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ABSTRACT 

The face perception system is comprised of a network of connected regions including the 

middle fusiform gyrus (“fusiform face area” or FFA), the inferior occipital gyrus 

(“occipital face area” or OFA), and the posterior part of the superior temporal sulcus. 

These regions are typically active bilaterally but may show right hemisphere dominance. 

The functional magnetic resonance imaging (fMRI) response of the right FFA is normally 

attenuated for face stimuli of the same compared to different identities, called fMR-

adaptation. The recovery in fMRI signal, or release from fMR-adaptation, for faces of 

different identities indicates that the neural population comprising the FFA is involved in 

coding face identity. Patients with prosopagnosia who are unable to visually recognize 

faces and who show right OFA damage, nonetheless show face-selective activation in the 

right FFA (Rossion et al., 2003; Steeves et al., 2006). However, the sensitivity to face 

identity is abnormal in the right FFA and does not show the typical release from 

adaptation for different face identities (Steeves et al., 2009). This indicates that in these 

patients the FFA is not differentiating face identity and suggests that an intact right OFA 

is integral for face identity coding. We used offline repetitive transcranial magnetic 

stimulation (TMS) to temporarily disrupt processing in the right OFA in healthy subjects. 

We then immediately performed fMRI to measure changes in blood oxygenation level 

dependent (BOLD) signal across the face network using a face fMR-adaptation paradigm. 

We hypothesized that TMS to the right OFA would induce abnormal face identity coding 

in the right FFA, reflected by a decreased adaptation response. Indeed, activation for 

different but not same identity faces in the right FFA decreased after TMS was applied to 
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the right OFA compared to sham TMS and TMS to a control site, the nearby object-

selective right lateral occipital area (LO). Our findings indicate that TMS to the OFA 

selectively disrupts face but not butterfly identity coding in both the OFA and FFA. 

Congruent with mounting evidence from both patients and healthy subjects, here we 

causally demonstrate the importance of the often-overlooked OFA for normal face 

identity coding in the FFA. 

 
 



 iv 

DEDICATION 

 
To my mother and her father, for their brain and back. To my father and his 

mother, for their heart and soul. 

 



 v 

ACKNOWLEDGEMENTS 

 
My ultimate gratitude goes to my supervisor, Dr. Jennifer Steeves, who nourished 

and guided the seed of my research aspirations. She created a brilliant network of 

resources and support in her laboratory, fostering the development of a phenomenal team.  

 
Caitlin Mullin taught me everything about being a graduate student when I started. 

She and Krista Kelly built the foundation of studentship in the Perceptual Neuroscience 

Lab. They passed on the torch to Stefania Moro, who is both an admirable academic role 

model and invaluable partner in surviving school life. Rachel Ganaden was amazing to 

work with, and now so is Sara Rafique. Joy Williams is the best MRI technologist on the 

planet. Working with sophisticated equipment at the Sherman Health Science Research 

Centre is beyond incredible. Sometimes robots roll around the halls of our old hockey 

arena turned state of the art research facility.  

 
I especially extend gratitude to my thesis committee member, Dr. Hugh Wilson. 

He has been a leading force through my academic ventures with the Centre for Vision 

Research. I also appreciate his presence elsewhere around York, such as a meeting on 

animal pain and consciousness we both attended at the Philosophy Department.  

 
  Thanks to the other members of my committee, Dr. Kari Hoffman and Dr. 

Janessa Drake, for reading and contributing to this thesis. Utmost thanks to the 

participants of this study who were so graciously willing to lend us their noggins.  



 vi 

So many academic buddies have been vital to this process: Lindsey, Lisa, Mike, 

Sarah, Scott, Rodrigo, Pat, Tim, Joe, Larissa, Kevin, Leiko, Sabrina, Audrey, Christina, 

Michelle, Adria, Ben, David, Saam, Alex, Ying, Marwan, Andrew, Galina, Bianca, 

everyone associated with the PNS lab, and special thanks to Kia who helped me process a 

few brain scans.  

 
Deep gratitude goes to my buddies outside of school: Mimi, Nat, Ale, Mir, Richa, 

Rene, Iva, Emma, Carmel, David, Hart I, Hart II, and my puppy dog, Vash the Stampede.  

 
My family ultimately provided the real support that saw me through this. My 

brilliant, beautiful, strong mother raised me mostly all by her own. Her parents provided 

both the financial and moral foundation for my education. I am forever grateful.  

 
I must also acknowledge the Natural Sciences and Engineering Research Council 

of Canada and the Ontario Graduate Scholarship for their support of my graduate work. 

Through my experiences travelling abroad, I feel truly grateful as a Canadian. My country 

has provided astonishing opportunities to advance my education and career. O Canada! 

May the advancement of science, along with the sustenance of social services, live on!  

 



 vii 

TABLE OF CONTENTS 

ABSTRACT........................................................................................................................ii 

DEDICATION...................................................................................................................iv 

ACKNOWLEDGEMENTS ..............................................................................................v 

LIST OF TABLES ............................................................................................................ix 

LIST OF FIGURES ...........................................................................................................x 

CHAPTER 1: GENERAL INTRODUCTION................................................................1 

Face Perception ..............................................................................................................2 

Transcranial Magnetic Stimulation ...........................................................................10 

CHAPTER 2: CURRENT STUDY ................................................................................17 

INTRODUCTION............................................................................................................18 

Questions and Hypotheses...........................................................................................19 

METHODS .......................................................................................................................20 

Participants...................................................................................................................20 

Outline...........................................................................................................................21 

Data Acquisition and Preprocessing ..........................................................................21 

Prestimulation fMRI....................................................................................................22 

TMS Functional Stereotaxy ........................................................................................25 

Stimulation Parameters...............................................................................................25 

TMS Safety ...................................................................................................................27 



 viii 

Poststimulation fMRI ..................................................................................................28 

Data Analysis................................................................................................................30 

RESULTS .........................................................................................................................31 

ROI Activation .............................................................................................................31 

Adaptation Indices .......................................................................................................38 

DISCUSSION ...................................................................................................................39 

Disrupted Processing at TMS Sites ............................................................................39 

Remote Effects of TMS................................................................................................40 

Summary and Conclusions..........................................................................................42 

CHAPTER 3: GENERAL DISCUSSION AND CONCLUSIONS .............................45 

Focality of TMS............................................................................................................46 

Conclusions...................................................................................................................49 

Limitations....................................................................................................................50 

Future Directions .........................................................................................................51 

REFERENCES.................................................................................................................53 



 ix 

LIST OF TABLES 

 
Table 1. Mean Talairach coordinates for the functionally defined regions of interest 

(ROIs)……………………………………………………………………………… 24 

 

  



 x 

LIST OF FIGURES 

 
Figure 1. Rendered brain of a typical participant with targets at the experimental 

stimulation site, the “occipital face area” (OFA) in the right inferior occipital gyrus,  

and the control stimulation site, the object-selective lateral occipital area (LO).  

L = left; R = right; P = posterior; A = anterior……………………………………. 23 

 

Figure 2. Experimental setup. Offline repetitive TMS was performed in the MRI control 

room for 20 minutes at 1 Hz and 60% maximum stimulator output. A = 3T Siemens 

Magnetom Tim Trio MRI scanner; B = MRI control computer; C = stimulus presentation 

computer; D = Brainsight neuronavigation computer; E = Polaris infrared camera; F = 

subject tracker; G = TMS coil with tracker; H = articulated coil stand; I = Magstim Super 

Rapid2 stimulator.…………………………………………………………………. 26 

 

Figure 3. A schematic of the face fMR-adaptation experiment. Twelve-second blocks of 

12 images (800 ms + 200 ms blank screen) depicting different faces, same faces, different 

butterflies, and same butterflies. Eight repetitions of the four stimulus category blocks 

were presented in pseudorandom counterbalanced order. Each repetition was interleaved 

with 12 s of fixation. Each run began and finished with a fixation cross for 12 s. Data 

were collected over one functional run lasting 8 min 14 s.……………………….. 29 

 

 



 xi 

Figure 4. Effects of transcranial magnetic stimulation (TMS) in face-selective regions. 

Error bars represent standard error of the mean. OFA = occipital face area; FFA = 

fusiform face area; STS = superior temporal sulcus; *p < 0.05; **p < 0.01 [false 

discovery rate (FDR) corrected p-values].………………………………………… 36 

 

Figure 5. Effects of transcranial magnetic stimulation (TMS) in non-face-selective 

regions. Error bars represent standard error of the mean. LO = lateral occipital area; TOS 

= transverse occipital sulcus; PPA = parahippocampal place area; *p < 0.05 [false 

discovery rate (FDR) corrected p-values].………………………………………… 37 

 

Figure 6. Effect of transcranial magnetic stimulation (TMS) on the adaptation index 

[(different – same) / (different + same)] for faces in the right “occipital face area” (OFA), 

the experimental stimulation site. Error bars represent standard error of the mean; *p < 

0.05 with false discovery rate (FDR) correction. No other adaptation indices were 

significantly affected by TMS (ps > 0.1).…………………………………………. 38 



 1 

 

 

 

 

 

CHAPTER 1: 

 

GENERAL INTRODUCTION 



 2 

Face Perception 

Most humans effortlessly glean a wealth of information from the faces they 

perceive. Faces tell us information about the people around us, such as their identity, sex, 

age, mood, and gaze direction. Face perception is highly complex in terms of neural 

computation, yet our natural proficiency with this visual feat is unsurprising given its 

immense adaptive advantage for interacting with the environment, surviving, and passing 

on genes. 

