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Abstract

This dissertation focuses on two issues in retirement planning. The first issue, an-

nuitization problem, provides insight on how interest rates may affect annuitization

decisions for retirees under an all-or-nothing framework. The second issue, ruin

probability, studies the probability for a retired individual who might run out of

money, under a fixed consumption strategy before the end of his/her life under

stochastic hazard rates. These two financial problems have been very important in

personal finance for both retirees and financial advisors throughout the world, es-

pecially in the developed countries as the baby boom generation nears retirement.

They are the direct results of both longevity risk and demise of Defined Benefit

(DB) pension plans.

The existing literature of the annuitization problem, such as Richard (1975),

concludes that it is always optimal to annuitize with no bequest motives under a

constant interest rate. To see the effect of stochastic interest rates on the annuitiza-

tion decisions under a constrained consumption strategy without bequest motives,
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we present two life cycle models. They investigate the optimal annuitization strat-

egy for a retired individual whose objective is to maximize his/her lifetime utility

under a variety of institutional restrictions, in an all-or-nothing framework. The

individual is required to annuitize all his/her wealth in a lump sum at some time at

retirement. The first life cycle model we have presented assumes full consumption

after annuity purchasing. A free boundary exists in this case upon the assumption

of constant spread between the expected return of the risky asset and the riskless

interest rate. The second life cycle model applies the optimal consumption strat-

egy after annuitization, and numerical analysis shows that it is always optimal to

annuitize no matter what the current interest rate is. This conclusion is based on

the assumption of constant risk premium, no loads and no bequest motives.

Historical data show that mortality rates for human beings behave stochasti-

cally. Motivated by this, we study the ruin probability for a retired individual who

withdraws $1 per annum with various initial wealth for log-normal mortality with

constant drift and volatility, which is a special form of the most widely accepted Lee-

Carter model. This problem is converted to a Partial Differential Equation (PDE)

and solved numerically by the Alternative Direction Implicit (ADI) method. For

any given initial wealth, ruin probability can be obtained for various initial haz-

ard rates. The correlation between the wealth process and the mortality process

slightly affects the ruin probability at time zero.
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1 Introduction

1.1 Introduction and Motivation

This dissertation focuses on two issues in retirement planning. The first issue,

annuitization problem, provides insight on how interest rates may affect annuiti-

zation decisions for retirees under an all-or-nothing framework. The second issue,

ruin probability, studies the probability for a retired individual who might run out

of money under a fixed consumption strategy before the end of their life under

stochastic hazard rates. These two financial problems have been very important in

personal finance for both retirees and financial advisors throughout the world, es-

pecially in the developed countries as the baby boom generation nears retirement.

They are the direct results of both longevity risk and demise of Defined Benefit

(DB) pension plans.

Longevity risk is the risk that an individual will outlive his/her retirement sav-

ings due to a longer life span. For example, if one’s retirement consists of per-

sonal savings only, the possibility exists that the money will run out before one
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dies under a fixed consumption strategy. According to Berkeley human mortality

database (http://www.mortality.org/hmd/), life expectancies at birth for Canadi-

ans increased by more than 20 years from 1929 to 2009 due to enhancements of

diet, life style and medical care. By the time of late adulthood, one’s chances of

survival to a very old age are quite good. For example, although the life expectancy

for those born in Canada in 1989 is 77.12 years, those who live to age 65 will have

an average of almost 18 additional years left to live, making their life expectancy

almost 83 years. The risk to retirees who do not adequately consider these life

expectancy gains is potentially very expensive since they are in great danger of

becoming financially ruined at retirement, especially in the current situation where

the world economy is not doing well after the subprime crisis.

Traditional DB pension plans are becoming less popular worldwide. One of the

factors that have contributed to this is the risks associated with long life expectancy.

These risks finally translate to higher than expected pay-out-ratios for many pen-

sion funds and insurance companies, so more and more institutions are closing DB

pension plans to avoid this risk. In 1998, 62.7% of individuals who participated

in a retirement plan had a Defined Contribution (DC) plan as their primary plan,

compared to 49.8% in 1993 (Copeland 2002). Therefore, more and more people as-

sume all investment and longevity risk, which makes it a great challenge to manage

their wealth after retirement.

2



Many retirees face a dilemma as to whether to choose annuitization from insurers

who guarantee a lifelong payment stream, or self-annuitization offering a higher

consumption rate by investing more assets in the equity market but with a risk

that retirees may outlive the wealth from the self-managed assets. For instance, in

Canada, RRSPs must be collapsed by December 31st of the year individuals turn

age 71. One option is to cash out all their RRSPs, but it is obviously not the best

alternative if the amount of accumulated income in the RRSP is significant because

the tax payment is huge. The second option is to purchase a fixed term annuity or

life annuity to provide for a steady stream of income over their life or their spouse

depending on the plan. The third option is to establish a Registered Retirement

Income Fund (RRIF) for which retirees will self-manage the funds while required to

make an annual minimum withdrawal based on age. Therefore, most retirees need

to make decisions between annuitization and self-annuitization, which is affected

by many factors, such as, longevity, risk aversion and existing pensions.

It is well known that the advantage of self-annuitization is high liquidity, on the

other hand, it has the risk of outliving one’s wealth in case the investment return

is below expectation. The risk in this case can be measured by the probability

of running out of money before one dies, with current living standard maintained.

This interesting problem, known as ruin probability, is our second research project.

Some literature on this exists, such as Khorasanee (1996), Milevsky and Robinson
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(2000), Albrecht and Maurer (2002), Young (2003) and Huang, Milevsky and Wang

(2004). Through analyzing historical mortality data, we find that the mortality

rate is better described by the stochastic model, rather than the Gompertz model.

Motivated by this finding, we study the individual ruin probability under stochastic

hazard rates in which the mortality rate is a state variable. Therefore, for any given

initial mortality rate at time 0, which could be either greater than, equal to, or less

than the GM mortality rate, we will compare the ruin probabilities under stochastic

and GMmortality rates to look into the effect of stochastic mortality on the lifetime

ruin.

Annuitization guarantees a certain living standard with its lifelong payment

stream, but its obvious disadvantage is the illiquidity, which may not lead to a

substantial bequest to survivors and the estate upon the death of the annuitant.

In addition to bequest motives, the other factors that may affect the annuitization

decision is the personal mortality rate and interest rates. In the real world, the

risk-free interest rate is changing over time, which in turn affects the optimal an-

nuitization time. In this dissertation, we study how stochastic interest rates, which

are assumed to follow the Cox-Ingersoll-Ross (CIR) process, affect the optimal an-

nuitization timing problem.

4



1.2 Contributions and Outline of the Dissertation

The contribution of the first project is to study the optimal annuitization time under

the all-or-nothing framework when the individual consumes all of his/her annuity

payment or consumes optimally, an extension of Milevsky and Young (2007). The

contribution of our second project is to study the ruin probability under stochastic

hazard rates under a fixed retirement consumption strategy, which is an extension

of Huang, Milevsky and Wang (2004).

This dissertation is organized as follows. Chapter 2 studies the annuitization

problem for a retired individual whose objective is to maximize his/her lifetime

utility under stochastic interest rates by assuming that she will consume all the

annuity income after annuitization in an all-or-nothing framework. When the sub-

jective mortality rate is equal to the current interest rate, the results are consistent

with previous works done by other researchers. We first study the optimal annuiti-

zation time with the exponential mortality rate for constant and stochastic interest

rates. Then we move on to the same problem with the GM mortality rate, which

is a free boundary problem, quite similar to the American option pricing problem.

In Chapter 3, which is an extension of Chapter 2, by realizing the fact that

retirees may not consume all the annuity income, we study the optimal consumption

rate by assuming that consumption is part of the annuity income and the remains
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are used to purchase new annuities. Then we apply the dynamical programming

strategy to find the free boundary. Exponential mortality and GM mortality are

investigated respectively and numerical results are given in each subsection.

Chapter 4 implements numerical PDE solution techniques to calculate the prob-

ability of lifetime ruin, which is the probability that a fixed retirement consumption

strategy will lead to financial insolvency under stochastic investment returns and de-

terministic mortality rates. The ruin probability satisfies a backward Kolmogorove

equation and can be solved by finite difference method. Secondly, we obtain the

PDE that the ruin probability must solve under stochastic hazard rates. This PDE

is two dimensional with cross derivatives. We have checked the consistence of the

two PDEs under special conditions and carried out a convergence analysis to prove

that our numerics are good, and then provide the numerical results in the end. We

find that the ruin probability under stochastic hazard rate is always greater than

the ruin probability under Gompertz mortality. The correlation between wealth

and hazard rate affects the lifetime ruin for stochastic hazard rate.

Finally, Chapter 5 concludes this dissertation and identifies future research.

• Remarks on Simulations and Software: All simulations in this disserta-

tion are performed on MATLAB version 6.5.1 with Lenovo’s ThinkPad T43

using MATLAB programming.
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2 Optimal Annuitization Timing with

Constrained Consumption

2.1 Introduction

The existing literature of the annuitization problem, such as Yaari (1965) and

Richard (1975), concludes that it is always optimal to annuitize with no bequest mo-

tives under a constant interest rate. In this chapter, we study the effect of stochastic

interest rates on the annuitization decisions under a constrained consumption strat-

egy without bequest motives. The various models proposed to describe the behavior

of interest rates in literature are equilibrium models and no-arbitrage models. In

this chapter, we use the CIR model, a one-factor no-arbitrage model of the short

rate, since it has the advantage of avoiding the possibility of negative interest rates,

as well as mean reversion and robustness, which can be used in conjunction with

any set of initial zero rates to study the optimal annuitization problem after re-

tirement. When the short-term interest rate falls below the long-term average, the
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short-term interest rate tends to increase towards the long run rate in the future.

When the short-rate interest rate is above the long-term average, the short-term

interest rate tends to fall towards the long run rate. Another advantage of the

CIR model is that the present value of a bond’s price can be computed through a

neat exponential expression, which can be used to calculate the actuarial annuity

factor, the present value of a life annuity that pays $1 per year continuously to an

individual at the time of purchase. Although the interest rate models are mature

in pricing options, futures and other derivatives, little work has been done on how

this might affect the retired individuals with regards to their annuity purchasing

decisions at retirement.

In an attempt to help fill this vacuum, we seek to present two life cycle models

which investigate the optimal annuitization strategy for a retired individual whose

objective is to maximize his/her lifetime utility under a variety of institutional

restrictions without bequest motives in an all-or-nothing framework, where the

individual is required to annuitize all his/her wealth in a lump sum at some time τ

at retirement. We further explore the effect of stochastic interest rates on individual

annuity purchasing. Motivated by previous works where researchers often assume

full consumption of the annuity payment after annuitization, such as Milevsky

and Young (2007) and Yaari (1965), we use the same assumption throughout the

whole chapter, i.e., the individual will consume all his/her annuity income after
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annuitization, which echoes the fact for some retirees in reality. In financial markets,

this individual is allowed to invest in a risky asset with constant volatility and a

riskless asset whose interest rates obey the CIR process, and the expected equity

returns are modeled to be a constant spread above the riskless interest rate, which

is reasonable in the sense that the equity return should be always greater than

the riskless interest rate, and so far we have not found any research studying this

relationship. This assumption means that when the riskless interest rate goes up,

the equity return also goes up and vice versa, and Merton’s constant is fixed if the

risky asset volatility and the individual’s risk-aversion coefficient are constants.

In the two primary life cycle models addressed in this chapter, the consumer’s

preference is represented by the constant relative risk aversion (CRRA) utility func-

tion, whose homogeneity allows the value function to take a similar power form.

We take advantage of this property from a technical point of view.

For the first model, we present a constant force of mortality to address the

optimal annuitization problem with constant interest rates and stochastic interest

rates. Given initial wealth w at time zero (retirement), we are looking to see

if it is most favorable to annuitize, as well as the optimal annuitization time, if

it is necessary upon optimal investment and consumption strategies. In general,

the value function (the present discounted utility function from retirement to time

of decease) associated with this optimal control problem is a function of time t,
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wealth w and interest rate r. When the interest rate is static, this value function

is independent of time t for any given initial interest rate r (the interest rate will

not change over time). Therefore, the value function depends only on the interest

rate r, not time t, with the mortality rate λ as a parameter. One step further, for

any given r, it will be favorable either to annuitize or never to annuitize.

The second model is actually an extension of the all-or-nothing framework of

Milevsky and Young (2007) under GM mortality, in which we modify the constant

interest rate by stochastic interest rates. The force of mortality is assumed to be

invariable after the maximum age (120) of a human being. This is a plausible

assumption because human beings rarely live past the maximum age, and their

mortality rate is very high, which means that the effect of mortality after the max-

imum age is trivial to the value function. In this scenario, the value function can

be proved to satisfy a second-order linear Hamilton-Jacob-Bellman (HJB) equation

with cross derivatives after applying Ito’s lemma and Bellman’s principle of opti-

mality. Our problem becomes a free boundary one which is quite similar to the

American put option problem since at each time t, we need to determine not only

the value function, but also, for each value of r, whether or not the individual need

to annuitize. We then transfer this free boundary problem to an equivalent linear

complementarity (LCP) problem which has the advantage that the free boundary

does not interfere with the solution process, and it can be recovered from the solu-
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tion after the latter has been found. Then the projected successive over-relaxation

(SOR) method is applied to solve the LCP problem since it has the advantage of

immediate replacement of the newest values of the unknown variable.

Some literature exists on the annutization decisions at retirement. In the sem-

inal paper of Yaari (1965), he argues that an individual should always annuitize

all his/her wealth in the absence of bequest motives, but in reality, the annuitiza-

tion rates are very low, the so called ‘annuity puzzle’. There have been a lot of

papers which study ‘annuity puzzle’ problem such as Brown and Poterba (2000),

and Brown and Warshawsky (2001), which documented that the low voluntarily

annuitization rate is due to the high loads and fees embedded in annuity prices.

Friedman and Warshawsky (1990) and Vidal-Melia and Lejarraga-Garcia (2006)

concentrated specially on how bequest motives affect the demand for annuities,

both showed that strong enough bequest motives can eliminate purchases of annu-

ities with high enough loads. For more literature review about this topic, we refer

the interested reader to the paper by Milevsky and Young (2007). In this chapter

we focus on the optimal asset allocation associated with the optimal annuitization

timing under two different types of interest rates.

The remainder of this chapter is organized as follows. General notation and

basic assumptions coming from the research community are elaborated in Section

2.2. Then we document the annuitization problem under exponential mortality
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rate for constant and stochastic interest rates respectively in Section 2.3. Next we

investigate the annuitization problem under GM mortality and stochastic interest

rates in Section 2.4, which is a free boundary problem similar to the American

option problem. We convert it to an equivalent LCP problem, and solve it by the

projected SOR method, and then recover the free boundary from the solution of

the value function. Finally, Section 2.5 concludes this chapter and gives directions

for future research.

2.2 General Notation and Basic Assumptions

This section provides a primer on the notation and terminologies used later in the

annuitization problem. It aims at providing a consistent nomenclature.

The survival probability for an individual aged x, alive at time t, who survives

to a future time s (s ≥ t), is given by

( s−tpx+t ) = e−
∫ s
t
λx+vdv, (2.1)

where λx+v stands for the instantaneous force of mortality at age x + v. In the

case of exponential mortality, i.e., λx+v = λ, this survival probability simplifies to

e−λ(s−t). In this chapter, we will study the annuitization problem under constant

and variable mortality rate respectively, i.e., the force of mortality is constant and

Gompertz.
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We further assume that the individual can choose to invest his/her wealth Wv

in a financial market composed by a risky asset (a portfolio of stocks with return

dSv) and a riskless asset (with return Rvdv), and consumes at a rate cv, at time v.

This riskless asset, Xv, evolves according to the following process
⎧⎪⎪⎨
⎪⎪⎩

dXv = RvXvdv,

Xt = xt,

(2.2)

where xt is the amount of riskless asset at time t. Notation Rv is the instantaneous

risk-free rate of interest at time v, which obeys the following CIR process (see

Chapter 17, Hull (2005))

⎧⎪⎪⎨
⎪⎪⎩

dRv = θ(μr − Rv)dv + σr

√
RvdB

r
v ,

Rt = r,

(2.3)

where Br
v represents a standard Brownian motion, the superscript r means the

instantaneous riskless asset and the subscript v means time, and θ, μr, σr are the

parameters. θ is the speed of adjustment, μr is the long run interest rate and

σr is the volatility. This dynamic interest rate model was introduced by Cox,

Ingersoll and Ross (1985) and has been applied widely in financial economics. For

given positive initial interest rate r, Rv will never touch zero if 2θμr ≥ σ2
r holds,

otherwise, it will occasionally touch zero. For detailed parameter estimates, we

refer the interested reader to Chan, Karolyi, Longstaff and Sanders (1992). Another

advantage of the CIR process is that it is mean reverting. When the short-term
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interest rate falls below the long-term average μr, the short-term interest rate tends

to increase towards μr in the future. When the short-term interest rate is above the

long-term average, the short-term interest rate tends to fall towards the long-term

average in the future.

As in Black and Scholes (1973) and Merton (1971), the risky asset Sv evolves

according to a geometric Brownian motion (GBM)

⎧⎪⎪⎨
⎪⎪⎩

dSv = μsSvdv + σsSvdB
s
v,

St = s,

(2.4)

where Bs
v represents a standard Brownian motion, the subscript v means time and

the superscript s means stocks (risky asset). Parameter σs is the diffusion term

of the risky asset, its typical values fall in the range of (5%, 50%). μs is the drift

term, which is modeled to be stochastic, i.e., μs(v) = Rv + δ1. This implies that

μs(v) is modeled to be a constant spread above the riskless interest rate, which is

reasonable in the sense that the equity return should be always greater than the

riskless interest rate. This assumption means that when the interest rate goes up,

the expected return of the risky asset goes up as well and vice versa. In this chapter,

δ1 is taken to be a constant 0.03. The correlation between dBr
v and dBs

v is denoted

by ρrs (a constant), which is independent of time v and ranges from −1 to +1. A

correlation of +1 means a perfect positive correlation, indicating the two variables

moving in the same direction together. A zero correlation means that there is no
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relationship between the two variables. Since changes in wealth are equal to the

return from the riskless and risky assets minus the consumption, we obtain the

wealth dynamics as

⎧⎪⎪⎨
⎪⎪⎩

dWv = [RvWv − cv + (μs − Rv)πv]dv + σsπvdB
s
v,

Wt = w,

(2.5)

where πv is the amount invested in the risky asset. Note that this variable can be

negative, meaning that the individual has shorted the risky asset and invested in

the riskless asset.

We also assume that the individual can annuitize all his/her wealth at a time

τ ≥ t (if applicable) and obtain an actually fair amount, determined by the objective

actuarial annuity factor

āx+τ (τ, Rτ ) = E

[∫ ∞

τ

e−
∫ s
τ
Rvdv( s−τpx+τ )ds|Rτ = r

]
(2.6)

=

∫ ∞

τ

Eτ

[
e−

∫ s
τ Rvdv|Rτ = r

]
( s−τpx+τ )ds (2.7)

=

∫ ∞

τ

PB(τ, s, Rτ)( s−τpx+τ )ds, (2.8)

where PB(τ, s, Rτ) describes the price of the zero-coupon bond at time τ with time

to maturity s. We have also assumed independence between the bond price and

the survival probability so that the expectation can be taken inside the integral

directly to the discounted interest rate. We finally assume that the individual

will consume the annuity income after annuitizing his/her wealth as Milevsky and
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Young (2007) in their all-or-nothing framework. Note that āx+τ (τ, Rτ ) is a random

variable depending on time τ and the corresponding interest rate at that time.

The concave utility function of consumption we are interested in exhibits con-

stant relative risk aversion (CRRA). In specification, it follows

u(c) =

⎧⎪⎪⎨
⎪⎪⎩

c1−γ−1
1−γ

, γ �= 1,

ln(c), γ = 1,

(2.9)

in which γ represents the relative risk aversion coefficient and 1
γ
measures the elastic-

ity of substitution between consumption at two points in time. In this dissertation,

we only consider the cases when γ is greater than or equal to 1, because low levels of

γ imply high leverage ratios which is not allowed at retirement. In fact, for γ �= 1,

we will use c1−γ

1−γ
for simplicity as it does not affect the optimal solution.

Now that we have finished introducing all the notation and terminologies we are

going to use in this chapter, so we are ready to move on to our model calibration

part for exponential mortality rate next.

2.3 Model Calibration 1: Exponential Mortality

In this section, we study the annuitization problem for a retired individual whose

objective is to maximize his/her lifetime utility under exponential mortality and

a variety of institutional restrictions without bequest motives in an all-or-nothing

framework. This individual only has initial wealth in the form of a lump sum
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cash amount (such as an RRSP account in Canada), does not come pre-annuitized

with a pre-existing pension or social security and has no remaining lifetime income.

In general, the value function associated with this optimal control problem is a

function of time t, wealth w and interest rate r, but it is independent of time t

under exponential mortality for any given initial interest rate r. Therefore the

value function should depend only on r, not time t, with the mortality rate λ as a

parameter, which is proved later in this section. This implies that, for any given

interest rate r, it will be favorable either to annuitize or never to annuitize at

retirement. Based on this observation, we will look at the value functions with and

without annuity purchasing at time t, V a and V n, for two different interest rates

models: constant and stochastic. Then we compare the two value functions to draw

the conclusion as to whether it is optimal to annuitize or not for any given interest

rate.

Firstly, we investigate the case when the interest rate is constant. In this sce-

nario, the analytical solutions for V a are obtained under the assumption of full

consumption of the annuity income after annuitization. For V n, the HJB equation

that it must satisfy is derived using dynamic programming techniques. Then its

analytical solution is acquired in a similar power form as the CRRA utility func-

tion. Finally, we compare the two analytical value functions we have obtained and

conclude that when the interest rate r is equal to the subjective discount factor ρ,
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it is optimal to annuitize when the force of mortality is greater than Merton’s con-

stant, which is consistent with the results obtained by Milevsky and Young (2007).

When the interest rate r is not equal to the subjective discount rate, it is optimal

to annuitize when the interest rate is small and it is optimal not to annuitize when

the interest rate is large.

Secondly, we describe the optimal control problem with stochastic interest rate.

In this case, the analytical solutions for V a are obtained through the zero-coupon

bond price which is derived from the CIR process. For V n, it satisfies a second-order

nonlinear HJB equation which can be derived by applying dynamic programming

techniques. At last, we compare these two value functions and find that the results

are consistent with what we have obtained under a constant interest rate.

The rest of the section goes into detail about the annuitization problem corre-

sponding to constant and stochastic interest rates respectively. Section 2.3.1 works

on the constant interest rate case, and analytic solutions for V a and V n are derived.

Through comparison of these two functions, we draw our conclusion as to when it

is optimal to annuitize. Then the annuitization problem under a more complicated

stochastic interest rate situation is considered in Section 2.3.2. Here, one important

observation is that the two value functions, V a and V n, are both time-independent

if a power term e−(ρ+λ)t is excluded. Then a comparison is performed between them

to find the annuitization boundary, which is an increasing function of the interest
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rate r and consistent with the constant interest rate case.

2.3.1 Constant Interest Rate

In this section, we study the annuitization problem starting from the most simple

short interest rate case in which the return of the riskless asset is fixed all the time.

It is known that in this case, the associated value function is independent of time

t, and it is a function of wealth w and interest rate r. Therefore we only need

to address the optimal control problem at time 0 (age x) to obtain the optimal

annuitization strategies without loss of generosity. The homogeneity property of

the CRRA utility function allows the value function to take a similar power form,

i.e., the wealth w can be factored out. So the value function becomes invariant to

the scale of wealth, i.e., the level of wealth does not matter in this specification of

utility. Therefore, the only thing that matters is the interest rate. Therefore, for any

given interest rate r, it will be favorable either to annuitize or never to annuitize,

i.e., if it is optimal not to annuitize at time zero, then it will never be in the future.

Hence, it is sufficient to study the two value functions, with annuitization (V a) and

without annuitization (V n), at time zero, and then compare them to see whether it

is optimal to annuitize when the risks faced by the individual includes the longevity

risk and the return risk. Next we will illustrate this in much detail.
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2.3.1.1 The Value Function with Annuitization

When the force of mortality is assumed to be constant λ, the value function is

defined as

V (w) = sup
cs

E

[∫ ∞

0

e−(ρ+λ)su(cs)ds|W0 = w

]
, (2.10)

in which cs is the optimal consumption rate at time s, and E denotes the expec-

tation conditional on W0 = w, and u is an increasing concave utility function of

consumption introduced back in section 2.2. Notation ρ is the subjective discount

rate which is personal and independent of the economic models for the risky asset

and the risk-free asset in the financial market. This parameter is subjective by

its own nature despite the fact that people prefer to consume more now rather

than more later. Next we will study this value function according to whether the

individual annuitizes his/her wealth or not at time zero, denoted by V a and V n

respectively.

If the individual annuitizes at time zero, the value function of the control prob-

lem can be written as

V a(w) = sup
cs

E

[∫ ∞

0

e−(ρ+λ)su(cs)ds

]
(2.11)

=

∫ ∞

0

e−(ρ+λ)su(
w

āx(0, r)
)ds. (2.12)

We have assumed that the individual consumes exactly the annuity payout after

annuitization, which is equivalent to w
āx(0,r)

at time 0 and thereafter. The annuity
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factor āx(0, r), the present value of a life annuity that pays $1 per year continuously

to the retiree who is age x at the time of purchase, is computed by

āx(0, r) =

∫ ∞

0

e−rse−λsds =
1

r + λ
. (2.13)

After plugging this expression and the utility function (2.9) into equation (2.12),

the closed-form expression for V a(w) can be obtained as

V a(w) = u(
w

āx(0, r)
)āx(0, ρ), γ ≥ 1. (2.14)

2.3.1.2 The Value Function without Annuitization

In this subsection, we assume that the individual does not annuitize at time zero,

and investigate the value function V n when both riskless and risky assets are avail-

able to invest by applying dynamic programming techniques. In details, we will

apply Bellman’s optimality principle and Ito’s lemma to obtain the HJB equation

that the value function must solve. This HJB equation is then solved analytically

by making a proper transformation stimulated by the special form of the CRRA

utility function.

