. In 

addition, with region growing methods, multiple features can be easily incorporated 

and the segments generated from edge-based methods can be used as initial 

segments as well.  As a result, among the existing image segmentation methods, 

region-growing techniques are being widely used for remote sensing applications 

[2,9,10].  
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One of the issues with region growing methods is that they require a set of user-

supplied input parameters to determine the segmentation process. These parameters 

need to be appropriately determined in order to generate image objects that best 

represent the features of interest. This is often done using trial and error, which is an 

inadequate, and imprecise. Also, one set of parameters may not be sufficient for the 

entire area covered by a large remotely sensed image. It is likely that the image 

contains objects with different sizes and characteristics. A single set of parameters 

often leads to under-segmentation of some parts of the image and over-segmentation 

of others.  A demonstration of this argument is provided in Figure 1.1. For the 

segments in Figure 1.1 a region growing method using on one set of input parameters 

was applied to a Quickbird image (with a spatial resolution of 2.4 m by 2.4 m) over 

a forest scene. It is clear that some forest stands were over-segmented, while others 

were under-segmented. 
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Figure 1.1. High resolution Quickbird image of a landscape segmented with a single 

set of segmentation parameters. Good, over and under segmentation is highlighted 

with green arrows. 

 

Under Segmentation Good Segmentation 

Over Segmentation 
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The objective of this this thesis is to address the abovemention issues through the 

development of a region growing segmentation method for high-spatial resolution 

imagery [8].  The fundamental idea is to allow the segmentation parameters to vary 

from region to region across the whole image in an automatic fashion, based on the 

information acquired from a low-spatial resolution representation of the same area. 

The low-spatial resolution representation can be generated from the original high-

spatial resolution imagery or from observations by different sensors. By analyzing a 

low resolution representation of a study area, coarser features of that area can be 

more easily identified, which can then be used to determine parameters for use in 

further analysis of those same areas on the corresponding high resolution imagery.  

In this way, over or under segmentation of the high resolution image can be avoided 

or minimized, and some level of consistency can be achieved between segmentation 

of different images. Furthermore, other imagery products, which may not be 

available in a high resolution form, such as surface temperature, could in principle 

be incorporated for further analysis.  

 

One major challenge in implementing this idea is on how to adjust the segment 

boundaries obtained from low-spatial imagery to align well with features in 

corresponding high-spatial resolution imagery. This misalignment tends to be more 
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severe when data from different sensors are used.  This drove the development of a 

methodology capable of refining segment boundaries, which is one of the key 

contributions of this master research, which has resulted in a publication [11].  

 

A good physical analogy to the issue of boundary adjustment is the phenomenon of 

sand particles settling on a topographical feature. Suppose that a handful of sand is 

dropped on the top of randomly structured terrain. Under the influence of gravity, 

these particles would move to areas where the local potential energy is minimal. 

Based on the same principle, active contouring models were developed to outline 

objects in computational vision research [6,12,13,14,15]. Active contours, also 

known as snakes, are energy-minimizing curves that evolve from their initial 

positions to fit image features, such as edges and lines, under the influence of image 

determined forces and external constrains. Active contour methods are classically 

defined as a curve which is attracted to image features such as edges, lines, or 

corners[15]. This attraction is quantified by an energy function, which has low 

values in places on the image which contain those desired features. The energy 

function also incorporates a term that depends on the shape of the curve and can be 

used to bias the curve to take on smooth shapes, and a term that depends on user 
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interaction, so that the curve can be interactively pulled toward a desired location 

[15].  

 

Different energy functions for boundary adjustment have also been reported in the 

literature. Some are based on image gradients (edge-based active contouring 

models), while others on statistics of the image objects and the background (region-

based active contouring models). Region-based active contouring models do not 

depend on image gradients and thus are less susceptible to noise and work well for 

objects with weak boundaries. Active contour methods for boundary adjustment or 

boundary detection, have been used successfully in the field of medical imaging to 

detect contrasting regions, such as different tissue types [12,16,17,18], and in some 

remote sensing applications [10,14,19]. Some drawbacks of utilizing active contour 

methods include their susceptibility to noise [15,20,21], difficulty with complex 

images [12,15,21,22], and difficulty in implementing the method when multiple 

boundaries are present or when boundaries cross [15,22,23]. In addition, traditional 

active contour methods utilize a single set of operating parameters which can limit 

its ability to recognize multi-scale features in an image [19,20].  
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For our specific situation, we wish to adjust boundaries in a large, complex image, 

with multiple boundaries, while trying to maintain the local nature of those 

boundaries. To achieve this, we adopt the concept of energy-minimization to 

refining segment boundaries through a new energy function which considers image 

gradients and regional statistics and we also designed an implementation strategy 

for the adjustment. Our proposed energy function is similar to traditional active 

contour energy functions in that the boundary is attracted towards desired features, 

and is minimized at desired image locations but is unique in that it does not rely on 

the curvature of the boundary, incorporates homogeneity, and it is explicitly local. 

 

In summary, in order to improve the segmentation of high spatial resolution 

remotely sensed imagery, we developed an adaptive, semi-automatic, and multi-

scale approach. This method utilized a low-resolution representation of a study area 

to aid in the segmentation of a high resolution image of that same area. The method 

operated by first segmenting the low-resolution representation, using a region 

growing method, and then projecting it onto the high-resolution image. This 

projected segment map then had its boundaries adjusted using a method developed 

for this thesis. Once adjusted, these projected, adjusted, segments were then 
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analysed with a variogram based method to determine a set a parameters to further 

segment these areas using a region growing method.   

 

This thesis is broken into 7 chapters. Chapter 1 contains an introduction and 

overview of the developed segmentation method. Chapter 2 covers the fundamentals 

of region growing segmentation, the characterization of the spatial variation of a 

scene using variograms, and the assessments of segmentation results. Chapter 3 

presents the developed methods for adaptive segmentation and boundaries 

adjustment. In Chapter 4, the results will be presented and in Chapter 5 evaluations 

of those results will be described.  The closing remarks and future work will be 

presented in Chapter 6, with Chapter 7 is the  
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TECHNICAL BACKGROUND 
 

 

In this chapter the technical details and the general concepts behind several 

algorithms and methods used in this thesis will be presented. The first section will 

provide background on the different types and classifications of remote sensing 

products which are presently available. The second section will provide the 

background on the region growing algorithm which was used throughout this thesis. 

The next section will cover the methodology used to characterize the spatial 

variation of a remotely sensed image. The last section of this chapter will cover F-

measure which is a quantitative measure used to evaluate the quality of a 

segmentation result. 
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2.1. REMOTELY SENSED IMAGERY AND THEIR 

APPLICATIONS 
 

In this section a brief primer on the different types of remotely sensed imagery and 

their common uses will be presented. Some terminology which is specific to remote 

sensing needs to be defined. When referring to the source of the remotely sensed 

imagery, the source is often referred to by the trade name of the sensor which 

produced it. There is a distinct difference between the actual satellite which carries 

the sensor, and the sensor itself which collects the imagery. It is not uncommon for 

a satellite to carry more than one sensor, so the satellite itself can be the source of 

multiple imagery sources. Remotely sensed imagery is classified based on its 

resolution. It is generally agreed that remotely sensed imagery can be classified into 

5 categories. Very low resolution (<100m), low resolution (100m to 15m), medium 

resolution (~15m to 5m), high resolution (5m to 1m), and very high resolution (<1m) 

[24].  Common uses and features for each category of remotely sensed imagery are 

as follows. 
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Very low resolution (<100m) 

 

These products are generally used in climate change analysis and for assessing 

changes caused by large scale events such as natural disasters. This includes forest 

fires, floods, hurricanes etc. Some of these products have daily coverage of the entire 

planet, which is driven by the high orbit of the satellite and the large foot print of the 

imagery, in some cases almost 1000 km by 1000 km. These products also offer cloud 

free composites as a standard product which are created from the “stitching” of a 

time series of images, removing clouded areas and replacing them with cloud free 

acquisitions [24]. These products are almost always multi-spectral in nature and 

contain bands spanning the visual to the thermal IR areas of the spectrum. Very low 

resolution imagery includes the MODIS, AVHRR, and Meteosat series of satellite 

sensors [24].  
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Low Resolution (100m to 15m) 

 

A common use for these images are the detection of land cover changes due to 

anthropogenic actions such as the expansion of cities, industrial levels of vegetation 

harvesting and overall industrialization of a landscape. These products are almost 

always multi-spectral with bands spanning from the visual to the thermal IR areas 

of the spectrum. These products have global coverage but have an acquisition time 

which is generally measured in weeks rather than days. This is driven by the high 

orbit and relatively small footprint (at most several hundred km by several hundred 

km) of the imagery [24]. Imagery products which are considered to be low resolution 

include LANDSAT ETM+, LANDSAT MSS, and ASTER series of satellites [24].  

 

Medium Resolution (~15m to 5m) 

 

Medium resolution imagery is a common imagery resolution of several commercial 

imagery products such as RapidEye, IRS, and SPOT [23,25]. These imagery 

products tend to have less spectral bands than low and very low resolution imagery 
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products. The spectral bands for these products are mostly centered in the visual area 

of the spectrum and have limited IR capabilities. These products are useful in the 

identification and of complex and large buildings or industrial areas, and the extents 

of natural land features such as shorelines and cliffs. These products have global 

coverage and the acquisition time for these products are measured in weeks. The 

foot print for each acquired image are measured in 10’s of km, with the orbit of the 

source satellite is comparable to those of the low resolution imagery products. 

 

High Resolution (~5m to 1m) 

 

High resolution imagery products are primarily used in the identification of objects 

such as trees, smaller buildings, and such as vehicles. High resolution imagery are 

often used in applications such as forest and agricultural management. These images 

are almost always multi-spectral with their spectral range limited to visual bands and 

some areas of the IR spectrum. It is rare that these images have thermal properties. 