Specialized neurons for face processing were first discovered through single unit 

recordings in monkey inferotemporal cortex (Gross, 2005; Gross, Rocha-Miranda, & 

Bender, 1972). Since then, an expanding accumulation of neurophysiological, 

neuropsychological, and behavioural work in humans suggest that face perception 

involves specialized neural mechanisms distinct from those involved in the perception of 

other categories of stimuli (Kanwisher & Yovel, 2009). However, there is still some 

debate regarding the specificity of processing (Kanwisher, 2000).  

A domain-generality view holds that the mechanisms used for processing faces 

are not specialized for that function, but rather for fine-grained discriminations between 

visually similar exemplars of any category (Damasio, Damasio, & Van Hoesen, 1982; 

Gauthier, Anderson, Tarr, Skudlarski, & Gore, 1997; Gauthier et al., 2000a). While 

objects can often be sufficiently categorized at the basic level (i.e. table, apple, shoe), 

faces are typically further processed to identify the particular individual. Beyond domain-

generality, the expertise framework posits that these mechanisms may actually be 

specialized for making any discrimination for which we have acquired significant 
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expertise through perceptual learning (Bukach, Gauthier, & Tarr, 2006; Diamond & 

Carey, 1986). Despite extensive research, the mechanisms underlying this fundamental 

visual process are not well understood.  

In support of specificity, event-related potentials (ERPs) recorded from scalp 

electrodes in healthy human subjects demonstrate a negative potential at 170 ms (N170) 

sourced in inferotemporal cortex that is evoked by faces but not other stimuli (Bentin, 

Allison, Puce, Perez, & McCarthy, 1996). Functional magnetic resonance imaging 

(fMRI) further reveals a network of areas in human occipitotemporal cortex that are 

preferentially active while viewing faces. These regions include the middle fusiform 

gyrus or “fusiform face area” (FFA) (Kanwisher, McDermott, & Chun, 1997), the inferior 

occipital gyrus or “occipital face area” (OFA) (Gauthier et al., 2000b), and the posterior 

part of the superior temporal sulcus (pSTS) (Puce, Allison, Bentin, Gore, & McCarthy, 

1998). These areas are typically active bilaterally but may show right hemisphere 

dominance.  

Traditionally, visual processing is described as a hierarchical feedforward model. 

Information travels from retinal ganglion cells through subcortical structures such as the 

lateral geniculate nucleus of the thalamus and the superior colliculus of the midbrain, to 

occipital cortex at the back of the brain where information is processed in a posterior to 

anterior direction. More basic aspects of visual stimuli are processed in earlier posterior 

cortical areas, toward more anterior inferotemporal regions processing visual information 

with increasing complexity of neural representation.  
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The hierarchical feedforward model of visual processing has been applied to face 

perception (e.g. Haxby, Hoffman, & Gobbini, 2000). Other researchers (e.g. Fairhall & 

Ishai, 2007; Ishai, 2008; Kanwisher & Yovel, 2009; Liu, Harris, & Kanwisher, 2010; 

Pitcher, Walsh, & Duchaine, 2011; Rotshtein, Henson, Treves, Driver, & Dolan, 2005; 

Sadeh, Podlipsky, Zhdanov, & Yovel, 2010) posit a similar hierarchical feedforward 

model, with information flowing from early visual cortex to the OFA for simple feature 

detection, then on to the FFA and pSTS where more complex processing such as face 

identity and emotion recognition take place. Much of the large body of research has 

focused on the role of the FFA in face recognition, while the OFA has been considered an 

earlier module in the network performing less complex operations such as simple feature 

detection.  

 

fMR-adaptation. fMR-adaptation is a means of studying the functional properties 

of specific neural populations within an area of cortex using fMRI despite its limited 

spatial resolution, as one voxel contains several hundred thousand neurons (Grill-Spector 

& Malach, 2001). This method relies on effects of stimulus repetition. The fMRI signal in 

high-order visual areas is reduced when repeatedly presented with the same stimulus 

(Grill-Spector & Malach, 2001). The underlying mechanisms of this repetition effect have 

been interpreted as neuronal adaptation. That is, a reduction in the electrophysiological 

spiking rate of a neuronal population following repeated presentations of a stimulus. In 

fMR-adaptation, the neural population is first “adapted” by repeated stimulus 

presentations. Then some aspect of the stimulus is varied and the recovery or release 
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from adaptation is assessed. If the fMRI signal recovers from the adapted state, that 

implies the neurons are sensitive to the stimulus property that was varied (Grill-Spector & 

Malach, 2001). fMR-adaptation has been effectively employed to study numerous visual 

functions, including face perception. 

Activity in the FFA is reduced following repeated presentations of the same face 

identity (Andrews & Ewbank, 2004). Adaptation in the FFA is not sensitive to image 

size, but is sensitive to viewpoint. The pSTS, on the other hand, does not adapt to face 

identity, but does show an increased response when the same face is shown from different 

viewpoints or expressions. Non-face-selective regions of visual cortex do not demonstrate 

fMR-adaptation to faces (Andrews & Ewbank, 2004). Consistent with the traditional 

model of face perception, these findings suggest a size-invariant face representation in the 

FFA for recognizing identity, and a separate region in the STS for processing changeable 

aspects of faces (Haxby et al., 2000). 

fMR-adaptation has been used to examine whether face-selective regions are 

sensitive to physical or perceived changes in stimulus properties. One study used stimuli 

drawn from morph continua between famous faces, such as Margaret Thatcher and 

Marilyn Monroe (Rotshtein, Henson, Treves, Driver, & Dolan, 2005). In support of a 

hierarchical model, the OFA showed sensitivity to physical changes, while the FFA 

showed sensitivity to changes in perceived identity. Bilateral anterior temporal regions 

also showed sensitivity to changes in identity correlated with participants’ pre-

experimental familiarity with the faces (Rotshtein et al., 2005). 
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Another study examined whether activation was modulated by physical or 

perceived changes in identity or expression (Large, Cavina-Pratesi, Vilis, & Culham, 

2008). Subjects were presented with two sequential matrices of four faces that were either 

identical or one face varied in identity or identity and expression. The FFA, OFA, and 

pSTS recovered from adaptation when subjects accurately detected changes, but only the 

OFA recovered from adaptation when subjects did not detect the changes. The authors 

suggest that the OFA is involved in coding information that has not yet entered 

awareness, contrary to associations between the ventral visual stream and conscious 

perception (Large et al., 2008). 

Opposing more traditional hierarchical models, both the FFA and OFA 

demonstrate sensitivity to spatial relations in faces (Rhodes, Michie, Hughes, & Byatt, 

2009). That is, they both respond more strongly to changes in feature spacing than to 

repeated presentations of identical faces. The response to variations in feature spacing is 

as strong as the response to faces of distinct identities. The pSTS shows little sensitivity 

to changes in either spacing or identity. The authors propose that sensitivity to spatial 

relations in the FFA and OFA may underpin our ability to individuate faces (Rhodes et 

al., 2009). 

fMR-adaptation has also been used to investigate whether face-selective areas 

contain heterogeneous populations of neurons tuned to individual components of faces 

and whole faces (Betts & Wilson, 2009). The FFA and OFA showed robust activation for 

synthetic whole face stimuli, as well as the internal features and head outlines presented 

separately. Activation to whole face stimuli in the FFA was reduced after adaptation to 



 7 

whole faces, but not after adaptation to internal features or head outlines. Meanwhile, 

activation to head outlines in the FFA was reduced after adaptation to both whole faces 

and head outlines. The OFA demonstrated cross-adaptation between whole faces and 

head outlines. The internal features did not produce significant adaptation in either the 

FFA or OFA. The authors posit a model in which independent populations of neurons in 

human occipitotemporal cortex are tuned to whole faces, features, and head outlines, 

which could support tasks like identity, emotion, and viewpoint discrimination. 

Furthermore, they suggest that the integration of facial features and head outlines into 

whole face representations occurs in the FFA (Betts & Wilson, 2009). 

The neural representation of identity, expression, and viewpoint has been further 

investigated with fMR-adaptation (Xu & Biederman, 2010). In the FFA, identity changes 

produced the largest release from adaptation followed by expression changes, while the 

release for viewpoint changes was small and unreliable. The OFA was only sensitive to 

changes in identity, even when the physical variation in the images was matched to that of 

expression and viewpoint. These findings suggest that the OFA is involved in coding 

identity, while the FFA codes both identity and expression information, contrary to the 

traditional hypothesis that invariant and changeable aspects of faces are processed 

separately (Xu & Biederman, 2010). 

 

Data from patients with brain damage. The traditional hierarchical feedforward 

model of face-processing assumes that the local parts of a visual stimulus are first 

detected in posterior visual areas, followed by integration of these parts into a global 
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representation in more anterior brain regions (Haxby et al., 2000; Pitcher et al., 2011b). 

Yet, this may be an oversimplified view (for a review of the neuropsychology of face 

perception see Atkinson & Adolphs, 2011).  

Research on patients with brain damage has illuminated the function of different 

regions in the face-processing network. Two patients with acquired prosopagnosia, an 

inability to visually recognize faces, have been critical in examining the role of the OFA. 

Patient DF has bilateral lesions overlapping the OFA and the object-selective lateral 

occipital area (LO) and suffers from prosopagnosia as well as visual form agnosia, an 

inability to recognize objects based on shape (Milner et al., 1991; Steeves et al., 2006). 