The expected discounted utility of consumption in this case is defined by

V n(w) = sup
ct,πt

E

[∫ ∞

0

e−(ρ+λ)tu(ct)dt|W0 = w

]
, (2.15)
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with the following budget constraint⎧⎪⎪⎨
⎪⎪⎩

dWv = [rWv − cv + (μs − r)πv]dv + σsπvdB
s
v,

Wt = w.

(2.16)

Note that borrowing is allowed in this circumstance. To apply the dynamic pro-

gramming techniques, we denote V (t, w) the value function starting in state w at

time t and controlling the system optimally from then until time ∞ and divide the

value function V (t, w) into two sub-integrals. Specifically,

V (t, w) = sup
cs,πs

E

[∫ ∞

t

e−(ρ+λ)su(cs)ds|wt = w

]

= sup
cs,πs

[∫ t+dt

t

e−(ρ+λ)su(cs)ds+ V (wt+dt, t+ dt)

]

= sup
cs,πs

[∫ t+dt

t

e−(ρ+λ)su(cs)ds+ V (wt, t) + dV

]
. (2.17)

It can be easily observed that V n(w) = V (0, w). Then Bellman’s optimality princi-

ple and Ito’s lemma are applied to obtain the following HJB equation for V (t, w),

see Bjork (2004, Chapter 14).

Vt + sup
ct,πt

{e−(ρ+λ)tu(ct)− ctVw + (rw + (μs − r)πt)Vw +
1

2
σ2
sπ

2
t Vww} = 0, (2.18)

subject to the terminal condition V (∞, w) = 0. Let V (t, w) = w1−γ

1−γ
h(t) (γ �= 1),

then the optimal consumption c̃t and investment π̃t can be obtained from the first

order necessary conditions ⎧⎪⎪⎨
⎪⎪⎩

c̃t = e−
(ρ+λ)t

γ w̃h− 1
γ ,

π̃t =
μs−r
σ2
sγ

w̃,

(2.19)
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where w̃ is the optimally controlled wealth. Substituting the two admissible controls

into the HJB equation (2.18), we obtain the following PDE that h(t) must satisfy

ht + (1− γ)ηh+ γe−
(ρ+λ)t

γ h1− 1
γ = 0, (2.20)

subject to the terminal condition h(∞) = 0. The notation η is the sum of the cur-

rent interest rate r and (μs − r)2/σ2
s scaled by double γ, i.e., η = r + (μs−r)2

2γσ2
s
. This

Bernoulli ordinary differential equation (ODE) can be solved by making a transfor-

mation h = yγ. After some mathematical manipulation, the analytic solution for

h(t) (when ρ+ λ+ (γ − 1)η > 0) is

h(t) = (
e−(ρ+λ+k−kγ)t − e−(ρ+λ+k−kγ)T

ρ+ λ+ k − kγ
)γe(rγ−r)t. (2.21)

So that

V n(w) = V (w(0), 0) (2.22)

=
w1−γ

1− γ
(
1− e−(ρ+λ+k−kγ)T

ρ+ λ+ k − kγ
)γ . (2.23)

Similarly we can obtain the expression for V n when the utility function takes the

form of the natural logarithm

V n(w) =
ln(w) + ln(ρ+ λ) + η

ρ+λ
− 1

ρ+ λ
, γ = 1. (2.24)

2.3.1.3 Optimal Annuitization Strategy

In this subsection, we discuss whether it is optimal to annuitize at retirement by

comparing the two value functions V a and V n which are time independent to give
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the annuitization boundaries for γ greater than 1. The reason why we are interested

in these γ values is historical, such as Feldstein and Ranguelova (2001) documented

that the risk aversion constant is less than 3, while Campbell and Viceira (2002)

suggested that risk aversion levels may be higher. The constant spread between

the expected equity returns and the risk-free interest rates are set to be 0.03, which

is reasonable in the circumstance of our current low interest rates. The equity

volatility is taken to be 0.2, which is roughly in line with Ibbotson Associates

(2001). From Section 2.3.1.1 and 2.3.1.2, we have obtained the analytic solutions

for V a and V n, hence we have

V a − V n ∝

⎧⎪⎪⎨
⎪⎪⎩

(ρ+ λ)(r + λ)γ−1 − (ρ+λ+(γ−1)η
γ

)γ, γ > 1,

ρ+λ−η
ρ+λ

− ln ρ+λ
r+λ

, γ = 1.

(2.25)

When the interest rate r is equal to the subjective discount rate ρ, the condition

for V a ≥ V n is simplified to

λ ≥ (μs − r)2

2γσ2
s

, γ ≥ 1. (2.26)

This means that it is optimal to annuitize today when the force of mortality is

greater than Merton’s constant, which is consistent with the results obtained by

Milevsky and Young (2007). Since we have assumed constant spread between the

expected return of the risky asset and the riskless interest rate, this means that

it is optimal to annuitize for any interest rate when the hazard rate is greater
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than Merton’s constant. In contrast, it is always optimal not to annuitize when

the hazard rate is less than Merton’s constant. Therefore, the size of the force of

mortality decides if the individual need to annuitize at retirement.

To see when it is optimal to annuitize when the interest rate r is not equal

to the subjective discount rate ρ, we solve the equation V a = V n to obtain the

annuitization boundary that the interest rate must satisfy. The conditions for

V a ≥ V n are summarized in Table 2.1 for γ = 2 and Table 2.2 for γ = 3 respectively.

Merton’s constant ( (μs−r)2

2γσ2
s
) corresponding to γ = 2 and γ = 3, give 0.005625 and

0.00375 for fixed values of σs (0.2) and μs − r (0.03), which means that all the

force of mortality values in both tables are greater than these two constants. Note

that the maximum interest rate we are going to consider is 0.4000, which is never

reached in reality in developed countries where people pay attention to retirement

planning after retirement. Two different subjective discount factors (0, 0.02) are

investigated in the two tables so that we can observe the annuitization boundaries

more consistently.

From Table 2.1 and Table 2.2, we can see that the annuitization boundary is an

increasing function of the mortality rate when λ is small. Note that we have taken

the subjective discount rate to be zero for comparison purposes. The maximum

interest rate we are considering is 0.4, which is an artifact because in reality it

is too large to be attained in western countries. We observe from the table that
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when λ is big enough, it is always optimal to annuitize. This means that for

individuals who believe that their mortality rate is relatively high, it is optimal

to annuitize immediately, and for individuals whose mortality rate is relatively

low, it is optimal to annuitize when the interest rate is less than the annuitization

boundary and optimal not to annuitize when the interest rate is greater than the

annuitization boundary. There are three factors that may have contributed to these

numerical results: the interest rate is not equal to the subjective interest rate, full

consumption after annuity purchasing, and constant spread between the risky asset

return and the riskless asset return. Then we observe that higher levels of the

subjective discount rate leads to higher levels of annuitization boundaries, which

means that when ρ is higher, individuals more likely choose to annuitize. Intuitively,

this is because the discounted utilities at retirement are in fact very different for

two subjective discount rates.

Comparing Table 2.1 to Table 2.2, we see that higher levels of risk-aversion

coefficient implies higher levels of annuitization boundary. This is a reflection of

the fact that risk averse individuals are more likely to annuitize at retirement if

applicable. And once the force of mortality is big enough, it is always optimal to

annuitize for interest rates less than 0.4.
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Table 2.1: Conditions for V a ≥ V n When γ = 2

λ domain of r (ρ = 0) domain of r (ρ = 0.02)

0.0200 r ≤ 0.0483 r ≤ 0.0823

0.0500 r ≤ 0.1386 r ≤ 0.1758

0.0800 r ≤ 0.2287 r ≤ 0.2668

0.1000 r ≤ 0.2887 r ≤ 0.3273

0.1242 r ≤ 0.3613 r ≤ 0.4000

0.1371 r ≤ 0.4000 ∀ r

> 0.1371 ∀ r ∀ r

Table 2.2: Conditions for V a ≥ V n When γ = 3

λ domain of r (ρ = 0) domain of r (ρ = 0.02)

0.0200 r ≤ 0.0651 r ≤ 0.1035

0.0500 r ≤ 0.1767 r ≤ 0.2187

0.0800 r ≤ 0.2885 r ≤ 0.3313

0.0984 r ≤ 0.3569 r ≤ 0.4000

0.1100 r ≤ 0.4000 ∀ r

> 0.1100 ∀ r ∀ r
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2.3.2 Stochastic Interest Rates

In the previous section, we have studied the optimal annuitization timing problem

under constant interest rate and concluded that for r = ρ, it is optimal to annuitize

when the mortality rate is greater than Merton’s constant, and for r �= ρ, it is opti-

mal to annuitize when the interest rate is smaller than the annuitization boundary,

and optimal not to annuitize when the interest rate is greater than the annuitization

boundary if the mortaliy rate is relatively small. Otherwise, it is always optimal

to annuitze at any interest rate. But the assumption of a constant interest rate is

not true in the real world since it fluctuates over time. Therefore, we move on to

investigate the same annuitization problem under a much more real interest rate in

which the return of the riskless asset obeys the CIR process (see equation (2.3)).

In this section, we look at the annuitization value function V a first, which is

proved to be time-independent if the power term e−(ρ+λ)t is factored out. Secondly,

we study the non-annuitization function V n via dynamic programming, which is

also time-independent if e−(ρ+λ)t is factored out. Finally we compare these two

value functions to find the free boundaries and present the numerical results in

tables for two different risk aversion coefficients γ = 2 and γ = 3.
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2.3.2.1 The Value Function with Annuitization

If the retiree annuitizes his/her wealth at time t, the associated value function can

be written as

V a(t, w, r) = sup
cs

E

[∫ ∞

t

e−(ρ+λ)su(cs)ds

]

=

∫ ∞

t

e−(ρ+λ)su(
w

āx+t(t, r)
)ds. (2.27)

Note that we have assumed full annuity payout consumption after annuitization.

After some mathematical manipulation, we obtain

V a(t, w, r) = e−(ρ+λ)tu(
w

āx+t(t, r)
)āx+t(t, ρ), γ ≥ 1. (2.28)

The annuity factor āx+t(t, Rt) is determined by

āx+t(t, Rt) = E

[∫ ∞

t

e−
∫ s
t Rvdv( s−tpx+t )ds

]
=

∫ ∞

t

PB(t, s, Rt)( s−tpx+t )ds. (2.29)

The notation PB(t, s, Rt) is the zero-coupon bond price at time t with maturity s.

According to Cox, Ingersoll and Ross (1985), it is computed by

PB(t, s, Rt) = A(t, s)e−B(t,s)Rt ,

B(t, s) = 2(eξ(s−t)−1)

(ξ+θ)(eξ(s−t)−1)+2ξ
,

A(t, s) = [ 2ξe(θ+ξ)(s−t)/2

(ξ+θ)(eξ(s−t)−1)+2ξ
]
2θμr
σ2
r ,

ξ =
√

θ2 + 2σ2
r .

(2.30)

If we make a transformation z = s− t, then the above annuity factor becomes

āx+t(t, Rt) =

∫ ∞

0

e−λzA(t, t + z)e−B(t,t+z)Rtdz. (2.31)
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Since A(t, t+ z) and B(t, t+ z) are functions of z only, the annuity factor does not

depend on time t. It is the interest rate at time t decides the size of the annuity

factor. It is known that the return of the riskless asset progresses as a stochastic

process with a set mean and experiences random deviations from its mean that

are not known beforehand. Therefore, the specific interest rate at time t can be

any positive value which is a state variable in our optimal problem, and the value

function V a is time-independent if the power term e−(ρ+λ)t is factored out as the

constant interest rate case. In next section, we will show that V n shares the same

property.

2.3.2.2 The Value Function without Annuitization: Dynamic Program-

ming Method

If we assume the retiree never annuitizes at retirement, then the discounted utility

of consumption the individual is seeking to maximize is defined by

V n(t, w, r) = sup
cs,πs

E

[∫ ∞

t

e−(ρ+λ)su(cs)ds

]
. (2.32)

By applying Bellman’s optimality principle and Ito’s lemma, we obtain the follow-

ing HJB equation (superscript n is omitted in V n hereafter in this section) that

30



V n(t, w, r) must satisfy

Vt + supct,πt

[
e−(ρ+λ)tu(ct) + (rw − ct)Vw + θ(μr − r)Vr +

1
2
rσ2

rVrr

]

+ supπt

[
(μs − r)πtVw + 1

2
π2
t σ

2
sVww + ρrsσrσs

√
rπtVwr

]
= 0.

(2.33)

If we postulate V (t, w, r) = w1−γ

1−γ
h(t, r) like before, then the optimal consumption

and investment strategies can be obtained via its first order derivatives as

c̄t = e−
(ρ+λ)t

γ w̃h− 1
γ , (2.34)

π̄t =
(μs − r)h+ ρrsσrσs

√
rhr

γσ2
sh

w̃. (2.35)

where w̃ is the optimally controlled wealth. Substituting them back into the HJB

equation (2.33), we obtain the following nonlinear PDE of h.

ht + (1− γ)rh+ γe−
(ρ+λ)t

γ h1− 1
γ + θ(μr − r)hr +

1
2
rσ2

rhrr

+ (1−γ)((μs−r)h+ρrsσrσs
√
rhr)2

2σ2
sγh

= 0,

(2.36)

with terminal condition h(∞, r) = 0. For simplicity, we will consider the case when

there is no correlation between the Brownian motions that drive the risky asset and

the return of the riskless asset, i.e., ρrs = 0. In this case, equation (2.36) collapses

to

ht + (1− γ)ηh+ γe−
(ρ+λ)t

γ h1− 1
γ + θ(μr − r)hr +

1

2
rσ2

rhrr = 0, (2.37)

where η = r + (μs−r)2

2σ2
sγ

. For numerical calculation purposes, the computational

domain is truncated to be [0, T ]× [0, rmax], in which T is the maximum lifespan of
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the individual minus his/her current age x, and rmax is the maximum interest rate

that the riskless asset can attain. The terminal and boundary conditions imposed

at time t = T , r = 0, and r = rmax are respectively⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t = T : h(T, r) = 0,

r = 0 : ht + (1− γ) (μs−r)2

2σ2
sγ

h + γe−
(ρ+λ)t

γ h1− 1
γ + θμrhr = 0,

r = rmax : hrr = 0.

(2.38)

We make an attempt to explain these conditions intuitively. Firstly, the zero termi-

nal condition at time T is due to the fact that the integration of V is zero when T

is fairly large. Secondly, the boundary condition at r = 0 is obtained from the PDE

(2.36) by setting r = 0 on both sides of the equation, which is a natural boundary

condition. Thirdly, the Neumann boundary condition at r = rmax is provided on

the observation that the second-order derivative at this point is close to zero for

constant interest rates.

Now we are ready to solve this equation system (2.37) and (2.38) numerically.

Unfortunately, the right hand sides of the new discretized equation system are

all trapped to zero due to the zero terminal condition, thence zero solutions are

obtained, which is not what we are looking for. To seek a non-zero solution, we

make the transformation h(t, r) = yγ(t, r) as before, then the non-zero solution

y(t, r) must solve the following nonlinear second-order PDE

yt +
(1− γ)

γ
ηy + e−

(ρ+λ)t
γ + θ(μr − r)yr +

1

2
rσ2

r(yrr +
γ − 1

y
y2r) = 0. (2.39)
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Since the force of mortality is constant, the value function V can be shown to be

independent of time t if the time factor e−(ρ+λ)t is excluded, just as the annuitization

function V a. Therefore, we make a new transformation y(t, r) = e
−(ρ+λ)t

γ
)ỹ(t, r), and

substitute it into equation (2.39), we obtain the following PDE that ỹ(t, r) must

satisfy

ỹt+(
1− γ

γ
(r+

(μs − r)2

2γσ2
s

)− ρ+ λ

γ
)ỹ+(θ(μr−r)+

1

2
rσ2

r

γ − 1

ỹ
ỹr)ỹr+

1

2
rσ2

r ỹrr+1 = 0.

(2.40)

The corresponding terminal and boundary conditions become

t = T : ỹ(T, r) = 0,

r = 0 : ỹt + (1−γ
γ
( (μs−r)2

2γσ2
s
)− ρ+λ

γ
)ỹ + θμrỹr + 1 = 0,

r = rmax : ỹrr = 0.

(2.41)

We have solved this equation system of ỹ in two different ways. The first way is

to solve it directly with the above terminal and boundary conditions applying the

implicit finite difference method. The solution we have obtained in this way is time

invariant when time t is away from the zero terminal condition, which means that

the effect of the zero terminal condition can actually be eliminated after some time.

The second way is to apply the condition ỹt = 0 first, and then solve the ODE by

finite difference method using the iterative method. The two solutions obtained

using these two different ways are in perfect agreement after elimination of the

effect of the zero terminal condition from the first method. Therefore, ỹ depends
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only on the interest rates r. After solving this equation system, we are able to

obtain all the numerical solutions of V n(t, w, r) on its grids.

The value function, V , is the maximum of the two value functions V n and V a,

i.e., V = sup(V n, V a). We run into a problem when we take the maximum of the

two if they intersect with each other. This means that at this intersection point, V n

equals V a, while their derivatives are not equal. Motivated by the classical Stefan

velocity for phase-change models (see Donaldson and Wetton (2006)), we move the

intersection leftward so that both the value function values and their derivatives

are equal on it. Next we will illustrate this procedure in much detail.

It is known that the two value functions with and without annuitization are

respectively

⎧⎪⎪⎨
⎪⎪⎩

V n(t, w, r) = w1−γ

1−γ
h(t, r) = w1−γ

1−γ
yγ(t, r) = w1−γ

1−γ
e−(ρ+λ)tỹγ(t, r),

V a(t, w, r) = w1−γ

1−γ
e−(ρ+λ)t 1

ρ+λ
āx+t(t, r)

γ−1.

(2.42)

We can see that V n and V a are both independent of time t if the exponential term

e−(ρ+λ)t is excluded because the annuity factor āx+t(t, r) and the function ỹ(t, r) are

independent of time t, so the annuitization boundary does not change over time.

Therefore, for each fixed time t, we only need to compare ỹγ(t,r)
1−γ

and āx(t,r)γ−1

(ρ+λ)(1−γ)
to

find the annuitization boundary. Without loss of generality, we do this comparison

at time t = 0 (s = T ).

We first compare V a and V n to obtain the initial annuitization boundary r� (it
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indeed exists in this case), which divides the whole interest rate domain into two

separated regions: in region [0, r�], it is optimal to annuitize, and in region [r�, rmax],

it is optimal not to annuitize. On this annuitization boundary, not only the two

value functions, but also their derivatives with respect to r should be equal. So

we compute the difference of the derivatives ∂V n

∂r
|r=r	 − ∂V a

∂r
|r=r	 , if this difference

is equal to zero, then r� is the annuitization boundary that we are looking for,

otherwise, we need to move r� with an explicit time step δr to the left (denote

r� = r� − δr), and solve the PDE of ỹ in the new domain [r�, rmax] by setting

the boundary condition at r� to be the corresponding value so that the two value

functions V n and V a would be equal on the annuitization boundary (Note that in

domain [0, r�], it is optimal to annuitize, so V = V a). Then we compare the two

derivatives on the new annuitization boundary r�. If it is equal to zero, then this

new r� is what we are looking for, otherwise, repeat the above procedure until we

find a new r� in which V n and V a and their derivatives with respect to r are equal

on the annuitization boundary. If we continue this procedure and cannot find a

solution, then the annuitization boundary does not exist, which means that it is

always optimal not to annuitize for any interest rate.
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2.3.2.3 Numerical Results

In this section, numerical results are presented for two different levels of risk aver-

sion, γ = 2 and γ = 3. As for the financial market parameters, the volatility for

the risky asset, σs, is assumed to be 0.2, which is roughly in line with numbers

provided by Ibbotson Associates (2001), which are widely used by practitioners

when simulating long-term investment returns. The drift term μs, is assumed to

be moving with the interest rate r at any time t, i.e., the expected equity returns

are modeled to be 0.03 above risk-free interest rates. The constant mortality rate

is assumed to be 0.05, implying that the expected remaining lifetime is 20 years.

The maximum life span for the individual is assumed to be T = 125 years. The

parameters for stochastic interest rates are θ = 0.25, μr = 0.06 and σr = 0.1. The

volatility σr is chosen to satisfy condition 2θμr ≥ σ2
r , which guarantees that the

interest rate will never touch zero for any given positive initial interest rate. The

subjective discount rate ρ is specified to be 0 for comparison purposes, since it is

not a real assumption. The correlation ρrs is taken to be 0 since Munk, Sorensen

and Vinther (2004) estimated that the stock index is slightly negatively correlated

with the nominal interest rate (−0.06). Parameters described in the algorithm are

summarized in Table 2.3. All the parameter values take these typical values unless

otherwise specified throughout the entire section.
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Figure 2.1: The Annuitization and Non-annuitization Value Functions.
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The figure shows both initial and final free boundaries under stochastic interest rates (note that the

free boundary here means the annuitization boundary). The parameters used are: constant force

of mortality λ = 0.05, adjustment speed θ = 0.25, long run interest rate μr = 0.06, volatility of

interest σr = 0.1, volatility of risky asset σs = 0.2 and risk aversion coefficient γ = 2. V a denotes

the value function with annuitization, V n2 denotes the value function obtained by solving ỹ in

domain [0, rmax] in which the boundary condition at r = 0 is imposed by equation (2.41), and

the initial annuitization boundary is equal to 0.7800. V n1 is the non-annuitization value function

obtained by solving ỹ in domain [0.2560, rmax] in which the boundary condition at r = 0.2560 is

set to be V n1 = V a.
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Figure 2.2: The Derivatives of the Value Functions.
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Note that the free boundary here means the annuitization boundary. The parameters used are:

constant force of mortality λ = 0.05, adjustment speed θ = 0.25, long run interest rate μr = 0.06,

volatility of interest σr = 0.1, volatility of risky asset σs = 0.2 and risk aversion coefficient γ = 2.

The two derivatives intersect at point 0.2560. This is the annuitization boundary we are looking

for.
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Table 2.3: Typical Parameter Values

Constant mortality λ 0.05

CIR model θ, μr, σr 0.25, 0.06, 0.1

Risky asset μs − r, σs 0.03, 0.2

Maximal life time T 125

Correlation between Bs
t and Br

t , ρrs 0

To give readers some intuition about how the annuitization boundary is ob-

tained, the two value functions and their derivatives are plotted in two separate

figures (2.1 and 2.2) for parameters θ = 0.25, μr = 0.06, σr = 0.1 and λ = 0.05. In

figure 2.1, V a is the value function with annuitization, V n2 is the value function

obtained by solving ỹ in domain [0, rmax] in which the boundary condition at r = 0

is imposed by equation (2.41), and V n1 is the non-annuitization value function

obtained by solving ỹ in domain [0.2560, rmax] in which the boundary condition at

r = 0.2560 is set so that V n1 = V a. The initial annuitization boundary, where

V a intersects V n2, is at point r = 0.7800, we then move it leftward until the final

annuitization boundary r = 0.2560 is obtained on which both V a and V n1 and their

derivatives with respect to r are equal. These two derivatives are plotted in Figure

2.2. Note that when r is constant, the annuitization boundary is r = 0.1386, so the

annuitization boundaries for constant and stochastic interest rates for exponential
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mortality are not too far away from each other.

Table 2.4: Match of the Annuitization Boundaries

λ Domain of r (analytical solution) Domain of r (θ = 0, σr = 0)

0.0200 r ≤ 0.0483 r ≤ 0.0462

0.0300 r ≤ 0.0784 r ≤ 0.0762

0.0400 r ≤ 0.1086 r ≤ 0.1063

0.0500 r ≤ 0.1386 r ≤ 0.1363

0.0800 r ≤ 0.2287 r ≤ 0.2263

0.1000 r ≤ 0.2887 r ≤ 0.2838

0.1371 r ≤ 0.4000 r ≤ 0.3888

0.1398 ∀r r ≤ 0.4000

> 0.1398 ∀r ∀r

Notes: The 2nd column denotes the annuitization boundary for constant interest

rates, the 3rd column denotes the annuitization boundary for stochastic interest

rates when the adjustment speed and volatility are both 0.

To verify our numerical results, we first compare the annuitization boundaries

we have obtained by setting the adjustment speed and volatility of the interest rate

to be 0 (the stochastic interest rates collapse to constants) and compare them with

previous results in section 2.3.1.3, which is summarized in Table 2.4 for γ = 2 and
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ρ = 0. It can be easily computed that the maximum absolute difference of the two

annuitization boundaries using two different methods is 1.12 percent, so they are

in agreement, which gives us confidence that our numerics are good.

Table 2.5: Annuitization Boundaries for Stochastic and Constant Interest

λ Domain of r (θ = 0, σr = 0) Domain of r (θ = 0.25, σr = 0.1)

0.0200 r ≤ 0.0462 ∅

0.0300 r ≤ 0.0762 r ≤ 0.1120

0.0400 r ≤ 0.1063 r ≤ 0.1920

0.0500 r ≤ 0.1363 r ≤ 0.2560

0.0800 r ≤ 0.2263 r ≤ 0.3867

0.1000 r ≤ 0.2838 ∀r

0.1371 r ≤ 0.3888 ∀r

0.1398 r ≤ 0.4000 ∀r

> 0.1398 ∀r ∀r

Notes: The 2nd column denotes the annuitization boundary for constant interest

rates, and the 3rd column denotes the annuitization boundary for stochastic interest

rates.

