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Abstract

Computation of Maxwell’s equations has been playing an important role in many
applications, such as the radio-frequencies, microwave antennas, aircraft radar, in-
tegrated optical circuits, wireless engineering and materials, etc. It is of particular
importance to develop numerical methods to solve the equations effectively and ac-
curately. During the propagation of electromagnetic waves in lossless media without
sources, the energies keep constant for all time, which explains the physical feature
of electromagnetic energy conservations in long term behaviors. Preserving the in-
variance of energies is an important issue for efficient numerical schemes for solving
Maxwell’s equations.

In my thesis, we first develop and analyze the spatial fourth order energy-
conserved splitting FDTD scheme for Maxwell’s equations in two dimensions. For
each time stage, while the spatial fourth-order difference operators are used to ap-
proximate the spatial derivatives on strict interior nodes, the important feature is

that on the near boundary nodes, we propose a new type of fourth-order boundary
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difference operators to approximate the derivatives for ensuring energy conservative.
The proposed EC-S-FDTD-(2,4) scheme is proved to be energy-conserved, uncondi-
tionally stable and of fourth order convergence in space. Secondly, we develop and
analyze a new time fourth order EC-S-FDTD scheme. At each stage, we construct a
time fourth-order scheme for each-stage splitting equations by converting the third-
order correctional temporal derivatives to the spatial third-order differential terms
approximated further by the three central difference combination operators. The
developed EC-S-FDTD-(4,4) scheme preserves energies in the discrete form and in
the discrete variation forms and has both time and spatial fourth-order convergence
and super-convergence. Thirdly, for the three dimensional Maxwell’s equations, we
develop high order energy-conserved splitting FD'TD scheme by combining the sym-
plectic splitting with the spatial high order near boundary difference operators and
interior difference operators. Theoretical analyses including energy conservations,
unconditional stability, error estimates and super-convergence are established for
the three dimensional problems. Finally, an efficient Euler-based S-FDTD scheme
is developed and analyzed to solve a very important application of Maxwell’s equa-
tions in Cole-Cole dispersive medium. Numerical experiments are presented in all

four parts to confirm our theoretical results.
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1 Introduction

1.1 Background

Maxwell’s equations, which are a set of partial differential equations describing the
relation of electric and magnetic fields, have been widely used in computational
electromagnetics. Computation of Maxwell’s equations has been playing an im-
portant role in many applications in modern society, such as the micro devices,
the radio circuits, microwave circuits antennas, aircraft radar, integrated optical
devices, telecommunication chips, wireless engineering and materials, the design of
CPU in microelectronics, etc [6, 18, 19, 50, 37, 3, 13, 44, 22]|. Recently, it is of par-
ticular importance to develop efficient numerical methods to solve the Maxwell’s
equations effectively and accurately.

For solving Maxwell’s equations, the very popular method is the finite-difference
time-domain (FDTD) method, which was first proposed by Yee [72] and further
developed and analyzed by Taflove and Brodwin [61], Taflove and Hagness [62],

Monk and Suli [47]. However, the FDTD method is only conditionally stable and
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leads to large computational cost and memory requirement in broadband applica-
tions with large domain and in high dimensions [61, 62]. Much progress has been
made in the past two decades in improving the FDTD method including the ADI
and splitting FDTD methods. Alternating direction implicit methods (ADI) have
been very successful to solve PDEs. Peaceman, Douglas and Rachford [15, 54]
proposed the ADI methods in 1950s, which are proved to be efficient in solving
parabolic-type partial differential equations for saving memory and CPU cost (see
(12, 16, 37, 11, 15, 54, 71, 34, 33, 26]). In order to overcome the limitation of stabil-
ity and reduce the computational costs, the ADI or splitting FDTD schemes have
been studied for solving Maxwell’s equations in [5, 24, 25, 28, 36, 49, 50, 82, 68].
An ADI method combined with Yee’s scheme was studied in [28] for two dimen-
sional problems, but for three dimensional Maxwell’s equations, it was hard to ob-
tain the unconditional stability property. Papers [49, 50, 82] proposed ADI-FDTD
schemes for Maxwell’s equations, which were proved to be unconditionally stable
and of second-order accuracy. The ADI-FDTD schemes were further analyzed in
27, 80, 81]. The iterated ADI-FDTD schemes were analyzed to solve Maxwell’s
curl equations in [67, 68]. Recently, combining the splitting technique with the
staggered grids, two second-order splitting finite-difference time-domain methods
(S-FDTDI and S-FDTDII) were proposed in [24] for Maxwell’s equations in two

dimensions. These two schemes bring much convenient in practical computation



with a very simple structure and are unconditionally stable. The schemes have been
applied to solve a scattering problem with PML boundary condition successfully.

During the propagation of electromagnetic waves in an electromagnetic field
of lossless medium and without sources, the electromagnetic energies of the waves
keep constant for all time. The physical invariance of energies is an important
feature of the electromagnetic propagation, which describes its long term behavior.
Keeping the invariance of electromagnetic energies in time is an important issue to
construct efficient numerical schemes. However, the previous FDTD, ADI-FDTD
and S-FDTD schemes break this invariance of energy conservations. Based on
the Yee’s grid and the splitting technique, [7, 8] developed two energy-conserved
splitting FDTD schemes: EC-S-FDTDI and EC-S-FDTDII, where EC-S-FDTDI is
first order in time and second order in space and EC-S-FDTDII is second order in
both time and space. The EC-S-FDTD schemes have important properties: energy-
conserved, unconditionally stable, non-dissipative and computationally efficient.
Further, a symmetric energy-conserved splitting FDTD scheme (symmetric EC-S-
FDTD) for Maxwell’s equations was proposed in [9], which has the same properties
of the EC-S-FDTDI and EC-S-FDTDII algorithms.

The second-order FDTD, ADI-FDTD, or splitting FDTD schemes have been
used for electromagnetic problems with geometries of moderate electrical sizes.

But, when computing modern problems of longer distance wave propagations and



moderately high frequency wave propagations and/or large domains and large struc-
tures in nature, their numerical errors can no longer be considered as reasonable
and the accuracy of second order is rendered questionable. It has led to a great
attention to develop high order schemes which produce smaller dispersion or phase
error for a given mesh resolution. At present, there is a pressing need for generalized
FDTD methods which are simple and high order for large scale computations. In
particular, no higher order S-FDTD schemes are available for preserving energy con-
servations. Thus, there are great interests to develop higher order energy-conserved
splitting FDTD schemes for Maxwell’s equations, which preserve physical laws of

energy conservations.

1.2 Work of Thesis

In my thesis, we will focus on the development of high order energy-conserved
splitting FDTD methods for solving Maxwell’s equations.

In Chapter 2 of this thesis, we propose and analyze the spatial fourth-order
energy-conserved splitting FDTD method with the accuracy of second order in
time and fourth order in space (i.e. EC-S-FDTD-(2,4)). Although the second-order
schemes have been applied with success for Maxwell’s equation’s with geometries
of moderate electrical sizes. But, for computing large scale problems that requir-

ing long-time integration and of wave propagations over longer distances, some

4



high-order explicit FDTD schemes have been developed ([20, 32, 65, 69, 74, 83]).
Associated with fourth-order interior finite difference schemes, one-side high-order
approximations and extrapolations/interpolations for the near boundary points
were constructed and used, which are suitably accurate relative to the interior
difference operators. However, these explicit high-order FDTD schemes are condi-
tionally stable and have prohibitive requirements of computational memories and
computational costs, and they break energy conservations. In this part, we con-
sider transverse electric/magnetic (TE/TM) models of Maxwell’s equations in two
dimensions. The scheme that we proposed is in three stages. For each stage, the
approximations of derivatives in space at the strict interior points are defined by
the spatial fourth order differences, which are obtained by a linear combination
of the central differences, one with a spatial step and the other with three spatial
steps. But for the near boundary nodes, the one-sided difference or extrapola-
tions/interpolations schemes lose the energy conservation properties. To construct
appropriate energy-conserved boundary difference schemes is a challenging and im-
portant task. We propose a new type of difference operators to approximate the
derivatives at the near boundary nodes, by combining the PEC boundary con-
ditions, original equations with Taylor’s expansion, which ensure the each stage
scheme to preserve energy conservation. We strictly prove the scheme to satisfy

energy conversation and to be unconditionally stable. We prove that the scheme



has the optimal error estimates of fourth order in space and of second order in
time. We also obtain the error estimate of the approximation to divergence-free.
Numerical dispersion analysis and numerical experiments are given to confirm our
theoretical analyses results.

In Chapter 3, we develop and analyze the time high-order EC-S-FDTD scheme.
The research in this chapter leads to a new time and spatial fourth-order energy-
conserved S-FDTD scheme (i.e. EC-S-FDTD-(4,4)) for solving Maxwell’s equa-
tions. Splitting of fourth-order in time provides a seven-stage time-stepping proce-
dure. It is an important issue that at each stage, we construct a time and spatial
fourth-order scheme for each splitting equation. We derive out the time high-order
schemes to each-stage equations by converting the third-order correctional tempo-
ral derivatives to the spatial high-order derivatives, where the corresponding sys-
tems are with spatial third-order differential modified terms. Similarly to treat the
first-order differential terms in Chapter 2, we approximate the spatial third-order
differential operators on the strict interior points by the spatial fourth-order dif-
ference operators formed by a new linear combination of three central differences,
one with a spatial step, the second with three spatial steps and the third with
five spatial steps. Further, we construct new fourth-order near-boundary difference
operators for the spatial third-order differential operators on the near boundary

nodes for preserving energy conservations and the fourth-order accuracy in both



time and space. We prove that the proposed EC-S-FDTD-(4,4) scheme satisfies
energy conservations in the discrete forms and in the discrete variation forms, and
the scheme is unconditionally stable in the discrete Lo-norm and in the discrete
Hi-norm. We prove that the EC-S-FDTD-(4,4) scheme has the optimal error esti-
mate of O(At* + Ax? + Ay?) in the discrete Ly-norm and the super-convergence of
O(At* + Az* + Ay*) in the discrete Hy-norm. The divergence-free of the scheme
is also proved to be the fourth-order in both time and space.

In Chapter 4, we develop high-order energy-conserved splitting FDTD schemes
for Maxwell’s equations in three dimensions. The ADI-FDTD scheme for three di-
mensional Maxwell’s equations in [50, 82] is unconditionally stable and has second
order accuracy, but it does not satisfy the energy conservations. The EC-S-FDTD
schemes for three dimensions in [8] are energy-conserved, but they are only of second
order accuracy. In the TE or TM models of Maxwell’s equations in two dimensions,
there are three equations. Only the third equation needs to be split, the other two
equations keep unchanged. However, for three dimensional Maxwell’s equations,
which are a complex system of six equations of the electromagnetic fields E =
{E,,E,,E.} and H = {H,,H,, H,}. All the six equations need to be split. Thus
there is a further difficulty of developing high order accurate and energy-conserved
FDTD schemes for three dimensional Maxwell’s equations. Based on the staggered

grids, and combining the splitting technique with the proposed spatial high order



near boundary difference operators and high order interior difference operators, we
develop the spatial high-order energy-conserved S-FDTD scheme for three dimen-
sional Maxwell’s equations. Theoretical analysis including energy conservations in
the discrete form and in the discrete variation forms, unconditional stability and
convergence are built for the three dimensional high-order EC-S-FDTD scheme.
Optimal error estimates in the Ly-norm and superconvergences in the Hi-norm of
the scheme are obtained. Numerical experiments are given to show the performance.

In Chapter 5, the S-FDTD schmeme is proposed to solve an important ap-
plication problem of Maxwell’s equations in Cole-Cole dispersive medium, which
contains a fractional time derivative term [41, 35, 58]. The fractional time deriva-
tive model is very different from the standard models. The proposed Euler-based
splitting FDTD scheme in this part is a two stage scheme. At each stage, for the
splitting equations, the fractional time derivative is approximated by the Letnikov-
typed difference operator and the spatial differential terms are approximated by
the second order difference operators on the staggered meshes. The stability and
convergence are strictly proved. We obtain that the proposed S-FDTD scheme for
the Cole-Cole medium models is unconditionally stable and has the optimal error

estimates of O(At + Az? + Ay?). Numerical experiments show its performance.



2 The Spatial Fourth-order Energy-conserved S-

FDTD Scheme for Maxwell’s Equations

2.1 Introduction

For computing large scale problems, for problems requiring long-time integration,
or for problems of wave propagations over longer distances, and moderately high
frequency wave propagations, based on the staggered grids, the fourth-order explicit
schemes were developed for solving Maxwell’s equations in [20, 32, 65, 69, 74, 83,
etc. The one-sided high-order difference or extrapolation/interpolation numerical
boundary schemes were provided to be suitably accurate relative to the interior
differences. However, the explicit higher-order schemes are conditionally stable
and lead to prohibitive requirements of computational memory and computational
cost.

In this chapter, we propose the spatial fourth-order energy-conserved splitting

FDTD scheme (i.e. EC-S-FDTD-(2,4)) with fourth-order accuracy in space and



second-order accuracy in time. We apply a second-order time-step splitting tech-
nique, leading to a three-stage time-splitting algorithm for Maxwell’s equations.
At each stage, on the Yee’s staggered grid, we approximate the spatial differential
operators by the spatial fourth-order difference operators obtained by a linear com-
bination of two central differences, one with a spatial step and the other with three
spatial steps. This obtains the spatial fourth-order scheme on the strict interior
nodes of the domain. One important issue is to construct the numerical boundary
difference schemes to be energy conservative and high-order relative to the inte-
rior difference schemes. It is because the high-order difference operators often have
a large spatial stencil which cannot be used in the near boundary nodes. The
one-sided differences and extrapolation/interpolation numerical boundary schemes
normally break the property of energy conservations near the boundary. Appro-
priate energy-conserved numerical boundary difference schemes can be difficult to
obtain, and this leads to a challenge of constructing energy-conserved higher-order
S-FDTD schemes. We propose to construct the spatial fourth-order near boundary
differences over the near boundary nodes by using the PEC boundary conditions,
original equations and Taylor’s expansion, which ensure the each-stage schemes
to preserve the conservations of energy and to have fourth-order accuracy. The
proposed EC-S-FDTD-(2,4) scheme has the significant properties that are energy-

conserved, unconditionally stable, non-dissipative, high-order accurate, and compu-
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tationally efficient. We strictly prove that the scheme satisfies energy conversations
and is unconditionally stable. We analyze theoretically the convergence of the
scheme by using the energy method and obtain the optimal-order error estimates
of O(A#? + Az* + Ay*) in the discrete Ly-norm for the approximations of the elec-
tric and magnetic fields. Further, the divergence-free convergence is analyzed and
we obtain the error estimate of the approximation of divergence-free. Numerical
dispersion analysis verifies that the proposed scheme is non-dissipative. Numerical
experiments show that the proposed scheme preserves energy conservations and has
fourth-order accuracy in space and second-order in time. We also test numerical
divergence-free and the divergence-free is of second order convergence in time step.

The sections are organized as follows. Section 2.2 gives a brief introduction
of Maxwell’s equations. Then the EC-S-FDTD-(2,4) is proposed. In Section 2.3,
we prove the property of energy conservations. The truncation error and conver-
gence analysis is given in Section 2.4. Numerical dispersion analysis and numerical

experiments are presented in Section 2.5.
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2.2 Maxwell’s equations and the spatial fourth-order EC-

S-FDTD scheme

We first introduce Maxwell’s equations and give the two-dimensional transverse
electric (TE) equations. We then present our spatial fourth-order energy-conserved

splitting finite difference time domain scheme in this section.

2.2.1 Maxwell’s equations

The Maxwell’s equations in an isotropic, homogeneous and lossless medium are

0B

oD

where E and H are electric and magnetic fields; D and B are the electric displace-
ment and magnetic flux density, D = ¢E and B = pH. (2.2.1) is Faraday’s Law and
(2.2.2) is Ampere’s Law. In the absence of electric charge, the electric displacement

and magnetic flux density satisfy divergence-free conditions (Gauss’s Law)

V-B = 0, (2.2.3)

V-D = 0 (2.2.4)

where € is the electric permittivity and p is the magnetic permeability. The speed

1
NG
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of the electromagnetic wave is ¢ =



For the simplicity of notations, we shall focus on the two-dimensional transverse
electric (TE) problems in a lossless medium and without sources and charges,
where the electric field is a plane vector while the magnetic field is a scalar. Let
the domain Q = [0,a] x [0,0] and the time period T" > 0. The two-dimensional

Maxwell’s equations (TE) are

0E, _10H,
ot - € ay ) ('Iay) € Q)t S (O,T] (225)
0E,  10H,
T cor @y eLteT] (2.2.6)
OH. 1 (0E, OE,
ot p ( dy ox ) ;o (zy) €t e (0,T] (2.2.7)

where the electric and magnetic fields are E = (E,(x,y,t), Ey(x,y,t)) and H,=H,(z,y,t).

We consider the perfectly electric conducting (PEC) boundary condition:

(E,0) x (n,0) =0, on (0,T] x 00, (2.2.8)

where n is the outward normal vector on the boundary. The initial conditions are

given as

E(z,y,0) = Eo(x,y) = (Exo(z,y), Ey(x,y)) and H,(z,y,0) = Hyo(z,y). (2.2.9)

It has been proved in [37] that for suitably smooth data, problem (2.2.5) - (2.2.9)
has a unique smooth solution for all time, and if the initial fields satisfy divergence-

free, the electric and magnetic fields always satisfy divergence-free for all time. For
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the problems in lossless medium, Poynting’s theorem gives that electromagnetic

waves satisfy energy conservations (see [6, 7, 18]).

Lemma 2.2.1. (Energy conservation I) If E and H are the solutions of the Mazwell’s
equations (2.2.5)-(2.2.7) in lossless medium and satisfy the PEC boundary condi-

tion (2.2.8). Then it holds that for anyt >0
/ (| E(z,t)|* 4+ p|H(z,t)|*) dz = Constant. (2.2.10)
Q

This lemma describes that the energy of electromagnetic waves in lossless medium
keeps constant for all time. There is another energy conservation in the time-

variation form, which is given in the following lemma (see [7]).

Lemma 2.2.2. (Energy conservation II) If E and H are the solutions of the
Mazwell’s equations (2.2.5)-(2.2.7) in lossless medium, and satisfy the PEC bound-

ary condition (2.2.8). Then, it holds that

¢

The electromagnetic waves in lossless medium satisfy these two energy conser-

2

OE
ot

oOH
T

2
) dx = Constant. (2.2.11)

vations (2.2.10) and (2.2.11), which are very important invariance for a long term
propagation of electromagnetic waves. Thus, it is important to develop energy-
conserved numerical schemes for solving Maxwell’s equations in long term compu-

tations. Chen et al. [7] first proposed two second-order energy-conserved S-FDTD
14



schemes (EC-S-FDTD I&II), which satisfy the energy conservations, unconditional
stability, and have second-order accuracy in space step and time step. However,
it is a challenging task to develop spatial higher-order energy-conserved S-FDTD

schemes for the electromagnetic computations.

2.2.2 The spatial fourth-order energy-conserved S-FDTD scheme

We then propose the spatial fourth-order energy-conserved S-FDTD scheme for the
two-dimensional Maxwell’s equations (2.2.5) - (2.2.9).

For simplicity, take an uniformly staggered grid for the partition of the space
domain €2 and the time interval (0,7] by Az = ¢, Ay = %, At = %; T, =
1Ax, Tip1 = T+ %Ax, i =0,1,--- 1 =1, 2y = [Ax = a; y; = jAy, Y1 =
g+ Ay, G =0,1,--- T =1, yy = JAy = b; t* = nAt, t"T2 =" + LAt n =
0,1,--- ,N—1, t"N = NAt =T; where I >0, J > 0 and N > 0 are integers.

The unknown grid function {Ewwé,j} is defined on nodes ($i+%, y;),i=0,1,---  I—

1,j =0,1,---,J; {E,, . 1} is defined on nodes (:vi,ijr%),i =0,1,---,1,j =

ij+1
0,1,---,J—1; and {HZH%’H%} is defined on nodes (xi%,yﬂ%),i =0,1,---,1—
Lj=0,1,---,J =1 Let Ul 5 = U(nAt,aAz, BAy) be a grid function where v =

1011+ %, and = jorj+ % We define the difference operators 6,U, d,U, d,U,

and 0,0,U by

n—&-l 1 n _ n
61& no_ UO&WB2 B Ua752 S U™ . — O‘Jr%’ﬂ UO‘*%’B
B At » e ep Az ’

n—

15



n —_ynr
n Oé,ﬂ-‘r% auﬁ_% n n
(SyUa’ — Ay ; 5U6UUa,ﬂ — 61"(5”(]&,,8)7

where u and v can be taken as the r— and y— directions respectively, and define

the difference operators d,,U and d,,U with three spatial steps by
n UTZ 3 UTI,

_ _ n
atif " Yas§p o oym _ sty Cas-d
3Az » AT 3Ay

n
627x anB =

Now, we define the spatial fourth-order difference operator to %Ey for the strict
interior nodes by a linear combination of two central differences, one with a spatial

step and the other with three spatial steps above, as

1
AE)T = —(90; — 02,)Ey

Yitgits 8

(2.2.12)

?+§7j+§’
fore=1,2,---, I —2and j=0,1,--- ,J — 1.

The fourth-order difference operator (2.2.12) can be used to approximate the
equations at the strict interior nodes with ¢ = 1,2,--- ,I — 2. However, when we
treat the near boundary nodes with ¢ = 0 and ¢ = I — 1, the function values in the

definition of dq , 2, , and E L are

1 will go out the domain where £ Il g4l
’ 2

ithat y-1,j+4
not defined. For constructing high-order difference operators on the near boundary
nodes, one could use no symmetric one-sided difference/extrapolation operators by
using more one-sided interior point values. But, these kind one-sided operators will
make the scheme to break energy conservations. Thus, it is important to construct

the high order difference operators on the near boundary nodes to have high-order

accuracy in spatial step and to lead to one energy conserved scheme.

16



For this goal, we first give Lemma 2.2.3. Define some new notations as z_; =

—Axr, x_1 = x_1 + %Ax, xry1 = (I + 1)Ax, Ty = o+ %Az, y_1 = —Ay,

1
2

Y1 =y-1+ 58y, yrp = (J +1)Ay, and Yrpl =Ys+ 1Ay.

Lemma 2.2.3. If the electric and magnetic fields { E, H,} of the solution of system
(2.2.5)-(2.2.9) are smooth enough and the initial field Ey is divergence-free, then

the following relations hold

Ea: (‘ri+%7 Y-1, t) = 2E3: (‘ri+%7 Yo, t) - Ez (xi+%7 Y1, t) + O(Ay5), (2213)

Ew(xiqtéa Yi1,t) = 2Ew(xi+%vyJ7t) - Ew(xz‘Jr%vnyl’t) +0(Ay”),(2.2.14)

Ey<x—1> yj-t,-%a t) = 2E‘y(:L'Oa yj+%> t) - Ey<x1a yj-i-%v t) + O<A$5)v (2215)

Ey(l'l—&—hyj-t,-%a t) - 2Ey(ml7yj+%at> - Ey(l‘f—layj-f—%?t) + O(AZL‘5),(2216)

H.(x_1,y;,1,t) = Ho(z1,y;,1,1) +O(Az”), (2.2.17)
Hz(xl%,yj%,t) = Hz<x17%,yj+%,t)+O<AﬁC5), (2.2.18)
H.(v1,y-1,1) = Hz(wi+%,y%,t)+O(Ay5), (2.2.19)
H.(2;,1.Y551:t) = Ho(zg1,9;-1,.t) + O(Ay). (2.2.20)

Proof. Because of the PEC condition, E,(z,0,t) = E,(z,b,t) = 0,E,(0,y,t) =
E,(a,y,t) =0, it holds that

OE,(x,0,t)  0E,(xz,b,t)  0E,(0,y,t) 0E,(a,y,t)
o0 ot 7 o ot
17

—0; (2.2.21)



O"Ey(x,0,t)  O"E (x,bt) 0 O"E,(0,y,t) 0" E,(a,y,t)
Oxk N Oxk - Oy N oyF

=0, (2.2.22)

for k=0,1,--- 4.

From equations (2.2.5), (2.2.6), we have that 2 2 (2,0,1) = 8512 (x,b,t) =0 and

2= (0,y,t) = %= (a,y,t) = 0. From (2.2.5) and (2.2.6), and the initial divergence-

free V- Eg = 0, we then have that a%Ex(x,y,t) + (%Ey(x,y, t) =0 for t > 0. Thus,

082 (0,y,t) = 0, %Ex(a,y,t) = 0 and 38—%‘(:1:,0,75) = 0, 8Ey (2,b,t) = 0. Further,

taking derivative to (2.2.7) with respect to y-variable, we obtain that 8;5; (x,0,t) =

;yE; (x,b,t) = 0. Similarly, from (2.2.7), we get that %(0, y,t) = a;f;y (a,y,t) =0.

In the same way, we can further get that for £k = 0,1, and 2

" Ey(2,0,t)  O*E,(x,b,t) 0 O*E,(0,y,t)  0*E,(a,y,t)

— = = =0: (2.2.23
B2k D2k ; 2k 2k ; )
a2k+1Hz(an7t) a2k+1Hz(CL>yat) 82k+1Hz($707t) 82k+1Hz($7b? t)
2k +1 - 2kt =0, Oy - Oy = 0.
(2.2.24)

Now, we prove (2.2.13). Using Taylor’s expansion about y = yo, it holds that

oF, 1 0*F,
Ex(xay—17t> = Ex<x7y07t> - Aya_y(xay&t) + _(Ay)Q ayQ (‘Tay(bt)

21
1 PE, JOME,

- 5(8y)° % (%, 0, t) + (Ay) o Lz, 0, t) + O(AY®),  (2.2.25)

OF, 1 ,0*E,
E.r(xu yl)t) = E:C(xu y07t) + Aya_y(x’ymt) + 5<Ay) ayg ([E, y07t)

T ety + 2 T (e 1)+ O(A). (2.2.26)
3| Yy 8y X y07 4‘ Yy ay4 Z, Yo, Yy ). L.

18



Adding (2.2.25) and (2.2.26), and using (2.2.23), we get (2.2.13). Similarly, we can

get (2.2.14) - (2.2.20). This ends the proof. O

Now, using the relationship of (2.2.15), we can derive that

(") = E (")

n Y2543 Y_1,5+3
%2:By 1, () = 3Az
Eylvﬂ%(tn) + Ey2,j+%(tn) B QEyo,jJr% ") O(Az*
a 3Azx +0(Ax7)

and thus, we can re-define the spatial fourth-order difference operator Sg,xEy for

the near boundary node with ¢ = 0 by

E! +E7 —2E7
~ Y1+4 Y2,5+1 Yo.5+3
9o . B =—2 B . 2.2.27
2T 3Ax ( )

Similarly, for ¢ = I — 1, it can be defined by

o, ingey = By~ Birasny 2.2.28
e 3Az ‘ (2.2.28)

Thus, we can define the difference operators to approximate %Ey for the near

boundary nodes with ¢ =0 and i =1 — 1 by

(2.2.29)

1 _
MoByf 1y = (900 = 0a)Byf 1500, (2.2.30)

fory=0,1,---,J — 1.

In the same way, we can define other difference operators for the near boundary

19



nodes as

E* 4+ E'  —2E"
5 M . i+l g2 i+},0
2,y :Ei+171 - 3Ay )
3o BT _ Yird.g Yird o1 Yigrd 72
Y Zi+%71 3Ay 9
H? — e Hr .y
~ 245544 Livy “1-15+1 fr-2-.i+3
S0 o H™ _ 2:0+3 2 7’ b0 o H" _ 2:J+3 3 7,
R 3Ax R SR 3Ax
~ Hg 1 1 - ng 11 ~ Hg 1 1 - H;L 1 1
52 o _ itg.2+3 i+t3,3 52 H" _ itg3,J-3 it5,J-2-3
Y Zi+%, 3Ay ’ Y Zi+%7(]71 3Ay

Further, we can similarly define the spatial fourth-order difference operators to ap-

roximate 2 FE,, 2 H, and 2 H, for the strict interior nodes and the near boundary
P oy ox dy

20



nodes by

AE, (2.2.31)

Titgity

= (5 62y) z+ j+1,i:O,17-..’I—l;j:1,2,-..’J—2,
AE" (2.2.32)
= (5 521/) ?J—i— +17.:0717"'71_1;j:0andj:=]_17

AH,?