Patient PS has lesions overlapping the left FFA and right OFA and presents with pure 

prosopagnosia without visual object agnosia (Rossion et al., 2003).  

DF and PS have common lesions at the right OFA and both present with 

prosopagnosia. Nonetheless, both patients show face-selective activation at the right FFA. 

This suggests the existence of an alternate pathway to the FFA that does not go through 

the OFA from early visual cortex or perhaps from subcortical routes (Rossion et al., 2003; 

Steeves et al., 2006; for a review of subcortical face processing see Johnson, 2005). 

Despite retaining this face-selective activation, the sensitivity to identity is abnormal in 

the right FFA of both patients. The fMRI response of the right FFA does not show the 

typical release from fMR-adaptation for face stimuli of different compared to same 

identities, indicating that the FFA is not coding face identity information in a typical 

manner. This suggests that an intact right OFA is integral for face identity coding in the 

FFA (Steeves et al., 2009).  
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Data from patients DF and PS suggest a non-hierarchical model of face processing 

with direct connections from early visual cortex (or via subcortical routes) to the FFA and 

pSTS, allowing these regions to show preferential face activation without input from the 

OFA. In this model, the more posterior OFA contributes to the refinement of face 

representation through an analysis of face features in a feedback manner after the more 

anterior FFA has holistically categorized a stimulus as a face (Rossion, 2008; Steeves et 

al., 2009). Indeed, these patients are able to detect and categorize faces compared to other 

visual stimuli despite being unable to recognize the identity of faces (Steeves et al., 

2009). The larger receptive fields of the FFA may allow for initial face detection, and 

identity recognition could possibly be achieved through re-entrant connections from the 

OFA where the smaller receptive fields of the OFA provide individual fine-grained face 

analysis (Rossion, 2008). Not surprisingly, a diffusion tensor imaging study found high 

anatomical connectivity between the FFA and OFA with a right hemisphere 

predominance (Gschwind, Pourtois, Schwartz, Van De Ville, & Vuilleumier, 2012). The 

non-hierarchical model is consistent with evidence of extensive bi-directional cortical 

connections (Felleman & Van Essen, 1991) as well as the reverse hierarchy theory of 

visual processing (Hochstein & Ahissar, 2002).  

The non-hierarchical model does not suggest that the right FFA is merely involved 

in face detection. This model suggests that the FFA first detects faces holistically and 

then processes finer details following waves of feedback to and from the OFA (Rossion, 

2008). Neuroimaging work by Rossion and colleagues (Jiang et al., 2011; Rossion, 

Dricot, Goebel, & Busigny, 2011; Rossion, Hanseeuw, & Dricot, 2012) illustrates that the 
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FFA may be responsible for early face detection and the OFA for more fine-grained 

analysis. Moreover, a course-to-fine model of spatial frequency (SF) sensitivity has been 

demonstrated in the face network, such that the FFA is tuned to more global low SFs at an 

earlier processing stage and the OFA is tuned to higher SFs at a later processing stage 

(Goffaux et al., 2011). Ongoing debates in the literature highlight the complexity of face 

perception and the importance of further research on the underlying mechanisms. 

 

Transcranial Magnetic Stimulation 

The human brain has been called science’s final frontier. Continually accelerating 

advancements in technology provide tools that expand the possibilities of neuroscience 

research. The study of patients with brain damage along with neuroimaging studies of the 

healthy brain shed invaluable light on the relationship between neural structure and 

function, yet neither method can demonstrate specific causality. For instance, fMRI 

merely correlates the level of oxygenated blood flow in different regions with the 

presented stimuli or task performance. Meanwhile, patient lesions often encompass 

extensive regions, and cortical reorganization must also be considered. Transcranial 

magnetic stimulation (TMS) is a non-invasive means of overcoming problems of 

causality in neuroimaging and precision in patient research by precisely targeting 

localized cortical regions for transient disruption of function. TMS allows researchers to 

further elucidate the complex relationship between brain and behaviour.  

This method has been used to study a vast range of cortical functions, including 

the motor system (e.g. Chouinard & Paus, 2010), resting state functional connectivity 
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(e.g. Fox, Halko, Eldaief, & Pascual-Leone, 2012), vision, attention, and cognition (for 

reviews see Guse, Falkai, & Wobrock, 2010; Stewart, Ellison, Walsh, & Cowey, 2001). 

TMS has also been implemented in a variety of clinical applications, including 

hemispatial neglect (e.g. Cazzoli, Muri, Hess, & Nyffeler, 2010), psychiatric populations 

such as schizophrenia, bipolar, major depressive and obsessive–compulsive disorders 

(e.g. Radhu, Ravindran, Levinson, & Daskalakis, 2012), stroke and Parkinson’s disease 

(e.g. Schultz, Gerloff, & Hummel, 2013), and as a diagnostic tool for examining the 

integrity of corticomotor pathways in a range of diseases (e.g. Groppa et al., 2012). 

As an experimental technique, TMS is capable of temporarily disrupting neural 

processing in a targeted cortical area. The effect of this disruption on behavioural 

performance in experimental tasks can be measured. Then, by analogy with both animal 

lesion and neuropsychological patient studies, these measurements can be used to test 

causal hypotheses concerning the contribution of specific brain areas to cognitive 

functioning. The unique benefit of TMS is that it allows the experimenter to control the 

strength of the transient disruption, its precise location, and the precise temporal 

components of the induced virtual lesion. Furthermore, using TMS allows for repetitive 

testing of a neurologically intact subject group without the added complication of neural 

reorganization following brain injury. In addition, subjects can act as their own control 

group by measuring behavioural performance in both the presence and absence of 

stimulation, strengthening the validity of conclusions drawn from TMS experiments.  
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Biophysical basis. TMS is based on Faraday’s principle of electromagnetic 

induction: when a time changing magnetic field is applied to a material, an electric field is 

induced which drives currents in the material (Wagner, Rushmore, Eden, & Cabre, 2009). 

The application of this principle in modern TMS equipment is by way of a large, rapidly 

changing electrical current that is passed through a circular coil and generates a magnetic 

field perpendicular to the angle of the orientation of the coil. When this coil is placed on 

the scalp, the magnetic field passes through the skull and induces an electrical field in the 

underlying neural and non-neural tissues. This electrical field induces current in the 

underlying tissues depending on their conductivity and permittivity. Characteristics of the 

induced current depend on the amplitude and rate of change of the current passing 

through the TMS coil, as well as the relative coil-to-tissue distribution unique to each 

subject (Wagner et al., 2009).  

The induced current alters the electrical state both inside and outside of the nerve 

axons (Nagarajan, Durand, & Warman, 1993; Walsh & Pascual-Leone, 2003). This 

voltage difference across the cell membrane can result in membrane depolarisation and 

the initiation of action potentials, which may then propagate along the nerve. Delivering a 

TMS pulse to a cortical area can raise the resting membrane potential of some neurons 

while causing others to discharge. TMS does not distinguish between excitatory and 

inhibitory neurons within a stimulated region, nor does it distinguish between 

orthodromic (action potentials propagating along the axon away from the soma) and 

antidromic (propagation in the reverse direction toward the soma) directions of 

stimulation (Walsh & Pascual-Leone, 2003). A TMS pulse randomly excites neurons 
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lying within the effective induced electrical field. Thus TMS is disruptive by introducing 

transient neural noise to the signal processing system (Walsh & Pascual-Leone, 2003). In 

some cases, TMS disruption in one area can lead to disinhibition of competing or 

networked regions of cortex, resulting in processing enhancements (Mullin & Steeves, 

2011; Mullin & Steeves, 2013; Walsh, Ellison, Battelli, & Cowey, 1998).  

 

Stimulation protocol. TMS can be delivered as single pulses or trains of pulses 

called repetitive TMS (rTMS). The frequency of stimulation is the number of pulses per 

second in a pulse train. Low frequency stimulation (≤ 1 Hz) has been reported to decrease 

cortical excitability, while high frequency stimulation (≥ 5 Hz) increases excitability 

(Maeda, Keenan, Tormos, Topka, & Pascual-Leone, 2000). Online TMS refers to 

stimulation occurring concurrently with task performance, while offline TMS refers to 

stimulating for several minutes before performing a task. Offline stimulation removes 

many nonspecific effects of TMS during task performance, such as the loud clicking 

noise and induced muscle twitches associated with the coil discharge. This paradigm 

demonstrates that TMS effects can last beyond the period of stimulation (Chen et al., 

1997; Kosslyn et al., 1999). Asynchronous theta burst rTMS induces the longest lasting 

effects (Huang, Edwards, Rounis, Bhatia, & Rothwell, 2005). The after-effects of 

synchronous rTMS are relatively short, but they have been demonstrated to last at least 

half the duration of the stimulation train (Robertson, Theoret, & Pascual-Leone, 2003; 

Sandrini, Umiltà, & Rusconi, 2011).  
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TMS studies of face perception. The function of the face-processing network has 

been investigated using TMS in a handful of studies with mixed findings supporting 

either a hierarchical feedforward model of face processing or a non-hierarchical model. In 

support of non-hierarchy, identity and emotional expression processing when combined 

were impaired after TMS to the rOFA, while gaze processing remained intact (Cohen 

Kadosh, Walsh, & Cohen Kadosh, 2011). This impairment specifically occurred at 170 

ms post stimulus presentation onwards and was modulated by gaze information at 210–

250 ms, consistent with ERP literature regarding the timing of face processing. This 

suggests that TMS does not impair the feedforward flow of information as faces are 

detected, but rather impairs re-entrant feedback of information as configural face 

information is processed (Cohen Kadosh et al., 2011). 