Then we compare the effect of the stochastic interest rates on the optimal an-

nuitization strategies in Table 2.5. We can see that in general the annuitization
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boundary for stochastic interest rates lies above the annuitization boundary for con-

stant interest rate (if applicable). For stochastic interest rates, when the mortality

rate is 0.02, it is always optimal not to annuitize, and when the mortality rate is

greater than 0.10, it is always optimal to annuitize. For a constant interest rate,

when the mortality rate is greater than 0.1398, it is always optimal to annuitize.

Therefore, both the mortality rate and the interest rate matter when it comes to

the decision of annuity purchasing. The intuitive explanation for the rise in the an-

nuitization boundary in this case lies in that the dominant effect of the stochastic

interest rate to push up expected interest rates over time.

Now we move on to see the effect of the subjective discount rate on the annuiti-

zation boundary. The parameters for the CIR process are θ = 0.25, μr = 0.06, σr =

0.10 for two different risk-aversion coefficients. The annuitization boundary are

summarized in Table 2.6 for γ = 2 and Table 2.7 for γ = 3 respectively. In each

table, two different subjective discount rates, ρ = 0 and ρ = 0.02, are considered.

It can be seen that the annuitization boundary is an increasing function of λ, and

it is optimal to annuitize when the interest rate is smaller than the annuitization

boundary (note that the hazard rate is greater than Merton’s constant), which is

consistent with the constant interest rate case. Note that when γ = 2 and λ = 0.02,

the annuitization boundary does not exist, which means that it is always optimal

not to annuitize no matter what the current interest rate is, which is an exten-
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sion of the result for constant interest rate. Another important observation is that

when the force of mortality is big enough, it is always optimal to annuitize, which

is due to a significant survivor credit to be gained in investing in annuities. When

the subjective discount rate is larger, the individual tends to annuitize in a larger

interest rate domain.

Table 2.6: Annuitization Boundary for γ = 2

λ Domain of r (ρ = 0) Domain of r (ρ = 0.02)

0.0200 ∅ r ≤ 0.1250

0.0300 r ≤ 0.1120 r ≤ 0.2150

0.0400 r ≤ 0.1920 r ≤ 0.2750

0.0500 r ≤ 0.2560 r ≤ 0.3250

0.0800 r ≤ 0.3867 ∀r

0.1000 ∀r ∀r

Above all, whether the interest rate is constant or stochastic, it is optimal

to annuitize when the interest rate is small and optimal not to annuitize when the

interest rate is large when applicable (if the mortality rate beats the risk premium).

When the mortality rate is higher, it is always optimal to annuitize due to higher

mortality credit. With a participating annuity, premiums paid by those who die

earlier than expected contribute to gains of the overall pool and provide a higher
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Table 2.7: Annuitization Boundary for γ = 3

λ Domain of r (ρ = 0) Domain of r (ρ = 0.02)

0.0200 r ≤ 0.1350 r ≤ 0.2950

0.0300 r ≤ 0.2550 r ≤ 0.3650

0.0400 r ≤ 0.3250 ∀r

0.0500 r ≤ 0.3850 ∀r

0.0800 ∀r ∀r

yield or credit to survivors than could be achieved through individual investments

outside of the pool. The annuitization boundary that lies between is an increasing

function of mortality rate λ. These important observations will shed light on the

next section where we study the annuitization problem under Gompertz mortality.

2.3.3 Concluding Remarks

In this section, we have studied the annuitization problem for a retired individual

whose objective is to maximize his/her lifetime utility under exponential mortality

and a variety of institutional restrictions in the absence of bequest motives. There

are two asset classes available to invest in: a risky asset and a riskless asset, in

which the return of the riskless asset is constant, or stochastic. The utility function

we are interested in exhibits constant relative risk aversion (CRRA), which has
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been widely used in the insurance economics literature. Since two value functions

V a and V n are independent of time t if the power term e−(ρ+λ)t is excluded, so that

the annuitization boundary is deterministic for any constant λ.

First of all, we calibrated the model for a constant interest rate. Analytic

solutions for V a and V n are obtained using some mathematical techniques. In

this case, the mortality rate λ and interest rate r are free parameters. Through

comparison of the two value functions, we find that for r = ρ, it is optimal to

annuitize for any interest rate when the mortality rate is greater than Merton’s

constant, which is consistent with Milevsky and Young (2007). If the interest rate

is not equal to the subjective interest rate, it is optimal to annuitize when the

interest rate is small, and optimal not to annuitize when the interest rate is large

when applicable, while it is always optimal to annuitize when the force of mortality

is higher. This is due to the assumption of constant spread between the expected

risky asset return and that of the riskless asset, and the significant survivor credit

to be gained in investing in annuities.

Secondly, stochastic interest rates are considered, which adds more uncertainty

to the interest rates. In this case the annuity factor is much more complex since

it involves the price of a bond which matures at certain time. The annuitization

value function can be obtained analytically. The non-annuitization value function

satisfying an HJB equation can be solved numerically using the upwind scheme
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and the Crank-Nicolson method. We then use the free boundary refining method

to find the annuitization boundary. The annuitization boundaries agree well when

the stochastic interest rates collapse to constants. Numerical results show us that

when the force of mortality λ is less than Merton’s constant, it is always optimal not

to annuitize. Otherwise, it is optimal to annuitize when the interest rate is small

and optimal not to annuitize when the interest rate is large when applicable. When

the mortality rate is higher, which makes the survivor credit significant, it is optimal

to annuitize, which agrees with the constant interest rate case. When interest rates

are stochastic and current interest rate is high, one should delay annuitizing, earn

short term interest, and once interest rates revert to a more realistic level, one will

probably be able to buy more annuities than he/she would otherwise. In other

words, the annuities one eventually buy will be more expensive, but he/she will be

able to buy more of them and actually earn higher income.

The mathematical simplification of the mortality process (exponential) enables

us to find a solution with much greater ease. This assumption is memory-less

which means that the future mortality rates of the individual are independent

of the past mortality rate which is inconsistent with the time varying mortality

models and reality. To help overcome this disadvantage, we will look at the same

optimal control problem under the GM mortality rate in next section because of

its widespread use in the insurance and finance literature (see Milevsky and Young
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(2007), Horneff, Maurer and Stamos (2008)), which is simple and consistent with

the insurer’s view on mortality.

2.4 Model Calibration 2: Gompertz Mortality

In the previous section, we have studied the annuitization problem for a retiree who

seeks to maximize his/her lifetime utility of consumption after retirement under

constant force of mortality and other institutional restrictions in an all-or-nothing

framework. In this section, we will investigate the same problem under Gompertz

mortality, in the circumstance of stochastic interest rates which follows the CIR

process. The Gompertz mortality model (λx+t =
1
b
e

x+t−m
b , t ∈ [0,∞]) is common in

the actuarial literature for annuity pricing (Frees et al., 1996) and in the economics

literature for pricing insurance (Johansson, 1996). Milevsky and Young (2007) have

fitted the Gompertz distribution to the individual annuity mortality 2000 (basic)

table, obtaining estimates of the parameters (m, b) = (88.18, 10.5) for males and

(m, b) = (92.63, 8.78) for females. These parameters are the values that we will use

for the annuitization problem for males and females. Figure 2.3 plots the probability

density function of the future lifetime random variable with above parameters for

both males and females.

For mathematical manipulation purposes, our Gompertz mortality λx+t is modified
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Figure 2.3: The Probability Density Function for Males and Females
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This is the probability density function of the future lifetime random variable under Gompertz

mortality rate. For females, the fitted parameters are (m, b) = (92.63, 8.78) and for males they

are (m, b) = (88.18, 10.5).
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to be

λx+t =

⎧⎪⎪⎨
⎪⎪⎩

1
b
e

x+t−m
b , t ≤ T,

λx+T , t ≥ T,

(2.43)

where x denotes the current age of the individual, s is the time the individual is

going to survive, m is the mode of the future lifetime, b is the dispersion constant. T

is the maximum life time for a human being (in our case, it is taken to be 125). Note

that this definition is different from the traditional GM mortality which assumes

exponential function all the time. This is an approximation we need to work out

the terminal condition without having any practical impact from a technical point

of view. This is a plausible assumption because human beings rarely live past the

maximum age (the longest unambiguously documented human lifespan is 122 years

old), so their mortality rate is very high, which means that the effect of mortality

after the maximum age is trivial to the value function. For example, if we take

x = 65, m = 88.18, b = 10.5, T = 125, then the mortality rate is constant 3.1840

after age 125. One big advantage of this assumption is that we can apply non-

zero terminal condition at t = T , which can be obtained by applying the same

mathematical techniques for exponential mortality as in the previous section.

Instead of including one special point in time (retirement), we will include the

whole retirement period (from retirement to death) to see under what conditions

should the individual annuitize all his/her wealth. This is a free boundary problem
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because the value function is specified by a set of constraints which are exactly

the properties of a free boundary problem, similar to the American option pricing

problem. The main takeaway from the last section is that it is optimal to annuitize

when the interest rate is small and not optimal to annuitize when the interest rate

is large when the hazard rate is greater than Merton’s constant. Therefore, we have

come up with the illustration of our free boundary problem: for any given time t,

when the interest rate is smaller than the free boundary (optimal annuitization

interest rate), it is optimal to annuitize, and when the interest rate is greater than

the free boundary, it is optimal not to annuitize. This free boundary problem can

be converted to an equivalent linear complementarity problem and solved by the

projected successive over-relaxation method.

The rest of this section is organized as follows. In Section 2.4.1, we model and

frame the optimal annuitization timing problem when the risk-free rate is driven

by CIR process under Gompertz mortality. Then the free boundary problem and

its equivalent LCP problem are illustrated in Section 2.4.2 and 2.4.3. Next the

projected SOR method is applied to solve the LCP problem in Section 2.4.4, and

finally, numerical results are addressed in Section 2.4.5.
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2.4.1 The Value Function and HJB Equation

For a retired individual at age x, we look for the optimal asset allocation, consump-

tion, and annuitization strategies to maximize his/her lifetime utility of consump-

tion in an all-or-nothing framework without bequest motives. Mathematically, we

wish to find the value function defined as below

V (t, w, r) = supπs,cs,τ E
[∫ τ

t
e−ρ(s−t)

s−tpx+tu(cs) ds

+
∫∞
τ

e−ρ(s−t)
s−tpx+tu

(
Wτ

āx+τ (τ,Rτ )

)
ds
∣∣∣Wt = w,Rt = r

]
,

(2.44)

in which E denotes the expectation conditional on Wt = w and Rt = r, and

u is a concave utility function of consumption. Note that the expectation stays

outside the integral since u(cs) and u(Wτ/āx+τ(τ, Rτ )) may be correlated with the

discount factor. Thus we cannot replace the discount factor by the zero-coupon

bond price PB(t, s, r) inside the integral. τ is the time the individual annuitizes all

his/her wealth in a lump sum. The survival probability ( s−tpx+t ) is defined back

in equation (2.1). The actuarial annuity factor is calculated using equation

āx+t(t, Rt) =

⎧⎪⎪⎨
⎪⎪⎩

∫ T

t
PB(t, s, r)e

− ∫ s
t λx+vdvds+

∫∞
T

PB(t, s, r)e
−λx+T (s−t)ds, t ≤ T,

∫∞
t

PB(t, s, r)e
−λx+T (s−t)ds, t ≥ T.

(2.45)

Note that this annuity factor is different than the traditional one due to the modified

GM mortality we have applied.

Next we are going to derive the HJB equation that the value function must
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satisfy in domain t ∈ [0, T ] by applying Bellman’s optimality principle and Ito’s

lemma.

V (t, w, λ)

= sup
πs,cs,τ

Ew,r

[∫ τ

t

e−ρ(s−t)
s−tp

s
x+tu(cs) ds +

∫ ∞

τ

e−ρ(s−t)
s−tp

s
x+tu

(
Wτ

aox+τ

)
ds ]

= sup
πs,cs,τ

Ew,r[

∫ t+dt

t

e−ρ(s−t)
s−tp

s
x+tu(cs) ds

+ e−ρdt
dtp

s
x+t V (t+ dt, w + dWt, r + dRt)]. (2.46)

Since V (t, w, r) has two state variables, wealth w and interest rate r, it is obvious

that we can apply Ito’s lemma to obtain the stochastic differential equation that V

must satisfy

dV (t, w, r) = Vtdt+ VwdWt + VrdRt +
1

2
Vww < dWt, dWt >

+
1

2
Vrr < dRt, dRt > +Vwr < dWt, dRt >

= Vtdt+ Vw((RtWt + (μs − Rt)πt − ct)dt+ σsπtdB
s
t )

+ Vr(θ(μr −Rt)dt+ σr

√
RtdB

r
t )

+
1

2
Vwwσ

2
sπ

2
t dt+

1

2
Vrrσ

2
rRtdt+ ρrsσrσsπt

√
RtVwrdt

= Vtdt+ LVtdt+ σr

√
RtVrdB

r
t + σsπtVwdB

s
t , (2.47)

where ρrs is the correlation between dBs
t and dBr

t , and the second-order differential
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operator LVt is defined as

LVt = (RtWt + (μs − Rt)πt − ct)Vw + θ(μr − Rt)Vr +
1
2
σ2
sπ

2
t Vww

+ 1
2
Rtσ

2
rVrr + ρrsσrσsπt

√
RtVwr.

(2.48)

This is equivalent to

V (t + dt, w + dWt, r + dRt) = V (t, w, r) + Vtdt+ LVtdt

+ σr

√
RtVrdB

r
t + σsπtVwdB

s
t .

(2.49)

Thus the value function V satisfies the following equation

V (t, w, r) = sup
πs,cs,τ

Ew,r

[∫ t+dt

t

e−ρ(s−t)
s−tp

s
x+tu(cs) ds

+ e−ρdt
dtp

s
x+t (V + Vtdt + LVtdt+ σr

√
RtVrdB

r
t + σsπtVwdB

s
t )
]
. (2.50)

Moving V to the right-hand side, we arrive at

sup
πs,cs,τ

Ew,r

[∫ t+dt

t

e−ρ(s−t)
s−tp

s
x+tu(cs) ds

+ (e−ρdt
dtp

s
x+t − 1)V + e−ρdt

dtp
s
x+t (Vtdt+ LVtdt)

]
= 0. (2.51)

Dividing dt on both sides, letting dt �−→ 0 and assuming that we can change the

order of the limit and expectation, we get the HJB equation for V

(ρ+ λs
x+t)V = Vt + sup

c,π
LV, (2.52)

where the second-order differential operator LV is defined by

LV = u(c) + (rw + (μs − r)π − c)Vw + θ(μr − r)Vr +
1
2
σ2
sπ

2Vww

+ 1
2
rσ2

rVrr + ρrsσrσsπ
√
rVwr.

(2.53)
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The optimal consumption and asset allocation strategies c̄ and π̄ can be obtained

in feedback form ⎧⎪⎪⎨
⎪⎪⎩

c̄ = V
− 1

γ
w ,

π̄ = − (μs−r)Vw+ρrsσrσs
√
rVwr

σ2
sVww

.

(2.54)

In the next subsection, we will study the free boundary problem in detail.

2.4.2 Free Boundary Problems

In this section, we will solve the HJB equation (2.52) by transferring it into an

equivalent free boundary problem. At each time t we need to determine not only

V (t, w, r), but also, for each value of r, whether or not the individual needs to

annuitize. Typically at each time t there is a particular interest rate r which marks

the boundary between two regions: on one side the individual should not annuitize

and on the other side the individual should annuitize. The value function V (t, w, r)

is specified by a set of constraints:

• The value function must be greater than or equal to the annuitization func-

tion, the value of V when the individual annuitizes immediately at time t.

• The HJB equation is replaced by an inequality because the value function is

the supreme of all the functions that maximize the individual’s utility.

• The value function must be a continuous function of wealth, this can be seen

from the definition of the value function.
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• The derivatives of the value function are continuous. This is the basic as-

sumption when we are solving the problem.

Therefore, this is a free boundary problem, quite similar to the American put

option pricing problem. We denote the free boundary by r∗(t), and refer to it as

the annuitization boundary. From Section 2.3, we have known that it is optimal

to annuitize when the interest rate is small and it is optimal not to annuitize

when the interest rate is large if the optimal annuitization interest rate exists for

exponential mortality. Therefore, for a specified time t, it is favorable to annuitize

if the interest rate is smaller than the optimal annuitization interest rate, otherwise

it is not favorable to annuitize. The mathematical statement of the free boundary

problem is given by

(ρ+ λx+t)V − Vt − LV > 0, V (t, w, r) = G(t, w, r) (2.55)

for 0 < r < r∗(t) (optimal to annuitize),

(ρ+ λx+t)V − Vt − LV = 0, V (t, w, r) > G(t, w, r) (2.56)

for r∗(t) < r < ∞ (optimal not to annuitize). Here r∗(t) is the function of free

boundary at time t. The notation G(t, w, r) is the value function when it is optimal

to annuitize at time t. Since V (t, w, r) is the supreme value of the HJB equation

(2.52), it does have a lower bound G, which is the value of V when we annuitize

55



immediately at time t. This bound can be calculated via its definition as below

G(t, w, r) =
∫∞
t

e−ρ(s−t)
s−tpx+tu

(
w

āx+t(t,r)

)
ds

= u( w
āx+t(t,r)

)
∫∞
t

e−ρ(s−t)e−
∫ s
t λx+vdvds

= w1−γ

1−γ
g(t, r),

(2.57)

in which g(t, r) is a function of t and r, and defined as below

g(t, r) =
1

ā1−γ
x+t (t, r)

⎧⎪⎪⎨
⎪⎪⎩

∫ T

t
e−ρ(s−t)e−

∫ s
t λx+vdvds+ 1

ρ+λx+T
, t ≤ T,

1
ρ+λx+T

, t ≥ T.

(2.58)

This is due to the assumption that the individual will annuitize all his/her wealth at

time τ (if applicable) and consume exactly the annuity payout after annuitization,

which is the classical annuity result that has been proved in the absence of bequest

motives such as Yaari (1965). Therefore, if the individual annuitizes at time t,

he/she will consume the amount w
āx+t(t,Rt)

thereafter.

If we postulate that the value function can be written in the form V (t, w, r) =

w1−γ

1−γ
h(t, r), then the optimal consumption and investment strategies in equation

(2.54) can be written as ⎧⎪⎪⎨
⎪⎪⎩

c̄ = h− 1
γw,

π̄ = (μs−r)h+ρrsσrσs
√
rhr

σ2
sγh

w.

(2.59)

Plugging them into the HJB equation (2.52), we obtain

(ρ+ λx+t)h = ht + (1− γ)rh+ γh1− 1
γ + θ(μr − r)hr +

1

2
rσ2

rhrr

+
1− γ

2σ2
sγh

((μs − r)h+ ρrsσrσs

√
rhr)

2. (2.60)
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Before seeking a non-zero solution h(t, r), a standard transformation h(t, r) =

y(t, r)γ is done first, thus equation (2.60) is converted to

1

1− γ

[
(ρ+ λs

x+t)y − γyt + Ly
]
= 0. (2.61)

The reason the factor 1
1−γ

is kept here will be explained shortly. The second-order

differential operator Ly is given by

Ly = − (1− γ)ry − γ − θ(μr − r)γyr

− 1−γ
2σ2

sγ
(μs − r)2y − 1

2
rσ2

rγ(γ − 1)y
2
r

y
− 1

2
rγσ2

ryrr

− 1−γ
2σ2

sγ
ρ2rsσ

2
rσ

2
srγ

2 y
2
r

y
− 1−γ

σ2
sγ
(μs − r)ρrsσrσs

√
rγyr.

(2.62)

Therefore the free boundary problem can be written in terms of the new variable

y as below

1

1− γ

[
(ρ+ λs

x+t)y − γyt + Ly
]
> 0,

1

1− γ
yγ(t, r) =

1

1− γ
g(t, r) (2.63)

for 0 < r < r∗(t) (optimal to annuitize),

1

1− γ

[
(ρ+ λs

x+t)y − γyt + Ly
]
= 0,

1

1− γ
yγ(t, r) >

1

1− γ
g(t, r) (2.64)

for r > r∗(t) (optimal not to annuitize). The reason why the common factor 1
1−γ

has

not been eliminated in the equation is that the statement of the free boundary will

have two different forms if we eliminate it (it is positive when γ < 1 and negative

when γ > 1).
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In general, there are two distinct methods for the numerical solutions of free

boundary problems. One is to try to track the free boundary as part of the time-

stepping process. In our context this is not a particularly attractive method because

the free boundary is implicit. We refer the interested reader to Crank (1984) for

the numerical solutions of implicit free boundary problems by boundary tracking

strategies. The second method is to try to find a transformation that reduces

the problem to a fixed boundary problem from which the free boundary can be

inferred afterwards. There are many transformations that can do this, but here

we only consider the elegant method which involves the linear complementarity

formulation. In next section, the free boundary will be converted to an equivalent

LCP problem for reasonable risk-aversion coefficients.

2.4.3 The Linear Complementarity Problem (LCP)

It is almost always impossible to find a closed-form solution to any given free

boundary problem, so our chief aim is to construct efficient and robust numerical

methods for the computation. Since it is difficult to deal with free boundaries, it

is worthwhile to reformulate the problem in such a way as to eliminate any explicit

dependence on the free boundary. The free boundary does not then interfere with

the solution process, and it can be recovered from the solution after the latter has

been found.
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In mathematical optimization theory, the LCP problem arises frequently in

computational mechanics and encompasses the well-known quadratic programming

as a special case. It was proposed by Cottle and Dantzig in 1968. We start by

considering a simple example of such a reformulation, in the context of the obstacle

problem. The reason why we do not consider the American option pricing problem is

that it is much more complex than the obstacle problem. We then apply the lessons

learnt from the obstacle problem, which has linear complementarity formulations

leading to efficient and accurate numerical solution schemes with the desirable

property of not requiring explicit tracking of the free boundary, i.e., we are going

to convert the free boundary problem into an equivalent LCP problem and then

solve it by an iterative numerical method.

2.4.3.1 Linear Complementarity Problem for γ > 1

In this section, we will illustrate the optimal annuitization problem in the com-

pact linear complementarity form for the risk aversion constant γ > 1. We can

not directly convert the free boundary problem into an LCP problem because the

free boundary problem is not written in a standard form. Therefore, we make a

transformation ỹ(t, r) = −y(t, r), then the free boundary problem can be restated

as

(ρ+ λx+t)ỹ − γỹt + Lỹ > 0, ỹ(t, r) = −g
1
γ (t, r) (2.65)
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for 0 < r < r∗(s),

(ρ+ λx+t)ỹ − γỹt + Lỹ = 0, ỹ(t, r) > −g
1
γ (t, r) (2.66)

for r∗(s) < r < ∞. The second-order differential operator Lỹ is defined by

Lỹ = −(1− γ)rỹ + γ − θ(μr − r)γỹr − 1−γ
2σ2

sγ
(μs − r)2ỹ − 1

2
rσ2

rγ(γ − 1) ỹ
2
r

ỹ

−1
2
rγσ2

r ỹrr − 1−γ
2σ2

sγ
ρ2rsσ

2
rσ

2
srγ

2 ỹ
2
r

ỹ
− 1−γ

σ2
sγ
(μs − r)ρrsσrσs

√
rγỹr.

(2.67)

Note that the only difference between Ly and Lỹ is that the sign in front of γ is

opposite. Let s = T − t, ŷ(s, r) = ỹ(T − s, r), ĝ(s, r) = g(t, r), i.e.,

ĝ(s, r) =
1

ā1−γ
x+T−s(T − s, r)

⎧⎪⎪⎨
⎪⎪⎩

∫ T

T−s
e−ρ(z−T+s)e−

∫ z
T−s λx+vdvdz + 1

ρ+λx+T
, t ≤ T,

1
ρ+λx+T

, t ≥ T.

(2.68)

Then the above free boundary problem (2.65) and (2.66) can be converted to an

equivalent LCP problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

((ρ+ λx+T−s)ŷ + γŷs + Lŷ)(ŷ + ĝ
1
γ ) = 0,

ŷ + ĝ
1
γ ≥ 0,

(ρ+ λx+T−s)ŷ + γŷs + Lŷ ≥ 0.

(2.69)

To solve this LCP problem in domain s ∈ [0, T ], we need to specify its initial and

boundary conditions. The boundary conditions imposed on r = 0 and r = rmax are

similar to what we have done before, specifically⎧⎪⎪⎨
⎪⎪⎩

r = rmax : ŷrr = 0,

r = 0 : (ρ+ λx+T−s)ŷ(s, 0)− 1−γ
2σ2

sγ
μ2
sŷ(s, 0) + γŷs(s, 0) + γ − θμrγŷr(s, 0) = 0.

(2.70)
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Now we look at the non-zero initial condition at time s = 0 by applying the

same mathematical techniques for exponential mortality in domain t ∈ [T,∞).

In this region, the two value functions with and without annuitization, V a and

V n, are time independent if the power time term e−(ρ+λ)t is excluded according

to our previous results. So we are able to compare the two value functions to

find the initial free boundary and then move it to the place where both value

functions and their derivatives are equal, and a time-independent function y̌(r) in

which V n = w1−γ

1−γ
y̌(r)γe−(ρ+λx+T )t as in Section 2.3.2.2. If we denote this final free

boundary as r∗, we know that when r > r∗, it is optimal not to annuitize, and when

r < r∗, it is optimal to annuitize. Therefore the initial condition for ŷ(s, r) can be

derived to be

ŷ(0, r) = e−
(ρ+λx+T )T

γ y̌(r). (2.71)

Note that for large T , λx+T is usually greater than 1, and the exponential term

e−
(ρ+λx+T )T

γ is very close to 0 but not equal to 0. Since y̌(r) is bounded, so ŷ(0, r)

is close to but not equal to 0 as well.

