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SUMMARY

The vertically integrated utility market within the U.S. is undergoing rapid changes due to

the rise of small-scale distributed power generation known as microgrids, which are local networks

of power generation and distribution typically serving a demand less than 40 MW. Primary drivers

for microgrid investment are the performance benefits these systems return to their owners, which

include increased reliability, reduced emissions and reduced operating costs. We define a novel

modeling methodology to represent the microgrid as an integrated system of the demand and sup-

ply. Previous work to develop an integrated system model does not adequately model the building

thermal demand, incorporate a modelers knowledge of the grids availability or allow for a user to

model their tolerance for unmet demand. To address these modeling issues, we first demonstrate a

technique for representing a building stock as a reduced order hourly demand model. Next, as de-

mand side measures are typically defined at the building level as discrete options, we demonstrate

a technique for converting a large discrete optimization problem into a simplified continuous vari-

able optimization problem through the use of Pareto efficient cost functions. The reduced problem

specification results in 90% fewer function evaluations for a benchmark optimization task. Then,

we incorporate two new features into the Distributed Energy Resource Customer Adoption Model

(DER-CAM) developed by Lawrence Berkeley National Laboratory (LBNL) that allow users to

define grid outage scenarios and their limit of expected energy demand not served. Applying the

integrated model to a microgrid design scenario return solutions that exhibit on average an 8% total

annual cost reduction and 18% reduction in CO2 emissions versus a Supply Only case. Similarly,

the results on average reduce total annual cost by 5% and annual emissions by 17% for a Demand

First case. In summary, we present a modeling methodology with application to joint decision mak-

ing that involve renewable power supply, building systems and passive building design measures

and recommend this model for performance based microgrid design.

xii



CHAPTER I

PROBLEM FORMULATION

1.1 Challenges of Energy Service Provision

Energy services play a pivotal role in modern society such as heat for cooking, compressor work

for air conditioning, pump work for moving chilled water, etc. Deriving energy services, however,

has a variable cost both to the end user and society at large. End user costs generally refer to the

rate paid for a specific energy carrier while societal costs may refer to abstract costs such as the

increased risk of illness in areas near to large power plants. This cost variability is because energy

carriers come in a variety of forms. For instance, cooking heat may be derived by either burning

biomass, natural gas in a grid connected home or via electric resistance.

The U.S. electric grid efficiently and reliably links distributed sources of generation to millions

of residential, commercial and industrial end-users at a near global standard of quality, adequacy and

reliability. The U.S. grid is a continuously operating, interstate transmission system subject to both

federal and state laws managed and monitored by more than 3000 organizations (Kassakian et al.,

2011). The scale of the grid, however, is both benefit and obstacle (Razanousky and Hyams, 2010).

Benefits of scale include the ability to deploy large, high-efficiency power generation plants such as

megawatt scale coal-fired steam generators, which account for approximately 25% of U.S. primary

energy consumption (EIA, 2011). Obstacles of scale include the inability to rapidly improve grid

telecommunications technology, the cost to upgrade transmission and distribution infrastructure and

the cost of regular maintenance (Razanousky and Hyams, 2010). Razanousky and Hyams (2010)

note that the cost to maintain the current level of electric power consumption is $200 billion per

year, with approximately $10 billion per year in damages due to unplanned outages.

The U.S. electric grid also produces a number of societal costs due to the use of fossil fuels,

which has numerous environmental impacts such as contributing to global warming and pollution

of air, water and land (Hansen et al., 2016). Fossil fuels consumption also contributes to increased

global and political conflict because nations compete for better access and control over these limited

1



resources. Renewable power generation is a viable alternative to fossil fuel consumption, but inte-

grating renewable power into national energy supply systems is difficult as these resources are often

at odds with existing infrastructure due to their variable production output (McGlade and Ekins,

2015).

1.2 What is the importance of microgrids?

Distributed generation (DG) and distributed energy resources (DERs) have emerged in response

to the challenges of energy service provision mentioned in Section 1.1. Ackermann et al. (2001)

defines distributed generation as:

Distributed Generation: A source of active electric power connected either directly to

the distribution network or on the customer side of the meter.

Examples of DG include photovoltaics, wind power generators, conventional fuel powered gen-

erators, combustion turbines and fuel cells. DG’s primary purpose is active power generation for

local consumption. DERs incorporate DG, but broadens the scope to include energy storage tech-

nologies and control devices and communications (Razanousky and Hyams, 2010).

Microgrids are aggregations of DERs and loads into larger systems. A physical microgrid ag-

gregates these systems via real distribution equipment such as wires, cabling and pipes. In contrast,

a virtual microgrid coordinates DERs and building demand with the extant macro-grid across mul-

tiple end-users via existing distribution networks and software. Virtual microgrids are outside the

scope of this dissertation and instead we focus on investment decisions regarding physical micro-

grids (Razanousky and Hyams, 2010):

Physical Microgrid: A small (<40 MW), local energy system with integrated loads (i.e.,

demand from multiple sources) and distributed energy resources - producing electric

or both electric and thermal energy - which can operate connected to the traditional

centralized electric grid or autonomously from it, in an intentional island mode.

A key characteristic of a microgrid is the ability to intelligently coordinate the thermal and

electric power flows between a number of energy end-users and distributed generation resources.

This coordination is often capable of bi-directional flow, electric power sales and energy storage.

2



Microgrids encourage the use of more renewable power generation due to their advanced power

electronics and help to alleviate stress on the external grid at times of high demand through the

ability to operate in an islanded mode. In general, microgrids function to increase power reliability,

decrease power purchases during times with adverse pricing, reduce environmental impact of power

consumption and generate revenue through renewable power sales to the grid.

Reliability alone has driven a great deal of the interest in microgrids especially in the wake of

large-scale grid outages (Campbell, 2012; Halverson and Rabenhorst, 2013; Wood, 2016b). The

demand for high performing microgrids continues to grow and market reports project a $20B in-

vestment in microgrids globally and $3.5B in the U.S. by 2020 (Wood, 2015). Yet this growing

market still faces challenges during the design phase. For example, predicting the performance of

a microgrid based on measures of reliability has proven difficult and as a result few to no insur-

ance products exist that insure or guarantee performance outcomes of microgrids (Jones, 2015).

Section 1.3 describes several of the reasons why evaluating microgrid performance is difficult and

reviews steps taken in the microgrid design literature to improve aspects of microgrid performance

prediction and analysis.

1.3 Why are microgrid investment decisions difficult?

Hazelrigg (2012) defines a rational decision as an allocation of resources to achieve an aim that does

not result in a sure loss, but rather maximizes the utility of the outcome to the decision maker. Hence

the decision to purchase the technology that realizes a particular microgrid system design is an

investment decision. While the objectives of microgrid design appear simple, rationally evaluating

microgrid design options is difficult; decision makers must evaluate system performance in terms of

reliability as well as economic and environmental value. Two important characteristics of microgrid

systems that contribute to the difficulty of designing these systems are: (1) the number of uncertainty

sources that affect system performance and (2) the technical system of interest is composed of

interacting sub-systems that generate both demand and supply.

Fundamentally, systems and engineering design involves complex decision making in reference

to physical systems with non-intuitive behavior. To achieve rational decisions then requires the in-

troduction of a performance based approach to design that ensures expected outcomes align with the

3



Figure 1: The performance based design framework focuses on the development of models whose
outputs serve as estimates of reality. Model output is then used to quantify the performance of the
systems represented in accordance with a client’s preference. Adapted from (Hensen and Lamberts,
2012, Ch. 2)

preferences of the decision maker. A decision maker must predict outcomes of the technical system

of interest via an abstract model that captures the idealized design specifications. This idealized

model is then interrogated through a “virtual experiment” designed to elicit the underlying system’s

performance (Fig. 1). Observed states of the model under a specified experimental scenario are ag-

gregated into metrics of performance in accordance with indicators that reflect the desired functional

criteria (Hensen and Lamberts, 2012, Ch. 1). Current methods for predicting microgrid system per-

formance, however, are insufficient as they neither account for major sources of uncertainty nor do

they model the interacting sub-systems of supply and demand simultaneously.

During the design phase, the actual performance of the system can not be known as it will hap-

pen in the future and is therefore uncertain. Sources of uncertainty in reality include: thermal and

electric power demand profiles, the utility’s reliability (i.e., failure frequency and duration), power

generation from renewable sources, reliability of DERs, control system reliability, construction is-

sues and maintenance. Performance based modeling can never remove all sources of uncertainty as

some of these sources are not included in idealized design models because they either do not war-

rant addition relative to other technical aspects being modeled or their effects and occurrences can

not be predicted. Accounting for sources of uncertainty alone is not enough for a decision maker to

adequately search the design space for the most preferred solutions; the technical system’s model
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must be complete and capture all elements of the system that fulfill a particular function.

Microgrid systems must fulfill the function of supplying power, which has two coupled ele-

ments: supply and demand. Demand exists to meet a particular function and the supply exists to

ensure the demand can be met. A number of factors affect the demand of a microgrid system:

building function, use, mechanical systems, controls, envelope, form, and occupancy; presence of

auxiliary needs (e.g., plug-in electric vehicles (PEVs), industrial applications) and location. While

demand and supply are coupled elements of the power supply function of microgrids it is impor-

tant to note that not all microgrid design scenarios exhibit joint decision making power over both

the supply and demand. For example a regional utility may undertake microgrid planning for sev-

eral areas under its control, but while the utility may incentivize end-users to reduce demand it

has no power to make decisions regarding these end-users. In contrast, Stadler et al. (2014) show

that a university with joint decision making power regarding individual building demand and DER

technology investments will select more preferred designs when considering demand and supply

decision variables simultaneously.

There are a number of microgrid business models that exhibit joint decision making power over

both the supply and demand decision variables. This dissertation focuses on these particular busi-

ness opportunities as the modeling of microgrid systems in these contexts generally lacks both a

comprehensive framework for assessing reliability and the ability to experimentally investigate the

performance impacts of various design options on both the supply and demand. Section 1.3.1 ex-

amines current demand side methods of microgrid investment decision making while Section 1.3.2

focuses on current supply side methods of microgrid investment decision making.

1.3.1 Current Demand Side Design Methods

Architectural domain experts recognize the impact of architectural design on demand and attempts

to reduce demand through design has created a vernacular of low-energy architecture. Illustrative

examples of this vernacular are movements such as PassivHaus, Net-Zero Energy, Living Building

Challenge, Architecture 2030 and others (Adamson and Feist, 1988; Mazria, 2006; Peterson et al.,

2015; International Living Future Institute, 2016). Ultra low-energy buildings with the advent of

distributed generation give rise to explorations of systems designated as net-zero energy (Marszal
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et al., 2011; Sartori et al., 2012). Fortunately, architecture has effectively handled local integration

of modern DERs, in particular solar photovoltaics, for decades (Buresch, 1983; Sodha et al., 1986).

Demand reducing solutions have in turn emerged for residential buildings as well as commercial

and industrial buildings through controls and other design interventions.

Kapsalaki et al. (2012) model a residential building using a modified representation of the equa-

tion set of ISO (2008) to evaluate the feasibility of achieving net-zero energy design in a Mediter-

ranean climate. Kapsalaki et al. (2012) define a set of demand interventions for an individual build-

ing design and determined the set of interventions that minimized the investment cost to achieve

net-zero energy. Similarly, the Building America program has worked to apply demand side op-

timization techniques to individual residential and single-family buildings (Anderson and Roberts,

2008). The framework followed is to define a base building and demand as well as a set of feasi-

ble interventions. The design space is then searched heuristically to determine the combination of

interventions that minimizes energy consumption and investment cost.

Dillon and Colton (2014) focus on demand side modeling to determine the optimal parameters

of an industrial facility with heavy refrigeration loads. Dillon and Colton (2014) apply a heuristic

optimization algorithm to determine the optimal design parameters with a system model built from

the bottom-up of non-linear equation modules. Sun et al. (2015) examines an individual building to

determine the optimal selection of PV and wind capacities after sizing the HVAC system to meet a

desired risk level. Sun et al. (2015) do not include passive measures as retrofit options, but accept

the building as built while incorporating physical parameter, design parameter and basic scenario

uncertainty.

Demand centric investigations into distributed generation coupled with low-energy buildings

share several common characteristics: (1) the work typically explores a common set of supply sys-

tem options (i.e., photovoltaics, wind, small fuel-powered generators, electric vehicles and electric

energy storage), (2) models of the electric power demand are time varying and non-linear, and (3)

the models tend to have a high level of fidelity as they are built-up systems of equations that repre-

sent individual buildings.
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1.3.2 Current Supply Side Design Methods

Current microgrid design methods with an emphasis on the supply side focus on specifying the

component capacities of defined DG technologies within a pre-defined microgrid typology. Key

microgrid typologies investigated include combined heat and power (CHP), combined cooling heat

and power (CCHP), derivatives of CCHP systems with integrated renewable generation technologies

and custom investigations of new technology combinations. This research area assumes a given

demand profile and very few studies investigate or quantify the demand uncertainty.

Cho et al. (2009) present a key development of optimal CHP design, in which a CHP system is

modeled as a set of linear equations to determine both an optimal operation schedule and a compo-

nent capacity set that maximized the investment value. Li et al. (2014) expand the work of Cho et al.

(2009) to determine the trade-off between heat driven and electric driven cooling in a distributed

generation system servicing an office building. Gu et al. (2015) investigate another CCHP type

system, but include thermal energy storage as an option while also introducing uncertainties regard-

ing the system parameters within the heuristic optimization algorithm. Fuentes-Cortés et al. (2015)

address a CCHP system for a collection of residential loads with thermal energy storage and an

internal combustion engine, with the problem formulated as a deterministic nonlinear optimization

over multiple objectives including investment cost and emissions.

Supply design methods generally model the microgrid performance with a fixed demand, which

may be either generated by a building energy simulation tool or from historical data. Modeling the

operation of the system is typically achieved by a system of linear equations and constraints and the

resolution of the modeling depends on the application of interest. The distinguishing characteristic

of this work is that decision variables that affect system performance are constrained to the DER

technologies themselves.

1.3.3 Towards Integrated Design of Communities & Distributed Generation

The studies mentioned in Section 1.3.1 and Section 1.3.2 indicate that within the microgrid design

literature researchers tend to focus on either selecting demand interventions for a particular building

or sizing DGs for a given system type and a known load profile. The modeling tools that have
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emerged limit decision making power only to variables that affect either the supply or demand sub-

system alone. This section briefly introduces research that begins to address an integrated microgrid

design process by modeling the demand and supply sub-systems simultaneously.

Stadler (2009a) recognize the effect that building function has on demand and microgrid design.

To further investigate the effects of building function on microgrid design Stadler (2009a) apply

the Distributed Energy Resource Customer Adoption Model (DER-CAM) to a suite of individual

commercial buildings with different functions. Stadler (2009a) derive the building demand data

from observations of thermal and electric power data at the site as well as energy models of two

buildings.

Stadler (2009b) attempts to integrate the design of the supply with demand side interventions.

A commercial building demand is supplied to the DER-CAM tool for finding the optimal supply

system specification, but additional parameters that allowed the demand curve to be shifted or re-

duced for certain time steps by specific percentages at a defined cost were integrated. This initial

attempt at demand side intervention modeling was left aside for further research, which is reason-

able given that the method did not relate the demand parameters to the actual functional constraints

of the demand.

It is important to note that a number of the supply side focused microgrid design studies in-

vestigated the optimal operation of the DER components (Hakimi and Moghaddas-Tafreshi, 2014;

Chauhan and Saini, 2014). Optimal operations planning and scheduling is a key part in the design

of microgrids as one can not asses the potential operational costs and resilience without establishing

a control policy. Modeling the coordinated control of DER components and the demand is difficult

as the modeling frameworks best suited for each sub-system do not generally lend themselves to

coupled simulation. Sharma et al. (2016) presents a novel integrated control approach, in which the

demand and supply sub-systems are both modeled explicitly as a set of linear equations to facili-

tate optimal control evaluation. The specifics of modeling demand and supply will be addressed in

Chapter 2 and Chapter 4, respectively, but for now we simply note that issues of system resilience

and control are closely interrelated within the microgrid system design context.

Stadler et al. (2011) focus explicitly on net-zero energy building investigations with DER-CAM

by applying a constraint to ensure an annual balance of energy imported and exported for a single
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California commercial building. Stadler et al. (2014) demonstrate a true integration of supply and

demand design within the microgrid context. Stadler et al. (2014) edit the DER-CAM model to

calculate thermal building demand for heating and cooling through a linear model. Results showed

that an integrated design process resulted in more preferred solutions than without improvements

to the demand. Additional studies demonstrate similar characteristics to the DER-CAM model, but

have been applied to optimization of supply specification for groups of office buildings and other

communities.

Simpkins et al. (2015) introduce a tool for renewable DG selection that is also a formulation

of linear equations to represent the supply system. Simpkins et al. (2015) model the demand of a

Alaskan village by summing together outputs of EnergyPlus models. Morvaj et al. (2015) also ex-

plore the integrated design problem by demonstrating a theoretical design of a distributed generation

system for twelve residential buildings. Morvaj et al. (2015) compare the distributed system design

for residential buildings pre- and post- retrofit to determine that low-energy buildings reduced CHP

investment costs.

Reviewing the literature of integrated modeling tools to analyze the performance of microgrid

systems show that few methods exist. Those that do exist have focused on single buildings yet use

building energy models that do not capture common physical modeling assumptions expressed in

demand side approaches to microgrid design. In addition, while there is evidence of supply side

work that attempts to quantify uncertainty in performance, this work generally does not consider a

number of the key uncertainty sources identified in Section 1.3.

1.4 Problem Statement

Performance based design of microgrids is difficult because there are a number of sources of un-

certainty to consider in the real system yet current modeling methodologies do not allow decision

makers to express quantified uncertainty for important sources. Also, decision making scenarios

that exhibit joint decision making power over design variables on both the demand and supply are

not fully supported. Tools and methods such as DER-CAM that do allow decision makers to con-

sider such joint scenarios do not use a building energy model that conforms to common thermal

modeling assumptions. Additionally, these joint decision making scenarios are not supported as
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much research either focuses on demand side only or supply side only interventions, which implies

that the strengths of each approach independently are not leveraged. For example, recent work in

building energy modeling has greatly advanced understanding of the demand profile uncertainty

related to specific demand side interventions yet demand uncertainty quantification at this level of

detail is not included in many supply side only microgrid design approaches.

Several existing business cases exhibit joint decision making on the supply and demand side

of microgrid design such as university and campus microgrids, co-operatively owned microgrids

and single owner microgrids serving the owner’s building portfolio. Decision scenarios that are

not explicitly treated in the literature related to these business models include: (1) new design or

retrofit of an existing community with an installation of a microgrid and (2) expansion of an existing

microgrid to include new end-users. In the first scenario two conventional solutions are to either not

consider design interventions on the demand side or to minimize the thermal and electric demand

of the end-users; however, in neither solution are the implications for these decisions calculated

in reference to the final performance of the microgrid system. Similarly, with the second scenario

the microgrid owner should evaluate the performance of the system while considering both demand

reduction of the proposed new end-users and investment in new DERs.

1.4.1 Hypotheses

Current performance based design methods applied to microgrid investment decision making are

insufficient due to limited modeling capabilities. Existing microgrid system models do not (1)

incorporate a framework for considering major sources of uncertainty and (2) do not allow decision

makers to select design parameters across the interacting technical sub-systems of demand and

supply. Existing tools that allow integrated system modeling do not adequately model the building

thermal demand and ignores effects due to solar radiation, geometry, air infiltration, occupants,

controls and heat capacity. This lack of modeling resolution limits a decision maker’s ability to

asses passive demand interventions (i.e.,reducing air infiltration, shading, etc.). While the impact of

any passive or active demand side intervention is specific to the decision scenario it is important to

note that in cases for which these variables affect demand there is no adequate modeling tool. This

dissertation proposes three hypotheses related to the modeling of microgrid systems for performance
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based design and investment decision making:

Hypothesis 1: An integrated microgrid system model with high resolution demand and supply

models will enable decision makers to analyze more design options and decision variables

than is possible with currently available tools.

Hypothesis 2: Microgrid system designs selected via the integrated method will be more preferred

than solutions determined via specifying decision variables on either the demand or supply

side alone.

Hypothesis 3: Defining a resiliency framework for the integrated microgrid system model will

enable decision makers to model scenario uncertainty regarding the utility’s reliability. As

resilience and load control are closely related, this work also shows that the resilience frame-

work may be interpreted as an abstract model of an optimal load control algorithm.