Z’L]+
8@5—@QZ”,i:z&~.J—zj:QL~,J—L (2.2.33)

A H."

Zg _]+

(%«—@@ i=landl =1—-1;7=0,1,---,J—1, (2.2.34)

Zzg?

AH,T

Z-‘r]

= (98, — o )H.0;, i=0,1,-+ I —1;5=2,3,---,J -2, (2.2.35)
AyH.™

ZZ+ J

8((5 —§2y) ag 1=0,1,- I —=1;j=1andj=J—1. (2.2.36)

Now, we consider the splitting procedure of the two dimensional Maxwell’s

equations (2.2.5) - (2.2.7) in each time interval (¢, "]

OE, _ 18H, OBy _  18H,
ot e Oy ot € Oz

and (2.2.37)
10H, _ 10E, OH, 1 0By

1
2 0t ~ u Oy 278t u oz
By applying the spatial fourth-order difference operators (2.2.12) (2.2.29) (2.2.30)

and (2.2.31)-(2.2.36), we can finally propose a spatial fourth-order energy-conserved
21



splitting FDTD scheme for Maxwell’s equations (2.2.7) - (2.2.9). The scheme can
be called as the EC-S-FDTD-(2,4) scheme as it is fourth-order in space step and
second-order in time step.

The spatial fourth-order energy-conserved splitting FDTD scheme (i.e. EC-S-
FDTD-(2,4)) is defined as

Stage 1: Compute the variables £} and H} from E? and H] by that for the strict

interior nodes, © =0,1,--- , I — 1
E;Hr%,j B EgivL%,j 1 ALH? H"
A o TR
j=2.3 J—2 (2.2.38)
H: — H”
i+ %t firdi+y i X n
At N 4MAy{Exi+%,j+% + Exi+% i+ b
g=12---,J—=2 (2.2.39)
and for the near boundary nodes, ¢ =0,1,--- , [ — 1
gy~ By 1 A H? He =1, -1, (2.2.40
At _4_6 y{ zi+%’j+ Zi+%,j}"]_ ) -4 ( ek )
Bovirs Bk _ 17 Er =0, J—1, (2241
At N @ ol Tird i+ + wi+$,j+%}’ j=0J-1, (2.241)

Stage 2: Compute the variables E;H and H* from EJ and H} by that for the

22



strict interior nodes, j =0,1,--- ,J —1

En+1 — En
yiijr% yi,j+% o _i *% *
At B 2€Ax{Hzi7j+% * sz+%}’
1=2,3,---,1—2, (2.2.42)
H** _ H*
oy Cwdbard Lo n
At B Q/LAI{EyH%»J*% * Eyi%ﬁ%}’
1=1,2,--- , 1 —2, (2.2.43)
and for the near boundary nodes, 7 =0,1,---,J —1
En+1 I
Yij+} Yij+d 1~ ok * :
=——AN{H H =1,1—-1, (2.2.44
At 2¢ { ity * Zid%}’ ' ’ A )

H** _ H*
Zivd il %
At

1

+5.0+% 1~ n+1 n '
2 2 - —ZAI{Ey—i_ + E }a 1= 07 I - 1? (2245)

+5.0+35

i+ 3.0ty Yird i+

Stage 3: Compute the variables E"™' and H'™ from H}* and E} by that for the

strict interior nodes, + = 0,1,--- , [ — 1
E;’LT%J ~ Py, _ Ly (™ 4
At de YV R L Fivdg
j=2,3,-,J—2 (2.2.46)
g
+g,y+gAt teats i/\y E’Til%ﬁ% i E;i+%,j+%}7
j=12--- J—=2, (2.2.47)
and for the near boundary nodes, i =0,1,--- , I — 1
Egt —Ep g
= A S THD, b i=L -1 (2248)
Hg:;ﬂl B H:;l,ﬂl 1~ .
e @Ay E£t1%+% B, b i =0T -1 (2249)
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The boundary conditions are given by

E;  =E  =E* =E* =F7* =EM =0, (2.2.50)

i+%.,0 Tivd,g Titdo Tivd,g Yo,5+% Yrj+3

and the initial conditions are given by

Egaﬁ = Eo(aAx, BAy); E° = Eyo(aAz, fAy);

Yo,

HSQ’B = H,o(aAz, fAy). (2.2.51)
Remark 1. This three-stage algorithm (2.2.38) - (2.2.51) can be easily solved.
In the following sections, we will prove that it has fourth-order accuracy in space

step and second-order accuracy in time step and it satisfies energy conservations I

& 11 (2.2.10) and (2.2.11) in the discrete forms.

2.3 Energy conservation in the discrete form

In this section, we will prove the spatial fourth-order EC-S-FDTD scheme to satisfy
two energy conservations in the discrete form. Let the discrete L2-norms on the

staggered grids be

-1 J-1 -1 J-1
HUH%E H— ,J Aa:Ay, HVHQEy = ,j+% AwAQ?
=0 5=0 =0 5=0
-1 J-1 )
W13 = Wil jrl IFlz = 1UIE, + IVIE,.
2 2 Y
i=0 j=0
for grid functions F = (U, V) over electric field mesh and W over magnetic field

mesh.
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For analyzing energy conservations, we first list Lemmas 2.3.1 and 2.3.2 ([48]).

Lemma 2.3.1. For p > 1, let {ax}_, and {by}i_, be two sequences. Then, it

holds
P p—1
Z ak(bk — bk—l) = (lpbp - a1b0 — Z bk<ak+1 - ak). (231)
k=1 k=1

Lemma 2.3.2. Forp > 1, let {ar}i_,, {br}i_o be two sequences. Then, it holds

p—1
Z ak(ka — bk,Q) = apbp,g + ap,lbp + ap,gbp,l — a1b2 — a2b0 — CLgbl
k=2

p—2

= br(arez — ar-1). (2.3.2)

k=2

Proof. We have that

p—1 p—1
ap(bpsr — by—2) = Z ap(bgr1 — by 4+ bg — by—1 + bp—1 — by—2)
k=2 k=2

p—1 p—1
= Zak(bk—i-l —by) + Zak (bp — br—1) + Zak (bg—1 — br—2).
k=2

k=2

By using Lemma 2.3.1, the above equation can be changed to

p—1 p—2
ak(bk—i-l - bk;—2) = ap—1bp — agby — Z bk+1(ak+1 - ak)
k=2 k=2
p—2 p—2
+ ap_1bp—1 — asby — Z bi(ags1 — ag) + ap_1bp—o — asby — Z bi—1(agt1 — ay)
k=2 k=2
p—2
= ap—lbp — aghy — [ bk(ak - ak;—l) + bp—1(ap—1 - Clp—2) - b2(a2 - al)]
k=2
p—2
+ ap—lbp—l — a2b1 — Z bk(ak—f—l — ak)
k=2

p—2
+ (lp_lbp_g — agbo — [Z bk(ak+2 — ak+1) — p_g((lp — Clp_l) + bl(ag — CLQ)].
k=2
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This leads to (2.3.2). O

With Lemmas 2.3.1 and 2.3.2, we have the following Lemma 2.3.3.

Lemma 2.3.3. Let grid functions E,, E, and H, be defined on staggered grids and

E,, E, satisfy the PEC condition

Ez&%o — Ezwr% 7 yO’H% yl,j+% O
Then, we have that
J—2 N ~
z; Hepy oo MoBeyy o+ e NEe o e AE (2.3.3)
=
J—2 N -
B _[‘ 2 Emi%d T +Exl+%v1Aszl+%yl + Tk Y zi+%7J71]’
j=
-2 N N
> H e By ey NGBy H L AGE, (2.3.4)
=1
-2 N i
— —[. 2 EyihH%Asziﬁ% Yijid tzl i+l +Ey1_1’j+% . Zf—l,j+$]'
i—
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Proof. We give the proof of (2.3.3). In the same way, we can obtain (2.3.4).

-2
H ., AE,  + A
Z i+ da+d T YT i) i d 3TV T L Pip a3V L gL
j=1
J-2
= HZ%+%,J 1 (QéyExl 1’ 1 _62yEx+17+%)
J=1
! ) 0.
T sz%%g(g yExz+%,% N 2’yEmz‘ 1,1)
H 06, 09,y
T ZH—%,J—%g( Ot N W ‘Tz‘+%,J—%)
J—-1 1
= H -0, F - H 0o, F
‘ Firlrd 8 YTl it “ird 18 2y
Jj=0
1 J=2 1
—H —09, F. — E 09, F
fie a3 8 YT i umy L i g 8PV T i g g
]:

By using Lemmas 2.3.1 and 2.3.2, the right side term of the above equation becomes

that
J-1
) s H . i5.E 15 E
—1 Tirda 8 Yy %433 8 PV T i g GO A TR T A
J:
L H H ) H E
a g( Fit g a-g Cir g2 + Fird,a-3 i - Zipl -3 g
J—-2
H., B, —H. B —H B —Y E_ &,H
fird -1 titd, Zipl, 3 T L Zipl BT il Zivd, 2ytte, 1 )
j=2
J-1
V5,1 B, . 15 E L o
o _Z x’b“r%]é Y xz+%, - xz+%18 2y Tiply + xl+%’]718 2,y xiJr%,J )
J:
J-2 1 J—-2
+Z $Z+lj8 2,y zi1 [ xiJer Yy zi+73+ xiJr%,Jfl y Z7,+%J—1j|
Jj=2 j=1

This ends the proof.

Now, we can derive the energy conservations in the discrete forms for our spatial
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fourth-order EC-S-FDTD scheme.

JE) )} and

it

Theorem 2.3.1. (Energy conservations) Forn >0, E" = {(E;}Hl

1

H! = {HQ_+l 4+;}’ the solutions of the proposed scheme (2.2.38)-(2.2.51), satisfy

the energy conservations in the discrete forms

1 2 1 2 1 2 1 2
e B+ HMQHQH =|e2E"|| + H/ﬂHg : (2.3.5)
E H E H
2 nt3 12 2 nt1 (12
‘ S 1 H,U/%(StHz+2 = ‘ e&EE|| + HM%@HZ*? (2.3.6)
E H E H

Proof. Multiplying both sides of Eq. (2.2.38) with eAt (E; ) —FE;L+ ) and
i+5,J it5,J

multiplying both sides of Eq. (2.2.39) with pAt (H; Lt H:Jr; ,), we obtain
that for j =2,3,---,J—2andi=0,1,--- , I — 1
2 2
At
el B — | B =—A,{ H. + H? Er + E" ,
Tivd Tird. 4 Zivdg Fird . Tivd Tird.
(2.3.7)

At * n * n
= SA, {Ex%ﬂé + ExH;H%} <Hzi+5,j+; + Hzi+g,j+;> . (2.38)
Meanwhile, multiplying both sides of Eq. (2.2.40) with eAt (E;Ek . T EL ),
i+5,7 i+5,J
j=1and j = J—1, and multiplying both sides of Eq. (2.2.41) with puAt (H:‘+

1

28



+ H} | ),j:()andj:J—l,weobtainthatforj:1andj:J—1,and
i+5,7

i=0,1,--,1—1

At~
:—Ay{E; LB }(H . +H' > (2.3.10)
4 s 2,- . G+i i+§,j+7 i+§,j+§

For the above equations (2.3.7), (2.3.8), (2.3.9) and (2.3.10), we sum over all the
terms over all ¢ and j and then add these equations together. Noting that E7' and
E satisfy the PEC boundary condition (2.2.50), and using Lemma 2.3.3, we have

that

Similarly, from Eqns. (2.2.42)- (2.2.45), we can obtain that

I-1J-1 2 2 -1 J-1 2 9
En—l—l H* _ B o
i=0 j= ( ( ZJ+2) +M< Zi+évj+%> ) =0 =0 < ( ,LJJF%) +IU’( Zi+%,j+%) > )

(2.3.12)
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and from (2.2.46)- (2.2.49), it holds that

Energy conservation (2.3.5) can be directly obtained by adding (2.3.11)-(2.3.13).
Let H*' H**! and E**! be the intermediate values of H?, H** and E* at

time level ¢t = t"™! respectively. We then have the intermediate value differences

by 6tH:+% = W, (StH:*Jr% = # and 5tE;+% = % Applying the

difference operator d; to Eqns. (2.2.38)-(2.2.41), we have the following equations of

(5th andétH:. Fori:O,1,~-- ,[—1

ot ! Pas At
6tE++ L ;= AGH v oH *3 Phi=23 =2
n+f A .
5t +1 it+d 5t Zir L+l - /JJ y{(st +1 it+3 +5t +1 +1} j 3 ’J_2’
and for i =0,1,--- , I —1
(StEx:_Z% ) 5t —: y = —Ay{(st ) + 5tHz;:__:j}, j = land J — ]_7
+1 At ~
5tH +1 +1 6tH +1 +2 — _Ay{(st +1 +1 +(5t +1 +1} j—Oand]—l

Similarly, we can have equations of {6, E;*', 8, H}*} and {6, E}*", 6, H*'} corre-
sponding to (2.2.42) - (2.2.48). Moreover, 0, E%, 6, £, 6, E3+ still satisfy the PEC
boundary condition. Following the proof of (2.3.5), (2.3.6) can be proved from the

above equations of §;E and §,H.. O
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From Theorem 2.3.1, we can obtain the following stability theorem.

Corollary 1. (Unconditional Stability) The spatial fourth-order energy-conserved

S-FDTD scheme (2.2.38)-(2.2.51) is unconditionally stable.

2.4 Convergence analysis

In this section, we will analyze error estimates of the proposed scheme (2.2.38)-

(2.2.51). In order to do it, we first introduce the (2,4)-order implicit Crank-Nicolson

scheme and an equivalent splitting scheme and analyze their truncation errors.

The (2, 4)-order implicit Crank-Nicolson scheme for the Maxwell’s equations

can be written as that for the strict interior nodes

n+l _ mn
E" Er )

Z i l
i+%. +t3.d :—Ay{HnJrl +Hg 1 }7 1=0,1,--- 51_17]:2’3’
i+5,J

At

'L+1 j

En+1 —_ En

i Y; i1 1
]+2 ,J+%:_2_A${H2+1 ‘I—Hn } 222’3’,[—2,j:0,17
€ i

At

7,]+1

ngj-_é]-&-% B H’Z+%,j+% n+1 n+l1
At a { y{E ity ]+1 +1 +1} A {EH— 5.it+%
1=1,2,--- 1 —2,7=1,2,--- ,J—2,
and for the near boundary nodes, at j =1and j=J —1
Ertl _En
Pedo Teba LR e gy 01—

At

z+1 j i+%,j
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andati=1landi=1—1

En+1 — En

Yij+d Yij+s 4 n+1 n o _
A = A{HH+1+H +1} 7=0,1, ,J =1, (2.4.5)

and for j=0and J—-1,i=1,2--- 1 — 2,

Tivl it Tivl i+

Hn+1 — H"
it it s Fitdi+d _ i A {
At Y

n+1 n n—+1 n
E" +E” o AAE Ey%ﬁ%}},

foryj=0and J—1,i=0andt=1—1,

Hn+1 - H;Z 1 1 1
z+2 J+2 itg.dty e n+1
e

At +E b -A{ET B 1}},

Tivdi+d i+5.it+% Yirli+3 Yir L+

(2.4.7)
and the similar equations to (2.4.6), (2.4.7) can be obtained for j =1,2,--- | J —2,

i=0and I — 1.

1 1
n+s3;
Let 7o +1 o Ty

4t ontd
an Tz, 1 .,19 Tx. 1 .9 Ty.. 19
i+5,0+5 i+5,7 i+ 5

~n+i .
and 7, ? , be the truncation
i+5,0+5
errors at the strict interior nodes and at the near boundary nodes respectively.

Applying Taylor’s expansion, the truncation errors at the strict interior nodes can
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be estimated by

1 aE( z+ 7yj7t11) 1 aH( ,L+ ,y],t +%)

T 2 — At |:
T i+3.g 24 8t3 46 ayatg
At2 65 ( i+5 »912,7512)] 9 A 485Hz($i+%,y11,tn+%)
 16¢ oyot* 16¢ 7 Dy ’
"E o Ag 2[ 1 OB, (xi,y;,1tn) 1 O H.(2i,y;,1,6"7)
Wy T 2 ot le L2
1
At2 85H2<-T2273Jj+§7t22)] 9 A 485H2(x21,yj+%7tn+5)
- —Ax
16¢ Ox Ot 16¢ Ox® ’
1
Tn—f—% _ At2 [iagHz(xH-é’ yj+%,t31) _ iagEx(xi—i-%?yj-I—%?tn—’—Q)
“it gty 24 ot3 4p Oyot?
At |: tQaE ( z—i— 79327t32) 1 aE( l+ ,y]_;'_l,tn—i_%)
164 8y8t4 m 8908152
At? 85Ey(x32,yj+%,t33)] 9 |:A 85Ez(l'i+%,y31,t"+%)
164 dyot? 16¢ 127 oy®
PFE (1331 Y., 1 tn+§)
4 Yy ) J+§7
+Azx 5 ]
Thus, we have the estimates that for the strict interior nodes
{ +e y bl y”+1! |72, Hl +1!} < C{A# + Az + Ay}, (2.4.8)
where C' is constant.
Noting the relation of (2.2.15), we get that
—25E" + 26E" — E"
1 5 Yo.+3 Y1+ Y2,5+4
AE" = —96m—5mE” = 3
Yyats ( 2e) Y3ath 24Ax
En — 27E" . +2TE) —E"
Y1543 Y1541 Yg it 1
= = ST 24 O(AxY),

Similarly, we have same results for other near-boundary difference operators. Thus,

we can further get that the truncation errors 7,,7, and 7, at the near boundary
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nodes satisfy

NS

n l ~TN ~TN
{%mij;j|,|fy+ 7 *3 +1|} < C{AL + Azt + Ay} (2.4.9)

where C' is constant.
In scheme (2.2.38)-(2.2.51), we eliminate the intermediate variables E*, H* and

H?*, we can obtain an equivalent scheme. It holds that for the strict interior nodes

En+1 _ E;L

iyl i+d.j At
37 27 —A Hn+1 H" A A n+1 S
At { z+1 + Zi+%,j} ].6 +1] xi+%,j}7
1=0,1,--- I —1;5=2,3,---,J—2, (2.4.10)
En+1 00
Yij+d Yij+d 1 A nt1 n At n+1 n
At 2¢ { Zi,j+% + Zi,j+%} + 8u€ y{ zi,j+% xm._"_%}
1=2,3,---,1—2;5=0,1,--- ,J—1, (2.4.11)
Hn+1 H"
Ziv kvl Zird 4+
At
1
_ _{Ay<E;;+1 4B ) A, (En“ +ED )}
21 i+t 5ty i+ 5.ty Yird i+l i+ 5.0ty
At At?
n+1 N n n+1 n
16“ — A A {H] S Hz¢+%,j+%} + 32,12 A A Ay{E s +Eyi+%,j+%}
1=1,2,--- I —2;5=1,2,--- , J—2, (2.4.12)
and for the near boundary nodes, at j =1and j=J —1
En—:—_l _ Ez X 1 At
i+3.J “tgd _K gt H» A A el _ En
At A T T e By T By
1 =0,1, A —1; (2.4.13)



andati=1landi=1—1

En+1 n
Yiits Viith Ly n+1 n At~
= ——AN{H H —ANANAE
At 2 { Zi,j+% + Zi,j-h}} + 8M€ y{ mi’j+%
.j:0717"' 7J_17
and for j=0and J—-1,i=1,2--- | I — 2,
Hn+1 — Hn
Fitd+d Zird vy
At
1 ~
_ n+1 n - n+1 n
2 {Ay (Exi+%,j+% + Exi+%,j+%) Aa (Eywr%,ﬁ% yi+%,j+%) }
At — — At?
= n+1 n n+1
16ueAyAy{Hzi+%,f+% Hzi+%,j+%} * 32u2eAyAIAy{ Yird.i+d
and for j=0and J—1,7=0and [ — 1,
Hn+1 Hn
Fitd+d Zird vy
At
1 (~ ~
_ n+1 m _ n—+1 n
- 24 {Ay (Exiﬁ%,ﬁ% + E%r%ﬁ%) A (Eyi+%,j+% yi+%,j+%> }
At — — At?
o n+1 n n+1
16M€AyAy{Hzi+%,j+% Hzi+1,j+%} + 32M2€AZIACEAZ/{ yi+%,j+%

- B

3

2

gt+d

(2.4.14)

The similar equations to (2.4.15)(2.4.16) can be obtained for j = 1,2,--- | J — 2,

t = 0 and I — 1. Where the difference operator A, is A, when it is over the

strict interior nodes, A, is A, when it is over the near boundary node

definition is for A,.

Noting the equivalent scheme (2.4.10) - (2.4.16), the scheme (2.2.38)-

s. The same

(2.2.51) can

be regarded as the perturbation of the (2,4)-order implicit Crank-Nicolson scheme
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(2.4.1) - (2.4.7). Let n,, n, and 7, be the truncation errors of our scheme (2.2.38)-
(2.2.51). From the equivalent relations (2.4.10) - (2.4.16), we then have that for

the strict interior nodes

n+ti ntl At n+1 n

$i+;j - :CH;]_ ﬂAyAy{Ex(ajH%,yj,t ) — Ex(xH%,yj,t )} (2.4.17)

n+2 n+s At n+1 n

nyi;% = Tyi+%2,j — Sic —AANAE, (xl,yj+1 ") — Em(xi,yﬁ%,t )} (2.4.18)

n—i—l n-‘,—l At n+1

Zi+;j+% - Zi+%2,j+% 16u€AyAy{H( ip Vgt ) - Hz(xi+%’yj+%’tn)}
Af2

32 2, 75 - Ay AN By (2 Loyl Yl ’tn+1) E'y(:L’H%,ijr%,tn)},

(2.4.19)

and for the near boundary nodes

n+% o ~n+% At oty o

77:22_+%}j - ng”%’j 16M6A Ay{E ( +%7y]7t ) Ex(xﬂ_%,yj,t )}, (2420)
n+3 ~n+i At _— .

”yi,ji% - ryH;j S — AN E (g1, 1) = By, 1)), (24.21)
n+i _n+i At

Tonc AL Tit 5o Yj+sg L") — LECASH IR

Nz =Tz
i++g i+.i+s 16M€

AAA By (2 TitlsYjls ") — Ey(l'w%vyﬂ%?tn)}'
(2.4.22)

From the truncation error expressions (2.4.17)-(2.4.22), we can have the following

lemma.

Lemma 2.4.1. (Truncation error) Assume that the solutions are smooth enough,

1

for example, E and H € C°([0,T); [C°(Q)]?). Then the truncation errors of ny 2,
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n+l n+i . . .
Ny >, n: > are fourth order in space and second order in time

n

1 el 1
maz {In: ) m 2 0 < Cale AR + A+ Ay"), (24.23)

where Cy(e, p) is constant dependent of parameter € and p.

Now, we provide the convergence analysis for the scheme (2.2.38)-(2.2.51). Let
& s =Eu(@a,ys, t") - By, &) =Ey(Ta,ys,1")- By and HE = H.(za,yp,1") -

HZ |, where Ei (20, yp, t"), Ey(24,ys,t") and H, (x4, ys,t") are the exact solutions

at point (z4,ys,t"). Then we have the following theorem.

Theorem 2.4.1. (Convergence) Let E,(z,y,t), E,(x,y,t) and H,(x,y,t) be the
exact solutions of problem (2.2.5)-(2.2.8) and smooth enough. Let E}, E} and H?
be the solutions of the scheme (2.2.38)-(2.2.51) for n > 0. Then for any fized time

T > 0, there exists a positive constant C,c, such that

mae {3 [B() — BV} + |3 (Ho(7) - B[ | (2.4.24)

0<n<N
1 1 3
< (I3 [B() ~ B + It () = B + CuT (A + Aat + Ay,
1 1 1 1 1 +1 %
mex {||eaat[E(tn+a) — B2 4 || St HL (7 E) — HL 2]||§,} (2.4.25)

0<n<N

< (l3atB @) — BAIE + bt (t3) — HZ]I%) " + CuT (AL + Aa® + Ag?).

Proof. Define HI* | H; ., and & |, for the strict interior nodes, as that
i+5.0+ i j i 2J
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fori=1,2,--- 1 —2:57=1,2,---,J—2

At
,HZH%,H% N 2( Zitdit+i * HZH%,H%) 81 vl Titd it} SxH%,H%)
At
__Ax(gn-i‘l __eon )
4 Yirdi+} Yird i+d
1 At
* = (! n — n+1 __eon
sz% i+ Q(HZH%,H% +Hzi+%,j+%) 8 Ay(gxzdrl,ﬂ% gmz% g+%)
At
__ n+1 n
+4NA$( Vit gty * gyi+%u+%)
and fori=2,3,--- , 1 —2,7=2,3,---,J—2
1 At? At
* _ Z(entl n A A n+1 gn — A n+tl _ qn )
536”%’]' 2<gxi+%vj +Sxi+%ai)+ 160" Y z(gyz‘%d + yH—%J) 8¢ y(,HZH%,j Hyi+%,j)

For the near boundary nodes, define that at i = 0; j = 1,2,--- , J—2 (and similarly

at other nodes)

1 At At
*ok _ = n+1 n i — Y n+1 __eon R — ) n+1 _on
ey = 3Py TP ) TG B ) T T )
1 At At~
* —— n+1 n — A n+1 __eon A n+1 n
HZ%,H% 2(7{2%%% + H%ﬁ%) 81 y(gx%,wr% 9”%%%) * 4p x(gy%,j% + gy%,ﬂ%)’
and at i =1;7=2,3,---,J — 2 (and similarly at other nodes)
1 At~ At
* _ —(en+l n T AA n+1 n —ZA n+l _ q/m )
gx%,j 2(51%,3 +€1‘%1])+ ].6,“1 Yy ﬂﬁ(gy%’j +€y%yj) 86 y(HZ%,j ,Hy%’j)

From (2.2.38)-(2.2.51) and (2.4.10)-(2.4.16), the error equations can be derived

as
Stage 1 For the strict interior nodes, © = 0,1,--- , [ — 1
At - de Y Zi+%,j Zl,+%’j 1”%7],7 J =49, ) ) <.