The advantage of the LCP formulation (2.69) is that it has no explicit mention

of the free boundary. If we can solve it, then we can recover the free boundary

afterwards. We will solve this LCP problem in the next section by an iterative

finite difference method.
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2.4.4 The Projected Successive Over-relaxation (SOR) Method

In this section we numerically solve the LCP problem (2.69) by applying the pro-

jected SOR method. In numerical linear algebra, the projected SOR method is a

variant of the Gauss-Seidel method for solving a linear system of equations, result-

ing in faster convergence. A similar method can be used for any slowly converging

iterative process. It was devised simultaneously by David M. Young, Jr. and by H.

Frankel in 1950 for the purpose of automatically solving linear systems on digital

computers.

We divide the (s, r)-plane into a regular finite mesh with step sizes δs and

δr, and use a finite-difference approximation for the derivatives with respect to s

and r. The truncated domain of my choice is [0, T ] × [0, rmax] with T = 125 − x

and rmax = 0.4. The underlying reasons for these numbers are that we believe life

expectancy for a human being should not exceed 125 years and the risk-free interest

rate is less than 0.4, which is extremely large compared to its normal values. We

start with an initial guess for ŷ that is certainly above ĝ
1
γ , generates a sequence

of more accurate approximations to the exact solution. During each iteration the

constraint is implemented by resetting ŷ to equal ĝ
1
γ if values of ŷ is less than ĝ

1
γ .

For better stability and convergence, the second-order accuracy Crank-Nicolson

method is applied. At point (sn+ 1
2
, ri), the discretization of y (Theˆon ŷ has been
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omitted for simplicity hereafter) and its derivatives are,

y(sn+ 1
2
, ri) =

yn+1
i + yni

2
,

ys(sn+ 1
2
, ri) =

yn+1
i − yni

δs
,

yr(sn+ 1
2
, ri) =

yn+1
i+1 + yni+1 − yn+1

i−1 − yni−1

4δr
,

yrr(sn+ 1
2
, ri) =

yn+1
i+1 + yn+1

i−1 − 2yn+1
i + yni+1 + yni−1 − 2yni
2δr2

,

where yni = y(nδs, iδr), is the approximation of y(s, r) at every grid. Hence the

partial differential equation y(s, r) must solve is approximated by

(ρ+ λx+T−sn−0.5ds)
yn+1
i + yni

2
+ γ

yn+1
i − yni

δs
+ Ly

n+ 1
2

i = 0. (2.72)

Notice how we have discretized the nonlinear term y2r
y
. We discretize one yr term

explicitly with the known values of y at time level n and another yr term with

Crank-Nicolson method using y values at time level n and n+1, which has success-

fully avoided solving a nonlinear equation system. About the denominator y, We

discretize it with yni when it is not equal to 0, otherwise, setting the whole nonlinear

term y2r
y
equals 0. This is reasonable because y equals 0 if and only if at time s = 0

63



and the value y2r
y
is very close to 0 when y = 0. Specifically, Ly

n+ 1
2

i takes the form

Ly
n+ 1

2
i = −(1− γ)ri

yn+1
i +yni

2
+ γ − 1−γ

2σ2
sγ
(μs − ri)

2 y
n+1
i +yni

2

−θ(μr − ri)γ
yn+1
i+1 +yni+1−yn+1

i−1 −yni−1

4δr

−1−γ
σ2
sγ
(μs − ri)ρrsσrσs

√
riγ

yn+1
i+1 +yni+1−yn+1

i−1 −yni−1

4δr

−(1
2
riσ

2
rγ(γ − 1) + 1−γ

2σ2
sγ
ρ2rsσ

2
rσ

2
sriγ

2)
yni+1−yni−1

2δr

yni

yn+1
i+1 +yni+1−yn+1

i−1 −yni−1

4δr

−1
2
riγσ

2
r

yn+1
i+1 +yn+1

i−1 −2yn+1
i +yni+1+yni−1−2yni
2δr2

(2.73)

for yni �= 0, and

Ly
n+ 1

2
i = −(1− γ)ri

yn+1
i +yni

2
+ γ − 1−γ

2σ2
sγ
(μs − ri)

2 y
n+1
i +yni

2

−θ(μr − ri)γ
yn+1
i+1 +yni+1−yn+1

i−1 −yni−1

4δr

−1−γ
σ2
sγ
(μs − ri)ρrsσrσs

√
riγ

yn+1
i+1 +yni+1−yn+1

i−1 −yni−1

4δr

−1
2
riγσ

2
r

yn+1
i+1 +yn+1

i−1 −2yn+1
i +yni+1+yni−1−2yni
2δr2

,

(2.74)

for yni = 0. In order to apply the projected SOR method, we then write yn+1
i in

terms of all the other terms

yn+1
i = (c1 +

γ
δs
+ riγσ

2
r

2δr2
)−1{−c1y

n
i + c2(y

n+1
i+1 + yni+1 − yn+1

i−1 − yni−1)

+ γ
δs
yni + γ + riγσ2

r

4δr2
(yn+1

i+1 + yn+1
i−1 + yni+1 + yni−1 − 2yni )},

(2.75)

where c1 and c2 are given by the following expressions

c1 = 1
2
(ρ+ λx+T−sn−0.5ds − (1− γ)ri − 1−γ

2σ2
sγ
(μs − ri)

2),

c2 = (c3 + θ(μr − ri)γ + 1−γ
σ2
sγ
(μs − ri)ρrsσrσs

√
riγ)/4/δr,

(2.76)
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and where

c3 =

⎧⎪⎪⎨
⎪⎪⎩

riσ
2
rγ(γ−1)(yni+1−yni−1)

4δryni
+

(1−γ)ρ2rsσ
2
rσ

2
sriγ

2(yni+1−yni−1)

4σ2
sγδry

n
i

, if yni �= 0,

0, if yni = 0.

(2.77)

The corresponding initial and boundary conditions for y(s, r) imply that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1i = e−
ρ+λx+T

γ
T y̌(ri), i = 1, 2, · · · , I + 1,

ynI+1 = 2ynI − ynI−1,

(
ρ+λx+T−sn−0.5ds

2
+ 1−γ

4σ2
sγ
μ2
s +

γ
δs
)yn+1

1 = ( 1−γ
4σ2

sγ
μ2
s −

ρ+λs
x+T−sn−0.5ds

2
)yn1

+γ + γ
δs
yn1 − θμrγ

yn2−yn1
δr

.

(2.78)

Here n = 1 corresponds to time t = 0, in which the initial condition is posed.

i = 1 and i = I + 1 correspond to the interest rate r = 0 and r = rmax, which

are the boundaries of the truncated computational domain for calculating y. We

write gni = g(nδs, iδr) (ˆon ĝ is omitted for simplicity) for the discretized annuity

function, we will return to its discretization shortly. Hence the projected SOR

algorithm is to iterate (on k) the equations

zn+1,k+1
i = (c1 +

γ

δs
+

riγσ
2
r

2δr2
)−1(−c1y

n
i + c2(y

n+1,k
i+1 + yni+1 − yn+1

i−1 − yni−1)

+
γ

δs
yni + γ +

riγσ
2
r

4δr2
(yn+1,k

i+1 + yn+1,k+1
i−1 + yni+1 + yni−1 − 2yni )),

yn+1,k+1
i = sup(yn+1,k

i + ω(zn+1,k+1
i − yn+1,k

i ), gn+1
i ), (2.79)

The parameter ω (1 < ω < 2) is the over-relaxation parameter, which guarantees

the convergence of the algorithm. We repeat the above procedure until the error
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such as

||yn+1,k+1 − yn+1,k||2 =
∑
i

(yn+1,k+1
i − yn+1,k

i )2 (2.80)

is small enough for us to consider any further iterations as unnecessary. Notice that

the constraint is enforced at the same time as the iterate yn+1,k+1
i is calculated, the

effect of the constraint is immediately felt in the calculation of yn+1,k+1
i+1 , yn+1,k+1

i+2 ,

etc. The projected SOR method is an iterative method which starts with an initial

guess for the solution and successively improves it until it converges to the true

solution. One advantage of the projected SOR method is that during the process

of searching for the true solution, it can apply the constraints directly without

affecting other same time level values, which is impossible if direct methods are

applied. Another advantage is that it is easier to program. A disadvantage of the

projected SOR method is that it is somewhat slower than direct methods since it

usually takes many iterations to complete the searching procedure.

Now we look at the discretization of the function ĝ(s, r). From equation (2.68),

we know that ĝ(s, r) is a product of the actuarial annuity factor to the power γ− 1

and a piecewise function. The annuity factor and the integral in the piecewise

function, can be computed by Simpson’s rule as before. We then arrive at all the

numerical results of ĝ(s, r) at any time s, and ready to solve the LCP problem with

known lower bound.

After solving the LCP problem (2.69) to obtain all the values of ŷ(s, r), we are
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ready to recover the free boundary. We will look at the values of ŷ(s, r) + ĝ(s, r)
1
γ

for each fixed time s. The free boundary lies where this function switches from zero

to nonzero. The set of these interest rates form the free boundary. Note that we

need to transform back to the (t, r)-plane after the free boundary is obtained.

2.4.5 Numerical Results

In this section, numerical results are presented for two different levels of risk aversion

parameters γ = 2 and γ = 3. The other financial market parameters used are

θ = 0, μr = 0.06, σr = 0.1, μs−r = 0.03, σs = 0.2, Tmax = 125, ρ = 0.02, ρrs = 0. All

the parameter values take these typical values unless otherwise specified throughout

the entire section. The Gompertz parameters (before age 125) are taken to be

(m, b) = (88.18, 10.5) for males, and (m, b) = (92.63, 8.78) for females as Milevsky

and Young (2007), which are fitted to the individual annuity mortality 2000 table

with projection scale G. Under this typical GM model the exact instantaneous force

of mortality at various ages are listed in Table 2.8. We can see that the force of

mortality for males is greater than that of females at first, and when time exceeds

115 and beyond, it becomes less than that of females.

Note that we have treated μs−r as one variable which leads to Merton’s constant

( (μs−r)2

2γσ2
s

= 0.0056) fixed when risk-aversion coefficient and risky asset volatility are

both constants. Table 2.9 shows us the annuitization interest rate domain for both
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Table 2.8: Force of Mortality Table for Males and Females

Age 65 75 85 95 105 115 ≥ 125

λmales 0.0105 0.0271 0.0704 0.1823 0.4726 1.2250 3.1749

λfemales 0.0049 0.0153 0.0478 0.1492 0.4660 1.4555 4.5463

exponential mortality and Gompertz mortality for γ = 2 and ρ = 0. It can be

easily observed that for stochastic interest rates, this annuitization domain for GM

mortality is much higher than that for exponential mortality when applicable, and

it is always optimal to annuitize when the force of mortality is big enough. The

intuitive explanation for this rise in the annuitization boundary lies in the fact that

Gompertz mortality has a higher force of mortality later at various ages, which

adds the survivor credit later on, so that the individual will be better off if he/she

annuitizes in a larger interest rate domain.

In the rest of this section we will demonstrate our numerical results in various

plots and do sensitivity analysis for the CIR parameters θ, σr and μr.

2.4.5.1 Annuitization Boundaries for Different Risk Aversion Coeffi-

cient γ

Figure 2.4 displays the free boundaries for γ = 2 and γ = 3 respectively for a

male (m = 88.15, b = 10.5) in which the maximum interest rate 0.4 is an artifact.
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Table 2.9: Annuitization Boundaries for Exponential and Gompertz Mortalities

Mortality rate λ Exponential mortality Gompertz mortality

0.02 ∅ r ≤ 0.1575

0.03 r ≤ 0.1120 r ≤ 0.2400

0.04 r ≤ 0.1920 r ≤ 0.3000

0.05 r ≤ 0.2560 r ≤ 0.3500

0.08 r ≤ 0.3867 ∀r

[0.10,∞) ∀r ∀r

Notes: The 2nd column denotes the annuitization boundary for expo-

nential mortality, the 3rd column denotes the annuitization boundary

for GM mortality.

We can observe that the annuitization boundary starts to emerge from age 65 and

increases over time, and after some age, whre the mortality rate is much more

higher, it becomes always optimal to annuitize for all the interest rates we are

considering. These numerical results are consistent with our previous results for

constant mortality rates.

On one hand, as time goes by, the individual with higher levels of risk aver-

sion has higher annuitization boundary, which means that the individual tends to

annuitize in a larger interest rate domain (from 0 to the annuitization boundary),
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Figure 2.4: Free Boundaries for γ = 2 and γ = 3
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which is consistent with our intuition: if it is optimal to annuitize for γ = 2, then

it must be optimal to annuitize for γ = 3, but the opposite is not necessarily true.

On the other hand, the riskless interest rate in reality seldom reaches 25 percent,

so these numerical results merely mean that it is always optimal to annuitize if the

risk premium is constant and there are no loads and no bequest motives.

Note that we have drawn the graph as staircases, which has been verified by

both the LCP and the free boundary refining method, even for small time steps and
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space steps. There are two things that have contributed to this result. One is the

assumption of constant spread between the risky asset and the riskless asset, which

makes μs − r constant while r is a state variable. The other one is that when time

changes, the mortality rate won’t change big enough to move the free boundary

during some period of time.

2.4.5.2 Annuitization Boundaries for Males and Females

Figure 2.5: Free Boundaries for Males and Females
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Figure 2.5 provides two annuitization boundaries for males (m = 88.15, b = 10.5)
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and females (m = 92.63, b = 8.78). It can be observed from this figure that the

annuitization boundary for males is always above the annuitization boundary for

females because the mortality rate of males is higher at each given age. This is

equivalent to saying that the annuitization domain for males is always greater than

or equal to the annuitization domain for females, i.e., if it is optimal to annuitize

for females, then it must be optimal to annuitize for males.

2.4.5.3 Sensitivity Analysis

Figure 2.6: Sensitivity Analysis of Parameter θ
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Figure 2.7: Sensitivity Analysis of Parameter μr
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To further understand the behavior of the annuitization boundary, sensitivity

analysis is performed to the three CIR parameters θ, μr and σr. From Figure

2.6, 2.7 and 2.8, we can see that higher adjustment speed, lower mean and higher

volatility have higher annuitization boundaries. Firstly, when the adjustment speed

is higher, which means that the interest rate will return to its long run mean

sooner (with the current spot interest rate very high), individuals will be better off

to annuitize immediately considering the high annuitization boundary. Secondly,

when the long term rate drops, this moves interest rates down more quickly, which
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Figure 2.8: Sensitivity Analysis of Parameter σr
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cuts into the benefit of delaying. so there are fewer interest rates at which we delay,

if we move the long-term down. Thirdly, the effect of the volatility σr is trivial

because intuitively its value does not affect the value function significantly. Since

the annuitization boundaries are very high compared to real interest rates, we can

draw the conclusion that it is optimal to annuitize in reality.
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2.5 Concluding Remarks

In this chapter, we have studied the optimal annuitization timing problem for a

retired individual whose objective is to maximize his/her lifetime utility of con-

sumption under a variety of institutional restrictions in the absence of bequest

motives for exponential and Gompertz mortalities. There are two asset classes

available to invest in the financial market, one is the risky asset and the other is

the riskless asset.

First of all, we have calibrated two models for exponential mortality: constant

and stochastic interest rates. When the interest rate is constant, analytic solutions

for V a and V n can be obtained using mathematical techniques. If the interest rate

equals the subjective discount rate, it is optimal to annuitize when the mortality

rate is greater than Merton’s constant, which is consistent with Milevsky and Young

(2007). If the interest rate is not equal to the subjective discount rate, it is optimal

to annuitize when the interest rate is small, and it is optimal not to annuitize when

the interest rate is large. When the interest rate is stochastic, the annuity factor is

much more complex since it involves the bond price which matures at a future time.

It is shown that both V a and V n are independent of time t if the power term e−(ρ+λ)t

is excluded. Numerical results show us that when the force of mortality λ is less than

Merton’s constant, it is always optimal not to annuitize. Otherwise, it is optimal
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to annuitize when the interest rate is small, and it is optimal not to annuitize when

the interest rate is large. Another important observation is that the annuitization

boundary is an increasing function of mortality rate λ. These important results for

exponential mortality have shed light on the optimal annuitization timing problem

under Gompertz mortality.

Secondly, we have modeled the optimal annuitization problem when the risk-free

rate is driven by CIR process under Gompertz mortality. This is a free boundary

problem, which is similar to the American put option problem. Its equivalent LCP

problem is formulated and the projected SOR method is applied to solve it numeri-

cally. Due to the fact that the Gompertz mortality rate increases exponentially with

time, the annuitization boundary is an increasing function of time, which echoes

the results for exponential mortality when mortality rate is adjusted accordingly.

One more finding is that the free boundaries are higher for Gompertz mortality

than that of exponential mortality.

No matter the mortality rate is exponential or Gompertz, there is always an

annuitization boundary for stochastic interest rate. This means that it is optimal

not to annuitize even if r is high. One should delay annuitizing, earn short term

interest, and once interest rates revert to a more realistic level, one will probably

be able to buy more annuities than he/she would otherwise. In other words, the

annuities he/she eventually buy will be more expensive, but he/she will be able to
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buy more of them and actually earn higher income.

Although we have used the more realistic Gompertz model, there are still some

ways that we can improve it. One natural follow up would be to relax the assump-

tion of the mortality rate to be stochastic. This view has been widely accepted

since the advent of the stochastic mortality model proposed by Lee and Carter

(1992). This complicates our model by introducing one more state variable in the

HJB equation, and we leave it for further research in the future. Another natural

extension of our model would be to incorporate various stocks, bonds and vari-

able annuities, which would allow the individual to buy annuities in lump sums or

continuously, instead of the all-or-nothing framework.

2.6 Appendix

2.6.1 The Obstacle Problem

In this section, the obstacle problem is introduced and illustrated. The free bound-

ary problem and LCP problem corresponding to the obstacle problem are mostly

adapted from Wilmott, Howison and Dewynne (1995).

An elastic string is held fixed at two ends, A and B, and passes over a smooth

object which protrudes between the two ends (Figure 2.9). We do not know a

priori the region of contact between the string and the obstacle, only that either
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Figure 2.9: The Classical Obstacle Problem

A B 

L R 

The classical obstacle problem: the string is held fixed at A and B and must pass smoothly over

the obstacle in between.
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the string is in contact with the obstacle, in which case its position is known; or it

must satisfy an equation of motion, which, in this case, says that it must be straight.

This simply says that the string must lie above or on the obstacle, combined with

the equation of motion, the curvature of the string must be negative or zero. In

summary,

• the string must be above or on the obstacle;

• the string must have negative or zero curvature;

• the string must be continuous;

• the string slope must be continuous.

Under these constraints, the solution to the obstacle problem can be shown to

be unique. The string and its slope are continuous, but in general the curvature of

the string, and hence its second derivative, has discontinuities.

To derive the LCP illustration for the obstacle problem, we take the ends of

string to be at z = ±1 and write d(z) for the string displacement and ho(z) for the

height of the obstacle, both for −1 ≤ z ≤ 1. We assume that ho(±1) < 0, and that

ho(z) > 0 at some points between −1 and +1, so that there definitely is a contact

region. We also assume, at least initially, that ∂2ho

∂x2 < 0, thereby guaranteeing

that there is only one contact region. The free boundary is then the set of points,

marked as L (z = zL) and R (z = zR) in Figure 2.9, where the string first meets
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the obstacle. These are priori unknowns, and have to be determined as part of the

solution.

In the contact region, d = ho, where the string is not in contact with the obstacle

it is straight, so d′′ = 0. Normally, one would need just two boundary conditions to

determine the straight portions of the string uniquely, and the values of d at the two

ends of each straight portion would certainly do. However, because L and R are

unknown, we need two more boundary conditions than usual in order to determine

these points, and here a physical argument based on a force balance shows that at

points such as L and R, d′ must be continuous as well as d. Now we can write this

particular example as the problem of finding d(z) and the points L, R such that

d(−1) = 0,

d′′ = 0, −1 < z < zL,

d(zL) = ho(zL), d′(zL) = f ′(zL),

d(z) = ho(z), zL < z < zR,

d(zR) = ho(zR), d′(zR) = f ′(zR),

d′′ = 0, zR < z < 1,

d(1) = 0.

(2.81)

Given any particular ho(z) it is straightforward in principle to show that d(z), L

and R are uniquely determined by this problem, and to find them. The procedure is

tedious, and for all but specially simple ho, L and Rmust be determined numerically
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as solutions of an algebraic or transcendental equation.

An alternative approach to the problem is to note that the string either lies

above the obstacle, d > ho, in which case it is straight, d′′ = 0, or is in contact with

the obstacle, d = ho, in which case d′′ = h′′
o < 0. This means that we can write the

problem as what is call a linear complementarity problem

d′′ · (d− ho) = 0, −d′′ ≥ 0, (d− ho) ≥ 0, (2.82)

subject to the boundary conditions

d(−1) = d(1) = 0, d, d′are continuous. (2.83)

This statement of the problem has a tremendous advantage over the free bound-

ary version (2.81) because there is no explicit mention of the free boundary points

L and R. They are still present, but only implicity via the constraint d ≥ ho. If we

can devise an algorithm to solve the constrained problem, we just have to look at

the resulting values of d− ho: the free boundaries are where this function switches

from being zero to nonzero.

It is beyond the scope of this dissertation to prove that the LCP formulation

is equivalent to the free boundary formulation, nor do we show that there is a

unique solution to the former. The proofs use techniques of functional analysis,

in particular the theory of variational inequalities, but the basic idea is simply

minimization of the appropriate energy functional over the convex space of all
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suitably smooth functions v(z) that satisfy the constraint v ≥ ho.

2.6.2 Algorithm

We give the algorithm for the LCP problem with 0 < γ < 1 in this section. After

the transformation s = T−t, how do we obtain yn+1 = (yn+1,1, yn+1,2, · · · , yn+1,I+1)

from yn = (yn,1, yn,2, · · · , yn,I+1)? To answer this question, we need to fulfill the

following five steps.

• step 1: Calculate the annuitization function at time level n + 1, gn+1.

• step 2: Using the upwind scheme, we obtain the boundary value for r = 0 at

time level n + 1 by:

yn+1
1 = (

ρ+ λs
x+T−sn−0.5ds

2
− 1− γ

4σ2
sγ

μ2
s +

γ

δs
)−1

[(
1− γ

4σ2
sγ

μ2
s −

ρ+ λs
x+T−s

2
)yn1 + γ +

γ

δs
yn1 + abγ

yn2 − yn1
δr

].

• step 3: Given yn, start with the initial guess yn+1,1
i = sup(yni , g

n+1
i );

• step 4: In increasing i-indicial order, we calculate ŷn+1,2, its components are,

ŷn+1,2
i = (c1 +

γ

δs
+

riγσ
2
r

2δr2
)−1(−c1 × yni +

γ

δs
yni + γ

+ c2 × (yn+1,1
i+1 + yni+1 − yn+1,2

i−1 − yni−1)

+
riγσ

2
r

4δr2
× (yn+1,1

i+1 + yn+1,2
i−1 + yni+1 + yni−1 − 2yni )).
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and let

yn+1,2 = sup(yn+1,1 + ω(ŷn+1,2 − yn+1,1), gn+1) (2.84)

where the coefficients c1, c2 are

c1 = 0.5(ρ+ λs
x+T−sn−0.5ds − (1− γ)ri − 1− γ

2σ2
sγ

(μs − ri)
2);

c2 = (c3 + θ(μr − ri)γ +
1− γ

σ2
sγ

(μs − ri)ρrsσrσs

√
riγ)/4/dr;

c3 =
riσ

2
rγ(γ − 1)(yni+1 − yni−1)

4δryni
+

(1− γ)ρ2rsσ
2
rσ

2
sriγ

2(yni+1 − yni−1)

4σ2
sγδry

n
i

, if yni �= 0;

c3 = 0, if yni = 0.

• step 5: Test whether the error ||yn+1,2 − yn+1,1|| is small enough. If yes, put

yn+1,1 = yn+1,2, this is the solution we are seeking. Otherwise let yn+1,1 =

yn+1,2 and return to step 4.

2.6.3 Free Boundary Refining Method to Find the Free Boundary for

GM Mortality with Constrained Consumption after Annuitiza-

tion

In this section, we will illustrate an alternative way (we refer it as free boundary

refining method) to find the free boundary for GM mortality, i.e., for any fixed time

t, we need to find a critical interest rate, under which it is optimal to annuitize and

above which it is optimal not to annuitize. To achieve the specified goal, we need
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to find the value function V (t, w, r) in which it is optimal not to annuitize and the

annuitization function V a in which it it optimal to annuitize. Then we compare

them to find the original free boundary and check if their derivatives are equal. We

need to move this free boundary to the left and set the value functions equal on

the new point and then check the derivatives again until we obtain a point where

both value functions and their derivatives are equal.

If we assume the retiree does not annuitize at time t, the value function V (t, w, r)

is defined by

V (t, w, r) = sup
πs,cs,τ

E

[∫ τ

t

e−ρ(s−t)
s−tp

s
x+tu(cs) ds

]
. (2.85)

The HJB equation that V (t, w, r) must solve is

(ρ+ λx+t)V = Vt + sup
c,π

LV, (2.86)

where the second-order differential operator LV is defined by

LV = u(c) + (rw + (μs − r)π − c)Vw + θ(μr − r)Vr +
1
2
σ2
sπ

2Vww

+ 1
2
rσ2

rVrr + ρrsσrσsπ
√
rVwr.

(2.87)

Let V (t, w, r) = w1−γ

1−γ
h(t, r), h(t, r) = y(t, r)γ, ȳ(s, r) = y(t, r), where s = T − t. So

ȳ(s, r) satisfies the following equation

(ρ+ λs
x+T−s)ȳ + γȳs + Lȳ = 0, (2.88)
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Where Lȳ is defined as

Lȳ = −(1 − γ)rȳ − γ − θ(μr − r)γȳr − 1−γ
2σ2

sγ
(μs − r)2ȳ − 1

2
rσ2

rγ(γ − 1) ȳ
2
r

ȳ

−1
2
rγσ2

r ȳrr − 1−γ
2σ2

sγ
ρ2rsσ

2
rσ

2
srγ

2 ȳ
2
r

ȳ
− 1−γ

σ2
sγ
(μs − r)ρrsσrσs

√
rγȳr.

