

RE-RANKING REAL-TIME WEB TWEETS TO FIND RELIABLE AND

INFLUENTIAL TWITTERERS

AHMED HUSAIN AL-SINAN

A THESIS SUBMITTED TO

THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIRMENTS

FOR THE DEGREE OF

MASTER OF ARTS

GRADUATE PROGRAM IN INFORMATION SYSTEMS AND

TECHNOLOGY

YORK UNIVERSITY

TORONTO, ONTARIO

FEBRUARY 2014

© AHMED HUSAIN AL-SINAN, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by YorkSpace

https://core.ac.uk/display/77102404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract

Twitter is a powerful social media tool to share information on different

topics around the world. Following different users/accounts is the most effective

way to get information propagated in Twitter. Due to Twitter's limited searching

and lack of navigation support, searching Twitter is not easy and requires effort

to find reliable information. This thesis proposed a new methodology to rank

tweets based on their authority with the goal of aiding users identifying influential

Twitterers. This methodology, HIRKM rank, is influenced by PageRank, Alexa

Rank, original tweet or a retweet and the use of hash tags to determine the

authorisation of each tweet. This method is applied to rank TREC 2011

microblogging dataset which contains over 16 million tweets based on 50

predefined topics. The results are a list of tweets presented in a descending

order based on their authorities which are relevant to the users search queries

and will be evaluated using TREC’s official golden standard for the microblogging

dataset.

iii

Acknowledgments

I would like to thank Dr. Jimmy (Xiangji) Huang for being my supervisor

during my master’s program here at York University. Also, I would like to thank

him for his guidance and moral support for me to write this thesis until it is

complete. I would further like to thank all my friends and colleagues in the

Information Retrieval and Knowledge Management Research Lab especially:

Dawid Kasperowicz, Dr. Jeff (Zheng) Ye, Dr. Mariam Daoud and James (Jun)

Miao. They encouraged me during my research and helped me to understand

what information retrieval is all about.

I would additionally like to thank the School of Information Technology at

York University mainly the Graduate Program Director Professor Zijiang Yang,

Administrative Assistance Ellis Lau and the former Department Secretary Sandy

Yang. They made me feel welcome from the first day I joined the department.

Last but not least, I thank my family and my friends who supported me to

continue with my graduate studies in Canada in every single way. Without you I

would not be here and I really feel blessed for you all to be part of my life.

iv

Table of Contents

Abstract ...ii

Acknowledgments .. iii

Table of Contents ...iv

Chapter 1 – Introduction ... 1

1.1 Background ... 1

1.2 Motivations .. 2

1.2.1 Web Search Engines ... 3

1.2.2 Information Retrieval and Social Media Networks 4

1.2.3 Adapting Web Search Techniques to Social Media Networks.............. 5

1.3 Contributions ... 6

1.4 Thesis Outline ... 7

Chapter 2 – Literature Review .. 9

2.1 Adaptive Other Search Methods on Twitter ... 10

2.2 Recognizing the Influential Twitterers .. 10

2.3 Information Spreading with Retweeting ... 11

Chapter 3 – Information Retrieval Challenges and Proposed Solutions 14

3.1 Retrieval Challenges for Microblogging ... 14

3.2 Proposed Approach to Address the Challenges 15

v

3.3 Uniqueness ... 16

3.4 Proposed Methods to Improve Microblogging Retrieval 18

3.4.1 BM25 .. 19

3.4.1.1 Basic Weighting Model .. 20

3.4.1.2 2-Position Model .. 21

3.4.1.3 Term Frequency Improvement .. 23

3.4.1.4 Document Length Improvement .. 25

3.4.1.5 Query Term Frequency Improvement .. 26

3.4.1.6 Final BM25 Formula .. 27

3.4.2 HIRKM tweet ranking method ... 29

3.4.3 Comparing scores to the golden standard 34

Chapter 4 – Experimental Settings and Implantation .. 35

4.1 Empirical Dataset .. 36

4.2 Terrier IR System .. 37

4.3 Building Index and Performing Retrieval Techniques 39

4.3.1 Terrier Indexes .. 39

4.3.2 BM25 Retrieval ... 42

4.4 Preparing Queries ... 43

4.5 Building MySQL Database .. 44

4.6 HIRKM Retrieval .. 48

4.7 Evaluation of Results ... 49

Chapter 5 – Results and Evaluation ... 51

5.1 Baseline ... 51

5.2 Performance Criteria ... 52

5.3 Results .. 54

vi

5.3.1 HIRKM Run without Using Terrier and BM25 54

5.3.2 HIRKM Run Using Terrier and BM25 .. 56

5.4 Analysis and Discussion .. 58

Chapter 6 – Conclusions and Future Work ... 62

6.1 Conclusions ... 62

6.2 Future Work ... 64

Bibliography .. 66

Appendix A – TREC Topics .. 70

Appendix B – Created Hash Tags .. 73

Appendix C – MySQL Tables ... 79

C.1 tweetfeatures Table ... 79

C.2 twitterdataset Table ... 80

Appendix D – Programming Code .. 81

D.1 Databse Package .. 81

D.1.1 DataInsertion Class .. 81

D.1.2 ExtractTweetFeatures Class ... 86

D.2 HIRKM Package .. 104

D.2.1 AlexaRankNotRankingException Class .. 104

D.2.2 HashTag Class ... 104

D.2.3 HIRKM_Runner Class ... 107

D.2.4 Rank Class ... 108

D.2.5 UniformRecourceLocator Class .. 115

vii

Abbreviations

IR – Stands for Information Retrieval.

BM25 – Stands for Best Match 25 which is a popular weighting function in the IR

field.

MAP – Stands for Mean Average Precision.

P@N – P refers to the number of relevant documents retrieved and N refers to

the number of retrieved documents overall.

URL – Stands for a Uniform Resource Locator which also known as web

address.

WWW – Stands for World Wide Web.

HTML – Stands for Hyper Text Markup Language; the authoring language used

to create documents on the WWW.

viii

XML – Stands for Extensible Markup Language.

TREC – Stands for Text Retrieval Conference which is a conference that

supports research in the IR field.

SQL – Stands for Structured Query Language.

http://en.wikipedia.org/wiki/Structured_Query_Language

1

Chapter 1

Introduction

1.1 Background

Microblogging is a form of blogging but it differs from traditional blogging

because it allows users to share short messages, along with images, videos and

URL1 links. When this service first introduced, people started using it for different

purposes such as: sharing global news information, tracking real time events,

expressing and promoting political views, advertising and many more. There are

many different microblogging services were available on the web at first like

Google Buzz, Tumblr and Jaiku. But the most renowned microblogging service is

Twitter which made a global impact and changed the microblogging world in

general.

Twitter microblogging service was launched in 2006 and it allowed users

to write and read short messages/posts known as “tweets” from different Twitter

users, whom are called “Tweeters” or “Twitterers”. Twitter allows its registered

users to send and read messages that are up to 140 characters or less. With the

limit of only 140 characters, Twitter automatically shortens any media

1
 URL: A uniform resource locator.

2

attachments within the tweet such as long URL, image and video links by using

its own URL shortening service (t.co). This service was created in order to save

space for the rest of the post since the tweet is only restricted to 140 characters.

Twitter users are able to interact with each other by reading the tweets and take

actions of those tweets such as sharing them. Meaning, a user can follow

different users and repost their tweets in an effort to further spread the

information contained within the Tweet. This feature is called “Retweeting” and it

is the most popular feature that Twitter has. The more retweets a Tweet gets, the

more popular it becomes [3]. Following different Twitter accounts will allow

followers to receive real time tweet updates of the accounts they are following.

Usually, these tweets are about topics of interest from both sides the author and

the followers. Each tweet written by the author goes to the followers’ timeline

giving specific details of each tweet such as date/time of creation of the tweet

and the topic or the purpose of the tweet. In general, that is what made Twitter so

popular because all its posts based on real-time events [3].

With over 300 million users worldwide and millions of tweets per day,

Twitter became a target of different research fields of how to use this big flow of

data. For this thesis, the aim is to benefit from Twitter’s microblogging data in the

information retrieval (IR) field.

1.2 Motivations

With the increase growth of the information that flows on the Web

nowadays, it is regular to surf the Web as part of our daily activities. The Internet

is used on daily basis such as for work, pleasure, education, entertainment,

connecting with others and also to search for information that we need to

acquire. To further explain the search activity, searching has been always

important for computers in general whether for documents on computers hard

drives or for a simple Internet search used by one of web search engines. On the

subject of the Internet, there is a huge amount of rich information that is scattered

everywhere through the Web. However, having this flow of huge information

3

does not make it easy to be used in the right way to benefit of that information

which might costs the loss of some important data. In order to solve this problem,

the information needs to be treated in terms of validity by knowing the source of

that information to check how reliable and accurate the source is. Web search

engines can give a solution to this problem.

1.2.1 Web Search Engines

There are several web search engines available online and each one has

its own way or method to rank and to display the information into several ranks.

For example, search engines like Google rank Webpages based on a link

analysis algorithm, called PageRank, to find the best results available on the

Web and display them according to the “link popularity” based on that algorithm.

With that, Webpages are ranked higher depending on how many links refer to

them from different websites. With this method, it is safe to say that the sources

of information on those Webpages are assumed to be more reliable than any

other Webpages on the Web. Also not to mention that Google search is the most

used web search engine on the World Wide Web. This is where information

retrieval (IR) plays a major role in this activity by searching and retrieving the

right information from the Web. Recently, social media networks became a topic

of interests to the information retrieval field and some researches were done

regarding that topic. Interestingly, most of social media networks now are offering

the search engine property in order to find specific and valuable information in

that network. At the present time, people from different parts of the world started

sharing information through different social media networks. However, one

obstacle regarding social media is how hard to get or to retrieve information from

those networks. The main reason for that is the structure of the network was not

built for that kind of purpose. Also, it is a struggle to know which information in

this huge network is real or not because anyone can write anything on the Web

these days. Since the internet is open and not restricted to anyone, then sharing

fake information through the web is something understandable. Another thing to

4

consider is not to cause privacy issues because this information can be

considered as private information between some social media users. As long as

the information is not private, it will be ideal to find a way for others to use it so it

can be beneficial for everyone.

1.2.2 Information Retrieval and Social Media Networks

By looking back to the obstacles of the social media, it came to my

intention that knowing how valid the information that is shared in that network is

quite challenging. Searching for the source of that information can solve that

problem, but another question came in mind which is: Is that enough? The

answer to that question might seem easy like for example, if the information

comes from a reliable source in the social media network, then the information

most likely to be real. But again, how do we know if that source is reliable? Social

media networks are one of the biggest networks on the web so fake and false

information is likely to exist there like anywhere on the web. Normally, social

media users follow other users who share the same topics of interests. So, the

first step is to know if the users that we follow share influential information or not?

This is one of the main goals for this thesis which is to find influential social

media users.

Popular social media networks like Twitter and Facebook took a major

part in global events like the Arab Sprig revolutions that started in the Middle

East in 2011. Sharing important live information to the public around the world

made the actual news media look hopeless comparing to the social media that

shared the information form the heart of the events. This type of information is

called “breaking news stories” and it allows many online users to communicate

with each other by receiving real-time updates on popular news, personally and

globally, either from eyewitness users or other accounts that are interested in the

same topic. Whether these breaking news were in simple text or media format,

the majority of information that people received about the Arab Spring events

5

were considered to be valid. So, this proves that we can get real and valuable

information out of the social networks.

1.2.3 Adapting Web Search Techniques to Social Media

Networks

Since social media networks is mainly dealing with breaking news, then

real-time Web information plays a major role in this field. It also means retrieving

old information from social media is considered to be impractical. Meaning, social

networks only deal with the latest breaking news so old news is not much to

concern. With the lack of navigation support and limited searching in the social

media networks, displaying authoritative posts became really hard no matter how

old or new they are. So it came to mind that it will be best to rank these posts

based on how important they are like any Web search engine does when

searching for a query. The results will be displayed in a descending order of

authority based on the search queries.

With the help of specific post’s features, it will be able to identify which

post is authoritative and relevance to the search queries. This is the reasons why

Twitter is chosen for this thesis because its tweets have specific features to help

determine how authoritative the tweets are. Also, the ranking system that Twitter

is using is purely just based on the date and time of the creation of the tweet.

Another ranking option that was added to twitter recently is ranking the tweets by

checking the number of followers of that user. If the user tweeted about the

search topic and has more followers than other user who tweeted about the

search topic as well, then that user will highly be at the top of the ranking scale.

Twitter assumes that the more followers the user has then the higher ranking that

user should get. Both of these ranking methods are not practical and lack

important properties of any efficient ranking system. In other words, they are too

simple and they will not be effective to give an accurate ranking of the tweets.

With the new proposed ranking method, ranking and identifying authoritative

6

tweets will be more effective. Also, this new method will help to recognize

influential Twitterers which is another goal of this thesis.

1.3 Contributions

In this thesis, a methodology is proposed to identify and to rank Tiwtter’s

tweets based on their authority to improve retrieval performance. The main goal

is to aid users locating authoritative tweets which will help recognising influential

Twitter users. This methodology is influenced by other existing methodologies

such as PageRank and Alexa Rank to help improve the ranking of the tweets.

Additionally, this methodology will prove that it will be possible to determine the

authority of the Twitterer and how relevant the tweet is to the query topic with the

use of specific features that are within the tweets.

The following set of tweet features are presented to explain why they

would help improve tweet ranking performance.

1. URL links: Each tweet can contain URL links to websites, videos and

images. With the help of PageRank and Alexa Rank methodologies, it will be

possible to determine how important these links in the World Wide Web.

2. Username ID: The “@” symbol precedes all Twitters usernames. It is

optional for these tweets to be directed to specific Twitterers by linking them with

the “@”symbol following a single or multiple usernames. If not then the tweets

can generally be directed to everyone in Twitter, normally the author’s followers,

just simply by not mentioning any username within them.

3. Hash Tag symbol “#”: The tweets can contain Hash Tags which are used

to mark keywords or topics in a tweet to help users categorize the tweets while

searching. The Hash Tag feature was created by the Twitterers and it became

really popular especially to find out popular topics that are trending in Twitter

globally and locally.

7

4. Retweets: The most important feature that helps spread the information

within the tweet. If the tweet gets large amount of retweets from different users,

then it is safe to assume that information that tweet has is important. However,

most of the credit will go to the original author of that tweet since that user was

the main source of that information.

5. Number of followers: Users whom are subscribers to other Twitter users to

follow their tweets. It is important to know how many followers any user has to

get an idea of how popular that user is. However, just looking by that number

alone to decide if the tweet is important is not practical.

6. Verified twitter users: A verified badge helps users in Twitter to identify

certain users, mostly popular celebrities and well-known companies, for high-

quality sources of information regarding that Twitter account. This feature is not

available to everyone so only the Twitter accounts that can get verified if they

only meet certain qualifications assigned by Twitter’s company.

The proposed methodology will use some of these features on an existing

retrieval technique, which is provided by an information retrieval system, in order

to achieve a better retrieval score of the original retrieval technique. This

methodology will work on BM25 scoring function to produce new results that are

both authoritative and will be ranked according on how relevant they are to the

search query. BM25 is selected to be the baseline for this methodology and will

build on its weight function in order to enhance it for a chance to get better

retrieval results. By selecting the appropriate tweet features and using the

appropriate combinations, this goal will be achievable.

1.4 Thesis Outline

The thesis is organized into six main chapters. It also includes a

bibliography along with four appendix sections. The first chapter is introduction

were an overview will be given about Twitter and explaining microblogging in

general. The second chapter is literature review were other researches will be

8

addressed which can be related to microblogging and information retrieval. The

third chapter is about the challenges that this research faced and how the

proposed solutions of this thesis found a way fixed them. The fourth chapter is all

about the materials that were used for this thesis including the dataset and the

programs as part of the experiment. The fifth chapter will explain how to acquire

the results of the experiment and study them in order to continue with the

evaluation process. The sixth chapter comes last which provides an

understanding of what the thesis accomplished from the final results. Also, the

sixth chapter will suggest other strategies to improve the results of this thesis in

the future.

9

Chapter 2

Literature Review

Information retrieval (IR) is the technique and process of searching,

recovering and interpreting information from large amounts of stored data. It is a

huge area in the information technology field where a lot of its techniques has

been discovered, developed and tested for many decades. A lot of work has

been done in the IR field which ended up with many researches in this area and

this work has continuously improving until this day. However, the social media

network was not part of interest for many IR researchers at first and

microblogging is one of those areas to be related to the social network. It is

understandable that the structure of these social networks was not built for that

kind of procedure so it is a struggle to retrieve information out of them. With the

increase popularity of Twitter and other social networks on the web, the social

media network became a target of interest to many different researchers

especially in the IR area. Their main goal is to benefit from of this huge network

and the data that is stored in it.

The following sections will introduce some of the researches that are

related to the IR field and other technology fields as well that can be related to

this thesis.

10

2.1 Adaptive Other Search Methods on Twitter

One of the approaches to organize the search results in Twitter is to adapt

other search methods to it such as faceted search method. Adapting faceted

search on Twitter will help personalize tweets to different categories which will

make the search topics well-organized and easy to display. One of these

researches was done by Ilknur Celik, Fabian Abel and Patrick Siehndel [1]. Their

goal was to solve the content exploration in Twitter because it requires time and

effort to search and reach the right information from the tweets. So they focused

on investigating ways to enhance searching and browsing by adaptive and

personalized faceted searching. Normally, searching in Twitter is done by

searching for a single keyword and then display recent posts related to that

keyword from different Twitterers by calculating how many followers and

followees they have. The results are time-sensitive as it is one of the features

Twitter is using to get the search results displayed in that order. By adapting

faceted search on Twitter, it will allow users to search for topics by specifying

queries regarding different dimensions and properties of the topics. Even though

the information on Twitter is short and unstructured, faceted search will put a limit

on the size and the number of keywords that can be used as search parameters

without to risk filtering out relevant results. However, the researchers admit that

the ranking of the tweets that matched the faceted query is a problem and it can

be solved by exploiting the popularity of the tweets like by measuring the

retweets or by the popularity of the user that published the tweet. In other words,

ranking the tweets was not their main concern in this research. Their main

concern is to make search on Twitter more effective by presenting different

methods such as personalized and context-adaptive methods.

2.2 Recognizing the Influential Twitterers

Another approach was done to identify the influential users/accounts to

get the most reliable information possible in Twitter. One of these researches

was done by Jianshu Weng, Ee-Peng Lim, Jin Jiang and Qi He [2]. This research

11

was the first to report the phenomenon of homophily2 in the Twitter. Also, this

research will help the users to know of whom users/accounts to follow for getting

a timely update on their topic of interests that these users share. This can also

help to identifies which Twitter account is active or not so users can avoid

following online scammers. To do so, the researchers proposed to measure the

influence of the twitterers called “TwitterRank” which is an extension of

“PageRank” algorithm that is used by Google’s search engine. This paper also

agrees that the number of Twitter followers alone cannot determine how popular

and influential the twitterers are no matter what kind of topic we are searching

for. So basically, they agree that Twitter’s ranking system for its users is not

convenient at all. The approach of this research was done very well and it did

give good results. However, their main goal was only to find the influential

twitterers not to improve tweets ranking based on topics users are searching for

in Twitter. They did mention that this will somehow improve the search ranking

but they did not show any work to prove that at all. Finally, they mentioned that

removing numbers, URLs, words with less than 3 characters and the words in the

form of “@username” from the tweet will not help in the topic modeling without

giving any valid reason for that assumption. This thesis is against the idea of

removing such features from any microblogging dataset and in later chapters will

explain why this thesis does not support that in order to improve Tweets ranking

and in order to recognize influential Twitterers.

