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SUMMARY

Iterative game design is a process for refining the design of a game through a process

of: (1) creating a base game; (2) playtesting the game to gather examples of people playing

the game; (3) evaluating playtest outcomes to assess how well the game meets design goals;

and (4) choosing a way to iterate on the game design to better achieve desired design goals.

Developing computational models of this process holds great potential value for informing

our understanding of iterative game design and automating aspects of this practice. In this

thesis I develop a set of systems to automate the iterative game design process.

The central statement of this thesis is:

Explicitly modeling the actions in games as planning operators allows an intel-

ligent system to reason about how actions and action sequences affect game-

play and to create new mechanics. An intelligent system facilitates human

iterative game design by learning design knowledge about gameplay and re-

ducing the number of design iterations needed during playtesting a game to

achieve a design goal.

I demonstrate general game generation through developing a modular, mechanic-centric

representation for games across genres that allows a system to reason about how players

are able to achieve a variety of outcomes. This approach enables a system to generate

games given only a specification of success and failure criteria for a genre and a modu-

lar specification of the mechanics for a genre. To enable general game playing I apply

Monte-Carlo Tree Search (MCTS) as a domain-agnostic game playing algorithm, using

the computational bounds of the search as a proxy for varying human capabilities to play

games. To evaluate the space of play in games I develop a taxonomy of four types of met-

rics for actions taken in games, showing how these metrics reveal strengths and defects in

the design of two games to support differentiation among the general game playing agents

using MCTS. These evaluations showcase how these metrics can reveal where games sup-
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port differentiation of player skills through design, in turn demonstrating their utility for

design evaluation. This evaluation approach for design iteration is further supported with

evaluation of the design space of a game by generating a range of game design variants

and evaluating hypotheses about how different design choices influence player behavior in

terms of the action metrics. The range of design variants supports direct optimization to

choose the best design variant to achieve a design goal. A system is also able to learn pre-

dictive models for how changes to game design features in a card game result in changes

in how actions are used, as measured by the previous action metrics. Finally, I apply tech-

niques from optimal experimental design to show how a system can choose new design

variants sequentially to balance the trade-off between optimizing the quality of a design

against a design goal and exploring alternative designs to seek out the generally best de-

sign. By comparing a variety of techniques across two design optimization goals I illustrate

the general applicability of this approach to enabling efficient design iteration.
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CHAPTER 1

INTRODUCTION

Artificial intelligence (AI) research has long sought to enable computational systems to

reproduce human cognitive capabilities. Creativity is considered a distinguishing (if not

unique) human capacity for generating novel ideas and artifacts. Among the many domains

of creativity, games are uniquely interesting. Games are fundamentally interactive artifacts.

In visual art, music, stories, or cooking audiences react to an artifact by forming some

judgment of the artifact. In games, audiences must interact with the artifact itself, forming

their judgment in response to this particular interaction.

Games thus pose a fundamental challenge to computational creativity. Game designers

decide on the structure of a game among many possibilities, but any game design enables

a breadth of possible ways to play and designers are typically interested in what exists in

that space of possible ways to play.

For example, in the Super Mario Bros. games a designer can choose how high to allow

Mario to jump, but cannot directly decide where players jump or whether it is possible

for players to reach the end goal of a level and ultimately how players feel about this

experience. More generally, designers are often interested in understanding what behaviors

are possible given design decisions for a game. What strategies are possible (or impossible)

in this game? What is the expected way players will interact with the game? Can players

even win the game? Can players lose? These aspects of a game do not lie directly in the

created game, but instead are secondary effects of the game’s design. Player experiences,

in turn, develop in response to how they may (or may not) act within a game.

Games also have value as a domain of study for their growing cultural and practical

relevance. Games are increasingly considered more than an entertainment medium [17].

Designers use games to express ideas and experiences directly through shaping the ways

1



players may or may not act in a virtual world. Games are being used for training and

educating: providing basic job training, drills for military skills, or lessons in math. As

motivational systems games are increasingly used to help people achieve goals ranging

from picking up healthy eating habits to sticking with workout regimes. Games have even

been used as means of advertising and tools in political election campaigns.

Despite these widespread applications, our understanding of how games work and our

tools for designing games remain primitive. The bulk of scientific knowledge of game de-

sign to date draws from behavioral psychology studies [104]. These works highlight how

game systems of rewards can shape behavior. Yet this knowledge falls far short of under-

standing how game designs shape the ways people may play a game. Our tools for design-

ing games are similarly limited. While tools for creating the content in games have grown

increasingly powerful—from sophisticated 3D modeling tools to complex music composi-

tion systems—our tools for designing games (with some exceptions discussed later) have

advanced little since digital games first became common in the 1980s. That is, we still

lack tools that enable designers to understand what behaviors a choice in game design may

enable. Lacking such tools, there is little opportunity for designers to build knowledge of

how their game works and ultimately generalize and share this knowledge to improve the

practice of game design as a whole.

Why enable computers to participate in iterative game design? Building computational

systems that can design games and acquire game design knowledge stands to benefit prac-

titioners in a number of ways. Computational systems can help designers understand how

different design decisions will influence player behavior in a game by simulating player

behaviors. Using this knowledge, people can better navigate a range of design decisions by

comparing the expected impact on game players. As these computational systems observe

people designing, they can learn how designs influence people. This design knowledge can

then be offered to people to guide them when making design decisions and even be used to

highlight design alternatives people may inadvertently overlook. As computational systems
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learn from many design cases they can use this knowledge to help people more effectively

iterate on designs, enabling designers to create games faster and explore new design al-

ternatives. At an extreme, computational iterative design systems can even automate the

process of creating games, yielding new types of games.

In this thesis I present computational systems that model aspects of an iterative game

design practice. To date, most computational game design work has emphasized models of

the first step in iterative design—creating a game of interest—while ignoring or downplay-

ing the role of evaluating the game and using those evaluations to refine the game design

while learning about that type of game as a whole. I develop models of iterative game de-

sign with a specific focus on the problem of evaluating and refining a game design to drive

player behavior. I show how computational systems can follow human processes for creat-

ing games and demonstrate the potential these systems have for augmenting the practice of

game design. By developing these systems I fill gaps in our understanding of the process of

designing games, addressing methods for genre-agnostic creation of games, genre-agnostic

generation of behavior in games, general metrics for analyzing strategies in games, and a

general method for efficiently iterating on game designs.

1.1 Iterative Game Design

Game design, like all creative processes, can take many forms. The game design literature

is home to a breadth of advice on everything from techniques for conceptualizing a game

to best practices for paper prototyping (that is, testing a simplified version of a game using

paper, die, &c.) [61, 69, 110, 167, 171]. While much of this advice conflicts, there is

a general consensus around the value of an iterative game design process [69]. Iterative

game design emphasizes a process where designers have people play their game, evaluate

how people play the game against design goals for the game, and use that feedback to

make a change to the game (Figure 1.1). This process repeats until the game eventually

accomplishes a designer’s goals in terms of how people play the game. Iterative design
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stands in contrast to waterfall design methodologies that emphasize extensive pre-planning

and development before testing the game with players.

Iterative game design is considered a best practice among game design practitioners

that is used to facilitate the creative process of game development [69]. First, create a (po-

tentially simplified) game of interest. This game is designed to enable players to perform

basic desired behaviors in the game. At this time the designer will have one or more the-

ories about how the design will shape player behavior. Second, test the game with players

to gather information on how people play the game. Playtesting provides the designer with

examples of how people may interact with the game, informing their understanding of what

behavior is possible in the game. Third, evaluate those example behaviors against gameplay

goals. Designers can evaluate the behaviors seen in the game to decide if desired behav-

iors are occurring and may also check for emergent behaviors that may be of interest. At

this time the initial design theories will be tested and refined as needed. Fourth, iterate on

the game design by picking the most promising candidate (set of) change(s) to the design

intended to better achieve gameplay goals. Iterations typically use evaluations of playtests

to choose which changes are most likely to improve the design in terms of gameplay goals.

Summarizing, iterative game design is a process of creating a game, playtesting to get user

behavior, evaluating playtest outcomes, and iterating to choose the most promising changes

to make to a design.

In this thesis I present systems that model this iterative game design process. To date,

most computational game design work has emphasized models of the first step in this pro-

cess: creating a game of interest. These efforts strive to enable computers to create games

of a particular type, generally guided by some notion of what makes those games high

quality. Rather than enable computers to evaluate the games they make, these systems use

hand-crafted notions of quality that eliminate the need to iterate on a design. Relatively

little effort has gone into understanding how a player might interact with a game to inform

game design changes. This work addresses these gaps by explicitly targeting the full pro-
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Figure 1.1: Iterative design process (for games) schematic.

cess of iteration, with a focus on the problem of understanding how players respond to a

game and ways to use that information to guide understanding and further refining a game

design.

1.1.1 Game Generation

A core requirement for any computational game design system is the capacity to generate

games. Generating a game requires some means of representing the structure of a game in

computational form. These representations for games define the design space of games a

system may create. By defining what kinds of games are represented we define what games

a system is capable of generating. Any representation must make trade-offs between the

range of games possible and the computational costs of searching for good games within

that design space.

Work in the area of game generation has developed systems that are able to represent

and generate games in a variety of genres. Representations have been developed for card
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games [65], 2-player board games [20], strategy games [123], adventure games [126] and

subsets of 2D arcade games [193, 219]. While powerful as ways of enabling a system to

be creative within a given game genre, these models tightly constrain the range of games

a system may create. By favoring tractable design spaces these models limit our ability to

understand the more general aspects of game design inherent in combining elements across

genres or defining new genres altogether.

As an alternative I explore the notion of generating games in a way that is agnostic

to the specific game genre by developing a representation that captures a broad class of

discrete, turn-based games. Discrete games are those that do not use real values (floating

point values), imposing a level of coarseness characteristic of a paper prototype or tabletop

game. Turn-based games impose the constraint that actions do not occur in real time. These

two constraints enable the system to generate games capturing a broad spectrum of tabletop

games (board games, card games, or role-playing games) while also serving as a simplified

model for games requiring continuous variables.

I take the approach of representing the game based around a model of game mechanics.

Games can be broadly broken into mechanics and content. Mechanics define the actions

possible in the game, serving as the rules for the game. Content captures the various assets

used in a game, ranging from level structures to visual art.

I show how to generate game mechanics and level content across a variety of gen-

res using this mechanic-centric representation. The system is able to reason about how

mechanics enable players to achieve a variety of outcomes and uses this information to

generate games that ensure winning conditions can be met. The representation is modular,

enabling the system to combine genres and generate mechanics and content appropriate to

these genre blends. By providing a genre-agnostic approach to generating games I provide

a key step toward general game generation systems.
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1.1.2 Playtesting

Any given game design affords a plethora of ways to play. The play space is the set of ways

a player may behave in a game. When creating games a designer typically has some goals

for the play space afforded by a game: the ways players may win or lose the game or the

kinds of strategies players may take in a game. Designers (human or computer), however,

are only able to choose a design from the design space. The challenge of game design lies

in choosing designs in a way that shapes the play space of a game in desired ways.

Behavior sampling is the problem of gathering examples of behaviors from the play

space. The most common approach to behavior sampling is simply to test the game with

people. Playtesting with people provides clear evidence that (at least some) people will

actually play the game in a specific way. As long as the playtester population is similar to

the population of people intended to play the game, this can provide useful guidance on the

actual play space people will use. In this work I use human playtesting as a base case to

evaluate design iteration, presented in detail below.

Human playtesting, however, has a number of drawbacks. Running playtests with peo-

ple can be time consuming. People may not sufficiently try alternative ways of playing the

game, missing strategies (or bugs) that a larger group of players might find. Playtesters

may not cover the full range of diversity of players of the final game.

How can computational systems address these limitations of human playtests for be-

havior sampling? One option is to use a small enough (or abstract enough) play space that

it is feasible for a computer to enumerate all possible behaviors from the space of play

[192, 206]. This approach enables a designer to have guarantees on the properties of the

play space, by explicitly checking whether desired behaviors are present (and undesired

behaviors are absent). By fully exploring the space of play, a system can cover the pos-

sibilities available to any group of players—this approach is used by the game generation

system above. This comes with the caveat that there is no guarantee people will actually

discover the ways of playing found through exhaustive enumeration. Even if a game could
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be won, it does not mean that will be possible for any person to accomplish.

In many cases, however, exhaustive exploration of the play space is infeasible: the game

may be too complex to simplify in a way that maintains fidelity to core elements of the

design or the time required to search all ways to play is too great. An alternative approach

is to simulate the ways people play the game to get a sense of the range of possibilities

in the game. Simulation-based models of play enable a designer to get examples from the

play space, limited primarily by their fidelity to human play.

I address this gap by developing a general approach to simulating play in discrete, turn-

based games. This approach captures aspects of human skill through adjustable parameters

of the simulation AI agents—these parameters allow alterations of agent planning capabil-

ities to model a range of skills, from weak to strong game players. This work provides a

general approach to sampling behaviors in a wide variety of game genres without custom

algorithms for each game. At the same time, this approach proxies the notion of player

skill, enabling the system to provide examples of how gameplay may differ between ama-

teurs and experts in the game.

Behavior sampling provides examples of behavior to support evaluating a game. De-

signers typically come to a game with expectations for how players will play the game.

Beyond simply being able to complete a game, designers may desire that certain strate-

gies are possible in a game, or that various actions are balanced so that no single action is

favored to the exclusion of alternatives.

Game analytics is a field dedicated to studying how people play games and using that

information to inform game design [176]. Game analytics techniques enable designers to

understand different types of players in games, summarize the outcomes of players play-

ing, or predict player behavior including quitting or purchasing goods. These techniques

provide designers with an understanding of possible behavior in a game when faced with

vast amounts of play data from a running game.

Game analytics methods to date have primarily been concerned with understanding the

8



game states occupied by players, with relatively little attention given to actions taken by

players. Modeling the state space of a game provides insight into what parts of a game

are used, or what players may be expected to typically achieve. Modeling the play space

of a game, however, requires analytics on the actions taken by players. Analysis of play

can yield a deeper understanding of the strategies players employ (or lack thereof) and help

guide changes intended to shape the play space of a game.

I develop a taxonomy of metrics for play actions to study the play strategies enabled by

a game. Summaries are high-level metrics that summarize play behavior in a game; e.g., the

typical number of actions taken in a game. Summaries provide a basic understanding of the

larger structure of the play space of a game. Atoms are the frequency of individual actions

used in a game, grounding an understanding of what actions are taken (or not). Atoms

help determine to what extent actions in a game are balanced, by assessing how well the

frequencies of actions align with those intended by a designer. Chains are common action

sequences in a game, covering both typical ways of chaining together actions by one player

and typical ways one player responds to the actions taken by an opponent. Chains enable

designers to discover both expected and unexpected patterns of play in a game. Action

spaces are metrics on the number of actions available to players (or taken by players) over

the course of a game. Action spaces help designers understand whether a game supports

an intended degree of breadth over the duration of a game. The metrics I develop enable

designers to compare a design to design goals for a game, understand the kinds of strategies

enabled by a game, and potentially discover unexpected patterns of action in a game.

1.1.3 Game Evaluation

Game evaluations serve two ends for designers: (1) discovering designs that best accom-

plish design goals and (2) providing knowledge about how a game design works. Discover-

ing the best design in a design space requires a system to evaluate a breadth of designs and

select those that best achieve design goals. I show a system that systematically generates a
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wide variety of game design variants in a card game and uses behavior sampling and action

metrics to evaluate these designs. The system can then choose among these designs to find

designs that enable desired player strategic opportunities.

Evaluations of a game give information not only on that game, but also on similar games

that share parts of their design. Designers begin a design process guided by a number of

assumptions about how design choices will influence player behavior. This design knowl-

edge shapes the initial design and is subsequently altered over the course of playtesting as

designers learn more about how the design works with real players in practice. In this work

I show a batched approach to acquiring design knowledge using the action metrics above.

After generating a set of designs with minor changes to design features, a system uses be-

havior sampling to explore the space of play of each design variant. Design knowledge is

learned by evaluating gameplay metrics while comparing design variants, yielding knowl-

edge of how changes to a design change player strategic behavior. This work showcases

how a computational system can gather knowledge about a design that can inform human

designers and guide automated generation.

1.1.4 Iteration

In many cases design will not use simulated behaviors, but require human playtesting.

Iteration in these cases is challenging due to the cost of playtesting each design considered,

leading to a fundamental tension. On the one hand, it is valuable to explore very different

designs to better understand the range of possibilities in a design space. On the other hand,

it is also important to refine a design by considering similar, but slightly different, variants

within the design space. The tension between exploration and refinement to minimize the

cost of playtesting is a core problem for iteration.

This problem is not unique to game design: medical researchers (and scientists in gen-

eral) are faced by the same challenge. Specifically, medicine often needs to study how a

drug or treatment might help (or hurt) people. Testing a drug is expensive and risky—
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researchers would like to design the optimal experiment (or set of experiments) that min-

imizes the number of patients tested before a conclusion can be drawn about the efficacy

of a drug. This problem of optimal experimental design is a broad topic widely studied in

statistics.

In this work I demonstrate how techniques from optimal experimental design can be

used to choose design iterations based on playtest data. I study the case of online changes

to a design: a game is deployed, data on how a small number of people play is collected,

and a change is made to improve the game. I compare a number of models from optimal

experimental design that make different trade-offs between exploring possible designs and

refining the highest quality designs to explore different approaches to iteration. Through

simulations and human studies I show these methods can reduce the number of playtests

needed to achieve a design goal, opening new avenues for the application of computational

methods to iteration.

1.2 Thesis Statement

The central statement of this thesis is:

Explicitly modeling the actions in games as planning operators allows an intel-

ligent system to reason about how actions and action sequences affect game-

play and to create new mechanics. An intelligent system facilitates human

iterative game design by learning design knowledge about gameplay and re-

ducing the number of design iterations needed during playtesting a game to

achieve a design goal.

In the following chapters I will discuss the systems that realize this thesis statement.

In chapter 3 I demonstrate general game generation with a modular, mechanic-centric

representation for games across genres that allows a system to reason about how players are

able to achieve a variety of outcomes. This approach enables a system to generate games
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given only a specification of success and failure criteria for a genre and a modular speci-

fication of the mechanics for a genre. To simulate players to explore play spaces I apply

Monte-Carlo Tree Search (MCTS) as a domain-agnostic game playing algorithm, using

the computational bounds of the search as a proxy for varying human capabilities to plan

ahead when playing games in chapter 4. To evaluate the space of play in games I develop

a taxonomy of four types of metrics for actions taken in games, showing how these metrics

reveal strengths and defects in the design of two games. These evaluations showcase how

these metrics can reveal where games differentiate among players of differing skill through

design, in turn demonstrating the value of action metrics for design evaluation. This eval-

uation approach for design iteration is further supported in chapter 5 with evaluation of

the design space of a game by generating a range of game design variants and evaluating

hypotheses about how different design choices influence player behavior in terms of the

action metrics. The range of design variants supports direct optimization to choose the best

design variant to achieve a design goal. A system is also able to acquire design knowledge

in the form of how changes to game design features in a card game result in changes in

how actions are used, as measured by the previous action metrics. Finally, in chapter 6

I apply techniques from optimal experimental design to show how a system can choose

new design variants sequentially to balance the trade-off between optimizing the quality of

a design against a design goal and exploring alternative designs to seek out the generally

best design. By comparing a variety of techniques across two design optimization goals I

illustrate the general applicability of this approach to enabling efficient design iteration.

Together these systems support the thesis statement claims for modeling an iterative

game design process. The next chapter provides a background on efforts in game genera-

tion, game analytics, and computational creativity as context for this work. The following

chapters address each topic in turn: genre-agnostic game generation, human-like play sam-

pling, game design evaluation, and efficient game iteration.
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CHAPTER 2

BACKGROUND

Building computational iterative game design systems requires modeling the intertwined

component processes involved in iteration. Game generation is required to create games

of interest to iterate on. Behavior sampling is needed to gather information on the space

of play enabled by a design. Game analysis is required to convert raw examples of behav-

ior into an understanding of how well player behavior aligns with design goals. Design

iteration is needed to choose how to proceed to the next game design during the iterative

design process. More generally, iterative design is a creative practice that relates to broader

concerns in computational creativity around how computers can be creative. In this chapter

I review work in these areas as background for the contributions made in this thesis.

2.1 Game Generation

Game generation is the problem of creating a game from a description of what constitutes

a valid game. Game description languages (GDLs) are representations of game domains

to enable game generation. Procedural content generation (PCG) is a related area devoted

to algorithms for synthesizing the content in games, such as visual assets, music, or level

designs [180]. PCG is directed at elements of the game domain that are traditionally assets

in a game engine; game generation also includes the behavior (rules) of the game that is

traditionally governed by the game engine itself. A game generation system uses a GDL

to define a search space of possible game designs to consider, thus coupling the choice

of domain representation to the creative range of the generator. A central problem for

any GDL is balancing between the power to express a broad range of domains of interest

while remaining tractable to use for generating games. Researchers have studied game

description languages primarily for three applications: (1) general game playing, (2) game
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authoring support, and (3) automated game generation. While the former two approaches

often yield overly expressive games that prohibit direct generation of games, the latter have

often been too limited in scope to support generation of games across a variety of domains.

In this work I bridge this gap through a representation that is able to capture a broad range

of domains with low-level generative control. This effort, however, comes at the cost of

limiting the scale of the games being generated to smaller puzzle-like games. Further, there

remain open questions around generation for genres premised on large, complex content

such as open-world 3D games or games with large numbers of players competing with one

another.

2.1.1 General Game Playing

General game playing (GGP) researchers study how to create AI agents able to play games

in arbitrary domains. GGP research strives toward algorithms that capture general AI capa-

bilities by emphasizing the ability to use the same AI agents to play games in many different

domains. To facilitate creating these agents GGP researchers have developed description

languages for shared primitive language elements that can be used to create a variety of

games with different challenges.

The Stanford Game Description Language [121] models turn-based, competitive games

in a declarative language. This captures a broad class of adversarial board games including

examples like chess and checkers. Extensions to the language have introduced randomiza-

tion of events in games and agents with incomplete information about the world state [215].

These extensions allow for capturing card games such as Poker, where players do not have

direct knowledge of which cards the opponent possesses. The Stanford GDL has been used

in an ongoing series of AI competitions and has facilitated developments in AI agents that

can play this class of games.

Video game AI researchers, however, have often been interested in the computational

challenges associated with traditional video games. The Video Game Description Lan-
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guage (VGDL) [169] was developed to better model arcade-style 2D games—popular ex-

amples include Frogger [109], Space Invaders [212], and Pacman [138]. The VGDL cod-

ifies a space of games that allows for continuous movement and physics, creating and de-

stroying game entities, win/loss states, and a variety of other elements common to arcade

game design. Recent competitions have begun to use the VGDL to test general game play-

ing agents in this new environment that is less amenable to logic-based reasoning [153].

These efforts highlight the potential for representing broad classes of games in a way

that is amenable to automated game playing. These languages, however, are of limited use

for automated generation due to their emphasis on very low-level representations of game

domains. An emphasis on low-level representations creates a vast space of possible games

with only minor differences between them. This broad space creates creates a computa-

tional bottleneck for any search algorithm navigating the space of possible designs within

these languages. Generation in these spaces only becomes feasible by further constraining

the parts of the language used, effectively trading off the expressive power of the language

for computational tractability [142, 127]. Adding further constraints on the language is

undesirable as it limits the range of games possible in the language.

These languages are often not modular: they do not support the ready recombination

of elements from different genres [140]. Modularity helps languages address an expressive

goal of supporting the common creative process of mixing elements across genres. While

the Stanford GDL and VGDL can both theoretically model games across many genres,

their lack of representational modularity stymies practical uses of these description lan-

guages to generate games in a domain-agnostic fashion. Ideally a representation tailored to

generating games should support combining domains while also enabling direct search for

new kinds of games in the domain.
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2.1.2 Game Authoring Support

Developing games is a challenging task, particularly for non-programmers who lack the

ability to author code that realizes their goals for game systems. To address these needs

researchers and game developers have created a variety of game authoring tools that embed

specialized languages for authoring game content and behavior. These languages vary

in their capabilities to support authoring, ranging from tools simply intended to provide

a high-level language for describing content to systems that support running simulations

or checks on how the game functions. Unlike game playing description languages, these

tools are typically developed to facilitate the creation of games that are directly playable by

people, rather than used as abstract interfaces for computer agents.

Authoring tools for interactive fiction—text-based games where players make decisions

influencing the course of a story—have become popular as introductions to game design

that remove the need for skills in creating visual art, music, or complex game systems.

Twine1 provides a simple visual interface for creating branching narratives and retaining

some state variables. Inform72 enables English language-like authoring with more ad-

vanced capabilities including parsing text-based input. ScriptEase II [172] supports author-

ing stories using a graph structure to connect plot points and allows exporting stories to

different game engines.

AI researchers have developed a number of systems that formalize social norms and

interactions to enable authoring social systems. Façade [128] uses a specialized program-

ming language—A Behavior Language (ABL)—for reactive planning to control how in-

game agents respond to player choices, including behaviors that coordinate multiple agents.

The Kodu AI Lab [67] provides authoring support for social game mechanics—attitude,

learning, and fuzzy reasoning—in the Kodu Game Lab authoring tool. Versu3[63] is a sto-

rytelling platform that provides a rich social model of small-group interactions, capturing

1http://twinery.org/
2http://inform7.com/
3http://versu.com/
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abstract, context-specific and universal individual motivations; emotions; beliefs; social

norms; and inter-personal relationships using a novel logical formalism. Prom Week[131]

includes a “social physics” model that allows authoring individual character traits, feelings,

and relationships and enables characters to form intents, take actions, relate to a shared cul-

tural space, and remember and refer to past events. While these tools enable authoring

content they provided very limited feedback on how authoring choices may alter potential

player behavior in the games.

Authoring tools have also been developed to capture other broad classes of games. Puz-

zlescript4 was designed to facilitate creating puzzle games, using a grammar-like front-end

language. The EGGG [149] and Ludi [20] both model a class of adversarial board games.

The Machinations [2, 55, 57] and micro-machinations [107, 162] frameworks were de-

signed around modeling arbitrary game economies using Petri Nets as an underlying model

and visual authoring tools. Machinations support running simulations of to allow authors

to visualize potential runs of a game. BIPED [195] supports authoring game prototypes

using the event calculus, allowing for logical checks on possible playouts by using model

checking to test whether particular states may hold in the game. Gamelan [150] supports

authoring a variety of turn-based board and card games along with the ability to author

game ‘critics’ that check for the presence of behaviors in games. Potential behaviors are

checked using static analysis of the game code or dynamic analysis based on pre-authored

agent behavior patterns. Ceptre [126] models a similar class of games with a grounding in

linear logic, supporting checks on game playouts using proofs from the game’s core lan-

guage. Gamika [157] models a class of simple 2D, physics based games using numeric

vectors. These authoring tools readily support human authoring, but have been of limited

value for game generation due to their great expressive power—something of value to hu-

man creators but an obstacle to computational exploration of the space of games possible

with these tools.
4http://www.puzzlescript.net/
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2.1.3 Automated Game Generation

Game generation systems require a GDL that can be efficiently searched for valid games

while still capturing a wide variety of possible games. Definitions of a complete game vary

from a specification of game rules to requiring full running code and choice of visual and

auditory assets. For the purposes of this work I will focus on running code specifications of

game entities and rules, without the need for selection of visual, auditory, and other game

representational assets. While choosing representational assets is a central component of

game design, the work in this thesis is primarily concerned with the mechanics of games

(and the spaces of play they enable), rather than these aesthetic elements.

Approaches to game generation have broadly been classified into three types: construc-

tive, search-based, and constraint-based [180]. Constructive game generators assemble

content according to a predefined grammar of elements; grammars are defined in such a

way that all generated games are valid [178]. Search-based generators iteratively enumer-

ate games from the description language, evaluating generated games against a continuous

evaluation metric and using these outcomes to guide search [220, 222]. Constraint-based

generation techniques employ a form of model checking to guarantee that games gener-

ated from a specification do or do not have certain properties [141, 197]. These methods

vary in how generation occurs, but share a common need for domain definitions to use

in generation. To date, these models have emphasized assembling elements of game con-

tent, eschewing generation of the actions possible in the game. The work in this thesis

addresses this gap by providing a low-level representation for game mechanics that can be

algorithmically generated to create new game mechanics.

Several GDLs have been developed to model a desired genre of games. By focusing

on a domain of interest GDL authors can tailor the language to capturing the nuanced

systems and gameplay of that genre and develop ways to check generated content to ap-

propriately match genre norms. Efforts in this vein have developed languages for strategy

game units [123], card games [66], adventure game puzzles [50], 2D game bosses [188],

18



simple 2D physics-based games [157], and role-playing game actions and settings in 2D

dungeons [115].

Alternatively, researchers have explored more general representations intended to cap-

ture a range of game genres, primarily board games and arcade games. Ludi [20] uses

search-based generation to generate games in a class of 2-player, adversarial board games.

Games generated by Ludi have subsequently been published, demonstrating the efficacy of

this approach.

Early work in arcade game generation used fixed sets of potential definitions for rulesets

that generated Pacman-like games that varied in agent behavior for collisions. These efforts

included search-based approaches that evaluated games for the ability of playing agents

to learn to play [219] and constraint-based methods that validated game playability (that

is, the ability to complete game objectives) [193]. Game-O-Matic [226, 225] generates a

broader set of arcade games using a constructive approach with subsequent filtering. Game-

O-Matic is unique in taking as input a human author’s definition for the intended semantic

message for a game—represented using a concept network—and using this to guide choices

of game content and rules.

Other efforts have semi-automated generation by enabling automated search within a

prescribed design space. Powley et al. [157] tweak simple 2D arcade game levels using an

automated player and a set of heuristics. Danesh [40] searches a space of generated con-

tent using pre-defined metrics for what space to search and how to evaluate the generated

content. These efforts show initial efforts to generalize procedural generation techniques

by plugging into user-specified generation tools or evaluation functions—my work applies

this philosophy to game generation, playing, and evaluation in a generic manner.

ANGELINA [38] generates 2D platformer games using a combination of generation

techniques. A search-based approach evaluates playability based on completing game lev-

els and using game systems. A constructive method chooses game assets based on a hu-

man author’s input phrase, using this to guide online searches for game content including
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visual and auditory components. This approach has been extended in later iterations of

ANGELINA [36, 37] to support 3D walking game generation; the approach based on tak-

ing input phrases has enabled ANGELINA to participate in the Ludum Dare5 game jam,

including being rated by other human creators.

GameForge [83] combines multiple approaches to generate computer role-playing games

similar in style to the Final Fantasy [204] series of Japanese role-playing games. Game-

Forge is unique in personalizing games to individual player preferences on plot and world

layout [52]. A planning algorithm modifies an input story (represented as a series of con-

nected pre-authored plot points) in response to player choices to include or exclude plot

points. A search-based approach lays out the game world to embed plot-relevant loca-

tions while evaluating world structure for meeting player-given preferences for world size.

Constructive methods are used to script the behavior of in-game agents to follow the plot.

Nielsen et al. [143, 142] have made initial efforts to generate games using the VGDL

using search-based techniques. Games are evaluated by comparing how well agents of dif-

fering game playing capabilities fare in generated games [143, 156]. Generation proceeds

either by starting from a seed example game that is altered or by random initialization from

a more constrained subset of VGDL. Nielsen et al. demonstrate the potential for general

domain generation and evaluation, an effort continued recently by Khalifa et al. [106] for

general level generation using the VGDL.

Game generation from a GDL is a top-down technique: a system starts from an ab-

stract definition for a domain and its elements to specify concrete entities in the abstract

definition. Mechanic Miner [39] takes an alternative, bottom-up approach to mechanic

generation. Rather than define a domain that can be converted into code, Mechanic Miner

directly manipulates game code using program reflection. This approach directly exposes

(a subset of) the materials of the game engine to a game generation system, rather than

depending on a domain author’s conception of how game structures should function. Di-

5http://ludumdare.com/compo/
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rect code manipulation affords nuanced changes to a game’s systems (here the mechanics,

rather than full game code), but massively increases the design space an AI technique must

navigate. Mechanic Miner illustrates the potential for low-level control of game systems

while exposing the challenges of directly altering game engine code.

The work in this thesis takes an approach to game generation that generates game while

functioning directly as the game engine. The model I use can be directly played, bypassing

the need for authors to create snippets of code that realize high-level logical specifications.

Working at the low level of game primitives that define elements of the game state provides

nuanced control over the possible mechanics and levels in a game and enables the use of

model-checking to verify game properties. By providing explicit control over the properties

of generated games (e.g., winning conditions or the number of actions needed to complete

levels in a game) my work presents an approach that bridges between human-readable

expressions of design goals and guarantees of game properties.

2.2 Behavior Sampling

Game generation provides a functional game that meets a set of design specifications, but

design iteration requires understanding the space of play afforded by a game to inform

changes to the game design requirements. Behavior sampling addresses the problem of

providing examples of player behavior—often called playtraces—from a play space. Sam-

ples of player behavior allow evaluating games in terms of the behavior they allow (or

do not allow), in turn supporting iteration on the base game. Two approaches to behav-

ior sampling are common: exhaustive techniques that provide information on all possible

behaviors in a game and simulation techniques that provide samples of behavior from a

space. Exhaustive approaches offer the benefit of capturing features of the entire space of

play, but come at a steep computational cost. In many games the space of potential behav-

iors is too complex to exhaustively explore, leading to the need for simulation techniques.

Simulation approaches offer the capability to play a game in a way intended to represent
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particular types of behavior. In particular, believable agents are simulations that are de-

signed to replicate aspects of human behavior as a way to provide playtraces that resemble

those humans could be expected to provide. My work uses both approaches to show how

exhaustive verification can enable cross-domain authoring while simulations can function

across domains to sample playtraces in highly complex games.

2.2.1 Exhaustive Behavior Sampling

Exhaustive behavior sampling methods provide theoretical guarantees that certain proper-

ties hold for a game’s space of play. When games (or their relevant subsystems) can be

fully represented in a logical language, forms of model checking or logical proof can be

used to validate properties of those games [139]. Smith et al. [22, 24, 191, 192, 196] have

used Answer Set Programming to define abstractions of discrete game systems. With this

approach, an answer set solver can use model checking to guarantee that a generated set

of game content has playtraces with desired properties, and even guarantee that undesir-

able playtraces are not part of the play space. A similar approach (with a different logical

formalism) is used in the computational critics in Gamelan [150]. Ceptre [126] uses a lan-

guage based on a modification of linear logic and examines traces by instead generating

logical proofs about the game in question.

In some cases the combination of increasingly powerful contemporary computing re-

sources and efficient storage techniques enables brute force enumeration (and storage) of

all possible playtraces in a game. Sturtevant [206] has shown how breadth-first search is a

viable way to enumerate all possible ways of playing a puzzle game.Using this approach

allows design analyses of all possible solutions to puzzles. By using this analysis across a

number of puzzles with different structures it is possible to query potential playtraces that

employ certain subsets of the possible mechanics in the game.

Adversarial games potentially allow for the direct application of results from the field of

game theory. Jaffe et al. [99, 100] used analytical solutions from game theory to study bal-
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ance in two-player, simultaneous move, adversarial games. Game theory allows studying

game balance (under the assumption of optimal play) at equilibrium, showing theoretical

limits to how a game is balanced. Jaffe et al. combine game theoretic solution analysis

with putting restraints on the actions or reasoning abilities of an agent to study the balance

of these adversarial games. Game theory thus provides an important understanding of the

strategies possible in a playspace (rather than properties of single-player playtraces).

Exhaustive sampling methods have shown to be powerful tools for gathering examples

and proving properties of a game’s play space. These techniques, however, are often limited

to abstractions of a game or representations of a subset of a game’s systems due to the need

to examine the full space of alternative plays of a game.

2.2.2 Planning

Most exhaustive sampling approaches share a grounding in logical models that exhaustively

explore the space of possible outcomes. Planning representations were developed to scale

traditional AI techniques to complex domains by providing additional problem structure

knowledge to AI search processes. In planning, a problem is broken into a domain defining

the actions possible in the world and properties of states of the world. Given an initial

configuration of the world and desired final world configuration, a planner is asked to find

a sequence of actions that transitions the world from the initial to the desired state. Plans

are often evaluated in terms of various desirable criteria such as their length or the states

visited along the path from the initial to the final world state. Planning representations can

often be converted to other representations to improve the performance of other approaches

through additional representational factoring (e.g., converting plans to SAT problems, part

of the shared language of many model checking systems) [164].

