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Abstract

Designing an adaptive system to meet its quality constraints in the face of environ-

mental uncertainties, such as variable demands, can be a challenging task. In cloud

environment, a designer has to also consider and evaluate different control points, i.e.,

those variables that affect the quality of the software system. This thesis presents

a method for eliciting, evaluating and ranking control points for web applications

deployed in cloud environments. The proposed method consists of several phases

that take a high-level stakeholders’ adaptation goal and transform it into lower level

MAPE-K loop control points. The MAPE-K loop is then activated at runtime using

an adaptation algorithm. We conducted several experiments to evaluate the different

phases of the methodology and we report the results and the lesson learnt.
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1 INTRODUCTION

1.1 Problem and Motivation

Web applications deployed on the cloud allow companies to lower their costs and scale

them dynamically with ’on-demand’ provisioning of cloud resources. However, de-

spite numerous innovations, the industry still struggles to satisfy key Non-Functional

Requirements (NFRs) such as scalability1, performance, availability, and cost. For

example, in 2011, Target.com2 crashed twice as it was flooded with many online

shoppers for a new high-end clothing line. In 2013, Amazon.com3 went down for

unknown reasons for at least 20 minutes. Evidently, achieving NFRs in the dynamic

cloud environment in a cost-effective manner remains a largely unresolved problem

due to the changing nature of the operational environment, complex requirements,

1In cloud, performance goals are achieved through scalability; hence, we look at the scalability
as a subset of performance goals.

2http://www.computerworld.com/s/article/9221221/Target.com

3http://venturebeat.com/2013/08/19/amazon-website-down/
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unexpected failures, etc.

Adaptive design such as autonomic computing [24] [26] [18] can help achieve the

NFRs. Consequently, self-adaptation- the ability of software systems to modify their

behaviour in accordance with changes in their operational environment and in the

system itself- has gained a lot of attentions and has become an important concept in

research [12]. Survey papers such as [10] and [39] discuss the challenges of designing

and engineering such systems.

Brun et al. [6] emphasize the importance of feedback loop in designing adaptive

systems. The authors consider feedback loops as first-class entities since they are

the essential feature in controlling and managing uncertainties in software systems.

They assert that without visible feedback loops, the impact of these feedback loops

on overall system behaviour could not be identified and hence the most important

properties of self-adaptation would be failed to be addressed.

Designing an adaptive system entails decisions such as how to monitor the sys-

tem’s environment, how to select and activate adaptations, etc. Currently, this is

done in an ad-hoc manner [5]. Recently, Brun et al. introduced the concept of design

space for adaptive systems, which contains key questions when attempting to design

a self-adaptive system [5]. The authors present a conceptual model of how to identify

different components of an adaptive systems by answering a set of questions along
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five dimensions: identification, observation, representation, control and adaptation

mechanisms. For each dimension, they identify key design decisions to guide the

design.

We conducted an exploratory study with a group of researchers to design an

adaptive software system for an online shopping cart. The researchers were members

of our Adaptive Systems Research Lab (ASRL)4; graduate students from IT and

Computer Science Programs, as well as postdoctoral fellows. Some of the participants

work in industry. All researchers have practical experience with the cloud. Moreover,

they all have applied adaptations in their research work such as add/remove servers.

Some have applied change instance type adaptations, and few have applied other

type of adaptations such as adding threads, reducing network latency, and changing

disk type.

The goal of our study was to assess whether they can design an adaptive system

using accumulative knowledge from their research. We identified NFR goals for a

multi-tier online shopping cart application running in the cloud as a low response time

and low cloud resource cost. The participants were required to perform three tasks:

1) Identify 10 adaptation operations, which we call control points [45] throughout

this thesis. We define control points as those artifacts in a system that modified

4http://www.ceraslabs.com
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at run-time cause controlled changes in the system; thus, affect the quality of the

services offered by the system, 2) Elicit feedback loops for them, 3) Rank feedback

loops in order of importance to determine their impact on response time and cost.

The outcome of the study was a set of complex feedback loops, which were difficult

to interpret. We observed that the participants did not have good intuitions to

identify the control points and eliciting feedback loops around them. They appeared

to rank the feedback loops randomly due to an apparent inability to prioritize which

one to implement with regard to the adaptation goals.

This study motivated us to develop a methodology for designing adaptive web

applications deployed on the cloud in order to meet their quality requirements.

1.2 Research Objectives

The objective of our research is to define a systematic approach for eliciting, selecting

and ranking control points for cloud-based adaptive software systems. We decompose

our objective into the following research questions:

• RQ1: How can we achieve adaptation goals defined for an adaptive system?

We define adaptation goals as NFR goals that are achieved through adapting

the software and infrastructure. In other words, a system is designed and

adapted with respect to its predefined adaptation goals. In order for a system

4



to achieve its adaptation goals, we construct an approach to elicit and rank a set

of control points as shown in Figure 1.1. Using rank order of the control points,

we then build an adaptation (runtime) strategy that will be implemented by a

MAPE-K loop. Our approach is thoroughly described in Chapter 4.

• RQ2: How can we develop a systematic process to elicit control points for an

adaptive system deployed on the cloud?

We exploit the existing techniques in the literature and develop a method for

elicitation of control points. Using a hierarchical approach, we propose a control

point model, which facilitates the identification and elicitation of control points.

A control point model has a structure of a tree, which takes the adaptation goal

as the root of the tree, and decomposes it into lower level goals until it reaches

the adaptation operations (i.e., control points). We then create a catalogue of

the elicited control points that can be reused. The first element in Figure 1.1,

Elicit Control Points, corresponds to our elicitation process. We introduce our

elicitation method in Chapter 4.

• RQ3: How realistically can we capture and model the adaptation efficiency at

design time?

To answer this question, we acquire ranks for control points from two sources:

5



1) Model-based simulation, and 2) Group of designers. We expect that the

ranks obtained from the designers (Designer Ranking) are as reliable as the

ranks acquired by running a series of experiments with the simulation tool (Ex-

perimental Ranking). In this thesis, we explore whether the Designer Ranking

can be utilized and relied on for designing an adaptive system. We show our

experiments and findings in Chapter 5.

1.3 Thesis Contributions

This thesis focuses on designing cloud-based adaptive web applications by creating

the mechanisms for achieving the adaptation goal. Our contribution consists of

elicitation and ranking of control points. The main advantage of our approach is

the ranking of control points in the early design phase, which enables prioritization

of control points and an informed decision-making about which control points are

essential to meet the stakeholders’ objectives. Our approach, which answers research

questions RQ1-RQ3 above, is summarized in Figure 1.1.

As shown in Figure 1.1, our process encompasses three steps:

1. Elicit Control Points. We formulate a set of alternatives through elicitation

of control points. To facilitate the elicitation of control points, we propose

6



Figure 1.1: Overview of our approach to design an adaptive system.

control point models, which map the control points to NFRs. The control point

models act as aids in elicitation process. Our hierarchical method constantly

decomposes an adaptation goal until it reaches the operations, which are control

points in the system that affect the adaptation goal. Our elicitation process is

defined in Chapter 4.

2. Rank Control Points. Another contribution of this thesis is to find ranks

for the previously elicited control points. In order to acquire ranks, we propose

a process using pairwise comparisons and direct rank as discussed in Chapter

4.
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3. Implement a MAPE-k Loop Adaptation Strategy. We use the ranked

control points to build a feedback loop. The feedback loop will apply the

control point to act on at any point in time in order to achieve the adaptation

goal. Section 4.3 discuses our adaptation strategy algorithm.

Our final contribution is a case study that demonstrates the capability of our

methodology in designing an adaptive application in cloud.We utilized a simulation

tool to acquire ranks so as to evaluate the Designer Ranking. Our experimental

evaluation shows that the Designer Ranking is as valid as the Experimental Rank-

ing (ranks obtained using the simulation). Moreover, we created a set of run-time

strategies and evaluated the effect of each on response time. Our result shows that

the Designer Ranking is the most effective strategy. Chapter 5 is allocated to discuss

our findings.

The work presented in this thesis is a groundwork for a full paper accepted at

the 9th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS). Full citation can be seen in [48].

1.4 Thesis Organization

This thesis is structured as follows. Chapter 2 provides a brief background on im-

portant concepts related to our research. Chapter 3 presents the literature review
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in our research field. Chapter 4 presents the details about our proposed method-

ology, which consists of eliciting and ranking control points. We conduct a set of

experiments in Chapter 5 to assess our methodology in designing adaptive web-based

applications for cloud. Finally, we summarize the thesis and present possible future

work in Chapter 6.
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2 BACKGROUND

This chapter provides an overview of the main materials related to our research. Since

this thesis focuses on designing cloud-based adaptive web applications, we present

an overview of the following areas: Cloud Computing and Autonomic Computing.

2.1 Cloud Computing

Cloud computing has emerged as a promising model with a potential of transforming

the IT industry [17]. Cloud computing makes infrastructure (e.g., virtual machines),

platforms (e.g., web servers, application servers) and software (e.g., e-mail) services

available to clients, on-demand, using a pay-as-you-go (i.e., utility) model over the

Internet. Cloud users can subscribe to these services, which are referred to as In-

frastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS). Cloud computing follows the utility pricing model that charges the

cloud users with respect to the utilized services, ’pay-as-you-go’. [8].
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The utility model benefits both the cloud users and the cloud providers. Cloud-

adopted users can reduce costs by subscribing or renting (e.g. per hour) services from

service providers as opposed to buying the infrastructure, for example. The cost sav-

ing includes both IT capital and operational expenses. Since there are various service

providers offering computation, storage, software as well as Service-Level Agreement

(SLA) for their services, the cloud users can choose from the pool of providers whose

services are cheaper or delivering a better SLA. As a result of ’on demand’ delivery

of services, the cloud users are allowed to adjust their usage according to their com-

putation needs [8]. The prominent benefits of adopting cloud can be summarized in

the following points:

• Elasticity (i.e., scalability): Stakeholders can scale their applications up

and down based on the workload and computational needs.