 In support of a hierarchical feedforward model, early TMS (60-100 ms post 

stimulus onset) to the right OFA increases the later (150-200 ms) N1 amplitude event-

related potential (ERP) response to images of faces but not those of bodies whereas TMS 

to the right extrastriate body area (EBA) increases the N1 amplitude to bodies but not 

faces (Sadeh et al., 2011). However, TMS delivered to the rOFA or rEBA at an early time 

period (40/50 ms) disrupts task performance for both preferred and non-preferred visual 

categories (faces and bodies), while TMS delivered at a later time period (100/110 ms) 

disrupts task performance for only the preferred category of each area (Pitcher, 

Goldhaber, Duchaine, Walsh, & Kanwisher, 2012). This latter finding suggests the rOFA 

could have a feedback role in the face-processing network.  
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 Another study used TMS to examine the face inversion effect, where face 

discrimination is more severely impaired by stimulus inversion (a 180 degree spatial 

rotation) than the discrimination of other object categories (Pitcher, Duchaine, Walsh, 

Yovel, & Kanwisher, 2011). TMS to the rOFA impaired discrimination of both upright 

and inverted faces, while TMS to the right lateral occipital area (rLO) only impaired 

inverted face discrimination. These results suggest that upright faces are represented by 

specialized face-processing mechanisms, while inverted faces are represented by both 

face- and object-processing mechanisms. The authors posit that the similar sensitivity to 

both upright and inverted faces is consistent with the notion that the OFA processes face 

feature information at an early processing stage (Pitcher et al., 2011a). 

In an earlier study, TMS to the rOFA disrupted accurate discrimination of face 

parts but not discrimination of spacing between the parts for face identification (Pitcher, 

Walsh, Yovel, & Duchaine, 2007). Accuracy was impaired when TMS pulses were 

delivered to the rOFA at 60 and 100 ms post stimulus onset. They concluded that the 

rOFA must process face-part information at an early stage in face processing and that 

these results support the theory of a hierarchical feedforward face network (Pitcher et al., 

2007). However, since face detection or categorization was not assessed, an alternate 

conclusion could equally be drawn. If a non-hierarchical model exists with re-entrant 

connections between the FFA and OFA, it could yield the same results with respect to 

impairment in face recognition following disruption to the OFA. If TMS to the OFA 

disrupts face recognition this does not conclusively determine whether face recognition 

operates on a hierarchical or non-hierarchical model.  
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To address this question, we replicated the aforementioned study with an 

additional face categorization control task (Solomon-Harris, Mullin, & Steeves, 2013). 

Using TMS to temporarily disrupt processing in the rOFA did not affect participants’ 

ability to categorize intact versus scrambled faces, but significantly impaired the ability to 

recognize faces in an identification task. This recognition impairment was specific to 

faces, since an analogous house recognition task was unaffected. Stimulation of a nearby 

region, the rLO, did not impair face recognition. These results suggest that the rOFA is 

involved in “higher level” recognition but not “lower level” basic detection and 

categorization of faces (Solomon-Harris et al., 2013). Face categorization but not 

recognition can occur without the “earlier” OFA being “online" and indicates that “lower 

level” face category processing may be assumed by other intact face network regions 

such as the FFA. These results are consistent with the patient data and support a non-

hierarchical, global-to-local model. 

Face perception is an excellent example of highly detailed processing that occurs 

below the level of conscious perception, leading to the illusion of simplicity of neural 

processing. This research demonstrates how neuropsychology and neurophysiology can 

help to elucidate complex mental processes that are commonly taken for granted. Even 

the simplest activities in daily life rely on enormously complex, highly interconnected 

processing networks that we are only beginning to unravel.  
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INTRODUCTION 

We sought to further investigate the role of the OFA in the face-processing 

network with TMS. The OFA can be easily accessed by TMS due to its posterior location 

toward the cortical surface, while the FFA is too deep within the cortex to be reached. 

Yet, an important question arises in the TMS literature: how does disruption at a focal 

stimulation site affect other connected areas? 

Concurrent TMS-fMRI aims to answer this question, but is highly technically 

challenging. First and foremost, a special MR-compatible TMS coil is required. In 

addition, the MR slice acquisition (i.e. orientation and timing) must be carefully designed 

to minimize signal loss and artifacts from the discharge of the TMS coil (Sandrini et al., 

2011). A feasible experimental setup must also be designed so that participants can fit 

comfortably in the bore of the scanner with the TMS coil fixed in place at the target site 

along with the radiofrequency head coil necessary for neuroimaging. Fixing the TMS coil 

at the target site is another challenge since frameless stereotaxic systems are not MR-

compatible.  

Consecutive TMS-fMRI is much less technically challenging than the concurrent 

paradigm. This involves performing offline rTMS outside the scanner, which has been 

shown to induce effects lasting at least half the stimulation time (Robertson et al., 2003; 

Sandrini et al., 2011), then immediately performing functional neuroimaging (e.g. Mullin 

& Steeves, 2013).  

We used offline repetitive TMS to temporarily disrupt processing in the right OFA 

in neurologically intact individuals. We then immediately performed fMRI to measure 
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changes in blood oxygenation level dependent (BOLD) signal across the face network 

using an fMR-adaptation paradigm. In the adaptation experiment, participants viewed 

face or butterfly images of the same or different identities, similar to a previous study of 

patients with prosopagnosia (Steeves et al., 2009).  

We predicted that TMS to the right OFA would induce abnormal face identity 

coding in the right FFA, reflected by a decreased adaptation response. That is, the fMRI 

response to faces of same versus different identities will be more similar after TMS has 

been applied to the right OFA compared to sham TMS and TMS to a control site, the 

object-selective right lateral occipital area (LO). This finding would causally demonstrate 

the importance of the OFA for normal face identity coding in the FFA. 

 

Questions and Hypotheses 

First, is activation in predefined regions different across TMS conditions?  

Null hypothesis: activation with TMS to OFA = activation with TMS to LO = 

activation with sham TMS; indicates no effect of TMS.  

Alternate hypothesis I: activation with TMS to OFA ≠ activation with TMS to LO 

= activation with sham TMS; indicates specific effect of TMS to OFA. 

Alternate hypothesis II: activation with TMS to OFA = activation with TMS to 

LO ≠ activation with sham TMS; indicates non-specific effect of TMS compared to sham 

stimulation.  
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Second, as a measure of the size of the adaptation effect, are indices of fMR-

adaptation [(different – same) / (different + same)] different across TMS conditions?  

Null hypothesis: adaptation indices with TMS to OFA = adaptation indices with 

TMS to LO = adaptation indices with sham TMS; indicates no effect of TMS.  

Alternate hypothesis I: adaptation indices with TMS to OFA ≠ adaptation indices 

with TMS to LO = adaptation indices with sham TMS; indicates specific effect of TMS to 

OFA. 

Alternate hypothesis II: adaptation indices with TMS to OFA = adaptation indices 

with TMS to LO ≠ adaptation indices with sham TMS; indicates non-specific effect of 

TMS compared to sham stimulation. 

 

 

METHODS 

Participants 

Ten healthy volunteers (5 female, 8 right handed, mean age 30.5 years) 

participated in all three conditions of the experiment, including fMRI to localize the 

stimulation sites and regions of interest (ROIs). All participants had normal or corrected-

to-normal vision and no known contraindications to TMS or fMRI. Informed consent was 

obtained in accordance with the York University Office of Research Ethics and 

participants were treated in accordance with the Declaration of Helsinki. 
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Outline 

The consecutive TMS-fMRI paradigm has three parts: (1) prestimulation fMRI to 

localize the TMS sites and ROIs; (2) the application of TMS to functionally defined 

targets on different days; (3) immediate poststimulation fMRI to examine effects of TMS 

on changes in BOLD signal in predefined regions. 

 

Data Acquisition and Preprocessing 

Structural and functional images were acquired using a 3 Tesla Siemens 

Magnetom Tim Trio magnetic resonance scanner at York University’s Sherman Health 

Science Research Centre (Toronto, Canada) and the Siemens 32 channel head coil. High-

resolution anatomical images were acquired with an MP-RAGE sequence (magnetization 

prepared rapid acquisition with gradient echo, in-plane resolution 1 x 1 mm, 176 sagittal 

slices, slice thickness = 1 mm, imaging matrix 256 × 256, FOV = 256 x 256 mm, TE = 

2.52 ms, TR =1900 ms, flip angle = 9°, TI = 900 ms). Functional volumes were acquired 

with echo planar imaging (in-plane resolution 2.5 x 2.5 mm, slice thickness = 3 mm, 96 x 

96 imaging matrix, FOV = 24 x 24 cm, 32 axial slices, TR = 2 s, TE = 30 ms, flip angle = 

90°). 

Imaging analyses were performed using BrainVoyager QX software (Brain 

Innovation, Maastricht, NL). Functional data were subject to preprocessing steps 

including linear trend removal to exclude scanner-related signal drift, high-pass filtering 

to remove temporal frequencies lower than three cycles per run, and a correction for small 
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interscan head movements using a rigid body algorithm rotating and translating each 

functional volume in 3D space. Each participant’s functional images were coregistered 

with their anatomical images. The functional data were analyzed using a general linear 

model. 