38



Zz+%,]+§ H-g H‘% . i * n 7L+2 _ _
At _4MAy{5xl+ . +5 +1 +1} ¢2i+%,j+%’ .]_1727' 7J 27
(2.4.27)
and for the near boundary nodes, i =0,2,--- , I — 1
Ex - &
Tyl Tirki i"’ * n —
A7 = 4€Ay{HZi+%,j + ’H } + (;51 ey j=1landJ -1, (2.4.28)
H: —HZ
Zitd.itd Zitditd ¥ n . B
A7 4,u {8 +8 by, +1} ¢z+1 +%,j—()analj 1.
(2.4.29)

Stage 2 For the strict interior nodes, j =0,1,--- ,J — 1

(c/’n—i—l o ((/’n
yl]+g yi,j+% ]- *ok * ;
At - _gAz{H +H } ¢3 +1’ _2737"' 71_27 (2430>
'H** o H*
Zir kvl Zirkitvy _i ntl . N _
A = 2MA:,; A 1+1 _ } b1 ZW%, i=1,2,---,1-2;
(2.4.31)
and for the near boundary nodes, j =0,1,--- ,J — 1
n+l _ on
gym+1 gyi,jJr% 1~ - * :
A7 = —gAz{’H —|— 7—[ } + <;5 =landl —1, (2.4.32)
Aoy~ Mg A en+l : J
At T o { H— ]+1 H—l +1} ¢ H’%, i=0andl—1.
(2.4.33)
Stage 3 For the strict interior nodes, © = 0,1,--- , [ — 1
5”+1 - g*
mi+%,j xi+%,j L n *ok ”+2 S _
A7 = A{?—l +1_+’H } q5+1 L J=2,3,---,J—2 (2.4.34)
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n+1 Kk

i+3.9+3% T3ty i n+1 ntg P _9.
A7 _4MAy gwwé,j# } ¢+1 +%,3—1,2,...,(] 2;
(2.4.35)
and for the near boundary nodes, i = 0,2,--- , [ — 1
e - »
i+5,J it+5,7 _ n ok n 2 y — —
Y = A{H +1_+H }—l—gb iy, landJ —1, (2.4.36)
n+1 _ *k
Cithath HZ”%’H% — iK {ertt +5* } ¢n+2 j=0andJ —1
At 4p Y Fir kgt i+3’ '
(2.4.37)
The following relations can be derived.
n+% _l n-i-% n+% o 1 n+f n+ o n+2
1i+%,j o 27]zi+%,]'7 2i+l g+d B 277 i+ ]+%7¢3 nyw+f
n—l—f . 1 n—&-% 1 n—l—%
¢4 i1l ¢5 = gl ’¢6+ Lty BT

Thus, it holds that
n—l—% n-‘,—% n—l—% n-‘,—% n—l—% n-‘,—%
maz(6r 2|10y 21165 2| 100 2] 5 2 1os ) < C(AP +Axt+Ay?). (2.4.38)

From (2.4.26) - (2.4.29), we have that

-1 .J— 1
1oy 1,4 1an 1.n «
lez&3 1%, + ln2HilG — le2 & lE, — Ml = At Z+1 .(fxi%j
=0 y:0
n+2 * n
+ o i+5.+% (H'zw%,ﬂ% + Hzi+%,j+%)}AxAy'
It can further obtained from the above equation that
1 At At
55* H* 2
ebe: N@HET ik = 5 ol
5 n n t
= flezer + \/—¢1||E‘z + || \/ﬁqbllfq- (2.4.39)
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Similarly, from (2.4.30) - (2.4.33), we have that

At
\/’

Q\f

l(c:n—i—l

kk t
le2&; ¢3||Ey + s e — ==l

\/_

. At
<Z53HEy + HM Hi+ ——oall, (2.4.40)

= 625"
= | NG

and from (2.4.34) - (2.4.37), we have that

lezgp™t — \/—¢5”Ex + 2z -

= |le2& +
f

\/—¢6||H

¢5||EI + ||,u 2HI + \/ﬁ%”?{- (2.4.41)

From (2.4.41), and using the triangle inequality of the discrete norm, we can obtain

that

1
(ledertiz, + He%f:;“néy - ||u%fH2“||z)2

( 2\/_ Y \/_

AR AR ¢6HHH1
(Il g ol

At
(ueze* Lol + I, + b + I%HH)

(n ronl 1 fcbanﬂn)
1
< (I3 €213, + IeBEg I, + I ae )

(n Zeonll+ | f¢6||H||) . (2.4.42)
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Similarly, from (2.4.40), we have that

1
(g, + It Her i + e 3, ) (2.4.43)

1

< (1l + ol et ) + (1Sonllad + 152l )

and from (2.4.39), we have that

=

(HBEI, + Nt 22l + b e, ) (2.4.44)
n n n At 2 %
< (lebenii, + Izl + N, ) (n Zol I+ ||ﬁ¢2uH||)

Combining (2.4.42)(2.4.43) with (2.4.44), and applying the estimate (2.4.38) of

truncation errors ¢; — ¢g, we obtain that

1

(B &1, + ebeg I3, + It ) (2.4.45)

1
< (I3 E21%, + I3, + A% ) + Cucdt (AR + Aat + Ay?).

Recursively using (2.4.45) from time level n to 1, we thus have that

(SIS

1 1 1
(leBEt I3, + by 13, + It Hat 1)

1
< (IlBEDNE, + IeBEDNE, + A2 + CucT (A + Az + Ay).

This proves (2.4.24). Further, applying time difference operators to the scheme
(2.2.38)-(2.2.51) and the equivalent scheme (2.4.10)-(2.4.16), we can get the error
equations of §; iaE: , OBy n+ 2 and §;H. 2. Similarly to the proof of (2.4.24), we can

obtain (2.4.25). O
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Finally, we analyze the approximation of the proposed scheme to the divergence-
free property. We first prove that the scheme holds the modified divergence-free

identity in the discrete form.

Lemma 2.4.2. For the scheme (2.2.38)-(2.2.51), the following modified divergence-
free identity holds that for the strict interior nodes, i = 2,3,--- 1 — 2; j =

2,3, J—2

n n At2 n 0 0 A 0
(MaBL, + Ay ) = T A EL = (AaBY, 4 A B ) = T A A B,

(2.4.46)

and for the near boundary nodes, ati =1 and I —1; j=2,3,---,J —2

K n n At2~ A n 0 0 AtQK A 0
E( xExi,j + AyEyi,j) — @AI’AZ/ yEﬂCi,j = €<AIEJ:,"J- + AyEyi,j) — @ T yAyExi’j,

(2.4.47)

and similar relations at other near boundary nodes.

Proof. From the scheme (2.2.38)-(2.2.51) or the equivalent scheme (2.4.10)-(2.4.16),

we can get that for the strict interior nodes, forv =2,3,--- , [—-2;j=2,3,--- ,J—2
n+tsy n+ty _ 1 n+1 n At n+1
(St(AwExi,]Q + A EyZJZ) Ax (Q_EAy(H’L’j + H,LJ) — @Ay/\y i)

1 At
by (G ) - S A (BT - E>)

2
_ AL A A (B - pr ) = A
16ue 7 J 16p€

Zs,

ot (AcA A EL )
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Similarly for the near boundary nodes, at i = 1; j =2,3,--- , J — 2, we have that

SALEE L A B K (At oy — 2L A (B
( e bz ;” 1 Ay ym‘)— x % y( 1,5 + ,j)_m Yy y( z15 :pl,j)

. At~ n n

— A, (g_eAm(H T HY) - %AIAy(E‘“t‘l - E””’j))
AP
 16ue

~ 1
ot (A A ELT)

and similar relations can be obtained for other near boundary nodes. Summing
over n for the above equations, we get the modified identities of divergence-free

(2.4.46), (2.4.47) on strict interior nodes and near boundary nodes. This ends the

proof. O

For the approximate electric field E™, let

|V, -E"|? = (ALE} + A Ep )?AxAy (2.4.48)

J—2
+ Y [AEL  +AED P+ (AEL |+ AED ) AzAy

Tr—1,j Yr—1,j
=2
I1-2 B _
Y IAE + A B P 4+ (LB, + 6B )PlAcdy
=2
+ [(KxEﬂrELn + KyE;,l)z + (KxE;1—1,J—1 + KyE;LI—1,J—1)2]AxAy'

Then, from the modified divergence-free identity in Lemma 2.4.2, we can easily

prove the following theorem.
Theorem 2.4.2. Let At = Ax = Ay. Suppose that the assumptions of Theorem

2.4.1 are satisfied. Then we have the following estimate of discrete divergence-free

IV - E"> < CA + 2|V, - E°°. (2.4.49)
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2.5 Numerical Experiments

We first take the numerical dispersion analysis for our EC-S-FDTD-(2,4) scheme.

Consider the two-dimensional Maxwell’s equations’ solution

En}ﬁ — Eogne—i(kxaAa:—i-kyﬁAy)? H;Z’B — Hzofne_i(k"an+kyﬂAy), (251)

[0

where ¢ is the amplification factor and the £, and k, are wave numbers along the

x-axis and y-axis. By computing, we have the equation of factor £
(& = 1)(do&? + 2d1& + do) = 0 (2.5.2)

where dy and d; are:

and u, and v, are defined by

sin(3k,Ax) — 27sin(ik,Ax) Y, sin(3k,Ay) — 27sin(3k,Ay)
24Ax Y 24 Ay

Uy =

Clearly, the modulus of three roots of equation (2.5.2) are all equal to one. Thus,

our EC-S-FDTD-(2,4) scheme is non-dissipative.
Let ¢ = \/% be the wave speed. Let Ax = Ay = h, Ny = %, and S = %‘t. Let

v, be the velocity of numerical wave. The phase error of the wave speed can be
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Figure 2.1: Numerical dispersion against the CFL number with N, =40 and 6 =

65°(a) and numerical dispersion against the number of points per wavelength Ny

with S = 2.4 and 6 = 65° (b).

expressed as

% _ &arc an _’Im('f”
2= gegeretan (e ) (25:3)

Figure 2.1 and Figure 2.2 show the comparisons of numerical phase errors against
the wave courant number S, the number of points per wavelength N, and the prop-
agation angles ¢ by our scheme and other schemes of Crank-Nicolson, S-FDTDII
([24]), EC-S-FDTDI and EC-S-FDTDII ([7]). It can be clearly seen that our EC-
S-FDTD-(2,4) scheme is the best one whose numerical dispersion is the closest to
the analytic solution 1.

Then, we will focus on the numerical study of energy conservation, conver-
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Figure 2.2: Numerical dispersion against the propagation angles ¢ with N, = 40

and S = 3.5.

gence, and convergence of

divergence-free by comparing our EC-S-FDTD-(2,4) to

other schemes of EC-S-FDTDI and EC-S-FDTDII ([7]), and ADI-FDTD ([49, 82]).

Consider the Maxwell’s equations (2.2.5)-(2.2.7) in a lossless medium with the do-

main = [0, 1] x [0, 1] surrounded by a perfect conductor. The exact solution of

equations (2.2.5)-(2.2.7) is

where k, and k,, satisfy the

electromagnetic fields can

k
6\/%wcos(wwt)cos(kxﬂx)sin(kyﬂy), (2.5.4)
_6\/:’_Mcos(wﬂt)sm(kxwx)cos(kyﬂy), (2.5.5)
1
——sin(wnt)cos(k,mx)cos(k,my), 2.5.6
sin(wrt)eos(kmr)cos k) (25

dispersion relation w?® = --(k2+k;). The exact energy of

be computed directly as Energyl = ([, (e|E(z,y,t)[* +
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N[

plH.(z,y,t)|*) dedy)? = L. Define the relative errors of energy by

1 n 1 n 1
[(le>E"[E + [ln= HE|[7)> — Energyl|

REE-I = JRax, Fnergyl (2.5.7)
and
REE-II (2.5.8)
1 nal 1 n+1 1 1 1 1 i 1
o lURET + [ R — (BB + o )3
 0<n<N-— 1.1 1 TN ’
b= (lezolB2 |5, + [[n2 6. H2 [|7)>2

Table 2.1: Relative Errors of Energyl and Energyll by EC-S-FDTD I&I1I, EC-S-
FDTD-(2,4), and ADI-FDTD schemes. Parameters: k, =k, =1, p =€ =1, Ax

=Ay=At=1/N,at T = 1.

Mesh EC-S-FDTDI EC-S-FDTDII EC-S-FDTD-(2,4) ADI-FDTD

N REE-I | REE-II | REE-I | REE-II | REE-I | REE-Il | REE-I | REE-II

25 4.44e-16 2.00e-16 1.11e-16 4.0le-16 3.33e-15 3.0le-15 9.82e-04 9.75e-04
50 1.33e-15  2.00e-16 3.33e-16 1.40e-16 7.11e-15 6.20e-15 2.46e-04 2.46e-04
75 2.22e-15 6.00e-16 3.33e-16  2.20e-15  2.22e-15 2.20e-15 1.10e-04 1.10e-04
100 2.89e-15 8.00e-16  5.55e-16  3.60e-15 1.58e-14 1.38e-14 6.17e-05 6.17e-05

200  5.55e-15 8.00e-16 7.76e-16 7.60e-15 3.22e-14 2.84e-14 1.54e-05 1.54e-05

Table 2.1 clearly shows that EC-S-FDTD-(2,4), EC-S-FDTDI and EC-S-FDTDII
schemes satisfy energy conservations I & II in the discrete forms. However, the ADI-

FDTD does not satisfy energy conservations with the relative errors of 107°. In

48



Table 2.2: Relative Errors of Energy I and Energy II by EC-S-FDTD I&II, EC-S-
FDTD-(2,4), and ADI-FDTD schemes. Parameters: k, =1, y = ¢ =1 and Az =

Ay = At=0.01 at T = 1.

Scheme ky=2k, ky=5ky ky=10k,

REE-I REE-II REE-I REE-II REE-I REE-II

EC-S-FDTDI 1.11e-15 1.0le-15 3.33e-15 3.34e-15 4.44e-16 3.43e-16
EC-S-FDTDII 6.66e-16  5.06e-16 3.11le-15 3.12e-15 3.33e-16  4.57e-16
EC-S-FDTD-(2,4) 1.35e-14 1.19e-14 1.20e-14 1.19e-14 1.29e-14 1.29¢-14

ADI-FDTD 9.87e-05 9.86e-05 1.19e-04 1.18e-04 1.22e-04 1.19e-04

Table 2.2, we set different k, = 2k,,5k,, and 10k,, numerical results show that
EC-S-FDTD I & II, EC-S-FDTD-(2,4) schemes hold the properties of energy con-
servations while ADI-FDTD does not keep.

Let Errorl and Errorll be defined by

(le2[B") — E")[F + |p2[Ha(t") — H]|I%)?

Error]l = JBax, Energyl , (2.5.9)
1 1 1
2[6,E(t") — 8, E"||? 2[6,H,(t") — 8, H"]||%)=
Brrortl = e (IEBEE) = S + L0 = IR,
0<n<N-1 Energyll

Table 2.3 and Table 2.4 show the convergence ratios of Errorl and ErrorIl by
EC-S-FDTDI, EC-S-FDTDII, EC-S-FDTD-(2,4) and ADI-FDTD at time t = 1. It

can be clearly seen that EC-S-FDTD-(2,4) is of fourth-order convergence in spatial
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Table 2.3: The convergence ratios of Errorl in spatial step for different schemes.

Parameters:Az = Ay = 1/N, At = 1/N* k, =k, =land u=e=1,at T = 1.

Mesh EC-S-FDTDI EC-S-FDTDII EC-S-FDTD-(2,4) ADI-FDTD
N Errorl Ratio Errorl Ratio Errorl Ratio Errorl Ratio
25 0.0034 - 0.0029 - 1.3411e-05 - 0.0029 -
50 8.4760e-04 2.0041 7.3130e-04 1.9875 8.3842e-07 3.9996 7.3154e-04 1.9870
75 3.7651e-04  2.0013 3.2485e-04 2.0013 1.6562e-07 3.9999 3.2495e-04 2.0014
100 2.1180e-04 1.9998 1.8274e-04 1.9998 5.2405e-08 3.9999 1.8275e-04 2.0007
200  5.2942e-05 2.0002 4.5677e-05 2.0003 3.2752e-09 4.0000 4.5679e-05 2.0003

step, however, other three methods are only of second-order convergence in spatial

step. Further, Figure 2.3 shows that convergence lines of these four schemes.

Table 2.5 and Table 2.6 show the convergence ratios in the time step of Errorl

and Errorll by the four schemes of EC-S-FDTDI, EC-S-FDTDII, EC-S-FDTD-

(2,4) and ADI-FDTD at time ¢t = 1 with Az = Ay = At. From Table 2.5 and Table

2.6, it can be clearly seen that EC-S-FDTDII, EC-S-FDTD(2,4) and ADI-FDTD

are second order in time but EC-S-FDTDI is first order in time, and meanwhile,

EC-S-FDTD(2,4) has smaller Errorl and Errorll than EC-S-FDTDII and ADI-

FDTD. Figure 2.4 also shows that EC-S-FDTD(2,4) is more accuracy since its error

50



Table 2.4: The convergence ratios of Errorll in spatial step for different schemes.

Parameters: Ax = Ay =1/N, At =1/N*  k, =k, =landpu=e=1,at T = 1.

Mesh EC-S-FDTDI EC-S-FDTDII EC-S-FDTD-(2,4) ADI-FDTD

N Errorll Ratio Errorll Ratio Errorll Ratio Errorll Ratio

25 0.0030 - 0.0030 - 1.3719e-05 - 0.0030 -

50 7.5897e-04 1.9828 7.4939e-04 2.0012 8.5816e-07 3.9988 7.4960e-04 2.0008

75 3.3715e-04 2.0012 3.3294e-04 2.0009 1.6954e-07 3.9996 3.3303e-04 2.0009

100 1.8963e-04 2.0003 1.8729e-04 1.9998 5.3646e-08 3.9998 1.8731e-04 2.0004

200  4.7401e-05 2.0002 4.6819e-05 2.0001 3.3543e-09 3.9994 4.6821e-05 2.0002

decreasing line is always below others.
Let the discrete divergence-free errors be defined as that, for the spatial second

order schemes

Divl = max (0, , + 0y By )], (2.5.11)

1<i<I—1,1<5<J—1,0<n<N

N

Divll = max ( Z Z e(5xEZi,j+5yE;7j)2AxAy) , (2.5.12)

0<n<N
1<i<I—11<5<J—1

and for the spatial fourth-order scheme, the definitions of Divl and DivII in (2.5.11)
(2.5.12) are changed by using A, and A, over strict interior nodes and Km and Ky
over the near boundary nodes to replace d, and 9,.

Table 2.7 and Table 2.8 list the numerical results of Divl and Divll of different
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Figure 2.3: Errorl (a) and ErrorIl (b) in spatial step by different schemes when T

=1, N, =N, =N,N, =N*k, =k, =1, andp =€ = 1.

schemes with Az = Ay = At at time level ¢ = 1. From these two tables, we
see clearly that the errors of numerical divergence-free of EC-S-FDTD-(2,4), EC-
S-FDTDII and ADI-FDTD is second order in time, but EC-S-FDTDI is first order

in time.
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Table 2.5: The convergence ratios of Errorl in time step by different schemes.

Parameters: Az = Ay = At =1/N,and withk, =k, =landp=e=1lat T = 1.

Mesh | EC-S-FDTDI EC-S-FDTDII EC-S-FDTD-(2,4) ADI-FDTD
N Errorl  Ratio Errorl Ratio Errorl Ratio Errorl Ratio
25 0.0445 - 0.0080 - 0.0051 - 0.0108 -
50 0.0222 1.0032 0.0020 2.0000 1.2880e-03 1.9854 0.0027 2.0000
5 0.0148 1.0000 8.9566e-04 1.9813 5.7258e-04 1.9994 0.0012 2.0000
100 0.0111 1.0000 4.9897e-04 2.0035 3.2209e-04 1.9999 6.7599e-04 1.9949
200 0.0056 0.9871 1.2537e-04 1.9928 8.0527e-05 1.9999 1.6902e-04 1.9998

Table 2.6: The convergence ratios of Errorll in time step by different schemes.

Parameters: Az = Ay = At = 1/N, and with k, = k, = 1 and p = ¢ = 1, at

T=1.

Mesh | EC-S-FDTDI EC-S-FDTDII EC-S-FDTD-(2,4) ADI-FDTD
N Errorll  Ratio ErrorlIl Ratio ErrorlIl Ratio ErrorlII Ratio
25 0.0449 - 0.0081 - 0.0051 - 0.0101 -
50 0.0223  1.0097 0.0020 2.0179 0.0013 1.9720 0.0026 1.9577
75 0.0148 1.0111 9.1078e-04 1.9400 5.8111e-04 1.9858 0.0011 2.1215
100 0.0111 1.0065 5.1325e-04 1.9937 3.2745e-04 1.9939 6.4756e-04 1.8418
200 0.0056 1.0000 1.2865e-04 1.9962 8.2070e-05 1.9963 1.6246e-04 1.9949
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Figure 2.4: Errorl (a) and Erroril (b) in time step by different schemes when T =

ILNg=N,=N,=N,p=c=1ky=k,=1.

Table 2.7: The convergence ratios of divergence-free (Divl) in time step by EC-S-
FDTD-1&II, EC-S-FDTD-(2,4), and ADI-FDTD. Parameters: Ax = Ay = At =

1/N, and with k, =k, =1, p=e=1at T = 1.

Mesh | EC-S-FDTDI EC-S-FDTDII EC-S-FDTD-(2,4) ADI-FDTD

N Divl Ratio Divl Ratio Divl Ratio Divl Ratio

25 0.1961 - 0.0044 - 0.0044 - 0.0174 -

50 0.0986 0.9919 0.0011 2.0000 0.0011 2.0000 0.0043 2.0167

(0] 0.0657 1.0013 4.8687e-04 2.0102 4.8694e-04 2.0099 0.0019 2.0144

100  0.0493 0.9983 2.7401e-04 1.9982 2.7403e-04 1.9984 0.0011 1.8998

200  0.0247 0.9971 6.8512e-05 1.9998 6.8512e-05 1.9999 2.7404e-04 2.0050
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Table 2.8: The convergence ratios of divergence-free (DivIl) in time step by EC-S-
FDTD-1&II, EC-S-FDTD-(2,4), ADI-FDTD. Parameters: Az = Ay = At = 1/N,

and with k, =ky =1, p=e=1atT = 1.

Mesh | EC-S-FDTDI EC-S-FDTDII EC-S-FDTD(2,4) ADI-FDTD

N DivIl  Ratio DivII Ratio DivIl Ratio DivII Ratio

25 0.0984 - 0.0022 - 0.0022 - 0.0087 -

50 0.0493 1.0266 5.4763e-04 2.0062 5.4782e-04 2.0057 0.0022 1.9835

75 0.0329 0.9975 2.4354e-04 1.9985 2.4358e-04 1.9989 9.7400e-04 2.0095

100 0.0247 0.9965 1.3700e-04 1.9998 1.3701e-04 2.0001 5.4796e-04 1.9995

200  0.0123 1.0059 3.4255e-05 1.9998 3.4256e-05 1.9999 1.3702e-04 1.9997
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3 The Time and Spatial High-Order Energy-
conserved S-FDTD Scheme for Maxwell’s

Equations

3.1 Introduction

To achieve high order in time, the fourth-order Runge-Kutta schemes are used
in [64, 73, 76], in which the time variables are not staggered. Another option
in [20, 70] is the fourth order leap-frog time integrators derived. However, these
explicit fourth-order FDTD schemes are conditionally stable and have prohibitive
requirements of computational memories and computational costs.

In this chapter, we develop and analyze high-order energy-conserved splitting
FDTD schemes by focusing on preserving energy conservations and high-order ac-
curacy in both time and spatial steps. We propose a new and novel time and
spatial fourth-order energy-conserved S-FDTD scheme (i.e. EC-S-FDTD-(4,4)) for

solving Maxwell’s equations. Firstly, constructing time fourth-order splitting leads
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to a seven-stage time splitting procedure for Maxwell’s equations. At each stage,
we will solve each-stage splitting equations on the Yee’s staggered grid. But, if a
time second-order scheme is still applied to each-stage equations, it can not obtain
fourth-order accuracy in time for the seven-stage time splitting procedure globally.
Thus, it is important to construct the time fourth-order scheme to each-stage equa-
tions. The first important feature is that for obtaining fourth-order accuracy in time
to each-stage equations, we derive out the time fourth-order schemes to each-stage
equations by converting the third-order correctional temporal derivatives to the
spatial high-order derivatives, which lead to the systems with spatial third-order
differential modified terms. Secondly, on the Yee’s staggered grids, we approxi-
mate the spatial first-order differential operators in the strict interior points by the
spatial fourth-order difference operators which are formed by a linear combination
of two central differences, one with a spatial step and the other with three spatial
steps, while the spatial third-order differential operators in the strict interior points
are approximated by the spatial fourth-order difference operators obtained from a
linear combination of three central differences, one with a spatial step, the second
with three spatial steps and the third with five spatial steps. For the near bound-
ary nodes, the one-sided high-order differences or extrapolations operators can not
be used because they break the properties of energy conservations. The second

important feature is that we propose the fourth-order near boundary difference op-
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erators for the spatial first-order differential operators and the spatial third-order
differential operators, by using of the PEC boundary condition, original equations
and Taylor’s expansion, which have the same accuracy corresponding to the fourth-
order interior difference operators and ensure the derived S-FDTD scheme energy
conservative. The proposed EC-S-FDTD-(4,4) scheme has the significant proper-
ties: energy-conserved, unconditionally stable, fourth-order accurate in time and
space, and computationally efficient. We strictly prove that the EC-S-FDTD-(4,4)
scheme satisfies energy conservations in the discrete form and in the discrete varia-
tion form, and the scheme is unconditionally stable in the discrete Lo-norm and in
the discrete H'-norm. We then prove that the EC-S-FDTD-(4,4) scheme has the
optimal fourth-order error estimates of O{At*+ Az*+Ay*} in the discrete Ly-norm
and the super-convergence of O{At* + Az* + Ay} in the discrete H'-norm. The
approximation of divergence-free of the scheme is also proved to have fourth-order
accuracy in both time and space. Numerical experiments confirm the theoretical
results.

The rest of the chapter is organized as follows. In Section 3.2, Maxwell’s equa-
tions are presented and the time and spatial fourth-order EC-S-FDTD scheme is
proposed. In Section 3.3, we prove the properties of energy conservations. The
convergence analysis is given in Section 3.4. Numerical experiments are presented

in Section 3.5.
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3.2 Maxwell’s Equations and Time Fourth-Order EC-S-FDTD

Scheme

We firstly present the Maxwell’s equations in two dimensions, and then give our

time fourth-order energy-conserved splitting FDTD scheme.

3.2.1 Maxwell’s equations in two dimensions

Consider the two-dimensional transverse electric (TE) models with no sources in
a lossless medium and that €, pu are constant. The two dimensional Maxwell’s

equations are:

oF, 10H,

= - 2.1
ot e Oy’ (3:2.1)
OE, 1 9H,
—_— = —— 2.2
ot € Ox’ (322)
oH, 1 (0E, OE,

= — - — 2.
ot v ( dy  Ox ) ’ (3:2.3)

where E = (E,(z,y,t), E,(z,y,t)), H.=H.(x,y,t) for (z,y) € Q@ =10,a] x [0,b] and

t € (0, T]. The perfectly electric conducting (PEC) boundary condition is provided:

(E,0) x (n,0) = 0 on (0,T] x 99, (3.2.4)

where n is the outward normal vector on the boundary. The initial conditions are:

E(z,y,0) = Eo(z,y) = (Exo(z,v), Ey(z,y)) and H,(x,y,0) = H,o(z,y). (3.2.5)
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The solution satisfies the energy conservations (I&II) in Lemma 2.2.1 and Lemma

2.2.2, and the following energy conservations (IIT & IV) (see [23]).

Lemma 3.2.1. (Energy Conservation III & IV) Let E and H be the solutions of
the Mazwell’s equations (3.2.1)-(3.2.5) in lossless medium and without charges, and

satisfy the PEC boundary condition. If E and H are smooth enough, then

Jo (6 |‘3—ﬂ2 + |22 2) dxdy = Constant, (3.2.6)
2 2 2 2
o (e DL 4| ZH ) dzdy = Constant, (3.2.7)

where u = x,y.

Energy-conserved identities in Lemma 3.2.1 further explain that in a lossless
medium and without sources, the electromagnetic waves also satisfy energy con-
servations in the variation form. For computing problems of longer distance wave
propagations and moderately high frequency wave propagations in large domains
and large structures, a great attention to develop the fourth-order FDTD schemes
has recently been made. However, it is difficult to develop both time and spatial
high-order energy-conserved S-FDTD schemes. In this chapter, we will develop a
both time and spatial fourth-order S-FDTD scheme that preserves the important
physical laws of energy conservations in Lemma 2.2.1, Lemma 2.2.2 and Lemma

3.2.1 in the discrete forms.
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3.2.2 The spatial high order difference operators

Take the space domain €2 and time interval an uniformly staggered grid. Let Az =

L
[
&

, where I, J and T are integers. Let x; = iAx, z,,

D=

I’Z+%Al’, 120717a-[_]-7 .I[:]AI‘:CL, Y; :]A% y]-‘,—% :y]+%Ay7j:
0,1,---,J—1, y; = JAy = b, and t" = nAt, t"*ézt"—l—%At, n=0,1,---,N—
1, tx = NAt = T.

Let grid function UZ ; = U(nAt, aAz, SAy), where ov = i or i + 3,

and f = j
or j+ 3. We define 6,U, 6,U, 62,U, 62,U, 03,U, 03,U and 6,6,U as follows:

Uit s un un ur o -Un

1 - 1 1
n _ “aB a,B n __  ot3.B a—3,8 n __  opt3 o,f—5
O B At J 5®‘Ua,ﬁ - Az ’ 5yUa,B - Ay )

n n

3

ur o, U Ur .U
5 Un . OH’ij a*j»ﬁ 5 n . avﬂ+§ avﬁ7§
2aYa,B — Az » 2yYap — Ay )

un —_yun
at+3.8 a-3.8

ur o -U" g
n . B n _ 041B+§ 0‘1/8*2 n . n
53,2 a,B — Ay ’ 53,y B Ay ’ 5u5an75 — 5u<5an”3)7

where 9, and ¢, can be taken as 0, 024, 034, 0y, 02, and 0s,,.