STRIPS [64] was one of the earliest planning representation languages, modeling ac-

tions (“operators”) with logical predicates. Logical predicates are used to represent the

state of the world. For example, at(Alex,home) would represent Alex being at home as a
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specific instance of the more general at(A,P) predicate used to represent an agent, A, at a

place, P. Operators represent actions in the world. Operators have a set of preconditions

that must hold before the action can be executed and a set of effects that add or delete pred-

icates from the state of the world. Planning is a process of finding a sequence of operations

that transform the world from an initial state into a state in which the goal situation holds.

The Planning Domain Description Language (PDDL) [132] is an ongoing project to

extend planning representations to address more complex tasks while building a shared

language for research competitions. PDDL extended STRIPS-like representations with

non-equality constraints, numeric fluents to model continuous domains, operators with du-

ration, and timed initial literals that modify the world state at fixed times regardless of

agent actions. PDDL has since added features such as a type system and requirements on

state trajectories (states passed through when executing a plan); separation between agent-

initiated and environment-initiated operators (PDDL+); multi-agent domains (MAPL); and

probabilistic effects and continuous rewards (PPDDL) [73]. These planning representations

demonstrate the value of providing rich representation languages for problem domains as a

way to exhaustively (or efficiently) find solutions to specific problems.

In my work I use a modified planning language to solve game levels using a set of game

mechanics. On this analogy a game level starts a player in some state and asks the player to

reach an ending state. By using planning I show how to enable agents to test whether levels

can be beat (subject to constraints on what states the agent visits while solving levels) in

a domain-agnostic fashion. Unlike planning research, I generate the operators used—the

actions available to the player. This approach supports explicit generation of games based

on the actions allowed in the game while ensuring that logical checks can verify properties

of the generated games. Using a planning representation supports both the generality of

this approach and potential for greater efficiency compared to brute-force search or raw

model-checking through factored planning representations.
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2.2.3 Planning in Games

Planning algorithms have often been used to control adversarial agents in commercial

games. Orkin [147] introduced the application of planning technologies to commercial

games in the first-person shooter F.E.A.R. [135]. STRIPS-like planning proved valuable in

decoupling agent actions and goals to allow for more dynamic variations in enemy strate-

gies compared to contemporary scripted approaches. Bartheye and Jacopin [9] extended

this line of thought to using PDDL in games, providing more flexibility to linking agent

decision-making to varied game environments. In these cases planning provides a core

framework that can efficiently drive agent behavior in a variety of domains.

Moving beyond single agent control, more sophisticated planning techniques have been

used to control groups of agents in game domains. Hierarchical task networks (HTNs) are

a planning technology that abstracts individual states and actions into macro components

to facilitate planning speed. Hoang, Lee-Urban, and Muñoz-Avila [87] and Gorniak and

Davis [77] addressed challenges of scaling agent planning by applying HTNs to coordinate

behavior of squads of agents. HTNs allowed the game agents to coordinate behavior and

scale to more complex game scenarios that possible with simpler algorithms like STRIPS.

Together, these efforts demonstrate the viability of planning as a technique to efficiently

control agent behavior in games. The work in this thesis develops a modified STRIPS-like

representation to enable game agents to test game states, using the generality of planning

algorithms to search a space of ways to play a game.

2.2.4 Simulation-based Behavior Sampling

Simulation-based behavior sampling allows non-exhaustive collection of playtraces to check

aspects of a game or capture notions of expected player behavior. Search-based game gen-

eration techniques commonly use simple agent simulations to check whether games may

be beaten. But simulations can do more than verify whether an agent can complete a game

by providing examples of expected player behaviors that can be subsequently processed
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to analyze the game. Togelius and Schmidhuber [219] use a learning agent to assess how

important learning is to playing a game. Browne and Maire [20] use adversarial agent play

to assess a variety of qualitative metrics on game aesthetics. Nielsen et al. [143] compare

the level of success of agents with varying capabilities in games to assess game quality

in terms of rewarding players for greater skill. Bauer et al. [10, 11] use rapidly-exploring

random trees (RRT; a randomized search technique) to generate graphs of the connectivity

(that is, the playspace) present in game levels. Using these graphs authors may specify

constraints that add or remove reachability between positions in game levels, achieved by

optimizing level layout to provide desired playspace properties. Tremblay, Borodovsky,

and Verbrugge [227] compare A*, RRT, and Monte-Carlo Tree Search (MCTS) for solving

platformer game levels, showing differences in the types of playtraces generated by dif-

ferent techniques. Tremblay, Torres, and Verbrugge [228] show how RRT can be used to

simulate stealth game movement and combat, providing diagnostic information on possible

solution paths in game levels. Isaksen et al. [95, 96] simulate human reaction and percep-

tion speeds to simulate play in a large space of variants of Flappy Bird [58] (an arcade-style

game emphasizing reflexes), using analysis of agent survival rates to compare design vari-

ant difficulty. These simulation methods use agents as a way to sample example player

behavior in a game to approximate properties of the play space.

Simulations can also encode models of human-like behavior to direct sampling toward

the most valuable information for design. In these cases a model of agent behavior in a

game uses human data to adjust the agent to fit human behavioral patterns. For movement

behavior, Cenkner et al. [27] model human hiding and seeking behaviors in 2D environ-

ments in terms of selecting and moving to locations with adjustments made based on player

data. Tomai et al. [224] model movement in open-ended domains using path-relative recur-

sive splines that fit to player deviations from optimal movement toward a goal. Ortega et

al. [148] train a variety of agent controllers in Super Mario Bros. to either directly mimic

player actions in a context or indirectly maximize a playtrace similarity metric. van Hoorn
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et al. [231] apply multi-objective evolution to racing agent behavior to optimize both for

in-game performance and similarity to human playtraces.

Other work has explored human-like models for action selection behavior in a variety of

genres. Laird and Duchi [112] parameterize a cognitive architecture (Soar) when playing

a first-person shooter game and evaluate which parameters are most important to human

judgments of human-likeness and objective measures of agent performance in competition.

Holmgård et al. [88, 89, 90, 91] address activity in turn-based action role-playing games

through procedural personas that mimic human goals in a game. Personas are trained to

maximize designer-defined notions of utility (such as finishing a level quickly or slaying

all the enemies in a level) using reinforcement learning [89], neuroevolution [88, 90], or

Monte-Carlo Tree Search [91]. Young and Hawes [242] transform continuous data on

actions taken in a real-time strategy game into a qualitative, symbolic representation and

train several classifiers to choose actions similar to player traces. Chang et al. [29] model

player behavior in making and accepting or rejecting offers in a social ultimatum game

using data from distributions of human actions. Tomai and Flores [223] model player

behavior in a game using behavior trees and adapt trees to match human action selections

in given situations.

While the models used vary, these approaches share a common technique of converting

desired human behaviors into a parameterizable model (e.g., reward weights or unit move-

ment instructions) and using human playtrace data as a comparison to agent behavior. The

work in this thesis builds off this approach by addressing how MCTS can model general

human behavior patterns, specifically addressing variation in human skill in games. In this

work simulations are primarily used as a tool to proxy variations in human skill, though the

existing literature supports the notion that this approach could be trained to emulate human

playstyles.

27



2.2.5 MCTS

Simulation-based sampling approaches share a need for domain agnostic ways to evaluate

expected player behavior. Recently, Monte Carlo Tree Search (MCTS) has emerged as

a popular technique in general game playing after the successful application of MCTS

to the game of Go [21]. MCTS is a stochastic planning algorithm that builds a plan of

action in a game by estimating the long-term value of different actions. MCTS balances

exploring new actions and exploiting effective actions by trying alternative actions, rapidly

simulating the outcomes of those actions, and using those outcomes to update estimates of

the long-term value of different choices. Choosing actions based on a combination of their

estimated value and uncertainty helps navigate games with many actions at any given point.

Using randomizing simulations to estimate the final game outcomes of an action ensures

the algorithm is not biased by near-term gains at the cost of long-term success.

Game applications of MCTS include: card selection and play in Magic: The Gather-

ing [45, 54, 236]; platformer level completion [98, 227]; simulations for fitness function

heuristics in strategy [124], card [66], puzzle [66], abstract real-time planning [154], dun-

geon crawler [91], and general arcade games [143]; and high-level play in board games

including Reversi and Hex [12]. MCTS has been combined with deep neural networks to

yield world-class play in the game of Go [185]. MCTS has proven effective even in open-

ended domains, including playing a wide array of games designed in the VGDL [68, 143,

153, 156]. MCTS offers the advantages of being game-agnostic, having tunable computa-

tional cost, and guaranteeing (eventual) complete exploration of the search space.

Unlike previous uses for (near-) optimal agent play, I use MCTS to sample playtraces

in a game while varying agent computational bounds as a proxy for player skill. By varying

the resources available to the MCTS agents I model aspects of human skill in forecasting

potential ways of playing out a game. Explicitly tuning these agents to produce playtraces

that are similar to humans (against a subset of desired metrics, such as length of games)

trains the agents to behave in a human-like fashion. This works complements efforts in
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believable agents by presenting an approach to creating believable agents tailored to gather

design-relevant metrics.

2.3 Analytics

Behavior sampling provides examples of behavior in the space of play, but design iter-

ations require understanding what these examples mean to inform design changes. Game

analytics applies techniques for statistical description and modeling of game-related data to

help understand how games function [176]. Game analytics has broad applications span-

ning models that predict players quitting a game (to estimate revenue in, for example, a

subscription-based game) to heatmaps that visualize common locations for player events

like deaths [216, 245]. This thesis is concerned with enabling a machine to automatically

design a game toward gameplay goals. As such, the most relevant area of game analytics

is gameplay analytics: analyzing how players behave in a game.

Game behavior analysis is focused on a representation of the progression of states in a

game—understanding how gameplay occurs through studying common states, actions, and

progressions between states. A progression of game states can be represented as a sequence

of player actions or as a sequence of game states. The two perspectives are complementary

ways of understanding a game’s design. Understanding what parts of a game the player

visits can inform design decisions around what content is being used (or not) by players

and can shape decisions to change specific content to increase or decrease player activity

around that content. Understanding what actions in a game the player takes can inform

design decisions around what strategies players do or do not use in the game and can

identify potential flaws that imbalance a game—making the odds of success unequal for

two opposing sides or making one action preferable in all cases (obviating the need for

alternatives being designed).

Game visual analytics researchers have studied ways to visualize game metrics to un-

derstand play behaviors [234]. Visual analysis examines many game properties, including
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spatial distributions of events (e.g., using heatmaps) [216], aggregation and identification

of player types (e.g., using dimensionality reduction or clustering methods) [59, 217], and

summarization of individual player behavior (e.g., through dashboards and in- or out-of

game representations) [133]. Analytic methods have been applied to assess procedural

content generators, to date examining properties of the aggregate space of possible levels

generated for 2D platformer games[26, 92, 125]. Analyses of gameplay as a progression of

states have aggregated regularities in the individual states or sequences of states visited by

players in single-player games [6, 116, 234]. Analysis of gameplay as a sequence of actions

is less common, but has also been applied to capture patterns in gameplay in single-player

games [10, 151, 152, 235].

In this work I contribute to action analysis of gameplay with a specific focus on multiple

levels of granularity. Game analytics methods are often used at a single level of abstraction:

providing high-level summary statistics of states visited or low-level examples of traces

that fulfill specific criteria of interest. Instead I consider the question of multiple levels of

abstraction, providing four tiers of action analysis that are more or less granular in their

model of player strategy. I illustrate how this can provide a holistic picture of the strategies

available (or not) in a game to demonstrate the value of this approach, particularly toward

informing systems that automatically evaluate gameplay possibilities afforded by a game.

2.4 Iteration

Iteration is concerned with intelligently choosing the next version of a design to try in a way

that minimizes the number of designs tested. Iteration combines information from analysis

with knowledge of a game design to choose the next point in a space of designs to try. In this

thesis I approach design iteration through the lens of techniques from optimal experimental

design (OED) and active learning (AL). Active learning methods enable computational

systems to efficiently iterate on a design by using knowledge of how well prior designs

have worked to intelligently choose new designs that better meet design goals or better
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inform the system about the space of designs possible.

Optimal experimental design is the problem of designing an experiment to optimize

the information gained from that experiment [28]. OED grew out of efforts to improve

the efficiency of medical tests and costly scientific experiments; for example, choosing the

appropriate population size and dosing of a drug to determine it’s efficacy. OED considers

an array of possible experiment configurations that vary in key parameters (e.g., a series

of drug dosage levels) and builds a model to predict the outcomes of experiments when

using these different parameters (e.g., how well the drug treats the condition for a given

dosage). These predictive models are usually built from data from prior experiments or

pre-existing theories regarding the experiment outcomes. With the predictive model, OED

uses statistical tests to estimate the information gained from different configurations to find

an optimal configuration for learning about the outcomes of interest (e.g., drug efficacy).

In machine learning, the field of active learning is concerned with the related problem

of choosing input data to collect to improve the performance of a predictive model. AL

techniques were developed to support machine learning algorithms in cases where there

is a choice of data to collect, but gathering that data is expensive. For a given input data

point either the outcome is known (labeled) or unknown (unlabeled) (Figure 2.1). AL

techniques start from a set of labeled data to train a predictive model. Given a set of

potential unlabeled data to add to the model, AL techniques choose the optimal next data

to query to add to the model to improve the model. These data are added to the model

and the process repeats. Active learning and optimal experimental design both arose in

response to the cost of obtaining data in certain situations and apply statistical techniques

to intelligently choose how to gather new information.

Techniques from OED and AL can be applied to the problem of design iteration by

treating the choice of a design as the “experiment settings” or “input data” and the quality

of the design as the “experiment outcomes” or “model quality.” Using this analogy can help

reduce “sample complexity” for design iteration—the number of data points (playtests)
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Figure 2.1: Diagram of active learning process.

needed to train a model. Active learning and optimal experimental design make explicit the

trade-off between “exploring” potentially valuable game design settings and “exploiting”

known good solutions with small changes.

To date, relatively little work has applied techniques from OED and AL to game design

or game AI problems. In early work, Southey et al. [203] used active learning to test

different ways an agent could make goal shots in a soccer game. A rule-learning system

predicts the outcomes of shots made from different positions in the game (by a simulated

agent) and active learning is used to guide tests of shots from new positions to improve how

well the model predicts shot outcomes. Here, AL is used to reduce sample complexity and

provide analysis of a game by guiding behavior sampling. For example, the rules learned

can inform designers about the likelihood of shots from certain distances or angles scoring

or not. The method used, however, is only targeting how to build a useful predictive model
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of behavior, rather than optimize the design for desired player behavior.

Normoyle et al. [145] use AL to choose useful player metrics to track. In many situa-

tions it is possible to collect a vast amount of telemetry on player activity in a game, but

hard to know which subset of these features are relevant to understanding player behavior

in the game. A Markov Decision Process (MDP) models the relationship between gath-

ered player metrics and in-game scenarios with active learning choosing which scenarios

to collect data from to improve the model. Here, AL reduces the sample complexity of

playtests, but again is limited to testing an existing game, rather than choosing optimal

design variants.

Rafferty et al. [158] optimize the design of a cognitive ability testing game to gather the

most accurate information about players. An MDP models player actions in the game and

is used to infer features of player cognition (here concept learning). Optimal Experimental

Design methods are used to choose among design variants to maximize the information

gained about player cognition from the design. Here, OED optimizes the game design to

gather information about players, but requires a detailed model of properties of how players

are expected to learn and react to rewards. In this case playtesting sample complexity is

not being directly minimized: OED is being used to find an optimal design based on offline

models and tested against a non-optimal design. That is, information about prior playtest

performance does not bear on the problem of design optimization.

Active learning has been applied to educational games both to optimize game designs

for user learning and optimize for learning about game functionality. Lomas [120] use

active learning to optimize engagement in an educational game when varying parameters

controlling the challenge of the game. Typical engagement in a game design condition is

tracked and a multi-armed bandit model (a type of active learning model) is used to select

which parameters to direct new users to play. Liu et al. [117, 118] apply AL to the problem

of testing scientific hypotheses about learning in games and balancing these tests against

user benefits such as learning. A multi-armed bandit is used to balance between learning
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how well different game configurations function and maximizing user learning. Here, AL

serves to help explore a large space of game design configurations toward optimizing player

learning and testing hypotheses about educational game design. In this case playtesting

sample complexity is being reduced to improve a game design.

In this work I present a novel application of AL to reducing the sample complexity

of playtesting for achieving desired design metrics. This work shows how to optimize a

design for desired player responses in the game by varying features of the game’s design. I

evaluate the differences between many AL models for a given problem and contrast cases

with design metrics for objective behavior or subjective feedback.

2.5 Creativity

Iteration is a core component of theories of general creativity and the creative process in-

volved in design. Researchers studying human creativity agree that a process of iteratively

developing and refining a creative product is typical—from a theory (Darwin’s conception

of evolution or Einstein’s theory of general relativity) to an artifact (Picaso’s Guernica or

writing a book) [111, 163]. The work in this thesis develops a computational approach

to game design iteration intended to understand the capabilities of AI systems to perform

iterative design. By building models of creative processes we gain perspective on the capa-

bilities and limitations of computational systems to perform human tasks.

2.5.1 Creativity Research

Kozbelt, Beghetto, and Runco [111] discuss a variety of overlapping frameworks for study-

ing creativity. These perspectives range from psychometric theories intended to measure

human creativity (like IQ) to developmental models that study how people develop creative

abilities over their life. The most relevant theories for an AI system are grounded in cog-

nitive models of the creative process and systems views of how creativity emerges through

interactions between a creator and their artifact and environment. The theories falling un-
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der this umbrella all embrace the notion of creativity as a process of creating an artifact,

reflecting on the properties of the resulting artifact, and using that information to inform

changes to the artifact to achieve creative desires.

Finke et al. [161] developed the geneplore cognitive model of creativity where creators

alternate between thinking through phases of generating and exploring a creative product.

During generation, a creator focuses on assembling the structure of a creative product,

combining elements related to the concept or artifact to produce a product of interest. Dur-

ing exploration, the creator examines the resulting product to consider the consequences of

creative decisions, particularly as they bear on the goal of a creative exercise. This cog-

nitive model was developed and refined through laboratory studies and design tasks given

to regular people as a way to understand the aspects of creativity shared by people [237].

Studies of writers’ practices suggest a similar model of alternating between engagement in

creation and reflection [183] and geneplore has also been applied to model digital filmmak-

ers’ creative practices [53]. Cognitive models like geneplore offer a valuable perspective

on how people go about creating at the level of a detailed process account, informing how

the monolithic problem of creative production can be broken into more tractable problems

of generating and refining a creative product.

Systems theories of creativity emphasize how creative products are the result of inter-

actions over time between an individual creator and their product and audience. Csikszent-

mihalyi’s [48] systems view of creativity emphasizes that whether an artifact is deemed

creative results from how a creator interacts with a broader community of creators. Cre-

ativity does not inhere solely in the creative product, but instead emerges from how the

creator engages the audience of a creative artifact. For example, a painter can produce

paintings that more or less adhere to stylistic norms among a painting community and it

is only when the paintings are appropriate to the expectations of that community that the

painter’s work gains recognition. Csikszentmihalyi’s theory was developed through study-

ing the interactions among artistic communities and emphasizes the importance of creative
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systems that acknowledge and respond to their audience. Gruber [233] developed a dif-

ferent systems theory through case studies of eminent creators, most prominently Charles

Darwin’s development of the theory of evolution. Gruber’s work similarly emphasizes cre-

ativity as being interactive—based on interactions between a creator and their product and

audience—while also putting a focus on the development of a creative product over time.

Gruber’s work helps dispell the commonplace view of creativity as emerging from a single

‘a-ha’ moment; instead, creativity results from the development of a product over time and

through continuous development and interaction with responses to the product. Systems

theories of creativity bring out the importance of considering the audience of a creative

product and the role their reception of a product plays in shaping the product itself.

2.5.2 Design Research

Design researchers outside the domain of creativity research have also emphasized the im-

portance of iteration and understanding audience reception of a creative product. Rittel and

Webber [160] defined “wicked problems” to describe dilemmas encountered by designers

where the nature of a problem shifts in response to solutions developed to that problem and

where there are no fundamental objective notions of the value of a solution. Rittel and Web-

ber recognized that then-current theories of social policies and planning were based on the

assumption that a problem can be clearly defined and a solution planned based on shared

values. In reality, in many situations the policy being designed required iterative develop-

ment through meeting with key stakeholders who value the policy in development and ad-

justing the intended approach and plan in response to this new information. Schön’s [174]

theory of the reflective practitioner emphasizes a similar process of iteratively creating

products and reflecting on the resulting product in conjunction with the intended audience

of that product. These perspectives on the design process emphasize the central importance

of iteration in developing an artifact and audiences in providing crucial feedback to shape

the creative process.
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2.5.3 Computational Creativity

Computational creativity researchers have developed some systems that model limited no-

tions of the audience of a creative system and iteration to respond to that audience. A core

challenge for computational creativity is capturing how the processes of generating and

evaluating a creative product function. Sharples [183] proposed a model of creative writing

as design, in which a writer cycles between stages of cognitive engagement and reflection

(similar to the geneplore model). MEXICA [155] was developed based on this model, and

iterates between phases of producing plot structure (guided by preset constraints) and eval-

uating that structure to guide refinements to the plot. During production MEXICA uses

a memory model to retrieve content related to what is being created at the moment in a

chain. When production stalls, due to lack of new content or violating constraints, refine-

ment begins. Each phase of refinement can open the possibility of generating new structure

by fixing potential flaws that prevented further plot construction. MEXICA is instructive

in demonstrating that reflective processes interwoven with generation can help improve an

artifact and expose potential paths for further computational generation. While this model

captures the notion of iteration, it is limited to seeing creativity as purely driven by internal

processes with fixed standards for how to evaluate a work.

How might a creative system evaluate it’s work against changing and potentially ex-

ternal expectations? Case-based reasoning (CBR) has been used as a way to model how

creators can take inspiration from existing works and modify these works to produce novel

artifacts. Kolodner and Wills [108] first proposed modeling creativity using case-based

reasoning—a model where problems are solved by finding similar older problems and

adapting their solutions to new situations. By using a set of examples to guide creative

processes these models capture how creators can manage a set of expected approaches to

a problem, while evaluating these against constraints of a given situations. Gervás [72]

extended the CBR approach with dynamic inspiring sets: evolving sets of examples used

independently to construct or evaluate a work. A learning set of examples is used by a cre-
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ative system to guide production of creative works. But a separate reference set of examples

grounds evaluation of creative works. This distinction captures the notion of judging a cre-

ative artifact against an external set of norms similar to Csikszentmihalyi’s systems view of

creativity requiring creative products to be evaluated against existing accepted examples of

creative work. Crucially, these inspiring sets are dynamic and can change over time as new

examples are considered canonical (or not) for evaluation or construction of new works.

Dividing creative processes into generation and evaluation components has proven valu-

able both in the domain of poetry generation [72] and the domain of recipe creation [136].

These efforts, however, still focus on internal evaluations of a creator, rather than explicitly

addressing feedback from how an audience may receive a creative work.

Computational creativity research has increasingly embraced the notion of importance

of how a product is presented to an audience. Creative systems are often challenged by

people unwilling to accept products of computer creators as creative. Ventura [232] explic-

itly acknowledged this challenge by arguing against the notion that creativity evaluations

could be based purely on metrics of an artifact. Instead, Venutra proposed that creative sys-

tems would need to explicitly persuade audiences to produce desired outcomes in terms of

how a creative artifact was received. Colton et al. [31] developed this perspective further by

arguing that creative systems need explicit ways of explaining their decisions, actions, and

creative products to mitigate the bias may have against computer-generated products. The

FACE model [32]—framing, aesthetic measure, concept, and expression of a concept—of

creative generation includes a process in generation for framing an artifact for an audience.

All of these efforts rest on the argument that audience reception is paramount to how a cre-

ative work is received. None of these works, however, explicitly uses audience reception

itself—instead these models focus on ways to mitigate audience perception or persuade

audiences to evaluate a work in a certain way.

Creativity support tools have developed in parallel to computational creativity. While

computational creativity research is primarily interested in enabling computers to be au-
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tonomously creative, creativity support research has focused on ways computers can aug-

ment the creativity of people [184]. Creativity support tools have taken many approaches

to supporting human creative processes. Lubart [122] proposed four major categories for

computers in the creative process: helping manage creative work, facilitating communica-

tion among people on a creative project, guiding use of creativity enhancement techniques,

and mixed-initiative involvement in creative projects. O’Neill and Riedl [146] proposed

the additional role of acting as a surrogate audience to provide feedback to authors with-

out requiring people. The work in this thesis touches on two of these areas: autonomous

computational creativity and modeling audience reactions. Building systems capable of

generating games and iterating on their design moves toward full automation. However,

these techniques also require ways to simulate audience reactions to guide iteration, in turn

generating the type of audience feedback needed in creativity support. While some of the

systems in this thesis may ultimately serve in mixed-initiative systems, the work here does

not explicitly address how the computer interacts with a human creator.

As an example of a creativity support tool for games, Goel and Rugaber [76, 103, 229]

developed a tool for designing game-playing agents. The system represents the knowledge

structure of game playing agents in a turn-based strategy game. After a person designs a

way for the agent to play, the agent simulates play in various game scenarios. Information

from agent successes and failures when playing these game scenarios is then used in a meta-

reasoning process to update the agent play strategies. This system illustrates how feedback

from agent interactions with an environment can be used to update the agent, in this case for

designing agent play strategies. By contrast, the work in this thesis focuses on the design

of games, rather than the agents that play these games. Despite this difference, many

conceptual elements of these approaches are similar: both Goel and Rugaber’s system and

the work in this thesis emphasize the need to represent the structure of designed systems

and adjust that structure in response to learning from feedback when the system is tested.

In this work I focus on the challenge of iteration by developing techniques to gather
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and model audience feedback (player in-game behavior) and use that information to guide

iterations on a creative product (a game). Adjusting a game’s design to produced desired

player behavior has clear parallels to adjusting a creative work to produce a desired au-

dience evaluation of creativity. By taking this approach I help bridge the gap between

developed theories of creative practices and the capabilities of computational game design

systems. Working in the domain of digital games demonstrates how these theories can bear

on real-world creative practices while addressing a unique type of audience feedback in the

form of direct interaction with a creative product.
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CHAPTER 3

GAME GENERATION

3.1 Introduction

Iterative design depends on the ability to create a functional game that meets specifications

on how the game functions. The goal of iteration is to adjust these specifications in response

to player behavior. In this chapter I discuss how to generate the core functional systems of

a game in a way that ensures they allow for basic game outcomes like winning or losing.

By “functional” I refer to systems that dictate what behavior is or is not possible in a game,

setting aside elements that alter the game experience without shaping the space of possible

actions (e.g., the visual art style or audio choices). A key emphasis of my approach is to

enable modularity and recombination of game content: a general game creation system

should be able to combine elements from disparate game genres (as humans do), rather

than requiring specialized logic to handle extensions to new game domains. The approach

I take enables the combination of elements from game genres while ensuring generated

games allow for basic game outcomes like winning or losing the game.

Game genres span a broad range, compassing 3D first-person shooting games (e.g.,

Half-Life [230]), 2D platforming games (e.g., Super Mario [144]), and tile-based puzzle

games (e.g., Sudoku). Creating a representation that encompasses all these games is a

daunting task that is unlikely to be computationally tractable [40, 218]. Yet there are still

shared elements of how these games are designed worth considering outside the unique

elements of designing games of a specific genre. To study these shared design challenges I

focus on a constrained subset of game features that is computationally tractable: turn-based

games in discrete worlds with deterministic actions and full observability. Using turn-based

games simplifies the logic of how action effects are resolved in a game—it removes the need
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for detailed considerations of second-by-second action duration and timing. Discrete game

worlds simplify game generation by removing the need to reason on real-valued spaces of

possible entities—this drastically shrinks the space of games possible while still remain-

ing expressive enough to capture central details of a game. Deterministic actions remove

the need to reason on probabilitistic outcomes—this simplifies exploring the space of ac-

tions possible in a game. Using fully observable game state simplifies the model of player

knowledge, perception, and memory—this shrinks the space of games to remove varying

degrees of observability while also removing the need to model additional aspects of agent

reasoning. By confining generation by these limitations I am able to focus on generation

that addresses elements common to this class of games. Fortunately, these constraints still

allow models of a broad range of games, from the battles in turn-based role-playing games

to the structure of movement puzzles in platforming games.

Most game designs are defined in terms of gameplay goals and failure states [69, 171]

(although Cook and Smith [41] offer a countervailing perspective). Players are given the

task of figuring out how to use the available actions in a game to reach a goal in a game,

while avoiding obstacles along the way. The key insight to my approach is that this for-

mulation closely mirrors the standard form for AI planning problems. Planning problems

define a domain in terms of states, actions, and goals [164]. States consist of logical condi-

tions using positive literals—definitions of aspects of that world that are true. Goals provide

a full or partial specification of the target end state of the problem using a conjunction of

positive literals. Actions (also called ‘operators’) are defined in terms of preconditions and

effects. Preconditions are conjunctions of positive literals defining what must be true to

take an action. Effects are conjunctions of literals defining state changes: positive literals

define what becomes true as a consequence of an action while negative literals become

false. A given planning problem in a domain provides an initial state that defines the start

of the problem. A solution to a planning problem is a sequence of actions that moves the

world from the initial to the final state, often subject to constraints on the use of actions. By
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analogy, players are given an initial game state (the initial set-up of a platformer level) and

tasked to find a sequence of game actions that moves to the win condition (the end of the

level) of the game without hitting any of the loss conditions (colliding with an enemy) along

the way. Classical planning technologies were designed specifically to address the subset

of game features I use above, allowing for efficient solutions and transfer of techniques.

Using this perspective I treat game playing as a planning problem. Game generation

then becomes the task of choosing the elements that define the planning problem, as op-

posed to assuming the problem elements are given and generating the plan. Winning a

game is constructing a valid plan. Generating a level is defining an initial world state and

goal state such that there exists a valid plan. From this perspective, the initial world state

includes all relevant elements of the level, such as placement of the player, ground tiles

defining the terrain, or enemies and items. Goal states define objectives for the player

avatar such as reaching a location or collecting all items in the level. Generating allowed

player actions in the game (game mechanics) is defining operators in a game that allow

valid plans for a game instance. It is even possible to combine game genres by combining

their planning domain definitions (more below).

In this chapter I detail this planning perspective on game generation. I will show how

to adapt traditional AI planning representations to provide a general and reusable repre-

sentation for functional elements of discrete, deterministic, turn-based games games. With

that representation I show new game mechanics (planning operators) can be generated to

create playable games and how this same approach can generate new game instances (lev-

els). Unlike prior work on game generation this provides a general framework for rep-

resenting action in a broad class of games, enabling extensions and further development

of techniques for general game generation. I discuss mechanic generation in two exam-

ple domains—role-playing game battles and platformer movement puzzles—along with a

domain that combines these two domains. After this I present a number of extensions to

game generation that use the planning perspective to control other elements of game de-
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sign: ways to allow additional designer control through explicit specifications of costs or

benefits of design choices; adaptation of game mechanics in the face of changes to level

designs; levels with multiple characters; progressions of levels; and button-based controls

to input actions to a game. I conclude by discussing limitations of this work and possible

extensions that further develop the planning perspective on game generation.

3.2 Game Representation

Game generation requires a representation of game structures, in turn requiring a formal-

ization of the elements of a game’s design. In this section I present a formal description

of functional elements of a game design. Using this formalization I define the problem

of generating game mechanics and define a representation for game domains to support

generating mechanics and game instances. Here I first describe the concepts and formal

structures of this representation and in the following section I ground these concepts with

an example game domain. The approach presented here assumes a game engine that ex-

poses these elements of game state that can be manipulated.

Taking a planning perspective on gameplay, the two core functional components of a

game design are the state model and transition model. The state model defines what makes

up the game world through a collection of logical positive literals. This representation

uses only first-order state descriptions: using propositions (player) or first-order literals

(Health(player)). Any given state in a game domain must be ground and function free,

though the definition of a domain may include non-ground terms (Health(x)). In a plan-

ning representation of state we track changing aspects of state using fluents. These fluents

represent variables that exist in a game engine that runs the implemented game.

The transition model defines how the state evolves using logical assertions that define

how states change (or remain the same) from one time step to the next. Actions taken by the

player or other game entities are represented as planning operators (a subset of the game

mechanics that are also called actions). Operators are defined by preconditions on what
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must hold in the state to be executed and effects for how the state fluents change. In this

planning representation (as in PDDL) we assume inertial state and circumscription: any

states not explicitly changed by the transition model are assumed the same unless these

states are derived from other logical assertions that were affected by the transition model.

A state model defines the design space of game instances (levels). A playable game

instance provides a fully grounded state model that defines an initial game state along with

additional logical terms that define the goal and failure states of the game. These goal and

failure states are the playability criteria that create the challenge of playing the game.

Mechanic generation is the problem of constructing a (set of) game mechanic(s) such

that they meet playability requirements to create a desired range of player behaviors (al-

lowing and forbidding action sequences) while meeting design requirements on mechanic

structure. Mechanic generation is thus the problem of constructing the transition model.

Playability requirements are used in mechanic generation to ensure the resulting games are

possible to finish according to their goals and maintenance goals. Game designs, how-

ever, are often subject to a number of constraints from a designer intended to focus design

around a subset of behaviors. Design requirements specify high-level constraints on how

mechanics work in a game. For a fully autonomous creative system design requirements

are unnecessary; for design tools or mixed-initiative systems design requirements provide

additional input to guide game generation. Note that both playability and design require-

ments may be specific to a game genre or domain-independent. Below I detail the state and

transition models used by my system and a process to use these models in game generation.

3.2.1 State Model

In this representation a game state model (Table 3.2.1) is a set of positive terms defining the

entities of a game world, parameters of entities, and the allowed values for those parameters

to take in the game. To illustrate concepts we will consider two game domains: movement

in a platformer game and the battle system of a role-playing game. In an platformer game
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like Super Mario Bros. [144] the world consists of entities (Mario and his enemies) at

locations on a 2D plane. Platformer mechanics define how the player avatar may move

in the world, controlling the arc of movement for different player actions like walking or

jumping. In the battle system of a role-playing game (RPG) like Final Fantasy [204] or

Dungeons & Dragons [82] the world consists of entities (the player and opponent teams)

with stats tracking for health, mana, or traits (like attack power). RPG mechanics define

what actions players may use to affect allies or enemies; for example, these “spells” in the

game fiction can be used to reduce enemy health or heal allies.

Entity(e) defines the existence of an in-game entity, such as the player (Entity(player))

or an enemy (Entity(enemy)). Parameter(p) defines that a parameter can be used in the

game, such as positions along the x-dimension in a platformer (Parameter(x)) or health

in a RPG (Parameter(health)). Has(e, p) defines which parameters represent the state of

an entity, such as player’s having a position in a platformer (Has(player, x)) or health in a

role-playing game (RPG) (Has(player, health)). Parameter value constraints come in two

forms: values possible in the game world (AbsRange) and values possible for mechanic

changes to a parameter (RelRange). A RPG player may only be allowed to have health

values in the range [0, 5] using AbsRange(player, health, [0, 5]). Spells (a type of game

mechanic), however, may be limited to only changing player health by at most 1 point

at a time using RelRange(player, health, [−1, 1]). By separating the world state from

changes made by mechanics, it is possible to constrain generation of mechanics to “sensi-

ble” values. In many design situations the changes to parameters are limited to small, local

alterations, which can be specified by using smaller allowed ranges for RelRange. For

simplicity parameters currently range over integer values.

Referring back to the example RPG spell system player can be defined with the pred-

icates in Table 3.2.1 (RelRange relates to the transition model). This definition specifies

the existence of a player, two game parameters for health and mana, and that the player

has both of these parameters. The player’s health is allowed to range from 0 to 3 while the
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Table 3.1: State model definition
Entity(e) e is a game entity

Parameter(p) p is a game parameter
Has(e,p) e has p as part of its state

AbsRange(e,p,r) e has p limited to in-game values in the range r
RelRange(e,p,r) e has p that may be changed by the values r

Table 3.2: Partial RPG domain definition.
Entity(player)

Parameter(health) Parameter(mana)
Has(player, health) Has(player, mana)

AbsRange(player, health, [0,3]) AbsRange(player, mana, [1,5])

player’s mana is allowed to range from 0 to 5.

Any concrete game instance can be defined through initializing the values for all entities

in the game instance. I represent all changing state using a logical fluent Holds(t, P (e), v);

where t is the time index of interest, P (e) defines the entity parameter of interest, and v

gives the parameter value. We track historical state using time indices to facilitate non-

Markovian mechanics that may reference state other than the current state. Game state (the

planning problem) is initialized using Initial(P (e), v), which the planner uses to create

fluents for the initial time step. In the RPG example, we can set player health to initially be 3

using Initial(Health(Player), 3), which becomes Holds(0, Health(Player), 3). Events

or actions may change the fluent values as defined below.