• Self-service on-demand provisioning: Resources can be acquired/released

as needed from/to the provider using a pay-as-you-go model.

For instance, at peak hours, sever(s) can be added in order for an application to reach

its adaptation goals (e.g., response time and cost). Instances (virtual machines) can

be added or removed as many as necessary; however, designers/developers must

be able to determine how many instances are needed at any given point in time.

Additionally, they must be aware of what type of instances (e.g., small, medium,

11



large depending on memory, storage, etc.) they are using. Instances can also be run

in multiple locations (regions), which improves the availability of their applications.

Despite advantages of cloud, there are risks (e.g., security, availability, fault-

tolerance, and disaster recovery) associated with adopting cloud. For instance, secu-

rity is a big setback for large companies in adopting cloud. Although cloud computing

allows for lowering the cost, one should also be aware of the factors affecting the cost

of running applications on the cloud. We mention a few here:

• Number of instances purchased.

• Type of instances acquired. For instance, on Amazon EC2 website, a small

instance with 1.7 GB of Memory will cost less than a medium instance with

3.75 GB of Memory.

• Type of instances run in different regions (different regions charge differently).

In the US East region of Amazon EC2, on-demand small instances cost $0.06

per hour, whereas in South America (Sao Paulo) region they cost $0.080 per

hour 5.

• Network Bandwidth charges (based on number of bytes transferred).

5http://aws.amazon.com/ec2/pricing/
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2.2 Autonomic Computing

As computing systems’ complexity has grown, building, managing, and maintain-

ing systems has become difficult. Information Technology (IT) environment consists

of heterogeneous software, hardware, and middleware from various providers. In-

stalling, configuring, integrating, and maintaining these heterogeneous resources are

intricate tasks to be administered by IT professionals [26].

Kephart and Chess [24] state that the only solution to ever increasing complexity

of software systems is to enable them to self-manage while conforming to the end-

users’ objectives [24]. The authors argue that systems that are able to monitor,

(re) configure, (re) construct, heal and tune themselves at runtime are much needed

these days for reducing the complexity of computing systems, which are operating

in unstable and volatile environments.

Autonomic computing aims to automate their tasks and to eliminate human

intervention in order to manage systems. For doing so, autonomic systems should

possess properties of self-managing systems such as:

• Self-configuring: Ability of a system to configure and reconfigure itself on the

fly (e.g., installing, updating, integrating software entities) [39]. For instance,

new servers can be added without interrupting the service.

13



• Self-healing: Ability of a system to recover itself from disruptions and failures.

Autonomic systems can detect and diagnose problems as well as to foresee

them. They can also take appropriate actions to react to interruptions [39].

• Self-optimizing: Ability of a system to maximize resource utilization without

human intervention [39].

• Self-protecting: Ability of a system to protect itself from any attack. Hence,

preventing security breaches and malicious attacks is an important aspect of

the self-protecting property [39].

Consequently, autonomic systems sustain their operation in response to changes

in the environment, demands, workload, hardware and software failures, etc. They

can constantly monitor their environment, check for upgrade, install, and detect

errors [24].

Many researches have pointed to self-manageability or runtime adaptability as a

key requirement in complex software systems [3] [19] [26] [30] [34]. To achieve self-

management, a system should be monitored and analyzed. If adaptation is required,

it should be planned and executed. These processes are carried out by autonomic

managers, which are external to the system. In the following section, we show how

these processes enable self-adaptation in adaptive software systems through feedback

loops.
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2.2.1 Feedback Loop

Feedback loops are fundamental mechanism for self-adaptation in adaptive systems.

Self-adaptation is applied in many ways in software systems, but what is common

among (self-)adaptive systems is moving design decisions to runtime to manage dy-

namic behavior and the systems reason about their environments [6]. For instance, in

order to manage web services running constantly, a system should collect information

about its environment, analyze the collected data to discover and detect performance

problems and failures, decide how to resolve them, and finally execute the planned

changes [6]. In this section, we explain different representations of feedback loop.

The adaptation loop adopted from Salehie and Tahvildari [39] includes moni-

toring, detecting, deciding, and acting processes as depicted in Figure 2.1. The

adaptation process starts with monitoring process, which is in charge of collecting

and correlating data from sensors to realize the current state of the system. More-

over, monitoring process provides symptoms by converting the collected data from

sensors. The detecting process is in charge of analyzing the symptoms produced

by the monitor in order to detect when a change is required. The deciding process

is in charge of deciding what needs to be changed and how to change it. This is

done by comparisons of different course of actions to apply the change. Finally, the

acting process executes the changes identified by the deciding process through the

15



effectors [39].

Figure 2.1: Four Adaptation Processes in Self-Adaptive Software [39].

Another version of feedback loop presented in [6], consists of collect, analyze,

decide, and act as shown in Figure 2.2.

The sensors or probes are responsible to collect data from the running system and

its environment. The diagnosis then analyzes the data in order to identify trends and

problems. Next, a decision is made on how to modify the system in order to meet

the original objectives. Finally, the system acts to execute the decision via effectors

or actuators.

The autonomic element, Figure 2.3, established by Kephart and Chess [24] and

then utilized by IBM’s architectural blueprint for autonomic computing [12] is the

16



Figure 2.2: Autonomic control loop [6].

first architecture for self-adaptive systems, which emphasizes the explicit feedback

loop. The autonomic element is used as a reference model for autonomic control

loops to manage autonomic computing as suggested by IBM [12].

The autonomic element has two parts: Autonomic Manager and Managed Ele-

ment, which are at the core of the autonomic loop.

Autonomic Manager implements the feedback loop as well as controlling the

Managed Element. The manager consists of two manageability interfaces: sensor

and effector, and monitor-analyze-plan-execute (MAPE-K) engine composing of a

monitor, an analyzer, a planner, and an executor that share a common knowledge

base.

The monitor senses the managed process and its environment, filters the gathered

17



Figure 2.3: IBM’s autonomic element [6].

data, and stores them in the knowledge base for future reference. The analyzer com-

pares the gathered data with exiting patterns in knowledge base to detect symptoms,

and stores the symptoms in the knowledge base for future reference. The planner

infers these symptoms and creates a plan to execute a change in the managed process

through effectors. Hence, planning involves producing adaptation plans based on the

monitored data from the sensors. The Autonomic Manager collects measurements

form the Managed Element as well as the information about the past and the current

states from the knowledge base to adjust the Managed Element if required.

Managed Element consists of resources such as operating system, CPU, web

server, database, etc. Sensors, which are sometimes called probes or gauges, are
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in charge of collecting information about the Managed Element. For instance, sen-

sors collect information on response time, CPU utilization, and network usage, and

so on for a web-server. On the other hand, effectors execute changes to the Managed

Element. Example includes adding or removing instances or changing configura-

tion in a web server [22]. The Autonomic Manager monitors the Managed Element

through collected data provided by the sensors, and executes changes through effec-

tors. The Autonomic Manager is a software component configured using high-level

goals by administrators. These goals are expressed as event-condition-action (ECA)

policies, goal policies, or utility function policies [25].

One of the main influences in designing adaptive systems is the use of feed-

back loops. For instance, Garlan et al. [19] proposed an architectural model, called

Rainbow, in order to support all aspects of the self-management capabilities aiming

at optimizing a system’s performance and cost. Using an architectural model, the

framework monitors the system and decides on suitable adaptations. Adaptation

policies are explicitly defined in Rainbow, which enable the engineers to reuse these

policies in similar systems.

Besides Rainbow, another architectural model based on MAPE-K loop is Menasce

et al. [32]’s framework for self-architecting service-oriented systems. The authors’

framework, Self-Architecting Software Systems (SASSY), aims to dynamically adapt
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the architecture in order to maintain QoS goals. The monitoring component in

SASSY collects QoS metric values and sends it to the analyzer. The analyzer aggre-

gates these data and calculates the utility of the system. The system then sends a

request to the planner in case the system’s utility is not satisfied by the stakeholder-

specified threshold. The architecture planner then automatically identifies ’near-

optimal’ architecture. Changes to the system in operation are then executed through

adaptation patterns by self-adaptation component.

2.3 Summary

In this chapter, we covered important concepts relevant to our research. We described

the advantages of cloud computing provisioning on-demand services over the internet,

and as a result providing the cloud users with a variety of services and cloud providers

to choose from. We also highlighted some of the factors affecting the performance

and cost of running applications on the cloud, which are essential to consider when

designing an adaptive system for cloud. We then defined autonomic computing

and explained the self-* properties of autonomic systems. In the end, we discussed

different representations of feedback loop that are counted as the main force behind

the adaptations in adaptive software systems. Moreover, we showed how they are

utilized in software architectures to fulfill self-management capabilities.
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3 RELATED WORK

A key challenge posed by autonomic computing [18] [24] is to manage systems to

handle uncertainty in their execution and environment. The growing demand for

self-adaptation has caused a tremendous attention in software engineering for self-

adaptive systems. A good example is the comprehensive research roadmap by Cheng

et al. [10] on software engineering for self-adaptive systems, which discusses the

research challenges posed in the fields of modelling, requirements, and engineering of

self-adaptive systems. Software architectures have been widely used in the literature

to provide flexible adaptations [26] [19] [34]. In addition, there are works in modeling

and monitoring requirements for adaptive systems. Goal modeling approaches such

as i* [46] and KAOS [16] have been applied to model and reason about runtime

adaptations as well as exploring alternative requirements when system’s environment

changes [20] [35] [2].

