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ABSTRACT 

In order to successfully interact with objects located within our environment, the 

brain must be capable of combining visual information with the appropriate felt limb 

position (i.e. proprioception) in order compute an appropriate coordinated muscle plan 

for accurate motor control. Eye-hand coordination is essential to our independence as a 

species and relies heavily on the reciprocally-connected regions of the parieto-frontal 

reach network. The dorsal premotor cortex (PMd) and the superior parietal lobule (SPL) 

remain prime candidates within this network for controlling the transformations required 

during visually-guided reaching movements. Our brains are primed to reach directly 

towards a viewed object, a situation that has been termed a “standard” or coupled reach.  

Such direct eye-hand coordination is common across species and is crucial for basic 

survival. Humans, however, have developed the capacity for tool-use and thus have 

learned to interact indirectly with an object. In such “non-standard” or decoupled 

situations, the directions of gaze and arm movement have been spatially decoupled and 

rely on both the implementation of a cognitive rule and on online feedback of the 

decoupled limb.  

The studies included within this dissertation were designed to further characterize 

the role of PMd and SPL during situations in which when a reach requires a spatial 

transformation between the actions of the eyes and the hand. More specifically, we were 

interested in examining whether regions within PMd (PMdr, PMdc) and SPL (PEc, MIP) 

responded differently during coupled versus decoupled visuomotor transformations. To 
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address the relative contribution of these various cortical regions during decoupled 

reaching movements, we trained two female rhesus macaques on both coupled and 

decoupled visually-guided reaching tasks. We recorded the neural activity (single units 

and local field potentials) within each region while the animals performed each condition. 

We found that two separate networks emerged each contributing in a distinct ways to the 

performance of coupled versus decoupled eye-hand reaches. While PMdr and PEc 

showed enhanced activity during decoupled reach conditions, PMdc and MIP were more 

enhanced during coupled reaches. Taken together, these data presented here provide 

further evidence for the existence of alternate task-dependent neural pathways for 

visuomotor integration. 
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General Introduction 
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Imagine for a moment that you lost the ability to reach towards or grasp an object. 

Imagine that every time you tried to pick up an object you reached in the wrong direction or were 

unable to scale your finger-opening to match the object’s size. Eye-hand coordination is an 

important aspect of our ability to interact with the world around us. Our brain is an expert at 

coupling visual signals with manual motor behaviours to allow for a variety of visually-guided 

reaching movements. Most of the time, a visual stimulus and its required motor action are in 

alignment. If your phone on the table in front of you rings, your natural reaction would be to 

reach towards it and pick it up. These types of reaches are referred to as a standard “coupled” 

reaches because the visual object guiding the movement is the target of the action itself (Wise et 

al. 1996). However, the demand for planning and executing visually-guided reaching movements 

has become more complex as primates have evolved to use tools. Often, our interactions with 

objects in our environment demand more intricate eye-hand coordination and rely on a different 

set of visuomotor transformations from those of coupled reaches. Many of these transformations 

innvolve situations in which the correspondence between vision and action is indirect such that 

the association between stimulus and response must be learned and calibrated (Wise et al. 1996; 

Murray et al. 2000; Sergio et al. 2009). These movements differ markedly in the sense that they 

require a “decoupling” between gaze direction and hand orientation to successfully reach 

towards the object of interest. During our daily life, many of us become extremely familiar with 

the spatial transformations necessary for decoupled reaches. Most of us can use a computer quite 

successfully and understand that a forward displacement of the mouse on a horizontal table will 

move a cursor vertically on a computer screen. Such movements have also been referred to in the 

literature as non-standard reaching movements and have been suggested to rely on the 

integration of specific rules and spatial algorithms relating the visual stimulus to the direction of 
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movement (Wise et al. 1996; Murray et al. 2000). The main difference between coupled, 

standard movements and decoupled, non-standard movements is the congruency between the 

action of the eyes to the hand (Wise et al. 1996; Sergio et al. 2009).  

It is well established that reaching movements rely on a network of brain regions located 

within the parieto-frontal reach network (Kalaska et al. 1998; Battaglia-Mayer et al. 2001; 

Caminiti et al. 1999). What has yet to be fully understood is how activity within this network can 

be modulated during reaching movement when there is a decoupling between the actions of the 

eyes and hand. Recent research supports a hypothesis that decoupled reaching movements alter 

the regions within the reaching network from those involved during coupled reaching (Prado et 

al. 2005; Clavagnier et al. 2007). More support for this idea comes from the observation that 

decoupled eye-hand coordination develops only later in childhood (Bo et al. 2006), and that 

patients with neurological disorders show impaired decoupled reaching while standard reaching 

is largely unaffected (Tippett et al. 2012; Tippett and Sergio 2006; Granek et al. 2012; Salek et 

al. 2011). Specifically, recent work in our laboratory revealed that although coupled reaching 

movements were not impaired in early Alzheimer’s disease (eAD) and adults with Mild 

Cognitive Impairment (MCI), performance significantly declined as soon as an element of eye-

hand decoupling was introduced. Taken collectively, evidence suggests that these different types 

of reaching movements may be sub-served by altered cortical networks. Imaging studies have 

proposed that within the parieto-frontal reach network, changes in the recruitment of the sub-

regions of premotor and parietal cortices occur during different types of eye-hand coupling  

(Prado et al. 2005; Clavagnier et al. 2007; Granek et al. 2010; Gorbet et al. 2004; Picard and 

Strick 2001; Gorbet and Sergio 2007). What has yet to be established is how the specific regions 

wihtin this network are altered and how the local computations within each region shift to handle 
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the different types of visually-guided reaches performed by primates. As such, the goal of my 

doctoral work has been to gain an understanding of how regions within the parieto-frontal reach 

network are altered during decoupled relative to coupled visually-guided reaching movements. 

This work has consisted of three separate projects, which are discussed in detail in the following 

chapters. The remainder of the introduction is divided into sections that will provide a 

background of information with which one can understand the following studies. I begin by 

giving a brief overview of the behavioural profile of a visually-guided reach and the types of 

transformations that must occur. Then, I will discuss the cortical network and key brain regions 

that are critical to these types of transformations. I will also discuss how decoupled reaches 

affect our reach profile and why these types of reaches are thought to depend on altered cortical 

activity from more natural coupled reaches. Because the majority of the analyses were performed 

on the local field potentials (LFP) activity recorded within each cortical region examined, I will 

finish by giving an overview of what LFP recordings reflect and why they are important.  

1.1. Visually guided reaching and visuomotor transformations. 

In the early 19th century the pioneering work of Jackson (1873), Fritsch and Hitzig 

(1870) and Ferrier (1873) motivated researchers to question how the brain plans and execute 

movement. From early on in recorded medical history, observations of motor dysfunction 

following head injuries lead to the idea that motor control was somehow tied to the brain (Taylor 

and Gross 2003). John Hughlings Jackson made some stunning observation by watching the 

spread of convulsions during epileptic seizures, many of which came from his wife. He inferred 

that different muscle groups were controlled by different parts of the cortex organized in a 

similar fashion to the organization of the body (Hughlings Jackson 1873). With the 

advancements in surgical and anaesthetic techniques, researchers were finally able to perform
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Figure 1.1.  Anatomical locations of macaque reach related regions that are involved in 
visuomotor transformations. Posterlateral view of a macaque brain. The occipital pole and 
inferior parietal lobule of the right hemisphere were partially removed to show the cortical areas 
located in the medial bank of the intraparietal sulcus and the anterior bank of the parieto-
occipital sulcus. Premotor region were added. Blue numbers denotes Brodmann regions, Red 
labels denotes sulcus location, CS: Central sulcus, AS: Arcuate sulcus. Figure and text adapted 
from (Galletti et al. 1999). 
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invasive experiments on animals that allowed researchers to begin to explore the idea of motor 

control.  One of the most important studies in the history of neuroscience was the initial work of 

Gustav Fritsch and Eduard Hitzig (1870) which was followed by the work of David Ferrier 

(1873). These pioneers were among the first to witness how electrical stimulation of the cerebral 

cortex produced movements of the body. Their conclusions about the function of the cerebral 

cortex and observation of a topographical representation of the body within the cortex came at a 

time when several controversies existed about the importance of the brain (Taylor and Gross 

2003; Fritsch and Hitzig 1870; Ferrier 1873). These researchers made three very important 

observations that still remain influential: First, electrical stimulation evoked contralateral 

movements. Second, stimulation to different parts of the cortex activated different muscle 

groups.Third, the excitable sites formed a topographical map of movements of the body. In the 

century following these first electrical stimulation studies on the motor cortex, in conjunction 

with the advancements in surgical and recording techniques, scientists have advanced, and 

continue to advance, the understanding of motor control.  

As the study of neuroscience progressed, researchers began to understand how movements 

could be internally generated, which are made without the guidance of vision, or externally 

generated, which are triggered by external cues (Roland et al. 1980; Halsband et al. 1994). We 

have also identified that visually-guided reaches follow a specific characteristic. Before a reach 

commences, a saccade towards the target of interest occurs follow by a hand movement towards 

the direction of gaze (Gielen et al. 1984; Prablanc et al. 1979). Although the signal that drives 

these two effectors arrives to the spinal cord at the same time, the difference in inertia between 

them causes the eye to align with the target slightly before the hand (Sergio et al. 2009; Prablanc 

et al. 1979). We have also learned that the movement of the eyes and the hand share an 
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extremely close relationship (Prablanc et al. 1979; Henriques et al. 1998; Neggers and Bekkering 

2000). This tight coupling suggests that our natural behaviour is to move the eyes and the hand 

towards the object we are interacting with. Such a linkage may very well be an efficient way for 

the brain to handle the programming of an overwhelming amount of coupled reaches that we 

perform in our daily lives (for discussion, see section 1.3). This observation has been one of the 

most important motivations for our work. As previously discussed, our capabilities to perform 

decoupled reaches have become a critical part of our daily tasks. Thus, an important question 

that emerges here is: will breaking the tight linkage between these effectors change the neural 

computations required from those computed during natural reaching behaviour? Although an 

important matter, this has been something that has not received much attention over the years 

and will be discussed further in later sections.  

Just as John Hughlings Jackson suggested so long ago, the cortex must be involved in some 

form of neural interaction that links sensory and motor functions and this idea has advanced 

research regarding visuomotor transformations. In order to reach towards a visual target the 

available sensory or visual information regarding the location of the hand and the target must 

somehow be converted into a motor signal that will guide the hand to the appropriate location. 

The sensory signal that specifies the position of the target is known to be initially coded in 

fixation- or eye-centered reference frames (Batista et al. 1999; Soechting and Flanders 1992) 

while the location of the hand can be coded in either eye-, body- or head-centered reference 

frames (Buneo et al. 2002; Shadmehr and Wise 2005). Numerous research studies suggest that 

when a reach is performed under visually reliable situations, the brain will code the target 

location in visual coordinates but the limb can be coded in either visual or proprioceptive 

coordinates (Prablanc et al. 1979; Buneo et al. 2002; Graziano et al. 2000; Crawford et al. 2004) 
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with a preference for  visual, or eye-centered coordinates (Sober and Sabes 2005; Buneo and 

Andersen 2006; Vesia and Crawford 2012). However, when visual information is unreliable, a 

limb-centered posture-defined coordinate system must be used to control the reach (Batista et al. 

1999; Buneo and Andersen 2006; Rushworth et al. 1997a; Jackson et al. 2000; Pellijeff et al. 

2006; Jackson et al. 2009). Thus before a motor command can be generated, the reference frames 

between these effectors must be integrated to generate a difference vector regarding the 

displacement of the target relative to the hand (Shadmehr and Wise 2005). This is specifically 

important during situations in which the visual signal about the arm or target is unreliable or 

missing. Once the vector describing the difference between the current hand location and the 

desired target location has been computed, a spatial or visuomotor transformation must occur to 

map the sensory information into a motor command (Sober and Sabes 2005; Sabes 2000). The 

cortical control of visually-guided movements has been described as a model of coordinate 

system transformations which describes how the cell activity in different cortical areas relate to 

sensory and motor events during reaching movements (Sergio et al. 2009; Kalaska et al. 1997). 

This visuomotor-transformation occurs throughout various regions of the parietofrontal reach 

network (Figure 1.1) and is discussed in detail in the following section.  

1.2. The parieto-frontal network and visuomotor transformations. 

In order to reach accurately to an object, one must transform a sensory signal into a 

complex pattern of muscle activity. Reviewing the literature, it has been shown consistently that 

reaching movements rely on a network of brain regions including the dorsal premotor (PMd) and 

superior parietal lobule (SPL, Figure 1.2), regions located within the dorsomedial parieto-frontal 

network (Sergio et al. 2009; Kalaska et al. 1998; Battaglia-Mayer et al. 2001; Caminiti et al. 

1999; Gorbet et al. 2004; Buneo and Andersen 2006; Kalaska et al. 1997; Granek et al. 2007; 
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Wise et al. 1997; Tanne-Gariepy et al. 2002). Evidence of strong, reciprocal association fibres 

between these regions (Tanne-Gariepy et al. 2002; Marconi et al. 2001) have been thought to 

play a significant role in the preparation and guidance of visually-guided arm movements. 

However, the neurological processes underling this seemingly straightforward transformation is 

not yet completely understood. Direct interactions with an object, where the action of the eyes 

and the hand are coupled, have been suggested to be controlled by a “default visuomotor 

network” (Gorbet et al. 2004). This default visuomotor network involves the combined activation 

of the contralateral primary motor cortex (M1), medial motor areas, lateral premotor areas, and 

the posterior partial cortex (PPC) which are all activated during the preparatory stages of a 

coupled visuomotor transformation (Figure 1.1).  Less is known about the control of decoupled 

eye and hand reaches and specifically how the default network is affected. What is known about 

the role of PMd and SPL to visuomotor transformations will be discussed in their respective 

sections. 

Prior to our knowledge of the parieto-frontal reach network, scientists did not have a 

clear understanding about the functional dichotomies regarding the visual system. Schneider 

(1969) proposed the influential ‘two visual system’ hypothesis. He argued that while retinal 

projections to the superior colliculus process the localization of stimulus, the geniculostriate 

system processes stimulus identity. When thinking about these separate streams most people 

think of the work of Ungerleider and Mishkin (1982) and their suggestion of a ventral ‘what’ 

stream for processing object qualities and a dorsal ‘where’ stream for object localization. This is 

because their work came with a very critical distinction: they suggested that this division in 

visual processing occurred within the cerebral cortex (Ungerleider and Haxby 1994; Ungerleider 

and Mishkin 1982). Now, this functional dichotomy, initially referred to as the ‘what’ and 
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‘where’ streams, are mapped on to two diverging streams originating from the striate cortex and 

progressing either ventrally to the inferotemporal cortex (ITC) or dorsally to the PPC 

(Ungerleider and Mishkin 1982).  A decade or so after this discovery, Goodale and Milner re-

examined the literature and advanced this putative proposal of the ventral and dorsal stream by 

suggesting a more perceptual function for the ventral stream and more visuomotor control 

function for the dorsal stream (Goodale and Milner 1992; Goodale 1993; Milner and Goodale 

1995). In their famous 1992 paper they coined the phrase ‘vision for perception’ and ‘vision for 

action’ for these two streams. The remainder of this review will focus on the function of the 

dorsal stream. 

From the dorsal stream there arise two major parieto-frontal networks connecting parietal 

and premotor cortices. The dorsolateral parieto-frontal pathway connects the inferior parietal 

lobule (IPL) to the ventral premotor cortex (PMv) (Tanne-Gariepy et al. 2002; Tomassini et al. 

2007). This pathway is more specific to the online control of grasping (Grol et al. 2007) and will 

not be discussed further within this paper. The dorsomedial, parieto-frontal pathway connects the 

SPL to PMd (Tanne-Gariepy et al. 2002; Tomassini et al. 2007; Gamberini et al. 2009; Passarelli 

et al. 2011). This network originates from the caudal portion of SPL, the human homologue of 

V6A (Fattori et al. 2004; Galletti et al. 2003), and has been suggested to have a primary role in 

calculating the appropriate reach vector goal (Fattori et al. 2004; Galletti et al. 2003). The 

function of this network is important here because intact parietal inputs into this network are 

necessary for the guidance of a limb using peripheral vision (Prado et al. 2005; Battaglia-Mayer 

et al. 2012; Hwang et al. 2012; Battaglini et al. 2003), during the integration of cognitive visuo-

perceptual skills with complex visuomotor skills (Pisella et al. 2013), and during decoupled 

reaching in darkness (Marzocchi et al. 2008).  
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Figure 1.2.  Cortico-cortico connections of region located within the parietofrontal reach network 
that are involved in visuomotor transformations. Posterlateral view of a macaque brain, same as 
in Figure 1.1. Figure and text adapted from (Galletti et al. 1999). 
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 The connections between parietal and frontal reach regions are extremely important for 

the control of visually-guided reaches. The connections between these two structures are known 

to follow a neuroanatomical gradient (Marconi et al. 2001; Matelli et al. 1998). Areas located 

more posterior within SPL (e.g. V6A or PO) have a strong connection to PMdr (Marconi et al. 

2001) while more anterior regions within SPL (e.g. area 5 or PEc) are linked more to caudal 

frontal regions (e.g. M1 or PMdc) (Marconi et al. 2001; Gamberini et al. 2009; Bakola et al. 

2010). Understanding the roles of each of these regions and how they are affected by different 

types of visually-guided reaches will provide insight into how these networks change during 

complex visuomotor transformations. In the last 20 or so years, analyses on the coding of 

reaching movements have led to the conclusion that motor, premotor, and SPL (area 5) regions 

combine visual information about the target location with somatic information about the limb in 

space (Caminiti et al. 1990; Caminiti et al. 1991). What remains to be determined is how the 

weight of each region is affected when the action of the eyes and hand are decoupled. In the 

following sections we will explore how the frames of reference and flexibility in the weight 

placed on proprioceptive versus visual control may adapt to task demands associated with 

decoupled visually-guided movement control.  

1.2.1. Role of PMd in visuomotor  transformations. 

PMd is located on the dorsal aspect of the premotor area (Wise et al. 1996; Shadmehr and 

Wise 2005; Barbas and Pandya 1987; Matelli et al. 1985) and is the anatomical interface between 

parietal and primary motor regions (Marconi et al. 2001; Matelli et al. 1998; Johnson et al. 

1996). The role of PMd in motor preparation was initially proposed based on the observation of 

set-related activity, defined as neuronal activity that starts following an instructional cue about an 

upcoming movement (Wise and Mauritz 1985). By examining this set-related activity, 
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researchers suggested that it reflected the motor significance of the cue, based largely on the 

representation of this activity to movement parameters, such as direction, amplitude and speed of 

a limb movement (di Pellegrino and Wise 1993; Kurata 1993; O'Leary and Hatsopoulos 2006b). 

For instance, Churchland and colleagues (2007) applied subthreshold intracortical 

microstimulation to disrupt this set-related preparatory activity while monkeys performed a 

visually guided reaching task. They observed a highly specific increase in reaction times 

principally when microstimulation was applied around the time of the go cue, with no deficits to 

the movement itself. No deficits in reaction times were seen in saccadic eye movements or when 

microstimulation was applied to other nearby motor regions. Similar results were also observed 

when TMS was applied to the dorsal premotor region of human subjects, although there were 

sex-related differences (Gorbet and Staines 2010). Research into set-related activity also 

discovered that these reach parameters, such as movement direction, are coded as a vector within 

PMd (Caminiti et al. 1990; Caminiti et al. 1991; Kurata 1993; Weinrich and Wise 1982; 

Weinrich et al. 1984). This is largely based on the observation that neural activity varies with 

movement direction demonstrating maximal response for a preferred direction (Georgopoulos 

and Massey 1988). Studies also support a role for PMd in the execution of movements, 

specifically in the online control of a reach (Lee and van Donkelaar 2006; Archambault et al. 

2011; Clower et al. 1996). Using a combined TMS and prism adaption paradigm, (Lee and van 

Donkelaar 2006) observed that TMS applied to humans, while they pointed to targets using 

prism goggles, slowed down their rate of adaption and on-line corrections when vision of the 

hand was available. When vision of the hand was not available, no alterations in adaption were 

observed. They concluded that PMd contributed to the generation of visually based on-line error 

corrections to help remap the position of the arm. Recently, Archambault and colleagues (2011) 
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used a target jump paradigm that supported these findings but concluded that PMd has more of a 

high-order role in commanding or signalling the correction of a motor intention.  

The neural activity within PMd has also been shown to be affected by the direction of 

gaze (Boussaoud 1995; Pesaran et al. 2006; Pesaran et al. 2010). More recently, Pesaran et al., 

(2006) examined this phenomenon using a paradigm that cleverly dissociated the location of the 

target, the start position of the eyes, and the start position of the hand. Pesaran and colleagues 

(2006) were able to demonstrate that these gaze effects in fact reflected the changes in the 

relative position between these three variables. If any of them were to shift, like gaze, than the 

underlying neural activity within PMd would also shift. These results suggest that the cells 

within PMd can simultaneously encode multiple vectors (Pesaran et al. 2006). This seems 

practical for PMd because in order to accurately plan and execute reaching movements, 

information regarding the start position of the hand and eye, and the location of the target must 

be integrated somehow (Hoshi and Tanji 2000; Kurata 1994; Rizzolatti et al. 1998; Lloyd et al. 

2003). Such a system also allows some form of flexibility within PMd if the weight of any of 

these signals were altered. In an elegant study by Hoshi and Tanji (2000), monkeys were trained 

to reach towards a target. They gave monkeys two sets of instructions, one regarding which 

target to reach for and one regarding which limb to use. Importantly, these instructions were 

given in two steps so that second instruction represented the combination of the target location 

and limb position. Most cells, as expected represented the first instructed component (for 

example which target to reach towards). What was striking was that many of these same cells 

represented the integrated component of the two signals following the second instruction. This 

remarkable observation suggests that PMd has some role in the integration of the signals 

important for visually-guided reaches.  
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As shown, the role of PMd in planning and executing the kinematics of an intended 

movement is unequivocal (Wise et al. 1996; Shadmehr and Wise 2005; Caminiti et al. 1990; 

Raos et al. 2004; Cisek and Kalaska 2002a; Boussaoud and Wise 1993a; Boussaoud 2001). 

However, over the years various studies have begun to report that the role of  PMd to reach 

planning depended also on the behavioural context of the upcoming reach (Picard and Strick 

2001; di Pellegrino and Wise 1993; Archambault et al. 2011; Boussaoud and Wise 1993a; 

Boussaoud and Wise 1993b; Wise et al. 1996; Crammond and Kalaska 1994; Kurata and 

Hoffman 1994; Halsband and Passingham 1985; Passingham 1988; Grafton et al. 1998; Petrides 

1985). Many of these observations were largely based on lesion or cooling studies. For instance, 

muscimol injections into the PMd of primates led to an increase in directional errors during 

visually-guided reaches that required a conditional forelimb movement (Kurata and Hoffman 

1994). Similarly, ablation studies in primates (Halsband and Passingham 1985; Halsband and 

Passingham 1982) and lesion studies in humans (Halsband and Freund 1990) showed that 

damage to PMd caused impairments in re-learning a task that required the selection of a 

movement when the choice was based on sensory instructions. These results were not based on 

purely motor deficits since visually-guided reaching movements remained intact (Halsband and 

Passingham 1985; Halsband and Passingham 1982; Halsband and Freund 1990). The consensus 

in the literature is that PMd neurons rely on sensory information to select the appropriate 

behaviour to execute (Weinrich and Wise 1982; Crammond and Kalaska 1994; Godschalk et al. 

1981; Cisek and Kalaska 2005). Thus, neurons within PMd are involved in conditional 

visuomotor transformations because the movement selection will be based on some sort of 

learned association. Neurophysiological results also support this observation (di Pellegrino and 

Wise 1993; Kurata 1993; Weinrich and Wise 1982; Weinrich et al. 1984; Crammond and 
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Kalaska 1994). A classic study by Crammond and Kalaska (1994) explored the activity of 

individual cells within PMd while a monkey performed an instructed, delayed reaching task. 

During each trial a CUE appeared instructing the animal whether they were to move towards or 

away from the target. Shortly following cue onset the majority of PMd cells responded in a 

typical manner, with maximal response when the CUE was in their preferred direction (PD). This 

activity is suggested by the authors to possibly reflect an initial plan to reach towards the sensory 

cue, thus suggesting a more 'motor' rather than sensory response. However, the important 

observation was that by late reach planning PMd activity shifted into reflecting the direction of 

the intended movement, regardless of where the CUE location appeared (Figure 1.3). This 

rapidly occurring re-direction of neural response may reflect recognition and the re-coding of the 

motor response in order to represent the correct associative rule. The authors concluded that PMd 

activity likely contributes to the selection process when similar motor responses have different 

associative rules (Crammond and Kalaska 1994), and provides evidence for the existence of a 

multiple parameter representation in a given population of neurons that change over the course of 

a planned behaviour. In fact, work by Cisek and colleagues have demonstrated how the activity 

of PMd simultaneously represent two possible reach plans until the decision regarding the 

selection of a reach target has been made (Cisek and Kalaska 2005; Cisek and Kalaska 2002b). 

Archambault (2011) also reported that PMd activity simultaneously represent two motor plans 

during a target jump paradigm. This strongly implicated PMd in mediating the visuomotor 

transformation required during delayed reaching (Crammond and Kalaska 1994; Shen and 

Alexander 1997b; Hocherman and Wise 1991; Shen and Alexander 1997a) but also implicated 

PMd in decoupled visuomotor transformation which require the incorporation of a rule into the  
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Figure. 1.3 Response of PMd cell during both early and late planning. Top panel: Monkeys were 
trained to perform an instructed delay task in which a CUE stimulus could appear in one of two 
locations and corresponded to either the preferred or opposite direction. The CUE instructed 
movements wither towards or away from the stiumulus. Bottom panel: Neural response from a 
PMd cell during direct (A and B) or redirect (C and D) conditions. Vertical dashed lines 
indicates CUE onset (right) or movement onset (left).  Early in trail the CUE evoked strong 
activity when it was presented at 0 degrees (the cells PD, red arrow) regardless of condition. By 
late within the trail maximal activity was observed when the intended movement was towards the 
cells PD regardless of the CUE location (mahogany arrow). Figure and text adapted from 
(Crammond and Kalaska 1994) 
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motor plan. Visuomotor transformation will depend on a cascade of events from purely sensory 

processing to context-dependant or associative processing and finally to purely motor processing 

(Shen and Alexander 1997a). Taken collectively, these studies have established a concrete role 

for PMd not only in movement planning and selection, but in particular when the movement is 

dependent on some contextual-association. These observations are important in the context of the 

current projects because they influenced our exploration of the role of PMd during different 

types of visually-guided reaching movements, where the mapping between stimulus and limb 

movements are altered based on a rule that must be incorporated into the visuomtor 

transformation.  