Game states may be defined in terms of coordinate frames of reference. Coordinate

frames distinguish between traditional world-state terms and “perceived” avatar-relative

versions of world terms. Absolute frames of reference model requirements on the state of

the world. Relative frames of reference capture the intuitive notion that many game me-

chanics have preconditions and effects relative to an avatar, rather than absolute world state

(e.g. adjacency as relative position). Requiring 1 or more mana to cast a spell is an absolute

constraint in an RPG; requiring the player to be directly above a solid object to jump is a rel-

ative constraint in a platformer. Absolute state in the game is tracked using the Holds pred-

icate defined above; relative states are tracked using Senses(t, a, P (e), v), where a defines
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the focal agent, P (e) defines the target entity parameter, and v is the difference in values

between the two agent and entity. Senses predicates are all derived from Holds predicates

at each time step. In the platformer domain the player might sense a block below them, in-

ferring from Holds(1, Location(Player), (1, 2)) and Holds(1, Location(Block), (1, 1))

the predicate Senses(1, P layer, Location(Block), (0,−1).

Goal and failure are defined by specific game situations—conjunctions of terms that

may not include all terms in the state model. In this formalism each goal is considered

to be a conjunction of the logical terms making up that goal. Each goal term takes the

form Goal(P (e), v). In the platformer example, reaching a given 2D location would

be defined by two terms in the game instance definition: Goal(xPos(Player), 3) and

Goal(yPos(Player), 2). Failure terms take a similar logical form, though each failure

term is interpreted as a logical disjunction: failure occurs if any failure criteria is met.

This is not necessarily limiting: parameters of entities can be defined through assertions

based on other parameters. Thus, in the platformer failure can be defined for reaching the

same position through an additional parameter specifying player location that is derived

from the xPos and yPos parameters: Holds(t, xPos(e), x) ∧Holds(t, yPos(e), y) =⇒

Holds(t, Location(e), (x, y)). Failure can then be defined by Fail(Location(Player), (3, 2)).

3.2.2 Mechanic Model

A set of mechanics define a transition model that allows forward simulation and playability

checks as planning. Game mechanics take many forms, from high-level rules governing

the order of turns in a game to low-level rules for resolving outcomes of simultaneous

actions. Mechanics generally consist of fixed update rules defined by the game engine

and actions that agents in the game may take. This work focuses on the class of avatar-

centric mechanics—actions taken by the player (or other in-game agents) in the process of

controlling an avatar. Avatar-centric mechanics define the actions that are possible in the

game and form the core component of direct player control of games.
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The action schema defining mechanics draws from standard PDDL to define an avatar-

centric mechanic as a tuple: 〈i, P, E〉where i is a unique identifier for a mechanic, P is a set

of the preconditions needed for mechanics to occur, and E is a set of effects of performing

the mechanic. Here preconditions and effects extend traditional PDDL action schemas with

time-indexing and coordinate frames of reference. Time-indexing allows preconditions to

reference the game state at times other than the present and allows effects to reference states

other than the next game state. Allowing preconditions to check state at different times

allows mechanics to check for historical conditions; for example, testing for player state

in a previous turn. Games also often incorporate delayed effects or effects with a duration

over multiple turns. Time-indexing enables mechanics to have limited ability to bypass the

traditionally Markovian structure of game description languages. By constraining how time

indexing is used it is possible to limit the additional computational overhead incurred when

generating mechanics. For example, constraints can be a small range of allowed values or a

design constraint indicating a preference for little use of time-indexing. Coordinate frames

of reference (introduced above) enable more concise expression of mechanics that make

relative checks or update date by relative amounts.

The planner here implements semantics for a subset of PDDL with extensions ap-

propriate to this definition. AbsRange is used to specify valid absolute frame of refer-

ence values while RelRange is used for relative frames of reference. Preconditions test

game state; we allow tests for equality, inequality, and lesser-than and greater-than re-

lations. All preconditions and effects are tuples of the form 〈frame, time, condition〉;

where frame indicates a coordinate frame of reference, time specifies a time-index, and

condition specifies a game state value to check for (or update). In this formalism, a con-

dition takes the form F (parameter(entity), value) where F is a logical function that

either tests two values and returns a boolean value (for preconditions) or updates an en-

tity parameter value (for effects). Testing for the avatar currently being alive would be

〈Absolute, 0, GreaterThan(Health(Player), 0)〉.
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Effects update game state. Effects may reference current or future state; we forbid

historical changes (time-travel paradoxes may result). For absolute frames of reference,

updates set state to a particular value (constrained within AbsRange); for relative frames of

reference, updates change state values by a given amount (constrained within RelRange).

Effects take the same form as preconditions and are interpreted as logical rules for updates

or setting appropriately. A spell that checks for the enemy being alive and reduces enemy

health by 1 on the two next turns is:

〈DamageOverT ime,

{〈Absolute, 0, GreaterThan(Health(Enemy), 0)〉},

{〈Relative, 1, Update(Health(Enemy),−1)〉,

〈Relative, 2, Update(Health(Enemy),−1)〉}〉

Not all mechanics are dependent directly on game state—many reference particular ac-

tions or events that occur in the game. Mechanic recombination occurs when one mechanic

references another mechanic. Fighting game or rhythm game combo systems exemplify

avatar-centric mechanic recombination for preconditions: the ability to use an action in

a combo depends on having previously executed some other action. Mechanic recombi-

nation naturally encodes event-relevant mechanics, rather than being limited to mechanics

that reference state. Mechanic recombination also supports modularity in mechanic effects:

a mechanic may execute another mechanic on top of other modifying effects.

For mechanic recombination we allow preconditions and effects to reference the event

of a mechanic occurring with Performed(i). Semantically, a mechanic as a precon-

dition requires that mechanic to have (or not have) occurred at a time index. For ex-

ample, a double-jump may require a player to have jumped at the previous time-step:

〈Absolute,−1, Equal(Performed(Jump), P layer)〉When Performed(i) appears as an

effect the preconditions and effects of that mechanic are applied. The mechanic using

Performed(i) as an effect indicates the time to apply the performed mechanic. Note that

frames of reference are not relevant for mechanic indexes (these are provided by the indexed
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mechanics themselves) and are ignored. In the planner we track all mechanics that occur

using the Occurs(t, i) predicate and derive Performed(i) for relative time step checks.

To prevent circular mechanic recombination during generation, we only allow mechanics

to reference previously generated mechanics. Unlike the base state fluents, Performed(i)

is treated as an event and not subject to inertial state.

3.3 Game Generation

constraint 
solver

planner

game 
domain

design 
requirements

playability 
requirements

test game 
instances

mechanics

Generate

Test

final mechanics

Figure 3.1: Process for generating games.

With a representation for the elements of games—the state model, transition model, and

instances—we now turn to generating those elements to create games. In this work I focus
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on generating both the transition model and accompanying game instances. Generating

game mechanics requires specifying the precondition and effects for a set of mechanics. To

make these mechanics semantically relevant, the system takes as input design requirements

that constrain the types of mechanics allowed. To make these mechanics functional in the

game, the system takes as input playability requirements in the form of goals and failure

conditions as given above.

Conceptually, mechanic generation in the system uses a generate-and-test process (Fig-

ure 3.1). In generation, the system takes as input design requirements on the form of me-

chanics and a definition for the game domain to generate mechanics in. A constraint solver

creates mechanics by choosing preconditions and effects for each mechanic while ensuring

the mechanics conform to design requirements. These mechanics are fed into a planner

that then checks whether mechanics meet playability requirements on given test game in-

stances. If the mechanics pass the playability tests they are output as possible mechanics

for the game instance.

3.3.1 Design Requirements

Two types of requirements are used to constrain the types of mechanics generated. Design

requirements filter potential mechanics to avoid low-quality mechanics and guide the sys-

tem toward the mechanic structures a designer is seeking (if any). Hard design requirements

(as used by [197, 190]) enforce conditions on the form of mechanics or relations among

a set of mechanics—e.g., not allowing a mechanic to have both equality and non-equality

preconditions for the same game state or requiring no two mechanics to have identical

preconditions and effects. Hard design requirements may require or forbid relationships

between the preconditions and effects of mechanics. Hard design requirements are con-

junctions of mechanic preconditions and/or effects that entail the Invalid preposition. The

constraint solver is required to always negate Invalid to ensure specific conditions do

not hold. The negation of a statement entailing Invalid can be used to enforce presence.
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This formulation draws from Answer Set Programming where forbidden conditions are

expressed using an empty entailment [8]. For example, forbidding a mechanic from requir-

ing preconditions for both equality check inequality check on the same parameter can be

expressed as

〈i, {Equal(P (e), v)}, {}〉∧〈i, {GreaterThan(P (e), v)}, {}〉 =⇒ Invalid Note that

matches are on partial mechanic structure, allowing these conditions to be met for any set

of effects or other preconditions of the same mechanic, rather than strictly requiring no

effects and the single preconditions.

Soft design requirements (as widely used in search-based procedural content genera-

tion [180, 222]) give optimization criteria for what makes (sets of) mechanics better or

worse—e.g. minimizing the number of preconditions and effects used by a mechanic to

favor simplicity. Soft design requirements take the form of predicates that assign an inte-

ger weight to mechanics (or parts of mechanics) in the form: Weight(P, V (P )), where P

indicates a logical term of interest, and V is a function that assigns a value to that term.

Weights can then be minimized or maximized by specifying this as a criteria for the con-

straint solver via: Minimize(V ) or Maximize(V ). For example, minimizing the use of

preconditions on mechanics can be expressed as:

〈i, P, E〉 ∧Weight(P,Count(P ))

Weight(P, V ) ∧Minimize(V )

where Count(P ) indicates the site of the mechanic precondition set P .

Hard and soft design requirements vary in specificity to game domains. Some require-

ments apply across types of games: e.g., not requiring a state hold and not hold at the same

time (rendering a mechanic unusable). Other requirements are domain-specific: e.g., mini-

mizing preconditions on actions in a platformer to have more simple and general mechan-

ics. Design requirements are intended to support human authoring by providing ways to

shape the space of mechanics a system may generate. At the same time these requirements

increase the efficiency of search for game mechanics by reducing the space of possible
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mechanics generated through encoding common-sense knowledge about ways mechanics

function.

3.3.2 Playability Requirements

Playability checking verifies that game mechanics allow players to win levels without los-

ing along the way for every game instance. In planning terms this means the planner can

use the mechanics (planning operators) to move from an initial game state to the goal game

state for every initial and goal game state pair given. The goal game state is defined in

terms of playability requirements provided as input.

Different constraints on playing the game are defined through three types of playability

requirements (two discussed above): (1) goals, (2) maintenance goals, and (3) engine con-

straints. Goals define the game situation that must be possible for an agent to achieve. A

planner must prove the existence of a plan that meets all goals. A game situation defines

required values for a subset of all parameters in the game state; e.g., defining a target lo-

cation for the player avatar in a platformer while leaving the locations of all enemies and

items unspecified. Thus, the Goal predicate above may only define a conjunction of entity

parameter values of interest.

Maintenance goals define failure criteria in terms of game situations that must always

hold in a successful plan. That is, maintenance goals negate failure criteria by specifying

things the player must always keep true. Maintenance goals use the Fail predicate above,

where the planner is required to provide a valid plan that never causes the Fail predicate

to be true. In a platformer, failure occurs when the player and an enemy collide; thus a

successful plan must always have the player an enemy occupying different coordinates.

Engine constraints enforce semantics for how the game functions outside the control

of generation and are defined by pre-existing mechanics in the game. I call these engine

constraints as they are intended to represent elements enforced by a game engine that im-

plements a game. A planner must follow the engine constraints when making plans—these
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mechanics are outside the scope of mechanic generation and are not included as mechanic

indices the constraint solver may alter. There is no special syntax to represent these terms

in the planner as they come with the domain definition as mechanics or derived logical

terms that define game state. In a platformer, the engine may prevent overlap between the

player and ground tiles through collision detection, thus the planner should always enforce

this constraint in plans (and thereby in the mechanics being generated). Engine constraints

can be more generally useful when using game generation in a design tool by representing

fixed game systems intended to be outside the control of generation. In a platformer, this

may mean that gravity (falling down at a fixed rate) must apply in the generated game,

requiring the planner to always obey gravity and mechanics to be generated in a way to

account for the effects for gravity (e.g., adjusting jump height).

3.3.3 Implementation

To implement the constraint solving and planner I used Answer Set Programming (ASP) [8]—

a form of declarative programming. As a logic programming language (in the same class

as Prolog), ASP supports the creation of the domain definitions and predicates above. ASP

provides a declarative language for specifying constraint satisfaction problems and imple-

ments a variety of optimized constraint solving algorithms to solve problems posed in the

language. Declarative programming languages emphasize defining what a computational

problem is, rather than defining the algorithm for how to solve that problem. Thus, imple-

menting the generation and testing process in ASP consists of providing a representation

for the logical definitions above using the ASP syntax, rather than implementing a spe-

cific algorithm for solving the constraint satisfaction problem of generating mechanics or

searching for valid plans. ASP in specific allows for a class of logical models where mul-

tiple solutions are possible: these “answer sets” are equivalent solutions to a problem and

allow the generation process to produce multiple sets of equally valid games according to

a problem definition.
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While generating mechanics and testing for playability is a two-stage process, the

shared implementation in a single constraint solver yields a single monolithic solving pro-

cess that shares information about constraint violations between the planner and solver to

improve efficiency. Internally to ASP, the process of generating mechanics using a con-

straint solver and testing those mechanics with a planner repeats until all hard requirements

are met and all soft requirements are optimized. In this case, my representation of the plan-

ning problem in ASP is expanded into additional predicates and constraints that are part

of the overall constraint solving process. While this is computationally expensive, I focus

on small game domains to understand the challenges and limitations facing an AI system

designed for domain-agnostic iteration. Note that many games use relatively small sets of

mechanics (e.g., RPG spell systems, platformer movement mechanics, or card game rules),

making this limitation less constraining than it may at first appear. For example, on a 2.66

GHz Intel Core i7 MacBook Pro with 8 GB of DDR3 RAM, generating the 2880 possible

solutions to the combined domain took 16.427 seconds, adapting the platformer jump me-

chanics took 0.218 seconds to find 4 optimal adaptations, and generating the optimal model

for the larger (due to the number of blocks) platformer domain took 30.857 seconds. For

further details on the implementation of the definitions above refer to Appendix A.

3.4 Examples

In this section I illustrate the above game domain representation and process to gener-

ate both avatar-centric game mechanics and game instances. We consider how to represent

combat systems in a simple RPG and movement puzzles a simplified platformer. To demon-

strate the modularity of the approach we discuss combining the RPG and platformer state

models to generate new games in this combined genre.

The genres here are intended to illustrate the versatility of this approach to game gen-

eration. RPG combat commonly involves two opposing parties taking turns to attack one

another using various spells (mechanics) until one party is slain; the Dungeons and Drag-
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ons [82] tabletop RPGs are a paradigmatic example. RPGs require a balanced and diverse

set of character spells; in RPGs there is an expectation for a relatively large number of me-

chanics that function in similar but different ways. Platformers are games where a character

navigates physical obstacles in a virtual space, exemplified by the Super Mario Bros. [144]

games. Platformers require a finely tuned and widely reused small set of spatial naviga-

tion mechanics that are combined to solve movement puzzles. The system here generates

spells in the RPG and movement mechanics in the platformer, demonstrating flexibility in

meeting different playability needs from mechanics. Concatenating these two domains and

generating combined mechanics illustrates how the model supports cross-genre mechanic

generation.

3.4.1 Role-Playing Game

RPG combat mechanics can be specified in terms of a set of entity attributes and resources

(here health and mana for the player and a set of enemies). The earlier RPG spell exam-

ple defines this basic domain. The RPG has playability requirements for: a player goal

situation of having all enemies dead, a player maintenance goal of not being dead; and an

engine constraint preventing negative mana. Together, these playability requirements en-

code the basic notion of an RPG battle as killing an opponent without being killed while

having bounded resources. Two domain-independent design requirements also apply: a

hard requirement to prevent mechanics from having preconditions that force a predicate to

equal more than one value and a soft requirement to minimize the number of preconditions

and effects of all mechanics to produce the simplest set of mechanics. Many domains have

a notion of actions having costs; a third hard requirement gives a domain-specific version

of costs by requiring all actions incur a mana or health cost.

The system generated a variety of RPG spells using the game domain, a game instance

with two enemies, and the playability and design requirements above. Plans in the RPG

domain are a series of player actions (spells) used to damage each of the enemies while
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costing the player health or mana. One example spell was given above, others typically

perform simple effects such as inflicting damage at a single time point or affecting multiple

targets. The system generated the following mechanic to damage both enemies:

〈damageAll, {},

{〈relative, 1, Update(health(enemy1),−1)〉,

〈relative, 1, Update(health(enemy2),−1)〉,

〈relative, 1, Update(mana(player),−2)〉}〉

where there are no preconditions and the effects damage both enemies while costing the

player mana. Note that human-readable names have been given to the mechanics; internally

i (the name) is an integer. Also note that the examples in this section were chosen to

illustrate the most semantically sensible mechanics generated; by definition all mechanics

achieve playability and design requirements.

3.4.2 Platformer

Two-dimensional platformers can be described in terms of a set of entities (here the player,

blocks, and enemies) each assigned spatial coordinates corresponding to two spatial di-

mensions (Table 3.3). The initial state of the player for the example (see Figure 3.2) is

Initial(xPos(player), 1), Initial(yPos(player), 2).

Table 3.3: Partial platformer domain
Entity(player)

Parameter(xPos) Parameter(yPos)
Has(player, xPos) Has(player, yPos)

AbsRange(player, xPos, [1,8]) AbsRange(player, yPos, [1,6])

The platformer has playability requirements for: a player goal situation of reaching the

end target location, a player maintenance goal of not overlapping with an enemy; and an

engine constraint preventing the overlap of any entity and a block. Another engine con-

straint enforces gravity by requiring all entities to move down one unit each turn if that

space is not occupied by a block. Two design requirements from the RPG example can be
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init enemy

goal

Figure 3.2: Platformer level showing a playtrace using a generated mechanic set. Arrows
indicate generated mechanics, dotted arrows indicate gravity.

reused in this case: preventing exclusive pre-conditions and minimizing the number of me-

chanic preconditions and effects. A third soft requirement optimizes for as few mechanics

as possible (to create a ‘tighter’ game system) and a fourth soft requirement minimizes the

number of different entities referenced by mechanics (favoring motion of a single avatar).

Figure 3.2 illustrates a simple platformer level and shows one trace found by the plan-

ner that moves the player avatar to the goal position. The planner generated mechanics

for moving forward, jumping, and double-jumping (indicated by arrows). Dotted arrows

indicate the effects of gravity. The example shows a variety of movement mechanics the

system generated, including two forms of jumping:

〈jump,

{〈relative, 1, Equal(yPos(e), yPos(block) + 1)〉,

〈relative, 1, Equal(xPos(e), xPos(block))〉},

{〈relative, 1, Update(xPos(e), 1)〉,

〈relative, 1, Update(yPos(e), 1)〉}〉
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〈doubleJump,

{〈relative, 1, Equal(yPos(e), yPos(block) + 1)〉,

〈relative, 1, Equal(xPos(e), xPos(block))〉,

〈absolute,−1, Equal(Performed(i), jump)〉},

{〈relative, 1, Update(xPos(e), 1)〉,

〈relative, 1, Update(yPos(e), 2)〉}〉

jump tests for the presence of a block to jump off of and, if so, moves the avatar diago-

nally up. doubleJump does the same check while also requiring a jump to have occurred

immediately before; the jump effect is slightly larger.

Two stranger mechanics resulted when using the system on a slightly simplified version

of the above domain. The simplification removed blocks at even height with the player to

create a level plain. The system generated a ‘lift’ and a ‘ride’ mechanic in two different

solutions. lift raises the enemy behind the player and was used to allow the player to move

the enemy behind them while advancing to the goal:

〈lift,

{〈relative, 1, Equal(yPos(e), yPos(enemy))〉,

〈relative, 1, Equal(xPos(e), xPos(enemy)− 1)〉,

〈relative, 1, Equal(yPos(e), yPos(block) + 1)〉,

〈relative, 1, Equal(xPos(e), xPos(block))〉},

{〈relative, 1, Update(xPos(enemy),−1)〉,

〈relative, 1, Update(yPos(enemy), 2)〉,

〈relative, 1, Update(xPos(e), 1)〉}〉

ride was a mechanic used to slide the player and enemy forward both by one unit and was

used to have the player jump atop an enemy and ‘ride’ the enemy to the goal (shortening

the jump distance needed):
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〈ride,

{〈relative, 1, Equal(yPos(e), yPos(enemy) + 1)〉,

〈relative, 1, Equal(xPos(e), xPos(enemy))〉},

{〈relative, 1, Update(xPos(e), 1)〉,

〈relative, 1, Update(xPos(enemy), 1)〉}〉

3.4.3 Combined Game

As a demonstration of the modularity of the game mechanic representation the previous

two domains were concatenated to create a ‘platformer-RPG’ game. All game state def-

initions were unchanged: combining RPG resources and platformer location only makes

entity state more complex. The previous playability requirements from both domains were

retained with conjunctive (all criteria must be met) goals, maintenance goals, and engine

requirements. With these simple changes the system generated mechanics appropriate to

the domain such as attacking at a distance with a spell:

〈magicMissile,

{〈relative, 0, Equal(xPos(e), xPos(enemy)− 2)〉,

〈relative, 0, Equal(yPos(e), yPos(enemy))〉},

{〈relative, 0, Update(health(enemy),−1)〉}〉

where the preconditions check for an enemy two spaces in front of the player and the effect

reduces enemy health.

3.5 Extending AI Design

The previous examples illustrate basic game generation using the representation described

above. This section discusses extensions to the system that address more complex aspects

of designing playable games: (1) adapting previously generated mechanics to instance

changes, (2) cost-benefit balancing, (3) planning with multiagent games, (4) generating

mechanics for multilevel progressions, and (5) mapping input controls to mechanics. These
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extensions increase the scope of elements of design considered in game generation within

a single representation, supporting the value of this representation for general game design

challenges. By using a low-level representation of the manipulation of state variables this

representation enables generation of elements of a game’s design that are often overlooked.

3.5.1 Mechanic Adaptation

Designers often alter the instances of a game through iteration and tuning. Changes to a

level design, however, can have unexpected consequences for the ability to use mechan-

ics to complete other levels in the game. Addressing this problem requires a way to al-

ter pre-existing mechanics to fit a new situation. In most cases these alterations should

be minimal—as small of changes to the mechanics as necessary to still meet design and

playability requirements.

Mechanic adaptation starts with a set of mechanics and produces a minimally changed

set of mechanics (Figure 3.3). Mechanic adaptation uses the same process as mechanic

generation, only now in support of human (or potentially computer) iterative design. When

a set of mechanics are tested on game content the resulting insights about the game yield

new criteria for the mechanics—adaptation requirements. Adaptation requirements spec-

ify additional playability or design requirements for mechanic generation. New playability

requirements may indicate additional goal states for the player to pursue or identify un-

wanted states. New design requirements may control the amount of change to make to a

set of mechanics. The definition of ‘minimal change’ varies by game domain and must be

specified to adapt mechanics.

Mechanic adaptation takes the same input game state and transition models as mechanic

generation, augmented with a pre-existing set of game mechanics. These pre-existing me-

chanics encode the mechanics to be adapted, providing the core systems from the game to

adapt. Adaptation adds or removes preconditions and effects from existing mechanics and

may also generate new mechanics. Changes to mechanics must meet designer-specified
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Figure 3.3: Mechanic adaptation starts with an initial set of mechanics and uses adaptation
criteria to define minimal changes for mechanic generation to make to those mechanics.
Testing uses the adapted mechanics in test game instances, requiring that any adaptation
requirements for playability are also met.

criteria for minimality while adhering to all adaptation requirements. Minimality may con-

strain changes to small alterations of parameter values or may limit the addition or removal

of preconditions.

The system adapts mechanics by performing the standard generation process but seeded

with the additional mechanics (Figure 3.3). The previous set of design requirements are

given along with new adaptation requirements and a definition of minimality (e.g. minimiz-

ing the total number of changes made). Mechanic adaptation performs the same generate-

and-test loop as mechanic generation. The extension to the game generation system here
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is trivial: rather than seeding the process with no mechanics the system begins with a pre-

existing set of mechanics and a potentially different set of design goals that were used

to guide initial generation. Adaptation may change ground terms from the mechanics as

needed by variabilizing the mechanic predicates and selecting alternative ground values

from the allowed ranges for the parameters in the domain.

As a test of mechanic adaptation in the platformer domain the system adapted me-

chanics generated without gravity to work in the same domain with gravity. First, the

system generated a set of movement mechanics in the platformer domain, resulting in three

mechanics: a long horizontal jump (longJump: 2 forward, 1 up), a short vertical jump

(highJump: 1 forward, 2 up), and a dash forward (2 forward). Adding gravity requires the

in-game agent to increase the amount of vertical movement when gravity is added. Gravity

was added as an engine constraint and the system adapted the mechanic set above while

reusing the same platformer domain and requirements. The resulting modifications made

two changes: (1) the dash added vertical movement to now move 2 forward and 1 up and

(2) the long jump added an initial lift phase moving 2 up, but at a time one step earlier than

the rest of the mechanic. These results illustrate the flexibility to reuse the generation sys-

tem for adaptation when baseline design considerations change. Adaptation only required

seeding the generation with output from a previous generation step and specifying how

many mechanics to use after adaptation (in this case preventing new mechanics from being

added). In this case minimal change simply required the smallest total number of changes

to the preconditions and effects of the provided operators.

3.5.2 Cost-Benefit Balancing

Game designers often employ intuitive notions of costs and benefits as a heuristic way to

balance content in a game design. Schreiber [175] describes one such set of techniques, tar-

geting examples like balancing cards in the card battling game Magic: The Gathering [71].

Card functions are assigned costs or benefits: a benefit per point of health of a card, a cost
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per point of mana to play the card, or a benefit or cost for each of a card’s abilities. In

the case of Magic, using costs and benefits allowed designers to design specific cards to

be balanced (by having equal costs and benefits) and also provide a progression of cards

available at different levels of costs (or benefits). By assigning card functionality costs and

benefits new content can be readily created by adding or adjusting functions until the costs

and benefits of the functions of a piece of content are equal.

Schreiber’s [175] concepts are readily incorporated into the design requirements of

the mechanic generation system. Costs and benefits take the form Cost(〈E,P 〉, C(V )),

where 〈E,P 〉 indicates an entity-parameter combination, V is the value taken by the entity-

parameter combination in a mechanic, and C(X) is a cost function that maps from a given

parameter value to its cost. Benefits take an analogous form, substituting the cost function

with a benefit function. Design requirements may then specify constraints on the values of

the costs and benefits: for example requiring no mechanic incur too large a cost or that all

costs and benefits be equal.

In initial platformer mechanic generation runs jump and doubleJump lacked precon-

ditions as this minimized the complexity of mechanics. To address this problem I added

cost and benefit balancing based on the effects of movement mechanics. Each effect is

assigned a benefit equal to the update effect absolute magnitude: C(V ) = |V |. That is,

larger changes to game state are considered linearly increasing benefits. Preconditions

constrain mechanics and are assigned a cost of 1: C(V ) = 1 The more limitations on us-

ing a mechanic are treated as a greater cost for the mechanic. A hard design requirement

enforces ‘balanced’ mechanics by requiring the net costs and benefits of a mechanic are

equal. Adding cost-benefit accounting led to the mechanics reported above.

While this cost-benefit model is simple, it allows humans to provide additional input

to generation in form of additional design requirements. As with mechanic adaptation,

the extension to the basic representation was trivial: a set of predicates that assign values

to preconditions and effects were added as input and a design requirement for balancing
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these costs and benefits was added. The low-level representation of the preconditions and

effects of mechanics enables design constraints that reflect human heuristics for shaping

the structure of game actions.

3.5.3 Multi-agent Games

The examples in this work have focused on games with a single active agent. Many game

domains have the player face scripted opposition in the form of non-player characters. In a

platformer these are enemies that patrol areas; in a RPG these are enemies that attack the

player in battle. Enabling a game generator to consider the actions of these agents (when

not fixed by a policy) allows for considerations of how opponents may alter the play space

of a game.

The representation above only considers a single player agent, but the extension to mul-

tiple agents is straightforward. To account for the possible ways of playing out actions for

each agent I augmented the planner to track state fluents specific to each agent (includ-

ing actions performed and relative perceived state). Playability requirements also become

agent-specific to account for the differing goals of agents. While the player goal in the RPG

may be to kill the enemies, the enemy’s goal is likely not suicide, but to kill the player.

Playability checks now must pass the conjunctive goal of all agent goals being possible

with these extensions. In many cases these goals can be adversarial: the planner used

here prevents explicit modeling of game-theoretic competition. There are a number of

ways to circumvent this limitation by defining appropriate player and opponent goals. One

approach (used in the platformer domain) is to ensure the player can achieve their goal

situation before the opponents achieve their respective goal situations. The planner still

ensures all agents may reach their goal situation, but by finding a plan where the player

finishes first the game is guaranteed to have a way for the player to win without losing

along the way. In the platformer this translates to the player being able to reach the end of

the level while also showing the enemies could potentially overlap with the player (kill the
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player) to achieve their goal.

A second approach (used in the RPG domain) is to define opponent goals in a way to

improve player experience without directly negating the player’s maintenance goals. The

playability checks then optimize for all goals simultaneously. In the RPG this translates to

the opponents aiming to minimize player health while keeping the player alive; in the ideal

case it appears that enemies are fighting the player but fail to slay them.

The addition of multi-agent modeling is computationally costly (due to the increase in

states being tracked and goals being optimized). These costs, however, enable modeling

a wider range of game genres where their are other active non-player characters. Further,

these models allow considerations of collaboration in games by considering two players as

agents coordinating toward a set of goals. As with the extensions above, the changes to

the base system were minimal: here the base predicates were merely extended to track one

additional element indexing actions or relative state by the agent of interest.

3.5.4 Multi-instance Progressions

Platformers (and most game genres) typically introduce new mechanics to players over a

sequence of instances (levels). Generalizing mechanic generation to include requirements

on which mechanics are used along a progression requires two additions: planning across

multiple levels and providing requirements on mechanic use. To implement multilevel pro-

gression I augmented the initial state and playability requirement definitions to be specific

to levels with a level index. Playability checks must ensure the given mechanic set can

yield valid playtraces for all levels provided, treating each as a separate planning problem

with the same set of mechanics.

The constraint solver can enforce many types of progression across multiple levels.

For example, requiring the number of mechanics used in each level increase over a level

progression or requiring the mechanics used in each level reappear in all subsequent lev-

els. In tests using these requirements the system has sequentially introduced the jump and
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doubleJump mechanics above when provided a two-level sequence where doubleJump is

unnecessary to reach the goal in the first level, but both mechanics are required to reach

the goal in the second level. In general the generated mechanic sequences often involve

enveloping mechanics with a weaker and stronger (larger effect) version of the same me-

chanic. Progression requirements often encode a notion of training players by needing

to master additional skills (see [23, 24, 56]). The more atomic mechanic representation

used here can also require the progressive introduction of preconditions or effects (as in the

doubleJump introduction of an event precondition). These requirements allow more nu-

anced ideas of progression than previously done by using elements of the mechanics being

introduced to the player. Again, the extension to the representation was trivial: adding an

index to track the specific instance a state fluent was related to and then proving plans for

all instances.

3.5.5 Control Generation

Platformers depend heavily on game controls. Control assignment can play an important

role in how people play a game by making similar mechanics easier or harder to execute

during play. While previously ignored in game generation systems the choice of controls

can often play an important part in the realized space of play in a game [211].

To investigate this problem I considered a simple form of control assignment by map-

ping mechanics to inputs (as button or button combination presses). The system can assign

controls by taking a set of control commands and adding these controls as additional pre-

conditions for mechanics. One hard design requirement ensures there is always a single

unambiguous mechanic for an input. This prevents control assignments where a single

button press could trigger two mechanics simultaneously (even after considering whether

the context is different via the check for mechanic preconditions). Another hard design

requirement ensures all mechanics have at least one input and no two mechanics with the

same preconditions use the same set of inputs. This ensures all mechanics can be triggered
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by controls and no two mechanics could potentially fire in the same situation. One soft de-

sign requirement encodes simplicity by minimizing the number of inputs used in total and

number of inputs used per mechanic. Another soft design requirement encodes a simple

notion of ‘intuitive’ mappings by maximizing the use of the same buttons for mechanics

with overlapping effects on the same entity-parameter-value settings.

In tests using this control mapping technique the system has generated (relatively) se-

mantically sensible platformer controls. Inputs to the control mapping were the jump,

doubleJump, lift, and ride mechanics as above and a set of 6 input buttons for a 4-

directional pad with two action buttons (A and B). Resulting control assignments used

either 3 or 4 input buttons, trading off minimizing the total number of buttons used against

minimizing the number of buttons used per mechanic (Table 3.4). Different assignments

used different buttons for the same results. Note that no two buttons had identical precondi-

tions, meaning a (non-optimal) assignment could have used a single button for all actions.

This control assignment task illustrates the value of a low-level representation of mechan-

ics for considering new game design elements previously overlooked in game generation

research.

Table 3.4: Control assignment examples
3 button 4 button

jump ↑ ↑
doubleJump A + ↑ →

ride A A
lift B B

3.6 Playable Game

The system described in this chapter generates definitions for playable games. Using these

definitions a playable version of the game requires a way to store ongoing game state,

gather player input, and present state to players. As a test case I implemented a platformer-

style game domain (Figure 3.6). This domain has the player navigate to a goal state from
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an initial state while avoiding enemies. Mechanics move entities in the world state, with

different mechanics implementing different movements. For simplicity the UI shows the

player, enemy, goal, and block positions. Mechanics are indicated by numbered circles,

which show movement vectors of the player and other entities on mouse hover-over.

Figure 3.4: Game world state visualization for playable platformer domain. Player is rep-
resented by the wizard, enemy by the robot, and goal location by the green star. Numbered
circles show possible movement vectors on hover-over for different mechanics (here three
options with indices 1, 2, and 5).

To run the game I implemented a simple game engine in ASP to track ongoing game

state, define valid actions a player may take, and update game state. The engine takes as

input a game state and mechanics generated by the mechanic generation system above. At

each time step the engine stores the current game state as the set of Holds predicates in a

flat text file. To provide valid player actions the planner portion of the generation system

checks which actions have their preconditions met for the player agent at the current time

step. These actions are presented to the player and the system waits to receive a player input

in terms of choosing one of these actions. Once an action has been chosen the planner is

then used to update game state to yield a new set of Holds predicates. The planner also

checks whether the player has failed or succeeded at this time. As an additional constraint
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the game limits the number of player turns, with the player failing if they have not reached

the goal state by the final turn. Note that the number of turns is defined as an input to the

generation system, so the generated platformer levels are guaranteed to have valid solutions.

I used the Unity3D1 game engine to handle rendering the game state, gathering player

input, and feeding that input into the ASP engine. In the Unity3D implementation, player

input consists of mouse clicks on the numbered circles indicating mechanics. Rendering

used the native Unity3D engine and all processing used external calls to the ASP solver.

Two other versions of the game used different engines to run the game: a simple text-

based interface and a Twitter2 bot. The text-based interface simply outputs the raw Holds

predicates and gave players a numbered choice of action options. Input takes the player

text value for an action. The Twitter bot used the Unity3D renderer to create screenshots

and provided text to define the state changes defined by the mechanics. Player input was

gathered through replies to tweets of a game state.

While making a playable version of these simple games is straightforward this high-

lights open problems in visualizing game state and game user interfaces. I chose the 2D

platformer domain due to it’s widespread familiarity and the relative ease of showing me-

chanics as movement in space. Purely numeric domains—such as RPGs—are also rel-

atively straightforward as changes can be shown through text. Moving to more general

classes of games, however, will pose new challenges in creating general approaches to ren-

dering game state and providing interfaces for showing the effects of user actions. It is

likely possible to capture broad classes of games—2D or 3D movement-based games, pri-

marily numeric simulations, and so on—in common vocabularies, though this remains an

open topic for research.