In this chapter, we present the relevant literature on adaptive systems from differ-

ent perspectives. In Section 3.1, we review the state-of-the-art on modelling adaptive
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software and how it relates to our research. We present goal-oriented approaches to

design adaptive systems in Section 3.2. Section 3.3, reviews the literature in elicita-

tion of adaptation requirements. Finally, Section 3.4 summarizes the chapter.

3.1 Modeling Adaptive Software Systems

Adaptive systems are built based on several aspects of the software such as sys-

tem’s goals, characteristics of the environment, the end-user’s needs, etc. For an

adaptive system to embody the mentioned aspects, accurate modeling of the system

is necessary [10]. Therefore, self-adaptive systems are developed depending on a

conceptual model of adaptation regardless of the technology and tools used for its

implementation.

Andersson et al. [1] proposed modeling dimensions that describe various aspects

of adaptation, which allow for engineers to identify properties of self-adaptation and

select a proper solution. Their study aims to identify and compare important aspects

of self-adaptive systems. Thus, this classification of modeling dimensions needs to

be contemplated when modeling an adaptive system. Figure 3.1 adopted from [1]

summarizes the modeling dimension for self-adaptive systems.

The authors categorize the points of variation, modeling dimensions, into four

classifications. The first classification, Goals, is associated with achieving the objec-
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Figure 3.1: Modeling Dimensions for Adaptive Systems [1]
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tives of a system. The second classification, Change, is associated with the cause

of change in a system. The third classification, Mechanism, deals with mechanisms

to achieve change in a system, and the fourth classification, Effects, deals with the

effect of adaptation on a system. Within each group, the authors have identified

several dimensions, which focuses on specific parts of the system that is pertinent to

self-adaptation. For instance, the dimensions associated with Goals are:

• Evolution: This dimension is associated with goals of the system in two ways:

static and dynamic. Moreover, the dimension evaluates if goals can change

during the lifetime of the system. Static goals are not changeable whereas

dynamic ones can change at runtime, i.e., system generates new goals.

• Flexibility: This dimension deals with the level of uncertainty associated

with goals. Rigid goals are prescriptive while unconstrained goals are flexible

in dealing with uncertainty. Finally, constrained goals provide flexibility as

long as certain constraints hold.

• Duration: This dimension is related to goal validity during lifetime of the

system. Persistent goals are valid all the time within the lifetime of adaptive

system whereas the temporary ones are valid for a specific time range such as

short, medium, and long. For instance, in our approach, our adaptation goal

is considered to be persistent.
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• Multiplicity: This dimension deals with the number of goals related to adap-

tivity aspect of the system. For example, our adaptive system has a single goal

to achieve.

• Dependency: This dimension deals with how multiple goals in a system relate

to each other. Goals can be independent of each other or they can depend on

each other.

While Andersson et al. identify the challenges in modelling adaptive systems, our

work is a concrete study of the dimensions and a methodology to guide the design.

Recently, Brun et al. [5] introduced the concept of design space for adaptive sys-

tems, which contains key questions when attempting to design a self-adaptive system.

The authors present a conceptual model of how to identify different components of

an adaptive systems by answering a set of questions along five dimensions: identi-

fication, observation, representation, control and adaptation mechanisms. For each

dimension, they identify key design decisions. Example of questions: ”what infor-

mation is made available to the components of the adaptive systems?”, ”how does

the system decide what and how much to change to modify its behaviour?” , etc.

We used the authors’ approach as a blueprint for designing adaptive systems. Our

work focuses on the control points as being the main artifacts that derive the design

of feedback loops. Therefore, our proposed method enhances other methodologies.
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Moreover, we focus on NFR goals in the context of cloud, and we use quantitative

methods to guide the design.

3.2 Goal-Oriented Approaches to Adaptive Systems

The field of Requirements Engineering (RE) for adaptive systems is a wide open

research area [9]. Designing software systems, which deals with incomplete, vary,

uncertain requirements at runtime multiplies the difficulties of requirements engi-

neering. Dealing with uncertainty is one of the key challenges in designing adaptive

systems since all possible adaptations are not known in advance. This is due to

the fact that we cannot realize all sets of environmental conditions and their rel-

ative adaptation specifications. Therefore, requirements for adaptive systems are

dealt with uncertainty and incompleteness [10]. In this section, we review some

goal-oriented approaches to adaptive systems.

Goal-Oriented Requirements Engineering (GORE) is a distinguished approach

within RE. The notion of goal has been used extensively in RE. Goals, ”desired

states-of-affairs”, are stakeholders’ needs, which are elicited, modeled, and analyzed.

In GORE approaches, goals are captured by goal models. Goal models are effective

in identifying system’s requirements by studying the stakeholders’ intentions [47] [46]

[16]. Hence, they can be used as a communication medium between the requirements
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engineer and the stakeholders.

One example of goal-oriented modeling in adaptive requirements is [27]. Lapouch-

nian et al. [27] used goal models to develop an adaptive software system. Their

approach supports using requirements goal models to support all configurations in

order to enable a system to select the best behaviour at runtime based on the current

system’s environment. They also show that an autonomic system architecture can

be derived from the goal model. In their approach, the authors add annotations such

as priority, conditions as well as contributions to identify the best configuration of

the system to meet its main goal.

Souza et al. [41] proposed a new class of requirements, called awareness require-

ments. Awareness requirements refer to success and failure of other requirements or

domain assumptions at runtime, and identify the critical requirements, whose suc-

cess/failure should be aware as well as the situations in which the system is adapted.

The authors provide a monitoring framework to monitor awareness requirements.

When an awareness requirement fails at runtime, the adaptation strategy modifies

the parameter’s value to improve the failed indicator. Their approach relies heavily

on monitoring requirements and switching the system’s behaviour in case of failures.

Our approach is different from [41] in that our adaptation strategy algorithm detects

discrepancies by monitoring the adaptation goal as oppose to detecting the violation
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of monitored requirements caused by changes in context.

Furthermore, Souza et al. extended their work in [43] to introduce evolution

requirements. The authors introduced a process to execute adaptation strategies

in response to the system’s failure. They model evolution requirements as Event-

Condition-Action (ECA) rules, in which the rules are activated if a certain condition

holds when an event occurs. Therefore, evolution requirements specify strategies and

other requirements that need to be changed at runtime to fulfill the stakeholders’

objectives.

Our work is different from the above works. Our proposed adaptation strategy,

in contrary, monitors the adaptation goal, and measures the value of a metric against

the pre-defined one. It then selects the most effective operation (based on ranking)

in meeting the objectives. Moreover, our adaptation strategy uses multiple control

points to accomplish the adaptation goal of the system.

Salehie and Tahvildari [38] proposed a decision-making mechanism for selecting

adaptations at runtime. Their decision model consists of Goal, Action, and Attribute

(GAAM), which aims at a goal-driven approach to make runtime decision based on

adaptation goals, which are explicitly defined. Their framework selects the best

appropriate Actions to satisfy Goals under different conditions (Attributes).

We can relate our work to [38] in that we design an adaptive software by explicitly
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achieving the adaptation goal. Their framework also deals with multiple adaptations.

However, the authors utilize a weighted voting mechanism to select the appropriate

adaptations, and only consider application-level adaptations. We use a different

approach in selecting appropriate control points by direct ranking. Another difference

is that our work supports adaptations at different levels (e.g., application, cloud,

multi-cloud6.

Qureshi and Perini [36] proposed a framework for Continuous Adaptive Require-

ments Engineering (CARE) supporting self-adaptive service-based applications. The

authors point out that service-based applications require continuous reappraisal of

requirements, which means refining and adding new requirements. Their CARE

framework is tailored to address such issues by enabling the system to perform con-

tinuous RE with respect to the users goals and preferences. Moreover, users can

add/modify new requirements at runtime.

The authors differentiate between the activities involved at design-time and run-

time. RE at design time involves activities ranging from eliciting stakeholders in-

tentions to specifying requirements. RE at run-time is performed by the system

itself involving the user to deal with continuous changes. Thus, at runtime, new

requirements are emerged, given by the end user or the system monitoring the en-

6The multi-cloud refers to a combination of computing resources from multiple clouds.
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vironment/end user. The authors call requirements at runtime as service requests,

which entail functional goals, quality constraints, preferences, context information,

and son on. In our approach, we also separate the design time activities from run-

time. At design time, we elicit control points as well as ranking them, and at runtime,

our adaptation strategy, implemented by MAPE-k loop, select the most appropriate

adaptation for the runtime system.

3.3 NFR Elicitation for Adaptive Systems

Requirements elicitation, as a first step in requirements engineering, is a crucial task,

which studies the needs of different stakeholders, the software system, context, etc.

The success of a system depends on how well its requirements are elicited. Require-

ments engineer is responsible to elicit both functional (what the system should ac-

complish) and non-functional (constraints on functionalities of system) requirements.

Regrettably, there have been a lot of attentions to functional requirements and treat-

ing them as first class requirements while the non-functional requirements have been

neglected and only being dealt with in design and implementation phases [44].

The most popular work in specifying and analyzing NFRs is the NFR Frame-

work [11]. The importance of NFRs has been stressed in the NFR framework, pro-

posed by Mylopoulos et al. [33] and further developed in [11]. The framework has
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been developed to model and analyze NFRs. During software development, NFR

framework helps the developer/architect to make design decisions by treating NFRs

as selection criteria. The aim of the framework is to capture NFRs of the system-

to-be, decompose them, detect possible operationalization (design alternatives) and

select them, deal with priorities, tradeoffs, ambiguities, and interdependency among

the NFRs, support decisions with design rationales, and evaluate the impact of de-

cisions. Thus, the NFR framework is used to model and decompose NFRs and to

explore different design alternatives in relation to NFRs. Moreover, each design al-

ternative contributes to achieving goals either positively or negatively. The NFR

framework exposes the impact of each design decision on these requirements.