1.2.2. Topographical divisions in PMd and their separate functions in visuomotor control. 

The story of reach movement control becomes more complicated when one takes into 

account the different sub-divisions of PMd. Although not normally addressed, PMd can be 

divided into rostral (PMdr) and caudal (PMdc) sub-regions. This division was initially based on 

physiological and anatomical differences (Picard and Strick 2001; Barbas and Pandya 1987; 

Matelli et al. 1985; Kurata 1991; Fujii et al. 2000). However more recently, researchers began to 

report clear functional differences as well (Prado et al. 2005; Clavagnier et al. 2007); Grafton et 

al. 1998; (Hanakawa et al. 2006); (Picard and Strick 2001; Grafton et al. 1998).  In the seminal 

work of Picard and Strick (2001), they re-examined the current literature on PMd to reveal that 

the activity within PMdr has a stronger role in context-based associations, while cells within 

PMdc demonstrate mostly movement-related activity (Picard and Strick 2001; Grafton et al. 

1998). The authors suggested that the term “Pre-PMd” be used to describe PMdr, reflecting its 

role in planning reaching movement that relies on arbitrary or contextual associations (Wise et 

al. 1996; Boussaoud 2001; Grafton et al. 1998). Anatomical studies also support these functional 
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differences between PMdr and PMdc. PMdc shares connections with parietal-dependent motor 

area and has direct connections with the primary motor area (M1) and the spinal cord (Matelli et 

al. 1985; Fujii et al. 2000; Matelli and Luppino 2001). These connections support PMdc in 

preferentially coding limb movement parameters (Cisek et al. 2003; Alexander and Crutcher 

1990; Kurata 1989) primarily when arm movements are controlled by visual or somatosensory 

information (Luppino et al. 2003; Abe and Hanakawa 2009). PMdr, a fronto-dependent motor 

area, receives major connections from the prefrontal and cingulate cortex (Matelli et al. 1985; 

Fujii et al. 2000; Matelli and Luppino 2001; Lu et al. 1994; Lu et al. 1994; Tachibana et al. 

2004)with no direct connections to M1 (Barbas and Pandya 1987; Kurata 1991; Tachibana et al. 

2004; Luppino and Rizzolatti 2000). These prefrontal connections will allow PMdr to have a 

more cognitive or top-down role in visually-guided reaching. For instance, PMdr and the dorso-

lateral prefrontal cortex (DLPFC) become functionally coupled when a motor behaviour is 

guided by a rule (Murray et al. 2000; Luppino et al. 2003; Abe and Hanakawa 2009; White and 

Wise 1999). Although not primary, PMdr does share some connection to mesial and caudal 

portions of the parietal cortex (Marconi et al. 2001; Matelli et al. 1998; Luppino and Rizzolatti 

2000; Geyer et al. 2000). The functional difference between PMdr and PMdc, and their separate 

anatomical connections to areas within the SPL, suggest that they play separate but 

interconnecting roles in visuomotor transformations. While PMdc may be more active during the 

computations of coupled reaches (Prado et al. 2005; Picard and Strick 2001; Lee and van 

Donkelaar 2006; Sayegh et al. 2013; Gail et al. 2009), PMdr is likely more active when a rule is 

required during decoupled reaches (Prado et al. 2005; Picard and Strick 2001; Grafton et al. 

1998). 

It must be noted here that although separate functions are ascribed to these sub-regions, 
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activity can be observed throughout PMd for the various tasks previously mentioned. As 

proposed by Abe and colleagues (2009), the weight of each of these sub-regions will change 

depending on the type of visuomotor transformation at hand. During more complex rule based 

reaches, the influence of PMdr, and its pre-frontal connections, may be more dominant than 

during more natural standard types of reaches where activity within PMdc may dominate.  The 

studies presented here examine this idea that the weight of each of these regions shifts between 

different types of visually-guided reaching movements.  

1.2.3. Role of the parietal cortex in visuomotor transformations. 

The posterior parietal cortex (PPC, Figure 1.1) is located between the visual cortex in the 

occipital lobe and the somatosensory cortex in the postcentral gyrus (PCG) and is dorsally 

bordered by the Sylvian fissure (Rizzolatti and Matelli 2003; Rizzolatti et al. 1997).  In all 

primates, the PPC is divided by the intraparietal sulcus into the superior parietal lobule (SPL), 

housing Brodmann areas 5, PE, PEc and PEm and the inferior parietal lobule (IPL), housing 

Brodmann area 7, PG and PF (Lynch 1980; Cavada and Goldman-Rakic 1989; Luppino 2005). 

Situated between sensory and motor cortices, SPL was traditionally viewed as a somatosensory 

or somatomotor region known for its role in the spatial representations of action (Wise et al. 

1997; Mountcastle et al. 1975; Kalaska et al. 1983; Kalaska et al. 1990; Sakata et al. 1973).  

However, based on the influential work by Mountcastle and colleagues (1975), the parietal lobe 

was proposed as a central node within a distributed network suitable for supplying the frontal 

motor regions with a representation of visuomotor information (Caminiti et al. 1996). This 

proposal emerged from the existence of neurons within area 5 and 7 which were active when 

reaching to visual targets and were modulated by visual fixation, visual tracking, saccade 

generation (Mountcastle et al. 1975; Lynch et al. 1977; MacKay 1992), and coding of target 
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location in eye-centered or craniocentric reference frames (Andersen et al. 1985; Mazzoni et al. 

1991). These observations in conjunction with the deficits observed by researchers in patients 

with PPC damage substantiated the notion that the parietal lobe was, among other things, 

important for providing the motor regions with the visual signals needed for accurate motor 

behavior (Bates and Ettlinger 1960; Denny-Brown and Chambers 1958; Perenin and Vighetto 

1988). Both human patient (Granek et al. 2012; Battaglia-Mayer et al. 2012; Blangero et al. 

2007; Rossetti et al. 2005; Pisella et al. 2009; Pisella et al. 2000; Grea et al. 2002; Granek and 

Sergio 2014; Hawkins et al. 2013), and animals studies (Battaglia-Mayer et al. 2012; Battaglia-

Mayer and Caminiti 2002) show that damage within SPL (Blangero et al. 2009; Karnath and 

Perenin 2005; Luppino et al. 2005), resulting in optic ataxia (OA), often produces misreaching 

and misgrasping deficits to extra-foveal targets.   

However, the idea that the parietal cortex in some way feeds forward the necessary 

visuomotor signals to the frontal cortex was tempered by an anatomical problem. Since early on, 

neuroanatomists understood that there were no direct projections between V1 and SPL (Johnson 

et al. 1996), nor between V1 and the frontal motor regions (Jones and Powell 1970; Pandya and 

Kuypers 1969).  In an effort to explain how exactly the motor regions received the necessary 

visual information, researchers began looking within the IPL as a possible intermediate link. 

However, anatomical studies quickly revealed otherwise (Jones and Powell 1970; Pandya and 

Kuypers 1969), instead showing that it was the SPL, specifically area 5, that was the major 

parietal projections to the premotor regions and not IPL (Jones and Powell 1970; Pandya and 

Kuypers 1969). This observation provided no additional insight into the problem because area 5 

was already known to be void of visual inputs (Jones and Powell 1970; Pandya and Kuypers 

1969). It was not until the early part of the 1990’s that anatomical studies identified a new visual 
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area located within the rostral bank of  the parieto-occipital sulcus (POs) known as PO in humans 

or V6A in monkeys (Galletti et al. 1991). These studies concluded that PO not only projected to 

region within SPL - some even reciprocal connected - but it also carried rich visual information 

(Passarelli et al. 2011; Cavada and Goldman-Rakic 1989; Caminiti et al. 1996; Galletti et al. 

2001; Colby et al. 1988; Blatt et al. 1990). The functional properties of PO, specifically in 

motion-sensitivity, gaze angle, encoding target location in spatial coordinates, and its emphasis 

on the periphery, suggest that this region would be suitable for the types of visual analysis 

needed for spatial localization of a visual target (Galletti et al. 2003; Galletti et al. 1991; Galletti 

et al. 1993; Galletti et al. 1997). Most importantly, PO has strong projections to the frontal cortex 

(Matelli et al., 1998; Gamerini et al., 2009), and acute lesions to this area produced the 

misreaching and misgrasping deficits observed with OA patients (Battaglini et al., 2002). In fact 

recent studies show that OA patients often have damage to regions usually restricted within the 

anterior bank of the POS (Blangero et al. 2009; Karnath and Perenin 2005; Luppino et al. 2005). 

Researchers had now found an avenue by which visual signals could reach the premotor regions 

(Caminiti et al. 1996; Galletti et al. 2001; Shipp et al. 1998) (Figure 1.4) and since then various 

studies have shown the crucial role for the parietal cortex in visually guided reaching, 

specifically in visuomotor transformations (Caminiti et al. 1999; Kalaska et al. 1997; Goodale 

and Milner 1992; Caminiti et al. 1996; Mountcastle 1995; Colby and Goldberg 1999; Battaglia-

Mayer et al. 2006; Culham et al. 2006; Culham and Valyear 2006; Culham and Kanwisher 

2001).  

The discovery that cells within regions of SPL receives somatosensory and now visual 

information (Cavada and Goldman-Rakic 1989; Andersen and Buneo 2002) makes this region a 

prime location for the integration of senses for motor output. This idea has propelled research 
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and our current understanding of the role of SPL in visuomotor transformations. We now 

understand that SPL integrates eye and hand signals in order to successfully calculate the reach 

vector under sensory guidance (Graziano et al. 2000; Vesia and Crawford 2012; Rushworth et al. 

1997a; Battaglia-Mayer and Caminiti 2002; Vesia et al. 2010; Grefkes et al. 2004; Andersen et 

al. 1987).  For instance, neurons within SPL have been shown to discharge in response to both 

sensation and movement, and are thus considered crucial in the transformation of visual  

information needed for motor behaviours (Goodale 1993; Blangero et al. 2009; Milner and 

Harvey 2006; Kalaska 1996). A set of seminal studies completed by Battaglia-Mayer and 

colleagues looked at the visual and motor properties of SPL in an effort to examine if and how 

these signals are combined (Battaglia-Mayer et al. 2001; Battaglia-Mayer and Caminiti 2002). 

By using a multi-task approach they manipulated the eye and hand during center-out reaching 

tasks to reveal that these eye and hand-related signals often coexisted within the same cell. The 

critical observation was that when the preferred direction was obtained from all the epochs for all 

the conditions and represented on a unit circle, the orientation of the preferred direction of 

movement for the different effectors represented in the same cell clustered within a limited 

space. This remarkable directional feature is what they refer to as a global tuning field (Battaglia-

Mayer et al. 2001; Battaglia-Mayer and Caminiti 2002; Battaglia-Mayer et al. 2000; Battaglia-

Mayer et al. 2003). Observations such as these suggest that the combination of eye and hand 

signals occurs early on in the visuomotor processing stage (Johnson et al. 1996). The multimodal 

properties of neurons located within PMd and now SPL and their high degree of reciprocal 

connectivity (Battaglia-Mayer et al. 2001; Matelli et al. 1998; Matelli et al. 1998; Luppino and 

Rizzolatti 2000; Geyer et al. 2000; Galletti et al. 1991; Colby et al. 1988; Colby and Duhamel 

1991; Petrides and Pandya 1984) enables the different sensory and motor signals that arise  
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Figure 1.4. Diagram of (Colby and Duhamel 1991) connection of the visual areas. This diagram 
is suggested to illustrate how premotor and motor region receive the nesecary visual information 
required for visually-guided reaching movements. Adapted from (Johnson et al. 1996) 
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during reaching movements to be combined and transformed into the appropriate motor 

commands (Caminiti et al. 1996; Caminiti et al. 1998). Specifically, these studies suggested that 

the SPL could supply proprioceptive, and importantly visual information to frontal motor regions 

(Johnson et al. 1993). The reciprocal communication between them will then allow for the motor 

command to progress which will be particularly important during motor execution. Indeed it has 

been suggested that the parietal cortex is involved in the transformation of the initial visual 

information into a motor plan, and also in using visual feedback to guide an ongoing movement 

(Vesia and Crawford 2012; Crawford et al. 2011; Iacoboni 2006). Understanding the role of 

SPL to visuomotor transformations and its communication with PMd is important because we 

want to understand how the computations within these regions are affected during different 

levels of visuomotor compatability. Although some studies have examined how SPL responds 

during extrafoveal reaching (Battaglia-Mayer et al. 2001; Prado et al. 2005; Clavagnier et al. 

2007; Gail et al. 2009; Andersen et al. 1997) which can be considered a type of decoupled 

reaching, to date there are no studies that have directly compared the activity of SPL during 

coupled reaching to one that involved dissociation between the eyes and the hand to a foveated 

target. Numerous research studies have, however, concluded that when a reach is performed 

under visually reliable situations, the brain favours eye-centered or visual coordinates (Sober and 

Sabes 2005; Buneo and Andersen 2006; Vesia and Crawford 2012). When visual information is 

unreliable, the reliance on proprioceptive control will be favoured (Batista et al. 1999; Buneo and 

Andersen 2006; Rushworth et al. 1997a; Jackson et al. 2000; Pellijeff et al. 2006; Jackson et al. 

2009). During decoupled eye-hand reaching, no visual information is available regarding the 

position of the hand. Thus the weight of proprioceptive information along with the spatial 

transformation will need to be incorporated into the computations of the reach. The question that 
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arises here is what is the role of SPL in this computation? 

Within SPL the frames of references used to plan and control reaching movements are 

highly flexible and task specific (Buneo et al. 2002; Battaglia-Mayer and Caminiti 2002; 

Battaglia-Mayer and Caminiti 2002; Newport et al. 2006). SPL receives information to maintain 

an updated representation about the relative position between the hand and the reach goal in eye-

centered coordinates (Buneo and Andersen 2006; Rushworth et al. 1997a; Jackson et al. 2009; 

Wolpert et al. 1998). The rapid online updating about limb position relies on forward model 

predictions that combine efference copy motor commands, sensory feedback (visual and 

proprioceptive), and an internal model regarding the dynamics of the arm as the movement 

unfolds (Buneo and Andersen 2006; Vesia and Crawford 2012; Battaglia-Mayer et al. 2012; 

Wolpert et al. 1998; Desmurget and Grafton 2000; Desmurget et al. 1999). This updating 

function depends heavily on the integrity of PPC. For instance, Filimon (2009) compared visible 

and non-visible reaching movements to eye movements to identify reach-related areas and 

specifically regions modulated by visual feedback of the hand. They showed that regions located 

within the superior end of the PO were more active for visual than for non-visual reaches. They 

concluded that this region may process visual feedback of the hand or the visual distance 

between the effector and target (Filimon et al. 2009). Vesia and colleagues’ (2010) recent work 

suggests that it is the spatial goal of the movement that is encoded within this region. Using 

transcranial magnetic stimulation (TMS), Vesia and colleagues applied short trains of stimulation 

to the superior parietal occipital cortex (SPOC) and regions within the medial IPS (mIPS) while 

subjects performed various reaching tasks. They observed that visual feedback of the hand did 

not correct errors induced by TMS over SPOC but it did correct errors induced by TMS over 

mIPS. They proposed that PO codes the spatial goal of a reach while mIPS is more specific to 
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using visual and somatosensory signals to calculate the reach vector. Over the years, Buneo and 

colleagues have conducted numerous studies seeking to identify the representation of the 

different coordinated frames within SPL (Batista et al. 1999; Buneo et al. 2002; Buneo et al. 

2003). They reasoned that if a region encodes a particular frame of reference (e.g. eye-centered), 

than varying the frame of reference in one variable while holding the suggested frame constant 

should not modulate the activity of that region (Buneo and Andersen 2006). What they, along 

with others observed was evidence of a difference in the functional properties of neurons within 

SPL as a function of depth from inseparable to separable reference frames (Buneo et al. 2002; 

Caminiti et al. 1996; Kalaska 1996; Colby and Duhamel 1991; Kalaska and Crammond 1995a). 

Specifically, neurons located within the dorsal exposed part of area 5 (like PEc) are more 

somatosensory in nature, coding the difference between the target and hand position. While 

deeper cells located within the bank of the IPS (like MIP) are more separable and tend to be 

more aligned either to motor or visual functions (Caminiti et al. 1996; Colby and Duhamel 1991; 

Crammond and Kalaska 1989; Burbaud et al. 1991). These data suggest that under visually 

unreliable situations, regions located more superficially within SPL may have a stronger role in 

providing the necessary proprioceptive inputs to guide the limb. This notion is discussed in 

greater detail below.  

1.2.4. How PMd and SPL may contribute to different visuomotor transformations. 

As previously mentioned the connections between the parietal and frontal reach regions 

are important for visuomotor transformation. The neuroanatomical gradient of cortical 

connections between these two structures serves to connect functionally similar regions (Johnson 

et al. 1996; Caminiti et al. 1996) and provides evidence for a division in the roles in which these 

regions play in the computations required during visually-guided reaching (Figure 1.2). Area PEc 
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is modulated by somatosensory inputs but also responds to the position of the hand in space and 

the direction of movement (Caminiti et al. 1991; Mountcastle et al. 1975; Breveglieri et al. 

2006). In addition, its main source of cortio-cortical projection is to PMdc (Marconi et al. 2001; 

Matelli et al. 1998) which is a region known not only for its role in movement kinematics (Prado 

et al. 2005; Picard and Strick 2001; Grafton et al. 1998), but also in the online error corrections 

that underlie the remapping of the felt position of the arm (Lee and van Donkelaar 2006). PMdc 

also receives inputs for area V6A and MIP (Marconi et al. 2001; Matelli et al. 1998). The work 

completed by Galletti and colleagues reveal that cells within V6A encode the spatial coordinates 

of a visual target and are sensitive to the direction and orientation of a moving stimulus (Galletti 

et al. 1999; Fattori et al. 2004; Galletti et al. 2003; Galletti et al. 2001; Galletti et al. 1997; 

Battaglini et al. 2002). More importantly, cells within this area are modulated by somatosensory 

information about arm movements regardless of the visual information (Galletti et al. 1997). 

Area MIP transforms visual target information into a common eye-centered reference frame that 

can be used by the motor system (Cohen and Andersen 2002). MIP neurons have also been 

shown to be directionally selective to the direction of hand movements (Eskandar and Assad 

1999) and as such are also implicated in visuomotor transformations (Grefkes et al. 2004). The 

reciprocal communication between these regions likely plays a role in encoding the kinematics 

needed to perform simple reaches.  

PMdr, on the other hand, receives parietal inputs mainly from mesial and caudal portions 

of the parietal cortex (Marconi et al. 2001; Matelli et al. 1998; Luppino and Rizzolatti 2000; 

Geyer et al. 2000). Cells within this region respond to a diverse set of reach-related activity 

(Pandya & Seltzer 1982) like eye-position, oculomotor information (Pandya & Seltzer, 1982) 

and target localization (Matelli & Luppino, 2001; Pandya & Seltzer, 1982). These different 
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neuroanatomical connections within the parieto-frontal reach network may very well serve the 

different types of visuomotor transformations that are required during visually-guided reaching.  

In order to perform reaching tasks that rely on arbitrary associations or require novel 

rules to be learned about how to move the eyes and hand towards a visual target (such as the 

situation of using a computer mouse or a new track pad), the parieto-frontal network must be 

able to change or adapt to these new demands. Thus it seems logical that the contribution of 

these cortical regions to the necessary visuomotor transformations must be altered to reflect this 

extra processing (Wise et al., 1997). The main goal of these next chapters, each representing a 

distinct research study,  was to examine specifically how the neural activity within different 

parietal and premotor regions were altered between coupled and decoupled reaches, in an effort 

to advance our understanding of how these brain networks contribute to the control of skilled 

visually-guided movement. 

1.3. The different types of decoupled reaches. 

 In the literature, decoupled visuomotor transformations are referred to as either 

“arbitrary” or “transformational”  (Wise et al. 1996). Arbitrary mappings occur when there is an 

arbitrary association between a visual stimulus and a corresponding motor behaviour. A common 

example is the motor behaviour that occurs when a driver comes to a traffic light. A green light 

primes the driver to apply force to the gas pedal whereas a red light will prime the driver to 

remove force from the gas pedal. The stimulus (traffic light color) that triggers this motor 

response is completely arbitrary and has no relevance to that action, and as a consequence must 

be learned. Transformational mappings, like arbitrary mappings, also require a dissociated visual 

stimulus to guide the motor response. However during transformational mappings, a spatial 

algorithm and the integration of cognitive rules are incorporated into the motor plan (Wise et al. 
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1996; Murray et al. 2000), A common example of this type of transformation is the use of a 

computer. Typically, a horizontally placed keyboard or mouse is used to control a cursor 

displayed on a vertical screen. One must learn the spatial rule that moving the cursor “upward” 

on the screen requires the hand to move the mouse “forward” on the desk. Both types of non-

standard visuomotor mappings need to be learned, however arbitrary mappings depend on the 

stimulus features, while transformational mapping depends on the stimuli’s location (Shadmehr 

and Wise 2005).   

Decoupled transformational mappings (as opposed to arbitrary mappings) can take two 

forms: sensorimotor recalibration and strategic control. Sensorimotor recalibration occurs when 

one must adapt to a change in the physical location of the visual stimulus relative to the plane of 

the limb movement (e.g. those where the hand moves in a different location relative to the visual 

target). Such a recalibration requires a coordinated remapping between different sensory 

modalities such as vision and proprioception (Bedford 1993; Clower and Boussaoud 2000; 

Lackner and Dizio 1994). Strategic control occurs when one must adapt to situations where a cue 

signals a movement in some direction (often opposite) to the cued target location (Bock 2005; 

Redding et al. 2005; Redding and Wallace 1996). Strategic control can include having to 

integrate various rules for correctly acquiring a new skill (Wise et al. 1996; Murray et al. 2000; 

Sergio et al. 2009). In both of these cases, gaze and hand locations must be decoupled for 

successful performance.  

Although previous human and animal studies have found that performing decoupled 

reaches alters the activity of regions located within the parieto-frontal reach network (Battaglia-

Mayer et al. 2001; Prado et al. 2005; Granek et al. 2010; Gorbet et al. 2004; Sayegh et al. 2013; 

Gail et al. 2009; Gail et al. 2009; Andersen et al. 1987; Andersen et al. 1997; Grafton et al. 1996; 
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Connolly et al. 2000; Hawkins et al. 2012), many of these studies focused only on foveated, eyes 

foveate the taget, versus extra-foveated reaching, such as anti-pointing or central fixation 

paradigms (Battaglia-Mayer et al. 2001; Prado et al. 2005; Clavagnier et al. 2007; Gail et al. 

2009; Andersen et al. 1997; Connolly et al. 2000). Many of these paradigms require one to 

maintain fixation at a central target while reaching to an extra-foveal target. Anti-pointing tasks 

rely more heavily on strategic control as opposed to sensorimotor recalibration. Thus our current 

understanding regarding the cortical control of a reaching movement which relies heavily on 

sensorimotor recalibration is lacking.  

1.3.1 Evidence for a difference in the cortical control between coupled and decoupled 

visuomotor transformations. 

There is a large body of evidence to suggest that the action of the eye and hand are tightly 

linked (Gielen et al. 1984; Prablanc et al. 1979; Henriques et al. 1998; Neggers and Bekkering 

2000; Gail et al. 2009; Gauthier and Mussa Ivaldi 1988; Gauthier and Hofferer 1976; Morasso 

1981; Sergio and Scott 1998; Vercher et al. 1994; Gorbet and Sergio 2009; Terao et al. 2002). 

One of the most persuasive pieces of evidence in support of this linkage is the observation of 

what Neggers and Bekkering  refer to as gaze anchoring (Neggers and Bekkering 2000), which is 

the inability to saccade to a second target until the reach to the first target is complete. Gaze 

anchoring is thought to be driven by internally generated mechanism such as proprioceptive 

control based on the observation that it remains even in the absence of visual signals (Neggers 

and Bekkering 2001). Henriques et al. (1998) observed that when reaching to a previously 

foveated targets without visual feedback of the hand, reaching errors occur in the direction 

opposite the current gaze position (Henriques et al. 1998). The strong relationship between the 

eyes and the hand are further exemplified by behavioural studies that show significant changes in 
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the reach profile when the action of the eyes are decoupled from the action of the hand. Recently, 

Gorbet and Sergio (2009) had subjects perform coordinated eye and hand reach from a central 

towards a peripheral target. Using a digitizing tablet, subjects either performed a standard task, 

where both the eyes and hand moved towards the peripheral target, or a dissociated task where 

an algorithm was used so that the subjects hand movements were rotated 180 degrees. Thus to 

reach towards a target on the right the subject had to move their eyes towards the right while 

moving their hand towards the left. During these dissociated trials, the researchers observed a 

significant change in the kinematic profile of both the eyes and the hand when compared to 

standard reaches. This included the latency and peak velocity of eye and hand movements and 

the curvature of hand-path trajectories (Figure 1.5A and B). Messier and Kalaska (1997) also 

observed similar results when they asked subjects to reach to 25 targets located on a horizontal 

screen while either viewing the targets directly, or while viewing them on a vertical monitor. 

Similar to Gorbet and Sergio (2009), they also observed an increase in movement amplitude 

errors along with an increase in number of errors when the movement was non-standard (Figure 

1.5A and B). Researchers have also shown that performance improves during visual tracking of a 

moving target when the individual simultaneously tracks the target with the hand (Koken and 

Erkelens, 1992). This tight coupling between the actions of the eyes and the hand suggests that 

our natural behaviour is to move them together towards the object we are interacting with, and is 

exemplified by the observation that decoupling the eye from the hand affects movement profile 

as well as accuracy of the upcoming reach (Clavagnier et al. 2007; Prablanc et al. 1979; 

Henriques et al. 1998; Gorbet and Sergio 2009; Terao et al. 2002; Messier and Kalaska 1997; 

Gordon et al. 1994; Goodbody and Wolpert 1999). Consequently, during decoupled reaching 

movements, a specific set of transformations – involving inhibition at some stage - must occur in 
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order to break this tight linkage (Sergio et al. 2009). As a result, decoupled reaches likely depend 

on neural circuitry that is different but albeit interconnected with the neural circuitry important 

for controlling natural coupled reaching movements (Sergio et al. 2009; Prado et al. 2005; 

Clavagnier et al. 2007; Gail et al. 2009). An easy way to address this idea is to look at the 

performance of young children. Bo and colleagues (2006) looked at the performance of children 

aged 4, 6, 8 and adults while they performed three different types of visuomotor transformations. 

They performed a center-out drawing task in coupled or decoupled conditions. In the decoupled 

conditions the target and line path were either displayed on a horizontal screen above their arm, 

or on a vertical screen in front of them. They observed that the younger children had 

significantly greater movement times and movement variability during the decoupled conditions 

when compared to both the adults and or during the coupled conditions across all ages. These 

results suggest that these types of decoupled mappings are not innate and must be learned 

(Sergio et al. 2009; Bo et al. 2006; Piaget 1965). Because these mappings seem to develop later 

in childhood, it seems logical to believe that they rely on separate circuits formed later than those 

used by the default standard mappings, circuits that rely at least partly on communication with 

inhibitory frontal lobe structures not fully formed early in life. 