2.3 Information Spreading with Retweeting

There are research tactics to predict how the information spreads in

Twitter and there are some written researches about that topic. Most of these

researches agree that retweeting is the most important feature to predict

information spreading in Twitter. One of these researches is worth to mention

was written by Bongwon Suh, Lichan Hong, Peter Pirolli and Ed H. Chi [3]. The

authors of this research proved that retweeting is the key mechanism for

2
 Twitterers follow other users because of similar interests which will lead them to follow back as well.

12

information diffusion in Twitter. Also, these authors showed curiosity to know how

and why certain information spreads more widely in Twitter than any other posts.

In other words, what makes the tweet retweetable? By examining number of

Twitter features that can affect the retweetability of the tweets, they found out

that among all the tweet features that URLs and hash tags are the most

important to make the tweet retweetable. They also proved that the number of

followers and followees are important as well but not as important as the URLs

and hash tags which contradict what other researches proved. This paper has

the best explanation of the term “retweet” in my opinion. It describes it as:

“Retweeting can be understood as a form of information diffusion since the

original tweet is propagated to a new set of audience, namely the followers of the

retweeter.” Another research was done to follow this research by Sasa Petrovic,

Miles Osborne and Victor Lavrenko [4]. However, they used human experiments

for the approach of their research. Both of these researches collected their

datasets from crawling Twitter’s API which it took a while to collect because

Twitter only provides a small sample of the entire stream. This research collected

a total of roughly 21 million tweets dataset while the previous research collected

74 million tweets. Again, it all depends on how long to crawl Twitter’s API for the

tweets. What is interesting about this research is the authors divided Twitter’s

features into two sets: social features and tweet features. The social features are

related to the author of the tweet such as: Number of his/her followers, Number

of accounts he/she is following, is the user verified and is the user’s language is

English. The social features can be checked from Twitter’s API which is the

biggest advantage to get the dataset from there. The Tweet features on the other

hand are related to the tweet or the post itself such as: Number of hash tags,

URLs, mentions, length of the tweet and if the tweet is a reply (which means a

direct message from user to another user). Their research showed that the Tweet

features are more beneficial than the Social features to predict if the post to be

retweetable or not. And since they used human experiments, they also

mentioned that it is possible to predict how well the post will spread just by

looking at text of the tweet itself and it will be better to know who is the author

13

too. Lastly, they found out by removing infrequent words from the tweet will hurt

the performance of their research. This thesis supports this theory on how

important is to use every character in the tweet so they ended up using all the

words in the post. Mainly, the goal of this thesis is to show how important the

Tweet features are in any research regarding Twitter. The importance of the

Tweet should be determined by what it contains and that is what is trying to be

approved in this thesis. One more thing to mention is there are different

types/styles of retweeting depending on the purpose of that action. Meaning,

retweeting can be used for other purposes other than just spreading information

like to reply to a post or to join a conversation that is trending on Twitter. Some

researchers wrote a paper regarding that feature in order to examine the practice

of retweeting from a conversational aspect [5]. They discussed the different

types/styles of retweets by giving examples of each type/style. Also, they

discussed what and why people retweet but not in depth since it is not their main

goal in that research.

By taking this background knowledge into consideration, the next section

will explain the problem in details, what exactly is needed to fixed this problem

and how to fix it.

14

Chapter 3

Information Retrieval Challenges and

Proposed Solutions

3.1 Retrieval Challenges for Microblogging

Information retrieval techniques in general have been examined using

many statistical methods before being used in many researches. With the rich

amount of information that is available in many digital forms, several of these IR

techniques have shown good results which prove how accurate they are.

However, when it comes to search for specific information in these digital forms

then the limited search feature is noticed which is one of the problems in most

social media networks. With the Internet becoming available to everyone,

searching for information became easy since the web contains countless

numbers of rich data about almost everything. With the use of the web search

engines, it even became easier to find the popular information based on different

algorithms that are used in information retrieval techniques. With social media is

considered to be part of the Internet domain, the same retrieval techniques of

15

web search engines cannot be used on social media networks because the form

of data differs from social media service to another. Even though a unified search

model for social media was proposed as a solution for the retrieval task, that will

not necessary solve all the problems due to the difference characteristics among

the different types of social media [8]. Also, since there are many different IR

researches on different types of social media services such as: blogging,

microblogging, forums and wikis, researches shown it is highly proven that

different retrieval techniques are needed to improve retrieval tasks to each type

of social media [9]. In fact, most of these researches only focus on one type of

social media which proves how different they are from each other.

As a member of different social media services, I noticed that almost every

information I need to acquire can be found in these services especially Twitter.

Comparing to any traditional media channels such as CNN, BBC and FOX news,

Twitter can provide its users with fast and wide information spread and for the

information they are interested in only. In other words, the users will not receive

any random or unwanted information. In fact, a study showed that 85% of Twitter

topics are headline news or persistent news in nature [10]. I also noticed it is

hard to look back for old tweets even with the search engine that Twitter is

providing, which is one of its jobs, to serve that purpose. Plus the limitation of

that search engine showed that Twitter needs a better system to display and to

arrange popular tweets related to the search topic like any web search engine.

These simple ideas are what started my approach to write this thesis and gave

me the urge to investigate more about it.

3.2 Proposed Approach to Address the Challenges

Understanding how Twitter search engine works was important in order to

approach this study. Twitter is using the number of followers as one of the keys

to determine the popularity of the Twitterers [11] [12]. However, it is not the main

key to determine that as other researches explained [2]. Unfortunately, this is the

system that Twitter is using for its search engine in order to rank the tweets as

16

well. The more followers Twitterers have, the higher rank their tweets will get in

the search results. Here is a list of the problems that we can get from this

system:

1. Tweet content: Checking the number of followers alone cannot indicate

the authority of the tweet. The tweet can be related to the topic but that does not

necessary mean it is important.

2. Author’s knowledge of the Tweet topic: Twitter allows its users to express

and write anything without any restrictions as long as it does not exceed 140

characters. If a specific tweet will be ranked then its author should have

knowledge about the topic of the tweet or at least provide a reliable source for

the information.

3. Active/inactive followers: Not all accounts on Twitter are real and not all of

them are active as well. Fake and inactive accounts can cause for spam tweets

and these accounts are used to increase the number followers and will help

improve in the tweet ranking. So, it is important to communicate with real and

active followers on Twitter because the more active they are the more they likely

are to share the content of your tweets.

With these points in mind, the main goal is to find the authoritative tweets

which later will lead to find influential Twitterers. By finding the authoritative

tweets, it will be ideal display them in descending order based on their authority

according to the search topic. Then, we can find the influential Twitterers whom

are the authors of these authoritative tweets. In fact, these two are different tasks

but they can be combined in order to improve the search system for Twitter. This

is what makes this method different and unique comparing to others.

3.3 Uniqueness

There are different researches that proposed to improve the post ranking

system in Twitter and each research has its own different approach to achieve

17

that. However, some of those researches did not use any of the tweet features to

improve the ranking like [1] and others claimed that removing such features will

improve the ranking like [2]. Based on how Twitter search engine works, tweet

features play a major role to rank real-time web tweets in general based on the

search query. In fact, Twitter can use these features for further purposes like for

identifying influential twitter accounts as well. This section will explain why tweet

features are important in Twitter and why the approach of this thesis is

considered unique by using those features for the tweet ranking and for finding

influential Twitterers.

Tweet features are not only important for ranking tweets but they are

important to Twitter in general. In fact, they are part of the reason why Twitter is

so successful and made it what it is today. According to [2], identifying influential

twitter accounts can help companies with their marketing plan since Twitter is

also considered a marketing platform for many companies. By targeting and

focusing on the influential marketing accounts, this will increase the efficiency of

the marketing campaign for these companies. Also, those features can also be

used to help event detection and to identify the importance of these events [13].

This paper explains in details some of the tweet features that are mentioned in

this thesis and grouped them in a section named (Twitter-specific features). Even

though the paper did not explain how exactly these features will be used in the

research, the results showed progress for event detection which clarifies how

important these features are. Overall, tweet features are important for Twitter and

they did help with different microblogging researchers in the past. So the goal for

this thesis is to find a way to use these features to rank tweets which can lead to

identify influential Twitterers.

Twitter Inc. is trying to come up with several ways to improve their

microblogging ranking system by applying different methods. One of these

methods that Twitter Inc. is currently using is by checking some of the tweet

features like: Number of the account followers, number of users following the

account (followees) and verified accounts. These three tweet features alone can

18

rank some important tweets but they are not enough to recognize influential

Twitterers [2]. By knowing that, it becomes clear that ranking system needs

improvement. Unlike the approach of this thesis, identifying influential Twitterers

is one of the main goals by re-ranking the tweets based on their authority. By

checking if the tweet has more tweet features that can be related to the query,

the probability of ranking important tweets will increase. This is the main

difference of this approach and what makes this method unique comparing to

others.

The method that is proposed in this thesis focuses on the tweet itself by

checking how many of these features are within the tweet. With that, Identifying

influential Twitterers will be possible based on how knowledgeable these users

are to the search topic. Ranking these tweets will be similar to any ranking

system that being used to any familiar Web Search engine. The tweet results will

be displayed in a descending order based on their importance to the search

query by applying the thesis proposed methodology to improve the ranking which

will be explain in details in the next section.

3.4 Proposed Methods to Improve Microblogging Retrieval

 The strategy for this section is to define the starting point and the goal or

outcome of the proposed method of this thesis. As it was mentioned before, the

main goal of this study is to find authoritative tweets in which will help to

recognize the influential Twitterers. To understand the structure of both methods,

they need to be explained in details especially the starting point. The reason for

that is the starting point contains all the heavy work for this method. For that, the

starting point had to be dived into two separate tasks. These two different tasks

are designed to get two different ranking scores and they are: BM25, which is the

initial retrieval ranking score, and HIRKM tweet ranking score which is the main

method of this thesis. The final step is to compare the results of these two scores

against the golden standard of TREC 2011 microblogging dataset with the official

results evaluation that was assigned by TREC.

19

In order to get the initial retrieval score, an indexed dataset was needed

and that will be explained in chapter 4. The indexed dataset was used to get the

retrieval scoring function such as BM25 or any other retrieval techniques. The

score will be displayed in two sections: Tweet ID and tweet ranking score. The

tweet ID is a UID3 which normally is numeric or alphanumeric string that is

associated with a single entity within a given system. UIDs make it possible to

address that entity, so that it can be accessed and interacted with [29]. For the

tweet ID, it is all numeric and it is given in the dataset to identify each tweet in the

dataset. The tweet ranking score is the retrieval scoring result of each tweet after

the task of the retrieval technique. It is a float of numbers indicating how likely the

corresponding tweet is relevant the query.

The next section will explain BM25 retrieval method and will give a brief

introduction about it and how it was developed to become one of the most

recognized techniques in the information retrieval field. Furthermore, the

information of BM25 in the next section was inspired by other information

retrieval researchers that used BM25 as a baseline in their work [14] [34] [35]

[36] [37] [38] [39] [40] [41] [42].

3.4.1 BM25

As mentioned in previous chapters, BM25 is arguably considered to be

one of the most important advancements in the field of information retrieval. The

function has proven itself by being used with a wide variety of content when

ranking data was necessary, and it has always performed well in each of the

fields of research. With its high tuneability and being well defined, BM25 is the

go-to ranking function for most researchers. BM25 takes an ad-hoc approach to

ranking documents, where the formulas are used because they seem to be

plausible.

3
 UID: Unique Identifier

20

In this section, we will have a clear understanding of how BM25 started

from a basic weighting model, and evolved into sophisticated ranking model by

adding various improvements such as the 2-Poisson model, term frequency

improvements, document length improvements, and query term frequency

improvements.

 Relevant Non-Relevant

Term “Hurricane” occurs () ()

Term “Hurricane” does not

occur

 () ()

Table 1: Contingency Table to Calculate a Document’s Relevance

3.4.1.1 Basic Weighting Model

From a statistics point of view, the basic weighting equation that BM25 is

derived from is expressed in the following equation:

 ()
 () ()

 () ()

Equation 1: Initial Weighting Model

Where is a weight of a given document, P refers to the probability, is a

reference vector representing a zero-weighted document, and where R and are

representative of relevance and non-relevance document respectively. For

example, each component of may represent the presence or absence of a

query term in the document or its document frequency, and could be the

“natural” zero vector representing all query terms absent. An exemplification of

this is seen in Table 1 for a single term query, “hurricane”. Single term queries

can be understood as the simplest queries possible as they only have one term.

One calculates a document’s relevance using Equation 1.

21

If we assume the terms are independent from each other, even for the

queries that contain multiple terms, Equation 1 can be used to calculate the

relevance of a document to a specific query by decomposing w into individual

term weights. The equation can then be transformed to the following:

Equation 2: Transformed Equation Based on Individual Terms

Where and (). With an

appropriate estimation method, the equation can be transformed to become:

 ⁄

 ⁄

Equation 3: BM1 as Used by S.E. Robertson in TREC-1

Where N is the number of indexed documents, n is the number of documents in

N containing the sought out term, R is the number of known relevant documents,

and r is the number of documents in R containing the sought for term. The value

0.5 is used to smooth out the results. If we do not smooth the results, the

will come from Equation 2 by replacing p with r/R, and q with

 respectively.

 from Equation 3 is also known as BM1 and it is used by S.E. Robertson in

TREC-1.

3.4.1.2 2-Position Model

 has the ability to model the presence and absence of terms; however,

it cannot model the within-document term frequency. If one deals with within-

document term frequency rather than the presence and absence of terms, then

the equation is as follows:

22

Equation 4: Within-Document Term Frequency Weighting Equation

Where , q is the corresponding

probability for , and and are those for term absence.

Some work has been done in creating a technique to model within-

document term frequencies by means of the mixture of traditional Poisson

distributions. Hater originally began work on 2-Position distribution [26]. Before

discussing the 2-Poisson model, it is worth explaining the ideas that are

necessary for the model to function.

One assumes that the occurrences of a term in a document have a

random nature that reflects a real, but hidden distinction between documents that

are about the concept represented by the term and those that are not. The

documents that are about a given concept are described as being elite for that

particular term. One may draw an inference about a given concept being elite

from the term frequency, but this inference will actually be probabilistic.

Additionally, relevance is related to a term being elite rather than to term

frequency, which is assumed to be dependent only on a term being elite. The

term-independence assumption is replaced by the assumption that the elite

properties of different terms are independent of each other. It is useful to

introduce this hidden elite variable in order to gain an understanding of the

relationship between multiple term occurrences and their corresponding

relevance.

The 2-Position model is a specific distributional assumption based on the

elite variable hypothesis discussed above. The assumption is that the

distribution of within-document frequencies is Poisson for the elite documents,

and also for the non-elite documents but with different means. The 2-Position

model assumes that a document length is constant.

23

For the 2-Position model, there are usually some estimation problems

because the general estimation method for the Position parameters is not well

defined, and because the model is too complex by requiring a large number of

different parameters for establishing an estimation. Successive work on mixed-

position models have been suggested. They provide alternative estimation

methods that may be preferable what was exists [27]. Combining the 2-Position

model with Equation 1, one can obtain the following weight equation for a term t:

()

Equation 5: Combination of the 2-Position Model with the Initial Weighting

Model

Where and µ are the Position means for tf in the elite and non-elite sets

for t respectively, , and q’ is the corresponding

probability for .

The estimation problem is apparent in Equation 5 in that there are four

parameters for each term, which none is likely to have direct evidence because

of the elite variable being a hidden variable. It is because of this problem that

makes Equation 5 inflexible, which leads one having to go through the rough

model approach.

3.4.1.3 Term Frequency Improvement

In order to allow within-document term frequency tf to influence the weight,

different functions are utilized. Once of the functions is effective and based on

the rational that even if we do not use the full Equation 5, one may use it to

suggest the shape of an appropriate equation. Looking at Equation 5, one can

see the following characteristics:

 it is zero for tf = 0;

24

 it increases monotonically with tf

 but to an asymptotic maximum;

 that approximates to the Robertson weight that would be given to a direct

indicator of being elite

After rearranging Equation 5, we get the following formula:

()()

 ()

Equation 6: Rearranged Equation of the Combination of the 2-Position

Equation with the Initial Weighting Model

From Equation 6, µ is smaller than . As tf ∞, goes to zero, and

 is small and as such, can be estimated as:

Equation 7: The Estimation of the Rearranged Equation of the Combination

of the 2-Position Equation with the Initial Weighting Model

It is necessary to construct an equation that is tf-related and satisfies the

characteristics outlined for Equation 5. Such an equation can be constructed by

the following principles: The function increases from 0 to an

asymptotic maximum in approximately the right fashion. The constant

determines the rate that the increase drops off. With a large constant, the

function is linear for small tf, whereas with a small constant the effect of

increasing tf rapidly decreases. This function has an asymptotic maximum so it

needs to be multiplied by an appropriate weight similar to that of Equation 7.

Since one cannot estimate Equation 7 directly, the alternative is using the

25

ordinary Robertson weight w(1), based on the presence and absence of a term.

With this, one obtains the following:

Equation 8: Weight of a Term Based on the Presence and Absence of a

Term using the S.E. Robertson Equation from TREC-1

Where k1 is an unknown constant. The model does not convey anything

about the kind of value that is to be expected for k1. S.E. Robertson determines

the value for k1 by experiments with TREC datasets. They found values around

1.0 – 2.0 are correct values for TREC data. Additionally, they pointed out that

the shape of Equation 8 is different from Equation 6 in one important way;

Equation 6 is convex towards the upper left, whereas Equation 8 can be S-

shaped with some combinations of parameters, which increases slowly in the

beginning, then rapidly increased in the center, and finally slowly again.

3.4.1.4 Document Length Improvement

After the document term frequency is integrated into the weighting

function, the document length becomes the next issue that needs addressing.

In real situations, a document can be short or long. Both these short and

long documents may also have the same subject. At a minimum, there are three

reasons why documents lengths vary in length. The first reason is that some

documents may cover more material than other documents. For example, a long

document may consist of a wide variety of unrelated short documents

concatenated together. This is known as the scope hypothesis. The second

reason why document length varies is that a long document may be similar to a

short document in terms of the message it conveys; however, because the two

documents have different authors, the individuals writing style of the authors

makes one longer than the other. For example, one document covers a similar

26

scope to a short document, but it uses more words to convey the same content.

This is known as the verbosity hypothesis. The third reason is that real

document collections have a combination of the aforementioned two reasons.

There is little progress in relation to the scope hypothesis, and the work on

document length discussed here assumes the verbosity hypothesis. The

verbosity hypothesis implies that a document’s properties, such as relevance and

being elite, can be regarded as being independent from the document length.