 

Prestimulation fMRI 

Stimulation sites and ROIs for subsequent comparisons across TMS conditions 

were localized using fMRI in a pre-experimental session. Functional localizer scans used 

a block design and participants performed a one-back task to focus attention on the 3 

categories of visual stimuli: colour images of faces, scenes and objects. Each run began 

and finished with a fixation cross for 16 s. Six repetitions of three 16 s blocks of the three 

categories of stimuli were presented in pseudorandom order. Each repetition was 

interleaved with 16 s of fixation. Each block contained 16 stimuli presented for 1 s each. 

Imaging data were collected over two functional runs (6 min, 52 s). Stimuli were 

presented with a rear-projection system (Avotec, Stuart, FL). 

A linear balanced contrast of faces versus objects and scenes was used to localize 

face-selective ROIs: the OFA (experimental TMS site; Figure 1), FFA, and pSTS. A 

linear balanced contrast of objects versus faces and scenes was used to localize the object-

selective area LO (control TMS site; Figure 1). A linear balanced contrast of scenes 

versus faces and objects was used to identify ROIs for scene-selective regions: the 

parahippocampal place area (PPA; Epstein & Kanwisher, 1998) and the transverse 
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occipital sulcus (TOS; Grill-Spector, 2003), which has also been called the “occipital 

place area” (OPA; Dilks, Julian, Paunov, & Kanwisher, 2013).  

For each ROI identified in the stimulated (right) hemisphere, its contralateral 

counterpart was also defined. Evaluation of contralateral ROIs allows the assessment of 

potential remote interhemispheric effects. However, the left pSTS could only be 

identified in 4/10 participants and was therefore omitted from analyses. Right hemisphere 

dominance in face processing, as well as smaller and less reliable activation for faces in 

the STS, are consistent with the work of others (e.g. Bentin et al., 1996; Henson et al., 

2003; Sergent, Ohta, & MacDonald, 1992). Anatomical images from the localizer runs 

were transformed into Talairach space (Talairach & Tournoux, 1988) and mean Talairach 

coordinates for the centre of each ROI were determined to be within the range of those 

reported in other studies (Table 1; e.g. Dricot, Sorger, Schiltz, Goebel, & Rossion, 2008; 

Ewbank, Schluppeck, & Andrews, 2005; Mullin & Steeves, 2013; Steeves et al., 2009).  

 

 

Figure 1. Rendered brain of a typical participant with targets at the experimental 

stimulation site, the “occipital face area” (OFA) in the right inferior occipital gyrus, and 

the control stimulation site, the object-selective lateral occipital area (LO). L = left; R = 

right; P = posterior; A = anterior.  
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Table 1 
 
Mean Talairach coordinates for the functionally defined regions of interest (ROIs) 

Region of 
Interest 

Number of 
Participants 

Cluster Size 
(mm3) 

Tal X  
Mean (SD) 

Tal Y  
Mean (SD) 

Tal Z  
Mean (SD) 

Face-
selective 

 

OFA  
 Right 10 315  36 (4.1) -71 (7.7) -14 (5.0) 
 Left 8 317 -36 (3.6) -70 (6.3) -14 (3.6) 

FFA  
 Right 10 374  37 (5.1) -47 (5.3) -18 (4.2) 
 Left 9 373 -37 (5.5) -48 (5.8) -19 (4.9) 

STS  
 Right 10 342  49 (2.1) -46 (5.9) 9 (4.1) 
 Left 4 298 -48 (0.8) -50 (2.2) 5 (2.4) 

Object-
selective 

 

LO  
 Right 10 301  42 (5.5) -70 (4.4) -5 (1.9) 
 Left 10 308 -44 (4.9) -69 (3.9) -5 (2.8) 

Scene-
selective 

 

TOS  
 Right 10 343  34 (4.8) -82 (4.2) 18 (3.0) 
 Left 10 311 -31 (3.8) -82 (6.2) 16 (6.0) 

PPA  
 Right 10 366  25 (6.4) -50 (8.3) -14 (6.3) 
 Left 10 315 -24 (7.3) -49 (5.9) -14 (4.2) 

Note. Each region was identified with a threshold of p < 0.05, FDR-corrected. 
 
OFA = occipital face area; FFA = fusiform face area; STS = superior temporal sulcus;  
LO = lateral occipital area; TOS = transverse occipital sulcus; PPA = parahippocampal 
place area; SD = standard deviation; FDR = false discovery rate. Right and Left refer to the 
cerebral hemispheres.  
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TMS Functional Stereotaxy  

The functionally defined stimulation sites (Figure 1) were targeted with Brainsight 

image-guided co-registration software and hardware (Rogue Research, Montréal, QC) 

utilizing individual MRI scans for each participant. Common reference points on both the 

MR images and the participant's head were selected to create a co-registration matrix. The 

spatial relationship between these reference points on the MR images and those on the 

participant's head were co-registered using a Polaris infrared marker system. The brain 

stimulation sites were individually selected by overlaying each participant’s activation 

map from the fMRI localizer onto a three-dimensional reconstruction of the participant’s 

brain and scalp within the Brainsight software. Subsequently, image-guided TMS was 

achieved by monitoring, in real time, the location and orientation of the TMS coil and 

targeted brain stimulation site via infrared markers on the coil and the participant’s head 

(Figure 2). 

 

Stimulation Parameters 

The experiment consisted of three stimulation conditions: (1) TMS to the right 

OFA, (2) TMS to the right LO, and (3) sham TMS to the right occipital lobe. The 

stimulation conditions were targeted on different days in counterbalanced order across 

participants. A Magstim Super Rapid2 stimulator and an air-cooled figure-of-eight coil 

with a diameter of 70 mm were used to deliver the stimulation pulses (Magstim; 

Whitland, UK). During stimulation, the coil was held tangent to the scalp surface with the 
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handle pointed downward (Figure 2). For sham stimulation at the OFA, the coil was 

positioned orthogonal to the scalp surface so that no pulse entered the brain.  

 

 

 

 
Figure 2. Experimental setup. Offline repetitive TMS was performed in the MRI control 

room for 20 minutes at 1 Hz and 60% maximum stimulator output. A = 3T Siemens 

Magnetom Tim Trio MRI scanner; B = MRI control computer; C = stimulus presentation 

computer; D = Brainsight neuronavigation computer; E = Polaris infrared camera; F = 

subject tracker; G = TMS coil with tracker; H = articulated coil stand; I = Magstim Super 

Rapid2 stimulator.  
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A low-frequency pulse (1 Hz) was delivered for 20 minutes (1200 pulses), thereby 

allowing approximately 10 minutes of TMS-induced disruption to neural processing 

(Chen et al., 1997; Pascual-Leone et al., 1998; Robertson et al., 2003; Sandrini et al., 

2011) in which to assess potential effects on BOLD signal change. The intensity was set 

at 60% of maximum stimulator output based on previous findings from our laboratory 

(Mullin & Steeves, 2011; Mullin & Steeves, 2013; Ganaden, Mullin, & Steeves, 2013; 

Solomon-Harris et al., 2013), along with other similar research (Campana, Cowey, & 

Walsh, 2002; Pitcher, Charles, Devlin, Walsh, & Duchaine, 2009; Pitcher et al., 2007; 

Silvanto et al., 2005). The frequency, intensity, and duration of the TMS train were well 

within the safety limits of stimulation (Rossi, Hallett, Rossini, Pascual-Leone, & the 

safety of TMS consensus group, 2009; Wassermann, 1998). Earplugs were worn to 

dampen the noise from the coil discharge during TMS, and during poststimulation 

scanning.  

 

TMS Safety 

Safety is an important consideration in TMS research. The magnetic field 

generated by a TMS coil produces a loud clicking sound, so the use of earplugs is 

recommended for all experiments. Some subjects may experience headaches, nausea, or 

may find the associated twitching and additional peripheral effects of TMS too 

uncomfortable (Stewart et al., 2001). These subjects should be released from any 

obligation to continue in an experiment for their own health and safety, and additionally 

to avoid the collection of noisy data. More serious are the concerns that TMS may induce 
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an epileptic seizure. The risk of seizures increases when repetitive TMS pulses are 

delivered at high frequencies with short interval periods between trains (Rossi et al., 

2009; Wassermann, 1998). Subjects with any personal or family history of epilepsy or 

other neurological conditions are precluded from partaking in TMS experiments that do 

not involve investigation of that condition.  

 

Poststimulation fMRI  

Immediately after each of the three TMS conditions, participants underwent 

functional neuroimaging. TMS was performed in the MRI control room in order to 

minimize the time between stimulation and neuroimaging (Figure 2). As soon as the 

participant was positioned in the scanner, the fMR-adaptation experiment was conducted 

first followed by structural image acquisition.  

The adaptation experiment was comprised of blocks of colour images of different 

identity faces, same identity faces, different identity butterflies, and same identity 

butterflies (Figure 3). To maintain attention, participants pressed a button to indicate 

when blocks switched between images of faces and butterflies (and vice versa). Each run 

began and finished with a fixation cross for 12 s. Eight repetitions of four 12 s blocks of 

the four categories of stimuli were presented in pseudorandom counterbalanced order. 

Each repetition was interleaved with 12 s of fixation. Each block contained 12 images 

presented for 800 ms followed by a 200 ms blank screen. Imaging data were collected 

over one functional run lasting 8 min 14 s.  
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The independent prestimulation localizer ROIs were applied to the coregistered 

poststimulation data for each participant in order to measure the BOLD response after 

each TMS condition. Thresholds were held constant across pre- and poststimulation 

conditions for each ROI. The volume-of-interest analysis tool in BrainVoyager QX 

software was used to perform a general linear model analysis (Brain Innovation, 

Maastricht, NL) and beta weights in the predefined ROIs were determined for each 

stimulation condition.  