For the near boundary nodes, .U, 03,U, 02,U and d3,U may fall out of
the domain. The one-sided difference or extrapolation operators can be used to
construct high-order differences for the near boundary nodes by using more one-
sided interior point values. But, these one-sided difference operators will break
energy-conservations. We will construct the new near boundary difference operators
which have the same high-order accuracy corresponding to the high-order interior

difference operators and obtain an energy-conserved S-FDTD scheme. For doing
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this, we will first give Lemma 3.2.2, where some new notations are introduced as
r_; = —iAx, T_ipl =T+ %Am, xry = (I +14)Ax, Trpipl = Trgi + %Am, Yy =
—JAY, Y1 =Y+ 5AY Yy = (J 4+ 5) Ay, and yy 0 =y + 5Ay.

Lemma 3.2.2. Let the electric and magnetic fields {E(x,y,t), H,(z,y,t)} be the
solution components of system (3.2.1) - (3.2.5) with PEC boundary condition, if E

and H, are smooth enough and the initial field Ey is divergence-free, then we have

that for 7 =1,2
Ex<xi+%7 Y—js t) = 2E€E($Z+%7 Yo, t) - Ex(xiJr%v Yijs t) + O<Ay5)7 (328>
Ew(xi+%>yJ+j?t) = 2Ea:(xi+%>yJ>t) - Ex(xiJr%’yJ*j’ t)+O(Ay’), (3.2.9)
and fori=0,1,2

Ez(x—i—%vyjat> = Em(xi+%7yj7t)+O(Ax5)7 (3210)
Eﬂf(‘rl+i+%7yj7t> = Er(xlfiféayjaﬂ—i_O(AxE))? (3211>

and similar relations for E, at x— and y— directions and H, at v— and y— direc-

tions on the near boundary nodes.

The near boundary difference operators should be suitably accurate relative to
the interior high-order difference operators. With the help of Lemma 3.2.2 we can

define the difference operators ds , Ey, 03 ., for the near boundary points (near left
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boundary) as

n n o n
Eyl i+l +Ey2 i+1 2Ey0 i+l
52 B — T T T2
T . )
Y1+l Ax
E? +E” — 2B
5. Em i) Y3,j+% Yo,j+%
3,z . - )
Y3.i+3 Az
E? +E? — 2B
5o BT _ Nt Ya,j+3 Yo,j+3%
733 .
Y141.5+% Ax ’

and 0y, H, , 03,H, on the near boundary nodes (near left boundary) as

HY  —H! |

5 Hn o 5.0+ 5 §7J+§

2xtdly 1 )

1»J+§ AI’
n _ n n _ mn
HZ7 i+l HZS i+l HZQ i+l Eyl i+l
- H™ _ 2773 273 8o H™ 273 2773
3tz 1 T y 031, = .
Lits Ax 2,j+3 Ax

Similarly, we define (52,ng, (537$E;‘, 02, H?, and 03, H] on the near right boundary
nodes. Further, we can similarly define 9, ,E7, d3,E", d2,H”, and 03 ,H on the
near boundary nodes (near top and bottom boundaries).

Finally, define A, and =, to be the fourth-order difference operators to the first-
order differential operator % and the third-order differential operator 88—; on the

strict interior nodes and the near boundary nodes:

AxEn = 27(5z*52,mEn — aE@? 1 +O(A$4), (3212)
Vit gty 24 Yir L5+ Oz lit3.0+3
AtzvH; =5 H! | = W|i,j+% + O(Az?), (3.2.13)
BITY 4i+5
— _ —340,+1302 »—03 4 O3ED 4
=, E" = : S = |, 1.1 O Al’ 3.2.14
x yi+7,]’+% 8Ax?2 yi+%,j+% Ox3 li+35.J+35 + ( )7 ( )
= n — —340,41362,2—03.« 171 . 63H;‘ 4
S = e HE = T ey H0(ATY). (3.2.15)
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fond n n o n - n
Similarly, we can define Ay E7 AszHl , by and _?),Hzi+

to approxi-
2,7 i+5,0+5 J

1
2

En Hn 3 En 3" . . .
9 oH; a—;” d? # on the strict interior nodes and the near boundary
Oy > Oy’ Oy Oy

3.2.3 The splitting method

Time splitting is based on symplectic integrator technique. For non-commutative
operators A and B, let a set of real numbers (¢, ¢a, ..., ) and (dq,ds, . .., dy) such

that the following equality holds:

4
eAHA+B) _ H (ci2AtA) (di2AtB) + O(At5)
=1
with
1 1—23
G=C=—— 7, 0C0=06= """,
T a2y T a2
1
1 23
hh=dy=——5-, do=————, ds=0.
2(2—23) 2(2—23)

This leads to a seven-stage time splitting scheme for obtaining fourth-order time
accuracy. For solving each-stage equations, we will further propose a fourth-order
scheme in both time and space steps. The problem is that if a time second-order
scheme is applied to each-stage equations, it can not obtain fourth-order accuracy
in time for the seven-stage time splitting scheme globally. Thus, it is important
and challenging to construct the time fourth-order scheme to each-stage equations

so that we can obtain a time fourth-order energy-conserved S-FDTD scheme. The

64



important feature is that we will derive a time fourth-order scheme to each-stage
equations by applying the Taylor’s expansions in which the third-order correctional
temporal derivatives will be converted to the spatial derivatives. Thus, a new time
fourth-order scheme to solve each-stage equations is proposed in the following.
Let f(z) be a smooth enough function, we can obtain by using Taylor expansion

that

frt—fr 1o AR O+
At 2 ot 24 ot3

+ O(AtY). (3.2.16)

Using this relation of (3.2.16), we approximate the following one-stage splitting
equations in (t,, t,41]

9B, _ 2000
o (3.2.17)

OH, _ 2c0E,
ot — u Oy

where the ¢ is one constant above. We can thus propose the time fourth-order

scheme for the one-stage equations (3.2.17) as

B3ttt —ER )
i+5,] itgd (g@ _ BAL2 3_3> ( n+1 + H" )
At € Oy 3e2u Oy3 Zivlj Zitl.j 3918
H;L-+11-17Hg-1-1 3 : ( )
i+5,0+5 i+5,0+5 — <£i _ c3At28_3) (E’I’L-‘t‘l + E’I’L )
At poy - 3eu? 9y? Titd.itd Tirdi+y’

Similarly, we have the time fourth-order schemes to other one-stage equations in
the seven-stage splitting method. For further constructing the spatial schemes to

each-stage equations (3.2.18), the proposed spatial fourth-order difference operators
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A, and Z, for both the strict interior nodes and the near boundary nodes in Section
3.2.2 will ensure to obtain an energy-conserved high-order S-FDTD scheme in the

next sub-section.

3.2.4 The EC-S-FDTD-(4,4) scheme

Based on the proposed time splitting technique in Section 3.2.3 and the proposed
spatial fourth-order difference operators for the strict interior nodes and the near
boundary nodes in Section 3.2.2, we propose the following time and spatial fourth-
order splitting FDTD scheme. The scheme is defined as, for n > 1,

Stage 1: Compute the variables EY and HY from E" and H:

E5 1B 3 A 42
the Ttede (G, GAE W n
At - ( € Ay 362/,[/ =y (Hzi-ﬁ-%,j + sz'-}—%,j)’ (3219)
H»?(«’l)l 1 HTL 3 9
taaty  Fwdard (0, GAE N n
At o <H Ay 36#2 =y <Ezi+%,j+% + Ezi+%,j+%)7 (3220)

Stage 2: Compute the variables Elsl) and H? from Ej and H W,

n

(m
Eym‘% Eym% = (d1

3 2
A, = DA > (H® +HY ) (3221)

At e * 3etu " “iitd LIty
g?» - pgh d BAL
i+L.i+d ety (D 17 o EM E" 2.22
At (u T Bep? ‘r) By Yy, ) (3222)

Stage 3: Compute the variables EP and HY from EY and H®:
E® EW

_ -
Peds ey (G GAF N ge e 2.2
At B (e Yoo 32y Y ( ey + Zi+%,])’ (3.2.23)
]_1(3)1 - (2)1 1 .
fbard  TEwbard () GAET N o) ZO 2.24
At (/’L Y 36#2 Y ( xi+%,j+% + xi+%,j+%)’ (3 . )
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Stage 4: Compute the variables E ) and HY from E

) and HS
B ., By, by BAPR
i+ ity 2 p AL ()
=—(—=A, — = | (H H , (3.2.25
At (e 3eu >( w+2+ 2) ( )
(4) (3)
Hzi+$,1+g — H:

i+3.9+3 dy d3AL? _ @ 0

(A5 5E ) (B E! 3.2.26
At (,u e ( Vied i+l - 1 R )
Stage 5: Compute the variables E

and H® from E and HY:
At B ( € y 362 y ( Zi+%,j + Zi+§.7)’ (3 . 7)
H(5) 1 1 H(4) 1 1 3 2
Cebory  Tedarh _ (Gy GEES ) (g E® 2.2
At (/,L Y 36,“ y ( xiJr%,jJr% + xi+%,j+%)7 (3 . 8)

Stage 6: Compute the variables E;]“ and HY from E? and H!
Entl E(2)

Y; i+l Yij+d d3 dgAIQ —
— [ =A, — =, H(G)
5 ( <

= H® 3.2.29
e 3y ny Ty ) 5229
H(ﬁ) 1 _H(5)1 1 d d3A2
Zz+§,j+7 Zi 3:0+5 o _3 o 3 t o n+1 (2)
At (M A 3ep? Hw) By oy Ty 0y (3230
Stage 7: Compute the variables E; (+D) and H™! from E ) and H; ©.
E(n+1) _ (3) ) 3 2
Tl Tl Cy ;AT _ e+ H© 3.2.31
- ( J= SEE ) (T HD ) (3231)
n+1 _ H( )
Fitd.+d

At = (;Ay T B (Emi%ﬁ% +E® ). (3.2.32)

i+5,0+5

WhereE(kl L k=123 B oo k=12 and H"

19 k = 1727"'767
J+d

are
intermediate variables. The boundary conditions are given by

Eﬂ(gk)1 =E | = E;Ek)l = Eﬂ(ﬁk)1 =0, k=1,2,3, (3.2.33)
i+35,0 i+5,0 it5,J it+5,J
(k) n — gk _ pgn _
EyOJJr% o EyO ]+1 - EyI’jJr% - EyI’H% 07 k - 17 25 (3234)
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and the initial conditions are given by

EY) = Ey (oA, fAy); E) = E,(aAz, BAy);

Ta,B

0 _
H, , = H,(alAz,BAy). (3.2.35)

We will prove that the seven-stage scheme (3.2.19)-(3.2.35) satisfies the energy
conservations in the following section. Thus, the scheme (3.2.19)-(3.2.35) can be

called the EC-S-FDTD-(4,4) scheme.

3.3 Energy conservations

In this section, we will consider the discrete energy conservations of the EC-S-
FDTD-(4,4) scheme. The discrete norms for grid functions F=(U,V) and W are

defined on the staggered grids as:

2 _ -1 ~J ZAA 2 _ I J-1 QAA
||U||Ex_zi:0 ijo ray, ||V||Ey_2i:02j:0 rayY,

-1 J—1
HWH%{Z = Zi:o ijo

U”%J V;,j+%

2
AzAy, R = IVIE, + VI,

Wi+%,j+§

where the meshes are Qp, = {(xi+%,yj)|f;01,jzo b Qe = {(ziy551) L=}, and

Qp, = {(z,4 1Yt )|f:_01,3-]:_01 }. For the central difference operator ¢, we define

16U 13 5, = 3120 Yoo 10:Us 51> Ay,

2
I-1—J-1
||5yU||§yEz = Zi:ﬂ ijo 5in+%,j+% AxAy,
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over meshes Oz, = {(wi,y) /217y } and Qs = (23,9510 o0 ) respec-

tively. Similarly, we can define ||5xV||§IEy, ||(5yV||(2;yEy7 16 W |3, ;7. and ||5yW||(25yHZ
{(zsy; )iz ), and Qs = {(2,41,95)[iZ0,7=1 } respectively. For fourth-
order difference operator A defined differently for strict interior nodes and near
boundary nodes, we can similarly define [|[ A, U3 g, A U3 5,5 1AV]IE 5, 1AV, 5,
AW I3, 7. and [|[A, W3 . respectively.

For analyzing energy conservations, we first give several lemmas.

Lemma 3.3.1. Let {a;}}_, and {by},_, be two sequences. Then

p—2
a(bryo — bp—z) = —a1b3 — asby — asby — asby — asbs + ayby—3 + ap_1by_y
k=3
p—3
+ (lp_gbp + ap_gbp_l + ap_4bp_2 - Z bk(ak+3 — ak_g). (331)
k=3

From Lemma 3.3.1, Lemma 2.3.1 and Lemma 2.3.2, we can have Lemma 3.3.2.

Lemma 3.3.2. If grid functions E,, E, and H, are defined on staggered grid and

E,, E, satisfy the boundary conditions: E“’m%,o = Eﬂ%%,J = Ey07j+% =By, ., = 0,
then it holds that
Ju—l Ju—1
Z HZ2+% J+%AU,E’U’L+% ]+% = — Z E,U'H—% JAUHZ1+%,]’ (3-3.2)
Jj=0 j=1
Ju—l Ju—1
2; He y oo ZuBo o = — Y B EH. (3.3.3)
= i=1

where u =y, x;J, = J, [;v=x,y.

69



Proof. We only give the proof of (3.3.3) for v = y,J, = J and v = z. Other

relations in (3.3.2)-(3.3.3) can be obtained similarly. From the definition of =,, we

have
-1 -1
Hz E Hz —34(5JJ + 1302, — 034

z+7 J+g 8AJ}2 yi+%’j+%
1=0 1=0

.(3.3.4)

Considering the near boundary nodes and the strict interior nodes, using the rela-

tion (3.3.1) in Lemma 3.3.1 and the definition of d3,, we have that:

-1 -3
H = H 03 . F H 03 F
Zitdit+3 O30 Yit§,5+3 : Zir g+l 3T YL gl + #1+d 3L Gl
=0 =2
H H E H E
+ Z%H%é?’x Y3.i+3 * ZI*%,J#%(S?’I Yr-%,5+3 * Zk%ﬁ%ég’x Yr-%.i+%
-3
E H —FE H —FE H
yz‘,j+%53’x Zigt g yl,j+%53’x #1itd y2,j+%53’x 2.0+ %
=3
) H — H
ylfl,j%(s?”w r-15+% y172,j+%53’$ r-2,5+}
I—
= — E E H . 3.
yi,j+%53’x Zi,jJr% (3 3 5)
i=1
Similarly, from Lemma 2.3.1 and Lemma 2.3.2 we have that
-1 -1
H = — g E 09 H 3.3.6
Z Zivd vl 02,0 Yird i+l : Yigd 225410 ( )
=0 i=1
-1
H 0. F = E E 0. H . 3.3.7
Zir Lty T Vi Ll Yig+d T Rk ( )
i=0 i=1

(3.3.3) can be obtained by substituting the relations (3.3.5)-(3.3.7) into (3.3.4).

This ends the proof. m

Theorem 3.3.1. (Energy conservations I & II) For integern > 0, let E"={(E? |
H’j J

Ey +1)} and H! = {HZ+1 ‘+1} be the solutions of the EC-S-FDTD-(4,4) scheme
2 itg.its
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(8.2.19) - (3.2.35). Then the following energy conservations hold:

2

2
B+ HM%H:H = 62E'"H + HMQH" , n>0, (3.3.8)
E H, z
) 626tE”+2 .t H;mSt el = ‘ 625tﬂ+2 s Hwét i I} (3.3.9)
H. .
Proof. Multiplying both sides of (3.2.19) with eAt (E;S;”+1 -+ E§+l ) and multi-
it5,] itd.j

, we obtain that

2 2
(2, —(Eﬁl)]=:a(391-+@?1 (100, v )
it5.J i+5,J i+5,J i+5,7 i+5,.] it+5,]

plying both sides of (3.2.20) with puAt (Hz(i)r%] +HY

€
3 2
c At (1) . _ O .
B = 3.1
36# (Exi-‘r%,j T ExH_%J Yy Hzi-&-%,j + Hzi+%,], y (3 3 0)
2 2
(1) _ n
”[@%%MQ (#0)
= (1 n (1)
a <Hzi+g,]'+% + Hzi+%,j+%> Ay <E$i+%,j+% (3.3.11)
3 2
n . ClAt 1) n - ) .
+Exz+%’j+%> 36M (H 1+%7j+% + H2i+%’j+% =y E:Ei+%’j+% + Exi+%,j+% .

We sum over all the terms in the equations (3.3.10) and (3.3.11) and add these two
equations together. Further, using the boundary condition (3.2.34), from Lemma

3.3.2, we can have that

~
[
<
[
~
L
<
L

(B, P HpHD, )= (e(By , ) +u(dE?, )%

i+, i+5.its L £ ] it Sty

@
Il
o
<
I
o
S
Il
o
<
Il
o

Similarly, from equations (3.2.21) - (3.2.32), we can obtain other relations between

1 1 2
(B HY Yand {Ep L HS, L AED, L HS Y and (B

7

17
hitg
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o ae f } and

2 2 3
HY, L) {Eé,i;l, H), L Yand (B HS, Y {ED, HY,

+1?

2 n+1) 2 n+1
{E:Eiilyj Z+1 +1} {EZS ++1’ Zi ;ﬁ;} and {E§)+l, He +1 +1} and {E +)

gty } and {E(3 H(6 ; +1} Then, adding all the relations together with

Zivdgtd 1.5

the boundary conditions (3.2.34) leads to conclusion (3.3.8).
Further, we denote ES', k = 1,2,3, BV k = 1,2, and BT &k =

1,2,---,6, to be the intermediate values of EQ(;k), E?Sk) and H™ at time level

. k)+3 BRI ) +1 EPT g
n + 1, respectively, and let 5tE;£) 2 = —A 0By = B B A — and

k)+3 R+ k)

SHITE = “=—=;— Applying the operator §; to (3.2.19) - (3.2.20), we have

the following equations:

Stage 1:
0 Fy +2 —5t n+21. A2
i+ C1 t (1)+
= (=N, — 2= 0H, [ *+6H
Y <e T )(t AL
1 1
675 15 1 _515 7L1 i+l C AtQ :
Ll : 1 Eh e
bed ek = (G, - s ) e A L)

Stage 2 -Stage 7 can be obtained similarly by applying the operator 6t to (3.2.21)
- (3.2.32) respectively. We notice that for the above equations, 6, £, and 6, E,, still
satisfy the PEC boundary conditions. Following the proof of (3.3.8), we can obtain

(3.3.9). This complete the proof. ]

In order to prove the energy conservations /1 and IV, we give another lemma.
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Lemma 3.3.3. If grid functions E,, E, and H, are defined on staggered grid and

E,, E, satisfy the boundary conditions: E, lo = EJ;H%’J = Eyo!j% = Eyl,j% =0,
then the following relations hold
-1 J-1 -1 J-1
> (6. H0,A E,), ;1 ZZ (0, Ep0. A H.); ;, (3.3.13)
i=1 7=0 i=1 j=1
I-1 J-1 I—2 J—1
(6. H-0, AL By ) 1 = -> (6. By AH:) i1y (3.3.14)
i=1 j=0 i=1 j=0
=,
_E Z{(EyAIHZ)1J+1 + (E A H )] 1j+1}
=0

where A = A, Z.

Proof. We give the proof of (3.3.14) for A, = A,. Other (3.3.14) for A, = =, and

(3.3.13) for A, = A,, =, can be proved in a similar way. In (3.3.14), the left side is

I-1J-1 1 I-1J-1
(0nH0: M By ): oy = 7~ O0cHe  (ABy =By )
i=1 j=0 i=1 j=0
(3.3.15)
Noting of the identities 527$Ey¢7%,j+% = (5x(EyH%7j+% + Eyii%ﬁ% + EyF%’H%)?
52’IHZZ-+1,]-+% = 5$(H2i+2,j+% + Hzi+1,j+% + Hzan%) for the strict interior nodes and
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the definition of A,, one term of the right side of (3.3.15) can be re-organized as

I-1J-1
E 5tzlj+1 52,9: yz 1 J+%
i=1 7=0
—1J-1 J-1
= E g 0, H 0.(FE E g 0, H 09 . F
T+ o Yirdi+d T Yili+d + yw%ﬁl)_'_ T2 G UYL Gl
i=2 j=0 Jj=0
I1-3 J-1 J—1
= 0. F, 0.(H 0. F
TYip L+t m( Ziv2,5+3 Zi1,5+3 Zu+%) - ( TEYL G4 LT Pyl
=1 j=0 7=0
J—1
—0,F 0. H ) 0. H 0. F 0
TS+ T A+ g + 020 Yi+477 211+7)+ (0 Yr-3,5+3 7% Fr-15+%
Jj=0
0.E 0 0. E 0.
0z by, Li+d 7T Fr4 T 0u Yr-3.5+4 77 P12 +%)
-2 J-1 U S
= 0. —F H —2H
T ik grd 2T Pt + A2 yl,J+l( “3.+% + “3.9+3% z%,H%)
=1 5=0 7=0
J—1
+ E AT ﬁ%( gl T Hz,,% H%) (3.3.16)
Jj=0
Using (3.3.16) and the definition of A,, we can get that
-1 J-1 -2 J-1
5IHZi,J+%AIEyi—%,J+% - 5’”Eyi+%,j+% RS WS
=1 j=0 i=1 j=0
s S
— E ——F H, + H.,. —2H,
— 24 Az’ ym%( 3a+d 3u+d %J%)
j:
J—-1 J—1
E L E (H H )+ 2 E 0, H 0. F
VAN e A S T fi-davy’ 24 BEREEAT RS RIS
j=0 Jj=0
.. . . I-1~J-1
The similar relation can be obtained to the termof > .~ > "6, H, A E, |, .
=1 J=0 Lit+% Yird i+

Replacing these two relations into (3.3.15) and using the definition of operator
d2.H, in the near boundary nodes, we finally obtain (3.3.14). This ends the

proof. O
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Theorem 3.3.2. (Energy conservations III & IV in the d-form) For n > 0, let

E" = {(EY EZJ+%)} and H' = {H§i+%,j+%} be the solutions of the EC-S-

Ttk
FDTD-(4,4) scheme (3.2.19) - (3.2.85). Then the energy conservation properties
in the d-form hold:
2

2 2

1 1 1
ess, Bt ¢35, B +—” b5, HH 3.3.17
1 2 1 2 1 2
= €§5UE;L + €§5uE; +”N§5qu )
SuEqs SuEy ouH:
n+3 2 n+3s 2 n+s 2
25,6, Fn 2| +||e26,0,E, "2 +—Hu%@6u£@*ﬂ (3.3.18)
SuFEx SuEy duH
n+i 2 n+ 2 2 n+i 2
26,0, F 2 + |le26,0,E; "2 + H;L%5t6u1¥z*‘2 :
(SU.E,’L‘ (S”U.Ey 6U.HZ

where u = x,y.

Proof. We give the proof of (3.3.18) for u = x. Others (3.3.18) for u = y and
(3.3.19) for u = x,y can be further proved. Applying the operator J, to (3.2.19)
and (3.2.20) in Stages 1-7 of the EC-S-FDTD-(4,4) scheme, we can write the
following equations

Stage 1: 1 <i< -1

o ES) —6,ER . BAL
et = (20, - 9505, ) (0.0 + 0.2 )
1<j<J-1, (3.3.19)

1
6xH§_)A+1 — 8, H

L1 3 2
Li+5 ijts c1 . ClAt — (1) n
At - (ﬂAy 3epu? Y 5$Exi,j+% * 6$E“%,j+1 ’

2

0<j<J—1 (3.3.20)
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Stage 2: 0 <3< J—1

(1) n
0z Ey 1 1_63”Ey
i+d.+3 gty (dip _ AP (2) (1)
At - € Ay 3e2, = 5tzi+%,j+% + 69”Hzi+%,j+$ ’
1< < T -2, (3.3.21)
6. HP 5, HY
ity ity (dy _ d3AP o (1) n
At - ( 1 A$ 3ep? —T 5$Eyi,j+% + 5$Eyi’j+% ’
1<i< T -1, (3.3.22)

Stage 3 to Stage 7 are similarly obtained.

We consider Stage 2. Multiplying both sides of (3.3.21) with eAt (del(,l)

i+.+3

+6$EZT/L 1.1

i+5,0+5

) and multiplying both sides of (3.3.22) with pAt <5xH,§_2)+1 + 6xH,§,1)_+1
7, b 2,7

J 2

we sum over all the terms in these two equations and add them together. It holds

that
-2 J-1 I-1J-1
(6(6IE351) 1 )2 - M(éIHél) 1 1 )2) - (M(51H2(’2) 1 1 )2 - 6(6IE;1 1
=1 5=0 s REEA i=1 5=0 thyats wite
- > {m - B e )
Az? = Y 3ep 1+l
LS om0 g diAt? @ L )
bamr (B = ER)(ih, - SRSy + 1))
Az? = Y Y e [—141
c J-1 ¢ J—1
=33 {(Eél))Q _ (E;n)>2}1’j+% -5 {(Eél))Q _ (Ezgn))z}fq,j%
J=0 j=0
From Lemma 3.3.3, and noticing that El(,l)_ L= EZ(/”)_ L= Eél), L = El(,”)_ L, =0,
0,j+35 0,j+5 Ij+35 Lj+%

we have that for Stage 2,

1 1 1 " 1
s, ED g, + 30BN g, = 20, B\, + (3 HOWS . (3:3.23)
76



Similarly, for Stage 1, we have that
20, EDN2 o + |20, HO|2 1 = €20, E0|2 5 + |26 HY|2 4. (3.3.24)

In the same way, we can have other relations for Stage 3 - 7. Finally, (3.3.18) for

u = x is obtained by adding these relations together. This ends the proof. O
We can similarly prove the following theorem in the A-form.

Theorem 3.3.3. (Energy conservations 111 & IV in the A-form) For integer n > 0,

»J

let B" = {(E; |, ,E; )} and H? = {H} |} be the solutions of the EC-S-
i+} it} i+3.+4

FDTD-(4,4) scheme (3.2.19) - (3.2.835). Then we have the energy conservation
properties in the A-form

2 2 2

1 1
= n+1 = n+1
e\ E” €2 AuEy

(3.3.25)

+
6uEx

2

i

_|_
Ou Ey Oy H

2 2 2

1 1
e\, E} €2\, Ey

|

e

Y

6uEy S5u By 6uH.

2 n+% 2

+ o

3
n+2

G% 6tAuE;I)

where u = x,y.

ntd
20\ B (3.3.26)

|

|

2

uEz u Ly (Squ
2
1 n+z n+2
20N Fy 2 2

26,A, E,

|

2 1
+ HN%(LAUHZ*Z
5uE,

6uEy ouH>

From Theorems 3.3.1 - 3.3.3, we have the following unconditional stability re-

sults.
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Corollary 2. (Unconditional stability) The EC-S-FDTD-(4,4) scheme defined by
(8.2.19) - (3.2.35) with PEC boundary conditions are unconditionally stable in the

discrete Lo-norm and in the discrete H -norm.

3.4 Convergence and super-convergence

There is a difficulty of analyzing the truncation errors of the seven-stage EC-S-
FDTD-(4,4) scheme. For the simplicity of notations, we define difference operators
by

3 A2 A3 AL _
B2 = Law = dihy — =
Iz 3ep

where k£ = 1,2,3,4. We notice that ¢; = ¢4, ¢co = ¢3, di = d3, and dy = 0,
thus, the operators are L., , = L¢,y, Leyy = Leyy and Ly, o = Lg, .. Define the
f(1)

new intermediate variables Eél)—Eg(cg), Ey7, Ef) and HY-H from exact solutions

E.(t"), E,(t"), H,(t"), E,(t"*1), E,(t"*") and H,(t"*!) by

_ At? At4 " At At n
EY = (1+2 [ Lawt2g5 Lé‘ly) E,(t") + (2 —Lery +2 MLi’ly) H(t"),
~ Att At At3

0 = (10220, 12500, ) e+ (22, 422508, ) B
. At? At At At3 .