Being elite is given for a term, and the number of occurrences of a given term

depends on the document length. From this perspective, one can incorporate

this hypothesis by normalizing tf for a document length d. Assuming the value of

k1 is appropriate to documents that have an average length ∆, the weight of a

term is then expressed as:

(

)

Equation 9: The Weight of a Term Based on Average Document Length

3.4.1.5 Query Term Frequency Improvement

There is natural symmetry between documents and queries, and this

suggests that one could treat within-query term frequency qtf in a similar fashion

to within-document term frequency. This suggests that by analogy with Equation

8, a weighting function for query terms can be as follows:

Equation 10: Weight of a Term Based on the Presence and Absence of a

Term using the S.E. Robertson Equation from TREC-1 for Query Term

Frequencies

27

Where k3 is an unknown constant. Experiments suggest a large value of

k3 is effective, making the following equation to be equivalent to Equation 10:

Equation 11: Weight of a Term Based on the Presence and Absence of a

Term using the S.E. Robertson Equation from TREC-1 for Query Term

Frequencies with Large k3 Value

Equation 11 can be thought as the normalization of query term

frequencies. The basic assumption is that the frequency of query terms should

have a direct effect on the weighting function. The more frequently a term

appears in a query, the more important that term should be. It matches with the

human intuition for natural language whereby they emphasize points by

repeating key terms.

3.4.1.6 Final BM25 Formula

Once the above individual improvements are complete, they are

integrated together to create the final weighting function. When there is no

relevance information, w(1) approximates to the following equation:

Equation 12: BM1 as Used by S.E. Robertson in TREC-1 Revised for No

Relevance Information

Based on this equation, two weighting equations become available for one

to use:

28

Equation 13: BM15 Weighting Equation

Equation 14: BM11 Weighting Equation

Equation 13 and Equation 14 can be combined into a single function

known as BM25 that allows for numerous variations. The term frequency

component is implemented as:

Equation 15: Term Frequency Component in BM25

Where (

). Therefore, if c = 1, and b = 1 gives the

equation for BM11 and if b = 0 gives the equation for BM15. Different values of b

give a mix of the two equations. BM25 is referred to as BM25().

Therefore, the whole weight equation becomes the following:

Equation 16: BM25 Weighting Equation

There is an item

 in Equation 16 that is called the correction

factor. More details on the correction factor can be found in paper [28]. The

value is usually set as 0 in experiments.

29

After explaining what BM25 retrieval technique is and how it was

developed, it is time to understand what kind of connection it has to the proposed

method of this thesis and how it will help it to get a better ranking score in this

study. The proposed method is called HIRKM tweet ranking score and it will be

explain in the section.

3.4.2 HIRKM tweet ranking method

HIRKM stands for: Huang’s Information Retrieval and Knowledge

Management which is a reference to the information retrieval lab that belongs to

my supervisor Dr. Jimmy Huang at York University4. This method is the main

method of this thesis and it consists of different formulas and percentage scores

to give the appropriate value to each tweet feature if they are available in the

tweets. However, there are certain steps needed to be done before getting into

HIRKM method and its tweet feature values. This section will explain how HIRKM

method was developed and how each of its tweet features got their values from.

The first step is to get Terrier’s BM25 results file that has the relevant

ranking results which belongs to each query topic. The reason for that is HIRKM

was formed based on BM25 ranking technique with the addition of the tweet

feature values that this study believes will approve the ranking of BM25. So

basically, adjusting the BM25 score of each tweet to the tweet feature values will

result a new ranking score and that score will be called HIRKIM tweet ranking

score.

Second step is in order to use and to benefit from the tweet features; they

all needed to be identified at first to check how many of these features are

available in each tweet. Also another issue is how to organize the whole dataset

to be able to identify all the available tweet features in each tweet. Building a

database was the best option for that issue so a SQL5 database was built stored

4
 http://www.yorku.ca/jhuang/irlab/index.php

5
 SQL: Structure Query Language

http://www.yorku.ca/jhuang/irlab/index.php

30

with the microblogging dataset. MySQL database was chosen for this task due to

its popularity in the open source world and since large organizations rely on it

such as Google and Facebook [30]. To build the MySQL database, TREC’s

statistic file was selected for that purpose. The statistic file contains the exact

TREC microblog 2011 dataset but in a (.txt) format which made it more suitable

for this task.

There are many tweet features that can be found in any common tweet

such as: Username ID, verification badge, number of followers, number of

followees, retweets, hash tags and URL links. Some of these features are

considered mandatory in any tweet such as the username ID which is the author

of the tweet. Some are considered optional to be added in the tweet such as

hash tags which are used to check trending topics on Twitter. With the certain

limitation that TREC allows using for the dataset, some of these main features

are not provided in the dataset in order to prevent any privacy issues with Twitter

.Inc. Some of these features are the verification badge, number of followers and

number of followees of each Twitterer.

By identifying the remaining tweet features, they will be organized and

stored in different database fields to be able to know which of these tweet

features are available in the tweets that belong to dataset. Next is to propose

several formulas and percentage scores to each of these features in order to

assign a value to help get the tweet feature score. The Twitter username ID does

not need a value at this part of the method but will still be stored in the database

with other tweet features for later work regarding identifying the influential

Twitterers. The tweet ID will be the primary key in the database will be stored in

the database so it can be linked to the indexed data in Terrier. Chapter 4 will

explain the database section in further details. After assigning a value to each

feature, a new ranking score will be given to every relevant tweet related to the

query topics which will create a new result ranking file based on the HIRKM

method.

31

For this method, there are 3 main tweet features we need to identify

before staring the re-ranking process and they are: URL links, Hash tags and

retweets. Here are the proposed methods to the right values for each of these

tweet features:

1) URL links: The value of a URL links are calculated using two existing

services: (1) PageRank - represented by PG(x) - and, (2) Alexa Rank -

represented by AR(x), where x is the URL. The values of PageRank and Alexa

Rank are normalized to be a value between 0 and 1. The normalization process

for PageRank involves taking one-tenth of the PageRank. For example: if a

URLs PageRank is 6; one-tenth of 6 is 0.6, which becomes the PageRank value

of that URL. The normalization process of Alexa Rank involves creating 6

groupings: (1) URLs ranked 1 - 1,000, (2) URLs ranked 1,001 - 10,000, (3) URLs

ranked 10,001 - 100,000, (4) URLs ranked 100,001 - 1,000,000, (5) URLs ranked

1,000,001 - 4,000,000 and, (6) URLS ranked over 4,000,000 or with no

rank. Each of the groups is assigned a predetermined value: (1) 1.0, (2) 0.8, (3)

0.6, (4) 0.4, (5) 0.2 and, (6) 0.0. The proposed methodology considers

PageRank and Alexa Rank to be equal in their authority as they calculate two

distinct aspects of a given URL. As such, the average ranking of PageRank and

Alexa Rank is taken to represent the final ranking of any URL contained within a

Tweet using equation 17, where x is the URL.

Equation 17: Calculation for the Rank of URLs

2) Hash tags: Hash tags are used to mark keywords or topics in a tweet to

help users categorize the tweets while searching. It is optional for the Twitterers

to add a Hash tag or several ones into their tweets as long as the tweet in

general does not exceed 140 characters. Normally, hash tags are used for

searching trending topics in Twitter which lately became a popular technique for

tweet searching.

32

The TREC 2011 microblog dataset contains over 16 million tweets. And since the

dataset is so big, there is no appropriate way to check if all the tweets have hash

tags in them or not. Also, it will be hard to know exactly what they are and to

what topic they belong to. For that reason, a .txt file was created and it was filled

with different hash tags that were relevant and related to TREC’s 2011 Twitter

query topics. For example, one of TREC’s Twitter topics is about the protests that

happened in Egypt in the year 2011 as part of the Arab Spring. So, different hash

tags were created related to that specific topic such as: #Egypt, #EgyptProtests,

#Protests #ArabSpring, and so on. Just a reminder, that hash tags in general

were created by many different Twitterers to make it easier for them to search

different topics. So the purpose for this .txt file was only trying to detect as much

possible hash tags in the tweets based on the topic query but not all of them. In

order to know what kind of hash tags to create to each topic, a good knowledge

of every topic was necessary so an extensive research was made in order to

have an understanding of every topic possible. Searching online and reading

articles related to all 50 topics that happened in the year 2011 was the main lead

to know what kind of hash tags needed to be created for this method. Also,

searching the popular and trending hash tags that were used for these topics in

the year 2011 was needed and they were added to the .txt file as well. The

reason for that is in order to make sure to be as much accurate as possible to

when these tweets were created at that time of year. After acquiring them, they

were added to the .txt file with the rest of hash tags. There are 50 Twitter query

topics for TREC 2011 microblog dataset and 479 hashtags were created in the

.txt file to detect them. One last thing to mention is hash tags that have

misspelling errors were not considered in this study and were not added to the

.txt file.

If a single relevant hash tag was detected in a tweet, then a value of 50% boost

will be given to the new tweet score. If a second hash tag was detected, a 25%

boost will be given to the new hash value tag which will result a 75% boost to

both hash tags in total as the new hash tag feature score. Meaning, the

33

percentage will be decreased by half of the pervious hash tag score when a new

relevant hash tag to be detected. The reason for that is, the more hash tags to be

detected in the tweet the nosier it gets and that is why the other hash tags gets a

less value than the first one. If no hash tags were detected in the tweet then the

hash tag value is 0. Equation 18 explains the calculations of how hash tags get

their values. The refers to the number hash tags in the tweet, the

(

) refers to the value of the first hash tag detected in the tweet and x is the

hash tag(s).

 (

)

Equation 18: Calculation for the Rank of Hash Tags

3) Retweets: The original plan for this study is the value of a retweet should

be given to the original tweet and to its original author. However, since we are

only dealing with dataset sample of the tweets then the chances of the existence

of the original tweet there is really low. Later, an alternative plan was created

since we can only deal with retweets in this dataset. In general, retweets should

get a value but since it is not an original tweet then it should get a less value to

the one that was planned to the original tweet. Of course, the first step is to

detect if the tweet is a retweet or not.

Checking if the tweet is from an original author was not an issue since we were

dealing with a sample dataset. According to [5], there are different styles of

retweets that are used by different Twitterers. The most common one is by using

the two letters R and T together to form (RT) and use that somewhere in the

content of the tweet. So if the RT exists in the tweet then it clearly shows that it is

not written by an original author so it is confirmed as a retweet. If no RT was

detected, then the tweet is original and it was written by an original author. For

this thesis, this style of retweets was chosen for the approach on identifying the

original tweets from others which are the retweets.

34

The value of retweets, RT(x), will be either represented by 0.5 or 1 depending if

the tweet is original or not. If it is a retweet, then the value of the BM25 score,

URL value and the hash tag(s) value will be multiplied by 0.5. The reason of that

is it is not an original tweet so it should get half the value of the original tweet.

However, if it is not a retweet and comes from an original source, then the value

of all the scores will be multiplied by 1 because it is an original tweet so it

deserves the full value.

After acquiring the values of all three tweet features, it is time to adjust those

values with the BM25 score to form the new tweet ranking formula of this study;

HIRKM. Equation 19 will explain how the HIRKM method is calculated–

represented by HIRKM(x).

 ()

Equation 19: Calculation of HIRKM Tweet Ranking Method

3.4.3 Comparing scores to the golden standard

After obtaining both of BM25 score and HIRKM score, it is time to

compare both results to the golden standard that belongs to TREC 2011

microblogging dataset. The golden standard is referred to the most accurate

result possible without any restrictions [16]. Comparing the results of both

methods to the golden standard will give the difference in performance values of

each method and will store them in a file called the evaluation file. This

procedure is done manually by writing a programing script that takes both

methods results so it can be compared to the golden standard. The next chapter

will explain the implementation process for HIRKM and what it was needed for it

to be developed and to be evaluated with TREC’s microblogging 2011 golden

standard to be compared with BM25.

35

Chapter 4

Experimental Settings and

Implementation

This section will explain implementation procedure for this study. In order

to conduct an information retrieval experiment, there are some components

needed in order to achieve the right results. These results must be measurable in

order to compare them with other systems that are involved in the same research

field. These components can be explained in these sections:

1. A raw microblogging dataset that can be related to the real world

and can be part of it. This dataset must not be manipulated in any way

before acquiring or it will not be acceptable for testing purposes.

2. A format of the dataset that can be used and recognized by the given

information retrieval platform for this study.

3. An information retrieval platform for indexing and retrieval techniques to

be used on the dataset.

4. A database system in order to store the dataset to organize it and to

identify all the tweet features possible in all the tweets.

36

5. A method to evaluate the new results with other retrieval techniques for

comparison in order to get the final results.

The following sections will explain the implementation of these

components in details and how they work in order achieve reliable and accurate

results.

4.1 Empirical Dataset

The first approach for this thesis was to get a microblogging dataset from

Twitter’s API. Unfortunately, that option was not available for several reasons.

The main reason for not using Twitter’s API is because it is time consuming

which will take long time to crawl the data from there. According to [6] and [7],

which are written by the same researchers, an access was needed to REST API

to be able to download tweets from Twitter’s API without rate limit restrictions.

Researchers with that type of access can download the data in a feature-rich

JSON6 format. The advantage of crawling from Twitter’s API is it gives a full

tweet feature details of each tweet that cannot be possible to obtain from

anywhere else. Here are some examples of these exclusive features: number of

retweets of each tweet, the identity of the Twitterers who retweeted or replied to

each tweet and finally the number of favorite tweets that were chosen by the

followers or different Twitterers. Unfortunately, most of the microblog researchers

do not have that type of access so alternative solutions were reserved to get a

testable micoblogging dataset.

The microblogging dataset that was used for this thesis was acquired from

Text Retrieval Conference (TREC) website of the year 2011 and is called

Tweets2011 corpus. This corpus is consisted of 2 weeks of sampled tweets (24th

January 2011 – 8th February 2011) courtesy of Twitter. It was designed to be

reusable and represents both important and spam tweets. The size of the corpus

6
 JavaScript Object Notation

37

is approximately 16 million tweets and it includes different types of tweets such

as retweets and replies. The corpus is split into different files called “blocks” and

each block contains about 10,000 tweets of each day (i.e., block of tweets). Each

of these tweets is in JSON format that is similar to the ones from Twitter’s API.

However, they are not identical when it comes to the rich detailed JSON format

that can be obtained from Twitter’s API so most tweet features are not available.

Within the corpus, tweets are ordered by tweet ID which is the main feature of

TREC’s JSON format [17].

After acquiring the dataset, what is needed is to make a use of an existing

information retrieval system which can provide with suitable retrieval techniques

to experiment with.

4.2 Terrier IR System

For this study, Terrier information retrieval platform was chosen for

indexing and retrieval task. The main reason for choosing Terrier is because it is

a well-known platform in the IR field. Also, Terrier showed good retrieval

performances in other researches using classical information retrieval techniques

such as BM25 scoring function. According to selected research papers, BM25

achieves good retrieval scores with Terrier IR platform [18]. Terrier is a highly

flexible, efficient, and effective open source search engine, readily deployable on

large-scale collections of documents. Also, Terrier implements state-of-the-art

indexing and retrieval functionalities, and provides an ideal platform for the rapid

development and evaluation of large-scale retrieval applications [19].

In order to use Terrier in this study, the dataset had to be converted to a

format that can be recognized by Terrier IR platform. This is a necessary step in

order to use the Terrier IR platform for the indexing part because the raw dataset

is not readable yet for Terrier. So, the dataset was converted to TREC format

mainly because it is applicable to Terrier and it is a recognized format that was

used for many different researches in the in the field of information retrieval. Also,

38

the microblogging dataset is from TREC so it was best to convert it to the format

of the Text Retrieval format. After conversion to TREC format, the dataset will be

ready for the index procedure which will be explained in the next section of this

chapter. For TREC format, there are many documents delimited by

<DOC></DOC> tags [20]. Here is an example of how a tweet will look like after

the conversion to TREC format:

<DOC>

<TweetID> 23041985 </TweetID>

<USERNAME> alsinan_ahmed </USERNAME>

<STATUS> 200 </STATUS>

<Tweet> Hello world ! It’s Friday so follow @dkasperowicz #FF </Tweet>

<Time> 2011-01-10 00:45:54 </Time>

</DOC>

With TREC format, all tweets will be organized, readable and mainly the

tweets within the dataset can be used for the indexing purpose with Terrier IR

platform.

There is another step that takes part in the information retrieval

researches which normally takes place before the indexing process and that is

data pre-processing. Data pre-processing can be defined as a sequence of

operations in order to clean, normalize and extract information from the data [21]

[22]. Information retrieval researchers normally remove stop words, full stops,

commas, apostrophise and other characters in that they think it can help to

improve the ranking. However, this step will not take place in this study and will

not be applied to the microblogging dataset. The reason for that is a single

Twitter post can only fit only 140 characters so removing such characters from

39

the tweet itself can cause a lot of problems for the purpose of searching,

retrieving and ranking the post. Also, Terrier does its own pre-processing part in

order index the dataset so it was decided that one part of pre-processing was

enough. In other words, every character counts in every tweet to reach the goal

of this thesis. Also, there are researches that prove how important these features

are and removing them will cause problems [4].

The process to build an index of the dataset and the performing retrieval

techniques will be explained in the next section of this chapter.

4.3 Building Index and Performing Retrieval Techniques

After the dataset been converted to TREC format, it is time to build a

Terrier index and then apply the retrieval weighting function on the indexed

documents to get the evaluation results. The following sections will explain these

two steps in details.

4.3.1 Terrier Indexes

Terrier, like most information retrieval systems, has the ability to build

indexes and to preform many weight retrieval techniques as well. For the

indexing part, Terrier creates the indexes documents based on the converted

TREC dataset that was explained earlier in this chapter. By default, Terrier uses

TRECCollection which parses corpora in TREC format delimited by the

<DOC></DOC> tags like the converted dataset. For Tokeniser7 implementation

[23], Terrier uses the EnglishTokeniser8 [24] by default. When indexing using

another language, a different Tokeniser can be set up for that purpose [20].

Lastly, Terrier uses three methods for indexing documents and they are:

1) Classical-two pass indexing 2) Single-pass indexing 3) MapReduced indexing.

7
 A Tokeniser is a class which is responsible for tokenising a block of text, which is usually used by

document implementations, into a stream of tokens.
8
 Tokenises text obtained from a text stream assuming English language. Acceptable characters are A-Z

and 0-9.

40

For the first method, classical-two pass indexing; there are two techniques

for classical indexing to be implemented. The first technique is BasicIndexer

were the system performs stemming and stopword removal on all tokens. This a

form of pre-processing that Terrier automatically preforms on the dataset before

indexing. After that part ends, the system creates three data structures and they

are:

1- DirectIndex: It is a compressed file that contains every term in each examined

document and later is used for automatic query expansion.

2- DocumentIndex: A fixed-length entry file that contains information about the

examined documents, the number of indexed tokens, the identifier of each

document, and the equalizer of its corresponding entry in the direct index is

stored.

 3- Lexicon: Another fixed-length entry file that contains information about the

vocabulary of the examined dataset.

Once all that data structures are completed, the InvertedIndex data

structure will be created by Terrier where it contains the inverted values of the

DirectIndex.

The second classical indexing technique is BlockIndexer which has the

same functionality as the first technique. However, this technique can control a

larger DirectIndex and InvertedIndex for storing the positions that each token

occurs in each document. Also, it is better to use this technique over the first one

when it comes to allowing queries to use term positions information, to add

restrictions for searching multiple terms and to ignore any matches that do not

follow the restrictions.

The second method is single-pass indexing where memory tracking is the

main concern for this method. This method is implemented by other two

techniques and they are BasicSinglePassIndexer and BlockSinglePassIndexer.