These images are of relatively small foot print of several km by several km. Added 

in with the low orbit of the satellites which carry these high resolution sensors, the 
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return fly over time is measured in many weeks. High resolution imagery sources 

include Quickbird, Geoeye, and world view [7,24,25].  

 

Very High Resolution (<1m) 

 

Very high resolution imagery, from satellite based sources, is generally not available 

to the public and is the domain of recognisance satellites which are designed and 

fielded by the governments of a handful of nation states. The design and 

specifications of the sensors, which produce these images, are largely classified but 

it is generally agreed that the images produced by these satellites are optimized to 

the visual range of the spectrum with limited capabilities in the IR region [26]. These 

images trade spectral range for superior spatial detail. As an example these images 

are capable of identifying individual vehicles, and in some cases, the make of 

vehicle. It is rumored that that for some of the most advanced satellites, on a clear 

cold day, are capable of discerning details such as the logo markings or other 

identification marks on aircraft and vehicles. Figure 2.1 provides a visual 

representation of how different a scene can look at different levels of high resolution 

[25,26]. 
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Figure 2.1. The same scene represented under different high resolution observations, 

ranging from 0.10m, 0.25m, 0.50m, and 1.00m.  

 

0.10m Resolution 0.25m Resolution 

0.50m Resolution 1.00m Resolution 
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2.2. REGION GROWING IMAGE SEGMENTATION 
 

A region growing algorithm based on Baatz [27] was utilized throughout the 

segmentation method. In essence, a region growing algorithm determines if pixels 

or groups of pixels should be grouped together based on some pre-determined 

criteria, and then carries out those groupings if appropriate. This is an iterative 

process and it is terminated once merges between segments ceases.  Shown in Figure 

2.1 is an example of the merging processing of region growing segmentation. For 

clarification, we denote the base IO (image object) as the object which is used to 

determine the location of neighbors which could be merged into it; and the neighbor 

IO(s) as the IO that surround the base IO. In Figure 2.1, the base IO is represented 

by the light blue cells labeled ‘B’; and the neighbor IOs are the pixels in colors green, 

red, and dark blue pixels, labeled 1, 2, and 3.   

 

These neighbor IOs are to be examined in order to determine the best fitting one to 

merge with the base IO based on a defined measure and a corresponding threshold 

value which is used to determine the extents of the segmentation. With the best 

fitting neighbor IO, if a pre-determined merging threshold is met, this   neighbor IO 

is selected as a possible candidate to merge with the base IO, now called the merging 



18 
 

candidate. In Figure 2.2 this is represented by the red region labeled 2. The final 

check of merging suitability involves checking if the merging candidate is best 

suited to merge with the base IO. This is determined by establishing the suitability 

of merging of the IO to its neighbors, which includes the base IO. In Figure 2.2 the 

red region labeled with 2, has its neighbors identified and compared which are 

regions which are green, light blue, dark blue, yellow, and purple, numbered 1, B, 

3, 4, and 5. If it is determined that the base IO, is in fact, the most suitable IO to 

merge with the merging candidate, only then is the merging candidate merged to the 

base IO. This second check of the merging IO candidate to its neighbors is to ensure 

the best fitting is mutual. In Figure 2.2 (C) region B and 2 have been combined, 

indicated by their mutual light blue colour. 
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Figure 2.2. Example of a region growing merging operation. B represents the base 

pixels, pixels numbered 1 to 5 represents the neighbor pixels.  

 

5 1 B 3

5 1 B 3

5 2 2 3

5 4 4 4

5 1 B 3

5 1 B 3

5 2 2 3

5 4 4 4

5 1 B 3

5 1 B 3

5 2 2 3

5 4 4 4
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This process is repeated until all pixels have been scanned, and is iterated until 

merging has ceased.  

 

The core to any region growing segmentation is to determine the measure of fitting 

and the merging threshold.  In the following, commonly used measures to calculate 

the degree of fitting between two IOs will be described. Given a feature space of d-

dimension, the degree of fitting between two IOs can be calculated based on 

Euclidean distance defined in (2.1).  

 

ℎ = √∑(𝑓1𝑑 − 𝑓2𝑑)2

𝑑

 

 

 

(2.1) 

 

𝑓1𝑑 is the value of the feature space for the given image object 1 while 𝑓2𝑑 is the 

value of the feature space for image object 2, for feature space of d dimensions. This 

similarity measure is essentially the distance of the feature space between two image 

objects. This distance measure can be further standardized by integrating the 

standard deviation over all IO’s of the features in each dimension: 
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ℎ = √∑(
𝑓1𝑑 − 𝑓2𝑑
𝜎𝑓𝑑

)

2

𝑑

 

 

(2.2) 

                 

The above measures are good for comparisons where finding commonalities in 

spectral signature are of interest. A limitation of these measures are that they do not 

take into account the statistical heterogeneity of the region leads to the sizes or 

shapes of IOs. Since the goal of segmentation is to maximize inter-segment 

homogeneity and intra-segment heterogeneity, merging of IOs should be done such 

that the merge results in the minimum increase in heterogeneity. To reflect this, 

Baatz [23] proposed to calculate the degree of fitting through the difference in the 

before and after measures of heterogeneity (h). When executed Baatz utilized 

standard deviation for the homogeneity measure as did other authors who 

implemented Baatz’s measure [28,29,30].The degree of fitting is defined as  ℎ𝑑𝑖𝑓𝑓: 

 

ℎ𝑑𝑖𝑓𝑓 = ℎ𝑚 −
ℎ1 + ℎ2
2

 
(2.3) 
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ℎ𝑚 is the homogeneity measure of the merged image objects, while ℎ1 and ℎ2 are 

the homogeneity of the two individual image objects before merging. Homogeneity 

can be measured through any number of statistical definitions such as spectral 

means, variance or standard deviation. For this thesis variance was chosen because 

it is more physically representative of the system it is describing, in this case IOs 

and their homogeneity. From hereafter 𝜎2 will be used in place of h. Since variance 

is in square units it is more physically similar to IOs which by definition encompass 

areas. This definition is also called the Ward’s Criterion [31]. The concept considers 

the model error for a region. The dissimilarity associated with a pair of regions is 

defined as the additional total error that is introduced by merging the two regions. 

This can be expressed as: 

 

𝜎2𝑑𝑖𝑓𝑓 = (𝑛1 + 𝑛2)𝜎
2
𝑚
− (𝜎21𝑛1 + 𝜎

2
2𝑛2) (2.4) 

 

 

Where 𝑛1 and 𝑛2 are the number of pixels in each IO which are to be merged, 𝑛𝑚 is 

the number of pixels in the proposed merged IO, 𝜎2𝑚 is the variance of the proposed 
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merged IO, 𝜎21, and 𝜎22 are the variances of the IO to be merged, and 𝜎2𝑑𝑖𝑓𝑓 is the 

weighted, variance difference.  

 

(2.4) can be generalized for an arbitrary number of channels c, each having an 

individual weight (𝑤𝑐): 

 

𝜎2𝑑𝑖𝑓𝑓 =∑𝑤𝑐
𝑐

(𝑛1(𝜎
2
𝑚𝑐 − 𝜎

2
1𝑐) + 𝑛2(𝜎

2
𝑚𝑐 − 𝜎

2
2𝑐)) 

(2.5) 

 

         

  

The measure of degree of fitting defined by [27] is what is utilized by the commercial 

software suite Definiens, which is widely used in the analysis of remotely sensed 

imagery.   

 

Incorporating the shape of IOs can also be used in evaluating possible merges. The 

following two definitions of shape homogeneity are utilized by the Definiens 

software suit and are described by Baatz [27]. One measures the deviation from the 



24 
 

ideal compactness, and the other is the deviation from the shortest possible edge 

length given by the bounding box of a segment, otherwise known as smoothness. 

The homogeneity of compactness is defined as: 

 

ℎ𝑐𝑚𝑝 =
𝑙

√𝑛
 

 (2.6) 

 

      

 

l is the edge length, and n is the object size in pixels. Otherwise saying it is the ratio 

of the edge length to the length of a square with n pixels. The homogeneity measure 

of smoothness is given by: 

 

ℎ𝑠𝑚𝑡 =
𝑙

𝑏
 

(2.7) 

 

 

b is the shortest possible edge length determined by a bounding box of the segment, 

while l is the factual edge length of the IO. In a raster the edge length of the bounding 
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box is also the shortest possible edge length for an arbitrary segment, such that l>b 

holds for any image object. Incorporating these shape homogeneity measures can be 

done simply by their weighted addition to the homogeneity measure associated with 

that particular IO: 

 

𝜎2𝑑𝑖𝑓𝑓𝑠ℎ𝑝 =∑𝑤𝑐(1 − 𝑤𝑠ℎ𝑝)

𝑐

(𝑛1(𝜎
2
𝑚𝑐 − 𝜎

2
1𝑐)

+ 𝑛2(𝜎
2
𝑚𝑐 − 𝜎

2
2𝑐))+𝑤𝑠ℎ𝑝{(1 − 𝑤𝑐𝑚𝑝)(𝜎

2
𝑠𝑚𝑡𝑚𝑐

− 𝜎2𝑠𝑚𝑡1𝑐) + 𝑤𝑐𝑚𝑝(𝜎
2
𝑐𝑚𝑝𝑚𝑐 − 𝜎

2
𝑐𝑚𝑝1𝑐)

+ (1 − 𝑤𝑐𝑚𝑝)(𝜎
2
𝑠𝑚𝑡𝑚𝑐 − 𝜎

2
𝑠𝑚𝑡2𝑐)

+ 𝑤𝑐𝑚𝑝(𝜎
2
𝑐𝑚𝑝𝑚𝑐 − 𝜎

2
𝑐𝑚𝑝2𝑐)} 

 

 

 

(2.8) 

 

 

Following the previous definitions, additional variables are defined: 𝑤𝑠ℎ𝑝 is the 

weighting of the shape factor versus spectral homogeneity, 𝑤𝑐𝑚𝑝 is the weighting of 

compactness versus smoothness, 𝜎2𝑠𝑚𝑡_𝑚𝑐 is the smoothness factor of the merged 

IO for channel c, 𝜎2𝑐𝑚𝑝_𝑚𝑐 is the compactness factor of the merged IO for channel 

c, 𝜎2𝑠𝑚𝑡_𝑥𝑐 is the smoothness factor for IO x for channel c, and 𝜎2𝑐𝑚𝑝_𝑥𝑐 is the 
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compactness factor for IO x for channel c. For this project the shape factor was 

incorporated into the region growing program, although it was not always used 

during testing.  

