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Abstract

Pseudo-differential operators can be built from the Fourier transform. However, besides

the difficult problems in proving convergence and L2-boundedness, the problem of find-

ing eigenvalues is notoriously difficult. Finite analogs of pseudo-differential operators

are desirable and indeed are constructed in this dissertation.

Energized by the success of the Fourier transform and wavelet transforms, the last

two decades saw the rapid developments of new tools in time-frequency analysis, such

as ridgelet transforms and curvelet transforms, to deal with higher dimensional signals.

Both curvelet transforms and ridgelet transforms give the time/position-frequency repre-

sentations of signals that involve the interactions of translation, rotation and dilation, and

they can be ideally used to represent signals and images with discontinuities lying on a

curve such as images with edges. Given the resolution of the identity formulas for these

two transforms, localization operators on them are constructed.
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The later part of this dissertation is to investigate the L2-boundedness of the local-

ization operators for curvelet transforms and ridgelet transforms, as well as their trace

properties.
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Let f be a signal in L2(Rn). Then the Fourier transform f̂ of f is defined by

f̂ (ξ ) = (2π)−n/2
∫
Rn

e−ix·ξ f (x)dx, ξ ∈ Rn.

The Fourier inversion formula gives us back the signal f via

f (x) = (2π)−n/2
∫
Rn

eix·ξ f̂ (ξ )dξ , x ∈ Rn.

This is the basis for pseudo-differential operators on Rn or sometimes referred to as

time-varying filters. Indeed, let σ be a suitable function on Rn×Rn. Then the pseudo-

differential operator Tσ is defined by

(Tσ f )(x) = (2π)−n/2
∫
Rn

eix·ξ
σ(x,ξ ) f̂ (ξ )dξ , x ∈ Rn.

In the case when σ is identically equal to 1, then Tσ is the identity in view of the Fourier

inversion formula. Pseudo-differential operators have been used in quantizations and

time-frequency analysis. Their usefulness notwithstanding, these operators are difficult

to work with because of the convergence of the integrals. Moreover, useful information

such as eigenvalues is difficult or even impossible to compute. So, it is desirable to obtain

finite analogs of pseudo-differential operators. First of all, in applications the numerical

implementations of pseudo-differential operators require a finite setting. Secondly, fi-

nite pseudo-differential operators are finite-dimensional matrices of which the entries

are given by the finite Fourier transforms defined in Section 2.6. Thus, the computations

of the eigenvalues can be performed using the fast Fourier transforms and available al-

gorithms. Furthermore, issues like Lp-boundedness, which pseudo-differential operators
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have to deal with all the time, are irrelevant to finite pseudo-differential operators. In

this dissertation, we are particularly interested in constructing such operators on L2(ZN),

where ZN is the discretization of a circle. These operators are discrete analogs of pseudo-

differential operators on the unit circle S1 with center at the origin, which have been

studied in [26] and [27]. Pseudo-differential operators on the torus ∏
n
j=1S1 are routine

extensions of the ones on S1.

Given a signal, we are often interested in its frequency content locally in time. For

instance, in a piece of music we want to know the notes (frequency information) that are

played at any given moment. The Fourier transform gives a representation of the fre-

quency content of the signal f , but information concerning time-localization of certain

frequencies cannot be read off easily.

Time-localization can be achieved by cutting off the signal equally in time and then

taking its Fourier transform. This can be achieved by the so-called windowed Fourier

transform or the Gabor transform. The details are given in Section 2.1. The drawback

here is that a window of fixed width is used for all time b. It is more accurate and desir-

able if we can have an adaptive window that gives a wide window for low frequency and

a narrow window for high frequency. That this can be done comes from familiarity with

the wavelet transform.
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The wavelet transform [7, 37, 38], which decomposes a signal into components de-

pending on translations and scales, is a multiscale integral transform. It can be used in

time-frequency analysis in which scale and frequency are reciprocal of each other. Its

advantage over the ubiquitous Fourier transform in time-frequency analysis is that it can

display the information as to when a certain frequency of a signal takes place by using

a window with size depending on the frequency. Fundamental to the theory is the reso-

lution of the identity formula that synthesizes the wavelet transform in order to recover

the orignal signal. As in the case of the Gabor transform, there is a window ϕb,a in the

wavelet transform. Unlike the case of the Gabor transform, the window ϕb,a is adjustable

in the sense that it is narrow if the scale a is small and wide if the scale a is big. The

wavelet transforms as defined are essentially one-dimensional time-frequency tools since

the frequency ξ and scale a can be thought of as being related by a = 1/ξ .

In an attempt to deal with two-dimensional signal analysis such as image processing,

the wavelet transform has been extended to the two-dimensional wavelet transform even

with directions taken into account. A version of this two-dimensional wavelet transform,

known as the polar wavelet transform, has been developed in [21] and the resolution of

the identity formula is also established therein for this mathematical tool. Details on the

analysis and applications of wavelets can be found in [7, 11, 38].
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Among other developments related to the wavelet transform, an integral transform

in [24], orignally used by Stockwell in atmospheric physics, has been used in time-

frequency analysis. It is related to, but different from, the wavelet transform in that the

time average of the Stockwell transform over all time from the past into the future of a

signal gives the Fourier transform of the signal. This property, known as the absolutely

referenced phase information, puts the Stockwell transforms into a class in its own right.

The usefulness of the phase of the Stockwell transform is illustrated in [12]. The resolu-

tion of the identity formula for the one-dimensional Stockwell transform is given in [9].

In [22] can be found the two-dimensional Stockwell transform and the corresponding

resolution of the identity formula. Multi-dimensional Stockwell transforms and their

resolution of the identity formulas have recently been obtained in [29, 30].

Motivated by the results of two-dimemsional wavelet and Stockwell transforms, a rel-

atively new two-dimensional multiscale integral transform, which is dubbed the curvelet

transform [3], has emerged in time-frequency analysis. Like the wavelet transform and

the Stockwell transform, the translations, the dilations and the rotations are built into

the genesis of the curvelet transform. The important difference of the curvelet transform

from the wavelet and Stockwell transforms lies in the fact that non-isotropic instead of

isotropic dilations are used. It can be ideally used to represent images with disconti-
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nuities lying on a curve such as images with edges. It is an interesting fact that the

resolution of the identity formula is now only valid for high-frequency signals. The full

resolution of the identity formula for all signals with finite energy requires an additional

term to cope with low-frequency signals as well. This additional term turns out to be a

wavelet multiplier first studied systematically in [14].

Closely related to multi-dimensional wavelet transforms are ridgelet transforms first

introduced by Emmanuel Candés in his 1998 Ph.D. thesis [1,2]. As a matter of historical

fact, ridgelets predate curvelets. Like wavelet transforms and curvelet transforms, there

is a resolution of the identity formula for ridgelet transforms.

Once we have a resolution of the identity formula, we are interested in studying lo-

calization operators on them as in [7, 9, 13, 21, 22, 25, 37]. The idea of a localization

operator is to pick out the areas of interests by inserting a weight function or a symbol in

a resolution of the identity formula.

Notwithstanding the importance of applications and computations of the operators,

the focus of this dissertation is to develop the general theory of finite pseudo-differential

operators, localization operators for curvelet transforms and ridgelet transforms for the

widest possible classes of symbols and windows. Two properties of these operators
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are of the greatest interest - the L2-boundedness and the trace. The importance of L2-

boundedness lies in the so-called continuous dependence on the initial data in input-

output analysis. To wit, in applications, measurements of the input always entail errors

and a good model for a filter must ensure that the errors in the output can be controlled in

terms of the errors in the input, and a natural means of the measurements is the L2-norm.

Applications of the trace in operator theory and operator algebras abound and in this dis-

sertation we note its usefulness in the context of the Gershgorin circle of a bounded and

self-adjoint operator on a Hilbert space.

It is a well-known fact that for a compact and self-adjoint operator there is an eigen-

value lying on the Gershgorin circle. Its distance from the origin is equal to the norm of

the operator. But the norm of an operator is a difficult quantity to obtain, so we give at

least an estimate-an upper estimate in this dissertation. There are estimates coming from

the L2-estimates, but the trace, which is computed for all operators in the dissertation is

an alternative upper bound. Which one is better can be checked easily on an individual

basis. In the case of the finite pseudo-differential operators, all the eigenvalues can be

obtained exactly using existing softwares. Nevertheless, the trace formula is still of great

interest because it gives the architecture of the eigenvalues of the operator in terms of its

symbols and not just an arbitrary set of numbers.
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In Section 2 we present without proofs the background material needed for the results

on the finite pseudo-differential operators, localization operators for curvelet transforms

and localization operators for ridgelet transforms.

In Section 3 we introduce the finite pseudo-differential operators. The main results

are the two representations of finite pseudo-differential operators as matrices in terms

of the Fourier basis and the unit impulse basis, and a trace formula in Theorem 3.1.1 to

show that the eigenvalues are related to the symbol in a very elegant way.

In Section 4 we give a streamlined proof of the resolution of the identity formulas for

curvelet transforms based on the paper [3] by Candès and Donoho. Due to the special

constructions of curvelet transforms, the corresponding localization operators are built

with two parts - one for high frequencies and one for low frequencies. The localization

operator for high frequencies Lτ : L2
2/a0

(R2)→ L2(R2) with symbol τ is defined by

(Lτ f ,g) =
∫

π

−π

∫
R2

∫ a0

0
τ(a,b,θ)( f ,γabθ )(γabθ ,g)

da
a3 dbdθ (1.1)

for all f in L2
2/a0

(R2) and g in L2(R2). The wavelet multiplier Tσ : L2(R2)→ L2(R2)

with symbol σ that makes up for the low-frequencies is given by

(Tσ f ,g) =
∫
R2

σ(b)( f ,Φb)(Φb,g)db (1.2)
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and

(Tτ f ,g) =
∫

π

−π

∫
R2

∫ a0

0
τ(a,b,θ)( f ,γabθ )(γabθ ,g)

da
a3 dbdθ (1.3)

for all f and g in L2(R2). The new results are the L2-boundedness of the localization oper-

ators for high frequencies, the wavelet multipliers and the curvelet localization operators

for all signals with finite energy. To be explicit, L2-boundedness for high-frequencies is

in Theorems 4.2.1 and 4.2.2; L2-boundedness for low frequencies is in Theorems 4.3.2

and 4.3.3; and the one for curvelet localization operators is in Theorems 4.4.1 and 4.4.2.

The trace class properties for wavelet multipliers and localization operators for all sig-

nals in L2(R2) are also investigated. Furthermore, we give a self-contained treatment of

trace class operators from a closed subspace of an infinite-dimensional, separable and

complex Hilbert space X into X and then obtain in Theorem 4.6.4 trace class localization

operators for high-frequency signals.