1.5 Significance

This dissertation proposes an integrated model for the performance based design of distributed gen-

eration systems that allows decision makers to consider design options that can not be explored

with existing tools. The integrated model extends the DER-CAM supply modeling tool, which is

a high-resolution, abstract specification of the supply system as a linear set of equations. This dis-

sertation improves modeling of the end-user demand through a co-simulation approach that allows

the demand to be modeled as a set of individual building energy models. This dissertation also

presents a method for efficiently searching the demand intervention option set directly rather than

using average data to approximate the cost constraints of demand side interventions in the mod-

eled community. This dissertation also presents a framework for incorporating a utility’s reliability

profile and a decision maker’s neutrality to unmet demand, through this framework the dissertation

advances the DER-CAM tool’s uncertainty propagation methodology. This research demonstrates

the benefits and efficacy of this modeling improvement in a case study to determine a co-operative

microgrid owner’s most preferred investment in both supply generation and demand interventions.
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1.6 Thesis Structure

Chapter 1 presents background to the problem and outlines the motivation; Chapter 2 reviews de-

mand modeling of both individual buildings and communities and presents the selected modeling

methodology; Chapter 3 presents a means of transforming a large discrete, demand side interven-

tion problem into a problem suitable for coupled optimization; Chapter 4 introduces the DER-CAM

tool and reviews related supply modeling literature as well as introduces the reliability framework;

Chapter 5 introduces the co-simulation methodology and an optimization approach suitable for the

coupled model; Chapter 6 presents an application of the improved modeling methodology to a mi-

crogrid design case study; and Chapter 7 concludes with reflections on the modeling approach and

implications for future work and research.

12



CHAPTER II

DEMAND MODELING OF ARCHITECTURAL SYSTEMS FOR MICROGRID

DESIGN

This dissertation extends the DER-CAM tool developed by LBNL to create an integrated microgrid

system model. DER-CAM defines six quantities of interest: electric only demand, electric cool-

ing demand, thermal heating demand, refrigeration electric demand, thermal hot water demand and

natural gas demand. The demand must be specified at an hourly resolution with data for typical

weekdays, weekends and peak days. Peak demand is an important quantity of interest in micro-

grid and power system design as it defines the maximum quantity that the microgrid system must

supply. Variation in the six components of demand at an hourly resolution is also important as this

behavior of the demand will allow the decision maker to characterize the operating characteristics

of the microgrid system. The purpose of this chapter is to define a demand generating function

that adequately captures the quantities of interest. First, we briefly review several of the common

approaches to both individual building and building stock modeling. Then, we identify a building

stock model based on the EPC tool that generates our desired quantities of interest. Finally, the

proposed methodology is introduced and validated.

2.1 Background

Architectural systems have two types of demand: (1) thermal (i.e., either heat removal or heat

addition) and (2) electric. The thermal demand for either heat removal or addition arises from the

need to condition the indoor environment to satisfy occupant comfort or other functional criteria and

to meet certain process needs. Process needs are quite variable and depend highly on the building

function, but examples of process needs includes heat for domestic hot water, heat removal for ice

storage and heat requirements for an industrial process like desalination. Electric power as we’ve

previously introduced is required to provide a number of energy related services including lighting,

equipment, appliances and heating, ventilation and air conditioning (HVAC).
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Building demand modeling is the process of virtually observing realizations of the thermal and

electric demand of an architectural system for a desired time period and resolution. Each realization

is based on a specification of both the scenario of use and design documents of the system. Building

demand modeling is often applied to the design of HVAC systems with some use in the architec-

tural design process. Architectural design is a creative process aimed at client satisfaction as such

the degree to which demand modeling is performed during the design formulation stage depends

primarily on the desires of the client.

Practical architectural design typically eschews detailed building demand modeling in favor of

rules of thumb, professional experience and additional design guidelines. Electric demand reduc-

tions are typically achieved by specifying target equipment and lighting power densities. Advanced

daylighting controls, however, have begun to allow the use of more complex demand modeling dur-

ing the architectural design process. Nevertheless, the chief use of demand modeling of architectural

systems in practice is to estimate the energy consumption of the HVAC system specified and sized

by a mechanical engineer.

Theoretical use of demand modeling has grown primarily due to its use in virtual experiments

to predict energy consumption and compare HVAC design options. Demand modeling at its core is

driven by the use case and the field of research or application. As such a number of methodologies

have been applied throughout the literature, some with impact in practice and others with only

theoretical implications. Based on this work’s requirement that the demand model be used for co-

simulation with DER-CAM tool we may assert the following modeling needs:

1. computationally inexpensive at an hourly resolution

2. representative of a known building population

3. parameterized on decision variables that affect demand

4. directly link decision variables to associated costs

5. scalable level of detail that aligns with available information
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2.2 Approaches to Building Demand Modeling

Demand generating functions or models are classified into three broad categories: data driven or

statistical, physics driven and hybrid models (Amara et al., 2015). Within each category of model-

ing there may be differences in how individual buildings are treated versus collections or building

stocks. We make note of these key differences where the distinction between indvidual building and

building stock modeling approaches is significant.

Data Driven & Statistical Demand Modeling Data driven or “black box” modeling of architec-

tural systems is an approach, in which data for a set of explanatory variables is fed into a chosen

model form and the parameters are automatically tuned until the model output matches the observed

output within a desired tolerance or similar criterion. Statistical energy models come in a variety of

forms such as linear equations, polynomials, transfer functions and neural networks. Amara et al.

(2015) notes that data driven models of individual buildings are most often used in system control

and error detection as there is no explicit relationship between the model parameters and physical

reality. Statistical energy models typically have high predictive validity as model observations are

derived solely from the input-output relationship of the studied system.

Tian et al. (2015) study statistical energy modeling applied to building stocks and highlight

that an important challenge in statistical energy modeling is to ensure that any correlation be-

tween explanatory variables be accounted for prior to assessing the impact of changing any single

variable on a quantity of interest. There are numerous examples of building sector meta models

with varying output resolution, quantities of interest, explanatory variables and application. Prid-

dle (2015) present the World Energy Model, which is not directly concerned with the features of

individual buildings within a stock, but rather the relationship between economic drivers such as

GDP, CO2 prices, technology adoption scenarios and policy scenarios on macro level energy flows,

CO2 emissions and investments.

Rezaee et al. (2015) and Zhao (2012) apply linear meta models of monthly building demand

to develop inverse modeling methods to aid design and find retrofits of building stocks, respec-

tively. A limitation of meta models of building stock demand is that they are generally of a coarse
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resolution (e.g., monthly), which is not particularly useful for the performance based design of mi-

crogrids. Keep et al. (2011) present a high resolution model to study the ability of thermostatically

controlled devices with either an on or off state (i.e., “switchable”) to provide very short term load

services such as either strategically increasing or decreasing aggregate demand. Keep et al. (2011)

presents a final top-down model that is an autoregressive moving average (ARX) time series model

of an aggregate of switchable refrigerators.

Keep et al. (2011) parameterize the model as a function of the number of refrigerators in an

“on” state at a given time, t. Formulating the demand aggregate refrigerator demand on this single

parameter is a powerful means of exploring optimal control strategies, however, it does not allow the

model user to investigate alternative means of improving the aggregate refrigerators’ response per-

formance such as through improvements to the appliance (e.g., better compressor, more insulation).

Exploring demand interventions of mass produced refrigerators may be trivial, but this example

illustrates how top-down models may be simultaneously powerful yet limited for expanded explo-

rations related to system design. Makarov et al. (2009) present another high-resolution example of a

top-down demand model used to simulate the California Independent System Operator (CASIO)’s

total generation and demand power. Makarov et al. (2009) model the demand of the system as the

sum of a historical demand profile and forecast errors selected from a truncated normal distribution.

Parameters of the truncated normal distribution are identified from historical forecast error data.

Statistically based energy models of either individual buildings or building sectors typically

demonstrate strong validity in regards to training data, but at times they may lack a direct con-

nection to a design intervention. In addition, these methods, which are also referred to as meta

modeling generally have lower computational overhead than physics driven modeling. Three im-

portant challenges for developing meta models that generate a demand profile for use in microgrid

system design are to determine any correlation between the explanatory variables, ensure there is

sufficient data to parameterize a model at the desired resolution of the application and to translate

meta model parameters into physical design variables. Researchers may attempt to circumvent lim-

itations of top-down models by developing models based purely on the physical relationships of

interest.
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Physics Driven Modeling Physics driven modeling is an approach, in which the simulated obser-

vations are derived directly from specifications of the underlying processes’ governing equations.

This modeling approach, often referred to as a “first principles” approach attempts to capture as

much of the relevant physical phenomena as possible in order to simulate the system. First prin-

ciples models are used quite commonly in demand modeling of architectural systems because they

are often parameterized on variables with direct relevance to architectural design. For instance,

many of these models are structured to receive extremely detailed material property and geometric

information for use in various calculation submodules including explicit radiation exchange. The

appropriateness of such detailed modeling is a point of ongoing research and is of course dependent

on the functional criteria to be evaluated (Hensen and Lamberts, 2012).

Physics driven models are numerous and with different levels of detail available for modeling.

It is important to note that no physics driven modeling approach is created without data. In fact,

while the physics driven approaches expose a number of physical parameters for decision makers to

specify, the underlying model form and equations are generally derived from engineering knowledge

and experimental data. These simplifications of the physical interactions gives rise to model form

uncertainty as recently investigated by Sun (2014).

Commercially available architectural system simulation engines include EnergyPlus, DOE-2,

eQUEST, TRNSYS, Modelica, etc. The Department of Energy’s Building Energy Software Tools

Directory (EERE) is a more complete directory of the relevant commercial software packages (US

D.O.E., 2012). The most notable commercial tools used in both research and practical demand

modeling of architectural systems are EnergyPlus, ESP-r, TRNSYS and Modelica. EnergyPlus is a

free, stand-alone simulation engine accepted as the current state-of-the-art in the American building

simulation market (Crawley et al., 2001). EnergyPlus has been rigorously tested and widely used

in both academia and practice via third-party graphical user interfaces; as such EnergyPlus is often

defined as the standard by which other demand simulation engines are compared (Henninger et al.,

2004).

A number of researchers decide to generate demand models of building stocks from the “bottom-

up”, which is to say that individual demand end-uses are modeled at an extreme level of physical

detail. These individual components are then aggregated together in accordance with the research
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aims. There are numerous examples of these types of models and their applications as covered in

the reviews of Kavgic et al. (2010) and Swan and Ugursal (2009).

McKenna et al. (2013) review bottom-up demand models within the European Context and

conclude there is a need for a bottom-up model applied directly to the German residential housing

market as it is underrepresented in their review. The goal of the developed demand model is to assess

the potential for design interventions (i.e., retrofits) to meet the energy and emissions related policy

goals of the German government. McKenna et al. (2013) seek to project the growth in residential

energy demand by considering the growth in the building stock size and the energy consumption of

individual buildings according to their vintage based on a review of existing data.

Reinhart and Davila (2016) reviews bottom-up models with an agenda more oriented toward

design. Quan et al. (2015) labels these types of urban design models as planning support sys-

tems (PSS). PSS are an advanced class of building stock modeling with the aim of capturing as

many physical interactions as possible in the modeling. For instance, Robinson (2012) proposes

a comprehensive methodology that incorporates agent-based modeling of city occupants, detailed

geographical data of urban areas for solar radiation and wind flow calculation as well as building

energy use into a single model of the urban area. Zhao (2012) in contrast attempts to capture only

the aspects of the building aggregate that are relevant to investment decisions. As such Zhao (2012)

modeled the energy use of a collection of commercial buildings through inverse extrapolation of the

inputs to the normative energy model described in Section 2.3.

While Zhao (2012) demonstrated that the normative energy model may be expressed as a linear

regression model and also represent the energy use of an aggregate of a single building class, Quan

et al. (2015) furthers the use of the normative modeling paradigm for aggregate demand modeling.

The urban modeling approach is furthered in a number of key ways: (1) the urban context is explic-

itly modeled (i.e., interactions between buildings, microclimate effects and occupancy), (2) more

classes of buildings are identified and modeled via the normative approach. Specifically, Quan et al.

(2015) leverages existing databases of typical reference buildings to provide the parameter inputs

to the demand simulation models, however, the work did not detail a methodology for iteratively

exploring the urban design through design interventions on the building demand.
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Hybrid Modeling Many researchers develop demand models that rely on a combination of data

and first principles. Such hybrid or “grey box” models achieve some of the advantages of black box

models (e.g., improved predictive capabilities) without sacrificing the relationship between model

parameters and the physical reality. A common methodology is to deploy an equivalent thermal

parameter (ETP) model that represents a building’s energy balance as a circuit of resistors and ca-

pacitors (Johnson et al., 2014; Li and Wen, 2014; Zhang and Lu, 2013) and calibrate the reduced

model to data. ETP models are typically very small networks with limited physical phenomena

represented and researchers often scale this methodology upwards to include more resistors, capac-

itors and calculation submodules (Hu, 2009; Bueno et al., 2015). Alternatively, Zakula et al. (2014)

identify a grey box model of a thermally activated building slab for optimal control of a TRNSYS

model via transfer functions.

2.3 Simplified Hourly Building Demand Modeling

Detailed physical modeling and hybrid modeling have the disadvantages that these techniques allow

modeler’s bias and representation errors. In addition, the execution time of many physical modeling

tools relative to either hybrid or statistical models is high. While grey box models may have a

lower computational overhead they also require information regarding the input-output relationship

of the system, which may be unavailable during the design phase. Lee et al. (2013) present the

hourly Energy Performance Calculator (EPC), which is a building energy simulation tool that is one

of many similar tools that implements the solution methodology ISO (2008). The purpose of the

original normative calculation technique is to ensure reproducibility and robustness of performance

comparisons, which is achieved by removing modeler’s bias, increased calculation transparency and

increased modeling simplicity. The EPC tool itself is no longer a normative calculation method as

decision makers now select input parameters specific to the building being simulated and the EPC

has been used in the literature primarily for demand calculations at the annual, monthly and hourly

timescales (Lee et al., 2013; Quan et al., 2015; Rezaee et al., 2015).

In this work we model the demand of building stocks and communities using the EPC. The EPC

tool generates four of the six demand inputs to DER-CAM at an hourly resolution; electricity for

refrigeration and natural gas profiles must be specified by the decision maker via an external method.
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Figure 2: The proposed method decomposes an aggregate of buildings into relevant building clus-
ters, which are then aggregated to form the final model of a “mixed-type” aggregate.
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Figure 3: Thermal R-C representation of a building in accordance with ISO (2008).

Of the remaining four demand components, hot water demand and electric only demand are not

functions of the building’s design parameters, but rather its specified scenario of use. Therefore, we

must only consider the adequacy of the EPC tool to generate hourly profiles of the electric demand

for cooling and the thermal demand for heating including their peaks. Bueno et al. (2015) present an

R-C model that is similar to EPC yet with advanced treatment of solar radiation on façades. Bueno

et al. (2015) separately calculate the RMSE of both thermal demand for heating and cooling when

comparing hourly output from the R-C model at EnergyPlus for summer (2 W/m2)and winter (1

W/m2) days. Zhao (2012) qualitatively compares the total electric demand of an EPC model to that

of an input matched EnergyPlus model at an hourly resolution and concludes that while the EPC

appears to follow the EnergyPlus profile well, the peak electric demand values of the EPC were

underestimated during Spring by 20% and overestimated in summer by 30%. EPC underestimated

peak electric cooling demand on the range of 10-50% during the Summer. Kapsalaki et al. (2012)

note that the peak demand estimation of tools based on ISO (2008) is unreliable and apply the peak

cooling and heating demand equations from ASHRAE (2009). This dissertation relies on the hourly

EPC to simulate the demand of building stocks and communities given the strong agreement of

R-C network modeling and EnergyPlus for hourly thermal demand and a peak demand estimation

method found in the literature.

Given the weather data and a user defined scenario of use and operation, the EPC calculates

for each hour, the average thermal power required for either heating or cooling required (ΦHC,need)
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to maintain the temperature set point (Θair). The building’s thermal mass is represented by a sin-

gle capacitor (Cm), which indirectly interacts with Θair via conduction heat transfer to the mass

surface (Htr,ms) and then convection heat transfer to the air (Htr,is). Air temperature is affected di-

rectly by heat transfer via ventilation air (Hve) that enters at a given supply temperature (Θsup). The

building’s mass, Cm, is connected to the external air temperature (Θext) via heat transfer through

the windows (Htr,w) and envelope (Htr,em). Solar radiation affects both the building’s mass and

air temperatures through three inputs: radiation to mass (Φm), radiation to mass surface (Φs) and

radiation to air (Φair) (Fig. 3). ISO (2008) details the full calculation methodology for each hour.

The method presented here, however, is most similar to Zhao (2012), which presents the concept

of building stocks. A building stock, which this dissertation refers to as clusters, are groups of

buildings that are of identical type. More formally, a cluster is a group of buildings identified by

the designer, which are indistinguishable from each other. Here we define two deterministic models

as indistinguishable if they have the same input parameter set and identical output for the same

design interventions. Fig. 2 illustrates the initial steps of the modeling methodology, which are

discussed in more detail below. While the normative model does provide significant improvements

for calculation speed, reproducibility and robustness it cannot overcome the base complexity in

efficiently searching such a broad design space for preferential design options. This dissertation

then proposes an alternative method of aggregate demand modeling that is a hybrid of both bottom-

up and top-down approaches. The proposed approach is discussed in the following section in greater

detail.

Step 1: Identify the Aggregate to Model The first step in the methodology is to identify the

building aggregate to be modeled. The primary data needs to identify are the functional types of each

of the buildings and information regarding the building program, use scenario, envelope, mechanical

systems and climate. In the case of new design then this information should be sufficient to meet

the data requirements of the EPC (Quan et al., 2015). Zhao (2012) identifies EPC model parameters

based on actual consumption data. This dissertation focuses on deriving model parameters from

reference buildings as done in Quan et al. (2015).
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Figure 4: Simple illustration of a cluster model’s counting principle. A cluster model parameter
is determined by specifying the discrete option level of each building of the same type. Here the
number of indistinguishable buildings within the cluster is n = 2 and the discrete options for a
variable is k = 3.

Step 2: Identify Building Clusters Next, the modeler must group the building aggregate into

relevant clusters. Clusters are groups of building with the same function, which we assume may

be modeled as indistinguishable buildings. For instance, a community aggregate may have super-

markets, primary schools, multi-family residences and single-family residences. This dissertation

applies existing reference building definitions (Deru et al., 2011). Reference buildings are applied

quite often in bottom-up models of building aggregate demand. Best et al. (2015) determined the

optimal mix of various building types in a single community based on reference models. Morvaj

et al. (2015) explored the impact of low-energy buildings on the sizing of a community CHP sys-

tem and used several reference models of typical single-family residences in the European context.

Reference buildings are not a prerequisite for applying this methodology. An alternative is for the

modeler to specify the complete set of input variables for the EPC tool based on a design specifica-

tion.

Step 3: Aggregate Modeling of Building Clusters The number of clusters identified in Step

2 will determine the initial number of EPC models required. If the clusters align with available
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data for reference buildings then this information is used to parameterize the EPC, otherwise the

modeler must specify the full set of EPC inputs based on design specifications. Zhao (2012) defines

an inverse methodology for identifying EPC model parameters based on consumption data for a

specific building cluster, which is recommended in the case of a retrofit scenario.

Step 4: Finalizing the Mixed-Type Building Aggregate Model The final step is to combine

each EPC model of a building cluster into a single EPC instance to model the complete building ag-

gregate. The EPC model environment is separated by input types into parameters that define general

building characteristics, the mechanical systems for heating and cooling, zone level energy demand,

schedules and the building envelope. These variables may be further grouped into normalized met-

rics, rates and dimensioned variables. This final step creates a single EPC instance that represents

all of the clusters defined and modeled in Step 3. To accomplish this the variables of input parame-

ters are combined via area weighted averages in accordance with the a corresponding scaling factor.

Rate variables are the exception and these parameters are combined as a simple summation. The

general equation used to combine the variables is given as:

Xi =
N∑
j=1

wi,j · xj (1)

where Xi is input parameter i to the mixed-type aggregate model, N is the number of clusters,

wi,j is the weighting factor for input parameter i and cluster j and xj is the corresponding input

parameter of cluster j. The scaling factor wi,j depends on the input parameter i, for example the

overall roof u-value [W ·m−2 ·K−1] scaling factor for each cluster j is given by:

wroof, j =
Aroof, j∑N
j=1Aroof, j

(2)

whereAroof, j is the roof area inm2 of cluster j then wroof, j is denoted the roof area scaling factor.