 

 

2.3. CHARACTERIZATION OF THE SPATIAL VARIATION OF 

A SCENE IN REMOTELY SENSED IMAGERY   
 

 

In order to automatically determine the merging threshold in region growing, 

according to the definition described by (2.5) it is important to characterize the 

spatial distribution of the dominant objects in the image scene. A number of studies 

have successfully used variograms to characterize the spatial structures of observed 

surface properties [32-35]. Using variograms studies have been able to successfully 

describe the nature and the causes of spatial variation within an image [35] such as 

radiometric contrast between the image objects, and the mean size of the image 

objects [35,36,37]. Furthermore other studies have shown that variograms can 

successfully quantify the spatial heterogeneity components (spatial variability and 

spatial structure) of the landscape [38].   The variogram, a function describing the 
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degree of spatial dependence of a stochastic process, is commonly used [33,34,35]. 

According to the similarity measure described by (2.5) variogram analysis, in 

principle, can be used to automatically determine parameters which can be used in 

the segmentation of an image. In order to calculate the variogram, each spectral band 

in a remote sensing image is treated as a 2D dataset with spatial variances 

determined by spectral intensities, and the numerical location difference between 

pixels acting as the spatial distance between data points. More specifically it can be 

write this out as: 

 

Γ(ℎ) =
1

2𝑛
∑[𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)]

2

𝑛

𝑖=1

 
(2.9) 

 

                  

Γ(ℎ) is the variogram value for a pixel distance (also known as a lag distance), h. 𝑛 

is the number of instances of h, 𝑧(𝑥) is the intensity value at a pixel with coordinate 

vector (x). Here Γ(ℎ) is an unbiased estimate of the population variance, and 

describes the dissimilarity between spatially distributed regionalized variables, 

otherwise known as the variance.  The larger the Γ(ℎ), implies that pixels at the 

corresponding lag distance are less similar. From a physical standpoint an 
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experimentally determined variogram is an empirical estimate of the variance of a 

Gaussian process.   

 

When applying equation (2.9) to an image, a profile similar to that of Figure 2.3 can 

be created.  Most variograms are defined through several parameters; namely the 

nugget effect, sill, and range. These parameters are depicted on the generic 

variogram shown in Figure 2.3 and are defined as follows: 

 Nugget effect (co) – represents micro-scale variation or measurement error. 

It is estimated from the empirical variogram as the value of Γ(ℎ) for h=0. 

 Sill (c) – the 𝑙𝑖𝑚ℎ→∞ Γ(ℎ) represents micro-scale variation or measurement 

error.  

 Range (a) – the distance (if any) at which data are no longer autocorrelated. 

For variogram models with an asymptotic sill, it is conventionally taken to 

be the distance when the variance first reaches 95% of the sill. 
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Patterns of variance against lag distance that do not increase monotonically to the 

sill can indicate the presence of cyclic spatial structures or multiscale patters within 

the image.  

 

Figure 2.3. Diagram of the variogram by lag value, illustrating the features of nugget, 

sill, range. 

 

In Figure 2.3 the variables a, c, and co are defined but in order for these variables to 

be characterized a mathematical relationship needs to be applied, such as the one 

defined by the spherical model expressed by Chen and Jiao [44].   
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{
 
 

 
 Γ(ℎ) = 𝑐𝑜                                

Γ(ℎ) = 𝑐𝑜 + 𝑐 (
3ℎ

2𝑎
−
ℎ3

2𝑎3
) 

Γ(ℎ) = 𝑐𝑜 + 𝑐                        

 

  

 

 (2.10) 

 

In order to fit the model described by (2.10) linear programming techniques were 

used to solve for the variables. (2.9) is re-written for the instance when 0<h≤a.  

 

Γ(ℎ) = 𝑐𝑜 + (
3𝑐

2𝑎
) ℎ + (−

𝑐

2𝑎3
) ℎ3      

 (2.11) 

 

 

The following substitutions are performed:   

Original 

Variable 

 

Γ(ℎ) 

 

3𝑐

2𝑎
 

 

𝑐

2𝑎3
 

𝑐𝑜 H 

 

 

ℎ3 

Replacement 

Variable 

 

B 

 

x1 

 

x2   a1   a2 

 

a3 

Table 1. Variable substitutions for solving the spherical equation using linear 

programming. 

 

when h=ε 

when 0<h≤a 

when h>a 
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Using the substitutions in Table 1 the following linear equation is produced: 

 

𝑏 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3  (2.12) 

 

 

 

n(ℎ) denotes observations of lag distance ℎ𝑖 and Γ(ℎ𝑖) denote the experimentally 

determined variogram value at lag ℎ𝑖, for i = 1, 2,…, n, measurements of the 

variogram. Using the linearized form expressed by (2.12) experimental values can 

be substituted to yield: 

 

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2

⋯
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + 𝑎𝑛3𝑥3 = 𝑏𝑛

 

   

 

(2.13) 

 

 

 

This can be written out in matrix form. 

 

when lag = h1 

when lag = h2 

… 

when lag = hn 
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𝐴𝑥 = 𝑏  (2.14) 

 

 

 

Where: 

𝐴 = [

𝑎11 𝑎11 𝑎11
𝑎21 𝑎21 𝑎21
⋯
𝑎𝑛1

…
𝑎𝑛1

…
𝑎𝑛1

] , 𝑥 = [

𝑥1
𝑥2
𝑥3
] , 𝑏 = [

𝑏1
𝑏2
⋯
𝑏𝑛

] 

 

                                            (2.15) 

 

 

 

By applying objective function solving techniques, which minimizes the function 

through linear programming, a solution is yielded, which can be applied to determine 

the values laid out in (2.11). It should be noted that since (2.15) is in matrix form it 

is position well for parallel solving techniques for more efficient processing.  
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Figure 2.4. Example of the spherical model fitted to a set of variogram data using a 

linear programing fitting method. Portion known as the sill illustrated.  

 

Figure 2.4 acts as an example of when the spherical variogram model is fitted to a 

set of data. The orange marker illustrates the point where a and C + Co intercept. 
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2.4. QUANTITATIVE EVALUATION OF SEGMENTATION – 

F-MEASURE 
 

In order to quantify the performance of a segmentation result, a popular technique 

called F-measure, described by Estrada and Jepson [43] was used. In order to 

determine the F-measure of a segmentation result, the precision and recall of that 

result needs to be calculated. Mathematically, precision and recall are defined in 

equations (2.16) and (2.17), respectively. Given a segmentation map generated 

through a segmentation algorithm (called from here on in the reference segment 

map) Sreference, and a target segmentation map, Starget, created through human 

interpretation, precision is defined as the proportion of boundary pixels in Sreference 

for which we can find a matching boundary pixel in Starget.  

 

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑀𝑎𝑡𝑐ℎ𝑒𝑑(𝑆𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑆𝑡𝑎𝑟𝑔𝑒𝑡)

𝑡𝑜𝑡𝑎𝑙(𝑆𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
 

                                     (2.16) 

 

Where total(Sreference) is the total number of boundary pixels in a given reference 

segment map, and Matched(Sreference, Starget) is the total number of matched pixels 

from the reference segment map to the target segment map. In a similar way, recall 
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is defined as the proportion of pixels in Starget for which we can find a suitable match 

in Sreference. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑀𝑎𝑡𝑐ℎ𝑒𝑑(𝑆𝑡𝑎𝑟𝑔𝑒𝑡,𝑆𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

𝑡𝑜𝑡𝑎𝑙(𝑆𝑡𝑎𝑟𝑔𝑒𝑡)
 

                                                (2.17) 

                    

In order to determine how pixels from either the target or source map match to 

one another, a matching algorithm also described by Estrada and Jepson [43] was 

used. For each boundary pixel P = (Xp,Yp) to be matched, a circular window of a 

radius, r, centered at (Xp,Yp), any boundary pixels, from the other map, within this 

window are potential matches for P. A boundary pixel Q within the search window 

is a suitable match for P if the following conditions are satisfied: 

(1) There are no other boundary pixels in Sreference between P and Q (no 

intervening contours constraint) 

(2) The reference pixel that is closets to Q and the source pixel P being matched 

to Q must be on the same side of the target boundary Q (same side constraint). 

Once precision and recall are calculated, F-measure, which is a harmonic average 

of the two, can be calculated by:   
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𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

                                             (2.18) 
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ADAPTIVE IMAGE SEGMENTATION 

METHODOLOGY 
 

 

This chapter will begin with an overview of the imagery used in this thesis, and then 

a description of the adaptive segmentation method. Next the boundary adjustment 

method will be described. The boundary adjustment method can be broken down 

into 3 main steps. 1) Segmentation of the low resolution imagery, 2) projection and 

adjustment of the low resolution determined segments onto the high resolution 

imagery and 3) segmentation of each individual projected and adjusted segments. 