In Section 5, we give two kinds of localization operators. We give conditions on

the symbols to guarantee that each kind of localization operator for ridgelet transforms

is a bounded linear operator on L2(Rn). The main results are in Theorem 5.1.1 and

Theorem 5.2.1. The trace formula for the second kind of localization operator in the

trace class S1 is given in Theorem 5.2.2. The second kind of trace class localization

operator is reminiscent of the Landau–Pollak–Slepian operators [15,31–34] and wavelet

multipliers [5, 8, 14, 40, 41].
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2.1 One-Dimensional Gabor Transforms

For a signal f in L2(R), the Gabor transform or the short-time Fourier transform Gϕ f of

f with respect to a window ϕ in L1(R)∩L2(R) is defined by

(Gϕ f )(b,ξ ) = (2π)−1/2
∫

∞

−∞

e−ixξ f (x)ϕ(x−b)dx, b,ξ ∈ R.

Let us note that

(Gϕ f )(b,ξ ) = (2π)−1/2( f ,Mξ T−bϕ)L2(R), b,ξ ∈ R,

where Mξ and T−b are the modulation operator and the translation operator given by

(Mξ h)(x) = eixξ h(x) (2.1)

and

(T−bh)(x) = h(x−b) (2.2)

for all measurable functions h on R and all x in R. We call the function Mξ T−bϕ the

Gabor wavelet generated from ϕ by translation T−b and modulation Mξ .

More interesting results on modulation Mξ and translation T−b on Rn can be found

in Proposition 3.4. [36].

Proposition 3.4. Let f ∈ L1(Rn). Then the functions T−y f and My f defined in 2.2 and

2.1 respectively are in L1(Rn). Moreover,
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(i) (̂T−y f )(ξ ) = (M−y f̂ )(ξ ), ξ ∈ Rn,

(ii) (̂My f )(ξ ) = (T−y f̂ )(ξ ), ξ ∈ Rn.

The usefulness of the Gabor windows in signal analysis is enhanced by the following

resolution of the identity formula, which allows the reconstruction of a signal from its

Gabor transform.

Theorem 2.1.1. Suppose that ‖ϕ‖2 = 1, where ‖‖2 is the norm in L2(R). Then for all f

and g in L2(R),

( f ,g)L2(R) = (2π)−1
∫

∞

−∞

∫
∞

−∞

( f ,Mξ T−xϕ)L2(R)(Mξ T−xϕ,g)L2(R)dxdξ .

Another way of looking at Theorem 2.1.1 is that for all f in L2(R),

f = (2π)−1
∫

∞

−∞

∫
∞

−∞

( f ,Mξ T−xϕ)L2(R)Mξ T−xϕ dxdξ ,

which is also known as a continuous inversion formula for the Gabor transform.

In signal analysis, (Gϕ f )(b,ξ ) gives the time-frequency content of a signal f at time

b and frequency ξ by placing the window ϕ at time b.
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2.2 One-Dimensional Continuous Wavelet Transfroms

Let ϕ ∈ L2(R) be such that ∫
∞

−∞

|ϕ̂(ξ )|2

|ξ |
dξ < ∞,

where ϕ̂ is the Fourier transform of ϕ . Such a function ϕ is said to satisfy the admissi-

bility condition and is sometimes called the mother affine wavelet. The adjective affine

comes from the connection with the affine group that is the underpinning of the wavelet

transforms. See Chapter 18 of [38] in this connection.

Let ϕ ∈ L2(R) be a mother affine wavelet. Then for all b in R and a in R\{0}, we

define the affine wavelet ϕb,a by

ϕb,a(x) =
1√
|a|

ϕ

(
x−b

a

)
, x ∈ R.

We note that ϕb,a is generated from the function ϕ by translation and dilation. To put

things in perspective, let b ∈R and let a ∈R\{0}. Then we see that the wavelet ϕb,a can

be expressed as

ϕb,a = T−bD1/aϕ,

where D1/a is the dilation operator defined by

(D1/ah)(x) =
1√
|a|

h
(x

a

)
for all measurable functions h on R and all x in R.
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Let ϕ be a mother affine wavelet. Then the wavelet transform Ωϕ f of a function f in

L2(R) is defined to be the function on R× (R\{0}) by

(Ωϕ f )(b,a) = ( f ,ϕb,a)L2(R)

for all b in R and a in R\{0}. The analysis of the wavelet transform is based on the fol-

lowing resolution of the identity formula, which is also a continuous inversion formula.

Theorem 2.2.1. Let ϕ be a mother affine wavelet. Then for all functions f and g in

L2(R),

( f ,g)L2(R) =
1

cϕ

∫
∞

−∞

∫
∞

−∞

( f ,ϕb,a)L2(R)(ϕb,a,g)L2(R)
dbda

a2 ,

where

cϕ = 2π

∫
∞

−∞

|ϕ̂(ξ )|2

|ξ |
dξ .

Remark 2.2.2. It can also be proved that a necessary condition for the continuous in-

version formula to hold is that ϕ has to be a mother affine wavelet. Indeed, suppose

that
∫

∞

−∞

∫
∞

−∞
( f ,ϕb,a)L2(R)(ϕb,a,g)L2(R)

dbda
a2 exists for all f and g in L2(R). Then, letting

f = g = ϕ, we get ∫
∞

−∞

∫
∞

−∞

|(ϕ,ϕb,a)L2(R)|2
dbda

a2 < ∞,

which can be shown to be the same as

∫
∞

−∞

|ϕ̂(ξ )|2

|ξ |
dξ < ∞.
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The resolution of the identity formula leads to the reconstruction formula, which says

that

f =
1

cϕ

∫
∞

−∞

∫
∞

−∞

( f ,ϕb,a)L2(R)ϕb,a
dbda

a2

for all f in L2(R). In other words, we have a continuous inversion formula for the signal

f from a knowledge of its time-scale spectrum.
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2.3 Curvelet Transforms

We begin with the frequency plane in which the polar coordinates of a point ξ is denoted

by (r,ω), r > 0,−π ≤ ω < π . Let W : (0,∞)→ (0,∞) be a function such that

supp(W )⊂
(

1
2
,2
)

(2.3)

and ∫
∞

0
W (r)2 dr

r
= 1. (2.4)

Let V : (−∞,∞)→ (0,∞) be a function such that

supp(V )⊆ [−1,1] (2.5)

and

(2π)2
∫ 1

−1
V (ω)2dω = 1. (2.6)

We call W the radial window and V the angular window in the frequency space R2.

For a fixed scale a ∈ (0,a0), where a0 < π2, we define the function γa00 : R2→C by

γ̂a00(r,ω) =W (ar)V
(

ω√
a

)
a3/4, (r,ω) ∈ R2.

Geometrically, the support of γ̂a00 is made up of polar wedges defined by the supports of

W and V .

Let a ∈ (0,a0). Then for b ∈ R2 and θ ∈ [−π,π], the curvelet γabθ generated by

translation b and rotation Rθ is defined by

γabθ (x) = γa00(Rθ (x−b)), x ∈ R2.

16



Figure 2.1: Curvelet and its support in the frequency plane

Figure 2.1 shows an example of a curvelet and its compact support.

Now for every function f in L2(R2), we can define the curvelet transform Γ f of f to

be the function on (0,a0)×R2× [−π,π] by

(Γ f )(a,b,θ) = ( f ,γabθ ), a ∈ (0,a0),b ∈ R2,θ ∈ [−π,π).

The inner product and the norm in L2(R2) are denoted by ( , ) and ‖‖ respectively.

The following result is known as the resolution of the identity formula for high-

frequency images.

Theorem 2.3.1. Let f ∈ L2(R2) be such that

f̂ (ξ ) = 0, |ξ |< 2/a0.

17



Then

( f ,g) =
∫

π

−π

∫
R2

∫ a0

0
( f ,γabθ )(γabθ ,g)

da
a3 dbdθ

for all g in L2(R2).

In order to have a complete resolution of the identity formula, we need to take care

of the low frequencies as well. To this end, we let Ψ be the function on R2 defined by

Ψ(ξ )2 = (2π)−2
∫ a0|ξ |

0
W (a)2 da

a
, ξ ∈ R2. (2.7)

Let Φ be a father wavelet, i.e., the nonnegative function on R2 such that

(2π)2(Φ̂2 +Ψ
2) = 1. (2.8)

If, for all b ∈ R2, we let Φb be the wavelet on R2 defined by

Φb(x) = Φ(x−b), x ∈ R2,

then we have the following full resolution of the identity formula for curvelet transforms.

Theorem 2.3.2. For all f ∈ L2(R2),

f =
∫
R2
( f ,Φb)Φb db+

∫
π

−π

∫
R2

∫ a0

0
( f ,γabθ )γabθ

da
a3 dbdθ .

So, the inversion formula is made up of curvelets at fine scales (high frequencies) and

isotropic wavelets at coarse scales (low frequencies).
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2.4 Radon Transforms

The Radon transform, named after an Austrian mathematician Johann Radon, was first

developed in 1917 as an integral transform consisting of the integral of a function over

straight lines. He also introduced the inverse transform and the Radon transform was

later generalized to higher-dimensional Euclidean spaces.

The Radon transform is widely applicable to tomography. If a function f represents

an unknown density, the Radon transform represents the scattering data obtained as the

output of a tomographic scan. The inverse of the Radon transform can be used to re-

construct the original density from the scattering data. Thus it forms the mathematical

underpinning for tomographic reconstruction. The two-dimensional Radon transform

is known as the X-ray transform and the three-dimensional Radon transform is used in

computered tomographic scanning.

Let us look at the Radon Transform in Rn [35], which is defined by

(Ru f )(t) =
∫
Rn−1

f (tu+ sv)ds, (2.9)

where v=(v1, ...,vn−1)∈Rn−1, u is a unit vector in Sn−1, t,s1, ...,sn−1 ∈R and {v1, ...,vn−1,u}

forms an orthonomal basis for Rn.
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Then ∀x ∈ Rn ∫
Rn

f (x)dx =
∫

∞

−∞

∫
Rn−1

f (tu+ sv)dsdt. (2.10)

Theorem 2.4.1. If f ∈S (Rn), then Ru f ∈S (R) for each fixed u. Moreover,

R̂u f (ξ ) = (2π)
n−1

2 f̂ (uξ ). (2.11)
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2.5 Ridgelet Transforms

Let Ψ : R→ R be a smooth univariant function with sufficient decay such that the ad-

missibility condition

KΨ =
∫

∞

−∞

|Ψ̂(ξ )|2

|ξ |n
dξ < ∞

holds. Such a function Ψ is appropriately called a mother ridgelet.

For a point x ∈ Rn, the ridgelet Ψγ : Rn→ R generated by scale a, projection u and

translation b is defined by

Ψγ(x) = a−1/2
Ψ

(
u · x−b

a

)
.

The phase space Γ that is relevant to the ridgelet transforms is given by

Γ = {γ = (a,u,b);a,b ∈ R,a > 0,u ∈ Sn−1},

where Sn−1 is the unit sphere centered at the origin in Rn. Points in Γ are sometimes

denoted by γ and the measure dγ on Γ is given by

dγ =
da

an+1 dudb,

where du is the surface measure of Sn−1.