Table 1 presents the scaling factors for each of the EPC inputs.

The schedule values of the aggregate model are also derived from a linear sum. There are three

parameters scheduled in the EPC: appliance power, lighting power and the number of people. A

modeler defines a peak value for these inputs and an hourly schedule that indicates the fraction of

24



Table 1: EPC input variables and their corresponding scaling factors to build the mixed-type ag-
gregate demand model.

Variable Scaling Factor

Gross Floor Area (m2) Floor Area
Occupancy (people) Floor Area
Metabolic rate (W/person) Floor Area
Appliance (W/m2) Floor Area
Lighting (W/m2) Floor Area
Outdoor Air (liter/s/person) Floor Area
DHW (liter/m2/month) Floor Area
Opaque Wall Area Wall Area
Roof Area Roof Area
Below Grade Area Below Grade Area
Window Area Window Area
U-value (W/m2/K) Correspond to construction area of interest
Absorption Coefficient Correspond to construction area of interest
Emissivity Correspond to construction area of interest
Solar Transmittance Correspond to construction area of interest
Total Ventilated Volume Sum
Building Height Floor Area
Lighting daylighting factor Floor Area
Lighting occupancy factor Floor Area
Lighting constant illumination control factor Floor Area
Heating System Coefficient of Performance
(COP) [KW/KW]

Floor Area

Cooling System Full Load COP [KW/KW] Floor Area
Mechanical ventilation supply air flow rate
(liter/s)

Sum

Mechanical ventilation exhaust air flow rate
(liter/s)

Sum

Building air leakage level (Air flow m3/h) Sum
Specific fan power [W/(l/s)] Floor Area
Fan flow control factor Floor Area
Set Point Schedule Floor Area
Occupancy Schedule See Eqn. 3
Appliance Schedule See Eqn. 3
Lighting Schedule See Eqn. 3
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the peak value for each hour. These parameters affect both the delivered energy and the zone air

heat balance. The aggregate model should calculate the same watts of appliance and lighting power

as well as the same number of people for each hour. This fraction can be analytically determined at

each hour with the following equation:

Zh =

∑
j zj, h · bj
B

(3)

where Zh is the hourly fraction value for the aggregate model, zj, h is the hourly fraction of cluster

j of total demand bj and B is the total aggregate value expected. In the case of lighting or appliance

power then bj is peak watts in the building zone of cluster j and for occupancy then bj is the peak

number of people in the zone.

2.4 Validation

Hypothesis: The proposed single-instance modeling approach estimates the thermal need for heat-

ing, electric power demand for cooling and electric power demand for non-HVAC related services

within an acceptable error versus the experimental control modeling approach (i.e., modeling mul-

tiple EPC instances).

This section will validate the proposed model via comparative testing, in which outcomes from

the simulation are compared to the outcomes from a standard formulation. Two identical building

aggregates will be generated and evaluated under the same scenarios of use and climate. These two

aggregate demands will be modeled via two methods. The first methodCmass represents each build-

ing as a normative building demand model as described in Section 2.3. The test method Cproposed

will be used to generate a demand in accordance with Section 2.3.

To evaluate the two models, we will first specify the hypothetical building aggregate and its

underlying clusters. The valid model is assumed to beCmass, for which each cluster will be modeled

individually. The experimental model is Cproposed, which will represent the complete aggregate

as a single model with inputs derived according to Section 2.3. The modeled thermal demand

for heating, electricity only demand and electric cooling demand will each be deterministically

compared to the forecast values of Cproposed. The model performance will be evaluated via the
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(a) Annual Percentage Error comparing the an-
nual energy use Cmass to Cproposed for each of
the model outputs in Climate Zone 4A.

(b) Annual Percentage Error comparing the an-
nual energy use Cmass to Cproposed for each of
the model outputs in Climate Zone 3A.

Figure 5: Percentage error of the annual aggregate energy use of various end-use components of
each model.

Mean Absolute Percentage Error (MAPE):

MAPE = 100% · n−1 ·
n∑
i=1

|Ai − Fi|
|Ai|

(4)

where n is the number of time intervals, Ai is the actual value (i.e., Cmass) and Fi is the forecast

value (i.e., Cproposed).

Validation Scenario The validation scenario will be completed for ASHRAE Climate Zone 4A (Cen-

tral Park, NY, NY) and Climate Zone 3A (Hartsfield Jackson Airport, Atlanta, GA) with typical

meteorological year (TMY) data (Wilcox and Marion, 2008). In addition we present a hypothet-

ical community with a mixture of building functions. This aggregate includes four small office

buildings, five multi-family residences and 15 single family residences. The buildings are all con-

structed to meet the minimum requirements of ASHRAE 90.1-2013 and additional data regarding

the use scenario and mechanical systems are derived from the typical US building stock models

of Deru et al. (2011). The use of typical building models is justified as this exercise is done solely

to validate the prediction results of the proposed modeling scheme.

The proposed model Cproposed compares favorably to Cmass at both annual aggregate levels and

at an hourly resolution. Fig. 5a details the percentage error of the annual energy consumption of

eight different performance indicators for Climate Zone 4A. Results show that annual error is less
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Table 2: MAPE comparisons of Cproposed to Cmass for ASHRAE Climate Zone 4A (Central Park,
NY, NY).

MAPE

Annual Winter Week Summer Week
Qnd, H 8.36% 7.05% 0.00%
Qnd, C 6.73% 0.00% 12.45%

Elight, equip 0.00% 0.00% 0.00%
Ecooling 6.67% 0.00% 12.30%

Efans, pumps 5.88% 6.36% 3.38%
Edhw 24.72% 24.76% 27.67%

Eonly, no dhw 1.86% 3.25% 0.75%
Eonly 6.37% 4.74% 6.91%

Table 3: MAPE comparisons of Cproposed to Cmass for ASHRAE Climate Zone 3A (Hartsfield Jack-
son Airport, Atlanta, GA).

MAPE

Annual Winter Week Summer Week
Qnd, H 9.71% 12.94% 0.00%
Qnd, C 9.11% 0.00% 9.55%

Elight, equip 0.00% 0.00% 0.00%
Ecooling 9.03% 0.00% 9.32%

Efans, pumps 6.63% 9.29% 5.05%
Edhw 24.72% 24.76% 27.67%

Eonly, no dhw 1.93% 3.98% 1.73%
Eonly 6.53% 5.12% 6.01%

than 5% for all performance indicators. In particular, the method is able to exactly reproduce the

annual energy consumption for both Elights,equip and EDHW . This result is duplicated in Climate

Zone 3A as seen in Fig. 5b. The percentage error of Qnd,H , however, in Climate Zone 3A is just

over 10%, which is the highest error across all performance indicators at the annual level.

Table 2 and Table 3 detail the MAPE at the hourly resolution for three different time periods:

annual, winter design week and summer design week. It is important to analyze the hourly reso-

lution of the models as this is the resolution that will be used for designing the supply system. In

general, Cproposed forecasts Cmass well. Note that the MAPE is less than 10% at the annual scale

for all performance indicators except the EDHW . EDHW is interesting in that the annual aggregate

error is 0% (i.e., the total energy consumed for domestic hot water is identical), but the hourly pro-

files agree the least among the performance indicators (Fig. 6). The high MAPE is due to the effect
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(a) EDHW for a typical week in Climate Zone
4A. See Table 2 for MAPE.

(b) EDHW for a typical week in Climate Zone
3A. See Table 2 for MAPE.

Figure 6: Comparison of electric power for domestic hot water use, EDHW , between Cmass and
Cproposed.

(a) Qnd,H for a typical Winter week in Climate
Zone 4A. See Table 2 for MAPE.

(b) Qnd,H for a typical Winter week in Climate
Zone 3A. See Table 2 for MAPE.

Figure 7: Comparison of thermal demand for space heating, Qnd,H , between Cmass and Cproposed.

of occupancy schedule weighted averaging and the demand at night tends to be over-predicted by

Cpropsed and similarly under-predicted during the day.

The effect of weighted averaging on the hourly profile is also seen for Qnd,H (Fig. 7). Cproposed

forecasts Cmass at an MAPE of 7% and 13% for winter weeks in Climate Zone 4A (Table 3) and

3A (Table 2), respectively. Cmass predicts higher peak values than Cproposed, while Cproposed fore-

casts higher power demand during the day. The daytime over-prediction should not be considered

a shortcoming of the overall modeling methodology, but is rather due to the selection of the mix

of the validation model’s building types. For example, the single family and multi family buildings

have very low use during the day, while the small office has a high use during the day. Similarly,

Cproposed has higher night time agreement to Cmass as the small office use schedule is near zero at

night and thus has little effect on the Cproposed.
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(a) Ecooling for a typical Summer week in Cli-
mate Zone 4A. See Table 2 for MAPE.

(b) Ecooling for a typical Summer week in Cli-
mate Zone 3A. See Table 2 for MAPE.

Figure 8: Comparison of electric power for cooling, Ecooling, between Cmass and Cproposed.

(a)Eonly for a typical Summer week. See Table 2
for MAPE.

(b) Eonly for a typical Winter week. See Table 2
for MAPE.

Figure 9: Comparison of total electric power for non-HVAC purposes, Eonly, between Cmass and
Cproposed in Climate Zone 4A.

Cproposed also has strong agreement to the Cmass for the non-HVAC related and HVAC related

electric power demand. Eonly,no dhw has an annual MAPE of less than 2% for both Climate Zone

3A (Table 3) and Climate Zone 4A (Table 2). Adding in the Edhw signal, however, increases the

error, but in both climate zones the annual MAPE is less than 7% (Table 3 and Table 2). There is

a correlation between the MAPE in Qnd,H and Efans, pumps during winter weeks and a correlation

between Qnd,C and both Ecooling and Efans, pumps for summer weeks. Despite the correlation to

error in thermal demand prediction the magnitude of MAPE is reduced for electric power demand

calculation. Fig. 10 details the strong model agreement for the summer cooling electric power

demand of the building aggregate in Climate Zone 3A and Fig. 9 reveals strong agreement for

Climate Zone 4A.
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(a)Eonly for a typical Summer week. See Table 2
for MAPE.

(b) Eonly for a typical Winter week. See Table 2
for MAPE.

Figure 10: Comparison of total electric power for non-HVAC purposes, Eonly, between Cmass and
Cproposed in Climate Zone 3A.

We have provided an initial validation for the modeling methodology described in Section 2.3

and our conclusion is that Cproposed is an acceptable method for modeling the thermal and elec-

tric power demand of aggregate of buildings with mixed types. We arrived at this conclusion by

comparing the forecast error of a model Cproposed to a model noted Cmass to represent the actual

demand. Both models are derived from representations of several typical building types: 15 single

family residences, 5 multi-family residences and 4 small office buildings. Cproposed forecasts the

annual aggregate thermal and electrical energy demand with a percentage error less than 10% for

all performance indicators of interest (Fig. 5). In addition, an hourly analysis of the MAPE reveals

that Cproposed forecasts the Cmass demand at less than 10% for all performance indicators except

Edhw (Table 3 and Table 2). Despite the high MAPE of Edhw the aggregate energy is matched ex-

actly between Cproposed and Cmass (Fig. 5). Examination of the hourly demand plots suggests that

the MAPE of Cproposed is not due to a systematic shortcoming of the methodology, but rather in the

weighted averaging of the scheduling that works on aggregate, but introduces slight discrepancies

at the hourly resolution (Fig. 6, Fig. 7, Fig. 8, Fig. 9 and Fig. 10).

2.5 Hypothesis 1: More Design Options

Hypothesis 1: An integrated microgrid system model with high resolution demand and supply

models will enable decision makers to analyze more design options and decision variables than is

possible with currently available tools.
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Figure 11: The existing demand modeling within DER-CAM allows only three decision variables
versus 33 with the EPC tool.

The first hypothesis of this work is that a integrating a high resolution demand model with a

supply side modeling tool will result in an integrated microgrid model with more decision variables

than currently available tools. The EPC tool has 33 input variables compared to the DER-CAM

demand modeling tool’s three (Fig. 11).

2.6 Conclusions

A preliminary step to modeling demand and supply within a microgrid simultaneously as a single

system is to have tractable models that represent the performance of the individual sub-systems. In

this chapter we reviewed the major developments for the modeling of thermal and electric demand

in buildings and building aggregates. The primary problem we identified is that current methods

are limited in their scalability in terms of information and computation requirements. This chapter

proposed a novel method of building aggregate modeling that advances several key approaches of

aggregate demand modeling from the literature. The approach relies on a normative calculation

scheme, but is capable of representing a mixed aggregate of buildings within a single modeling

instance.

To validate the model we tested our hypothesis that the proposed model would have an accept-

able forecast capability as a model of a building aggregate composed of multiple individual model
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instances. We confirm our hypothesis that the novel modeling scheme is acceptable for modeling

building aggregates for two primary reasons: (1) the annual percentage error for all performance

indicators is less than 10% across the investigated climate zones and (2) the MAPE of individ-

ual performance indicators at the hourly resolution is within 10% for all metrics except domestic

hot water. Based on these findings we accept the proposed model as valid for aggregated demand

modeling particularly within the context of the integrated design of microgrid systems.

The proposed model, however, is formulated in terms of discrete specifications of individual

buildings and non-linear models with purely discrete variables are inherently challenging to opti-

mize (Murray and Ng, 2002; Arora et al., 1994). Therefore, the next chapter directly address the

problems with demand side design optimization given the current modeling framework and pro-

poses a methodology for transforming the problem into one that is more easily optimized while

maintaining an equivalent mapping to decision maker preferences.
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CHAPTER III

PARETO OPTIMAL COST FUNCTIONS FOR AGGREGATE BUILDING

DEMAND OPTIMIZATION

The goal of this dissertation is to demonstrate a methodology for the integrated design of a microgrid

system while considering both design interventions on the demand side and supply side simultane-

ously. To accomplish this requires a flexible formulation of modeling the demand that both captures

relevant physical phenomena and maintains a scalable information requirement that can be refined

as the design progresses. To that end the method proposed in Chapter 2 relies on a reduced order

demand model of a user defined community. The modeling process, however, is difficult to apply

to real optimization problems because of the size of the discrete option space, which is detailed in

Section 3.1. This chapter details the transformation of the modeling approach from a discrete option

space into a continuous option space while maintaining the functional relationship between design

interventions and cost. First, this chapter describes the discrete option space spanned by the pro-

posed model. Then the chapter defines a method of searching a continuous parameter space through

the use of Pareto optimal cost functions. Finally, an example minimization problem is solved via

two methods to demonstrate a validation of the proposed method.

3.1 Modeling a Discrete Option Space

The reduced order demand modeling framework of Chapter 2 facilitates the exploration of a number

of demand related decision variables yet the optimization of this model for a decision maker’s given

preference function is difficult due to the number of discrete options that arise even for a modest

number of physical variables. The following sections discuss the theoretical size of the underlying

discrete option space and a method to instead optimize over a continuous variable space.

3.1.1 Enumerating the Number of Demand Side Options

The proposed demand model formulation of Section 2.3 allows a decision maker to evaluate the

affect of architectural interventions on the performance of a building stock or community. While
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the demand model is still a single instance of a reduced order building energy model, its inputs

are calculated on the fly. To understand how this calculation occurs lets return our focus to how

the single model instance is derived. First, the decision maker groups similar buildings within the

community into clusters. In this way each cluster has a distinct number of buildings. After this

stage the decision maker has i unique clusters of buildings where each cluster is comprised of ki

indistinguishable buildings. Indistinguishable is an assumption we make so that all the buildings in

a single cluster may be modeled identically.

Now say a decision maker is interested in deciding on j physical parameters of the community,

then each cluster must also have j parameters, but as the clusters represent different building types

the number of discrete options for the same physical parameter may vary for each cluster. To calcu-

late the community level value of V arj the decision maker must allocate each of the ki buildings to a

single discrete level of V ari,j (i.e., specify the value of xi,j,ki,j where xi,j,ki,j ε {0, 1, ...ki,j}) (Fig. 12).

For example, assume that we model a community with two clusters (i.e., i = 2) and we are

interested in a single physical parameter (i.e., j = 1) and that each cluster has three discrete options

of variable j (i.e., k1,1 = k2,1 = 3). Then to model a single physical parameter j at the community

level introduces six discrete variables from the bottom-up.

We see that despite reducing the problem to a single model instance that by calculating the

impact of changes to individual buildings on the fly causes the formulation to become very detailed

and the decision maker may evaluate a large number of options. An optimization problem that

uses the model of Section 2.3 requires the decision maker to specify an objective function that is a

mapping from the aggregate’s design options to a metric of performance. This could be formulated

with the proposed model as:

maximize: J(x) (5)

subject to:
ki,j∑
k=1

xi,j,ki,j = ni ∀ i, j (6)

0 ≤ xi,j,ki,j ≤ ni ∀ i, j, k (7)

where xi,j,ki,j is an integer number corresponding to the number of “Ci -type” buildings at the given
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Figure 12: An aggregate model is made of i clusters with j variables and each variable has ki,j
discrete levels. xi,j,ki,j is an integer number corresponding to the number of “Ci -type” buildings
at the given variable level.

variable level, ni is the number of buildings in cluster i (Fig. 13). Eq. 6 ensures that the number of

buildings specified for each variable is equal to the number of buildings in the cluster. Eq. 7 ensures

that the number of buildings at each level for variable j is less than or equal to the maximum number

of buildings for a given variable. Formulating an optimization problem, however, in accordance with

Fig. 12 is problematic as it introduces a number of discrete variables:

Nvar =
∑
i

∑
j

ki,j (8)

where Nvar is the number of decision variables of the optimization problem, ki,j is the number of

levels of variable j for cluster i. The typical formulation of decision variables is not ideal as the

goal is to make decisions regarding only j variables yet we have introduced i · j decision variables.

An alternative formulation is to optimize the j variables each with discrete values (Fig. 14).

For any given community model we may count the number of possible design options for a

single variable. Fig. 13 illustrates the counting method for determining the size of the option space

of an aggregate demand model with three clusters, a single variable and three levels of the variable

for each cluster. In practice, the number of levels may vary for each cluster. The total count of
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Figure 13: Simple illustration of an aggregate model’s counting principle. An aggregate model is
comprised of several clusters with n indistinguishable buildings. Here the discrete options for a
variable is k = 3. By Eq. 9 there are 42840 discrete values of this variable in the aggregate model.

discrete values of the aggregate model for this variable is given by:

lj =
∏
i

ki, j + ni − 1

ni

 (9)

where lj is the number of design options for variable j, ni is the number of indistinguishable build-

ings in cluster i and ki, j is the number of levels of variable j for cluster i. The notation ( nk ) is short

hand for the combinatorial counting problem and is interpreted as n choose k. For the particular

case illustrated in Fig. 13:

3 + 15− 1

15

 ·
3 + 5− 1

5

 ·
3 + 4− 1

4

 = 42840

Then we may also calculate the size of the complete design option space:

Ntotal =
∏
j

lj (10)

whereNtotal is the full number of discrete options available on the demand side model with lj given

by Eq. 9. The formulation of Fig. 14 is an improvement over the initial formulation because now the
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Figure 14: An aggregate demand model formulated in terms j variables rather than i clusters as in
Fig. 12. Each variable has lj discrete values, xlj . Number of discrete values calculated for each
variable via Eq. 9.

optimization problem may be stated in terms of only j decision variables. This solution, however, is

still unsatisfactory as the mapping to the cost for each value of x for every variable is not a one-to-

one mapping. This result is to be expected: there are a number of possible configurations that result

in the same x value, but with a number of different associated costs.

It is important to restate our assumption that buildings within clusters are indistinguishable. This

assumption allows to avoid identifying the costs of individual upgrades to different buildings rather

we now must only specify the costs of various investment options at the cluster level. Given just

the cost information at the cluster level as in Table 5 and an algorithm to enumerate all the possible

combinations allows us to generate the complete cost space as in Fig. 17 and Fig. 18. A related

approach would be to forgo enumerating the complete cost space of specific clusters in favor of

finding average cost data that relates the performance to cost in a similar fashion. In theory, either

approach could be applied, but here we use explicit cost data built from cluster data.