As with goal modelling methodology, goals in NFR Framework (denoted by soft-

goal) are decomposed using AND or OR refinements. Interdependencies between

softgoals are captured through positive and negative contribution links. Such model

embedded with these concepts is called Soft-goal Interdepency Graph (SIG). The

SIG graphically illustrates softgoals and their AND/OR refinements, sofgoals posi-

tive/negative contributions, operalizations and claims. Sofgoals are recursively re-

fined until they cannot be further decomposed, which is reaching operationalization

softgoals. Our elicitation method also has a tree structure, but only deals with one

adaptation goal at a time. We will thoroughly describe our method in Chapter 4.
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Jiang and Yang [23] proposed performance requirements elicitation from different

stakeholders such BAs and developers based on cognitive approach. The authors

introduced a technique to elicit performance requirements for financial information

system based on ontology. Their method splits the requirements into three parts:

system level, subsystem level and component level. For each level, they then define

metrics and range. Although their work benefited us to identify metrics at different

granularity level, the purpose of our work is not eliciting NFRs, but eliciting the

operations that can be mapped to NFRs.

Taxonomies have also been used in the literature to depict different aspects of

self-adaptation. Brake et al. [4] classified parameters based on their behaviour. The

authors created a taxonomy from different kinds of tuning parameters in adaptive

systems. In their approach, Brake et al. employed a method to automatically discover

tuning parameters in the source code. They analyzed user/system documentation

to compile catalogue of parameters.Then the syntactical search of the source code is

performed to find fields that match the parameters. The authors aimed to use the

tuning parameters as effectors in autonomic systems. Such taxonomy of parameters

helped them to automate the identification of tuning parameters in existing software

systems. Furthermore, Ghanbari and Litoiu [21] extended the classification proposed

in [4]. Basing their approach on reverse engineering, the authors proposed a technique
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to identify tuning parameters in software systems. They categorized the taxonomy

of tuning parameters into control (output parameters) patterns and reflexive (input,

state, environment parameters) patterns.

Salehie and Tahvildari [39] matched the runtime adaptation changes to software

evolution based on Buckley et al. [7]’s taxonomy. The authors proposed a taxonomy

of adaptation that covers questions of where, when, what, why, who, and how behind

self-adaptive software systems. The questions are helpful in eliciting adaptation

requirements. For instance, The Object to adapt facet in their taxonomy covers the

where and what aspect of change, which is further refined to three sub-facets such

as:

• Layer: Which layer of the system needs to be changed and can be changed?

Different adaptation actions can be applied to different layers.

• Artifact and Granularity: What artifacts and at which level of granularity

needs to be changed? This reflects the module and architecture.

• Impact and Cost: This facet reflects the impact of change on the system and

its cost based on time, resources, etc. Based on impact and cost factors, the

adaptation actions can be defined as weak and strong classes. Weak adaptation

deals with changing parameters and low cost/limited impact actions whereas

strong adaption deals with high cost/extensive-impact actions [66]. Examples
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of weak adaptation include bandwidth limit, load balancing, etc. Adding,

removing, replacing components are examples of strong adaptation.

In our elicitation method, we implied the what, how, and where aspects of adap-

tation to formulate a series of questions to facilitate the elicitation of control points.

Moreover, our method elicits both weak and strong operations (control points).

Using multiple control points to adapt the system has been attempted previ-

ously [40] [29]. For example, Litoiu et al. [29] proposed a hierarchical model-based

adaptation for tuning parameters in service-oriented architecture applications. Their

architecture consists of a hierarchy of controllers (Component Controller, Applica-

tion Controller, Provisioning Controller). Each layer has its own model and evaluates

decisions before executing any change. The authors present the need for having mul-

tiple control loops for non-functional requirements. They show a general architecture

of how these loops can work at different levels of granularity. The above works are

beneficial although they do not focus on eliciting operations or ranking them. Neither

do they consider strategies for combining multiple control points.

3.4 Summary

In this chapter, we reviewed the state-of-the-art related to our research. We rep-

resented some important works in designing adaptive systems, and identified the
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differences and similarities to our approach. We showed how we adopted some con-

cepts from modelling and designing adaptive systems from the literature. In the next

chapter, we introduce our methodology and the main contributions.
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4 METHODOLOGY FOR ELICITING AND

RANKING CONTROL POINTS

In this chapter, we present our approach for designing cloud-based web applications

by creating an adaptation loop. Our target is web applications that are similar to

Znn.com7 architectural style [19].

We present a methodology, which discovers a set of control points, derived from

iteratively refining an adaptation goal, and utilizes them in a rank order for building

an adaptation loop. In this thesis, we assume the adaptation goal (such as response

time below a threshold) and resource boundaries (such as x number of virtual ma-

chines) have been already identified by the application’s stakeholders. Thus, our

task is to design and implement the feedback (or adaptation) loop that achieves the

adaptation goal.

We introduce a process for eliciting, ranking, and executing control points. Our

7http://seams.self-adapt.org/wiki/Exemplars
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elicitation methodology decomposes an adaptation goal into a hierarchy structure

as described in Section 4.1.1. Having the control points elicited, we then propose

a ranking methodology to prioritize them. Our ranking method utilizes pairwise

comparisons and direct ranking of control points. To acquire the final ranks, we

aggregate the result. Finally, using MAPE-K loop, we design an adaptation loop.

This chapter has the following structure. In Section 4.1, we discuss our elicitation

method. Section 4.2 demonstrates our ranking process. We explain our adaptation

loop algorithm in Section 4.3. Finally, we summarize the chapter in Section 4.4.

4.1 Elicit Control Points

The process of eliciting control points is somehow similar to NFR elicitation. One

such approach is the NFR Framework [11], in which higher level goals are decomposed

into sub-goals using AND/OR trees until they cannot be decomposed any further

(operationalized). In our approach, we propose control point models to assist us

with identifying and eliciting control points. To elicit control points, one can build a

control point model as will be discussed in 4.1.1 or reuse our catalogues (see Section

4.1.2), or the combination of both. This section is allocated to control point models,

how to construct one, and their reusable functionality through catalogues.

37



4.1.1 Control Point Model

A control point model is a tree with the following properties:

1. The root node is the stakeholders’ adaptation goal, represented as a double

boundary rectangle.

2. The model expresses the relationship between the root node and the operations

(leaf nodes) that is required for meeting the high level goal, the adaptation goal.

This understanding gives the reason why operations are essential.

3. The complex adaptation goal is decomposed into different sub-goals.

4. A sub-goal is represented by a cloud.

5. The operations are denoted by rectangles.

6. (Optional) Adaptation goal or sub-goals can have a metric attached to them.

(Metric is denoted by a diamond).

The construction of a control point model is an iterative process. This system-

atic approach helps decompose a complex adaptation goal/sub-goals into smaller

sub-goals. It also helps reduce the risks associated with missing operations or mis-

understanding adaptation goal/sub-goals.
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A difference between our control point model and the NFR Framework is that our

control point model represents the decomposition of one adaptation goal as oppose to

refining multiple NFRs as in soft goal interdependency graph (SIG). Therefore, our

proposed control point model is conflict-free by design since all operations/sub-goals

only contribute for meeting the top-level adaptation goal.

Applications deployed in the cloud also have the feature to have environmental

parameters dynamically configured in addition to conventional application parame-

ters. Therefore, to simplify the process of control points elicitation, different control

point models can be constructed on Application, Cloud, and Multi-cloud. We ex-

tend a control point model by asking a series of questions for Application, Cloud,

and Multi-cloud as follow:

• Cloud. How does cloud agility/elasticity help an application to meet its ob-

jectives? What services offered by the cloud provider can aid in meeting the

adaptation objectives? For instance, consider the adaptation goal is less than 1

second response time. Amazon Web Services (AWS) Elastic Beanstalk 8 is an

Elastic Compute Cloud (EC2)9service, which provides auto scaling capability

for a web application. We can define a control point, which enables auto scaling

using the AWS Elastic Beanstalk service.

8http://aws.amazon.com/elasticbeanstalk/

9http://aws.amazon.com/ec2/
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• Multi-cloud. How will migrating from one cloud to another one align the

application with its adaptation goal? How does utilizing additional clouds help

the application to meet the stakeholders’ objectives? Assume the adaptation

goal is less than 1 second response time and the application will be deployed

on a private cloud. Utilization of public cloud will enable massive scaling by

bursting application process into public cloud. We can define a control point,

which will enable the offloading of non-sensitive service into a public cloud [42].

• Application. Which web application scenarios exhibit similar runtime be-

haviour in relation to adaptation goal or sub-goal? How can management

systems control the runtime behaviour of these scenarios? What configuration

parameters (existing or defined) will control the runtime behaviour? For in-

stance, assume the adaptation goal is less than 1 second response time. Often

response time of web applications depends on the number of threads defined

for the application server. In this case, all performance scenarios of the web

application will, to some degree, depend on the number of threads. Hence, the

number of threads is a control point.

Figure 4.1 and 4.2 show our elicited control points for meeting a low cloud cost in

cloud and a low response time in application environment respectively. As shown in

Figure 4.1, in order to elicit control points, we first decompose the adaptation goal
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into a metric, the cost of runtime system. Next, thinking of what influences the cost

in cloud, we decompose the adaptation goal into sub-goals such as Consolidate re-

sources, Decommission of under-utilized resources, or Find cheaper resource/service.

Now that we have our subgoals, we decompose them further to reach the control

points. Looking at the decommission of under-utilized resources sub-goal, we can

remove or change VM instance types to achieve a lower runtime cloud cost. Hence,

removing a web server or changing its size to a smaller one are the examples of con-

trol points.

4.1.2 Control Point Catalogue

Creating catalogues to assist with eliciting NFRs have been used in [15] [11] [14].