The BasicSinglePassIndexer technique indexing operates in two phases. First, it

41

passes through the document collection to build an in-memory representation of

the posting lists after several runs. The second phase is about merging these

runs to create the final inverted file. The BlockSinglePassIndexer technique is

similar to the first by performing a single inversion. The difference is it when it

comes to index the document collection; it saves block information for the

indexed terms. According to Terrier’s website [20], single-pass indexing is by far

quicker than the two-pass indexing method.

Third method that Terrier uses is the MapReduce Indexing and it is for

large-scale collections. Basically, this method is the single-pass but in a larger

scale due to the increase size of test collections. This method uses the single-

pass indexer to index sections of each collection as map tasks. The results of

this method come in three forms:

a) Terms and mini posting lists known as runs.

b) Document indices from each map task.

c) Information about the number of documents saved per run.

To index the dataset for this thesis, the single-pass indexing method was

used for this procedure because it is the fastest method of the all the three and

also it does not consume that much memory for this task. In order to Terrier to

index, it needs to do its own pre-processing, stemming and stopword removal, on

all tokens. It took approximately 30 minutes to finish indexing the documents. No

problems were reported for Terrier to index the dataset and the index status is

shown in Figure 4.1.

42

Figure 4.1: Terrier dataset Index status

4.3.2 BM25 Retrieval

As it was mentioned in this chapter, the dataset was converted to TREC

format for the indexing purpose using Terrier IR platform. The indexed

documents are needed to get the initial ranking score of the retrieval scoring

technique such as BM25 or any other retrieval scoring function that are provided

by Terrier. For this thesis, only BM25 retrieval results were needed so they can

be compared with the results of the proposed method later on with TREC 2011

microblogging golden standard.

After configuring the settings for Terrier to use BM25 as the retrieval

function for the indexed documents, the retrieval results will be stored in a new

file called the (Results Ranking File). This file contains the tweets ranking results

based on Terrier’s algorithm for BM25. It took approximately 13 seconds for

Terrier to retrieve the score with BM25. Next section, Preparing Queries, will give

more details about the results ranking file.

The BM25 retrieval results needed to be kept for the re-ranking stage to

get the HIRKM retrieval results at the very end. The next section will give more

details about the ranking process and also about the results ranking file.

43

4.4 Preparing Queries

Queries preparation is an important procedure in order to get to the goal

this thesis. TREC provided a list of 50 query topics to be used for experimenting

with the microblog 2011 dataset. These queries were arranged in a marked up

tag format which is similar to XML9 format. Here is an example of how a query

topic will look like:

<top>

<num> Number: 33 </num>

<title> Egypt </title>

<querytime> 2011-08-08 15:33:57 </querytime>

<querytweettime> 22041985 </querytweettime>

</top>

 The num tag is the query number.

 The title tag is the user’s query representation.

 The querytime tag is the timestamp of the query in a readable form.

 The querytweettime tag is the timestamp of the query in terms of the

chronologically nearest tweet id in the dataset.

When the system submits to rank the queries, the runs must be submitted

to follow the standard TREC format. Here is an example of how the submitted

runs will look like in the results file of the ranking method:

9
 Extensible Markup Language

44

01 Q0 3857291841983309 1 0.999 myRun

01 Q0 3857291841983302 2 0.878 myRun

01 Q0 3857291841983301 3 0.314 myRun

...

02 Q0 3857291841983301 1 0.989 myRun

...

The fields in order are the topic number, a literal “Q0”, a tweet ID, the

retrieval rank of the tweet, the score and the identifier name of the run which is

going to be BM25. There will be a second run for HIRKM later after identifying

the tweet features in the tweets. This will be explained further in section 4.6.

The next section will give more details on how to build a MySQL database

in order to store and organize the dataset to help identifying the tweet features

for the HIRKM method.

4.5 Building MySQL Database

After obtaining the BM25 ranking results, the next step is to get HIRKIM

ranking results so both methods can be compared to the official golden standard

for TREC’s 2011 microblogging dataset. Building MySQL database is a main

step in order to acquire the HIRKIM method after acquiring the BM25 ranking

results. The main reason for storing the dataset into a MySQL database is to

separate all the key aspects of the tweets in different fields. With that, all the

tweets in general will be more organized to read and to use for the purpose of

this study. By storing the dataset in the database, the tweet features will be easy

to identify. However, there are some certain steps are needed to be done at first.

The first step is to build a MySQL database by the name (ahmed_thesis)

that contains a table with the name (twitterdataset). The table was created with

five fields or columns in order to separate the components of each tweet. The

names of the five fields are:

45

1- tweet_id: The primary key of the table which contains a unique number to

identify each tweet in the dataset.

2- username: The author and creator of the tweet.

3- status: Http10 response code to specify the status of each tweet [25].

4- created_at: Time and date of the creation of each tweet.

5- tweet: A post on Twitter that was created to be shared with the other

Twitterers.

Figure 4.2 shows how the twitterdataset table looks like in MySQL GUI11

browser tool with its five fields.

Figure 4.2: twitterdataset table in MySQL Database

For testing purposes, some SQL commands been executed to check how

the tweets will be displayed in the MySQL query browser. Figure 4.3 shows an

example of one of those commands and how the tweets are displayed after

separating the key components of each tweet into five different fields.

10

 Hypertext transfer protocol
11

 GUI: Graphical User Interface

46

Figure 4.3: Example of how the tweets will be displayed after separating the

components

The second step is to create a second table that contains and describes

each tweet feature that can be available in the tweet and link them to the main

table using a foreign key12[15]. For that, table (tweetfeatures) was created and

has the following columns:

1- tweeFeatureID: The primary key for this table that identifies a row in the

database. Each row in this table needs to be identified to know exactly which

row to look for.

2- tweet_id: The foreign key that connects between the twitterdataset table

and tweetfeature table.

3- featureType: This column describes what kind of tweet features are in each

row of the tweet. Like, does the tweet have any hash tag(s), URLs? Or is the

tweet original or a retweet?

Different values were assigned to distinguish which of these tweet features are

available in the tweet. Here are the tweet features with their values:

 Hash tags = 0

 URLs = 1

12

 Foreign Key: Is a database field or collection of fields in one table that uniquely identifies a row of
another table.

47

 Retweets = 2

If a tweet has more than one tweet feature in it then then there will be different

entries for that tweet in the database depending on how many tweet features are

in the tweet. For example: If a tweet has a relevant hash tag and a URL then the

tweet will be stored twice in the database with two feature types 0 and 1.

4- featureText: This column gives us the extracted feature we were looking for

in a given tweet.

5- featureValue: This column gives a weight to each tweet feature that got

extracted from the tweet in order to give the new tweet rank.

Figure 4.4 shows how the tweetfeatures table looks like in MySQL GUI

browser tool with its five fields.

Figure 4.4: tweetfeatures table in MySQL Database

Similar to the previous table, another SQL command been executed to

check how the twitterfeatures table fields will be displayed in the MySQL query

browser. Figure 4.5 shows an example of one of those SQL commands.

48

Figure 4.5: How the tweetfeatures table fields are displayed

When both tables are created, it is time to prepare for the final step to get

the HIRKM re-ranking retrieval scores that is based on the BM25 retrieval

technique. HIRKM retrieval method and its scores will be explained in the next

section.

4.6 HIRKM Retrieval

 After finding all the requirements that is needed for the main method of

this thesis, it is time to obtain the re-ranking results which is for the HIRKM

retrieval method.

 Similar to the previous BM25 Retrieval section of this chapter, the ranking

process for HIRKM will be the same but after including the tweet features scores

to its formula in order to get the new ranking score. This process is called the re-

ranking process. However, Terrier IR platform will not be needed again for this

part. As it was mentioned in previous sections, the HIRKM method is based on

the BM25 retrieval technique with the addition of tweet features scores. So

basically, the only item needed is the BM25 ranking results file which was

49

already acquired from Terrier from earlier. By adjusting the BM25 scores with the

tweet feature scores, the re-ranking process will start and will result a new

ranking file for the HIRKM method storing its re-ranking retrieval scores.

The following section will explain how the evaluation results work for both

BM25 and HIRKM and what are the official evaluation methods for TREC 2011

microblog dataset.

4.7 Evaluation of Results

 After all result files are generated, it is time for the evaluation process to

compare these results to the golden standard. As it was mentioned before in this

thesis, TREC already provided the official initial module and clear guidelines as

to how the evaluation process works. This module is called (trec_eval).

 Trec_eval module address several methods that are used to evaluate

different information retrieval systems. This module can handle streams of quires

and documents. This module works by interacting with information retrieval

platforms in order to achieve series of retrieval tasks. In the end, it gives the final

results after processing a set of files for the retrieval experiment. This is a

necessary step for the retrieval methods to compare them to the best score

which is the golden standard. The golden standard is an evaluation script that

was provided by TREC to evaluate the performance of the retrieval methods to

generate candidate concepts.

 For this study, the evaluation module that was used to get the final results

goes by the name trec_eval 9. The number 9 referrers to the version of this

module and it was the latest version of it as well according to TREC’s official

website [31].

 The following chapter will cover the evaluation results for both BM25 and

the proposed method HIRKM. The results will be presented by the official

50

evaluation metrics assigned by TREC for the microblogging dataset which will

also be explained in depth in the next chapter.

51

Chapter 5

Results and Evaluation

 The ability to know how effective the results are can be challenging

especially in the social media domain in the field of information retrieval. There

are over 16 million tweets, 50 topic queries and 2 retrieval methods. In order to

properly establish effective results, a baseline must be determined by using an

existing methodology in the information retrieval field. Next section will give more

details regarding how the baseline was made to generate results by using

specific criteria which will also be explained further in this chapter.

5.1 Baseline

 To ensure high performance and accuracy to be achieved for the

microblogging dataset, a baseline must be determined for the ranking concept.

For that, BM25 was used to generate that baseline because it is one of the most

popular ranking methods in the information retrieval field. In fact, BM25 been

used as one of the main baselines in different IR researches [32]. The BM25

parameters values were set by Terrier as follows: to 0.75, to 1.2 and

to 8. According to Terrier’s website, these are the default standard values that

52

are set for BM25 [33]. Figure 5 explains how the established baseline that used

with BM25 ranking method with the assigned parameters values.

Figure 5.1: BM25 Performance Measure

 The results are in a scale of 0 – 1, where the number 0 indicates no

tweets from the results were considered relevant using the BM25 ranking

method, and number 1 indicates that all the tweets from the results were

considered relevant using the BM25 ranking method.

5.2 Performance Criteria

 As it was mentioned in the last section of chapter 4, TREC provided an

official initial module for the evaluation process and it is called trec_eval. This

module generates different evaluation methods provided by TREC. Since the

dataset is also provided by TREC, it is logical as well to use this module for the

evaluation measures. For the microblogging dataset, TREC restricted two

evaluation measures for that dataset and they are: Mean average precision

(MAP) and precision @ 30 (P30).

0

0.05

0.1

0.15

0.2

0.25

0.3

MAP P30

Performance Results

Baseline

53

For each query, the system should provide up to 1000 tweets. The P30

measure counts the number of relevant tweets in the top 30 tweets in the ranked

list for a given topic. The MAP measure is an individual average precision score

for a single query is calculated after each relevant document is retrieved. The

mean average precision for the run is the mean of these average precision

scores. All query topics are expressed in English and non-English topics will be

considered irrelevant. An example of the evaluation measures for BM25 is shown

in Figure 5.2.

Figure 5.2: trec_eval 9 evaluation measures for BM25 ranking method

As shown in Figure 5.2, Only 49 quires out 50 were ranked. The reason

for that is none of the tweets in the dataset were found relevant to one of the 50

query topics so those tweets did not take part of the ranking. Other than that,

54

there were no other actions to report so the BM25 retrieval was successful and

went according to plan.

5.3 Results

 Terrier is the main retrieval tool in order to get the final results for this

study. It is also the tool that created the baseline using the BM25 ranking method

as it was explained in section 5.1. For this study, two runs were generated before

getting the final evaluation results. The first run was using HIRKM without Terrier

and BM25 and the second run was using HIRKM tweet features to fine tune the

results of Terrier and BM25 as its baseline. Each of these will be explained in the

next of this section.

5.3.1 HIRKM Run without Using Terrier and BM25

 The first run and approach of this thesis was to immediately rank HIRKM

and compare it to the golden standard without using Terrier and BM25 as its

baseline. For that, the first step for this approach was to identify all the tweet

features in the tweets in the TREC 2011 microblogging dataset and then rank

them based on the formulas that were proposed in chapter 3. However, this

approach was really time consuming and it took almost 4 months to identify and

rank each tweet feature in the dataset especially the URLs part for Alexa and

Page Rank. After gathering all the organized tweets, the second step is to see if

these tweets were relevant to any of the 50 topics by checking the tweet features

in the tweets. With that, a HIRKM results file was created which contained the

ranked tweets based on the topic.

 trec_eval 9 was used to compare those results to the golden standard and

figure 5.3 illustrates the evaluation measures for that file.

55

Figure 5.3: trec_eval 9 evaluation measures for HIRKM without Terrier and

BM25 as a baseline

 As it clearly shows, the results comparing to the golden standard ended

up being very low. In fact, only 179 tweets were found relevant to the golden

standard as it shows in Figure 5.3. So, the results were very low and an

understanding was reached that this method was not the right approach to rank

the tweets.

 By having these bad results using only that method, a new approach was

needed to find a fitting method to rank tweets based on their authority. A new

approach strategy was made by checking the possibility of having a well-known

ranking method as a baseline to help HIRKM with the ranking. Then, re-ranking

the baseline results by fine-tuning the results with the tweet features to get even

56

better results based on the HIRKM method. Next section will give further details

regarding this new approach which is the second run used for this thesis.

5.3.2 HIRKM Run Using Terrier and BM25

 Before the second run was generated, it was planned to have a ranking

method from Terrier IR system as a baseline for HIRKM. As it was mentioned

before in previous chapters, BM25 is main ranking method that was chosen for

this thesis and will be set as baseline for HIRKM.

 With BM25 results file already available, it was all about rearranging the

baseline results by using additional criteria from the HIRKM method. to get new

ranking results for the tweets. This kind of adjustment of BM25 will cause re-

ranking the tweet results which is based on the tweet features that are part of the

HIRKM method. In order to do that, a program was set to look for the 3 main

tweet features of the HIRKM method in all the BM25 tweet results. When any of

the tweet features is detected, it changes the value of the tweet which will also

change its ranking in the results file. When all that is done, a new results ranking

file will be created based on the HIRKM method.

 Trec_eval 9 was used again to compare the new re-ranking results to the

golden standard and figure 5.4 illustrates the evaluation measures of the new file.

57

Figure 5.4: trec_eval 9 evaluation measures for HIRKM with the use of

Terrier and BM25 as a baseline

 By looking at these results, it clearly shows how well this approach did

comparing to the first run. Also, the results were found reasonable as any ranking

method would normally get. So, the second run was found successor to the first

run and its results were selected as HIRKM’s ranking results for this study.

 Next section will analyze and discuss these results with the baseline

results to check their efficiency by comparing them to BM25 ranking results from

Terrier IR system.

58

5.4 Analysis and Discussion

 The two runs that were conducted in this study were HIRKM1.0 and

HIRKM2.0. The reason for conducting these runs was to determine which one of

the proposed methods would prove to have a batter performance and efficiency

when comparing them to the golden standard in terms of ranking the tweets.

Table 2 will explain the difference between the proposed runs.

Run Description

HIRKM1.0 It was generated using the tweet features scores of the

tweets.

HIRKM2.0

It was generated by taking the baseline results that were

generated using Terrier IR system and BM25 weighting

model, and re-ranking them based on the tweet features

scores.

Table 2: The Description of the Proposed Runs

 By examining the results of HIRKM1.0 and HIRKM2.0 in Figure 5.3 and

Figure 5.4 in the previous section of this chapter, it clearly indicates that

HIRKM2.0 was superior by massive results. The reasons for that will be

explained as follows.

 HIRKM1.0, the first version of the proposed method, was built from

scratch without the aid of any ranking methods. So basically, all the tweets in the

TREC 2011 microblogging dataset were giving specific ranking values based on

HIRKM’s tweet features only. For the golden standard, it is unknown how TREC

designed the highest results to rank the tweets and what kind of ranking methods

was used to help building it. But still, the golden standard is all about ranking the

tweets to the best way possible based in all 50 topics that were provided by

TREC. So, the golden standard was designed for only one job which is to rank

the tweets perfectly as much as possible based on the query topics. For HIRKM

59

however, it was mentioned several times earlier in this thesis that HIRKM is not

only about ranking the tweets but it is about recognizing influential Twitterers as

its second goal. So when comparing HIRKM1.0 ranking results to the golden

standard, it was logical why the results were so low because HIRKM has two

goals that needed to be achieved unlike the golden standard which again its only

goal is to rank the tweets. So a conclusion was reached that focusing on the

tweet ranking should be the main priority at first in order to get good evaluation

results with golden standard. HIRKM1.0 lacks an important step to give it the

right balance to be compared with the golden standard. By giving it a lot of

thoughts, it was decided later on that the first step to achieve that approach is by

having a ranking technique as a starting point to help HIRKM with the tweet

ranking. That is when BM25 was decided to be the baseline of the second run

which is called HIRKM2.0.

 The second run, HIRKM2.0, was performed to attempt improving the

performance of BM25 ranking results as shown in Figure 5.2. To reach that goal,

the tweet features in the BM25 ranked tweets needs to be identified in order for

HIRKM to work. As it mentioned in chapter 4, all the tweets been stored in a

MySQL database and all the tweet features been identified there as well. For

that, a strategy was needed to find a way to connect the BM25 ranked tweets to

the tweets in the MySQL database. By looking back at section 4.4, it illustrates

how the ranking format of the results file will look like and it also explains the

fields of that file. The tweet id is the field that was needed to establish the

connection between the BM25 results file and the database. The reason for that

is the tweet id has been already stored in the database and it was already

available in the results file as well. With it, the all the tweet features that belong to

the BM25 ranked tweets can be identified so later they can be adjusted for

HIRKM2.0 to be generated. Figure 5.5 will illustrate the performance of

HIRKM1.0 and HIRKM2.0 runs in comparison with the baseline.

60

Figure 5.5: Performance Comparison of the Baseline, HIRKM1.0 and

HIRKM2.0 Runs

 After re-ranking the BM25 results with HIRKM, Figure 5.5 shows a slight

improvement for HIRKM2.0 in both evaluation methods by comparing to the

baseline. MAP performance measure improved by 1.03% and the P30 measure

increased by only 0.48%. With these results, HIRKM2.0 outperforms the BM25

baseline by low percentage. For the first run however, HIRKM1.0 results were

really low by comparing it to the baseline as shown also in Figure 5.5. In fact, the

results show how much difference can be for HIRKM by having a baseline or not.

The evaluated results of both runs are displayed in Table 3 along with the

baseline results.