 

 

 

Figure 3. A schematic of the face fMR-adaptation experiment. Twelve-second blocks of 

12 images (800 ms + 200 ms blank screen) depicting different faces, same faces, different 

butterflies, and same butterflies. Eight repetitions of the four stimulus category blocks 

were presented in pseudorandom counterbalanced order. Each repetition was interleaved 

with 12 s of fixation. Each run began and finished with a fixation cross for 12 s. Data 

were collected over one functional run lasting 8 min 14 s.  
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Data Analysis 

R statistical computing software was used for all analyses (The R Project for 

Statistical Computing; www.r-project.org). Visual inspection of histograms in 

conjunction with Shapiro-Wilk tests indicated that the data are normally distributed. 

Linear mixed-effects models (also called mixed models or multilevel models) were fit to 

the data, minimizing effects of missing cells and unequal variances.  

Mixed-effects models refer to designs with both random and fixed variables 

(Twisk, 2006). They offer many advantages over more traditional analyses, yet they are 

complex and the syntax for software analysis is somewhat difficult to construct. Mixed 

models can be used to analyze what is usually thought of as a simple repeated measures 

analysis of variance (ANOVA). Instead of using a least squares solution, mixed models 

use a maximum likelihood solution, eliminating the requirement for complete data in the 

case of missing cells. Furthermore, mixed models do not assume sphericity, and the 

covariance structure can be modelled. The current analyses used models with 

unstructured covariance. Diagnostics were performed on the residuals to assure that 

model assumptions were satisfied.  

Factors in the models included ROI, TMS condition, stimulus category, sex and 

handedness. Significant findings were followed up with Wald tests for pairwise 

comparisons, and p-values were adjusted with the false discovery rate (FDR) correction 

for multiple comparisons. Alpha was set at p<0.05 for significance and p<0.10 for trends. 

Effect sizes (r) were calculated for significant findings:  

r = √ [t2 / (t2 + df)] 
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For each ROI, mixed-effects models were fit to separately examine activation for 

each stimulus category across TMS conditions (effects of TMS; Figures 4 and 5), 

activation across stimulus categories in each TMS condition (fMR-adaptation), and 

effects of sex and handedness. Previous work has demonstrated sex and handedness 

differences in face processing (Brewster, Mullin, Dobrin, & Steeves, 2011).  

As a measure of the size of the fMR-adaptation effect, adaptation indices were 

computed [(different – same) / (different + same)] for both faces and butterflies at each 

ROI. Linear mixed-effects models were also fit to these data to examine effects of TMS 

on adaptation indices. 

 

 

RESULTS 

ROI Activation 

OFA. There was a significant difference in activation for different faces in the 

right OFA, the experimental stimulation site [F (2, 18) = 3.68, p = 0.046]. FDR corrected 

pairwise comparisons revealed that activation for different faces was marginally lower in 

the right OFA with TMS to OFA compared to sham (p = 0.054, effect size r = 0.52). 

Activation for different faces was also slightly lower in the right OFA with TMS to LO 

compared to sham (p = 0.10, r = 0.42). There was no difference in activation for different 

faces between TMS to LO and OFA (p = 0.52). TMS did not affect activation for other 

stimulus categories in the right OFA (ps > 0.1). Despite reduced activation for different 
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faces in the right OFA, the typical pattern of face preferential activation persists – 

activation for different faces was higher than that for same faces and together face 

activation was higher than that for butterflies (ps < 0.05).  

TMS did not affect activation for any stimulus categories in the left OFA (ps > 

0.1). The left OFA showed the typical pattern of face preferential activation (ps < 0.05). 

There were no effects of sex or handedness (ps > 0.05). 

 

FFA. There was a significant difference in activation for different faces in the 

right FFA [F (2, 18) = 8.05, p = 0.003]. FDR corrected pairwise comparisons revealed 

that activation for different faces was significantly lower in the right FFA with TMS to 

OFA compared to both sham (p = 0.0026, r = 0.69) and TMS to LO (p = 0.038, r = 0.51). 

There was no difference in activation for different faces between TMS to LO and sham (p 

= 0.14). TMS did not affect activation for other stimulus categories in the right FFA (ps > 

0.1). Despite reduced activation for different faces in the right FFA, the typical pattern of 

face preferential activation persists – activation for different faces was higher than that for 

same faces and together face activation was higher than that for butterflies (ps < 0.05).  

Interhemispheric effects were indicated by a significant difference in activation 

for different faces in the left FFA [F (2, 16) = 3.86, p = 0.043]. FDR corrected pairwise 

comparisons revealed that activation for different faces was significantly lower in the left 

FFA with TMS to OFA compared to sham (p = 0.042, r = 0.57). There was no difference 

in activation for different faces between TMS to LO and OFA (p = 0.16) or between TMS 
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to LO and sham (p = 0.31). In other words, TMS to the OFA in the opposite hemisphere 

reduced activation for different faces in the left FFA. 

There was also a marginally significant difference in activation for same 

butterflies in the left FFA [F (2, 16) = 3.52, p = 0.054]. FDR corrected pairwise 

comparisons revealed that activation for same butterflies was marginally lower with TMS 

to LO compared to sham (p = 0.054, r = 0.55). There was no difference in activation for 

same butterflies between TMS to LO and OFA (p = 0.32) or between TMS to OFA and 

sham (p = 0.19). TMS did not affect activation for other stimulus categories in the left 

FFA (ps > 0.1). Despite reduced activation for different faces and same butterflies in the 

left FFA, the typical pattern of face preferential activation persists – higher activation for 

different faces than for same faces, and overall higher face than butterfly activation (ps < 

0.05). There were no effects of sex or handedness (ps > 0.05).  

 

STS. TMS did not affect activation for any stimulus categories in the right STS 

(ps > 0.1). Activation for faces was higher than that for butterflies (p < 0.05). In the sham 

condition, the right STS showed higher activation for different faces than for same faces 

(p < 0.05), but not in the other TMS conditions (ps > 0.05). There were no effects of sex 

or handedness (ps > 0.05). The left STS could only be functionally localized in 4 out of 

10 participants and was therefore omitted from analyses.  
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LO. There was a significant difference in activation for same faces in the right 

LO, the control stimulation site [F (2, 18) = 6.16, p = 0.009]. FDR corrected pairwise 

comparisons revealed significantly higher activation for same faces in the right LO with 

both TMS to LO (p = 0.031, r = 0.51) and TMS to OFA (p = 0.01, r = 0.62) compared to 

sham. There was no difference in activation for same faces between TMS to LO and OFA 

(p = 0.42). Activation for different butterflies was higher than that for same butterflies 

and together butterfly activation was higher than that for faces (ps < 0.05).   

TMS did not affect activation for any stimulus categories in the left LO (ps > 0.1). 

Activation for different butterflies was higher than that for same butterflies and together 

butterfly activation was higher than that for faces (ps < 0.05). There were no effects of 

sex or handedness (ps > 0.05). 

 

TOS. There was a trend for a difference in activation for same faces in the right 

TOS [F (2, 18) = 2.71, p = 0.093], but FDR corrected pairwise comparisons revealed no 

significant differences (ps > 0.1). TMS did not affect activation for other stimulus 

categories in the right TOS (ps > 0.1). Activation for different butterflies was higher than 

that for same butterflies and together butterfly activation was higher than that for faces 

(ps < 0.05).  

There was also a trend for a difference in activation for same faces in the left TOS 

[F (2, 18) = 3.51, p = 0.052]. FDR corrected pairwise comparisons revealed activation for 

same faces was marginally higher with TMS to OFA compared to sham (p = 0.073, r = 

0.50) and TMS to LO (p = 0.078, r = 0.44). There was no difference in activation for 
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same faces between TMS to LO and sham (p = 0.71). TMS did not affect activation for 

other stimulus categories in the left TOS (ps > 0.1). Activation for different butterflies 

was higher than that for same butterflies and together butterfly activation was higher than 

that for faces (ps < 0.05). There were no effects of sex or handedness (ps > 0.05). 

 

PPA. There was a trend for a difference in activation for same faces in the right 

PPA [F (2, 18) = 2.58, p = 0.10], but FDR corrected pairwise comparisons revealed no 

significant differences (ps > 0.1). TMS did not affect activation for other stimulus 

categories in the right PPA (ps > 0.1). Activation was higher for different butterflies than 

the other stimulus categories (ps < 0.05) with no differences between the other categories 

(ps > 0.05).  

There was also a trend for a difference in activation for different faces in the left 

PPA [F (2, 18) = 2.86, p = 0.084]. FDR corrected pairwise comparisons revealed that 

activation was marginally lower for different faces with TMS to LO compared to sham (p 

= 0.084, r = 0.49). There were no differences in activation for different faces between 

TMS to OFA and LO (p = 0.28) or TMS to OFA and sham (p = 0.28). TMS did not affect 

activation for other stimulus categories in the left PPA (ps > 0.1). Activation was higher 

for different butterflies than the other stimulus categories (ps < 0.05) with no differences 

between the other categories (ps > 0.05). There were no effects of sex or handedness (ps 

> 0.05).  
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Figure 4. Effects of transcranial magnetic stimulation (TMS) in face-selective regions. 