1https://unity3d.com/
2https://twitter.com/
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3.7 Limitations and Future Work

In this chapter I presented a representation for game domains based on treating games as

planning problems. The work presented here illustrates the value of taking this perspective

for generating game mechanics, instances, and a number of related features. However, this

model has a number of limitations that highlight challenges in the area of domain-agnostic

game generation. Some challenges require extensions to the representation or algorithm:

currently the game state model is not generated and design, playability, and adaptation

criteria are used as input (rather than derived by the system). Other challenges will require

new representations: generating game assets, modeling adversarial game domains, and

representing domains outside the realm of deterministic, discrete, turn-based games.

3.7.1 Generating State Models

Generating the game state model is a conceptually straightforward extension to the game

generation model here. Instead of treating the set of entities, parameters, and allowed pa-

rameter ranges as fixed, it is possible to allow the system to select these combinations

from a larger pool of options. Generating the state model introduces two challenges, one

computational and one semantic. As a computational challenge, exploring an unbounded

space of parameter combinations requires a different algorithm for generation to appro-

priately limit and intelligently expand the state space model used in the game. Without

any additional design or playability criteria the game state model could become arbitrarily

large. This modification would also remove the ability to guarantee exhaustive or (near-)

optimal choices of game designs from the design space. Addressing this side of the chal-

lenge would require different algorithms for generation that intelligently expand the search

in the design space of game state models. New structure in the form of additional design

constraints may also help constrain search to bound the space of alternative game param-

eterizations. This will still require additional research into ways to recognize structurally
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equivalent parameterizations or decompose generation into sub-games that interlock (an

approach taken toward general game playing agents [46, 79, 173]).

As a semantic problem, the current representation excludes any explicit notion of the

meaning of the game state model to people. Any new predicates introduced into the game

would lack any ready interpretation to people. In practice leads to new game elements

lacking a human-legible name. The problem of generating new semantic content to fit in

a known domain has received attention in the computational creativity literature and there

is promising work based on hand-authoring domain semantics [226, 126] or mining pre-

existing corpora of semantic content and using that to inform semantic labels [35, 36, 37].

Extending these approaches to learn the connection between a game state model and the

semantics of that model is non-trivial, but may provide the additional constraint needed to

render search computationally tractable.

3.7.2 Generating Design Goals

An alternative way to extend the scope of generation is to provide the system with explicit

control over design and playability criteria or adaptation goals. Choosing these constraints

faces similar problems as the choices in game state generation: the constraints serve to limit

the search for potential games and embed a designer’s concept of what should or should not

be possible in a game. The choice of playability criteria is sometimes feasible: for example,

the system currently generates goals and maintenance goals for game instances, but these

are could be based on generalizing from examples in game instances to choose parameters

for similar goal structures. Additional control over design and playability criteria will

require ways to iteratively expand this search space or use hard-coded or learned semantics

to constrain search. As with generating the game state model, this requires parameterizing

the space of input parameters to the current generator. Guiding search in this space may be

feasible by learning the consequences of design choices on the space of play and using that

feedback to inform the creation of design and playability criteria or notions of optimality
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for adaptation. Ultimately, generating all three types of constraints for the system can

benefit from learning about the space of play enabled by designs and using this feedback

to guide search. In chapter 6 I show one way to guide choices of design parameters in the

late stages of design by using feedback from player behavior to guide the choice of design

parameters.

3.7.3 Linking Semantics to Mechanics

The algorithmic creation of game assets is the primary concern of the academic field of

procedural content generation in games [33, 180, 222]. Procedural content generation also

has a history in commercial game development, from early examples including Rogue [4]

and Diablo II [14] to recent growing popularity with contemporary examples including

Minecraft [134] and Spelunky [137]. Commercial game developers often use procedu-

ral generation to give players variety in the content they experience on repeated play. At

the finest level of detail, procedural generation of instantial assets such as trees [94] or

rocks [51] has been used to reduce development costs for creating large game worlds. Ran-

domization of level instances (e.g., Rogue, Diablo II, or Spelunky [243]) has served as a way

to give players gameplay variety and encourage improvisational problem-solving over rote

memorization of game levels. Procedural generation has also been used at a larger scale to

construct full universes in games: Spore [130] and No Man’s Sky [85] generate planets and

their environments down to the individual creatures populating these planets, giving play-

ers the opportunity to explore seemingly endless new universes. Other efforts have used

simulations to generate histories of game worlds, spanning the evolution of cultures and

historical interactions among in game societies: Ryan et al.[166, 165], Dwarf Fortress [3]

and Ultima Regium Ratio [102] use these rich simulations to provide a grounding social

and cultural context for gameplay.

Tying choices of game content to the aesthetics and meaning of games has received little

attention from either academic or commercial efforts. Treanor et al. [226] Game-O-Matic
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take the approach of having players author conceptual content and using a pre-authored

grammar to choose game assets and mechanics based on player input. Martens et al. [127]

extend this approach to a bi-directional pipeline for interpreting and generating games us-

ing a static analysis of game mechanics using answer set programming. Human-authored

knowledge informs the system as to how to derive gameplay dynamics from game me-

chanics and then derive the semantic meanings of the game from the enabled dynamics.

Cook et al. [35, 36, 37] use a generation pipeline where a system takes as input a high-level

semantic query in the form of a word or phrase and then searches databases for related

game assets. In these systems aesthetics serve as a framework to guide choices of content

for arcade-style gameplay—aesthetics dictate how to interpret an interaction as ‘good’ or

‘bad’ when progressing toward a high score or goal state. For Cook et al. and Treanor et

al. this is used to guide choices of how to populate entities in templates for adversarial re-

lationships common to arcade and platformer games. For Martens et al. these evaluations

guide interpretations of what interactions are ‘good’ or ‘bad’ in a game. Outside these

abstract frameworks of valuation, however, there is little work to derive more complex aes-

thetic or semantic statements from a game’s structure resembling the critique people make

of games [15, 16]. Creating modular and extensible valuable frameworks for generative

systems has great promise to yield new types of games that ground different conceptual

and aesthetic frameworks in (simple) game systems.

The mechanic generation framework in this chapter demonstrates the need for develop-

ing general models to constrain the semantics of generated mechanics. When combining

domains, the system would often produce results that included unnecessary movement,

such as healBoth:
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〈healBoth,

{ },

{ 〈relative, 1, Update(health(e),+1)〉,

〈relative, 1, Update(health(enemy),+2)〉,

〈relative, 1, Update(xPos(e),+2)〉,

〈relative, 1, Update(yPos(e),+2)〉}〉

Or would combine movement and RPG statistic changes across entities without any clear

pattern, such as healthJump:

〈healthJump,

{ },

{ 〈relative, 1, Update(health(e),−1)〉,

〈relative, 1, Update(xPos(e),+2)〉,

〈relative, 1, Update(yPos(e),+2)〉,

〈relative, 1, Update(xPos(enemy),+1)〉}〉

These cases illustrate the need for the system to possess knowledge of the human world

to capture the ways people expect related entities in a game to function. Constraining me-

chanics to influence a single entity would prevent these cases, but also prevent mechanics

like lift above—simple constraints alone are unlikely to prevent many types of nonsense

mechanics. Instead, the constraints on mechanic generation will need to capture the notion

that relative movement is only possible along the lines of a naive physics, where proximity

is required to have action (unless transmitted by some external force). Realizing a general

form of human-like semantics will be a challenge, but can in turn greatly enhance the abil-

ity of this system to create mechanics that are readily interpreted by people. This will likely

require a combination of intelligent authoring and means for automated systems to mine

human examples, feedback, or pre-existing corpora for knowledge of how people expect

the world to function.

Similar to the approach of mining corpora of semantic content, researchers are also
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learning game structures. Dahlskog and Togelius [49], Snodgrass and Ontañón [200, 199,

201], Summerville et al. [210, 207], Guzdial et al. [81], and Jain et al. [101] learn the

structure of platformer levels from corpora of platformer level sprites with different under-

lying machine learning techniques. Summerville et al. [208, 209] learn action-adventure

game structures from similar corpora. Guzdial and Riedl [80] take an alternative approach

by using computer vision to parse videos of people playing platformer levels and learn

level design from the visual information; Summerville et al. [207] apply the same parsing

technique to support player-tailored level generation.

To date, however, these approaches have not addressed the general problem of connect-

ing game assets to game state models: i.e., learning how the choices of game assets are

related to the choices of game state and transition models. Games studies researchers have

considered this topic in terms of the operational logics of a game. An “operational logic

defines an authoring (representational) strategy, supported by abstract processes or lower-

level logics, for specifying the behaviors a system must exhibit in order to be understood

as representing a specified domain to a specified audience” [129]. While the work on op-

erational logics to date has been primarily driven by game studies analysis [15, 129, 238],

there is a great opportunity to use the lens of operational logics to guide how a system learns

to connect a game domain (the underlying logic) with the game’s assets (representational

strategy). Addressing this connection will require domain-agnostic game representations

that allow learning how multiple games of similar and different genres function at the level

of game state and transition model, while also capturing choices of game representation at

a semantic level. Recent work has begun to approach this topic using hand-coded mod-

els of operational logics and the relationships among representational choices and game

mechanics, demonstrating the potential for game analysis and generation in an automated

fashion [127]. This work lays the foundation for future extensions that allow systems to

automatically learn about these relationships and generalize them to generate novel content.
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3.7.4 Adversarial Games

Games with more than one player are not possible in the current representation. This

derives from the fact that planning represents the goals and intentions of a single agent,

rather than searching the space of optimal strategies for multiple agents with differing goals.

The approach taken earlier for representing the goals of enemy agents assumes agents that

are ultimately aiming toward the player still being able to complete the game. That is, all

planning is done by a single agent, rather than adversarial minimax planning between two

or more agents.

Truly adversarial games cannot be represented merely by a single agent planning and in-

stead require game-theoretic adversarial search for optimal play between agents. Capturing

games with multiple competing parties requires replacing the planner with game theoretic

search among agents. At the same time this search would still need to consider the space

of possible plays between agents to guarantee conditions can be met in the game (e.g., both

players can win the game). The generate and test approach taken here could be modified

by replacing the planning with a game theoretic analytic solution (e.g., computing Nash

equilibria if the mechanics allow) or search. But this replacement would be both compu-

tationally costly and require further consideration of how to define design and playability

criteria that are sensible for an adversarial game. Browne and Maire [20] addressed this

challenge by defining evaluation criteria over playouts between (not necessarily optimal)

agents while Jaffe et al. [99] applied game theoretic evaluations to check win rate balance

between optimal agents. Extending this system to handle adversarial situations will require

similar definitions of the quality criteria of a game and done so in a way that accounts for

a range of player skills. In the next chapter I show how to apply Monte-Carlo Tree Search

(MCTS) to handle playing a broad range of adversarial games (an idea also suggested by

Jaffe (Chapter 5, p. 60 in [99])) and use this to evaluate the design of these games.
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3.7.5 Other Game Domains

The work in this thesis is specifically targeting deterministic, discrete, turn-based, fully ob-

servable games. These assumptions simplify both the design space being modeled and rea-

soning requirements on agent behavior in the play space. Lifting any of these restrictions

can enable modeling different game domains with additional computational challenges.

The use of a planning perspective on game play is valuable in suggesting ways to broaden

to new domains. Continuous time domains can be addressed through planning technologies

for real-time scheduling. Non-deterministic domains can be addressed with probabilistic

planning and domains that are not fully observable can also be addressed. The primary

challenge in most cases will be developing appropriate ways for plan failure to feed back

into generation to guide design space search. Currently this problem is being addressed by

using a single constraint solver to implement both search in the space of design and plan-

ning, thereby feeding back learned constraints from failed plans directly into design space

search. Learning design space constraints and heuristics from play space search remains

an open question that will be crucial to adopting more sophisticated planning techniques in

a computationally tractable fashion.

3.8 Potential Impact

Game design research has the potential to change the way games are made and the experi-

ences available to game players. In this section I briefly discuss how the game generation

system in this chapter might influence game designers and players.

3.8.1 Game Designers

The system in this chapter works from an abstracted forward model of game mechanics

that serves as a rudimentary game engine. In practice game designers typically use fully

featured game engines to facilitate the creation of game instantial content (levels, areas,

79



gameplay systems, &c.). These engines provide useful tools for authoring content, but

generally provide little or no support for understanding or evaluating the consequences

of game design decisions. Designers would gain new tools to address these challenges

by linking existing game engines to abstracted frameworks like the representation in this

chapter.

Enabling a game engine to validate that players can accomplish a collection of goal

states is a powerful tool for determining whether level designs are functioning as intended.

Even if generation and adaptation are never used directly, planning in an abstract repre-

sentation of game content can provide useful diagnostic information on what is or is not

possible in a game. The system in this could provide all (abstracted) action sequences that

achieve different game goal states, allowing designers to rapidly iterate on a level design or

mechanic design to constrain the ways of completing content to the set of desired outcomes.

As a general game representation, integrating this tool into a new generation of game

engines would provide an easy interface for AI agent play and design validation. General

representations that can be programmatically defined for each game allow for a new class of

tool for automatically suggesting content changes or providing alternative views of a design

in terms of completion toward different game goals. In the future designers may be able to

add a stage of design iteration without players that emphasizes abstract, general properties

of play in a game. This in turn can enable new approaches to game design emphasizing

desired ways games function, rather than placing an emphasis purely on the experience of

using a game. In games that must enforce certain types of play (e.g., training games or

games with a purpose), these tools can greatly accelerate the process of authoring content

that produces intended outcomes.

3.8.2 Players

Players stand to benefit from generic generation systems by being able to experience new

genres of games built around generation of mechanics and systems. New designs become
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possible: for example, puzzles games where players pick an arbitrary goal on a game level

and the system generates actions the player must use to reach that goal state. Other designs

might leverage general domain combination to give players a modular “toolkit” of base

game representations they can choose to combine and play example levels from. Alterna-

tively, players might be given a goal to force a system to generate certain mechanics on a

level, changing the goal states used as input to the system. In this game genre players would

provide inputs to abstracted design tools in order to create desired game outputs. Flipping

the roles of players and designers has already shown great promise both for entertainment

(Minecraft) and games with a purpose (Foldit [42])

Simplified, abstract design tools can also increase the potential for people to use games

as simple expressive media. People can far more readily explore ways of using games to

express their experiences when game authoring becomes simplified (within a constrained

genre) to authoring a handful of goals and levels. As these game authoring tools become

trivial to use, a new form of game creation analogous to the relationship of Twitter to

writing may emerge: a new class of ultra-streamlined game used to express an emotion

or snippet of experience. Ultimately the growth of these games requires far more work

in creating tractable small representations and robust user interfaces, but the strength of

modular frameworks like in this chapter lies in modeling and generating games in these

small-scale, well-defined designs.

3.9 Summary

In this chapter I presented a representation for games based on treating gameplay as a

planning problem. The representation models game domains using a declarative model of

the possible states in a game. Generating game mechanics and instances is solved using

a generate and test cycle constrained by design and playability criteria that define desired

mechanic structures and play behaviors, respectively. The low-level representation used

enables a deep exploration of the game mechanics possible in games across many domains,

81



while the declarative domain model allows ready combination of game domains. Using a

low-level, generic representation supports further game generation capabilities including

adapting game mechanics to fit new content, incorporating designer intuition on the costs

and benefits of how mechanics work, modeling games with multiple agents, controlling

progressions of levels to introduce mechanics based on their functionality, and mapping

mechanics to button-based controls. Together this work provides a backbone for a model

of iterative game design by treating the problem of game generation in a low-level, domain-

agnostic fashion.

Using a planning model for gameplay ensures games have desired properties such as

victory or failure conditions. But designers are often equally concerned about the typi-

cal behaviors players may have in a game. Typical behaviors also often differ depending

on individual differences among players, such as reaction time, ability to plan ahead, or

preferred types of content to experience. Addressing these differences requires a different

model for assessing the ways people play a game: simulated agents that can be configured

to play in a variety of ways. In the next chapter I present the use of Monte-Carlo Tree

Search (MCTS), a domain-agnostic stochastic planning algorithm, to generating examples

of agent play at varying levels of skill. As many design goals for player behavior center on

the actions players take, rather than the states they visit, I develop a framework of metrics

to assess the choices faced by and used by players. I show how to evaluate game designs

by combining this framework for action metrics with behaviors samples generated from

MCTS agents of varying skill. The evaluations examine the classic word game Scrabble

and a simplified card battling game mimicking the mechanics of Magic: The Gathering,

showing how the metrics find Scrabble effective at differentiating agent strength while the

simplified Magic game does not. This evaluation and framework provides the groundwork

for automatically assessing the space of play afforded by a game design.
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CHAPTER 4

ACTION SAMPLING

4.1 Introduction

Games typically afford a broad range of ways to play. Designers often have goals for that

space of play, such as creating a core gameplay loop [167] and/or balancing the competitive

elements of a game [61]. But reasoning on a static description of a game to understand the

dynamics of play possible is a challenging task. This leads to two problems: (1) gathering

examples of a variety of player behavior in a game and (2) evaluating those examples to

determine the quality of the space of play in a game. Behavior sampling is the problem of

gathering examples of expected player behavior in a game given the design of the game.

Gameplay analysis is the problem of evaluating the quality of a space of play given ex-

amples of behavior in the game. In this chapter I present a general approach for behavior

sampling that proxies player skill in turn-based games. The previous chapter illustrated

how a system can automatically understand whether certain game states are possible in a

game; this chapter demonstrates how to examine the range of choices players face (and act

on) in a game while also accounting for differences in player skill.

Player skill plays a key role in game design: a single designed game must cater to

players with different abilities to execute actions in the game. Designers use knowledge

about player differences to tune a game design to allow for a desired range of differences in

player skill. For many designers, a game design is only successful when player skills result

in different outcomes, allowing higher-skill players to beat the weaker opponents. Thus,

enabling designers to understand how a design differentially influences players based on

their skill is important for informing iterative design.

Player skill comes in many forms: from reflexes to execute carefully timed actions to
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social cunning to deceive other people. In this work I focus on player skill in the form of the

ability to plan ahead in a game. Planning ahead involves planning an action, considering

the next actions taken by a player (or their opponent), and planning subsequent sets of

action in response. Planning ahead is a core component of gameplay in most turn-based

games (and many real-time games), making it a useful general form of skill to consider in

iterative design.

Behavior samples are only useful when they can be analyzed to inform design deci-

sions. I present four metrics that use the actions agents of differing ‘skill’ take in a game to

evaluate two game designs—this enables a general framework for evaluating the strategic

space of a game. Unlike prior work in gameplay analysis this framework emphasizes the

actions agents take in a game, rather than the states of the game agents visit, to provide

perspective on the strategic space of a game. In many games, player experience derives

primarily from the choices players can make in a game. Sid Meier is famously quoted as

saying “A game is a series of interesting choices.”—action metrics are designed to capture

how well a game delivers on providing a series of interesting choices as a way to compu-

tationally formalize elements of this game design philosophy. In the next chapter I present

methods for a creative system to apply this analysis to a space of game designs to find

optimal design iterations and learn how those design choices influence the space of play.

4.2 Behavior Sampling

Computational techniques for analyzing games require means of generating examples of

play and metrics to evaluate those examples to determine the quality of the space of play

in a game. The notion of “quality” should reflect features of interest to game designers or

game players. There are three main approaches to solving behavior sampling and gameplay

analysis: (1) human playtesting, (2) model-checking, and (3) player simulation. Playtesting

with humans can be effective for informing design questions sensitive to how people act,

but these methods can be expensive and time-consuming while failing to check everything
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needed of a game [176]. Any sample playtest population may not accurately reflect the

full range of players in the game, skewing the evaluation of expected behavior. Further, a

playtest group may not exhaustively test features of a game that a larger population will

attempt, making it challenging to generalize from playtests to the full space of play in a

game. Consequently, human playtesting methods emphasize generalizing early trends of

human behavior as indicators for potential ways people may play, rather than measuring the

space of play afforded by the game. Playtesting with people provides the ultimate answer

to how players will experience a game—a behavior sampling algorithm provides cheaper

alternatives to playtesting to augment the design process. Using automated techniques for

behavior sampling offers the ability to direct playtesting to elements of design that do not

directly require people to provide design guidance.

Model-checking methods (as used in the previous chapter) determine whether certain

behaviors are possible in a game [139, 195]. The planning approach to game generation

in the previous chapter is one example of a model-checking method: an automated sys-

tem checks whether specific sequences of behavior are possible and whether certain game

states may be reached. Model-checking is an effective way to address the limitations of

playtesting in exhaustively searching for undesired behaviors in a game. However, the

model checking approaches in the previous chapter fall short of on two counts: (1) model-

ing sets of likely behaviors; (2) scaling to complex or large games. First, model-checking

techniques are designed around testing for the presence or absence of behavioral features.

This means model-checking and proofs can show whether or not behavior is possible in a

game—giving a sense of the bounds on a space of play. But design queries often involve

the subset of a playspace players typically use. Or, design queries may concern aggregate

properties of how people play across multiple sessions or as groups: e.g., which paths play-

ers typically take through a platformer level. These questions cannot be directly answered

using model checking as the techniques do not represent notions of likely behavior.

A second problem of model-checking is the computational costs of checking large or
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complex game designs. In many game designs the space of combinations of possible ac-

tions is prohibitively large to search exhaustively or prove properties on. In the card bat-

tling games Magic: The Gathering or Hearthstone players construct decks from a pool

of cards and take turns drawing (in randomized order) cards from those decks and play-

ing those cards. Exhaustively sampling this space requires considering all combinations

of cards into decks (which may or may not have bounded size, depending on the game),

all possible orders for drawing cards (which may have variable cards drawn depending on

the cards played in the game), and all ways players might play cards when reasoning on

hidden opponent state. Even just modeling agent play with decks known to both players

(rarely the case in human play) requires considering all the ways a player and opponent

might draw cards and make choices based on expectations about the cards held by an op-

ponent. While games can often be represented more abstractly to reduce the search space,

these abstractions require additional engineering to design for a game and lose fine-grained

properties of player activity that may be of interest. In Magic or Hearthstone abstracting

over card features loses important information about how players might be expected to act

in a game. Model-checking is thus best suited to games with sufficiently abstract spaces of

actions where the design queries of interest involve possible behavior, rather than expected

behavior.

Simulation approaches to modeling human play in a game address both concerns about

capturing how people are expected to play and concerns about game complexity. Simu-

lated gameplay allows a sampling of behaviors possible in a game and often affords tuning

the models to represent typical types of behavior in a game. Simulation-based playtraces

can be generated and evaluated for both single-player games [91, 151, 152] and adver-

sarial competitive games [100]. Simulation agents can address concerns about expected

play behavior by emulating aspects of people’s capabilities, such as reaction time [95]

or memory and planning [19]. Researchers have trained simulated agents to reproduce

human-like play behavior for movements in games [27, 148, 224, 231], and human-like ac-
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tion choices in first-person shooter games [112], turn-based action role-playing games [88,

89, 90, 91], real-time strategy games [242], card battling games [54], and open world role-

playing games [223]. The flexibility of parameterizable agents enables analysis in cases

where games afford many levels of play: particularly when high-skilled players may pur-

sue entirely different strategies to amateurs [61]. Modeling features of human capabilities

in games can provide further ability to compare and contrast the expected play spaces when

people have different capabilities. Simulated agents can also address concerns when games

become complex by varying the number of simulations used or the complexity of the sim-

ulations to alter the extent of the play space explored. For complex game genres that do not

afford ready abstraction—e.g., Magic or Hearthstone—this can be the only viable solution

to understanding the play space. Agents can use randomized techniques and take proba-

bilistic expectations to search the most important parts of the space of play [44, 45, 236].

Simulations make explicit the trade-off between how well (and how large) a subset of the

play space is explored and the amount of computation required to explore that space. Sim-

ulation methods trade off the guarantees of exhaustive search of properties of a playspace

given by model-checking for providing easier modeling of expected behavior patterns to

offset the cost of using humans as playtesters.

Techniques for behavior sampling and analysis ultimately aim to provide an understand-

ing of how people can play a game. To date, most analyses of gameplay have emphasized

the states players visit in a game, to understand which content players consume [176, 234].

Yet playing a game is often more about the actions players take rather than the states players

visit. Player skill most often manifests in the actions taken and strategies executed. Particu-

larly in games where players compete with one another, the features of interest in the space

of play concern the strategies players may pursue, rather than the particular game config-

urations they may visit. Analysis of player strategies necessitates representing a range of

levels of abstraction for behavior: from granular individual action choices through chains

of actions to execute a high-level strategy. I address this point by presenting four levels of
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analysis for player actions in a game: summary statistics, atoms, chains, and action spaces.

Summaries are high-level metrics of overall gameplay characteristics. Atoms are metrics of

individual, context-free player actions. Chains are metrics about the relationships among

sequences of player and inter-player actions [13, 25]. Action spaces address the range of

possible actions over the course of a game [61]. These four levels provide multiple layers

of abstraction for evaluating and comparing game designs.

To approach behavior sampling I focus on a specific subset of games and a specific type

of player skill. The game subset I use are discrete, turn-based, fully observable games. By

removing the restriction of deterministic outcomes (compared to the work in the prior chap-

ter) I consider a larger set of games, including simplified models of domains like Magic or

Hearthstone, without creating excessive additional computational complexity. I consider

player skill in terms of capability to plan courses of action in a game—extending the plan-

ning approach of the prior chapter. In turn-based games the ability to choose an appropriate

action typically requires modeling the game state several actions in advance, so I use agent

search depth as a proxy for this human skill [19, 61]. Here I simulate play using a stochas-

tic planning technique with demonstrated success in general game playing: Monte Carlo

Tree Search (MCTS). Unlike prior work that has emphasized how well MCTS can play

games to win, I use MCTS as a tool to sample the space of play. Varying the computational

resources allowed to MCTS serves as a proxy for varying player skills. I use these agents

and the four sets of metrics above to analyze the design of two games: the classic word

game Scrabble1 and a card game I developed as a simplified model of parts of Magic: The

Gathering and Hearthstone called Cardonomicon. The Scrabble analysis shows how the

metrics can identify balance in a game, while the Cardonomicon analysis reveals flaws in

the game’s design.

1The work on the Scrabble domain was joint work with Brent Harrison.
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4.3 MCTS Background

Monte-Carlo Tree Search (MCTS) is a general game-playing technique with recent success

in discrete, turn-based, and non-deterministic game domains [21]. MCTS is a sampling-

based anytime planning method that can use additional computational resources to more

fully explore a space of possibilities, allowing control over the balance between computa-

tional time and exploration of the full space of play. I chose MCTS as a behavior sampling

algorithm for it’s proven high-level performance, domain generality, and variable compu-

tational bounds. For simplicity, the study domain is perfect information (allowing players

to see one another’s hands) to facilitate use of MCTS.

MCTS’s game playing success derives from modeling the quality of a space of actions

over the course of a game. MCTS models game play using a tree to track the value of

potential courses of action in a game. Actions to take are tree nodes and links between

nodes indicate the next action(s) available after a prior action (Figure 4.1). Nodes for

already attempted actions are expanded and not-yet-attempted nodes are unexpanded. Each

leaf node in the tree tracks a reward value for the focal agent (the agent choosing an action,

as opposed to the opponent) depending on if it won or lost the game. Typically, a reward

value of 1 is assigned to wins and a reward value of -1 to losses.

Figure 4.1: Diagram of MCTS algorithm steps from Chaslot (2006).
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The MCTS algorithm has four steps (Figure 4.1):

1. Selection Descend a tree of expanded nodes until reaching an unexpanded node.

Selection chooses the next expanded node to visit (among alternatives) based on a

model of the expected value of taking a given action (visiting an expanded node).

2. Expansion Expand the set of actions available at an unexpanded node and choose

a new node. Expansions visits new unexplored actions: MCTS algorithms (e.g.,

UCB1 [7]) typically ensure all nodes on a given branch of a tree are expanded before

revisiting expanded nodes. This measure ensures the agent explores all alternatives

at least once before honing in on nodes with high expected value.

3. Simulation Follow a fixed strategy (usually random choice) for how to act over all

remaining unexpanded decisions until reaching the end of the game. Simulation is

used to cheaply reach an end game state from a given point.

4. Backpropagation Use the reward from the end game state reached (e.g., win or

loss) to update the expected value of the newly expanded node and all of its parent

nodes in the tree. Backpropagation provides feedback on the value of nodes based

on distributing credit for a simulation outcome among node choices.

MCTS balances between agents exploring alternative actions and exploiting known good

actions. Typically selection uses the UCB1 algorithm, which picks a node using a combina-

tion of the average reward (eventually) received when taking the action and the proportion

of all selections that used that node [30]. Note that UCB1 forces selection to first visit

every possible move at least once before choosing among all visited nodes based on their

value. I use UCB1 because this property ensures the agents fully explore the space of move

options before continuing on to devote additional resources to better modeling the value of

individual choices.

90



4.4 Skill-based Design Metrics

Gameplay analysis is often interested in aggregate properties of gameplay traces—sequences

of player behaviors in a game. Traces can be viewed as a sequence of states or a sequence

of actions. State analysis examines what players engage with in a game, yielding informa-

tion about common states visited in game content or progressions used by players [5, 6,

116, 234]. Action analysis examines how players engage with a game, yielding informa-

tion on what strategies players take and mechanics players do (not) use [61]. In this work

I focus on action analysis metrics to understand player strategy and how they are sensitive

to player skill. To date, researchers have emphasized understanding the states players visit

in a game—this affords a sense of what content players engage with, but overlooks the

choices players take (or consider) in the game. To many designers, the experience of a

game revolves around the choices made in the game, famously summarized by Sid Meier

as: “A game is a series of interesting choices.” From this perspective, considering games

in terms of the actions players take (or consider) is required to understand whether the

game design is delivering on the intended experience(s) for a player. This is particularly

true when designing competitive games, where a core component of the game design is

whether players have strategic options available in a wide variety of scenarios [61]. Action

analysis thus provides a complement to the typical state analysis applied to games, opening

new possibilities for understanding how games create experiences for players.

Action analyses can be divided into four categories, with varying degrees of abstraction

of the strategic space in a game:

• Summaries are high-level design metrics that aggregate playtrace features of interest.

For example, the typical (median) length of the game or probability of the first-turn

player winning in Chess.

• Atoms are metrics specific to individual actions in a game. For example, the fre-

quency of playing a letter in Scrabble, potentially conditioned on a context like the
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turn number in the game.

• Chains are gameplay patterns within or between players. Combos are regularities

in actions taken by a single player: e.g., in Magic, tending to play a given pair of

cards on the same turn (potentially due to positive synergies between the cards).

Counters are action-reaction patterns in actions taken between a pair of players: e.g.,

in Scrabble, when one player spells “con” the opponent may often add “i” to form

“icon.”2

• Action spaces are sets of actions taken (or available) to a player, potentially over the

course of a game. For example, in Scrabble, the number of valid words available

to be played over the turns of a game or in Magic, the number of unique minions a

player can play on each turn.

These categories are not intended to encompass all ways of analyzing playtraces, but

instead to organize levels of analysis that share common techniques in terms of aggregating

descriptive statistics and visualizing those results. Strategies for analyzing these metrics al-

low automating evaluation criteria for an iterative design system and also provide common

analyses to support human design. These metrics only require sets of play traces as input

and can equally apply to traces from humans or simulated agents. By only referencing

actions taken in a game all of these metrics can be sub-divided by features of game players:

here I consider player skill, though other features may be of interest (e.g., player gender or

age [213]). The following sections clarify these definitions and provide examples for the

Scrabble and Cardonomicon domains.

4.4.1 Summaries

Summaries overview features of gameplay to provide high-level summaries that guide fur-

ther analysis and framing to interpret more granular analyses. Summaries are typically
2My definitions for ‘atom’ and ‘chain’ are distinct to those proposed by Dan Cook [34], but share the

notion of distinguishing between single actions as atoms and patterned sequences of actions as chains.
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single numbers that aggregate features of a game. Many game analyses for live games use

summaries to track the health of an online game: the average duration of matches, number

of users of the game, revenue earned per (paying) user, &c. For this work I focus on sum-

maries applied to analyzing the design of the game in terms of strategic player behavior,

leaving indicators of behavioral engagement and monetization aside. While these features

are valuable when understanding live game performance, they are outside the scope of the

skill-based modeling being done here, requiring new models to sample behaviors based on

player engagement or monetization preferences.

Scrabble and Cardonomicon share summaries for typical game length, and the prob-

ability of the first-turn player winning. Other summaries include: game play duration,

typical turn duration over the course of the game, number of actions taken in turns in a

game (overall and split over the course of the game), probability of winning for players of

different skill levels, &c.

4.4.2 Atoms

Atoms summarize the use of individual actions in a game, providing information on which

game mechanics are (not) being used and are (not) available to be used. In Scrabble, atoms

include the use of individual letters or the frequency of making or being able to make

words. In Cardonomicon, atoms include playing cards on the board or using cards to attack

other cards. Atoms form the core of actions players take in the game, revealing cases where

actions may be too general and effective or never used.

Analyzing atoms can inform game balancing decisions around whether specific actions

are over- or under-used in the game. Action analysis can consider both the actions taken

by agents as well as the actions available to agents to use. Available actions are the actions

possible at a point in a game: words to make in Scrabble, cards to play in Cardonomicon,

plot choices to pursue in interactive fiction, or reachable locations to move to in Super

Mario Bros.. In planning terms, an action is available in a given state if all of its pre-
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conditions are met in that state. Understanding how often agents take actions provides

information on the strategic appeal of an action to agents with a given level of strength.

Understanding how often actions are available to agents reveals whether conditions for ac-

tions are too restrictive (or not restrictive enough). Further, the gap between action use and

availability provides perspective on how relatively useful players perceive different actions

when making a strategic choice. Slicing analysis of atoms by the strength of the player tak-

ing actions can reveal whether certain actions are more useful for players as they develop a

deeper strategic understanding of a game. A lack of differences between player skill levels

may indicate little advantage to greater learning in the game, itself a potential design flaw.

Descriptive statistics on atoms include computing the frequency of action use, fre-

quency of action availability, and difference between the frequencies of use and availability.

Visualizations of atoms typically use histograms to show these statistics across actions in a

game.

4.4.3 Chains

Chains summarize recurrent play patterns in segments of traces. I consider two types of

chains: combos taken by a single player and counters of one player responding to action

taken by another. Combos are sequences of actions a single player commonly uses together.

Combos are common in games with multiple actions per player turn or real-time action. In

Cardonomicon combos include playing cards successively or using sets of cards to attack;

Scrabble has no combos as players take a single move each turn. Counters are sequences

of actions that occur when two (or more) players respond in similar ways to actions from

other players. Counters are common in games with alternating turns or simultaneous turns.

In Cardonomicon counters can occur when one player plays a card on the board and their

opponent attacks it using a specific other card; in Scrabble counters occur when one player

forms a word and their opponent builds a longer word from that base.

Analyzing chains can reveal emergent strategy within a game, including chains of ac-
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tions that may exercise a skill [34] or ways players have discovered to thwart their oppo-

nents [25]. Understanding which combos or counters are common can inform decisions to

alter the restrictions placed on using an action or alterations to how effective an action is.

Segmenting analysis of chains by player skill can reveal how player strategies evolve with

greater proficiency in the game and reveal balance concerns if specific actions disappear

from chains used in high-level play.

Unsupervised learning techniques to identify chains include a wide array of sequence

mining techniques, including itemset mining, rule mining, sequence analysis, and hidden

markov models [84]. Analyzing combos requires traces consisting of single player actions

within turns. Analyzing counters requires traces of player-opponent interactions over a de-

sired number of turns. Visualizations vary by technique, but include histograms of short

chain frequencies, graph visualizations highlighting common action-action transitions, and

playtrace browsers highlighting trace subsequences matching a chain from a larger collec-

tion [176, 234, 133, 151].

4.4.4 Action Spaces

Action spaces summarize atom use over time or game states. In Scrabble, action spaces

include the number of distinct tiles played or the number of distinct words available to

complete across turns in a game. In Cardonomicon, action spaces include the number of

distinct cards available to play or average number of cards able to attack across turns.

Analyzing actions spaces can reveal how a game progresses from the perspective of

player choices. This analysis can identify cases where a game is too restrictive or over-

whelming with too many options, informing decisions about the pacing and growth of

game complexity over time. Considering differences in actions spaces between low- and

high-skill players can reveal cases where skill allows better use of the game actions or

where low-skill players fail to use actions commonly used by high-skill players.

Descriptive statistics on actions spaces are typically frequencies of actions used or avail-
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able over the duration of a game. These statistics may condition on game conditions or

player features, such as when a player has a specific cards in a deck in Magic3 or whether

the player is high or low skill. Visualizations of actions spaces can use line charts to show

variations in frequencies over the duration of a game and to compare these frequencies

across contexts (e.g., multiple lines for players of differing skill).