0

0.05

0.1

0.15

0.2

0.25

0.3

MAP P30

Performance Results

Baseline

HIRKM1.0

HIRKM2.0

61

Run MAP P30

Baseline 0.1644 0.2408

HIRKM1.0 0.0026 0.0136

HIRKM2.0 0.1747 0.2456

 Table 3: The Evaluated Results of the Proposed Runs and the Baseline

 Further tests were performed later after submitting the final results of both

runs along with the baseline. These tests were executed on a smaller version of

the TREC 2011 microblogging dataset to check how HIRKM will perform when

adjusting different values to the three main tweet features of the method. The

smaller version of the dataset contained only 430,396 randomly selected tweets

out of the 16,123,041 tweets from the original dataset. The results of these tests

differ for each run depending on the value that is given to each tweet feature. Out

of three runs, there was only one run that successfully performed better than the

baseline. This run was based on HIRKM2.0 which the MAP performance

measure improved by 8.17% and the P30 measure increased by 5.36%. A

general understanding was reached that HIRKM can perform better if each tweet

feature is given the right value to acquire the best performance possible for the

method. However, in order to find the right value of each tweet feature then more

tests are needed until the right value is found. Also, similar tests must go through

the original dataset in order to obtain accurate results of the HIRKM method.

62

Chapter 6

Conclusions and Future Work

6.1 Conclusions

 Through series of experiments and studies on Twitter, this thesis attempts

to perform an accurate ranking method to rank the tweets based on their

authority. In addition, a second goal for this thesis was to find the influential

Twitterers based on the new proposed ranking system that this method of this

thesis proposed. This thesis succeeded on achieving both of these goals.

However, there are some conditions that need attention regarding the influential

Twitterers goal. Both of these goals will be explained in details in this section.

 As the results in chapter 5 presented, HIRKM2.0 was successful on

outperforming the baseline which caused a better results for the new re-ranking

scores of the tweets. However, the improved results were not great as they were

expected to be. Different views were considered regarding this matter and how to

find a way to improve these results to even more. The proposed method, HIRKM,

already proved with the help of the tweet features that it can ranked the tweets

based on their authority. But were the chosen three features enough for that

task? That is an important question that needs to be considered. The reason why

63

the hash tags, URLs and retweets were only chosen for this method is due to the

limitation that TREC restricted for the 2011 microblogging dataset. There are

other important tweet futures that can be used to improve HIRKM even more. But

the only way to obtain these features is through Twitter’s API which was not an

available option for this thesis. With the dataset that was used in this study, all

the available features in the tweets were used and found helpful for HIRKM. So

to answer the previous question: Yes, the three tweet features were enough to

improve the baseline ranking. However, HIRKM can perform even better if it is

possible to add the other tweet features that are not available in the dataset.

Here is an explanation of how the three chosen tweet features supported HIRKM:

1. Hash tags: Checking the content of the tweets for relevant hash tags helped

recognizing if tweets are relevant to the query topics.

2. URLs: Checking how popular the URLs are by examining their sources will

indicate how authoritative these sources are.

3. Retweets: Checking if the tweets are from an original source/author or not.

In brief, the hash tags helps recognizes topic relevancy, URLs helps indicating

the web authoritative sources and finally retweets helps checking the originality

of the tweets.

 Moving to the second goal, how to find the influential Twitterers. It was

tough to reach that goal with the current microblogging dataset. Based on the

information in chapter 5, the golden standard goal is to rank the tweets perfectly

as much as possible based on the 50 topics. Recognizing influential Twitterers

was not an objective to golden standard. In order to reach that goal using this

microblogging dataset, an assumption was made that all the authors of the

tweets in the golden standard were influential Twitterers. So the BM25 baseline

results ranked relevant tweets written by influential Twitterers. When these

results were re-ranked by HIRKM2.0, the tweets became more authoritative

which also means that the authors became more influential than the ones that

64

were introduced in the baseline as well. The reason this assumption was made is

because HIRKM already proved how important the tweet features are in terms of

ranking tweets. By having an author whom writes original tweets using hash tags

for topic relevancy and using URLs from authoritative web sources is applicable

to be called influential Twitterer.

6.2 Future Work

 Numbers of certain factors were noticed that can significantly improve the

performance of HIRKM and develop it to the better in the future. This section of

this thesis will explain some of these factors and what they can do to improve the

results of the proposed method.

 In this thesis, pre-processing the TREC 2011 microblog dataset did not

take part for this study. This step felt to be unnecessary because removing any

kind of characters from the tweet can cause problems for HIRKM to identify the

tweet features. A tweet can only contain 140 characters so every character within

the tweet is important. However, if the pre-processing the dataset can be done

without harming any of the tweet features then this step is worth considering

being part of the future plans for HIRKM.

 Using other tweet features from other sources like Twitter’s API can also

as well improve the performance of HIRKM. The only problem with this step is

not a lot of people have unlimited access to Twitter’s API. This type of access is

very limited and cannot be given to anyone to avoid privacy issues. Here are

some of the tweet features that are not available in the dataset but it can help the

performance of HIRKM: Number of retweets, number of favorite tweets, number

of the Twitterer followers and their followees.

 Lastly, readjusting the current tweet features values of HIRKM’s tweet

features to acquire the best performance. This can be accomplished by running

different HIRKM runs by giving each tweet feature a different value in each of

those runs. This part already been explained in the end of chapter 6 and how the

65

results can improve by finding the right value to each tweet feature. However,

this step can be time consuming and may take weeks to accomplish the best

performance and that is why it was only performed on a smaller version of the

dataset. Time was a big concern for this study so that is why it was decided to

move this step as one of the parts of the future work in this thesis.

66

Bibliography

[1] I. Celik, F. Abel and P. Siehndel, "Towards a Framework for Adaptive

Faceted Search on Twitter," in Dynamic and Adaptive Hypertext, Eindhoven,

2011.

[2] J. Weng, E.-P. Lim, J. Jiang and Q. He, "TwitterRank: Finding Topic-sensitive

Influential Twitterers," in WSDM, New York, 2010.

[3] B. Suh, Hong Lichan, P. Pirolli and E. H. Chi, "Want to be Retweeted? Large

Scale Analytics on Factors Impacting Retweet in Twitter Network," in IEEE,

Minneapolis, 2010.

[4] S. Petrovic, M. Osborne and V. Lavrenko, "RT to Win! Predicting Message

Propagation in Twitter," in ICWSM, Barcelona, 2011.

[5] d. boyd, S. Golder and G. Lotan, Tweet, Tweet, Retweet: Conversational

Aspects of Retweeting on Twitter, Kauai: HICSS-43. IEEE, 2010.

[6] I. Soboroff, D. McCullough, J. Lin, C. Macdonald, I. Ounis and R. McCreadie,

Evaluating Real-Time Search Over Tweets, Dublin: ICWSM, 2012.

[7] R. M. McCreadie, I. Soboroff, J. Lin, C. Macdonald, I. Ounis and D.

McCullough, On Building a Reusable Twitter Corpus, Portland: SIGIR, 2012.

[8] L. Hong and B. . D. Davison, "Wanted: A Unified Model for Search in Social

Media," in Third ACM International Conference on Web Search and Data

Mining (WSDM), New York, 2010.

[9] J. Jeon, W. B. Croft and J. H. Lee, "Finding Similar Questions in Large

Question and Answer," in CIKM '05 Proceedings of the 14th ACM

international conference on Information and knowledge management, New

67

York, 2005.

[10] H. Kwak, C. Lee, H. Park and S. Moon, "What is Twitter, a Social Network or

a News Media?," in The 19th international conference on World wide web

(WWW '10), North Carolina, 2010.

[11] G. Stringhini, G. Wang, M. Egeley, C. Kruegel, G. Vigna, H. Zheng and B. Y.

Zhao, "Follow the Green: Growth and Dynamics in Twitter Follower Markets,"

in Internet Measurment Conference (IMC'13), Barcelona, 2013.

[12] G. Stringhini, M. Egele, C. Kruegel and G. Vigna, "Poultry markets: on the

underground economy of twitter followers," in ACM workshop on Workshop

on online social networks (WOSN '12), Helsinki, 2012.

[13] R. LI, K. H. Lei, R. Khadiwala and K. C.-C. Chang, "TEDAS: a Twitter Based

Event Detection and," in Data Engineering (ICDE), 2012 IEEE 28th

International Conference, Washington, 2012.

[14] M. Beaulieu, M. Gatford, X. J. Huang, S. Robertson, S. Walker and P.

Williams, "Okapi at TREC-5," in In Proceedings of TREC-5, 1997.

[15] "Wikipedia, The Free Encyclopedia," Wikimedia Foundation Inc., (January

2014). [Online]. Available: http://en.wikipedia.org/wiki/Foreign_key.

[16] "Wikipedia, The Free Encyclopedia," Wikimedia Foundation Inc., January)

(2014 . [Online]. Available: http://en.wikipedia.org/wiki/Gold_standard_(test).

[17] "TREC Microblog Track," Text REtrieval Conference, [Online]. Available:

https://sites.google.com/site/microblogtrack/2011-guidelines.

[18] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald and C. Lioma,

"Terrier: A High Performance and Scalable Information," in In Proceedings of

ACM SIGIR'06 Workshop on Open Source Information Retrieval (OSIR

2006), 2006.

[19] "Terrier IR Platform," Terrier, [Online]. Available: http://terrier.org/.

[20] "Configuring Indexing in Terrier," Terrier, [Online]. Available:

http://terrier.org/docs/v3.5/configure_indexing.html.

[21] "The Free Dictionary By Farlex," [Online]. Available:

http://www.thefreedictionary.com/Data+preprocessing.

68

[22] S. K. R and R. Krishnamoorthi, "Data Preprocessing and Easy Access

Retrieval of Data through Data Ware House," in Proceedings of the World

Congress on Engineering and Computer Science (WCECS 2009), San

Francisco, 2009.

[23] "Tokeniser," Terrier, [Online]. Available:

http://terrier.org/docs/v3.5/javadoc/org/terrier/indexing/tokenisation/Tokeniser

.html.

[24] "English Tokeniser," Terrier, [Online]. Available:

http://terrier.org/docs/v3.5/javadoc/org/terrier/indexing/tokenisation/EnglishTo

keniser.html.

[25] "Wikipedia, The Free Encyclopedia," Wikimedia Foundation Inc., (January

2014). [Online]. Available:

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

[26] S. P. Harter, "A Probabilistic Approach to Automatic Keyword Indexing Part

II," Journal of the American Society for Infomration Science, vol. 26, no. 5,

pp. 280-289, 1975.

[27] E. M. Ruiz, "Experiments on Genomics Ad Hoc Retrieval," in Proceedings of

the 14th Text Retrieval Conference, 2005.

[28] E. S. Robertson and S. Walker, "Some Simple Effective Approximations to

the 2-Position Method for Probabalistic Weighted Retrieval," in 17th Annual

International ACM SIGIR Conference on Research and Development in

Infomration Retrieval (SIGIR'94), 1994.

[29] " Find a Tech Definition," WhatIs.com, [Online]. Available:

http://whatis.techtarget.com/definition/unique-identifier-UID.

[30] "Why MySQL?," MySQL, [Online]. Available: http://www.mysql.com/why-

mysql/.

[31] "trec_eval," TREC, (July 2009). [Online]. Available:

http://trec.nist.gov/trec_eval/.

[32] K. M. Svore and C. J. C. Burges, "A Machine Learning Approach for

Improved BM25 Retrieval," in Microsoft Research, Microsoft, Redmond,

Technical Report MSR-TR-2009-92, 2009.

69

[33] "Class BM25," Terrier, [Online]. Available:

http://terrier.org/docs/current/javadoc/org/terrier/matching/models/BM25.html.

[34] X. Zhou, X. J. Huang and B. He, "Enhancing ad-hoc relevance weighting

using probability density estimation," in Proceedings of the 34th international

ACM SIGIR conference on Research and development in Information

Retrieval (SIGIR'11), 2011.

[35] J. Zhao, X. J. Huang and Z. Ye, "Modeling Term Associations for

Probabilistic Information Retrieval," to appear in ACM Transactions on

Information Systems (TOIS). ACM Publisher. April 2014.

[36] X. Yin, X. J. Huang, Z. Li and X. Zho, "A Survival Modeling Approach to

Biomedical Search Result Diversification Using Wikipedia," in IEEE

Transactions on Knowledge and Data Engineering (TKDE), 2013.

[37] X. J. Huang, J. Miao and B. He, "High Performance Query Expansion Using

Adaptive Co-training," Information Processing & Management: An

International Journal (IPM), 2013.

[38] Z. Ye, X. J. Huang and J. Miao, "A Hybrid Model for Adhoc Information

Retrieval," in Proceedings of the 35th international ACM SIGIR conference

on Research and development in information retrieval (SIGIR'12), 2012.

[39] J. Miao, X. J. Huang and Z. Ye, "Proximity-based Rocchio's Model for

Pseudo Relevance Feedback," in Proceedings of the 35th Annual

International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR'12), 2012.

[40] B. He, X. J. Huang and X. Zhou, "Modeling Term Proximity for Probabilistic

Information Retrieval Models," Information Sciences Journal, no. 0020-0255,

p. 32, 2011.

[41] X. Yin, X. J. Huang and Z. Li, "Mining and Modeling Linkage Information from

Citation Context for Improving Biomedical Literature Retrieval," Information

Processing & Management: An International Journal (IPM), p. 32, 2010.

[42] Q. Hu and X. J. Huang, "Passage Extraction and Result Combination for

Genomics Information Retrieval," Journal of Intelligent Information Systems

(JIIS), vol .34, no. 0925-9902, p. 23, 2010.

70

Appendix A

TREC Topics

 This thesis used the topics given by TREC 2011 Microblog. Below is the

complete list of all topics. There were 50 topics but only 49 of them were found

relevant for both the baseline and the proposed method of this thesis.

01 BBC World Service staff cuts

02 2022 FIFA soccer

03 Haiti Aristide return

04 Mexico drug war

05 NIST computer security

06 NSA

07 Pakistan diplomat arrest murder

08 Phone hacking British politicians

09 Toyota Recall

10 Egyptian protesters attack museum

11 Kubica crash

12 Assange Nobel peace nomination

13 Oprah Winfrey half-sister

14 Release of "The Rite"

71

15 Thorpe return in 2012 Olympics

16 Release of "Known and Unknown"

17 White Stripes breakup

18 William and Kate fax save-the-date

19 Cuomo budget cuts

20 Taco Bell filling lawsuit

21 Emanuel residency court rulings

22 Healthcare law unconstitutional

23 Amtrak train service

24 Super Bowl, seats

25 TSA airport screening

26 US unemployment

27 Reduce energy consumption

28 Detroit Auto Show

29 Global warming and weather

30 Keith Olbermann new job

31 Special Olympics athletes

32 State of the Union and jobs

33 Dog Whisperer Cesar Millan's techniques

34 MSNBC Rachel Maddow

35 Sargent Shriver tributes

36 Moscow airport bombing

37 Giffords' recovery

38 Protests in Jordan

39 Egyptian curfew

40 Beck attacks Piven

41 Obama birth certificate

42 Holland Iran envoy recall

43 Kucinich olive pit lawsuit

44 White House spokesman replaced

45 Political campaigns and social media

72

46 Bottega Veneta

47 Organic farming requirements

48 Egyptian evacuation

49 Carbon monoxide law

50 War prisoners, Hatch Act

73

Appendix B

Created Hash Tags

This thesis used Hash Tags that were created in a .txt file to help recognizes

topic relevancy. Below is the complete list of all the 479 created hash tags and

they are followed by the topic number.