For y ∈ R, define

Ψa(y) = a−1/2
Ψ(

y
a
)
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Figure 2.2: Construction of Ridgelets [1]
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and

Ψ̃(y) = Ψ(−y).

The following is the resolution of identity formula for ridgelet transforms [1].

Theorem 2.5.1. Let f ∈ L2(Rn) and Ψ admissible. Then

( f ,g) = cΨ

∫
∞

−∞

∫
Sn−1

∫
∞

−∞

( f ,Ψγ)(Ψγ ,g)
da

an+1 dudb

and

|| f ||22 = cΨ

∫
∞

−∞

∫
Sn−1

∫
∞

−∞

|( f ,Ψγ)|2
da

an+1 dudb,

where cΨ = (2π)−
n+1

2 K−1
Ψ

, for all g in L2(Rn).

Proof of Theorem 2.5.1

Let

I =
∫

∞

−∞

∫
Sn−1

∫
∞

−∞

( f ,Ψγ)Ψγ

da
an+1 dudb.

We note that by using the Radon transform

( f ,Ψγ) =
∫
Rn

f (x)Ψa(u · x−b)dx

=
∫

∞

−∞

∫
Rn−1

f (tu+ vs)Ψa(u · (tu+ vs)−b)dsdt

=
∫

∞

−∞

∫
Rn−1

f (tu+ vs)Ψa(t−b)dsdt

=
∫

∞

−∞

Ψa(t−b)
{∫

Rn−1
f (tu+ vs)ds

}
dt

=
∫

∞

−∞

Ψ̃a(b− t)(Ru f )(t)dt

= (Ψ̃a ∗Ru f )(b). (2.12)
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Therefore, by inverse Fourier transform

I =
∫

∞

−∞

∫
Sn−1

∫
∞

−∞

1
a
(Ru f ∗Ψ−1/a)(b)Ψ1/a(u·x−b)

da
an+1 dudb

=
∫
Sn−1

∫
∞

−∞

1
a
(Ru f ∗Ψ−1/a ∗Ψ1/a)(u·x)

da
an+1 du

= (2π)−1/2
∫

∞

−∞

∫
Sn−1

∫
∞

−∞

eiξ u·x 1
a
(Ru f ∗Ψ−1/a ∗Ψ1/a)

∧(ξ )
da

an+1 dudξ

= (2π)−1/2(2π)(2π)
n−1

2

∫
∞

−∞

∫
Sn−1

∫
∞

−∞

eiξ u·xa f̂ (ξ u)|Ψ(aξ )|2 da
an+1 dudξ .

Since KΨ =
∫

∞

−∞

|Ψ̂(ξ )|2

|ξ |n
dξ and a > 0, by Fubini’s Theorem

I = (2π)−1/2(2π)((2π)
n−1

2

∫
∞

−∞

∫
Sn−1

eiξ u·x f̂ (ξ u)
{∫

∞

−∞

|Ψ̂(aξ )|2

|aξ |n
|ξ |nda

}
dudξ

= (2π)−1/2(2π)(2π)
n−1

2 KΨ

∫
∞

−∞

∫
Sn−1

eiξ u·x f̂ (ξ u)|ξ |n−1dudξ

Using the change of coordinates, inverse Fourier transform and

f̂ (−ξ u) = f̌ (ξ u),

we have

I = (2π)−1/2(2π)(2π)
n−1

2 KΨ

1
2

∫
∞

0

∫
Sn−1

eiξ u·x f̂ (ξ u)|ξ |n−1dudξ

+(2π)−1/2(2π)(2π)
n−1

2 KΨ

1
2

∫
∞

0

∫
Sn−1

e−iξ u·x f̂ (−ξ u)|ξ |n−1dudξ

= (2π)−1/2(2π)(2π)
n−1

2 KΨ

1
2

∫
∞

0

∫
Sn−1

eiξ u·x f̂ (ξ u)|ξ |n−1dudξ

+(2π)−1/2(2π)(2π)
n−1

2 KΨ

1
2

∫
∞

0

∫
Sn−1

e−iξ u·x f̌ (ξ u)|ξ |n−1dudξ

= (2π)−1/2(2π)(2π)
n−1

2 KΨ

∫
Rn

eiη ·x f̂ (η)dη

= (2π)(2π)
n−1

2 KΨ f (x).
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Hence,

f (x) = cΨ

∫
∞

−∞

∫
Sn−1

∫
∞

−∞

( f ,Ψγ)Ψγ

da
an+1 dudb,

where cΨ = (2π)−
n+1

2 K−1
Ψ

.
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2.6 Finite Fourier Transforms

The starting point is the additive group ZN = {0,1, ...,N − 1}, where N is a positive

integer greater than or equal to 2 and the group law is addition modulo N. It is an abelian

group of order n and it is cyclic, which may be viewed as the multiplicative group of

n-th roots of unity and can be drawn as n equally spaced points on a unit circle. Thus

ZN is a finite analog of the circle. A function z : ZN → C is completely specified by

z =



z(0)

z(1)

...

z(N−1)



. We can think of the set of all n-tuples with complex entries as

functions on ZN and we denote it by L2(ZN). The inner product and norm in L2(ZN) are

given by

(z,w) =
N−1

∑
n=0

z(n)w(n)

and

||z||2 = (z,z) =
N−1

∑
n=0
|z(n)|2
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for all z =



z(0)

z(1)

...

z(N−1)



and w =



w(0)

w(1)

...

w(N−1)



in L2(ZN).

An obvious orthonormal basis for L2(ZN) is {ε0,ε1, ...,εN−1}, where

εm =



0

0

...

1

...

0



, m = 0,1, ...,N−1,

and εm has 1 in the mth position and zeros elsewhere. Another orthonormal basis for
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L2(ZN) is {e0,e1, ...,eN−1}, where

em =



em(0)

em(1)

...

em(N−1)



, m = 0,1, ...,N−1,

and

em(n) =
1√
N

e2πimn/N , n = 0,1, ...,N−1.

Definition 2.6.1. Let z ∈ L2(ZN). Then we let ẑ ∈ L2(ZN) be defined by

ẑ =



ẑ(0)

ẑ(1)

...

ẑ(N−1)



,

where

ẑ(m) =
N−1

∑
n=0

z(n)e−2πimn/N , m = 0,1, ...,N−1.

We call ẑ the finite Fourier transform of z.
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Of particular importance to us is the following inversion formula,

Theorem 2.6.2. Let z and ẑ be in L2(ZN). Then

z(n) =
1
N

N−1

∑
m=0

ẑ(m)e2πimn/N , n = 0,1, ...,N−1.

To simplify the Fourier inversion formula in Theorem 2.6.2, we define

Fm =



Fm(0)

Fm(1)

...

Fm(N−1)



, m = 0,1, ...,N−1,

in L2(ZN), where

Fm(n) =
1
N

e2πimn/N , n = 0,1, ...,N−1. (2.13)

Obviously, {F0,F1, ...,FN−1} is orthogonal, but not orthonormal in L2(ZN). Being an or-

thogonal set of N elements in the N-dimensional vector space L2(ZN), {F0,F1, ...,FN−1}

is a basis for L2(ZN) and we call it the Fourier basis for L2(ZN). By Theorem 2.6.2, we

get for k = 0,1, ...,N−1,

Fk =
N−1

∑
m=0

F̂k(m)Fm.
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Therefore

F̂k(m) =


1, k = m,

0, k 6= m,

and

F̂k(m) = εm.

Using the Fourier basis for L2(ZN) defined in 2.13, the Fourier inversion formula in

Theorem 2.6.2 becomes

z =
N−1

∑
m=0

ẑ(m)Fm. (2.14)
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2.7 Trace and Trace Class

The ideal scenario is that we are able to compute the eigenvalues of an operator explic-

itly, but in the more often cases the computation is difficult. The trace, the sum of all

eigenvalues, will alternatively give us some information about the eigenvalues.

For the sake of self-containedness, we give a brief recall of the basic results on trace

class operators and traces in [37,38]. Let A be a compact operator from a complex, sepa-

rable and infinite-dimensional Hilbert space X . Then (A∗A)1/2 is a compact and positive

operator on X , where A∗ is the adjoint of A. Let {ϕk : k = 1,2, . . .} be an orthonormal

basis of X consisting of eigenvectors of (A∗A)1/2, and for k = 1,2, . . . , let sk be the eigen-

value of (A∗A)1/2 corresponding to the eigenvector ϕk. Then we say that A is in the trace

class S1 if
∞

∑
k=1

sk < ∞.

If A is in S1, then for all orthonormal bases {ϕk : k= 1,2, . . .} of X , the series ∑
∞
k=1(Aϕk,ϕk)

is absolutely convergent and the sum is independent of the choice of the orthonormal ba-

sis {ϕk : k = 1,2, . . .} for X . We define the trace tr(A) by

tr(A) =
∞

∑
k=1

(Aϕk,ϕk),

where {ϕk : k = 1,2, . . .} is any orthonormal basis for X . It is a well-known result of

Lidskii [20] that the trace tr(A) of a trace class operator A is the sum of the eigenvalues
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of A, where the multiplicity of each eigenvalue is taken into account.

The following theorem can be found in [38].

Theorem 2.7.1. Let A : X → X be a positive operator such that

∞

∑
k=1

(Aϕk,ϕk)< ∞

for all orthonormal bases {ϕk : k = 1,2, . . .} of X, where ( , ) is the inner product in X.

Then A ∈ S1.
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2.8 The Landau-Pollak-Slepian Operator

Let Ω and T be positive numbers. A signal f ∈ L2(R) is timelimited if f (x) = 0 for

|x|> T . And f is bandlimited if its Fourier transform f̂ (ξ ) has compact support, i.e.,

f̂ (ξ ) = (2π)−1
∫

∞

−∞

e−ixξ f (x)dx = 0, f or |ξ |> Ω. (2.15)

In mathematics, bandlimited signals are proven to be extremely smooth. They pos-

sesses derivatives of all orders. Indeed, they cannot vanish on any time interval unless

they vanish everywhere. Such signals cannot start and stop, but must go on forever. This

concludes that theoretically functions cannot be both band- and timelimited.

However, many real-world situations correspond to an effective band- and timelim-

iting. For instance, a telephone conversation has a finite time duration; at the same time

the conversation is transmitted via the wire in a way that frequencies above or below a

certain level are lost. Many researchers worked on how to represent a function by simu-

taneous bandlimiting and timelimiting, until it was solved by the work of Henry Landau,

Henry Pollack and David Slepian [15, 31, 34].

Signals in Rn with a finite time duration transmitted over a bandlimited channel can

be modeled as follows: let the linear operators PΩ : L2(Rn)→ L2(Rn) and QT : L2(Rn)→
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L2(Rn) be

(PΩ f )∧(ξ ) =


f̂ (ξ ), |ξ | ≤Ω,

0 |ξ |> Ω,

(2.16)

and

(QT f )(x) =


f (x), |x| ≤ T,

0 |x|> T,

(2.17)

for all functions f in L2(Rn).These two operators are proven to be self-joint projec-

tions [37].