The adjustment method is a core aspect of this thesis and reflects the vast majority 

of the work done over the course of this project.  
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3.1. IMAGES USED  
 

The developed methodologies were tested on a high-spatial resolution (2.4 m by 2.4 

m) Quickbird [7] image over a study area in Ontario, Canada, shown in Figure 3.1. 

Quickbird provides 4 bands of information, blue (450-520 nm), green (520-600nm), 

red (630-690 nm), near-IR (760-900 nm) at 2.4 m resolution and also a 0.6 m 

panchromatic band [7], which was not used in this thesis. Two types of low spatial 

resolution images were also used to provide contextual information to segment the 

Quickbird image: a resampled Quickbird image (resampled to 15 m by 15m) and an 

ASTER (Advanced Spaceborne Thermal Emission and Reflector Radiometer) [45] 

image at a spatial resolution of 15 m by 15 m. The resampled Quickbird image 

perseveres the band information from the original Quickbird imagery, while the 

ASTER imagery provides 3 bands: green (520-600 nm), red (630-690 nm), and NIR 

(760-860 nm). The resampled Quickbird image was created by resampling the high 

resolution Quickbird image using a gaussian filtering method with a 5 by 5 window 

in order to reduce the 2.4m resolution Quickbird image to approximately 15m by 

15m resolution of the ASTER image. The low spatial resolution imagery is shown 

in Figure 3.2. These images were chosen because of the varying landcover types 

present in the images and the fact that it covers a relatively large area of land (4.6km 

by 2.3 km). 
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Figure 3.1. False colour composite of the Quickbird image with the near-infrared, 

red, and green bands displayed as red, green, and blue, respectively. 

 

Quickbird 
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Figure 3.2. The false colour composite of the ASTER (right), low resolution 

resampled Quickbird (left),  images over the same site with the near-infrared, red, 

and green bands displayed as red, green, and blue, respectively. 

 

 

 

Resampled Quickbird ASTER 
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Table 2. Summary of key features of both the Quickbird and ASTER image 

acquisitions. 

 

 

3.2. THE ADAPTIVE IMAGE SEGMENTATION 

METHODOLOGY 
 

 

An overview of the operation of the adaptive segmentation method is illustrated in 

the following flowchart: 

 

Figure 3.3. Flowchart illustrating our overall segmentation strategy. 

Resolution

Acquisition 

date

Solar Zenith 

Angle

Solar Elevation 

Angle

Available 

Spectal Bands

Spectral Range 

(nm)

Quickbird 2.4m 17-Jul-07 63.520 157.450 4 450 to 890

ASTER 15m 31-Aug-10 63.758 147.468 14 520 to 11,650

 Segment low resolution image using 
region growing method  

  

 Project and adjust low resolution 
determined regions  

  

 
Determine  segmentation parameters for 

each adjusted region, and segment those 

regions 
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The first step in the proposed segmentation method involves segmenting the ASTER 

image using the region growing method. The segmentation parameters used in this 

step were determined, in part, through variogram based analysis and user skill. The 

segments  in the low resolution image correspond to areas on the higher resolution 

Quickbird image, which are then further characterized in order to determine 

individual threshold factors for further segmentation, if necessary. This initial 

ASTER determined segmented map was then dilated in size to match the extents of 

the Quickbird image. This ASTER determined, Quickbird projected segmentation 

map then had these initial regions undergo an adjustment determined by the 

algorithm outlined in the next section. Once adjustment was completed, a variogram 

based method analyzed the adjusted regions and determined scale values using both 

automatic and manual determinations, for use in segmentation, of those regions. 

These threshold values were then utilized in the segmentation of the areas within 

those boundary adjusted regions of the Quickbird image, using the identical region 

growing method utilized to segment the ASTER image. Once segmentation of the 

Quickbird image was complete, the segmentation process was considered 

completed.  
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During the development of the segmentation method it was observed that when 

segment boundaries determined from lower resolution imagery was compared to its 

positions on its corresponding high resolution imagery these segments would relate 

to forest-stands. If these segments were to be projected onto its corresponding high 

resolution imagery, the pixels which these segments encompass could be further 

analyzed to determine homogeneity parameters for more complete segmentation of 

the Quickbird image. This concept of using information gleaned from a lower 

resolution image to segment its corresponding high resolution counterpart forms the 

basis of the segmentation method presented in this thesis. To further explore this 

concept a low resolution image was segmented, and then projected onto its 

corresponding Quickbird image, shown in Figure 3.4 and Figure 3.5. As expected, 

the segments determined from the ASTER and resampled Quickbird image, called 

the projected segments hereafter, encompass larger features on the Quickbird image, 

and as an added effect did not match well to the features on the image. As part of 

the multi-scale image segmentation strategy, adjusting these boundaries to better 

match the features on the high resolution image would also be necessary for the 

developed methodology to be successful.  
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Figure 3.4. Segments determined from lower resolution resampled Quickbird 

imagery projected onto Quickbird imagery. The Quickbird image is displayed with 

the near-infrared, red, and green bands as red, green, and blue, respectively. Yellow 

lines represent segment boundaries. 
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Figure 3.5. Segments determined from ASTER imagery projected onto Quickbird 

imagery. The Quickbird image is displayed with the near-infrared, red, and green 

bands as red, green, and blue, respectively. Yellow lines represent segment 

boundaries. 



46 
 

3.3. SEGMENTATION OF LOW RESOLUTION IMAGERY AND 

DETERMINING SEGMENTATION PARAMETERS FROM 

VARIOGRAMS 
 

The first step in the adaptive segmentation process is the segmentation of the low 

resolution imagery. The parameters used in this process were determined in part 

through variogram analysis. In order to determine these factors from the variograms, 

created from the images, the variables defined in Table 1 were determined. From 

here a threshold value, defined by the Wards measure, to be used in the segmentation 

process was calculated.  In the context of region growing, threshold can be thought 

of as the maximum modeled error for a merged region as expressed by the Ward’s 

criterion [31]. In region growing, threshold corresponds to the fitting measure 

described by (2.5).  When determining the value of this threshold, as a nominal 

relationship we yield: 

 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑓(𝑉, 𝑑) (3.1) 

 

Where V is the variance determined from the sill of the variogram, and d is a length 

in pixels of the range of the sill. In essence, a threshold is a function which is a 
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product of both the homogeneity and the physical size of a projected IO.  According 

to variogram analysis, a threshold value computed from the sill, will correspond to 

IO’s which are likely to be present in the image. Threshold values computed from 

areas corresponding to positions beyond the sill are indicative of IO’s which are not 

as likely to be present in the image. If region growing image segmentation is 

conducted using a threshold determined through this method, IO’s should be 

produced to reflect these input values. Keeping these thoughts in mind and the 

variable definitions from the spherical model of the variogram, the threshold value 

based on variogram features is defined as: 

 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = (𝑐 + 𝑐𝑜) ∗ 𝑎 (3.2) 

 

 

3.3.1. EXAMPLES OF VARIOGRAM BASED ANALYSIS OF IMAGES  

 

 

In this section several selected examples of results from the variogram based 

analysis will be presented. Three types of images were examined. The first was an 
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ASTER image (15m resolution), the second a resampled Quickbird image so it 

mimics the resolution of the ASTER image, and the third  a Quickbird image (2.4m 

resolution).  As described ealier, the resampled Quickbird image was determined 

through a nearest-neighbor interpolation method, available as one of the standard 

functions with the Matlab software suite. Figure 3.6 to Figure 3.8 are the false colour 

composites of those images. 

 

 

Figure 3.6. False colour composite of the ASTER study area. ASTER band 1 set 

blue, band 2 set as green, and band 3 set as red.  
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Figure 3.7. False colour composite of resampled Quickbird Image. Quickbird band 

2 set to blue, band 3 set to green, band 4 red. 

 

 

Figure 3.8. False colour composite of Quickbird Image. Quickbird band 2 set to blue, 

band 3 set to green, band 4 red. 
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Variogram analysis was applied to images from Figure 3.6 to Figure 3.8. Pixels 

which had an NDVI value below 0.05, were excluded in the analysis.  

 

Figure 3.9. Plot illustrating all 4 measured variogram profiles and the corresponding 

modeled variogram determined from the ASTER image. Arrows indicating the 

location of the calculated sill for the modeled Green/Yellow band, and possible 

second sill location determined through visual inspection. 

 

  

In Figure 3.9 for the NIR and Red bands, a sill location which was at the very end 

of the lag domain was produced due to the structure of the data and the sensitivity 

of the linear solver. A more logical sill location was determined for the 
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Green/Yellow band from the variogram. Through visual inspection a second 

possible sill location was also identified. This implies multi-scale features in the 

image.  

 

Figure 3.10. Plot illustrating all 4 measured variogram profiles and the 

corresponding modeled variogram profiles from the resampled Quickbird imagery. 

Arrows indicating the location of the calculated sill location and possible second sill 

location determined through visual inspection. 

 

Unlike the ASTER imagery, the resampled Quickbird images produced logical sill 

values with the exception of the NIR band, which like the ASTER image, placed its 

sill value at the end of the lag domain. Also similar to the ASTER imagery a second 
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sill location was determined through visual inspection, again implying possible 

multi-scale features within the image. 

 

Figure 3.11. Plot illustrating all 4 measured variogram profiles and the 

corresponding modeled variogram profiles for the Quickbird imagery. Arrows 

indicating the location of the calculated sill location and possible second sill location 

located from visual inspection. 