01 #BBC #BBCStaff #BBCWorldService #StaffCuts #BBCStaffCuts

#BBCWorldServiceStaffCuts

02 #WorldCup #WorldCup2022 #FIFA #FIFAWorldCup #FIFAWorldCup2022

#WorldCupDraw #WC2022 #Qatar #WorldCupQatar #WorldCup2022Qatar

#WorldCupQatar2022 #Qatar2022 #Soccer #Football

03 #Haiti #HaitiAristide #AristideReturns #AristideReturn #Aristide

#JeanBertrandAristide #HaitiAristideReturns

04 #Mexico #MexicoDrugWar #Drug #Drugs #MexicoDrugs #War #DrugWar

05 #NIST #NISTSecurity #ComputerSecurity #Security #ComputerSecurity

#Technology

74

06 #NSA #NationalSecurityAgency #NationalSecurity #Security #USA

#USASecurity

07 #Pakistan #PakistanDiplomat #PakistanMurder #PakistanArrest #Polotics

#Murder #DiplomatArrest #DiplomatMurder #PakistanDiplomatArrestMurder

08 #Britan #UK #Hacking #PhoneHacking #BritishPhoneHacking

#BritishPoliticians #Polotics #Spying #Spy #Poloticians #Hack #PhoneHack

#BrithishPhoneHack

09 #Toyota #ToyotaRecall #ToyotaCars #ToyotaCar #Car #Cars #Recall

#CarRecall #Toyota2011 #Toyota2011Recall #ToyotaCarRecall

10 #Egypt #EgyptProtesters #EgyptProtest #ArabSpring #Spring #Protest

#Protesters #EgyptProtestersAttackMuseum #Museum #EgyptMuseum

#HosniMubarak #Mubarak #EgyptianArmy #EgyptArmy #Army #Cairo

#TahrirSquare

11 #Kubica #KubicaCrash #Crash #RobertKubica #RobertKubicaCrash #F1

#Formula1 #FormulaOne #RondeDiAndoraRally #Andora #RondeDiAndora

#Rally #RallyCrash #AndoraRally #AndoraRallyCrash

12 #Nobel #NobelPrize #JulianAssange #Assange #NobelPeacePrize

#PeacePrize #NobelNomitation #NobelPrizeNomination

#NobelPeacePrizeNomination #AssangeNobelPeaceNomination #WikiLeaks

13 #Oprah #OprahWinfrey #OprahHalfSister #OprahSister

14 #TheRite #Movie #Movies #HollyWood #AnthonyHopkins

15 #Olympics #Olympics2012 #Thorpe #ThorpeReturns #London2012

#London #LondonOlympics2012 #London2012Olympics #IanThorpe

#IanThorpeReturns

75

16 #KnownAndUnknown #DonaldRumsfeld #Book #Books #Memoir #USA

#NewYorkTimes #USMilitary #Military

17 #WhiteStripes #WhiteStripesBreakup #WhiteStripesSplitUp #JackWhite

#MegWhite #JackAndMegWhite #Breakup #SplitUp #Music #MusicBand

18 #PrinceWilliam #KateMiddleton #WilliamAndKate #RoyalWedding

#TheRoyalWedding #London #Fax #SaveTheDateFax #Wedding

#BuckinghamPalace #April29

19 #Cuomo #GovernorCuomo #AndrewCuomo #CuomoBudgetCuts

#NewYork #NY #NewYorkBudgetCut

20 #TacoBell #TacoBellLawsuit #Food #TacoBellFilling #MeatFilling

#BeefFilling #FakeBeef #FakeMeat #Lawsuit #FastFood #FastFoodChain

#FastFoodRestaurant #TacoMeatFilling #TacoBeefFilling #Beef #Meat

#TacoBellMeat #TacoBellBeef

21 #EmanuelResidencyCourtRuling #ResidencyCourtRuling

#ResidencyCourtRulings #EmanuelResidencyCourtRulings #RahmEmanuel

#Emanuel #Chicago #ChicagoMayor #SupremeCourtRuling #Illinois

#IllinoisSupremeCourt #SupremeCourt #CourtRuling #CourtRulings

22 #HealthCare #HealthCareLaw #HealthcareLawUnconstitutional #USA

#HealthcareUnconstitutional #Obama #ObamaCare

23 #Amtrak #AmtrakTrainService #Train #TrainService #AmtrakService

#AmtrakTrain

24 #SuperBowl #SuperBowl2011 #CowboysStadium #Football

#AmericanFootball #SuperBowlSeats #SuperBowlXLV #NFL #Unsafe #Safety

#Failure #GreenBayPackers #Packers #Cowboys #PittsburghSteelers #Steelers

76

25 #TSA #TSAScreening #TSAAirport #TSAAirportScreening

#AirportScreening #Privacy #TransportatingSecurityAdministration #TSAProgram

#TSAPreProgram #TSAPreScreening

26 #USA #Unemployment #USAUnemployment #USUnemployment #Job

#Jobs #Work #UnemploymentRate

27 #Energy #EnergyConsumption #ReduceEnergyConsumption

#ReduceEnergy #Electricity

28 #Detroit #DetroitAutoShow #AutoShow #NAIAS #Car #Cars #Motors

#USA #NorthAmerica #NorthAmericanInternationalAutoShow #Michigan

#CoboCenter

29 #GlobalWarming #Weather #World #Earth #Climate

30 #KeithOlbermann #KeithOlbermannNewJob #KeithOlbermannJob

#NewJob #TBS #MSNBC #TV #Countdown #Baseball

31 #Olympics #SpecialOlympics #SpecialOlympicsAthletes #Olympics2012

#Olympics2012London #OlympicsLondon2012 #Athletes #SpecialAthletes

#London2012 #London #LondonOlympics2012 #London2012Olympics

32 #StateOfTheUnion #StateOfTheUnionAndJobs #Job #Jobs #Employment

#Unemployment #Obama #WhiteHouse #USA #Economy

33 #DogWhisperer #Dog #Dogs #DogTraining #DogTrainer #CesarsWay

#CesarMillan #Animals #CesarMillan #CesarMillansTechniques

#DogWhispererCesarMillansTechniques

34 #MSNBC #NBC #RachelMaddow #MSNBCRachelMaddow

#TheRachelMaddowShow #TV

35 #SargentShriver #Shriver #SargentShriverTributes #RIP

#RIPSargentShriver #RIPShriver

77

36 #Moscow #MoscowAirport #MoscowBombing #MoscowAirportBombing

#Domodedovo #DomodedovoAirport #DomodedovoAirportBombing #Airport

#DomodedovoInternationalAirport #UUDD

37 #Giffordsrecovery #GabrielleGiffords #Giffords #GiffordsReturns

#Recovery

38 #Jordan #Protests #ArabSpring #Spring #JordanProtests #Protesters

#Amman

39 #Egypt #EgyptianCurfew #Curfew #HosniMubarak #Mubarak

#EgyptianArmy #EgyptArmy #Army #Cairo #TahrirSquare #ArabSpring #Spring

40 #GlennBeck #Beck #FrancesPiven #FrancesFoxPiven #Piven #TheBlaze

#TV

41 #Obama #BarackObama #ObamaBirthCertificate #WhiteHouse

#BirthCertificate #Hawaii #USA #Honolulu

42 #Holland #Netherlands #TheNetherlands #Iran #Envoy #Recall

#EnvoyRecall #HollandIranEnvoyRecall #Tehran #SahraBahrami

#ZahraBahrami #Bahrami #EvinPrison

43 #Kucinich #DennisKucinich #Clevland #USA #OlivePit #OlivePitLawsuit

#KucinichOlivePitLawsuit #Lawsuit #Sandwich #Olive

44 #WhiteHousefdfdff#WhiteHouseSpokesmanfdfd#USA #Washington

#WhiteHouseSpokesmanReplaced #SpokesmanReplaced #Spokesman

#JayCarney #Carney #RobertGibbs #Gibbs #JoeBiden #Biden

45 #Politics #Campaign #Campaigns #PoliticalCampaigns #SocialMedia

#Twitter #Facebook #PoliticalCampaignsAndSocialMedia #Elections #Vote

#Voters #Technology

78

46 #Bottega #Veneta #BottegaVeneta #Fashion #Clothes #Shoes

#Handbags #Designer #Luxury #Gucci #Italy #Shop #Shopping #Vicenza

#Leather #Jewelry #Fragrance #Bags #Accessories

47 #Organic #Frame #FramingRequirements #OrganicFarmingRequirements

#OrganicFarming #Agriculture #OrganicAgriculture

48 #Egypt #Evacuation #EgyptianEvacuation #ArabSpring #Spring #Cairo

#HosniMubarak #Mubarak #EgyptianArmy #EgyptArmy #Army #TahrirSquare

49 #Carbon #Monoxide #CarbonMonoxide #CarbonMonoxideLaw #Law

50 #War #Prison #Prisoners #WarPrisoners #HatchAct

#WarPrisonersHatchAct

79

Appendix C

MySQL Tables

 MySQL tables were created for this thesis in order to store some

information that was needed to conduct the research contained within. Below are

the SQL needed to create all the tables in (ahmed_thesis) MySQL database.

C.1 tweetfeatures Table

CREATE TABLE `tweetfeatures` (

 `tweetFeatureID` bigint(17) unsigned NOT NULL AUTO_INCREMENT,

 `tweet_id` bigint(17) unsigned NOT NULL,

 `featureType` int(1) unsigned NOT NULL COMMENT '0 = hastag\n1 = URL\n2

= Retweet',

 `featureText` varchar(255) NOT NULL,

 `featureValue` double DEFAULT NULL,

 PRIMARY KEY (`tweetFeatureID`),

80

 UNIQUE KEY `tweetFeatureID_UNIQUE` (`tweetFeatureID`),

 KEY `tweet_id` (`tweet_id`),

 CONSTRAINT `tweetfeatures_ibfk_1` FOREIGN KEY (`tweet_id`)

REFERENCES `twitterdataset` (`tweet_id`)

) ENGINE=InnoDB AUTO_INCREMENT=5107788 DEFAULT CHARSET=latin1;

C.2 twitterdataset Table

CREATE TABLE `twitterdataset` (

 `tweet_id` bigint(17) unsigned NOT NULL,

 `username` varchar(255) NOT NULL,

 `status` int(3) unsigned DEFAULT NULL,

 `created_at` datetime DEFAULT NULL,

 `tweet` mediumtext,

 PRIMARY KEY (`tweet_id`),

 UNIQUE KEY `tweet_id_UNIQUE` (`tweet_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

81

Appendix D

Programming Code

 The following java code was used as part of the experimentation process

throughout this thesis. Only the main files are included, and minor code changes

are required in order to receive the data needed for each run. In addition, some

changes to the code have been made to protect sensitive information, such as

usernames and passwords.

D.1 Databse Package

D.1.1 DataInsertion Class

//The DataInsertion class is part of the Database package

package database;

//Import statements to external sources necessary for the class to function

import java.io.BufferedReader;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import org.apache.commons.lang3.StringEscapeUtils;

82

import hirkm.sql.MySQL;

//The DataInsertion class

public class DataInsertion

{

 //Global variables accessible to entire class

 private static String databaseUsername = "USERNAME",

 databasePassword = "PASSWORD",

 databaseConnectivity = "jdbc:mysql://localhost/ahmed_thesis";

 //The main method

 public static void main(String[] args)

 {

 //Create a local file variable linking to a file located on our storage medium

 File datasetFile = new File("././ExternalFiles/statistics");

 //Call the readFile method to read our file

 readFile(datasetFile);

 }

 /*

 * The readFile method

 *

 * Description:

 * The method reads a file that was passed into it, then calls the insertToDatabase

 method to take the contents of the file and put it into a database

 *

 * Parameters:

 * fileToRead - File parameter which is needed to read a file

 */

 private static void readFile(File fileToRead)

 {

 //Local variable

 String line;

 //Attempt to do the following

 try

 {

 //Create a BufferedReader instance and a FileReader instance in order to read the

 file

 BufferedReader bufferedReader = new BufferedReader(new

 FileReader(fileToRead));

 //Create a connection to our database

 Connection connection = MySQL.connectToDatabase(databaseUsername,

 databasePassword, databaseConnectivity);

83

 //Perform the following until the file we are reading has no more lines to read

 while((line = bufferedReader.readLine()) != null)

 //Call the insertToDatabase method to insert the line that was read

 insertToDatabase(connection, line);

 //Commit our database changes and close the connection

 connection.commit();

 connection.close();

 }

 //Perform the following if a FileNotFoundException was encountered

 catch(FileNotFoundException e)

 {

 //Show the stack trace for the error in the console

 e.printStackTrace();

 //Stop the program

 System.exit(0);

 }

 //Perform the following if a IOException was encountered

 catch(IOException e)

 {

 //Show the stack trace for the error in the console

 e.printStackTrace();

 //Stop the program

 System.exit(0);

 }

 //Perform the following if a SQLException was encountered

 catch(SQLException e)

 {

 //Show the stack trace for the error in the console

 e.printStackTrace();

 //Stop the program

 System.exit(0);

 }

 }

 /*

 * The insertToDatabase method

 *

 * Description:

 * The method takes a given line from the file, tokenizes it to appropriate tokens,

 does formatting on the date, and stores it in the database

 *

84

 * Parameters:

 * databaseConnection - The connection needed to store our data

 * lineToInsert - The line that was read from our file that needs to be

 tokenized, formatted and then inserted to our database

 */

 private static void insertToDatabase(Connection databaseConnection, String

 lineToInsert)

 {

 //Local variables

 String[] tokens = lineToInsert.split("\t");

 String[] dateTokens = tokens[3].split(" ");

 String formattedDate;

 //If the number of tokens that was created for the date was not equal to 1

 (meaning that it was not null), perform the following

 if(dateTokens.length != 1)

 //Format the date to a proper MySQL datetime entry

 formattedDate = "\"" + dateTokens[5] + "-" +

 getNumericMonth(dateTokens[1]) + "-" + dateTokens[2] + " " + dateTokens[3]

 + "\"";

 //If the number of tokens that was created for the date was equal to 1

 (meaning that it was null), perform the following

 else

 //Make the date equal to null (what it already comes as from the file)

 formattedDate = tokens[3];

 //Escape the tweet in order to avoid any encapsulation errors in Java

 tokens[4] = StringEscapeUtils.escapeJava(tokens[4]);

 //Generate the insert statement to be used to enter our line to the database

 String insertStatement = "INSERT INTO twitterDataset (tweet_id, username,

 status, created_at, tweet) VALUES (" + tokens[0] + ", \"" + tokens[1] +

 "\", " + tokens[2] + ", " + formattedDate + ", \"" + tokens[4] + "\");";

 //Try to perform the following

 try

 {

 //Create a PreparedStatement and execute our insert statement on

 the database

 PreparedStatement preparedStatement =

 databaseConnection.prepareStatement(insertStatement);

 preparedStatement.executeUpdate();

 preparedStatement.close();

 }

 //Perform the following if a SQLException error was encountered

85

 catch(SQLException e)

 {

 //Show the stack trace on the console

 e.printStackTrace();

 //Stop the program

 System.exit(0);

 }

 }

 /*

 * The getNumericMonth method

 *

 * Description:

 * This converts the 3 character month value into a double digit month value

 *

 * Parameters:

 * textualMonth - The 3 character month representation text

 */

 private static String getNumericMonth(String textualMonth)

 {

 //Local variable

 String formattedDate = "";

 //Determine which month was submitted, and assign our local variable the

 corresponding double digit month code

 if(textualMonth.equals("Jan"))

 formattedDate = formattedDate + "01";

 else if(textualMonth.equals("Feb"))

 formattedDate = formattedDate + "02";

 else if(textualMonth.equals("Mar"))

 formattedDate = formattedDate + "03";

 else if(textualMonth.equals("Apr"))

 formattedDate = formattedDate + "04";

 else if(textualMonth.equals("May"))

 formattedDate = formattedDate + "05";

 else if(textualMonth.equals("Jun"))

 formattedDate = formattedDate + "06";

 else if(textualMonth.equals("Jul"))

 formattedDate = formattedDate + "07";

 else if(textualMonth.equals("Aug"))

 formattedDate = formattedDate + "08";

 else if(textualMonth.equals("Sep"))

 formattedDate = formattedDate + "09";

 else if(textualMonth.equals("Oct"))

 formattedDate = formattedDate + "10";

86

 else if(textualMonth.equals("Nov"))

 formattedDate = formattedDate + "11";

 else if(textualMonth.equals("Dec"))

 formattedDate = formattedDate + "12";

 //If no month was detected, perform the following

 else

 {

 //Show this error in the console

 System.err.println("NO MONTH FOUND");

 //Stop the program

 System.exit(0);

 }

 //Return the double digit month representation

 return formattedDate;

 }

}

D.1.2 ExtractTweetFeatures Class

//The ExtractTweetFeatures class is part of the Database package

package database;

import java.io.IOException;

import java.net.MalformedURLException;

import java.net.URL;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.Date;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import java.util.concurrent.TimeUnit;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import hirkm.ranks.AlexaRank;

import hirkm.ranks.PageRank;

import hirkm.sql.MySQL;

import hirkm.http.Requests;

import hirkm.inputs.DateAndTime;

//The ExtractTweetFeatures class

public class ExtractTweetFeatures

{

87

 //Global variables accessible to entire class

 private static final String DATABASE_USERNAME = "USERNAME",

 DATABASE_PASSWORD = "PASSWORD",

 DATABASE_CONNECTIVITY =

 "jdbc:mysql://127.0.0.1/ahmed_thesis?autoReconnect=true";

 private static final int START_ID = -1,

 END_ID = 16123041;

 private static String urlText, featureID;

 //Set the date where the program begins to be run

 private static final Date startDate = new Date();

 //The extractHashtag method

 private static void extractHashtag() throws InstantiationException,

 IllegalAccessException, ClassNotFoundException

 {

 //Try to perform the following

 try

 {

 //Create a database connection

 Connection connection =

 MySQL.connectToDatabase(DATABASE_USERNAME,

 DATABASE_PASSWORD, DATABASE_CONNECTIVITY);

 //Tell the user a database connection was made

 System.out.println("Database connection established for extracting Hashtags.");

 //Inform the user that the extraction of hashtags is beginning

 System.out.println("Beginning to extract hashtags from tweets.");

 //Prepare the query that will get the tweets from the database

 String query = "SELECT tweet_id, tweet FROM twitterDataset;";

 //Get the query results from the database

 ResultSet resultSet = MySQL.getSelectResultsFromDatabase(connection, query);

 //Loop through all the results returned from the database

 while(resultSet.next())

 {

 //Perform the following if the tweet is not null

 if(resultSet.getString("tweet") != null)

 {

 //Set the regular expression pattern to look for that will find hashtags in the tweet

 Pattern pattern = Pattern.compile("(#[^0-9][a-zA-Z0-9_]+)");

 //Match the established pattern with the actual tweet

 Matcher matcher = pattern.matcher(resultSet.getString("tweet"));

88

 //Perform the following for all matches found in the tweet

 while(matcher.find())

 {

 //Set the tweet_id and actual hashtag to local variables

 String tweet_id = resultSet.getString("tweet_id"),

 hashTag = matcher.group();

 //If the extracted hashtag is longer than 255 characters, perform the following

 if(hashTag.length() > 255)

 //Make the hashtag 255 charters long

 hashTag = hashTag.substring(0, 255);

 //Create a database connection

 Connection connection2 =

 MySQL.connectToDatabase(DATABASE_USERNAME,

 DATABASE_PASSWORD, DATABASE_CONNECTIVITY);

 //Create an insert statement that will put the extracted hashtag into the database

 along with the tweet_id that it came from

 PreparedStatement insertStatement = connection2.prepareStatement("INSERT

 INTO tweetFeatures (tweet_id, featureType, featureText)" + " VALUES (?, 0,

 ?);");

 //Put the tweet_id in the first unknown section of the insert statement

 insertStatement.setString(1, tweet_id);

 //Put the hashtag in the second unknown section of the insert statement

 insertStatement.setString(2, hashTag);

 //Execute the insert statement

 insertStatement.executeUpdate();

 //Close the insert statement

 insertStatement.close();

 //Commit the changes and close the connection

 connection2.commit();

 connection2.close();

 }

 }

 }

 //Close the resultset from the database

 resultSet.close();

89

 //Close the database connection

 connection.close();

 //Tell the user a database connection is closed

 System.out.println("Database connection closed for extracting Hashtags.");

 //Tell the user that the method has completed executing

 System.out.println("Finished extracting hashtags from tweets.");

 }

 //Catch any SQLException

 catch(SQLException sqlException)

 {

 //Inform the user that establishing a database connection failed

 System.err.println("Establishing database connection failed for Hashtags!");

 //Show the error

 sqlException.printStackTrace();

 //Get the time and how long the program was running when the exception was

 caught

 System.err.println(DateAndTime.getDateDifference(startDate, new Date()));

 //Terminate the program

 System.exit(1);

 }

 }

 //The extractURL method

 private static void extractURL() throws InstantiationException,

 IllegalAccessException, ClassNotFoundException

 {

 try

 {

 //Create a database connection

 Connection connection =

 MySQL.connectToDatabase(DATABASE_USERNAME,

 DATABASE_PASSWORD, DATABASE_CONNECTIVITY);

 //Tell the user a database connection was made

 System.out.println("Database connection established for extracting URLs.");

 //Inform the user that the extraction of URLs is beginning

 System.out.println("Beginning to extract URLs from tweets.");

 //Prepare the query that will get the tweets from the database

 String query = "SELECT tweet_id, tweet FROM twitterDataset;";

90

 //Get the query results from the database

 ResultSet resultSet = MySQL.getSelectResultsFromDatabase(connection, query);

 //Loop through all the results returned from the database

 while(resultSet.next())

 {

 //Perform the following if the tweet is not null

 if(resultSet.getString("tweet") != null)

 {

 //Regular expression for finding URLs

 String regex = "((([A-Za-z]{3,9}:(?:\\/\\/)?)(?:[-;:&=\\+\\$,\\w]@)?[A-Za-z0-9.-

]+|(?:www.|[-;:&=\\+\\$,\\w]+@)[A-Za-z0-9.-]+)((?:\\/[\\+~%\\/.\\w-_]*)?\\??(?:[-

 \\+=&;%@.\\w_]*)#?(?:[.\\!\\/\\\\w]*))?|(([A-Za-z0-9_])+[.]([A-Za-z0-

 9_])+[.]([A-Za-z0-9_])+)|(([A-Za-z0-9])+([.])([A-Za-z0-9])+))";

 //Set the regular expression pattern to look for that will find URLs in the tweet

 Pattern pattern = Pattern.compile(regex);

 //Match the established pattern with the actual tweet

 Matcher matcher = pattern.matcher(resultSet.getString("tweet"));

 //Perform the following for all matches found in the tweet

 while(matcher.find())

 {

 //Set the tweet_id and actual url to local variables

 String tweet_id = resultSet.getString("tweet_id"),

 url = matcher.group();

 //If the url is less than 7 characters, perform the following

 if(url.length() < 7)

 //Change the string to "NOT A URL"

 url = "NOT A URL";

 //If the URL does not start with the string "http://", perform the following

 else if(!url.substring(0, 7).equals("http://"))

 //Change the string to "NOT A URL"

 url = "NOT A URL";

 //If the extracted URL is longer than 255 characters, perform the following

 if(url.length() > 255)

 //Make the URL 255 charters long

 url = url.substring(0, 255);