Thus, for all functions f in L2(Rn), the function QT PΩ f can be considered to be a

time and band-limited signal. Therefore it is of interest to compare the energy ||QT PΩ f ||2L2(Rn)

of the time and band-limited signal QT PΩ f with the engergy || f ||2L2(Rn)
of the original

signal f , so as to measure how much energy of the signal is lost after applying the time

and band-limited operators on it. Using the fact that PΩ and QT are self-adjoint and are
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projections, we get

sup

{
||QT PΩ f ||2L2(Rn)

|| f ||2L2(Rn)

: f ∈ L2(Rn), f 6= 0

}

= sup

{
(QT PΩ f ,QT PΩ f )L2(Rn)

|| f ||2L2(Rn)

: f ∈ L2(Rn), f 6= 0

}

= sup

{
(PΩQT PΩ f , f )L2(Rn)

|| f ||2L2(Rn)

: f ∈ L2(Rn), f 6= 0

}
= sup

{
(PΩQT PΩ f , f )L2(Rn) : f ∈ L2(Rn), || f ||2L2(Rn) = 1

}
. (2.18)

Since PΩQT PΩ : L2(Rn)→ L2(Rn) is self-adjoint,

sup

{
||QT PΩ f ||2L2(Rn)

|| f ||2L2(Rn)

: f ∈ L2(Rn), f 6= 0

}
= ||PΩQT PΩ||B(L2(Rn)). (2.19)

The bounded linear operator PΩQT PΩ : L2(Rn)→ L2(Rn) is called the Landau-Pollak-

Slepian operator [15,31–34], which is in fact a wavelet multiplier by the following theo-

rem in [37].

Theorem 2.8.1. Let ϕ be the function on Rn defined by

ϕ(x) =


1√

µ(BΩ)
, |x| ≤Ω,

0 |x|> Ω,

(2.20)

where µ(BΩ) is the volume of BΩ, and let σ be the characteristic function on BT , i.e.,

σ(ξ ) =


1, |ξ | ≤ T,

0 |ξ |> T.

(2.21)
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Then the Landau-Pollak-Slepian operator PΩQT PΩ : L2(Rn)→ L2(Rn) is unitarily equiv-

alent to a scalar multiple of the wavelet multiplier ϕTσ ϕ : L2(Rn)→ L2(Rn). In fact,

PΩQT PΩ = µ(BΩ)F
−1(ϕTσ ϕ)F . (2.22)
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2.9 Wavelet Multipliers

Wavelet multipliers are generalized from the Landau-Pollak-Slepian operator, first stud-

ied systematically by M. W. Wong and his students. More details see in [14, 37].

Let π : Rn →U(L2(Rn)) be the unitary representation of the additive group Rn on

L2(Rn) defined by

(π(ξ )u)(x) = eix·ξ u(x), x,ξ ∈ Rn, (2.23)

for all functions u in L2(Rn).

The wavelet multiplier ϕTσ ϕ̄ : L2(Rn)→ L2(Rn) is defined by

((ϕTσ ϕ̄)u,v)L2(Rn) = (2π)−n
∫
Rn

σ(ξ )(u,π(ξ )ϕ)L2(Rn)(π(ξ )ϕ,v)L2(Rn)dξ , (2.24)

where u,v ∈S , σ is a function in Lp(Rn),1 ≤ p ≤ ∞, and ϕ is a function in L2(Rn)∩

L∞(Rn) such that ||ϕ||L2(Rn) = 1.

The trace-class property of wavelet multipliers is given by the following theorem.

Theorem 2.9.1. Let σ ∈ L1(Rn), and let ϕ be any function in L2(Rn)∩L∞(Rn) such that

||ϕ||L2(Rn) = 1. Then the wavelet multiplier ϕTσ ϕ̄ : L2(Rn)→ L2(Rn) is in Sp and

||ϕTσ ϕ̄||S1 ≤ (2π)−n||σ ||L1(Rn).
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3 Finite Pseudo-Differential Operators
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3.1 Pseudo-Differential Operators

Now we look at Theorem 2.6.2 more carefully in the perspective of representation the-

ory. Since ZN is an abelian group with respect to addition modulo N, it follows that

the irreducible and unitary representations of ZN are one-dimensional. In fact, they are

given by the elements in orthonormal basis {e0,e1, ...,eN−1} for L2(ZN), which can then

be identified with ZN . Thus, the dual group of ZN is the group ZN itself. We can now

give the definition of pseudo-differential operators on the group ZN .

Let σ be a function on the phase space ZN×ZN . Then Tσ , the pseudo-differential oper-

ator on ZN corresponding to the symbol σ , is defined by

(Tσ z)(n) =
N−1

∑
m=0

σ(n,m)ẑ(m)Fm(n),

for all z ∈ L2(ZN), where

ẑ(m) =
N−1

∑
n=0

z(n)e−2πimn/N , m = 0,1, ...,N−1.

3.1.1 Matrix Representations

We give the matrix of the pseudo-differential opertor Tσ : L2(ZN)→ L2(ZN) with respect

to the Fourier basis {F0,F1, ...,FN−1} for L2(ZN).
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For k = 0,1, ...,N−1, we get

(Tσ Fk)(n) =
1
N

N−1

∑
m=0

σ(n,m)F̂k(m)e2πimn/N

=
1
N

σ(n,k)e2πikn/N

= σ(n,k)Fk(n)

for n = 0,1, ...,N − 1. Denoting the Fourier transform of σ with respect to the first

variable by F1σ , we get by Theorem 2.6.2

(Tσ Fk)(n) =
N−1

∑
j=0

F1σ( j,k)Fj(n)Fk(n)

=
1

N2

N−1

∑
j=0

F1σ( j,k)e2πi( j+k)n/N

for n = 0,1, ...,N− 1. Changing the summation index j to m by means of the equation

j+ k = m, and using the periodicity of σ with respect to the first variable,

(Tσ Fk)(n) =
1

N2

N−1+k

∑
m=k

F1σ(m− k,k)e2πimn/N

=
1

N2

N−1

∑
m=0

F1σ(m− k,k)e2πimn/N

=
1
N

N−1

∑
m=0

F1σ(m− k,k)Fm(n)

for n = 0,1, ...,N−1.

Tσ Fn =
1
N

N−1

∑
m=0

F1σ(m−n,n)Fm, n = 0,1, ...,N−1.

So the matrix (Tσ )F of the pseudo-differential operator Tσ with respect to the Fourier
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basis is given by

(Tσ )F

=
1
N



(F1σ)(0−0,0) ... (F1σ)(0− (N−1),0)

(F1σ)(1−0,1) ... (F1σ)(1− (N−1),1)

...
...

...

(F1σ)((N−1)−0,N−1) ... (F1σ)((N−1)− (N−1)),(N−1))



=
1
N



(F1σ)(0,0) (F1σ)(N−1,0) ... (F1σ)(1,0)

(F1σ)(1,1) (F1σ)(0,1) ... (F1σ)(2,1)

...
...

...
...

(F1σ)(N−1,N−1) (F1σ)(N−2,N−1) ... (F1σ)(0,N−1)


=

1
N
(F1σ(m−n,n))0≤m,n≤N−1.

Similarly, we give the matrix of the pseudo-differential opertor Tσ : L2(ZN)→ L2(ZN)

with respect to the unit impulse basis {ε0,ε1, ...,εN−1}.
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For k = 0,1, ...,N−1, we get

(Tσ εk)(n) =
N−1

∑
m=0

σ(n,m)ε̂k(m)Fm(n)

=
1
N

σ(n,k)ε̂k(m)e2πimn/N .

The entries of the matrix denoted by [alk] is computed

(Tσ εk,εl) =
N−1

∑
n=0

N−1

∑
m=0

σ(n,m)ε̂k(m)Fm(n)εl

=
1
N

N−1

∑
n=0

N−1

∑
m=0

σ(n,m)ε̂k(m)e2πimn/N
εl(n),

where l is the row index and k is the column index in the matrix.

Since εk has 1 in the kth position and zeros elsewhere,

ε̂k(m) =
N−1

∑
n=0

εk(n)e−2πimn/N

= e−2πikm/N .

Hence, denoting the Fourier transform of σ with respect to the second variable by F2σ

alk = (Tσ εk,εl) =
1
N

N−1

∑
n=0

N−1

∑
m=0

σ(n,m)e−2πikm/Ne2πimn/N
εl(n)

=
1
N

N−1

∑
m=0

σ(l,m)e−2πi(k−l)m/N

=
1
N
(F2σ)(l,k− l). (3.1)

The matrix (Tσ )IU of the pseudo-differential operator Tσ with respect to the unit impulse
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basis is given by

(Tσ )UI

=
1
N



(F2σ)(0,0) (F2σ)(0,1) ... (F2σ)(0,N−1)

(F2σ)(1,N−1) (F2σ)(1,0) ... (F2σ)(1,N−2)

...
...

...
...

(F2σ)(N−1,1) (F2σ)(N−1,2) ... (F2σ)(N−1,0)



,

where l,k = 0,1, ...,N−1.

3.1.2 Trace of the Pseudo-Differential Operator Tσ

Using the matrices hitherto computed, we can obtain the explicit eigenvalues using MAT-

LAB or other softwares. But we are still interested in computing the trace of a finite

pseudo-differential operator in order to see that the formulas are compatible with the

ones for pseudo-differential operators on Rn under suitable conditions on the symbols.

The beauty of the finite analogs is that no restrictions on the symbols are required.

The trace of Tσ , which is independent from the choice of the bases, can be computed

as follows.

Theorem 3.1.1. Let σ be a symbol in L2(ZN ×ZN). Then the trace tr(Tσ ) of the linear
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operator Tσ associated with the symbol σ is given by

tr(Tσ ) =
1
N

N−1

∑
n=0

N−1

∑
m=0

σ(n,m).

Proof. Let {ϕ0,ϕ1, ...,ϕN−1} be any orthonormal basis for L2(ZN). Then

tr(Tσ ) =
N−1

∑
j=0

(Tσ ϕ j,ϕ j)

=
N−1

∑
j=0

N−1

∑
n=0

N−1

∑
m=0

σ(n,m)ẑ(m)Fm(n)ϕ̄ j(n).

Since

ẑ(m) = N(z,Fm)

and

Fm(n) =
N−1

∑
j=0

(Fm,ϕ j)ϕ j(n),

tr(Tσ ) =
N−1

∑
j=0

N−1

∑
n=0

N−1

∑
m=0

σ(n,m)N(ϕ j,Fm)Fm(n)ϕ̄ j(n)

=
N−1

∑
n=0

N−1

∑
m=0

σ(n,m)NFm(n)
N−1

∑
j=0

(ϕ j,Fm)ϕ̄ j(n)

=
N−1

∑
n=0

N−1

∑
m=0

σ(n,m)NFm(n)
N−1

∑
j=0

(Fm,ϕ j)ϕ j(n)

=
N−1

∑
n=0

N−1

∑
m=0

σ(n,m)NFm(n)F̄m(n)

= N
N−1

∑
n=0

N−1

∑
m=0

σ(n,m)|Fm(n)|2

=
1
N

N−1

∑
n=0

N−1

∑
m=0

σ(n,m).
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This completes the proof.