4.5 Metric Application Case Studies

Skill-based design metrics enable analysis of player strategies in games. To demonstrate

how player simulation and skill-based metrics can aid in game design evaluation, I per-

formed two case studies. The first case of the classic word game Scrabble explores how

these metrics can evaluate a balanced game. The Scrabble case verifies these metrics can

identify balance in a design and differences in player skill. The second case study of Car-

donomicon shows how these metrics can assess a game with an intentionally flawed design.

The Cardonomicon case shows how simulated agents and design metrics can identify game

flaws and inform future design iterations.

4.5.1 Agent Design

To provide an even comparison across game domains I used MCTS agents to play both

games, altering the number of rollouts used as a proxy for human ability to reason ahead [19].

Addressing generic approaches to behavior sampling I use the strength of MCTS to typi-

cally play well in discrete, turn-based, adversarial games and combine this with the ability

to tune MCTS to have better or worse play [21, 143, 153, 185]. A key parameter to the

MCTS algorithm is the number of rollouts used—the number of times the full cycle is

repeated. By increasing the number of rollouts allowed to an agent, the agent can more

fully explore the value of possible actions in the game and improve play (Chapter 5, p. 60

in [99]).
3Cardonomicon does not include deck choices to make game generation and play space analysis more

tractable.
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I use MCTS rollouts as a proxy for player skill. Modeling the effects of player skill

enables many opportunities for applying behavior sampling to design questions:

• Many games are designed to reward more skilled players with greater rewards or

higher win rates [13]

• Designers are often concerned with differences in play style dependent on player

skill [61]

• Games (including adversarial games) are often designed to enable a smooth progres-

sion of skill as players learn over time [110]

I use rollouts as a proxy for player skill, specifically the ability to consider choices and plan

ahead, with more rollouts simulating a player that is better able to consider the outcomes of

actions in the game. In adversarial games, varying the rollouts used by two MCTS agents

can compare how gameplay looks when two agents having varying levels of skill, as well

as compare the effects of relative differences in skill between two agents; e.g., comparing

high-level play between two strong agents or comparing games between a weak and strong

agent. This is an improvement over human testing as it affords designers the ability to

explore many different skill combinations, including some that may be difficult to examine

using human playtesting alone.

4.5.2 Experiment Design

Both studies sample playtraces using MCTS agent pairs of varying computational bounds

as a proxy for varying player skill. I varied agent reasoning to consider roughly one to

two moves ahead in the game. Two moves ahead is an upper bound potentially relevant

to human play; research in reasoning on recursive structures suggests people are able to

reason to roughly two levels of embedding. Models of deductive reasoning on logic puzzles

support this claim [19]. The MCTS selection policy (UCB1) I used forces trying all child

97



moves of a given move once before repeating a move: thus all rollouts will first explore

options for a single move before exploring two-move sequences.

To set computational bounds I approximated the average number of moves available to

an agent and used this number to estimate the number of rollouts an agent would need to

consider one or two moves ahead in the game. To examine a range of agent capabilities I

initially created three agent computational bounds (number of rollouts allowed):

• A weak agent with enough rollouts to explore the all moves on a given turn, but

lacking resources to explore to two moves ahead

• A strong agent with enough rollouts to fully explore moves on the current and the

next turn

• A moderate agent with rollouts halfway between these two.

Initial testing revealed little difference between the latter two agents; my results report

agents that halve the number of rollouts of the two stronger agents as these more clearly

illustrate the outcomes of variable player skill. The lack of differences may derive from

marginal returns for greater computational resources in the case study domains, likely due

to their large branching factor.

For each game domain I ran a pair of agents where each agent was set at one of these

three levels. For each agent pairing I simulated 100 games to get aggregate statistics on

agent performance and visualized these results to examine relevant design metrics in both

game domains. In Scrabble, I approximated the number of rollouts for a single level deep

by looking at the median number of possible words an agent could complete on a board:

50. Thus, the weak agent used 50 moves. Initially the strong agent was allowed 2500

rollouts (502 for two moves ahead) and the moderate agent 1250 rollouts. After halving,

this resulted in a moderate agent with 650 rollouts ((1250 − 50)/2 + 50 = 650) and a

strong agent with 1250 rollouts. In Cardonomicon, I approximated the number of choices

of playing cards as choosing 2 cards to play each move out of a hand of 6 cards (
(
6
2

)
= 15
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moves). I modeled attack choices assuming the player (and opponent) have approximately

3 cards on the board and one hero card, yielding 3 source card choices for 4 targets (34 = 81

moves) Together this yields a total of approximately 100 moves considered for the weak

agent, 10000 for the strong, and 5000 for the moderate. After halving this resulted in 100,

2500, and 5000 rollouts for the weak, moderate, and strong agents, respectively.

Note that an alternative strategy to sampling up to two levels deep would be to have

agents explicitly model a selection policy with pure exploration up to one or two levels.

In this case, search bounds would vary over the course of the game. I chose to use a fixed

number of rollouts to capture the notion of agents of fixed ‘capability’ in terms of resources

to devote to the problem.

4.5.3 Scrabble

Scrabble4 is an adversarial game where players take turns placing tiles onto a game board

to create words (Figure 4.2). Players have a rack of seven tiles each with a single letter.

While the rack is normally hidden from the opposing player we simplified Scrabble so

agents have perfect information about one another’s states and perfect knowledge of all

legal words. On each player’s turn, they select tiles from their rack and place them on the

game board such that: (1) at least one of the tiles is placed adjacent to one of the other

player’s tiles and (2) the tiles create dictionary words either left to right, top to bottom, or

both. The player that goes first, however, only needs to play a word that goes through the

center space on the board.

Moves in Scrabble are typically considered as tiles being placed on the board. This rep-

resentation, however, makes it difficult for the MCTS agent to play the game as it requires

knowledge about whether the tiles being placed form legal words. Instead, the MCTS

agent represents moves on a given turn as the word that was formed on that turn, using a

dictionary to choose valid words. Thus, the space of possible moves on a given turn is all

4The Scrabble domain and analysis was done by Brent Harrison in joint work on applying MCTS to
behavior sampling citezook2015:mcts-strategy.
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Figure 4.2: A digital recreation of the word game Scrabble.

possible words that can be made on that turn. The search tree builds as sequences of words

played by the agent and its opponent, with leaves alternating between words formed by

each agent.

Players earn points for forming words on a turn. Each letter tile has a score associated

with it; a word’s score is the sum of the score values of the letters used to make that word.

The board is also populated with bonus spaces that increase the value of a word. Bonus

tiles available on a typical Scrabble board can double or triple the value of either a specific

letter tile or of the word that the letter tile is part of.

Once a player receives points for a move, that player draws tiles at random until their

rack is refilled with seven tiles and the turn ends. Normally, the game ends when a player

cannot draw new tiles and the winner is the player with the highest score at that point. In
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Figure 4.3: Cardonomicon, a minion-based card game.

our implementation, however, the the first player to meet or exceed 150 points wins. This

simplification improves search performance in the domain (and does not adversely affect

the ability to ask design questions, as seen in the study evaluations).

4.5.4 Cardonomicon

Cardonomicon has the core elements of a class of game mechanic-heavy adversarial card

games, exemplified by games like Magic: The Gathering and Hearthstone (Figure 4.3).

From a design perspective, games like Magic and Hearthstone are difficult to balance due

to the difficulty of predicting the strategies players will develop to play the game. The de-

sign is highly sensitive to interactions among mechanics: each card must be balanced with

respect to all other available cards; e.g., a single overly powerful card can make all other

cards irrelevant. Further, the random order of card draws and non-deterministic effects of

actions introduce a large space of non-deterministic outcomes to sample over. While Magic

and Heartstone have hidden information, for simplicity Cardonomicon is perfect informa-

tion. In addition, I fix the decks used by players, rather than allowing deck construction—

this drastically reduces the search space for behavior sampling while preserving properties

that make this a domain of interest.

In Cardonomicon, two players start with an identical deck of 20 cards representing
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minion creatures (see Appendix B for the list of cards). Gameplay consists of drawing

cards, spending mana to place cards on the game board, and using cards to attack one

another and the opposing player’s hero. Cards are parameterized by health, attack power,

and mana cost. Players start with a single hero card on the board with 20 health and 0

attack; a player loses when their hero’s health is reduced to or below 0. Each turn, players

may play any combination of cards for which they can pay the mana costs. A player’s mana

starts from 1 on the player’s first turn and increases by 1 each turn up to a cap of 10. Cards

on the board may attack any other opposing card once per turn after the turn the card is

played. When a card attacks, the opposing card’s health is reduced by the attacker’s attack;

attacking cards receive counter damage. I designed a set of cards to allow the player to play

one of multiple cards on each turn (with differing parameterizations), assuming they have

drawn a playable card.

For any given game there are multiple ways to represent the actions available to an

MCTS agent. Here, I take the approach of representing each choice the agent makes indi-

vidually, rather than aggregating sequences of choices that occur together during a single

agent turn. The MCTS agent represents possible moves as either playing a card or using a

card to attack another card on the opponent’s board. One turn may involve multiple moves

in a row. The agent has one move for every card that can be played in the agent’s hand and

one move for every pair of their card attacking a target opponent card. Only cards that may

attack are represented and no attacks on the agent’s own cards are permitted as this has

no purpose in the Cardonomicon domain. One additional move to end the turn is always

available. Thus, MCTS agents reason at each turn about whether to play a card, use a card

to attack the opponent, or end their turn.

4.6 Results

For the two game domain cases I examined the four skill-based design metrics above: sum-

maries, atoms, chains, and action spaces. In the Scrabble domain these metrics highlight
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Figure 4.4: Win percentage based on agent skill. Win percentages are calculated from the
perspective of Player 1. Blue regions correspond to win percentage greater than 50%. Red
regions correspond to a win percentage less than 50%.

how the game is balanced and illustrate how player skill differences manifest as differences

in skill-based metrics. In the Cardonomicon domain these metrics reveal imbalances in

the design of the simplified game. Together, these studies illustrate that skill-based design

metrics can help inform designers about the strategic space of play in a game.

4.6.1 Scrabble Metrics

The Scrabble domain shows how skill-based metrics reveal balance and player skill differ-

ences despite changing the game to end at 150 points. The study shows these changes did

not upset the game balance and demonstrate that Scrabble rewards high skill play.

Summaries. The summary statistics that we choose to examine in Scrabble are win per-

centage (Figure 4.4) and the length of a game based on turns. Ideally, players with higher

skill will consistently defeat lower-skilled opponents; however, it is unclear how skill will

affect game length.

Comparing agents of varying rollouts shows the game is balanced with higher skilled

opponents consistently defeating lower skilled opponents (Figure 4.4). This difference is
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large when the strong agent plays against the weak agent and becomes smaller as the skill

difference between agents decreases. First turn players had no difference in win rates,

meaning there is no first turn advantage.

Games played against skilled opponents are typically slightly shorter. When weak

agents play against each other games last 26 turns on average; this decreases to 22 turns

when strong agents play against each other. This is likely because skilled opponents make

moves worth more points, reaching the 150 point ending criteria sooner. As shown below,

stronger agents typically play longer words, corroborating this conclusion.

An alternative explanation for the shorter games is that stronger agents make more use

of the bonus tiles on the board. Effective use of bonus tiles increases individual word

scores, speeding the game toward the 150 point end. However, different strength agents

did not differ in their use of bonus tiles. Thus, the main source of score difference between

agents seems to come from the length of words played.

Atoms. In Scrabble, the main atom metric is the rate of using words as moves. Figure 4.5

shows the word usage distribution separated by word length and grouped by agent skill.

Weak agents tend to favor playing shorter words, while stronger agents play a wider variety

of word lengths. However, skill has little effect on the specific words played. Figure 4.6

shows the most popular three-letter words and how often each agent used each one. There

is no strong trend in the specific words an agent plays (while the figure shows three-letter

words, these findings were consistent across word lengths).

Chains. In Scrabble, counters are the words played by the opponent after a word has been

played by the other player. To determine what common counters in Scrabble were, I used

frequent itemset mining on itemsets comprised of the words played on a given turn and

the words played on the next turn. Among the top itemsets of words created across two

turns, most counters either add to the previously played word, or build a two or three-letter

word off of the word that was previously played. For example, one of the top counters to
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Figure 4.5: Word length frequency in Scrabble by skill.

a player playing the word “con” on a turn was to add an “i” to the beginning of it to make

the word “icon.” This is not unexpected as building off words that were previously played

will typically result in a higher point total since the player is playing a longer word than the

opponent.

Action Spaces.

The action space in Scrabble can be characterized by the number of possible words that

can be played and were actually played. Figure 4.7 shows the median number of possible

words that could have been played on a given turn based on skill. This conveys how the

complexity of the action space changes over time. Figure 4.7 shows that the space of

possible actions shrinks over the course of the game, likely because valid word placements

become fewer later in the game. The figure also shows that stronger agents have more

possible actions on a given turn than weaker agents.

Figure 4.8 shows how much of the action space was actually explored over the game.

This figure shows that the space of words played shrinks faster for stronger agents than

weaker agents, likely because stronger skilled agents successfully identify moves worth

more points and avoid the rest of the action space.
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Figure 4.6: Frequency of the top three-letter words in Scrabble by agent skill.

Figure 4.7: Median number of words that could be played per turn based on skill.

4.6.2 Cardonomicon Metrics

The Cardonomicon domain shows how skill-based metrics can identify design flaws. Re-

call that Cardonomicon is highly constrained in terms of the types of cards that are available

to use and the types of decks that players can use. These major alterations to the typical

structure of a card game negatively impacted the balance of the game.

Summaries. A key design flaw in Cardonomicon is the player going second has a large

win rate disadvantage. Figure 4.9 shows the win rates for the player who starts second.
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Figure 4.8: Number of unique words played per turn based on skill.

Regardless of agent strength, the player going second has a win rate substantially less than

50%. That said, win rates increase for the agent going second if they are more skilled than

the agent going first. Thus, while agent skill influences player win rates in Cardonomicon,

the game is flawed in giving a strong disadvantage to the player taking the second turn. This

is expected due to my partial adoption of mechanics from Hearthstone: in Cardonomicon

cards are able to attack and receive damage in retaliation, but the second player has no

advantage in being able to play more cards on their first turn. As such, the second player

will always deploy cards after the first player, but lacks a mechanism to catch up to the

player who acts first.

Stronger agents have (slightly) longer games when matched to evenly skilled oppo-

nents: median 16, 17, and 18 turns for the weak, moderate, and strong agents, respectively.

I attribute this trend to stronger agents being able to better counter one another while re-

taining enough cards to play until the end of the game.

Atoms. Cardonomicon atoms consist of actions to play cards or use cards to attack. Based

on the frequency of playing different cards, stronger agents generally play more cards, but

show no large differences in their use of specific cards. Stronger agents manage their mana

to play more cards, but do not seem to favor specific cards to play. This likely indicates the
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Figure 4.9: Win rates for second turn player in Cardonomicon. The x-axis indicates agent
strength for the second turn player; the y axis indicates the opposing agent’s strength.

deck size in Cardonomicon is too small: agents will play all of their available cards faster

than they draw new cards and thus have no opportunities to favor playing specific cards

against others.5

When examining the frequency of using cards to attack, stronger agents also tend to use

cards to attack more overall. Three cards showed disproportionately greater use by stronger

agents compared to weaker agents: these three cards all had large amounts of health but

low attack for their cost. Strong agents use these cards to destroy multiple weaker cards by

intelligently trading off card attacks and retaliations. That is, stronger agents recognized the

value in using a card with low attack (but high health) to remove several cards with lower

attack and health over multiple turns. This confirms Cardonomicon allows for a limited

form of strategic variety and supports the notion that MCTS rollouts can help detect these

potential strategic variants dependent on player skill.

Chains. Chains in Cardonomicon are primarily combos: sequences of actions taken by a

single player in a turn of the game. As expected from the atom analysis, there were no

significant combos in terms of playing or attacking cards. This is likely due to the lack of

5To reduce redundancy I have suppressed images that illustrate simple trends of the same form as shown
with Scrabble.
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Figure 4.10: Average number of possible attacks per turn based on skill.

any strong synergy among cards in Cardonomicon: no pairs were particularly outstanding

as no pairs had effects that would be advantageous to use together. This highlights another

way to detect design flaws through these metrics: the absence of chains indicates no strong

synergies exist in the design for players to use in combos.

Action Spaces. As with Scrabble, stronger Cardonomicon agents have a larger space of

cards they may play (not shown) and use to attack (Figure 4.10). Specifically, stronger

agents have more options to play cards late in the game, while having fewer mid-game

attack options with more late-game attack options. These results align with intuition: in

the early game both weak and strong players have a similar range of options constrained

primarily by the amount of mana players have. By mid-game stronger players will have

fewer attack options as they retain cards they may play for the late game. Playing these

cards in the late game leads to more options to attack. Aligning with these analyses of the

number of possible plays, more skilled players both play and attack with a larger number of

cards on average. Thus, skilled players also actually use this larger set of options. Overall,

these results demonstrate that more skilled players in Cardonomicon will open more plays

in the mid-game by intelligently retaining cards before using these cards in the late game;

in sum, these players are more efficient in their use of mana.
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4.7 Limitations and Future Work

Skill-based design metrics provide tools for analyzing the strategic play space of a game

to enable designers to understand how designs influence the actions available in a game,

rather than the states players reach. The solution to behavior sampling and analysis in this

chapter is MCTS as a model of players of differing skill. Yet MCTS (and other agent play

algorithms) have parameters that are not necessarily related to human skill. This begs the

question: what makes for human-like agent play? Or rather, how can agent parameters be

tuned to achieve human-like play relative to a set of skill-based design metrics?

4.7.1 Design Space Generalization

Researchers are beginning to address human-like play by gathering human play data and

optimizing agent control parameters to match human behavior on desired metrics across a

wide variety of game genres [54, 88, 89, 91, 112, 207, 223, 242]. When an agent is trained

to match human play the training data is derived from one or more instances of a game’s

design. The agent then is used to play other design variants to provide human-like play

metrics for those games. In these cases we assume the design variants are close enough

in terms of how people play them that information on how people play one variant can

be smoothly mapped over to another variant. For example, in the studies above the costs

of cards smoothly alter the rates of playing those cards; small changes in the cost of a

card result in relatively small changes in the rate of play. The problem arises that in some

cases this smoothness will be violated: a change in game parameters can result in sudden,

sharp changes in the observed skill metrics. For example, introducing the ‘taunt’ mechanic

from Hearthstone, where a card with taunt must be destroyed before other cards can be

attacked, would create a discontinuity in play metrics. When this kind of change occurs the

mapping of agent play to human play become uncertain at best. This presents a number of

open questions: what kinds of smoothness assumptions are made of the space of play (in

110



terms of different metrics measuring that space)? How can these assumptions be modeled

and tested? How can violations of the models be detected? To date we still have little

understanding of where and when simulated play will accurately reflect human behavior,

and little understanding of how strongly agent behavior must correlate with human behavior

to be useful for different design objectives. Modeling ‘skill’ in play is a useful subset of

design problems that emphasizes the competitive design of a game without necessitating

models of more subjective aspects of human experience engendered by games. Until agents

can be automatically created to generate human-like play across a variety of games, each

new game will require a separate process of data collection and agent tuning. Identifying

ways for agents to rapidly learn human-like behavior (or make a ‘best guess’ at human-

like behavior) within a broad genre will be crucial to enabling broader adoption of these

techniques in automated game evaluation.

4.7.2 Single Player Games

Behavior sampling in this chapter and the next chapter is only used in two-player, adver-

sarial games. The behavior sampling framework, however, is more general and allows for

examining designs even in single player games. For single player games behavior sampling

offers the ability to rapidly get examples of ways of playing in a game space and can help

quantify the diversity of options available in that space.

Consider a role playing game (RPG). MCTS agents can provide information on the

strategic depth of the combat system in the game, ease of navigation in game dungeons, or

breadth of customization from a statistics system. In a turn-based combat system MCTS

agents can proxy how well players can learn to use combat skills to defeat enemies.6 Limit-

ing the number of rollouts of the agents would provide information on how much planning

players might need to address the strategies used by scripted opponents. Evaluating action

6The MCTS agents as created in this chapter are designed for turn-based combat with discrete actions.
Continuous action values or continuous time can be addressed by discretizing the action or time space into
sufficiently small units for planning.

111



atoms can reveal the balance of abilities in terms of frequency of use, potentially revealing

subsets of actions that are always or never needed. Combos in action chains could reveal

synergies in abilities used, or the absence of any synergy in terms of realized player strate-

gies. Action spaces can be used to measure the breadth of actions available to players over

combat encounters as well as cases where players recognize simple dominant strategies—

these cases would emerge as having many action options but few distinct actions realized at

certain points in combat. Designers can then use this set of metrics to visualize and adjust

combat encounters to provide the desired level of strategic complexity, being guided by

expected amounts of player action variability.

Similarly, applying the MCTS model to discretized dungeon maps would reveal ways

players might navigate the dungeon or become stuck and need backtracking. Note that the

model presented in this chapter assumes perfect information for an agent, so this would

only apply when agents knew a dungeon map perfectly in advance of navigating it. MCTS

algorithms for problems with imperfect information are needed to model players navigat-

ing a dungeon not known in advance [44, 45]. Action metrics on dungeons could quan-

tify backtracking, running into dead-ends, and other metrics of movement through space

to proxy actions that may be tedious to players. For dungeon designs combos would re-

veal whether players are making similar navigational choices repeatedly, and action spaces

could be visualized to understand how linear a dungeon is navigated when players have

varying abilities to plan ahead for movement in the dungeon.

Action metrics can also provide useful insight when comparing agents that are given

differing levels of in-game power, such as avatar levels in the game or the stats given to an

avatar. Action metrics from agents with varying levels of power can reveal how much dif-

ferent in-game statistics impact player strategic decisions. In most RPGs greater in-power

power leads to less variation in actions chosen as the player avatar overpowers opposition.

This type of progression can be readily quantified by comparing the diversity of actions

chosen by agents with varying power in a given encounter. Diversity in these cases can
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be quantified using metrics such as entropy of the Gini index, which quantify dispersion

within a population, here treating the actions taken as a population to measure.

This RPG example illustrates the ways in which behavior sampling and action metrics

can support design decisions around ability systems, dungeon designs, and statistics sys-

tems in a single player game. Many other single player game systems are amenable to a

similar approach, with the key (current) limitation that the system have no hidden informa-

tion.

4.7.3 Types of Skill

Constructing agents that mimic human play in terms of skill-based design metrics assumes

that the notion of ‘skill’ is known for a given game. Skill is often reduced to the ultimate

metric of winning or losing a game [62, 74, 75, 86]. Yet this coarse definition obfuscates

what makes for skillful play of a game, overlooking how play behavior evolves over the

course of a game. How should skill be defined in a given game? For example, in Car-

donomicon I examined skill in terms of the actions of playing and attacking with cards,

along with the option to play or attack with cards. Yet the choice of these actions was in-

formed by prior knowledge on how this genre of card game works, and does not necessarily

translate to other game domains. To date we lack any clear taxonomy delineating the ways

skill manifests in games and how these bear on metrics related to how people play those

games. Lacking a notion of the space of metrics to apply, using skill-based design met-

rics will remain an ad-hoc process of constructing definitions for each application game.

Beyond limiting human uses of skill-based design metrics, this will also inhibit automated

approaches to assessing design variants, as automated assessment will be contingent on

humans providing the relevant metrics to be evaluating.

To address this limitation we will need to develop ways for agents to construct and

evaluate potential skill-based design metrics. One avenue will be to develop general metrics

for skill that can be applied across games, similar to the kinds of metrics being developed to
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assess game-playing agent strength across games [143] or metrics for level design quality

across genres [114, 202]. Alternatively it may be more effective to develop ways to assess

game differences that relate to known, high-level metrics of skill. For example, metrics like

Elo [62] provide an abstract notion of skill that is (relatively) agnostic to game structure.

An agent could then compare behaviors of agents with high and low Elo ratings to discern

which features of those behavior traces are predictive of high or low Elo. In this case, agents

playing the game need only optimize for winning and losing to provide Elo scores, with

skill-based design metrics providing a set of levels of granularity of actions to evaluate.

The assumption here is that agent Elo scores against one another will be indicative of the

same scores when playing against humans—an assumption about the similarity of agent

and human populations. Automating the evaluation of skill in games is both a general

challenge for any competitive game and one with direct relevance to supporting automated

game design, presenting promising future opportunities.

4.8 Potential Impact

Game design research has the potential to change the way games are made and the expe-

riences available to game players. In this section I briefly discuss how the action-based

metrics and behavior sampling technique in this chapter might influence game designers

and players.

4.8.1 Game Designers

Behavior sampling provides designers with a sample of ways agents might play any game.

Using algorithms like MCTS adds to this value by providing an array of different potential

ways of playing based on player abilities to plan. MCTS only requires a forward model

(a model of how actions transition game states forward to function) to be applied to a new

game. Thus, MCTS can be readily linked to the core logic of a game engine to simulate

many ways people play and automatically provide designers with this feedback. In the
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future game engines may incorporate general behavior sampling techniques like MCTS

into the core systems and interface to provide designers with ready access to examples of

ways people play a game. In this scenario a designer could arrange a design, press a button,

and automatically get feedback on how people could play the game (split by levels of ability

to plan). Having these overlays directly supported by a game engine allows designers to

rapidly tweak a design in response to these variations to tune the game.

The action-based metrics in this chapter highlight another avenue for improving game

design practices. The hypothetical game engine integration above could readily provide

evaluations of some of the pre-defined metrics above along with designer-provided addi-

tional action metrics. Using these a designer could easily explore design alternatives and

gain a sense of how simple design changes alter the design. Design practices would in turn

grow to use action metrics as a way to quantify some aspects of the strategic depth in a

game [113], spurring development of useful design metrics that quantify the way people

play games.

4.8.2 Players

Players stand to benefit most when game designs more generally incorporate agents with

smoothly varying capabilities to plan. In most competitive games agents have only one or a

handful of difficulty settings. With algorithms like MCTS the notion of a smoothly varying

notion of opponent strength is possible by tuning the number of rollouts free to an agent.

For players this allows agents with smoothly varying challenge levels as a setting.

Going further this could allow for automated creation of agents that match the strength

of certain human players. Similarly to how racing games allow ‘ghosts’ that replay a game

course as another person did, MCTS agents could be trained to play adversarial games in

a way similar to another person. In this scenario, a player would face a series of MCTS

agents each with differing predefined numbers of rollouts. These training rounds would be

used to tune the agent rollout parameter to produce a desired win rate against the player
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(e.g., 50% to be perceived as an evenly matched opponent). This pre-trained agent could

then be given to other players as a mimic of the training player, providing gameplay against

a set of exemplars of other players (or friends) of a given player. These mimic players could

transform leaderboards from tracking high scores to providing portable players to face.

Rollouts, however, are only a single parameter that coarsely represents the playstyle of

a person. Developing further parameters of the MCTS agent would allow this model to

replicate human-like behavior in a number of other ways. The key benefit afforded by the

MCTS model in this case is a generic method that can readily be applied to a wide class

of games, allowing this to serve as a general functionality across games to improve player

experiences.

4.9 Summary

In this chapter I presented MCTS as a technique for general behavior sampling to proxy

variations in human skill and four metrics for evaluating player strategies of varying levels

of abstraction. MCTS is a general technique for simulating agent play in games that can

be tuned to vary computational resources and was used as a proxy for varying capabilities

at playing a game. The levels of strategy evaluation metrics assess how well a game sup-

ports different levels of strategic depth and variety—quantifying aspects of the choices a

game supports, rather than the content players see. Applying these techniques for behavior

sampling and analysis to Scrabble demonstrated the metrics can detect how a game allows

for variable player skill and performance; applying these techniques to Cardonomicon il-

lustrated the metrics are able to detect design failures as well. Together, these techniques

provide a general set of tools for evaluating a game design in terms of the levels of strategy

and differential player performance the design supports.

The strategy metrics here provide a way to consider the space of play in a single design.

But iteration requires comparisons of the space of play between different designs. How

can a system compare spaces of play to pick the best option for a design goal? What
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can a system learn from evaluating a sample of designs from a design space? In the next

chapter I present work on automated gameplay analysis to choose the optimal design from

a design space to achieve design goals. I also show how an automated system can use data

from designs in a design space to generalize to hypotheses about how a design works that

supports optimizing the design toward various design goals.

117



CHAPTER 5

GAMEPLAY ANALYSIS

5.1 Introduction

Game designs are often intended to induce particular behaviors in players, through shaping

the space of play available. Designers choose design features based on their theories of how

particular design decisions will influence expected player behavior. Design choices are of-

ten informed by high-level, abstract theories about how players are expected to respond to a

game design, drawing from examples from prior game designs [17, 168], human-computer

interaction [97], or psychology [47, 104]. Design knowledge is used to predict how spe-

cific changes to a design will change player behavior. For example, design knowledge may

be that increasing the power of an attack in a game will decrease the typical length of the

game. Design knowledge provides a framework to guide choices of how to iterate on a de-

sign when attempting to achieve a design goal. By accruing knowledge of how changes to

a design may alter player behavior a designer can target future design iterations on designs

that move toward a design goal. In addition, an explicit model of design knowledge can

reveal aspects of a design that are poorly understood, revealing design alternatives to test

to learn move of a design.

Automated game generation and optimization models to date have largely overlooked

design knowledge for guiding generative processes. Systems will typically produce content

according to hard-coded processes [178], or optimize for a design goal without accruing

any knowledge regarding how design choices made along the way influence player behav-

ior [220, 222]. While this process can optimize a design for a particular player or outcome,

the system loses all information from iterations on the design about how design choices

alter a space of play in a game. This in turn limits the capability of the automated system to
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understand how a design works when making future changes and prevents the system from

providing useful information to a human or system interacting with this system.

How could a system learn design knowledge to support automated game generation and

inform human designers? The previous chapter demonstrated how MCTS can be coupled

to skill-based design metrics to evaluate a single design. These methods evaluated how

agent strength was (or was not) different in a game in terms of the strategies pursued. In

this chapter I extend these methods to a space of designs that are evaluated using the same

skill-based design metrics, focusing on the Cardonomicon card game domain. As a base

case of design optimization, the system generates a space of design variants and uses this

space of alternatives to automatically optimize a design iteration for a desired skill-based

design metric, such as game length or frequency of using cards to play. The system is also

able to learn a set of statistical models of the form:

‘X card parameter influences the rate of performing Y action’ from this space

of designs.

These models show how changes to card cost parameters can increase game length and

reduce the space of cards available to play, while altering card health or attack can drive

greater use of cards to attack, providing knowledge of how design features impact player

behavior. Together these analyses illustrate how an automated iterative design system can

use a design iteration both to optimize a design and learn to predict how design changes

influence player behavior.

5.2 Game Design Knowledge

This chapter is concerned with two goals for gameplay analysis: (1) choosing an opti-

mal game design iteration in a design space and (2) learning to predict how the features

of a design influence the space of play in a game. Optimizing iterations uses the play

space metrics from the previous chapters and uses these to select designs from a space of
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designs—applying the skill-based design metrics from the previous chapter to a space of

many design variants, rather than the single variants assessed in that chapter. Learning

how design features influence play features concerns the problem of automatically learning

game design knowledge.

Game design knowledge predicts how features of a game design result in player be-

haviors. Most evaluations of game design knowledge to date have been comparisons of a

few variants of a given design by humans to test a psychological theory. Examples include

assessing the influence of reward systems on player behavior [187, 189] or the influence of

game parameter tuning on player learning and engagement [120, 118, 117]. Design knowl-

edge can guide automated choices among design alternatives and is also valuable to human

designers when making design decisions for games.

Automated systems have been used to support game design optimization by searching a

space of possible designs to optimize for a given set of design outcomes [181, 197]. These

approaches, however, have sought simply to optimize the outcomes of a design without

modeling how a design produces those outcomes. As systems are used and reused for itera-

tively refining a design it is no longer sufficient to merely produce the single best outcome.

Instead, design iteration requires the ability to learn about a space of designs to support

subsequent choices of designs to compare. Without the ability to acquire knowledge about

a design space and use that knowledge to guide future design choices a system is limited to

blindly searching for desired outcomes. When exploring large spaces of possible designs it

will be crucial to learn from the search process itself to inform future design iterations [194,

239].

In this chapter I explore automated design space modeling by generating a wide space of

possible design variants and acquire knowledge about how design parameters influence the

space of play. I use behavior sampling using MCTS coupled with behavior analysis using

summaries, atoms, and action spaces from the previous chapter to learn design knowledge.

This allows the same form of design optimization as done in prior work, but grounded on a
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general framework for generating behaviors in a game and evaluating them with respect to

actions available. The learned design knowledge extends this work to illustrate the potential

for automated design space learning for automated iterative game design.

5.3 Game Domain

Figure 5.1: Cardonomicon, a minion-based card game.
Evaluating game design knowledge requires a base game design domain—here I use

the Cardonomicon card game domain introduced in the previous chapter1. Cardonomicon

has the core elements of a class of game mechanic-heavy adversarial card games, exem-

plified by games like Magic: The Gathering and Hearthstone (Figure 5.1). From a design

perspective, games like Magic and Hearthstone are difficult to balance due to the difficulty

of predicting the strategies players will develop to play the game. The design is highly

sensitive to interactions among mechanics: each card must be balanced with respect to all

other available cards; e.g., a single overly powerful card can make all other cards irrelevant.

Further, the random order of card draws and non-deterministic effects of actions introduce

a large space of non-deterministic outcomes to sample over. While Magic and Heartstone
1I repeat the description below for separation of chapter content.
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have hidden information, for simplicity Cardonomicon is perfect information. In addition,

I fix the decks used by players, rather than allowing deck construction—this drastically

reduces the search space for behavior sampling while preserving properties that make this

a domain of interest.

In Cardonomicon, two players start with an identical deck of 20 cards representing

minion creatures. Gameplay consists of drawing cards, spending mana to place cards on

the game board, and using cards to attack one another and the opposing player’s hero.

Cards are parameterized by health, attack power, and mana cost. Players start with a single

hero card on the board with 20 health and 0 attack; a player loses when their hero’s health

is reduced to or below 0. Each turn, players may play any combination of cards for which

they can pay the mana costs. A player’s mana starts from 1 on the player’s first turn and

increases by 1 each turn up to a cap of 10. Cards on the board may attack any other

opposing card once per turn after the turn the card is played. When a card attacks, the

opposing card’s health is reduced by the attacker’s attack; attacking cards receive counter

damage. I designed a set of cards to allow the player to play one of multiple cards on each

turn (with differing parameterizations), assuming they have drawn a playable card.

For any given game there are multiple ways to represent the actions available to an

MCTS agent. Here, I take the approach of representing each choice the agent makes indi-

vidually, rather than aggregating sequences of choices that occur together during a single

agent turn. The MCTS agent represents possible moves as either playing a card or using a

card to attack another card on the opponent’s board. One turn may involve multiple moves

in a row. The agent has one move for every card that can be played in the agent’s hand and

one move for every pair of their card attacking a target opponent card. Only cards that may

attack are represented and no attacks on the agent’s own cards are permitted as this has

no purpose in the Cardonomicon domain. One additional move to end the turn is always

available. Thus, MCTS agents reason at each turn about whether to play a card, use a card

to attack the opponent, or end their turn.
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5.4 Design Space Evaluation

Applying the same design metrics to a set of related designs can answer questions about

how different features of a design influence player behavior. Automating this process with

simulations enables a system to assess a range of design variants to (1) optimize for a

target design goal across designs and (2) learn to predict how design changes will alter

player behavior. In this section I illustrate this approach with Cardonomicon, considering a

design space of changes to individual card parameters and evaluating the influence of card

parameters on the skill-based design metrics presented in the previous chapter. I show how

card parameters influence game length, agent actions (using attack with cards or playing

cards to the board), and the number of actions available to agents over the course of the

game. These examples illustrate how an iterative design system can automatically choose

design iterations and use behavior sampling to learn models to predict how a design will

influence player behavior.

5.4.1 Experiment Design

For the experiment I generated 27 variants of a single card—“Stonetusk Boar”—in Cardo-

nomicon. Varying a single card allows a focused study of how a minimal design change can

influence the space of play in a game. Each variant altered the attack, health, or mana cost

of that single card in the game. For each variant I simulated play between agents of differ-

ing strength, gathering data on which actions agents chose during the game. The metrics

derived from these playtraces form the basis of the analysis below.

Card variants were: different attack, health, and cost parameter settings for a single card

in the game (“Stonetusk Boar”). Each design variant altered the card’s parameters to the

value 1, 4, or 7. The 1, 4, and 7 values span the range of low, middle, and high values for

each of the given parameters in this game. This yielded a grid of 3 attack values × 3 health

values× 3 cost values = 27 card variants. Each of these Cardonomicon variants were used
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for simulations with varying agent pair strengths.