Cysneiros conducted an experimental study to investigate the use of catalogues in

eliciting NFRs [13]. The result showed the higher number of operationalizations were

found by using catalogues. Inspired by these works, we built catalogues of control

points for application and cloud environments, which can be extended and/or reused

as an alternative way to elicit control points.

Table 4.1 shows the most important NFRs for web-applications that can be met

through adaptation.
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Figure 4.1: Control Point Model for Runtime Cloud Cost

Table 4.2 shows the control point catalogue for application performance, and

Table 4.3 displays the control point catalogue with respect to different NFRs for

cloud. All the control points listed in Table 4.3 are applicable for web servers, load

balancers, and database servers. Therefore, these control point catalogues can be

reused for elicitation purposes.
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Figure 4.2: Control Point Model for Application Response Time
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NFRs Metrics

Performance Response time, servers’ utilization, throughput

Cost Total no. of machines, no. of users, system’s runtime cost

Security Users’ activity, credit card/IP velocity

Availability Latency, abandon rate

Table 4.1: NFRs and their corresponding Metrics

Control Points for Performance

Lower content resolution

Switch content from multimedia to text

Switch content from multimedia to image

Switch content from image to text

Decrease image size from normal to small

Increase number of threads

Increase the size of memory cache

Table 4.2: Elicited Control Points for performance goal (application)

4.2 Rank Control Points

This section presents how to rank the elicited control points. A rank reflects the

relative impact of a control point on the adaptation goal. For example, a control44



Control Points Performance Cost Security Availability

Add bandwidth x

Add instances to different re-

gions/different cloud providers

x x

Change instance type to smaller size x

Change instance type to bigger size x

Migrate instances to cheaper zones/cloud

providers

x

Migrate instances to public cloud provider x

Migrate instances to private cloud x x

Migrate instances to virtual private cloud x

Migrate a service from one VM to another x

Reduce latency by migrating instances

closer to each other

x

Reduce network latency x

Remove instances x

Remove bandwidth x

Table 4.3: Elicited Control Points for adaptation goals (cloud)
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point with rank 1 means that control point has the highest positive impact on the

quality of service under control. We introduce the following steps in order to acquire

ranks from a group of designers.

1. Conduct pairwise comparisons.

We use pairwise comparisons as in the Analytic Hierarchy Process (AHP) [37],

which compares two alternatives against another based on the higher level goal.

To conduct pairwise comparisons, the designers are asked to choose between

three options (A > B meaning A is more preferred to B; A < B meaning A is

less preferred to B (or B is more preferred to A), and A = B; meaning A and B

are equally preferred). We assign labels ”More preferred”, ”Less preferred”, and

”Equally preferred” in order for the designers to perform comparisons. Each

designer populates the upper triangle of a matrix10 with the labels indicating

their preferences. We then test to ensure validity of the values. If the values

are not logically consistent with each other, the designers are asked to review

their preferences until the values are consistent.

2. Conduct direct rank.

Using a scale of 1 to n (n = number of control points), the designers rank

the control points from the most effective to the least effective with respect to

10We ignore the lower triangle matrix since they are reciprocal values.
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an adaptation goal. For instance, if there are 5 control point alternatives, the

designers use a scale of 1 to 5 to rank them. They are also given an option to

use a number more than once to show their equal preference between two or

more alternatives.

The reason for conducting pairwise comparisons prior to direct ranking is that

the pairwise comparisons help the designers build a mental model about the

influence of control points on the adaptation goal. The consistency of pairwise

comparisons help to measure the quality of the designers’ mental model. Af-

ter the designers build a good mental model, they are ready to perform the

direct rank. The result of the direct ranks obtained from the designers is then

aggregated as shown in the next step.

3. Aggregate the obtained ranks.

To obtain the final rank, we count the number of times each control point was

ranked 1st, 2nd, 3rd, etc. The rank of the control point is the most agreed rank

among all designers. If two control points happen to have the same rank, in

order to solve the conflict, we look at which control point gets more agreements

by the designers. The ranked control points are added to an ordered list, CP-

List.
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Having the control points ranked, now a decision can be made on how many

control points to consider for implementation. This decision is not within the scope

of this thesis, we assume all are implemented.

4.3 Implement a MAPE-k loop Adaptation Strategy

Our adaptation strategy is implemented by a MAPE-k loop. The MAPE-k loop

monitors the application’s metric associated with the adaptation goal and analyzes

it. The MAPE-k loop actions are triggered periodically or when a substantial dis-

crepancy is detected between the desired metric and the measured one. Then the

adaptation algorithm is executed as shown in Algorithm 1.

The adaptation algorithm (See Algorithm 1) reduces the gap between the mea-

sured and desired metric by iteratively changing a single control point until no further

improvement can be found. It then moves to the next control point. In Algorithm 1,

CP is the control point, CP-List is the ordered list of elicited control points aiming to

achieve the adaptation goal, R-Consumption is the application’s resource consump-

tion, and R-Boundary is the boundary for resources defined by the application’s

stakeholders.

The algorithm starts by selecting the highest ranked control point for achieving

the adaptation goal. Next, the selected control point is changed until the adaptation
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Algorithm 1: Adaptation loop algorithm.

1 begin

2 repeat

3 is-any-improvement=false

4 foreach CP from CP-List do

5 repeat

6 measure R-Consumption

7 if R-Consumption[CP]+STEPR(CP ) <R-Boundary[CP] then

8 is-executable = true

9 end

10 else

11 is-executable=fales

12 end

13 if is-executable AND Goal is NOT met then

14 execute CP operation

15 Store the value of the metric into m

16 if m< pre-defined threshold then

17 is-improved = true

18 is-any-improvement=true

19 end

20 else

21 is-improved = false

22 end

23 end

24 else

25 is-improved = false

26 end

27 until is-improved AND is-executable;

28 end

29 until is-any-improvement;

30 end

goal is satisfied or no further improvements in the system’s behaviour can be found

(no further improvements means the modification of the selected control point has
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no further effect on the adaptation goal or the pre-defined resource boundary is

reached). Then the adaptation algorithm selects the next control point and repeats

the cycle.

The algorithm also checks whether a control point can be executed or not based on

the current and future resource consumptions (See line 7 in Algorithm 1). STEPR(CP )

in line 7 is the amount of increment or decrement of changing the control points that

impacts the (future) resource consumption, and R-Consumption[CP] is the current

resource consumption. The algorithm measures the current resource consumption

and checks whether R-Consumption[CP]+STEPR(CP ) is less than the pre-defined

boundary. If the amount is not within the resource boundary, the control point can-

not be executed and the algorithm selects the next control point from the CP-List.

4.4 Summary

In this chapter, we introduced our approach to design an adaptive cloud-based web

application by performing the following tasks. First, we proposed a control point

model to elicit control points, and collected them in a table as a catalogue for reuse

purposes. Second, we introduced a process to acquire ranks for control points from

the designers, where we used the pairwise comparisons and direct ranking. Third,

we designed an adaptation strategy, which was implemented by MAPE-K loop in
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order for a runtime system to meet its adaptation goal. Therefore, in this chapter,

we showed that eliciting and ranking control points are imperative steps in creating

a runtime strategy. In the next chapter, we conduct a series of experiments to

assess the capability of our proposed methodology in designing adaptive web based

applications for cloud.
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5 CASE STUDY: ADAPTIVE SHOPPING

CART FOR CLOUD

This chapter presents a case study, the design of an adaptive shopping cart web

application for cloud. In this case study, we evaluate our methodology by following

the steps described in Chapter 4. We focus on two important issues: the validation

of control point ranking and the validation of the adaptation strategy algorithm.

The chapter has the following structure. We define a set of control points and

ask a group of designers to rank them in 5.1. In 5.2, we show how we validate the

control points ranking. In 5.3, we discuss the efficiency of the adaptation algorithm

using the ranking. We summarize the chapter in 5.4.

5.1 Control Points for Online Shop

Consider a shopping cart system, Online Shop, with a typical multi-tier client-server

architecture. The architecture consists of a load-balancer, web servers, and database
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servers. The stakeholders of the Online Shop identified response time less than 500

ms as the application’s adaptation goal. They also defined boundaries for resource

consumption as depicted in Table 5.1. The Min and Max columns in Table 5.1

reflect the minimum and maximum boundaries for resources.

Request no. varies from 100 to 10,000 requests.

Name Min Max

Number of web servers 1 50

Instance size 1 4

Disk size 1 4

Latency 10 ms 500 ms

Bandwidth 100Mb/ms 1 Gb/ms

Number of Threads Request no./2 Request no.

Table 5.1: Resource Boundaries for Online Shop

In this section, we follow the steps to define the control points and the ranking

of control points.

53



5.1.1 Elicit Control Points

We selected control points from the catalogues for application and cloud (see Table

4.2 and Table 4.3). Table 5.2 shows the control points selected for this study.

Control Points Definition

Add more Bandwidth Add more bandwidth between web server and database server

Change Instance type To increase instance size for web server cluster

Change Disk type To increase disk size for web server cluster

Reduce Network Latency To decrease network latency between the serversa

Increase No. of Threads To increase number of threads in the web server cluster

Add web servers To add additional web servers to the application environment

Table 5.2: Elicited Control Points and their definition

aWeb server and database server

5.1.2 Rank Control Points

We asked a team of 9 researchers to assist us with designing the adaptations for

the Online Shop application. Our participants were graduate students from IT and

Computer Science Programs, as well as postdoctoral fellows. They all have practical
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experience in cloud and adaptive software domains. The participants were given

the architecture of the application and a scenario in which a sudden increase in

the number of users yields a drastic increase in the response time. We asked the

participants to rank the selected control points identified in the previous step with

regard to their impact of bringing the performance under control. In a controlled

environment, each participant performed the pairwise comparisons followed by the

direct rank. All participants performed the tasks individually without consulting

on another. A sample of our questionnaire is attached in Appendix A (Empirical

Questionnaire).