Z(/l) = (1 + 2_Ld1 T 2WL§1,I) Ey(tn) - (Q?Ldl,x + 22_,U,Lzl x) Hz(1)7
N t - At At3

@ = (1 + 2 L?ﬂ I A 2 Lfﬂ I> awy - (27[«11,1 +2—; L?ll,x) E,(t"),
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- At? At - At At ~
2 _ 2 4 3 2
Eg(g) = <1—|—2 MLC2y+2 uchy)E(H"(Z?LCZy"”Q HLCM)H()
_ At At -~ At At
3 _ 2 4 3 1
;S) = <1+2 ILLLC2y+2€,uLCQy)H()+(2ML02y+2 M L62y>E()
~ At? At? At At3
E® = (1+2=—12 +25=LYy JE({"") — 2—L. 2— L% VH, (1"

T ( + M c4y E u c4 y) ( ) ( € 4,y + ,u cd y) ( )7
. At2 At4 . At At? n
A9 = (1+2°2° " Ly +255 i LY VHL (1) — (27Lc4y+2 " SL3 B (1),
- At? At At At -

® (1 + 2—MLd3x +253 5 ngx) B, (") + (2?Ld3,x +250 Lig,x) H,
N At? At - At ANA

;5) — (1 + 2_IuLd3 .+ QWLé&x) HZ(G) + <27Ld3 z 25[;23@) Ey(tn-l-l)’

- At? At - At At .
HY = (1+2 L§3y+2 L§3y> ®) 4 <27L62y—|—2 " L§3y> E®.

Replacing Eg(;l)—Eg(CS), El(,l), Ez(f) and ﬁz“)-ﬁf) into the seven-stages of the EC-S-
FDTD scheme, it leads to the equivalent scheme with the local truncation errors of
£1-£14. Among them, £1-£6 and £11-£14 can be computed directly by substituting
the defined intermediate variables Eg(cl)—E'f), Eysl), EgSQ) and V- into Stages 1

- 3 and Stages 6 - 7 as

livgs = 2€A3u Loy Ho ()i g g0 €2i14501 = _2€A2M3L51 B ()ip 111
$igey = 2%%@5”2,#;, Edii1i41 = 2A—5L2uEy<t“>i+;,j+;,
55”%71 - _Q%LEM(H?))H;J’ €6i+%7j+% = QGAM Lim( g(cl))zur%,ﬁ%»
5131’—&-%,]‘ = 2?124 L, sz(t"H)H%,j?514”%#% = _2?;4 L’ o (tn+1)i+%,j+%7
Sl = _2%%3@(@6))@%5’ 1241441 = QAfj Lo By(t" i1 1
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However, the £7-£10 terms for Stages 4 -5 have that

_ Ey(tn+1) - Ey(tn) 1 n+1 n

e S L) 4 () = S LA + .07
- 4%Ld1chly (J%(t”+ )At E.(t") _ %Ay(Hz(t"“HHz(t")))}

JAV. E,t"h - E,(t") 1 il .
+_2_Lm( L o M (HL () + H(7) ) |

€
At? E,t"") - E, ") 1

2—L wLars | =2 y -
+ e el ( AL +2€

ML) 4 1))

T At? E.(t"tY — E,.(t" 1 . N
— Q—MLW(LCLZ, + Leay) < () (") + — A (H (") + H,(t )))]

At 2¢
At 3 3 2
+25a (2Lt Ly, + 2L Loty + Larw Ly, + 203  Lana Loy
E,(t") — E,(1")
.
Ey(tn—i-l) _
At

+2Ld2,chl,yL32,y + 2Ld2 (EL Lc2 Y + Ld2 rLg

clyy c2,y

—[2At4

E, "
22 (L§1 T Ld1 deQ et 2Lg1 2 Lao ngg y) ol )] + O(At4),
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Hz(tn+1) - Hz(tn) n+1 n
Bipiy = [ — e MB) + B
LA E () 1 By (1) — L (2, 4 AZA ) (B, () + B (1)
24 A Y 24ep? - ey v
Atz —_ 2 n+1 n
g G T AMD(B() + By(e"))|
At? H, (") — H (t"
|:2_,L6Ldl J:(Ldl T + Ld2 x)( ( )At ( ) - ZAy(ECU(tn—HL) + El(tn))
1 At2 Hz tn—H _ Hz tn
B + ()] - [P Lty + Ly (P

~5 B £ L) + M B + E,())]

At4
- [ EQuQ (Lil Yy + 2Lcll xLzl Y + Ldl X + 2Lc1 yng Yy + QL?” $L32 Y + Lc2 v

) H.(t" )A; Hz(t”)}

+2L2, yle2y +2La oL v

+ O(AtY),

Ez n+1 —Ez n 1 " "
9.y, = [ e + 1)

At? na1 n At 2 n+1 n
g B H) + Bt ))+242 NZA, (H(#4) + H.(t"))]
_ 2 n+1 n
+ 2—A; (Lcs,y+Lc4,y)2<Ex(t )At =0 zleAy<Hz(t”+l) +H())|

At E, (") — B,(t") 1 bl n
- _EchyLd3x< ~ + o M (HA (") + Ho(t )))]

€

r At
- 62,lL2 <L;11 Y + 2Lcl ngQ Y + Lc2 R + QLEI,yLCZy + 2L¢211,mL017?JL02»y
) Ez(thrl) _
At

+2Le1 L2, v

Ew(tn)] + O(AtY),
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and

At E. (") - E,(t") 1
B _1
i At 2¢

§10i+%’j+% = [ Ay(HZ(th) + H.(t"))

At2 gl n At? 2 n+1 n
2 e e s e+ 1)

At2

B (") — By (")
?Lc&y([/c&y + Lc4,y)2<

At

+ [2
——A JHL(EY) + H(4) )| + O(at?).
Applying Taylor’s expansions, we have the following estimates of truncation errors.

Lemma 3.4.1. (Truncation errors) If the solution components { E, H,} of Mazwell’s
equations (3.2.1)-(3.2.5) are smooth enough, then the truncation errors are fourth

order in time and space:
max {|€1],€2],- - -, |€14]} < C{At* + Az* + Ay} (3.4.1)
where C' is a constant independent of At, Ax, and Ay.

We then analyze the convergence of the EC-S-FDTD-(4,4) scheme. Let error

functions on the staggered grid be defined by

E = Enlwy ") - ELTL &) = Byl gyt — EJT

Tyl i+d.5 Yij+l Yig+s’
n+1 _H tn+1 _Hn+1
%+ gty (@ Tirgr iy ) Zivd i+l
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and at intermediate levels

() () () _ 190 _EO  _EO _
& =B B k=128 =B B 1=123
H™=H™ —HM™  m=12--,6

1+§ 7+7 l+§,j+g i+§’.7+§

Then, from (3.2.19)-(3.2.35) and definitions above, the error equations of the EC-
S-FDTD-(4,4) scheme can be derived as

Stage 1:

P &
) (3 N n
€ 2= Loy {H L +Hzi+%,j} +Elp1y,  (342)

n -

it5,0+3 i+d.i+s (1) n .
. At - Ld’y{gxi+%u‘+% + gxi+%aj+%} + 52”%71*%7 (34.3)
Stage 2
(1) _&n
Yl 1
i = L ME Y 468, (344)
(2) — W
“ityatd fityatd (1) n :
At - Ld17${gyi+%,j+% + 5yi+%,j+%} + 6414—%,]—‘,-%7 (345)
Stage 3:
gP gl
£ it ( (2)
(3) _ 7—[(2
Zitd.i+d Zit§.i+d
- = La 6, 4D+ (347)
Stage 4:
2 _ e
Pk T g u T (34)
At LT e Bi+y)
(4) _y®
Fitd.+d Zitdity
At - _LdZI{ +1 i+3 ]+1} 68’+2J+ ;o (3.4.9)
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Stage 5:

Sf’) o 5(2)

i+1. Tird. _ (5) (4) g
€ X Lesg{HEY,  H M) 3+ €9y, (34.10)
(5) (4)
M’Hzi 1+ oty g 5 (£ +E@ } 4 <10, (3.4.11)
At c3,y zi+%,]’+% i+l ]+1 z+ j+ ) =N
Stage 6
gn+1 _ (2)
Yij+} Yij+3 s {H ) 4 HqO) b1 0,0, (3.4.12)
At = d3,x Zz,j+% Zi,jJr% ’i7j+§’ S
(6) (5)
Moy “ Mg I 5) 12 1(3.4.13
7 A - d3ac{ 1 Jtd 1 +%}+§ i+%,j+%’( 4.13)
Stage 7
gn-l—l - 551(33) 1
Tivlg itg.d n+1 (6)
= LR SR YEs . (3414)
n+1 _ (6)
’Hm%ﬁ% it }itd — Lo (€ 4 W } 4 €14, (3.4.15)
At - c4y Tilvd i+ d+d z+ j+ : X

They satisfy the boundary conditions

g;}—l—ll _ g(l _ 5;14—11 _ gél) = 0, [=1,2,3, (3.4.16)
i+§ 1+§ i+§7‘] i+?"]
n+1  _ ok)  _ entl _ o(k) —
el = EW =gt =& =0 k=12, (3.4.17)

Theorem 3.4.1. (Convergence) Assume that {E,(t), E,(t), H.(t)}, the exact so-
lutions of (3.2.1)-(5.2.5), are smooth enough. Let {E}, Ey, H'} be the numerical

solutions of the EC-S-FDTD-(4,4) scheme (3.2.19)-(3.2.35). Then for any fized
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time T'> 0, there exist positive constants C,e and Cope such that

e (e (B@) = BV + b (HLA") — H2) )

< (le2(B(") = E°)II5 + [ln2 (H.(t°) — H2)I[7.)?
+C01,. T (At + Azt + Ay?), (3.4.18)

max ([|e2dt(E(t"2) — E™3)||2 + [|p20t(H.(t"2) — H 2)|[%, )2

0<n<N

< (letdt (B@h) — B 3+ ot (Hh) — H ) 3)

VI

+Cou T(At" + Az + Ay?). (3.4.19)

Proof. From equations (3.4.2) and (3.4.3) at Stage 1, and by the energy method

used in the proof of Theorem 3.3.1, we have that

1 1 1 n 1 n
@@$W3+mm%wa)—@w%%JWWHAi)

I-1 J-1

— (1) n (1 n

- At ZO ZO |:§]‘Z+%,j<gxl+%7] + gzi+%,j) + 5214*%7]4»% (Hzi+%’j+% + Hzi+%,j+%):| AxAiU?
i=0 j=

which can be written as

1 At 1 At 1o At 1. n At
lebet — Serje, 4 utn®) - Seap, = eber + Blerz, + utaez + B2,
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Further, using the triangle inequality and the equation above leads to that

1
1 1an 1 2
(P13, + et ey 3, + IntH 3.

1
2
2
H

1 At 1an 1 At
< (1eke - Fretls, + ke, + il - Gre
At At :
v (15, + 15 e )

1., At 1., 1. At
= (1ebez + Sretl + eI, + Itz + Szl )

At At :
+ (15, + 15, )

Lon Lon 1 m 3 1
< (lBers, + Iebepls, + Iudmzls, ) + (1AteL, + A2, )

-

Similarly, from (3.4.4) (3.4.5) at Stage 2, we have that

1
2 2
H

1 1an 1 2
< (b, + eI, + I HONE, )" + (1Ate3]%, + 1At

(3D, + S EDIE, + )

-

1
w)?

and the similar relations for Stages 3 - 6. For Stage 7, from (3.4.14) (3.4.15) we

have that

1
1 1 1 2
(leBEr I, + B+ s, + It me ), )

Jun

1 1an 1 2 L
< (IB@13, + e &gz, + RO I3, ) " + (1At13)3, + |At14)3,)?

With these seven derived-relations for Stages 1- 7, and using Lemma 3.4.1, we
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obtain that,

=

1on 1on 1om
(NeBers iz, + e ep I3, + e mety, )
1
< (leBer, + Iebepls, + It Hals. )" + CLAtAE + Aot + Ay?).
Applying recursively (3.4.20) from time level n to 0, we finally get (3.4.18). Simi-

larly, we can obtain (3.4.19). This ends the proof. O

By combining with Lemma 3.3.2, we can obtain error estimates of 6, E, 0,F;

and 6, H where u = z,y.

Theorem 3.4.2. (Super-convergence I) Assume that {E,(t), E,(t), H.(t)}, the so-
lutions of (5.2.1)-(3.2.5), are smooth enough. Let {E}, Ey, H!'} be the numerical
solutions of the EC-S-FDTD-(4,4) scheme (3.2.19)-(3.2.35). Then, we have the

following estimates
1 n 1 n 1 n 1
(B8, E218, 5, + I F,E512 5, + 0,2, ) (3.4.20)
< (126,823, 5, + I€20uEY 3, 5, + 126, H23,11.)? + CT(AL + Aw + Ay
where u = x,y.

Similarly as Theorem 3.4.2, we have the following error estimates with fourth-

order difference operators of A, and A,

Theorem 3.4.3. (Super-convergence 1) Assume that { E,(t), E,(t), H.(t)}, the so-

lutions of Mazwell’s equations (3.2.1)-(3.2.5), are smooth enough. Let {E}, E,
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HI} be numerical solutions of the EC-S-FDTD-(4,4) scheme (3.2.19)-(3.2.35).

Then we have the following estimates:

L n 1 n 1 n 1
(e AEDRp, + AL, + it AHE ) (3.421)

< (lez A3, . + €2 AENR s, + 2 AHONZ 1 )7 + CT(AE + Az + Ay,

where u = x,y.

Finally, from the super-convergence in Theorem 3.4.3, we have the following
error estimate of divergence-free, if the initial approximations are of fourth order

in spatial step.

Theorem 3.4.4. (Convergence of divergence-free) Let {Ey, Ej, H'} be the nu-
merical solutions of the EC-S-FDTD-(},4) scheme (3.2.19)- (3.2.85). If the exact
solutions of the Mazwell’s equations are smooth enough, then the approximation of

divergence-free of the electric field holds that

IALE? + AyE5.m, < C(AE + Azt + AyY). (3.4.22)

3.5 Numerical experiments

In this section, we present numerical experiments by focusing on the properties:
(1) energy conservation, (2) accuracy, (3) divergence-free. Consider the problem in

a lossless medium, 2 = [0, 1] x [0, 1], surrounded by a perfect conductor. The exact
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solutions of equations (3.2.1)-(3.2.3) are

E, = ej%w cos(wmt) cos[k,m(1 — x)] sinlk, (1 — y)],
E, = _e\]/{%w cos(wmt) sin[k,m(1 — )] cos[k,m(1 — y)],
H = —% sin(wrt) cos[kym(1 — )] coslkym(1 — ).

(3.5.1)
(3.5.2)

(3.5.3)

where k, and k, satisfy the dispersion relation w? = --(k? + k). The exact energy

is directly computed as Energyl = ( [,,(e|E(x,t)[* + ue|HZ(x,t)|2)dxdy)% =1

Table 3.1: Relative errors of Energy I and Energy II by the different schemes.

Parameters: Az = Ay = At =1/N, k, =k, =1, p=e=1,and T = 1.

Mesh EC-S-FDTDI EC-S-FDTDII ADI-FDTD EC-S-FDTD-(4,4)
N EnErl EnErll EnErl EnErll | EnEr]l EnErll | EnErl EnErll
25 4.41e-16  2.10e-16 1.10e-16 4.11e-16 9.83e-4 9.76e-4 2.95e-14  2.58e-14
50 1.36e-15  2.05e-16 3.47e-16 1.45e-16 2.50e-4 2.59e-4 5.35e-14 4.76e-14
75 2.20e-15 5.96e-16  3.36e-16  2.31e-15 1.12e-4 1.12e-4 2.53e-14 2.26e-14
100 2.82e-15 8.10e-16 5.67e-16 3.63e-15 6.21e-5 6.20e-5 1.0le-13 8.98e-14
200  5.5le-15 8.03e-16 7.78e-16 7.55e-15 1.55e-5 1.56e-5 2.02e-13 1.80e-13
Define the relative errors of energy conservations:

|(le2E" || + [|p2 H2[*)> — EnergyT|
5

EnErl =
e orgri?g}%v Energyl

n 1 1 1
(|2 6B 2|2 + ||p2 6, He 2 )2)2 — (||le28, B2 |2 + || 0, HE2 )2

EnErll = max

1
0<n<N-1 (€26, B2 (|2 + ||p2d,HE|[?)z
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Table 3.2: Relative errors of Energy I and Energy II by different schemes. Param-

eters: ky =1, Ax = Ay = At=001, p =e=1,and T = 1.

SCHEME kn=F, ke =5k, ko=10k,

EnErl EnErll EnErl EnErll EnErl EnErll

EC-S-FDTDI 2.82e-15 8.10e-16 3.33e-15 3.34e-15 4.44e-16 3.43e-16
EC-S-FDTDII 5.67e-16 3.63e-15 3.11e-15 3.12e-15 3.33e-16 4.57e-16
ADI-FDTD 6.19e-5  6.20e-5  1.20e-4  1.19e-4 1.24e-4  1.20e-4

EC-S-FDTD-(4,4) 1.01e-13 8.98e-14 1.57e-13 1.51e-13 1.45e-13 1.44e-13

In Table 3.1, EnErl and EnErIl of our EC-S-FDTD-(4,4) are almost zero, i.e.,
in the relative error of 1072, which reach the machine precision. It shows that the
EC-S-FDTD-(4,4) scheme stratifies the energy conservations. We can see clearly
that the EC-S-FDTDI and EC-S-FDTDII ([7]) satisfy the energy conservations,
while the ADI-FDTD ([49, 82]) breaks the energy conservations where the errors of
energy only reach the error of 107%. Table 3.2 sets different wave numbers k, = 1k,,
b5ky, and 10k, with step sizes Ax = Ay = At = 0.01. The relative errors of EC-S-
FDTD-(4,4) in the fourth row are 107! with different wave numbers, which show
that the EC-S-FDTD-(4,4) scheme satisfies energy conservations while ADI-FDTD

breaks the invariance of energy. We can see that the EC-S-FDTD-(4,4) holds the
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the property of energy conservations for different frequency cases.

Table 3.3: Errors of energies in spatial variation forms of different schemes. Pa-

rameters: Az = Ay =At =1/N, k, =k, =1, pu=€e=1,and T = 1.

Mesh EC-S-FDTDII ADI-FDTD EC-S-FDTD-(4,4)

N EnErs,  EnFErs, | EnErs, EnErs, | EnErs, EnErs, EnEra, EnErp,

25 1.24e-15 8.75e-16 0.0014  0.0014 4.20e-14 4.26e-14 4.26e-14 4.31le-14
50 1.99e-15 1.98e-15 3.55e-4 3.56e-4 8.06e-14 8.10e-14 8.08e-14 8.08e-14
(0] 3.77e-15  3.99e-15 1.56e-4 1.54e-4 3.82e-14 3.91le-14 3.86e-14 3.84e-14
100 5.55e-15 5.60e-15 8.97e-5 8.59e-5 1.53e-13 1.56e-13 1.56e-13  1.56e-13

200 1.31e-14 1.45e-14 1.0le-5 2.23e-5 3.10e-13 3.14e-13 3.15e-13 3.14e-13

Further, define the discrete energies and the errors of energies in the J, and 9,

forms:
By, = ([ebomr| v o] |t )
ner = (||e20,E} €20y uld )
&Y 5, 6o E 5,8, a SuH.
EnErs, = |Energyy — Energygu|,

where v = x,y, and similarly define EnEr,, and EnEry, . The errors of energies
in the spatial variation forms are presented in Table 3.3, which shows that EC-S-
FDTD-(4,4) and EC-S-FDTD I&II stratify the energy conservations in the discrete
variation form but ADI-FDTD breaks the energy conservations in the discrete vari-

ation form.
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Table 3.4: Errorl and ratios of solutions by different schemes. Parameters: Az =

Ay=At=1/N,k,=k,=1, p=€e=1and T = 1.

Mesh | EC-S-FDTDI EC-S-FDTDII ADI-FDTD EC-S-FDTD-(4,4)

N Errorl Ratio Errorl Ratio Errorl Ratio Errorl Ratio

25  0.0445 - 0.0080 - 0.0107 - 3.5846e-5 -

50  0.0222 1.003 0.0020 2.000 0.0026 2.041 2.2657e-6  3.983
75 0.0148 1.000 8.9566e-4 1.981 0.0012 1.906 4.4847e-7 3.994
100  0.0111 1.000 4.9897e-4 2.003 6.7600e-4 1.994 1.4200e-7 3.997

200 0.0056 0.987 1.2537e-4 1.992 1.690le-4 1.999 8.8813e-9 3.999

Tables 3.4 - 3.5 give the errors and ratios of the numerical solutions of differ-
ent schemes. The errors are defined by Errorl = maxo<,<y([e2[E(t") — E"||% +
|2 [H.(t") — H"]||%)2 /Energyl), Errorll = maxocn<n_1(][e20,(BE(") — E™)||% +
|p26,(H,(t") — H™)||%)2 /Energyll). Results in Tables 3.4 and 3.5 indicate that
EC-S-FDTD-(4,4) is the most accurate, EC-S-FDTDII and ADI-FDTD are much
less accurate, but EC-S-FDTDI is the worst. It is shown clearly that EC-S-FDTD-
(4,4) is fourth-order in both time and spatial steps. However, EC-S-FDTDII and
ADI-FDTD are second-order in both time and space and the EC-S-FDTDI is only

first-order in time.
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Table 3.5: Errorll and ratios of solutions by different schemes. Parameters: Ax =

Ay=At=1/N,k,=k,=1, p=€e=1and T = 1.

Mesh | EC-S-FDTDI EC-S-FDTDII ADI-FDTD EC-S-FDTD-(4,4)

N ErrorlIl Ratio Errorll Ratio Errorll Ratio Errorll Ratio

25 0.0449 - 0.0081 - 0.0102 - 3.5224e-5 -

50 0.0223  1.009 0.0020 2.017 0.0027 1.917 2.2523e-6  3.967

75 0.0148 1.011 9.1078e-4 1.940 0.0011 2.214  4.4740e-7  3.986

100 0.0111 1.006 5.1325e-4 1.993 6.4757e-4 1.841 1.4191e-7 3.991

200  0.0056 1.000 1.2865e-4 1.996 1.6245e-4 1.995 8.8980e-9 3.995

Finally, for the error of divergence-free, we let DivEr; = maxo<n<n ||€2 (0, E™ +
6, Ey)||, and similarly let DivEry by just replacing 6, and 6, by A, and A,. Numer-
ical errors of the divergence-free are presented in Table 3.6. We can see clearly that
the convergence of divergence-free of our ES-S-FDTD-(4,4) is also fourth-order in
both time and space in the discrete Lo-norm. However, EC-S-FDTD-II and ADI-
FDTD is second-order in time and the EC-FDTD-I is first-order in time. It has
shown the important feature that the EC-FDTD-(4,4) has the super-convergence

to the divergence-free.
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Table 3.6: Errors and ratios of divergence-free by different schemes. Parameters:

Ar=Ay=At=1/Nk, =k, =1, p=e=1and T = 1.

Mesh EC-S-FDTDII ADI-FDTD EC-S-FDTD-(4,4)

N DivEr;s Ratio DivErs Ratio DivEr;s Ratio  DivEry Ratio

25 0.0022 - 0.0086 - 3.8079e-5 - 3.8008e-5 -

50 5.4763e-4  2.006 0.0022 1.966 2.3804e-6 3.999 2.3800e-6  3.997
75 2.4354e-4  1.998 9.7402e-4 2.009 4.7027e-7 3.999 4.7026e-7  3.999
100 1.3700e-4 1.999 5.4797e-4 1.999 1.4879e-7 4.000 1.4879¢-7 4.000

200 3.4255e-5 1.999 1.3703e-4 1.999 9.2991e-9 4.000 9.2992e-9 4.000
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4 The Spatial High-order Energy-conserved
Splitting FDTD Method for Maxwell’s Equations

in Three Dimensions

4.1 Introduction

In this chapter, we focus on the development and analysis of high order energy-
conserved splitting FDTD schemes for three dimensional Maxwell’s equations. The
two dimensional Maxwell’s equations are simple transverse electric (TE) and trans-
verse magnetic (TM) models. In the (TE) or (TM) model, there are only three
equations, and among them, only one equation needs to be split in the construction
of EC-S-FDTD schemes, and the other two equations are not changed. However,
the three-dimensional Maxwell’s equations have six equations of the electric field
E ={E, E, E.} and the magnetic field H = {H,, H,, H.}, and every equation
needs to be split for constructing the splitting FDTD scheme. Thus it is difficult to

develop and theoretically analyze high-order Energy-conserved splitting S-FDTD
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schemes for the three dimensional problems.

In this chapter, we develop and analyze the three-dimensional spatial high or-
der energy-conserved splitting schemes. Based on the staggered grids, the proposed
scheme is a three-stage scheme. At each stage, the spatial differential operators are
approximated by the spatial fourth-order difference operators on the strict interior
nodes which are a linear combination of two central differences, one with a spatial
step and the other with three spatial steps. On the other hand, the one-sided high-
order differences and extrapolations/interpolations are normally applied to the near
boundary nodes [64, 74, 70]. However, the corresponding high order near boundary
operators break the property of energy conservations near the boundaries. It is
difficult to construct boundary difference operators and this leads to a challenge
of constructing energy-conserved higher-order S-FDTD schemes. We propose to
construct the spatial fourth-order near boundary differences over the near bound-
ary nodes by using the PEC boundary conditions, original equations and Taylor’s
expansion, which ensure the each-stage schemes to preserve the conservations of
energy and to have fourth-order accuracy. We strictly prove that the scheme satis-
fies energy conversation and is unconditionally stable. We obtain the optimal-order
error estimate of O(A#? 4+ Az* + Ay* +Az*) in the discrete Ly-norm. We also prove
that the scheme preserves the energies in the discrete variation forms and obtain the

super-convergence of O(At* + Ax* + Ay* + Az*) in the discrete Hy-norm. Further,
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we obtain the error estimate of the approximation of divergence-free. Numerical
experiments confirm the theoretical results.

The paper is organized as follows. In Section 4.2, the Maxwell’s equations in
three dimensions are introduced and the spatial fourth-order EC-S-FDTD scheme
is proposed. In Section 4.3, we prove energy conservations. The error estimates are

analyzed in Section 4.4. Numerical experiments are presented in Section 4.5.

4.2 Maxwell’s equations and High-order EC-S-FDTD scheme

We first give the Maxwell’s equations in three dimensions, and then propose our high

order energy-conserved splitting FDTD scheme for the three dimensional problems.

4.2.1 Maxwell’s equations in three dimensions

Consider the three-dimensional Maxwell’s equations with no source and in a lossless

medium, which are described as:

oD
0B
— E=— 4.2.2

where E = (Ex(l'a Y, %, t)a Ey(xaya Zat)a Ez<x7y7 Z,t)), H= (Hx('xa Y, Zat) and Hy(xaya Zat)a
H,(z,y,2,t), (z,y,2) € Q = [0,a] x [0,b] x [0,¢], t € (0,T], denote the electric

and magnetic fields. D and B are the electric displacement and the magnetic flux
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density

D=¢E B=yH V-B=0, V-D=0, (4.2.3)

where € is the electric permittivity and p is the magnetic permeability.
Assume that the perfectly electric conducting (PEC) boundary condition is
provided

Exn=0 or Hxn=0, (z,y,2) € 09, (4.2.4)

where n is the outward normal vector on the boundary. The initial conditions are

E(z,y,2,0) = Eo(z,y, 2), H(x,y, 2,0) = Hy(z, y, 2). (4.2.5)

It has been proved in [37] that for suitable smooth data, problem (4.2.1)-(4.2.5)
has a unique solution, and if the initial fields satisfy divergence-free the electric and
magnetic fields always satisfy divergence-free for all time.

In order to construct our scheme, we rewrite (4.2.1-4.2.2) in the matrix form

o E E
il — A ’
ot
H H
where A is
0 curl
A= ,
—curl 0
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and the curl is

o) 0
curl = 9 0 0
0z oz
_0 9
dy or 0

The curl operator has two kinds of splittings

curl = curl; + curl_ and curl = curl, + curl, + curl,,

where
&l d
0 0 4 0 —5 0
= d = el
curl, 2.0 0 ,curl_ 0 o -2 |
d d
0 4 0 o 0 0
and
d &l
0 0 0 0 0 4 0 o
curl, = | o o 59 ,ceurl, = o o o |,curl,= aﬁ 0
02 0 5 00 0 0
Thus two decompositions of A are obtained as
Splitting I:
A=A, +A_,
where
0 curl, 0 curl_
A+ - ) A_ )
curlJTr 0 curl” 0
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Splitting II:

A=A, +A, +A,,

0 curl, 0 curl, 0 curl,
A, = Ay = AL =

curll 0 curlg 0 curll 0

4.2.2 High order energy-conserved splitting FDTD scheme in 3D

Take an uniformly staggered grid of the space domain  C R? and the time interval

(0,7]. Let Az = ¢, Ay =5, Az = %, Al = %; r; = iAx, x; :iL'i—l—%Al', i =

Sl

1
2
0717"' 7]_17 Iy = IAx = a; Yy :jAy7 yj—‘,—% :yj—i_%Ayv j = 0717'”7J_
1, yy=JAy =b; z, = kAz, zk+%:zk+%Az, k=0,1,--- \ K—1, zx = KAz =
c; t" = nAt, t”*ézt”—l—%At, n=0,1,---,N—1, t¥ = NAt = T; where I > 0,
J >0, K>0and N > 0 are positive integers.