Recently, advances in imaging techniques have facilitated research aimed specifically at 

identifying the neural circuits involved in different types of reaching conditions. Various studies 

have compared the cortical activation between coupled and decoupled reaching movements and 

found differences in the cortical areas recruited during each type of reaching movement (Prado et 

al. 2005; Clavagnier et al. 2007; Gorbet et al. 2004; Grafton et al. 1998; Hanakawa et al. 2006; 

Grafton et al. 1996; Connolly et al. 2000). In an elegant study using functional magnetic 

resonance imaging (fMRI), Prado and colleagues (2005) revealed two distinct patterns of 
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activation for foveal (i.e. coupled) and extra-foveal (i.e. decoupled) reaching. Specifically, 

coupled reaching activated a restricted network mainly within the mIPS and PMdc. This network 

has been observed by others and is sometimes referred to in the literature as the ‘default reach 

network’ (Wise et al. 1996; Sergio et al. 2009; Gorbet et al. 2004; Gail et al. 2009).  Decoupled 

reaching activated a similar circuit with additional activation in POJ and PMdr. In fact, a few 

studies have implicated a role for POJ in decoupled reaching (Jackson et al. 2009; Culham et al. 

2006). The additional activation of these areas appears to be crucial for in the ability to perform 

decoupled visuomotor transformations. Based on the abovementioned functions of these key 

regions (the sub-divisions of PMd and SPL) to visuomotor transformations these observations 

are not surprising, and are supported by the few neurophysiological studies that have examined 

specifically how these regions are altered during decoupled compared to coupled reaches. 

Recently, Gail and colleagues (2009) demonstrated that single unit activity within PMd increases 

during performance of extra-foveal reaching conditions when compared to coupled foveated 

reaching conditions. On the contrary, parietal regions, like MIP, showed enhanced directional 

tuning during coupled versus decouple reaches.  Unfortunately, Gail et al., (2009) did not 

distinguish between PMdr and PMdc, and in general a great majority of studies that investigate 

the functional aspects of PMd have neglected to separate PMd into its PMdr-PMdc sub-divisions.   

Some of the best evidence for the different contributions that each subregion of PMd and 

SPL provide during different types of visuomotor compatibilities is shown by looking at function 

via dysfunction. Various patients with neurological disorders, such as Alzheimer’s disease (AD), 

or mild cognitive impairments (MCI) demonstrate deteriorated reaching performance on 

decoupled reaching tasks while leaving reaching performance on coupled reaching tasks virtually  



35 

 

 

Figure 1.5: Differences in the kinematics of hand and eye paths during decoupled reaching. A) 
Sample hand-path trajectories for one subject in single blocks of the Standard condition (left) and 
Dissociated condition (right). B) Mean velocity profiles (solid line for the eye and dashed line for 
the arm) for group data from both conditions. Error bars represent standard deviation. C) 
Endpoint distributions for movements directed to targets located in five different directions and 
five different distances by one subject performing coupled (top) versus decoupled tasks (bottom). 
Figure and text adapted from (Gorbet and Sergio 2009; Messier and Kalaska 1999) 
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unaffected (Tippett and Sergio 2006; Salek et al. 2011; Pisella et al. 2009; Karnath and Perenin 

2005; Karnath and Perenin 2005; Battaglini et al. 2002; Ghilardi et al. 1999; Tippett et al. 2007; 

Granek et al. 2013). Lesions to PMd, for instance, cause deficits in the visuomotor 

transformations that require the integration of a rule into the motor plan, a requirement of certain 

non-standard reaching movements (Halsband and Passingham 1985; Passingham 1988; Halsband 

and Freund 1990). Likewise, lesions centered around PO produce misreaching and misgrasping 

deficits to extra-foveal targets (Battaglini et al. 2003; Battaglini et al. 2002; Gaveau et al. 2008). 

Most strikingly is that the ability of all these patients to reach to foveated, coupled targets, 

remains for the most part unaffected (Karnath and Perenin 2005). These deficits likely arise from 

a breakdown in the sensorimotor transformations that allow reach direction and gaze direction to 

be decoupled (Jackson et al., 2005). This is an important finding because, like Alzheimer’s 

patients, if decoupled and coupled types of visually guided reaches relied on the same circuit, 

then one would expect to find that these patients exhibit similar performance deteriorations 

during both types of reaching.  

Aside from some patient data and limited imaging studies, we have not fully 

characterized how parietal and premotor areas contribute to eye-limb coordination under 

conditions requiring decoupled reaching movements. While it is well known that higher 

cognitive functions are related to activity in the frontal areas (Lu et al. 1994; Lamar and Resnick 

2004; Mesulam et al. 2001; Mesulam 1990; Moscovitch et al. 1995; Petrides 1997), the 

contribution to the control of complex skill is less well formulated. Many studies have examined 

the degree to which cell activity in different frontal lobe regions co-varies with attributes of the 

sensory input, the motor output, and their various integrated combinations. As previously stated, 

although PMd was traditionally viewed as a region responsible for planning an intended 
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movement’s kinematics, recent findings suggest that PMdr and PMdc have separate roles in the 

visuomotor transformation needed to plan an upcoming visually-guided reach (Wise et al. 

1996Wise et al. 1996; Prado et al. 2005; Picard and Strick 2001; Gail et al. 2009). Strengthened 

by anatomical studies, PMdr is thought to have a more cognitive role in the context-dependent 

selection and planning of movements in conditions that involve decoupled mappings (Wise et al. 

1996Wise et al. 1996; Prado et al. 2005; Picard and Strick 2001; Grafton et al. 1998; Lu et al. 

1994; Gail et al. 2009). PMdc,  and its strong connections to the primary motor cortex and the 

spinal cord (Barbas and Pandya 1987; Luppino et al. 1990) however, is thought to be more 

involved in coding limb movement parameters (Boussaoud 2001; Cisek et al. 2003; Alexander 

and Crutcher 1990). Research into the SPL has demonstrated its importance in the representation 

of posture and movement of the body and eyes and for visuomotor transformations (Battaglia-

Mayer et al. 2001; Buneo and Andersen 2006; Kalaska et al. 1997; Battaglia-Mayer et al. 2006; 

Kalaska 1996; Caminiti et al. 1998; Andersen et al. 1997; Buneo et al. 2003; Breveglieri et al. 

2006). What is lacking is a clear understanding of how this region responds to situations where 

there is a spatial decoupling between the visual stimulus and motor behaviour towards a foveated 

stimulus. Our ability to break the tight eye-hand coupling requires additional processing beyond 

those regions needed to program and execute a natural coupled reach (Sergio et al. 2009). Thus it 

seems reasonable to expect that decoupled reaches will rely on changes to the ‘default reach 

network’ to allow for these additional processes. Decoupled reaches will not only require 

inhibition of the natural tendency to link the eye and the hand but also the incorporation of the 

spatial algorithms and cognitive rules that are needed to successfully perform a decoupling the 

eyes from the hand (Sergio et al. 2009; Gorbet and Sergio 2009). 

1.4. LFPs, coherency, and single unit activity as measures of brain function. 
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 Historically, neurophysiological recordings began with the recording of a mass action 

potential in the form of electroencephalogram (EEG) (Buzsaki 2006; Berger 1929). Considered 

one of the most influential researchers within the EEG field, Hans Berger (1929-1933) was one 

of the first scientists to ever report brain waves and is best known as the inventor of EEG. Berger 

published a series of papers regarding an electric effect which he detected in human subjects by 

applying electrodes to the head. This discovery began with a controversial idea Berger had that 

brains could communicate thru telepathy. Telepathy suggests that one can communicate 

thoughts, feeling, emotions, and so on with extrasensory channels without physical means. 

Motivated by this thought Berger set out to conducted experiments, as telepathy was regarded as 

'occult' he conducted most of them in secret on himself and his son. Although his theory on 

telepathy was never proven he made the remarkable discovery of rhythmic oscillations coming 

from the brain. These oscillations had a frequency of around 10 cycles per second, termed the 

alpha wave, and were most evident from around the occipital part of the cortex when subjects 

were quiet with their eyes closed  and were replaced by the smaller and faster “beta” wave when 

the eyes remained open (Buzsaki 2006; Berger 1929; Adrian and Matthews 1934b).  Although it 

took some time for the importance of Berger’s work to be recognized, his discoveries of the 

alpha, or “Berger” wave and the techniques of EEG helped to propel neuroscience (Wiedemann 

1994). In the decade to follow many researchers attempted to make sense of the meaning of these 

waves mostly by looking at the clinical population, such as how frontal lobotomies affected brain 

waves (Davis 1941), and then by looking at the more fundamental relationships between 

brainwaves and behaviour (Bullock 1945; Marshall et al. 1937; Galambos 1941). As the 

technology advanced, the ability to record neural activity advanced with it. Technology eventally 

allowed researchers to record the activity of individual cells within the brain, known as the 
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spiking activity. The ease in which spiking activity could be interpreted and the relationship 

between spiking activity and behavior shifted the study of neurophysiologists towards relying on 

single unit recordings to listen in on the brain. However, largely owing to the huge advancements 

in equipment, analysis software, and the observation that oscillatory activity is closely tied to 

hemodynamic (Logothetis et al. 2001; Goense and Logothetis 2008; Nir et al. 2007), and EEG 

signals (Mitzdorf 1985; Schroeder et al. 1991), there has been a recent shift back towards 

understanding and recording mass action, or local field potentials (LFP) (Buzsaki 2006; Mitzdorf 

1985).  

Because of the initial shift away from the study of the cortical oscillatory activity, 

questions still remain about what brain waves, or more specifically what field potentials 

represent. Traditionally, LFPs have been viewed as the field potentials that arise locally as a 

result of both supra- and sub-threshold voltage fluctuations and ion channels that create a flow of 

currents across the membrane (Buzsaki 2006; Malmivuo and Plonsey 1995). The consensus is 

that LFPs represent the summed postsynaptic potentials from a population of neurons 

surrounding the microelectrode tip (Buzsaki 2006; Mitzdorf 1985; O’Leary and Hatsopoulos 

2006). The microelectrode will pick up this lower-frequency (<300 Hz) electrical activity by 

spatially summating the field potentials surrounding the microelectrode, usually with a radius of 

a few millimetres (Buzsaki 2006; Mitzdorf 1985; O’Leary and Hatsopoulos 2006).  Recently 

however, debate about the ‘local' or the spatial radius of LFP recordings has been reported. 

While some researchers argue a more local nature (~250 microns) (Katzner et al. 2009; Engel et 

al. 1990) others suggest that LFP activity can spread to sites over a centimetre away from its 

origin, challenging the view that LFP activity represent local features (Logothetis et al. 2001; 

Mitzdorf 1985; Kajikawa and Schroeder 2011). Synaptic potentials can either have local origins 
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due to recurrent collaterals or they can reflect inputs from other regions (Pesaran et al., 2009). 

More research into this topic must be conducted to address these discrepancies. 

In contrast to LFP activity, spiking activity is known to reflect supra-threshold inputs or 

outputs from pyramidal cells. The recorded activity will represent the action potentials that are 

being generated by the individual neuron that is being recorded (Brink et al. 1946; Moore et al. 

1966). These observations suggest that LFP activity probably represent the inputs into the area, 

whereas spike activity most likely represents the outputs (Mitzdorf 1985; Scherberger et al. 

2005). Based on the dichotomy of what LFPs and spiking activity represent, many researchers 

have concluded that spike and LFP recordings each carry a different set of information and can 

therefore be complementary tools for brain analysis (Buzsaki 2006; Mitzdorf 1985; Pesaran et al. 

2002; Sanes and Donoghue 1993). Thus it seems reasonable to assume that in order to fully 

characterize the contribution of a region to a particular behaviour, analyzing both the single units 

and oscillatory activity will provide a richer repertoire of information than one technique alone. 

As research into LFP activity accumulates, various reports are emerging about the precision to 

which LFP activity measures neuronal processes such as attention, memory, action, and 

perception (O’Leary and Hatsopoulos 2006; Pesaran et al. 2002; Baker et al. 1999; Brovelli et al. 

2005; Cooper et al. 2003; Donoghue et al. 1998; Jensen et al. 2007; Pesaran et al. 2008). In fact, 

some researchers have concluded that LFP is a better predictor of certain behavioural states 

compared to the activity of single units alone (Mitzdorf 1985; Scherberger et al. 2005; Pesaran et 

al. 2002; Engel and Fries 2010). In addition LFP activity has been successfully used to control 

neural prosthetics with amazing accuracy (Scherberger et al. 2005; Pesaran et al. 2002; Mehring 

et al. 2003; Rickert et al. 2005; Tillery and Taylor 2004). An attractive component of recording 

and analyzing LFP activity is that it shares a strong relationship with the blood-oxygen-level 
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dependent (BOLD) fMRI signal (Goense and Logothetis 2008; Nir et al. 2007), more so than 

single unit activity (Fries et al. 2001). For example, in the auditory cortex, gamma LFP activity 

was highly correlated with BOLD activity, whereas the relationship between BOLD and spike 

activity was variable (Nir et al. 2007). Researchers have also looked at the relationship between 

LFPs and spikes, the results of which have provided mixed results within the literature. While 

some research suggest that a strong relationship exists (Fries et al. 2001; Ray and Maunsell 2011; 

Zanos et al. 2012; Zanos et al. 2011), others suggest a difference between spiking and LFP 

activity (Pesaran et al. 2002; Flint et al. 2012).  Despite these discrepancies, the relationship 

between LFP, spike, and BOLD activity can be used to benefit research as it helps bridge the gap 

between neurophysiological data in animals and fMRI recording in humans.  

Analyzing LFP activity can provide information about locally generated oscillations and 

coherency between electrode sites (Sanes and Donoghue 1993). Currently, there are two overall 

ways to analyze LFP activity and its relationship to behaviour. The first is to analyze the evoked 

potential (EP) that arises from presentation of a stimulus (sensory or motor) (Rickert et al. 2005; 

Asher et al. 2007). The second approach is to look at the spectral analysis, or frequency domain 

of the signal, which just simply reveals how much of the signal falls within each specified 

frequency range (Scherberger et al. 2005; Pesaran et al. 2002). Using this latter approach, 

researchers can observe task dependent changes that may occur at specific frequency ranges or in 

certain phases of an oscillatory cycle (Scherberger et al. 2005; Pesaran et al. 2002). Regardless, 

both of these approaches allow oscillatory activity to be analyzed and interpreted. The projects 

presented here focus on the second approach of examining the spectral profile of the recorded 

LFP activity. In this way we can characterize the spectral profile during a reaching movement 

and its progression throughout the trial. More importantly, we can examine if and how this 
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profile changes during different types of visually-guided reaching behaviours.  

Fluctuations in the extracellular potentials recorded as LFP activity reflects the rhythmic 

current flow across the cell membrane in local ensembles (Buzsaki 2006; Buzsaki and Draguhn 

2004). Importantly, oscillatory LFP can alter the excitability of cells across different 

spatiotemporal scales, thought to occur because of feedback interactions between the neuronal 

activity and the endogenous extracellular field (Frohlich and McCormick 2010; Lakatos et al. 

2005; Lampl et al. 1999). The oscillatory fluctuations in the extracellular potentials will provide 

a short period of enhanced rhythmic excitability (Traub et al. 2004; Womelsdorf and Fries 2006).  

Precise temporal control in neural networks will thus be critical because spikes arriving at the 

peak of this excitability will have the greatest effect on information transfer (Chrobak and 

Buzsaki 1998; Csicsvari et al. 2003). Such a relationship could serve as a mechanism for 

synaptic gain control, or could influence spike-timing-dependant plasticity (Harris et al. 2003; 

Zeitler et al. 2008). Additionally, synchrony between the spikes and LFPs could also serve as an 

additional way for information to be transmitted because the temporal pattern of spiking could 

change without a shift in firing rates being altered (Riehle et al. 1997).  

This converging understanding of the meaning behind the different types of 

neurophysiological signals leads us to an emerging view within the field that neuronal coherency 

is essential to selecting and transmitting information required to integrate sensory information for 

motor performance (Pesaran et al. 2008; Womelsdorf and Fries 2006; Fries 2005). Neuronal 

coherency establishes effective communication between neuronal groups that are processing 

task-related information (Womelsdorf and Fries 2006). By effectively coupling the activity of 

spikes and LFPs (Womelsdorf and Fries 2006), communication through coherency (CTC) 

(Womelsdorf and Fries 2006; Fries 2005; Roberts et al. 2013) enables inputs that are arriving to 
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that local population to have a greater impact. This makes neuronal coherency an attractive 

mechanism by which the information can be selected and transmitted (Womelsdorf and Fries 

2006; Fries 2005) by increasing the effectiveness of the connections between brain areas and 

enhance the representation of an attended stimuli (Fries et al. 2001; Fries 2005; Aertsen et al. 

1989). In summary coherency serves as an effective way for functional cell assemblies to quickly 

form and disband to meet task demands (Koralek et al. 2013). By examining the change in 

coherency we can examine how the communication and representation of a reach plan is affected 

during different types of reaching movements.  

1.4.1 The different frequency bands. 

The results obtained from LFP analysis can help us identify how the different frequency 

ranges vary with and between tasks. Researchers over the years have suggested that the 

oscillations that occur within a gamma range (25-100 Hz) reflect local integration (Hughes 2008; 

von Stein and Sarnthein 2000), which is important for neuronal communication. Oscillations in 

the gamma frequency have the correct time frame to allow for temporal integration between 

neurons (Jensen et al. 2007) and may reflect the local interactions needed to enhance the 

representation of a stimulus that will be passed forward (Buschman 2007). Others have 

suggested that gamma band activity has an important role in attention and memory (Brovelli et 

al. 2005; Jensen et al. 2007; Sauve 1999). It has been suggested that beta band signals (12-18 Hz) 

are involved in multimodal processing (von Stein and Sarnthein 2000), while alpha band (8-12 

Hz) activity, although originally thought to represent cortical idling (Cooper et al. 2003; Adrian 

and Matthews 1934a), more recently has been linked to working memory retention, mental 

imagery (von Stein and Sarnthein 2000; Jensen et al. 2002), or active inhibition of sensory 

information during internally driven attention (Cooper et al. 2003). Recently, an emerging view 
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has reshaped what oscillatory activity within a specific frequency range may represent. The view 

is largely based on the observation of distinct laminar differences within the frequency domain, 

suggested to be dependent on the microcircuitry within cortical and subcortical structures (Maier 

et al. 2010). Seminal work by Buffalo and colleagues (2011) confirmed a preference for 

synchronous LFP activity among the lower frequencies within the infragranular layers of a 

region, while supragranular cortical layers preferred gamma band synchrony (Maier et al. 2010; 

Bosman et al. 2012; Bastos et al. 2012; Roopun et al. 2006; Buffalo et al. 2011). Similar results 

have also been observed during single cell recording within V1, demonstrating differences in the 

spontaneous neural firing rate as a function of laminar layer (Snodderly and Gur 1995). This 

significant finding allowed researchers to take an extra glimpse into what LFP activity within 

these different frequency band represent within the brain. This proposal becomes more appealing 

with the observation that feed-forward connections originate from supragranular pyramidal cells 

from early cortical areas, and target the deeper layers of higher cortical regions (Bastos et al. 

2012; Felleman and Van Essen 1991). Feedback connections originate largely from the deep 

pyramidal cells of higher cortical regions to terminate within the supragranular layers of earlier 

cortical regions (Bastos et al. 2012; Felleman and Van Essen 1991).  

Taken collectively, LFP synchrony and coherency observed within the lower frequency 

bands are proposed to reflect feedback projections from distant signals involved in ‘top down’ 

neural processing (Maier et al. 2010; Bosman et al. 2012; Bastos et al. 2012). In contrast 

neuronal synchrony and spike-field coherence in the gamma range which are observed in the 

superficial and granular cortical layers of a region and thus proposed to reflect ‘bottom up’ 

processing (Engel and Fries 2010; Bastos et al. 2012; Donner and Siegel 2011; Siegel et al. 2012; 

Brovelli et al. 2004; Buschman et al. 2012). This idea was elegantly demonstrated by Buschman 
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and Miller (2007) with simultaneously recorded activity from the prefrontal and parietal regions. 

Macaques performed a visual detection task under 'pop-out' and 'search' conditions. These 

conditions depended on the degree to which distracters affected the detection of the target, with 

the pop-out condition having a very salient target and the search trials requiring more cognitive 

control. What they observed was that during search trials, which relied more heavily on top-

down attention processes, prefrontal neurons reflected the location of the target prior to parietal 

neurons. On the contrary, during pop-out trials, parietal neurons reflected the target first. The 

most significant observation these researchers reported however, was that during top-down 

attention there was stronger synchrony between these regions within the lower frequencies (22-

34 Hz) while high frequency (35-55 Hz), synchronization was enhanced during bottom-up 

attention (Figure 1.6). This idea is further supported by recent work into the functional role of 

beta oscillations by Engel and Fries (2010). They suggest that beta oscillations signal the current 

behavioural state, or the ‘status quo’, by promoting preferential or top-down processing of that 

state (such as the motor plan) (Scherberger et al. 2005; Pesaran et al. 2002; Engel and Fries 

2010). In addition, past research has also suggested that feedback connections are largely 

inhibitory in nature while feedforward connections are excitatory (Bastos et al. 2012; Olsen et al. 

2012; Knight et al. 1989; Murray et al. 2002; Alink et al. 2010; Zeki 1978). As suggested above, 

feedback connections tend to terminate within the first cortical layer which is made up almost 

entirely of strongly interconnected inhibitory cells that can provide strong monosynaptic 

inhibitory influence over deeper cortical layers (Chu et al., 2003; Meyer et al., 2011). This 

inhibitory drive from feedback connections may be one way top-down control can modulate 

cortical regions. 
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Figure 1.6 Laminar differences in the frequency range of LFP activity. Figure shows the 
attentional modulation of spike-field coherency (SFC) in areas V1, V2, and V4. A) On 
alternating blocks of trials, monkeys were cued to attend to a moving grating either inside (top) 
or outside (bottom) of the recorded neuron’s RF. Red traces represent SFC in each area, with 
attention directed INTO the neuron’s RF. Blue traces represent SFC with attention directed OUT 
of the RF. The magnitude of coherence as a function of frequency is shown for superficial 
recordings (B–D) and deep recordings (E–G) for areas V1 (B and E), V2 (C and E), and V4 (E 
and G). Shaded areas represent SEM. Figure and Text taken from Buffalo et al., (2011). 
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1.5. A brief overview of the three projects described in this dissertation. 

Substantial evidence has accumulated to suggest that PMd and SPL play a critical role 

invisuomotor transformation. However what is less understood is how the computations required 

to perform a visually-guided reach is altered when there is a spatial transformation which must 

be incorporated into an upcoming reach. To date, no studies have directly compared the neural 

activity within PMd and SPL during coupled versus decoupled reaches. This is important 

because our ability to perform decoupled reaches is critical to our daily interaction with the 

world around us, and deteriorates under condition of mild brain dysfunction. Therefore the 

current goal of my dissertation is to address this knowledge gap in the motor control 

neuroscience literature. These studies will categorize how the neural activity within SPL and 

PMd are affected under different visuomotor mappings, and characterize the contribution that 

each region plays to the underlying neural control of decoupled reaching movements. Our 

research will contribute to our fundamental understanding of how the brain controls movement 

and utilizes spatial attention to improve visual detection and enhances visual processing to 

reachable objects.  

For my first study (Chapter 2), I examined the single unit and LFP activity of PMd while 

two female rhesus macaques performed coupled and decoupled centre-out reaching tasks. The 

purpose of this first experiment was to investigate the the role of the neural activity within PMd 

during reaches that require a spatial decoupling between the action of the eyes and the hand. 

Based on previous research (Prado et al. 2005; Clavagnier et al. 2007; Picard and Strick 2001; 

Grafton et al. 1998) that showed topographical differences in the neural activity between PMdr 

and PMdc, we also investigated the topographical changes in the neural activity between rostral 

and caudal portions of PMd during performance on decoupled reaches. 
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 In chapter 3, I examined the role of the SPL during decoupled visually-guided reaches in 

order to understand how this region responds during cognitive-rule integration. Similar to the 

first study, the oscillatory activity from two female rhesus macaques was examined while they 

perform coupled versus decoupled centre-out reaching task. The goal of this study was to 

understand how the neural activity within SPL is affected by performing reaching movements 

when the hand has been spatially decoupled from gaze direction.  

 For my final study (Chapter 4) we were interested in the relationship between the spiking 

activity and LFP. This was based largely on the idea that the relationship or coherency between 

these measures reflects effective communication to efficiently processing task-related 

information (Womelsdorf and Fries 2006). As such we wanted to take advantage of this 

observation by examining how the spike-field coherency is altered during different types of 

reaching movements. Using the previously recorded activity from projects one and two we 

analyzed the coherency within each region between the spikes and LFP. 
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ABSTRACT 

The aim of this research was to understand how the brain controls voluntary movement 

when not directly interacting with the object of interest. Here we examined the role of premotor 

cortex in this behaviour. The goal of this study was to characterize the oscillatory activity within 

the caudal and rostral subdivisions of PMd (PMdc and PMdr) when going from the most basic 

reaching movement to one that involves a simple dissociation between the actions of the eyes 

and hand. We were specifically interested in how PMdr and PMdc respond when the eyes and 

hand are decoupled by moving along different spatial planes. We recorded single unit activity 

and local field potentials within PMdr and PMdc from two rhesus macaques during performance 

of two types of visually-guided reaches. During the standard condition, a visually guided reach 

was performed whereby the visual stimulus guiding the movement was the target of the reach 

itself. During the non-standard condition, the visual stimulus provided information about the 

direction of the required movement, but was not the target of the motor output. We observed 

distinct task-related and topographical differences between PMdr and PMdc. Our results support 

functional differences between PMdr and PMdc during visually-guided reaching. PMdr activity 

appears more involved in integrating the rule-based aspects of a visually-guided reach, while 

PMdc is more involved in the online updating of the decoupled reach. More broadly, our results 

highlight the necessity of accounting for the non-standard nature of a motor task when 

interpreting movement control research data.   

Keywords: cognitive motor integration; local field potentials; neurophysiology; nonstandard 

reaching; premotor cortex 
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INTRODUCTION 

 Reaching movements rely on a network of brain regions including the dorsal premotor 

cortex (PMd) and superior parietal lobule (SPL) (Kalaska et al. 1998; Battaglia-Mayer et al. 