 //If the URL is a real URL and if there are no duplicates of the ':' character,

 perform the following

 if(!url.equals("NOT A URL") /*&& checkURLStatus(url)*/ &&

 !checkForDuplicate(url, ':'))

91

 {

 //Create a database connection

 Connection connection2 =

 MySQL.connectToDatabase(DATABASE_USERNAME,

 DATABASE_PASSWORD, DATABASE_CONNECTIVITY);

 //Create an insert statement that will put the extracted url into the database along

 with the tweet_id that it came from

 PreparedStatement insertStatement = connection2.prepareStatement("INSERT

 INTO tweetFeatures (tweet_id, featureType, featureText)" + " VALUES (?, 1,

 ?);");

 //Put the tweet_id in the first unknown section of the insert statement

 insertStatement.setString(1, tweet_id);

 //Put the URL in the second unknown section of the insert statement

 insertStatement.setString(2, url);

 //Execute the insert statement

 insertStatement.executeUpdate();

 //Close the insert statement

 insertStatement.close();

 //Commit the changes and close the connection

 connection2.commit();

 connection2.close();

 }

 }

 }

 }

 //Close the resultset from the database

 resultSet.close();

 //Close the database connection

 connection.close();

 //Tell the user that the method has completed executing

 System.out.println("Finished extracting URLs from tweets.");

 }

 //Catch any SQLException

 catch(SQLException sqlException)

 {

 //Inform the user that establishing a database connection failed

 System.err.println("Establishing database connection failed for URLs!");

92

 //Show the error

 sqlException.printStackTrace();

 //Show the time and how long the program was running before the error was

 caught

 System.err.println(DateAndTime.getDateDifference(startDate, new Date()));

 //Terminate the execution of the program

 System.exit(1);

 }

 }

 //The checkURLStatus method

 private static boolean checkURLStatus(String url)

 {

 //Create local variable

 boolean isTrueURL = false;

 //Try to perform the following

 try

 {

 //If the URL that is checked returns HTTP code 200, perform the following

 if(Requests.getResponseCode(url) == 200)

 //Set the isTrueURL variable to true

 isTrueURL = true;

 else

 //Set the isTrueURL variable to false

 isTrueURL = false;

 }

 catch(Exception e)

 {

 System.err.println("Caught IOException...ignorning");

 return isTrueURL;

 }

 //Return the isTrueURL variable

 return isTrueURL;

 }

 //The checkforDuplicate method

 private static boolean checkForDuplicate(String stringToCheck, char

 characterToFind)

 {

 //Create local variable

 int duplicateCount = 0;

93

 //Loop through the string and perform the following

 for(int i = 0 ; i < stringToCheck.length(); i++)

 {

 //If the string has a matching character, perform the following

 if(stringToCheck.charAt(i) == characterToFind)

 //Increase the duplicateCount variable by 1

 duplicateCount++;

 }

 //If there is more than one of a given character, perform the following

 if(duplicateCount > 1)

 //Return true

 return true;

 //If there is one or less of a given character, perform the following

 else

 //Return false

 return false;

 }

 //The getFullURL method

 private static String getFullURL(String url) throws IOException

 {

 //Request the real url of any url shortener

 String line =

 Requests.getRequest("http://www.checkshorturl.com/expand.php?u=" + url);

 //Split the code to find the URL

 String[] lineArray = line.split("<td style=\"border-bottom: 1px dotted

 black;width:750px;height:20px;padding:10px;\"><a href=\"");

 //If the number of tokens generated from the split is more than 1, perform the

 following

 if(lineArray.length > 1)

 {

 //Split the code to find the URL

 lineArray = lineArray[1].split("\" target=\"_blank\" rel=\"nofollow\">");

 lineArray = lineArray[0].split("\" title=\"");

 //Return the URL

 return lineArray[0];

 }

 //If the number of tokens generated from the split is not more than 1, perform the

 following

 else

 {

94

 //Return the original URL

 return url;

 }

 }

 //The assignZero method

 private static void assignZero() throws SQLException, InstantiationException,

 IllegalAccessException, ClassNotFoundException

 {

 //Create a database connection

 Connection connection2 =

 MySQL.connectToDatabase(DATABASE_USERNAME,

 DATABASE_PASSWORD, DATABASE_CONNECTIVITY);

 //Create an update statement that will update all instances of the migre.me url

 PreparedStatement updateStatement = connection2.prepareStatement("UPDATE

 tweetfeatures SET featureValue = ? WHERE featureText LIKE ?;");

 //Set the featureValue

 updateStatement.setDouble(1, 0);

 //Set the featureText

 updateStatement.setString(2, urlText);

 //Execute the update

 updateStatement.executeUpdate();

 //Close the update statement

 updateStatement.close();

 //Commit the changes and close the connection

 connection2.commit();

 connection2.close();

 }

 //The executeRanking runnable

 private static Runnable executeRanking = new Runnable()

 {

 @Override

 public void run()

 {

 //Try to perfrom the following

 try

 {

 //Get the real URL of any shortened link

 URL url = new URL(getFullURL(urlText));

95

 //Local variables used to calculate rank

 int alexaRank = AlexaRank.getAlexaRank(url.getHost().toString()),

 pageRank = PageRank.getPageRank(url.getHost().toString());

 double alexaRankNormalized,

 pageRankNormalized = pageRank / 10.0;

 //Normalize the Alexia Rank

 if(alexaRank > 0 && alexaRank < 1001)

 alexaRankNormalized = 1.0;

 else if(alexaRank > 1000 && alexaRank < 10001)

 alexaRankNormalized = 0.8;

 else if(alexaRank > 10000 && alexaRank < 100001)

 alexaRankNormalized = 0.6;

 else if(alexaRank > 100000 && alexaRank < 1000001)

 alexaRankNormalized = 0.4;

 else if(alexaRank > 1000000 && alexaRank < 4000001)

 alexaRankNormalized = 0.2;

 else

 alexaRankNormalized = 0.0;

 //Show the user the regular ranks, normalized ranks, and final rank

 System.out.println("AlexaRank: " + alexaRank + " | PageRank: " + pageRank +

 "\nAlexaRank_Normalized: " + alexaRankNormalized + " |

 PageRank_Normalized: " + pageRankNormalized + " | Final Rank: " +

 ((alexaRankNormalized + pageRankNormalized) / 2));

 //Tell the user the system is updating the records

 System.out.print("Updating records...");

 //Create a database connection

 Connection connection2 =

 MySQL.connectToDatabase(DATABASE_USERNAME,

 DATABASE_PASSWORD, DATABASE_CONNECTIVITY);

 //If the url thats being examined is larger than 14 characters long and is a

 migre.me url, perform the following

 if(urlText.length() > 14 && (urlText.substring(0, 15).equals("http://migre.me") ||

 urlText.substring(0, 13).equals("http://bit.ly")))

 {

 //Create an update statement that will update all instances of the migre.me url

 PreparedStatement updateStatement = connection2.prepareStatement("UPDATE

 tweetfeatures SET featureValue = ? WHERE featureText LIKE ?;");

 //Set the featureValue

 updateStatement.setDouble(1, ((alexaRankNormalized + pageRankNormalized) /

 2));

96

 //Set the featureText

 updateStatement.setString(2, urlText);

 //Execute the update

 updateStatement.executeUpdate();

 //Close the update statement

 updateStatement.close();

 }

 //If the previous condition failed, perform the following

 else

 {

 //Create a update statement that will update the URL we just got the rank for

 PreparedStatement updateStatement = connection2.prepareStatement("UPDATE

 tweetfeatures SET featureValue = ? WHERE tweetFeatureID = ?;");

 //Put the rank value in the first unknown section of the update statement

 updateStatement.setDouble(1, ((alexaRankNormalized + pageRankNormalized) /

 2));

 //Put the tweetFeatureID in the second unknown section of the update statement

 //updateStatement.setInt(2,

 Integer.parseInt(resultSet.getString("tweetFeatureID")));

 updateStatement.setInt(2, Integer.parseInt(featureID));

 //Execute the update statement

 updateStatement.executeUpdate();

 //Close the update statement

 updateStatement.close();

 }

 //Commit the changes and close the connection

 connection2.commit();

 connection2.close();

 Thread.currentThread().interrupt();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 };

97

 //The getRanksExecutor method

 private static void getRanksExecutor(boolean secondRun) throws

 InstantiationException, IllegalAccessException, ClassNotFoundException,

 SQLException, InterruptedException

 {

 //Create a executorservice with a single thread executor

 ExecutorService executor = Executors.newSingleThreadExecutor();

 //Execute the executor service

 executor.execute(executeRanking);

 //Shutdown the executor service

 executor.shutdown();

 //Wait exactly 4 minutes before terminating the executor service

 executor.awaitTermination(4, TimeUnit.MINUTES);

 //If the executor service has terminated, perform the following

 if(executor.isTerminated())

 {

 //Tell the user the process finished

 System.out.print("Finished");

 }

 //If the executor service did not terminate and its the first run, perform the

 following

 else if(!executor.isTerminated() && !secondRun)

 {

 //Tell the user the executor service is taking to long and the program will try again

 System.out.println("It is taking to long to process. Terminating execution and

 retrying...");

 //Force the executor service to shutdown

 executor.shutdownNow();

 //Try for a second time

 getRanksExecutor(true);

 }

 //If the other conditions failed, perform the following

 else

 {

 //Tell the user the executor service is taking to long and the program will assign a

 rank of 0 to the url

 System.out.println("It is taking to long to process. Terminating and assigning a

 rank of 0");

 //Force the executor service to shutdown

98

 executor.shutdownNow();

 //Assign a value of 0 to the URL's rank

 assignZero();

 }

 }

 private static void getRanks() throws InstantiationException,

 IllegalAccessException, ClassNotFoundException, SQLException,

 MalformedURLException, IOException, InterruptedException

 {

 //Create a database connection

 Connection connection =

 MySQL.connectToDatabase(DATABASE_USERNAME,

 DATABASE_PASSWORD, DATABASE_CONNECTIVITY);

 //Tell the user a database connection was made

 System.out.println("Database connection established...");

 //Inform the user that the URL verification has begin

 System.out.println("Beginning Ranking Process");

 //Prepare the query that will get the URLS

 String query = "SELECT * FROM tweetfeatures where featuretype = 1 AND

 featureValue IS NULL AND tweetFeatureID > " + START_ID + " AND

 tweetFeatureID < " + END_ID + ";";

 //Get the query results from the database

 ResultSet resultSet = MySQL.getSelectResultsFromDatabase(connection, query);

 //Loop through all the results returned from the database

 while(resultSet.next())

 {

 //Records when the main work started

 Date start = new Date();

 //Get the url from the resultSet

 urlText = resultSet.getString("featureText");

 featureID = resultSet.getString("tweetFeatureID");

 //Inform the user that ranking has started and on what time

 System.out.println("\nStarting ranking URL " + urlText + " on " + start);

 getRanksExecutor(false);

 //Display the time it took for the process to finish for that one url

99

 System.out.println(ca.hirkm.inputs.DateAndTime.getDateDifference(start, new

 Date()));

 }

 //Close the database connection

 connection.commit();

 connection.close();

 }

 //The main method

 public static void main(String[] args)

 {

 //Create a thread for extracting URLs

 Thread urlExtractionThread = new Thread()

 {

 //The run method for the urlExtractionThread

 public void run()

 {

 //Try to perform the following

 try

 {

 //Perform the extractURL method

 extractURL();

 }

 //Catch specific exceptions

 catch (Exception e)

 {

 //Show the error

 e.printStackTrace();

 //Show the time and how long the program was running when the exception was

 caught

 System.err.println(DateAndTime.getDateDifference(startDate, new Date()));

 //Terminate the program

 System.exit(1);

 }

 //Inform the user of when the program started and when it finished

 System.out.println("urlExtractionThread ended!");

 System.out.println(DateAndTime.getDateDifference(startDate, new Date()));

 }

 };

100

 //Create a thread for extracting Hashtags

 Thread hashtagExtractionThread = new Thread()

 {

 //The run method for the hashtagExtractionThread method

 public void run()

 {

 //Try to perform the following

 try

 {

 //Perform the extractHashtag method

 extractHashtag();

 }

 //Catch any exceptions that may occur

 catch (Exception e)

 {

 //Show the error

 e.printStackTrace();

 //Show the time and how long the program was running when the exception was

 caught

 System.err.println(DateAndTime.getDateDifference(startDate, new Date()));

 //Terminate the program

 System.exit(1);

 }

 //Inform the user of when the program started and when it finished

 System.out.println("hashtagExtractionThread ended!");

 System.out.println(DateAndTime.getDateDifference(startDate, new Date()));

 }

 };

 //Create a thread for verifying URLs

 Thread verifyURLs = new Thread()

 {

 //The run method for the verifyURLs method

 public void run()

 {

 try

 {

 //Create a database connection

101

 Connection connection =

 MySQL.connectToDatabase(DATABASE_USERNAME,

 DATABASE_PASSWORD, DATABASE_CONNECTIVITY);

 //Tell the user a database connection was made

 System.out.println("Database connection establoshed...");

 //Inform the user that the URL verification has begin

 System.out.println("Beginning URL verification");

 //Prepare the query that will get the URLS

 String query = "SELECT * FROM tweetfeatures where featuretype = 1 AND

 featureValue IS NULL and tweetFeatureID < 380413;";

 //Get the query results from the database

 ResultSet resultSet = MySQL.getSelectResultsFromDatabase(connection, query);

 //Loop through all the results returned from the database

 while(resultSet.next())

 {

 String text = resultSet.getString("featureText");

 System.out.println(text);

 //If the URL does not work, perform the following

 //if(!checkURLStatus(resultSet.getString("featureText")))

 if(!checkURLStatus(text))

 {

 //Create a database connection

 Connection connection2 =

 MySQL.connectToDatabase(DATABASE_USERNAME,

 DATABASE_PASSWORD, DATABASE_CONNECTIVITY);

 //Create a delete statement that will delete the URL that do not work

 PreparedStatement deleteStatement = connection2.prepareStatement("DELETE

 FROM tweetFeatures WHERE tweetFeatureID = ?");

 //Put the tweetFeatureID in the first unknown section of the delete statement

 deleteStatement.setString(1, resultSet.getString("tweetFeatureID"));

 //Execute the delete statement

 deleteStatement.executeUpdate();

 //Close the insert statement

 deleteStatement.close();

102

 //Commit the changes and close the connection

 connection2.commit();

 connection2.close();

 }

 else

 {

 //Create a database connection

 Connection connection2 =

 MySQL.connectToDatabase(DATABASE_USERNAME,

 DATABASE_PASSWORD, DATABASE_CONNECTIVITY);

 //Create a update statement that will update the URL feature row to indicate it has

 been verified

 PreparedStatement updateStatement = connection2.prepareStatement("UPDATE

 tweetfeatures SET featureValue = \"99\" WHERE featureText LIKE ?");

 //Put the featureText in the first ? in the updateStatement

 updateStatement.setString(1, text);

 //Execute the update statement

 updateStatement.executeUpdate();

 //Close the update statement

 updateStatement.close();

 //Commit the changes and close the connection

 connection2.commit();

 connection2.close();

 }

 }

 //Close the ResultSet

 resultSet.close();

 //Commit and close the database connection

 connection.commit();

 connection.close();

 //Inform the username the database connection is closed and the thread finshed

 System.out.println("Database connection closed");

 System.out.println("verifyURLs thread ended");

 System.out.println(DateAndTime.getDateDifference(startDate, new Date()));

 }

 catch(Exception e)

 {

103

 //Show the error to the user

 e.printStackTrace();

 }

 }

 };

 //Get the PageRank and Alexia Rank for the URLS

 Thread getRanksThread = new Thread()

 {

 //The run method for the getRanksThread

 public void run()

 {

 try

 {

 getRanks();

 }

 catch(InstantiationException e)

 {

 e.printStackTrace();

 }

 catch(IllegalAccessException e)

 {

 e.printStackTrace();

 }

 catch(ClassNotFoundException e)

 {

 e.printStackTrace();

 }

 catch(SQLException e)

 {

 e.printStackTrace();

 }

 catch(MalformedURLException e)

 {

 e.printStackTrace();

 }

 catch(IOException e)

 {

 e.printStackTrace();

 }

 catch(InterruptedException e)

 {

 e.printStackTrace();

 }

 }

 };

104

 //Start the threads

 //verifyURLs.start();

 //urlExtractionThread.start();

 //hashtagExtractionThread.start();

 getRanksThread.start();

 }

}

D.2 HIRKM Package

D.2.1 AlexaRankNotRankingException Class

package hirkm;

public class AlexaRankNotRankingException extends IllegalStateException

{

 public AlexaRankNotRankingException()

 {

 super();

 }

 public AlexaRankNotRankingException(String message)

 {

 super(message);

 }

}

D.2.2 HashTag Class

package hirkm;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import hirkm.sql.MySQL;

public class HashTag

105

{

 public static void extractHashtag(String databaseUsername, String

 databasePassword, String databaseConnectivity) throws InstantiationException,

 IllegalAccessException, ClassNotFoundException, SQLException

 {

 //Create a database connection

 Connection connection = MySQL.connectToDatabase(databaseUsername,

 databasePassword, databaseConnectivity);

 //Tell the user a database connection was made

 System.out.println("Database connection established for extracting Hashtags.");

 //Inform the user that the extraction of hashtags is beginning

 System.out.println("Beginning to extract hashtags from tweets.");

 //Prepare the query that will get the tweets from the database

 String query = "SELECT tweet_id, tweet FROM twitterDataset;";

 //Get the query results from the database

 ResultSet resultSet = MySQL.getSelectResultsFromDatabase(connection, query);

 //Loop through all the results returned from the database

 while(resultSet.next())

 {

 //Perform the following if the tweet is not null

 if(resultSet.getString("tweet") != null)

 {

 //Set the regular expression pattern to look for that will find hashtags in the tweet

 Pattern pattern = Pattern.compile("(#[^0-9][a-zA-Z0-9_]+)");

 //Match the established pattern with the actual tweet

 Matcher matcher = pattern.matcher(resultSet.getString("tweet"));

 //Perform the following for all matches found in the tweet

 while(matcher.find())

 {

 //Set the tweet_id and actual hashtag to local variables

 String tweet_id = resultSet.getString("tweet_id"),

 hashTag = matcher.group();

 //If the extracted hashtag is longer than 255 characters, perform the following

 if(hashTag.length() > 255)

 //Make the hashtag 255 charters long

 hashTag = hashTag.substring(0, 255);

 //Create a database connection

106

 Connection connection2 = MySQL.connectToDatabase(databaseUsername,

 databasePassword, databaseConnectivity);

 //Create an insert statement that will put the extracted hashtag into the database

 along with the tweet_id that it came from

 PreparedStatement insertStatement = connection2.prepareStatement("INSERT

 INTO tweetFeatures (tweet_id, featureType, featureText)" + " VALUES (?, 0,

 ?);");

 //Put the tweet_id in the first unknown section of the insert statement

 insertStatement.setString(1, tweet_id);

 //Put the hashtag in the second unknown section of the insert statement

 insertStatement.setString(2, hashTag);

 //Execute the insert statement

 insertStatement.executeUpdate();

 //Close the insert statement

 insertStatement.close();

 //Commit the changes and close the connection

 connection2.commit();

 connection2.close();

 }

 }

 }

 //Close the resultset from the database

 resultSet.close();

 //Commit and close the database connection

 connection.commit();

 connection.close();