For instance, the same window u-value for the overall building aggregate may be achieved

by either upgrading more buildings with a mid-level performance window or by upgrading fewer

buildings with a very high-performance window. As the high-performance window will tend to be

more expensive, this simple hypothetical reveals that there are multiple cost solutions for a single

performance level. Another burden is that the number of discrete options will be quite large for
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Figure 15: Each discrete value xl maps to a cost cl. The mapping, however, is not guaranteed to be
1-to-1 and in practice there will be a number of x values that match to a range of c values.

Figure 16: A design problem with Multiple Objectives and the Pareto frontier.

each variable j and thus the optimization problem will become more computationally intensive. To

overcome these challenges, this dissertation proposes a continuous formulation of the j variables

that explicitly considers the multiple solutions for each level of performance by only considering

Pareto optimal cost values. Details of the continuous method follow in Section 3.2.

3.2 Aggregate Demand Model Evaluation with a Continuous Variable Formulation

As we note in the previous section, the modeling of a building aggregate according to Section 2.3

results in a functional relationship between design parameters and option cost that is not a one-

to-one mapping (Fig. 15). In this case, it is not possible to maximize a chosen objective function

because the relationship between design variables and cost is not a true function. There is an explicit

trade-off, however, evident in the relationship between design parameter and cost, which allows a

decision maker to evaluate the desirability of certain combinations.

In fact, a number of problems in the fields of engineering, management, social sciences and
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design involve trade-offs between multiple preference criteria. In the face of decisions regarding

trade-offs it is important to consider a level of efficiency in the selection of design parameters, that is

to say we must consider how efficient a design parameter selection is at approaching our preferences

regarding specific criteria. Selection of a design parameter that does not allow a competing objective

to be improved any further is considered to be Pareto optimal (i.e., Pareto efficient/non-dominated)

and all design points that meet this criterion form the Pareto set (Luc, 2008). A Pareto set of optimal

design points may theoretically be infinite, which is represented by the Pareto frontier (Fig. 16). A

Pareto frontier is the theoretical boundary that defines the feasible set of design points that reach

Pareto optimality and in general all points along the Pareto frontier can not be ranked and each

combination along the frontier is considered equally acceptable.

Table 4: Parameters of the example community used to determine the cost functions in Fig. 17 and
Fig. 18

Building Type Floor
Area [m2]

Roof
Area [m2]

Envelope
Area [m2]

Window
Area [m2]

Count

MultiFamily 2008 785 1256 247 5
Small Office 511 599 209 57 4
Single Family 335 118 202 33 15

3.2.1 Pareto Frontier Based Variable Selection

We apply the concept of a Pareto frontier, but as a means of transforming the one-to-many func-

tional relationship of aggregate building model design parameters and annualized improvement cost

into a one-to-one relationship. Since the Pareto frontier of a relationship between two variables is

continuous, it is now feasible to model the independent variable of interest as a continuous variable.

To accomplish this we assume that all the discrete values of a particular design variable may be

enumerated as shown in Fig. 14. Then the complete relationship to cost is determined as suggested

in Fig. 15. The final step is to calculate the Pareto set from the data and to model the cost of V arj

as a linear interpolation of the Pareto frontier.

We have defined a sample community to demonstrate the use of the Pareto optimal cost func-

tions. The community parameters and costs are defined in Table 4 and the design option space is
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Figure 17: Pareto frontier and discrete options of the Leakage Level parameter of the community
defined in Table 5.

defined in Table 5. The community is identical to the one used in the model validation of Sec-

tion 3.1. In this case we are interested in two decision variables the building leakage level and the

roof u-value (Table 5). The specifics of the variables are not of great importance for this exercise,

however, the building leakage level defines the level of infiltration and the roof u-value defines the

roof’s resistance to heat flow. Each of these parameters influence the thermal demand buildings, the

magnitude of influence is affected by climate and building function. Nevertheless, these variables

are typically of interest during the retrofit decision making process.

We assume that each building’s leakage level and roof u-value may assume only one of three

possible levels and that each level has an associated cost. The costs in Table 5 are normalized by

a corresponding value denoted the “Cost Multiplier” and the exact units are specified under “Cost

Unit”. In addition, we are interested in the annual cost of ownership. Annual cost is a means of

representing the lifetime cost of ownership of an investment considering the rate of inflation (or

interest), which is why Table 5 includes a proposed “Lifetime” value.

Section 3.1 showed via Eq. 9 that for a variable with three levels and three building clusters (n1

= 15, n2 = 4 and n3 = 5) there are 42840 discrete options of that single variable. Per Table 5
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Figure 18: Pareto frontier and discrete options of the Roof U-Value parameter of the community
defined in Table 5.

there are two variables with the same characteristics and via Eq. 10 there are 428402 options of the

building aggregate’s leakage level and roof u-value. It is not necessary, however, to consider the

entire option space because as we noted previously there are a number of ways to achieve any single

value of either roof u-value or building leakage level. Fig. 18 and Fig. 17 illustrate the complete

option space for roof u-value and building leakage level, respectively. The figures also highlight the

Pareto optimal options, which lie along the curve that minimizes both annual cost and the variable

of interest.

The Pareto frontier is a theoretical curve and there are not necessarily any physical solutions

that exist along the curve other than at the points that define the “frontier”. Fig. 18 and Fig. 17,

however, demonstrate that this “frontier” is well defined even for modest building aggregates (i.e., a

large number of defining points). We use this feature to justify the transformation of the aggregate

model into a function of continuous input parameters. We make the cost function continuous via

linear interpolation over the set of points that define the Pareto frontier.
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Table 5: Design option space for the generic validation case with three building types and two decision variables each with three discrete levels.

Variable Building Type Option
Level

Annuity
Rate

Lifetime EPC
Vari-
able

EPC Unit Cost Cost Multiplier Cost Unit

Leakage Level Multi-Family 0 8.5 10 4.3 [m3/h/m2@Q4Pa] 0 2008 $/floor area
Leakage Level Multi-Family 1 8.5 10 3.87 [m3/h/m2@Q4Pa] 1 247 $/sf window
Leakage Level Multi-Family 2 8.5 10 3.225 [m3/h/m2@Q4Pa] 2.25 1256 $/sf total envelope
Roof U-value Multi-Family 0 14.9 20 0.358 [W/m2K] 0 785 $/roof area
Roof U-value Multi-Family 1 14.9 20 0.2506 [W/m2K] 1.15 785 $/roof area
Roof U-value Multi-Family 2 14.9 20 0.1969 [W/m2K] 2.3 785 $/roof area
Leakage Level Small Office 0 8.5 10 2.5 [m3/h/m2@Q4Pa] 0 511 $/floor area
Leakage Level Small Office 1 8.5 10 2.25 [m3/h/m2@Q4Pa] 1 57 $/sf window
Leakage Level Small Office 2 8.5 10 1.875 [m3/h/m2@Q4Pa] 2.25 209 $/sf total envelope
Roof U-value Small Office 0 14.9 20 0.358 [W/m2K] 0 599 $/roof area
Roof U-value Small Office 1 14.9 20 0.2506 [W/m2K] 1.15 599 $/roof area
Roof U-value Small Office 2 14.9 20 0.1969 [W/m2K] 2.3 599 $/roof area
Leakage Level Single Family 0 8.5 10 2.5 [m3/h/m2@Q4Pa] 0 335 $/floor area
Leakage Level Single Family 1 8.5 10 2.25 [m3/h/m2@Q4Pa] 1 33 $/sf window
Leakage Level Single Family 2 8.5 10 1.875 [m3/h/m2@Q4Pa] 2.25 202 $/sf total envelope
Roof U-value Single Family 0 14.9 20 1.81 [W/m2K] 0 118 $/roof area
Roof U-value Single Family 1 14.9 20 1.267 [W/m2K] 5.5 118 $/roof area
Roof U-value Single Family 2 14.9 20 0.905 [W/m2K] 18.4 118 $/roof area
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Figure 19: Design of Experiments (DOE) exploration of the total annual cost as a function of roof
thermal conductivity and building leakage level.

3.3 Validation

Hypothesis: The proposed continuous optimization approach leads a decision maker to the same

decisions as the discrete optimization approach, but in a shorter time, with fewer decision variables

and fewer constraints.

To test this hypothesis we will use the aggregate demand model established in Section 3.2.

The buildings of interest are 15 single family residences, five multi-family residences and four

small office buildings located in Climate Zone 4A (Central Park, NY, NY). In this scenario we

assume that the decision maker is an individual or ownership group with the ability to retrofit the

complete stock of buildings and their goal is to minimize the annual energy costs of the portfolio at a

minimum investment cost. There are two physical parameters of interest: roof thermal conductivity

and building leakage level.

The optimization scenario follows the option and parameter spaces defined by Table 5 and Ta-

ble 4, respectively. The objective function is defined as:
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minimize: DRC + EC +ARC (11)

whereDRC is the Annual Demand Rate Charge [$],EC is the Annual Energy Charge [$] andARC

is the Annual Retrofit Cost [$]. We assume for this hypothetical scenario that the ownership group is

charged as an aggregate and that this aggregate is under a commercial building like tariff. DRC is a

common rate structure where power consumers are charged on their $/kW demand use. There are

a number of complex ways that utilities administer demand charges, for example’s sake we assume

the decision maker is charged $ 16/kW of the highest demand each month regardless of the time

of occurrence. We assume the decision maker is charged $ 0.12/kWh for energy use and that this

value is constant throughout the year. The retrofit costs are annualized via an annuity rate:

Annuity Rate Coefficient =
1− (1 + i)−n

i
(12)

where i is the interest rate and n is taken to be the lifetime of a component. Each optimization

approach has a unique set of decision variables and constraints. The number of decision variables

in the discrete optimization approach is calculated from Eq. 8 and Table 5:

Nvar, discrete =
∑
i

∑
j

ki,j

= (3 + 3 + 3 + 3 + 3 + 3)

= 18

ki,j is the number of discrete levels for variable j and cluster i. The continuous optimization ap-

proach considers two decision variables, which matches the number of physical parameters of in-

terest. The discrete optimization case an upper limit and lower limit constraint on each decision

variable and a summation constraint on each variable for each cluster:

Nconstraints, discrete = 2 · Nvar, discrete +
∑
i

Nvar,i

= 2 · 18 + (2 + 2 + 2) = 42
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where Nvar,i is the number of variables with ki,j discrete levels for cluster i. The continuous

optimization approach has upper and lower limit constraints on each of the two decision variables

for a total of four constraints. Annualized Retrofit Costs in the discrete case are calculated as the

inner product of the decision variables, annuity rate, cost and cost multiplier while in the continuous

case the costs are linearly interpolated from the Pareto frontier (Fig. 18 and Fig. 17).

Each optimization is started from the same point, which is the minimum of the Design of Exper-

iments (DOE) conducted to map the design space (Fig. 19). The DOE is a full-factorial design with

50 levels for each of the variables of roof thermal conductivity and building leakage level, which is

2500 model executions. The starting points for each optimization are given in Table 6.

Table 6: Starting parameter sets for both the continuous and discrete optimization attempts with the
initial total cost.

Objective Function Value $ 879,486.05

Continuous
xRoofU−V alue 0.675
xLeakage Level 3.21

Discrete

xMultiFamily, Leakage Level,0 0
xMultiFamily, Leakage Level,1 5
xMultiFamily, Leakage Level,2 0
xMultiFamily, Roof U−value,0 5
xMultiFamily, Roof U−value,1 0
xMultiFamily, Roof U−value,2 0
xSmall Office, Leakage Level,0 0
xSmall Office, Leakage Level,1 4
xSmall Office, Leakage Level,2 0
xSmall Office, Roof U−value,0 4
xSmall Office, Roof U−value,1 0
xSmall Office, Roof U−value,2 0
xSingle Family, Leakage Level,0 2
xSingle Family, Leakage Level,1 13
xSingle Family, Leakage Level,2 0
xSingle Family, Roof U−value,0 15
xSingle Family, Roof U−value,1 0
xSingle Family, Roof U−value,2 0

3.3.1 Discrete Optimization Approach

The discrete optimization formulation to the optimization problem outlined in Eq. 11 is:
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minimize: DRC + EC +ARC

subject to: 0 ≤ xmultifamily, roof,0 ≤ 5

...

0 ≤ xsmalloffice, roof,2 ≤ 4

0 ≤ xsmalloffice, leakage,0 ≤ 4

...

0 ≤ xsingle family, leakage,2 ≤ 15

∑
j

kmultifamily,j∑
k=1

xmultifamily,j,k = 5

∑
j

ksmall office,j∑
k=1

xsmall office,j,k = 4

∑
j

ksingle family,j∑
k=1

xsingle family,j,k = 15

Engineering practice has a number of design problems that both exhibit nonlinear behavior and

rely on discrete variables. Although functions of discrete variables have fewer theoretical outcomes,

these functions are more difficult either maximize or minimize globally because the response surface

is non-convex and disjoint (Arora et al., 1994). Arora et al. (1994) describes the most commonly

applied methods for mixed nonlinear programming (MNLP) (i.e., both discrete and continuous input

variables): branch and bound methods, integer programming, rounding-off techniques, cutting plane

techniques, heuristic techniques, penalty function approach, Lagrangian relaxation approaches and

sequential linear programming. Arora et al. (1994) also describes a class of stochastic optimization

algorithms known as genetic algorithms.

Genetic algorithms follow rules derived from Charles Darwin’s theory of evolution; in partic-

ular, these algorithms prescribe a “survival of the fittest” type approach to determining feasible

combinations of input parameters. Genetic algorithms are computationally expensive and rely on

a large number of function evaluations yet this stochastic approach is useful as it does not require

any knowledge of the function’s derivatives and is a global search approach. Essentially, a set of
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initial design parameters is defined and evaluated for their “fitness” (i.e., objective function value).

New sets of parameters are selected and evaluated based on functions that define mutations and

cross-over among the parameter values; this process ensures that new “generations” result in better

evaluations of the objective function. It is essential to note that the genetic algorithm allows con-

straint violation, but incorporate penalty functions such that “offspring” that violate constraints are

less likely to reproduce.

We solve the foregoing discrete problem using the genetic algorithm implemented within Mod-

elCenter (ModelCenter, 2015).

3.3.2 Continuous Optimization Approach

The continuous formulation of the minimization problem defined in Eq. 11 is:

minimize: DRC + EC +ARC

subject to: 2.67 ≤ xLeakage Level ≤ 3.56

0.351 ≤ xRoof U−V alue ≤ 0.674

the foregoing minimization problem is still an example of nonlinear programming (NLP), but as

the variables are continuous there are more search methods available to solve the problem. Here

we apply the pattern search algorithm proposed by Hooke and Jeeves (1961) as implemented in

ModelCenter (ModelCenter, 2015). A pattern search algorithm is also a direct search method similar

to a genetic algorithm, however, the search pattern is deterministic. In essence the algorithm applies

δ’s of a prescribed value to the input parameters to monitor changes in the objective function and

moves the search in the direction that minimizes the function.

3.3.3 Evaluating the Optimization Approaches

Our hypothesis states that the continuous variable formulation of the problem results in the same

decision making as the discrete variable formulation. To evaluate this statement we compare the

objective function value and the relationship between the continuous and discrete design spaces.

They hypothesis also states that the continuous formulation produces a faster result, with fewer

constraints and fewer decision variables. To evaluate this statement we: (1) compare both the clock
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Figure 20: Comparison of the convergence sequence between the Discrete and Continuous formu-
lations. The continuous formulation converges to an identical stopping point, but at fewer runs.

time and function evaluations required to find an optimal solution for each approach given the same

start point on the same machine and (2) directly compare the number of variables and constraints

between the two methods.

Fig. 20 compares the convergence of both methods. We see that both the continuous and discrete

optimization approaches converge to the same minimum value of the Total Annual Cost. We also

see, however, that the continuous method converges to the minimum solution in fewer function funs

than the discrete formulation. Fig. 20 indicates that the first step of our hypothesis is in fact true,

the continuous formulation will result in the same decisions as the discrete process. Furthermore,

Fig. 20 indicates that the continuous solution achieves the minimum value in a fewer number of

runs. This conclusion is supported by Fig. 21, which details the number of variables and constraints

in each problem formulation. The bubble sizes in Fig. 21 are scaled to indicate the total number

of function evaluations to reach the minimum objective function value. From Fig. 21 we see that
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Figure 21: Comparison of the number of variables and constraints for each problem type with the
bubbles scaled by the number of function evaluations to reach the minimum point.

the continuous approach has fewer decision variables, fewer constraints and fewer overall function

evaluations.

3.4 Conclusions

To achieve our goal of modeling the microgrid system during the design phase in an integrated

manner requires methodologies for both modeling and optimization. This chapter has detailed the

transformation of the modeling approach defined in Chapter 2 from a discrete option space into a

continuous option space. More importantly the transformation proposed maintains the functional

relationship between design interventions and cost. This was achieved by applying a Pareto optimal

search method that reduces the design space in a logical and preferential way. Finally, this chapter

then validated the proposed Pareto optimal search method with continuous parameters by showing

that this technique results in the same decision making as a discrete approach yet with fewer overall

function evaluations, fewer decision variables and fewer constraints to the problem. As such we

recommend the use of the continuous variable formulation over the discrete formulation in the

integrated system modeling of a microgrid during the design phase. In the following chapter we

50



discuss a modeling framework for resilience inclusion during the design of the microgrid supply.
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CHAPTER IV

SUPPLY MODELING IN INTEGRATED MICROGRID DESIGN

The goal of this dissertation is to introduce a framework for reliability based design of micro-

grids that integrates high resolution models of a microgrid’s supply and demand sub-systems. The

purpose of such an integrated model is both to facilitate more complete uncertainty analysis in

microgrid design and support joint decision making efforts in performance based design of micro-

grids. To that end this chapter briefly reviews linear programming, which is a foundational tool to

microgrid design and then introduces the Distributed Energy Resource Customer Adoption Model

(DER-CAM) in depth. DER-CAM is a supply side modeling tool that calculates optimal dispatch

and capacity sizes of various technologies; the version studied in this work is deterministic with an

hourly resolution. Two extensions to this version of the DER-CAM equation set are introduced in-

cluding a grid availability variable and reliability constraints that allow the decision maker to define

preferences with respect to the expected unmet demand of the final microgrid.

4.1 Linear Programming & Microgrid Planning

Linear programming is a mathematical optimization technique that determines either the maxima

or minima of an objective function defined as the linear combination of a set of decision variables

with linear constraints. The power of linear programming is that a number of common problems

in engineering and business can be approximated and modeled as linear equations. In addition this

modeling methodology is powerful due to the fundamental theorem of linear programming, which

states that if there is no optimal solution then the problem is either infeasible or unbounded. Since

linear programming guarantees optimal solutions for feasible and bounded problems, it provides a

promising starting ground for the design of a number systems.

The standard form of a linear program is to denote m as the number of constraints and n as the
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number of decision variables xj :

maximize c1x1 + c2x2 + ...+ cnxn

subject to: a11x1 + a12x2 + ...+ a1nxn ≤ b1

a21x1 + a22x2 + ...+ a2nxn ≤ b2
...

am1x1 + am2x2 + ...+ amnxn ≤ bm

x1, x2, ..., xn ≥ 0

The minimum-cost network flow problem is a special class of linear programming problem with

direct application to microgrid design. This class of problem minimizes the cost of moving a mate-

rial quantity through a network of nodes and arcs. Mathematically we denote the nodes as N and

the arcs that connect the nodes as A. The corresponding set (N ,A) is denoted either a network or

graph.

A typical network flow problem must have the supply and demand of a material quantity for

each node specified, while each arc has an associated cost of travel. Then b is used to denote the

supply or demand from any node and ci,j is the cost to travel along the arc connecting node i to j

and the conventional formulation is to ensure that the supply of a material quantity leaving a node

equal to the demand at the node:

∑
i ε N

bi = 0 (13)

With the objective to minimize costs stated as:

minimize:
∑

(i,j) ε A

ci,jxi,j (14)

The minimum-cost network flow problem is widely applied throughout the power supply design

and operation context under the specific name of the “unit-commitment problem”. The unit com-

mitment problem is so ubiquitous due to the fundamental theorem of linear programming, which

ensures that the solutions are actually the optimal control of the power supply system. Once a
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decision maker specifies the node capacities and the arc costs for a particular system then linear

programming is applied to determine the minimum cost of operating the designed system for a

given demand at each node.