(2.89)

The boundary conditions for the above PDE are

r = rmax : ȳrr = 0;

r = 0 : (ρ+ λs
x+T−s)ȳ(s, 0)− 1−γ

2σ2
sγ
μ2
sȳ(s, 0) + γȳs(s, 0)− γ − θμrγȳr(s, 0) = 0.

(2.90)

These two boundary conditions have been used many times before and readers can

refer to Section 2.3 for its detailed explanation.

Now let’s look at the initial condition at s = 0 (t = T ). It is very complicated

so we must be cautious. Note the assumption that the hazard rate is constant in

domain [T,∞), therefore the value functions have nothing to do with time t if the

time term e−(ρ+λ)t is excluded. We will be able to find the critical interest rate r∗

and a time-independent function ȳ(r) using the same technique as we have applied

in Section 2.3. Please note that when r ≥ r∗, it is optimal not to annuitize, and

when r ≤ r∗, it is optimal to annuitize. So that the initial condition for ȳ(s, r) is

derived to be

ȳ(0, r) = e−
ρ+λ
γ

T ȳ(r). (2.91)

To solve the second-order nonlinear PDE of ȳ, the following quotients are applied
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for a second-order accuracy.

ȳ(sn+ 1
2
, ri) =

ȳn+1
i + ȳni

2
;

ȳs(sn+ 1
2
, ri) =

ȳn+1
i − ȳni

δs
;

ȳr(sn+ 1
2
, ri) =

ȳn+1
i+1 + ȳni+1 − ȳn+1

i−1 − ȳni−1

4δr
;

ȳrr(sn+ 1
2
, ri) =

ȳn+1
i+1 + ȳn+1

i−1 − 2ȳn+1
i + ȳni+1 + ȳni−1 − 2ȳni
2δr2

.

Substituting them into equation (2.88), we obtain

ȳn+1
i = (c1 +

γ
δs
+ riγσ2

r

2δr2
)−1{−c1 ∗ ȳni + c2 ∗ (ȳn+1

i+1 + ȳni+1 − ȳn+1
i−1 − ȳni−1)

+ γ
δs
ȳni + γ + riγσ2

r

4δr2
∗ (ȳn+1

i+1 + ȳn+1
i−1 + ȳni+1 + ȳni−1 − 2ȳni )},

(2.92)

in which c1 and c2 are given by

c1 = 0.5(ρ+ λs
x+T−s − (1− γ)ri − 1−γ

2σ2
sγ
(μs − ri)

2);

c2 = (c3 + θ(μr − ri)γ + 1−γ
σ2
sγ
(μs − ri)ρrsσrσs

√
riγ)/4/δr,

(2.93)

and where

c3 =

⎧⎪⎪⎨
⎪⎪⎩

riσ2
rγ(γ−1)(ȳni+1−ȳni−1)

4δrȳni
+

(1−γ)ρ2rsσ
2
rσ

2
sriγ

2(ȳni+1−ȳni−1)

4δrσ2
sγȳ

n
i

, if ȳni �= 0;

c3 = 0, if ȳni = 0.

(2.94)

This is reasonable because ȳ equals 0 if and only if at time s = 0 and the value ȳr
ȳ
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is very close to 0 at ȳ = 0.

s = 0 : ȳ1i = 0, i = 1, 2, · · · , I + 1;

r = rmax : ȳnI+1 + ȳnI−1 − 2ȳnI = 0 =⇒ ȳnI+1 = 2ȳnI − ȳnI−1; (2.95)

r = 0 : (
ρ+ λs

x+T−sn−0.5ds

2
− 1− γ

4σ2
sγ

μ2
s +

γ

δs
)ȳn+1

1

= (
1− γ

4σ2
sγ

μ2
s −

ρ+ λs
x+T−sn−0.5ds

2
)ȳn1 + γ +

γ

δs
ȳn1 + θμrγ

ȳn2 − ȳn1
δr

.

The annuitization function V a = w1−γ

1−γ
g(t, r), where g(t, r) is defined as

g(t, r) =
1

(āox+t)
1−γ

∫ ∞

t

e−ρ(s−t)e−
∫ s
t λs

x+tdvds. (2.96)

We make a transformation t = T − s, and define ḡ(s, r) = g(T − s, r) to compare

it with ȳ.

2.6.4 Strategies to Find the Free Boundary

The hazard rate is assumed to follow a modified GM mortality.

λx+t =

⎧⎪⎪⎨
⎪⎪⎩

1
b
e

x+t−m
b , if t < tmax

λx+tmax , if t ≥ tmax.

(2.97)

This is a reasonable assumption because when t ≥ tmax, the mortality rate is

very large, which means that the probability of surviving to that age is negligible.

Therefore, the constant force of mortality after tmax is resonable.

To compute the free boundary, the first step is to calculate the terminal con-

dition at t = tmax (the initial condition at s = 0). Due to the mortality assump-
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tion, we can calculate the value of ȳ by the same method as before. Note that

ȳ(s, r) = e−
ρ+λ
γ

(T−s)ỹ(r).

Suppose we have known the free boundary at time level s(n). How can we

obtain the free boundary at time level s(n + 1)? First, we calculate y(n + 1, :)

by the projected SOR method using y(n, :), and obtain Vn(n + 1, :). Second, we

compare Vn(n + 1, :) and V a(n + 1, :) to see if there exists an r∗, in which we

have Vn(n+ 1, r∗) = V a(n + 1, r∗). If yes, we then compare their derivatives w.r.t.

time t. If their derivatives are equal, then r∗ is the free boundary we are looking

for. Otherwise, move r∗ leftward, and repeat the above procedure by replacing the

boundary condition at the new point r∗ to be V a.
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3 Optimal Annuitization Timing and Optimal

Consumption

3.1 Introduction

In this chapter, we investigate the annuitization problem for a retired individual

whose objective is to maximize his/her lifetime utility after retirement with the

optimal consumption strategy, instead of what we have done in the previous chapter,

where we assumed that the consumption rate is equal to the annuity payout. We

also assume that this individual only has initial wealth in the form of a lump sum

cash amount, and does not come pre-annuitized with a pre-existing pension or

social security and has no remaining lifetime income. To calculate the optimal

consumption rate, we assume that this rate is a fraction (αt) of the annuity income

At, and the remainder (1 − αt)At is used to purchase more annuities at each time

t without management fees. Two different mortality models, exponential and GM

mortality, are calibrated to study the optimal control problem in a similar way as
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what we have done in the previous chapter.

The rest of this chapter is organized as follows. Section 3.2 studies the optimal

control problem under exponential mortality for both constant and stochastic inter-

est rates. In section 3.3 GM mortality under stochastic interest rate is investigated

to see its effect on the value function. Finally, conclusions are addressed in section

3.4.

3.2 Model Calibration 1: Exponential Mortality

In this section, the force of mortality is assumed to be constant λ, which allows us

to find the analytic solutions of the value functions V a and V n with much greater

ease. Comparison of the two value functions shows us that it is always optimal to

annuitize no matter what the interest rates are, which differs from the numerical

results we have obtained in the previous chapter. The reason lies in the fact that the

optimal consumption strategy has been executed, which leads to the value function

V a to be much higher than the previous one with full annuity income consumption.

Next we document this optimal control problem for two different types of interest

rates (constant and stochastic) to obtain the optimal annuitization strategy for the

retired individual.
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3.2.1 Constant Interest Rates

In this subsection, we study the annuitization problem for an idealized interest rate

case, i.e., constant, which means that the return of the riskless asset is invariant

over time. It is known that when the force of mortality is constant, the associated

value function is independent of time with full consumption after annuitization,

but this is not true under the optimal consumption strategy any more because this

strategy depends on time. Since the purpose of this section is to gain useful insight

into the optimal annuitization strategy, it is enough to investigate our problem at

time zero (age x) for simplicity. Next we will study the two value functions, with

and without annuitization (V a and V n), and compare them to obtain the optimal

annuitization strategy at time 0.

• The value function with annuitization under the optimal consump-

tion strategy

The purpose of this subsection is to find out the optimal consumption strategy

at retirement applying the calculus of variations (CV) method if the individ-

ual chooses to annuitize at time zero, and then obtain the closed-form solution

of the associated value function (see appendix 3.5.1 for the consistency veri-

fication using dynamic programming techniques).

First we look at the discounted lifetime utility of consumption the retiree is
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seeking to maximize, which is defined as

V (w) = sup
ct

∫ ∞

0

e−(ρ+λ)tu(ct)dt, (3.1)

in which ρ is the subjective discount factor, λ is the constant force of mortality

and ct is the consumption rate. Notice that the mortality rate is high when

individuals are getting older, all people will die after some time T . Therefore

we will consider a finite domain [0, T ] since the integral of the value function

from T to ∞ is zero. We first look at this value function with annuitization

(denoted as V a) at age x under the optimal consumption strategy. We assume

that the consumption rate is a fraction (0 ≤ αt ≤ 1) of the annuity income

At, i.e.,

ct = αtAt, (3.2)

where αt is time varying. Note At is the only annuity income after annuitiza-

tion because there is no pre-existing pension or social security. The remainder

(1 − αt)At is used to purchase more annuities, so At satisfies the following

first-order linear ordinary differential equation (ODE)

dAt

dt
=

(1− αt)At

āx+t
, (3.3)

in which āx+t is the actuarial annuity factor at time t, i.e., age x + t. This

annuity factor is a constant ( 1
λ+r

) when both interest rates and the force
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of mortality are constant. To apply the CV method to obtain the optimal

consumption strategy, we rewrite the above ODE of At as

αtAt = At − Ȧt

λ+ r
. (3.4)

Here the dot denotes the derivative with respect to time t. Substitute into

the discounted lifetime utility function (3.1), then V becomes a function of

At, and it takes the following form

V a(At) =

∫ T

0

e−(ρ+λ)tu(At − Ȧt

λ+ r
)dt. (3.5)

Let φ(t, At, Ȧt) = e−(ρ+λ)tu(At− Ȧt

λ+r
), we see that φ is a functional of function

At. Next we seek to find a particular path At from time zero to T so that the

integral reaches its maximum value. First we add a perturbation δAt to At

and expand V a using Taylor expansion

V a(At + δAt) =

∫ T

0

e−(ρ+λ)tu(At + δAt − Ȧt + ˙δAt

λ+ r
)dt

=

∫ T

0

(φ(t, At, Ȧt) +
∂φ

∂At
δAt +

∂φ

∂Ȧt

δȦt +O(δAt))dt, (3.6)

in which notation O(δAt) means higher order with respect to δAt, i.e., it goes

to zero faster than δAt as δAt approaches zero. Therefore, we have

V a(At + δAt)− V a(At) =

∫ T

0

(
∂φ

∂At
δAt +

∂φ

∂Ȧt

δȦt +O(δAt))dt. (3.7)
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Applying integration by parts, we obtain

V a(At + δAt)− V a(At) =

∫ T

0

(
∂φ

∂At

δAt − d

dt

∂φ

∂Ȧt

δAt +O(δAt))dt+
∂φ

∂Ȧt

δAt|T0 .

(3.8)

Since A0 is given, δA0 = 0. So we have

V a(At+δAt)−V a(At) =

∫ T

0

(
∂φ

∂At
δAt− d

dt

∂φ

∂Ȧt

δAt+O(δAt))dt+
∂φ

∂Ȧt

|t=T δAT .

(3.9)

The assumption of no bequest motives leads to zero wealth at the horizon,

so the fraction of consumption is 100% at time T , meaning that there is

no annuity income left to purchase more annuities. Therefore the boundary

condition becomes dAt

dt
|t=T = 0. So we have

∂φ

∂Ȧt

|t=T = (−e−(ρ+λ)t

λ+ r
(At − Ȧt

λ+ r
))−γ |t=T . (3.10)

This term approaches zero since ρ and λ are both positive numbers, and AT

is bounded. Therefore the necessary condition for the integral to reach its

maximum is given by the Euler-Lagrange equation

d

dt
(At − Ȧt

λ+ r
) =

r − ρ

γ
(At − Ȧt

λ+ r
). (3.11)

After some mathematical manipulation, At must satisfy the following second-

order linear homogenous differential equation over the values for which At �= 0.

Ät − (
r − ρ

γ
+ λ+ r)Ȧt +

r − ρ

γ
(λ+ r)At = 0 (3.12)
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in domain [0, T ]. The coefficients in this equation are time independent and

the method of undetermined coefficients can be used to find the general so-

lution. Note that the two roots of the characteristic equation

z2 − (
r − ρ

γ
+ λ+ r)z +

r − ρ

γ
(λ+ r) = 0 (3.13)

are r−ρ
γ

and λ+ r, so the general solution to ODE (3.12) is

At = k1e
r−ρ
γ

t + k2e
(λ+r)t. (3.14)

To obtain the analytic solution for At, we impose the terminal boundary

condition at a large enough time T to be ∂At

∂t
|t=T = 0. This is reasonable

because people die at a finite age and the integral for the value function after

T is neglectable. To solve the two free constants k1 and k2, we apply the

initial condition A0 (known). In mathematics, we have⎧⎪⎪⎨
⎪⎪⎩

k1 + k2 = A0,

k1
r−ρ
γ
e(

r−ρ
γ

)T + k2(λ+ r)e(λ+r)T = 0.

(3.15)

After some algebraic manipulations, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1 =
A0γ(λ+r)e(λ+r)T

γ(λ+r)e(λ+r)T−(r−ρ)e
r−ρ
γ T

,

k2 =
A0(ρ−r)e

r−ρ
γ T

γ(λ+r)e(λ+r)T−(r−ρ)e
r−ρ
γ T

.

(3.16)

Then the fraction of consumption rate αt is deterministic and given by

αt =
γ(λ+ r) + ρ− r

γ(λ+ r) + (ρ− r)e(λ+r− r−ρ
γ

)(t−T )
. (3.17)
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It can be easily observed that αt is a monotonic function of time t. After ap-

plying the constrain 0 ≤ αt ≤ 1, we obtain the optimal consumption strategy

α�
t for the retiree for γ ≥ 1

α�
t =

⎧⎪⎪⎨
⎪⎪⎩

1, r ∈ (0, ρ],

γ(λ+r)+ρ−r

γ(λ+r)+(ρ−r)e
(λ+r− r−ρ

γ )(t−T )
, r ∈ [ρ,∞).

(3.18)

We see that when the interest rate is less than the subjective discount factor,

it is optimal to consume all the annuity income. When the interest rate is

greater than the subjective discount factor, it is optimal to consume part

of the annuity income depending on time t. This consumption ratio is an

increasing function of time t, i.e., it gradually increases to 100 percent upon

the decease of the individual. This optimal strategy is consistent with the case

in which the consumption ratio αt is constant, which is left in the appendix.

Intuitively, it is possible that αt will hit 1 when t = t� < T and then stay over

the interval [t�, T ]. Below we prove that this scenario will never happen in

practice. To this end, we take t� as a parameter, compute the corresponding

value function V a(t�) for t� ∈ [0, T ] and then find that the critical value of

V a always occurs at time t = T through first-order condition.

First, we write the value function V a as a function of t�,

V a(t�) = sup
αt

E

[∫ t	

0

e−(ρ+λ)tu(αtAt)dt+

∫ T

t	
e−(ρ+λ)tu(At	)dt)

]
. (3.19)
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Note that the consumption ratio αt is always equal to 1 over the last time

period t ∈ [t�, T ], which means that the annuity income will not change in

this time interval. Hence we have the following expression for At⎧⎪⎪⎪⎨
⎪⎪⎪⎩

At − Ȧt

λ+r
= A0(γ(λ+r)−r+ρ)e(λ+r)t	e

r−ρ
γ t

γ(λ+r)e(λ+r)t	+(ρ−r)e
r−ρ
γ t	

, t ∈ [0, t�],

At =
A0(γ(λ+r)−r+ρ)e

r−ρ
γ t	

e(λ+r)t	

γ(λ+r)e(λ+r)t	+(ρ−r)e
r−ρ
γ t	

, t ∈ [t�, T ].

(3.20)

Substituting them into equation (3.19), we have

V a(t�) = − A1−γ
0 (γ(λ+r)−r+ρ)1−γe(1−γ)(λ+r)t	

(1−γ)(γ(λ+r)e(λ+r)t	+(ρ−r)e
r−ρ
γ t	

)1−γ
×

( e
−(λ+(1− 1

γ )r+ 1
γ ρ)t	−1

λ+(1− 1
γ
)r+ 1

γ
ρ

+ (e−(ρ+λ)T−e−(ρ+λ)t	)e
( 1γ −1)(r−ρ)t	

ρ+λ
).

(3.21)

conditional on λ+ r + 1
γ
(ρ− r) > 0. Denote M(t�) to be

M(t�) =
1

γ − 1
(
e−(λ+(1− 1

γ
)r+ 1

γ
ρ)t	 − 1

λ+ (1− 1
γ
)r + 1

γ
ρ

+
(e−(ρ+λ)T − e−(ρ+λ)t	)e(

1
γ
−1)(r−ρ)t	

ρ+ λ
),

(3.22)

then V a(t�) can be written as

V a(t�) =
A1−γ

0 (γ(λ+ r)− r + ρ)1−γ

(γ(λ+ r) + (ρ− r)e(
r−ρ
γ

−λ−r)t	)1−γ
M(t�). (3.23)

Note that the fraction before M(t�) is a monotonically increasing function of

t� for γ > 1, it must attain its maximum value at time t = T . Below we will

verify that the maximum value of M(t�) also occurs at time t = T . To this

end, we write the first derivative of M(t�) with respect to t� as

∂M(t	)
∂t	

= 1
γ−1

( 1
γ
−1)(r−ρ)

ρ+λ
e(

1
γ
−1)(r−ρ)t	(e−(ρ+λ)T − e−(ρ+λ)t	)

= ρ−r
γ(ρ+λ)

e(
1
γ
−1)(r−ρ)t	(e−(ρ+λ)T − e−(ρ+λ)t	).

(3.24)
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No matter whether the interest rate r is greater or less than the subjective

factor ρ, the term ρ−r
γ(ρ+λ)

e(
1
γ
−1)(r−ρ)t	 is an increasing function of t�, therefore

the maximum value of M(t�) is attained at time t� = T by its first-order

condition. This is equivalent to saying that αt = 1 before T is not optimal.

Therefore, the closed-form solution for the value function V a for γ ≥ 1 can

be written as

V a =

⎧⎪⎪⎨
⎪⎪⎩

u( w
āx(0,r)

)āx(0, ρ), r ∈ (0, ρ],

− w1−γ(λ+r)1−γ (γ(λ+r)−r+ρ)1−γ

(1−γ)(γ(λ+r)+(ρ−r)e
(
r−ρ
γ −λ−r)T

)1−γ
( e

−(λ+(1− 1
γ )r+1

γ ρ)T−1
λ+(1− 1

γ
)r+ 1

γ
ρ

), r ∈ [ρ,∞).

(3.25)

This is due to the fact that in domain (0, ρ], the optimal consumption strategy

is αt ≡ 1, so the value function V a is obtained from section 2.3.1.1 in chapter

2.

• Optimal annuitization strategy

In this section, we compare the two value functions V a and V n to achieve

the optimal annuitization strategy at retirement for γ greater than 1. The

analytic solution of V a for T = ∞ (assuming λ + r > r−ρ
γ
) can be simplified

to

V a =

⎧⎪⎪⎨
⎪⎪⎩

u( w
āx(0,r)

)āx(0, ρ), r ∈ (0, ρ],

w1−γγγ

(1−γ)(γ(λ+r)+ρ−r)γ
, r ∈ [ρ,∞).

(3.26)

The analytic solution for the value function without annuitization, V n, for
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T = ∞ is introduced back in section 2.3.1.1 in chapter 2, and takes the

following form

V n(w) =
w1−γ

(1− γ)

1

(ρ+λ+(γ−1)η
γ

)γ
, γ �= 1.

Figure 3.1 and Figure 3.2 display the comparison of V n and V a for force of

mortality λ = 0.05 for γ = 2 and γ = 3 respectively, in which V a
optimal is

the value function with optimal consumption, V a is the value function with

full consumption after annuitization, and V n is the value function without

optimal consumption. We see that all the values of V a
optimal are greater than

that of V a, which is due to the fact that consuming all the annuity income

is not always the optimal consumption strategy. It can also be observed

that V a
optimal is always greater than V n, meaning that it is always optimal to

annuitize no matter what the current interest rate is. This is different from the

numerical results we have obtained in Chapter 2, in which the consumption

strategy after annuitization is not optimal. Therefore we recommend the

retiree to buy annuities immediately if he/she doesn’t have bequest motives

and his/her force of mortality is a constant 0.05 based on the assumption of

no loading fees.

Now we have completed the analysis of the optimal consumption and annu-

itization strategies for the retired individual whose objective is to maximize
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Figure 3.1: Value Function Comparison for γ = 2
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Figure 3.2: Value Function Comparison for γ = 3
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his/her lifetime utility from retirement to time of decease in the case of con-

stant interest rates. In the next section, we will investigate the same problem

under more realistic interest rate model.

3.2.2 Stochastic Interest Rates

In the previous section, we showed that it is always optimal to annuitize for the

retired individual under exponential mortality no matter what the interest rates

are (constant) without bequest motives and loading fees. In this section we study

the same optimal annuitization problem under stochastic short rate models. To

this end, we look at the two value functions V a and V n and then compare them to

obtain the optimal annuitization strategy at time 0, i.e., age x.

• The value function with annuitization under optimal consumption

In this section, we investigate the optimal fraction of consumption α under

exponential mortality rate and stochastic interest rates, which is a function of

time t and interest rate r. The discounted utility function (with annuitization)

the retiree is seeking to maximize is defined as

V a = sup
ct

E

[∫ ∞

0

e−(ρ+λ)tu(ct)dt

]
, (3.27)

where the consumption rate ct is assumed to be part of the annuity income,

i.e., ct = αA, and Ȧ = (1−α)A
āx+t

as before. The stochastic interest rate model
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we applied in this section is still a one-factor CIR interest rate model. We

write it here again for convenience’s sake.

dRt = θ(μr −Rt)dt+ σr

√
RtdB

r
t . (3.28)

Note that the annuity income A depends not only on time, but also on the

interest rate due to the fact that r is a state variable when the interest rate

is stochastic. The calculus of variations method is not applicable in this sce-

nario due to the stochastic term of the interest rate, so dynamic programming

techniques are applied to obtain the HJB equation that V a must solve. Specif-

ically, we rewrite V a as a function of time t, annuity income A and interest

rate r as below

V (t, A, r) = sup
ct

E

[∫ ∞

t

e−(ρ+λ)su(cs)ds

]
. (3.29)

Similarly, we will consider the value function in a limited time domain [0, T ]

since people will die in a finite time and the utility function is zero after that.

After applying Bellman’s optimality principle and Ito’s lemma, we obtain the

following nonlinear HJB equation

Vt + θ(μr − r)Vr +
1

2
rσ2

rVrr + sup
α
[e−(ρ+λ)tu(αA) + VA

(1− α)A

āx+t

] = 0. (3.30)

Note that the consumption strategy α is not only a function of time t, but

also a function of interest rate r. Notation āx+t is the annuity factor at time
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t, i.e., age x+ t, which is defined by

āx+t(t, r) = E

[∫ ∞

t

e−
∫ s
t (Rv+λ)dvds

]
. (3.31)

If we use a transformation s = z + t, then we have

āx+t(t, r) = E

[∫ ∞

0

e−λze−
∫ t+z
t Rvdv

]
=

∫ ∞

0

e−λzA(t, t + z)e−B(t,t+z)Rtdz.

(3.32)

Since A(t, t+ z) and B(t, t+ z) are independent of time t, the annuity factor

āx+t(t, r) depends only on interest rate. If the value function takes the power

form V = A1−γ

1−γ
h(t, r), then the optimal consumption strategy α� is given by

the first-order condition

α� = (eρt+λth(t, r)

āx+t
)−

1
γ . (3.33)

Substituting the expressions of V and α� into the HJB equation (3.30), we

obtain the following PDE that h(t, r) must solve

ht + θ(μr − r)hr +
1

2
rσ2

rhrr +
1− γ

āx+t
h + γā

1
γ
−1

x+t e
− ρ+λ

γ
th1− 1

γ = 0. (3.34)

To solve this PDE numerically, the computational domain is truncated to

be (t, r) ∈ [0, T ] × [0, rmax], where T is the maximum life expectancy of the

individual minus his/her current age x, and rmax is the maximum interest rate

that the riskless asset can attain. Terminal and boundary conditions imposed
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on this PDE are⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t = T : h(T, r) = āx+T e
−ρT−λT ,

r = 0 : ht + θμrhr +
1−γ
āx+t

h + γā
1
γ
−1

x+t e
− ρ+λ

γ
th1− 1

γ = 0,

r = rmax : hrr = 0.

(3.35)

The explanation for the terminal condition is due to that the consumption

ratio is 1 at t = T . The boundary condition at r = 0 is obtained by setting

r = 0 on both sides of the PDE (3.34). The Neumann boundary condition

at r = rmax is imposed on the observation that the second-order derivation

at this point is close to zero for constant interest rates. To obtain non-zero

solutions for h(t, r), we make a transformation h(t, r) = y(t, r)γ, and reach

the following PDE for y(t, r).

yt +
1− γ

γāx+t
y + ā

1
γ
−1

x+t e
− (ρ+λ)t

γ + θ(μr − r)yr +
1

2
rσ2

r(yrr +
γ − 1

y
y2r) = 0. (3.36)

Let y(t, r) = e−
(ρ+λ)t

γ ỹ(t, r), and substitute it into equation (3.56), we have

ỹt + (
1− γ

γāx+t
− ρ+ λ

γ
)ỹ + (θ(μr − r) +

1

2
rσ2

r

γ − 1

ỹ
ỹr)ỹr +

1

2
rσ2

r ỹrr + ā
1
γ
−1

x+t = 0.