 //Tell the user a database connection is closed

 System.out.println("Database connection closed for extracting Hashtags.");

 //Tell the user that the method has completed executing

 System.out.println("Finished extracting hashtags from tweets.");

 }

}

107

D.2.3 HIRKM_Runner Class

package hirkm;

import java.sql.SQLException;

public class HIRKM_Runner

{

 public static void main(String[] args)

 {

 final String DATABASE_USERNAME = "USERNAME",

 DATABASE_PASSWORD = "PASSWORD",

 DATABASE_CONNECTIVITY =

 "jdbc:mysql://127.0.0.1/ahmed_thesis?autoReconnect=true";

 final int START_ID = -1,

 END_ID = 16123041;

 try

 {

 Rank.getRanks(DATABASE_USERNAME, DATABASE_PASSWORD,

 DATABASE_CONNECTIVITY, START_ID, END_ID);

 }

 catch(InstantiationException e)

 {

 e.printStackTrace();

 }

 catch(IllegalAccessException e)

 {

 e.printStackTrace();

 }

 catch(ClassNotFoundException e)

 {

 e.printStackTrace();

 }

 catch(SQLException e)

 {

 e.printStackTrace();

 }

 catch(InterruptedException e)

 {

 e.printStackTrace();

 }

 }

}

108

D.2.4 Rank Class

package hirkm;

import java.io.IOException;

import java.net.MalformedURLException;

import java.net.SocketException;

import java.net.URL;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.Date;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import java.util.concurrent.TimeUnit;

import hirkm.ranks.AlexaRank;

import hirkm.ranks.PageRank;

import hirkm.sql.MySQL;

public class Rank

{

 private static String urlText, featureID, databaseUsername, databasePassword,

 databaseConnectivity;

 public static void getRanks(String databaseUsername, String databasePassword,

 String databaseConnectivity, int startID, int endID) throws SQLException,

 InstantiationException, IllegalAccessException, ClassNotFoundException,

 InterruptedException

 {

 Rank.databaseUsername = databaseUsername;

 Rank.databasePassword = databasePassword;

 Rank.databaseConnectivity = databaseConnectivity;

 //Create a database connection

 Connection connection = MySQL.connectToDatabase(databaseUsername,

 databasePassword, databaseConnectivity);

 //Tell the user a database connection was made

 System.out.println("Database connection established...");

 //Inform the user that the URL verification has begin

 System.out.println("Beginning Ranking Process");

 //Prepare the query that will get the URLS

109

 String query = "SELECT * FROM tweetfeatures where featuretype = 1 AND

 featureValue IS NULL AND tweetFeatureID > " + startID + " AND

 tweetFeatureID < " + endID + ";";

 //Get the query results from the database

 ResultSet resultSet = MySQL.getSelectResultsFromDatabase(connection, query);

 //Loop through all the results returned from the database

 while(resultSet.next())

 {

 //Records when the main work started

 Date startDate = new Date();

 //Get the url from the resultSet

 urlText = resultSet.getString("featureText");

 featureID = resultSet.getString("tweetFeatureID");

 //Inform the user that ranking has started and on what time

 System.out.println("\nStarting ranking URL " + urlText + " on " + startDate);

 getRanksExecutor(false, databaseUsername, databasePassword,

 databaseConnectivity);

 //Display the time it took for the process to finish for that one url

 System.out.println(hirkm.inputs.DateAndTime.getDateDifference(startDate, new

 Date()));

 }

 //Close the database connection

 connection.commit();

 connection.close();

 System.out.println("Finished Ranking Process");

 }

 private static void getRanksExecutor(boolean secondRun, String

 databaseUsername, String databasePassword, String databaseConnectivity)

 throws InterruptedException, InstantiationException, IllegalAccessException,

 ClassNotFoundException, SQLException

 {

 //Create a executor service with a single thread executor

 ExecutorService executor = Executors.newSingleThreadExecutor();

 //Execute the executor service

 executor.execute(executeRanking);

110

 //Shutdown the executor service

 executor.shutdown();

 //Wait exactly 4 minutes before terminating the executor service

 executor.awaitTermination(4, TimeUnit.MINUTES);

 //If the executor service has terminated, perform the following

 if(executor.isTerminated())

 {

 //Tell the user the process finished

 System.out.print("Finished");

 }

 //If the executor service did not terminate and its the first run, perform the

 following

 else if(!executor.isTerminated() && !secondRun)

 {

 //Tell the user the executor service is taking to long and the program will try again

 System.out.println("It is taking to long to process. Terminating execution and

 retrying...");

 //Force the executor service to shutdown

 executor.shutdownNow();

 //Try for a second time

 getRanksExecutor(true, databaseUsername, databasePassword,

 databaseConnectivity);

 }

 //If the other conditions failed, perform the following

 else

 {

 //Tell the user the executor service is taking to long and the program will assign a

 rank of 0 to the url

 System.out.println("It is taking to long to process. Terminating and assigning a

 rank of 0");

 //Force the executor service to shutdown

 executor.shutdownNow();

 //Assign a value of 0 to the URL's rank

 assignZero(databaseUsername, databasePassword, databaseConnectivity);

 }

 }

111

 private static void assignZero(String databaseUsername, String

 databasePassword, String databaseConnectivity) throws InstantiationException,

 IllegalAccessException, ClassNotFoundException, SQLException

 {

 //Create a database connection

 Connection connection = MySQL.connectToDatabase(databaseUsername,

 databasePassword, databaseConnectivity);

 //Create an update statement that will update all instances of the migre.me url

 PreparedStatement updateStatement = connection.prepareStatement("UPDATE

 tweetfeatures SET featureValue = ? WHERE featureText LIKE ?;");

 //Set the featureValue

 updateStatement.setDouble(1, 0);

 //Set the featureText

 updateStatement.setString(2, urlText);

 //Execute the update

 updateStatement.executeUpdate();

 //Close the update statement

 updateStatement.close();

 //Commit the changes and close the connection

 connection.commit();

 connection.close();

 }

 private static Runnable executeRanking = new Runnable()

 {

 @Override

 public void run()

 {

 //Try to perfrom the following

 try

 {

 //Get the real URL of any shortened link

 URL url = new URL(UniformResourceLocator.getFullURL(urlText));

 //Local variables used to calculate rank

 int alexaRank = AlexaRank.getAlexaRank(url.getHost().toString()),

 pageRank = PageRank.getPageRank(url.getHost().toString());

 double alexaRankNormalized,

 pageRankNormalized = pageRank / 10.0;

112

 //Normalize the Alexia Rank

 if(alexaRank > 0 && alexaRank < 1001)

 alexaRankNormalized = 1.0;

 else if(alexaRank > 1000 && alexaRank < 10001)

 alexaRankNormalized = 0.8;

 else if(alexaRank > 10000 && alexaRank < 100001)

 alexaRankNormalized = 0.6;

 else if(alexaRank > 100000 && alexaRank < 1000001)

 alexaRankNormalized = 0.4;

 else if(alexaRank > 1000000 && alexaRank < 4000001)

 alexaRankNormalized = 0.2;

 /*else if(alexaRank == -1)

 throw new AlexaRankNotRankingException("AlexaRank is not ranking URLs

 properly.");*/

 else

 alexaRankNormalized = 0.0;

 //Show the user the regular ranks, normalized ranks, and final rank

 System.out.println("AlexaRank: " + alexaRank + " | PageRank: " + pageRank +

 "\nAlexaRank_Normalized: " + alexaRankNormalized + " |

 PageRank_Normalized: " + pageRankNormalized + " | Final Rank: " +

 ((alexaRankNormalized + pageRankNormalized) / 2));

 //Tell the user the system is updating the records

 System.out.print("Updating records...");

 //Create a database connection

 Connection connection = MySQL.connectToDatabase(databaseUsername,

 databasePassword, databaseConnectivity);

 //If the url thats being examined is larger than 14 characters long and is a

 migre.me url, perform the following

 if(urlText.length() > 14 && (urlText.substring(0, 15).equals("http://migre.me")))

 {

 //Create an update statement that will update all instances of the migre.me url

 PreparedStatement updateStatement = connection.prepareStatement("UPDATE

 tweetfeatures SET featureValue = ? WHERE featureText LIKE ?;");

 //Set the featureValue

 updateStatement.setDouble(1, ((alexaRankNormalized + pageRankNormalized) /

 2));

 //Set the featureText

 updateStatement.setString(2, urlText);

 //Execute the update

113

 updateStatement.executeUpdate();

 //Close the update statement

 updateStatement.close();

 }

 //If the previous condition failed, perform the following

 else

 {

 //Create a update statement that will update the URL we just got the rank for

 PreparedStatement updateStatement = connection.prepareStatement("UPDATE

 tweetfeatures SET featureValue = ? WHERE tweetFeatureID = ?;");

 //Put the rank value in the first unknown section of the update statement

 updateStatement.setDouble(1, ((alexaRankNormalized + pageRankNormalized) /

 2));

 //Put the tweetFeatureID in the second unknown section of the update statement

 //updateStatement.setInt(2,

 Integer.parseInt(resultSet.getString("tweetFeatureID")));

 updateStatement.setInt(2, Integer.parseInt(featureID));

 //Execute the update statement

 updateStatement.executeUpdate();

 //Close the update statement

 updateStatement.close();

 }

 //Commit the changes and close the connection

 connection.commit();

 connection.close();

 Thread.currentThread().interrupt();

 }

 catch(MalformedURLException e)

 {

 System.out.print("The URL is not a proper URL. Assigning a rank of 0...");

 try

 {

 Assign Zero(Rank.databaseUsername, Rank.databasePassword,

 Rank.databaseConnectivity);

 }

 catch(InstantiationException e1)

 {

 e1.printStackTrace();

114

 }

 catch(IllegalAccessException e1)

 {

 e1.printStackTrace();

 }

 catch(ClassNotFoundException e1)

 {

 e1.printStackTrace();

 }

 catch(SQLException e1)

 {

 e1.printStackTrace();

 }

 }

 catch(SocketException e)

 {

 System.out.print("The URL throws a socket exception. Assigning a rank of 0...");

 try

 {

 Assign Zero(Rank.databaseUsername, Rank.databasePassword,

 Rank.databaseConnectivity);

 }

 catch(InstantiationException e1)

 {

 e1.printStackTrace();

 }

 catch(IllegalAccessException e1)

 {

 e1.printStackTrace();

 }

 catch(ClassNotFoundException e1)

 {

 e1.printStackTrace();

 }

 catch(SQLException e1)

 {

 e1.printStackTrace();

 }

 }

 catch(IOException e)

 {

 e.printStackTrace();

 }

 catch(SQLException e)

 {

115

 e.printStackTrace();

 }

 catch(InstantiationException e)

 {

 e.printStackTrace();

 }

 catch(IllegalAccessException e)

 {

 e.printStackTrace();

 }

 catch(ClassNotFoundException e)

 {

 e.printStackTrace();

 }

 }

 };

}

D.2.5 UniformRecourceLocator Class

package hirkm;

import java.io.IOException;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import hirkm.http.Requests;

import hirkm.sql.MySQL;

public class UniformResourceLocator

{

 public static void extractURL(String databaseUsername, String

 databasePassword, String databaseConnectivity) throws InstantiationException,

 IllegalAccessException, ClassNotFoundException, SQLException

 {

 //Create a database connection

 Connection connection = MySQL.connectToDatabase(databaseUsername,

 databasePassword, databaseConnectivity);

 //Tell the user a database connection was made

 System.out.println("Database connection established for extracting URLs.");

116

 //Inform the user that the extraction of URLs is beginning

 System.out.println("Beginning to extract URLs from tweets.");

 //Prepare the query that will get the tweets from the database

 String query = "SELECT tweet_id, tweet FROM twitterDataset;";

 //Get the query results from the database

 ResultSet resultSet = MySQL.getSelectResultsFromDatabase(connection, query);

 //Loop through all the results returned from the database

 while(resultSet.next())

 {

 //Perform the following if the tweet is not null

 if(resultSet.getString("tweet") != null)

 {

 //Regular expression for finding URLs

 String regex = "((([A-Za-z]{3,9}:(?:\\/\\/)?)(?:[-;:&=\\+\\$,\\w]@)?[A-Za-z0-9.-

]+|(?:www.|[-;:&=\\+\\$,\\w]+@)[A-Za-z0-9.-]+)((?:\\/[\\+~%\\/.\\w-_]*)?\\??(?:[-

 \\+=&;%@.\\w_]*)#?(?:[.\\!\\/\\\\w]*))?|(([A-Za-z0-9_])+[.]([A-Za-z0-

 9_])+[.]([A-Za-z0-9_])+)|(([A-Za-z0-9])+([.])([A-Za-z0-9])+))";

 //Set the regular expression pattern to look for that will find URLs in the tweet

 Pattern pattern = Pattern.compile(regex);

 //Match the established pattern with the actual tweet

 Matcher matcher = pattern.matcher(resultSet.getString("tweet"));

 //Perform the following for all matches found in the tweet

 while(matcher.find())

 {

 //Set the tweet_id and actual url to local variables

 String tweet_id = resultSet.getString("tweet_id"),

 url = matcher.group();

 //If the url is less than 7 characters, perform the following

 if(url.length() < 7)

 //Change the string to "NOT A URL"

 url = "NOT A URL";

 //If the URL does not start with the string "http://", perform the following

 else if(!url.substring(0, 7).equals("http://"))

 //Change the string to "NOT A URL"

 url = "NOT A URL";

117

 //If the extracted URL is longer than 255 characters, perform the following

 if(url.length() > 255)

 //Make the URL 255 charters long

 url = url.substring(0, 255);

 //If the URL is a real URL and if there are no duplicates of the ':' character,

 perform the following

 if(!url.equals("NOT A URL") /*&& checkURLStatus(url)*/ &&

 !checkForDuplicateURLs(url, ':'))

 {

 //Create a database connection

 Connection connection2 = MySQL.connectToDatabase(databaseUsername,

 databasePassword, databaseConnectivity);

 //Create an insert statement that will put the extracted url into the database along

 with the tweet_id that it came from

 PreparedStatement insertStatement = connection2.prepareStatement("INSERT

 INTO tweetFeatures (tweet_id, featureType, featureText)" + " VALUES (?, 1,

 ?);");

 //Put the tweet_id in the first unknown section of the insert statement

 insertStatement.setString(1, tweet_id);

 //Put the URL in the second unknown section of the insert statement

 insertStatement.setString(2, url);

 //Execute the insert statement

 insertStatement.executeUpdate();

 //Close the insert statement

 insertStatement.close();

 //Commit the changes and close the connection

 connection2.commit();

 connection2.close();

 }

 }

 }

 }

 //Close the resultset from the database

 resultSet.close();

 //Commit and close the database connection

 connection.commit();

118

 connection.close();

 //Tell the user that the method has completed executing

 System.out.println("Finished extracting URLs from tweets.");

 }

 private static boolean checkForDuplicateURLs(String stringToCheck, char

 characterToFind)

 {

 //Create local variable

 int duplicateCount = 0;

 //Loop through the string and perform the following

 for(int i = 0 ; i < stringToCheck.length(); i++)

 {

 //If the string has a matching character, perform the following

 if(stringToCheck.charAt(i) == characterToFind)

 //Increase the duplicateCount variable by 1

 duplicateCount++;

 }

 //If there is more than one of a given character, perform the following

 if(duplicateCount > 1)

 //Return true

 return true;

 //If there is one or less of a given character, perform the following

 else

 //Return false

 return false;

 }

 private static boolean checkURLStatus(String url) throws IOException

 {

 //Create local variable

 boolean isTrueURL = false;

 //If the URL that is checked returns HTTP code 200, perform the following

 if(Requests.getResponseCode(url) == 200)

 //Set the isTrueURL variable to true

 isTrueURL = true;

119

 else

 //Set the isTrueURL variable to false

 isTrueURL = false;

 //Return the isTrueURL variable

 return isTrueURL;

 }

 public static String getFullURL(String url) throws IOException

 {

 //Request the real url of any url shortener

 String line =

 Requests.getRequest("http://www.checkshorturl.com/expand.php?u=" + url);

 //Split the code to find the URL

 String[] lineArray = line.split("<td style=\"border-bottom: 1px dotted

 black;width:750px;height:20px;padding:10px;\"><a href=\"");

 //If the number of tokens generated from the split is more than 1, perform the

 following

 if(lineArray.length > 1)

 {

 //Split the code to find the URL

 lineArray = lineArray[1].split("\" target=\"_blank\" rel=\"nofollow\">");

 lineArray = lineArray[0].split("\" title=\"");

 //Return the URL

 return lineArray[0];

 }

 //If the number of tokens generated from the split is not more than 1, perform the

 following

 else

 {

 //Return the original URL

 return url;

 }

 }

 public void verifyURLs(String databaseUsername, String databasePassword,

 String databaseConnectivity) throws InstantiationException,

 IllegalAccessException, ClassNotFoundException, SQLException, IOException

120

 {

 //Create a database connection

 Connection connection = MySQL.connectToDatabase(databaseUsername,

 databasePassword, databaseConnectivity);

 //Tell the user a database connection was made

 System.out.println("Database connection establoshed...");

 //Inform the user that the URL verification has begin

 System.out.println("Beginning URL verification");

 //Prepare the query that will get the URLS

 String query = "SELECT * FROM tweetfeatures where featuretype = 1 AND

 featureValue IS NULL and tweetFeatureID < 380413;";

 //Get the query results from the database

 ResultSet resultSet = MySQL.getSelectResultsFromDatabase(connection, query);

 //Loop through all the results returned from the database

 while(resultSet.next())

 {

 String text = resultSet.getString("featureText");

 System.out.println(text);

 //If the URL does not work, perform the following

 //if(!checkURLStatus(resultSet.getString("featureText")))

 if(!checkURLStatus(text))

 {

 //Create a database connection

 Connection connection2 = MySQL.connectToDatabase(databaseUsername,

 databasePassword, databaseConnectivity);

 //Create a delete statement that will delete the URL that do not work

 PreparedStatement deleteStatement = connection2.prepareStatement("DELETE

 FROM tweetFeatures WHERE tweetFeatureID = ?");

 //Put the tweetFeatureID in the first unknown section of the delete statement

 deleteStatement.setString(1, resultSet.getString("tweetFeatureID"));

 //Execute the delete statement

 deleteStatement.executeUpdate();

 //Close the insert statement

 deleteStatement.close();

121

 //Commit the changes and close the connection

 connection2.commit();

 connection2.close();

 }

 else

 {

 //Create a database connection

 Connection connection2 = MySQL.connectToDatabase(databaseUsername,

 databasePassword, databaseConnectivity);

 //Create a update statement that will update the URL feature row to indicate it has

 been verified

 PreparedStatement updateStatement = connection2.prepareStatement("UPDATE

 tweetfeatures SET featureValue = \"99\" WHERE featureText LIKE ?");

 //Put the featureText in the first ? in the updateStatement

 updateStatement.setString(1, text);

 //Execute the update statement

 updateStatement.executeUpdate();

 //Close the update statement

 updateStatement.close();

 //Commit the changes and close the connection

 connection2.commit();

 connection2.close();

 }

 }

 //Close the ResultSet

 resultSet.close();

 //Commit and close the database connection

 connection.commit();

 connection.close();

 //Inform the username the database connection is closed and the thread finshed

 System.out.println("Database connection closed");

 System.out.println("verifyURLs thread ended");

 }

}