4.2 Generic Unit Commitment Problem

Padhy (2004) summarizes the general approach to the unit commitment problem within the scope of

utility operations scheduling. The generic goal of the unit commitment problem is to determine the

commitment schedule (i.e., operation schedule) of a set of power generating or distributed energy

resources at either minimum cost or maximum profit. The unit commitment problem does not

determine the capacities of the generating unit; it simply calculates the optimal operation given a

set of design capacities. Additional objectives for the operation may easily be defined, which may

typically include minimize environmental cost. A key constraint in this formulation is that the power

output from all units must be equal to the sum of forecast demand and any losses:

N∑
i = 1

(Ui,t · Pi,t) = Dt + losses (15)

Where N is the number of time units considered, Ui,t is the availability status of unit i during

time period t, with Pi,t the corresponding power output of the unit. Dt is the demand during the

time period t. Padhy (2004) notes an additional constraint: spinning reserve. Spinning reserve is

the amount of power that a system holds in reserve throughout operation, which allows the sys-

tem to increase its output as needed in the existence of a mismatch between actual and forecast

demand. Padhy (2004), however, provides very little guidance regarding the spinning reserve and

notes that this constraint may be expressed as either increased node capacities or as a reliability

measure.

4.3 What is the DER-CAM tool?

The vast majority of microgrid design tools are software modules developed by individual re-

searchers and there is much overlap in the underlying solutions. This overlap is largely due to

the common implementation of the microgrid design problem as a linear program as discussed in

Section 4.2. Commercial implementations of microgrid design software do exist, one such model
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is the Hybrid Optimization Model for Electric Renewables (HOMER), which originated at the Na-

tional Renewable Energy Laboratory and is now managed by HOMER Energy, LLC (Lilienthal

et al., 2005). The HOMER tool, however, is not a true optimization tool rather it is a heuristic

analysis methodology that is able to rapidly produce financial information regarding a pre-defined

distributed energy resource investment strategy. For instance, HOMER will generate the financial

return information for a user specified load and technology set, but will not return an optimum

technology set for a known load nor will HOMER determine the optimal operation strategy.

Alternatively, the Distributed Energy Resource Customer Adoption Model (DER-CAM) is a

microgrid design and modeling tool that has been developed by Lawrence Berkeley National Lab-

oratory (Stadler, 2008, 2009b; Siddiqui et al., 2005). DER-CAM exists in two-forms either as an

operations scheduling or microgrid planning formulation. This separation is needed to facilitate the

different decision variables of interest between the two problems. Both problems are formulated

as a Mixed Integer Linear Program (MILP) and have been implemented in the General Algebraic

Modeling System (GAMS) language (Brooke et al., 1998).

We apply the DER-CAM tool in this dissertation as the supply optimization tool of choice

because DER-CAM has no defined preferences for a given technology, calculates both thermal and

electric demand recovery and storage, on-site generation and considers both sales and purchases of

both electric power. The DER-CAM objective function is multi-objective and minimizes the sum

of the normalized total annual cost and CO2 emissions for meeting a user defined end-use energy

demand. The total annual cost is the sum of annualized capital investment, fuel consumption and

maintenance costs for distributed energy technologies.

This work applies the DER-CAM planning version of the model, which in addition to deter-

mining the optimal operation strategy also defines the optimal technology investment set for a user

defined load. The load must be defined at an hourly resolution, but the planning period does not

consider each hour of the year. Instead, the user defines three prototypical days for each month. One

day representing a typical week day, a typical weekend day and finally a typical peak day. There-

fore, the model finds the optimal investment strategy while considering just 36 days of operation

throughout the year (Stadler et al., 2014).
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While Stadler et al. (2014) incorporates a module for passive investment in demand improve-

ments the authors note that the static building model is an area of needed improvement especially in

regards to the assumed correlation between building envelope thermal resistance and cooling load,

which is a key motivation for integrating the demand model of Chapter 2 with the DER-CAM tool.

4.3.1 DER-CAM Model Formulation

The full mathematical specification of the DER-CAM tool is proprietary and the author’s were

granted exclusive rights for use, but not publication of the source code. As such this section will

detail the publicly available and high-level formulations of the modeling (Stadler et al., 2013). The

DER-CAM objective function is multi-objective and considers the operational cost of providing

energy services to a site and the associated CO2 emissions:

minimize: J = w1 · Ctotal/Cmax + w2 · CO2/CO2,max (16)

Ctotal = Celec + CDER + Cfuel + CDR + CEV bat − Vsales (17)

CO2 = CO2,elec + CO2,fuel + CO2,EV (18)

where Ctotal is the total annual energy costs of the microgrid, Celec are the electricity costs, CDER

are the distributed energy resources costs excluding stationary storage, Cfuel are the fuel costs for

fuel based technologies, CDR are the demand response costs for non-storage technologies, CEV bat

are the electric vehicle battery degradation costs and Vsales are total revenues from exporting elec-

tricity to the grid. The total CO2 is the sum of the emissions due to electric energy consumption,

CO2,elec, emissions due to burning fuel, CO2,fuel and the emissions from electric vehicle exchange,

CO2,EV .

The key constraints on the model are the balance equations and operational constraints:

SU,m,h + SDER,m,h + SST,m,h + SEV,m,h − Vm,h = DB,m,h +DST,m,h +DEV,m,h (19)

ESST,m,h = ESST,m,h−1 · (1− φST ) + iST,m,h − oST,m,h (20)

Eq. 19 is the supply and energy balance where SU,m,h is the electricity supplied by the utility,

SDER,m,h is the electricity supplied by distributed energy resources, SSTm,h is the electricity sup-

plied by stationary storage, SEV,m,h is the electricity supplied by electric vehicles and Vm,h is the
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electricity sold to the utility. The demand components are segmented into the microgrid electricity

demand, DB,m,h, the microgrid demand from stationary storage, DST,m,h, and the electricity de-

mand from electric vehicles, DEV,m,h. Similar balance equations are modeled for heating, cooling

and natural gas demand. Eq. 20 defines the physical modeling of electricity storage whereESST,m,h

is the energy stored stationary storage, φST is a self degradation coefficient that model energy losses

from stationary storage, while iST,m,h and oST,m,h represent the energy input and output, respec-

tively, of the stationary storage. Similar flow equations model the storage in electric vehicles, which

are not the focus of this dissertation.

Generators, storage and continuous technologies have constraints on their operation that follow

typical assumptions of MILP of microgrid models:

geng,m,d,h + sellg,m,d,h ≤ numg · MaxPg (21)

selli,u,m,d,h = 0 ∀u 6= eo (22)

where geng,m,d,h is the energy dispatched by distributed generation source g at month m, day type

d and hour h, sellg,m,d,h is the energy sold from distributed generation source g at month m, day

type d and hour h, numg is the integer number of generators of type g and MaxPg is the rated

capacity of generator type g. Eq. 22 ensures end-use u of technology i is not sold back to the grid

unless the end-use u is electricity only, eo.

As was stated in Section 1.3 the primary uncertainties within microgrid planning are related to

the demand profile, as well as the utility, technology and control reliability. The reduced order de-

mand model of Chapter 2 will facilitate demand side uncertainty propagation within future versions

of the integrated microgrid system model; hence, in the following section we outline extensions

to the DER-CAM tool itself to facilitate uncertainty propagation of utility reliability and to allow

decision makers to specify their risk tolerances. Control failure and reliability is outside the scope

of this work, but we do include a discussion on analogous interpretations of risk tolerances and

operational load control.

4.4 Modeling Utility Reliability

Resilience and ability to operate in an islanded mode is an important performance criterion of mi-

crogrids. Jones (2015) notes several uncertainty sources that contribute to microgrid failure, of
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which special focus was placed on the reliability of the grid. Jones (2015) model grid outages and

their duration directly by aggregating information about the microgrid site that includes the location

of trees and the occurrence rate of various sized storms. Xu et al. (2014) also directly model outages

at distribution feeders to study the affects of these failures on the protection procedures of islanded

microgrids.

In this work we re-formulate the DER-CAM energy balance limit state to facilitate the future

use of quantified uncertainty of grid outages and their duration during microgrid planning:

Stotal,m,h = SU,m,h · Zm,h + SDER,m,h + SST,m,h + SEV,m,h + SUnmet,m,h − Vm,h · Zm,h (23)

Dtotal,m,h = DB,m,h +DST,m,h +DEV,m,h (24)

Eq. 23 expresses the extended DER-CAM supply-demand limit state. We introduce two new

variables: SUnmet,m,h, which is the unserved energy at month m and hour h and Zm,h, which is a

binary input variable indicating the availability status of the grid. It is important to note that Zm,h is

an input variable. Therefore a decision maker has additional options for incorporating knowledge of

the utility’s reliability into the microgrid planning stage. Either the decision maker has quantified the

uncertainty in the frequency and duration of grid outages at the microgrid site or the decision maker

prefers to specify particular outage scenarios that the microgrid should be prepared to withstand.

The former approach requires data to support the underlying quantification and a potential source

for such information in the United States is Energy Information Agency (EIA) (2013).

4.5 Enforcing Microgrid System Reliability via Constraints

The previous expression of the DER-CAM supply-demand limit state considered neither grid out-

ages nor the possibility of unmet load as such it modeled the system as 100% reliable (Eq. 19). Such

a situation is unrealistic and not modeling potential service interruptions does not allow a decision

maker to objectively evaluate the performance of various microgrid design options. For example,

unmet demand occurs in real systems if there are combined failures in the due to either a grid out-

age or technical failure of a DER component. Power system operator seek to balance the supply,

S, and demand, D, of electricity at all instants and any imbalances can lead to financial losses for
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both the consumer and operator (Makarov et al., 2009; Kjølle, 1996). A typical means of modeling

service interruptions in the microgrid design problem is to establish the facility operator’s interrup-

tion cost function, which is the cost associated with unmet demand given the duration and time of

occurrence. Interruption cost functions are a useful means to translate an interruption directly into

the cost function yet these functions vary from consumer to consumer. An alternative to defining

an interruption cost function is to limit the feasible design space through a reliability constraint.

Three important measures of the reliability of a power delivery point are the frequency of service

interruptions, the duration of interruptions and the energy not served during the violation. These

three measures expressed as normalized performance indicators are:

System Annual Interruption Frequency Index (SAIFI) ratio of total number of interruptions to

the number of modeling periods.

System Annual Interruption Duration Index (SAIDI) ratio of total time in failure state to total

modeling time period.

Expected Energy Not Served (EENS) ratio of the total energy not served in failure state to total

demanded energy during modeling time period.

In this work we opt to introduce reliability constraints to the limit state of Eq. 23 rather than to

specify an interruption cost function. In particular we apply a limit to the EENS, which is active

over the entire modeling period as well as limit the Power Not Served (PNS) at each hour:

∑
m,h SUnmet,m,h∑
m,h Dtotal,m,h

≤ EENS (25)

SUnmet,m,h ≤ PNSm,h (26)

where EENS and PNS are set by the decision maker prior to modeling to constrain both the max-

imum unmet energy and the unmet demand at each hour. When the decision maker specifies their

tolerance to unmet energy throughout the modeling period and unmet demand at specific time inter-

vals they are explicitly restricting the feasible design space. Hu and Cho (2014) present an example

of ensuring reliability during operation of a CCHP system by reformulated the linear constraints as

a set of probability inequalities.
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4.6 Interpreting Reliability Constraints

The reliability framework we present in this work is designed to extend the current capabilities of

the DER-CAM modeling tool and facilitate the propagation of more advanced levels of uncertainty

throughout the microgrid design process. To that aim we have added a binary variable that allows

a decision maker to model various utility reliability scenarios and to also define their own levels of

power reliability without directly defining an interruption cost function. These points address the

primary goal of Hypothesis 3, but we also wish to address the interdependent roles of advanced

controls and microgrid reliability.

IEEE Standards Coordinating Committee 21 (2011) note that island capable microgrids require

advanced controls, in particular the control, “may be used to balance the load in islanded mode (i.e.,

via load shedding, load following and load management)”. Typically, to model advanced control

interactions requires a high fidelity model of both supply and demand as well as the technical sub-

systems to be controlled. A number of optimal control studies have been undertaken especially

within the microgrid context (Meiqin et al., 2008; Pourmousavi and Nehrir, 2012; Chauhan and

Saini, 2014). Sharma et al. (2016) model both the demand and supply as a linear program and solve

the optimal, centralized control via a model predictive control algorithm. However, the focus of

this work is on the design and specification of the system, as such we seek to incorporate important

aspects of control without needlessly increasing the modeling burden on decision makers.

An advantage to modeling the problem according to Eq. 25 - 26 is that the proposed integrated

modeling framework does not need to model any control interactions between the demand and

supply as these equations also define a load shedding policy. Because a decision maker is neutral to

losing a specified amount of power at each hour with a limit on the total energy loss, the MILP will

seek to optimally dispatch these losses within the constraints.

One plausible example is an electric dimmer switch. Suppose that a light is connected to a

dimmer and at a known low power setting it provides enough light to satisfy all potential users for

all possible scenarios, but that this setting was below its maximum power threshold. The difference

in power between between the upper and lower threshold times the study period gives the maximum

energy that can be shed, which then allows the decision maker to calculate the allowed EENS. In
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addition, the power difference between the lower and upper thresholds indicates the allowed PNS.

While this example may be slightly contrived, it encapsulates the difference between a “shiftable”

and “sheddable” load. The sheddable load never has to be made up, as in the energy that is saved

by not using the system does not need to be placed back into the system. In contrast, if we attempt

to let the temperature of a refrigerator float in accordance with the same logic, at a certain point we

must “replace” the energy that was released into the room by running a compressor.

Despite not modeling control actions explicitly a decision maker can evaluate the potential im-

pact of a load shedding controller abstractly as long as the decision maker can determine the req-

uisite reliability constraints. The DER-CAM tool also allows a similar abstract specification of

control, in which the decision maker can specify the costs to either shift or shed loads at either a hi,

medium or low power level (Stadler, 2009b).

Fig. 22b and Fig. 22a demonstrate the effects of specifying both EENS and PNS on the on the

hourly operation schedule of an optimal microgrids. In this case the microgrids are modeled as off-

grid. The first case we consider is Scenario 1 with an EENS of 0%, which is the base case design

scenario. Fig. 22a details the minimum cost operation in the case of designing without considering

grid outages or DER failures and no allowed load shedding. Fig. 22b notes how the load shedding

takes place both at day and at night, with intermittent contributions from the generator.

4.7 Conclusions

This chapter discusses the practical aspects of reliability based design of engineering systems with

special attention paid to the design of microgrids. The key value added to microgrid owners that

arises from investing in supply technologies is the ability to control the reliability of the system;

however, a number of supply side design tools do not incorporate a framework for either addressing

uncertainties or reliability. The supply side design tool that we will integrate with the reduced or-

der demand model is LBNL’s DER-CAM tool, which is impressive for its current level of industry

adoption, ability to simultaneously solve the optimal capacity and optimal operation problems of

microgrids as well as the large number of technologies that can be modeled within the software.

The primary shortcomings of the tool relate to the specification of the demand model and no previ-

ous work with either uncertainties or reliability based constraints. We introduce three performance

61



indicators of reliability that are often applied to electric power systems that address specific criteria

of the system including: frequency of interruption, duration of interruption and service level. The

purpose of these reliability indicators is to add additional constraints to the DER-CAM tool in order

to allow a decision maker to specify their desired level of reliability. In addition, we add a feature

to DER-CAM that allows a user to specify the utility’s reliability, which is a key step in propagat-

ing additional uncertainties through the microgrid design process. This approach improves previous

work into the reliability based design of microgrids because it explicitly considers the availability of

the external grid via either normative scenarios or user quantified uncertainties. Finally, this chapter

examines the importance of control interaction between demand and supply. The decision maker’s

neutrality to demand losses is actually a means of abstractly representing complex control inter-

actions without having to explicitly model the demand side constraints. In the following chapters

we will define the integrated modeling procedure in more detail as well as provide investigate the

impact of utility uncertainty on microgrid design outcomes..
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(a) Operation schedule of an optimal microgrid sized for an off-grid scenario with a 0% EENS.

(b) Operating schedule of an optimal microgrid sized for an off-grid scenario with 2% EENS.

Figure 22: Minimum cost dispatch of the optimal supply configuration for off-grid scenarios with a
0% and 2% EENS.
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CHAPTER V

INTEGRATED MICROGRID SYSTEM MODELING & OPTIMIZATION

To this point we have methodically developed the sub-components of an integrated microgrid system

model. Chapter 2 introduces a framework for modeling building aggregates of mixed building

types and Chapter 3 examines a unique way of searching the demand side design space for design

parameters that correspond to a decision maker’s preferences. Then Chapter 4 describes the process

of specifying optimal supply capacities in a microgrid and introduces new concepts regarding the

grid availability and a decision maker’s neutrality to different amounts of load shedding. The goal of

this progression is to achieve an integrated modeling framework of a microgrid that allows decision

makers to find optimal design parameters simultaneously on both the demand and supply side of the

microgrid system. This chapter specifies the complete framework of integration and co-simulation

and introduces the integrated system’s optimization algorithm.

5.1 Model Integration & Co-simulation

Modeling the integrated microgrid system is realized through coupled simulation of the defined

demand and system models (see Chapter 2 and Chapter 4). The demand sub-model predicts the

demand of a building as separate end-uses at an hourly resolution. The supply system model accepts

six demand end-uses at the hourly resolution, but does not calculate the optimal capacity sizes and

operation for each hour of the demand. Instead the supply system model accepts three day types for

each month. These typical day types are a typical weekday, weekend and peak day. Each day type

requires 24 hours of demand data across each of the six end-use inputs.

The integrated model’s exchange variables are based on the problem formulation of the DER-

CAM tool. As we mentioned, DER-CAM accepts six end-use input variables to determine both the

optimal supply node capacities and the optimal operation. These six variables are the electric only,

cooling electricity, space heating, hot water, natural gas and refrigeration electricity demand. Each

demand end-use is specified in kilowatts for each of the hours of each day type for each month.

These six end-uses are the variables that connect the demand sub-model to the supply sub-model.
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Figure 23: Overview of the integrated optimization framework. DEA searches the decision variable
space of the demand model, which interacts with the supply model through six exchange variables.
A decision maker defines the weather, grid outage and EENS scenario.

In essence, these variables form the exchange variables (Fig. 23).

The electric only end-use represents the demand due to all non-HVAC and non-refrigeration

related power demand. Cooling electricity demand is the electric power required to meet the space

cooling demand of the building aggregate under investigation. Space heating demand is the thermal

demand in kilowatts required to meet a desired heating set point of the building aggregate. Space

heating demand is specified at a thermal demand level because thermal power may be supplied via

a number of non-electric related means (i.e., heat recovery from solar thermal systems or CHP).

Refrigeration electric demand is the electric power to meet any of the specific non-space cooling

related demand, which may be dramatic for microgrids with vaccine facilities for example. Finally,

the natural gas demand is the required fuel input for non-heat generating processes such as cooking.

In general, the term co-simulation applies to a “master” simulation module that exercises any

number of “slave” modules (Blochwitz et al., 2011). Typically, co-simulation occurs at the “time-

step” level, which means that outcomes from one model are integrated with the input of another

model for each calculation step because said outputs define either a boundary or start condition (Hensen,
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1995). The integrated model that we propose is different in that there is no time-step level coupling

of input and output. Instead, the demand model is executed for one year at an hourly resolution. Data

from the demand model remains at the hourly resoultion, but is transformed via post-processing into

a format that the supply model can use. The supply model solves the MILP defined in Chapter 4,

for which the demand at each of the day types for each end-use is the output of the demand model.

5.1.1 Post-Processing Demand Model Output to Supply Model Input

In Section 5.1 we note that the demand model output is a time series of hourly demand values. Each

of DER-CAM’s required end-use components is output by the demand model, but the values must

be post-processed in order to match the demand data input format specified by this version of DER-

CAM. The primary issue is that the output end-use time series are not segmented into typical day

types. The three day types are weekday, weekend and peak. DER-CAM requires that each month

have one of the typical day types defined. There are two obstacles to overcome: (1) specifying a

typical weekday and weekend for each month and (2) defining the peak day.

Weekdays and weekends are quite easily segmented from hourly demand data. We considered

two potential options for defining the typical weekday and weekend for each month. The first option

is to find the average day by averaging across each hour of either each weekday or each weekend.

The next option for the microgrid design scenario is to find the day with highest demand for each

end-use type and to select that day as the typical day for the supply design modeling. We selected

the peak day sizing option as this is most aligned with typical HVAC sizing, which seeks to find

the peak possible thermal demand and to then specify equipment that can satisfy this demand. The

averaging approach may result in undersized systems.