Another way to calculate the trace of Tσ is to sum the diagonal entries of the matrix in

3.1, i.e. when l = k.

tr(Tσ ) =
1
N

N−1

∑
l=0

N−1

∑
m=0

σ(l,m)e−2πi(k−l)m/N

=
1
N

N−1

∑
l=0

N−1

∑
m=0

σ(l,m).

Obviously, the trace is the summation of the chosen symbol.
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4 Localization Operators for Curvelet Transforms
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4.1 Proof of Resolution of Identity Formulas

For a proof of Theorem 2.3.1, Let gaθ be the function on R2 defined by

gaθ (x) =
∫
R2
( f ,γabθ )γabθ (x)db, x ∈ R2.

We want to show that

f (x) =
∫ a0

0

∫
π

−π

gaθ (x)dθ
da
a3 , x ∈ R2.

Since

γabθ (x) = γa0θ (x−b), x ∈ R2, (4.1)

we get

gaθ (x) =
∫
R2

{∫
R2

f (y)γa0θ (y−b)dy
}

γa0θ (x−b)db

=
∫
R2

γa0θ (x−b)(γ̃a0θ ∗ f )(b)db

= ((γa0θ ∗ γ̃a0θ )∗ f )(x)

for all x in R2. Since

(γa0θ ∗ γ̃a0θ )
∧(ξ ) = 2π|γ̂a0θ (ξ )|2, ξ ∈ R2,

we have

ĝaθ (ξ ) = (2π)2|γ̂a0θ (ξ )|2 f̂ (ξ ), ξ ∈ R2.

So, for all ξ in R2,

∫ a0

0

∫
π

−π

ĝaθ (ξ )dθ
da
a3 = f̂ (ξ )(2π)2

∫ a0

0

∫
π

−π

|γ̂a0θ (ξ )|2dθ
da
a3
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and we are done if we can prove that

(2π)2
∫ a0

0

∫
π

−π

|γ̂a0θ (ξ )|2dθ
da
a3 = 1, ξ ∈ supp( f̂ ).

Since

γa0θ (x) = γa00(Rθ x), x ∈ R2,

we get

γ̂a0θ (ξ ) = γ̂a00(Rθ ξ ) =W (ar)V
(

ω +θ√
a

)
a3/4 (4.2)

for all ξ = (r,ω) in R2. Therefore for all ξ in supp( f̂ ),

(2π)2
∫ a0

0
|γ̂a0θ (ξ )|2dθ

da
a3 = (2π)2

∫ a0

0

∫
π

−π

W (ar)2V
(

ω +θ√
a

)2

a3/2dθ
da
a3 .

By the admissibility condition on V , we get

(2π)2
∫

π

−π

V
(

ω +θ√
a

)2

dθ = a1/2.

So we only need to prove that

∫ a0

0
W (ar)2 da

a
= 1, ξ ∈ supp( f̂ ).

But for r > 2/a0,

∫ a0

0
W (ar)2 da

a
=
∫ a0r

0
W (a)2 da

a
=
∫ 2

1/2
W (a)2 da

a
= 1,

and the proof of Theorem 2.3.1 is complete.
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For f ∈ L2(R2), we define the function P1 f on R2 by

(P1 f )(x) =
∫

π

−π

∫
R2

∫ a0

0
( f ,γabθ )γabθ (x)

da
a3 dbdθ , x ∈ R2.

Then for all ξ in R2,

P̂1 f (ξ ) = f̂ (ξ )
∫ a0

0
W (a|ξ |)2 da

a
= (2π)2 f̂ (ξ )Ψ(ξ )2,

where Ψ is defined in (2.7). If we define the function P0 f on R2 by

P0 f = f −P1 f ,

then

P0 f = Φ∗Φ∗ f ,

where Φ is the function on R2 defined by (2.8). Then

∫
R2
( f ,Φb)Φb(x)db = (P0 f )(x), x ∈ R2,

and we get

f = P0 f +P1 f , f ∈ L2(R2).

This completes the proof of Theorem 2.3.2

4.2 High-Frequency Signals

For high-frequency signals, we let L2
2/a0

(R2) be the closed subspace of L2(R2) given by

L2
2/a0

(R2) = { f ∈ L2(R2) : f̂ (ξ ) = 0, |ξ |< 2/a0}.
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Then for suitable measurable functions τ on the measure space X given by

X = (0,a0)×R2× [−π,π]

equipped with the measure dµ given by

dµ =
da
a3 dbdθ ,

we define the localization operator Lτ : L2
2/a0

(R2)→ L2(R2) with symbol τ by

(Lτ f ,g) =
∫

π

−π

∫
R2

∫ a0

0
τ(a,b,θ)( f ,γabθ )(γabθ ,g)

da
a3 dbdθ (4.1)

for all f in L2
2/a0

(R2) and g in L2(R2).

Theorem 4.2.1. Let τ ∈ L∞(X). Then the localization operator

Lτ : L2
2/a0

(R2)→ L2(R2)

with symbol τ is a bounded linear operator. Moreover,

‖Lτ‖B(L2
2/a0

(R2),L2(R2)) ≤ ‖τ‖L∞(X),

where ‖‖B(L2
2/a0

(R2),L2(R2)) is the norm in the Banach space of all bounded linear opera-

tors from L2
2/a0

(R2) into L2(R2).

Proof For all f in L2
2/a0

(R2) and g in L2(R2), we get by means of the Schwarz inequality

and the resolution of the identity formula in Theorem 2.3.1
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|(Lτ f ,g)|

=

∣∣∣∣∫ π

−π

∫
R2

∫ a0

0
τ(a,b,θ)( f ,γabθ )(γabθ ,g)

da
a3 dbdθ

∣∣∣∣
≤

∫
π

−π

∫
R2

∫ a0

0
|τ(a,b,θ)| |( f ,γabθ )| |(g,γabθ )|

da
a3 dbdθ

≤ ‖τ‖L∞(X)

∫
π

−π

∫
R2

∫ a0

0
|( f ,γabθ )| |(g,γabθ )|

da
a3 dbdθ

≤ ‖τ‖L∞(X)

{∫
X
|( f ,γabθ )|2dµ

}1/2{∫
X
|(g,γabθ )|2dµ

}1/2

= ‖τ‖L∞(X)‖ f‖‖g‖.

2

Another class of symbols τ for which Lτ : L2
2/a0

(R2)→ L2(R2) is a bounded linear

operator is provided by the following theorem.

Theorem 4.2.2. Let W be a radial window such that

∫
∞

0
W (s)2sds < ∞.

Then for all τ ∈ L1(X), the localization operator

Lτ : L2
2/a0

(R2)→ L2(R2)

with symbol τ is a bounded linear operator. Moreover,

‖Lτ‖B(L2
2/a0

(R2),L2(R2)) ≤ (2π)−2
∫

∞

0
W (s)2sds‖τ‖L1(X).
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In order to prove Theorem 4.2.2, we use the following lemma.

Lemma 4.2.3. Let W be as in Theorem 4.2.2. Then for all a in (0,a0) and θ in [−π,π],

‖γa0θ‖2 ≤ (2π)−2
∫

∞

0
W (s)2sds.

Proof Using Plancherel’s theorem, polar coordinates and (4.2), we get for all a in (0,a0)

and θ in [−π,π],

‖γa0θ‖2 = ‖γ̂a0θ‖2

=
∫
R2
|γ̂a0θ (ξ )|2dξ

=
∫

∞

0

∫
π

−π

|W (ar)|2
∣∣∣∣V (ω +θ√

a

)∣∣∣∣2 a3/2r dr dω

=
∫

∞

0
W (s)2a3/2a1/2

(∫ (π+θ)/
√

a

(−π+θ)/
√

a
V (φ)2dφ

)
s
a

ds
a

≤
∫

∞

0
W (s)2

(∫
∞

−∞

V (φ)2dφ

)
sds

So, by (2.5) and (2.6), we have

‖γa0θ‖2 ≤
(∫

∞

0
W (s)2sds

)(∫ 1

−1
V (φ)2dφ

)
= (2π)−2

∫
∞

0
W (s)2sds

and this completes the proof. 2

Proof of Theorem 4.2.2 By the Schwarz inequality and Lemma 4.2.3, we have for all f
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in L2
2/a0

(R2) and g in L2(R2),

|(Lτ f ,g)|

=

∣∣∣∣∫ π

−π

∫
R2

∫ a0

0
τ(a,b,θ)( f ,γabθ )(γabθ ,g)

da
a3 dbdθ

∣∣∣∣
=

∫
π

−π

∫
R2

∫ a0

0
|τ(a,b,θ)| |( f ,γabθ )| |(γabθ ,g)|

da
a3 dbdθ

≤ ‖ f‖‖g‖
∫

π

−π

∫
R2

∫ a0

0
|τ(a,b,θ)|‖γa0θ‖2 da

a3 dbdθ . (4.2)

By Plancherel’s theorem and (4.1),

‖γabθ‖2 = ‖γ̂abθ‖2 = ‖(Tbγa0θ )
∧‖2

= ‖Mbγ̂a0θ‖2 = ‖γ̂a0θ‖2

= ‖γa0θ‖2 ≤ (2π)−2
∫

∞

0
W (s)2sds. (4.3)

By (4.2) and (4.3), we get

|(Lτ f ,g)| ≤ ‖ f‖‖g‖‖τ‖L1(X)(2π)−2
∫

∞

0
W (s)2sds.

This completes the proof.

Remark 4.2.4. In the proof of Lemma 4.2.3, we use the translation Tb f of a measurable

function f on R2 in the direction b by

(Tb f )(x) = f (x+b), x ∈ R2.

We also use the modulation Mb f of f by b defined by

(Mb f )(x) = eib·x f (x), x ∈ R2.
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It is well-known that for f in L1(R2),

(Tb f )∧(ξ ) = (Mb f̂ )(ξ ), ξ ∈ R2,

and

(Mb f )∧ξ ) = (Tb f̂ )(ξ ), ξ ∈ R2.

See Proposition 3.4 of [36].

4.3 Wavelet Multipliers

We begin with the following lemma on the father wavelet defined by (2.8).

Lemma 4.3.1. Φ and Φ̂ are functions in L2(R2)∩L∞(R2).

Proof By (2.8),

Φ̂(ξ )2 = (2π)−2−Ψ(ξ )2, ξ ∈ R2.

By (2.3), (2.4) and (2.7), we see that Ψ2 is a continuous function on R2 such that

Ψ(ξ )2 = (2π)−2, |ξ | ≥ 2/a0.