Simulations paired agents of differing strength with balanced first turn assignment.

Agent combinations covered all cases where agents had different strength: weak vs mod-

erate, weak vs strong, and moderate vs strong. To compensate for non-deterministic game

mechanics 100 simulations were run for each card variant, agent configuration, and first

turn agent combination. Together this required: 27 card configurations × 3 agent config-

urations × 2 first turn players × 100 simulations = 16200 playouts. Each playout tracked

the same actions and action options as used in the Cardonomicon case study in the previous

chapter: each choice the agent made to either play or attack with a card, allowing multiple

choices to be made in a given turn (subject to the mana cost constraint). Each playout also

tracked a set of metrics on game state for each turn: hero health, number of cards in the

agents’ hand, number of minions on the player’s board, and total health of minions on the

player’s board. These playouts were used for two models: (1) finding an optimal game

design within the design space and (2) modeling how design parameters influenced player

behavior.

5.5 Design Optimization Results

Given a space of game designs, finding an optimal iteration requires identifying the de-

sign configuration that yields optimal values for desired play space metrics. When the full

design space can be generated, this amounts to searching the space for the optimal con-

figuration for a given play space metric. For these results the playspace had already been

explicitly generated and search amounted to database queries for design variants meeting

desired features.

One example design goal for the system is controlling for game length: minimizing

game length can give quick games while maximizing game length allows for more op-

portunity for play in a session. To find design variants that met these different goals for

the summary metric of game length the system aggregated all playtraces using the same
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card parameter configurations for attack, health, and cost, evaluating the average length

of games for those parameter configurations. Using these aggregates the maximal game

length configuration was for an attack of 1, health of 7, and cost of 4, yielding an average

game length of 17.18. The minimal game length was achieved with an attack of 7, health

of 7, and cost of 1, yielding an average game length of 15.03. These results both align with

expectations: low attack and high health should prolong a game, while higher attack should

allow for faster games (particularly when the card has high health and thus remains a threat

for longer).

An alternative metric to optimize for is the frequency of using a card or having a card

available. For these analyses the system aggregated across the same playtrace features,

averaging the frequency of using the “Stonetusk Boar” card. Maximal use of the card to

attack occurred with an attack of 1, health of 7, and cost of 1, yielding an average rate of

1.44 attacks per game. Maximal plays of the card to the board occurred with an attack of

1, health of 4, and cost of 1, yielding an average rate of 0.57 plays per game. Maximal

frequency of having the card as an option to attack occurred with an attack of 1, health

of 7, and cost of 1, yielding an average of 18.56 attack opportunities per game. Maximal

frequency of having the card as an option to play occurred with an attack of 7, health of 4,

and cost of 4, yielding an average of 4.01 play opportunities per game.

Together these results demonstrate how the general MCTS behavior sampling model

coupled with the action metrics of the last chapter enable optimization of a design iteration

toward design goals. The next section discusses methods to learn design knowledge about

how changes to design features change player behavior using the same data.

5.6 Design Knowledge Results

To assess the impact of design variants on play I had the system learn models of how card

parameters influence skill-based design metrics. The system learned that increases in card

attack power reduced game length. The system also learned card variants impacted how
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often agents played cards or used cards to attack. This also held true for the options of

cards available to attack or play. Examining the space of cards played (or that the agent had

the option of playing), the system learned changes to card cost (but not health or attack)

impacted how agents played cards. Together the results illustrate that automated learning

about design knowledge is feasible and can provide information about how changes to

design parameters alter a game’s playspace.

To test the impact of design changes on card use the system learned using a statistical

model of count data to estimate how features of a data set alter the proportions of outcomes

that are count data: Poisson regression or negative binomial regression.2 Here the count

data was the frequency of using a card to attack or playing a card; the features were the

card parameter settings and/or agent strengths. Note that negative binomial regression is

used when a data set is overdispersed relative to the Poisson model, meaning there is more

variability in the data than is assumed by Poisson regression. The system first checked

for overdispersion, choosing a Poisson model when overdispersion was not detected and

the negative binomial model otherwise.3 Poisson and negative binomial regression models

both provide an estimate of the statistical significance of a feature impacting count volume

(frequency of use) and an estimate of the magnitude of this effect. Below I report the

learned model coefficients after exponentiating them—these values are ‘incidence ratios,’

interpreted as the proportional change in rate of the counts when comparing a group to the

reference group. For example, a coefficient value of 0.5 for attack = 4 indicates that the

attack feature value reduces the frequency of counts by 50% relative to the default value of

attack = 1. For agents, p1 had a default strength of ‘weak’ (100 rollouts) compared to a

‘moderate’ (2500 rollouts) agent, while p2 had a default strength of ‘moderate’ compared

to a ‘strong’ (5000 rollouts) agent. The next sections demonstrate this learning approach

applied to action summaries and action atoms, showing the system learning how changes

2I used R’s glm function for both:
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html

3Checks used the dispersion test provided by R’s AER package:
https://cran.r-project.org/web/packages/AER/index.html
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Game length vs card parameters
feature coefficient

attack = 4 0.97
attack = 7 0.94
health = 4 1.00
health = 7 1.00
cost = 4 1.04
cost = 7 1.04

Table 5.1: Effect of card parameters on game length. Bold values indicate significance
(p < 0.001)

to card attack, cost, and health parameters change game length and card use frequency,

respectively. The appendix includes an additional set of alternative models built by the

system; for brevity I present a single key model for each metric considered.

5.6.1 Summary Metric

Game length is important for card games like Cardonomicon: if games are too short play-

ers may feel they have no choices, while overly long games can feel tedious. The system

learned that of the three card parameters (treated as factor settings), attack and cost im-

pacted game length relative to a baseline value of 1 (p < 0.05, the value used for ‘signif-

icant’ in these models), while health settings did not (Table 5.1). Poisson regression was

used as game length was not overdispersed relative to card parameters. Greater attack pa-

rameter values reduced game length while greater cost parameter values increased game

length. Increasing the card’s attack will allow agents to more quickly defeat one another.

Increasing the card’s cost will slow down how quickly the card can be played and put to

use, in turn lengthening the game.

These effects are readily discernible when examining the average game length in each

of the card parameter configurations. Figure 5.2 shows the average game length for differ-

ent parameter configurations. Columns divide configurations hierarchically: first splitting

by attack, then by health. Rows divide configurations by card costs. Red lines indicate val-

ues averaging over health values (the average length for a cost and health configuration).
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Figure 5.2: Average game length based on card configuration.

The decreasing average lengths for attacks (red lines) indicates that as attack increases,

game length decreases. The higher average lengths for costs (rows) indicates that as cost

increases, game length increases.

5.6.2 Atom Metrics

Varying game lengths can be primarily due to two factors: how often cards are used to

attack and how often cards are played (making them available to attack). In games like

Cardonomicon the features of a card govern (human) choices to use different cards. Typ-

ically, cards are discussed in cost-benefit terms: costs (e.g., mana cost) are based on the

resources needed to use a card while benefits (e.g., card attack power or health) are based

on the potential efficacy of the card when played. Predicting how changes to card pa-

rameters alter the frequency of using a card to attack or playing a card provides useful
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Attack frequency vs card parameters
feature coefficient

attack = 4 0.81
attack = 7 0.74
health = 4 1.55
health = 7 2.18
cost = 4 0.61
cost = 7 0.27

Table 5.2: Effect of card parameters on card attack rates—coefficients give proportional
change in card attack frequency; values above 1.0 indicate increased frequency. Bold values
indicate significance (p < 0.05).

information on how to alter a design to increase or decrease how often different choices of

cards are made in the game. Below I show models learned by the system to predict how

changes in card parameters alter the frequency of using the card to attack; the next section

predicts frequency of playing the card to the board.

Card Attack Rates

The system learned a model to predict how changes to the “Stonetusk Boar” card param-

eters change the frequency of using the “Stonetusk Boar” card to attack. All data were

from the same set of playtraces generated by behavior sampling described above—for all

the models learned the system is employing the same set of data on the design space of

Cardonomicon variants of the “Stonetusk Boar” card. Counts for attack frequency were

overdispersed (p < 0.001), so the system used negative binomial regression as the pre-

dictive model. All card parameter settings significantly altered attack rates. Greater cost

parameter values reduced attack frequency and greater health parameter values increased

attack frequency. This can be seen by incidence ratios below 1.0 for higher attack settings

and above 1.0 for higher cost settings (Table 5.2). The system thus learned that more ex-

pensive cards will be played less often and used less to attack as a result; higher health

allows cards to be used to attack more.

Figure 5.3 shows the average number of times the “Stonetusk Boar” card was used to
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Figure 5.3: Average number of times “Stonetusk Boar” is used to attack given a card pa-
rameter configuration.

attack over games for different parameter configurations. Columns divide configurations

hierarchically: first splitting by cost, second by health, and third by attack. Rows divide

configurations by the game lengths, grouping games by length terciles (below 14 turns, be-

tween 14 and 16 turns, and more than 16 turns). Red lines indicate average card attack rate

across attack configurations (marginalizing to game length, health, and cost combinations).

High cost cards (far right triple of columns) reduce the frequency of card attack rates to

near zero except in long games (bottom row). Increasing health (red lines) also increases

card attack rates. These results visually corroborate the model learned by the system for

human designer consumption.
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Play frequency vs card parameters
feature coefficient

attack = 4 0.92
attack = 7 0.94
health = 4 1.04
health = 7 1.00
cost = 4 0.83
cost = 7 0.48

Table 5.3: Effect of card parameters on card play rates—coefficients give proportional
change in card play frequency; values above 1.0 indicate increased frequency. Bold values
indicate significance (p < 0.05).

Card Play Rates

Predicting card play rates used the same data to learn the model, replacing the predicted

action metric of card attacks with a predicted action metric of card play while still compar-

ing variants of the “Stonetusk Boar” attack, health, and cost parameter values. “Stonetusk

Boar” play counts were not overdispersed (p < 0.001), so the system used Poisson regres-

sion as the predictive model. Higher cost values significantly reduced card play frequency

(p < 0.05), with higher costs decreasing play frequency more (Table 5.3). Thus, the system

learned that increasing cost reduces the frequency of agents being able to play a card.

Figure 5.4 is similar to Figure 5.3, only now displaying the average number of times

the “Stonetusk Boar” card was played (rather than used to attack). This figure provides

a visualization of the statistical relationships learned above. Longer games allow more

opportunities for play, seen by comparing the average play rates across the three game

lengths (rows), especially in the highest cost scenario (far right column). Cost clearly

reduces play frequency, seen by comparing the three sets of columns (cost is the outmost

grouping of columns). Conversely, neither attack nor health appear to have a directional

effect, seen by inconsistent relationships among play rates for different attacks (colors) or

healths (red lines).
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Figure 5.4: Average number of times a card is played for a given “Stonetusk Boar” card
configuration.

Card Attack Options

Card use is not the sole indicator of the influence of design parameters on play: alterations

in how often a card is an option for use can indicate how card parameters influence player

behavior to use or hold on to cards. Card options are the cards an agent has the choice to

use, either to attack an opponent or to play to the board. Unlike card actions (examined

above), card options give a sense of the strategic possibilities an agent has at hand. As

before I had the system learn how card parameters influenced card use, only now targeting

the outcomes of the frequency of having the option to attack with or play the “Stonetusk

Boar” card.

Similar to card attack action rates, the system learned a model of the frequency of card
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Attack option frequency vs card parameters
feature coefficient

attack = 4 0.71
attack = 7 0.53
health = 4 1.84
health = 7 2.49
cost = 4 0.71
cost = 7 0.31

Table 5.4: Effect of card parameters on card attack option rates—coefficients give pro-
portional change in card attack option frequency; values above 1.0 indicate increased fre-
quency. Bold values indicate significance (p < 0.05).

attack option rates with varying card parameters, focusing on the “Stonetusk Boar” card.

Card attack option counts were overdispersed (p < 0.001), so the system used negative

binomial regression as the predictive model. As with card attack counts, all parameters

had a significant effect (p < 0.05), with greater health values increasing the rate of attack

options and greater cost values reducing the rate of attack options (Table 5.4). Greater

health values have strategic implications: when a card has more health it is not only useful

for the act of attacking, but also as an option for attacking later. Greater cost values reduce

the rate at which a card is available to attack as the greater cost gates use of the card. Thus,

the system learned a model demonstrating how to alter card design to change how often a

card is (or is not) available for action in the game.

Figure 5.5 provides a visual overview of the card action option outcomes in a simi-

lar manner to Figure 5.3. The similarity to Figure 5.3 supports the conclusion that card

parameters have similar effects on attack actions and attack options.

Card Play Options

Similar to card play action rates, the system learned a model of the frequency of card play

option rates with varying card parameters, focusing on the “Stonetusk Boar” card. Card

play option counts were overdispersed (p < 0.001), so the system used negative binomial

regression as the predictive model. As with card play actions, card play options were
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Figure 5.5: Average number of times a card is played for a given “Stonetusk Boar” card
configuration.

significantly influenced by all card parameters (Table 5.5). Greater cost values increased

the frequency of play options, reflecting the way cost prevents a card from being played.

Both greater card attack and greater card health led to small reductions in the rate of card

play options. Thus, the system learned a model predicting that as the card benefits (attack

and health) when played on the board increase, the card becomes more attractive to play,

leading to fewer turns where the card is retained as an option.

Figure 5.6 is similar to Figure 5.4, only now displaying the average number of times the

“Stonetusk Boar” card was an option to play, rather than being played. Longer games allow

more play options, seen by comparing the average play rates across the three game lengths

(rows), especially in the highest cost scenario (far right column). Cost clearly reduces play

frequency, seen by comparing the three sets of columns (cost is the outmost grouping of
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Play option frequency vs card parameters
feature coefficient

attack = 4 0.94
attack = 7 0.91
health = 4 0.98
health = 7 0.95
cost = 4 1.45
cost = 7 1.08

Table 5.5: Effect of card parameters on card play option rates—coefficients give propor-
tional change in card play option frequency; values above 1.0 indicate increased frequency.
Bold values indicate significance (p < 0.05).

columns). Conversely, neither attack nor health appear to have a directional effect, seen

by inconsistent relationships among play rates for different attacks (colors) or healths (red

lines).

5.7 Limitations and Future Work

5.7.1 Automating Design Knowledge Structures

The studies in this chapter demonstrate how simulated play data from design variants can

be used to automatically iterate on designs and learn models to predict how aspects of a

game design influence player behavior. The models learned, however, were all human-

provided—the system was given a set of features (card parameters) to examine. Machine

learning techniques provide a suite of tools for automated feature selection, often with

strong mathematical foundations. Yet these methods typically work from the model of

having a predefined, relatively small space of features to consider, relying on human intu-

ition to choose the appropriate subsets of features to consider. Automating the modeling of

a design space will require ways to bias a system toward iteratively exploring increasingly

complex models of how a design works to acquire (and re-test) knowledge about how that

design works. In this case this would entail a loop of using a model to select a sample of

new design variants to test, sampling behavior from those variants, and updating the learned

model with outcomes from those design variants. Recent efforts have begun exploring how
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Figure 5.6: Average number of times a card is played for a given “Stonetusk Boar” card
configuration.

search processes combined with Bayesian statistical hypothesis testing frameworks can be

used to learn human-like models of the structure underlying observations of real-world phe-

nomena [60, 78, 105, 214]. These models may be amenable to extension and application

to enabling the automated learning of design knowledge about game designs as well.

Fully automating the process of analyzing and generating games requires techniques

to use the models built to inform future design iterations. Ideally the models built from

play data can inform the choice of new design variants to test: not only checking different

parameter values, but choosing new game design parameters to vary in a way that maxi-

mizes knowledge acquired about the space of designs. For example, the agent from this

chapter could consider changes to the rate at which agents gain mana over turns in the

game, rather than only manipulating card parameters. This approach would support an
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agent gradually accruing knowledge about a game design domain, though it will require

complex modeling of the relations of components of the design space to one another and

testing (and re-testing) the models built over time. Effectively searching this space of al-

ternative knowledge will require careful modeling of how different axes of design changes

may support learning toward desired design goals and which axes of change may be less

valuable for future iterations. In the next chapter I show how optimal experimental design

techniques can improve the process of seeking design variants to optimize for design out-

comes (the first portion of this chapter); developing the appropriate techniques for learning

predictive models of the design space remains an open question.

The design knowledge learned in this chapter is readily described in human-legible

terms (as done throughout the results section). Ideally an automated system could present

these outcomes to humans directly through a combination of text and relevant imagery. En-

abling the system to choose the appropriate output and the subset of all learned knowledge

most relevant to a human remains an open challenge. Recent efforts have begun devel-

oping ways for machine learning systems to render their output in human-understandable

language [119]. Extending these efforts to appropriately filter from a large space of dis-

proved or inconclusive information, however, requires further modeling of which outcomes

are truly useful or interesting and which are not.

5.7.2 Scaling

The data in this chapter evaluated Cardonomicon variants in terms of changes to a single

card. Game design spaces typically involve a wide variety of features to alter that have

many potential interactions. This poses a challenge: how well can these techniques scale

with a (1) large number of variations of a feature or (2) complex interactions among fea-

tures?

For the card example in this chapter a single card varied in three levels of three param-

eters. Generating and evaluating these variants required roughly two weeks of computer
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time using a 64-bit machine with 16GB of RAM and a 3.40GHz processor. When examin-

ing more fine-grained variants of a design or change to more parameters at once this would

rapidly explode the space of design variants possible. Two avenues would provide some

ability to mitigate these growing computational costs: parallelization and efficient search.

First, these examples are massively parallelizable, as each design variant, level of agent

strength, and game played is independent of all others. As such, the evaluation of many

designs can be readily made into a parallel process on a single machine using multiple CPU

threads, GPU parallelization, or parallelized on a cloud computing platform. This does not

remove any computational cost from the model, but instead provides practical means to

reduce the time needed to run the system.

Second, the grid of parameters used was defined a priori and not adjusted at run time.

In practice the grid search could use binary search and other simple search techniques to

more efficiently iterate on a design when seeking to optimize the design. When learning

design knowledge these iterations could be evaluated in terms of how well the provide

information on the knowledge being learned. In the next chapter I present the application

of techniques from active learning as one way to do this more intelligent search process.

The other challenge of evaluating this design space entails handling feature interac-

tions. When more than one card is varied at a time the system must both sample more

designs to vary both cards and learn more complex (and harder to learn) models of how

card features interact. The problem of evaluating more design combinations falls under

the same challenges as discussed above regarding parallelization. The problem of learn-

ing feature interactions with sparse examples, however, requires alternative techniques for

sparse learning. To date the challenges of learning from sparse examples have largely been

addressed using Bayesian statistical modeling, using prior knowledge to bias the models

learned until sufficient information is gained. These techniques hold promise for helping

mitigate the needs to generate many examples of behavior from games.

Alternatively, design systems may use a small set of initial examples to learn how
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strongly related different features in the design are. In this approach a system would at-

tempt to find weakly coupled game systems that could be sampled independently, borrow-

ing ideas from Simon’s [186] thinking on weakly coupled systems. In this case, the system

would attempt to mitigate the cost of learning about a design space by learning additional

meta-information on the structure of the overall space. Ultimately, however, automated

search and learning will still face computational barriers that require alternative solutions

such as search heuristics, constraints on the designs considered, or prior design knowledge.

The approaches presented in this chapter provide a simple initial approach that exposes the

need for further development of these automated learning techniques.

5.8 Potential Impact

Game design research has the potential to change the way games are made and the experi-

ences available to game players. In this section I briefly discuss how the methods for game

design optimization and design knowledge learning in this chapter might influence game

designers and players.

5.8.1 Game Designers

Game designers are the primary audience benefiting from the automated techniques for

optimizing a design and learning about its functionality. Automated design optimization

has obvious use for maximizing a given design metrics for a game. In the future, this could

change the practice of tuning games to emphasize designers developing metrics to quantify

the quality of a game in terms of the behaviors possible in the game, rather than a practice

of iteratively adjusting a game until observing the desired set of behavior in the game. That

is, design practice would change from examining a few (hopefully representative) concrete

examples of behavior to using a variety abstracted design metrics. Designers would then

focus more on ensuring patterns of play are typically observed, rather than adjust a design

to produce desired exemplar behavior. While concrete examples of behavior will never be
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removed from design practice, automated gathering of summary metrics stands to alter the

way designers iterate on a game.

The generality of the underlying MCTS framework and action metrics used in the sys-

tem above provide a core set of systems that can readily be incorporated into a game engine.

This in turn opens the potential for game engines that automatically generate potential game

behaviors (in certain scenarios) and provide output metrics on these scenarios. The system

can even automate the process of selecting candidate designs that optimize different design

metrics to provide suggestions of extreme design examples for a designer to consider.

Having a game engine able to model a space of designs in a game opens the potential

for a system to highlight what aspects of a design a designer has explored and what remains

unknown. By quantifying certainty in different pieces of design knowledge a game engine

could help a designer recognize what aspects of a design space she has explored well and

what aspects of the space remain untouched. Even with limitations in how a system can

automatically formulate design knowledge, this combined human-computer system could

more effectively learn about designs and retain that knowledge. In the future this could

lead to hybrid design approaches where designers use computational systems to model and

learn about behaviors in the designs they explore, providing automated documentation of

design iterations and learnings for later reference.

5.8.2 Players

Automated design learning can provide players new types of games built around meeting

or violating models of behavior a system learns. For example, if a system learns that

a weaker card shortens game length, players could be automatically challenged to find

cases supporting or violating this learning. This in turn would create a feedback loop of

a system posing learned knowledge and using players to improve this design knowledge

by posing examples and counter-examples. Players might also be able to provide example

knowledge of their own for the system to evaluate on other players. This kind of game
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design provides players with automated goals in content—the knowledge to validate or

violate—while providing data to a learning game design system.

5.9 Summary

In this chapter I showed how a space of design variants could be evaluated to find designs

that optimize a given desired gameplay outcome. The same technique was also used to

test design knowledge about how game design parameters influence the space of play in

a game. For these studies I generated a set of game design variants that covered a range

of card parameter settings in the Cardonomicon card game domain. Using MCTS to gen-

erate behavior samples I evaluated the game design variants in terms of the use of actions

to attack with cards or play cards. Comparing across these variants allowed selection to

optimize for game feature outcomes including game length and card use frequency. The

evaluations also allowed for learning about how card cost, health, and attack influence agent

actions.

Generating the space of design variants, however, is expensive. In this chapter the pro-

cess required simulating playing 16200 games just to assess the influence of three parame-

ters of a single card on the space of play in Cardonomicon. If humans were playing these

games the testing required for a single iteration on the design would be even more time

consuming to the point of preventing any practical use of these methods. How can design

space evaluation be efficient (while remaining effective) for automated iterative design?

The next chapter addresses this question by applying techniques from optimal experimen-

tal design to the problem of parameter tuning in a design space. Optimal experimental

design techniques enable a system to trade off between exploring different design variants

and improving on a given design variant when iterating on a design. This analysis shows

how to extend the approach in this chapter to a different game domain, focusing on how to

use optimal experimental design techniques with human playtesters to efficiently optimize

for two major types of game design goals.
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CHAPTER 6

DESIGN ITERATION FOR PARAMETER TUNING

6.1 Introduction

Game designers seek to shape player behavior, but only have indirect influence through

choices of a game’s design. Designers have a notion of what player behavior is expected

of the game from the range of all behaviors that might be possible in the game: I call

this the play space of the game. To learn about actual player behavior, designers playtest

by having people play the game to see the distribution of possible behavior in the game.

Playtest results inform designer expectations for how different choices of game elements

might induce different player behaviors. Using these expectations designers then choose

a new design to consider, balancing between trying radically different ideas to fine-tuning

existing choices through small changes. I call the space of possible game designs the design

space: an individual element of this space is a single game design. Design iteration is the

task of navigating the design space to find a desired design, using playtesting information

to evaluate individual designs in the space.

Design iteration, particularly when human playtesting is necessary or desirable, is an

expensive process. Recruiting people to play a game (online or offline), having people

play a game, aggregating and analyzing playtest results, and making design decisions to

fine-tune the game are all time-consuming efforts. In many cases design iteration can be

mundane: playtest results often lead to small design changes, yet become the primary task

of a designer in the late stages of fine-tuning a game’s parameters. Despite the ubiquity of

design iteration for fine-tuning game parameters, we lack a computational model of how to

perform this process.

Computationally modeling the process of choosing design iterations can alleviate the
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Figure 6.1: Diagram of active learning process.

burden of design iteration by enabling a machine to run the process of processing playtest

data, choosing design alternatives to test, and deploying those design alternatives (Fig-

ure 6.1). By computationally modeling this process we can attempt to increase the effi-

ciency of playtests at reaching a design goal by minimizing the number of playtests run.

This design iteration model can further inform our understanding of the best ways for peo-

ple to perform design iterations and contribute to improved mixed-initiative systems where

computers help people design games.

In this chapter I present a system for design iteration where a computer deploys playtests

online, gathers results from those playtests, and uses those results to optimize toward a

designer-given goal for the game design. The approach I take treats the choice of the next

game design to test as a machine learning active learning problem [177]. Active learning

(AL) techniques were developed to improve the efficiency of training machine learning
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models in cases where there is little data available, or gathering new data is expensive. AL

techniques start from an existing set of labeled data to train a predictive model. Given a

set of potential unlabeled data to add to the model, AL techniques choose the optimal next

data to query to add to the model to improve the model. These data are added to the model

and the process repeats.

From the active learning perspective, the design space is an space of possible games to

use as input and design iteration is the problem of choosing the next game to test to optimize

an objective for the game design (Figure 6.1). I show how this model can optimize for

attributes of objective player behavior (like how much damage players take in a game) and

attributes of subjective player feedback (like whether a set of controls were preferable). I

show how a number of active learning models map to different approaches to navigating the

design space in terms of balancing between exploring very different designs to learn about

alternatives and exploiting similar designs for fine-tuning. By addressing the inherent cost

of playtesting this model can improve human playtesting practices or enhance automated

game generation systems that use some form of iteration (primarily search-based generation

models [220, 222]). This is the first work (I am aware of) to address this component of game

design and closes the loop on the final step of design iteration.

6.2 Design Iteration as Active Learning

The key insight of this model is to treat design iteration as an active learning problem.

Active learning [177] is the machine learning problem of selecting among a set of possible

inputs to get the best output while minimizing the number of inputs tested. Here, the

potential inputs are the design space, with each input being a game design. The best output

in this case is the output that most closely matches a designer-given design goal: e.g.,

having the player take (on average) a certain amount of damage in a battle or tuning player

controls to those they prefer. Minimizing the number of inputs becomes the task of testing

as few games as possible, reducing the number of people who must playtest the game and
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time the playtesting process takes overall.

Active learning provides a variety of generic techniques that address different learning

goals and different ways to optimize for achieving those goals cheaply. A core problem

in active learning—shared by human design iteration—is the balance between exploration

and exploitation. Exploration emphasizes testing unknown parts of the input space to gather

new information, similar to a designer testing a radically different design to see if there are

viable alternatives being overlooked. Exploitation emphasizes testing slight variants of

known parts of the input space to attempt to improve existing results, similar to a designer

fine-tuning a design to inch closer to an optimal result. Active learning provides a number

of computational approaches to the exploration-exploitation problem that can prove more

or less efficient in different contexts. I will show how different approaches fare in a test

domain to illustrate how the choice of “best” approach differs by design context.

The active learning model of design iteration has three core components: (1) a design

model, (2) a design goal, and (3) a playtesting strategy. Formally, a design model is a

function that models how an input set of game design features maps to an output set of

game metrics. Design models capture how a designer expects different design variants to

work based on prior knowledge of design alternatives they have tested. A design goal is

an objective function that specifies how to evaluate game metrics as being better or worse.

Game metrics are any quantitative summary metrics from a playtest. In active learning, ob-

jective functions define the goal for a model, such as minimizing error; in design iteration,

this becomes the desired metrics from playtesting the design. An iteration strategy is an

acquisition function that uses predictions for game metrics from the design model and eval-

uations from the design goal to choose the next design to test among the alternatives in the

design space. In active learning, acquisition functions balance exploration and exploitation

of design alternatives to maximize for design goals; in design iteration, this is the human

heuristic for choosing designs to playtest next.

There are a number of alternatives for choosing design models, each with many alterna-
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tives for iteration strategies. Design goals can range more widely, with the only restriction

that they provide the type of output needed by a design model. Design models come in

two forms: regression and classification. Regression models take as input a set of game

features and predict as output a continuous game metric. Continuous game metrics are

common in games, from the time it takes to finish a level to the amount of damage taken

in a battle. Classification models take as input a set of game features and predict as output

a discrete game metric. Discrete game metrics are also common in games, from choices

among text responses in interactive fiction to selecting normal or inverted look controls in

a first-person game. Note that prediction models capture expected player behavior, aggre-

gating over individual differences. In this work we are concerned with choosing a single

design for all players, making the models purely depending on game features and excluding

player features (such as age, gender, prior experience, &c.). This is not a limitation of the

model presented: player features could be incorporated for games that adapt to audiences

online or have default parameters that vary for different players.

Acquisition functions (iteration strategies) differ for regression or classification mod-

els. In the next sections I discuss a number of alternatives that balance exploration and

exploitation in different ways. I emphasize the intuitive meaning of these models for de-

sign iteration, leaving the full mathematical treatment to the referenced materials.

6.2.1 Regression Models

Acquisition functions balance exploration and exploitation to minimize the number of in-

puts tested to optimize an objective function. In this work I consider models that span

the exploration-exploitation spectrum, including models that are purely exploratory or ex-

ploitative and models that balance between the two in different ways. For regression mod-

els I used Gaussian Processes (GPs), the standard non-linear regression model used in

the Bayesian experimental design literature [159]. Gaussian processes have a number of

attractive features: they can model a wide class of non-linear relationships, they are com-
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putationally inexpensive to update, and have been the most common model for developing

acquisition functions. A non-linear model is appropriate for game design as non-linear re-

lationships are common in games, where changing parameters is not expected to produce a

directly proportional change in player behavior.

I consider four acquisition functions for regression models: (1) variance, (2) probability

of improvement, (3) expected improvement, and (4) upper confidence bounds. These ac-

quisition functions were developed in the field of Bayesian experimental design and apply

generally to any regression model with a probabilistic interpretation [18, 28]. These four

regression acquisition functions are:

• Variance Exploration by picking the input with greatest output variance (uncer-

tainty) [18]. Corresponds to picking the design that is hardest to predict the outcomes

from.

• Probability of Improvement (PI) Exploitation by picking the input most likely to

have an output that improves over the previous best [18]. Corresponds to picking the

design most likely to improve over the current best.

• Expected Improvement (EI) Balances exploration and exploitation by picking the

input by weighting the output amount of improvement by the probability of output

improvement [18]. Corresponds to picking the design with largest expected improve-

ment.

• Upper Confidence Bound (UCB) Balances exploration and exploitation by picking

the input with greatest combined expected output value and output uncertainty to

gradually narrow the space of inputs [205]. Corresponds to picking designs that

seem high quality but are poorly understood to gradually narrow the space of design

to be known good or expected bad but uncertain.
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6.2.2 Classification Models

Classification models are primarily concerned with increasing certainty in predicting outcomes—

improving the model of how the design works. Unlike regression, there is not a single com-

monly used model for classification. I used three classification models that cover common

approaches: Gaussian Processes (GP), Kernel Support Vector Machines (KSVM), and op-

timized neural networks (“neuro-evolution”, NE). Kernal methods are a popular machine

learning technique for dealing with input spaces (game features) with complex relation-

ships and have been previously applied to player modeling [244]. Neuro-evolution has

been widely applied to preference learning in games to handle the complex relationship be-

tween game features and player preferences [241].1 Gaussian Processes can be applied to

classification tasks and were included as a point of comparison to the regression modeling

case.

I consider five acquisition functions for classification models: (1) entropy, (2) query-

by-bagging (QBB) vote, (3) query-by-bagging (QBB) probability, (4) expected error re-

duction, and (5) variance reduction. These acquisition functions have been developed for

classification models; several—entropy, QBB probability, and expected error and variance

reduction—require probabilistic predictions. Since neuro-evolutionary models do not pro-

duce probabilistic predictions they cannot be used with some of these acquisition function;

in evaluation tests below I include results only for valid combinations of classification

model and acquisition function. The five classification acquisition functions are:

• Entropy Picks the input with greatest output uncertainty according to entropy—a

measure of the amount of information needed to encode a distribution [177]. Corre-

sponds to picking designs where player choices are most uncertain.

• Query-By-Bagging (QBB) Picks the input with most disagreement among copies of
1For computational reasons I use a gradient-based optimization method for network structure, size, and

weights, rather than an evolutionary algorithm as used in most neuro-evolutionary approaches. I found no
performance differences between the two optimization approaches in initial tests on the study data below,
though the evolution approach required substantially more time to train.
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a classification model trained on random subsets of known results [177]. QBB vote

picks the input with the largest difference between its top two output options [177].

QBB probability picks the output with greatest average uncertainty across the mod-

els [1]. Corresponds to picking designs with greatest variability in expected outcomes

when viewed based on different subsets of playtest data.

• Expected Error Reduction Picks the input that, if used to train the model, leads to

the greatest expected reduction in classification error [177]. Corresponds to picking

designs that will most improve prediction of the design outcomes over the design as

a whole.

• Variance Reduction Same as expected error reduction, but seeks to reduce variance

in output predictions rather than error [177]. Corresponds to picking designs that

lead to greatest reduction in uncertainty about the design space over time.

6.3 Experiment Design

The question I seek to answer is: how effective can this active learning model be at re-

ducing the number of design iterations needed to optimize toward a design goal? To study

the efficiency of the alternative iteration strategies (acquisition functions) I used a sim-

ple shoot-‘em-up game (Figure 6.2) that tested for optimizing two broad classes of design

goals: (1) player game play behavior and (2) player subjective response. Player game play

behavior goals cover cases where designers desire particular play patterns or outcomes—

e.g., player success rates or score achieved. Subjective responses goals cover cases where

designers desire specific player subjective feedback—e.g., getting good user ratings on the

feel of the controls. Together these goals encompass a broad range of typical design con-

cerns during playtesting, demonstrating the value of active learning as a generic approach

to design iteration.

Evaluation used both a simplified simulation for player behavior and data collected
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Figure 6.2: Study game interface illustrating player, enemies, and shots fired by both at two
points along iteration process.

from people playing the game online. Simulations allow verification that the method works

in principle and can test edge cases of player behavior that do not appear with among a

given study population (but may occur in a larger population). Human studies demonstrate

the method applies to real-world situations. In the following sections I describe the game

domain used, simulation model, and data collection for human data.

6.3.1 Game Domain

While design iteration can alter any aspect of a game, for scope this study focuses on tuning

the parameters of a game. Game parameters are values chosen by designers to tune existing

rules or structures in a game. For example, in a platformer a design might tune the strength

of gravity or height a player may jump in the game, keeping the mechanics for jumping

and gravity fixed. Parameters can be set to a wide range of values, leading to substantially

different games: a platformer without gravity will play very differently to a platformer with

gravity. Parameter tuning is a useful setting for testing design iteration as the bounds on

parameters can define a large design space with many uninteresting or impossible designs.

At the same time, the space is likely to contain valuable games: the range of games afforded

by low-level control over designs tests the efficiency from the active learning system.

As a domain of study I used a shoot-‘em-up game (Figure 6.2): these games are similar
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to Space Invaders, where waves of enemy ships attack a player who controls a ship.2 Shoot-

‘em-up games emphasize reflexes and pattern recognition abilities as a player maneuvers

a ship to dodge enemy shots and return fire. Shoot-‘em-up games, and arcade games in

general, are an ideal domain to test low-level parameter tuning:

• There are a number of parameters that can potentially interfere with each other: size

and speed of enemies and enemy bullets, rate of enemy fire, player speed, player rate

of fire, &c.

• The game can be played in a series of waves, enabling our system to naturally test

game parameter settings and gather player feedback.

• Action-oriented gameplay reduces the complexity of player long-term planning and

strategizing.

• A scoring system makes gameplay goals and progress clear, unlike domains involv-

ing puzzle-solving or aesthetic enjoyment of a game world or setting.