 

Similar to the resampled Quickbird images, the Quickbird images produced logical 

sill values with the exception of the NIR band which placed its sill value at the end 

of the lag domain. Also, similarly a possible second sill location was determined 

through visual inspection, which implies multi-scale features. 
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When utilizing the modeled values from Figure 3.9 to Figure 3.11 corresponding 

threshold values can be determined. When examining Figure 3.9 the sill values when 

averaged together yielded a value of 204, and a corresponding average lag value of 

approximately 20. The resampled Quickbird image yielded an overall sill value of 

110 and a corresponding lag value of 12. When the definition of threshold described 

by (3.2) was used it yielded a possible threshold value of 4080 for the ASTER image. 

During initial testing a threshold value of 17500 was used to segment the ASTER 

and the resampled Quickbird image. This value was determined through user skill. 

This variogram determined threshold was approximately four times less than the 

actual value used to segment the ASTER image but it was useful in determine the 

‘neighborhood’ of values to explore in order to determine a threshold which was 

done in subsequent testing. Examining the variogram results for the Quickbird image 

produced a scale value of 18620. Also, during initial segmentation testing of the 

Quickbird image, the threshold value used to segment the ASTER and resampled 

Quickbird image was ‘scaled up’, based on the difference in resolution, to 

approximately 109375, and used as the initial threshold value to segment the 

Quickbird image. To better understand how these threshold values fit in with the 

characteristics of the images, possible second sill locations were examined for all 
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images. These locations were determined through visual inspection, and another set 

of threshold values were determined. These second set of threshold values were 

54316, 28776, and 358910, for the ASTER, resampled Quickbird and Quickbird 

image respectively. These results indicate that the discrepancy in threshold values 

between those determined from user skill and those strictly determined from 

variogram analysis can be explained by the multiple sill features present in the 

variograms based on image structures.  These results indicate that a more complete 

approach to determining threshold values from variograms is a semiautomatic 

approach where user input is also used in order to determine the best threshold values 

based on multiple structures which may be present with the variograms. When 

implementing the first step in the adaptive image segmentation method each ASTER 

image has its variogram determined and a corresponding threshold value calculated 

from the methodology outlined above. After visual inspection if the threshold value 

appeared to be appropriate the ASTER image is then segmented and prepared for 

the next step. 
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3.4. BOUNDARY ADJUSTMENT METHOD 
 

This section will provide the background on the boundary adjustment algorithm 

developed for this thesis. In order to adjust the boundaries of the ASTER determined, 

Quickbird projected segments, a concept based on applying energy-minimization to 

refining those segment boundaries was utilized. The proposed energy function uses 

the image gradient and local region statistics and an implementation strategy to carry 

out those adjustments. A physical analogy to how this method operates can be seen 

by considering the phenomenon of sand particles settling on a topographical feature. 

If a handful of sand is dropped on the top of randomly structured terrain. Under the 

influence of gravity, these particles would move to the most local area of minimum 

potential energy. This same principle of localized minimum potential energy is the 

inspiration behind the proposed boundary adjustment method. 
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3.4.1. THE ENERGY FUNCTION FOR BOUNDARY ADJUSTMENT  

 

In this thesis, the energy function given in Equation (3.3) was designed in such a 

way that the following two goals were achieved: the adjusted boundaries were to be 

aligned well with the image features and additionally, the within-segment and 

between-segment variability was to be minimized and maximized, respectively. 
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(3.3) 

 

In Equation (3.3) Ei,j is the energy at the pixel (i,j) to which the initial boundary could 

possibly move; N is the number of segments; Mk is the number of pixels in the 

segment k; B is the number of bands in the image; xk,l,m is the digital number 

(intensity) of the pixel l in segment k for band m; k,m is the mean value of the digital 

numbers for all pixels in segment l, for band m; yij is the value of pixel (i,j) in the 
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image gradient, for a particular adjustment scenario (described in further 3.4.4), and 

ymax is the maximum value in the image gradient for the entire image; and w is a 

weighting factor. In principle, w can take any positive value.  Based on our 

experiments, when the value of w was up to 3-4, regional statistics had a limited 

effect on the energy function. In this study, to balance the contribution of image 

features and regional statistics to the calculated energy, w was fixed to 1. The effect 

of w on the boundary adjustments will be further analysed in the discussion and 

conclusions section.  Initial segment boundaries were adjusted iteratively to new 

locations until a configuration was reached where E was at its local minimum within 

the pre-determined local neighbourhood.  

 

3.4.2. BOUNDARY ADJUSTMENT 

 

Given a high-spatial resolution image and initial segments obtained from a low-

spatial resolution representation of the same scene, our method adjusted the segment 

boundaries by minimizing the energy function in Equation (3.3 according to the 

following four phases.  In the first phase, called “Edge Mapping”, the gradient (edge) 

image was created. In the second phase, called “Adjustment Calculation”, for each 
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initial boundary location, all possible adjustments were determined and ranked 

according to the energy function in Equation (3.3) and the best adjustment scenario, 

in terms of the energy minimization, was recommended. In the third phase, called 

“Adjustment Ranking and Execution” the recommended adjustments in Phase 2 

were ranked and executed, locally, in order of energy reduction. In the fourth and 

final phase called “Termination”, oscillating adjustments and the termination 

criterion were checked. If the termination criterion was not met, Phases 2 to 4 were 

repeated. In the following sections, we will describe these phases.  

 

3.4.3. PHASE 1: EDGE MAPPING 

 

To generate a gradient component of the high spatial resolution image of interest, 

we implemented a canny edge detection algorithm [46] and applied it to the intensity 

component (grey-scale) of the test image, for each band m. With the implemented 

canny method, a Gaussian filter was first used to smooth the intensity image. The 

magnitude and the orientation of the gradient were then calculated using the Sobel 

templates. Finally, non-maxima suppression was used to remove any pixel that was 

not considered to be an edge. It should be noted, however, that the resulting image 



59 
 

was not binary; no threshold value was used.  The resulting gradient images 

consisted of a range of values depending on the strength of that particular edge pixel. 

These images were then combined and averaged together to create a final gradient 

map, which was used to calculate the energy based on Equation (3.3) in Phase 2.  

 

3.4.4. PHASE 2: ADJUSTMENT CALCULATION  

 

 

The objective of this phase was to determine the possible movements of each 

boundary pixel. To do this, a circular buffer was projected around each candidate 

pixel. The candidate pixel belonged to the border of a segment called the base 

segment. The buffer encompassing the candidate pixel may often contain portions 

of the base segment and other segments. As an example in Figure 3.12 there are 3 

different segments within the buffer around the candidate pixel B.  For the base 

segment, there were six scenarios where its boundary could move from the candidate 

pixel B. As shown in Figure 3.13, the base segment could spread to a candidate pixel 

from one of the neighbours which could belong to other segments (Cases 1, 2, 3 and 

4) or it could be shrunk by losing the candidate pixel to either of the other two 
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segments (Cases 5 and 6).  The energy function defined in Equation 1 was calculated 

for each of these six possible adjustment cases and the original setting (Figure 3.12) 

with pixel (i,j) being at N4, N3, N2, N1, B, and B, respectively. To illustrate how to 

calculate the edge terms in Equation (3.3), it is assumed that the illustration in Figure 

3.14 represents the locations of the edge pixels in this buffer. The blue squares 

represent edge pixels, and the thin red lines represent the boundaries of the buffer. 

These boundaries are identical to the boundaries of the buffer shown in Figure 3.12 

and Figure 3.13. For each of the possible adjustment scenarios in Figure 3.15, a 

corresponding edge searching scheme was performed to determine the maximum 

edge magnitude, for that particular adjustment.  As shown in Figure 3.15, for each 

potential adjustment scenario, pixels were checked along the direction of the 

adjustment (to the end of the buffer, illustrated by the gray pixels), and the maximum 

edge magnitude (yij) in that direction was selected for that particular adjustment. The 

adjustment scenario which provided the lowest energy was chosen as the 

recommended adjustment of the base segment at the candidate pixel.  If none of the 

possible adjustments resulted in a lower energy, when compared to its present 

configuration, no adjustment was recommended. It should be stressed that no actual 

adjustments were performed in this phase. This process was repeated for all 

boundary pixels. 



61 
 

 

Figure 3.12. The buffer around the candidate pixel B illustrated through coloured 

pixels. There are three segments with red as the base segment.  Note that the pixels 

in black are not part of the buffer. 

 

N2 N3 N4

N1 B
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Figure 3.13. Six different adjustment scenarios, with their identification number, in 

which the boundary of the base segment (red) could move via the candidate pixel B. 
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Figure 3.14. An example of the edge pixels (blue) in the buffer (red lines) around 

the candidate pixel B. 

N2 N3 N4

N1 B
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Figure 3.15. Searching schemes for the maximum edge magnitude for the six 

potential adjustment scenarios. The search direction is marked in gray. 
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3.4.5. PHASE 3:  ADJUSTMENT RANKING AND EXECUTION 

 

In this phase, the potential adjustments obtained in Phase 2 were ranked. This was 

carried out by first projecting a grid onto the high spatial resolution image overlaid 

with the initial segment boundaries. An illustration of the grids is shown in Figure 

3.16. The recommended adjustments were ranked within each grid based on their 

minimization of the energy function from their previous configurations. The 

adjustment resulting in the maximum energy reduction, within that grid, was 

executed first followed by other adjustments based on their ranking of energy 

reduction. By doing so, adjustments were only affected by local features, and were 

carried out in a manner which rewarded the significance of the adjustment. 

Performing adjustments utilizing a grid was also advantageous because it produced 

groupings which are ideal for parallel computations.  It is worth mentioning that 

oscillating adjustments were observed for some boundary pixels. An oscillating 

adjustment occurred when a boundary pixel was adjusted in one iteration, but was 

adjusted back to its previous positions on the next iteration; and this behaviour was 

repeated for subsequent iterations. This pixel oscillation was found to prevent the 

termination criteria from being met. To compensate for this, all adjustments were 
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tracked and if a pixel was identified to be oscillating, further adjustments were not 

allowed for that pixel. 