Defining a peak day type is more open-ended than for weekdays and weekends. We considered

two options. The first option was to create a second instance of the schedule values solely to define a

peak day as is often done in the HVAC sizing. This method is not as readily scalable as it requires a

second model instance with a separate scheduling to determine the end-uses during peak scheduling.

The second method is to apply a scaling factor to the end-use data for weekday day types and define

this new end-use data as the peak. The only need is to then specify an appropriate scaling factor

that may also be dynamic if need be, but allows a single modeling instance. We derived the scaling
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factor from Kapsalaki et al. (2012), who note that the normative building model of Chapter 2 does

not adequately account for the peak demand level and thus use the peak calculations of Handbook

(2009):

αPh = kWPh/kWMax (27)

kWPh = [Uwalls ·Awalls + Uroof ·Aroof + Uglz ·Aglz + Cs · V̇ ] ·∆Tdesign (28)

where αPh is the heating scaling factor, which we apply to each hour of a weekday day type to

generate the peak day type data for the space heating end-use. Tdesign is the difference between the

indoor design set point and the outdoor design temperature that corresponds to the 99.6% annual

cumulative frequency of occurrence in the heating season, Cs is the sensible heat factor assumed

to be 1.23∗103 W/(m3/s ·K), V̇ is the total building airflow in m3/s, Ai is area i in m2 and Ui

is thermal resistance i in W/m2K. The peak heating load is calculated assuming no internal gains

and no gains from solar while the peak cooling load incorporates these two aspects:

αPc = (kWPc/COPc)/kWMax (29)

kWPc = [Uwalls ·Awalls + Uroof ·Aroof + Uglz ·Aglz

+ Cs · V̇ + qi ·Afloor + SHGC · Imax ·Aglz] ·∆Tdesign (30)

where gi are the total internal gains in W/m2, SHGC is the solar heat gain coefficient, Imax is the

peak total solar radiation on the windows and Aglz is the total glazed window area. Tdesign is the

temperature difference between the cooling set point and the 99.6% annual cumulative frequency

of occurrence for the cooling season and COPc is the modeled cooling system’s coefficient of

performance. The cooling scaling factor αPc is multiplied by the weekday cooling electricity type

data to create peak data for these segments. The remaining end-uses are modeled with equivalent

weekday and peak day data. Once each of the end-uses have been transformed the total integrated

model may now be optimized according to the decision maker’s preferences. The following section

discusses the search algorithm deployed to efficiently search the decision variables to find extrema

of the microgrid system performance.
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5.2 Optimization Approach

In Chapter 3 we compared two optimization approaches to searching the demand search space: the

Darwin algorithm and a pattern search method developed by Hooke and Jeeves (1961). Chapter 4

introduces the MILP problem as formulated in the supply optimization module DER-CAM. The

integrated modeling framework requires a global optimization approach that is efficient and able to

incorporate a problem formulated in two distinct stages. For that reason we introduce an additional

optimization approach that reduces the overall number of model evaluations while still maintaining

many of the advantages of a direct search approach in finding the global minima of a solution space.

5.2.1 The Design Explorer Algorithm

Global optimization algorithms are a class of search techniques that seek to find the highest maxi-

mum or lowest minimum achievable by a defined objective function rather than accepting one of a

number of possible “local” either maxima or minima (i.e. extreme values located in limited regions

of the domain spanned by the input parameters). Global optimization theory and algorithms are

important as many real-world problems exhibit a functional relationship between design parameters

and the objective function with a number of extreme values. In addition, this functional relation-

ship may be non-linear, non-differentiable or have unknown derivatives (Hazelrigg, 2012; Storn and

Price, 1995). Algorithms for finding extrema of these complex functions are typically categorized

as direct search approaches, which includes the algorithms of Hooke and Jeeves (1961), Nelder and

Mead (1965), evolutionary algorithms (Back, 1996) and genetic algorithms (Golberg, 1989) (Storn

and Price, 1995).

A direct search approach explores a design space by generating a set of alternatives and evalu-

ating the analysis function at the generated points. Each direct search approach must have a means

of deciding whether to accept or reject a generated set of points, which is typically done by ensur-

ing that a parameter set must minimize the objective function value. This is known as the greedy

criterion of direct search. The greedy criterion despite leading to fast convergence can also lead

to the return of local extrema. The various classes of direct search algorithms therefore seek to

strike a balance between speed and accuracy in finding the global extrema. Speed of convergence is

especially important in the field of model-based systems engineering where the number of calls to
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Figure 24: An overview of the Design Explorer algorithm (ModelCenter, 2015).
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the underlying simulation or black-box functional model should be limited due to potentially long

model runtimes. The multiple performance criteria of direct search algorithms lead directly to the

development of the Design Explorer algorithm, which relies on a number of important qualities of

deterministic simulations to efficiently explore a design space at a minimum number of function

calls.

The Design Explorer algorithm is a direct search approach that limits the number of model

evaluations through surrogate modeling of the true analysis function. To start a set of points is con-

structed from the design parameter space such that the design parameter space is evenly filled with

potential points. This initial set of design parameter points is then evaluated via the system analy-

sis model and a surrogate functional model is fit to the results. The surrogate model is generated

such that it is smooth and continuous (i.e., differentiable everywhere). The newly created surrogate

function is then searched and rapidly evaluated for multiple extrema via sequential quadratic pro-

gramming (SQP). Extrema returned via the SQP search are evaluated via the original analysis model

and if a better value is returned by the analysis function then the surrogate model is recalibrated with

the new points and SQP is done again. This process is iterated until the analysis function does not

return a better solution. A local pattern search algorithm is applied from the current optimum point

to determine if there is anyway to improve the solution with the analysis model via a nearby point.

If yes, the surrogate models are again updated and iteration is restarted between SQP and analysis

function, otherwise the optimum is found (Fig. 24).

Step 1: Generate Analysis Model Inputs via Orthogonal Sets Let a computer simulation be

defined over the set X such that Y = f(X) ε R where f is the analysis function or simulation.

An approximation of f could be found then that is orders of magnitudes faster to evaluate than the

underlying simulation itself, but an initial set of points is required to evaluate the simulation before

any approximations of f may be determined. The Design Explorer algorithm generates the orig-

inal sample of points X , at which to evaluate f via a method of orthogonal arrays (ModelCenter,

2015). Alternative sampling methods include random approaches such as Latin Hypercube Sam-

pling, which generalizes to Monte Carlo sampling. While LHS was designed to maximally cover

the ranges of random variables and improve convergence over direct Monte Carlo sampling, it has
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been shown to miss points in the “corners” of bivariate pairs (Owen, 1992). OA(n, k, q, t) is an

orthogonal array with strength t represented as an n row by k column matrix with values taken from

q symbols or levels. An important characteristic of orthogonal arrays is that if there are q distinct

levels for each variable k then each subset of t variables of a t − strength orthogonal array is a

grid (Booker, 1998). Therefore, ModelCenter (2015) applies the special case of a 2-strength or-

thogonal array, which ensures qxq grids for all bivariate combinations of the design parameters in

the optimization.

Step 2: Generate Surrogate Models The Design Explorer algorithm then interpolates obser-

vations of the analysis function evaluated at the points within the orthogonal array via kriging

models (i.e., model fitting with the assumption that observations are the result of a Gaussian pro-

cess) (Booker, 1998; ModelCenter, 2015). The predicted values for points in the independent vari-

ables space are then the function of a correlation function, the set of observations, the observation

points and correlation parameters (Booker, 1998). Correlation parameters of the correlation func-

tion are determined using maximum likelihood estimation (MLE). This method allows new obser-

vations and observation sites to be added to the MLE formulation and leads to an interpolated model

that may be quickly calibrated as new data are added from further analysis function runs (Booker,

1998; ModelCenter, 2015). Response models are created for the objective function and each of the

constraints.

Step 3: Optimize the Surrogate Models The Design Explorer optimization continues by find-

ing a set of extrema from the interpolated surrogate models via sequential quadratic program-

ming (SQP) (Nocedal and Wright, 2006). SQP is not a global optimization approach therefore a

number of SQP optimizations from a variety of start sites are evaluated, which is now feasible as

the optimization is applied on surrogates of the true analysis function (ModelCenter, 2015).

Step 4: Evaluate the Analysis Function A new round of analysis function evaluations is per-

formed using the unique extrema found in Step 3. Observations of the analysis function are then

compared to the extrema observed via the surrogate models. This is an important step as the sur-

rogate models may not be an appropriate fit to the analysis model. A comparison is made between
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surrogate models and analysis model output for the objective function and constraints.

Step 5: Refine Surrogates If the surrogate models’ observations did not match the analysis

model’s observations then the proposed optimal values are rejected. The surrogate models are re-

fined and calibrated to the expanded observation set.

Step 6: Iterate The Design Explorer optimization algorithm iterates through Steps 3, 4 and 5

until a stop criterion is satisfied. If the Design Explorer optimization algorithm passes the threshold

for consecutive search steps without an improvement then the current point is advanced to a Step 7

to undergo a local search.

Step 7: Localized Pattern Search The last step in the global optimization algorithm is to perform

a local pattern search at either the best design point or least infeasible point found through Step 6.

The search begins centered at the selected point and each design parameter is modified by a defined

delta. The analysis function is executed for each perturbation of the design parameters. If the

perturbed point is an improvement over the starting point then the algorithm updates the surrogate

models and moves back to Step 3. Otherwise, the original point is perturbed in the negative direction

and the analysis function is evaluated again. If the local pattern search advances through all of the

design parameters without finding an improved solution than the starting point is returned as the

optimum value and is guaranteed to be at least a local minima.

5.3 Design Explorer Algorithm and the Global Optimum

The optimization problem defined in this chapter is a constrained, non-linear program and the ob-

jective function is determined by calls to a “black box” routine defined by the combined results of

the demand model and supply optimization. The necessary and sufficient conditions of solution

optimality in non-linear programming only refer to either local maxima or minima and there are

generally no guarantees to finding a global optimum. This limitation is due to the lack of infor-

mation that non-linear programming methods have available to search the problem space, which is

typically limited to information a point in the design space x, the objective function value at the

point x, values of the constraint functions at x and information regarding the gradient and second
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derivative at x (Chinneck, 2006).

The Design Explorer Algorithm itself is a class of general constrained optimization based

on filter methods, which is to say that the search problem is divided into SEARCH and POLL

steps (Booker, 1998; Audet and Dennis Jr, 2004). A SEARCH step refers to the process of globally

searching the variable space for extrema based on approximations or surrogates of the underlying

subroutines and the POLL step locally explores the variable space near incumbent solutions. Audet

and Dennis Jr (2004) refer to Stephens and Baritompa (1998) who note that it is impossible to guar-

antee a global optimum in scenarios that do not include global information regarding the underlying

function; hence, the Design Explorer Algorithm itself can not guarantee a globally optimal solution.

Many practical engineering problems face the same problem of being unable to guarantee a

global optimum; however, Booker et al. (1999) and Booker et al. (1998) show that the Design

Explorer Algorithm, which is a class of algorithms following the Surrogate Management Frame-

work (SMF), does guarantee “global convergence”. An optimization is “globally convergent” if

any generated variable sequence converges to a point for which a necessary condition of optimality

holds (Lanckriet and Sriperumbudur, 2009).

5.4 Conclusions

State-of-the-art performance based design approaches to the design of microgrids are limited in

their ability to evaluate all criteria of a decision maker. This is because current modeling paradigms

do not integrate adequate sub-models of demand and supply into a true systems model. In contrast,

this chapter addresses the limitations in the state-of-the-art by presenting a co-simulation approach

of the demand and supply. The integrated model may then be evaluated by a decision maker through

a two-stage optimization approach that allows a decision maker to specify investment parameters

that pertain to both demand reduction and supply capacity. The two-stage optimization problem is

directed at the top level by the Design Explorer Algorithm, which is a global optimization approach

that maximizes its efficiency over other direct search approaches through the use of surrogate mod-

els. The supply capacity and operation sub-problem, which is solved each time the integrated system
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model is executed, relies on conventional branch and bound techniques common to linear program-

ming. We have presented an integrated microgrid modeling framework comprised of two mutually-

exclusive and completely exhaustive sub-models and in the next chapter we investigate applications

of this model to microgrid investment decisions that allow simultaneous decisions regarding both

supply and demand.
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CHAPTER VI

APPLICATIONS

This work has presented a model for the performance based design of distributed generation systems

that allows decision makers to consider design options that can not be explored with existing tools.

In addition, this work has extended the DER-CAM microgrid planning tool to allow a decision

maker to specify both the utility’s reliability profile and a level of neutrality to unmet demand. The

integrated system model is co-simulated via an interface of six demand components and allows

decision makers to evaluate microgrid design options that incorporate decision variables in both

the supply and demand sides simultaneously. This chapter attempts to generalize these modeling

features and presents two separate scenario analyses.

First, we examine the affect of the utility’s reliability scenario on investment decisions and then

we apply the integrated optimization framework to demonstrate that joint decision making leads to

more preferred design decisions. We introduce a hypothetical case study to facilitate our application

of the modeling tool. In particular, we focus on a New York community with an interest in investing

in a microgrid for increased reliability.

6.1 Case Description

The NY Prize is a $40 million competition created by the New York State Energy Research & Devel-

opment Authority (NYSERDA) with the mission to increase microgrid penetration throughout the

state of NY by assisting communities via grants that will facilitate partnerships between a number

of community groups interested in modernizing the electric grid. The competition awards grants

at three phases. Stage 1 grants are directed toward feasibility studies, Stage 2 grants allow more

detailed engineering design and business planning while Stage 3 grants are earmarked for project

construction and post-operation monitoring. In July 2015, the NY Prize has awarded $100,000 in

funding to 83 feasibility studies throughout the state; as of July 2016, approximately 40% of the

feasibility reports have been returned to the NYSERDA for review.
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NY Prize grants typically were awarded to the most vulnerable communities with a strong show-

ing of partnerships among the community and with industry. As such a number of the communities

granted feasibility study funds were greatly affected by outages due to the Super Storm Sandy.

Sandy was an incredibly destructive and powerful storm that struck the East Coast of the United

States with extreme intensity and left millions of homes and business without power, shrank coast

lines and caused shortages for key resources like gasoline (Halverson and Rabenhorst, 2013). Two

Bridges, Manhattan, New York, NY was a town affected by Sandy and awarded a feasibility study

grant through the NY Prize. Due to Two Bridges’ proximity to the East River and location at

the lower side of Manhattan, the community experienced widespread power outages and flood-

ing (Fig. 25).

Figure 25: An aerial view of the Two Bridges community detailing its proximity to the East River
and location along the southern end of Manhattan. This community experienced wide spread power
outages and flooding in the aftermath of Hurricane Sandy.

Sandy had a number of effects on the Two Bridges community. Community members formed a

coalition of investors, project managers and community representatives in response to these adverse

effects. The coalition proposed the idea of a projected titled Beyond the Grid, which seeks to, “con-

sider the social and economic context of the community served and will have positive impacts on

quality of life and availability of critical services.” As such the coalition decided to establish Beyond
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Table 7: Microgrid ownership models as detailed in Razanousky and Hyams (2010).

Model Description

Landlord/Campus
I Single non-utility owner operates a system and installs private

wires and generation technologies on site to meet thermal and elec-
tric demand of buildings privately owned by the microgrid owner.

II Identical to Type I except some infrastructure may cross public
streets or a utility franchise (i.e., NYU in Manhattan).

III Identical to Type II except that previously unaffiliated neighboring
building owners may be allowed to enter into the microgrid service
area through contracts.

Joint Ownership/Co-Op Multiple owners or unrelated firms may collectively own and oper-
ate a microgrid to service thermal and electric loads. Infrastructure
may cross the public domain and previously unaffiliated building
owners may be allowed to enter into the microgrid service area
through contracts.

Independent Provider A strictly commercial business model. An independent, non-utility
microgrid owner sells electricity and/or thermal energy to multiple
unaffiliated customers. New customers added via contracts. In-
frastructure may cross public domain.

the Grid as a non-profit entity with multiple objectives including financial return to the members

served in the proposed power co-operative, improved resiliency and more renewable power integra-

tion.

It is important to discuss the decision making scenario and identify who has the authority to

make decisions during the microgrid planning process. There are a variety of microgrid business

models and the planning team behind the Two Bridge’s microgrid denotes their business model as

an “urban cooperative”, which they model on conventional electric power co-operatives (Table 7).

A democratically elected Board of Directors oversees management of the facility and other needs of

governance and the microgrid is agreed to operate at cost. The Board of Directors then theoretically

aggregates the desires of individual building owners into a single collective strategy. At the same

time, however, there are differential impacts of failures and there are different levels of retrofit

available to individual buildings. The integrated optimization approach handles the reliability at the

aggregate scale and does not examine power reliability to individual buildings. Instead the Board

of Directors must specify the reliability constraints defined in Section 4.5. The benefit of using

the integrated optimization approach and the demand model specified in Chapter 2 is that results

will reflect the best changes required for each type of building within the building stock. Since each
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building of the same type, however, is modeled as indistinguishable, then the Board of Directors can

address all owners of a specific type and determine which owners are willing to undergo retrofits.

In addition to meeting their own demand, the generation facilities are eligible to sell power to Con

Edison of New York (ConEd) through a power purchase agreement. Financing for the proposed

microgrid is projected to come from private investment, government loads and subsidies, energy

incentives from ConEd and member equity.

We will analyze the Two Bridges case given the Board of Director’s interest in financial return

to co-op members, improved resilience and more renewable power integration. While results of

the feasibility study have been published, there is not detailed demand level information about the

proposed site. Instead a few general classifications of building functions have been defined broadly.

Given the location of the site, cursory demand data and a general sense of the objectives of the

Board of Directors we will make assumptions about the demand level and preferences in order to

analyze this case within the integrated modeling framework proposed in Chapter 5.

6.2 Analysis Goals

There are two primary research questions with a broader bearing on general integrated microgrid

design research:

1. What effect does an integrated design methodology have on the total annual cost and annual

CO2 emissions for various weighs on economic and environmental value?

2. What are the effects of different utility reliability scenarios on the total annual cost and annual

CO2 emissions of the optimal microgrid system design for various weights on economic and

environmental value?
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These two research questions are derived from the two driving hypotheses:

Hypothesis 2: The proposed integrated modeling framework reveals more preferred solutions than

a design approach that does not consider demand interventions during the design phase.

Hypothesis 3: Defining a resiliency framework for the integrated microgrid system model will

enable decision makers to model scenario uncertainty regarding the utility’s reliability.

The method to answer each of the questions is to first develop models of the assumed build-

ing types. Next, we analyze the building aggregate to determine a suite of demand interventions,

which are translated into cost functions in accordance with Chapter 3. Then, we define the specific

parameters of the supply system components including costs, the utility rate structure, the outage

scenarios and the decision maker neutrality to loss. Once these preliminaries are completed the

method to solve each individual question diverges.

To address Hypothesis 2 we first define a base scenario known as the “Do Nothing” case, in

which the co-op does not invest in either DERs on the supply side or demand side interventions.

The “Do Nothing” case represents the cost to simply operate the facilities connected to the utility

grid. We then define two conventional design approaches to compare to the integrated optimization

approach. “Supply Only” is a design approach that only optimizes the selection of DERs for the “as

is” building demand. “Demand First” is a design approach, in which the co-op owners decide to first

invest in demand side interventions by determining the minimum cost investment to reduce thermal

demand by 25%. Next, the co-op owners then optimize the selection of DERs for the building stock

with a 25% reduced demand. “Integrated Optimization” is the integrated optimization approach,

in which the co-op decision makers have the ability to select decision variables across the supply

and demand sub-systems simultaneously. Each Scenario is simulated multiple times to examine the

effect of varying weights in the cost function as the DER-CAM tool minimizes a multiobjective

function of both economic and environmental value.

Finally, Hypothesis 3 is intended to demonstrate the effect of utility outages on the optimal

sizing of a microgrid. This is important to illustrate because an aspect model that intends to evaluate

the reliability performance of a microgrid must be able to propagate multiple sources of uncertainty

including the utility reliability. The rational approach to propagating the utility’s reliability profile
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is to first quantify the uncertainty in both mean time between failures and outage duration length

given the microgrid location. Once this uncertainty is quantified a decision maker may generate

random samples of the grid outage and downtime for the design location to quantify the impact on

the microgrid system’s reliability. We present a truncated version of this, in which we define two

scenarios of the grid reliability: a minimum and maximum reliability. In the maximum reliability

scenario the grid is available for all operating hours while in the minimum reliability scenario the

grid is out for all operating hours. We then simulate each scenario for multiple combinations of the

weighting parameters in the cost function. All other realizations of the utility’s reliability profile

should lie within these extreme cases.