Thus, Φ̂2 is a continuous function on R2 such that

Φ̂
2(ξ ) = 0, |ξ | ≥ 2/a0.

So, Φ̂ ∈ L2(R2), and by Plancherel’s theorem, Φ ∈ L2(R2). To see that Φ ∈ L∞(R2), we

note that Φ̂2 ∈C0(R2) and hence Φ̂ ∈C0(R2). Taking the inverse Fourier transform of

Φ̂ and invoking the Riemann–Lebesgue lemma, we see that Φ ∈ L∞(R2). 2
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Theorem 4.3.2. Let σ ∈ L∞(R2). Then the wavelet multiplier Tσ : L2(R2)→ L2(R2)

defined by

(Tσ f ,g) =
∫
R2

σ(b)( f ,Φb)(Φb,g)db

for all f and g in L2(R2) is a bounded linear operator. Moreover,

‖Tσ‖∗ ≤ (2π)2‖σ‖L∞(R2)‖Φ̂‖2
L∞(R2),

where ‖‖∗ is the norm in the C∗-algebra of all bounded linear operators from L2(R2)

into L2(R2).

Proof For all f and g in L2(R2), we get by Plancherel’s formula

|(Tσ f ,g)|=
∣∣∣∣∫R2

σ(b)( f ,Φb)(Φb,g)db
∣∣∣∣

≤
∫
R2
|σ(b)| |( f̂ ,Φ̂b)| |(Φ̂b, ĝ)|db. (4.1)

Now,

Φ̂b(ξ ) = (π(−b)Φ̂)(ξ ), ξ ∈ R2,

where π(−b)Φ̂ is the modulation of Φ̂ by b given by

(π(−b)Φ̂)(ξ ) = (M−bΦ̂)(ξ ) = e−ib·ξ
Φ̂(ξ ), ξ ∈ R2.

Let Ω be the function on R2 given by

Ω =
Φ̂

‖Φ̂‖
.
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Then

Φ̂b(ξ ) = ‖Φ̂‖(π(−b)Ω)(ξ ), ξ ∈ R2.

We note that

( f̂ ,Φ̂b) = ‖Φ̂‖( f̂ ,π(−b)Ω) = ‖Φ̂‖( f̃ ,TbΩ̂),

where

f̃ (x) = f (−x), x ∈ R2.

So,

( f̂ ,Φ̂b) = ‖Φ̂‖
∫
R2

f (−x)Ω̂(x+b)dx

= ‖Φ̂‖
∫
R2

f (x)Ω̂(b− x)dx

= ‖Φ̂‖( f ∗ Ω̂)(b), b ∈ R2. (4.2)

Similarly,

(Φ̂b, ĝ) = ‖Φ̂‖(g∗ Ω̂)(b), b ∈ R2. (4.3)
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So, by (4.1), (4.2), (4.3) and Plancherel’s formula, we get

|(Tσ f ,g)| ≤ ‖σ‖L∞(R2)‖Φ̂‖2
∫
R2
|( f ∗ Ω̂)(b)| |(g∗ Ω̂)(b)|db

= ‖σ‖L∞(R2)‖Φ̂‖2
∥∥∥ f ∗ Ω̂

∥∥∥ ∥∥∥g∗ Ω̂

∥∥∥
= (2π)2‖σ‖L∞(R2)‖Φ̂‖2

∥∥∥∥ ˆ̂
Ω f̂
∥∥∥∥ ∥∥∥∥ ˆ̂

Ωĝ
∥∥∥∥

= (2π)2‖σ‖L∞(R2)‖Φ̂‖2‖Ω f̂‖‖Ωĝ‖

= (2π)2‖σ‖L∞(R2)‖Φ̂‖2‖Ω‖2
L∞(R2)‖ f̂‖‖ĝ‖

= (2π)2‖σ‖L∞(R2)‖Φ̂‖2
L∞(R2)‖ f‖‖g‖

for all f and g in L2(R2). This completes the proof. 2

We can give another useful class of symbols σ for which Tσ : L2(R2)→ L2(R2) is a

bounded linear operator.

Theorem 4.3.3. Let σ ∈ L1(R2). Then the wavelet multiplier Tσ : L2(R2)→ L2(R2)

defined by

(Tσ f ,g) =
∫
R2

σ(b)( f ,Φb)(Φb,g)db

is a bounded linear operator. Moreover,

‖Tσ‖∗ ≤ ‖σ‖L1(R2)‖Φ‖2.
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Proof Using the Schwarz inequality, we get for all f and g in L2(R),

|(Tσ f ,g)|

=

∣∣∣∣∫R2
σ(b)( f ,Φb)(Φb,g)db

∣∣∣∣
≤

∫
R2
|σ(b)| |( f ,Φb)| |(Φb,g)|db

≤
{∫

R2
|σ(b)|‖Φb‖2db

}
‖ f‖‖g‖. (4.4)

But

‖Φb‖2 =
∫
R2
|Φ(x−b)|2dx =

∫
R2
|Φ(x)|2dx = ‖Φ‖2 (4.5)

for all b in R2. So, by (4.4) and (4.5),

|(Tσ f ,g)| ≤ ‖σ‖L1(R2)‖Φ‖2‖ f‖‖g‖,

as required. 2

4.4 Curvelet Localization Operators

The starting point is the L2-boundedness of curvelet localization operators with symbols

in L∞(X).

Theorem 4.4.1. Let τ ∈ L∞(X). Then the curvelet localization operator Tτ : L2(R2)→

L2(R2) defined by

(Tτ f ,g) =
∫

π

−π

∫
R2

∫ a0

0
τ(a,b,θ)( f ,γabθ )(γabθ ,g)

da
a3 dbdθ
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for all f and g in L2(R2) is a bounded linear operator. Moreover,

‖Tσ‖∗ ≤ ‖τ‖L∞(X)(1+‖Φ̂‖2
L∞(R2)).

Proof For all f and g in L2(R2), we get

|(Tτ f ,g)| =

∣∣∣∣∫ π

−π

∫
R2

∫ a0

0
τ(a,b,θ)( f ,γabθ )(γabθ ,g)

da
a3 dbdθ

∣∣∣∣
≤

∫
π

−π

∫
R2

∫ a0

0
|τ(a,b,θ)| |( f ,γabθ | |(γabθ ,g)|

da
a3 dbdθ

≤ ‖τ‖L∞(X)

∫
π

−π

∫
R2

∫ a0

0
|( f ,γabθ )| |(γabθ ,g)|

da
a3 dbdθ . (4.1)

Using the Schwarz inequality, we get

∫
π

−π

∫
R2

∫ a0

0
|( f ,γabθ )| |(γabθ ,g)|

da
a3 dbdθ

=

{∫ −π

0

∫
R2

∫ a0

0
|( f ,γabθ )|2

da
a3 dbdθ

}1/2

×
{∫

π

−π

∫
R2

∫ a0

0
|(g,γabθ )|2

da
a3 dbdθ

}1/2

. (4.2)

Using the full resolution of the identity formula in Theorem 2.3.2 and Plancherel’s theo-

rem, we get

∫ a0

0

∫
R2

∫
π

−π

|( f ,γabθ )|2
da
a3 dbdθ

= ‖ f‖2−
∫
R2
|( f ,Φb)|2db

= ‖ f‖2−
∫
R2
|( f̂ ,π(−b)Φ̂)|2db

= ‖ f‖2−
∫
R2
|( f̂ ,π(b)Φ̂)|2db. (4.3)
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Since Φ̂ ∈ L2(R2)∩ L∞(R2), it follows from the resolution of the identity formula for

wavelet multipliers in Proposition 19.1 in [37] and Plancherel’s theorem that

∫
R2
|( f̂ ,π(b)Φ̂)|2db = ‖Φ̂ f̂‖2 ≤ ‖Φ̂‖2

L∞(X)‖ f‖2. (4.4)

Similarly, ∫
R2
|(ĝ,π(b)Φ̂)|2L∞(X)db≤ ‖Φ̂‖2

L∞(X)‖g‖
2. (4.5)

Thus, by (4.1)–(4.5), we get

|(Tσ f ,g)| ≤ ‖τ‖L∞(X)(1+‖Φ̂‖2)‖ f‖‖g‖

for all f and g in L2(R2), and the proof is complete. 2

Theorem 4.4.2. Let W be a radial window such that

∫
∞

0
W (s)2sds < ∞.

Then for all τ ∈ L1(X), the curvelet localization opertor Tτ : L2(R2)→ L2(R2) given by

(Tτ f ,g) =
∫

π

−π

∫
R2

∫ a0

0
τ(a,b,θ)( f ,γabθ )(γabθ ,g)

da
a3 dbdθ

for all f and g in L2(R2) is a bounded linear operator. Moreover,

‖Tσ‖∗ ≤ (2π)−2‖τ‖L1(X)

{∫
∞

0
W (s)2sds

}
.
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Proof For all f and g in L2(R2), we get using the Schwarz inequality

|(Tτ f ,g)|

=

∣∣∣∣∫ π

−π

∫
R2

∫ a0

0
τ(a,b,θ)( f ,γabθ )(γabθ ,g)

da
a3 dbdθ

∣∣∣∣
≤

∫
π

−π

∫
R2

∫ a0

0
|τ(a,b,θ) |( f ,γabθ )| |(γabθ ,g)|

da
a3 dbdθ

=

{∫
π

−π

∫
R2

∫ a0

0
|τ(a,b,θ)|‖γabθ‖2 da

a3 dbdθ

}
‖ f‖‖g‖. (4.6)

By (4.1) and Lemma 4.2.3, we have

‖γabθ‖2 = ‖γa0θ‖2 ≤ (2π)−2
{∫

∞

0
W (s)2sds

}
. (4.7)

So, by (4.6) and (4.7), we get

|(Tσ f ,g)| ≤ (2π)−2‖τ‖L1(X)

{∫
∞

0
W (s)2sds

}
‖ f‖‖g‖.

2

4.5 The Trace Class and the Trace

We have the following results.

Theorem 4.5.1. Let σ ∈ L1(R2). Then the wavelet multiplier Tσ : L2(R2)→ L2(R2) is

a compact operator.

Proof We first assume that σ is nonnegative. Let {ϕk : k = 1,2, . . .} be an orthonormal
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basis for L2(R2). Then by Fubini’s theorem and the Parseval identity,

∞

∑
k=1

(Tσ ϕk,ϕk) =
∞

∑
k=1

∫
R2

σ(b)|(ϕk,Φb)|2db

=
∫
R2

σ(b)
∞

∑
k=1
|(ϕk,Φb)|2db

=
∫
R2

σ(b)‖Φb‖2db. (4.1)

But

‖Φb‖2 = ‖Φ‖2. (4.2)

So, by (4.1) and (4.2),
∞

∑
k=1

(Tσ ϕk,ϕk)≤ ‖σ‖L1(R2)‖Φ‖2.