Figure 5.1 and Table 5.3 show a sample of the comparison matrix11 and direct

rank for a participant, Participant A. The aggregated result for all participants is

shown in Table 5.4.

After comparing the participants’ individual rank with the aggregated final rank,

we noticed that the majority of the participants’ ranks were different from the ag-

gregated result. In section 5.2, we show that the group ranking agrees with the

objective ranking, which resulted from a model-based simulation. This may suggest

that ranking control points should be based on the group decision rather than the

11We populated the lower triangle comparison matrix as Not Applicable since they are reciprocal
values.
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Figure 5.1: Pairwise Comparisons for Low Response Time

individual designer decision.

5.2 Experiment 1: Validate Ranking Method

In this experiment, we set to compare the ranks obtained from the designers, Designer

Ranking (see Table 5.4), with an objective ranking obtained through model-based

simulation (we call this ranking Experimental Ranking). In the next sections, we

continue our discussion on acquiring ranks from the model-based simulation in more

depth.
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Control Points Rank No.

Add more Bandwidth 3

Change Instance type 1

Change Disk type 4

Reduce Network Latency 5

Increase No. of Threads 2

Add web servers 1

Table 5.3: Direct Rank for Participant A

Control Points (CPs) Rank No. %

Add web servers 1 89%

Change Instance type 2 67%

Increase No. of Threads 3 56%

Change Disk type 4 45%

Reduce Network Latency 5 34%

Add more Bandwidth 6 34%

Table 5.4: Designer Ranking- Final Rank Result
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5.2.1 Experimental Setup

To obtain ranks from a model-based simulation, we considered the same scenario

given to the participants, but this time we effectively applied actions on the 6 control

points (as per Table 5.4) on the 1000 simulated deployments in cloud. Then we

measured the effect of the control points on the response time.

For simulation, we used a performance tool, the Optimization, Performance Eval-

uation and Resource Allocator (OPERA)12 tool. The OPERA is a layered queueing

model used to evaluate the performance of web applications deployed on arbitrary

infrastructures. With OPERA, one can model the application’s architecture and per-

formance characteristics, perform operations on control points and estimate response

time, throughput, and utilization of resources (i.e., CPU and disk). The OPERA

tool has been described in more detail in [28].

To model the uncertainty of the Online Shop performance parameters, we consider

a set of 1000 different performance parameter sets (CPU Demands, Disk Demands,

number of calls, etc.). This is equivalent to 1000 different implementations or de-

ployments of the Online Shop. Table 5.5 depicts the minimum and maximum range

specified for the parameters of the Online Shop.

12http://www.ceraslabs.com/technologies/opera

58



Parameter Range

bytesReceived [15 KB, 1.5 MB]

bytesSent [10 KB,1 MB]

CPUDemand [1,90] ms

DiskDemand [1, 30] ms

Latency [10,500] ms

Workload [100,10,000] requests

Threads [Workload/2] ms

Bandwidth [100 Mb, 1 Gb] per s

Think Time [100,10,000] ms

Table 5.5: Minimum and Maximum Range for Application Parameters

All of the values specified in Table 5.5 represent typical networks and application

deployments.

• bytesSent and bytesReceived refer to the number of bytes sent and received

during a call (e.g., web browser to web server).

• CPUDemand and DiskDemand refer to the time (in milliseconds) required at

the CPU/Disk for one request to be processed.
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• Latency refers to the network latency between the servers distributed across

different availability zones in the cloud.

• Workload refers to the number of requests (users).

• Think Time refers to the idle time of the users between two requests in mil-

liseconds.

• Threads refers to the number of threads running in web server.

• Finally, Bandwidth refers to the time (in milliseconds) required to transmit a

bit.

Therefore, each application contained a specific Workload along with initial set-

tings for Latency, Bandwidth, Number of Threads, CPU and DISK Demands, and

bytesSent and bytesReceived as indicated in Table 5.5.

5.2.2 Experiments

Table 5.6 shows how we made the changes in the control points to bring the perfor-

mance back to the 500 ms. The Step indicates the increment and decrement used

for changing the control points. For each experiment, we changed the control points

one at a time until one of the stopping conditions is met:
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Name Step

Number of web servers 1

Instance size 1

Disk size 1

Latency 10

Bandwidth x2

Number of Threads 10

Table 5.6: Steps used for changing control points.

• No improvement in n successive iterations with a difference of less than thresh-

old (In our experiments, n=3, and threshold=10 ms), or

• Reached the resource boundary (as per Table 5.1), or

• Reached the adaptation goal, response time (500 ms).

5.2.2.1 An Example Illustrated

This section demonstrates how we applied each control point to estimate its effect

on response time. Table 5.7 displays parameters’ specifications for a model (Model

M, hereafter).
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Parameter Value

bytesReceived 29.676 KB

bytesSent 19.784 KB

Web server CPUDemand 19 ms

Web server DiskDemand 6 ms

Database server CPUDemand 12 ms

Database server DiskDemand 6 ms

Latency 138 ms

Workload 327 requests

Threads 163

Bandwidth 315 Mb/s

Table 5.7: Initial Settings for Model M’s Parameters

First, we run the model with OPERA to attain the performance result. Table

5.8 highlights the performance metrics obtained from running the simulation.

As indicated in Table 5.8 , the response time is approximated at 5 s, the CPU is

utilized at 99% and 66% for web server and database server respectively. Looking at

the performance metrics, we anticipate Add web servers and Change Instance type

would be the most effective control points in bringing down the response time since
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Response Time 5098 ms ( approx. 5 s)

Web server CPU Utilization 99%

Database server CPU Utilization 66%

Web server/Database server Disk Utilization 31%

Table 5.8: Performance Metrics for Model M

our application is CPU saturated. We will verify this in the next sections.

The following sections show how we implemented each control point on Model

M.

The Effect of Adding Web Servers on Response Time

Considering Model M, the initial response time is greater than the adaptation goal

(response time less than 500 ms). To achieve the adaptation goal, we start adding

one web server at a time and capture the performance metrics so as to evaluate

the impact of adding an additional web server on response time. As mentioned

in Section 5.2.2, we compare the three consecutive response times while adding a

web sever to the application environment. The process is stopped when any of the

stopping conditions is met.

Figure 5.2 indicates the effect of adding additional web servers on response time

for Model M. The x-axis shows the number of web servers, and the y-axis shows the
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corresponding response time in seconds. It is apparent from Figure 5.2 that adding
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Figure 5.2: Impact of Adding Web Servers on Performance

an additional server, changes the response time significantly from 5 s to 2 s. We keep

adding additional web severs and comparing the difference of response times. When

the 5th web server is added, the response time reaches 0.2 s, and the process stops

since the adaptation goal is achieved.

The Effect of Changing CPU type on Response Time

Next, we apply another control point, Change Instance type, to assess its impact

on response time. We go through the same process as discussed above for adding

web servers and we capture the response time. Recalling our resource boundary, we
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can have only 4 instance types. At each iteration, we change the parameter of the

instance one unit at a time. Figure 5.3 depicts the effect of changing instance type

on response time.
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Figure 5.3: Impact of Changing Instance type on Performance

The points on the x-axis indicate the different types of an instance. For instance,

1 indicates the small size, 2 indicates the medium size, and 3 and 4 indicate the

large and x-large instance sizes respectively. The y-axis shows the response time in

seconds.

The process starts with changing a small instance to a medium instance. There is

a significant change in response time when a small instance is changed to a medium

one at the application tier. As shown in Figure 5.3, changing the instance type
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from small to medium brings the response time down from 5 s to 2 s. At the next

iterations, the instance type is changed to a large and then to a x-large one (see

point 3 and 4 on the x-axis). As depicted in Figure 5.3, after the large instance type

(point 3 on the x-axis), modifying the control point does not have a big impact on

response time. The process is then stopped since the resource boundary is reached.

The response time is reduced to 0.9 s even though the adaptation goal is not yet

met.

Recalling the performance metrics for Model M, the bottleneck was on CPU.

Hence, increasing instance size brings down the response time significantly. The web

server CPU is now 74% utilized (compared to the initial 99% utilized).

The Effect of Changing Disk type on Response Time

Here, we change the size of disk in web server cluster to assess its effect on

response time. Like instance type, we have the same resource boundary about the

different size of disks. Therefore, each model cannot have more than four types.

Our result shows no significant improvement in response time as it remains around

5 s. The process iterates three times and stops since it meets the stopping condition

(reaching resource boundary). This is because the disk was initially at the 31%

utilization; thus, increasing disk size does not improve the response time.

We previously assumed that changing the disk type will not have a significant

66



impact on response time since the application’s bottleneck was not at the disk. Thus,

this shows our assumption was right.

The Effect of Adding Threads on Response Time

Now, we show the impact of increasing the number of threads in web server cluster

on response time. We add threads (10 at a time) to the web server cluster until it

meets one of the stopping conditions. The initial number of threads is 163. Adding

10 threads to the web server cluster does not have an impact as the response time

remains around 5 s. We continue increasing the number of threads. However, adding

additional threads does not improve the response time since the response time is

estimated at 4 s after 16 iterations. Therefore, the process stops since there is not a

big improvement in response time when adding additional threads.

The Effect of Reducing Network Latency on Response Time

We then apply another control point, Reduce Network Latency, to evaluate its

impact on response time. We decrease the network latency between the web server

and the database server by 10 ms at a time to see the effect of change in response

time.

Like adding number of threads, reducing network latency, does not have signif-

icant effect on response time. The initial latency is 138 ms. After three iterations,

the network latency is decreased to 108 ms, and the response time is still around 5 s.
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Our result shows that removing network latency brings up the response time slightly.

Looking at the performance metrics, the web server CPU utilization is slightly higher

than the initial values when the model was first solved by the OPERA. This indicates

that reducing the network latency is not an effective adaptation for the Model M.