2001; Caminiti et al. 1999). It is not well understood how activity within this network is 

modulated during a reaching movement when there is a dissociation between the actions of the 

eyes and hand, termed a “non-standard” movement (Wise et al. 1996Wise et al. 1996).  There is 

strong evidence that the actions of the eyes and hand are tightly linked (Gielen et al. 1984; 

Prablanc et al. 1979; Henriques et al. 1998; Neggers and Bekkering 2000; Gauthier and Mussa 

Ivaldi 1988; Morasso 1981; Sergio and Scott 1998; Sergio and Scott 1998; Vercher et al. 1994; 

Gorbet and Sergio 2009; Terao et al. 2002), hence the brain must employ specific mechanisms to 

break this link during non-standard movements (Wise et al. 1996; Murray et al. 2000; Sergio et 

al. 2009). Inhibition of this linkage likely depends on neural circuitry that is different but 

interconnected with the circuitry important for controlling natural reaching movements (Sergio et 

al. 2009; Clavagnier et al. 2007; Gail et al. 2009). Support for this idea comes from the 

observation that decoupled eye-hand coordination develops only later in childhood (Sergio et al. 

2009; Bo et al. 2006; Piaget 1965), that movements slow and accuracy declines when eye and 

hand movements are decoupled (Henriques et al. 1998; Terao et al. 2002; Messier and Kalaska 

1997; Gordon et al. 1994; Goodbody and Wolpert 1999; Epelboim et al. 1997), and that patients 

with neurological disorders show impaired non-standard reaching, while standard reaching is 

largely unaffected (Tippett and Sergio 2006; Halsband and Passingham 1985; Halsband and 

Passingham 1982; Karnath and Perenin 2005; Ghilardi et al. 1999; Tippett et al. 2007; Jackson et 

al. 2005).  

 Cell activity in PMd is modulated by gaze direction, wrist orientation, hand direction, and 
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intended movement kinematics (Caminiti et al. 1990; Raos et al. 2004; Cisek and Kalaska 2002a; 

Boussaoud and Wise 1993a; Boussaoud 2001; Boussaoud and Wise 1993b; Boussaoud et al. 

1998). Recent findings suggest that the rostral and caudal subdivisions of PMd (PMdr and 

PMdc) have separate roles in the visuomotor transformation needed to plan an upcoming 

visually-guided reach (Raos et al. 2004). These results are strengthened by anatomical studies, 

which demonstrate that PMdr and PMdc have separate cortical connections. PMdr has strong 

reciprocal connections with prefrontal regions (Lu et al. 1994) whereas PMdc has strong 

connections to the primary motor cortex and the spinal cord (Barbas and Pandya 1987; Geyer et 

al. 2000; Luppino et al. 1990), therefore, PMdc may be involved in coding limb movement 

parameters (Cisek et al. 2003; Alexander and Crutcher 1990). In contrast, PMdr may have a role 

in the context-dependent selection and planning of movements in conditions that involve non-

standard mappings (Raos et al. 2004; Boussaoud 2001; Cisek and Kalaska 2005), though this 

remains to be tested directly.  

Oscillatory activity (local field potential, LFP) has been used to measure many neuronal 

processes such as attention, memory, action and perception (O’Leary and Hatsopoulos 

2006O’Leary and Hatsopoulos 2006; Baker et al. 1999; Brovelli et al. 2005; Cooper et al. 2003; 

Donoghue et al. 1998; Jensen et al. 2007). LFPs represent the activity within local cell 

assemblies (Scherberger et al. 2005) and are believed to represent the input into an area 

(Scherberger et al. 2005). Since spiking activity reflects supra-threshold inputs or outputs from 

pyramidal cells, it is very likely that spike and LFP recordings carry a different set of 

information and can therefore be complementary tools for brain analysis (Pesaran et al. 2002; 

Sanes and Donoghue 1993). In fact, some researchers have concluded that LFP activity is more 

accurate then spike activity when decoding certain behavioural states (Mitzdorf 1985). Another 
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benefit to LFP analysis is its strong relationship with BOLD fMRI activity in humans (Goense 

and Logothetis 2008) (Nir et al. 2007) and with spike activity in non-human primates (Fries et al. 

2001). The relationship between LFP, spike, and BOLD activity can be used to bridge the gap 

between neurophysiological data in animals (single cell recording) and human fMRI recordings. 

Here, we examine how oscillatory and spike activity within PMd are modulated when 

gaze and hand motions are spatially incongruent, relative to more natural spatially congruent 

reaches.  In addition to overall changes in the spectral profile as a consequence of non-standard 

reaching, we predict that the rostral subdivision of PMd will show greater modulation, relative to 

the caudal subdivision, particularly during the planning phases of the task.  

METHODS  

Apparatus and Behavioural Task 

Two rhesus monkeys (female Macaca mulatta, body weights: monkey A= 5.2 kg, 

monkey B = 5.2 kg) were trained to perform visually instructed, delayed reaching tasks in 

standard and non-standard conditions. All surgical and animal handling procedures were in 

accordance with Canadian Council on Animal Care guidelines on the use of laboratory animals 

and pre-approved by the York University Animal Care Committee.  

During the experiment, the monkey was seated in a custom-built primate chair 40 cm in 

front of a 38.1 cm vertical screen, which was set at monkey eye level and centered with her 

midline. An additional 38.1 cm horizontal touch sensitive screen (Touch Controls Inc, San Diego 

CA) was set in front of the animal, between the animal’s waist and xyphoid process, so that she 

could reach over the entire surface of the screen comfortably (Fig. 2.1). The horizontal touch 

screen was designed to detect spatial displacements as small as 3 mm using infrared beams, at a 

  



54 

 

 

 
 
Figure 2.1. Experimental setup and trial timing. A, Schematic of the standard condition. B, 
Schematic of non-standard condition. During each trial, one of eight equally spaced (45°) 
peripheral targets were presented on either a touch-sensitive screen placed over the animal’s lap 
(A) or on a monitor positioned vertically 40 cm away from the animal’s frontal plane (B). Arm 
movements were always made over the horizontal touch screen. Light grey circles represent the 
eight possible target locations (not illuminated before cue).  Epochs - CHT: centre hold time, 
IDP: instructed delay period, RT: reaction time, MT: movement time, THT: target hold time. The 
animal's head was fixed throughout the experiment.  
  



55 

 

sampling rate of 100 Hz. Continuous tracking of the eye was monitored using the ISCAN-ETL 

200 Eye Tracking System (ISCAN Inc, Burlington MA) at a sampling rate of 60 Hz. 

Performance in both conditions required the animals to reach towards one of eight peripherally 

cued targets on the horizontal touch screen. The animals were trained to perform similar 

movements during both conditions and the biomechanical features of the reach movements were 

monitored to ensure that the movement profiles were similar between conditions. Additionally, 

to minimize any interference from the non-reaching limb, the animals were trained to maintain 

their non-reaching hand on a metal lever just beyond the lower corner of the horizontal touch 

screen. In this way it was ensured that the animal only used the appropriate arm without having 

to forcefully restrain the unused limb.  

The visual targets were identical across conditions, but the spatial plane of presentation 

was altered. At the start of each trial, a red circular target (70 mm in diameter) appeared at the 

center of the screen with an additional smaller white circular target (40 mm in diameter; 5.7° of 

visual angle) on top of it. The red target instructed where the monkey should touch and the white 

target instructed where the animal should maintain eye fixation. After a baseline period of 500 

ms, one of eight green-colored peripheral targets appeared (70 mm in diameter).  All eight 

targets were equally spaced (45°) and appeared randomly, based on a randomized-block design. 

The peripheral target appeared 5 times at each location for a total of 40 trials per condition.  

After a variable instructed delay period (IDP, 2000 ms +/- 500 ms) the red central target 

extinguished and the white target jumped to the peripheral target. This served as the go signal 

(GO) instructing the animal to move the eyes and hand from the central target to the peripheral 

target (Fig. 2.1). The movements were made from the center of the central target to the center of 

the peripheral target (roughly 80 mm, see Fig. 2.2). Once the eyes and hand arrived at the  
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Figure 2.2. A. Mean reach trajectories. Black lines: mean movement trajectories, black tick 
marks: standard deviations. Red asterisks denote trajectory segments that were significantly (P < 
0.05) more variable in comparison to the standard condition. B. Penetration sites for monkey A 
(top panel) and monkey B (bottom panel). Larger dots indicate where recordings were obtained 
on two occasions. AS: arcuate sulcus. CS: central sulcus. LF: Longitudinal fissure. Arrows show 
anterior, posterior, medial, and lateral directions, dotted line denotes division between 
penetration sites classified as rostral (left of line) or caudal (right of line). 
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peripheral target, the monkey was required to hold them there for 500 ms, after which a liquid 

reward was delivered to the animal. Additionally, to reinforce similar hand paths between 

conditions, movement alleys were included to ensure that reaches were directed along a fairly 

straight trajectory. These alleys were set at ± 40 mm from a straight line spanning from the 

central to the peripheral targets. If the monkey’s hand deviated beyond the set alley, the trial 

would stop. To provide feedback on the current position of the hand, a cross-hair representing 

the position of the finger on the touch screen was displayed.  

In the standard condition, the actions of the eyes and hand remained congruent. The 

visual presentation of the task and the reaching movements were both made on the horizontal 

touch-sensitive screen placed in front of the animal (Fig. 2.1A). In the non-standard condition, 

the actions of the eyes and hand were decoupled: the visual presentation of the task was on the 

vertical screen while the animal’s limb movement remained on the horizontal touch screen (Fig. 

2.1B). Thus, the animal was required to direct its gaze along the vertical monitor but move its 

finger along the horizontal monitor in order to displace the cursor from the central to the 

peripheral target. To ensure that the animal did not track its hand position extrafoveally, an 

opaque screen was placed 10 cm above the animal’s arm to block vision of the limb. For each 

condition, two epochs during the trial were considered, the instructed delay epoch (IDP) and the 

movement epoch (MOVE). IDP was comprised of the 500 ms baseline period and the first 1000 

ms of the instructed delay. MOVE was comprised of the last 500 ms of the instruction delay up 

until 500 ms after movement onset.   

 We also had a gaze-only condition, in order to determine if the oscillatory activity within 

the sub-regions of PMd was affected solely by the overall shift in gaze angle between conditions. 

Gaze-only data were collected for every recording. The visual display consisted of 9 white 
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circles (40 mm in diameter; 5.7° of visual angle) that appeared in the same locations as the white 

targets that appeared during the experimental conditions. The monkey was instructed to fixate on 

each of these white circles while maintaining both hands beside the horizontal touch screen. The 

white circles appeared one at a time in each location 3 times for a total of 27 saccades for each 

plane.  

Muscle activity was recorded from 13 proximal-arm muscles in separate recording 

sessions. Pairs of Teflon-insulated 50 μm single-stranded stainless steel wires were implanted 

percutaneously. Implantations were verified by passing current through the wires to evoke focal 

muscular contractions (< 1.0 mA, 30 Hz, 300 ms train; (Sergio and Kalaska 2003). Multi-unit 

electromyography (EMG) activity was amplified, band-pass filtered (100-3000 Hz), half-wave 

rectified, integrated (5 ms time bins) and digitized on-line at 200 Hz. The muscles studied 

included the anterior deltoid, medial deltoid, posterior deltoid, dorsoepitrochlearis, infraspinatus, 

latissimus dorsi, pectoralis, supraspinatus, teres major, rostral trapezius, caudal trapezius, triceps 

lateralis, and triceps medialis. These recordings were performed to assess the general effects of 

the standard and non-standard tasks on EMG activity and were not designed as a definitive 

biomechanical study of the muscle properties.   

Behavioural and muscle data analysis.  

 Hand paths recorded from the touch sensitive monitor were analyzed to confirm that the 

movements were biomechanically similar between conditions. The individual movement paths 

were first low-pass filtered at 10 Hz and the movement onsets and endpoints were automatically 

scored as 8% peak velocity at the beginning and end of the velocity profile respectively. The 

movements were then cut at the onsets and endpoints and divided into 21 equal segments. The 

five trials for each direction were then pooled and the means and standard deviations were 
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calculated at each segment along the path. An equality of variance test was performed between 

the two conditions on the mean x and y components of the trajectory for each target (Snedecor 

and Cochrane 1989). Since a given trial was only kept if the animal went from the central to the 

peripheral target within a somewhat narrow alleyway, this test determined if, despite this 

behavioural training, there were any systematic differences in movement variability between 

tasks. Mean reaction times (from the GO-signal to 8% peak velocity) were also calculated for 

each condition and paired-samples t-tests were performed to compare reaction times between the 

standard and non-standard conditions. Repeated measures ANOVAs were performed on the 

EMG data during the IDP and MOVE epochs for each muscle recorded in order to determine the 

effect of target (motion direction) and condition (standard and non-standard) on maximum EMG 

amplitude. It was expected that reach direction would have an effect on EMG amplitude, but 

condition would not. 

Neural Recordings  

 Monkeys were implanted with a recording cylinder under standard aseptic surgical 

techniques (Kalaska et al. 1989). Briefly, a plexiglass cylinder (used to hold the electrode 

manipulandum) was positioned on the 19 mm craniotomy and fixed into place using 

cranioplastic acrylic and titanium neurosurgical screws. A small metal fixation pole used to 

stabilize the head during recording was also implanted into the acrylic. The stereotaxic 

coordinates for chamber placement over PMd (both monkeys; Interaural AP: +16 mm; ML: +11 

mm) were determined using The Rhesus Monkey Brain in Stereotaxic Coordinates (Paxinos et al. 

2000). The border between rostral and caudal PMd, and primary motor cortex (M1) was drawn 

according to previously proposed physiological and cytoarchitectonic criteria (Fujii et al. 2000). 

The experiments began a week after surgery following a complete recovery. 
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Local field potentials and single units were collected from the extracellular recordings 

within PMd. A hydraulic multi-channel driver (MCM-4, FHC inc., Bowdoin ME) mounted to the 

implanted chamber was used in conjunction with a multi-channel processing system (MCP, 

Alpha-Omega Engineering, Israel). Standard tungsten microelectrodes (impedance 1-3 

megaohms, FHC Inc., Bowdoin ME) were used for recording the neural activity within PMd. 

The multidriver provided simultaneous recordings from up to two penetration sites at a time. 

Neural activity from each electrode was preamplified (5000x), band-pass filtered (1 Hz-10 kHz) 

and split into lower (LFP) and higher (single units) frequencies. Higher frequency signals were 

sampled at 12.5 kHz and passed through the multi-spike detector (Hawkins et al. 2012). The 

lower frequency signals (below 100 Hz) were sampled at 390.6 Hz.  

Data analyses  

Directional tuning was determined based on previous methods (Hawkins et al. 

2012;Georgopoulos et al. 1982). Briefly, a sinusoidal regression on the mean discharge rates for 

each target direction was performed and the goodness of the regression fit was calculated. The 

regression equation was then re-expressed in terms of the peak of the sine wave, which is the 

direction for which the cell was most active (i.e. the “preferred direction”) (Georgopoulos et al. 

1982).  A bootstrap test was then performed using 1000 shuffled activities to determine the 

significance of the tuning based on a 95% confidence interval. The mean firing rates of each cell 

were then normalized to each cell’s individual mean baseline firing rate. The baseline firing rate 

was calculated as the mean firing rate during the first 300 ms of each trial when the animal was 

instructed to hold its hand at the central target. This generated a normalized firing rate for 

comparison with the LFP data, which were also normalized to the same baseline time period (see 

below). Significance was determined by performing a three-way mixed ANOVA with condition, 

(standard versus non-standard) and time (early versus late) as within-subject factors and location 
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(PMdr versus PMdc) as between subject factor. All ANOVA results were reported with 

Greenhouse-Geisser-corrected p-values, and post hoc comparisons were corrected for multiple 

comparisons (Bonferroni). All successfully recorded LFP sites were included in all analyses. The 

converted data was analyzed in MATLAB (Mathworks, USA) using both custom written and 

open source (Chronux.org) programmes. Chronux script files were used to analyze the spectral 

profiles and generate time-frequency spectrograms for all penetrations for both conditions 

(Pesaran et al. 2002; Jarvis and Mitra 2001). We used spectral analysis to categorize the power at 

different frequency bands. To estimate the frequency structure of the LFP activity, we used the 

multitaper spectrum analysis (previously described by Jarvis & Mitra, 2001; Pesaran et al., 

2002). The multitaper technique provides an optimal estimate of the spectrum by reducing 

spectral leakage and variance of the estimate by averaging the spectral estimates from several 

orthogonal tapers (Jarvis and Mitra 2001). The orthogonal tapers are Slepian np prolate functions 

(Jarvis and Mitra 2001). A Fourier transform was then applied to the tapered signal. The 

multitaper estimates of the spectrum Sx (f), for each recording were then calculated (Scherberger 

et al. 2005; Pesaran et al. 2002). The spectrum was z-transformed to the baseline period, which 

consisted of 300 ms at the start of each trial during which time the animal was maintaining eyes 

and hand at the central target. Normalizing to a baseline period was necessary to compare 

between conditions and locations. No significant differences were observed between baseline 

activity when comparing between conditions within each region, P >0.05. By normalizing to a 

baseline period, spectrograms were calculated using a 200 ms window shifted in 50 ms 

increments with a 3 Hz frequency resolution. Mean spectra reflect the spectra z-transformed 

from individual trials, then collapsed across target directions and electrode sites within the 

respective PMd region.  

 To determine the statistical significance of task-related differences (P <0.05), the 



62 

 

normalized spectra from each electrode site was divided into 4 frequency bands (0-10 Hz, 10-30 

Hz, 30-45 Hz, and 45-70 Hz). Data from above 70 Hz were not presented because the pattern of 

activity within this range has been shown to be closely related to spiking activity (Ray and 

Maunsell 2011) (Zanos et al. 2012; Zanos et al. 2011). The average spectral value across time for 

each frequency band was determined for each condition (standard and non-standard). A 

bootstrapping procedure was used to assess whether the difference in power between the two 

conditions could have occurred by chance, based on the assumption that if power was the same 

between the two conditions, then the distribution of differences of the bootstrapped estimates of 

LFP power between conditions would be normally distributed and centered around 0 difference. 

This test was implemented as follows.  The empirical estimate of power was obtained by 

calculating the power difference between standard and non-standard conditions. A bootstrapped 

distribution was created by random reassignment of the condition label (standard/nonstandard) 

for each observation within these distributions  and the mean power difference re-calculated. 

This was repeated 1,000 times to generate a distribution of 1,000 bootstrapped power difference 

values that could be expected if the observed power differences were due to chance (i.e. random 

condition assignment). The  bootstrapped differences were then rank ordered. The high and low 

limits of the 95% confidence interval (CI) were defined as the 25th and 975th largest power 

values (2-tailed test). Activity from an electrode site was considered to have undergone a 

significant shift in power between conditions if the calculated power difference between 

conditions fell outside of the 95% CI of the distribution of its bootstrapped LFP powers (i.e., the 

null hypothesis that the mean value for power of 0 can be rejected at alpha = 0.05, 2-tailed test). 

The time points and frequency ranges that were significantly different between standard and non-

standard conditions were recorded. To generate spectrograms that displayed the task related 
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differences, we subtracted the standard from the non-standard spectrum for each site and 

averaged across the population for each region. All values that were not significant were set to 

zero, any value above zero represents stronger power for that time-frequency bin within the 

standard condition and any value below zero represents stronger power within the non-standard 

condition, using an alpha value of 0.05.  

  To determine topographical differences between PMdr and PMdc we compared the 

activity between each region during each condition. The same methods were used as the ones 

described for the task related analysis, however bootstrapping was done between PMdr and 

PMdc for each condition.  

 Lastly, we analysed the oscillatory activity in the gaze-only condition to determine if the 

overall shift in gaze angle that occurred between the two planes associated with each conditions 

had an effect on the oscillatory activity within PMd. All recorded sites from PMdr and PMdc 

were tested in gaze-only conditions. Only a sub-portion of these sites was used for this analysis. 

The mean power (0-70 Hz) at each gaze location was calculated from a 500 ms window while 

the animal was fixating at each target. Within each condition, the mean power across the nine 

target locations was computed. A bootstrapping procedure was used to assess whether the 

difference in power between the two gaze planes could have occurred by chance (for details see 

above). 

RESULTS 

The current results demonstrate changes in the neural activity within PMd when 

performing a coupled versus decoupled reaching movement. The change in neural activity 

differed between PMdr and PMdc suggesting functional differences between these regions. 

These results did not arise from differences in limb biomechanics or gaze angle and support our 
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hypothesis that these regions are involved in visuomotor transformations for non-standard 

mapping.  

Behavioral Results 

To ensure that any oscillatory differences seen between conditions were not a result of 

differences in the movement of the hand, we compared hand trajectories between conditions. We 

wanted to ensure that the biomechanical features of the limb movements were identical 

throughout the experiment. This guarantees that the interpretations of the LFP data are not 

affected by a difference in limb movements. The use of alleys helped support the animal in 

maintaining similar hand trajectories during both conditions (see methods). Figure 2.2A shows 

the mean reach trajectories during both conditions for each animal. Except for a few segments, 

there were no significant differences in the reach trajectories between standard and non-standard 

conditions. An analysis of the EMG data revealed that for 11 of 13 muscles there was no main 

effect of condition during the IDP and MOVE epochs (p>0.01). For two muscles, medial deltoid 

and teres major, there was a marginal effect of condition on EMG activity during the IDP epoch 

(0.05>p>0.01). This may have been due to a slight alteration in the animals’ starting posture in 

reaction to the board placed over their arm in the non-standard condition. There was, as 

expected, a main effect of target for all proximal arm muscles studied during the movement 

epoch (p<0.01). Lastly, reaction times between the standard (M = 537.9 ms, SEM +/- 12.82) and 

non-standard (M = 522 ms, SEM +/- 9.89) conditions were also not significantly different (t (45) 

= .927, p = 0.359). Taken collectively, these results strengthen the conclusion that any neural 

differences observed between conditions are not a direct result of changes in the biomechanics of 

the reaching movement, but rather the control of the movement. 

Neural Activity 
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We obtained 66 (59 from monkey A, 7 from monkey B) LFP recordings and classified 36 

of these recordings as coming from PMdr and 30 recordings as coming from PMdc based on the 

stereotaxic coordinates of the recording chamber and the penetration location in the chamber 

(Fig. 2.2B). All successfully recorded LFP sites were included in the analysis . In addition, 52 

single cells were recorded within PMd (28 PMdr and 24 PMdc) during both conditions, of which 

only 29 were found to be task-related (directionally tuned during either the IDP or MOVE 

epochs). In support of our hypothesis, we observed that oscillatory and single unit activity in 

PMd were modulated by the type of eye-hand coordination: standard (direct object interaction) 

or non-standard (decoupled effectors). In addition, we observed that the temporal and spectral 

profile of change depended on the region (rostral or caudal) of PMd sampled.   

Task related differences within PMd  

Oscillatory activity 

Our first main finding was that we observed salient differences in the oscillatory activity during 

performance on the standard condition when compared to the non-standard condition in both 

sub-regions of PMd. We analyzed the neural activity within two epochs (see methods). During 

the IDP epoch, the animal received information about the location of the peripheral target but 

was required to maintain hand and eye position at the central location. Thus during this epoch the 

early stages of movement planning would be occurring. Figure 2.3 shows an example of the 

increase in power that occurs across each frequency band for a single PMdc recording site during 

both epochs. The population spectrum from each animal for each epoch is also shown in Figure 

2.3C and D to demonstrate the similarity in spectral profile between animals. Because of these 

similarities, all analyses were pooled between animals. The MOVE epoch represents both the 

very late stages of planning and the early stages of the movement (see methods). During this  
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Figure 2.3. Example recordings for a PMdc site. A, Example broadband LFP during IDP and 
MOVE epochs for both conditions. Black line indicates peripheral target (IDP epoch) or 
movement onset (MOVE epoch). B, Example time-frequency spectrograms of oscillatory 
activity during each epoch and condition. C, D, Example spectral power during the IDP and 
MOVE epochs demonstrating similarity between animals. 
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epoch the movement has already been planned and there is an anticipation of the GO signal. 

Additionally, the second 500 ms of this epoch represents the first 500 ms of the reaching  

movement, which was the same between conditions (i.e., only the eye movement coupling varied 

between conditions; Fig. 2.1).  

During the IDP epoch, changes to the overall oscillatory activity occurred when the eyes and 

hand were decoupled versus when they were congruent (Fig. 2.4, left panels). Shortly following 

peripheral cue onset (Black vertical line) there was an increase in oscillatory activity that 

occurred in both regions of PMd during both conditions (Fig. 2.4 A, B, C and D, left panels).  To 

see task related differences more clearly, Figures 2.4E and F display the main differences in 

power across conditions, masked for significance (see methods). We observed a significant 

increase in PMdr oscillatory power within the 10-70 Hz range during the non-standard condition 

relative to the standard condition (Fig. 2.4E, left panel P<0.05). Contrary to this finding, PMdc 

showed a reduction in oscillatory activity between conditions within the 0-45 Hz range (Fig. 

2.4F, left panel P<0.05). Figure 2.5 displays the z-score for each frequency bin across time and 

allows for a more in depth look at the pattern of change between conditions. As shown in Figure 

2.4B, the oscillatory activity within PMdr shows a greater increase in power during the non-

standard when compared to the standard condition (Fig. 2.5B, C and D, top left panels P<0.05).  

On the other hand, stronger oscillatory activity occurred for the standard when compared to non-

standard condition within PMdc (Fig. 2.5A, B and C, bottom left panels P<0.05). 

Our findings during the MOVE period showed more subtle differences in oscillatory activity 

when the eyes and hand were decoupled (Fig. 2.4 A, B, C and D, right panels). Task-related 

differences were only observed within the 0-10 Hz range prior to movement onset for both PMdr 

and PMdc (Fig. 2.4E and F, right panels). Both regions showed a significant reduction in  



68 

 

 

 
Figure 2.4. Population time-frequency spectrograms of oscillatory activity during the IDP and 
MOVE epochs. A, B, Population spectrograms of PMdr power during standard (left panels) and 
non-standard (right panel) conditions. C, D, Population spectrograms of PMdc power for 
standard (left panel) and non-standard (right panels) conditions. E, F, Population spectrogram 
showing only significant differences between standard and non-standard conditions within PMdr 
(E) and PMdc (F). Each time-frequency bin was masked at 95% CI based on bootstrapped data 
(see methods).  Colors above zero indicate greater power within the non-standard condition and 
colors below zero indicate greater power within the standard condition. Black line indicates 
peripheral target onset during IDP epochs and movement onset during MOVE epochs, gray 
dashed line indicates end of the baseline period. Power is color-coded on a log scale. 
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Figure 2.5. Time course of task related differences in power during the IDP (left panels) and 
MOVE (right panels) epochs, segregated by frequency band. Z-score values are broken up into 
0-10Hz (A), 10-30Hz (B), 30-45Hz (C), 45-70Hz (D) frequency ranges. Black line represents 
peripheral cue onset (left panels) and movement onset (right panels). Gray bars represent when 
the power was significantly different between condition, P < 0.05. 
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oscillatory activity during the non-standard when compared to the standard condition within this 

frequency range (Fig. 2.5A, right panels P<0.05). Following movement onset PMdc shows both  

a reduction of power within the 10-30 Hz range (Fig. 2.5B, right bottom panel P<0.05) and an 

enhancement of power within the 45-70 Hz range (Fig. 2.5D, right bottom panel P<0.05). These 

results demonstrate that just prior to movement, both PMdr and PMdc activity was modulated by 

decoupling the action of the eyes from the hand. By movement onset these conditional 

differences were less evident, with PMdc showing slight differences between reaching 

movements (Fig. 2.4E and F). 