I —

Y

The grid function {EI%M} is defined on nodes (a:H%, Vi, 2k), 0 =0,1,---
1,j=0,1,--- ,JJk=0,1,---, K. Similarly, the grid functions { £, " S AE erd }
i.j+5, i.g,k+5

{H“?i,j+%,k+% 1 {Hyi%’j’k%} and {H._, H%’k} are defined on the staggered mesh. Let

2

U?’L

apr = UmAt aAz, BAy,vAy) , a =i or i+l B=jorj+Landy=kor

k + % We define the difference operators 6,U, §,U, .U and 9,0,U by

n+1 n—1 n TN
5 n _ UOQﬂ?Y B UO”ﬂ?Y 5 UTL _ a+%7ﬁ7’y Ua*%”@,"/
t avﬁv’}/ - At ’ T 06757'}/ - Ax ?
n _ n n _ n
SU". = o,B+1 Uaﬂ—%,“/ .U — o,By+1 Uaﬂ,v—é
Y- a8y T Ay » PR a8y T Ay ?
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8u6,U% 5. = 8,(8,U% 5.)

where u and v can be taken as x, y and z directions, and define the difference

operators 02 ,U, d5,U and d, .U with three spatial steps by.

n T n I
5 Un = Ua+%’ﬁfy UCMf%’B"y (5 n o a:B+%7’Y Uaaﬁfg’ﬁ/
2.2, By T 3AT » V2yYa By — 3Ay ,
n _ n
) n - U‘%ﬁv'ﬂF% Ua,IB,'y—%
2’Z a,,B,'y - 3AZ

Now, we define the spatial fourth-order difference operator B%Ey for the strict
interior nodes by a linear combination of two central differences, one with a spatial

step and the other with three spatial steps above, as

ALET _ %(95,,0 _ Gy,)ET | (4.2.6)

Yird i+ Lok Yirli+le

fori =1,2,---, I -2, 5 =0,1,---,J—1and k = 0,1,--- , K. The fourth-
order difference operator (4.2.6) can be used to approximate the equations at the
strict interior nodes with ¢« = 1,2,--- ,I — 2. However, when we treat the near
boundary nodes with ¢ = 0 and ¢« = [ — 1, the function values in the definition

of d,E; | | will goout of the domain where £} and B are not

+3.+dk Y143k Y1+ .k
defined. For constructing high-order difference operators on the near boundary
nodes, one could use one-sided difference/extrapolation operators by using more

one-sided interior point values. But, these kind one-sided operators will make the

scheme to break energy conservations. Thus, it is important to construct the high
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order difference operators on the near boundary nodes to have high-order accuracy

in spatial step and to lead to one energy conserved scheme. Let
1 1
r_1 = —Aux, ro=2+ éA[B, xry = (I +1)Ax, Tppy =2+ §A:v,

. 1
y-1 = =4y, yor =y + gAY, Yo = (J+H DAY, vy =y + Ay,

Zz1=—Az, z_

ol

1 1
=21 —+ §AZ, ZJ+1 = (K+ 1)AZ7 ZK—{-% — ZK+ §AZ

Before we propose the spatial fourth-order energy-conserved S-FDTD scheme for
the three-dimensional Maxwell’s equations (4.2.1) - (4.2.5), we first give the follow-

ing lemma.

Lemma 4.2.1. If the solution components { E, H} of the system (4.2.1)-(4.2.5) are
smooth enough, and the initial fields Ey and Hy are divergence-free, then it holds

that

Em(xﬂ_%,y_l,zk,t) = 2Em(:vi+%,y0,zk,t) — Ez(:vH%,yl,zk,t)
+ O(Ay°), (4.2.7)
Eo(@ip1ysa, ze,t) = 2Eu(2i 1,90, 20, t) — Eo(@i 1,951, 2k, t)
+ O(Ay?), (4.2.8)
Em(xH%,yj,z_l,t) = 2Ex(xi+%,yj,zo,t) — Ex(xH%,yj,zl,t)

+ O(AZ®), (4.2.9)
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Ew(xiJr%vyj?ZKJrlat) = 2E:B(xi+%7yj72K7t>_Em(xiJr%:ijszl;t)

+ O(A2°), (4.2.10)

Em(:cfé,yj, 2k, t) = Ex(x%,yj, 2, 1) + O(Ax®), (4.2.11)
Ex(a:H%,yj,zk,t) = Ex(azf_%,yj,zk,t) + O(Az?), (4.2.12)
Hz(:p_%,yﬁ%,zk,t) = Hz(x%,ijr%,zk,t)%—O(Ax‘r’), (4.2.13)
HZ(xH%,ijr%,zk,t) = Hz(xl_%,yﬂ%,zk,t) + O(Az?), (4.2.14)
HZ(J:H%,y_%,zk,t) = Hz(xi%,y%,zk,t) + O(Ay®), (4.2.15)
H2($i+§ayJ+§> 2, t) = Hz(xi+%>yJ—%vzk7t) + O(Ay5), (4.2.16)

Hz(xH%,yﬁ%,z,l,t) = 2Hz(xi+%,yj+%,zo,t)—Hz(xi+%,yj+%,z1,t)

+ O(A2?), (4.2.17)
Hz(xi+%7yj+%a ZK+1, t) = QHZ(xi+%7yj+%7 2K t) - Hz(xi+%7yj+%a ZK—1, t)
+ O(AZ?), (4.2.18)

and similar relations to E,, E., H,, H, hold.

Proof. From the PEC condition, E,(x,0,z,t) = E.(x,b,2,t) = E.(z,y,0,t) =
Ez(x,y,c,t) =0, Ey<07y7zat) = Ey(aayazat) = Ey(xayaoat) = Ey(xayvca t) =0,
E.(0,y,2,t) = E,(a,y,2,t) = E,(0,y,2,t) = E,(a,y,2,t) = 0, H,(0,y,2,t) =

H.(a,y,2,t) =0, H(x,0,2,t) = H(z,b,2,t) = 0and H,(x,y,0,t) = H,(x,y,c,t) =
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0, it holds that

OFE,(2,0,2,t) O0E.(x,b,z,1) 0E,(0,y,2,t) 0E,(a,y,z2,t)

ot - ot =0 ot - ot =0
(4.2.19)
O'E,(x,0,2,1) _ O'E,(x,b, z,t) _0 O'E,(0,y,2,t) _ O'Ey(a,y,z,t) _o
Ox! Ox! ’ oy oy '
(4.2.20)
O'H,(0,y,2,t) 0'H.(a,y,zt) O'H,(0,y,2,t) 0'Hya,y,zt)
Ay’ dy' 0! 0z
(4.2.21)
O'Hy,(z,0,z,1) _ O'Hy(z,b,2,t) _9 O'H,(z,0,z,1) _ O'Hy(z,b,2,t) _0.
O ot ’ 02! 0z ’
(4.2.22)
ale(xa Y, 07 t) _ ale(x7 Y, ¢, t) -0 ale(ma Y, 07 t) o ale(:Ea Y, ¢, t) —0:
Ox! N Ox! - oy N oy -
(4.2.23)
wherel = 0,1, -+ ,4. From the first equation in (4.2.1), we have that 8522 (x,0,2,t) =

8£f (,b,2,t) = 0. Using (4.2.1) and the initial divergence-free V - Eq(z,y, 2) = 0,
OF OE
we have that V-E(z,y, z,t) = 0 for ¢t > 0. Thus, 8—;’(36, 0,z,t) =0, 8—;‘(:1:, b,z,t) =

0. Further,taking derivative to the third equation in (4.2.2) with respect to y-

variable, we obtain that

02E,
y2

55 (1,0,1) = %Q—ff(x,b, t) = 0. Similarly, we have that

‘9625;”” (x,y,0,t) = 8625;1 (z,y,c,t) = 0. In the same way, we can further get that for

[=0,1, and 2
OB, (x,0,2,t)  0*E(x,b,2,t) OB (x,y,0,t)  0*E (z,y,c,t) '
Oy = ayzz =Y% 9.2 = 0.7 = 0;
(4.2.24)
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O H (x,0,2,t) O H.(x,b,2,t) OPHIH(0,y, 2,t) 0* H,(a,y, 2,t)
8y2z+1 - ay2l+1 - 0’ O+l Ox2i+1 =0.

(4.2.25)

Further using these relations above, we get the results (4.2.7)-(4.2.18) for E,, H,.

]

Now, using the relationship of (4.2.7) , we can derive

n ExiJr%,Z,k (t") = Ex”%!*lv’“ (")
62ayE$i+%,%,k<t ) = 3Ax
B ExiJr%,l,k (tn) + ExiJr%,Z,k (tn) - 2Exi+%,0,k (tn) + O(A 4)
- 3Ay v

and the relationship of (4.2.8), we obtain

2E:C 1 ,’k(tn) - Exi+%’J717k(tn) - ExijL%,Jka (tn)

n i+ 5,
5273/Exi+%,]7%7k (t ) = - 3Ay + O(Ay4)

Similarly, with the relationship of (4.2.9)-(4.2.12), we derive the following relations:

B, | (N +E,  (")-2E, (")

ny __ T3] i+3 PR 4
52’ZExi+%,j,% (t ) - 3AZ + O(AZ )

5 b o QE%%,J-K(W) - Ewi+%,]-,K_1(t”) i E%%’j’K_z(tn) A
2,z x,+%7], _%( )_ 3AZ + ( z )

. Ex% ]k(t") — Em%ijk(m )
and

E, (t") — Eq (")
n I—l,j,K 1—5,j,k
oo By (1) = 2 +O(AZY).



Thus, we can re-define the spatial fourth-order difference operator 9, I, for the

near boundary node with j = 0 by

E;Lllk—i_Eglzk_QEglok
n o i+§, s i+§, s i+§7 s
52’yEﬂ%+%,%,k = 3Ay , (4.2.26)
similarly, we define
2FEm N Nl N Nl
n o Tirl, ok Tipla-1k Yird g—2k
62’yExi+%,J—%,k = 30y , (4.2.27)
Er 4Bl —2mn
O Ep = N L 4.2.28
2, xi+%7j’% SAZ ? ( )
2B} —El . —E
02, ) S —_ L b s iy 4.2.29
27 xi+%,j,K7% 3AZ ( )
n E;}%J,k B ;’L%M
521IEZl,j,k = SAL , (4.2.30)
and
ng liK N E;LI 3 ik
n o =50 —5.Js
527$E33171,j,k = . SAL 2 (4.2.31)

Thus, we can define the difference operators to approximate %Ex for the near

boundary nodes with j =0 and 7 =J — 1 by

n 1 n
AyEIi#»%’%Yk - §(9(5y - 627y)Exi+%,%,k’ (4-2.32)
n 1 .
AyEyH»%’J,%’k = g(géy - 52,y)Eyi+%’J7%’k7 (4233)

fori=0,1,---,]—1land k=01, -, K.
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Similarly, for approximating %Em for the near boundary nodes with z = 0 and

z=K —1by
AE; | =2(90. 6 )E; |, (4.2.34)
it+5.0:5 i+5.0,5
AZEZH% fK— = (952 - (52 Z)E;LH%,J‘ Ki%’ (4235)

fori=0,1,---,I—1and j=1,2,---,J — 1, and for approximating a%Ex for the

near boundary nodes with i =1andi=1—1,

n 1 n
A‘TEII,]',I@ - §(95x - 52,m)Ex1,j,ka (4.2.36)
n 1 o
AIEJ?I—l,j,k = §(9590 - 527$)E:c1_1,]-’k7 (4237)

forj=1,2,---,J—land k=1,2--- K — 1.

In the same way, we can define other difference operators as A, E,, AyE,, A, E,,
ANE, NE., NE,, NyHy, AyHy, A H,, Ny Hy, AyHy, A Hy, AH,, AyH, and A H,
on the near boundary nodes.

In this chapter, we only use the splitting I for constructing our scheme. We
can similarly propose the scheme based on the splitting II. Based on the operators

Az, Ay and A, defined above, we have the approximate curl; and curl_ operators.

et
0 O Ay 0 —A, 0
curl, , = A, 0 O ,curl_ j, = 0 0 —A,
0 A, O —Ay 0 0
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Then

Ap=Ain+A_p,
where

0 curl, j 0 curl_
Aypp= A =

curl’ , 0 curl” , 0
We omit the subscripts 4, j and k, and define EV = (E;(Cl),Eg(,l),Egl)), E®
= (P EY, B, HY = (1), 1V, 7Y, and H® = (1P, B, HP). We
propose the spatial high order energy-conserved splitting FDTD scheme, i.e. EC-

S-FDTD-(2,4), for the three dimensional Maxwell’s equations.

Stage 1:
1 cEW ¢E" 1 EW E"
— — =-Ay + (4.2.38)
Al 8 4 8
uH uH" H H"
Stage 2:
1 cE® cEM® 1 E® E®
— — =-A_, + (4.2.39)
At 5 2
pH® pHO H® HDY
Stage 3:
1 €En+1 EE(Q) 1 En+1 E(Q)
— — =-Ay, + (4.2.40)
At +1 2 4 1 2
pH" ,UH( ) 12 H®
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The PEC boundary conditions are

E™ = Fm = E;” = g™ — 07
i+5,0,k i+, Jk i+3.,5,0 itd 5K
m o m _ m _ m _
Yo 41 y Ey 1o E I 0;
jt5.k I,j+5.k 4,j+ 5,0 ihj+5,K
m m m m o
= —E"  =E = 0;
0,j+3 Ij+3 i+5,3,0 it+g5,0,K
m _ m o m _ m _
- Hy~ 1 1 i 1 1 0;
0,45 k+% Li+%.k+5 i+%,0,k+% it 5kt 5
H" — H" =0 (4.2.41)
i+4,j+%,0 i+, j+% K

where m = (1), (2) and n + 1. The initial conditions are given by

E) | = E)aAx, fAy,yAz); E)

La,B,y Yo,B,y

= E)(aAz, BAy,7Az);
B | = EYaAx,BAy,vAz); HY = HY(aAx, BAY, yAz);

By

H) = H)(aAz, BAy,vAz); HS{LM = H%(aAz, BAy,vAz). (4.2.42)

Ya,B,v

4.3 Energy conservations

We now prove the discrete energy conservations of the EC-S-FDTD-(2,4) scheme

in three dimensions.

For grid functions Uy 5, W 5, the discrete norms are defined on the staggered

grids as:

-
=

-1

9 I
v, Wl =303 DT Wi e

=0 0

2

U1, = Y2is0 Xm0 Xrmo |U Av,

z+2,]k

T
o
iy
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where Av = AxAyAz, the meshes are Qp, = {(a:i%,yj,zk)ﬁg(},jzo K} and

O, = {(xi,ijr%,ZH%) Z.IZO,‘JJ:_OI 41 ) respectively.  Other norms 1UI%,, U]

2
E.»
W%, W7, can be similarly defined. We then define norms [|[E"||% and [[H"[|%

as
IE"% = IE; 1%, + 1B, I, + 1 B2 5, ] 5 = 1H N, + 12y, +
For the difference operators 4, A, we define

I-1~J K 2
||5wUH§1.Ez = in1 Zj:(] > ko 102Ui k™ Av,

2

I-1—~J—1—K-1
H(stHin = Zi:o ijo k=0 51‘/Vi+%,j+%,k+% Av,
and

I-1—J K 2
||Aa:U||?\zEz = 21:1 Zj:o Zkzo |Ain7j,k| Av,

2
I-1~J-1 N K-1
||AxW||?\wa =2 i Zj:O k=0 Aatw/i—&—%,j—i-%,k—&-% Av,

where the meshes are Q5. 5, = {(24, y;, zk)|i[:_11,37:0 Kot Qsom, = {(:C,L-Jr%,yH%, zk+%)
|£;(},}Z;(Jl 715:701 }7 Qn,E, = {(371'7%" Zk)‘z‘l;la}']:o 7kK:O }7 and Qp,pm, = {(xi+%7yj+%7 Zk+%)

|]—1 J-1 K-1

i=0j=0 sheo }- We can similarly define other norms ||6,U||3, g, [10.U 13, 5, [10uU 13, 5.

16.U113, 2, 110U

sutty 10wU N5, 11 1AV NR, o I8GUNIR, 5, 1AGU R, 62 AU R, i,

IAUIR, i, and [|ALU]

%u H. respectively. Thus, we have that

10, B3, 2 = N0u ER (IS, i, + 10u 13, i, + 10uEZ I3, 5.

1013, 1 = N0wH 2N, a1, + IOuHFIIZ, 1, + 6w HZ 3, 1.
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and
IAE" R, 5 = 1MER IR, 6, + IMEG IR, 5, + 1MEL R, 6.
IAH" R, i = IMHZ R i, + AR, g, + AR, b
where u = x,y or z. We first give the following lemma.
With Lemma 2.3.1 and 2.3.2 , we have Lemma 4.3.1.

Lemma 4.3.1. Let E = (E,,E,, E,) and H = (H,, H,, H,) be the solution com-

ponents of EC-S-FDTD-(2,4)scheme 4.2.38-4.2.42 in three dimensions. Then we

have that
I-1J-1K-1 -1 J-1K-1
Z (HABy) l+ gk = Z (E AIHZ)i,j+%,ka
i=0 j=0 k=1 i=1 j=0 k=1

and similar relations for operator A, and A,.

The energy conservations of EC-S-FDTD-(2,4) scheme 4.2.38-4.2.42 can be

proved.
Theorem 4.3.1. (Energy conservations 1&I1) Let En:(E%%,j,k’ Eyi,j+%,k’ Ezi,j,kJr%)
and H" = (Hxi7j+%7k+% : Hyl+2 ey’ HZH%’H%&) be the solutions of EC-S-FDTD-(2,4)

scheme (4.2.38)-(4.2.42) for three dimensional Mazwell’s equations. Then the en-

erqy conservations hold that for n >0

1 3
€§6tEn+2

TR T 2 i 2
s B+ + HWH" ‘ - + H , (4.3.1)
E H E H

1 1
EzétEn—i_Q

2 1 312
o+ o, br (4.3.2)

2 1 1112
n Hmatﬂn+a
H E
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Proof. The Stage 1 of the EC-S-FDTD-(2,4) can be written as

(1) n
Bopan ~Bogn 1 (HO  rH ) (4.33)
At C de YV B Lk Zip L) -
(1) n
Yij+i e Yigtdon 1
—— = H H” 4.3.4
At T e A itk .k + xi,j+%,k}’ (4.3.4)
E(l) I
“igkth Pl n
A7 = x{H Yiskrl +Hyi,j,k+%}’ (4.3.5)
(1) n
Poen ~ Mgy A AES +E" } (4.3.6)
At - Yij+dm+d Yij+d krl”’ o
Y, - H
it 3.0kt Yirdakty 1 (1) n
A = 4MAI{EZ¢+%,J-,1€+% + EZH%J_’H%}, (4.3.7)
aY, . —Hr
itg.dt gk fitdatge L o0 n
A7 = A{ Fedid k—l—E ER } (4.3.8)

By multiplying both sides of equation (4.3.5) with eAt (Eél) e TEY ) and
2,7, ?

ikt %

Yird gkt s

then multiplying both sides of (4.3.7) with pAt ( (1) + Hyi+%,j,k+%), we get
two equations, then sum over all terms in the two equations together. Noting that
E7 and 1% satisfy the PEC boundary condition, we use Lemma 4.3.1 and obtain
that

el BONE. + ul HP I, = el B2NE. + wllHy 1%, (4.3.9)
Similarly, from (4.3.6) and (4.3.4), (4.3.3) and (4.3.8), we obtain that

el BVNE, + el D WG, = el EpllE, + pllH 17, (4.3.10)

and

el EV 1%, + pl HOE

i, = el XN, + pllHY|
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Therefore, by (4.3.9)-(4.3.11), we have that
|EDNE + ul W3 = e E"[E + ol H|[F- (4.3.12)
Similarly, for Stage 2 and Stage 3, we obtain that
IEDNE + ulH?|3 = e ED% + ul V|3 (4.3.13)

B+ B = e B + | H (43.14)

The equation (4.3.1) can be obtained directly by eliminating the intermediate
variables EM, HY E® and H® in equations (4.3.12), (4.3.13) and (4.3.14). We
denote HOT, EM+ and E@*! ag the intermediate values HY, EM and E®

at time level n + 1 respectively, then we have 6, HM 2 = W, SEMTs —

EVT-EY and E@*: = B2UCEY pop the EC-S-FDTD-(2,4) scheme (4.2.38)-

(4.2.42), we have the following equations.

Stage 1:
1 €5tE(1)7% E(gtEn 2 1 5{:E(1)7% 5tEn7§
At - =—Ai) +
At (1)_1 n 4 (1)_1 o1
'udtH ? MdtH 2 (StH 2 5tH 2
Stage 2:
1| B es, BV | SED3 5B}
Kt - = §A_,h +
p6HO poHO3 5H? 5 HM

113



Stage 3:

| A Dias: S B3 1 5 E" 5B
Kt 1 B 1 - _A-J’_’h 1 + 1
T s (6, @2 5, H" "2 6 H® ™2

and &, E still satisfy the PEC boundary conditions. Similarly, following the proof

of (4.3.1), we obtain (4.3.2). O

Corollary 3. (Unconditionally stable) The EC-S-FDTD(2,4) scheme in three di-

mensions is unconditionally stable.

In order to show energy conservations in discrete variation forms, we give Lemma

4.3.2.

Lemma 4.3.2. Let grid functions E = (E,,E,,E,) and H = (H,,H,, H,) be
the solution components of EC-S-FDTD-(2,4) scheme (4.2.38)-(4.2.42) for three

dimensional Mazwell’s equations. Then we have that

I-1J-1K-1 I-1J-1K-1
D (NHANE,) 1 = > (AVEAAH) gk, (43.15)
1=0 7=0 k=1 i=1 j=1 k=1
I-1J-1K-1 I-1 J-1K-1
(AeH-NG N By )1y, = — (AeEy A A HL)ips o1y (4.3.16)
i=1 j=0 k=1 i=0 j=0 k=1

and similar relations for operator A, A, and A.,.

Proof. We only give the proof of (4.3.16). Then (4.3.15) can be proved in a similar

way. With the definition of operator A,, equation (4.3.16) can be written equiva-
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lently as

I-1J-1K-1 1 1
Z g 52 x 28(951 - 62,z)AxEy)i,j+%7k
i=1 j=0 k=1
I-1J-1K-1 1
== (5090, = 0> E 8( 95, — 0a.0) AuH.)i1 sy, (4.3.17)
i=0 j=0 k=1

In order to prove (4.3.17), we first derive that

~

-1

<

-1

=

-1

~
L
<
L
N
,_.

(0o H.0: M Ey); o1 ) = — 0, B0, H.)ip1 541, (4.3.18)

13 1 7

i

<
I
o
=~
I
I
=)
<
I
o
T
—

By the definition of §,, the left side of (4.3.18) is

= 0H, | AJ(E,

Ax itk i+ Ltk Yi L itd .k

). (4.3.19)

Using the definition of A,, we get that for the second term on the right side of

(4.3.19)
I-1J-1K-1
Z 6IHZ yz Li+dk
i=1 j=0 k=1
B I-1J-1K-1
- 5:(:Hz " 95 —002)Ey (4.3.20)
8 +2 it
i=1 j=0 k=1
i -1
Noting that the identities ds , ik 351<Ey1+% b —|—Eyz_27j+% . —i—Eyi_7 i k)
_1
and 0y, H el 302( 254 bk + Hzmﬁ%}k + Hziﬁ%‘k) on the strict interior

nodes, and for ¢« = 1 that is near boundary node for ds, , then the second term on
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the right side of (4.3.20) can be organized as

-1 J-1K-1
E 0, H 92 E
T bk ST Y L bk
i=1 j=0 k=1
I-1J-1K-1 J—1
= E H E E H E
(Sx Zz]+1k52’x Y, 1J+%’k+ (Sx le_ k 2.z y%J+%k
=2 j=0 k=1 j=0
| 2L 1K
== E H E E
3 0a Ziitd ,ﬁx( Yird i+ ik - Yio L+l ok + Yio3,5+3 k)
i=2 j=0 k=1
J-1K-1
+ 0. H 02, E . 4.3.21
SRR RIS Nt I ( )
7=0 k=1

In (4.3.21), we further use Lemma 2.3.1 for the first term on the right side and use

the definition of d, for the second term, with the boundary condition, (4.3.21) are

equal to
1 I-3 J-1K-1
- § Z 5’”Eyi+%,j+%,k5$(sz‘+2,j+§,k - Hzi+1,j+%,k T Hzi,j+%,k)
i=1 j=0 k=1
1 J—1K-1
* 3 <5IE91—§ J+%,k5x Fr-1,5+ %k 6’”Ey1—%,j+% e N I
j=0 k=1
1 J—1K-1
+ 5$Ey17% a+%,k5x 12,5434 k> + 3 (59”Ey%,j+% A N
7=0 k=1
_ 5IEy% ﬁ%’kétzly Tt 52@Ey%’j+% kéxH i k)
I-2 J-1 K-1
= Z Z Z 6$Ey7,+1 j+1 k 2713 i+1,j+ 5,k
i=1 j=0 k=1
J—1K-1
1 1 5 I
+ 3 Ax? Vr-1itg ’f( “1-3g+3k O FI-ba+d k)
7=0 k=1
1 J-1K-1 1
— —F H —2H 4.3.22
+ 3 Ax2 Y+ k< 23+ 5k * 23t 5 .k “3i+3% ) )
7=0 k=1



With (4.3.22), and similarly to treat the first term on the right side of (4.3.20),

equation (4.3.20) can thus be written as

I-1J-1K-1 -2 J-1 K—1
0. H AE = 0. F
R DA I TV ST T Fi 48
i=1 j=0 k=1 i=1 j=0 k=1
JoLE-1
— E H —2H
0k 24A\x2 Y1t} W Sty + “§atgok Z%ﬁ%vk)
Jj= =1
e
_ E — H
= 24 Ax? y1—13+%7k( 1=tk -4 J+%k)
j: g
J—1K-1
27
+2— 5szlyj+2 J;Ey% T (4.3.23)
7=0 k=1
Similarly, we have that for the first term on the right side of (4.3.19)
I-1 J-1K-1 -2 J-1 K—1
0. H A = 0. E H
T ik T T Y L Lk Y L ke T R Lk
i=1 j=0 k=1 i=1 j=0 k=1
JoLE-1
— E H, . H —2H
A2 Y ]+%,k( 1-5.5+ik + 1-8+ik r-Lg+% k)
7=0 k=1
S
- E - H
0 k=1 24Ax? ylﬁ%’k( “§atgok 3 J+%k)
=0 k=
J—1K—1
2 0. H 4.3.24
+2_ R R A LA (4.3.24)

Substituting (4.3.23) and (4.3.24) into (4.3.19), and using the definition of operator

2

A,;HZZ_ 1 on the near boundary nodes fori = 0,1, I —1, I, we finally obtain (4.3.18).

Similarly, we can also obtain that

-1 J-1K-1 I-1 J-1K-1
D (O H.00 N Ey), i1y = — (2 EyGa Mo H.) 1 511 4(4.3.25)
i=1 7=0 k=1 =0 =0 k=1
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I-1J-1K-1 I-1 J-1K-1
> (oo Ho0uMEy) 5 1y = — (000 By0uhn H.)i 1 51 4(4.3.26)
i=1 j=0 k=1 1=0 j=0 k=1
I-1 J-1K-1 I-1 J-1K-1
(52,IH252,xAzEy>i,j+%,k = (5271Ey62,xA:sz)i+%,j+%,<lc4‘3‘27)
i=1 j=0 k=1 i=0 j=0 k=1

From (4.3.18),(4.3.25),(4.3.26) and (4.3.27), we have (4.3.16). This ends the proof.