Since the CPU is already saturated, network adaptation does not help the applica-

tion to improve its response time. Hence, the process iterates three times and stops

since there is no significant improvement in response time.

The Effect of Acquiring More Bandwidth on Response Time

Finally, we increase bandwidth between the web server and the database server

in order to examine its effect on response time. When adding more bandwidth, we

double the value at each iteration until the resource boundary (1Gb/s) is reached.

Our result shows that adding more bandwidth also does not have an impact on

response time since the CPU utilization of servers becomes slightly higher. After

three runs, the response time is still around 5 s. Therefore, adding more bandwidth

saturates the CPU more. Since the bottleneck for Model M is on CPU, the control

points aimed at reducing the CPU utilization such as adding web servers and chang-

ing instance type should be taken into account. Thus, adding more bandwidth is not

an effective adaptation for the model M.

We used the same procedure described for Model M in applying each control
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point across all generated applications. Next section describes how we aggregated

the result to conclude the final rank.

5.2.3 Aggregate Model-based Ranks

After obtaining the data, we counted the number of times each control point ranked

1st, 2nd, 3rd, etc.The rank of the control point is the most agreed rank across all

experiments. Table 5.9 shows the result.

Control Points Rank # % σ

Add web servers 1 99% 2.0%

Change Instance type 2 99% 3.5%

Increase No. of Threads 3 74% 0.70%

Change Disk type 4 75% <0.01%

Reduce Network Latency 5 57% 0.05%

Add more Bandwidth 6 42% 0.17%

Table 5.9: Experimental Ranking- Final Rank Result
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5.2.4 Discussion

As shown in Table 5.9, we found out that in 99% of time, the Add web servers control

point was the highest rank. The second most effective control point to improve the

response time across all applications was Change Instance type. Then Increase No.

of Threads, Change Disk type, Reduce Network Latency, and Add more Bandwidth

ranked 3rd, 4th, 5th, and 6th respectively. We observed in several experiments that

reducing network latency and adding more bandwidth did not have a significant

impact on improving the response time. They also brought the response time higher.

This could be due to the fact that the CPU/Disk was already saturated, therefore,

network adaptation did not help the application to decrease its response time. Hence,

we did not see a significant improvement on response time when they were applied.

Tables 5.4 and 5.9 reveal that both Experimental Ranking and Designer Ranking

resulted in the same rank order. Our result confirms that our proposed Designer

Ranking method was capable of producing a fair ranking.

5.3 Experiment 2: Evaluation of Adaptation Strategies

This experiment evaluates whether the ranking of control points is important in the

adaptation algorithm and if the Designer Ranking performs well. Similar to the

previous experiment, we adapted 1000 application deployments to meet the response
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time of less than 500 ms using MAPE-K adaptation loop with different order of

control points (The order of the control points is used by the Algorithm 1). We used

OPERA to measure the effect of adaptations on response time. Besides the Designer

Ranking, we also use 2 other rankings, which are described in sections 5.3.1 and

5.3.2. The experimental result is discussed in 5.3.3.

5.3.1 Random Ranking

When two opposite ranking of control points are used (e.g., Experimental Ranking

and the inverse of Experimental Ranking), the impact of ranking on the adaptation

algorithm in order to meet the adaptation goal is more clear. Table 5.10 displays the

inverse of Experimental Ranking, called Random Ranking.

5.3.2 Leverage Points Ranking

To develop an additional ranking of control points, we used the rank proposed for

socio-economic complex systems by Donella Meadows. Meadows identifies 12 points

(known as leverage points) from the least effective to the most effective, which can

be seen as different ways to change a system [31]. We mapped Meadows’ Leverage

Points to our control points. Table 5.11 displays the mapping result.
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Control Points Rank No.

Add more Bandwidth 1

Reduce Network Latency 2

Change Disk type 3

Increase No. of Threads 4

Change Instance type 5

Add web servers 6

Table 5.10: Random Ranking

We mapped the ”Increase No. of Threads” and ”Add web servers” control points

to ”Power to add, change, evolve, or self-organize system structure” leverage point

(point #4 in Meadows list). Adding new threads creates information flows, and

adding web servers change the system structure by creating new information flow

through the system. Hence, they both correspond to number 4 in leverage points

list.

We mapped ”Reduce Network Latency” control point to ”Length of delays” lever-

age point (point #9) since it directly alters the delay. ”Adding more Bandwidth”

control point is also related to delay as it is the speed through which the information
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Original Rank label is the result of mapping control points to leverage points ranks,

and LP Rank label is the ranks used in our experiments.

Control Points Original Rank LP Rank

Add web servers 4 1

Increase No. of Threads 4 2

Reduce Network Latency 9 3

Add more Bandwidth 9 4

Change Instance type 12 5

Change Disk type 12 6

Table 5.11: Leverage Points Ranking

is delivered.

Both ”Change Instance type” and ”Change Disk type” control points are changed

by modifying the parameter of the VM and the storage respectively. Therefore, we

mapped them to the ”Constants, parameters, numbers” leverage point (point# 12).

5.3.3 Experiments

In the experiments, for the 1000 random deployments, we applied the feedback loop

adaptation algorithm using the three rankings of control points (i.e., Designer Rank-

ing, Leverage Points Ranking, and Random Ranking) separately. The application
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deviation from the performance goal (500ms) was random for each experiment. To

stress the adaptation, the deviation was larger than normally would happen in prac-

tice. In Table 5.12, we summarize the applications’ response time prior to adaptation

process across all experiments.

Min. Response time 693 ms

Max Response time 13 minutes

AVG. Response time 3 minutes

Standard Deviation 181100 ms

Table 5.12: Distribution of Response Time Deviation

For each random deployment, we ran our adaptation algorithm and captured the

response time and the number of times a control point was iterated in order to meet

the adaptation goal. Next, we walk through an example in order to demonstrate

how we apply our algorithm on different rankings of control points (we call them

adaptation strategies, hereafter).

5.3.3.1 An Example Illustrated

Let’s consider a model, M1. We first solve the model with OPERA and capture the

performance metrics as depicted in Table 5.13.
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Response Time (s) CPU utilization Disk Utilization

304 (approx. 5.08 minutes) 99% 66%

Table 5.13: Performance Metrics for M1

In the following sections, taking the model M1, we apply our algorithm on each

adaptation strategy, and discuss our findings.

Designer Ranking

Figure 5.4 shows that M1 reaches the predefined adaptation goal with 56 itera-

tions in total. There is a continuous reduction in response time as web servers are

added to and instance size is increased in M1. However, there is no improvement

in response time when more threads are added. This is shown in the graph as a

constant line (see points 52 to 55 in Figure 5.4). Increasing disk size then decreases

the response time further, and finally M1 reaches the adaptation goal.

Random Ranking

Now, we apply our algorithm on Random Ranking strategy. Since the order of

rank is the inverse of Designer Ranking, this strategy is assumed to have the worst

effect on response time in comparison with Designer Ranking. Hence, we presume

that on average this strategy should end up with more number of iterations in total
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Figure 5.4: The Effect of Designer Ranking on Response Time

to achieve the adaptation goal.

Figure 5.5 displays the result of Random Ranking adaptation strategy on model

M1. Our result conforms our assumptions. As seen in Figure 5.5, the strategy

starts with adding more bandwidth. Since the CPU is already saturated, adding

more bandwidth does not help M1 decrease its response time. Moreover, reducing

network latency, adding more threads, and increasing disk size do not also bring the

response time down. This is shown as a constant line in Figure 5.5. Improvement

is only seen after increasing the instance size and adding web servers to M1. The

steeping slope in Figure 5.5 indicates that increasing the instance size and adding

additional web servers (see points 56 to 107 in the graph) significantly decrease the
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Figure 5.5: The Effect of Random Ranking on Response Time

response time. Therefore, the model ends up with the total of 107 iterations to

achieve the adaptation goal.

Leverage Points Ranking

Finally, we apply our algorithm on Leverage Points Ranking strategy. Figure 5.6

shows our result.

The effect of control points on response time is apparent in Figure 5.6. Reduction

of response time from 5 min to 5 s is the result of adding web servers, threads,

bandwidth, and reducing network latency in M1. A sudden decrease in response
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Figure 5.6: The Effect of Leverage Points Strategy on Response Time

time from 5 s to 0.9 s is due to increasing the instance size to x-large size (see points

59 to 61 in Figure 5.6). M1 is then achieved the adaptation goal by increasing the

disk size to medium size. As a result, M1 reaches the adaptation goal by 62 iterations

in total.

Discussion

Our result demonstrates that all strategies were able to reach the predefined

adaptation goal. We made the total number of iterations as a measure to indicate

how fast each strategy reaches the adaptation goal. Table 5.14 depicts the number

of iterations across all strategies for M1.
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Adaptation Strategy Total Iteration No. Reached Adaptation Goal?

Designer Ranking 56 Yes

Random Ranking 107 Yes

Leverage Points Ranking 62 Yes

Table 5.14: Number of Iterations for strategies

As shown in Table 5.14, the Designer Ranking strategy went through 56 iterations.

As we assumed, the Random Ranking ended up with the most number of iterations

(107) to reach the adaptation goal. Leverage Points Ranking strategy also resulted

close to the Designer Ranking with the total of 62 iterations. We can conclude that

Designer Ranking is the most preferred runtime strategy for model M1.