(3.37)

The corresponding terminal and boundary conditions become

t = T : ỹ(T, r) = ā
1
γ

x+T ,

r = 0 : ỹt + ( 1−γ
γāx+t

− ρ+λ
γ
)ỹ + θμrỹr + ā

1
γ
−1

x+t = 0,

r = rmax : ỹrr = 0.

(3.38)
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We then solve the equation system (3.37) and (3.38) by finite difference

method. After solving this equation system, the optimal consumption strat-

egy α can be recovered from the equation (3.33).

Now we are ready to compute the annuitization value function V a numerically.

To this end, we first look at the annuity income As at time s, which satisfies

the following ODE

dAs

ds
=

(1− αs)As

āx+s
. (3.39)

Integrating it from time zero to time t, we have

∫ t

0

dAs

As

=

∫ t

0

1− αs

āx+s

ds. (3.40)

After some mathematical manipulations, we obtain the following solution

At = A0e
∫ t
0

1−αs
āx+s

ds
, (3.41)

in which A0 is the annuity payout at time zero (age x), which is equal to the

initial wealth w divided by the actuarial annuity factor at time zero. The

value function with annuitization can be computed through formula V a =

A1−γ
t

1−γ
h(t, r) for all t and r.

• The value function without annuitization

If the retiree does not annuitize at time t, the value function is defined as

V n(t, w, r) = sup
cs

E

[∫ ∞

t

e−(ρ+λ)su(cs)ds

]
. (3.42)

106



The HJB equation that V n satisfies and its solution can be obtained by ap-

plying the same procedure as in Section 2.3.2.2 in Chapter 2, which is omitted

here for simplicity.

Note that V n is still independent of time t if the exponential power term

e−(ρ+λ)t is excluded, while V a does not share the same property with optimal

consumption after annuitization. For each fixed time t, we compare V a and

V n to find the initial free boundary, and if the free boundary does exist, we

move it, applying the same method as in Section 2.3.2.2 in Chapter 2 to obtain

the final free boundary. This free boundary problem can also be solved by

converting the corresponding HJB equation into an equivalent LCP problem,

applying the projected SOR method to solve the PDE the value function must

solve, and then obtaining the optimal consumption strategy and the optimal

annuitization strategy by comparing the value function with its lower bound

as before. The numerical results show us that the two methods agree.

• The optimal consumption strategy α

When the interest rate is stochastic, the analytic optimal consumption ratio

α is not available due to the complexity of the PDE that h̃ must solve. From

our previous analysis, we have known that both V a and V n are independent

of time t, therefore, the optimal annuitization strategy is independent of t

107



Figure 3.3: The Optimal Consumption Strategy Comparison at t = 0
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When the speed of adjustment θ equals 0, and the volatility σr equals 0, stochastic interest

rates collapse to constant interest rates. Therefore, the optimal consumption strategies for both

stochastic and constant interest rates should agree. This figures compares these two optimal

consumption strategies, and the absolute maximum difference is 0.0077.
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Figure 3.4: Optimal Consumption Strategies for Stochastic Interest Rates
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The figure shows two random paths for the optimal consumption strategy for stochastic

interest rates using Monte Carlo simulations for parameters γ = 2, ρ = 0.02, θ = 0.25,

μr = 0.06, σr = 0.1, with initial interest rate r(0) = 0.06.
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too. To verify our numerics for stochastic interest rates are correct, Figure 3.3

displays the optimal consumption strategies under stochastic interest rates for

θ = 0, σr = 0 and constant interest rates as a function of r at time t = 0. We

see that the optimal consumption strategies under two different interest rates

models match very well, which gives us confidence that our numerics are good.

Figure 3.4 shows two random paths for the optimal consumption strategy for

stochastic interest rates using Monte Carlo simulations for parameters γ = 2,

ρ = 0.02, θ = 0.25, μr = 0.06, σr = 0.1, with initial interest rate r(0) = 0.06.

Since the interest rate is stochastic, it has many random paths, which leads

to different optimal consumption strategies. At any given age, the optimal

consumption strategy αt depends on the spot interest rate realized. It is not

an increasing function of time t as for the constant interest rate scenario.

• The Optimal Annuitization Strategy

In this section, we first compare the value functions under stochastic interest

rates for θ = 0 and σr = 0 with those of constant interest rates at time 0.

It shows that the value functions for them agree very well, which gives us

confidence that our numerics are good. We then move on to finish the free

boundary seeking procedure for each fixed time t from time zero to T using

free boundary refining method. This method and the LCP method both show

us that it is always optimal to annuitize no matter what the current interest

110



rate is for γ = 2 under optimal consumption strategy with continuous annuity

purchasing, which is consistent with our previous results for constant interest

rates.

Next we investigate the stochastic interest rates case, in which the adjust

speed θ and interest rate volatility σr are both positive (0.25, 0.10). Figure

3.5 displays the value functions comparison at time zero, i.e., age x. We

see that the annuitization value function V a with optimal consumption is

always above the non-annuitization value function V n, meaning no annuitiza-

tion boundaries exist, and the value function V a with full consumption after

annuitization intersects V n, meaning free boundaries exist in this scenario. It

turns out that no annuitization boundaries exist for any time level tn, and it

is always optimal to annuitize for any current interest rate. In other words, if

one wants to shift consumption to later years and can rebalance his annuities

continuously, he will gain higher income later.

3.2.3 Concluding Remarks

In this section, we have documented the optimal consumption and annuitization

strategies for a utility maximizer with exponential mortality rate for constant and

stochastic interest rates. The optimal consumption ratio for stochastic interest

rates is a little bit greater than that of constant interest rate, while the optimal
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Figure 3.5: Value Functions Comparison for γ = 3 Using the LCP Method
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This figure compares the annuitization value functions under optimal and constrained consump-

tion strategies and the non-annuitization value function V n at time 0. We can observe that no

annuitization boundary exists when the consumption strategy is optimized.
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annuitization strategy is always the same, i.e., it is always optimal to annuitize

no matter what the interest rate is under the assumption of no-bequest, no-loading

fees. This is due to the fact that when one sacrifices some of his/her annuity income

now, he/she will gain a higher income later, which adds more utilities to the value

function.

Although the mathematical simplification of the mortality rate (exponential)

makes us to find the solutions with much greater ease, it has the disadvantage of

memory-less. To overcome this flaw, we will investigate the same optimal control

problem by relaxing the mortality to be GM mortality because it is widely accepted

and applied in the insurance and finance literature.

3.3 Model Calibration 2: Gompertz Mortality

In this section, we discuss the optimal consumption and annuitization strategies for

a retired individual whose objective is to maximize his/her lifetime consumption

utility under the following modified GM mortality rate as in Section 2.4 in Chapter

2.

λx+t =

⎧⎪⎪⎨
⎪⎪⎩

1
b
e

x+t−m
b , t ≤ T,

λx+T , t ≥ T,

(3.43)

This modified GM mortality enables us to apply the non-zero terminal condition

at time t = T , which can be computed in domain [T,∞] by applying the same
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mathematical techniques for constant force of mortality as in the previous section.

In mathematics, the associated value function the individual is seeking to max-

imize is defined as

V (t, w, r) = sup
πs,cs,τ

E

[∫ τ

t

e−ρ(s−t)
s−tpx+tu(cs) ds

+

∫ ∞

τ

e−ρ(s−t)
s−tpx+tu

(
Wτ

āx+τ (τ, Rτ )

)
ds

∣∣∣∣Wt = w,Rt = r

]
. (3.44)

This is exactly the same value function as in Section 2.4.1 in Chapter 2. Simi-

larly, this annuitization problem is a free boundary problem and its mathematical

statement is given by

(ρ+ λx+t)V − Vt − LV > 0, V (t, w, r) = J(t, w, r) (3.45)

for 0 < r < r∗(t) (optimal not to annuitize),

(ρ+ λx+t)V − Vt − LV = 0, V (t, w, r) > J(t, w, r) (3.46)

for r∗(t) < r < ∞ (optimal to annuitize), in which LV is introduced back in

equation (2.48). Note that in domain r ∈ [0, r∗(t)], it is optimal not to annuitize,

and in domain r ∈ [r∗(t),∞], it is optimal to annuitize, which is different than the

free boundary problem stated in Chapter 2. This statement is motivated from the

observation that it is always optimal to annuitize for stochastic interest rates under

exponential mortality.
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If we postulate that V (t, w, r) = w1−γ

1−γ
h(t, r), h(t, r) = y(t, r)γ, ỹ(t, r) = −y(t, r),

then the above free boundary problem is equivalent to

(ρ+ λx+t)ỹ − γỹt + Lỹ > 0, ỹ(t, r) = −g
1
γ (t, r) (3.47)

for 0 < r < r∗(s),

(ρ+ λx+t)ỹ − γỹt + Lỹ = 0, ỹ(t, r) > −g
1
γ (t, r) (3.48)

for r∗(s) < r < ∞.

There are two different ways to solve this free boundary problem. The first way

is to convert it to an equivalent LCP problem and then solve it by the projected

SOR method. The second way is to compare V to the annuitization value function

(J below) to obtain the initial free boundary, and then move it to achieve the final

free boundary where both value functions and their derivatives are equal. Either

way, we need to look at the annuitization value function first. In the next section,

we will use dynamic programming techniques to study this annuitization value

function.

3.3.1 The Annuitization Value Function Under Stochastic Interest Rates

If the individual annuitizes at time t, the expected utility of discounted lifetime

consumption over admissible control αt that he/she is seeking to maximize is given
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by the following definition

J(t, At, Rt) = sup
αs

E

[∫ ∞

t

e−
∫ s
0 (ρ+λx+v)dvu(αsAs)ds|At = A,Rt = r

]
, (3.49)

where the consumption rate is assumed to be a fraction (0 ≤ αt ≤ 1) of the annuity

income At as before, and the stochastic interest rate Rt follows the CIR process

introduced back in equation (2.3). So the annuity factor can be computed through

the zero-coupon bond PB(t, s, Rt) with maturity s

āx+t(t, Rt) =

∫ ∞

t

PB(t, s, Rt)( s−tpx+t )ds. (3.50)

We assume that the individual can purchase the annuity at the actuarial fair price

āx+t per dollar of annuity income at time t and we have dAt

dt
= (1−αt)At

āx+t
. So the HJB

equation that J(t, A, r) must satisfy can be derived as

Jt + θ(μr − r)Jr +
1

2
rσ2

rJrr + sup
α
[e−ρt−∫ t

0
λx+vdvu(αA) + JA

(1− α)A

āx+t

] = 0. (3.51)

The optimal consumption strategy α� is given by the first-order condition

α� =
( JA
āx+t

eρt+
∫ t
0 λx+vdv)−

1
γ

A
. (3.52)

Motivated by the CRRA utility function, we postulate that J takes the similar

power form as J = A1−γ

1−γ
h(t, r), then the above optimal consumption ratio becomes

α� = (
h(t, r)

āx+t
eρt+

∫ t
0 λx+vdv)−

1
γ , (3.53)
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and the HJB equation (3.51) collapses to the following partial differential equation

for function h(t, r).

ht + θ(μr − r)hr +
1

2
rσ2

rhrr +
1− γ

āx+t
h + γā

1
γ
−1

x+t e
− ρt+

∫ t
0 λx+vdv

γ h1− 1
γ = 0. (3.54)

To solve this PDE, we impose the following terminal and boundary conditions

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t = T : h(T, r) = āx+T e
−ρT−∫ T

0 λx+vdv,

r = 0 : ht + θμrhr +
1−γ
āx+t

h + γā
1
γ
−1

x+t e
− ρt+

∫ t
0 λx+vdv

γ h1− 1
γ = 0,

r = rmax : hrr = 0,

(3.55)

The explanation for conditions r = 0 and r = rmax are similar to the scenario when

λ is constant and r is stochastic. The reason for boundary condition at t = T is

due to the fact that the optimal consumption strategy in domain [T,∞) where the

mortality is constant is always 1.

To obtain non-zero solutions for h(t, r), we make a transformation h(t, r) =

y(t, r)γ, and substitute it into equation (3.54), then we achieve the following PDE

for y(t, r).

yt +
1− γ

γāx+t
y + ā

1
γ
−1

x+t e
− ρt+

∫ t
0 λx+vdv

γ + θ(μr − r)yr +
1

2
rσ2

r(yrr +
γ − 1

y
y2r) = 0. (3.56)

Let y(t, r) = e−
ρt+

∫ t
0 λx+vdv

γ ỹ(t, r), and substitute it into equation (3.56), we have

ỹt+(
1− γ

γāx+t
− ρ+ λx+t

γ
)ỹ+(θ(μr−r)+

1

2
rσ2

r

γ − 1

ỹ
ỹr)ỹr+

1

2
rσ2

r ỹrr+ā
1
γ
−1

x+t = 0. (3.57)
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The corresponding terminal and boundary conditions become⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t = T : ỹ(T, r) = ā
1
γ

x+T ,

r = 0 : ỹt + ( 1−γ
γāx+t

− ρ+λx+t

γ
)ỹ + θμrỹr + ā

1
γ
−1

x+t = 0,

r = rmax : ỹrr = 0.

(3.58)

We then solve the equation system (3.57) and (3.58) by finite difference method.

After solving this equation system, the optimal consumption strategy α� can be

recovered from equation (3.53).

To compute the value function with annuitization J numerically, we first look

at the annuity income As at time s, which satisfies the following ODE

dAs

ds
=

(1− αs)As

āx+s
. (3.59)

Integrating it from time zero to t, we have

∫ t

0

dAs

As
=

∫ t

0

1− αs

āx+s
ds. (3.60)

After some mathematical manipulations, we obtain the following expression

At = A0e
∫ t
0

1−αs
āx+s

ds
, (3.61)

in which A0 is the annuity payout at time zero (age x), which is equal to the

initial wealth w divided by the actuarial annuity factor. Then the annuitization

value function J can be calculated via equation J = A1−γ

1−γ
h(t, r) for any time t and

interest rate r.
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3.3.2 The Optimal Consumption Strategy

In this subsection, we carry out a convergence analysis of our numerical algo-

rithm first. Three different experiments with different time and interest step sizes

([0.1, 0.008], [0.05, 0.004], [0.025, 0.002]) are performed, and the convergence rate,

which is the logarithm of two immediate quotients of the L2 norms, turns out to be

1. Therefore our algorithm converges to the exact solution as step sizes go to zero.

The following optimal consumption comparison further verifies this fact.

When the interest rate is stochastic, the optimal consumption strategy αt is

not only a function of time t, but also a function of interest rate r. To compare

this optimal consumption strategy with the scenario in which the interest rate is

constant, we choose a special interest rate r = μr, since when θ = 0 and σr = 0, the

stochastic interest rate collapses to a constant. Then the optimal consumption ratio

αt is a function of time t, and it should agree with the case in which r is constant.

Figure 3.6 displays this comparison for γ = 2 for both stochastic and constant

interest rates, in which the CV method and the dynamic programming techniques

are applied to calculate αt for constant interest (see appendix for its derivation). We

can see that αt agrees very well, meaning that our numerics are good. Now we move

on to compute the optimal consumption strategy α for stochastic interest rates.

Figure 3.7 plots α as a function of time t and interest rate r for CIR parameters
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Figure 3.6: αt Comparison for Different Interest Rate Models: γ = 2
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When the speed of adjustment θ and volatility σr are both 0, stochastic interest rates collapse to

constant interest rates. Hence the optimal consumption strategies should agree with each other.

This figure verifies this argument for Gompertz mortality.
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Figure 3.7: Optimal Consumption Strategy α for θ = 0.25, μr = 0.06, σr = 0.1

This figure plots the optimal consumption strategy α as a function of time t and interest rate r for

Gompertz mortality. When the individual sacrifices some of the annuity income now, in return

he/she will be able to consume more later.
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θ = 0.25, μr = 0.06, σr = 0.1, GM parameters m = 88.15, b = 10.5, γ = 2 and

ρ = 0.02. We see that for any fixed interest rate, α is an increasing function of

time t. For any fixed time t, α is a decreasing function of interest rate r, which is

intuitively pleasant. The annuity income is also an increasing function of time t,

which means that when the individual sacrifices some of the annuity income now,

in return he/she will be able to consume more later.

3.3.3 The Optimal Annuitization Strategy

No matter whether we use the LCP method or the free boundary refining method,

the first thing we need to handle is the terminal condition at t = T . Since the force

of mortality is a constant (1.9777) in domain [T,∞], the free boundaries in this

domain is time invariant and we can obtain it by comparing the non-annuitization

value function V n and the annuitization value function V a as before. When we

calculate V a, which is very time consuming, we store the value function in a matlab

file and then we reload it when necessary. It turns out that the optimal consumption

ratio is 1 in domain [T,∞], an intuitively pleasant result, because the mortality rate

is a large enough constant so that individuals will have little chance to live past the

maximum age.

The parameters used in our experiment are listed below: μr = 0.06, θ = 0.25,

σr = 0.1, σs = 0.2, γ = 2, ρ = 0.02, x = 65, ρrs = 0, w0 = 1, δ1 = 0.03, the
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maximum life span of a human being Tmax = 125. Both the LCP method and

the free boundary refining method show that it is always optimal to annuitize no

matter what the interest rates are, which is consistent with our previous results for

exponential mortality. Therefore, if the individual sacrifices some income now and

can repurchase annuities at fair prices, he/she will earn higher income later.

3.4 Concluding Remarks

In this chapter, we have studied the optimal annuitization problem for a utility

maximizer for exponential and Gompertz mortalities under the optimal consump-

tion strategy.

Firstly, two interest rate models, constant and stochastic, are calibrated under

exponential mortality to study the optimal annuitization timing problem. Sec-

ondly, stochastic interest rates are imposed under Gompertz mortality to study the

optimal consumption and annuitization strategies, which is a free boundary prob-

lem, and can be solved using either the LCP method or the free boundary refining

method. The results show that it is optimal to annuitize no matter what the inter-

est rate or the mortality rate is. If the individual follows the optimal consumption

strategy, he/she will earn higher income if he/she annuitizes immediately upon the

assumption of no loading fees and no bequest motives.

All our numerical results show that it is optimal to annuitize even if the interest
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rate is high, but that one should consume less than what the annuity provides. In

other words, one wants to shift consumption to later years. This suggests that if

one annuitizes right away, with complete consumption required, then the realized

consumption level is higher than optimal. Note that annuities get cheaper when

interest rates rise, so in a sense, the annuity is actually too good a deal when the

interest rate is high. Optimal behavior is to sacrifice some of that income now,

in return for higher income later. In other words, instead of taking that deal, one

should delay annuitizing, earn short term interest, and once interest rates revert

to a more realistic level, you will probably be able to buy more annuities than you

would otherwise. The annuities you eventually buy will be more expensive, but you

will be able to buy more of them and actually earn higher income.

3.5 Appendix

3.5.1 Dynamic Programming Techniques for Exponential Mortality and

Constant Interest Rates

To apply the dynamic programming techniques to derive the same equation that

the annuity income A must satisfy for exponential mortality and constant interest

rate, we write the value function V as a function of time t and A as

V (t, A) =

∫ T

t

e−(ρ+λ)su(cs)ds. (3.62)
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After applying Bellman’s optimality principle and Ito’s lemma, we obtain the fol-

lowing HJB equation that V must solve

Vt + sup
α

VA(1− α)(λ+ r)A+ e−(ρ+λ)tu(αA) = 0. (3.63)

Note that α is a function of time t and interest rate r. The optimal consumption

strategy can be obtained by its first-order condition, i.e.,

α� =
(VAe

(ρ+λ)t(λ+ r))−
1
γ

At

. (3.64)

If we postulate V = A1−γ

1−γ
h(t) as before, then the optimal consumption strategy α�

can be simplified to

α� = (e(ρ+λ)th(t)(λ + r))−
1
γ . (3.65)

Since t and A are both state variables in equation (3.63), which leads to the deriva-

tives of V with respect to t and A are respectively

⎧⎪⎪⎨
⎪⎪⎩

Vt = A1−γ

1−γ
ht,

VA = A−γh,

(3.66)

in which ht denotes the first derivative of h(t) with respect to time t. Substituting

from equation (3.65) and (3.66) into equation (3.63), we obtain the following linear

homogenous first-order ODE that h(t) must satisfy

ht + (1− γ)(λ+ r)h+ γe−
ρ+λ
γ

t(λ+ r)1−
1
γ h1− 1

γ = 0. (3.67)
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From section 3.2.1, we know that At must satisfy the following second-order ho-

mogenous differential equation (using CV method) over the values for which At �= 0.

Ät − (
r − ρ

γ
+ λ+ r)Ȧt +

r − ρ

γ
(λ+ r)At = 0. (3.68)

To verify that both dynamic programming techniques and CV method lead to

the same ODE for h(t), we substitute equation (3.65) into the first and second

derivatives of At with respect to time t, which yields⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ȧt = (λ+ r − (λ+ r)(e(ρ+λ)th(t)(λ+ r))−
1
γ )At,

Ät = (λ+ r − (λ+ r)(e(ρ+λ)th(t)(λ+ r))−
1
γ )2At

+ (−(λ+ r)1−
1
γ (−ρ+λ

γ
e−

ρ+λ
γ

th− 1
γ + e−

ρ+λ
γ

t(− 1
γ
)h− 1

γ
−1ht))At.

(3.69)

Substituting them into equation (3.68), we obtain the following ODE that h(t)

must solve

ht + (1− γ)(λ+ r)h+ γe−
ρ+λ
γ

t(λ+ r)1−
1
γ h1− 1

γ = 0. (3.70)

We see that equation (3.67) and (3.70) are exactly same, which means that we can

solve the optimal control problem using either the dynamic programming techniques

or the CV method.

3.5.2 Optimal Consumption and Annuitization under the Exponential

Mortality Rate and constant interest rates when αt is Constant

In this section, we study the optimal control problem under exponential mortality

rate and constant interest rates when αt is time invariant. The discounted lifetime
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utility of consumption the retiree seeks to maximize with annuitization is

V a =

∫ ∞

0

e−(ρ+λ)tu(ct)dt, (3.71)

where the consumption rate is assumed to be a fraction (0 ≤ αt ≤ 1) of the annuity

income At, i.e., ct = αtAt. The remainder (1 − αt)At is used to purchase more

annuities. So the annuity satisfies the following equation

dAt

dt
=

(1− αt)At

āx+t
, (3.72)

where the annuity factor āx+t is constant (
1

λ+r
) for constant λ. When αt is equal

to constant α, the above function becomes

dAt

At
= (1− α)(λ+ r)dt. (3.73)

Integrating this first-order ODE from time zero to t, we obtain the following ex-

pression

At = A0e
(1−α)(λ+r)t, (3.74)

in which A0 is the annuity income at time zero, i.e., age x+ t. Substituting At into

equation (3.71), we have

V a(α) =
α1−γA1−γ

0

1− γ

∫ ∞

0

e−(ρ+λ−(1−α)(1−γ)(λ+r))tdt. (3.75)

This improper integration converges if and only if ρ+λ− (1−α)(1− γ)(λ+ r) > 0

is satisfied, and its limit is

V a(α) =
α1−γA1−γ

0

1− γ

1

ρ+ λ− (1− α)(1− γ)(λ+ r)
. (3.76)
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The derivative of V a(α) with respect to α can be written as

∂V a(α)

∂α
=

A1−γ
0 (ρ+ λ+ (γ − 1− γα)(λ+ r))

αγ(ρ+ λ− (1− α)(1− γ)(λ+ r))2
. (3.77)

Setting it to zero, we obtain the first-order condition as

α� =
γλ+ ρ+ (γ − 1)r

γ(λ+ r)
= 1− r − ρ

γ(λ+ r)
. (3.78)

Note that ρ+λ− (1−α)(1−γ)(λ+r) is always greater than 0 for γ ≥ 1, therefore,

the optimal consumption strategy α� for γ ≥ 1 is

α� =

⎧⎪⎪⎨
⎪⎪⎩

1, r ∈ (0, ρ],

1− r−ρ
γ(λ+r)

, r ∈ [ρ,∞].

(3.79)

Note that 1 − r−ρ
γ(λ+r)

∈ [0, 1] for all greater than 1 values of the risk aversion

coefficients. One step further, we obtain the closed form solution for V a as

V a =

⎧⎪⎪⎨
⎪⎪⎩

1
(1−γ)(ρ+λ)(r+λ)1−γ , r ≤ ρ,

(λ+ ρ
γ
+(1− 1

γ
)r)−γ

(1−γ)(λ+r)2−2γ , r ≥ ρ.

(3.80)

3.5.3 Optimal Consumption and Annuitization under GM Mortality

and Constant Interest Rates

The value function is given by

J(ct) = sup
ct

∫ ∞

0

e−
∫ t
0 (ρ+λλ+s)dsu(ct)dt, (3.81)

where ct = αtAt, and

dAt

dt
=

(1− αt)At

āx+t
. (3.82)
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The Eular-Largarange equation is given by

d

dt
(At − āx+tȦt) = (

1

γāx+t

− 1

γ
(ρ+ λx+t) +

1

γāx+t

dāx+t

dt
)(At − āx+tȦt) (3.83)

in domain (0, T − x). Therefore, the annuity income At must satisfy the following

linear second-order differential equation over the values for which At �= 0.

āx+tÄt + (dāx+t

dt
− 1− 1

γ
+ 1

γ
(ρ+ λx+t)āx+t − 1

γ
dāx+t

dt
)Ȧt

+ ( 1
γāx+t

− 1
γ
(ρ+ λx+t) +

1
γāx+t

dāx+t

dt
)At = 0.

(3.84)

The initial and terminal conditions for At are⎧⎪⎪⎨
⎪⎪⎩

A0 = 1,

dAt

dt
|t=T−x = 0.