Error bars represent standard error of the mean. OFA = occipital face area; FFA = 

fusiform face area; STS = superior temporal sulcus; *p < 0.05; **p < 0.01 [false 

discovery rate (FDR) corrected p-values].  
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Figure 5. Effects of transcranial magnetic stimulation (TMS) in non-face-selective 

regions. Error bars represent standard error of the mean. LO = lateral occipital area; TOS 

= transverse occipital sulcus; PPA = parahippocampal place area; *p < 0.05 [false 

discovery rate (FDR) corrected p-values]. 
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Adaptation Indices 

At the experimental stimulation site, there was a significant effect of TMS in the 

right OFA on the adaptation index [F (2, 18) = 3.72, p = 0.04] (Figure 6). FDR corrected 

pairwise comparisons revealed a significant difference in face adaptation between the 

sham and TMS to OFA conditions (p = 0.04, r = 0.54) with no other significant 

comparisons (ps > 0.1). In other words, the size of the fMR-adaptation effect was reduced 

with TMS to the OFA compared to sham stimulation. There was no effect of TMS on 

butterfly adaptation at the right OFA (p > 0.1). No other adaptation indices at the other 

ROIs were significantly affected by TMS (ps > 0.1). There were no effects of sex or 

handedness (ps > 0.05). 

 

 

 
Figure 6. Effect of transcranial magnetic stimulation (TMS) on the adaptation index 

[(different – same) / (different + same)] for faces in the right “occipital face area” (OFA), 

the experimental stimulation site. Error bars represent standard error of the mean; *p < 

0.05 with false discovery rate (FDR) correction. No other adaptation indices were 

significantly affected by TMS (ps > 0.1).  
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DISCUSSION 

Disrupted Processing at TMS Sites 

We asked whether activation in predefined regions is different across TMS 

conditions. TMS to the OFA significantly decreased activation for different identity faces 

in the right OFA compared to sham stimulation. TMS to the nearby LO marginally 

decreased activation for different identity faces in the right OFA. These findings support 

alternate hypothesis II: a non-specific effect of TMS compared to sham stimulation. Yet, 

TMS selectively disrupted face processing in the right OFA, as activation for images of 

butterflies was unaffected. Despite disrupted processing of different face identities, the 

typical pattern of face preferential activation persisted (activation for different faces was 

higher than that for same faces and together face activation was higher than that for 

butterflies), suggesting that this region continues to code face identity. However, the size 

of the fMR-adaptation effect [(different – same) / (different + same)] for faces within the 

right OFA was significantly reduced with TMS to the OFA, further demonstrating that 

TMS to the OFA selectively impairs face identity coding in this area. The size of fMR-

adaptation was not affected by TMS to any stimulation site in any other region of interest. 

TMS to both the OFA and LO significantly increased activation for same identity 

faces in the right LO compared to sham stimulation, again supporting alternate hypothesis 

II. This finding paired with the above marginal effect of TMS to LO in the right OFA 

suggests there could be an effect of proximity and a possible spread of TMS effect with 

extended stimulation time. In other words, the close proximity of LO to the OFA may 
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have allowed for spread of TMS effects to the preferred processing category, namely 

faces, within the OFA. Nonetheless, LO has served as an effective TMS control site for 

the OFA in previous online behavioural studies with relatively short bursts of pulse trains 

(Pitcher, Charles, Devlin, Walsh, Duchaine, 2009; Pitcher, Walsh, Yovel, & Duchaine, 

2007; Solomon-Harris, Mullin, & Steeves, 2013). This is different from the current 

offline TMS paradigm, where stimulation was applied for 20 minutes at a low frequency 

(1 Hz), providing a 10-minute window in which to measure effects of neural disruption.  

 

Remote Effects of TMS  

 Remotely, TMS to the OFA significantly decreased activation for different 

identity faces in the right FFA compared to both sham stimulation and TMS to LO. This 

supports alternate hypothesis I: a specific effect of TMS to OFA. Moreover, TMS 

selectively disrupted face processing in the right FFA, as activation for butterflies was 

unaffected. The typical pattern of face preferential activation persisted (activation for 

different faces was higher than that for same faces and together face activation was higher 

than that for butterflies), suggesting that this region continues to code face identity despite 

selective disruption to face processing with TMS to the OFA. These results indicate that 

the activity within the OFA following disruption with TMS has an effect on processing in 

a remote region within the face network. This further emphasizes the connectivity 

between these regions.   

 While we did not observe interhemispheric effects of TMS in the left OFA, TMS 

to the right OFA significantly decreased activation for different identity faces in the left 
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FFA compared to sham stimulation. Again, this indicates remote effects within the face 

processing network and highlights the connectivity of right OFA to left FFA albeit 

possibly indirectly. TMS to the right LO also decreased activation for same identity 

butterflies in the left FFA compared to sham stimulation. There were no significant 

differences between TMS to the OFA and LO, supporting alternate hypothesis II, and 

possibly indicating a small level of spread of TMS between the nearby regions. Despite 

disrupted processing of different faces and same butterflies, the typical pattern of face 

preferential activation persisted, suggesting the left FFA continues to code face identity.  

 TMS to the OFA did not significantly affect activation for any stimulus category 

in the right STS. However, with TMS to both the OFA and LO, activation for different 

identity faces was no longer significantly higher than that for same identity faces as it was 

with sham stimulation. This supports alternate hypothesis II, and further suggests that 

TMS disrupts the relatively small sensitivity to face identity in the STS. Another recent 

consecutive TMS-fMRI study found that disruption of the OFA reduced activity to both 

static and dynamic faces in the FFA (Pitcher, Duchaine, & Walsh, 2014). Meanwhile in 

the STS, disruption of the OFA reduced activity for static but not dynamic faces, while 

disruption of the STS itself reduced activity for dynamic but not static faces. The authors 

posit that dynamic and static face processing is achieved via dissociable cortical pathways 

beginning in early visual cortex (Pitcher et al., 2014).  

 Trend effects in the left TOS and PPA are likely meaningless since they are the 

result of negative beta values and must be interpreted cautiously (Harel, Lee, Nagaoka, 

Kim, & Kim, 2002). There were no other remote effects of TMS. 
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Summary and Conclusions 

Here we causally demonstrate that TMS to the right OFA selectively disrupts face 

identity coding in the right FFA compared to both sham stimulation and TMS to the 

object-selective area LO. TMS to the right OFA also disrupts face identity coding in the 

left FFA compared to sham stimulation, without affecting activity in the left OFA. This 

suggests that TMS to the right OFA selectively disrupts face processing in the right FFA, 

which then affects processing in the left FFA.  Alternatively, TMS to the right OFA could 

possibly affect both the right and left FFA simultaneously.  

The lack of difference between TMS to the OFA and LO at these two same 

stimulation sites (activation for different identity faces in the right OFA, and for same 

identity faces in the right LO) could possibly be due to a local spread of TMS effect 

between the nearby sites with the extended stimulation time (20 minutes, compared to 

~500 ms bursts in online TMS studies; e.g. Solomon-Harris et al., 2013). The 

experimental and control stimulation sites are near each other in order to adequately 

control for the peripheral effects of TMS, which can feel rather different depending on 

where stimulation occurs on the head. The three-dimensional (3D) distance between the 

stimulation sites in native space is 16.6 mm.  

3D distance (d) = √[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2] 

It is possible that the similar effects of TMS at these two sites on face-preferential 

activity could be due to communication between these two regions. However, given that 

the effect of TMS was significantly larger in the more face preferential region, the OFA, 

it is likely that local spread of TMS to the adjacent area LO is a better account for this 
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finding. Nonetheless, a dynamic causal modelling (DCM) study of effective connectivity 

suggests that the LO may play a more important role in face processing than is 

traditionally assumed (Nagy, Greenlee, & Kovacs, 2012). The DCM study shows 

bidirectional connections between LO and both the OFA and FFA. The authors posit that 

LO may play an early role in the structural processing of faces, a function commonly 

attributed to the OFA (Nagy et al., 2012). Furthermore, a diffusion tensor imaging (DTI) 

study has demonstrated anatomical connectivity between LO and the FFA (Kim et al., 

2006). Yet, a previous consecutive TMS-fMRI study did not observe significant changes 

in selectivity to faces in the left OFA or FFA when TMS was applied to the left LO 

(Mullin & Steeves, 2013). In that study, however, the authors applied TMS for a shorter 

time period (15 min) than in the current study (20 min). With the techniques employed in 

the current research paradigm, a larger sample size would not be feasible, but perhaps 

could provide the power necessary to distinguish significant differences between effects 

at the nearby stimulation sites. 

There is, however, a significant difference between TMS to the OFA and LO in 

remote effects in activation for different identity faces in the right FFA. This finding 

causally demonstrates the specific importance of the right OFA for normal face identity 

coding in the right FFA. We have shown that disruption to the OFA alters face identity 

coding in the FFA. Although TMS to the OFA does not obliterate the ability of either the 

FFA or OFA to code face identity, it does selectively disrupt face identity processing in 

both regions. TMS is often called a virtual lesion, but it may be better characterized as a 

transient disruption of processing or the addition of neural noise.  
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This research dovetails with mounting evidence from patients with brain damage 

(Atkinson & Adolphs, 2011; Rossion et al., 2003; Steeves et al., 2006; Steeves et al., 

2009) and neuroimaging studies of the healthy brain (Goffaux et al., 2011; Jiang et al., 

2011; Rossion et al., 2011; Rossion et al., 2012) demonstrating the importance of the 

OFA for face recognition.  
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Focality of TMS 

The efficacy of TMS as an experimental tool critically depends on the spatial 

resolution of the induced disruption. Theoretically the magnetic field induced by TMS is 

infinite with the induced electrical field decreasing linearly from the centre of the 

stimulation focal point (Walsh & Cowey, 2000). However, in practical TMS research, the 

size of the electrical field capable of disrupting normal neuronal activity is limited. The 

effects of stimulation are limited to superficial cortical regions and cannot be used to 

study medial areas or the subcortex (Walsh & Cowey, 2000). The strength of the induced 

electric field becomes minimal as the coil-to-cortex distance increases beyond 3 cm due 

to a non-linear decay of signal (Thielscher & Kammer, 2004). Furthermore, stimulating 

deeper cortical areas, such as sulci, may also affect overlaying regions (Walsh & Cowey, 

2000).  