6.3 Case Analysis

The Two Bridges microgrid case scenario is an example of the optimal design of a grid-connected,

commercial and residential community under a demand rate tariff structure with a peak demand

< 10 MW. We assume that the Board of Directors is charged as a single utility node in accordance

with other large power consumers. In this way the Board of Directors is seen as the ultimate decision

maker both with the ability to invest in new power generation technologies and improvements to

buildings owned by members of the co-operative.

Demand rate tariffs are a common tool applied by utilities to penalize consumers for power

demand as well as energy consumption. This rate structure exists because meeting high demand is

expensive for supply systems. By charging a premium for demand, these rate tariffs reduce the peak

consumption that must be met by the utility.

6.3.1 Defining the Demand Side

Literature released regarding the Two Bridges project notes that the microgrid will serve a mix of

public and private residential, institutional and commercial sites including three public schools, a

community center, pharmacy, supermarket and a variety of apartment buildings. We used this as

a basis for defining a potentially similar community, but with a focus on single-family residential

rather than multi-family as this may have greater generality. We therefore identified five prototype

building models to represent the community: 60 single family residential, 1 supermarket, 2 stand

alone retail, 2 primary school and 1 secondary school. We will model the building aggregate in
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Climate Zone 4A, which contains New York City. In particular, we use the Central Park TMY3

weather data.

We selected five design parameters for the aggregate demand model based on the results of a

sensitivity analysis. As this is a heating dominated climate the most important variables to consider

are the building air leakage level, window, roof and wall thermal resistance and the lighting power

density. For each building type we defined a set of options and design improvements along with

an associated cost for each variable level (Table 8). From this information we generated the Pareto

Optimal cost curves for each variable as in Chapter 3 (Fig. 28).

Table 8: Discrete option space for the demand side decision making. Each building has discrete
levels for five input variables.

Primary
School
(2004)

Secondary
School
(2004)

Single
Family
(2007)

Supermarket
(2004)

Stand
Alone
Retail
(2004)

Leakage Level 4.3 2.5 2.5 3.8 7.41
[m3/h/m2] 3.87 2.25 2.25 3.42 6.669

3.225 1.875 1.875 2.85 5.5575
Lighting Power Density 21.99 12.38 1.7 16.72 19.29

[W/m2] 18.6915 10.523 1.275 12.54 14.4675
16.4925 9.285

Roof U-value 0.358 0.358 1.81 0.36 0.36
[W/m2K] 0.2506 0.2506 1.267 0.2506 0.2506

0.1969 0.1969 0.905 0.1969 0.1969
0.1611 0.1611 0.1611 0.1611

Opaque U-value 0.704 0.704 0.35 0.86 0.86
[W/m2K] 0.5984 0.5984 0.2975 0.62 0.62

0.4928 0.4928 0.25 0.5 0.5
0.4224 0.4224

Window U-value 3.236 3.236 1.99 3.24 3.24
[W/m2K] 2.427 2.427 1.4925 2.43 2.43

1.618 1.618 1.194 1.62 1.62

6.3.2 Define the Supply Side

There are a number of costs related to operating a microgrid. The most important costs are the initial

investment capital in generation technologies, the utility rate tariff and the fuel consumption volume

and price for operating the generator. Microgrids may also generate revenue through either direct

sales of produced power or via incentives and tax reductions due to different technology selections.
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(a) Electric demand of the case study building aggregate for a typical Winter day separated by end-use.

(b) Electric demand of the case study building aggregate for a typical Summer day separated by end-use.

Figure 26: The modeled electric demand during both the Summer and Winter of a proposed micro-
grid in lower Manhattan.
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(a) Thermal demand of the case study building aggregate for a typical Winter day separated by end-use.
Thermal demand is dominated by Space Heating needs in Winter.

(b) Thermal demand of the case study building aggregate for a typical Summer day separated by end-use.

Figure 27: The modeled thermal demand during both the Summer and Winter of a proposed micro-
grid in lower Manhattan.
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Table 9: Demand rate structure assumed for the design study in $/kW .

Non-Coincident On-Peak Mid-Peak

January 11.88 0 0
February 11.88 0 0

March 11.88 0 0
April 11.88 0 0
May 11.88 0 0
June 11.88 19.49 5.46
July 11.88 19.49 5.46

August 11.88 19.49 5.46
September 11.88 19.49 5.46

October 11.88 0 0
November 11.88 0 0
December 11.88 0 0

In this section we first describe the assumed utility rate structure, then we introduce a number of

technologies and their associated costs due to both operations and investment.

We assume the utility charges for both demand and energy. The demand charges are listed in

Table 9. There are three specific charges listed in $/kW for demand: Non-coincident, on-peak and

mid-peak. Non-coincident peak demand is a customer’s maximum power demand during a utility

defined period, typically the period of time is a month, which is what we assume. In this case,

the utility charges $11.88/kW of the maximum monthly non-coincident demand. On-peak and mid-

peak are similarly defined as the customer’s peak demand during a specific time interval. In this case

we assume that the on-peak versus mid-peak distinction is only made during the summer months

with separate timing for weekdays, peak days and weekends. More specifically, the weekday and

peak on-peak periods are between the hours of 13:00 and 18:00 and there are no on-peak or mid-

peak periods on weekend days. Mid-peak hours are from 09:00 to 12:00 and 19:00 to 24:00 on

weekdays. Further pricing for these day types is in Table 9.

Utilities also charge an energy rate in $/kWh. Our assumed energy rates are detailed in Ta-

ble 10. The decision maker has also entered into a power purchase agreement with the utility. The

ask price for electricity is also governed by the time of use, which is detailed in Table 11. Again

there are no on-peak times considered during the winter. Also, the mid-peak and off-peak times

mirror those presented for the demand rate charging.
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Table 10: Assumed electricity charges in $/kWh with on-peak, mid-peak and off-peak rates.

On Mid Off

January 0 0.07505 0.0498
February 0 0.07505 0.0498

March 0 0.07505 0.0498
April 0 0.07505 0.0498
May 0 0.07505 0.0498
June 0.10323 0.08078 0.05407
July 0.10323 0.08078 0.05407

August 0.10323 0.08078 0.05407
September 0.10323 0.08078 0.05407

October 0 0.07505 0.0498
November 0 0.07505 0.0498
December 0 0.07505 0.0498

Table 11: Assumed buy back rate agreement for power purchases between the customer and utility.

On Mid Off

January 0 0.040329 0.036663
February 0 0.040329 0.036663

March 0 0.040329 0.036663
April 0 0.040329 0.036663
May 0 0.040329 0.036663
June 0.152651 0.065993 0.065993
July 0.152651 0.065993 0.065993

August 0.152651 0.065993 0.065993
September 0.152651 0.065993 0.065993

October 0 0.040329 0.036663
November 0 0.040329 0.036663
December 0 0.040329 0.036663

The decision maker has a number of supply side generation technologies to consider. The gener-

ation technologies are separated into two classes either continuous or discrete. The energy capacity

of the electric storage and generation capacity of the photovoltaics are modeled as continuous vari-

ables. The unit sizes for these technologies are generally small relative to the actual load and thus

can be considered to be continuous. Design parameters of the continuous parameters are noted in

Table 12. The costs in Table 12 for electric storage is given in $/kWh and $/kW for PV and

lifetime is in years.

Alternatively, the generator capacity and CHP capacity are modeled as discrete units. We con-

sider seven generator set types and six generator sets with heat recovery (i.e., CHP) (Table 13). We
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Table 12: Continuous parameters modeled on the supply side including photovoltaics and simple
electric energy storage. Variable costs listed in $/kW .

CFix CV ar Lifetime OMFix

Electric Storage 295 193 5 0
PV 3851.25 3237 30 0.25

consider three main types of generators: internal combustion engine (ICE), microturbine (MT) and

fuel cell (FC). Each generator varies based on its conversion efficienciy, initial capital cost, variable

costs and lifetime (Table 13).

Table 13: Generator options considered for the microgrid design case study.

Pmax Lifetime CCap OMFix OMV ar η

ICE-small-30 60 20 1587 0 0.021 0.29
ICE-med-30 250 20 865 0 0.015 0.3

GT-30 1000 20 1932 0 0.011 0.22
MT-small-30 60 10 1410 0 0.017 0.31
MT-med-30 150 10 1148 0 0.017 0.33

FC-small-30 100 10 3605 0 0.033 0.46
FC-med-30 250 10 2889 0 0.033 0.46

ICE-HX-small-30 60 20 2088 0 0.021 0.29
ICE-HX-med-30 250 20 1271 0 0.015 0.3

GT-HX-30 1000 20 2647 0 0.011 0.22
MT-HX-small-30 60 10 1584 0 0.017 0.31
MT-HX-med-30 150 10 1290 0 0.017 0.33

FC-HX-small-30 100 10 4192 0 0.033 0.46

6.4 Results

6.4.1 Hypothesis 2: Integrated Design Optimization

Fig. 29 presents the results of the three design scenarios and the “Do Nothing Case” as described

in Section 6.2. The “Supply Only” design case is a design method, in which the decision maker

leaves the building stock as is and only specifies the DER investments. “Demand First” is the

method, in which the decision maker first determines the minimum cost demand side investment

to produce a 20% savings in thermal demand for heating and then determines the optimal DER

investments. Finally, “Integrated Optimization” are designs that result from using the integrated

modeling methodology introduced through this dissertation. Fig. 29 shows CO2 emissions versus
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(a) Annualized investment cost [$] versus opaque
wall thermal resistance [W/m2K].

(b) Annualized investment cost [$] versus lighting
power density [W/m2]

(c) Annualized investment cost [$] versus building
air leakage level [m3/hm2]

(d) Annualized investment cost [$] versus roof
thermal resistance [W/m2K]

(e) Annualized investment cost [$] versus window
thermal resistance [W/m2K]

Figure 28: Corresponding Pareto frontier for each of the five investigated demand parameters cap-
turing variation in performance versus cost for the complete building aggregate.
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Figure 29: Plot of the CO2 emissions versus Total Annualized Investment Cost results for multiple
weights of the wCost and three different approaches to microgrid system design: IO, DF and SO.
Results show that the IO approach proposed in this dissertation results in more preferred microgrid
designs than the two conventional, dis-jointed design approaches.
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Total Annualized Investment cost for multiple weights of the wCost parameter in Eq. 16 as it is a

multi objective function with CO2 and Total Annualized Costs as the two objectives of interest.

In each scenario the DER investment options available are listed in Table 13 and Table 12. The

demand side options are shown in Table 8 and the corresponding cost functions for each variable

are in Fig. 28. Each design scenario considers the a grid that always operates and that the decision

maker requires that no demand be unmet (i.e., 0% EENS).

From Fig. 29 we immediately see that each of the microgrid designs determined by the inte-

grated design method “dominates” all other solutions. That is to say that for the same weighting

of cost and environmental value, that a decision maker applying the integrated modeling method-

ology to their microgrid design problem will find a more preferential solution that doing either of

the conventional design methods. At wCost = 0.2 the “Integrated Optimization” design results in

a 1% higher annual cost compared to the “Demand First” method, but a 7% reduction in annual

cost compared to the “Supply Only” method. Carbon dioxide emissions of the “Integrated Opti-

mization” case are 23% and 20% less when compared to the “Demand First” and “Supply Only”

methods, respectively (Table 14). The minimum cost solution is interesting in that the Integrated

Optimization approach results in a 12% annual cost reduction versus the “Demand First” approach

and 6% annual cost reduction compared to the “Supply Only” method.

Another observation to note is that while the IO case achieves the lowest total annual cost

($1.78M) the smallest range of annual costs actually belongs to the DF case ($2.02M - $2.64M).

By pre-selecting the demand side interventions the maximum savings of either annual cost or emis-

sions are effectively capped as we see that the DF case also has the tightest range onCO2 emissions.

The results in Fig. 29, Table 14 and Table 15 support the hypothesis that the proposed integrated

Table 14: Percent change in economic and environmental value for the Integrated Optimization
versus the Supply Only and Demand First methodologies at the same reliability level.

Supply Only Demand First

wCost Total Annual Cost CO2 Total Annual Cost CO2

0.2 -7% -20% 1% -23%
0.6 -10% -18% -6% -17%

1 -6% -17% -12% -11%
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modeling framework reveals more preferred solutions than a design approach that does not con-

sider demand interventions during the design phase. The integrated modeling solution also reveals

more preferred solutions than a design approach that begins with a target demand savings prior to

optimally selecting the DERs.

6.4.2 Hypothesis 3: Effects of Utility Reliability

Figure 30: Comparing the annual emissions and total investment cost in the microgrid for various
combinations of the weighting parameters. The two green points are results from the integrated
system optimization with either pure cost minimization or pure emissions minimization.

Table 15: Demand side interventions and investments for the base case, Integrated Optimization
and Demand First methodologies.

0.2 0.6 1

Base IO IO IO DF
Roof U-value [W/m2K] 0.61 0.38 0.39 0.45 0.47
Opaque U-value [W/m2K] 0.54 0.48 0.51 0.49 0.51
Window U-value [W/m2K] 2.85 2.83 2.85 2.85 2.73
Leakage Level [m3/h/m2] 3.35 2.78 2.79 2.71 2.83
Lighting Power Density [W/m2] 11.86 10.57 11.36 11.44 11.45
Annualized Upgrade Cost $ 96,087.45 $ 69,943.69 $ 27,224.96 $ 61,937.02
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Figure 31: Analysis of the microgrid design parameters for a maximum and minimum grid reliability
scenario.

Fig. 30 and Fig. 31 summarize the optimal microgrid designs for two utility reliability scenarios.

The first effect that we notice is that the spread in total annual cost between the two scenarios is not

as large as expected ($0.98M versus $0.89M). At wCost = 0.6 and wCost = 0.8 the total annual

costs are within 5% of each other and carbon emissions are also within 5% of each other. At the

extremes (wCost = 1.0 and wCost = 0.2), however, it is respectively 10% and 13% more costly to

design microgrids for utilities with high levels of outages. Generally, it seems that for the minimum

utility reliability cases that more investment should be guided towards CHP capable DERs.

The lack of sensitivity of the microgrid design to the utility reliability is counter intuitive, but

not surprising. We should expect that if we don’t incorporate the failure rate of DERs within the

microgrid and assume perfect operation that most cost variation will be attributed to differences in

operation strategies. The primary takeaway from this study is that the extension to the DER-CAM

tool now allows decision makers to quantify utility outages and incorporate this uncertainty in the

decision making process.

We can also compare the results of Fig. 31 to the actual Two Bridges microgrid plan, which
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includes 350 kW of PV, 8.4 MWh of electric storage and 1665 kW of generation with 65 kW of

CHP. Although we did not attempt to strictly model the Two Bridges community, but rather use the

suggested peak demand as a reference point we will look at the discrepancy in PV sizing. Manhattan

has generally a constrained footprint available for installing PV and the 6 MW system may not be

feasible in such a constrained environment. The standard method for rating the capacity of a PV

system is to calculate the output power at a reference solar irradiance of 1 kW/m2:

ηmaximum =
Pmax

Ireference ∗ASystem
(31)

In DER-CAM we assume a 15% efficient panel. The actual area available to cover in the Two

Bridges community is actually several factors less than what is modeled in this chapter as the solar

panels cover the roofs of just eight buildings. We can determine the roof area of the Two Bridges

community if we assume the same panel efficiency, which gives 2288 m2 (i.e., 350 kW/0.153).

Our total roof area is based on the commercial reference building models and not the buildings

from the actual Two Bridges community and thus our area is 41351 m2. Due to this difference

between modeling choice and reality, we consider about 18 times more roof area. Our maximum

solar capacity of 6300 kW is exactly 18 times the 350 kW noted in the actual study results.

6.5 Conclusions

This chapter sought to answer two primary questions:

1. What effect does an integrated design methodology have on the total annual cost and annual

CO2 emissions for various weighs on economic and environmental value?

2. What are the effects of different utility reliability scenarios on the total annual cost and annual

CO2 emissions of the optimal microgrid system design for various weights on economic and

environmental value?

Hypothesis testing with the integrated system modeling framework allows us to answer the

first question and say that the integrated design methodology has a preferential effect on microgrid

designs, which is to say that this method finds solutions that are both lower in total cost and produce
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fewer emissions. More specifically, the work in this chapter suggests that this integrated approach

is better than two conventional design approaches.

The first conventional design approach is to not consider improvements to the demand side and

to simply optimize the selection of DERs in accordance with one’s preferences (i.e., Supply Only).

The second conventional design approach is to define a desired level of thermal demand reduction

and to invest in the demand side parameters via the minimum cost solution. Once the minimum cost

solution for a desired demand reduction is attained the next step is typically to then simply optimize

the selection of the DERs for the new demand (i.e., Demand First). Fig. 29 shows that the integrated

design optimization approach results in microgrid system designs that dominate solutions from both

conventional microgrid design approaches. Due to this evidence we recommend that the integrated

system modeling framework should be used in decision making scenarios that allow interventions

on both the demand and supply side of microgrid design. This recommendation is supported by

these additional observations:

1. Optimization results of the integrated system model return solutions on average exhibit an

8% total annual cost reduction and 18% reduction in CO2 emissions versus the Supply Only

case. Similarly, the results on average reduce total annual cost by 5% and annual emissions

by 17% for the Demand First case.

2. The integrated system model explores a more complete demand option space that is at least

an order of magnitude larger within an existing framework (Chapter. 2).

3. Investment in demand side improvement measures determined by the integrated modeling

methodology average less than 5% of the overall investment cost.

Next, we were able to examine the effect that a utility’s reliability profile has on the optimal

microgrid designs. We approach this problem for two primary reasons: (1) to demonstrate that new

extensions to the DER-CAM tool now allow propagation of utility uncertainty and (2) to identify

extrema in the microgrid design outcomes. To that end we devised two scenarios, a maximum and

minimum reliability scenario. In the maximum reliability scenario the grid is always available while

for the minimum reliability scenario the grid is never available. Modeling these two extreme cases
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will indicate the solution envelope for the impact that utility uncertainty may have on microgrid

design and microgrid performance.

Results from the utility’s reliability scenario testing reveal that the total annual cost and annual

emission performance of the microgrid is somewhat insensitive to this parameter. For example, at

wCost = 0.8 and wCost = 0.6 the total annual cost difference between the two scenarios was less

than 5%. However, at certain extreme values the maximum reliability did save costs as expected.

Further examining the reasons behind this insensitivity further motivates the study of uncertainty

propagation in integrated microgrid design. This is because the current studies did not consider

failure rates of the DER equipment itself and thus the main separation in cost between the scenar-

ios was due to operational differences. At wCost = 0.4, however, the minimum reliability design

invested in roughly 35% more electric energy storage than the maximum reliability case. Overall,

we concluded from this testing that the integrated modeling technique and extension of DER-CAM

have successfully enabled propagation of an additional source of uncertainty, but that more work

should be done to both quantify this uncertainty and introduce the remaining sources into the model.

Answering these questions via an application to the Two Bridges community revealed that a

primary limitation of this integrated modeling framework is that it is a two-stage optimization.

The Design Explorer algorithm specifies a set of design variables, which must in turn be executed

within the MILP sub-problem of the framework. In comparison, both the Supply Only and Demand

First methods that we compared the framework to require only a single execution of the MILP

subproblem. A typical successful optimization over the integrated modeling framework requires

200-300 MILP function evaluations. As computational power continues to increase this may not

cause as much overhead, but in the short term there is added complexity that will fundamentally

require more evaluations than conventional design approaches.
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CHAPTER VII

CONCLUSIONS

7.1 Summary & Conclusions

Stakeholders have always experienced the need to maintain critical functions such as refrigeration

of vaccines, power to servers and power to critical wings of hospitals. Yet the realities of climate

change and sever storms are driving the desire for increased power reliability and resiliencey to new

heights. Demand for local power generation is growing at such a rate that industry best estimates

predict this market to grow to $40B in revenue globally by 2020. Microgrids, both physical and

virtual, which are small-scale systems of loads and DGs that can operate independent of the utility

grid are a technology poised to help overcome many of the challenges related to power reliability

and resilience.

While the objectives of microgrid design appear simple, rationally evaluating microgrid design

options is difficult for several reasons. Primarily, it is evaluating the multiple criteria of performance

that make this task difficult. In addition to satisfying multiple criteria, microgrid designers must

handle a large number of uncertainty sources that affect system performance. Uncertainty exists

across the two coupled, technical sub-systems of demand and supply.