5.3.4 Experiment Result

This section presents the summary of the collected data across 1000 random de-

ployments. The average number of iterations required for the Designer Ranking,

Leverage Points Ranking, and Random Ranking strategies to reach the adaptation

goal is shown in Figure 5.7. The result shows that the Designer Ranking required

fewer iterations to achieve the adaptation goal. Also, the Designer Ranking ended

up with smaller standard deviation. However, the difference between the average
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number of iterations is not significant enough to firmly conclude whether one rank-

ing is better than the others.
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Figure 5.7: Average number of iterations required to reach the adaptation goal

To assess the performance of Designer Ranking against Leverage Point Ranking

and Random Ranking, we calculated the frequency of the required iterations to meet

the adaptation goal. Figure 5.8 shows the distribution of the number of iterations

required to achieve the adaptation goal. From Figure 5.8, we noticed that all rankings

yield approximately a similar number of failures (approximately 30%) to reach the

response time of less than 500 ms. We can make two observations: (1) All rankings
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Figure 5.8: Histogram of iterations required to reach the adaptation goal

eventually reached the adaptation goal, given enough time; and (2) The rankings

affect the speed of achieving the adaptation goal.

Figure 5.9 depicts the observation (2) above. It shows the relationship between

the number of iterations and average response time across all models. The y-axis

shows the average normalized response time, and the x-axis shows the number of iter-

ations. As shown in Figure 5.9, the Designer Ranking and Leverage Points Ranking

have a steep slope and they overlap, meaning they have a similar effect on response

time. On the other hand, the slope of the Random Ranking strategy is not as steep

as the Designer/Leverage Points Ranking strategies, and as a result, it does not

converge fast enough to reach the adaptation goal. This is due to the effect of the
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Figure 5.9: The effect of ranking on the speed of achieving the adaptation goal

order of control points. The Random Ranking starts with adding more bandwidth,

thus, we do not see an effective impact on lowering the response time. Inversely, the

Designer Ranking and Leverage Points Ranking strategies converge faster to reach

the adaptation goal as the result off adding servers as their first control point.

5.4 Summary

In this chapter, we showed the capability of our methodology in eliciting and ranking

control points. We conducted a series of experiments with the OPERA tool to

validate our ranking method. Our result confirmed that Designer Ranking resulted
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in the same rank order as the OPERA tool suggested. In order to evaluate the

Designer Ranking strategy, we applied our adaptation strategy algorithm on 1000

random deployments using Designer Ranking, Random Ranking, and Leverage Points

Ranking strategies. We used OPERA to measure the effect of each strategy on the

adaptation goal, and captured the number of iterations and response time. Our

experiments concluded that given enough time, all strategies were able to reach

the adaptation goal, however, the order of ranking affected the speed to meet the

adaptation goal. Our result showed that the Designer Ranking strategy was the most

preferred runtime strategy, which required fewer number of iterations on average to

meet the adaptation goal.
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6 CONCLUSIONS AND FUTURE WORK

In this thesis, we proposed a methodology to design an adaptive cloud-based web

application. Our proposed methodology allows a mapping of high level adaptation

goal to low level MAPE-K loop adaptive controls via elicited control points. In order

to assess the capability of our methodology, we conducted user studies and a series

of experiments to rank control points and to evaluate the efficiency of our adaptation

algorithm for an online shopping cart application. Our collected data proves that

we were able to attain reasonable adaptation results using our methodology. We

summarize our contributions as follow:

• The main contribution of the thesis is the introduction of control points as the

first class adaptation elements. We showed how to build control point models

for clouds, multi-clouds, and applications to facilitate the elicitation process.

We also showed our catalogues of control points that can be reused to elicit

control points.
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• We also explained how we utilized pair-wise comparisons and direct ranking to

acquire rank for control points with respect to the adaptation goal.

• We then built an adaptation strategy based on MAPE-k loop. The proposed

algorithm uses the most effective control points to achieve the adaptation goal.

That is, when there is a deviation from an original goal, we execute commands

that affect the control points. We start with the highest ranked control point

and execute the commands as long as there is an improvement in the adaptation

goal’s metric. Then we select the next control point, etc.

We made the following observations with our experimental result:

• The Designer Ranking is compatible with what the model-based simulation

suggested.

• The Designer Ranking strategy outperforms alternative approaches as it re-

sulted in reaching the adaptation goal faster compared to the other strategies

used in our experiments.

• Using different rank order of control points in our adaptation algorithm affected

the speed of achieving the adaptation goal. This signifies the importance of

eliciting, selecting, and executing the appropriate control points in order of

importance.
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• Using a controlled experiment, the group ranking of control points yields better

control strategies than those identified by individuals.

We conducted our experiments using a simulation rather than running a real applica-

tion on the cloud. The main reason we used simulation was to test our methodology

on a large number of applications, which was not practical with real life applications.

We simulated 1000 different deployments and workloads, but a bursting scenario was

not simulated. We used OPERA, which is an accepted model for simulating applica-

tions running in cloud environment. Since we got satisfactory results, in the future,

we are planning to apply this methodology to manage real life applications.

In the future, we would also like to extend our methodology to include multiple

adaptation goals, and as a result ranking multiple feedback loops and implementing

them in an prioritized order. We also plan for further experiments with other types

of applications and adaptation algorithms.
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Appendix A 
 
Experiment 
 
 
Consider a shopping cart application with a typical multi-tire architecture as shown in Figure 1. The 
application architecture also includes a load balancer between the presentation and application tiers to 
disperse the workload among various web servers. 
 
The presentation tier provides users with user interface through web browser enabling them to browse 
HTML pages, search for items, and make a purchase. The application tier carries out the transaction, 
and visits the database to retrieve information. The database tier is responsible for storing information. 
The Shopping Cart application uses request-reply protocols as communication type between the server 
and the client. The client sends a request to the server, which in return the server replies back to the 
client. The communication is synchronous, which means that the client upon request is waiting for a 
reply from the server. 
 

 
Scenario: Imagine a sudden increase in the number of users yields a drastic increase in 
the response time. Rank the alternative adaptations identified on the next page with 
respect to their impact on bringing the response time under the control. 
 
 
 
 

         
Figure 1. Conceptual architecture. 

 
 
 
 



List of Adaptations: 
 
The adaptations below are designed to bring down the shopping cart application’s response time to the 
desired level (e.g., within 1 sec.). 
 
NOTE: We assume that all adaptations will improve the response time. 

 
 
 
 
 
 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Control Points Definition 

Add more Bandwidth  To add more bandwidth between web 
server and database server. 

Change Instance type  To increase instance size for web 
server cluster. 

Change Disk type To increase disk size for web server 
cluster.  

Reduce Network Latency  To decrease network latency between 
the web server and database server. 

Increase No. of Threads  To increase number of threads in the 
web server cluster.  

Add web servers  To add additional web servers to the 
application environment. 
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Instruction: 
 
You will be provided with a criterion (i.e., low response time) to rank the alternative adaptations for the 
Shopping Cart application by performing two tasks: (1) Pair-wise comparison and (2) Direct ranking 
 
In order to perform pair-wise comparison, task (1), you should give your preferences for each pair using 
the intensity preference measurement indicated in the table below. 

 
  

Intensity Preference Definition 

Less preferred to An alternative has lower impact on 
response time than another one. 

Equally preferred to Two alternatives are equally important with 
respect to the criteria. 

More preferred to An alternative has higher impact on the 
response time than another one. 

    Table 2. Intensity Preference Measurement 

 
 
Example: 
 
The example below demonstrates the pair-wise comparisons in choosing a cell phone. One might 
consider particular features such as screen size and memory when attempting to buy a cell phone.  
 
To determine which cell phone is the best-suited candidate; one can express his preference by 
comparing each feature.  As shown below, the decision maker indicates screen size is less preferred to 
memory in choosing a cell phone. 
 
 

 

GOAL: 
Choosing a cell 
phone 

Intensity Preference Feature Definition 

Screen size Less preferred to Memory Screen size is less favored over 
memory in choosing a cell 
phone. 

Screen size Equally preferred to Physical 
Keyboard 

Screen size and keyboard are 
equally important in choosing a 
cell phone. 

Memory More preferred to Physical 
Keyboard 

Memory is more preferred over 
physical keyboard in choosing a 
cell phone. 

Table 3. Example of a pair-wise comparison, Choosing a cell phone 



Task (1): 
 
 

Pair-wise Comparison Table: 
 
Please perform the pairwise comparisons by populating the upper triangle of the below table. Remember 
the goal is to bring down the response time to 1 sec.  
 
Please specify your preference from the drop down menu, Intensity Preference, by clicking on each cell 
on the table. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Table 4. Comparison Matrix. 
 

Objective: 
Low 
response 
time 

Add web 
servers 

Increase 
No. of 
Threads 

Reduce 
Network 
Latency 

Change 
Instance 
type 

Add more 
Bandwidth 

Change 
Disk 
type 

Add web 
servers   

          

Increase 
No. of 
Threads 

Not 
Applicable   

        

Reduce 
Network 
Latency 

Not 
Applicable 

Not 
Applicable   

      

Change 
Instance 
type 

Not 
Applicable 

Not 
Applicable 

Not 
Applicable   

    

Add more 
Bandwidth Not 

Applicable 
Not 
Applicable 

Not 
Applicable 

Not 
Applicable   

  

Change 
Disk type Not 

Applicable 
Not 
Applicable 

Not 
Applicable 

Not 
Applicable 

Not 
Applicable   
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Task (2): 
 
 

Direct Ranking: 
 
On the previous task, you performed pair-wise comparisons between adaptations based on achieving 
low response time (e.g., within 1 second). We would like to know what is the best ranking in a general 
situation for the Shopping Cart application to maintain its goal. 
 
Please rank the following adaptations listed in Table 5 in order of importance. Please indicate your 
preference by numbering from 1-6, where 1 is the most important adaptation and 6 is the least 
important adaptation. You can use a number more than one to indicate your indifference among 
adaptations. 
 
 

 
 
 

Adaptations Rank# 

Change Disk type 
 

Change Instance type 
 

Increase No.of Threads 
 

Add web servers  

Move web server closer to database server 
 

Add more bandwidth 
 

Table 5. Direct Rank Table. 
 