Combat in the shoot-‘em-up game occurs over a series of waves of enemies. During

each wave a series of enemies appear that fire bullets at the player: the player’s goal is to

destroy the enemies while dodging their fire. To encourage players toward this gameplay

they were shown a score that rewarded points for enemies defeated and penalized player

score when hit by enemy fire. To test AL for regression I set a game play behavior design

goal (objective function) of the player being hit exactly six times during each wave of

enemies (output) and tuned enemy parameters (input). The goal was evaluated by squaring

the difference between the score a player achieved on a wave of the game and the desired

score (being hit six times). A squared difference more steeply penalizes games with greater

differences from the ideal. I used three game parameters to tune enemy power: the size of

enemy bullets, the speed of enemy bullets, and the rate that enemies fire bullets. Increasing

2The game was developed in conjunction with Eric Fruchter, who did the bulk of the game engine pro-
gramming.
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bullet size requires the player to move more to avoid bullets. Faster bullets require quicker

player reflexes to dodge incoming fire. More rapid firing rates increase the volume of

incoming fire. Together these three parameters govern how much players must move to

dodge enemy attacks, in turn challenging player reflexes. These three parameters admit a

number of potentially effective designs: e.g., a game with large, slow moving, and rarely

fired bullets forcing players to plan a path between shots or a game with small, fast, and

more rapid enemy fire requiring players to quickly react to oncoming attacks. Getting

approximate settings for these parameters is easy, but fine-tuning them for a desired level

of difficulty can be challenging.

To test AL for classification I set a subjective player response design goal (objective

function) of the player evaluating a set of controls as better than the previous set (output)

and tuned player control parameters (input). The goal was evaluated in terms of predic-

tion quality from the classification model using the F1 score as a metric. I provided two

parameters for player control over ship movement: drag and thrust. Drag is the “friction”

applied to a ship that decelerates the moving ship at a constant rate when it is moving—

larger values cause the ship to stop drifting in motion sooner. Thrust is the “force” a player

movement press applies to accelerate the ship—larger values cause the ship to move more

rapidly when the player presses a key to move. Combinations of thrust and drag are easy

to tune to rough ranges of playability. However, the precise values needed to ensure the

player has the appropriate controls are difficult to find as player movement depends on how

enemies attack and individual player preferences for control sensitivity (much like mouse

movement sensitivity). Some players may prefer ships that move and stop quickly (high

drag and thrust), while others may find a moderate amount of drift more intuitive (with

lower drag and thrust). After each wave of enemies a menu asked players to indicate if the

most recent controls were better, worse, or as good/bad as (“neither”) the previous set of

controls. I provided a fourth option of “no difference” for when players could not distin-

guish the sets of controls, as opposed to “neither” where players felt controls differed but
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had no impact on their preferences.

6.3.2 Simulation Models

Simulations used two simple models of how players might respond to different design pa-

rameters. Both simulations are models of expected player behavior in response to design

parameters, rather than agents that directly play the game in-engine. The regression sim-

ulation treats players as having an underlying set of skills related to each enemy tuning

parameter along with a cross-skill tolerance for differing challenge demands. Greater dif-

ferences between player skills and enemy parameters lead to larger differences from being

hit at a base rate. The classification simulation treats players as having preferences for each

of the control tuning parameters with a cross-parameter tolerance for differences from pref-

erence. Preference choices are based on the difference between the ideal set of parameters

and design control settings.

The regression simulation is a probabilistic model of player behavior in terms of under-

lying player skills and design parameters. Simulated players have three independent skills

for responding to enemy bullet size, bullet speed, and firing rate. Values for all three skills

are sampled from a normal distribution with a variance term capturing variability in skill.

Taking the difference between the player-specific skills and the design parameters, then

scaling by the error in player skills produces an estimated rate of being hit by enemies in

our game. When using simulated players I generated a fixed ideal playtester and allowed

the AL model to choose sets of enemy parameters among 10 bullet sizes ×10 bullet speeds

×10 firing rates = 1000 design variants. Each playtest generated a new playtester.

The classification simulation is a probabilistic model of player responses in terms of

underlying control preferences and design parameters. Simulated players have two inde-

pendent preferences for force and drag parameters; both are sampled from a normal dis-

tribution with a variance term capturing variability in preference. There is also an error

threshold that sets a lower bound for parameter differences that a player may distinguish.
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When given a set of design parameters the model performs a two-stage comparison process.

First, each individual design parameter is compared to the desired parameter for the model

by taking a cumulative normal distribution centered at the difference of the parameters and

scaled by the player variance term. Differences below the player error threshold yield a

“no difference” result; positive or negative differences above the threshold yield “better” or

“worse” responses, respectively. Second, the individual parameter responses are combined

into the final model response. If both responses are the same then that response is given.

If one response is “no difference” then the other response is given. Otherwise the model

responds with “neither.” When using simulated players I generated a fixed ideal playtester

as before and varied sets of controls using a grid of 5 current force ×5 current drag ×5

previous force ×5 previous drag = 625 design variant grid for both current and previous

wave control parameters.

Both these simulation models are intended as simplifications of players used to ensure

the active learning model is robust to a wide range of player behavior and response pat-

terns. While neither model is a strong representative of true human behavior, comparing

simulation results to human behavior helps illustrate the reasons for specific cases being

easy or hard for active learning to optimize.

6.3.3 Human Data Collection

The human study used two versions of the game deployed online. To recruit subjects

I publicized the game through websites and local emailing lists; no compensation was

offered for participation. Players were asked to try to play at least 10 waves of the game

and were given no upper bound on the number of waves they played. The lower limit was

not enforced through the game, but for analysis I discarded data from players with fewer

than 10 waves played. This measure helped ensure players were able to reliably play the

game (i.e., the game did not crash or they did not understand the game and quickly quit).

After filtering, the regression experiment collected data from 137 player and 991 waves
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of the game in total. The classification experiment gathered data from 57 players: of these,

47 only provided the two binary responses of “better” or “worse” and analysis was limited

to this subset of players to result in 416 paired comparisons. Preference responses were

only used from the first 10 waves of the game—this avoids biasing the sample with data

from players who were highly engaged and could provide very skewed positive responses.

Preference data was not collected from the first wave of the game as players could not yet

compare control settings.

6.3.4 Active Learning Experiment Design

The analysis used the data from the simulated models or collected from human players to

study the effectiveness of different active learning models. The analysis tested whether AL

could reduce the number of human playtests needed to tune design parameters compared

to a random sampling approach. Random sampling is the standard baseline used to eval-

uate the efficacy of active learning models for improving an objective function for a fixed

number of inputs [177]. Random sampling is similar to the A/B testing approaches used in

game design that playtest a game with a large audience and then act on the playtest results.

The primary difference in this case is that I use batches of a data from a single playtest,

rather than many playtests, to update the active learning model.

I performed 10-fold cross-validated experiments to measure how well a playtesting

strategy (acquisition function) could achieve a design goal (objective function) given a set

of design parameters (input). For regression a Gaussian Process (GP) was trained to predict

the number of times a player was hit during a wave of the game using the three enemy

parameters. For classification one of the three classification models (GP, KSVM, or NE)

was trained to predict control preference indication as better or worse using the two control

parameters from both the previous and current wave of the game. In both regression and

classification cases I tested all valid combinations of acquisitions with the design model.

For each cross-validation fold I first randomly selected 10% of the data and set it aside
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for evaluating objective function performance. Next I randomly sampled 30 input–output

pairs from the other 90% of the data set to create a training data set; the remaining unused

samples formed the training pool. In the case of simulation these pairs were generated and

there was no larger population pool to choose from. Within each fold I then repeated the

following process:

1. Train the regression or classification model on the training data set.

2. Evaluate the objective function for that model on the testing data set.

3. Use the acquisition function to pick a new input sample from the training pool (with-

out yet knowing the sample output) to improve the objective function.

4. Move the selected sample (including the true output) from the training pool into the

training data.

5. Return to the first step and repeat the process until the maximum number of training

samples are used.

I used a maximum of 300 training samples in both regression and classification. For sim-

ulation I used a fixed population of 500 testing points with responses generated by the

simulation models.

6.4 Results and Discussion

Overall the study results found active learning is a promising approach to reducing the

number of playtests needed for design iteration toward a design goal. In both regression

and classification settings active learning techniques improved over the random baseline

model. For enemy parameter tuning (a regression problem), acquisition functions that

balance exploration and exploitation (especially UCB) have the best performance. The re-

gression problem targeted a specific player behavior, making methods that gradually tuned

the game to induce that behavior effective. For control tuning (a classification problem) we
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found acquisition functions that tolerate high variance (e.g. QBB and entropy) have strong

performance. The classification problem targeted a player subjective response, introducing

greater variability in outcomes that require the ability to overcome the potentially conflict-

ing feedback. It may be that there is no single optimal control configuration for all players,

which would yield conflicting results that require methods that mitigate variance to perform

well.

No single acquisition function, objective function, or acquisition-objective function pair

was optimal across cases and number of playtests. These results align with previous work

in AL showing that many data-specific properties impact AL efficacy [170]. This highlights

the importance of investigating active learning techniques appropriate to different design

iteration goals.

Below I provide further details with an emphasis on how active learning impacted the

number of playtests needed for the regression and classification settings. I present results

both in terms of the overall performance of the models and the performance of models

relative to the random baseline. Overall performance evaluations describe how well active

learning is doing in absolute terms: e.g., having all players hit exactly six times in the

regression setting or always predicting player preference in the classification setting. Com-

parative performance evaluations describe how much value active learning is contributing

by intelligently choosing playtests. Any design model improves with more data and the

question of concern is whether the data being given to the model is providing the greater

gains than randomly adding data. These analyses show model performance at varying

numbers of samples to show trends in model improvement as more data is gathered.

6.4.1 Regression

The regression study found active learning can efficiently tune game design parameters for

desired player performance, even with few samples. Having a clear behavioral objective

(being hit a number of times in the game) was likely a strong contributor. Any variability
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Table 6.1: Regression Gaussian Process mean squared error comparison of acquisition
functions—in simulation. Sample sizes indicate values averaged over a range of ±5 sam-
ples (for smoothing). Lower values indicate better performance.

acquisition function 65 samples 280 samples
random 0.00280 0.00107
variance 0.00126 0.00110

PI 0.02889 0.02137
EI 0.00151 0.00103

UCB 0.00131 0.00116

in the data was primarily dependent on differences in player skill and prior experience with

the genre—the earlier filtering of players with less than 10 waves of play likely removed

players facing technical problems or who had little motivation to attempt to succeed at the

task. Upper confidence bounds (UCB) was most effective at improving the performance

of the Gaussian Process (GP) regression model (Table 6.2).3 Upper confidence bounds

balances exploration and exploitation over time by starting with an emphasis on exploration

and gradually shifting to exploit effective parameter choices.

In simulation all acquisition functions performed well except for probability of im-

provement (PI). Figure 6.3 shows overall mean squared error values (higher is worse per-

formance) for model predictions when trained with different acquisition functions, illus-

trating the better performance of most acquisition functions over random sampling (top,

black line). Table 6.1 provides values at the highlighted regions. Note that PI is not shown

as it distorts the graph scale. PI is a pure exploitation strategy it focuses on playtesting

parameter settings that are highly certain. Because tuning used three parameters in a fine-

grained space it is easy to find bad parameters and waste samples attempting to improve

on a globally poor local optima. That is, PI would often find a relatively poor design and

waste effort attempting to polish that design rather than find alternatives.

Roughly 50-70 playtests were needed to tune the three parameters related to player

performance against enemies when using upper confidence bounds (UCB), expected im-

3All acquisition functions yielded significant improvements over the random baseline in all reported re-
sults tables.
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Figure 6.3: GP performance using different acquisition functions—in simulation. Shows
MSE with an increasing pool of AL-selected training samples. Lower values indicate better
performance. Bands indicate values that were averaged to produce Table 6.1.

provement (EI), or variance; random sampling required 175 playtests for comparable per-

formance. More playtests marginally improved AL performance, though with diminish-

ing returns. Figure 6.4 shows how much different acquisition functions reduced mean

squared error compared to the baseline random sampling approach (larger values indicate

greater improvements), demonstrating early large improvements. Improvements decrease

with more samples as the amount of data gathered converges to greater coverage of the

design space, diminishing the need for smart sampling. These results demonstrate the

potential for active learning to improve simulation-based game generation systems, partic-

ularly those with expensive playtest simulations that would cost more computational effort

than the relatively cheap GP-UCB model.

On human data the acquisition functions that did not balance exploration and exploita-

tion had worse performance when limited to few samples or given many samples. Fig-
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Figure 6.4: GP performance improvement over random sampling using different acquisi-
tion functions—in simulation. Shows amount of MSE reduction with an increasing pool of
AL-selected training samples. Larger values indicate better performance.

ure 6.5 shows overall mean squared error values (higher is worse performance) for model

predictions when trained with different acquisition functions, illustrating the better perfor-

mance of all acquisition functions over random sampling (top, dark grey line); Table 6.2

provides values at selected regions. The two acquisition functions that balance exploration

and exploitation—UCB and EI—show the best performance.

Figure 6.6 shows how much different acquisition functions reduced mean squared error

compared to the baseline random sampling approach (larger values indicate greater im-

provements). From these figures it is clear active learning is particularly advantageous at

small sample sizes, though most methods show improvements up to the maximum num-

ber of samples used. As in simulation, PI shows poor performance, barely improving over

the baseline model, which is a fixed value of 0 improvement. All acquisition functions

trend downward: this simply indicates that as the amount of data collected converges to
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the full data set the value of intelligently sampling decreases. That is, eventually more data

outweighs intelligently sampling in this task.

Variance performed relatively better with many samples, explained by the need to ex-

plore heavily before having a good enough design model. When tuning many parameters

at once it is easy to find many sets of uncertain (but bad) parameters, leading to poor per-

formance with few samples. Over time EI gradually worsened while UCB and variance

maintained better performance. As more samples are gathered UCB reduces exploration

while EI eventually begins to make poor playtest choices. Approximately 70 samples were

needed to train the successful AL methods for the largest peak performance improvements;

random sampling never achieved this level of performance on our data set (Table 6.2).

Overall this clearly demonstrates active learning can enhance playtesting efficiency by re-

ducing the samples needed to match a randomized batch approach (A/B testing). This

gain is perhaps beyond what would happen through simply A/B testing and collecting data:

UCB and variance achieved asymptotically higher performance than random sampling.

The regression experiments show the power of active learning to reduce the amount of

playtesting required and better achieve design goals. UCB’s balance of exploration and

exploitation had the greatest efficacy and suggests a gradual refinement design process is

optimal. These results make a strong case for active learning applied to optimizing low-

level in-game behaviors, such as difficulty in terms of in-game performance. Applying this

approach to the ongoing development of a game with hundreds of parameters—for exam-

ple, tuning over 100 characters with many different abilities and attributes in a multiplayer

online battle arena game like League of Legends [70] or Defense of the Ancients 2 [43]—

stands to provide enormous benefit to reducing or removing the need for ongoing human

intervention in tuning live games.
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Table 6.2: Regression Gaussian Process mean squared error comparison of acquisition
functions—with humans. Sample sizes indicate values averaged over a range of ±5 sam-
ples (for smoothing). Lower values indicate better performance.

acquisition function 65 samples 280 samples
random 268 239
variance 233 228

PI 255 236
EI 210 242

UCB 203 224

6.4.2 Classification

The classification study found active learning can improves models of subjective player

preferences (classifiers) with both probabilistic and non-probabilistic acquisition functions.

Compared to the behavior tuning task for regression, the preference optimization task was

more challenging, evidenced by proportionately smaller improvements over the baseline

model. The inherent subjectivity of control preferences likely contributed to this challenge,

along with the potential for multiple distinct optimal configurations that differ by players.

Note that unlike a game personalization or adaptation task, the design model here is for

a single design for all players. Methods that tolerate high variance—entropy, query-by-

bagging (QBB) using vote or probability, and expected error reduction—have the strongest

performance (Table 6.4). These acquisition functions succeed by overcoming the noise

inherent in human playtest data, particularly when using few playtests. Our results show

active learning is effective even with more complex data and can improve a variety of

baseline classification design models: Gaussian Processes (GPs), Kernal Support Vector

Machines (KSVMs), and optimized neural network structures and weights (NE).

In simulation entropy and QBB vote showed strong performance gains across all three

objective functions (Figure 6.7, Table 6.3). Previous work has found QBB models are best

for high variance data sets [170] and entropy sampling is also effective for high-variance

situations. The complexity of our simulation model made it a highly variable function to

optimize and demonstrates the value of acquisition functions that are effective against high
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Figure 6.5: GP performance using different acquisition functions—with humans. Shows
MSE with an increasing pool of AL-selected training samples. Lower values indicate better
performance. Bands indicate values that were averaged to produce Table 6.2.

variance. Among objective functions NE showed the best performance; GPs had strong

early performance before plateauing to similar performance as KSVMs. Researchers have

also found NE effective for preference learning tasks in other game design contexts [182,

240].

Figure 6.8 shows how much different acquisition functions increased F1 scores com-

pared to a baseline random sampling approach using the same classifier (larger values in-

dicate greater improvements). Improvements decrease with more samples as the amount

of data gathered converges to greater coverage of the design space, diminishing the need

for smart sampling. These results reinforce the potential for active learning to improve

simulation-based game generation systems.

On human data entropy, QBB vote and probability, and error reduction all improved

classifier performance (as F1 score) over random sampling. Figure 6.9 shows overall F1

scores (higher is better performance) for the best performing acquisition functions for each
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Figure 6.6: GP performance improvement over random sampling using different acquisi-
tion functions—with humans. Shows amount of MSE reduction with an increasing pool of
AL-selected training samples. Larger values indicate better performance.

design model; Table 6.4 provides values at selected regions. GPs had the strongest perfor-

mance when using random input data as an acquisition function. Compared to this baseline,

pairing a GP with QBB probability yielded the best performance with few samples; pairing

a KSVM with QBB prob yielded the best performance with many samples. NE performed

worse than the GP model paired with randomized sampling.

Figure 6.10 shows how much different acquisition functions increased F1 scores com-

pared to a baseline random sampling approach using the same classifier (larger values in-

dicate greater improvements). All classifiers improved with some acquisition function,

with KSVMs benefiting most, followed by NE. These figures illustrate active learning can

provide substantial gains with few samples and maintain an improvement over random

sampling up to the maximum number of samples used in this study.

Comparing the acquisition functions, QBB methods (especially vote) were effective at

both few and many samples. Entropy was only effective with few samples while error
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Figure 6.7: Classification performance with different combinations of classifiers and ac-
quisition functions—in simulation. Higher values indicate better performance. Shows F1
score with an increasing pool of AL-selected training samples. Bands indicate values that
were averaged to produce Table 6.3. Only the best-performing acquisition functions for
each classifier are shown for clarity.

reduction was most effective with more samples. Expected error reduction must predict

future outcomes and thus requires more initial data before becoming effective. Variance

reduction had poor performance. As with the variance acquisition function for regression,

a large number of possible parameters causes difficulty in effectively reducing variability

in responses. Overall active learning can yield improvements even with noisy, subjective

data, but these gains are likely mitigated by differences among players or shifting player

preferences (e.g., coming to prefer more sensitive controls with experience in the game).

Comparing the design models, we found GPs had the best baseline performance (with

random sampling), followed by NE and then KSVMs. Overall GPs with QBB probabil-

ity or expected error reduction did best, followed by KSVMs with either QBB method

and then NEs using QBB vote. Using active learning provided the largest performance
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Figure 6.8: Classification performance improvement over random sampling with different
combinations of classifiers and acquisition functions—in simulation. Higher values indi-
cate better performance. Shows gains in F1 score with an increasing pool of AL-selected
training samples. Only the best-performing acquisition functions for each classifier are
shown for clarity.

boost for KSVMs, though GPs and NE also benefited. The performance trends of GPs and

KSVMs mirrors that of the simulation results, where GPs perform well with few samples

and KSVMs perform well with more samples. NE showed (compared to other classifiers)

worse performance on human data than simulation: this may be due to greater noise in the

human data or lack of a large enough feature space to be effective. GPs have traditionally

been applied to Bayesian optimization tasks where there is relatively little data and few

features, but rapid learning is desired. By contrast NE is commonly applied to tasks with

more data and larger feature spaces. GPs may be better suited to smoothing over noise in

the human data compared to NE. It may be that NE is better suited to design optimization

when many parameters are being simultaneously varied and more data is available.

The classification study demonstrates active learning can reduce the number of playtests
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Figure 6.9: Classification performance with different combinations of classifiers and ac-
quisition functions—with humans. Higher values indicate better performance. Shows F1
score with an increasing pool of AL-selected training samples. Bands indicate values that
were averaged to produce Table 6.4. Only the best-performing acquisition functions for
each classifier are shown for clarity.

needed even for subjective features of a design such as control settings. Reducing playtest

costs requires acquisition functions (e.g. entropy, QBB, and error reduction) that miti-

gate the noise inherent in preference response data. Active learning always improved over

random sampling across different design model approaches, though the best acquisition

functions varied. These results make a strong case for considering active learning when

optimizing a design toward player preference data and may apply to other discrete choice

settings in design (e.g., branching specialization choices in a role-playing game).

[[tense!: experiments should all be past (or change to present)]]

6.5 Limitations

The active learning approach to design iteration presented here has a number of limitations

that point to promising avenues for further research. The shoot-‘em-up game domain was
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Figure 6.10: Classification performance improvement over random sampling with different
combinations of classifiers and acquisition functions—with humans. Higher values indi-
cate better performance. Shows gains in F1 score with an increasing pool of AL-selected
training samples. Only the best-performing acquisition functions for each classifier are
shown for clarity.

used to minimize the effects of player learning and long-term strategizing while maximiz-

ing the data gathered per playtest. This approach is likely effective for a large number of

reflex-based arcade games, such as Frogger or Flappy Bird [95, 96]. But many design

parameters influence complex systems with interconnected consequences (e.g., economic

simulations in a game) or bear on player strategic choices (e.g., unit parameters in a strategy

game). In these situations alternative strategies may be needed to handle credit assignment

to specific design parameters in these large feature spaces.

The design parameter model here used a flat set of parameters with no explicit depen-

dencies. That is, no choice of parameters would invalidate the use of other parameters.

In tasks where parameters have structure—e.g., branching paths of choices in a narrative

where eliminating one choice would remove downstream choices—alternative methods

will be needed to handle the composition of modular elements.
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Table 6.3: Classification acquisition-objective function F1 score comparison—in simula-
tion. Sample sizes indicate values averaged over a range of ±5 samples (for smoothing).
Higher values indicate better performance.

acquisition
function

100 samples 200 samples
GP KSVM NE GP KSVM NE

random 0.725 0.711 0.797 0.800 0.794 0.872
entropy 0.776 0.721 N/A 0.815 0.774 N/A

QBB vote 0.784 0.704 0.833 0.815 0.815 0.891
QBB prob 0.742 0.642 0.807 0.819 0.752 0.890
error red 0.716 0.759 N/A 0.799 0.803 N/A
var red 0.716 0.735 N/A 0.796 0.810 N/A

Table 6.4: Classification acquisition-objective function F1 score comparison—with hu-
mans. Sample sizes indicate values averaged over a range of ±5 samples (for smoothing).
Higher values indicate better performance.

acquisition
function

100 samples 200 samples
GP KSVM NE GP KSVM NE

random 0.720 0.684 0.673 0.773 0.709 0.718
entropy 0.763 0.731 N/A 0.763 0.751 N/A

QBB vote 0.758 0.746 0.703 0.780 0.777 0.760
QBB prob 0.749 0.724 N/A 0.792 0.782 N/A
error red 0.761 0.702 N/A 0.795 0.772 N/A
var red 0.660 0.667 N/A 0.725 0.723 N/A

The classes of design objectives covered in this study is a small subset of the space of

potential objectives. Choosing or developing the appropriate metrics for design goals or

acquisition functions to optimize toward these goals remains an open topic. How can a

system optimize for players spreading their choices among alternatives (rather than con-

verging to a single choice)? How can a design optimize for long-term player outcomes,

rather than immediate feedback? How can a system optimize the choice of playtests to

maximize learning about the full design space with as few playtests as possible? How

can optimization account for design constraints in terms of dependencies between parame-

ters? Addressing these and many other topics will broaden the cases where machines can

automate or support human design iteration practices.
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6.6 Potential Impact

Game design research has the potential to change the way games are made and the experi-

ences available to game players. In this section I briefly discuss how the methods for game

design iteration in this chapter might influence game designers and players.

6.6.1 Game Designers

At its core, automated parameter tuning enables designers to offload fine-tuning of a design

on a system. In practice this can alter design practices to focus on defining what metrics

of behavior capture design goals. Alternatively, this may also lead to new crowdsourced

design practices where player feedback is used to guide systems toward what players sub-

jectively perceive as enjoyable. As a system tunes parameters to this notion of ‘enjoyment’

designs would learn what set(s) of parameters capture this experience, in turn potentially

informing large-scale design changes. This future design practice will gradually train de-

signers to think in terms of systems that are tuned when released, rather than concretely

defined in the abstract without player feedback (as objective behavior or subjective re-

sponse).

Game designers will also stand to benefit when releasing complex games that require

ongoing maintenance and tuning. Currently these ever-evolving games require designers

to continually adjust parameters for maps or characters in games as players change their

strategies. The patch notes of games like Starcraft or World of Warcraft are a testament to

the never-ending need for ongoing game tuning. With automated tuning designers would

be relieved of burden, allowing them to let a game continue to evolve on its own as a

system continually rebalances systems. Instead of continually optimizing a subset of design

parameters, a designer’s job would instead be to appropriately define parameters and their

ranges of acceptable variation, moving tuning to a more abstract process of defining what

should be fixed or variable at any time for a given design. In systems with sufficiently large
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numbers of systems a single change can have rippling consequences on coupled game

systems. Automated parameter tuning may be the only way for designers to focus their

attention on the most challenging systems to alter, leaving an automated system to adjust

related systems to dramatically reduce the workload needed to fully tune a game.

6.6.2 Players

Efficient design optimization presents players the opportunity for novel forms of dynamic

difficulty adjustment that continually tune game parameters to challenge players in different

ways [93]. When systems can intelligently choose new designs to optimize learning about

a player they can provide challenges that are novel to players, rather than simply providing

new content that is expected to not provide much difference to player behavior [221]. Dif-

ferent design objectives would allow the system to tune the game toward different goals:

for example, increasing or decreasing rates of failure or the length of play sessions. Al-

ternatively, different design parameters would allow the system to choose ways of altering

player experience, altering controls in one case or avatar power in another case. General-

izing, a class of game built around probing player capabilities becomes possible, with an

intelligent “AI Director” choosing game variants that provide players with game variants

selected to optimize player performance toward some system objective (in the exploitation

case) or optimize learning about how the player performs (in the exploration case). This de-

sign paradigm would shift games from providing abstract notions of fixed ‘achievements’

for all players, to individualized game designs that force players to achieve objectives in

different ways.

6.7 Summary

In this chapter I cast design iteration as an active learning process and demonstrated how

active learning can apply to two classes of design goals. Broadly speaking design goals con-

cern regression—optimizing game parameters for a continuous game metric—and classification—
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optimizing game parameters for a discrete game metric. As representative examples I con-

sidered the regression problem of optimizing for a desired difficulty in term of number of

times a player is hit in a wave of a shoot-‘em-up game. For classification I considered the

classification problem of learning subjective player control preferences in the same game.

Active learning provides a large number of potential acquisition functions to guide design

iteration choices. In both simulation and human studies I show how these acquisition func-

tions can reduce the amount of data needed to achieve a given level of model performance

and show that active learning may even yield better models than achieved by a random sam-

pling baseline. Together these results make a strong case for the value of active learning to

improve iteration in game design.

For game generation systems that use simulations to evaluate content there is a clear

value to using active learning to improve the efficiency of the generation process, poten-

tially uncovering better results. Most automated search techniques used for procedural

content generation or design optimization can benefit from an active learning wrapper to

guide the learned model toward the most valuable parts of the search space [40]. This has

the potential to generally improve the efficiency of these algorithms, at least in cases where

model training is sufficiently cheap and data collection (behavior sampling) is sufficiently

costly.

For human design iteration practices there is the potential for active learning to guide

design to test games more effectively than the standard A/B testing approach. An AL model

could inform designers about the potential value to testing different planned design vari-

ants by providing estimates on how player behavior would be altered in terms of design

goals, along with an estimate of how uncertain the model is about those outcomes. Going

further, the AL model could guide automated iterations of a game’s design in cases where

the balance of a game is constantly shifting. In these cases AL offers the benefit of mini-

mizing the amount of change players experience, creating a more seamless experience in

the game. For example, many competitive games are designed with the intent that players
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may choose among equally viable alternative character configurations, such as in fighting

game avatars, racing game cars, or shooter game weapons. However, these games often

include a variety of areas to compete in (fighting arenas, racing tracks, or shooter maps),

with changes to character traits often interacting with the tuning of parameters related to

these areas. In these scenarios, designers can benefit from an automated system that tunes

area parameters to maintain balance, even in the face of changes to characters. More gener-

ally, most online games where players compete or cooperate face the challenge of constant

upkeep to maintain balance as player strategies evolve: in all these cases an active learning

approach can be used to efficiently change the game to minimize the number of variants

human players would experience. Together, these examples illustrate the potential for AL

techniques to improve game development practices during early iteration through ongoing

updating and refinement of a live game.
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CHAPTER 7

CONCLUSIONS

The central statement of this thesis is:

Explicitly modeling the actions in games as planning operators allows an intel-

ligent system to reason about how actions and action sequences affect game-

play and to create new mechanics. An intelligent system facilitates human

iterative game design by learning design knowledge about gameplay and re-

ducing the number of design iterations needed during playtesting a game to

achieve a design goal.

Over the chapters in this thesis I demonstrated a series of systems that provide general

methods for modeling components of an iterative game design process 7.1. These systems

addressed four core components of the iteration cycle:

1. Generating games in a domain-agnostic manner (chapter 3)

2. Generating example behaviors from games to explore the ways players can play the

game (chapter 4)

3. Analyzing game designs in terms of how well the behaviors they afford meet design

goals for the game (chapter 5)

4. Iterating on the game design to choose the next candidate design to evaluate (chapter

6)

These systems each provide general tools for automating game design iteration, empha-

sizing general algorithms over specific techniques tailored to an individual game design

domain. Below I discuss each of the major systems in terms of their contributions and

future areas for development.
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Figure 7.1: Iterative design process (for games) schematic.

7.1 Game Generation

Game generation took a mechanic-centric approach to enable generation agnostic to a spe-

cific game domain, using AI planning as the guiding model to ground generation. The

system adapted traditional AI planning representations to provide a general and reusable

representation for functional elements of discrete, deterministic, turn-based games games.

This foundation allowed the generative system to create not only the mechanics in the

game, but also the levels of the game, progressions of the levels, and controls players used

in the game. Using planning as the underlying technology for agent behavior enabled the

system to generate a wide variety of games, unifying multiple aspects of game content and

mechanic generation within a single representational framework.

A shared foundational representation for game systems opens the scope for the creative

autonomy of generative systems. Procedural content generators now can consider how

pieces of content interact, allowing for broader variation in the types of games systems can

generate. Generative systems stemming from this framework will be able to reason about
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other games within this broad design space, allowing hand-off of creative products between

systems. An open question remains as to how these systems can potentially interface with

other existing generative systems, using their reasoning capabilities to improve artifacts not

initially created in their realm [40]. Doing so will further extend the already wide range of

novel creative artifacts encompassed by these models.

The mechanic generation and design iteration systems together provide ways to gener-

ate and refine the controls players have in games. This work begins to address how to give

players control in games, tackling how players make choices in games, rather than what

those choices are. As design is often about the ‘feel’ of a game, these advances hold the

potential to give computational creators better control over core aspects of player experi-

ence [211]. Future work can build on these efforts to fully generate and test a variety of

alternative control schemes, moving from choosing button mappings or control tuning to

choosing the appropriate control framework (e.g., joystick vs mouse) for a game.

7.2 Behavior Sampling

Behavior sampling is the problem of creating examples of player behavior for a given

game design. A stochastic planning algorithm—Monte Carlo Tree Search (MCTS)—was

presented as a general solution to action planning in the class of discrete, turn-based games

considered above. The key feature of MCTS used was the ability to parameterize agent

strength in terms of rollouts used, allowing the algorithm to serve as a general tool for

proxying varying player capabilities to plan ahead in turn-based games.

Many game design goals center on the choices player make in a game, requiring a

framework for measuring the actions available in a game, rather than the content available

for consumption. Four categories of metrics were presented that focus on the space of

actions in a game, addressing a range of levels of abstraction. Summary metrics measure

aggregate properties of the space of choices in a game. Atom metrics measure the use of

single actions (or the opportunity to take action) in a game. Chains measure sequences
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of actions in a game where players link together choices they make or respond to choices

made by others. Action spaces measure the trajectory of choices over a game to understand

how the space of choices evolves over the course of a game.

Combining action metrics with MCTS behavior samples from agents of varying skill

allows for evaluation of how well a design differentiates among agents of different skill.

Using this approach showed Scrabble effectively differentiates between agents of varying

skill, while an intentionally simplified Hearthstone variant did not. Developing metrics

centered around the actions in a game opens the way to shift the ways generative systems

function, moving from an emphasis on what content players visit to how players act.

Existing metrics for evaluating generative systems typically emphasize features of the

content produced by a system [26, 125, 179, 198, 207]. Action metrics provide a new set of

criteria to evaluate the space of choices available in a game. Comparing generated content

in terms of how well that content differentiates agents of varying skill further improves the

ways generative methods can be assessed. Combining existing approaches with these new

metrics allows generative methods to now better shape the choices players make at varying

levels of skill. Extending this approach to more aspects of modeling audiences in the future

will provide generative systems more ways to search for creative content of value to people.

In the future these systems could also use agents tuned to have human-like behavior as a

way to better proxy expected human reactions.

7.3 Gameplay Analysis

With the tools to generate and evaluate individual game design instances, design iteration

becomes the process of navigating the space of possible design variants to find those most

suited to design goals. An initial naive approach to choosing a design iteration generated a

large space of design variants by varying parameters of elements of the design (here cards in

a card battling game) and then sampling behaviors from each variant using MCTS. Picking

the best design variant from this space amounted to: (1) evaluating the desired action metric
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on behavior samples from every design variant and (2) selecting the variant with values

nearest to the design goal. With a space of design variants and their associated action

metric evaluations available, it was also possible to learn models to predict how changes

in the design variant would alter action metric outcomes. This modeling provides a form

of generalization around how design choices influence the space of play in a game. In the

future these models could be made into systematic and general design knowledge, similar

to the generality sought by the game generation system. Providing portable, general design

knowledge has the potential to enable systems to gradually explore a massive design space,

using accrued knowledge to find the areas of greatest value to explore. Design knowledge

could also help new generative systems, providing heuristic information to guide initial

generative efforts and improving the initial quality of generated artifacts.

Coupling models of how designs influence player behavior with the AL design itera-

tion models allows generative systems to more efficiently generate content. Using these

models, generative systems can effectively consider a broader range of generated artifacts

by saving effort from generating and evaluating low quality products. In the future this

approach could be integrated into generic tools for supporting other generative methods. A

general wrapper could provide these efficient search capabilities to systems built on other

frameworks, serving as a general way to amplify the creative efforts of other systems.

7.4 Design Iteration

Generating a space of designs and sampling behaviors from each design can be prohibitively

costly. As an alternative, active learning (AL) techniques enable a system to quantify the

trade off between expected improvement to a design and expected learning about a design

space. Using active learning enables a system to efficiently search the space of design

variants when optimizing for design goals including both goals for player objective perfor-

mance and subjective preference. Active learning can improve a wide variety of baseline

models for searching for a desired game among a space of game design variants, serving
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as a general tool to improve the efficiency of automated generation.

The AL design iteration model highlights the potential for reconsidering how creative

processes are modeled. Using AL for efficient iteration is a way to improve a wide variety

of creative systems, as most systems implicitly or explicitly evaluate candidate alternative

artifacts before creating a final product. This underscores the need for more general tools

to augment creative systems: what other aspects of creative processes remain unexamined?

For example, the systems in this thesis depend on explicit design goals. Are there com-

mon tools or frameworks for creating design goals? Evaluating whether goals are possible

and when to pursue them (or not)? Developing these kinds of models will be crucial to

continuing to extend the role computational creators play in creative processes.

Summarizing, the work in this thesis made a number of additional contributions to

techniques for game design automation:

• A planning representation for domain-agnostic mechanic generation

• Monte Carlo Tree Search for general agent modeling with differing skill to plan

• Four categories of action metrics to quantify the space of choices afforded by a game

• Learning predictive models for how different design features across a design space

predict different gameplay behavior outcomes

• Active learning algorithms to enable efficient selection of design variants to test

Each of these contributions lays groundwork for further research into general techniques

for automated game generation and design iteration.