[
Theorem 4.3.2. (Energy conservation I11&IV ) Let E" = {(E;}_+1 By 1
i+ 5.0, Gt gk

”HQ)} and H* = {( xi,j+%,k+%’Hyi+%,j,k+%’sz+1g+2 )} be the solution com-

ponents of the EC-S-FDTD-(2,4) scheme (4.2.38)-(4.2.42) for three dimensional
Mazxwell’s equations. Then the energy conservation properties in the discrete A—

form hold that forn >0

1 2
A, B ’WA | = . (4.3.28)
AL E AH Ay,
1 na 3| n+3 1 ntd]|? nti
5, M EE | | s ALH] = ||e3s,A, Bt ‘;ﬂétAH ,
A E A H ALE AH
(4.3.20)

where u = x, y or z.

4.4 Convergence and super-Convergence

Then, we give the truncation errors of EC-S-FDTD-(2,4), and analyze convergence

and super-Convergence.
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In order to estimate the truncation errors for the EC-S-FDTD-(2,4) scheme in

three dimensions, we construct the intermediate variables E(i) and I:I(i) fort=1,2

as
= (1)
VeE At A2 VeE(t")
o = (I+ 5 cApn+ ?(CAM)?) (4.4.1)
VHH VEH(t")
= (2)
VeE At At VeEE(t")
. @) = (I — 70A+’h + ?(CA+,}L>2) . (442)
V/T:! VEH(E)
Then we have that
| veE” VEE(t")
At = (1) n
ViH VEH(E")
c NGoN VEE(t") B}
= ZAM ;. + +¢, (4.4.3)
viH VEH(")
At o | (D)
ViH ViH
c \/EE(Z) \/EE(l) )
=54 + + 17, (4.4.4)
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| Ve NG
At

\//_LH(tn'H) \//_LI:I(Q)
c VEE(tmH) NG .
- Z_lAJﬁh + P + ¢, (4.4.5)
\/ﬁH(tTIH—l) \/EH( )

where &, 77, ¢ are truncation errors.

Lemma 4.4.1. Suppose that the exact solutions E and H of Maxwell’s equations
are smooth enough: E € (C3[0,T);[C°(Q)]?) and H € (C3[0,T]; [C5()]3). Then

we have the truncation estimation
masc{ €l [ [Cllex} < CAR + Aat + Ay + AZY). (4.4.6)

Proof. By direct computation, we have that

. 2 VeE(t")
§= -5 eAun)? ,
\/ﬁH(t”)
and
LA NG s
¢= —AS—; (CA+,h)3
\/ﬁH@n—H)

Now we compute 77. Substituting equations (4.4.1) and (4.4.2) into equation (4.4.4),
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we have that

1 At INE VEE(™ )
7= oy <] — —cA o+ —(cA+,h)2>
t 2 8
\//_LH(tn'H)
1 At INZ VeEE(t")
- = (1 + —cApp+ _(CA+,h)2)
Al 2 8 §
VHH(t")
2 \/EE(thrl)
- gz‘L,h (I - %CA+,]L + A%(CA+,h>2)

VRH(E )

At At VeE(t")
- gA—,h (I + 5 cAint ?(CA+,h)2)
JAH ()

This equation can be written in the following form,

Ve B(tm3) VEE("E) | Ap VBt
77: — CAh + ?(CA+JL)2
JESH("3) VEH(3) VESH ()
Ac*t? VBt e) AcSt? NG Gasd
¢ A_’hA_hh - C8 A—,h(A'hh)Q
VEOGH(t"2) VEH(t"2)

We can see that the first part on the right side of the above equation is the trunca-
tion error of quasi Crank-Nicolson scheme. Others terms are second order accuracy
in time step. The matrix operators are four order accuracy in space step, thus, we

have the conclusion (4.4.6). O

Now, we provide the convergence analysis for the EC-S-FDTD-(2,4) scheme in

three dimensions.
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Theorem 4.4.1. (Convergence) If E, H, the exact solution components of Mazwell’s
equations (4.2.1)-(4.2.5) in three dimensions, are smooth enough. Let E" and H"
the numerical solutions of the EC-S-FDTD-(2,4) scheme. Then for any fized time

T > 0, we have the following error estimates

wmax {2 [(B(t") — B[ + 2 [H() = Hl5)

< [le2[B(t°) — B3, + ||p2 [H(t°) — H)|3, (4.4.7)
+ O T(A? + Ax* + Ay* + Az*)?
and
max {2 [StB(t"2) — SBR[ + |k [SLH("5) — SLH ][}
< ||e2[5tE(tz) — 6tE°)|3, + |p2 (ot Hit?) — stH? ]|, (4.4.8)
+ Cu T(AY + Azt + Ay + Az")?

where Cyc is independent of At, Ax, Ay and Az.

Proof. Let error functions be

Wa,B,y = Ew<xaa Yo, Zayt ) - Ewaﬁﬁ? ,7]—lwa,ﬁ’ﬂY = Hw(xomya; Zaat ) - Hwaﬁﬁ’
and
g0 —gY _g0, 40 g% _go

7 )

where w = x, vy, z, the £ and " for i = 1,2 are defined in equations (4.4.1) and

(4.4.2) from exact solutions.
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The error equations of EC-S-FDTD-(2,4) can be written as

1 €W g 1 EW En .
~ — = 1A + +¢&, (4.4.9)
1) n (1) n
pH( H H H
1 AR €M 1 @ g
N — =-A_, + +1,
uH® uH® H(2 HD
] ] (4.4.10)
1 e&ntl 68(2) 1 gntl 8(2) .
A - = A+ + + ¢.
quHnJrl MH(Z) an+1 7_[(2)
] ) (4.4.11)

We first analyze the first error equation (4.4.9). Write the error equation (4.4.9) in

a component form, where £ = (&, &, 53754755756)T3

Titd gk Tipl o n
€ 2 - 5.k -A{H e +H P+& i (4.4.12)
H,(Zl) 1 1 - Hn
it+5,0+5.k Zipl i+1 "
o —Ay{é’ e T Ty e (4413)
(1) _en
gyi,j“'% k ylj_,'_? 1) "
‘ At = At 1. +H, }+£3”+1 g (4.4.14)
(t)”2 ey ng‘ s (1)
: At == AAED L TE T, (4415)
i,j,k+% i,5,k+3 A %(1) (TL) 4 4 16
‘ At 4 y{ Yijke+3 + Yijk 1} §5z]¢k+%’ (4.4.16)
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H?(Jl) 1 1 Hy

itgadkt gy Yit djk+d

1 )
= AAEY L HET VG, (4417

ZipLgk+d
From (4.4.12) and (4.4.13), similarly to the proof of energy conservation theo-

rem, we have that

lezED N2, + lnzHD)|
I-1 J-1K-1
. (1) n
= At ZO ZO ;{E&H%,J-,k@m%d,k +E, )
1=0 y= =
+ uéa,, (7{9)

+3.+3s

1 1
i, — lle2 &7, — llp2H2 |G,

T HZH—I H%,k)}Aq:AyAz.

b 1,

(S

,J+

Nl

The above equation can be written as

1 At 1 At
le2EM — 7\/251”%@ + [z HY — 7\/ﬁ§2||%12

1, At 1. At
= &+ S vealln, + 12 HE + Vil (44.18)
Similarly, from (4.4.14) and (4.4.15),

1 At 1 At
lez&? = Z-vegsllh, + lwaHy? — - Vil
1., At 1.m At
= by + SRl It + S e, (4419
and from (4.4.16) and (4.4.17)

1 At 1 At
lez€l = Z-vegslh, + In2Hy — - VidsllZ,

1., At 1o, At
= € + S Vebollp, + My + 5 Vikll,.  (44.20)
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Thus, from (4.4.18), (4.4.19) and (4.4.20), we have for ((4.4.9)) that

1 At 1 At
le2E™) — 7\/E5E||?5 + [|p2 R — 7\@51{”%
1., At 1. At
= [le2&" + 7\/55E||?3 + |2 H™ + 7\/l7§H||§{7 (4.4.21)

where the vector g = (€1,63,&)7 and &y = (£,&4,&)7.

Similarly, we have that from (4.4.10)

1 At 1 At
le2E® — 7\/27713”129 + [z H® — 7\/,17771{“%1
1 At 1 At
= b 4 2 el + I HO + S amaly, (4.22)

and from (4.4.11)

1 At 1. At
ezt — 7\/ECE“?E + e H T 7\/ECHH§{
1 At 1 At
= [le2&® + —veColll + 2 HD + - ViCullh. (44.23)
From the relation (4.4.23) and the triangle inequality of the norm, we obtain that

1
1ap 1.m 2
(B )3+ bam+)3)

1
1o At 1 1 At 1 2
< (1ebers = Sl + bt = Sl

At 1 At 1
+ (15 eoell + 15 bl

1
1 At 1 1 At 1 2
= (ke o+ Srebgulls + b + Sutully )

1

At 1 At 1
(1 5rebaells + 15wt

< (HBE@U3 + 1R Z )" + (I AterCald + |1 Atutally ) (4.4.2)
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Similarly, from the relations (4.4.22) and (4.4.23) and the triangle inequality of the

norm, we obtain that

1
(2@ + b H® )3 )

Jun

2

1
< (lBEDN + D15 )" + (I atenlly + llAtudnall )"

1
(N2 + b3 )

-

< (Nt + 1133, ) " + (I aterenl? + 1Atudenlly )" - (4.4.25)
Combining (4.4.24)-(4.4.25), we have that
1 1 %
(31113, + lled a3

< (lleBem 13+ 1em7)3) " + (lAtven]E + |Atymenlly)®  (4.4.26)

D=

+ ([[Atengl + | Aty/mmullz) * + (1A eCelE + 1A/ 1Cu|l7)

We know the truncation errors of £, 7, (, we get that
1 1 3
(B3, + e m )3,
< (||e%€”||2E + ||e%H"||§,) P4 OM(AL + Azt + Ay* + A2*).(4.4.27)
Recursively applying (4.4.27) from time level n to 0, we finally have that
1 1 %
(31113 + ledaem+)3)
1
< (He%gOHQE + He%fﬂoug) L OnAHAR + Axt + Ayt + A

< (He%gOH%E + He%%OH;) P CT(AL + Az 4 Ayt + AZY)
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We complete the proof of (4.4.7). The further analysis can obtain (4.4.7). O

Then, we consider super-convergence of the E™ and H" in discrete H' norm.
Applying operator A, to the equations (4.2.38)-(4.2.40), the A,-EC-S-FDTD-(2,4)

scheme is then,

Stage 1:
1 cEW cE" 1 EWY E"
_A:v - - _A+,hAa: + 5
At 1 4 (1)
pH( pH" H H"
(4.4.28)
Stage 2:
1 cE® g 1 E® E®
EAI — - §A—,hAx + 5
MH(Q) MH(U H® HDY
(4.4.29)
Stage 3:
1 6En+1 EE(2) 1 ETL+1 E(2)
EAQE — - ZA+’hAx + .
,UHn—H uH(2) ! H(2)
(4.4.30)

The boundary values for this scheme are from the PEC boundary condition, same
as that in (4.2.41), and initial value are given as in (4.2.42).

The corresponding truncation error equations are
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Stage 1:

1 Ve, BW VeEAE(t")
At (1) B n
VA H VN H (1)
1 Ve, EW VEALE(L")
= A+ + @ (4.4.31)
VA HW VA H (1)
Stage 2:
1 VeA, E? Ve, ED
At . a N
VA H? VA H®D
1 VeA E® VeA,EW )
=34 + v, (4.4.32)
VA H® N8
Stage 3:
1| Ver B VA E®
At B _
VEAH (") VEAH®)
1 VA, Bt ) JeA, E®
= ZAJF,h + +X. (4.4.33)
VEAH () VEAH®

With the definition of intermediate variables and the truncation analysis, it holds
that

11+ 1] + 14 < {A# + Az® + Ay* + A"}
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Thus, the following error equations are

1 A ED €N E" L, ALED AE"
— — == + + &
At g
pAHD A H” A HD A H"
] (4.4.34)
1 A, E? eAED 1 AE®D ALED .
At - = §A_’h + +¢
MAfo(2) Mqu.[(l) AH®P A HD
] (4.4.35)

1 eA &M eN,EP 1 AL EMH! AED )
E — = ZAJFJZ + +X
pAH ! S A HH! AH®

) (4.4.36)

From (4.4.34)-(4.4.36), similarly to the proof of Theorem 4.4.1, we have the follow-

ing super-convergence theorem.

Theorem 4.4.2. (Super-convergence) Assume that (E, H) the solution components
of Mazwell’s equations (4.2.1)-(4.2.5) in three dimensions are smooth enough. Let
E", H" be the solutions of EC-S-FDTD-(2,4) and let E* = E(t") — E", H" =

H(t™) — H". be the errors. Then we have the following estimations:

1 n 1 n 1
(le2 AR, 5 + 2 AH 1R, 1) (4.4.37)

< (|2 A IR + 2 AVHO R 0)? + CT(A + Azt + Ay* + AZY),
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and
(le20ME™ 23, 5 + 020 AH 2|, 1r)? (4.4.38)
< (|26 AE |3 5 + 20 A H2 |3, 1)7 + CT(AE + Azt + Ay* + AzY),
where C' is a constant independent of At, Ax, Ay, and Az, u=x,y, or z.
Using Theorem 4.4.2, we have estimation of divergence-free.

Theorem 4.4.3. Let E", and H" be the solutions of the EC-S-FDTD-(2,/) scheme.
If the exact solution of the Mazwell’s equations in three dimensions is smooth

enough, the error of divergence-free is estimated by
[AEL + AyE) + AEY|| < C{A#? + Az* + Ay* + Az} (4.4.39)
Proof. The left side of (4.4.39) can be written as
[ALEy + AyEy + ALET | < A EL (") + Ay By (t") + AL E.(t")]|
+ A (B — Eo () + Ay (Ey — E,(1") + A (BT — E.(t"))].

Then (4.4.39) can be obtained with Theorem 4.4.2 and the fourth order accuracy

of operators of A, A, and A,. O

4.5 Numerical experiments

Finally, we present numerical experiments by EC-S-FDTD-(2,4) in three dimen-

sions, comparing to EC-S-FDTDI and EC-S-FDTDII ([8]), 3D-ADI-FDTD ([49,
130



50, 82]).
We compute by our EC-S-FDTD-(2,4) the three-dimensional Maxwell equations
with PEC boundary condition, where domain Q = [0, 1] x [0, 1] x [0, 1] surrounded

by a perfect conductor. The exact solution is

E, = %cos(wﬂt)cos(kmﬂx)sm(kywy)sm(kzwz), (4.5.1)
k,—k
E, = :\/ﬁwxcos(wrt)sin(kxﬂx)cos(kywy)sm(kzwz), (4.5.2)
ky — k
E, = :\/ﬁwycos(wmﬁ)sin(kxﬂx)sin(k’yﬂy)cos(kzwz), (4.5.3)
1
H, = 7sm(wmf)sm(kxﬂx)cos(kyﬂy)cos(kzﬁz), (4.5.4)
1
1
H,= ﬁsin(wmﬁ)cos(kxﬂx)sin(k:yﬂy)cos(kzwz), (4.5.5)
1
H, = ﬁsin(wwt)cos(k:xﬂx)cos(kywy)sin(k‘zﬁz), (4.5.6)

where k, = 1, kb, =2 k. = =3, p =1, e = L and w? = (k7 + kj + &2).

First, we check the performance of energy-conserved properties. In the constant

electric permittivity case, the exact energy of solution can be computed directly as:

1

3 \/g
EnergyI:(/6E2+uQEH2) = —.
Q| | H] 7

We define the relative errors of energy conversations:

REE-] = max ‘(HE%EnHQ + HM%HnHQ)% — Energyl[7
Osn<N Energyl

(4.5.7)

131



REE-II (4.5.8)

1 1 ntl 1 1 1 1 1 1

L JISSEP 4 [0 ) — (|G ER | 4+ [t 6HE 23
0Sn<N-1 (le26,E2 |2 + ||u26,Hz||2)2

In Table 4.1, the REE-T and REE-IT of EC-S-FDTDI&IT and EC-S-FDTD-(2,4)
are almost zero, i.e., most less than the relative error of 10~*, which are of the
machine precision. However, the results of ADI-FDTD ([49, 50]) are only 107*.
Table 4.2 sets different wave numbers k, = 2, 3,5, 10, k, = 2k,, k, = —3k,, Az =
Ay = Az = At=0.02. The relative errors of EC-S-FDTDI&IT and EC-S-FDTD-
(2,4) are 107! with different wave numbers. By the Tables 4.1 and 4.2, we can say
that EC-S-FDTD-(2,4) hold the the property of energy conservation.

Secondly, Table 4.3 - Table 4.6 give the numerical results to show the accuracy

of scheme EC-S-FDTD-(2,4). The relative errors are defined as:

(le (B — B + o3 ") - H)3)?

Errorl = JDax, Enorgyl : (4.5.9)
6Bt — 6,E"|% + |uz[6HE") — 6H"|1%)?
Erortl =y UBB) — GBI+ I ) B
<n<N- nergy

Accuracy and convergence ratios are shown in Table 4.3 and Table 4.4 at time
T =1 with Az = Ay=Az = At. Both tables indicate that EC-S-FDTDII, ADI-
FDTD and EC-S-FDTD-(2,4) are of second order accuracy in time step, while
EC-S-FDTDI is of first order accuracy in time step.

The accuracies in space are listed in Tables 4.5 and 4.6. From both tables, it

clearly shows that EC-S-FDTD-(2,4) has the convergence of fourth order, but con-
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Table 4.1: Relative errors of Energyl (REE-I) and Energyll (REE-II) by EC-S-
FDTDI&II, EC-S-FDTD-(2,4) and ADI-FDTD schemes. Parameters: Az = Ay

=Az=At=1/N,k, =1k, =2k, =—-3andwithpy=e=1,7=1.

Partition EC-S-FDTDI-1 EC-S-FDTDII-1 EC-S-FDTD(2,4) ADI-FDTD
N REE-I REE-II | REE-I REE-II REE-I REE-II | REE-I REE-II
25 1.81e-16  2.53e-16 3.63e-16 6.30e-16  6.53e-15  6.53e-15 1.93e-03  2.21e-03

50 1.63e-15 1.74e-15 7.25e-16 1.12e-15 1.20e-14  1.26e-14 5.51e-04  5.70e-04

75 3.08e-15 2.97e-15 1.99e-15 2.23e-15  2.90e-15 2.84e-15 2.51e-04 2.54e-04

100 3.26e-15 3.21e-15 4.35e-15 4.94e-15 2.7376e-14 2.96e-14 1.42e-04 1.44e-04

200 3.08e-15 3.21e-15 8.70e-15 9.51le-15  9.26e-15  8.52e-15 3.59e-05  3.60e-05

vergence of EC-S-FDTDI , EC-S-FDTDII and ADI-FDTD are only second order.
The results in Tables 4.3 - 4.6 confirm our theoretical analysis for convergence.

For checking the error of divergence-free, we define two kinds of formulas:

Divl = max e(AET, ,, +AEY  ++AED ), (4.5.11)

1<4,j,k<N—1,0<n<N

DivII (4.5.12)

1

o mn n n 2
= nax. ( S>> dMEL L+ MNEL A+ AED ) A:cAyAz) .

1<i<N—11<j<N-11<k<N-1

For the above definitions, Divl and DivIl with d,, J, and J, are used for EC-S-

FDTDI&II and ADI-FDTD. We use fourth-order operators A, A, and A, to replace
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Table 4.2: Relative errors of Energyl (I) and Energyll (II) by EC-S-FDTDI&II
(ECI&ID), EC-S-FDTD-(2,4) (EC24) and ADI-FDTD (ADI) schemes. Parameters:

ky = 2ky, k, = =3k, Ax = Ay = Az = At=0.02, p =e=1,T = 1.

Partition ky=2 k=3 k=5 k=10

N REE-I | REE-II | REE-I | REE-II | REE-I | REE-II | REE-I | REE-II

ECI 1.45e-15 1.14e-15 9.06e-16 6.97e-16 7.25e-16 5.72e-16 2.54e-15  2.02e-15
ECII 3.63e-16  2.52e-16 1.63e-15 1.90e-15 1.63e-15 1.79e-15 7.25e-16 4.43e-16

EC24 1.20e-14 1.12e-14 1.34e-14 1.32e-14 1.50e-14 1.47e-14 1.78e-14 1.70e-14

0z, 0y and 6, respectively in the definition of Divl and Divll in the EC-S-FDTD-
(2,4) item. From Tables 4.7 and Table 4.8, we see that the errors of numerical
divergence-free of EC-S-FDTDII, ADI-FDTD and EC-S-FDTD-(2,4) are second
order in time, but EC-S-FDTDI is first order in time.

Finally, we check the energy conservation in the variation forms. we define the

discrete energies and the errors of energies in the o, d, and ¢, forms:

2
1o 1
€26, E )2,

Energys, = (

2 1
s
o E

5,H
EnErs, = ]Energyg‘u — Energygu],
where v = z,y, z, and similarly define EnEry,, EnEry, and EnEry,. The errors

of energies in the spatial variation forms are presented in Table 4.5, which shows
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Table 4.3: The Errorl by EC-S-FDTDI&II, EC-S-FDTD-(2,4) and ADI-FDTD
schemes. Parameters: Az = Ay = Az = At =1/N, k, =1, k, =2, k, = —3 and

withpy=e=1T=1

Partition  EC-S-FDTDI EC-S-FDTDII EC-S-FDTD(2,4) ADI-FDTD
N Errorl  Ratio Errorl Ratio Errorl Ratio Errorl Ratio
25 0.2077 - 0.1493 - 0.0995 - 0.1864 -

50 0.0739  1.4909 0.0379 1.9779 0.0250 1.9928 0.0475 1.9724

7 0.0445 1.2510 0.0169 1.9919 0.0111 2.0025 0.0212 1.9896

100 0.0320 1.1462 0.0095 2.0023 0.0063 1.9688 0.0119 2.0073

200 0.0154 1.0551 2.3915e-3 1.9900 1.5860e-3 1.9900 2.9826e-3 1.9963

that EC-S-FDTD-(2,4) and EC-S-FDTD I&II stratify the energy conservations in
the discrete variation form but ADI-FDTD breaks the energy conservations in the

discrete variation form.
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Table 4.4: The Errorll by EC-S-FDTDI&II, EC-S-FDTD-(2,4) and ADI-FDTD

schemes. Parameters:Az = Ay =Az = At =1/N, k, =1, k, =2, k, = =3

Partition = EC-S-FDTDI EC-S-FDTDII EC-S-FDTD(2,4) ADI-FDTD
N ErrorII  Ratio ErrorlIl Ratio ErrorII Ratio ErrorlIl Ratio
25 0.1890 - 0.1430 - 0.0942 - 0.1782 -
50 0.0649  1.5421 0.0371 1.9465 0.0241 1.9667 0.0464 1.9413
75 0.0390 1.2561 0.0166 1.9834  0.0108 1.9796 0.0208 1.9788
100 0.0280 1.1518 0.0094 1.9768 0.0061 1.9857 0.0117 2.0000
200 0.0134 1.0632 2.3663e-3 1.9900 1.5456e-3 1.9806 2.9485e-03 1.9885

Table 4.5: The Errorl by EC-S-FDTDI&II, EC-S-FDTD-(2,4) and EC-S-FDTD-

(4,4) schemes. Parameters:Az = Ay = 1/N, At = 1/N? k, =1, k, = 2, k,

-3

Partition EC-S-FDTDI EC-S-FDTDII EC-S-FDTD(2,4) ADI-FDTD
N Errorl Ratio Errorl Ratio Errorl Ratio Errorl Ratio

25 0.0543 - 5.4194e-2 - 9.2642¢-4 - 5.426e-2 -
50 0.0136 1.9973 1.3542e-2  2.0007 5.8197e-5 3.9926 1.3546e-2  2.0020
75 6.0270e-3  2.0071 6.0180e-3 2.0003 1.1507e-5 3.9976 6.0188e-3  2.0007
100 3.3899e-3  2.0003 3.3850e-3 2.0001 3.6419e-6 3.9990 3.3852e-3  2.0004
200 8.4764e-4  1.9997 8.4582e-4 2.0007 2.2753e-7 4.0006 8.4647e-4 1.9997
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Table 4.6: The Errorll by EC-S-FDTDI&II, EC-S-FDTD-(2,4) and ADI-FDTD

schemes. Parameters: Az = Ay = 1/N, At = 1/N? k, =1, k, =2, k, = =3

Partition EC-S-FDTDI EC-S-FDTDII EC-S-FDTD(2,4) ADI-FDTD
N Errorll Ratio Errorll Ratio Errorll Ratio Errorll Ratio
25 0.0543 - 5.4218e-2 - 9.2824e-4 - 5.4280e-2 -
50 0.0136 1.9973 1.3580e-2 1.9973 5.8350e-5  3.9917 1.3584e-2 1.9985
(0] 6.0452e-3  1.9997 6.0374e-3 1.9992 1.1538e-5  3.9974 6.0382¢-3 1.9996
100 3.4006e-3 1.9998 3.3964e-3 1.9996 3.6521e-06 3.9987 3.3967e-3 1.9998
200 8.4998e-4  2.0003 8.4902e-4 2.0001  2.2834e-7  3.9995 8.490le-4 2.0003

Table 4.7: The error of divergence-free (Divl) by different schemes. Parameters:

Ar = Ay =A2= At =1/N, k, =1, k, =2, k, = -3

Partition = EC-S-FDTDI EC-S-FDTDII EC-S-FDTD(2,4) ADI-FDTD
N Divl Ratio Divl Ratio Divl Ratio Divl Ratio
25 1.1703 - 0.0157 - 0.0812 - 0.3135 -
50 0.5269 1.1513 3.2958e-3  2.2521 0.0203 1.9982 0.0804 1.9632
75 0.3423 1.0638 1.4012 2.1095 9.0087e-3  2.0037 0.0359 1.9885
100 0.2548 1.0262 8.0134e-4 1.9424 5.0671e-3 2.0002 0.0203 1.9817
200 0.1240 1.0390 2.0340e-4 1.9780 1.2672e-3 1.9995 5.0728e-3 2.0006
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Table 4.8: The error of divergence-free (Divll) by different schemes. Parameters:

Ar =Ay =A2= At =1/N,k, =1, k, =2, k, = —3

Partition  EC-S-FDTDI EC-S-FDTDII EC-S-FDTD(2,4) ADI-FDTD
N DivII Ratio DivII Ratio DivII Ratio DivIl Ratio
25 0.4162 - 0.0278 - 0.0284 - 0.1115 -

50 0.1867 1.1565 8.3925e-3 1.7279 T7.1734e-3 1.9852 0.0285 1.9680
(0] 0.1213 1.0636 4.0134e-3 1.8194 3.1907e-3 1.9980 0.0127 1.9935
100 0.0901 1.0336 2.3028e-3 1.9309 1.7945e-3  2.0005 0.0072 1.9727

200 0.0425 1.0841 5.9373e-4 1.9555 4.4828e-4 1.9994 1.7935e-3 2.0052
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Table 4.9: Relative energy errors in variation form by EC-S-FDTDI&II, EC-S-
FDTD-(2,4) and ADI-FDTD schemes. Parameters: Az = Ay=Az = At = 1/N,

ky =1k, =2k, =-3andwithp=€e=1,T = 1.

Mesh N 25 50 75 100 200

EnErs, | 4.6198e-15 6.5301e-14 1.9193e-13  2.9548e-13  4.2534e-13
EC-S-FDTDI | EnErs, 0 7.1866e-14  2.0796e-13  3.1398e-13  4.5568e-13

EnErs, 0 6.9746e-14  2.1337e-13  3.3252e-13  4.8914e-13

EnErs, | 9.2395e-15  4.5710e-14  1.5993e-13  4.6169e-13  8.5685e-13
EC-S-FDTDII | EnErs,, | 9.2578e-15  3.9200e-14  1.5997e-13  4.2480e-13  9.0290e-13

EnErs, | 1.2384e-14 5.2309e-14 1.8137e-13  4.3105e-13  8.9045e-13

EC-S- EnErs, | 1.4321e-13  5.6159e-13  1.9192e-13  2.6224e-12  9.2713e-12
FDTD-(2,4) EnErs, | 1.4349e-13  5.6186e-13 1.7597e-13  2.6412e-12  9.3612e-12

2nd-diff EnErs, | 1.4242e-13  5.6668e-13  1.9204e-13  2.6602e-12  8.6490e-12

EC-S- EnErp, | 5.7709e-15  2.3577e-14  7.9964e-15 1.1028e-13  5.1267e-13

FDTD-(2,4) EnErp, | 6.0275e-15  2.3577e-14  7.5521e-15 1.0977e-13  5.4712e-13

4nd-diff EnErp, | 5.8142e-15 2.3698e-14  8.2925e-15 1.1148e-13  4.8712e-13
EnErs, 0.0301 0.0150 0.0101 7.5620e-3  3.7821e-3
ADI-FDTD EnErs, 0.0301 0.0151 0.0101 7.5620e-3  3.7822e-3
EnEr;, 0.0301 0.0151 0.0101 7.5620e-3  3.7820e-3
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5 The S-FDTD method for Maxwell’s

equations in Cole-Cole dispersive medium

5.1 Introduction

In electromagnetics, the dispersive medium, such as biological tissue, soil, plasma,
radar absorbing material, and optical fiber, etc, is described as a medium whose
permittivity or permeability depends on the wave frequency. The study of the
propagation of electromagnetic waves in dispersive media is very important.