Spiking activity 

The task-related differences observed within the LFP data are also supported by single 

cell findings (Fig. 2.6). In line with the observed increase in oscillatory activity, a significant 

increase in firing rate can also be observed within PMdr during the planning phase of a non-

standard when compared to a standard reach (Fig. 2.6B, and 2.7A, P<0.01). Contrary to the 

observations in the oscillatory activity within PMdc, a significant increase in firing rate also 

occurs during decoupled reaching movements within this region (Fig. 2.7A, P<0.01). During the 

MOVE period, we decided to separate the analysis into an early (before movement) and late 

(after movement began) period to address whether the spike activity follows the same pattern 

observed for the LFPs during this MOVE period. In this analysis, we observed that task-related 

differences in spiking activity occurred only after movement onset in both regions (Fig. 2.7B, 

P<0.01). PMdc was most active during standard reaching movements and firing rates decreased 

during eye-hand decoupling (Fig. 2.7B, late epoch P<0.01). PMdr, however, showed enhanced 

spiking activity only following movement onset (late epoch) during non-standard reaches, while  
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Figure 2.6. Mean discharge rates of single cells within PMd across the tasks. A, B, Mean 
normalized firing rates for PMdr during standard (A) and non-standard (B) condition. C, D, 
Mean normalized firing rates for PMdc during standard (C) and non-standard (D) conditions. 
Black lines represent peripheral cue onset during the IDP epoch (left panels) and movement 
onset during the MOVE epoch (left panels).   
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Figure 2.7. Histogram demonstrating significant difference in the normalized mean firing rates 
between conditions and locations. A, Normalized firing rates as a function of condition and 
location during the IDP epoch. B, Normalized firing rates during MOVE epoch broken up into 
early (before movement onset) and late (after movement onset) periods. Significant difference 
between either conditions or locations are represented by asterisks (* P <0.05, ** P <0.01). 
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standard reaches showed a significant reduction in mean firing rate (Fig. 2.7B, P<0.01). This 

suggests that by the late planning stage (early MOVE epoch), task-related differences that  

occurred during the early planning period become absent and movement-related differences are 

only observed following movement onset. 

Topographical differences in eye-hand decoupling  

Oscillatory activity 

 In support of our hypothesis, we also observed topographical differences between PMdr 

and PMdc in the modulation of oscillatory activity between conditions. The most striking finding 

was the significantly greater power in oscillatory activity during eye-hand decoupling within 

PMdr following peripheral cue onset (Fig. 2.4E, right panel). PMdc, on the other hand, 

demonstrated a reduction in power when decoupling the eyes from the hand (Fig.  2.4F, right 

panel). To more explicitly evaluate these topographical differences during the IDP and MOVE 

epochs of a given condition, we plotted the relative power differences between regions for each 

of 4 frequency bands (Fig. 2.8). Within the IDP epoch, a similar pattern of oscillatory activity 

can be seen between regions in the standard condition (Fig. 2.8A). Topographical differences 

were only observed in the 45-70 Hz range (Fig. 2.8A, left panel P<0.05). During the non-

standard condition, however, clear differences in power can be observed across many 

frequencies ranges (10-70 Hz, Fig. 2.8A, right panel P<0.05).  

 By the late planning and movement stage, PMdr and PMdc once again demonstrate 

similarity in the pattern of oscillatory activity during both conditions (Fig. 2.5, right panel and 

Fig. 2.8B). In summary, during the early planning of a non-standard reach, PMdr shows 

enhanced oscillatory activity compared to PMdc. By the late planning and early movement 

phase, while the oscillatory activity within PMdr and PMdc are both modulated between  
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Figure 2.8. Topographical difference in oscillatory activity during the IDP (A) and MOVE (B) 
epochs. Positive z-score values reflect stronger oscillatory activity within PMdr whereas negative 
z-score values represent stronger activity within PMdc. Vertical black bars represent onset of 
peripheral cue A, and movement onset B. R > C; activity in rostral is stronger than in caudal 
PMd. C > R; activity in caudal is stronger than rostral PMd. 
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conditions, there were less obvious topographical differences in the way that this activity was 

modulated. 

Spiking activity 

 In support of our LFP finding, we also observed distinct topographical differences during 

the IDP epoch, and subtle differences between PMdr and PMdc during the MOVE period (Fig. 

2.7B). Specifically, during the IDP epoch PMdr showed a significantly greater mean discharge 

rate when compared to PMdc for both conditions (Fig. 2.7A, P<0.01). In line with the oscillatory 

activity results, the greatest mean discharge rate for PMdr was observed during the non-standard 

condition, when the eyes and hand were decoupled (Fig. 2.6B and 2.8A, P<0.01). Figure 2.8B 

illustrates that by late planning (early MOVE epoch), no significant topographical differences 

can be seen during either conditions (P>0.05). During this epoch we only observed topographical 

differences in the single unit activity after movement onset (late MOVE epoch) and restricted to 

the standard condition (Fig. 2.7B, P<0.01). Despite some minor differences from the LFP 

findings, the single unit activity supports the hypothesis that functional differences exist between 

PMdr and PMdc and how they contribute to the performance of visuomotor transformations.  

Gaze effects 

 In an effort to determine whether the changes in oscillatory and single unit activity 

between conditions arose solely from the shift in gaze angle attributable to the different viewing 

planes, a gaze-only condition was analyzed (see methods). Since the visual display in the non-

standard condition was presented on a vertical monitor and in the standard condition was 

presented on a horizontal monitor, the animal’s overall gaze angle (but not head position) 

changed between conditions. During the gaze-only condition, the animal fixated nine points on 

the horizontal and vertical screens. These fixation points corresponded to the location of the  
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Figure 2.9: Gaze control bar graph. Mean amplitude and standard deviation during standard and 
non-standard conditions for PMdr (A) and PMdc (B). Bootstrapping methods revealed no 
significant difference in overall activity between conditions for each region (P > 0.05).  
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targets in the experimental conditions. The animal was instructed to fixate the points while 

maintaining it’s hands on levers to the side of the monitor. Any significant difference observed 

between conditions was considered to be related to gaze effects.  

 Within both PMdr and PMdc, no effects of gaze were observed for the frequency bands 

we tested (0-70Hz, Fig. 2.9, P >0.05). These data suggest that the changes we observed in 

oscillatory activity between standard and non-standard conditions were not attributable solely to 

changes in overall gaze angle between the experimental conditions. 

DISCUSSION  

We report two principal findings following an examination of oscillatory activity in 

dorsal premotor cortex during coupled versus decoupled visually-guided reaches. First, we 

observed task-related differences in PMd. Second, topographical differences were seen in the 

spectral profiles from PMdr and PMdc, during both planning and execution of standard and non-

standard reach. Based on our results, we suggest that the rostral portion of dorsal premotor cortex 

plays a crucial role in breaking the tight linkage that exists for eye-hand coordination. While the 

caudal portion of the dorsal premotor cortex plays a role in monitoring and updating the ongoing 

decoupled movement. We provide physiological data supporting previous anatomical work, 

which suggest distinct roles for PMdr and PMdc in the control of visually-guided reaching 

movements.  

Task related differences in PMd: oscillatory activity 

In the present study, our non-standard task required a decoupling of the eyes and the hand 

to different spatial locations, while the hand movements between conditions were 

biomechanically equivalent. Thus, our non-standard condition required a learned association. 

Dorsal premotor cortex is integral to the planning of conditional sensorimotor tasks, and lesions 
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lead to impaired performance on these tasks (Wise et al. 1996; Halsband and Passingham 1985; 

Petrides 1985; Halsband and Passingham 1982; Petrides 1997; Petrides 1982; Chen and Wise 

1995). Consistent with our hypothesis, we observed that non-standard reaches evoked region- 

and epoch-specific increases in oscillatory activity.   

Similar to previous findings (Prado et al. 2005; Clavagnier et al. 2007; Gail et al. 2009), 

PMdr was more active during the early planning phase of decoupled versus coupled reaching 

movements both at the single cell level and within the 30-70 Hz gamma range. Oscillations 

within premotor regions are poorly understood. However, based on general principles of cortical 

microcircuits, power increases in the gamma range may be attributed to increased or surplus 

local synchrony (Pesaran et al. 2002; von Stein and Sarnthein 2000; Denker et al. 2011). When 

combined with known anatomical connectivity, we suggest that this increase in gamma power 

within PMdr could be related to the additional cognitive processes, such as spatial working 

memory and divided attention, putatively required for non-standard movements. These data also 

support behavioural evidence suggesting that an increase in neural processing is necessary during 

non-standard visuomotor transformations (Gorbet and Sergio 2009).  

The ability to perform decoupled reaching movements likely requires communication 

between prefrontal and premotor regions (Hoshi and Tanji 2000; Abe and Hanakawa 2009; 

Hoshi 2006). The dorso-lateral prefrontal cortex (DLPFC) and PMdr are highly interconnected 

(Lu et al. 1994; Tachibana et al. 2004) and become functionally coupled when a motor plan 

either requires the integration of a diverse set of instructions (Hoshi and Tanji 2000; Abe and 

Hanakawa 2009; Hoshi 2006) or during cognitive manipulations (Abe and Hanakawa 2009). The 

increase in information received by PMdr to plan decoupled reaches would require enhanced 

local processing and integration and may thus be reflected in the increased gamma oscillatory 
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activity that occurs within PMdr during the non-standard condition. Similarly, if PMdc cells are 

important particularly when planning a ‘decoupled’ movements, one might expect the observed 

enhancement in gamma synchrony during the early planning phase of decoupled movements in 

PMdc, which is absent in our results during the early planning period. Gamma band oscillations 

are however observed within PMdc during the movement epoch of non-standard compared to 

standard reaches (Fig. 2.5D). Consistent with the commonly suggested function of gamma 

oscillations (Pesaran et al. 2002; von Stein and Sarnthein 2000; Denker et al. 2011), the 

enhanced local synchrony that is occurring during a decoupled reach may reflect the online 

monitoring of the ballistic motor plan. Executing a non-standard reach requires the actions of the 

eyes and the hand to remain decoupled and thus requires additional online reach monitoring and 

movement guidance using proprioceptive or somesthetic feedback. Area PEc located with the 

anterior portion of the superior parietal lobule houses somatosensory cells (Weinrich et al. 1984; 

Kalaska 1996; Breveglieri et al. 2006) and has a strong anatomical connection with area PMdc 

(Johnson et al. 1996). This is consistent with our oscillatory results demonstrating stronger 

oscillatory power within the 45-70 Hz gamma range in PMdc when compared to PMdr during 

decoupled reaches (Fig. 2.8B). Additionally, only modest increases in gamma oscillations were 

observed during standard reaching movements, where the reliance on proprioceptive inputs is not 

as crucial relative to decoupled eye-hand situations. Decoupled reaches also require a signal that 

inhibits the natural tendency to link the movements of the eyes and the hand. Recently, Gail and 

colleagues (2009) suggested that the enhanced spiking activity observed in PMd during a non-

standard reaching movement reflects such an inhibiting signal to overrule the “default” 

visuomotor network for standard reaches (Gail et al. 2009; Everling et al. 1999; Schlag-Rey et al. 

1997). This is in line with our spiking data, which also demonstrates an increase in the discharge 
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rate of single cells during the planning phase of non-standard reaching movements. In order for 

PMdr to provide an inhibitory output signal, it must first be able to receive information about the 

spatial disparity between gaze and limb position. The enhanced oscillatory activity observed 

within PMdr during non-standard reach planning may serve this purpose, which may then drive 

the increase in output signals (single units) that would be needed to inhibit the ‘default’ 

visuomotor network, as suggested by others (Gorbet et al. 2004; Gail et al. 2009). Such an 

arrangement would make PMdr a crucial node in the sensorimotor transformation of non-

standard limb movements, though this interpretation raises further questions. In contrast, PMdc 

demonstrates a decrease in oscillatory activity during non-standard relative to standard reach 

planning. This reduction in power may represent inhibitory inputs to PMdc, which would be 

important for allowing the eyes and hand to decouple. Recently, we have found that the mean 

discharge in single cells recorded from superior parietal areas during the same experiment 

presented here, is significantly reduced during non-standard task planning (Hawkins et al. 2012). 

The decoupling of goal/gaze spatial location and sensed limb location may underlie the reduction 

in activity in these bimodal cells. The subsequent transmission of these signals to premotor 

planning areas, observable in the input-driven LFP signal, may thus represent the crucial 

transformation of information that would be needed to decouple the actions of the limb and gaze 

to successfully perform the task used in these studies.  

If the role of PMd is to instruct or inhibit other regions during non-standard conditions, 

and across-region or more ‘global’ synchronization is associated with lower frequency 

oscillations, then one might expect an increase in beta and lower frequencies for the non-

standard task. Sub-gamma frequencies including beta are observed when a region is integrating 

independent distant signals or for ‘top down’ processing as opposed to engaging in local 
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processing (Donner and Siegel 2011; Siegel et al. 2012). Consistent with this, our results 

demonstrate that within PMdr there is an increase in low frequency power during the early 

planning period of a non-standard compared to standard movement (Fig. 2.5B). Based on the 

aforementioned idea, the increase in low frequency power seen in the early planning period of a 

non-standard reach may reflect the integration of the cognitive rule into the motor action 

allowing for a new relative position code of the eyes and hand. 

Contrary to these observations, PMdc showed a reduction in low frequency power during 

the planning and movement periods in the non-standard condition (notice both epochs, Fig. 2.5A 

and B). Under natural reaching situations, the brain must integrate hand and eye signals to arrive 

at the proper behaviour, as in the standard version of the task. Perhaps within PMdc, 

performance during the non-standard condition requires that these signals continue to be 

segregated, not integrated, just as the planes of movement of the hand and eyes are separated in 

space. Thus, while PMdr normally functions to integrate the signals from various regions of the 

brain for successful eye-hand decoupling, the suppression of beta or lower frequencies would be 

expected during non-standard reaching within PMdc if this is an area of importance for eye-hand 

coupling. Cautious interpretation is warranted, however, since the oscillatory functions within 

PMd are largely unknown, and the present results suggest a complex repertoire of oscillations 

that reveal temporal and spectral differences even within PMd.   

Functional and anatomical separation within PMd 

Most PMd single-unit studies have not separated PMd into its rostral-caudal sub-

divisions. A re-examination of the literature has revealed that the majority of cells that respond to 

conditional visuomotor associations appear to be located within PMdr, while cells within PMdc 

demonstrate mostly movement related activity (Picard and Strick 2001; Grafton et al. 1998). The 
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authors of these reviews suggest the term “Pre-PMd” for PMdr, reflecting the cognitive 

conditional visuomotor associations that have been commonly observed there. The functional 

separation in the activity of PMd cell assemblies in the current study support this proposed 

distinction: PMdr was more active during decoupled reaching movements, when the movement 

relied on a transformational rule to be incorporated into the reaching movement. By the late 

planning/early movement phase of both standard and non-standard movements, PMdc had 

stronger oscillatory and single unit activity. During this period concerned with movement 

execution rather than planning, the salient features would be the biomechanical details of the 

movement, which did not vary with task in the present study (Picard and Strick 2001; Boussaoud 

2001; Scott and Kalaska 1997; Toni et al. 2001; Scott et al. 1997). Left open is the question of 

how information within PMdr affects the final movement programming in PMdc, SMA, M1 or 

spinal cord structures, given the evidence that there are few if any direct connections between 

PMdr and these other areas (Barbas and Pandya 1987; Kurata 1991; Luppino and Rizzolatti 

2000). It has been suggested that PMdr, a rostral motor region, plays a large role in relaying 

prefrontal signals to pre-SMA and CMAr to eventually reach the more caudal motor regions like 

SMA, PMdc and finally M1 (Lu et al. 1994; Takada et al. 2004; Morecraft et al. 2004). These 

connections are important because they may provide a pathway for information flow from 

DLPFC and PMdr, and thus allow signals important for decoupled reaching to reach the final 

motor plan. Another avenue for PMdr activity to influence the motor plan may be via the cortico-

striatal connections between PMdr and the basal ganglia (BG) (Tachibana et al. 2004). 

Considering that PMdr is thought to play a role in inhibiting the natural tendency to couple the 

eyes and hand during decoupled reaching movements (Gorbet et al. 2004; Gail et al. 2009), its 

connection with BG structures may help mediate the inhibitory signal that would be necessary to 
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accomplish this type of reaching movement. Recently, SMA has been shown to play a key role in 

proactive control, the ability to stop a movement based on endogenous signals (Chen et al. 2010; 

Jaffard et al. 2008). Proactive control is key to our ability to inhibit our natural tendency to 

couple the eyes and the hand. Thus this region may also play a key role in our ability to decouple 

the eyes and hand. Finally, based on the strong reciprocal connections that the premotor and 

parietal cortices share (Picard and Strick 2001; Matelli et al. 1998; Lu et al. 1994; Luppino and 

Rizzolatti 2000; Geyer et al. 2000; Pandya and Yeterian 1984), information from PMdr may 

provide the parietal lobe with signals necessary to incorporate a rule into the ongoing movement.  

In conclusion, the task-related oscillatory activity in dorsal premotor cortex observed in 

the present study supports necessary but separate roles for rostral and caudal sub-regions in the 

control of non-standard reaching, a behavior performed in everyday life. PMdr activity appears 

to be more involved in integrating the rule-based aspects of a visually-guided reach, while PMdc 

is more involved in the online updating of the decoupled eye and hand movements. We propose 

that dorsal premotor cortex, particularly the rostral portion, plays a crucial role in breaking the 

tight linkage that exists for eye-hand coupling. We also provide physiological data that suggest 

distinct roles for PMdr and PMdc in the control of visually-guided reaching movements. On a 

practical level, these results indicate that caution should be taken when comparing data obtained 

from studies using direct object manipulation to studies using non-standard, decoupled 

target/object interaction.  
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ABSTRACT  

Eye-hand coordination is crucial for our ability to interact with the world around us. 

However, much of the visually guided reaches that we perform require a spatial decoupling 

between gaze direction and hand orientation. These complex decoupled reaching movements are 

in contrast to more standard coupled eye and hand reaching movements in which the eyes and 

the hand are coupled. The superior parietal lobule receives converging eye and hand signals, 

however what is yet to be understood is how the activity within this region is modulated during 

decoupled eye and hand reaches. To address this, we recorded local field potentials (LFPs) 

within SPL from two rhesus macaques during coupled versus decoupled eye and hand 

movements. Overall we observed a distinct separation in synchrony within the lower 10-20 Hz 

beta range from that in the higher 30-40 Hz gamma range. Specifically, within the early planning 

phase beta synchrony dominated, however the onset of this sustained beta oscillation occurred 

later during eye-hand decoupled versus coupled reaches. As the task progressed there was a 

switch to low frequency and gamma-dominated responses, specifically for decoupled reaches. 

More importantly, we observed LFP activity to be a stronger task (coupled vs. decoupled) and 

state (planning vs. execution) predictor than that of single units alone. Our results provide further 

insight into the computations of SPL for visuomotor transformations, and highlight the necessity 

of accounting for the decoupled eye-hand nature of a motor task when interpreting movement 

control research data.   

INTRODUCTION 

Eye-hand coordination is an important aspect of our ability to perform different types of 

visually guided reaches, allowing us to interact with objects in a variety of ways. We can reach 

for objects we are not looking at, manipulate a tool like a joy-stick, and even perform 
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laparoscopic surgery. These types of complex eye-hand coordination tasks usually require the 

location of the eyes and the hand to remain decoupled throughout the movement, a type of action 

referred to as a decoupled, or eye-hand decoupled, reach (Wise et al. 1996). Decoupled reaches 

require an implicit spatial algorithm and/or an explicit cognitive rule to be incorporated into the 

motor plan in order to relate the visual stimulus to the direction of the end effector movement 

(Wise et al. 1996; Murray et al. 2000; Sergio et al. 2009). This differs from the more basic forms 

of visually guided reaches in which the visual object guiding the movement is the spatial target 

of the action itself, referred to as a standard, or eye-hand coupled, reach (Wise et al. 1996). 

Decoupled reaching requires inhibition of the natural tendency to link the actions of the eyes and 

the hand (Gielen et al. 1984; Prablanc et al. 1979; Henriques et al. 1998; Neggers and Bekkering 

2000; Gauthier and Mussa Ivaldi 1988; Morasso 1981; Sergio and Scott 1998; Vercher et al. 

1994; Gorbet and Sergio 2009; Terao et al. 2002), as well as additional processing to calculate 

the new spatial mapping between the eyes and the hand (Sergio et al. 2009; Gorbet et al. 2004; 

Granek and Sergio 2012).  

Although previous human and animal studies have found that performing decoupled 

reaches alters the activity of regions located within the parietofrontal reach network (Battaglia-

Mayer et al. 2001; Prado et al. 2005; Granek et al. 2010; Gorbet et al. 2004; Sayegh et al. 2013; 

Gail et al. 2009; Gail et al. 2009; Hawkins et al. 2013; Andersen et al. 1987; Andersen et al. 

1997; Grafton et al. 1996; Connolly et al. 2000; Hawkins et al. 2012), many of these studies 

focused only on foveated versus extra-foveated reaching (Battaglia-Mayer et al. 2001; Prado et 

al. 2005; Clavagnier et al. 2007; Gail et al. 2009; Andersen et al. 1997). Thus, the specific 

contribution of parietofrontal regions, known to integrate eye and hand information, to the 

control of decoupled but foveated movements is largely unknown.  
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Situated between sensory and motor cortices, SPL integrates eye and hand signals in 

order to successfully calculate the reach vector under sensory guidance (Graziano et al. 2000; 

Vesia and Crawford 2012; Rushworth et al. 1997a; Battaglia-Mayer and Caminiti 2002; Vesia et 

al. 2010; Grefkes et al. 2004; Andersen et al. 1987). Recently, we have found that during an 

identical decoupled reach task, single units within SPL demonstrate a reduction in the mean 

discharge rate during decoupled reach planning and execution (Hawkins et al. 2013). In order to 

fully characterise the contribution of a region to a particular behaviour, analyzing both the single 

units and oscillatory activity will provide a richer repertoire of information than one technique 

alone. While spiking activity is known to reflect supra-threshold inputs or outputs from 

pyramidal cells, LFPs reflects sub-threshold inputs within local cell assemblies (Scherberger et 

al. 2005). In addition, LFP activity is thought to be a better predictor of certain behavioural states 

compared to the activity of single units alone (Mitzdorf 1985; Scherberger et al. 2005; Pesaran et 

al. 2002; Engel and Fries 2010). Thus it is reasonable to suggest that spike and LFP activity each 

carry a different set of information and can therefore be complementary tools for brain analysis 

(Pesaran et al. 2002; Sanes and Donoghue 1993). Finally, because LFP activity has been shown 

to have a stronger relationship with blood-oxygen-level dependent (BOLD) function magnetic 

resonance imaging (fMRI) (Goense and Logothetis 2008; Nir et al. 2007) than single unit 

activity (Fries et al. 2001), the results obtained from LFP studies can help bridge the gap between 

neurophysiological data in animals and human fMRI recordings. The results of the current study 

will thus enrich the findings from our previous report on the single unit activity within SPL, and 

improve our understanding about the computations of SPL in eye-hand decoupled reaches.  

Given the crucial role of the SPL in the integration of vision and proprioception for limb 

guidance, we hypothesize that a spatial decoupling between the actions of the eyes and the hand 
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will affect the neural activity within SPL during reach planning and execution. Decoupling the 

eyes from the hand will provide incongruent eye and hand signals. Thus a greater reliance on 

proprioceptive input will be required during decoupled reaches when the visual information 

about the reach target is inaccurate (Buneo and Andersen 2006; Rushworth et al. 1997a; Engel et 

al. 2002; Flanders et al. 1992; Rushworth et al. 1997b; Nixon et al. 1992). We predict that these 

incongruent eye and hand signals will modulate the LFPs within SPL in a way that differs from 

that which occurs during direct object interaction. An exploratory aspect of the current study was 

to examine how LFP activity in the different frequency bands varies in both the planning and 

execution phases of a decoupled relative to coupled reach. A second aim of this study was to test 

the hypothesis that LFP activity within SPL will vary between the planning and execution phases 

of the movement, when movement control switches from a planning, feedforward, and 

movement inhibition phase, to an execution, proprioceptive feedback and efference copy phase. 

We discuss our findings in the context of other research characterising the alteration of activity 

in the parietofrontal movement control network during the control of complex, rule-based 

behaviours.     

METHODS  

Animals and Apparatus  

Two rhesus monkeys (Female Macaca mulatta, both 5.2 kg) were trained to perform a 

visually instructed delayed reaching task under coupled and decoupled eye-hand conditions as 

described previously (Sayegh et al. 2013; Hawkins et al. 2013). All surgical and  animal handling 

procedures were in accordance with Canadian Council on Animal Care guidelines on the use of 

laboratory animals, and pre-approved by the York University Animal Care Committee.  

During the experiment, the monkey was seated in a custom-built primate chair 40 cm in 
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front of a 38.1 cm vertical screen, which was set at monkey eye level and centered with her 

midline. An additional 38.1 cm horizontal touch sensitive screen (Touch Controls Inc, San Diego 

CA) was set in front of the animal, between the animal’s waist and xyphoid process, so that she 

could reach over the entire surface of the screen comfortably (Fig. 3.1). The horizontal touch 

screen was designed to detect spatial displacements as small as 3 mm using infrared beams, at a 

sampling rate of 100 Hz. Continuous tracking of the eye was monitored using the ISCAN-ETL 

200 Eye Tracking System (ISCAN Inc, Burlington MA) at a sampling rate of 60 Hz. To 

minimize any interference from the non-reaching limb, the animal was trained to maintain its 

non-reaching hand on a metal lever just beyond the lower corner of the horizontal touch screen 

throughout the experiment. Only when the metal lever was depressed would the tasks begin and 

continue. In this way it was ensured that the animal only used the appropriate arm without 

having to forcefully restrain the unused limb. 

