Matrix product approximations to multipoint functions in two-dimensional conformal field theory

Robert Koenig (TUM) and Volkher B. Scholz (Ghent University) based on arXiv:1509.07414 and 1601.00470 (published in PRL)

QMATH13
GeorgiaTech, Atlanta
October 2016

 Understand the entanglement structure of quantum field theories using tensor network methods

- Understand the entanglement structure of quantum field theories using tensor network methods
 - Tensor networks model the entanglement properties of many body systems and are successfully applied in condensed matter physics

- Understand the entanglement structure of quantum field theories using tensor network methods
 - Tensor networks model the entanglement properties of many body systems and are successfully applied in condensed matter physics
 - What about quantum field theories?

- Understand the entanglement structure of quantum field theories using tensor network methods
 - Tensor networks model the entanglement properties of many body systems and are successfully applied in condensed matter physics
 - What about quantum field theories?
- States of the quantum field theory and tensor network states live in different Hilbert spaces: how to measure closeness?

Focus on physical quantities: correlation functions

- Focus on physical quantities: correlation functions
- If tensor networks can approximately reproduce correlation functions of quantum field theories, then we can use them to understand the entanglement structure of quantum field theories.

- Focus on physical quantities: correlation functions
- If tensor networks can approximately reproduce correlation functions of quantum field theories, then we can use them to understand the entanglement structure of quantum field theories.
- Start with simplest interesting class of quantum field theories: 1+1 dimensional unitary Conformal Field Theories (a quantum field theory defined on the circle with conformal symmetry)

Tensor network states for spin chains:

Tensor network states for spin chains:

maximally entangled pairs of (bond) dimension D are placed between the physical particles (physical dimension d)

Tensor network states for spin chains:

maximally entangled pairs of (bond) dimension D are placed between the physical particles (physical dimension d) and are contracted by a DxDxd dimensional tensor

Tensor network states for spin chains:

maximally entangled pairs of (bond) dimension D are placed between the physical particles (physical dimension d) and are contracted by a DxDxd dimensional tensor

 Correlation functions can be computed efficiently (in D) and reduce to the computation of a sequence of completely positive maps on matrices of dimension D

Main result

Correlation functions of 1+1 dimensional unitary Conformal Field Theories can be arbitrarily well approximated by correlations functions of Matrix Product states.

Main result

Correlation functions of 1+1 dimensional unitary Conformal Field Theories can be arbitrarily well approximated by correlations functions of Matrix Product states.

Scaling of Parameters:

number of fields n, UV cutoff d (measured in terms of energy), approximation error ε, C constant depending on CFT (not necessarily central charge)

scaling of bond dimension	fixed n, UV cutoff d	fixed ε
log(D)	~ log(1/ε) C n/d	~ √C n

 We obtain a sequence of explicit Tensors describing Matrix product states, which better and better satisfy the conformal symmetry

- We obtain a sequence of explicit Tensors describing Matrix product states, which better and better satisfy the conformal symmetry
- Proof is mathematically rigorous and constructive; holds for most unitary Conformal Field Theories

- We obtain a sequence of explicit Tensors describing Matrix product states, which better and better satisfy the conformal symmetry
- Proof is mathematically rigorous and constructive; holds for most unitary Conformal Field Theories
- However, the parameter scaling is worse than would could be expected from entropic arguments [Cardy&Calabrese, Holzhey et. al.,..]

- We obtain a sequence of explicit Tensors describing Matrix product states, which better and better satisfy the conformal symmetry
- Proof is mathematically rigorous and constructive; holds for most unitary Conformal Field Theories
- However, the parameter scaling is worse than would could be expected from entropic arguments [Cardy&Calabrese, Holzhey et. al.,..]
- Uses the language of Vertex operator algebras: first introduced by Borcherds in his proof of the Moonshine conjecture

More Symmetries: Wess-Zumino-Witten models

 In addition to conformal symmetries, WZW models possess an additional local symmetry given by an affine Lie algebra based on a simple compact Lie group

More Symmetries: Wess-Zumino-Witten models

- In addition to conformal symmetries, WZW models possess an additional local symmetry given by an affine Lie algebra based on a simple compact Lie group
- These additional symmetries carry over to the MPS Tensors; leads to a group invariant MPS

More Symmetries: Wess-Zumino-Witten models

- In addition to conformal symmetries, WZW models possess an additional local symmetry given by an affine Lie algebra based on a simple compact Lie group
- These additional symmetries carry over to the MPS Tensors; leads to a group invariant MPS
- Moreover, the interactions (fusion rules) are completely described already in the lowest level; the higher order Tensors are only needed to model the conformal and affine symmetries

Proof sketch: regularization

 identify states with Hilbert-Schmidt operators on the chiral theory; field operators become linear maps: need to approximate by finite-dimensional ones

$$<$$
 $\varphi_1(x_1)$ $\varphi_2(x_2)$ $\varphi_n(x_n)>$

Proof sketch: regularization

- identify states with Hilbert-Schmidt operators on the chiral theory; field operators become linear maps: need to approximate by finite-dimensional ones
- a finite UV cutoff regularises the unbounded field operators and turns them into bounded operators

$$\langle \Phi_1(x_1) \longrightarrow \Phi_2(x_2) \dots \Phi_n(x_n) \rangle$$

 $|x_1 - x_2| > d$

Proof sketch: regularization

- identify states with Hilbert-Schmidt operators on the chiral theory; field operators become linear maps: need to approximate by finite-dimensional ones
- a finite UV cutoff regularises the unbounded field operators and turns them into bounded operators

$$\langle \Phi_1(x_1) \longrightarrow \Phi_2(x_2) \dots \Phi_n(x_n) \rangle$$

 $|x_1 - x_2| > d$

 techniques: use results of Wassermann for WZW models (explicit bounds), and the existence of genus-1 correlation functions for general CFTs [Zhu, Huang]

Bounded field operator φ(x): can change the energy by an arbitrary amount

		Energy levels of the conformal Hamiltonian		
	=			\equiv

Bounded field operator φ(x): can change the energy by an arbitrary amount

Bounded field operator φ(x): can change the energy by an arbitrary amount

Bounded field operator φ(x): can change the energy by an arbitrary amount

Precision Truncated bounded field operator φ^{tr}(x) can only change the energy by a fixed amount

Bounded field operator φ(x): can change the energy by an arbitrary amount

Precision Truncated bounded field operator φ^{tr}(x) can only change the energy by a fixed amount

Bounded field operator φ(x): can change the energy by an arbitrary amount

Precision Truncated bounded field operator φ^{tr}(x) can only change the energy by a fixed amount

 Correlation functions of CFTs can be approximated by those from MPS

- Correlation functions of CFTs can be approximated by those from MPS
- Our Approximations are constructive, provide rigorous error bounds and respect additional symmetries (WZW)

- Correlation functions of CFTs can be approximated by those from MPS
- Our Approximations are constructive, provide rigorous error bounds and respect additional symmetries (WZW)
- Can be analysed further to understand low energy states of CFTs in quantum information theoretic terms (connection to quantum error correction?)

- Correlation functions of CFTs can be approximated by those from MPS
- Our Approximations are constructive, provide rigorous error bounds and respect additional symmetries (WZW)
- Can be analysed further to understand low energy states of CFTs in quantum information theoretic terms (connection to quantum error correction?)
- Generalisation to MERA (multiscale entanglement renormalization Ansatz) seems possible and may provide better parameter scaling