                   

Figure 3.16. An illustration of the projected grid (red lines) used to group and rank 

adjustments. Potential adjustments obtained in Phase 2 were ranked within each 

grid before adjustments are carried out. 

  

 

3.4.6. PHASE 4: TERMINATION   

 

The termination criterion was checked in this phase. The termination criterion was 

defined as the point when the number of adjustments, per-iteration, reached below a 

user specified level or zero. Also, termination of the algorithm was carried out if the 

maximum number of iterations, specified by the user, was reached.  If the 

termination criterion was not met, Phases 2 to 4 were performed again.   

U
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3.5. FINAL SEGMENTATION OF QUICKBIRD IMAGERY 
 

The variogram based threshold determining method described in 3.3 was applied to 

the areas of the images outlined within each adjusted segment from the Quickbird 

image. Once determined each individual, adjusted, segment was further segmented 

based on these threshold values. Based on these results if parts of the image appeared 

to be either undersegmented or oversegmented the threshold values, and their 

corresponding vaiograms were further examined and if needed further adjustments 

to the threshold values were done and the image was resegmented. If these results 

were satisfactory the image was considered to be successfully segmented. It should 

be noted that provisions are in place with this version of the methodology to mask 

out areas which are primarily water, to exclude them from segmentation. However, 

this feature was not activated for these test for simplicity of testing. In future 

iterations individual segments will also be examined, automatically, and determined 

if further segmentation is required. If further segmentation is not necessary these 

segments will not be further segmented. 
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RESULTS 
 

 

In this section results from individual methods and from the entire flow of the 

developed segmentation methodology will be presented. In the first section results 

illustrating outputs from the region growing program will be shown to illustrate its 

functionality. Next results from the boundary adjustment method will be presented. 

These results will show how the boundary adjustment method is affected by different 

image features and the varying levels of quality which can be achieved. Finally, this 

chapter will end with a section showing the entire segmentation process using the 

developed methodology. 
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4.1. SEGMENTATION RESULTS 
 

This section will present segmentation results to illustrate the functionality of the 

developed image segmentation program. The first set of results are produced from 

an ASTER image, which was segmented using two sets of parameters. These tests 

were used to verify that as threshold values changed the resulting segmentation map 

produced result which were consistent with expected structures and changes. 
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Figure 4.1. Top, ASTER image segmented with scale value of 4080. Bottom, 

ASTER image segmented with scale value of 15400.   
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The segmentation threshold values used to produce the results in Figure 4.1 were 

determined using variogram analysis. The value of 4080 was determined from the 

first sill location and 15400 from the second sill location from the variogram of the 

image. When interpreting Figure 4.1 it was noted that when the threshold value was 

increased the number of segments was reduced. Also, when comparing the 

segmented map of the lower threshold to the higher thresholded one, small segments 

present the lower threshold map should not be present on the higher threshold map, 

while preserving the structure of the larger segments which remain. The merging of 

the smaller segments should not affect the structure of the larger segments. In Figure 

4.1 these features were present.   

 

4.2. BOUNDARY ADJUSTMENT RESULTS 
 

 

In this section results produced using the boundary adjustment algorithm (described 

in chapter 3.4.2) are presented. Results of adjustments from both a U-shaped test 

object and from a remotely sensed imaged will be shown. The segment boundaries 

shown in Figure 4.3, Figure 4.5, and Figure 4.6 were adjusted. The U-shaped test 
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object acts as a basic test image in order to evaluate the performance of the method 

with a simple structured image.  A 5 by 5 Gaussian filter was used to smooth the 

image as part of an edge detection method (Phase 1) and the result is shown in Figure 

4.2 and Figure 4.3. A buffer with a radius of 10 pixels was used in Phase 2 to 

determine all of the possible adjustment scenarios for each of the initial boundary 

locations. A grid size of 20 by 20 pixels was used in Phase 3 to rank the potential 

adjustments and the termination criterion was set when adjustments reached below 

1 adjustments per iteration, with the maximum number of iterations limited to 120. 

The selection of these parameters will be discussed later.  The final adjusted-

segments are shown in Figure 4.4, Figure 4.5 and Figure 4.6.   Comparing with the 

original projected boundaries, the adjusted boundaries are smoother and align well 

with image features. In particular with the U-shaped object where the test boundary 

has been clearly adjusted to the features of the U-shaped object. To clearly show the 

difference between them, several close-up images are shown in Figure 4.7 and 

Figure 4.8.  For these close-up areas the initial projected segments can clearly be 

seen to not match the boundaries of the features in the image. However after 

adjustment, those same segments show improvements in both their location and 

neatness, when compared against those same image features. These adjusted 
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boundaries are very close to easily identified edges and encompass easily 

identifiable homogeneous areas.  

 

Figure 4.2. Intensity map of the U-Shaped Object image (left) and its corresponding 

gradient map (right). 
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Figure 4.3. Intensity map of the Quickbird image (left) and its corresponding 

gradient map (right). 
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Figure 4.4. The test boundaries for the U-Shaped object (top) and their 

corresponding adjusted segments (bottom). 

 

 

Test Boundary 

Before Adjustment 

After Adjustment 
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Figure 4.5. The boundaries of the initial segments determined from the resampled 

Quickbird image (left) and adjusted-segments projected onto the Quickbird image 

(right). 
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Figure 4.6. The boundaries of the initial segments determined from the ASTER 

image (left) and adjusted-segments projected onto the Quickbird image (right). 
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Figure 4.7. Projected segments determined from the resampled Quickbird image 

(left) and adjusted-segments (right), for areas 1 to 3. The quality of the adjusted 

result was classified using a three level (high, average, lower) classification scheme 

further explained in 5.1. 
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Figure 4.8. Projected segments determined from the ASTER image (left) and 

adjusted-segments (right), for areas 1 to 3. The quality of the adjusted result was 

classified using a three level (high, average, lower) classification scheme further 

explained in 5.1. 
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4.3. ADAPTIVE SEGMENTATION RESULTS 
 

In this section we will present results of the adaptive segmentation method. To test 

the developed method, two areas from the test image shown in Figure 3.1 were 

selected. These test areas represented an area of approximately 400 by 500 pixels, 

on the high resolution image. These areas were selected because they contained 

various land cover types and were of a large enough area to contain multiple 

segments from the low resolution representation on the image, and yet small enough 

that when projected onto the corresponding high resolution image that it could be 

easily analyzed within a reasonable amount of time. For these tests the low 

resolution image utilized was an ASTER image and the high resolution image was 

Quickbird sourced imagery, from the same study area used in Figure 3.1. In Figure 

4.9 the test areas are indicated on the high resolution Quickbird image. 
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Figure 4.9. Illustration of the test areas which are to be segmented by the proposed 

segmentation method. 

 

1 

2 
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In order to complete the segmentation process, and to remain consistent with results 

shown in 4.2, the ASTER image was segmented using the same threshold value, and 

adjustments were performed with a buffer with a radius of 10 pixels, and a gird size 

of 20 by 20 pixels. A 5 by 5 Gaussian filter was used to smooth the image in order 

to create the edge map, and adjustments were terminated when adjustments reached 

1 per iteration. Figure 4.10 and Figure 4.11 shows the initial segmentation process 

where the low resolution imagery was segmented and then projected onto its 

corresponding high resolution imagery. Figure 4.12 and Figure 4.13, show the end 

result where the adjustment process has been completed and the individual 

projected, adjusted, segmented map has been further segmented using the region 

growing program, with scale values determined by the variogram based method. 

Before segmentation, each variogram determined scale value was examined, along 

with its accompanying variogram, to determine if they corresponded well with one 

another. If not, they were manually adjusted. Once all scale values were determined 

to be satisfactory, segmentation was executed. 
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Figure 4.10. Illustration of Test area 1’s original segmentation and projection onto 

its corresponding high resolution image. 

           Test Area  1 - ASTER 

           Test Area  1 – ASTER Segmented 
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Figure 4.11. Illustration of Test area 4’s original segmentation and projection onto 

its corresponding high resolution image. 

           Test Area  2 - ASTER 

           Test Area 2 – ASTER Segmented 

Test Area  2 – Quckbird Segments 

Projected 
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Figure 4.12. Test area 1 showing its projected segments, now adjusted (top), and 

the final segmented result (bottom). 

Test Area 1 – Final Segments 

Test Area 1 – Segments Adjusted 
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Figure 4.13. Test area 2 showing its projected segments, now adjusted (top), and 

the final segmented result (bottom). 

Test Area 2 – Final Segments 

Test Area 2 – Segments Adjusted 
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EVALUATIONS 
 

 

In this chapter evaluations of the results presented in Chapter 4 will be discussed. It 

will consist of two sections. The first section will cover the results from the boundary 

adjustment method presented in 4.2 and the second section will cover the adaptive 

segmentation results presented in 4.3.  

 

5.1. EVALUATION OF BOUNDARY ADJUSTMENT RESULTS  
 

 

Several quantitative measures and one qualitative measure were used to explore the 

quality of the adjusted results. The first quantitative measure compared the 
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homogeneity, as measured by changes in the standard deviation of the segments 

before and after adjustment and the second quantitative measure was done through 

the adjusted segments F-measure score.  The qualitative measure was a three level 

classification approach which was determined through user input. 

 

As a note on F-measure score, F-measure score was selected as the main means for 

quantifying the evaluation of the adjustment method for several reasons. It is a 

standard method which is used by a number of studies and the basis of evaluation of 

the Berkley image segmentation benchmark dataset, which is considered to be a 

valuable resource in comparisons of image segmentation algorithms [13,16]. 