Various TMS coil geometries have been proposed, but circular or figure-of-eight 

coils are most commonly used. The simplest coil geometry is a single circular winding. 

As current flows through the coil, it produces a magnetic field around the circumference 

of the winding. The resulting field is not very well focused, so this type of coil tends to 

induce poorly localized responses (Walsh & Pascual-Leone, 2003). A figure-of-eight coil 

produces the most focal effects of TMS. In a figure-of-eight coil, two overlapping circular 

windings contain current flowing in opposite directions, converging at the centre point of 

the coil where the electrical currents summate. The resulting magnetic field induces focal 

neural stimulation with the largest effect occurring in the cortex situated directly under 

the centre point of the coil overlap (Walsh & Pascual-Leone, 2003). Because the wings of 
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the coil are further away from the surface of the scalp, they are unlikely to induce an 

additional disruptive magnetic field. The stimulation effects dissipate gradually as the 

depth distance from the maximal plane increases (Walsh & Cowey, 2000). Smaller coils 

can be used to produce even more focal signals, but since the signal drops off more 

rapidly with distance, these can only be used for stimulation of superficial structures. 

Larger TMS coils generally have slower decay of the electric field in depth at the expense 

of reduced focality (Huang et al., 2009). The current research employed a 70 mm air-

cooled figure-of-eight coil with relatively high-resolution focal stimulation capacity.  

While stimulation effects are maximal under the centre point of a figure-of-eight 

coil, there is a dissipating local spread as distance from the centre point increases. This 

spread of current increases with increasing intensity of stimulation (Thielscher & 

Kammer, 2004). The most effective method for demonstrating the dissipation of spread is 

systematic measurement of behavioural disruption as the coil is moved away from an 

optimal stimulation site (Walsh & Cowey, 2000). This has been effectively demonstrated 

at two functionally distinct cortical sites in the motor and visual cortices. TMS targeted at 

the primary motor cortex (M1) results in muscle twitches that can then be measured with 

motor evoked potentials. TMS over M1 has been shown to evoke muscle twitches from 

the fingers, hand, arm, face, trunk and leg in a manner that matches the functional 

organization of the motor homunculus first reported by Penfield and Jasper (1954) 

(Krings et al., 1998; Singh et al., 1997; Wassermann et al., 1992). Stimulation at target 

sites approximately 1 cm apart is sufficient to selectively activate each of these different 

muscles (Brasil-Neto et al., 1992). A similar spatial resolution has also been reported in 
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primary visual cortex (V1), which can be measured by the generation of phosphenes 

(Walsh & Cowey, 2000). The spatial distribution of reported phosphenes and transient 

scotomas corresponds with the retinotopic organization of V1 (Kammer, 1999).  

Outside of primary motor and sensory areas, the effective spatial resolution of 

TMS cannot be demonstrated via direct behavioural effects, but needs to be inferred from 

reduced subject performance on related cognitive tasks as measured by decreases in 

reaction time or an increasing error rate (Ashbridge et al., 1997). In general, the effective 

practical disruption in the associated cortical area corresponds to roughly a 1 cm estimate 

as demonstrated in the primary motor and visual cortices. Studies that combine TMS with 

fMRI and PET have demonstrated good correspondence between the extent of functional 

regions defined by TMS and the areas revealed with high spatial resolution neuroimaging 

techniques (Bohning et al., 1999; Paus et al., 1997; Siebner et al., 1998; Terao et al., 

1998).  

Determining the optimal stimulation intensity, or magnetic field strength, for a 

given study is complicated because it depends on the excitability of that particular region 

of cortex. The efficacy of brain stimulation is highly dependent on the level of induced 

neural excitation. Understimulation reduces the probability of detecting significant effects 

and could undermine treatment in the context of therapy (Stokes et al., 2013). Meanwhile, 

overstimulation increases the risks associated with TMS, such as the occurrence of 

seizures (Rossi et al., 2009; Wassermann, 1998). Overstimulation also diminishes the 

focality of TMS (Brasil-Neto et al., 1992; Thielscher & Kammer, 2004) obscuring the 

interpretation of induced effects. Importantly, quantitative comparisons of different 
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stimulation sites could be confounded by higher cortical excitation at one area relative to 

another (Stokes et al., 2013).  

The stimulation susceptibility of a cortical site is not only a factor of depth. The 

inherent excitability varies with the specific region stimulated and the task performed 

(Robertson et al., 2003). It has become common practice to use a fixed intensity defined 

as a percentage of the maximum stimulator output (Sandrini et al, 2011). This method 

minimizes the experiment duration and number of TMS pulses applied by removing the 

initial step of determining each participant’s threshold levels. With this approach, the 

stimulation intensity is generally fixed at the lowest level that is known to effectively 

affect behaviour when TMS is applied to a particular region of interest based on related 

studies in the literature (Sandrini et al., 2011). The current research employed a fixed 

stimulation intensity of 60% maximum stimulator output based on the success of other 

similar studies (e.g. Mullin and Steeves, 2013; Pitcher et al., 2007; Solomon-Harris et al., 

2013).  

 

Conclusions 

Face identity coding in the right FFA is selectively disrupted by TMS to the OFA 

compared to both sham stimulation and TMS to the nearby object-selective LO. This 

finding causally demonstrates the importance of the OFA for normal face identity coding 

in the FFA. This is congruent with data from patients with brain damage (Atkinson & 

Adolphs, 2011; Rossion et al., 2003; Steeves et al., 2006; Steeves et al., 2009) and 

neuroimaging studies of the healthy brain (Goffaux et al., 2011; Jiang et al., 2011; 
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Rossion et al., 2011; Rossion et al., 2012), supporting a non-hierarchical, global-to-local 

model of face perception. In this model, the smaller receptive fields of the more posterior 

OFA are used for fine-grained analysis after the FFA holistically categorizes a stimulus as 

a face (Rossion, 2008). Moreover, the global-to-local or coarse-to-fine model is 

harmonious with the reverse hierarchy theory of visual processing (Hochstein & Ahissar, 

2002), and evidence of extensive bidirectional cortical connections (Felleman & Van 

Essen, 1991). The traditional hierarchical model of face perception is likely too simple for 

the complexity of the human brain. While the current study does not directly speak to 

whether face processing operates hierarchically, the finding that OFA activity modulates 

FFA activity fits in the greater context of literature demonstrating that face processing 

likely does not occur in a strict hierarchy.   

The lack of significance between TMS to the OFA and LO in effects at the 

stimulation sites could possibly be due to a local spread of TMS effect between the 

nearby sites with the extended stimulation time in the current offline paradigm (20 

minutes, compared to ~500 ms bursts in online TMS studies; e.g. Solomon-Harris et al., 

2013). Alternatively, similar effects in the stimulation sites could rather be due to 

communication between the connected regions (Kim et al., 2006; Nagy et al., 2012). 

 

Limitations 

As with any technique for investigating the relationship between brain structure 

and function, TMS has several limitations. Modelling the precise impact as the TMS 

pulse induces electrical effects in stimulated brain tissue is complex due to the great 
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degree of between subject variability in neural structure. Furthermore, the effects of TMS 

may not necessarily reflect the system’s capacity to function without the disrupted region, 

but could rather represent immediate functional reorganization (Ruff, Driver, & 

Bestmann, 2009). The effects of TMS are also task specific and depend on the context of 

stimulation or the state of the neural network (Bestmann, Ruff, Blakemore, Driver, & 

Thilo, 2007; Silvanto, Cattaneo, Battelli, & Pascual-Leone, 2008; Siebner, Hartwigsen, 

Kassuba, & Rothwell, 2009). This warrants caution in drawing general conclusions based 

on the specific tasks employed in any experiment.  

 

Future Directions 

 This research demonstrates the importance of the often-overlooked OFA for face 

identity coding. Nonetheless, the mechanisms underlying this fundamental visual process 

remain largely unclear. Future research should continue to unravel the mechanisms of 

face perception, recognizing that traditional hierarchical feedforward models may be 

overly simple for the vast complexity of the human brain.  

The OFA and STS could be ideal stimulation sites for comparison in TMS studies 

of face perception. They are farther away from each other than the OFA and LO, so a 

possible spread of TMS effects with extended stimulation time is unlikely. Furthermore, 

the OFA and STS are known to play different roles in face perception. Comparisons 

between TMS effects at these sites could elucidate the function of the face network.  

Future research should also aim to better characterize the effects of TMS on 

neural function. The effects of different stimulation protocols should be systematically 
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compared, and TMS should be combined with other methods such as fMRI or 

electroencephalography (EEG). TMS and fMRI are incredible tools for exploring 

numerous cortical functions, including but certainly not limited to face perception. Yet, 

these techniques are still in the infancy of their potential. As technology continually 

advances, so will models of cognition. Indeed, this is a very exciting time for 

neuroscience research. As they say, the brain could be the final frontier. 
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