(3.85)

This ODE can be solved by the finite difference method with staggered grid. The

results are plotted in Figure 3.8 with γ = 2 for two different interest rates: r = 0.01

and r = 0.03, one is smaller than ρ (0.02) and the other is greater than ρ. The

other parameters are γ = 2, x = 65, m = 88.15, b = 10.5. Note that αt for GM

mortality hide behind its counterpart for exponential mortality for r = 0.01. We

can see from these two figures that when r < ρ, αt ≡ 1 for both exponential and GM

mortality. This is due to the fact that borrowing is not allowed in this circumstance.

When αt is greater than 1, we only allow the individual to consume all the annuity

income. Another observation is that αt for GM mortality is always greater than

that for exponential mortality. This may be due to the greater uncertainty of the

GM mortality.
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Figure 3.8: αt for Gompertz Mortality and Exponential Mortality for γ = 2
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Now we will check if there exists a t� < T which makes J attain its maximum

at this point and αt ≡ 1 in domain [t�, T ], which is quite similar to what we have

done in Section 3.2. Taking t� as a parameter, we have

J(t�) =

∫ t	

0

e−
∫ t
0
(ρ+λx+s)dsu(αtAt)dt+

∫ T

t	
e−

∫ t
0
(ρ+λx+s)dsu(At	)dt). (3.86)

Figure 3.9 displays J as a function of t� for γ = 2. The maximum value occurs

at time t� = 51.2875. Actually the difference of J(51.2875) and J(T − x = 55) is

9.9121e−013, which can be seen as equal. In fact, all the values of J can be treated

to be equal after t� = 51.2875 since the difference is less than e− 10. The fraction

of consumption at t� = 51.2875 is 0.9974, and it is increasing to 1 until t = T −x in

Figure 3.8. This means that the fraction of consumption is approximately 1 after

age 65 + t�.
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Figure 3.9: The Value Function J for γ = 2
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4 The Ruin Probability Facing Retirees

4.1 Introduction and Existing Literature

The ruin probability can be traced back to ‘The Gambler’s Ruin Problem’ which

emerged more than one hundred years ago. In essence, if two gamblers play a game

for stakes, then how likely is it that one gambler will win all the money from the

other gambler, before he/she loses all of his/her own money. As time goes by,

ruin probability has been studied by insurance companies who want to know the

probability of their reserves becoming negative within a certain time period. Lately,

as the first baby boom generation reaches the ‘standard’ retirement age of 65 years

in 2011, and the shift from DB pension plans to DC pension plans has occurred in

a number of countries, more and more researchers and practitioners are interested

in this topic of ruin probability. They studied the probability that individuals will

outlive their wealth due to the fact that many of them are not financially prepared

for retirement. Therefore, it is very important and meaningful to study the ruin

probability which is related to longer than expected life spans.
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The average life span has increased more than 30 years during the twentieth

century in Canada, and it will continue the upward tendency in the future (see

Oeppen and Vaupel (2002)). According to the Berkeley human mortality database,

life expectancy at birth for Canadians has gradually increased from 57.94 in 1929

to 81.25 in 2009 (see Table 4.1) for the total population, which accounts for about

24 additional years of life. As well, those who managed to live to age 65 by the year

of 2009, will live an average of 20 more years (see Table 4.2). Therefore, it will be

a great challenge for those retirees who are without a pre-existing pension or social

security, and no remaining income available.

Table 4.1: Life Expectancy at Birth for Canadians

Year 2009 1999 1989 1979 1969 1959 1949 1939 1929

Female 83.39 81.6 80.39 78.59 76.02 73.64 69.85 65.33 59.25

Male 79 76.15 73.87 71.31 69.17 67.98 65.63 62.23 56.72

Total 81.25 78.92 77.12 74.84 72.4 70.61 67.59 63.69 57.94

source: Berkeley human mortality database http://www.mortality.org/hmd/

Although self-annuitization has the advantage of greater liquidity and the op-

portunity of leaving money for heirs in the event of early decease, its disadvantage

is the risk of running out of money before the uncertain date of death. The financial

risk associated with self-annuitization is that retirees can outlive their assets in the
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Table 4.2: Life Expectancy at 65 Years Old for Canadians

Year 2009 1999 1989 1979 1969 1959 1949 1939 1929

Female 21.68 20.166 19.55 18.80 17.32 15.88 14.89 14.08 13.29

Male 18.61 16.36 15.28 14.54 13.69 13.43 13.26 12.93 12.50

Total 20.26 18.40 17.56 16.74 15.49 14.60 14.02 13.47 12.88

source: Berkeley human mortality database

event of long-run low investment returns and unexpectedly longer life. Therefore,

it is very important to find out how much this ruin probability is upon the initial

endowment at retirement. Many papers in the field of finance and insurance have

studied the ‘lifetime ruin probability’, the probability the individuals will exhaust

their wealth under a fixed consumption strategy, such as Milevsky and Robinson

(2000), Huang, Milevsky and Wang (2004), and Moore and Young (2006).

Milevsky and Robinson (2000) studied the approximate distribution of a whole

life annuity function. They used Gompertz’s law to model mortality and a geometric

Brownian motion to model asset price. They fitted the stochastic present value of

a continuous whole life annuity with the reciprocal gamma and Type II Johnson

distributions and validated these two approximations with numerical results. A

numerical case was illustrated to show the impact of asset allocation strategy and

gender on the ruin probability. In their example, they showed that a well-diversified
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portfolio will achieve the lowest ruin probability. Under the same asset allocation

strategy, females will have a higher ruin probability than males due to longevity.

Huang, Milevsky and Wang (2004) implemented numerical PDE solution tech-

niques to compute the ruin probability in retirement. They compared their PDE-

based values with those quick-and-dirty heuristic approximation methods widely

used for ruin problem, such as the reciprocal gamma approximation (RG), the

lognormal approximation (LN), and the comonotonic-based lower bound approxi-

mation (CLB).

Moore and Young (2006) minimized the ruin probability with varying hazard

rates and showed that by updating the hazard rate each year and treating it as a

constant, the individual can closely obtain the minimal ruin probability when the

true hazard rate is Gompertz. This method results in the ruin probability being

close to its minimum.

Previous works utilize a constant force of mortality, which is equivalent to as-

suming that the retiree’s future lifetime random variable has exponential distri-

bution, or Gompertz-Makeham (GM) mortality, an exponential function in death

rates with age. In reality, the personal mortality rate is much more complex and

flexible, and is related to subjective health status, even natural disasters such as

earthquakes, epidemics and tornadoes. In this project, we apply a stochastic mor-

tality model. Figure 4.1 plots ln(λt+1/λt) as a function of age for the cohort born in
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1900. We can observe that ln(λt+1/λt) randomly scatters around the average of the

mortality rate. As for an individual retiree, his/her mortality rate is much volatile

thant the population-wide one, and we assume that personal mortality rates share

the same stochastic property as that of the population.

The most widely accepted stochastic mortality model is the Lee-Carter model.

For simplicity and ease of handling, we adopt a special form of the Lee-Carter model,

i.e., log-normal distribution. We study the effect of this stochastic mortality rate

on the ruin probability and compare it with the ruin probability for GM mortality,

in which ruin is defined as wealth hitting zero during the lifetime of an individual

with various initial wealth, withdrawing $1 per annum.

The layout of this chapter is as follows. Section 4.2 describes the model of life-

time ruin probability for Gompertz mortality and presents the PDE that governs it,

and solves the PDE numerically using the Crank-Nicolson method. Section 4.3 pro-

vides the model calibration of lifetime ruin probability under stochastic mortality

rate, derives the PDE that the ruin probability must satisfy, solves it numerically

using the ADI method, and illustrates the connection between the ruin probabilities

for GM mortality and log-normal mortality. The main contributions of this chapter

are summarized in Section 4.4, in which we discuss the effect of stochastic mortal-

ity on lifetime ruin. Section 4.5 verifies the accuracy of our numerical schemes by

performing convergence analysis.
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Figure 4.1: ln(λt+1/λt) versus Age
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The figure shows ln(λt+1/λt) versus age for the cohort born in 1900. The middle red

solid (blue dashed) line is the average of the mortality rate for females (males), and the

other two red solid (blue dashed) lines are this average plus (and minus) the standard

deviation. We can observe that ln(λt+1/λt) randomly scatters around the average of the

mortality rate.
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4.2 Lifetime Ruin Probability under Gompertz Mortality

4.2.1 Model Calibration

Existing literature for lifetime ruin probability mainly deals with Gompertz mortal-

ity. To have a benchmark for the ruin probability under stochastic mortality which

is proven by the historical data, we look at the ruin problem under Gompertz

mortality first.

We consider a retiree of age x at time zero. The continuously compounded

investment returns are modeled to be normally distributed. This assumption is

standard in financial economics, which has been used widely such as Boyle (1976),

Black and Scholes (1973). We assume the consumption rate, g, is normalized to 1.

The individual’s wealth process obeys the following stochastic process

dWt = (μwWt − g)dt+ σwWtdB
w
t , W0 = w, (4.1)

where μw and σw denote the drift and volatility of the investment portfolio, and

Bw
t is the Brownian motion driving this process. Note that this investment return

may become negative when μwWt becomes small enough relative to 1, which implies

that the processWt may eventually hit zero, contradicting to the classical geometric

Brownian motion (GBM) bounded away from zero in finite time.

We assume the probability that the portfolio holder is still alive at time t is
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given by

tpx = e−
∫ t
0
λx+sds (4.2)

where x denotes the current age of the individual, λx+s is the hazard function at

a future time s, defined by the GM distribution, which is parameterized by three

variables (λ0, m, b):

λx+s = λ0 +
1

b
e

x+s−m
b , (4.3)

where s is the time the individual is going to survive, m is the mode of the future life-

time, b is the dispersion constant, and λ0 is the Makeham term, an age-independent

component. In a protected environment where external causes of death are rare

(laboratory conditions, low mortality countries, etc.), the age-independent mortal-

ity component is often negligible. In this case the formula simplifies to a Gompertz

law of mortality (proposed by Benjamin Gompertz in 1825) with exponential in-

crease in death rates with age. The Gompertz-Makeham law of mortality describes

the age dynamics of human mortality rather accurately in the age window of about

30-80 years. At more advanced ages, the death rates do not increase as fast as

predicted by this mortality law: a phenomenon known as the late-life mortality de-

celeration, see Olshansky and Carnes (1997). In this section, we use the Gompertz

law of mortality since our environment is protected, i.e., λ0 = 0.
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Now we are ready to define the probability of lifetime ruin:

PG(t, w|λ0, b,m, μw, σw) = Pr( inf
t≤s≤Tx

Ws ≤ 0|Wt = w), (4.4)

Where Tx is a random variable representing time of death and follows a distribution

defined by the Gompertz mortality law. The subscript G on P stands for Gompertz

mortality. This is the probability that the net-wealth process Wt hits zero before

the retiree dies.

It can be shown that PG satisfies a Backward Kolmogorov Equation (Subscript

G has been dropped on P ):

λx+tP = Pt + (wμw − g)Pw +
1

2
w2σ2

wPww, (4.5)

with terminal and boundary conditions:

P (t, 0) = 1, P (t,∞) = 0, P (∞, w) = 0. (4.6)

These conditions are intuitively obvious to even the most casual observer. Firstly,

when the individual has zero wealth, i.e., w = 0, the probability of lifetime ruin

must be 100 percent. Secondly, when the retiree has an infinite amount of money,

i.e., w = ∞, the chances for him/her to become ruined drop to zero, compared to

the standardized consumption rate g and longevity risk. Finally, the probability of

lifetime ruin is zero at time ∞ is due to the fact that the hazard rate is so large at

advanced ages, so individuals die right away, without having time to get ruined.
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By now we have obtained the PDE that the ruin probability must satisfy and

prescribed its corresponding boundary and terminal conditions. We are ready to

address a numerical method for finding solutions of the second-order differential

equations, which is described in Section 4.2.2.

4.2.2 Numerical Schemes

In this section, we illustrate the numerical method that solves PDE (4.5), which is

second-order linear with cross derivatives. The Crank-Nicolson method is applied

due to second order accuracy for w, and the upwind scheme is chosen for the first

order derivative which avoids oscillations of the solution. The truncated compu-

tational domain for PG is [t, w] ∈ ([0, 60], [0, 50]), i.e., T = 60 and wmax = 50. A

uniform grid with equal spacing Δt and Δw is used. The PDE can be discretized

using Crank-Nicolson method as below

P n+1
j − P n

j

Δt
+

σ2
ww

2
j

2

P n+1
j+1 + P n+1

j−1 − 2P n+1
j + P n

j+1 + P n
j−1 − 2P n

j

2Δw2

+(μwwj − g)
P n+1
j − P n+1

j−1 + P n
j − P n

j−1

2Δw
= λx+tnP

n
i , μwwj − g ≤ 0, (4.7)

P n+1
j − P n

j

Δt
+

σ2
ww

2
j

2

P n+1
j+1 + P n+1

j−1 − 2P n+1
j + P n

j+1 + P n
j−1 − 2P n

j

2Δw2

+(μwwj − g)
P n+1
j+1 − P n+1

j + P n
j+1 − P n

j

2Δw
= λx+tnP

n
i , μwwj − g ≥ 0, (4.8)

where P n
j is the grid function that approximates P (t, w) on grid points (tn, wj).

The computational boundary conditions at j = 1 and j = J + 1 and terminal
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conditions at n = N +1 must be provided when solving PDE (4.5) with an implicit

numerical method. They can be derived as,

PN+1
j = 0, j = 1, 2, · · · , J + 1; (4.9)

P n
1 = 1, n = 1, 2, · · · , N + 1; (4.10)

P n
J+1 = 0, n = 1, 2, · · · , N + 1. (4.11)

j = 1 and j = J + 1 correspond to w = 0 and w = wmax. With these discretized

terminal and boundary conditions, the discrete equations (4.7)-(4.8) can be solved

by matching from time tn+1 to tn, starting from n = N + 1. In this uniform grid,

we can solve for all the probabilities on all the grid points by iteration.

4.2.3 Numerical Examples

Now we are ready to compute the ruin probability under Gompertz mortality as

well as study the effects of some important parameters related to the investment

portfolio.

Figure 4.2 displays the lifetime ruin probability PG in 3D as a function of time

t and wealth w using the numerical PDE method. It can be observed that for any

fixed time t, PG is a decreasing function of wealth w. This is intuitively pleasant

because when w is larger and all other parameters are kept fixed, the chances to

become ruined tend to be smaller. The market parameters for the stochastic process
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driving wealth are μw = 0.07 and σw = 0.20, which are consistent with historical

evidence based on the behavior of a broad portfolio of common equities during

the last 75 years, reported by Ibbotson Associates (2002). The parameters for the

Gompertz mortality are m = 87.8 and b = 9.5, which are based on a Gompertz

approximation to the unisex RP-2000 mortality table compiled by the U.S.-based

Society of Actuaries (see Wang (2006)).

We are mainly interested in the ruin probability at time zero since it will give

individuals a hint about how much money to save before retirement in order to

have a ruin probability that is acceptable to them. Thus we will focus on the ruin

at time zero starting from now, although we can obtain all the ruin probabilities

for any time and any wealth. In addition to the mortality rate, the main factors

that decide the lifetime ruin are the drift and volatility of the investment portfolio.

Figure 4.3 displays the lifetime ruin probability for a 65-year old individual,

as a function of their initial wealth ($10 to $30) when the volatility takes the

values (0.10, 0.15, 0.20, 0.25, 0.30). The other parameters used for this figure are

μw = 0.07, m = 87.8, b = 9.5, and g = 1. We can see that for any given initial

wealth, when the volatility is higher, which means that the wealth process has more

chances to hit zero, lifetime ruin is higher. If individuals invest more in stable assets

(lower volatility), although the wealth has less chance to grow, it has less chance

to hit zero as well, which will lead to lower ruin probability. Therefore, more risk-
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Figure 4.2: The Ruin Probability under Gompertz Mortality
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The figure shows the ruin probability under a Gompertz mortality rate that is fitted to

the unisex RP−2000 mortality table compiled by the U.S.-based Society of Actuaries

for a retiree who is 65 years old. The fitted parameters are (m, b) = (87.8, 9.5). The

market parameters for the stochastic wealth process are μw=0.07 and σw = 0.20, which

is consistent with historical evidence. The withdrawal rate is $1 per annum.
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averse individuals should choose to invest in lower volatility assets to avoid higher

ruin probabilities. Note that this does not imply that safer asset allocations are

necessarily preferable, since in actual portfolios, decreasing volatility also implies

decreasing growth rates. Another observation from this figure is that higher initial

wealth levels lead to lower ruin probabilities if the expected return and withdrawal

rate are the same, which is intuitively pleasant. Therefore, individuals need to save

more money before retirement to have a lower ruin probability after retirement.

Figure 4.4 displays the lifetime ruin probability as a function of wealth w with

five different drifts (μw=0.03, 0.05, 0.07, 0.09, 0.11) for parameters σw = 0.25,

m = 87.8, b = 9.5, and g = 1. Note that we have varied the values of μw around

its expected value 0.07 to see how sensitive the lifetime ruin is to it. It can be ob-

served that the ruin probability is a decreasing function of initial wealth w, which is

consistent with our intuition. We can also see that higher levels of expected invest-

ment return leads to lower lifetime ruin probability. Therefore, retirees will choose

to invest in assets with higher expected returns to obtain lower ruin probability in

their remaining lifetime. Therefore, it is a trade-off for retirees with a given initial

wealth whether to choose to invest in risky assets or riskless assets since higher

expected returns usually come with higher volatilities.

In this section, we have investigated the behavior of the lifetime ruin probability

under Gompertz mortality, and the effects of the two financial parameters μw and
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Figure 4.3: The Ruin Probability as a Function of Wealth w with Different σw
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The figure shows the ruin probability as a function of the initial wealth w for different

volatilities of the wealth process. The parameters used are μw = 0.07, m = 87.8,

b = 9.5, and g = 1.

σw for the stochastic wealth process on the ruin. In next section, we will study the

effect of stochastic hazard rates on lifetime ruin probability.
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Figure 4.4: The Ruin Probability as a Function of Wealth w with Different μw
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The figure shows the ruin probability as a function of the initial wealth w for different

expected returns of the wealth process. The parameters used are σw = 0.25, m = 87.8,

b = 9.5, and g = 1.

4.3 Lifetime Ruin Probability under Stochastic Mortality

All the previous work done deals with Gompertz Mortality, which is also the basic

assumption of most financial advisers’ solutions. This assumption ignores the reality
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that retirees do not have a fixed mortality rate at any specific age, it may fluctuate

over time. In this section, we study this randomness by assuming a stochastic

process of hazard rate, which has been proven by the historical data in Section 4.1.

In order to model the stochastic process of the hazard rate, we assume its inten-

sity Λx+t at time t for an individual aged x evolves with a log-normal distribution,

a special form of the Lee-Carter model

dΛx+t = μλΛx+tdt+ σλΛx+tdB
λ
t , Λx = λ, (4.12)

where μλ and σλ are the drift and volatility coefficients, Bλ
t is the Brownian motion

driving this process. This is a classical GBM, which is bounded away from zero in

finite time. Note the probability that the individual is alive at time t, provided that

the individual is alive at time s < t, is given by tpx / spx . The stochastic wealth

process is defined by equation (4.1) which we presented back in Section 4.2.1. We

define our new lifetime ruin probability under stochastic hazard rates as

PS(t, w, λ|μw, σw, μλ, σλ, ρwλ) := Pr( inf
t≤s≤Tx

Ws ≤ 0|Wt = w, λt = λ), (4.13)

where the subscript S on P means stochastic hazard rate, and Tx is the random

variable representing time of death of the portfolio holder as in Section 4.2.1.

Let Λx+t = λ and Wt = w, we denote the ruin probability at t as

PS(t, w, λ) = P [τ < Tx|Wt = w,Λx+t = λ] . (4.14)
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The subscript S will be dropped on P below for simplicity to derive the PDE that

PS must satisfy. Since

P (t, w, λ) = E

[
t+hpx

tpx
P (t+ h,Wt+h,Λx+t+h) +

(
1− t+hpx

tpx

)
0

]
(4.15)

= E

[
t+hpx

tpx
P (t+ h,Wt+h,Λx+t+h)

]
, (4.16)

and

P (t+ h,Wt+h,Λx+t+h) = P (t,Wt,Λx+t) +

∫ t+h

t

dP, (4.17)

we have

E

[(
1− t+hpx

tpx

)
P (t, w, λ)

]
= E

[
t+hpx

tpx

∫ t+h

t

dP

]
. (4.18)

Applying Ito’s lemma to P (t, w, λ), we obtain

dP = Pt + PwdWt + PλdΛx+t + PwλdWtdΛx+t +
1

2
PwwdW

2
t +

1

2
Pλλd xΛ

2
t

= APdt+ σwwPwdB
w
t + σλλPλdB

λ
t , (4.19)

where AP is a second order differential operator as below

AP = Pt+(μww−g)Pw+μλλPλ+ρwλσλσwwλPwλ+
1

2
σ2
ww

2Pww+
1

2
σ2
λλ

2Pλλ. (4.20)

In which ρwλ is the correlation between dBw
t and dBλ

t . According to Smith (1999),

wealth can buy health, and health can improve wealth accumulation. Correlations

between health and wealth are much lower among retired households. It is still an

open question regarding how much this correlation is. Therefore, we assume the
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values of ρwλ can be either positive or negative, depending on individuals’ spending

habits. Dividing (4.18) by h and letting h → 0, we obtain

λP = Pt+(μww−g)Pw+μλλPλ+ρwλσλσwwλPwλ+
1

2
σ2
ww

2Pww+
1

2
σ2
λλ

2Pλλ. (4.21)

The terminal and boundary conditions for the above PDE are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P (t, 0, λ) = 1, P (t,∞, λ) = 0,

P (t, w, 0) = f(t, w), P (t, w,∞) = 0,

P (∞, w, λ) = 0.

(4.22)

The reason that at time ∞, the probability of ruin is 0 is that the probability of

being alive at that time is 0 for any positive wealth. If the initial wealth is 0,

the individual will immediately become ruined, and if the initial wealth is infinitely

large, the individual will never become ruined during the remaining lifetime because

human being’s life span is finite. If the individual dies immediately, which corre-

sponds to the condition λ = ∞, then he/she will never have a chance to become

ruined. When the hazard rate is 0, the ruin probability must satisfy the following

simpler PDE, which is obtained by setting λ = 0 in equation (4.21).

ft + (μww − g)fw +
1

2
σ2
ww

2fww = 0. (4.23)

Here we have used a new notation f(t, w) to denote the ruin probability corre-

sponding to λ = 0. The reason why f(t, w) must solve this PDE is that P (t, w, λ)
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is continuously differentiable with respect to all its independent variables. In con-

sequence, the terminal and boundary conditions for f(t, w) are,

f(t, 0) = 1, f(t,∞) = 0, f(∞, w) = 0. (4.24)

The explanations for these conditions are similar to what we have done to the ruin

probability PG. It can be observed that equation (4.23) is a special case of equation

(4.5) by setting the hazard rate to be zero. Thus we can use the same numerical

method as in Section 4.2.1 to solve f(t, w).

4.3.1 Conditions for PS = PG

When the stochastic hazard rate breaks down to the GM mortality, the lifetime

ruin PS should collapse to PG. To find out the conditions that must be satisfied for

this scenario, we rewrite the GM mortality λx+t as

dλx+t =
1

b
λx+tdt. (4.25)

We repeat the GBM for the stochastic hazard rate Λx+t here for convenience’s sake

dΛx+t = μλΛx+tdt+ σλΛx+tdB
λ
t .

The obvious two conditions that must be satisfied are

σλ = 0, μλ =
1

b
. (4.26)
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The initial mortality rate must be equal, so that we have

λ =
1

b
e

x−m
b . (4.27)

Therefore, the following conditions must be satisfied in order to make the stochastic

mortality rate collapses to the GM mortality

σλ = 0, μλ =
1

b
, λx =

1

b
e

x−m
b . (4.28)

These conditions provide us criteria to match PS and PG in future numerical com-

putations.

4.3.2 Numerical Methods for PS: ADI Method

The traditional method for solving the 2-dimensional (2-D) linear partial differ-

ential equation (4.21) is the Crank-Nicolson method. This method incurs a very

complicated set of equations in two dimensions, which are very expensive to solve.

Instead, alternating direction implicit (ADI) method can successfully avoid this.

The advantage of the ADI method is that the equations that have to be solved

in each time step have a simpler structure and can be solved efficiently with the

tridiagonal (banded with bandwidth 3) matrix algorithm, which significantly re-

duces the computational complexity. The idea behind the ADI method is to split

the finite difference equations into two, one with the w-derivatives taken implic-

itly and the next with the λ-derivatives taken implicitly. The system of equations
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involved is symmetric and tridiagonal, and is typically solved using tridiagonal ma-

trix algorithm. It can be shown that the ADI method is unconditionally stable

and second order accuracy in time and space (see Burden and Faires, 2011). The

upwind scheme is applied for the first order derivative with respect to wealth w to

avoid big oscillations.

• Discretization of the computational domain

The computational domain is truncated to be (t, w, λ) = ([0, 50], [0, 30], [0, 10])

due to the assumption that the maximal life span does not exceed 115 years

old, the initial wealth is within 50 units of the normalized wealth, and the

maximal hazard rate is less than 10. A uniform grid with equal spacing Δt,

Δw and Δλ are used. In details,

Δt =
Tmax

N
, t(n) = (n− 1)Δt, n = 1, 2, · · · , N + 1, (4.29)

Δw =
Wmax

I
, w(i) = (i− 1)Δw, i = 1, 2, · · · , I + 1, (4.30)

Δλ =
λmax

J
, λ(j) = (j − 1)Δλ, j = 1, 2, · · · , J + 1, (4.31)

where N , I,J are the number of intervals divided for t, w and λ respectively.