Furthermore, F-measure is easy to implement and does not require a negative case 

for comparison. It simply requires a single positive case for comparison, which in 

this case is the human generated map. 

 

After adjustment segments were found to be more homogeneous, as demonstrated 

by a decrease in the segments average standard deviation values, determined from 

the red, green and near-infrared bands from the adjusted-segmented Quickbird 

image. When the average standard deviation was calculated and compared, based on 
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all segments, before and after adjustment, shown in Table 3 A and B, a decrease in 

the standard deviation was observed, indicating improved homogeneity.  These 

changes were especially evident with segments determined from the resampled 

Quickbird image. Adjustments performed on segments determined from the 

resampled Quickbird image, for the majority of tests, outperformed segments 

determined from the ASTER image, both in terms of visual inspection and in 

measured changes in homogeneity. The next evaluation method which was used was 

qualitative. This qualitative measure is a three level quality classification scheme 

determined by user input. Through this classification scheme adjusted results were 

either classified as being of high, average or lower quality. When comparing quality 

classification results from Figure 4.7 and Figure 4.8, it should be noted that two of 

the adjusted results from the ASTER image were deemed to be of lower quality 

(areas 2 and 3), with one being high quality (area 1). For areas 2 and 3 from the 

resampled Quickbird image only area 2 was deemed to be of lower quality, while 

area 3 was determined to be of average quality, and area 1 was determined to be a 

high quality result. These results tied in with better overall homogeneity changes, 

summarized in Table 3A and B, implies that the adjustment method may perform 

better on segments determined from a resampled Quickbird image, compared to 

segments determined from an ASTER image, of the same area. It is speculated that 
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this was caused due in part from consistency in collection dates for the imagery, and 

consistency between sensors. These consistencies resulted in the resampled 

Quickbird image producing results which outperformed results from the ASTER 

imagery.  
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(A) 

Test Boundaries for U-

Shaped Object 

Average standard deviation 

Red Green Near-infrared 

Before adjustment (Test 

Boundary) 

5.683 3.044 3.56 

After adjustment (Test 

Boundary) 

3.983 2.914 3.390 

 

(B) 

Initial Segments 

Determined from 

Resampled 

Quickbird 

Average standard deviation 

Green Red Near-infrared 

Before adjustment 3.328 2.255 19.547 

After adjustment 2.774 1.863 16.721 

 

(C) 

Initial Segments 

Determined from 

ASTER 

Average standard deviation 

Green Red Near-infrared 

Before adjustment 5.718 4.595 22.197 

After adjustment 4.466 3.749 17.803 

 

Table 3. Average standard deviation of the digital numbers (intensity) in the green, 

red, and near-infrared bands, before and after adjustment, for segments from the 

Quickbird image. Values are calculated by averaging all segments, for each band. 

Initial segments determined from the U-shaped Object (A), resampled Quickbird 

image (B) and from the ASTER image (C).  
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The second quantitative analysis method, in the form of F-measure, was applied to 

the adjusted segment maps shown in Figure 4.7 and Figure 4.8, using a window of 

radiuses between 3-5 pixels, which are standard window distances for images of 

these sizes [47,48].  Those results are summarized in Table 3. When examining 

Table 3 it is noted that as the window size to match pixels increases as does the F-

measure values. Furthermore it was noted that all adjustments resulted in improved 

F-measure values, and were performing either at or above a threshold of 0.58-0.66 

which corresponds to F-measure values generated by the best results from widely 

used image segmentation and adjustment algorithms [47,48], and in some cases 

performing at the level between 0.79-0.84 which was generated from human 

determined segmentation or adjustment maps which are compared to one another. 

These results indicate that the proposed method was functioning as designed and 

was producing adjustments which match closely to those which would be created by 

other methodologies or human perceptions. 
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(A) 

F-measure 

Determined from 

test areas before 

adjustment 

Window Size(pixels) 

Radius  = 3 Radius = 4 Radius = 5 

ASTER Area 1 0.243   

 

0.324 0.399 

ASTER Area 2   0.164 0.219 0.269 

ASTER Area 3   0.170 0.226 0.279 

Resampled Area 1   0.240 0.320 0.394 

Resampled Area 2   0.209 0.278 0.342 

Resampled Area 3 0.168 0.224 0.278 

 

(B) 

F-measure 

Determined from 

test areas after 

adjustment 

Window Size(pixels) 

Radius  = 3 Radius = 4 Radius = 5 

ASTER Area 1 0.882   

 

0.895 0.895 

ASTER Area 2   0.571 0.595 0.604 

ASTER Area 3   0.578 0.604 0.625 

Resampled Area 1   0.862 0.876 0.883 

Resampled Area 2   0.707 0.743 0.768 

Resampled Area 3   0.567 0.594 0.620 

Table 4. F-measure calculated for adjusted segments for window radiuses between 

3 to 5 pixels before adjustment (A), and after adjustment (B). 
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5.2. EVALUATION OF ADAPTIVE SEGMENTATION METHOD  
 

In order to evaluate the performance of the adaptive segmentation method, the 

results were compared to segmentation results which were produced by a single set 

of parameters, illustrated in Figure 5.1 and Figure 5.2. 
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Figure 5.1. Test area 1, when segmented using the adaptive method (A) and test area 

1 segmented using a single set of parameters (B). 

(A) 

(B) 

Undersegmentation 
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Figure 5.2. Test area 2 when segmented using the adaptive method (A) and test 

area 2 segmented using a single set of parameters (B). 

(A) 

(B) 

Undersegmentation 

Oversegmentation 
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The parameters used to create the single parameter segmentation results were 

determined by analyzing the entire test image using the variogram based method. 

These results show under segmentation in many areas when compared to the 

adaptive results. In areas of complex cover the adaptive results produced more 

segments while not over segmenting less complex areas. Also, with the case 

illustrated in Figure 5.2 some areas defined by in Figure 5.2 (B) were over 

segmented. These results indicate that the adaptive segmentation method was 

working as designed. 
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DISCUSSIONS AND CONCLUSIONS 
 

 

This chapter contains the discussion and conclusions for the thesis and will end with 

a section on looking ahead and future work. The discussion and conclusions will 

begin by focusing on results produced by the boundary adjustment method and end 

with results from the adaptive segmentation method. The final section will examine 

future plans for both the boundary adjustment method and the adaptive segmentation 

method and how these methods fit into a grander strategy for the research this group 

wishes to accomplish. 
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6.1. DISCUSSION 
 

When examining the results of the proposed adjustment methodology, we first 

considered the U-Shaped test image. Upon visual inspection it can be clearly seen 

that the test boundary has been significantly adjusted, and the adjusted boundary 

matches well to the U-Shaped objects features. From the first quantitative measure 

of improved homogeneity, as measured by a decrease in standard deviation, 

averaged from all segments after adjustment implies that the adjustment 

methodology was working as designed. Further quantitative analysis in the form of 

F-measure also supports this with high F-measure values. These visual and 

quantitative results indicate that the proposed adjustment methodology was 

functioning as designed. For boundary adjustment or segmentation methods whose 

performance was measured through F-measure values, it was generally agreed upon 

that segmentation or adjustment results which produce F-measure values between 

0.79-0.84 and above are comparable to those generated when human generated maps 

are compared to one another [47,50,51]. According to these F-measure results 

testing of the U-Shaped object indicate that our proposed methodology was 

generating results which would be comparable to other methods and those generated 

by human perceptions. It should be stressed however, that the focus of this thesis 
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was not a comprehensive comparison of the developed methodology to other active 

contour or boundary adjustment methods but a successful application of it with 

remotely sensed imagery. 

 

When examining the results of the boundary adjustment method, we also considered 

the size and complexity of the test image. The test image was fairly large (1934 by 

967 pixels) with over 50 individual segments comprising over 30,000 boundary 

pixels. Additionally, the image was complex, containing many different types of 

terrain, which adds value to our testing. Related to this, due to the size and 

complexity of the test image it was deemed unreasonable to create a manually 

determined segment map for all of the adjusted boundaries for comparison purposes, 

an example is shown in Figure 6.1. 
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Figure 6.1. Example of segment map before adjustment (left) and adjusted segment 

map determined through human perceptions (right) for use in quantitative 

evaluations. 

 

Ideally, we would manually adjust the segment boundaries to generate reference 

segments, to act as references for quantitative evaluation. Such an evaluation was 

employed for a small study site in a separate study. [49]. Instead, individual test 

areas for further examination were chosen and independent evaluators from our 

Segments Before Adjustment 
Human Determined 

Adjustments 
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group and from a conference, were allowed to examine our results, who then helped 

to create adjusted segment maps for the test areas, which are highlighted in Figure 

4.7 and Figure 4.8, and also aided in ranking those adjustments based on the quality. 

By the initial quantitative measure, improved homogeneity as measured through 

decreases in standard deviation values of the segments, after adjustment, supports 

our assertion that our method was successfully adjusting results. When analysis 

using F-measure values was conducted, it was noted that even with a window of 3 

pixels adjusted segments, from the selected test areas, produced F-measure values 

which were improvements from their original scores and were close to or at the 

levels of those produced by other methodologies and in the case of test area 1, for 

both the ASTER and resampled Quickbird image, values which are comparable to 

those generated strictly by human perceptions.  As a point of note, when comparing 

results qualitative analysis values to their corresponding F-measure values, it was 

noticed that results which were classified as being of low quality, still yielded F-

measure values which were still considered “good” or “acceptable” from the 

literature.  Again, these results indicate that the proposed methodology is working 

as designed and is performing as well if not better than other methodologies.  
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One algorithmic consideration for the adjustment method regards the choice of 

buffer radius. For initial testing and evaluation the radius was chosen by considering 

the resolution of the image, the image size and trial and error. However, factors such 

as signal to noise ratio, homogeneity parameters, and an ultimate rationale behind 

choosing a buffer size were not used. In future work a rational method should be 

established which determines the buffer size by taking into consideration image size, 

image resolution, signal to noise ratio, and homogeneity parameters. In this vein 

another consideration was the choice of grid size. In this study, the grid size was 

chosen by considering the buffer size, and the size of the image. However, like buffer 

size a rational method, which takes into account those same factors, should be used 

in its determination. In line with that, it was acknowledged that if too large a grid 

size was selected, it would defeat the purpose of the grid. The same can be concluded 

about selecting a gird that was too small, the ranking scheme would then become 

irrelevant. 