Behavioural Task 

The schematic describing the sequence of each trial is shown in Figure 3.1 and is as follows: a 

red circular target (70 mm in diameter) appeared at the center of the screen with an additional 

smaller white circular target (40 mm in diameter; 5.7° of visual angle) on top of it. The monkey 

was instructed to touch the red target and maintain eye fixation on the white target. After a 

baseline period of 500 ms, one of eight green-coloured peripheral targets appeared (70 mm in 

diameter). All eight targets were equally spaced (45°) and appeared randomly, based on a  

randomized-block design. The peripheral target appeared 5 times at each location for a total of 

40 trials per condition. After a variable instructed delay period (IDP, 2000 ms +/- 500 ms, 

Gaussian distribution) the red central target extinguished and the white target jumped to the 

peripheral target. This served as the go signal (GO) instructing the animal to move the eyes and 
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Figure 3.1. Experimental setup and trial timing. A, C, Schematic of the standard condition. B, D, 
Schematic of the decoupled conditions. Arm movements were always made over the horizontal 
touch screen. During each trial, one of eight equally spaced (45°, light grey circles) peripheral 
targets were presented on either a touch-sensitive screen placed over the animal’s lap (A) or on a 
monitor positioned vertically 40 cm away from the animal’s frontal plane (B). Epochs - CHT: 
centre hold time, IDP: instructed delay period, RT: reaction time, MT: movement time, THT: 
target hold time. The baseline epoch came from within the centre hold time epoch.The animal's 
head was fixed throughout the experiment. 
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hand from the central target to the peripheral target (Fig. 3.1). Once the eyes and hand arrived at 

the peripheral target, the monkey was required to hold both the eyes and the hand there for 500 

ms. The movements were made from the middle of the center target to the middle of the 

peripheral target (roughly 80mm, Fig. 3.2Cand D). Visual presentation of the task was identical 

across conditions. In the coupled condition, the actions of the eyes and hand remained congruent. 

The visual presentation of the targets and the reaching movements were both made on the 

horizontal touch-sensitive screen placed in front of the animal (Fig. 3.1A). In the decoupled 

condition, the actions of the eyes and hand were incongruent. The visual presentation of the 

targets was on the vertical screen while the animal’s limb movements remained on the horizontal 

touch screen (Fig. 3.1B). Thus, the animal was required to direct its gaze along the vertical 

monitor but move its hand along the horizontal touch screen in order to displace the cursor from 

the central to the peripheral target. To ensure that the animal did not track its hand position extra-

foveally, an opaque screen was placed 100 mm over the animal’s arm to block vision of the limb. 

For each condition, two epochs during the trial were considered. The delay epoch (IDP) 

comprised of the 500 ms baseline period and the first 2000 ms of the instructed delay period. 

While this epoch length means that a small percentage of trials will include early reaction time, 

we found in preliminary analyses that the results were stable using a longer epoch. The 

movement epoch (MOVE) is aligned to the onset of the reach and is comprised of the last 500 

ms of the instruction delay period and 500 ms after movement onset.  The animals were trained 

to perform similar movements during both conditions and the biomechanical features of the 

reach movements were monitored to insure that the movement profiles were similar between 

conditions. To reinforce similar hand paths between conditions, movement alleys were included 

to ensure that reaches were directed along a fairly straight trajectory (Fig.3.1). These alleys were 
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set at ± 40 mm from a straight line spanning from the central to the peripheral targets. If the 

cursor moved outside of these alleys the trial would stop. To provide feedback on the current 

position of the hand, a cross-hair representing the position of the hand on the touch screen was 

displayed. Muscle activity was also recorded from 13 proximal-arm muscles in separate 

recording sessions. Pairs of Teflon-insulated 50 μm single-stranded stainless steel wires were 

implanted percutaneously. Implantations were verified by passing current through the wires to 

evoke focal muscular contractions (< 1.0 mA, 30 Hz, 300 ms train; (Sergio and Kalaska 2003). 

Multi-unit electromyography (EMG) activity was amplified, band-pass filtered (100-3000 Hz), 

half-wave rectified, integrated (5 ms time bins) and digitized on-line at 200 Hz. The muscles 

studied included the anterior deltoid, medial deltoid, posterior deltoid, dorsoepitrochlearis, 

infraspinatus, latissimus dorsi, pectoralis, supraspinatus, teres major, rostral trapezius, caudal 

trapezius, triceps lateralis, and triceps medialis. These recordings were performed to assess the 

general effects of the coupled and decoupled tasks on EMG activity and were not designed as a 

definitive biomechanical study of the muscle properties.  

 A gaze-only control task, which has been described previously in detail (Sayegh et al. 

2013; Hawkins et al. 2013), was also included in order to determine if the neural activity was 

affected solely by the overall shift in gaze angle. This condition was performed for every 

recording. The visual display consisted of 9 white circles (40 mm in diameter; 5.7° of visual 

angle) that appeared one at a time in the same locations (i.e. one central and 8 peripheral) as the 

white targets that appeared during the experimental conditions. The monkey was instructed to 

fixate on each of these white circles while maintaining both hands beside the horizontal touch 

screen. The white circles appeared in each location 3 times for a total of 27 fixation points for 

each plane.   
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Behavioural analyses 

 To confirm that the movements were biomechanically similar between conditions, hand 

paths were recorded and analyzed. The individual movement paths were first low-pass filtered at 

10 Hz and the movement onsets and endpoints were scored as 8% peak velocity. The movements 

were then divided into 21 equal segments. The five trials for each direction were pooled and the 

mean standard deviations were calculated at each segment along the path for both the coupled 

and decoupled tasks. An equality of variance test was performed between the two conditions on 

the mean X and Y components of the trajectory for each target (Snedecor and Cochrane 1989). 

Mean reaction times (from the GO-signal movement onset) and mean reach velocity (from 

movement onset to the end of the movement) were also calculated for each condition and paired-

samples t-tests were performed to compare reaction times and velocity between the coupled and 

decoupled conditions. Repeated measures ANOVAs were performed on the EMG data during 

the IDP and MOVE epochs for each muscle recorded in order to determine the effect of target 

(reach direction) and condition (coupled vs. decoupled) on maximum EMG amplitude. It was 

expected that reach direction would have an effect on EMG amplitude, but task condition would 

not. 

Neural Recordings  

 Monkeys were implanted with a recording cylinder under standard aseptic surgical 

techniques (Kalaska et al. 1989). The stereotaxic coordinates for chamber placement over SPL 

(Monkey A, Interaural; A: -12.30 mm, L: 18.40 mm and Monkey B, Interaural; A: -7.80 mm, L: 

00.00 mm, Fig. 3.2A and B) were determined using The Rhesus Monkey Brain in Stereotaxic 

Coordinates (Paxinos et al. 2000). Space limitations for Monkey A, due to a previously 

implanted premotor chamber and a posterior head-post, required the chamber to be positioned on 
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a 25° angle in order to allow access to the desired brain regions through deep electrode 

penetrations in the medial-anterior quadrant of the chamber (Fig. 3.2A and C). Thus, while the 

surface entry points are more rostral, the angle and depth of the electrodes provided access to 

neurons from within the medial intraparietal sulcus. A hydraulic multi-channel driver (MCM-4, 

FHC inc., Bowdoin ME) mounted to the implanted chamber was used in conjunction with a 

multi-channel processing system (MCP, Alpha-Omega Engineering, Israel). The multidriver 

provided simultaneous recording from up to two electrodes at a time and allowed us to examine 

the local field potential (LFP) collected at each electrode site. Neural activity from each 

electrode was pre-amplified (5000x) band-pass filtered (1 Hz-10 kHz) and split into lower (LFP) 

and higher (single units) frequencies. Higher frequency signals were sampled at 12.5 kHz and 

spikes of single units were sorted using template matching (Hawkins et al. 2013). The LFP 

(below 100 Hz) was sampled at 390.6 Hz. Following the completion of all experiments, 

anatomical brain images of both animals were obtained using a 3T Siemens Tim Trio MRI 

scanner to verify chamber location (T1-anatomical, FOV: 131 x 122.8 mm, TR: 2300 ms, TE: 

3.54 ms, Flip Angle: 9 degrees). 

Data analyses  

Local field potentials 

All successfully recorded LFP sites were used for all of the analyses reported in this k  

paper. Open source Chronux script files were used in MATLAB (The Mathworks, Inc., Natic 

MA) to analyze the spectral data and to generate time-frequency spectrograms for all 

penetrations in both conditions (Pesaran et al. 2002; Jarvis and Mitra 2001). To estimate the 

frequency structure of the LFP activity, we used the multitaper spectrum analysis (previously 

described in (Pesaran et al. 2002; Jarvis and Mitra 2001)). The multitaper estimates of the 
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Figure 3.2. Penetration sites for monkey A (A) and monkey B (B). Larger dots indicate where 
recordings were obtained on two occasions. CS, central sulcus; IPS, intraparietal sulcus. Arrows 
show anterior, posterior, medial, and lateral directions; dotted line denotes division between 
penetration sites classified as rostral (left of line) or caudal (right of line). C and D: MRI images 
representing chamber location for monkey A (C) and monkey B (D). The level of the slice is 
represented by the dashed line in A and B. PEc, superior parietal lobule area (caudal portion); 
MIP, medial intraparietal area (posterior parietal cortex). E and F: represent the mean reach 
trajectories for monkey A (E) and monkey B (F). Black lines represent the mean movement 
trajectories; black tick marks represent the standard deviations. Gray asterisks denote trajectory 
segments that were significantly (P  < 0.05) more variable compared with the standard condition. 
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spectrum Sx(f) were calculated for each recording (Scherberger et al. 2005; Pesaran et al. 2002).  

Normalizing to a baseline period was necessary to directly compare between conditions, 

therefore the spectrum for each site was z-transformed to its own baseline period centered on the 

final 350-500 ms of the baseline window, which reflected the most stable time window prior to 

directional cue onset (averaged across trials) (See fig. 3.3D). Spectrograms were then calculated 

using a 500 ms window shifted in 20 ms increments with a 6 Hz frequency resolution. Currently 

there is some discrepancy regarding the relationship of high frequency gamma activity with 

spiking activity. While some research suggest that a strong relationship exists (Ray and Maunsell 

2011; Zanos et al. 2012; Zanos et al. 2011), others suggest a difference between spiking and high 

gamma activity (Pesaran et al. 2002; Flint et al. 2012).  To remain consistent with our previous 

work we decided to only include data from below 60 Hz (Sayegh et al. 2013). 

 To determine significant task related differences (at a P <0.05 alpha level), the 

normalized spectra from each trial for each electrode site was calculated. The average spectral 

value across each time-frequency bin was determined for each condition. A bootstrapping 

permutation test (Sayegh et al. 2013; Hawkins et al. 2013; Sergio and Kalaska 2003) was used to 

assess whether the difference in power between the two conditions was significant. According to 

the null hypothesis, power would be the same irrespective of condition (coupled/decoupled), as 

such the observed difference in mean power would not exceed the 95% confidence limits of a 

distribution of differences in LFP power. The difference distribution is obtained by shuffling 

(permuting) the condition assignment of each trial, taking the power difference, then repeating 

this 1000 times. To depict the regularity of significant differences for each time and frequency 

bin across the population of SPL sites, we generated a color plot mapping the proportion of sites 

showing significant differences at a given point in time and a given frequency. A Receiver-
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operating characteristic (ROC) analysis was performed on the spectrum to measure the 

discriminability of two alternatives by an ideal observer. Here, we calculated the probability of 

an ideal observer correctly predicting the behavioural epoch (IDP versus MOVE) and of 

correctly predicting the task (coupled versus decoupled). ROC values were determined across the 

population of sites (N=44) using the normalized power values at each time and frequency band 

used to generate the average spectra. To determine the ROC values for predicting the state of the 

animal (planning versus execution) we pooled the ROC values from each condition for each 

epoch separately.    

Lastly, we analysed the oscillatory activity in the gaze-only condition to determine if the 

overall shift in gaze angle that occurred from viewing the stimuli in two different planes had an 

effect on the oscillatory activity within SPL. The mean power (0-70 Hz) at each gaze location 

was calculated from a 500 ms window while the animal was fixating at each target. Within each 

condition, the mean power across the nine target locations was computed. The permutation 

procedure described above was used to assess whether the difference in power between the two 

gaze planes could have occurred by chance. 

Single Units  

A single unit analysis was previously described elsewhere (Hawkins et al. 2013), 

however a subset of the data was selected for a distinct analysis in this study. See (Hawkins et al. 

2013) for details on single unit isolation and task-selective analysis. Cells that were directionally 

tuned to the epoch of interest were selected and mean firing rates were normalized to individual 

baseline firing rates. Baseline firing rates were calculated as the mean firing rate during the first 

300 ms of each trial when the animal was instructed to hold their hand at the central target. This 

generated a normalized firing rate for comparison with the LFP data, which were also 
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normalized to the same baseline time period. Significant task related differences were 

determined by performing paired-samples t-test between the spike rates during each condition. 

As was done for the LFP data, single units were tested in the gaze-only condition to assess the 

effect of the viewing plane on spike activity. Lastly, an ROC analysis was performed on the 

firing rates of all task-related single units. Area under the curve (AUC) values were determined 

across the population of cells (N=26, IDP epoch; N=17, MOVE epoch) using a sliding window 

analysis with the same timing as that used for the LFPs. We compared the firing rates of each 

cell during the coupled versus decoupled conditions to generate ROC values for task probability.  

To determine the ROC values for predicting the behavioral state (planning versus execution) we 

pooled the firing rate for each condition and compared across epochs.  

RESULTS 

Behavioral Results 

To ensure that task related differences in the neural data were not a result of differences 

in the movement of the hand we compared the hand trajectories between the two conditions.    

Our comparisons confirm that the kinematic and electromyographic features of the limb 

movement between task conditions were not significantly different. Therefore we can interpret 

the task-related differences in the neural data as being due to rule-processing rather than motor 

behaviour. The use of alleys helped support the animal in maintaining similar hand trajectories 

during both conditions (see methods). Figure 3.2C and D shows the mean reach trajectories 

during both conditions for each animal. Except for a few segments, there were no significant 

differences in the extent or variability of the reach trajectories between coupled and decoupled 

conditions (P>0.05). To analyze reach kinematics the mean reach velocity was calculated for 

each animal and no significantly different between conditions was observed (P  > 0.05). An 
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analysis of the EMG data revealed that for 11 of  13 muscles there was no main effect of 

condition during the IDP and MOVE  epochs (p>0.01). For two muscles, medial deltoid and 

teres major, there was a marginal effect of condition on EMG activity during the IDP period 

(0.05>p>0.01). This may have been due to a slight alteration in the animals’ starting posture in 

reaction to the board placed over their arm in the plane dissociation condition. There was, as 

expected, a main effect of target for all proximal arm muscles studied during the movement 

epoch (p<0.01). Lastly, reaction times between the coupled (M = 537.9 ms, SEM +/- 12.82) and 

decoupled (M = 522 ms, SEM +/- 9.89) conditions were also not significantly different (t (45) = 

.927, p = 0.359). Taken collectively, these results strengthen the conclusion that any neural 

differences observed between conditions are not a direct result of changes in the kinematics or 

biomechanics of the reaching movement, but rather the neural control of the movement. 

Neural results 

We obtained 44 LFP recordings from SPL (28 from monkey A, 16 from monkey B; Fig. 

3.2). All successfully recorded LFP sites were used for the analysis of this project. In addition, 

91 single cells were recorded during each condition, of which only 41 (45%) were found to be 

task-related (see (Hawkins et al. 2013). In line with our first hypothesis, the neural activity 

within SPL, both at the single cell and LFP level, changed between conditions. In support of our 

second hypothesis we observed that the magnitude of these changes varied with behavioural 

epoch.   

Task related differences during IDP epoch 

We observed salient differences in the oscillatory activity within SPL during coupled 

versus decoupled reaches (example site, Fig. 3.3). Specifically we observed strong synchrony 

within the 10-20 Hz beta frequency band shortly after peripheral cue onset for each site (Fig. 



101 

 

3A). The signal is more easily seen in Figure 3.3C for both conditions. This was consistent 

across the population (Fig. 3.4A-C). Importantly, there was a delay in the oscillatory activity 

within this range during the IDP of decoupled relative to coupled reaches (10-20Hz, compare 

Fig. 3.4A to B). Figure 3.4C shows the number of sites within the population that showed 

significant task-related differences (P < 0.05). The heightened beta synchrony in the coupled 

condition emerged more quickly after directional cue onset than that observed during the 

decoupled condition (Fig. 3.4D). As the task progressed, these differences diminished so that by 

approximately 500 ms into movement planning, power within the beta band was 

indistinguishable between conditions. In concert with the 10-20 Hz IDP oscillation, we also 

observed a reduction in the mean firing rate of single cells during this epoch in the decoupled 

condition relative to the coupled one (Fig. 3.5A, P < 0.05). Furthermore, similar to the 

oscillatory activity results (Fig. 3.4D), as the task progressed this difference in mean firing rate 

was no longer significant (Fig. 3.5A, P > 0.05). We also observed a reduction of gamma-band 

activity for both conditions following the peripheral cue onset (Fig. 3.4A and B). This gamma 

band reduction was stronger during the coupled relative to the decoupled condition (Fig. 3.4D). 

As the task progressed, gamma synchrony continued to increase during the IDP, and continued to 

be stronger in the decoupled condition, right up until the GO cue that signaled the beginning of  

the MOVE epoch. 

Task related differences during MOVE epoch 

Whereas 10-20 Hz beta synchrony in SPL dominated the IDP, by movement onset this 

pattern shifted to reveal even stronger synchrony that was focused in the gamma (>25 Hz) and 

low frequency (< 10 Hz) bands (Fig. 3.3B, Fig. 3.4E-G). Across the population, a clear 

enhancement in oscillatory power within the low-frequency band occurred roughly 200 ms 
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 Figure 3.3. Example recordings for SPL. A, Example broadband LFP during IDP epoch (left 
panels) and MOVE epoch (right panels) for both conditions. Black line indicates peripheral 
target (IDP epoch) or movement onset (MOVE epoch). B, Example time-frequency 
spectrograms of oscillatory activity during each epoch and condition. Black vertical lines 
represent the onset of the peripheral cue (IDP epoch) and movement onset (MOVE epoch). C, 
Example spectral power during the IDP and MOVE epochs demonstrating similarity between 
animals. D, Number of sites that show a significant difference for each frequency range across 
the baseline period (P < 0.05). The baseline used for z normalization was taken in the later part 
of the epoch, when the condition-specific effects had dissipated. Color bar represents number of 
sites.  
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 Figure 3.4. Population time-frequency spectrograms of oscillatory activity during the IDP and 
MOVE epochs. A, B, Population spectrograms of activity during the IDP epoch for standard (A) 
and decoupled (B) conditions. Power is color-coded on a log scale. C, Proportion of sites that 
show a significant difference for each frequency range across the IDP period (P < 0.05). Color 
bar represents number of sites. D, Population mean normalized z-scores for beta band activity 
(10-20Hz). Dark shaded region represent significant difference between conditions, P < 0.05. 
Blue and red shading represent jackknife error bars for standard and decoupled conditions. E,F 
Same as A and B for MOVE epoch during standard (E) and decoupled (F) conditions. G, Same 
as C for MOVE epoch. H, Same as D for low (10Hz) and  high (30-40Hz) frequency activity. 
Black vertical lines indicates peripheral target onset during IDP epochs and movement onset 
during MOVE epochs. 
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before the onset of the reach movement (Fig. 3.4E and F). Furthermore, this activity was stronger 

during decoupled compared to coupled reaches (Figure 3.4H, P > 0.05). Prior to movement 

onset, during the late planning phase of the reach, many sites also showed significant alterations 

in the gamma frequency band (30-60 Hz, Figure 3.4E-G). As the task progressed, gamma band 

activity became stronger and similar to the IDP epoch, the 30-40 Hz low gamma band was 

significantly enhanced during the decoupled compared to the coupled condition (Fig. 3.4G and 

H, P > 0.05). Figure 3.4G shows not only the timecourse of the gamma recovery at the end of the 

IDP/beginning of the MOVE epoch, but also that the low-gamma power is stronger and occurs 

earlier in the decoupled condition (Fig. 3.4G,H). In summary, as the end of the delay approaches 

and reaching behaviour progresses from planning a decoupled reaching movement to executing 

one, a significant enhancement in the oscillatory power under 10 Hz and in the low-gamma band 

occurs relative to that observed during coupled reaches. In support of the LFP findings, we also 

observed an enhancement in the mean discharge rate of single units within SPL during decoupled 

reaching relative to direct target interaction, albeit at a slower timecourse that begins after the 

start of the MOVE epoch (Fig. 3.5B, P<0.05).  

Task probability estimates 

We calculated the average ROC probability for each site in predicting the correct 

condition (coupled versus decoupled) and behavioural state (planning versus execution) of the  

animal. Whereas the lower beta band range (10-20 Hz) was a dominant oscillatory frequency 

across conditions, our results showed that the greatest task predictability (coupled/decoupled) 

was within the low-gamma frequency range (30-40Hz) during both the planning (Fig. 3.6A and 

B) and movement epochs (Fig. 3.6C and D). Furthermore, oscillations within the gamma band 

showed stronger task predictability than the single units, specifically during the late planning 
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Figure 3.5. Mean normalized firing rates of single cells during the IDP epoch (A) and MOVE 
epoch (B). Black lines represent peripheral cue onset during the IDP epoch (left panels) and 
movement onset during the MOVE epoch (left panels). Asterisks denote significance, P < 0.05. 
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phase (Fig. 3.6 B and D). Thus gamma band activity was a better predictor of the type of reach 

the animal was performing. In contrast to the task discrimination, the behavioural state of the 

animal was most strongly discriminated by the 10-20 Hz frequency band (AUC = 0.8861, 

planning versus execution), compared to that of spiking (AUC = 0.5277) or low-gamma band 

activity (AUC = 0.6715). In summary, although gamma-band activity was good at predicting the 

type of reach the animal was performing, beta-band activity was better at predicting the 

behavioural epoch, providing a reliable signature of the delay epoch. These results support the 

idea that oscillatory activity carries a richer set of information than single unit firing rate alone.  

Gaze-related differences 

 Performance during each condition required arm movements that were biomechanically 

similar (Fig. 2C and D), however, the overall eye-in-head angle shifted between conditions 

equivalent to the gaze angle since the head was fixed in place. To ensure that the task-related 

differences we observed were not a direct result of this change in gaze angle, we recorded and 

analysed the neural activity during a gaze-only condition (see methods). No change in single unit 

mean discharge rate occurred within SPL, as previously reported (Hawkins et al. 2013). 

Similarly, we found no effect of gaze plane on any frequency range of the oscillatory activity 

within SPL (Fig. 3.7, P > 0.05).   

DISCUSSION 

Patient data and limited imaging studies suggest that parietal and premotor areas are 

crucial to the control of goal-directed voluntary movement, and may contribute to eye-limb 

coordination under conditions requiring cognitive rule integration. How key nodes within this 

network help to accomplish goal-directed voluntary movement in the face of decoupled gaze- 

hand mapping is not yet understood. The vast amount of research available on SPL activity has 
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Figure 3.6: ROC task probability estimates during the IDP (A) and MOVE (C) epochs.  Color 
plots denote task probability values. B, D, Mean population ROC task probability estimates for 
spikes (gray line) and LFPs (black lines). Black vertical lines represent onset of the peripheral 
cue during the IDP epochs or movement onset during the MOVE epochs. 
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Figure 3.7: Gaze control condition. Mean amplitude and standard deviation during standard and 
decoupled conditions. Bootstrapping methods revealed no significant difference in overall 
activity between conditions for each region (P = 0.50 for 0-10 Hz, P = 0.81 for 10-30 Hz, P = 
0.15 for 30-45 Hz, P = 0.06 for 45-70 Hz).  
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demonstrated its importance in the general representation of posture and movement of the body 

and eyes for visuomotor transformations (Kalaska et al. 1997; Kalaska 1996; Caminiti et al. 

1998; Andersen et al. 1997; Breveglieri et al. 2006). Specifically, the SPL is thought to be 

involved in transforming sensory information into the appropriate reference frames to guide hand 

movements (Batista et al. 1999; Buneo et al. 2002; Vesia and Crawford 2012; Galletti et al. 

2003; Kalaska et al. 1983). Regions within SPL are important in the planning and execution of 

goal-directed reaches (Prado et al. 2005; Galletti et al. 2003; Culham et al. 2006; Colby and 

Goldberg 1999; Colby 1998; Galletti et al. 1999)maintaining an internal representation of ones 

body in the surrounding space (Mountcastle et al. 1975; Breveglieri et al. 2006), and calculating 

the reach vector from the initial hand position (Vesia et al. 2010; Eskandar and Assad 1999). 

Taken collectively, while it is known that SPL shows reach-related activity, our investigation 

into the oscillatory and single unit activity within SPL demonstrates that this activity varies 

depending on the type of visuomotor transformation being performed, specifically between the 

different stages of the movement. The oscillatory activity during the IDP, a period concerned 

with planning and holding the motor plan in working memory, was dominated by synchrony 

within the 10-20 Hz frequency range. This activity was specifically evident during the coupled 

transformation, while, in contrast, the contribution of 10-20 Hz oscillations to the decoupled IDP 

seemed to be disrupted, at least in the early part of the epoch. As the task progressed we 

observed a clear distinction in the role of SPL to the planning versus the execution of a 

decoupled motor act. By late planning and movement onset there was a switch in low frequency 

and gamma-dominated response, specifically for decoupled reaches. This switch may represent 

the increased reliance on proprioceptive inputs and online control mechanisms required during 

decoupled eye-hand coordination (Battaglia-Mayer and Caminiti 2002; Battaglia-Mayer and 
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Caminiti 2002).  

Planning a decoupled reach: Decreased neural activity within SPL 

The planning of a decoupled reaching movement produced a significant delay in the 

dominant beta oscillation (10-20 Hz) and single cell activity within SPL when compared to 

coupled reach planning. Previous work into the contribution of SPL to the planning of visually-

guided reaches has shown that cells within this region receive converging information from the 

eyes, as visual feedback, and the arm, as proprioceptive feedback (Kalaska 1996; Kalaska and 

Crammond 1995b). As a result, it has been suggested that the regions within SPL preferentially 

represent automatic or sensory driven reaching movements (Gail et al. 2009; Pisella et al. 2000; 

Desmurget et al. 1999). Coupled reaching movements that involve direct interaction with objects 

of interest are innate and natural to produce, while decoupled reaching movements are not innate 

and must be learned over time (Sergio et al. 2009; Bo et al. 2006; Piaget 1965). Successfully 

decoupling the action of the eyes from that of the hand will demand inhibition of our natural 

tendency to couple them, thus increasing the processing that must occur to incorporate the 

transformational rule into the motor plan (Sergio et al. 2009; Gorbet and Sergio 2009).  