Hence by Proposition 2.3 in [37], Tσ : L2(R2)→ L2(R2) is compact. For an arbitrary

real-valued symbol σ in L1(R2), we can write

σ = σ+−σ−,

where

σ+ = max(σ ,0)

and

σ− =−min(σ ,0).

So, Tσ : L2(R2)→ L2(R2) is a compact operator. Finally, if σ is an arbitrary symbol in

L1(R2), we can write

σ = Reσ + i Imσ
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and the proof is complete. 2

Using the same proof of Theorem 4.5.1 and Proposition 2.4 in [37], we can obtain

the following result.

Theorem 4.5.2. The wavelet multiplier Tσ : L2(R2)→ L2(R2) is in the trace class S1.

We can estimate the trace class norm ‖Tσ‖S1 of the wavelet multiplier Tσ : L2(R2)→

L2(R2) in Theorem 4.5.2.

Theorem 4.5.3. Let σ ∈ L1(R2). Then

‖Tσ‖S1 ≤ ‖σ‖L1(R2)‖Φ‖2.

Proof By Theorem 4.5.2, Tσ ∈ S1. Then using the canonical form for compact operators

given in Theorem 2.2 in [37], we get

Tσ f =
∞

∑
k=1

sk(Tσ )( f ,ϕk)ψk, f ∈ L2(R2), (4.3)

where sk(Tσ ), k = 1,2, . . . , are the singular values of Tσ : L(R2)→ L2(R2), {ϕk : k =

1,2, . . .} is an orthonormal basis for the orthogonal complement of the null space of Tσ ,

{ψk : k = 1,2, . . .} is an orthonormal set in L2(R2) and the convergence of the series is

in L2(R2). By (4.3), Fubini’s theorem, the Schwarz inequality and Bessel’s inequality,

∞

∑
j=1

(Tσ ϕ j,ψ j) =
∞

∑
j=1

s j(Tσ ). (4.4)
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So, using (4.4),

‖Tσ‖S1 =
∞

∑
j=1

(Tσ ϕ j,ψ j). (4.5)

Therefore by (4.5),

‖Tσ‖S1 =
∞

∑
k=1

(Tσ ϕk,ψk)

=
∞

∑
k=1

∫
R2

σ(b)(ϕk,Φb)(Φb,ψk)db

≤
∞

∑
k=1

∫
R2
|σ(b)| |(ϕk,Φb)| |(Φb,ψk)|db

=
∫
R2
|σ(b)|

∞

∑
k=1
|(ϕk,Φb)| |(Φb,ψk)|db

≤
∫
R2
|σ(b)|

{
∞

∑
k=1
|(ϕk,Φb)|2

∞

∑
k=1
|(Φb,ψk)|2

}1/2

db

≤
∫
R2
|σ(b)|‖Φb‖2db

=
∫
R2
|σ(b)|‖Φ‖2db

= ‖σ‖L1(R2)‖Φ‖2.

2

The Lidskii’s formula [10,16,19] for the trace of the wavelet multiplier Tσ : L2(R2)→

L2(R2) is given by the following theorem. The proof is the same as that of Theorem 19.12

in [37].

Theorem 4.5.4. Let σ ∈ L1(R2). Then the trace tr(Tσ ) of the wavelet multiplier Tσ :
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L2(R2)→ L2(R2) is given by

tr(Tσ ) = ‖Φ‖2
∫
R2

σ(b)db.

Using the same techniques, we can conclude with the following results for the trace

class properties of curvelet localization operators.

Theorem 4.5.5. Let τ ∈ L1(X). Then the curvelet localization operator Tτ : L2(R2)→

L2(R2) defined by

(Tτ f ,g) =
∫

π

−π

∫
R2

∫ a0

0
τ(a,b,θ)( f ,γabθ )(γabθ ,g)

da
a3 dbdθ

for all f and g in L2(R2) is in the trace class S1 and

‖Tτ‖S1 ≤ (2π)−2‖τ‖L1(X)

{∫
∞

0
W (s)2sds

}
.

The following Lidskii’s formula for the trace is then obvious.

Theorem 4.5.6. Let τ ∈L1(X). Then the trace tr(Tτ) of the curvelet localization operator

Tτ : L2(R2)→ L2(R2) is given by

tr(Tτ) =
∫

π

−π

∫
R2

∫ a0

0
τ(a,b,θ)‖γabθ‖2 da

a3 dbdθ .

4.6 Trace Class on Closed Subspaces

Let X be an infinite-dimensional, separable and complex Hilbert space in which the inner

product and norm are denoted by ( , )X and ‖‖X respectively. Let A : X→X be a bounded
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linear operator. Then its adjoint A∗ : X → X is a bounded linear operator. Let X0 be a

closed subspace of X . The restriction of A to X0 results in a bounded linear operator

A0 : X0→ X . The adjoint of A0 : X0→ X is a bounded linear operator A∗0 : X → X0. So,

for all x in X , A∗x is a bounded linear functional on X given by an element in X and A∗0x

is a bounded linear functional on X0 given by an element in X0. If A : X→ X is a compact

operator, then so is A0 : X0→ X and hence A∗0A0 : X0→ X0 is a compact and self-adjoint

operator. Thus, the absolute value |A0| defined by

|A0|=
√

A∗0A

is a compact and self-adjoint operator on X0. So, we can find an orthonormal basis

{ϕk : k = 1,2, . . .} for X0 consisting of eigenvectors of |A0|. For k = 1,2, . . . , let sk(X0)

be the eigenvalue of |A0| corresponding to ϕk. We say that A0 : X0 → X is in the trace

class S1(X0) if
∞

∑
k=1

sk(X0)< ∞.

It can be proved easily that A∗A is an extension of A∗0A0.

Remark 4.6.1. Notwithstanding the fact that A0 : X0 → X, is in the trace class S1. the

trace of the operator A0 : X0→X is not defined. This is akin to the case that a rectangular

matrix that is not a square matrix does not have a trace.

Proposition 4.6.2. Let A : X → X be compact. Then |A| is an extension of |A0|.
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Proof Let {ϕk}∞
k=1 be an orthonormal basis for X0 consisting of eigenvectors of |A0|

and let sk(X0) be the eigenvalue of |A0| corresponding to ϕk. Since A∗A is an extension

of A∗0A0, we see that for k = 1,2, . . . , ϕk is an eigenvector of A∗A with sk(X0)
2 as the

corresponding eigenvalue. By the spectral mapping theorem, we get

|A|ϕk = sk(X0)ϕk = |A0|ϕk.

Let x ∈ X0. Then

x =
∞

∑
k=1

(x,ϕk)X ϕk

and hence

|A|x =
∞

∑
k=1

(x,ϕk)X |A|ϕk =
∞

∑
k=1

(x,ϕk)X |A0|ϕk = |A0|x.

2

Corollary 4.6.3. If A : X → X is in the trace class S1, then so is A0 : X0→ X .

Proof Since |A0| is compact and self-adjoint, it follows that we can find an orthonormal

basis for X0 consisting of eigenvectors of |A0|. Let sk(X0) be the eigenvalue of |A0|

corresponding to ϕk. Then by Proposition 4.6.2, we see that for k = 1,2, . . . , ϕk is an

eigenvector of |A| with sk(X0) as the corresponding eigenvalue. Since A is a trace class

operator, it follows that
∞

∑
k=1

sk(X0)≤ ‖A‖S1 < ∞.
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So, A0 : X0→ X is also a trace class operator as asserted. 2

We can now come back to the localization operators for high-frequency signals. The

following result is an immediate consequence of Theorem 4.5.5 and Corollary 4.6.3.

Theorem 4.6.4. Let W be a radial window such that

∫
∞

0
W (s)2sds < ∞.

Then for all τ ∈ L1(X), the localization operator Lτ : L2
2/a0

(R2)→ L2(R2) with symbol

τ is in the trace class S1.
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5 Localization Operators for Ridgelet Transforms
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5.1 L2-Boundedness of Ridgelet Localization Operators Lτ

We can now give the main result on the L2-boundedness of localization operators for

ridgelet transforms.

Theorem 5.1.1. Let τ ∈ Lp(Γ), 1≤ p≤∞. Then the localization operator Lτ : L2(Rn)→

L2(Rn) with symbol τ is a bounded linear operator. Moreover,

‖Lτ‖∗ ≤ ((2π)n−1cΨ‖Ψ‖2
L2(R))

1/p‖τ‖Lp(Γ),

where ‖‖∗ is the norm in the C∗-algebra of all bounded linear operators on L2(Rn).

Proof Let τ ∈ L∞(Γ). Then using the Schwarz inequality and the resolution of the

identity formula for ridgelet transforms, we have for all f and g in L2(Rn)

|(Lτ f ,g)L2(Rn)|

=

∣∣∣∣cΨ

∫
Γ

τ(γ)( f ,Ψγ)L2(Rn)(Ψγ ,g)L2(Rn)dγ

∣∣∣∣
≤ cΨ

∫
Γ

|τ(γ)| |( f ,Ψγ)L2(Rn)(Ψγ ,g)L2(Rn)|dγ

≤ cΨ‖τ‖L∞(Γ)

∫
Γ

|( f ,Ψγ)L2(Rn)| |(Ψγ ,g)L2(Rn)|dγ

≤ cΨ‖τ‖L∞(Γ)

{∫
Γ

|( f ,Ψγ)L2(Rn)|2dγ

}1/2{∫
Γ

|(Ψγ ,g)L2(Rn)|2dγ

}1/2

= cΨ‖τ‖L∞(Γ)

{
‖ f‖2

L2(Rn)

cΨ

}1/2{‖g‖2
L2(Rn)

cΨ

}1/2

= ‖τ‖L∞(Γ)‖ f‖L2(Rn)‖g‖L2(Rn). (5.1)
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Now, let τ ∈ L1(Γ). Then for all functions f and g in L2(Rn),

|(Lτ f ,g)L2(Rn)|

=

∣∣∣∣cΨ

∫
Γ

τ(γ)( f ,Ψγ)L2(Rn)(Ψγ ,g)L2(Rn)dγ

∣∣∣∣
≤ cΨ

∫
Γ

|τ(γ)| |( f ,Ψγ)L2(Rn)| |(Ψγ ,g)L2(Rn)|dγ. (5.2)

For γ = (a,u,b), we let Ψa be the function on R defined by

Ψa(y) = a−1/2
Ψ(y/a), y ∈ R,

and we get

( f ,Ψγ)L2(Rn)

=
∫
Rn

f (x)
1√
a

Ψa−1((u · x)−b)dx

=
∫

∞

−∞

∫
Rn−1

f

(
tu+

n−1

∑
j=1

v js j

)
1√
a

Ψa−1

(
u ·

(
tu+

n−1

∑
j=1

v js j

)
−b

)
dvdt

=
∫

∞

−∞

∫
Rn−1

f

(
tu+

n−1

∑
j=1

v js j

)
1√
a

Ψa−1(t−b)dvdt

=
∫

∞

−∞

1√
a

Ψa−1(t−b)

{∫
Rn−1

f

(
tu+

n−1

∑
j=1

v js j

)
dv

}
dt

=
∫

∞

−∞

1√
a

Ψ−a−1(b− t)(Ru f )(t)dt

=
1√
a
(Ψ−a−1 ∗ (Ru f ))(b). (5.3)

Since ∥∥∥∥ 1√
a

Ψa−1

∥∥∥∥
L2(R)

= ‖Ψ‖L2(R), (5.4)
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it follows from (5.2)–(5.4) and the Schwarz inequality that

|(Lτ f ,g)L2(Rn)|

≤ cΨ

∫
∞

−∞

∫
Sn−1

∫
∞

0
|τ(a,u,b)|

∣∣∣∣( 1√
a

Ψ−a−1 ∗ (Ru f )
)
(b)
∣∣∣∣∣∣∣∣( 1√

a
Ψ−a−1 ∗ (Rug)

)
(b)
∣∣∣∣ da

an+1 dudb

= cΨ

∫
∞

−∞

∫
Sn−1

∫
∞

0
|τ(a,u,b)|‖Ru f‖L2(R)‖Rug‖L2(R)‖Ψ‖2

L2(R)
da

an+1 dudb

= cΨ‖Ψ‖2
L2(R)

∫
∞

−∞

∫
Sn−1

∫
∞

0
|τ(a,u,b)|‖Ru f‖L2(R)‖Rug‖L2(R)

da
an+1 dudb.