Let P n
ij be the grid function which approximates P (t, w, λ) on the grid point

(tn, wi, λj). The boundary conditions on the computational boundaries i =

1, I + 1, j = 1, J + 1 and the terminal condition can be derived as

P n
1j = 1, P n

I+1,j = 0, P n
i1 = fn

i , P n
i,J+1 = 0, PN+1

ij = 0, (4.32)
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where fn
i is the grid function approximating f(t, w) on the grid point (tn, wi).

• Implicit discretization along w axis

To apply the ADI method, we first take time and w-derivatives implicitly and

all the other derivatives explicitly (including the cross derivative). At the

same time, the upwind scheme is used to discretize Pw for the stability of the

algorithm. First we rewrite PDE (4.21) so that the time derivative and all

derivatives with respect to w are on one side of the equation and all the other

terms are on the other side of the equation

Pt+(μww− g)Pw+
1

2
σ2
ww

2Pww = λP −μλλPλ− ρwλσλσwwλPwλ− 1

2
σ2
λλ

2Pλλ.

(4.33)

At interior grid point (tn+ 1
2
, wi, λj), after applying the central difference quo-

tients for λ and upwind scheme for Pw we obtain

P n+1
ij − P

n+ 1
2

ij

Δt
2

+ (μwwi − g)
P

n+ 1
2

ij − P
n+ 1

2
i−1,j

Δw
+

1

2
σ2
ww

2
i

P
n+ 1

2
i+1,j + P

n+ 1
2

i−1,j − 2P
n+ 1

2
i,j

Δw2

= −μλλj

P n+1
i,j+1 − P n+1

i,j−1

2Δλ
− ρwλσλσwwiλj

P n+1
i+1,j+1 + P n+1

i−1,j−1 − P n+1
i−1,j+1 − P n+1

i+1,j−1

4ΔwΔλ

+ λjP
n+ 1

2
i,j − 1

2
σ2
λλ

2
j

P n+1
i,j+1 + P n+1

i,j−1 − 2P n+1
i,j

Δλ2
, if μwwi − g ≤ 0, (4.34)

P n+1
ij − P

n+ 1
2

ij

Δt
2

+ (μwwi − g)
P

n+ 1
2

i+1,j − P
n+ 1

2
i,j

Δw
+

1

2
σ2
ww

2
i

P
n+ 1

2
i+1,j + P

n+ 1
2

i−1,j − 2P
n+ 1

2
i,j

Δw2

= −μλλj

P n+1
i,j+1 − P n+1

i,j−1

2Δλ
− ρwλσλσwwiλj

P n+1
i+1,j+1 + P n+1

i−1,j−1 − P n+1
i−1,j+1 − P n+1

i+1,j−1

4ΔwΔλ

+ λjP
n+ 1

2
i,j − 1

2
σ2
λλ

2
j

P n+1
i,j+1 + P n+1

i,j−1 − 2P n+1
i,j

Δλ2
, if μwwi − g ≥ 0. (4.35)
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After collecting like terms on both sides of the equals sign, we have

(
2

Δt
+ λj − μwwi − g

Δw
+

σ2
ww

2
i

Δw2
)P

n+ 1
2

i,j − σ2
ww

2
i

2Δw2
P

n+ 1
2

i+1,j + (
μwwi − g

Δw
− σ2

ww
2
i

2Δw2
)P

n+ 1
2

i−1,j

=
μλλj

2Δλ
(P n+1

i,j+1 − P n+1
i,j−1) +

ρwλσλσwwiλj

4ΔwΔλ
(P n+1

i+1,j+1 + P n+1
i−1,j−1 − P n+1

i−1,j+1 − P n+1
i+1,j−1)

+
2

Δt
P n+1
i,j +

σ2
λλ

2
j

2Δλ2
(P n+1

i,j+1 + P n+1
i,j−1 − 2P n+1

i,j ), if μwwi − g ≤ 0, (4.36)

(
2

Δt
+ λj +

μwwi − g

Δw
+

σ2
ww

2
i

Δw2
)P

n+ 1
2

i,j − σ2
ww

2
i

2Δw2
P

n+ 1
2

i−1,j − (
μwwi − g

Δw
+

σ2
ww

2
i

2Δw2
)P

n+ 1
2

i+1,j

=
μλλj

2Δλ
(P n+1

i,j+1 − P n+1
i,j−1) +

ρwλσλσwwiλj

4ΔwΔλ
(P n+1

i+1,j+1 + P n+1
i−1,j−1 − P n+1

i−1,j+1 − P n+1
i+1,j−1)

+
2

Δt
P n+1
i,j +

σ2
λλ

2
j

2Δλ2
(P n+1

i,j+1 + P n+1
i,j−1 − 2P n+1

i,j ), if μwwi − g ≥ 0. (4.37)

For each fixed value λj , varying i from 2 to I, we will obtain an equation

system for vector (P
n+ 1

2
2j , P

n+ 1
2

3j , · · · , P n+ 1
2

I,j ). Together with the boundary and

terminal conditions, the discrete equations can be solved by matching from

time tn to tn+ 1
2
, starting from j = 1. Now we have all the probabilities at

time level tn+ 1
2
, n = 1, 2, · · · , N .

• Implicit discretization along λ axis

Given all the probabilities at time level tn+ 1
2
, how can we get the solutions at

time level tn+1? To this end, we discretize time and λ-derivatives implicitly

and all the other derivatives explicitly. First we rewrite the 2-D PDE (4.21)
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as

Pt+μλλPλ+
1

2
σ2
λλ

2Pλλ = λP − (μww− g)Pw − ρwλσλσwwλPwλ− 1

2
σ2
ww

2Pww.

(4.38)

Discretize this equation at interior point (tn, wi, λj), we have

P
n+ 1

2
ij − P n

ij

Δt
2

+ μλλj

P n
i,j+1 − P n

i,j−1

2Δλ
+

1

2
σ2
λλ

2
j

P n
i,j+1 + P n

i,j−1 − 2P n
i,j

Δλ2

= λjP
n
i,j − (μwwi − g)

P
n+ 1

2
i+1,j − P

n+ 1
2

i−1,j

2Δw
− 1

2
σ2
ww

2
i

P
n+ 1

2
i+1,j + P

n+ 1
2

i−1,j − 2P
n+ 1

2
i,j

Δw2

− ρwλσλσwwiλj

P
n+ 1

2
i+1,j+1 + P

n+ 1
2

i−1,j−1 − P
n+ 1

2
i−1,j+1 − P

n+ 1
2

i+1,j−1

4ΔwΔλ
. (4.39)

After collecting like terms on both sides, we have

(
2

Δt
+ λj +

σ2
λλ

2
j

dλ2
)P n

i,j + (
μλλj

2Δλ
− σ2

λλ
2
j

2Δλ2
)P n

i,j−1 − (
μλλj

2Δλ
+

σ2
λλ

2
j

2Δλ2
)P n

i,j+1

=
2

Δt
P

n+ 1
2

i,j +
μwwi − g

2Δw
(P

n+ 1
2

i+1,j − P
n+ 1

2
i−1,j) +

σ2
ww

2
i

2Δw2
(P

n+ 1
2

i+1,j + P
n+ 1

2
i−1,j − 2P

n+ 1
2

i,j )

+
ρwλσλσwwiλj

4ΔwΔλ
(P

n+ 1
2

i+1,j+1 + P
n+ 1

2
i−1,j−1 − P

n+ 1
2

i−1,j+1 − P
n+ 1

2
i+1,j−1). (4.40)

Therefore, for each fixed wi, varying j from 2 to J , we will obtain an equation

system for vector (P n
i2, P

n
i3, · · · , P n

i,J). Again with the terminal and boundary

conditions, we can solve this system and acquire all the values for PS at time

level tn+1. Repeating the above ADI split from n = 1 to n = N , we will

obtain the ruin probabilities at all grid points.
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4.3.3 Numerical Results

The results of the convergence analysis from Section 4.5 give us confidence that

our numerical results are reliable. To further verify our algorithm, we plot the ruin

probabilities PS and PG when the conditions σλ = 0, μλ = 1
b
, and λx = 1

b
e

x−m
b

are satisfied for μw = 0.07, σw = 0.2, m = 87.8, b = 9.5, x = 65, and g = 1 in

Figure 4.5. From section 4.3.1, we know that PS should collapse to PG under the

above conditions. We observe from this figure that the absolute difference of the

two ruin probabilities is less than 1.2 percent. This is a good agreement considering

round-off errors and truncation errors for both PS and PG.

To compare the numerical results for the ruin probabilities under stochastic and

Gompertz mortality rates, we fit the mortality parameters for Canadian cohorts

born in 1900 and 1920 to the historical data first. To this end, we write equation

(4.12) in discrete form

λt+1 − λt

λt
= μλ + σλ(dB

λ
t+1 − dBλ

t ). (4.41)

Therefore, the drift μλ can be estimated by using the average of λt+1−λt

λt
due to

the fact that the standard deviation of dBλ
t is 0, and σλ can be estimated by

the standard deviation of λt+1−λt

λt
. The parameters estimated for cohorts born in

1900 and 1920 are listed in Table 4.3 for males, females and the total population.

Although the mortality rate for females is less than that for males at any given
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Figure 4.5: Numerical Test for the Match of PS and PG
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The figure shows the ruin probability PG for m = 87.8, b = 9.5, and PS for μλ = 1
b ,

σλ = 0, and λx = 1
be

x−m
b . The market parameters used are μw = 0.07 and σw = 0.20. It

can be seen that PS and PG agree very well.
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age, the drift and variance which measure the derivative of the mortality rate are

much greater for females than that for males. This is consistent with Milevsky and

Young (2006) in which (m, b) = (88.18, 10.5) for males and (m, b) = (92.63, 8.78)

for females due to the fact that smaller b means higher μλ.

Table 4.3: Parameter Estimation for Stochastic Mortality

Parameters Cohorts Females Males Total

Drift 1900 (Age 65-95) 0.0886 0.0733 0.0771

Variance 1900 (Age 65-95) 0.0337 0.0297 0.0291

Drift 1920 (Age 65-88) 0.0949 0.0759 0.0816

Variance 1920 (Age 65-88) 0.0402 0.0387 0.0357

Source: Calculations by author from Berkeley human mortality

database. We estimate parameters using data starting from age

65 because we care about the retirement period only.

To estimate parameters (m, b) for GM mortality λx+t =
1
b
e

x+t−m
b , we have known

that b = 1
μλ

from the analysis of section 4.3.1. Therefore, we only need to estimate

parameter m. To that end, we rewrite the GM mortality as m = x+ t− b ln(bλx+t),

so that m can be estimated as the average of this data. The parameters estimated

for cohorts born in 1900 and 1920 are summarized in Table 4.4.
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Table 4.4: Parameter Estimation for Gompertz Mortality

Parameters Cohorts Females Males Total

m 1900 (Age 65-95) 84.1120 79.3560 82.1897

b 1900 (Age 65-95) 11.2914 10.6020 10.5339

m 1920 (Age 65-88) 84.9040 80.4396 84.4228

b 1920 (Age 65-88) 10.5339 13.1726 12.2540

Source: Calculations by author from Berkeley human mortality

database.

4.3.3.1 Numerical Results Comparison for PS and PG

Now we are ready to investigate the effect of stochastic mortality under realistic

parameter values using historical data. Without loss of generality, we will do these

comparison using the parameters for the cohort born in 1900. It is known that the

lifetime ruin probability PS is a function of λ given any initial wealth w, and PG

is only a point at time zero. Therefore, we plot both PS and PG in one figure for

three different initial wealth values: w = 10, w = 20, and w = 30.

Figure 4.6 compares ruin probability PS and PG for initial wealth w = 10

for the cohort born in 1900. The parameters used for this figure are μλ = 0.0771,

σλ = 0.0291, b = 10.5339, and m = 82.1897. The ruin probability PS for correlation
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coefficient ρwλ = −0.2, 0, 0.2 are 0.4772, 0.4775, 0.4778 respectively, and the ruin

probability PG is 0.4731. Therefore, the effect of ρwλ for the initial wealth $10 on

PS is trivial, and they are all greater than PG.

Figure 4.7 displays ruin probability PS and PG for initial wealth w = 20 for

the cohort born in 1900 using the same parameters as in Figure 4.7. The ruin

probability PS for correlation coefficient ρwλ =−0.2, 0, 0.2 are 0.1096, 0.1116, 0.1135

respectively. The ruin probability PG has nothing to do with ρwλ, its value is 0.1063.

We can see that the ruin probabilities PS for three different correlation coefficients

are greater than the ruin probability under GM mortality.

Figure 4.8 shows ruin probability PS and PG for initial wealth w = 30 for

the cohort born in 1900 using the same parameters as in Figure 4.8. The ruin

probability PS are 0.0305, 0.0317, 0.0329 respectively for ρwλ = −0.2, 0, 0.2, and

the ruin probability PG is 0.0291.

From the above three figures, we can observe that the ruin probability under

stochastic hazard rates is always greater than the ruin probability under Gompertz

mortality. The effect of the correlation coefficient ρwλ on PS is trivial when the

initial wealth is small, while the effect ρwλ on PS is large when the initial wealth is

large.
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Figure 4.6: PS, PG Comparison for w = 10
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The figure compares ruin probability PS and PG for initial wealth w = 10 for the cohort

born in 1900.

4.3.3.2 The Effect of the Parameters μλ and σλ

To understand the numerical results in-depth, we will do sensitivity analysis for the

parameters. Since we are mainly interested in the sensitivity of the ruin probability

to the parameters of the stochastic hazard rate μλ, σλ and the correlation coefficient
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Figure 4.7: PS, PG Comparison for w = 20

0.01 0.015 0.02 0.025 0.03
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Mortality rate λ

R
ui

n 
pr

ob
ab

ili
ty

Cohort 1900: μ
λ
=0.0771, σ

λ
=0.0291, b=10.5339, m=82.1897, w=20

P
G

P
S
 (ρ

w λ
 =0)

P
S
 (ρ

w λ
 =0.20)

P
S
 (ρ

w λ
 =−0.20)

The figure compares ruin probability PS and PG for initial wealth w = 20 for the cohort

born in 1900.

ρwλ , we will illustrate these sensitivities one by one below. Figure 4.9 compares

the ruin probability that a retiree with initial wealth of [8, 20] who withdraws $1

per annum will become ruined, where ruin is defined as wealth hitting zero within

their lifetime using the numerical PDE method. When the expected hazard rate
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Figure 4.8: PS, PG Comparison for w = 30
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The figure compares ruin probability PS and PG for initial wealth w = 30 for the cohort

born in 1900.

is lower, i.e., the individual will live longer, the lifetime ruin is higher. This is

intuitively pleasant since if a human being lives longer, his/her wealth has a higher

chance to hit zero in his/her lifetime. Figure 4.10 displays the ruin probability as a

function of mortality volatility using the numerical PDE method assuming initial
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Figure 4.9: Sensitivity Analysis of μλ
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The figure shows the effect of the expected hazard rate on the ruin probability for

λ = 0.0243

wealth in domain [8, 20] and withdrawal rate of $1 per annum at time zero. When

the volatility of the hazard rate is lower, which means the individual has a higher

chance to live longer, the lifetime ruin is higher. Both figures show us that the

ruin probability will change when the drift or dispersion coefficient changes, but
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Figure 4.10: Sensitivity Analysis of σλ
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The figure shows the effect of the volatility of the stochastic hazard rate on the ruin

probability for λ = 0.0243

the changes are not very significant.

Now we move on to the numerical results for different coefficients ρwλ. Table

4.5 displays the ruin probability for different correlation coefficients ρwλ at time

t = 0 for μλ = 0.0802 and σλ = 0.0312 for the cohort born in 1900. Firstly, we can
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Table 4.5: Ruin Probability PS for Different ρwλ and Initial Wealth

Correlation coefficient ρwλ w = 10 w = 20 w = 30 w = 40

0.30 0.4779 0.1145 0.0335 0.0103

0.20 0.4778 0.1135 0.0329 0.0115

0.10 0.4777 0.1126 0.0322 0.0112

0.00 0.4775 0.1116 0.0317 0.0109

-0.10 0.4774 0.1106 0.0311 0.0103

-0.20 0.4772 0.1096 0.0305 0.0100

-0.30 0.4771 0.1086 0.0299 0.0098

PG 0.4731 0.1063 0.0291 0.0095

The table shows the effect of ρwλ on the lifetime ruin PS for different initial

wealth w. Positive correlation increases lifetime ruin, and negative correlation

decreases lifetime ruin. We have also displayed negative correlation values of

ρwλ because this parameter depends on individual’s spending habits. People’s

health maybe deteriorated when they are richer.
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observe that the ruin probability under stochastic hazard rates is higher than that

of Gompertz mortality rate, which is due to a higher chance of living longer under

stochastic hazard rates. Secondly, no matter whether the correlation coefficient is

positive or negative, higher correlation leads to higher ruin probability. This effect

is trivial when the initial wealth is small, and it is larger when the initial wealth is

big. Thirdly, positive correlation between wealth and mortality increases lifetime

ruin probability, and negative correlation decreases lifetime ruin probability. This

is due to the fact that when wealth is lower, and hazard rate is lower, the retiree

will live longer, hence the ruin probability is higher.

4.4 Concluding Remarks

In this chapter, we have studied lifetime ruin probability under some institutional

assumptions for the wealth process for two different mortality models, GM mor-

tality and stochastic mortality. This is motivated by the stochastic behavior of

historical mortality data. The ruin probability under stochastic hazard rates PS

will collapse to the ruin probability PG under deterministic Gompertz mortality

when certain conditions are satisfied. The partial differential equations that the

ruin probabilities must solve were derived by applying Ito’s lemma, and solved

numerical using different finite difference methods.

The numerical results indicate that under stochastic mortality, higher levels of
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mortality drift and volatility lead to a lower ruin probability during one’s lifetime.

For the wealth process, higher expected investment returns and lower volatility of

the investment will reduce the chances of the individual to become ruined. As for

the correlation coefficient between the two Brownian motions that drives the wealth

process and the stochastic mortality process, higher coefficients lead to higher ruin

probabilities. We also observed that the ruin probability under stochastic mortality

rates is higher than the ruin probability for GM mortality.

The mortality model we have presented in this chapter is a log-normal distribu-

tion with constant drift and volatility. One extension of this model is to calibrate

the mortality to be stochastic with varying drift (instead of constant) and constant

volatility as proposed by Huang, Milevsky and Salisbury (it is appearing in IME)

for the same wealth process and consumption. Another extension could be using

the same stochastic mortality model with more complex investment models and

consumption strategies. The third extension, a more interesting and relevant one,

is to minimize the ruin probability when the investment and consumption strategies

are optimized, a dynamic programming problem in which an HJB equation can be

derived and solved such as Milevsky, Moore, and Young (2006).
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4.5 Appendix: Convergence Analysis

The solutions obtained by numerical methods are usually not the exact solutions

of the problem. This is due to round-off errors and truncation errors. Round-

off errors arise because it is impossible to represent all real numbers exactly on a

finite-state machine (which is what all practical digital computers are). Truncation

errors are errors resulting from the difference of the approximate solution and the

exact solution. For example, to differentiate a function, the differential element

approaches zero but numerically we can only choose a finite value of the differen-

tial element. Once an error is generated, it will generally propagate through the

calculation. There is an important criterion which guarantees the solution of the

numerical scheme to move towards the real solution of the PDE: convergence.

In numerical analysis, the speed at which a convergent sequence approaches its

limit is called the rate of convergence. Similar concepts are used for discretization

methods. The solution of the discretized problem converges to the solution of the

continuous problem as the grid size goes to zero, and the speed of convergence is

one of the factors of the efficiency of the method.

In this section, we will carry out a convergence investigation of our numerical

methods. Lots of different experiments are performed with different wealth and

time step sizes. Since the analytic solution is not available in these experiments, we
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choose the results gained from the finest grid as our reference solution and compute

the L2 error between the reference solution and the solution obtained on the coarser

grid. The convergence rate is the logarithm of two immediate quotients of the L2

norms.

• Convergence test for PG(t, w)

To calculate the convergence rate, we perform six experiments with varying

grids Δw = 0.7813, 0.3906, 0.1953, 0.0977, 0.0488, 0.0244. The time step size

is set to be Δt = 0.05. The parameters for the Gompertz mortality are

m = 87.8 and b = 9.5 introduced back in section 4.2.3.

Table 4.6 is the convergence analysis for PG by centered difference method

and the upwind scheme. We see that the convergence rates for both meth-

ods are increasing as the grid is refined while the convergence rate for the

first method is close to second-order and the convergence rate for the sec-

ond method is about first-order. When the wealth step size is smaller, both

methods converge faster to the real solution.

• Convergence test for PS(t, w, λ)

The closed-form expression for PS is also not available so the results obtained

from the finest grid are chosen to be our reference solution. To do convergence

test for spacial variables, seven different computations with varying grids are
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Table 4.6: Convergence Analysis for w (Centered Difference/Upwind)

Step size Δw L2 norm ||PG − P ∗
G||2 Convergence rate

0.7813 2.3000e-03/2.47e-02 -

0.3906 8.1694e-04/1.73e-02 1.49/0.51

0.1953 2.8500e-04/1.16e-02 1.52/0.58

0.0977 9.5928e-05/7.1e-03 1.57/0.71

0.0488 2.7130e-05/3.3e-03 1.82/1.11

performed. The time step size is set to be 0.02. For computational simplicity,

the mixed derivative is treated explicitly. Table 4.7 shows the convergence

analysis for w and λ. From this table we see that our numerical algorithm

converges faster when the step sizes get smaller.

• Remarks

From Table 4.6 and Table 4.7 we see that our algorithms converge to the exact

solution when the step sizes go to zero. This gives us confidence that our

numerical methods for the PDE of PG and PS are convergent and trustable.

Hence the numerical results we have obtained in this chapter are good.

173



Table 4.7: Convergence Analysis for w and λ

Number of grids: (I,J) ||PS − P ∗
S ||2 Convergence rate

(96,8) 0.1502 -

(192,16) 0.1382 0.1200

(384,32) 0.1133 0.2869

(768,64) 0.0848 0.4174

(1536,128) 0.0455 0.8964
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5 Conclusion

This dissertation considered two major issues in retirement planning. The first issue

studied the effect of the introduction of stochastic interest rates to retirees’ annuiti-

zation choices without bequest motives in an all-or-nothing framework. The second

part of the dissertation examined the lifetime ruin probability for a retired indi-

vidual who might run out of money before the end of his/her life under stochastic

hazard rates. The main purpose of this dissertation is to provide useful information

to help retired individuals to plan their finances in order to achieve a better and

more comfortable retirement and a higher standard of living. If individuals choose

to self-annuitize their wealth, they have the advantage of higher liquidity, but they

need to be aware of the risk of becoming ruined, which depends on their initial

wealth and personal mortality rate. If they choose to annuitize, they may get a

better financial trade-off upon the optimal annuitization time under stochastic in-

terest rates when they consume their annuity payout optimally with no bequests

left for heirs.
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5.1 Takeaway from the Annuitization Problem

In the annuitization problem, we have looked at the effect of the introduction of

stochastic interest rates to a retiree’s annuitization choice with no bequest motives

in an all-or-nothing framework for a utility maximizer. To do so we have chosen to

represent the annuity market via fixed annuities, a traditional and popular product.

We also assumed that the individual only has initial wealth in the form of a lump

sum cash amount, does not come pre-annuitized with a pre-existing pension or

social security, and has no other lifetime income.

In the first life cycle model we assumed that the retiree would consume all

his/her annuity payout after annuitization. In this setting, the optimal control

problem is a free boundary problem (similar to the American option pricing prob-

lem) which can be converted to an equivalent LCP problem, and solved by the

successive SOR method. We found that the individual will gain more financial

advantage at any given age if he/she chooses to annuitize his/her lump sum cash

amount when the interest rates are below a critical interest rate, no matter whether

the force of mortality is constant or Gompertz. This is reasonable because we have

assumed constant spread between the risky asset’s expected return and the risk-free

interest rate, and the subjective discount factor deviates considerably from current

interest rate when the latter is bigger.
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In the second life cycle model we assumed that the retiree will consume opti-

mally after annuitization. This optimal consumption strategy has been obtained

through dynamic programming techniques. It turns out that the individual will

be better-off if he/she chooses to annuitize for any interest rate at any time after

retirement. This result is consistent with existing literature in the sense that it is

always optimal to annuitize with no bequest motives and loading fees. It is always

better to annuitize since the annuitization value function is always greater under

the optimal consumption strategy.

One natural follow up on this annuitization problem is to extend fixed annu-

ities to other annuity products such as variable annuities, deferred annuities or

joint annuities for married couples. We can also extend our research by including

substantial load factors since annuities are not priced fairly in reality.

5.2 Takeaway from the Ruin Problem

In the ruin problem, we have studied the effect of stochastic hazard rates on the

ruin probability, and compared it with its counterpart under GM mortality. This

is motivated by the observation from historical data that the hazard rate behaves

stochastically. The problem was formulated using PDE solution techniques, and

was numerically solved by the ADI method. Numerical results indicate that the

ruin probability for stochastic mortality rates is higher than the ruin probability
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for the GM mortality. For stochastic mortality, higher levels of mortality drift

and volatility lead to lower ruin probability during one’s lifetime. For the wealth

process, higher expected investment returns and lower volatility of the investment

will reduce the chances of the individual to become ruined. As for the correlation

coefficient between the two Brownian motions that drives the wealth process and

the stochastic mortality process, higher coefficients lead to higher ruin probabilities.

The mortality model we have presented for stochastic hazard rates is a log-

normal distribution with constant drift and volatility. An alternative model is to

calibrate the mortality to be stochastic with varying drift (instead of constant) and

constant volatility as proposed by Huang, Milevsky and Salisbury (it is appearing

in IME) for the same wealth process and consumption. An extension could be

relaxing the constant consumption rate to be stochastic, or to minimize the ruin

probability under optimal investment and consumption strategies with stochastic

mortality.
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