Sub-gamma frequencies (<30Hz), including beta oscillations, are primarily observed 

within the infragranular layers of a region and thus are suggested to reflect feedback projections 

to from distant signals or involved in ‘top down’ neural processing (Maier et al. 2010; Bosman et 

al. 2012; Bastos et al. 2012) . This is in contrast to neuronal synchrony and spike-field coherence 

in the gamma range which are observed in the superficial and granular cortical layers of a region 

and thus suggested to reflect ‘bottom up’ processing (Engel and Fries 2010; Bastos et al. 2012; 

Donner and Siegel 2011; Siegel et al. 2012; Brovelli et al. 2004; Buschman et al. 2012). This 

idea is further supported by recent work into the functional role of beta oscillations by Engel and 
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Fries (2010). They suggest that beta oscillations signal the current behavioural state, or the 

‘status quo’, by promoting preferential or top-down processing of that state (such as the motor 

plan) (Scherberger et al. 2005; Pesaran et al. 2002; Engel and Fries 2010). In the present study it 

is important to clarify the different uses of the word feedback/feedforward. In the movement 

control sense, feedback refers to updating the current state of the system using incoming sensory 

information once the movement has begun. In the neural anatomical sense, top-down types of 

anatomical feedback are thought to modulate typical integration or processing of incoming 

signals into a given region, as may occur following memory, attention, context, or voluntary 

inhibition of a typical response.  

Our results demonstrate 1) enhanced beta synchrony during the delay epoch, and 2) a 

delay of this oscillation during decoupled reaches. Based on the observations that SPL integrates 

eye and hand signals from various regions of the brain (Graziano et al. 2000; Battaglia-Mayer 

and Caminiti 2002), the appearance of beta may be a signal to indicate that the behaviour has 

been planned successfully, possibly as a ‘hold’ signal to maintaining the current motor plan. 

Indeed others have observed increases in beta band activity during working memory paradigms 

(Pesaran et al. 2002) when the motor plan would need to be held. Beta coherence has also been 

observed between area 5 and M1 during movement hold (Witham et al. 2007) and enhanced beta 

synchrony is associated with motor slowing in healthy (Pogosyan et al. 2009) and Parkinsonian 

patients (Schnitzler and Gross 2005). In addition beta band activity shows strong state (planning 

versus execution) predictability (see section below, Pesaran et al. 2002).   

Our observation of a delay in beta synchrony during decoupled reaching movements may 

indicate that eye-hand segregation leads to a neural interference or a delay of this top-down 

control over movement planning. Indeed the incongruent eye and hand signals will demand 
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additional processing to incorporate the new spatial transformation into the motor plan (Gorbet 

and Sergio 2009), as discussed below. The additional processing would require more time to 

calculate the transformed reach vector and incorporate the new spatial transformation between 

the eyes and the hand, a requirement that may be reflected in the delayed beta band and single 

unit activity observed here. These results also support a functional role for beta in the planning of 

visually guided movements, possibly as a signal for indicating the maintenance of an already 

established movement plan prior to execution.  

In contrast to the task-related beta band differences, we observed gamma band synchrony 

that was reduced during the delay of coupled compared to decoupled reaches. Previous reports 

have observed enhanced gamma synchrony within early sensory areas during active sensory 

processing, whereas alpha/beta band synchrony is generally reduced. Proprioceptive information 

arising from the somatosensory cortex and visual information arising from the primary visual 

cortex terminate in the superficial layers of SPL (Pandya and Seltzer 1982; Rockland and Pandya 

1979), where gamma oscillations often dominate (Maier et al. 2010; Bosman et al. 2012; Bastos 

et al. 2012). The incongruent signal between eye and hand locations will require additional 

processing between parietal and frontal regions (Matelli and Luppino 2001; Geyer et al. 2000; 

Gorbet and Sergio 2009) so that the correct relative position code can be calculated to guide the 

eyes and the hand to their new appropriate spatial locations. The extra reliance on proprioceptive 

and visual signals is important in calculating the spatial transformation required for decoupled 

reach, and we propose that the increase in gamma synchrony is a reflection of this extra-reliance, 

relative to a coupled reach.  

Executing decoupled reaches: enhanced SPL activity 

As the trial progresses, the pattern of neural activity shifts to one of enhanced activity 
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during the execution of decoupled reaches. This shift occurs prior to movement onset in the low-

frequency (5-10 Hz) and low-gamma oscillations (30-40 Hz) within SPL. Note here that the 

clearly delineated bands of activity do not fall strictly within typical EEG bands; namely, our 

‘beta’ covers the high alpha range (10 Hz), and our time resolution during the MOVE epoch 

prohibits a clear delineation within low-frequency bands (e.g. delta from theta and even lower 

alpha).  

During visually-guided reaching movements, SPL receives information to maintain an 

updated representation about the relative position between the hand and the reach goal in eye-

centered coordinates (Buneo and Andersen 2006; Rushworth et al. 1997a; Jackson et al. 2009; 

Wolpert et al. 1998). The rapid online updating about limb position relies on forward model 

predictions that combine efference copy motor commands, sensory feedback (visual and 

proprioceptive), and an internal model regarding the dynamics of the arm (Buneo and Andersen 

2006; Vesia and Crawford 2012; Battaglia-Mayer et al. 2012; Wolpert et al. 1998; Desmurget 

and Grafton 2000; Desmurget et al. 1999). During coupled eye and hand reaches, the visual and 

proprioceptive information regarding the location of the limb and its relative position to the reach 

target are in alignment and thus provide equally accurate information. During decoupled 

reaching movements, SPL is receiving mismatched visual and sensory information. Thus in order 

for SPL to maintain an updated representation of the position of the hand relative to the target the 

hand position must be derived predominantly from proprioceptive feedback and efference copy 

information (Buneo and Andersen 2006; Rushworth et al. 1997a; Engel et al. 2002; Flanders et 

al. 1992; Rushworth et al. 1997b; Nixon et al. 1992). Numerous research studies suggest that a 

reach performed under visually reliable situations is controlled in eye-centered coordinates 

(Buneo and Andersen 2006; Vesia and Crawford 2012). However, when visual information is 
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unreliable, a limb-centered posture defined coordinate system must be used to control the reach 

(Batista et al. 1999; Buneo and Andersen 2006; Rushworth et al. 1997a; Jackson et al. 2000; 

Pellijeff et al. 2006; Jackson et al. 2009). Within SPL the frames of references used to plan and 

control reaching movements are highly flexible and task specific (Buneo et al. 2002; Battaglia-

Mayer and Caminiti 2002; Battaglia-Mayer and Caminiti 2002; Newport et al. 2006). In addition, 

damage to the SPL results in misreaching due to proprioceptive deficits that impair the 

integration of visual and proprioceptive information (Blangero et al. 2007). Together these 

results suggest that during a decoupled, context dependent visuomotor transformations the 

reliability of the visual information provided could influence how the updated limb state is 

determined (Buneo and Andersen 2006). However future investigations specifically designed to 

test this hypothesis will need to be conducted in order to address this suggestion.  

As previously stated, proprioceptive inputs from sensorimotor cortex terminate in the 

superficial layers of SPL (Pandya and Seltzer 1982; Rockland and Pandya 1979) where gamma 

oscillations dominate (Maier et al. 2010; Bosman et al. 2012; Bastos et al. 2012).  If executing a 

decoupled reach relies more heavily on proprioceptive and efference copy processing versus a 

coupled reach, than enhanced gamma-band activity during these types of movements are not 

surprising. This also helps to explain the progressive increase in gamma band synchrony 

observed in the current study as the trial progresses. In order to maintain an updated 

representation regarding the current state of the limb, SPL must be able to incorporate 

proprioceptive feedback into the ongoing motor command (Buneo and Andersen 2006; 

Rushworth et al. 1997a; Jackson et al. 2009; Wolpert et al. 1998). The reciprocal communication 

between parietal and frontal structures (such as PMd) are likely critical to the incorporation of an 

updated estimate regarding limb position to the current motor plan throughout movement 
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execution (Wise et al. 1997; Matelli et al. 1998; Luppino and Rizzolatti 2000; Geyer et al. 2000). 

Since alpha/beta synchrony has been suggested to reflect top-down, feedback processing (Maier 

et al. 2010; Bosman et al. 2012; Bastos et al. 2012), one possibility is that the enhanced low 

frequency synchrony (10 Hz), observed in the present study, could signal the maintenance of the 

updated limb estimates to the motor plan. This is also supported in the ROC analysis, which 

demonstrates beta band activity to be the strongest predictor of behavioral state (see Probability 

estimates section,). Future studies examining the synchrony between parietal and premotor 

structures during decoupled reaches would need to be conducted in order to address this 

possibility.  

Probability estimates  

In addition to characterizing the oscillatory activity within SPL during different types of 

reaching movements, we also looked at the receiver-operating characteristic for task epoch and 

condition probability estimates. We found that oscillations within the beta and gamma bands 

showed either strong task epoch or strong condition predictability. Gamma-band activity, and to 

a lesser extent single units, were a stronger predictor of which condition the animal was 

performing (coupled versus decoupled) than beta-band activity. In contrast, beta-band activity 

was observed to be a better predictor of the behavioural state of the animal (i.e. task epoch -

planning versus execution) than spikes and gamma band activity. Previously, Pesaran (2002) and 

others have found that they could decode the behavioural state of the animal (planning versus 

execution) more reliably with beta band activity, while gamma band and single unit activity 

could reliably be used to decode the movement direction (Scherberger et al. 2005; Pesaran et al. 

2002; Engel and Fries 2010). Previous work by Battaglia-Mayer and colleagues has 

demonstrated that SPL neurons combine different eye and hand information into a global-tuning 
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field, representing different frames of reference for eye-hand coordination (Battaglia-Mayer et al. 

2001; Battaglia-Mayer and Caminiti 2002). This idea fits with Pesaran’s (2002) conclusion that 

gamma band and single unit activity carry information about movement direction, which alters 

the relative position of the eyes and the hand. Similarly, our finding that gamma band and single 

unit activity carry information about which condition is being performed is in agreement with 

these findings. Performance of the decoupled task required an overall shift in the relative 

position of the eyes and the hand. These results support the idea that SPL activity is modulated 

by different types of reaching movements. In addition it supports previous work that has found 

LFP activity to carry a richer set of information than single units alone. 

Conclusion 

The current report supports and expands upon recent work demonstrating that different 

types of visually-guided reaching movements alter the activity of regions within the 

parietofrontal reach network. Although the role of SPL in reach planning and execution is well 

understood, its role in decoupled visuomotor transformations has not been thoroughly studied. 

The current work presented here supports the role of SPL in decoupled reach planning and 

execution. Specifically, we suggest that because of the nature of decoupled reaching movements, 

decoupling the action of the eyes from that of the hand will alter the weight of proprioceptive 

feedback and online monitoring required during a decoupled relative to a coupled movement. 

This increased reliance on prioprioceptive and efference copy information will manifest itself as 

enhanced neural processing (increased firing rate and activity) during the movement and 

suggests that SPL may have a prominent role in providing ongoing proprioceptive and efference 

copy information about the hand. 
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ABSTRACT  

Humans are able to exhibit a wide range of motor behaviours, most of which involve an 

interaction with a visual object. Eye-hand coordination, crucial for our ability to interact with the 

world around us, has become more complex throughout our evolution. In many circumstances, 

successful interaction with an object requires a spatial decoupling between gaze direction and 

hand motion. This differs from more natural types of reaches that couple the eyes and the hand 

towards the same spatial target. Reaching movements rely on brain regions located within the 

parietofrontal reach network. Importantly, decoupled -but not coupled- reaches are affected 

during certain neurological conditions, and are known to only develop later in childhood. 

Recently, we have shown that different sub-regions within SPL and PMd are altered during 

different types of visually guided reaching movements. To fully characterize these results, we 

measured the spike-field coherency within region of SPL and PMd while monkeys performed 

coupled versus decoupled visually guided reaches. We were specifically interested in quantifying 

how these regions select and transmit information required to integrate sensory and rule-based 

information for motor performance. We observed stronger spike-field coherence within PMdr 

and superficial regions of SPL during decoupled reaches while PMdc and deeper regions of SPL 

hand stronger coherence during coupled reaches. These results were supported by an imaging 

literature review on human fMRI data. Our results support the proposal of altered cortical control 

during complex eye-hand coordination and highlight the necessity to account for the different 

eye-hand compatibilities in motor control research.  

INTRODUCTION 

 The brain's ability to perform various types of visually-guided reaches enables our 

various interactions with objects around us. . The core network of brain regions that support 
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these diverse set of behaviours includes the dorsal premotor (PMd) and superior parietal lobule 

(SPL), highly interconnected regions that are part of the parietofrontal reach network (Sergio et 

al. 2009; Kalaska et al. 1998; Battaglia-Mayer et al. 2001; Caminiti et al. 1999; Prado et al. 2005; 

Granek et al. 2010; Gorbet et al. 2004; Picard and Strick 2001; Wise et al. 1997; Johnson et al. 

1996; Gail et al. 2009; Grafton et al. 1996; Connolly et al. 2000). The most basic, natural reach 

we can perform couples eye and hand movements to the same spatial location, commonly 

referred to as a standard, coupled reach. However, many of our interactions require a spatial 

decoupling of eyes and hand targets (Wise et al. 1996). These non-standard decoupled reaches 

require some form of training to learn the necessary visuomotor transformation (Sergio et al. 

2009; Bo et al. 2006; Piaget 1965). Recently, we and other groups have demonstrated that 

dissociating the eye from the hand alters the cortical activity of regions such as PMd and SPL, 

through psychophysical (Granek and Sergio 2014; Gorbet and Sergio 2009), imaging (Prado et 

al. 2005; Clavagnier et al. 2007; Granek et al. 2010; Gorbet et al. 2004; Connolly et al. 2000), 

neurophysiological (Sayegh et al. 2013; Gail et al. 2009; Hawkins et al. 2013; Sayegh et al. 

2014) and patient (Granek et al. 2012; Granek et al. 2013) work. Further, rostral PMd and 

regions located within the caudal-superficial portion of SPL have been suggested to have  a 

strong role in the visuomotor transformations necessary during decoupled reaches (Prado et al. 

2005; Granek et al. 2012; Battaglia-Mayer et al. 2012; Sayegh et al. 2013; Perenin and Vighetto 

1988; Blangero et al. 2007; Rossetti et al. 2005; Pisella et al. 2009; Pisella et al. 2000; Grea et al. 

2002; Granek and Sergio 2014; Hawkins et al. 2013). Caudal PMd and deeper regions of SPL, 

however, seem to preferentially process coupled reaches (Prado et al. 2005; Sayegh et al. 2013; 

Hawkins et al. 2013).   

While advancing our understanding of how parietal and frontal regions contribute to 
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visuomotor transformation, most research has focused on characterizing the activity of single 

units or local field potentials (LFP) alone. What is lacking is a comprehensive view of the local 

computations within these regions and, importantly, how they change to accommodate the 

different types of reach behaviours. The present study examined the relationship between the 

spikes to the field. We measured the spike-fieldcoherency (SFC) within sub-regions of PMd and 

SPL to determine how the coordination of neural activity changed during coupled versus 

decoupled reaches. SFC measures the communication between neuronal groups that are 

processing task-related information, enabling inputs to have a greater impact on the local 

population (Womelsdorf and Fries 2006; Fries 2005; Roberts et al. 2013). Regions exhibiting 

strong neuronal coherency during movement are thought to promote the selection and 

transmission of information required to integrate sensory information for motor performance 

(Womelsdorf and Fries 2006; Fries 2005). Here we demonstrate that coherency in all regions 

examined is affected by the type of visuomotor mapping performed. 

METHODS  

Animals and Apparatus  

The methods for this study have been extensively described elsewhere (Sayegh et al. 

2013; Hawkins et al. 2013). Briefly, two rhesus monkeys (Female Macaca mulatta, both 5.2 kg) 

were trained to perform a visually instructed, delayed reaching task in coupled and decoupled 

conditions. All surgical and animal handling procedures were in accordance with Canadian 

Council on Animal Care guidelines on the use of laboratory animals, and pre-approved by the 

York University Animal Care Committee. Each monkey was seated in front of a 38.1 cm vertical 

screen with an additional 38.1 cm horizontal touch sensitive screen (Touch Controls Inc, San 

Diego CA) set in front of the animal (Figure 4.1). The horizontal touch screen was designed to 



121 

 

detect spatial displacements as small as 3 mm using infrared beams, at a sampling rate of 100 

Hz. Continuous tracking of the eye was monitored using the ISCAN-ETL 200 Eye Tracking 

System (ISCAN Inc, Burlington MA) at a sampling rate of 60 Hz.   

Behavioural Task 

The sequence of events is illustrated in Figure 4.1. Each trial began with the appearance 

of a red circular target (70 mm in diameter) at the center of the screen, which the monkey was 

instructed to touch. An additional smaller white circular target (40 mm in diameter; 5.7° of visual 

angle) appeared on top of the red circle, which instructed the monkey to maintain eye fixation. 

After a 500msec baseline period, one of eight equally spaced green-colored peripheral targets 

appeared randomly (70 mm in diameter, visual angle relative to fixation). The peripheral target 

appeared 5 times at each location for a total of 40 trials per condition.  After a variable instructed 

delay period (IDP, 2000 ms +/- 500 ms) the red central target disappeared and the white target 

jumped to the peripheral target. Following this target jump the animal moved their eyes and hand 

towards the peripheral target. These reaching movements were made from the middle of the 

center target to the middle of the peripheral target (roughly 80mm). Once the eye and hand 

arrived at the peripheral target, the monkey was required to hold both the eye and the hand there 

for 500 ms.  The visual presentation of the task was identical across conditions however during 

the eye-hand coupled condition, visual presentation and the reaching movements were both made 

on the horizontal touch-sensitive screen (Figure 4.1A). In the eye-hand decoupled condition, 

visual presentation of the task was on the vertical screen while the animal’s limb movement 

remained on the horizontal touch screen (Figure 4.1B). This allowed us to decouple the spatial 

target of the eyes from that of the hand. To prevent extra-foveal tracking of the hand, an opaque 

screen was placed 100 mm over the animal’s arm to block vision of the limb. To provide 
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feedback on the current position of the hand, a cross-hair representing the position of the finger 

on the touch screen was displayed. The animals were trained to perform similar movements 

during both conditions and the biomechanical features of the movements were recorded to 

confirm this similarity (Sayegh et al. 2013; Hawkins et al. 2013). For each condition, two epochs 

during the trial were considered. The delay epoch (IDP) comprised the 500 ms baseline period 

and the first 2000 ms of the instructed delay period. The movement epoch (MOVE) comprised 

the last 500 ms of the instruction delay period and 500 ms after movement onset.   

The monkeys also performed a gaze-only control task to determine if the neural activity 

was affected solely by the overall shift in gaze angle. This condition has been described 

elsewhere (Sayegh et al. 2013; Hawkins et al. 2013).  Briefly, before the start of each condition 

nine white circles (40 mm in diameter; 5.7° of visual angle) appeared one at a time in the same 

locations as the targets that appeared during the experimental conditions (i.e. one central and 8 

peripheral). The monkey was instructed to fixate on each of these white circles while 

maintaining both hands beside the horizontal touch screen. The white circles appeared in each 

location 3 times for a total of 27 fixation points for each plane.   

Neural Recordings  

 Monkeys were implanted with a recording cylinder under standard aseptic surgical 

techniques (Sayegh et al. 2013; Hawkins et al. 2013; Kalaska et al. 1989). The stereotaxic 

coordinates for chamber placement can be seen in Figure 4.2. Placement over PMd (Monkey A; 

Interaural A: 16 mm; L: 11 mm; Monkey B; Interaural A: 16 mm; L: 11 mm) and over SPL 

(Monkey A, Interaural; A: -12.30 mm, L: 18.40 mm and Monkey B, Interaural; A: -7.80 mm, L: 

00.00 mm) were determined using The Rhesus Monkey Brain in Stereotaxic Coordinates 

(Paxinos et al. 2000). The border between rostral and caudal PMd, and primary motor cortex  
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Figure 4.1. Experimental setup and trial timing for the coupled(A), and decoupled (B) 
conditions.  At the start of each trial a red center target would apear with a smaller white target 
on top. The animal had to touch and look at these targets. After a variable delay one of eight 
equally spaced (45°, light grey circles) peripheral targets were presented on either a touch-
sensitive screen placed over the animal’s lap (A) or on a monitor positioned vertically 40 cm 
away from the animal’s frontal plane (B). Epochs - CHT: centre hold time, IDP: instructed delay 
period, RT: reaction time, MT: movement time, THT: target hold time. The baseline epoch came 
from within the centre hold time epoch. The animal's head was fixed throughout the experiment. 
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(M1) was drawn according to previously proposed physiological and cytoarchitectonic criteria  

(Fujii et al. 2000). Because of the location of Monkey`s A premotor chamber and a posterior 

head-post, space limitations required the SPL chamber to be positioned on a 25° angle in order to 

allow access to the desired brain regions through deep electrode penetrations in the medial-

anterior quadrant of the chamber. Thus, while the surface entry points are more rostral, the angle 

and depth of the electrodes provided access to neurons from within the medial intraparietal 

sulcus. A hydraulic multi-channel driver (MCM-4, FHC inc., Bowdoin ME) in conjunction with 

a multi-channel processing system (MCP, Alpha-Omega Engineering, Israel) provided 

simultaneous recording from up to two penetration sites at a time. This allowed us to examine 

the local field potential (LFP) and single units collected at each electrode site. Neural activity 

from each electrode was preamplified (5000x) band-pass filtered (1 Hz-10 kHz) and split into 

lower (LFP) and higher (single units) frequencies. Higher frequency signals were sampled at 

12.5 kHz and spikes of single units were sorted using template matching (Hawkins et al. 2013). 

The LFP (below 100 Hz) was sampled at 390.6 Hz (Sayegh et al. 2013).  Following the 

completion of all experiments, anatomical brain images of both animals were obtained using a 

3T Siemans Tim Trio MRI scanner to verify chamber location (T1-weighted anatomical images, 

FOV: 131 x 122.8 mm, TR: 2300 ms, TE: 3.54 ms, Flip Angle: 9 degrees). 

Data analyses  

Behavioural analyses.  

 To confirm that the reaching movements were biomechanically similar between 

conditions, hand paths were recorded and analyzed. The results of these analyses have been 

extensively reported in previous papers using the same dataset (Sayegh et al. 2013; Hawkins et 

al. 2013; Sayegh et al. 2014). In additions, to reinforce similar hand paths between conditions, 
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movement alleys were included to ensure that reaches were directed along a fairly straight 

trajectory (Figure 4.1). These alleys were set at ± 40 mm from a straight line spanning from the 

central to the peripheral targets. If the cursor moved outside of these alleys the trial would stop. 

Our comparisons confirm that the kinematic and electromyographic features of the limb 

movement between task conditions were not significantly different. In addition, as previously 

reported (Sayegh et al. 2013; Hawkins et al. 2013; Sayegh et al. 2014), there was no significant 

difference in the neural activity recording during the gaze-only control task. Therefore we can 

interpret the task-related differences in the neural data as being due to rule-processing rather than 

motor behaviour. 

Spike-Field Coherency 

Only task-related single units were used for this analysis. A cell was determined to be 

task-related if it displayed directional tuning during either the IDP or MOVE epoch. Directional  

tuning was determined based on previously described methods (Sayegh et al. 2013; Hawkins et 

al. 2013; Georgopoulos et al. 1982). All LFPs that were collected simultaneously with a task- 

related single unit were used for analysis. Task-related cells and LFPs were grouping based on 

depth in order to separate superficial (gyrus, depths <2.2 mm past dura, defined based on average 

grey matter thickness) from deep (sulcus, depths >2.2 mm past dura, generally 4-8 mm, i.e. deep 

enough to enter the anterior wall of the IPS) recordings (Figure 4.2 E and F). Because of the 

location of our recordings, the superficial group is suggested to be recorded from area PEc while 

the deeper recordings are suggested to be from MIP regions. Open source Chronux script files 

(www.chronux.org) were used in MATLAB (The Mathworks, Inc., Natick MA) to analyze the 

spectral data and to generate time-frequency coherency plots for all spike-field pairs for both 

conditions (Pesaran et al. 2002; Jarvis and Mitra 2001). Spike-field coherence was determined  
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Figure 4.2. Penetration and chamber location sites for monkey A (A and C) and monkey B (B 
and D). Larger dots indicate where recordings were obtained on two occasions and gray dotted 
line denotes division between penetration sites classified as rostral (left of line) or caudal (right 
of line). E and F) Enlarged section taken from parietal chamber shown in C and D. White lines 
shows depth information, smaller line is 2.2mm and larger line is 5 mm to show the regions 
within SPL that were being recorded from based on depth. AS: arcuate sulcus. CS: central 
sulcus. IPS: intraparietal sulcus. PMdr: rostral region of the dorsal premotor cortex. PMdc: 
caudal region of dorsal premotor cortex. MIP: medial intraparietal sulcus.  
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using multitaper spectrum analysis (previously described in (Pesaran et al. 2002; Pesaran et al. 

2008; Jarvis and Mitra 2001) , using a time-bandwidth product of TW = 3 with K = 5 tapers. Z-

scores were then calculated for each site by determining the expected standard deviation of the 

coherency based on the degrees of freedom (V = number of trials * number of tapers).  The 

coherence was then transformed using the assumption that when the coherence is zero, the 

transformed coherence is distributed as a normal variate with the variance equal to 1 (Pesaran et 

al. 2002; Jarvis and Mitra 2001). This transformation uses the equation z = β (q − β) where  q = − 

ν − 2 * log 1− C, β = 1.5, and C is the coherency. The population z-transformed coherence was 

then calculated and task-related differences were determined using bootstrapping procedures 

(Sayegh et al. 2013; Hawkins et al. 2013). Because some spike-field pairs were recorded on the 

same electrode we compared the results obtained from these pairs to spike-field pairs from 

different electrodes. The same pattern of coherency results were observed between groups and 

thus the population results represent both groups  

Review of imaging studies on eye-hand coordination 

 In addition to the neural analysis described above, we also performed a review on 

published data from fMRI studies performed on visually-guided reaching movements. The goal 

of the imaging literature review was to determine whether the topographical distribution of task-

related activity we have observed in monkeys is also apparent in data collected from human 

participants. An exhaustive pubmed search was done to find fMRI studies that examined coupled 

or decoupled reaching movements. Results from studies using coupled reaching tasks were 

included if the final location of the eyes and the hand at the target of a visually-guided reach 

were congruent. Decoupled reaching tasks were included if a spatial dissociation of eye and hand 

targets or a context-related visuomotor mapping rule was required to successfully complete the 
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reach. The reported peak Talairach coordinates of task-related activity within the dorsal premotor 

and/or superior parietal cortices from each study were plotted onto the surface of the 

standardized Talairach glass brain template available in BrainVoyger software (BrainVoyager 

QX version 2.8, Brain Innovation, Maastricht, The Netherlands).  Each data point was plotted as 

a cluster of 2 shaded polygons on the surface of the template brain (see Figure 4.7). 

RESULTS  

Behavioural results: 

As a first step, we analysed the biomechanical features of the reaches performed in each 

condition. This was to ensure that differences that occurred in the neural activity between tasks 

were not a direct result from differences in the reach profile.  The results of these analysis has 

been extensively reported previously (Sayegh et al. 2013; Hawkins et al. 2013; Sayegh et al. 