 

An additional algorithmic consideration concerns the adjustments of pixels which 

lay on the boundaries of the adjustment grid. Pixels which lay on the boarder of a 

grid square, could be adjusted several times when in principle it should be adjusted 
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only once. An acceptable solution to address this issue has not yet been presented 

and it is not known how this issue affects quality.  

 

With regards to the incorporation of edge information, determining the weight of 

edge information, and noise considerations from the edge map requires 

investigation. For the purposes of this study, the weighting of the edge information 

was set to 1 in the energy function (equation 1), although a limited number of tests 

were also conducted in order to explore the effects of various edge weights. Tests 

where the weight was set to 0, illustrated the importance of incorporating edge 

information. Figure 6.2 shows the difference in adjustments when edge information 

was incorporated and when it was not. Using edge information was almost always 

beneficial to adjustments. Other tests showed that as the edge weight was increased 

to 2 it had a limited effect on adjustments until it reached a transition point around 

3-4 where the edge information dominated the energy function and produced poorer 

results. 
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Figure 6.2. Adjustment results comparing the incorporation of edge information. No 

edge information used in the energy function (left) and edge information used in the 

energy function (right). 

 

 

Regardless of the edge weight, when edge information was incorporated, it was 

observed that noisy edge maps could affect results by promoting noise driven 

adjustments as opposed to ones driven by actual edges. How the signal to noise ratio 

relates to the quality of results is not known and requires further investigation.   More 

advanced, multi-scale or alternative approaches to producing edge maps should be 

investigated in further developments to address these concerns.  
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The elimination of the oscillating behaviour in pixel adjustments presents another 

algorithmic consideration. The point in which the algorithm determines when to be 

sensitive to the oscillating behaviour was determined through recording the number 

of adjustments per iteration and then checking if those adjustments were displaying 

asymptotic behaviour. If it was found that the adjustments have become asymptotic 

the program was allowed to become sensitive to recording and eliminating that 

oscillating behaviour. In future versions, a more advanced method to identify this 

behaviour should be explored, to allow the method to become more independent of 

user input, and more reliable. 

 

With regards to segmentation results produced through the proposed adaptive 

segmentation technique, a number of considerations arise. The first was the selection 

of the segmentation parameters for the low resolution imagery. Choice of these 

parameters can impact greatly the final segmentation on the high resolution imagery.  

If segmentation of the low resolution imagery was too coarse training areas would 

encompass too many different land cover types and the segmentation of those areas, 

based on the parameters determined by the variogram analysis, would not be 
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suitable. Similarly, if the low resolution imagery was over segmented, the 

segmentation of the high resolution imagery would result in further over 

segmentation. At the time of this writing there are no automatic or more methodical 

ways of choosing the segmentation parameters of the low resolution imagery beyond 

user skill. For future work, a methodology should be developed which will allow for 

an acceptable segmentation of the low resolution imagery which will match results 

determined by user skill. This will not only decrease processing time but also create 

more consistency with testing. 

 

Another consideration when operating the proposed segmentation technique was the 

determination of segmentation parameters with the variogram based method. It was 

found that a completely automatic selection of segmentation parameters can often 

lead to over and under segmentation of projected segmented areas, on the high 

resolution imagery. In order to combat this it was found that the best strategy 

involved an examination of both the segmentation parameters determined from the 

variograms, and the variograms themselves. Variograms were often examined to see 

if structures existed within them to imply multi-scale features, such as multiple sills, 

and the images themselves were often examined to see if areas exhibited over or 

under segmentation, based on the purely automatically determined segmentation 
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parameters. If over or under segmentation was seen the variogram determined 

segmentation parameters were manually adjusted based on the structures of the 

variogram. When these adjustments were done improvements to the segmentation 

of the high resolution imagery was seen. These tests show that implementing the 

variogram based method, for determining segmentation parameters, in a fully 

automatic fashion, was not as effective as when it was implemented with user input 

and oversight. This semi-automatic approach always out performs the automatic 

approach as presently implemented. In future work, alternative, fully automatic 

approaches to determining threshold parameters from the projected, adjusted, 

segments, should be investigated. Again, having a more automatic method to 

determining segmentation parameters will result in faster results, and also more 

consistency which will aid in analysis and further development.  

 

In principle the proposed segmentation method can be applied to any two sets of 

images, one low resolution and one high resolution, as long as they are closely match 

with their co-registration. If co-registration is too coarse even with the boundary 

adjustment method, segmentation results from the low resolution image will begin 

to lose meaning. One aspect to the operation of the proposed method which requires 

consideration is the size of the image. The computation time is directly proportional 
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to the size of the area of the images to be segmented. For instance going from a 500 

by 500 pixel image to a 1000 by 1000 pixel image results in at least a 4 time increase 

in computational time. As a final limitation and consideration with the developed 

image segmentation method regards the evaluation of the accuracy and quality of 

the segmentation results. At this time only user interpretation was used to evaluate 

the quality of the segments. Alternative approaches to evaluating the performance 

of this method should be investigated. Such as testing the method on imagery from 

segmentation test databases or user defined segment maps of preexisting test data.   

This would allow a more comprehensive evaluation of the method. Finally, tests 

should be done with other imagery sets, and also of different resolution levels, such 

as using very low resolution imager (250 m resolution) to aid in the segmentation of 

low resolution imagery (15-30m resolution) for comparison purposes. 

 

6.2. CONCLUSIONS 
 

In summary, a boundary adjustment method and an adaptive image segmentation 

method have been presented. The presented boundary adjustment method was 

successful in adjusting the boundaries of a segmentation map that was determined 

from a low resolution resampled Quickbird image or an ASTER image, projected 
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onto its corresponding Quickbird image. It was found that the resulting adjusted-

segments had morphed into a configuration where the undesirable boundaries have 

been adjusted and the overall homogeneity of the segments in that image had been 

improved. The adjusted-segment map matched closely to the features from the 

Quickbird image.  This method is innovative in two aspects. First, its utilization of 

a local buffer to determine single pixel adjustments based on minimizing an energy 

function, within a buffer. Second was the manner in which those adjustments were 

carried out, through local ranking, based on the greatest changes towards 

homogeneity, and the execution of those adjustments through the use of a grid which 

aided in grouping, ranking, and localizing those adjustments.  The energy function 

was new as well; it integrated the energy functions used in the edge-based and 

region-based active contouring models.  The presented multi-scale image 

segmentation method was also successfully implemented and tested on the same 

ASTER and Quickbird imagery. Segments determined from the ASTER imagery 

were successfully projected and adjusted onto the high resolution Quickbird 

imagery. Those projected and adjusted segments were successfully analyzed using 

a variogram based method to determine segmentation parameters, using both 

automatic and user driven techniques. Finally, the resulting segmentation maps of 

the high resolution imagery were deemed to be of suitable quality. The work 
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presented here can be used as a strong basis to develop/implement multi-scale and 

adaptive remote sensing segmentation techniques.  

 

6.3. LOOKING FORWARD AND FUTURE WORK 
 

 

The work presented in this thesis will act as the basis for several upcoming projects 

where effectively segmenting, and combining sets of images from different 

resolutions will be an essential step in their analysis. The objectives of these 

upcoming projects involve determining relationships between ground and arboreal 

lichen coverage and its corresponding spectral signature as measured from remotely 

sensed imagery, and innovative methodologies to combine radar and multispectral 

imagery for wetland identification. Effectively segmenting large images will be an 

essential step which this developed methodology will be an essential tool for.  

 

 From a development standpoint this work can be expanded upon in the following 

ways. The boundary adjustment methodology can be further developed by exploring 

a progressive approach to buffer size. Preliminary testing showed that during 
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adjustments, if the buffer was expanded in a progressive way, superior results would 

be produced.  Formalizing this approach needs to be done and would be a natural 

extension to the work already completed. Another aspect to the boundary adjustment 

method which should be explored is utilizing more advanced edge detection and 

edge mapping methods. Testing has shown that results can vary depending on the 

level and style of edge maps which are used. It was suspected that the use of superior 

edge maps will result in superior adjusted results. As a final aspect to the adjustment 

method which should be further developed an alternative or more advance way of 

executing adjustments with regards to the grid system should be explored. A 

limitation to the grid system involves pixels which border several grids. These 

border pixels can be adjusted several times while in principle these pixels should be 

only adjusted once. An alternative approach should address this. With regards to the 

adaptive segmentation method, further testing and quantification of those tests 

would be a natural progression for its development. For instance, comparing 

segmentation results produced using the adaptive segmentation method to 

segmentation results produced by humans would be a good step to further evaluate 

methodology. In terms of development, exploring alternative methods to 

automatically determine segmentation parameters should be done. With the present 

version, using variogram analysis, segmentation parameters can be effectively 
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determined but on occasion requires adjustment which has made this iteration of the 

method only semi-automatic. Future work should be done with the objective to 

produce a fully automatic version of the method. Finally, further tests should be 

conducted using different sets of images to verify the operation of the method 

beyond forested scenes with medium and high resolution imagery. 
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