7.5 Computational Creativity

The work in this thesis sheds light on key questions around the knowledge, processes, and

limitations of computationally creative systems. Creative systems will need to represent

and gather knowledge about their audiences (both intended and actual) to create artifacts

179



of that are seen as valuable. MCTS allowed one form of audience representation, capturing

the notion of skill in audiences and how that shapes the way an audience interacts with a

game. The AL system also used information from live audience reactions to refine a game

design, feeding back information about how individuals respond to the artifact to shape its

adjustment to best meet the design goals given to the system. Creative systems will also

need ways to represent their goals for created artifacts: the game generation system used

information on required failure and victory conditions while the AL system used goals in

terms of player behavior. The full spectrum of design goals from static—related to the form

of the artifact itself—to dynamic goals—related to the behavior induced by the artifact—

are necessary for creative systems to create products for an audience [81]. As creative

systems assume control over larger parts of the creative process the representation of and

reasoning about these goals will become increasingly important.

Predicting how artifacts will influence audience reactions is a core part of the iterative

creative process modeled in this thesis. The AL system used learned models of anticipated

design quality to guide choices of future design iterations. The gameplay analysis work

showed the potential for learning models to predict how audience behavior is influenced

by design features. Predicting audience behavior plays a key part in enabling creative

systems to intelligently choose how to alter a creative artifact and may play a role in human

creative processes as well. Integrating predictive modeling into computational creators

will be important as a means of enabling these systems to create artifacts tailored to their

intended audiences.

Computational limitations on creative processes played a key role in driving the de-

sign of the creative systems in this thesis. Behavior sampling using MCTS was used to

address computational limitations on modeling the space of all possible ways to play com-

plex games. The full generation of a design space for evaluation in the gameplay analysis

chapter illustrated the need for efficient design space navigation realized by the AL system.

In these and many other cases, creative systems are inherently limited by combinatorial
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explosions in the space of design choices involved in a creative artifact. Humans certainly

face similar limitations in their ability to consider a broad range of creative alternatives—

the systems in this thesis provide tools for computational creators to begin to overcome

these limitations. In the future the need for general ways to efficiently sample from spaces

of artifacts and behaviors will be crucial to expanding the level of control computational

creators have over the artifacts they create.

The systems in this thesis also have relevance to human creative practices. Game design

iteration has many mundane aspects that these systems help automate and support. MCTS

provides a way to automate the gathering of playtest samples for players of varying skill, in

turn providing designers with an algorithm for gathering initial proxies for player behaviors

in a game at different levels of skill. The AL system took an alternative approach to pro-

viding ways to automate the process of tweaking design variants even when humans are in

the loop. In both cases these systems demonstrate the potential for computational systems

to reduce the need for human creators to perform rote tasks, freeing time and attention for

more complex parts of the creative process.

New kinds of creative artifacts are now also possible with these systems. Humans

can use the AL system model to dynamically rebalance a live game, using human data to

continually tune features of the game without manual intervention. Particularly in cases

where games have many interacting systems an automated balancing system can provide

value by minimizing the unintended negative consequences of design changes. Rather

than treat a created game as a static artifact, these systems can enable an ever-changing

game that maintains desired design goals in response to shifts in player behavior (due to

new player behaviors, changes in the demographics of players, and so on). While existing

techniques for content optimization can make these changes, they do so while ignoring the

efficiency of their changes. Minimizing the number of changes enables creative systems to

be minimize the changes felt by players, creating a more seamless experience.

Beyond the artifacts created, creative processes can benefit from the models in this
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thesis as well. The action metrics provide new lenses on how players interact with a game at

the level of the choices they make. Comparing the choices of players at different skill levels

provides a new way to assess how well a design supports a space of alternatives (or not),

giving game creators new ways to consider whether a design is meeting their goals. The

gameplay analysis system learned models to predict how player behavior would (or would

not) be influenced by design changes. Creators stand to benefit from using these models to

understand the designs they have and can use the model predictions to guide design choices

to consider. Having on-demand predictions for the effects of a design change can greatly

benefit creators in finding the right design for their design goals.

Combined, the systems in this thesis provide tools to augment the craft of expert cre-

ators. To date, these systems all require creators sufficiently comfortable with program-

ming to express their design goals in some computational form (whether programmatic

definitions of success and failure or metrics for objective behavior). Many of the systems

developed, however, do not require direct human intervention: automated parameter tun-

ing can readily be defined by programmer-designers. To bring these systems to bear on

challenges faced by amateur creators will require further work to refine the paradigms for

expressing design spaces and goals to these systems.

7.6 Future Work

The systems in this thesis address core components of automated game design, but are

not integrated into an end-to-end pipeline and make strong assumptions about the kinds of

games to generate. While the systems each provide general tools for components of the

iterative game design process they do not function together in a single system. Developing

such a general system will require further integration of the output of different systems into

one another.

Game generation research as a field regularly faces challenges in integrating compo-

nents of large systems [37, 40]. Addressing integration requires shared platforms and
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representations that are relatively agnostic to the systems interfacing to these infrastruc-

tures. While shared platforms come with risks of narrowing the scope of research done in a

field, a lack of shared platforms can obstruct incremental improvement. In the future, game

generation systems will need ways to generate a wide array of content with a shared under-

lying representation for knowledge of that content. Providing an extensible representation

for such knowledge has the potential to greatly accelerate research into game generation in

specific and computational creativity in general by allowing systems to work together on a

shared artifact, rather than independently generate similar (but representationally distinct)

artifacts.

The systems in this thesis consider the question of game design in terms of a develop-

ment process where design goals are given and the task of design is to define the actions for

players to take. Game design, however, involves a host of related aesthetic decisions about

a game, ranging from the writing (if any) used, to how the user interface is shaped, to the

color palette for a game. An important open question for future work is to enable systems

to reason on these aspects of game design as well. This content will need a shared repre-

sentational platform to allow a system to integrate reasoning on these choices with other

choices such as the controls in the game or mechanics available. Human creators rarely

build a game “from scratch” using a single tool: art assets are created with art creation

programs, levels with level editors, music with sound creators, code in a programming lan-

guage, and so on. Yet humans can reason about how these different content choices relate.

This begs the question: how can a computational creator represent these diverse pieces of

information in a way that affords general reasoning on how to combine content toward a

broader aesthetic goal?

Questions of combining reasoning all pieces of game content highlight a key open prob-

lem from this thesis: reasoning on design goals. How should a design goal be evaluated?

The systems in this thesis considered goals for whether players can reach states in games

and metrics on player behaviors, but this leaves open the question as to how to represent
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the shared form of knowledge underlying these design goals. When and how should design

goals change? Creative practitioners regularly change their goals for a design in response

to audience reactions and learning about limitations of their chosen design space. Creative

systems to date have largely overlooked the choice of what to design toward to begin with,

leaving open the topic of how goals may evolve over time. This is particularly relevant

when creative systems go beyond creating single artifacts to producing a corpus of results:

a design goal may be deferred or limited for a current artifact to be later revisited in a future

generative project. While these aspects of human creative practice are relatively mundane,

automated creators are currently very limited in their abilities to represent and reason about

the goals they pursue for creative products, in turn limiting the ways these products can be

of value to their audiences.

Finally, the work in this thesis addresses a model of iterative game design practice.

Game design, however, is not unified under a single creative practice. For example, game

jam games often center on realizing a concept and aesthetic with relatively common choices

of game mechanics. For game jams, the process of translating an aesthetic to mechanics

is the main process for design [36, 37]. By contrast, “secret box” games focus on play-

ers experiencing an aesthetic with relatively few aesthetics and limited (if present) goals.

For “secret box” games, the process of building an aesthetic that players enjoy is the main

process for design [41]. These and many other types of game genres induce different hu-

man design practices, in turn leading to opportunities for research on different models for

computational game creation. Contrasting the creative processes modeled by these systems

can highlight commonalities among systems, identify new processes not addressed by ex-

isting work, and ultimately pave the way for systems that create new classes of artifacts

through entirely novel creative processes. Ultimately, future extensions of automated iter-

ative game design can further expand the ways we enable systems to create and provide

shared methods for reuse across such systems.

184



Appendices

185



APPENDIX A

GAME GENERATION SYSTEM IMPLEMENTATION

The game generation system was implemented using Answer Set Programming (ASP)

[8]—a form of declarative programming. Answer set solvers handle constraint satisfaction

problems and ASP specifically allows for optimization among answers (valid combinations

for the constraint solver). For this system I implemented the semantics for the domain def-

initions above and a planner in ASP. The constraint satisfaction problem then becomes

finding a valid set of mechanics that meet design requirements such that the planner can

meet playability requirements on given test game instances.

A.1 State Model

The state model defines ground predicates that will be used by the mechanic generation

process to define transition model predicates and the planner to define state (Table A.1).

For ASP all logical terms are statements ended with ‘.’, conjunctions are specified using

‘,’, and entailment is specified with ‘:-’. As syntactic sugar ‘..’ indicates a range of

values that are expanded into a set of individual facts: op range(player, xPos,

-1..1). becomes:

1 op_range(player, xPos, -1).

2 op_range(player, xPos, 0).

Entity(player) entity(player).
Parameter(xPos) parameter(xPos).
Has(player, xPos) has(player, xPos).

AbsRange(player, xPos, [1,8]) range(player, xPos, 1..8).
RelRange(player, xPos, [-1,1]) op range(player, xPos, -1..1).

Initial(xPos(player), 1) init((player, xPos, 1)).

Table A.1: Examples of ASP code to implement domain entities.
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mech(M) Mechanic index M
planop(Pop) Precondition or effect type Pop

One of: eq, neq, gt, lt, add, or set)
time idx(T) Point in time T
coord(C) Coordinate frame of reference C

One of: abs or rel
state(C, T, (E,P,V)) A valid state element for the entity parameter value

(E, P, V) at time T in coordinate frame C
op(M, Pop, C, T, S) Precondition or effect Pop of mechanic M

in coordinate frame C at time T defined by state S

Table A.2: Definitions for mechanics

3 op_range(player, xPos, 1).

The state model predicates all have direct translations into the ASP implementation as they

simply define literals and facts that are used by systems to generate mechanics or check

playability.

A.2 Mechanic Model

Mechanics are defined as a set of logical facts defining preconditions and effects that share

an index (Table A.2). Any precondition or effect takes the general form: op(M, Pop,

C, T, S). M defines a unique index for naming the mechanic to join together shared

preconditions or effects. Pop defines the part of the mechanic being specified. Precondition

may check for equality (eq), inequality (neq), a greater than (gt) or lesser than (lt)

relationship. Effects simply alter state through relative addition (add) or setting a value

(set). C defines the coordinate frame of reference to be absolute (abs) or relative (rel).

T defines the time index. state(C, T, (E,P,V)) is a predicate to define reusable

chunks of game state, which define the value for an entity’s parameter value ((E,P,V)) in

a coordinate frame at a point in time. An individual op(M, Pop, C, T, S) predicate

can define how a precondition should check game state, at which point in time, and relative

to which coordinate frame. Alternatively, the predicate can define how an effect should

update state at a point in time (where coordinate frame determines whether to alter a state
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value or set a value). Mechanics are defined by one or more of these predicates sharing an

index.

As an example mechanic, an RPG spell for damage can test for player mana being

greater than 0 and apply the effect of reducing the health of the enemy by one while also

costing the player 1 mana:

1 op(1, gt, abs, 1, (player, mana, 0)).

2 op(1, add, rel, 1, (enemy, health, -1)).

3 op(1, add, rel, 1, (player, mana, -1)).

In this example op(1, gt, rel, 1, (player, mana, 0)) checks for the game

state of player mana at the time of action (time index 1) and compares this to the value of

0 (an absolute value). op(1, add, rel, 1, (enemy, health, -1)) indicates

the effect of taking enemy health at the time of action and adding (a relative change) the

value of -1 to that health.

A.2.1 Mechanic Generation

The primary component of generating mechanics in ASP involves specifying a set of me-

chanic indices and allowing the choice of ground terms for the variables in those mechanics.

To do so, we define the allowed ground values for each of the terms making up mechanics.

We then define how to choose ground terms for the variables that make up a mechanic. The

core component of mechanic generation is:

1 mech(1..nmech).

2 planop(set;add; eq;neq;lt;gt).

3 time_idx(1..time_max).

4

5 state(rel, T, (E,P,V)) :-

6 coord(rel), time_idx(T), op_range(E,P,V).

7 state(abs, T, (E,P,V)) :-
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8 coord(abs), time_idx(T), range(E,P,V).

9

10 0 { op(M, Pop, C, T, S) : state(C,T, S) } nop :-

11 mech(M), planop(Pop).

The first three lines define the elements of mechanics, taking as input the number of me-

chanics desired (nmech) and maximum game length (time max). Note that ‘;’ is used

to enumerate sets of discrete facts while ‘..’ enumerates ranges of integer values. The

next two logical sentences derive all allowed state predicates for absolute or relative ranges

of values (which are defined separately by the game domain). The state values are derived

using entailment (:-) from conjunctions (,) of a coordinate frame, time, and relative or

absolute range of allowed values. Note that ASP entailment is the reverse of standard logic

syntax: derived literals appear on the left of the entailment symbol and the term being

derived from appears on the the right.

The final sentence generates mechanics using ASP’s syntax for a choice rule: a decision

of how to choose ground values for variables. The outside braces and values define bounds

on the count of predicates allowed between the left and right braces: here we allow between

0 and nop (an input maximum) of op predicates. The : within the braces indicates that

S may be chosen to take any value defined by the state predicates—this ensures mechanics

may only manipulate valid game states. The entailment makes choices for combinations

of mechanics and their preconditions or effects—this leads to making choices for every

mechanic for every type of precondition and effect. Together this final statement defines a

mechanic as having between 0 and nop of each type of precondition or effect by choosing

which valid game states the mechanic operates on. Those states are in turn derived from

valid coordinate frames, points of time, and allowed values for a state (in an absolute or

relative coordinate frame).
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A.2.2 Design Requirements

Design requirements come as hard constraints or soft optimization criteria. ASP provides

syntax for forbidding logical terms from being allowed by using an empty entailment. Hard

constraints are readily expressed using this syntax by specifying conjunctions of mechanic

elements (op predicates) that are not desired. For example, to prevent a mechanic for have

a precondition of both equality and inequality on the same state we use:

:- op(M, neq, C, T, S), op(M, eq, C, T, S).

which defines a conjunction of the same mechanic testing both inequality (neq) and equal-

ity (eq) and marks this as forbidden through the empty entailment (:-, where nothing is

‘derived’ on the left-hand side). The Invalid proposition was used above to indicate this

derivation.

Soft optimization criteria make use of ASP’s optimization syntax. #minimize is used

to define sets of predicates to minimize the count of (which may be weighted by values of

the predicates). The example below derives a set of predicates expressing the use of types

of preconditions my mechanics and then uses a #minimize statement to reduce the total

number of any of these preconditions used by mechanics:

1 eq(M,C,T,S) :- op(M,eq,C,T,S).

2 neq(M,C,T,S) :- op(M,neq,C,T,S).

3 lt(M,C,T,S) :- op(M,lt,C,T,S).

4 gt(M,C,T,S) :- op(M,gt,C,T,S).

5

6 #minimize[

7 eq(_,_,_,_),

8 neq(_,_,_,_),

9 lt(_,_,_,_),

10 gt(_,_,_,_),
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11 add(_,_,_,_) ].

where ‘ ’ is the ASP syntax indicating a variable in a predicate that will not be referenced

for its value in the logical sentence. Other design requirements on mechanic structure can

be expressed similarly. For example, cost-benefit balance can be described by deriving

predicates that express the difference between costs and benefits and minimizing the abso-

lute value of that difference.

A.3 Planner

Playability checking uses a planner to test whether a given set of mechanics can be used in

a game instance to move from an initial state to a goal state without entering failure states.

The planner tracks state through predicates for absolute world coordinates and coordinates

relative to agents (those that may use mechanics). For clarity in exposition we focus on the

base planning capabilities without considering multi-instance cases or agents with multiple

goals.

The core components of state tracked by the planner are expressed with:

1 fluent(F) :- op(_,_,_,_,F).

2 fluent(F) :- init(F).

3 fluent(F) :- query(F).

4 fluent(F) :- fail(F).

5

6 holds(0,P) :- init(P).

7 sense(T, (E,P, V-Vplayer)) :-

8 holds(T, (E,P, V)),

9 holds(T, (player,P, Vplayer)).

The first four lines derive fluents that express changing game state from mechanics (op),

initial state (init), goal state (query), or failure state (fail). Absolute game state is
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tracked using holds(T,F), where T is a time index and F is a state fluent. The absolute

game state is initialized at time 0 from the initial state predicates (which are provided in a

game domain). Relative game state is derived from the holds predicates by computing the

difference in fluent specifications for state values between the player and any other entity.

With state tracking, the planning problem consists of choosing an action at each time

step for the player to take such that the goal state is reached without entering failure states.

State transitions track the occurrence of mechanics over time while enforcing conditions

on how mechanics are used:

1 time(1..t).

2

3 1 { occ(T,A) : mech(A) } 1 :- time(T).

4

5 :- occ(T,A), eq(A,rel,Td,F), not sense(T-Td,F).

6 :- occ(T,A), eq(A,abs,Td,F), not holds(T-Td,F).

where % is the comment syntax in ASP. The first line defines the time predicate to track

each time step possible in the game from an input parameter t. Line 3 uses ASP’s choice

syntax to decide which mechanic occurs at a time step (occ(T,A)) among the mechanics

(mech(A)) for each time step (time(T)). The braces indicate exactly one mechanic

(between 1 and 1) must be chosen and the entailment from time steps indicates a choice

for each time step. The colon within the braces indicates the choice among the set of

mechanics. This sentence expresses the element of choosing the actions in the plan—the

remaining aspects of the planner use this choice to update state while performing checks to

ensure the set of choices meet playability requirements.

The following two lines express constraints on when mechanic occurrences are possi-

ble (similar statements are used for the remaining constraints). The first term expresses

a conjunction of a mechanic occurring at a time (occ(T,A)) where the mechanic has

an relative (rel) equality constraint for a value (F) at a time difference (Td) and the
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case that the player does not sense that relative value at the appropriate time difference

(sense(T-Td,F)). This conjunction is forbidden through the empty entailment. The

second conjunction is similar, only checking absolute coordinates (abs) and using the cor-

responding holds predicate instead.

The logic to express state update predicates is slightly more complex, making use of

intermediate predicates to hold state update values:

1 add_action(T+Td-1,A, (E,P,V)) :-

2 occ(T,A), add(A, rel, Td, (E,P,V)).

3

4 add_value(T, (E,P,V)) :-

5 V = #sum[ add_action(T,M,(E,P,Vd)) : mech(M) :

6 value(Vd) = Vd ],

7 time(T), entity(E), parameter(P).

8

9 holds(T, (E,P, V+Vd)) :-

10 holds(T-1, (E,P, V)),

11 add_value(T, (E,P,Vd)).

12

13 holds(T, (E,P, V)) :-

14 holds(T-1, (E,P, V)), time(T),

15 { add_value(T, (E,P,_)) } 0.

The first sentence derives when a state update should occur based on when a mechanic oc-

curs and the effects of that mechanic (add).

The second line aggregates across the additions made by all mechanic effects at a time

step using the ASP predicate for calculating a sum (#sum). The statement inside the square

braces extracts the value change from every add action across mechanics (lines 5-6).

The #sum then sums up these values and assigns this value to a variable (V). The sum
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is computed for every combination of times, entities, and parameters, expressed through

the conjunction with these variables (line 7). Together, this statement sums up the updates

made across mechanics for each time step to compute the single state update (add value)

to occur for a given entity and parameter combination at a time.

The third logical sentence (lines 9-11) applies the state update to absolute game state.

The state at a given point in time is derived from the prior state value (holds(T-1,

(E,P,V)) and the addition to be made to that state (add value(T, (E,P,Vd)). Note

that sensed state does not require a direct update as it is derived from absolute state.

The fourth sentence (lines 13-15) addresses the case where an entity parameter value

has no value updates. In this case the current state is assigned to the same value as the

previous state. The final part of the conjunction uses ASP’s counting syntax (the braces) to

find the state where there are no more than 0 predicates indicating to update an entity and

parameter pair—i.e., there is no update to the entity parameter combination.

The only remaining aspect of planning is to ensure the choices of actions meet playa-

bility requirements. As a base requirement, no plans must ever leave the allowed range of

absolute state values:

1 bad_holds :- holds(T, (E,P,V)), not range(E,P,V).

2 :- bad_holds.

The first line derives a proposition for the case where a state holds a value not allowed by

any of the absolute state predicates. This proposition is forbidden, preventing any case of

the state leaving allowed values. A similar approach enforces the playability requirements:

1 win :- query(F), holds(_,F).

2 :- not win.

3

4 failure :- fail(F), holds(_,F).

5 :- failure.
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The first sentence checks for the goal state holding at a point in time and the second forbids

the case that this does not occur. The second sentence checks for any failure state holding

at a point in time and forbids this from occurring.

A.4 Domain Example

Defining domains for mechanic generation consists of specifying the entities, parameters,

and allowed absolute and relative ranges for the game. The simplified platformer domain

used to generate the lift and ride mechanics above can be defined using:
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1 entity(player;enemy; b1;b2;b3;b4;b5;b6;b7;b8;b9;b10).

2

3 parameter(x; y).

4

5 has(player,x;y).

6 range(player,x,1..8).

7 range(player,y,1..5).

8

9 has(enemy,x;y).

10 range(enemy,x,1..8).

11 range(enemy,y,1..5).

12

13 has(b1;b2;b3;b4;b5;b6;b7;b8;b9;b10, x;y).

14 range(b1;b2;b3;b4;b5;b6;b7;b8;b9;b10, x,1..8).

15 range(b1;b2;b3;b4;b5;b6;b7;b8;b9;b10, y,1..5).

16

17 op_range(player,x,-2..2).

18 op_range(player,y,-2..2).

19

20 op_range(enemy,x,-2..2).

21 op_range(enemy,y,-2..2).

The first statement creates entities for the player, enemy, and blocks making up the ground

and second statement defines the spatial coordinate parameters. The player is allowed al-

lowed to occupy positions in the grid from (1,1) to (8,5) in Cartesian coordinates (lines

5-7); similarly for the enemy (lines 9-11) and all of the blocks (lines 13-15). Mechanics

are allowed to move the player by 2 units in either direction (lines 17-18); the same for

the enemy (lines 20-21). By not defining allowed ranges for changes to block position the
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mechanic generation can only alter the player or enemy position with mechanics.

The level instance can then be created by initializing the player, enemy, and block

positions:

1 init( (player,x,1) ).

2 init( (player,y,2) ).

3

4 init( (enemy,x,4) ).

5 init( (enemy,y,2) ).

6

7 query( (player,x,8) ).

8 query( (player,y,5) ).

9

10 init( (b1;b2;b3;b4;b5;b6;b7;b8, y,1) ).

11

12 init( (b1, x,1) ).

13 init( (b2, x,2) ).

14 init( (b3, x,3) ).

15 init( (b4, x,4) ).

16 init( (b5, x,5) ).

17 init( (b6, x,6) ).

18 init( (b7, x,7) ).

19 init( (b8, x,8) ).

The player is initialized to the position (1,2) (lines 1-2) and the enemy to (4,2) (lines 4-5)

with the player goal being to reach the position (8,5) (lines 7-8). All blocks are arranged

along the same y position and given x positions to create a solid ground across the level.

We next add gravity as an engine constraint:

1 op(0, add, rel, 1, (player,y,-1)).
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2 occ(T,0) :- time(T).

Where the first statement defines the mechanic of gravity moving the player down a single

unit on the y axis and the second statement derives that mechanic (index 0) at each time

step. Note this code defines gravity for the player—the same statements can be added for

any other entity of interest.

Finally, we define failure by the player occupying the same location as the enemy:

1 loc(T,E,(X,Y)) :- holds(T,(E,x,X)), holds(T,(E,y,Y)).

2 dead(T) :- loc(T,player,Location),

3 loc(T,E,Location), E!=player.

4 failure :- dead(_).

The first statement derives a location predicate from the conjunction of an entities x and

y coordinates. The second statement defines the dead predicate as occurring when the

location of the player and another entity is the same. The final statement derives failure

from being dead at any time. This case illustrates more complex failure checks by using

the same failure predicate checked in the planner when validating basic failure cases (e.g.,

the player reaching a specific location in the world).
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APPENDIX B

CARDONOMICON CARDS

Table B.1: Cards used in Cardonomicon experiments.
Card Name Health Cost Attack

Stonetusk Boar 1 1 1
Dire Wolf Alpha 2 2 1
Defias Ringleader 1 2 2

Kobold Geomancer 2 2 2
Ironfur Grizzly 2 2 1

SI Agent 1 2 2
Fen Creeper 7 5 3

Southsea Captain 4 4 5
Abusive Sergeant 1 1 1
Angry Chicken 1 1 1

Blood Imp 1 1 1
Super OP 2 3 1

Aldor Peacekeeper 3 3 3
Arcane Golem 2 3 4
Dalaran Mage 4 3 1
Dark Cultist 4 3 2

Scarlet Crusader 1 3 3
Ancient Brewmaster 6 4 3

Chillwind Yeti 5 4 4
Boulderfist Ogre 7 6 6
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APPENDIX C

LEARNED DESIGN HYPOTHESES

In chapter 6 I presented a number of predictive models learned by the system about how

card parameters influence game outcomes. Below are a set of more complex models the

system learned that account for interactions between the game length and action metrics

as well as the influence of agent parameters on action metrics. These models illustrate

the potential to acquire more complex knowledge through iteratively considering a set of

alternative design hypotheses. Note that I provided the choice of parameters to consider in

the model, thus these are not yet fully automated learned models.

C.1 Game Length

The game length model learned in chapter 5 only accounted for card parameters, ignoring

any influence of agent strength on the length of games. Skill-based design metrics are

intended to help understand when a design does (not) respond to differences in play skill,

thus I had the system model a model of how player skill influences game length along

with card parameters. Adding features for agent strength relative to the baseline weak

Game length vs card and agent parameters
feature coefficient

attack = 4 0.97
attack = 7 0.94
health = 4 1.00
health = 7 1.00
cost = 4 1.04
cost = 7 1.04

p1 moderate 1.05
p2 strong 1.01

Table C.1: Effect of card and agent parameters on game length. Bold values indicate
significance (p < 0.05)
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Attack frequency vs card and agent parameters
feature coefficient

player = moderate 1.03
player = strong 1.03

attack = 4 0.77
attack = 7 0.82
health = 4 1.56
health = 7 2.23
cost = 4 0.64
cost = 7 0.28

player = moderate X attack = 4 1.09
player = moderate X attack = 7 0.87

player = strong X attack = 4 1.08
player = strong X attack = 7 0.86

player = moderate X health = 4 1.04
player = moderate X health = 7 0.98

player = strong X health = 4 0.93
player = strong X health = 7 0.95
player = moderate X cost = 4 0.91
player = moderate X cost = 7 0.87

player = strong X cost = 4 0.94
player = strong X cost = 7 1.00

Table C.2: Effect of card and agent parameters on card attack rates. Bold values indicate
significance (p < 0.05).

agent showed the strength of the first agent to very modestly increase game length, with

the strength of the second agent only having marginal significance (p < 0.1) (Table C.1).

As before, greater attack parameter values predicted reduced game length while greater

cost parameter values predicted increased game length. Thus, the system learned how to

account for the effects of agent skill on game length, finding these to be comparatively

weak effects against the main effects of card parameters.

C.2 Card Attack Rates

Agent strength may influence more than game length, potentially altering the rate at which

agents choose to play or attack with cards. To test this case the system learned a model that

included the strength of the focal player in the game and interactions of this player with the
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Play frequency vs card and agent parameters
feature coefficient

player = moderate 1.05
player = strong 1.05

attack = 4 0.95
attack = 7 0.99
health = 4 1.05
health = 7 1.02
cost = 4 0.82
cost = 7 0.48

player = moderate X attack = 4 0.96
player = moderate X attack = 7 0.94

player = strong X attack = 4 0.95
player = strong X attack = 7 0.91

player = moderate X health = 4 0.97
player = moderate X health = 7 0.95

player = strong X health = 4 1.01
player = strong X health = 7 0.99
player = moderate X cost = 4 0.99
player = moderate X cost = 7 1.05

player = strong X cost = 4 1.04
player = strong X cost = 7 0.96

Table C.3: Effect of card and agent parameters on card play rates. Bold values indicate
significance (p < 0.05).

card parameters (Table C.2). As in the predictive model for card parameters’ influence on

rates of playing the “Stonetusk Boar” card, the card cost, health, and attack values had the

same effects. Player strength, however, had no significant effects. Thus, the system learned

that, as in the base game, the design variants did not find scenarios where agent strength

had a significant effect on agent action choices in the game.

C.3 Card Play Rates

As with card attack rates, the system also learned a model of the effect player strength

had an on card play rates (Table C.3). The model accounted for the interaction of player

strength with card parameters in the Poisson regression model. Only card cost appeared

as a significant effect, and this effect was that greater costs reduced card play frequency.
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Attack option frequency vs card and agent parameters
feature coefficient

player = moderate 1.05
player = strong 1.05

attack = 4 0.95
attack = 7 0.99
health = 4 1.05
health = 7 1.02
cost = 4 0.82
cost = 7 0.48

player = moderate X attack = 4 0.96
player = moderate X attack = 7 0.94

player = strong X attack = 4 0.95
player = strong X attack = 7 0.91

player = moderate X health = 4 0.97
player = moderate X health = 7 0.95

player = strong X health = 4 1.01
player = strong X health = 7 0.99
player = moderate X cost = 4 0.99
player = moderate X cost = 7 1.05

player = strong X cost = 4 1.04
player = strong X cost = 7 0.96

Table C.4: Effect of card and agent parameters on card attack option rates. Bold values
indicate significance (p < 0.05).

Thus, as with card attack rates, card parameters do not interact with agent strength to alter

choices of cards to play. This further reinforces the notion that Cardonomicon does not

effectively differentiate agent skill levels.

C.4 Card Attack Options

Learning a model of the relationship between agent strength interacted with card param-

eters produced similar outcomes between the attack option and attack action cases (Ta-

ble C.4). Agent parameters had no significant effect, and only one significant interaction

effect with card attack. All baseline card parameters had a significant effect. As before,

this learned predictive model suggests Cardonomicon has a shallow strategic space where

card features dominate.
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Play option frequency vs card and agent parameters
feature coefficient

player = moderate 0.94
player = strong 0.89

attack = 4 0.93
attack = 7 0.86
health = 4 0.93
health = 7 0.86
cost = 4 1.33
cost = 7 1.10

player = moderate X attack = 4 1.00
player = moderate X attack = 7 1.09

player = strong X attack = 4 1.03
player = strong X attack = 7 1.08

player = moderate X health = 4 1.03
player = moderate X health = 7 1.15

player = strong X health = 4 1.10
player = strong X health = 7 1.18
player = moderate X cost = 4 1.12
player = moderate X cost = 7 0.99

player = strong X cost = 4 1.14
player = strong X cost = 7 0.96

Table C.5: Effect of card and agent parameters on card play option rates. Bold values
indicate significance (p < 0.05).

C.5 Card Play Options

The system also learned a model for how agent strength interacted with card parameters to

influence card play options (Table C.5). Agent strength interacted significantly with high

health settings, suggesting stronger agents are better able to take advantage of additional

card health. Overall, however, the lack of other significant results suggests agent strength

does not strongly interact with card parameters, as seen with the card play rates earlier.

Together the models learned in this section demonstrate how an automated system can

evaluate the potential effectiveness of a design to differentiate among agents of differing

skill. The models learned here show little or no significant effect of agent strength on card

use, with a modest influence on game length. Enabling a system to search for and discon-
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firm these relationships can ultimately improve techniques for procedural generation by

learning which aspects of a design space to ignore for more efficient sampling of potential

designs. The models here further reinforce the capability of learned models to detect design

flaws by identifying when design goals (such as different agent choices based on skill) are

not met.
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tomatic game progression design through analysis of solution features,” in
ACM SIGCHI Conference on Human Factors in Computing, 2015.

[24] E. Butler, A. M. Smith, Y.-E. Liu, and Z. Popović, “A mixed-
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[88] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yan-
nakakis, “Evolving personas for player decision modeling,” in
2014 IEEE Conference on Computational Intelligence and Games, 2014.
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the interactive drama Façade,” Carnegie Mellon University, Tech. Rep., 2002.

[129] M. Mateas and N. Wardrip-Fruin, “Defining operational logics,” in DiGRA, 2009.

[130] Maxis, Spore, Game [Windows, Mac, iOS], Electronic Arts, 2008.

[131] J. McCoy, M. Treanor, B. Samuel, A Reed, M. Mateas, and
N. Wardrip-Fruin, “Social story worlds with Comme il Faut,”
IEEE Trans. Computational Intelligence and AI in Games, vol. 6, no. 2, pp. 97–
112, 2014.

[132] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,
and D. Wilkins, “PDDL - the planning domain definition language,” Yale Center
for Computational Vision and Control, Tech. Rep., 1998.

[133] B. Medler, “Play with data — an exploration of play analytics and its effect on
player expereinces,” PhD thesis, Georgia Institute of Technology, 2012.

[134] Mojang, Minecraft, Game [Windows, Mac, Linux, Android, iOS, Xbox 360, Xbox
One, PlayStation 3, PlayStation 4, PlayStation Vita, Raspberry Pi, Wii U], Mojang
and Microsoft Studios, 2011.

[135] Monolith, F.e.a.r. Game [Windows, Xbox 360, PlayStation 3], Sierra Entertain-
ment, 2005.

[136] R. G. Morris, S. H. Burton, P. M. Bodily, and D. Ventura, “Soup
over bean of pure joy: Culinary ruminations of an artificial chef,” in
3rd International Conference on Computational Creativity, 2012, p. 119.

[137] Mossmouth, Spelunky, Game [Windows, Xbox 360, PlayStation 3, PlayStation 4,
PlayStation Vita, Chrome OS], Mossmouth, 2008.

[138] Namco, Pac-Man, Game [Arcade], Namco, 1980.

216



[139] M. J. Nelson, “Game metrics without players: Strategies for understanding game
artifacts,” in 1st Workshop on Artificial Intelligence in the Game Design Process,
2011.

[140] M. J. Nelson and M. Mateas, “Recombinable
game mechanics for automated design support,” in
4th AAAI Conf. on Artificial Intelligence and Interactive Digital Entertainment,
2008.

[141] M. J. Nelson and A. M. Smith, “ASP with applications to mazes and levels,” in
Procedural Content Generation in Games, Springer, 2015.

[142] T. S. Nielsen, G. A. B. Barros, J. Togelius, and M. J. Nel-
son, “Towards generating arcade game rules with VGDL,” in
2015 IEEE Conference on Computational Intelligence and Games, 2015.

[143] T. S. Nielsen, G. A. Barros, J. Togelius, and M. J. Nelson, “General
video game evaluation using relative algorithm performance profiles,” in
Applications of Evolutionary Computation, Springer, 2015.

[144] Nintendo R&D4, Super Mario Bros. Game [Nintendo Entertainment System], Nin-
tendo, 1985.

[145] A. Normoyle, J. Drake, M. Likhachev, and A. Sa-
fonova, “Game-based data capture for player metrics.,” in
AAAI Conf. on Artificial Intelligence and Interactive Digital Entertainment,
2012.

[146] B. O’Neill and M. Riedl, “Supporting human creative story authoring with a syn-
thetic audience,” in 7th ACM Conference on Creativity and cognition, ACM, 2009,
pp. 399–400.

[147] J. Orkin, “Agent architecture considerations for real-time planning in games,”
in 1st AAAI Conf. on Artificial Intelligence and Interactive Digital Entertainment,
2005.

[148] J. Ortega, N. Shaker, J. Togelius, and G. N. Yannakakis, “Imitating human playing
styles in super mario bros.,” Entertainment Computing, vol. 4, no. 2, pp. 93–104,
2013.

[149] J. Orwant, “Eggg: Automated programming for game generation,”
IBM Systems Journal, vol. 39, no. 3.4, pp. 782–794, 2000.

217



[150] J. Osborn, A. Grow, and M. Mateas, “Modular computational critics for games,”
in 9th AAAI Conf. on Artificial Intelligence and Interactive Digital Entertainment,
2013.

[151] J. C. Osborn and M. Mateas, “A game-independent play trace dissimilarity metric,”
in 9th International Conference on the Foundations of Digital Games, 2014.

[152] J. C. Osborn, B. Samuel, J. A. McCoy, and M.
Mateas, “Evaluating play trace (dis)similarity metrics,” in
10th AAAI Conf. on Artificial Intelligence and Interactive Digital Entertainment,
2014.

[153] D. Perez, Spyridon, J. Togelius, T. Schaul, S. M. Lucas, A. Couëtoux, J. Lee, C.-
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