2014). Briefly, when comparing between conditions we observed no significant differences in 

the variability of the reach trajectories (P>0.05), in the reach velocity (P>0.05), in the reaction 

times (Coupled: M = 537.9 ms, SEM +/- 12.82, Decoupled: M = 522 ms, SEM +/- 9.89), or in 

the EMG data (p>0.01). Taken collectively, our comparisons confirm that the kinematics and 

electromyographic features of the limb movement between conditions were not significantly 

different.  Therefore any task-related difference observed within this study can be interpreted as 

due to differences in the processing of the motor behaviour.  

Neural results: 

To investigate the coordination between spiking activity and LFP activity during visually 

guided reaching movements we recorded the activity of 60 task-related single units (29 within 

SPL, 21 within PMdr, and 11 within PMdc) and 63 LFP recordings (30 within SPL, 17 within 

PMdr, and 16 within PMdc). SFC measures the relationship of the spiking neurons to the local  
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Figure 4.3: Example spike-field coherency. A and C) PMdr during IDP epoch and MOVE 
epochs. B and D) PEc during IDP epoch and MOVE epochs. Results show a different pattern of 
coherency for each region examined. Results were aligned to peripheral cue onset (A and B) and 
to movement onset (C and D), represented by the black vertical line. Amplitude is color coded.  
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field potential (Pesaran et al. 2008; Womelsdorf and Fries 2006) and thus it is an appropriate 

measure to gain insight into the computations of each of these region to different types of 

visually guiding reaching movements.  

Stronger SFC during decoupled reaches: 

 Overall significant spike-field coherency occurred within the planning of visually-guided 

reaching movements (Figure 4.3A and B). However, consistent with our previous reports 

(Sayegh et al. 2013; Hawkins et al. 2013), we saw an enhancement in the SFC across the 

population of PMdr and PEc during decoupled reaches when compared to coupled reaches 

(Figure 4.4). Within PMdr, task-related SFC differences can be observed within the lower 1-10 

Hz frequency range during the planning of a decoupled reach (Figure 4.4A, P < 0.05). When 

examining the time course between the SFC of each condition, enhanced SFC during decoupled 

reaches emerge roughly 700msec after the peripheral cue onset (Figure 4.4a, P < 0.05). In 

addition to these low frequency differences, PMdr also demonstrated enhanced SFC within the 

17-38 Hz range during the planning of decoupled relative to coupled reaches (Figure 4.4B, P < 

0.05).  These differences did not occur until late within the planning epoch, occurring roughly 

1500 msec after the peripheral cue onset. We observed a similar pattern of results across the 

population of PEcsites.  Strong SFC was observed within the 17-38 Hz range during decoupled 

versus coupled reach planning (Figure 4.4C, P < 0.05).   These task-related coherency 

differences emerged roughly 1200 msec after the peripheral cue onset (Figure 4.4C, P < 0.05).  

Importantly, the beta band SFC observed within the PEcwas within the same range and time 

frame as the beta-band SFC observed within PMdr.  

As the trial progressed to the execution phase of the movement, PMdr and superficial- 

SPL remained as the two regions that displayed stronger SFC during decoupled versus coupled 
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Figure 4.4: Population spike-field coherency line plots. A and D) PMdr z-transformed coherency 
during coupled (gray) and decoupled (black) conditions for the IDP (A) and MOVE (D) epochs. 
Asterisks denotes significance difference between conditions P <0.05. Black horizontal bar 
shows analysis window for right panel. Right panel show the time course for the frequency range 
selected across the population. B) PMdr z-transformed coherency showing significant difference 
in the higher 17-38 Hz range, P < 0.05. C and E) PEc z-transformed coherency during coupled 
(gray) and decoupled (black) conditions for the IDP (C) and MOVE E) epochs. F) PEc z-
transformed coherency showing significant difference in the lower 1-30 Hz range, P < 0.05. 
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reaches (Figure 4.3C and D). Similar to the planning phase, across the population, PMdr 

demonstrated significantly greater SFC within the 17-45 Hz range for decoupled when compared 

to coupled reach execution (Figure 4.4D, P < 0.05).  These task-related coherency differences  

began at movement onset and remained significantly different between conditions for the entire 

epoch  (Figure 4.4D, P < 0.05).  A similar pattern of coherency was observed within PEcas those 

observed during reach planning. Specifically, PEc demonstrated enhanced SFC within the 1-35 

Hz that occurred just prior to movement onset (Figure 4.4E, P < 0.05).  By reach execution a 

shift occurred and stronger SFC was observed within the 45 Hz range for decoupled reaches 

within PEc (Figure 4.4F, P < 0.05). 

In summary decoupled reaches were associated with enhanced synchrony within PMdr 

and PEc.  PMdr displayed strong alpha-band SFC beginning shortly after the onset of the 

peripheral cue. As the trial progressed into reach execution, the SFC within PMdr and PEc 

shifted into beta- and then gamma band synchrony. Taken collectively, these results suggest that 

PMdr and PEc preferentially process the visuomotor transformations  

necessary during decoupled eye-hand reaches. 

Stronger SFC during coupled reach planning: 

Contrary to the observations of PMdr and PEc activity described in the above section, 

SFC within PMdc and MIP were significantly stronger during the performance of a coupled 

reach when compared to a decoupled reach (Figure 4.5A and B).  During coupled reach 

planning, PMdc displayed stronger SFC within the 48-70 Hz range than during decoupled reach 

planning (Figure 4.6A, P < 0.05).  When observing the time-course of these differences, they 

emerged roughly 400 msec after the peripheral cue was displayed (Figure 4.6A, P < 0.05). 

Within MIP, we also observed enhanced SFC for coupled versus decoupled reaches. Stronger 
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Figure 4.5: Example spike-field coherency. A and C) PMdc during IDP epoch and MOVE 
epoch. B and C) PEc during IDP epoch and MOVE epochs. Results show a different pattern of 
coherency for each region examined. Results were aligned to peripheral cue onset (A and B) and 
to movement onset (C and D), represented by the black vertical line. Amplitude is color coded.  
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Figure 4.6: Population spike-field coherency line plots. A and C) PMdc z-transformed coherency 
during coupled (gray) and decoupled (black) conditions for the IDP (A) and MOVE (D) epochs. 
Asterisks denotes significance difference between conditions P <0.05. Black vertical line shows 
peripheral cue or movement onset. Black horizontal bar shows analysis window for right panel. 
Right panel show the time course for the frequency range selected across the population. B and 
D) MIP z-transformed coherency during coupled (gray) and decoupled (black)  
conditions for the IDP (C) and MOVE E) epochs.  
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SFC occurred within the 28-38 Hz range at the onset of the peripheral cue (Figure 4.6B, P < 

0.05). As the trial progressed these task-related differences within MIP disappeared. 

 During reach execution the pattern of SFC within PMdc and MIP shifted. By the onset of 

the reach the previously observed task-related differences within PMdc were not observed 

(Figure 4.6C). However, MIP maintained a stronger SFC for coupled when compared to 

decoupled reaches (Figure 4.6D). More specifically, stronger SFC was observed within the lower 

1-12 Hz and 28-42 Hz range (Figure 4.6D, P < 0.05). These task-related differences occurred 

shortly after the onset of the reaching movement (Figure 4.6D, P < 0.05).   

 Taken collectively, PMdc and the MIP demonstrate enhanced synchrony for coupled 

when compared to decoupled reaches. PMdc demonstrated enhanced gamma band SFC during 

the planning of coupled reaches that resolved by movement onset. MIP showed stronger alpha 

and beta-band synchrony during the planning and execution of coupled reaches. These results 

suggest that during coupled reach planning, there is enhanced local communication within PMdc 

and MIP, supporting a stronger role of these regions in coupled visuomotor transformations.    

DISCUSSION  

Decoupled visually-guided reaches require additional processing in a number of ways 

compared to coupled reaching movements.  First, decoupling the action of the eyes from the 

hand requires a greater cognitive influence over the sensory to motor transformation. These top-

down influences alter the computations that occur in a context-related manner. For instance, a 

rule regarding the spatial transformation between the eyes and the hand must be incorporated 

into the upcoming reach plan. Second, because of the natural tendency for the action of the eyes 

and the hand to move together (Gielen et al. 1984; Prablanc et al. 1979; Henriques et al. 1998; 

Neggers and Bekkering 2000; Gauthier and Mussa Ivaldi 1988; Morasso 1981; Sergio and Scott 
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1998; Sergio and Scott 1998; Vercher et al. 1994; Gorbet and Sergio 2009; Terao et al. 2002),  

the computations involved in decoupled reaching must account for disengaging this linkage 

(Wise et al. 1996; Murray et al. 2000; Sergio et al. 2009). Finally, incongruent visual and sensory 

information will result in unreliable visual signals regarding the position of the hand relative to 

the target. Thus hand position must be derived predominantly from proprioceptive feedback and 

efference copy information (Buneo and Andersen 2006; Rushworth et al. 1997a; Engel et al. 

2002; Flanders et al. 1992; Rushworth et al. 1997b; Nixon et al. 1992).  Here, we measured the 

SFC within premotor and parietal regions because it allows one to determine if a relationship 

exists between individual neurons and the LFPs (Pesaran et al. 2008) and importantly, to 

determine how a region is selecting and transmitting information required to integrate sensory 

information for motor performance (Womelsdorf and Fries 2006; Fries 2005). 

PMdr and PEc preferentially process decoupled reaches  

To our knowledge we are the first group to show enhanced SFC within PMdr and 

superior SPL during decoupled reaching. These results support previous observations that these 

regions play a crucial role in visuomotor transformations when a rule dictates the relationship 

between the eyes and hand motion (Prado et al. 2005; Picard and Strick 2001; Kurata and 

Hoffman 1994; Halsband and Passingham 1985; Halsband and Passingham 1982; Sayegh et al. 

2013; Gail et al. 2009; Hawkins et al. 2013).  

Early within the planning of decoupled reaches PMdr demonstrated enhanced alpha-band 

SFC. Alpha-band synchrony (6-16Hz) has been observed to dominate during the active 

inhibition of a not-to-be-applied rule (Buschman et al. 2012). During decoupled reach planning, 

an inhibitory signal must be present to allow for the dissociation between the eyes and the hand 

(Gielen et al. 1984; Prablanc et al. 1979; Henriques et al. 1998; Neggers and Bekkering 2000; 
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Gauthier and Mussa Ivaldi 1988; Morasso 1981; Sergio and Scott 1998; Vercher et al. 1994; 

Gorbet and Sergio 2009; Terao et al. 2002). We propose that the observed enhanced alpha-band 

synchrony may signal the decoupling between the eyes and the hand. Additional research, such 

as muscimol studies targeting PMdr, would be an elegant way of examining the importance of 

alpha band synchrony to decoupled reach planning.  

As the trial progressed from planning into movement we observed stronger beta-band 

(17-38 Hz) SFC within PMdr. Spike-field coherency within the beta band range has previously 

been shown to dominate within the infragranular cortical layers where many feedback 

projections terminate. Such an arrangement is indicative of top-down control (Engel and Fries 

2010; Maier et al. 2010; Bosman et al. 2012; Bastos et al. 2012; Spaak et al. 2012) and, 

importantly, beta band activity is thought to be involved in the high-order executive function of 

rule selection within the prefrontal cortex (Buschman et al. 2012). PMdr and the dorso-lateral 

prefrontal cortex (DLPFC) have been shown to become functionally coupled when a motor 

behaviour is guided by a rule (Murray et al. 2000; Luppino et al. 2003; Abe and Hanakawa 2009; 

White and Wise 1999) and thus it is possible that the strong synchronization of the spikes and 

LFPs at the beta band range reflects the integration of the spatial rule into the motor plan. 

Further, long-range beta-band synchronization mediates top-down processing (Buschman and 

Miller 2007) between regions.  PMdr is likely communicating the rule updated motor plan to 

other reach related regions. The high degree of communication between PMdr and SPL is 

essential for motor control (Battaglia-Mayer et al. 2001; Caminiti et al. 1999; Wise et al. 1997; 

Matelli et al. 1998; Luppino and Rizzolatti 2000). Importantly, both PMdr and PEc demonstrated 

enhanced beta-band-SFC within the same timeframe. The reciprocal communication between 

these regions, along with the necessary top-down control during decoupled reaches, is likely 
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driving the enhanced beta-band-synchrony, allowing PMdr to communicate the updated motor 

plan to other reach related regions.  

During movement, the incongruent eye and hand signals require online processing in 

regions of SPL, such as PEc, where proprioceptive feedback is integrated into the ongoing motor 

command in order to monitor limb position and update body position (Buneo and Andersen 

2006; Rushworth et al. 1997a; Jackson et al. 2009; Wolpert et al. 1998). Shortly after movement 

onset, we observed strong gamma-band synchronization between the spikes and LFPs within 

PMdr and superficial-SPL. Neuronal synchrony and coherency within the gamma-band range is 

observed within the superficial and granular cortical layers of a region, indicative of 'bottom-up' 

or feed-forward processing (Maier et al. 2010; Bosman et al. 2012; Bastos et al. 2012). During 

reach execution, this enhanced gamma SFC is likely reflecting the extra weight placed on 

proprioceptive and efference copy processing within SPL. Similarly, we propose that the 

observed gamma-band synchrony within PMdr reflects online error correction during the 

remapping of the relative position of the arm to the eyes (Caminiti et al. 1991; Lee and van 

Donkelaar 2006; Pesaran et al. 2006; Crammond and Kalaska 1996).  

In summary, we observed no differences in behaviour between coupled and decoupled 

reaches. Thus the observed enhancements in synchrony within these regions provided insight 

into the enhanced processing that occurs during decoupled reach planning and execution. We 

suggest that the early computations within PMdr and PEc reflect rule-integration and inhibition 

of eye-hand coupling. By reach onset the local computation shifts to reflect the enhanced 

proprioceptive control needed during decoupled reach execution.  

PMdc and deep SPL preferentially process coupled reaches 

 Compared to PMdr, PMdc is more directly connected to the motor system (M1),  
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preferentially coding limb movement parameters primarily when arm movements are controlled 

by visual or somatosensory information, and thus plays a more active role in the computations of 

coupled reaches (Prado et al. 2005; Picard and Strick 2001; Lee and van Donkelaar 2006; Sayegh 

et al. 2013; Gail et al. 2009). Similar observations were made for regions like the medial 

intraparietal sulcus (MIPs) located deep within SPL(Colby 1998). Although the MIPs is involved 

in the planning and execution of goal-directed reaches (Colby 1998), it is suggested to have a 

more active role in the online automatic corrections of coupled reaching movements (Prado et al. 

2005; Clavagnier et al. 2007). 

Here we observed greater SFC in PMdc and MIP within the gamma-band range during 

the planning of coupled versus decoupled reaches. During coupled reaches the visual target is 

guiding the action itself. This innate reaching behaviour does not require much cognitive control 

(Sergio et al. 2009; Bo et al. 2006; Gorbet and Sergio 2009). As gamma-band synchrony is 

indicative of bottom-up processing (Maier et al. 2010; Bosman et al. 2012; Bastos et al. 2012), 

the observed enhancements in gamma-band SFC during coupled reaches within PMdc and MIP 

is suggested to be reflecting the local biomechanical computations required to perform a simple 

reaching task. 

Comparisons with human primate reach control  

In summary, our work supports the idea of altered cortical control during different types  

of visuomotor mappings and highlights the need to account for the decoupled nature of a motor 

task when interpreting movement control research data.  These data support the enhanced role of 

PMdc and MIP regions in preferentially processing coupled reaches (Prado et al. 2005; 

Clavagnier et al. 2007; Gail et al. 2009; Hawkins et al. 2013), distinct from the role of PMdr and  
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Figure 4.7: Review of previous fMRI studies on visually guided reaching. The reported peak 
Talairach coordinates of task-related activity within the dorsal premotor and/or superior parietal 
cortices(represented by the circles) from each study were plotted. Activity that occurred during 
coupled reaches are in red, decoupled reaches in green, and overlapped activity in yellow (Prado 
et al. 2005; Granek et al. 2010; Gorbet et al. 2004; Gorbet and Sergio 2007; Grafton et al. 1998; 
Filimon et al. 2009; Kertzman et al. 1997). 
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superior-caudal regions of SPL during decoupled reaches (Prado et al. 2005; Clavagnier et al. 

2007; Sayegh et al. 2013). To look for evidence of a similar functional topography in the human 

brain, we undertook a imaging literature review examining fMRI findings reported in the 

literature for eye-hand coupled versus decoupled tasks. The observed pattern of activity 

associated with these different visuomotor mappings suggests delineation in the cortical activity 

of coupled  

versus decoupled reaching in the human brain, and is in line with our research on non-human 

primates (Figure 4.7). Strikingly, human brain activity associated with decoupled reach tended to 

occur within the rostral portion of PMd and the superior-caudal portion of SPL.  Activity 

associated with coupled reaches was localized to the caudal portion of PMd and deep regions 

within SPL surrounding mIPS. This pattern of activity, parallel to our observations in non-human 

primates, not only supports our neurophysiological studies, but also helps to bridge the gap 

between animal and human studies due to the strong relationship between LFPs and fMRI 

(Goense and Logothetis 2008; Nir et al. 2007). Lastly while research into the cortical control of 

different types of reaching behaviour exists, many of these studies focus on characterising how 

reach-related regions respond during fixation paradigms (Buneo et al. 2002; Pesaran et al. 2006; 

Gail et al. 2009; Andersen 1995), a type of decoupled reach. However, we have demonstrated 

changes in cortical activity of many regions within the parietofrontal reach network associated 

with eye-hand decoupling. Thus, our findings emphasize the importance of accounting for the 

nature of eye-hand visuomotor mapping when interpreting movement control data.   
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Chapter Five 

 

Summary and Conclusion 
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5.1 Summary and Conclusion 

 The basic skill of coordinating vision and limb motion in order to interact with external 

objects requires a sophisticated level of control, and is carried out by numerous interconnected 

areas of the brain. The general innate linkage of the action of the eyes to the hand allows for 

coupled reaching movements to be more natural to produce (Wise et al. 1996; Sergio et al. 2009; 

Bo et al. 2006; Neggers and Bekkering 2000; Piaget 1965). However, many of our daily 

interactions involve actions that require a decoupling of the eyes from the hand, such as during 

tool use. Our ability to perform these types of reaches are not innate and must be learned over 

time (Wise et al. 1996; Sergio et al. 2009; Bo et al. 2006; Neggers and Bekkering 2000; Piaget 

1965).  Although patient (Granek et al. 2012; Battaglia-Mayer et al. 2012; Blangero et al. 2007; 

Pisella et al. 2009; Karnath and Perenin 2005) and imaging research (Prado et al. 2005; Granek 

et al. 2010; Gorbet et al. 2004) has supported the involvement of the cortical regions controlling 

decoupled or rule-based visually-guided reaching, how the particular nodes and the local 

computations are altered within this interconnected network  has yet to be fully characterized. As 

such, the current dissertation explored specifically how these region are affected during eye hand 

decoupled reaching using a method that allowed for an in-depth, detailed examination of brain 

activity not possible with clinical and behavioural research (see Figure 4.7). 

The three studies in this dissertation provide novel insight into the contribution of numerous 

cortical regions to the control of complex eye-hand coordination. Since we used a reaching task 

that required movement of the eyes and hand towards the cued target, we were one of the first 

groups to explore the cortical control of 'natural' reaching behaviour during coupled and 

decoupled situations. As such we can directly compare how decoupled reaching movements 

differ from coupled reaches in a more natural situation.  



144 

 

In chapter two, my first goal was to decipher the role of PMd in different types of reaching 

movements. To address this, we trained two rhesus macaques to perform coupled and decoupled 

reaching movements. Once trained, we recorded the neural activity (single unit and LFP) within 

PMd during their performance on these tasks. To address my second goal we divided the 

recorded activity, based on the topographical organization within PMd, into rostral and caudal 

groups. Here, we showed for the first time that during the planning stage PMdr was more active 

for decoupled when compared to coupled reaches. PMdc on the other hand was more active 

during coupled reach planning. During the execution phase, while no major difference occurred 

in the neural activity between PMdr and PMdc during coupled reaches, during decoupled reaches 

PMdc was more active when compared to both coupled reaches and the activity within PMdr. 

The results not only highlight the different roles PMdr and PMdc play in different types of 

visuomotor transformations, but also the necessity within the literature to account for the 

different sub-region of PMd when interpreting motor control data. These novel findings will be 

useful to not only the fundamental motor control community, but also to those working in the 

burgeoning field of neuroprosthetics.   

In chapter three, my third goal was to understand the role of a different brain region, SPL,  

during the same reaching behaviours. The same rhesus macaques were studied using identical 

reach conditions in an effort to record changes in the neural activity (LFP) within SPL. Here, we 

showed that during the planning phase, the beta-dominated response observed within the LFPs 

was delayed during decoupled reaches. SPL in general was more active during coupled when 

compared to decoupled reach planning. By the execution phase this pattern shifted so that SPL 

was more active during decoupled versus coupled reaches. These results support the idea that 

decoupled reaches require more cognitive processing, shown in the delayed activity within SPL. 
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Decoupled reaches will rely on additional proprioceptive control because of the decoupled nature 

between the eyes and the hand. The extra activity within SPL during decoupled reach execution 

likely reflects this. What was striking about these results was the fact that these animals were 

highly over-trained on these tasks. Yet to successfully execute the decoupled behaviour required 

fairly extensive alterations to the parietofrontal network responsible for its control. Such a 

finding has implications for the control of decoupled movements in humans, and the effects that 

attention and aging might have on skilled performance when even highly trained brains are 

loaded during such movements.  

In the fourth chapter, my fourth goal was to gain a more comprehensive view of the local 

computations with PMdr, PMdc, and SPL and how they change to accommodate the different 

types of reaching behaviours. We examined the SFC within these regions based on the 

previously recorded activity obtained within projects one and two. As a fifth goal, based largely 

on the results from the spike analysis within SPL, we divided SPL based on the superficial 

region, PEc, and deep region, MIP to determine if functional differences existed. The results 

presented here support the previous reports that during coupled reaching movements, PMdc and 

MIP are more active while during decoupled reaching movements PMdr and PEC are more 

active. As our work focused solely on the neural activity of non-human primates, our sixth goal 

was to carry out a imaging literature review examining fMRI findings reported in the literature 

for eye-hand coupled versus decoupled tasks in human primates. Here, we observed a striking 

similarity between our present results and those of the imaging literature review which support a 

distinction between PMdr and superfical SPL and PMdc and deep SPL in different types of 

visually-guided reaching movements.  

 Taken collectively, these projects provide novel insight to the alternative cortical 
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networks involved in decoupled eye-hand coordination. We propose that PMdr and superficial 

regions of SPL are crucial for accurate guidance of a limb during decoupled reaching. Coupled 

reaches may rely more heavily on the activity within PMdc and deep regions of SPL (for details, 

see Figure 4.7). More broadly, our results highlight the necessity of accounting for the coupled 

nature between the eyes and the hand during a motor task when interpreting movement control 

research data, and when seeking to apply neurophysiological signals to clinical functions.   

5.2 Future direction and limitations 

 As in most experiments, the results presented in the current dissertation have raised a few 

more questions. Although it is clear that regions of SPL and PMd play different roles in 

visuomotor transformations that require a decoupling between the eyes from the hand, how 

exactly does the communication between these regions changes? A relevant follow-up study here 

would be to examine the SFC between the different regions of SPL and PMd to determine how 

the communication is affected by different eye-hand compatibilities. This analysis would give us 

a much fuller picture of how the weight of each region within the parietofrontal network shifts 

between time and across conditions.  

Another intriguing question raised here is what is the role of the prefrontal cortex during 

the rule-integration process required during decoupled types of visuomotor transformations? 

Specifically because of the strong connection and functional coupling between PMdr and 

DLPFC (Murray et al. 2000; Luppino et al. 2003; Abe and Hanakawa 2009; White and Wise 

1999) and the present observations regarding the role of PMdr, it would be of worth to determine 

the exact role of DLPFC when a motor behaviour is guided by a rule. Thus research focused on 

recording the neural activity within this region during similar paradigms would allow one to 

examine the proposed role this region may play in top-down control (Abe and Hanakawa 2009) 
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over the necessary visuomotor transformation. It may also be of interest to examine the 

communication between PMdr and DLPFC. If DLPFC indeed exerts top-down influence over 

the necessary transformations performed by PMd, analyzing for instance the SFC between these 

regions would be a great way to explore this idea.  

As mentioned previously, decoupled reaches can take many forms. The studies presented 

here examined how parietal and premotor regions responded during decoupled reaches that 

depended more heavily, but not exclusively, on sensorimotor recalibration. We did not examine 

how reaches that required more explicit strategic control affected the activity within these 

parietofrontal regions. Tasks that use different levels of cursor rotation or arbitrary associations 

compared directly to coupled reaches must be employed to advance research into the basic 

control of rule-based behaviour. Some research has been done using an anti-pointing paradigm 

(Gail et al. 2009; Connolly et al. 2000) or arbitrary cues (Gorbet et al. 2004; Granek et al. 2007; 

Grafton et al. 1998). Neurophysiological studies, such as the one performed by Gail et al (2009), 

found stronger neural activity within PMdr during anti-pointing when compared to PMdc and 

some regions of SPL. Recently, Granek and Sergio (2014) suggested that tasks that rely more 

heavily on strategic control may depend on more prefrontal and inferior parietal region.  

The fundamental research conducted in these series of studies can provide a basis for a 

myriad of clinical applications, such as being used as an assessment tool for cases of mild brain 

dysfunction. Preliminary research has demonstrated that mild brain dysfunction can impair 

performance when the goal of the eye and the hand has been decoupled. Specifically, this 

assessment tool could be used to detect early stages of Alzheimer’s disease, as well as function 

as a part of the return-to-play protocols following a concussion. Preliminary evidence in our lab 

(Hawkins, Thayaparan, Bida & Sergio, 2011)  suggests that decoupled eye-hand coordination 



148 

 

can detect deficits in individuals with just a family history of Alzheimer’s disease, without the 

actual diagnosis itself and even detect deficits in athletes with a history of concussion, but 

without any current symptoms (Brown et al. 2011). By assessing the integrity of these different 

networks, we can distinguish subtle brain network-related deficits associated with different 

dementias. My work represents the fundamental characterization of how the brain plans and 

executes decoupled reaching movements. These data describe how parieto-frontal networks 

control such movements in the healthy state, thereby providing insight into the form of the 

underlying pathology in those situations of mild brain dysfunction where there is a deficit in 

decoupled movement performance.    

 In summary, these studies have provided novel information about the contribution of 

brain areas (summarized in Figure  4.7)  to one of our most fundamental human behaviours, the 

flexibility of eye-hand coordination that allows for the interaction with our environment in a 

meaningful and skilled way.  
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