The computation of Maxwell’s equations with dispersive media by using the
FDTD scheme started in 1990 ([62]). Some further studies and applications of
modeling of dispersive media by FDTD were done in [52, 45, 20]. The TDFE
(Time-domain finite element method) is another method to compute Maxwell’s
equations with dispersive media, which was first studied in [31] in 2001. Since 2003,
various methods [4, 29, 38, 39, 40, 43, 66] have been developed and analyzed for

three popular dispersive media models: the cold plasma model, the Debye model,
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and the Lorentz model. However, it is difficult to extent to solve the so-called
Cole-Cole dispersive medium models [1, 55, 63, 57, 56|, due to the fractional time
derivative term in the Cole-Cole models. The fractional time derivative model is
quite different from the standard dispersive media models. Most recently, paper
[41] proposed two type fully-discrete Finite Element methods for solving Maxwell’s
equations in a cole-cole dispersive medium: the Crank-Nicolson type and the leap-
frog type.

In this chapter, we propose to combine the splitting technique and FDTD to
treat the fractional derivative equations of the Maxwell’s equations in Cole-Cole
dispersive medium in two dimensions. Our proposed splitting FDTD scheme is
a two-stage scheme, in which each stage is a Euler-based scheme. The fractional
time derivative is approached by the Letnikov-typed difference approximate opera-
tor, while the spatial second-order difference operators are used to approximate the
spatial differential term for each stage splitting equations. We prove that the pro-
posed scheme is unconditionally stable. We analyze theoretically the convergence
of the scheme and obtain error estimates of O{At + Az? + Ay*}. The Numerical
experiments confirm the theoretical results.

This chapter starts with a brief background of the cole-cole dispersive medium
models. Our Euler-based S-FDTD scheme is proposed in Section 5.3. We give the

theoretical analysis of stability and convergence in Section 5.4. Finally, numerical
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experiments are given in Section 5.5.

5.2 The Cole-Cole dispersive medium models

The Cole-Cole dispersive medium is named from Kenneth S. Cole and Robert H.

Cole [10]. Its relative permittivity is represented by:
€r(W) = €00 + (€5 — €x0) /(1 + (JwTp)?), 0 < @ < 1, (5.2.1)

where €., €, 7o are the infinite-frequency permittivity, the static permittivity, and
the relaxation time, respectively. w denotes a general frequency.
Let E be the electric field and P be the induced polarization field. The relation

between P and E is
P =¢y(e, — €0)E = €p(€5 — €50) /(1 + (jwTo)™)E, (5.2.2)

where € is the permittivity in the free space.
The frequency domain of the relation in equation (5.2.2) can be changed into

time domain by the inverse Fourier transform,

“P(t
T(?a(?t‘j ) +P(t) = eo(es — ex0) E(2), (5.2.3)
where ac:;;(t) represents the Letnikov time fractional derivative given by
0°P(t) 1 d [ _
= — t—s) "P(s)d
e T(1-a) dt/o (t=5)""P(s)ds
1 d ",
= T —a)di ), (s)"“P(t — s)ds. (5.2.4)
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The corresponding Maxwell’s equations are

OE opP
EQEOOE =V xH - E, (525)
oH
—_— == E. 2.
Mo ot V X (5 6)

We assume a perfect boundary condition provided

nxE=0on0Qx(0,T), (5.2.7)

and the initial conditions are

E(z,y,0) = Eo(z,y), H(z,y,0) = Ho(z,y), P(z,y,0) = Po(z,y) = 0, (z,y) € Q,
(5.2.8)
where E is the electric field, H is the magnetic field, P is the induced polarization
field. pg is the permeability of free space.
With the PEC boundary condition, for the solution of model (5.2.3)-(5.2.6), we

can derive that

. 1d
dio(E x H) = =52 (eoles — ex)(eocacl EIP + ol HIP) + 1P
o 0
+T§(%P(t)7 gp(t» =0, (5.2.9)

and further integrating equation (5.2.9) from 0 to ¢, we obtain that

e = ex)eoex [N + ol HOP) + PO+ 255 [ (T7E 20
= co(es = exo)(eoael E(O) I + o[ H(O)|) + [|P(O) . (52.10)
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5.3 The Euler-based S-FDTD scheme

The Maxwell’s equations in the Cole-Cole dispersive medium (5.2.3)-(5.2.6) can be

split into the following form in time interval (¢, t,1]:

¢

0 PPl L P (1) = eoles — ea)Eult) | 70 ZouD 1P (1) = €gles — €0o)Ey(t)

OE, __ O0H: 0P, OE, _ _ OH. 0P, ..
€€ = By ot €00, = " or T ot (5.3.1)
OH, _ JE; OH, _ _ OEy
| Hoar T oy | H07ar T T e
The fractional derivative 2 ;a( ) is approximated by:
0“P(t) TN - ~
—_— N — P(tpi1-1) — P(ta_))b = 02 P™, 5.3.2
5t~ gy 2 (Plbnd) = Plta )b = (532)

=0

where by = (I + 1)1 — "= and [ > 0.

The Euler-based S-FDTD scheme is proposed as

Stage 1:
TOHPIT )+ P = eoles — e EYTY (5.3.3)
i+ § 1+ j L+§j
n+1 . n n+l1 n
€0€ Exi%’j ExH%’j =6, H* - e lad & me%,j (5.3.4)
0€c0 At Y Zi+%,j At 5 0.
Hzi+%,j+% _Hzi+l 1 7Z+1
Lo Al = 5 £ Teiey (5.3.5)
Stage 2:
Tga“(P““ )+ P"Lil = eoles — eOO)E”:il (5.3.6)
En+1 — En Pn+1 —_ pn
Yij+3 yz‘,j+% n+1 Yij+3 Yij+3d
H’ — 3.
€0€00 A7 —0y i) A7 , (5.3.7)
Hn+1 _ H*
7""2 J+1 Zi+%’j+% =_4 En-‘rl 5.3.8
ILLO At — Uz yi+%,j+%' ( e )



The boundary conditions are given by

ntl — prtl = prtt = gttt =, (5.3.9)

i+4.0 i+, Y0,5+3 Yri+3

and the initial conditions are given by
Ega,g = Exo(ana BAZ/)Q ESQ,B = EyO(OéASU,ﬁAy); HSQ,B =H, (OzAa:, ﬁAy);

P? = Po(alz, fAy) = 0; Pyoaﬁ = Pp(alAzx, fAy) = 0. (5.3.10)

Ta,B

5.4 Stability and Convergence

In this section, we analyze the stability and convergence of the Euler-based S-FDTD

scheme (5.3.3)-(5.3.10). We first give two lemmas.

Lemma 5.4.1. Let by = (I+ 1) —(1)'=*, for 1 > 0 and 0 < a < 1, then sequence
{b:}2, is positive and conve.
Proof. We can write b; = (1 — «) fllH =%z, by = (1 — a) fllH(x + 1)"*dz and
I+1 o 1, _q
b= (1—a) [} (z+2)"%z, then by — 2bjy + by = (L —a) [} (27* = 2(z +
1)+ (x+2)"%)dx > 0. O
By Lemma 5.4.1, we have Lemma 5.4.2.

Lemma 5.4.2. The sequence used in (5.3.2) is positive and convex, and let wy =

bo/2, w; = b;, fori>0. Then

25:12?:11%—;@5]'@1 2 O7v(¢17¢27 e 7¢N) € RNaN Z 1.
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Proof. See LEMMA 4.3 in [46]. O
With Lemma 5.4.2, we get the stability.

Theorem 5.4.1. For the numerical solution of the scheme (5.3.3)-(5.3.10), we

have the unconditional stability:

coles = eoe)leoeon [| ™12 g | 2V ] 4+ | PP

1 T0 n . .
“Yh\a P'L+1 - Pz 2
eEni H
< €oles — €co)[eocos | B ||* +po | HZ" IP] + [|P°[|*. (5.4.1)

Proof. Multiplying (5.3.4), (5.3.5) by E*™! H* respectively, adding them together,

and using PEC boundary conditions, we have that
€0€o0 (BT — BT BTN + epee (PP — PPETTY) + po(HY — H HY) = 0. (5.4.2)
Combining equation (5.4.2) with equations (5.3.3) , we get that

€o€o0(€s — o) (BT — B, B 4 poco(es — eoo) (HE — HL', HY)
+ (PP = B PP+ (PP = PR Op PR = 00, (5.4.3)

Noting the inequality

(a—b,a) > a® — (a® +b%)/2 > (a* — b*)/2, (5.4.4)
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from equation (5.4.3), we can have that

1 n n 1 * n
50600 (€5 — ) (1EZT 1P = IEZN) + S oco(es — eco) (IHZIP — 1HZI)

1 -
+ SR = 122 + (P = P mg O P ) < 0. (5.4.5)

Similarly, from Stage 2, we get

1 n n 1 n *
Fe0coo(€s — € (1B IIP = IEYI®) + Socoles — eoo) (I — 1HZ])

1 n n n P rape pr

+ SR = 15717 + (B = By, 5o Pyt) <0, (5.4.6)

Combining equations (5.4.5) and (5.4.6), we obtain that

1 n n mn n
F€0coo(&s — ) (1B P = IEZI® + 1By — (E711)
1
+ SHocoles — o) (1HZH|* — | HZ?) (5.4.7)
1 n n n n
+ SR = 122 + 1 = R IP)

+ (P — ProrSoR Pty 4 (P = PRLrSOrPrt) < 0. (54.8)
Taking the summation of equation (5.4.8) for n+1 level, we have

1 n n
560600 (€ — ) (1B 1P = IEZIP + 1B 1° = [ By

1 1

+ gtoco(es — o) (NP = I1EZIP) + 5 (IEEP = 1P 1° + B P = 1R)1°)
n+1 N B

0 [(PE = PP + (PE - PPl <0, (5.4.9)
k=1

We estimate the last two term in equation (5.4.9). By (5.3.2), they can be directly
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written as

> (P — P rgdp P

1 n+1 '
R NI 3 3 T
F(2—a pe
T30S |
= wy—j(P? — PI71), P* — PF)
T(2—a pret
1 n+1

T0\a bo , k—1 k k-1
+m(?) ;E(P — PFh, Pk - PR, (5.4.10)

where wg = by /2, w; = b;, for i > 0.
By Lemma 5.4.2, from (5.4.10) we have that

n+1 n+1

1 T
PF— PFL 80 PY) > (2)* Y (P*— PM PP - PR (5411
k=1 k=1
Then from equation (5.4.9), we have the result (5.4.1). O

H =

For analysis of the convergence, we define: &, = Ey(Ta,ys. ") - By, HE

H.(zq,yp,1") - H and Py = P, (za,yp, t") - P2 ;> Where Ey(%a,ys,t"), H.(Tq, ys,
t") and P, (xq,ys,t") are exact solutions at point (x4, ys,t"), £l , H? , P! are

WaB’? ZaB? T Wagp

numerical solutions and w can be x or y.

Theorem 5.4.2. (Convergence) Let E,(x,y,t), Ey(x,y,t), H.(x,y,t) be the exact
solutions of system (5.2.5)-(5.2.8) and smooth enough. The numerical solutions

of scheme(5.5.3)-(5.3.8) are E}, By and H} for n > 0. Then for any fized time
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T > 0, there is a positive constant C', such that

max {|[e[E(t") — E"]||* + ||p[H.(t") — HZ]|I* + [[[P(t") — P"]|?

0<n<N

< ([[E(") — E)|* + || p[H. (") — H2]|I* + |I[P(") — P7)|1%)

+ C(At + Ax? + Ay?)?, (5.4.12)
and

max {[|el0, E(t"2) — 6, B 2] + ||a[6, H. (17 2) — 6,H " 2]||?

0<n<N

+|[[6P(t"2) — 5, P 2] |2
< (|e[6. B(t2) — 6, B2)|? + | Al H.(t2) — 6, H2]|? + [|[6: P(t%) — 6, P2]|]?)

+ C(At + Ax® + Ay?®)?, (5.4.13)

where € = €gr/€Exo\/€0 — €xo aNd i = \/€oflo\/ €0 — €co-

Proof. Define ’H:+ . as:

%YJJr%

At
)+ =5, +5,E" ).
3 Y

1
H = —(HMY S+ H!
%yt 2( %t datl Zir bt irdaty o Yirha+l

The error equations of the scheme (5.3.3)-(5.3.8) can be written as

Stage 1:
Tgéf’]);:r;j + 73;:;], = €o(€s — Eoo)g;;;j + {i;j, (5.4.14)
n+1 n n+1 n
) gmi+%,j o EZH—%,]' _ Sy B ,PJUH%J - Pﬂci+%,j I £n+1 (5 4 15)
0€ec At Y Zivrd . At 2i+%,j’ o
* n
1 P~ M _ 5 gl nt1 (5.4.16)
0 At YTrL Lt Bt o



Stage 2:

aqa( pn+l n+1 . n+1 n+1
780 (P ) + P, vy = = €p(€s EOO)E%,H% + AT (5.4.17)
gn+1 —&n fpn+1 _ Pn
Yiity y””f% n+1 Yiity Yii+y n+1
€0€oo —0, M — y 5.4.18
0 At e At Ty (5:418)
n+1 _ *
p Hzi+%,j+% Hz¢+%,j+% _ 5 gn—l—l + n+1 (5 4 19)
0 At Yird,j+3 6i+%,j+%' o

Substituting the intermediate variables and exact solutions into the scheme (5.3.3)-

(5.3.8), after computation, we have the truncation errors

max (£, &, - -, &) < O(AL + Ax? + Ag?). (5.4.20)

Multiplying (5.4.15), (5.4.16) with "' H* respectively, and adding them

together, it holds that

€060 (EXTH — EPEMTN) + €0€no (PI — P2 EMTY) + po(HE — HE, 1Y)

)T T

= At(E™TE €8T+ AH(HE, Y, (5.4.21)

Combining equation (5.4.21) with equation (5.4.14), we get

6(2)600(65 — €oo) (7T = 1 ETTY) + po€o(es — o) (HE — HI, )
+HPy = PR PRt + (PRt — PR s Ot PRt (5.4.22)

= Ateg(es — €00) (EM, E0TY) + Ateg(es — €00 (HE, €0 + At(PIH! ent1),

Using the inequality shown in (5.4.4), we have the following inequality from the
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equation (5.4.22):
el — e (IEX7 I ~ IERIP) + gpocoles — exe) (IHEI2 — 22]7)
S (IPE I~ IP2IP) + (PR — Py, mgde ) (5.4.23)
< Ategles — €oo) (EXTHET) + Ateg(es — €0o) (HE, &5 + AL(PIF 0.
It can be written as
Beneles — ex)IE2H I = 1E21%) + pocoles — ex) I — [F21P)
P = 1P2I) + 2P = P 0P (54.24)
< 2Ateg(€s — €00) (EXTLENTY) 4 2Ateg (€5 — €00) (HE, E5TD) + 2A8(P2HE €1,
By the Schwartz inequality,
(1 — At)Ses(es — ) [E272 + (1 = Ab)roeoles — ) [F:]1
+(1 = AP+ 2P = PO P
< €geoo(€s — €xo) [IEF 17 + Hoco(es — o) [HE |1
+|P21? + CLAL (AL 4+ Az® + Ay?)2. (5.4.25)

Dividing both sides of (5.4.25) by (1 — At), we have

6(2)€<><><€s - 600)|‘g;+1||2 + poco(€s — 600)||Hz||2

n 2 n n _agapn
+||7D£E+1H2 + 1— At<7)m+1 — s To at Pm+1)
1 n n
< 1_ AtEgem(es — o) [IE7]17 + 11— AtUOGO(Es — o) [[H2]
1 2
" At + Az? + Ay?)2 4.2
+1_AtHPxH +011_At( t+ Ax® + Ay?) (5.4.26)
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Similarly, by the error equations in Stage 2, we obtain that

(1= At)eGeno(es = o) €517 + (1 = At)poeo(es — o) [IHZ 7
+(1 = APy + 2Pyt = Py g Pyt
< e (es = o) IE] I + pocoles — eoo) [ HE?

HIPyI? + CLAH(AL + Az® + Ay?)*. (5.4.27)

Eliminating the intermediate variables H? in inequalities (5.4.26) and (5.4.27), we

obtain

E(2)'500('55 - 600)||g;l+1”2 + (1 - At)e(Q)EOO(Es - 6<>o)||‘937—~_1||2

+(1 = A)poco(es — eoo) |HETHP + PP + (1 = An) [Py 2

2
1— At
1
T A

+ (P = P g Of Py ) + 2Py — Py g 0p Py

T y?'0

<

(€5 — EOO)HSSHQ + 63600(68 - 600)||85H2

1 n2 1 nl|2 n||2
(e — e [P + o P2 + 175

At

+Cl(1—At

+ At) (At + Az® + Ay?)% (5.4.28)
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By (5.4.28), we can have that

(1 = At)enc(es — )| FIP + (1= Ayeac(es — ISP

+(1 = A oeo(es — exo) [HITH? + (1= A PIF2 4 (1 — AP+ 2

2
1—At

1
< 11— Ate(Q)GOO(Es - 600)”‘9:?"2 +

(Pn+1 ;L’ gaarpn+1> +2(7);l+1 _ ;1’ Oaaf])nJrl)

1 n
1_ Atﬁ(QJGOO(es — €x)|1€, [

1 n||2 2 2
e oeoles — e[ + || ||
At 2 2\2
+C1( 7 + AD(AL+ Aa? + Ay?)” (5.4.20)

Dividing (5.4.29) by 1 — At on both sides, we get

6(2)60<><€s - €OO)H‘S;L+1HZ + 63600(68 - EOO)H‘S;HHQ + po€ol€s — 600)HHZ+1H2

HIPZE + P + (Pt — o g orprtt)

(- At

2 -
=P PO
1 . 1 .
S (1—_ At)263€oo(€s - €<>o)||(c;m ||2 + mGgGw(GS — GOO)Hgy ||2
1 _ n|2 1 ni2 1 ni2
+<1 — At)Q'uOGO(GS 600>HH2|| + (1 . At>2||7):z|| + (1 o At)QHPy ||
+CAt(AL + Ax® + Ay?)?, (5.4.30)

Let At < Ay < 1, it holds that < 1+ C5At, from inequality (5.4.29), we

= At)
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have that

€600 (€5 — €oa)[|€7 | + €qenc (€5 — €0 1€ 1 + poco(es — €xc) [ HZ I

HIPEHE + 1Py +

2
1—At

T AP - PLmOP

(Pn+1 n aaar])n+1>

y: 70
< (14 C3At)egens (€5 — o) [EF]P + (1 4 CaAt)egens (€5 — o) [ €]
(1 + CsAt) poco(es — €co) IHZN1? + (1 + CsAD) | PRIIP + (1 + CsAt)[| Py

+OAt(At + Ax® + Ay?)>. (5.4.31)
Summing (5.4.31) from time level n to 0 we can obtain

€0€oo (€5 — €oo) €71 + €€nc (€5 — €co) 1€ I + proco(es — €xo)[IHI T
n

2 4 . -
HIPEHP + 1Py + TN > (P —PL o P
1=1

n

2
+1 — At Z(Pz—I—l Z/v < aafpz—H)

=0

< ALY [enles — e 2P + (e — )]
=0
Hroeo(es — ) [P + P2 + P

+CnAt(At + Az + Ay?)?. (5.4.32)

Noticing At = T'/N, using discrete Gronwall’s inequality and using the estimation
of Y0 (P — P, 7‘5‘5,?73”1) as shown in the proof of Theorem 5.4.2, we can get
the result (5.4.13). We can similarly get the proof of (5.4.14). O
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5.5 Numerical Experiments

Consider Maxwell’s equations in Cole-Cole medium. Take eyeo, =po = T0=¢€0(€s —

€s) = 1 and set T=1. The exact solutions are

2 3. 1.3
H.(x,y,t) = _[F(l ol —a2—a)3= a)t + §t | - 2wcosmacosmy,
P(z,y,t) = t*w(z,y),
B0 = [y ),
where

w(x,y) = (—costxsinmy sinwrcosty)’.

The Maxwell’s equations in the Cole-Cole media satisfy

OE OP
ot + ot —VXH—f<.’1?,y,t),
where
f(z,y,t) = { 2 e 44t
HHU TN I (1 - )

2

2 i e E )G a)

+ 50wz, y),

and (5.2.3), (5.2.6).
We first fix 7=0.0005, «=0.5 and h=1/64, and compute the P,, E,, H, at T = 1.
The Figures 5.1-5.3 show the pictures of numerical results and exact solutions. From

the figures, we can see that numerical results and real data fit very well.

155



Al 1 s
S T S
S i S
S R S
0 S 0 N S
s : R i i ¢
50 7 50 e :
7
7
60 80 60 80
40
0 0 0 0

(a) (b)
Figure 5.1: Numerical solution P, (a) and ezxact solution P, (b) with fived T

0.0005 , «=0.5 and h=1/64 at T =1
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Figure 5.2: Numerical solution E, (a) and ezact solution E, (b) with fizved T

0.0005 , «=0.5 and h=1/64 at T =1
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Figure 5.3: Numerical solution H, (a) and ezact solution H, (b) with fized T =

0.0005 , «=0.5 and h=1/64 at T = 1.

In Table 5.1 and Table 5.2, we test the accuracy of the scheme in spatial step
with different N where At=1/(N?) and Az=Ay= 1/N in spatial step. These two
tables show that the accuracies in L? norm all the test items are of order two, which
confirms that our scheme is second order in space. The tests for time step are given
in Table 5.3 and Table 5.4 where Az = Ay = ﬁ at T = 1, the convergenc rate of

the scheme is first order in time step as the two tables showed.
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Table 5.1: L*-errors of the Euler-based S-FDTD scheme with Az = Ay = 1/N,

At=1/(N?) and a=0.5 at T = 1.

N  H error Rate FE error Rate P error Rate  Total error  Rate

4 0.193180 - 0.144599 - 0.053701 - 0.247207 -

8 0.048593 1.9911 0.037211 1.9583 0.013470 1.9952  0.062669  1.9799

16 0.012146 2.0003 0.009362 1.9908 0.003371 1.9985  0.015702 1.9968

32 0.003034 2.0011 0.002344 1.9978 0.000843 1.9996  0.003926  1.9998

64 0.000758 2.0010 0.000586  2.000 0.000211 1.9983  0.000981 2.0001

Table 5.2: L*-errors of the Euler-based S-FDTD scheme with Az = Ay = 1/N,

At=1/(N?) and a=0.7 at T = 1.

N H error Rate FE error Rate P error Rate Total error Rate

4 0.202471 - 0.170287 - 0.057857 - 0.270813 -

8 0.050304 2.0090 0.044225 1.9450 0.014203 2.0263  0.068469  1.9838

16 0.012455 2.0139 0.011156 1.9870 0.003528 2.0093  0.017089  2.0024

32 0.003094 2.0092 0.002795 1.9969 0.000880 2.0033  0.004261  2.0038

64 0.000770 2.0065 0.000699 1.9995 0.000220 2.0000  0.001063  2.0031
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Table 5.3: L2-errors of the Euler-based S-FDTD scheme in time step with Az =

Ay =1/256 and a=0.5 at T = 1.

At H error Rate FE error Rate P error Rate  Total error  Rate

1/4  0.577035 - 0.570517 - 0.232273 - 0.844044 -

1/8 0.322167 0.8409 0.316648 0.8494 0.117495 0.9832  0.466758  0.8546
1/16 0.170532 0.9178 0.165017 0.9403 0.059714 0.9765  0.244698  0.9317
1/32  0.087768 0.9583 0.083979 0.9745 0.030123 0.9872  0.125152  0.9673

1/64 0.044524 0.9791 0.042342 0.9879 0.015150 0.9915  0.063283  0.9838

Table 5.4: L2-errors of the Euler-based S-FDTD scheme in time step with Az =

Ay =1/256 and a=0.7 at T = 1.

At H error Rate FE error Rate P error Rate Total error Rate

1/4  0.582597 - 0.628539 - 0.270187 - 0.898600 -

1/8 0.326754 0.8343 0.356367 0.8186 0.122382 1.1426  0.498741  0.8494
1/16 0.171682 0.9285 0.187778 0.9243 0.060249 1.0224  0.261468  0.9317
1/32  0.087340 0.9750 0.096134 0.9659 0.030116 1.0004  0.133330  0.9716

1/64 0.043804 0.9956 0.048635 0.9831 0.015139 0.9923  0.067181  0.9889
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6 Conclusion

In this thesis, firstly, we proposed the spatial fourth-order energy-conserved splitting
finite-difference time-domain scheme (i.e. EC-S-FDTD-(2,4)) for solving Maxwell’s
equations. One important issue is to construct the numerical boundary difference
schemes to be energy conservative and high-order relative to the interior differ-
ence schemes. The one-sided differences and extrapolation/interpolation numerical
boundary schemes normally fail to satisfy energy conservations. At each stage, we
proposed the energy-conserved and fourth-order accurate FDTD operators for both
the near boundary nodes and the strict interior nodes. The developed scheme was
proved to be energy-conserved, unconditionally stable, and to have fourth-order
convergence in space step and second-order convergence in time step. The con-
vergence of numerical divergence-free was also analyzed. Numerical experiments
showed that the developed scheme conserves energy and is of fourth-order accuracy
in space and second-order in time.

Secondly, the aim of Chapter 3 has been to develop and analyze energy-conserved
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and time and spatial high-order S-FDTD techniques for solving Maxwell’s equa-
tions. This goal has been fulfilled by proposing and analyzing a new and novel time
and spatial fourth-order S-FDTD scheme. As proved, the most important feature is
that the proposed scheme satisfies the energy conservations in the discrete form and
in the discrete variation forms and it has the optimal fourth-order accuracy in both
time and space in the discrete Lo-norm and the super-convergence of forth-order
in the discrete H'-norm. We also proved another important prominent quality of
the scheme that its convergence of the divergence-free is of fourth-order as well.
Numerical experiments were presented to confirm the theoretical results.

Thirdly, in Chapter 4, we focused on the development and analysis of effi-
cient high-order energy-conserved splitting FDTD schemes for three-dimensional
Maxwell’s equations. The original Maxwell’s equations in three dimensions were
decomposed into twelve one-dimensional splitting equations in each time interval.
Based on the splitting of the operator equations and Yee’s staggered space-time
grids, the spatial fourth-order energy-conserved splitting FDTD scheme was devel-
oped. We proposed to construct the spatial fourth-order near boundary differences
over the near boundary nodes by using the PEC boundary conditions, original
equations and Taylor’s expansion, which ensured the each-stage schemes to pre-
serve the conservations of energies and to have fourth-order accuracy. We obtained

the optimal-order error estimates of spatial fourth-order and time second order in
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the discrete Lo-norm for the approximations of the electric and magnetic fields and
the same ordered super-convergence in the discrete H!-norm.

Finally, the Euler-based S-FDTD scheme was developed to solve Maxwell’s
equations in Cole-Cole dispersive medium. The computation of the propagation
of electromagnetic waves in dispersive media is a very important application. Due
to the fractional time derivative term in the models, it is difficult and important to
develop the efficient splitting FDTD scheme. Our developed Euler-based S-FDTD
scheme is a two-stage scheme. We proved the unconditional stability, and analyzed
theoretically the convergence of the scheme and obtained the optimal-order error
estimates in the discrete Lo-norm. Numerical experiments showed the performance
of the scheme.

The high-order S-FDTD schemes developed in this study can be extended to
solve other type wave problems and these schemes can be used in applications in

electromagnetic industry.
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