(5.5)

For all Schwartz functions f on Rn, we get by Plancherel’s formula

‖Ru f‖2
L2(R) = ‖R̂u f‖2

L2(R). (5.6)

Now, we note that the restriction theorem of the Fourier transform holds to the effect that

∫
∞

−∞

| f̂ (ξ u)|2dξ ≤
∫
Rn
| f̂ (η)|2dη =

∫
Rn
| f (x)|2dx. (5.7)

Indeed, ∫
Rn
| f̂ (η)|2dη =

∫
Rn−1

∫
∞

−∞

∣∣∣∣∣ f̂
(

ξ u+
∞

∑
j=1

v js j

)∣∣∣∣∣
2

dξ dv.

Then there exists a vector v in Rn−1 such that

∫
∞

−∞

∣∣∣∣∣ f̂
(

ξ u+
n−1

∑
j=1

v js j

)∣∣∣∣∣
2

dξ ≤
∫
Rn
| f̂ (η)|2dη .

For if this is not true, then for all v ∈ Rn−1,

∫
∞

−∞

∣∣∣∣∣ f̂
(

ξ u+
n−1

∑
j=1

v js j

)∣∣∣∣∣
2

dξ >
∫
Rn
| f̂ (η)|2dη
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and hence

∫
Rn
| f̂ (η)|2dη =

∫
Rn−1

∫
∞

−∞

∣∣∣∣∣ f̂
(

ξ u+
n−1

∑
j=1

v js j

)∣∣∣∣∣
2

dξ dv

>
∫
Rn−1

∫
Rn
| f̂ (η)|2dη dv = ∞,

which is a contradiction. So, there exists a v in Rn−1 such that

∫
∞

−∞

|(M−∑
n−1
j=1 v js j

f )∧(ξ u)|2dξ ≤
∫
Rn
| f̂ (η)|2dη =

∫
Rn
| f (x)|2dx

and hence

∫
∞

−∞

| f̂ (ξ u)|2dξ ≤
∫
Rn
|(M

∑
n−1
j=1 v js j

f )(x)|2dx =
∫
Rn
| f (x)|2dx,

where

(M±∑
n−1
j=1 v js j

f )(x) = e±ix·∑n−1
j=1 v js j f (x), x ∈ Rn.

By Theorem 2.4.1 and (5.7),

‖Ru f‖2
L2(R) =

∫
∞

−∞

|R̂u f (ξ )|2dξ

= (2π)n−1
∫

∞

−∞

| f̂ (ξ u)|2dξ

≤ (2π)n−1‖ f̂‖2
L2(Rn)

= (2π)n−1‖ f‖2
L2(Rn). (5.8)

Thus, by (5.5) and (5.8),

|(Lτ f ,g)L2(R)| ≤ (2π)n−1cΨ‖Ψ‖2
L2(R)‖ f‖L2(Rn)‖g‖L2(Rn)‖τ‖L1(Γ)
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and hence

‖Lτ f‖L2(Rn) ≤ (2π)n−1cΨ‖Ψ‖2
L2(R)‖τ‖L1(Γ)‖ f‖L2(Rn).

In order to complete the proof, we need the Riesz–Thorin theorem [39].

Theorem 5.1.2. (The Riesz-Thorin Theorem) Let (X ,µ) be a measure space and (Y,ν)

be σ -finite measure space. Let T be a linear transformation with domain D consisting

of all µ-simple functions f on X such that

µ{s ∈ X : f (s) 6= 0}< ∞

and such that the range of T is contained in the set of all ν-measurable functions on

Y . Suppose that α1,α2,β1, and β2 are real numbers in [0,1] and there exist positive

constants M1 and M2 such that

||T f ||
L

1
β j (Y )

≤M j|| f ||
L

1
α j (X)

, f ∈D , j = 1,2.

Then, for 0 < θ < 1,

α = (1−θ)α1 +θα2,

and

β = (1−θ)β1 +θβ2,

we have

||T f ||
L

1
β (Y )
≤M1−θ

1 Mθ
2 || f ||L 1

α (X)
f ∈D .
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By using the Riesz–Thorin theorem, we get

‖Lτ f‖L2(Rn) ≤ ((2π)n−1cΨ‖Ψ‖2
L2(R)‖ f‖L2(Rn))

1/p‖ f‖1−(1/p)
L2(Rn)

‖τ‖Lp(Γ)

= ((2π)n−1cΨ‖Ψ‖2
L2(R))

1/p‖τ‖Lp(Γ)‖ f‖L2(Rn)

and the proof is complete. 2

5.2 Trace Class Localization Operators ϕLτ ϕ̄

In order to investigate the trace properties of the localization operators for ridgelet trans-

forms, we introduce a new localization operator ϕLτ ϕ̄ . Let τ ∈ L1(Γ) and let ϕ ∈S (Rn)

be real, a localization operator based on ridgelet transforms ϕLτϕ is defined as

(ϕLτ ϕ̄ f ,g) = (Lτ ϕ̄ f , ϕ̄g)

= cΨ

∫
Γ

τ(a,u,b)(ϕ̄ f ,Ψγ)(Ψγ , ϕ̄g)dγ

= cΨ

∫
Γ

τ(a,u,b)( f ,ϕΨγ)(ϕΨγ ,g)dγ.

These non-self-adjoint operators with trace are reminiscent of the Landau–Pollak–Slepian

operators [15, 31–34] and wavelet multipliers [6, 8, 14, 40, 41].

Theorem 5.2.1. Let τ ∈ Lp(Γ), 1≤ p≤∞. Then for all functions ϕ in the Schwartz space

S , the localization operator ϕLτϕ : L2(Rn)→ L2(Rn) is a bounded linear operator and

‖ϕLτϕ‖∗ ≤ ‖ϕ‖2
L∞(Rn)((2π)n−1cΨ‖Ψ‖2

L2(R))
1/p‖τ‖Lp(Γ).
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Theorem 5.2.2. Let τ/a ∈ L1(Γ). Then for all functions ϕ in S , the localization opera-

tor ϕLτϕ : L2(Rn)→ L2(Rn) is a trace class operator and

tr(ϕLτϕ) = cΨ

∫
Γ

τ(γ)‖ϕΨγ‖2
L2(Rn)dγ.

Proof We first assume that τ is a nonnegative real-valued function. Then for all func-

tions f in L2(Rn),

(ϕLτϕ f , f )L2(Rn)

= (Lτϕ f ,ϕ f )L2(Rn)

= cΨ

∫
Γ

τ(γ)|(ϕ f ,Ψγ)L2(Rn)|2dγ

= cΨ

∫
Γ

τ(γ)|( f ,ϕΨγ)L2(Rn)|2dγ.

Since for γ = (a,u,b),

|( f ,ϕΨγ)L2(Rn)|2

=

∣∣∣∣∫Rn
f (x)ϕ(x)

1√
a

Ψ

(
(u · x)−b

a

)
dx
∣∣∣∣2

=
1
a

∣∣∣∣∣
∫

∞

−∞

∫
Rn−1

f

(
tu+

n−1

∑
j=1

v js j

)
ϕ

(
tu+

n−1

∑
j=1

v js j

)
Ψ

(
t−b

a

)
dvdt

∣∣∣∣∣
2

≤ 1
a
‖Ψ‖2

L∞(R)

(∫
∞

−∞

∫
Rn−1

∣∣∣∣∣ f
(

tu+
n−1

∑
j=1

v js j

)
ϕ

(
tu+

n−1

∑
j=1

v js j

)∣∣∣∣∣dvdt

)2

=
1
a
‖Ψ‖2

L∞(R)

(∫
Rn
| f (x)ϕ(x)|dx

)2

≤ 1
a
‖Ψ‖2

L∞(R)‖ f‖2
L2(Rn)‖ϕ‖

2
L2(Rn).
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Therefore

(ϕLτϕ f , f )L2(Rn) ≥ 0, f ∈ L2(Rn).

Thus, ϕLτϕ : L2(Rn)→ L2(Rn) is a positive operator. Now, let {ϕk : k = 1,2, . . .} be an

orthonormal basis for L2(Rn). Then

∞

∑
k=1

(ϕLτϕϕk,ϕk)L2(Rn)

=
∞

∑
k=1

(Lτϕϕk,ϕϕk)L2(Rn)

= cΨ

∫
Γ

τ(γ)
∞

∑
k=1
|(ϕϕk,Ψγ)L2(Rn)|2dγ

= cΨ

∫
Γ

τ(γ)
∞

∑
k=1
|(ϕk,ϕΨγ)L2(Rn)|2dγ

= cΨ

∫
Γ

τ(γ)‖ϕΨγ‖2
L2(Rn)dγ

≤ cΨ

(∫
Γ

τ(γ)

a
dγ

)
‖Ψ‖2

L∞(R)‖ϕ‖
2
L2(Rn) < ∞.

Now let τ be a complex-valued function in L1(Γ). Let τ = τ1 + iτ2. Write

τ
+
1 − τ

−
1

and

τ
+
2 − τ

−
2 ,

where for j = 1,2,

τ
+
j = max(τ j,0)

and

τ
−
j =−min(τ j,0),
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we can conclude that ϕLτϕ : L2(Rn)→ L2(Rn) is a trace class operator. Finally, let

{ϕk : k = 1,2, . . .} be an orthonormal basis for L2(Rn). Then

tr(ϕLτϕ) = cΨ

∫
Γ

τ(γ)
∞

∑
k=1
|(ϕk,ϕΨγ)L2(Rn)|2dγ

= cΨ

∫
Γ

τ(γ)‖ϕΨγ‖2
L2(Rn)dγ,

as asserted. 2
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