Given the number of current obstacles to performance based design of microgrids we argue that

current methods are insufficient due to limited modeling capabilities. Existing microgrid system

models do not (1) incorporate a framework for considering major sources of uncertainty and (2) do

not allow decision makers to select design parameters across the interacting technical sub-systems of

demand and supply. Existing tools that allow integrated system modeling do not adequately model

the building thermal demand and ignores effects due to solar radiation, geometry, air infiltration,

occupants, controls and heat capacity. In this work we addressed three primary hypotheses related

to the modeling of microgrid systems for improved performance based design:

Hypothesis 1: An integrated microgrid system model with high resolution demand and supply

models will enable decision makers to analyze more design options and decision variables
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than is possible with currently available tools.

Hypothesis 2: Microgrid system designs selected via the integrated method will be more preferred

than solutions determined via specifying decision variables on either the demand or supply

side alone.

Hypothesis 3: Defining a resiliency framework for the integrated microgrid system model will

enable decision makers to model scenario uncertainty regarding the utility’s reliability. As

resilience and load control are closely related, this work also shows that the resilience frame-

work may be interpreted as an abstract model of an optimal load control algorithm.

This dissertation addresses the main hypotheses by first defining a reduced order demand sub-

model as a core component of the integrated system model. To create a tractable optimization

problem we also introduce a means of optimizing over the expanded set of demand side invest-

ment options. Next, we defined the gaps in resilience based modeling of microgrids generally with

particular focus on the DER-CAM tool, which we apply within our integrated system model with

additional constraints. Finally, we introduce a framework for co-simulating the two sub-models as

well as present a design application focused on a hypothetical mixed use residential area in Man-

hattan. Based on these studies we conclude that the integrated system model is indeed adequate

for modeling several microgrid decision scenarios in both accuracy and computation efficiency. As

such we offer several modeling recommendations:

Conclusion 1: Model building aggregate as a reduced order demand model. Multiple build-

ing stock modeling studies focus on modeling each building as a single instance (Reinhart and

Davila, 2016; Quan et al., 2015). This is computationally expensive and requires a lot of upfront

data regarding each building (Quan et al., 2015). Zhao (2012) showed that the normative mod-

eling approach of ISO (2008) is sufficient for modeling individual buildings with the same input

parameters. Zhao (2012) then used clusters of the same building type to identify the parameters of a

building portfolio. We extend this work by modeling a collection of mixed building types as a single

reduced order model instance. This method, however, is not without limitations. For example, there

are documented deficiencies in estimating the peak load. The decision to model a building stock as

a single reduced order model instance was made to facilitate the co-simulation of demand with the
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DER-CAM tool and the output of this single instance model is within 10% of MAPE at an hourly

resolution for all performance indicators. In addition, the demand modeling tool requires limited

levels of information and generally the complexity of the tool matches the level of information at

earlier stages of design. Promising advances to this methodology are high-resolution, statistical

energy models especially in light of the work of Tian et al. (2015) to identify correlations between

explanatory variables.

Conclusion 2: Model the design parameters of the building aggregate as continuous vari-

ables with Pareto efficient cost functions. One implication of modeling a building aggregate is

that the design parameters are discretely valued. Then if a decision maker models each building

within an aggregate individually and considers multiple levels and multiple design parameters for

each building the design option space grows to a size that is impractical to search via many common

algorithms. A common means of overcoming optimization problems with many discrete variables is

to use modified direct search techniques, which include stochastic methods like genetic algorithms.

One reason that these design spaces are impractical to search is that typical direct search tech-

niques are not efficient in how they specify the design combinations to evaluate. When it comes

to the retrofit or design of a community, it is apparent that a number of different design parameter

combinations can result in the same cost. We overcome the inefficient search processes that do not

account for this one-to-many relationship by generating cost functions based on linear interpolation

of the Pareto efficient design combinations. This method is an improvement over a genetic algo-

rithm as it results in the same final decision, but in an order of magnitude fewer function evaluations

when starting from the same search point.

This method is analogous to modeling the building stock’s meta parameters with cost functions

derived from average data regarding the various physical components; however, this method explic-

itly determines the relationship between the specific options defined by a decision maker and their

cost.

Conclusion 3: Specify outage scenarios and percentage of demand that can be unmet with-

out penalty. The typical microgrid design for the grid connected case will specify enough gas

driven generation to meet the peak demand of the site. In addition, the decision maker will spec-

ify a number of desired hours of protection and then a battery is sized such that it can meet the

97



peak demand for the requested number of hours. This conventional method is capital intensive. We

propose a method that allows the decision maker to specify the expected outage scenarios, which

is an improvement over the current methods because it finds the optimum investment choice while

accounting for actual hourly operations.

In addition, a decision maker is neutral to unmet demand in certain situations. For instance, in

an off-grid facility or in a facility with controllable loads that can be shed to optimize performance

the decision maker is neutral to these loads being lost. Prior work has not addressed the ability of

the decision maker to define a level of required resilience in early stage design as an abstraction

of optimal control modeling. We add a resilience constraint to the DER-CAM modeling tool that

allows a decision maker to specify which percentage of the annual demand is non-critical and can

be shed at no cost; this method leads to microgrid designs that require less initial investment capital

in generation.

Conclusion 4: Model an integrated microgrid system via the co-simulation methodology

introduced in this work for joint decision making scenarios with decision making power over

both supply and demand Testing our hypothesis via a sample case study shows that an integrated

modeling framework allows a decision maker to find more preferential investment decisions over

two conventional methods. The integrated optimization approach results in better decision making

than either reducing demand of the building stock to a pre-defined level and then specifying the

DER investments (Demand First) and better than simply accepting the building stock as is and

then finding the optimal DER investments for the given resilience requirement (Supply Only). This

recommendation is supported by these additional observations from a sample case:

1. Optimization results of the integrated system model return solutions on average exhibit an

8% total annual cost reduction and 18% reduction in CO2 emissions versus the Supply Only

case. Similarly, the results on average reduce total annual cost by 5% and annual emissions

by 17% for the Demand First case.

2. The integrated system model explores a more complete demand option space that is at least

an order of magnitude larger within an existing framework.

3. Investment in demand side improvement measures determined by the integrated modeling
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Figure 32: Work in this dissertation has established a framework for propagating uncertainties
through an integrated microgrid system model, but future work should build this framework out and
include generators of random processes.

methodology average less than 5% of the overall investment cost.

Applying this integrated modeling methodology to an example microgrid design case we con-

firm that the methodology is indeed an improvement over conventional design methods. While the

Pareto efficient search method undoubtedly reduced the problem to a tractable form it is important

to note that a limitation of the integrated approach is the increase of function evaluations required

to determine an optimal microgrid design. This is due to the two-step formulation of the optimiza-

tion, which must execute the DER-CAM tool for each new design variant generated by the Design

Explorer algorithm. Overall, we find the approach satisfactory and recommend its use in a number

of joint decision scenarios.

7.2 Recommendations for Future Work

Prior to looking forward, it’s best to briefly summarize where we have come from and where we

currently stand in regards to our knowledge of microgrid system design at the conclusion of this

work. Chiefly, we have shown that a feasible implementation exists to model the demand and

supply of a microgrid system at a high-resolution. By feasible we mean that the implementation

does not require more information of the decision scenario than a decision maker has available, the

implementation does not over burden current levels of computational power and most importantly
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the methodology discussed in the previous chapters opens doors to further exploration in the field.

The integrated microgrid model we have presented had three primary goals: (1) allow decision

makers simultaneous access to decision variables on both the supply and demand side of microgrid

models, (2) establish a framework for deeper studies into reliability and resilience based design of

microgrids and (3) facilitate the use of demand uncertainty research in microgrid design. To that

aim we have succeeded on several fronts, but recognize there is more to be desired.

Demand Modeling The simplified demand model introduced in this work upholds the funda-

mental physical assumptions required to accomplish basic energy modeling of buildings. It has

advanced the previous thermal demand generator of DER-CAM to a great degree simply by ac-

counting for building geometry, solar radiation and thermal mass effects. Simplified schedules, the

ability to model air infiltration and other tuning parameters that allow more advanced building rep-

resentations go a long way in brining this integrated system model on par with the state-of-the-art

in building energy modeling. One aspect, however, that did not receive the attention it deserved

is the impact of peak demand modeling on the final microgrid designs. Microgrid design in prac-

tice is often presented in extremely simplified terms, in which the generator capacity is sized to

be 110% of the historical peak electric demand. Given the known shortcomings of simplified heat

balance methods to capture true peak demand it is important for future work to attempt to quantify

the additional model form uncertainty added due to these simplifications.

Specifying Risk Preferences In this work we grapple with placing a value on reliability and

resilience. Service interruptions in real systems have real costs, which may or may not be explicitly

known by a decision maker. Utility companies, large industrial power consumers and some com-

mercial consumers make it their job to know the cost of service interruptions. The cost of a given

interruption arises from the magnitude of lost demand, specific outage costs, outage duration and

outage frequency. This information may be culled into a customer specific damage function and

then outages may be translated directly into a monetary equivalent. In this work we took a different

approach and instead of translating outages into monetary equivalents we decided to constrain the

sizing problem such that systems that did not meet a desired level of reliability could not be de-

signed. To that end we incorporated a constraint within the DER-CAM tool that allows the decision

maker to specify both the upper limit of total demand not met in a year as well as the maximum
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amount of demand not met in a given hour. While this works to an extent, there are other important

constraints we missed such as frequency and duration, which have been discussed within the context

of the generic unit commitment problem before. The challenge here is to evaluate which approach

is more useful: specifying more constraints or specifying damage functions.

Modeling Controls Advanced controls are transforming the microgrid industry. In this disser-

tation, however, we do not model the controls within the microgrid explicitly. There is a growing

need to understand the various impacts that the supervisory control of the building and microgrid

have on design sizing of systems. While researchers have developed optimal control strategies with

embedded building models typically of data driven formulations, there is still room to better un-

derstand the role of controls modeling during design. For instance, modeling a demand response

control during design may indicate to a decision maker that less generation capacity is required

yet if the controller fails in reality and the system is now undersized was it a rational decision to

incorporate controls modeling in the design?

Siemens completed a recent study of two 2 MW CHP generators servicing a microgrid and

found several interesting control actions that conflicted with typical control approaches (Wood,

2016a). Overall, control investment constitutes approximately 15% of the microgrid investment

compared to 50% due to generation technology. Results of the control study revealed that the

sizes of the two CHP generators were not optimized for the building’s demand profile and more

money could have been saved during operations and initial investment. Therefore there is a need

to critically examine the trade off between different control strategies and initial investment costs,

which can potentially be achieved through more explicit modeling techniques.

To explicitly model the possible control interactions between supply and demand requires high

fidelity models that can communicate at the simulation time step. Sharma et al. (2016) illustrates

such a setup, but in this work we wished to avoid the additional complexity required to establish this

modeling approach. Instead we reinterpret the resilience constraints as analogous to specifying an

optimal controller, but in this case the decision maker knows the load loss levels at which constraints

on the building side are violated. By having the decision maker denote this information as a supply

modeling constraint we circumvent the need to explicitly model damage functions on the demand

side, but this is an area that could use additional research and exploration.
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Uncertainty Quantification and Optimization Under Uncertainty There are a number of real

sources of uncertainty in microgrid operation: thermal and electric power demand profiles, the util-

ity’s reliability (i.e., failure frequency and duration), power generation from renewable sources, re-

liability of DERs, control system reliability, construction issues and maintenance. As we mentioned

in the introduction these uncertainties produce a number of design challenges and one example of

the ongoing challenges are the lack of performance guarantees and insurance in the microgrid space.

Uncertainty quantification with respect to these identified sources is largely under-represented

in the microgrid design literature. We feel that this work will be a launching point for incorporating

uncertainty sources in microgrid design. This work focuses on a deterministic optimization, but

Fig. 32 details a framework for microgrid optimal design under uncertainty with particular focus on

the database of quantified uncertainty. This approach relies on a sampling methodology to generate

reliability traces of the utility, DER technologies and the demand given a base design parameter set.

This approach is similar to stochastic unit commitment problems defined in the literature, which are

commonly solved by executing a deterministic simulation for a number of enumerated scenarios.

Jones (2015) acknowledge that one of the more difficult aspects of uncertainty to capture in

microgrid performance is the frequency of control failures. For that reason we include control fail-

ures in the diagram and consider it a pressing issue for further research. Overall Fig. 32 represents

a potentially comprehensive approach to uncertainty propagation throughout integrated microgrid

design. Such a methodology could be used to further the emergence of performance contracts in

microgrids and potentially usher in more reliable systems. In conclusion, there are a number of

open questions remaining within the field of microgrid design especially in regards to performance

guarantees and it is the goal of this work to provide a starting point for more advanced study into

more complete uncertainty quantification throughout the design process.

102



REFERENCES
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Optimal design of chp systems for housing complexes involving weather and electric market
variations. Applied Thermal Engineering.

Golberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning. Addion
wesley, 1989:102.

Gu, W., Tang, Y., Peng, S., Wang, D., Sheng, W., and Liu, K. 2015. Optimal configuration and
analysis of combined cooling, heating, and power microgrid with thermal storage tank under
uncertainty. Journal of Renewable and Sustainable Energy, 7(1):013104.

Hakimi, S. and Moghaddas-Tafreshi, S. 2014. Optimal planning of a smart microgrid including
demand response and intermittent renewable energy resources. Smart Grid, IEEE Transactions
on, 5(6):2889–2900.

Halverson, J. B. and Rabenhorst, T. 2013. Hurricane sandy: the science and impacts of a superstorm.
Weatherwise, 66(2):14–23.

Handbook, A. F. 2009. American society of heating, refrigerating and air-conditioning engineers.
Inc.: Atlanta, GA, USA.

Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmotte, V., Russell, G., Tse-
lioudis, G., Cao, J., Rignot, E., et al. 2016. Ice melt, sea level rise and superstorms: Evidence
from paleoclimate data, climate modeling, and modern observations that 2 c global warming
could be dangerous. Atmospheric Chemistry and Physics, 16(6):3761–3812.

104



Hazelrigg, G. A. 2012. Fundamentals of Decision Making For Engineering Design and Systems
Engineering.

Henninger, R. H., Witte, M. J., and Crawley, D. B. 2004. Analytical and comparative testing of
energyplus using iea hvac bestest e100–e200 test suite. Energy and Buildings, 36(8):855–863.

Hensen, J. 1995. Modelling coupled heat and airflow: ping pong vs. onions. In DOCUMENT-AIR
INFILTRATION CENTRE AIC PROC, pages 253–253. Citeseer.

Hensen, J. L. and Lamberts, R. 2012. Building performance simulation for design and operation.
Routledge.

Hooke, R. and Jeeves, T. A. 1961. “direct search”solution of numerical and statistical problems.
Journal of the ACM (JACM), 8(2):212–229.

Hu, H. 2009. Risk-conscious Design of Off-grid Solar Energy Houses. PhD thesis, Georgia Institute
of Technology. http://hdl.handle.net/1853/31814.

Hu, M. and Cho, H. 2014. A probability constrained multi-objective optimization model for cchp
system operation decision support. Applied Energy, 116:230–242.

IEEE Standards Coordinating Committee 21 2011. Ieee guide for design, operation, and integration
of distributed resource island systems with electric power systems.

International Living Future Institute 2016. The living building challenge. http://
living-future.org/lbc.

ISO, E. 2008. 13790: Energy performance of buildings–calculation of energy use for space heating
and cooling (en iso 13790: 2008). European Committee for Standardization (CEN), Brussels.

Johnson, B. J., Starke, M. R., Abdelaziz, O. A., Jackson, R. K., and Tolbert, L. M. 2014. A
method for modeling household occupant behavior to simulate residential energy consumption.
In Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES, pages 1–5. IEEE.

Jones, R. 2015. How reliable is your microgrid? Public Utilities Fortnightly, pages 26–36.

Kapsalaki, M., Leal, V., and Santamouris, M. 2012. A methodology for economic efficient design
of net zero energy buildings. Energy and Buildings, 55:765–778.

Kassakian, J. G., Schmalensee, R., Desgroseilliers, G., Heidel, T. D., Afridi, K., Farid, A., Grochow,
J., Hogan, W., Jacoby, H., Kirtley, J., et al. 2011. The future of the electric grid. Massachusetts
Institute of Technology, Tech. Rep.

Kavgic, M., Mavrogianni, A., Mumovic, D., Summerfield, A., Stevanovic, Z., and Djurovic-
Petrovic, M. 2010. A review of bottom-up building stock models for energy consumption in
the residential sector. Building and environment, 45(7):1683–1697.

Keep, T. M., Sifuentes, F. E., Auslander, D. M., and Callaway, D. S. 2011. Using load switches to
control aggregated electricity demand for load following and regulation. In Power and Energy
Society General Meeting, 2011 IEEE, pages 1–7. IEEE.

Kjølle, G. H. 1996. Power supply interruption costs: Models and methods incorporating time
dependent patterns. Technical report, Norges Teknisk-Naturvitenskapelige Univ.

105



Lanckriet, G. R. and Sriperumbudur, B. K. 2009. On the convergence of the concave-convex proce-
dure. In Advances in neural information processing systems, pages 1759–1767.

Lee, S. H., Zhao, F., and Augenbroe, G. 2013. The use of normative energy calculation beyond
building performance rating. Journal of Building Performance Simulation, 6(4):282–292.

Li, L., Mu, H., Gao, W., and Li, M. 2014. Optimization and analysis of cchp system based on
energy loads coupling of residential and office buildings. Applied Energy, 136:206–216.

Li, X. and Wen, J. 2014. Review of building energy modeling for control and operation. Renewable
and Sustainable Energy Reviews, 37:517–537.

Lilienthal, P., Gilman, P., and Lambert, T. 2005. HOMER R© Micropower Optimization Model.
United States. Department of Energy.

Luc, D. T. 2008. Pareto optimality. Pareto optimality, game theory and equilibria, pages 481–515.

Makarov, Y. V., Loutan, C., Ma, J., and de Mello, P. 2009. Operational impacts of wind generation
on california power systems. Power Systems, IEEE Transactions on, 24(2):1039–1050.

Marszal, A. J., Heiselberg, P., Bourrelle, J., Musall, E., Voss, K., Sartori, I., and Napolitano, A.
2011. Zero energy building–a review of definitions and calculation methodologies. Energy and
Buildings, 43(4):971–979.

Mazria, E. 2006. The 2030 challenge. Architecture, 2030.

McGlade, C. and Ekins, P. 2015. The geographical distribution of fossil fuels unused when limiting
global warming to 2 [deg] c. Nature, 517(7533):187–190.

McKenna, R., Merkel, E., Fehrenbach, D., Mehne, S., and Fichtner, W. 2013. Energy efficiency in
the german residential sector: a bottom-up building-stock-model-based analysis in the context of
energy-political targets. Building and Environment, 62:77–88.

Meiqin, M., Chang, L., and Ming, D. 2008. Integration and intelligent control of micro-grids with
multi-energy generations: A review. In Sustainable Energy Technologies, 2008. ICSET 2008.
IEEE International Conference on, pages 777–780. IEEE.

ModelCenter, P. 2015. 11.0. blacksburg, va, usa: Phoenix integration. Inc.(http://www. phoenix-int.
com/).

Morvaj, B., Evins, R., and Carmeliet, J. 2015. The impact of low energy buildings on the optimal
design of distributed energy systems and networks. In 14th Conference of International Building
Performance Simulation Association.

Murray, W. and Ng, K.-M. 2002. Algorithms for global optimization and discrete problems based
on methods for local optimization. In Handbook of global optimization, pages 87–113. Springer.

Nelder, J. A. and Mead, R. 1965. A simplex method for function minimization. The computer
journal, 7(4):308–313.

Nocedal, J. and Wright, S. J. 2006. Sequential quadratic programming. Numerical Optimization,
pages 529–562.

106



Owen, A. B. 1992. Orthogonal arrays for computer experiments, integration and visualization.
Statistica Sinica, pages 439–452.

Padhy, N. P. 2004. Unit commitment-a bibliographical survey. IEEE Transactions on power systems,
19(2):1196–1205.

Peterson, K., Torcellini, P., and Grant, R. 2015. A common definition of zero en-
ergy buildings. http://energy.gov/sites/prod/files/2015/09/f26/bto_
common_definition_zero_energy_buildings_093015.pdf.

Pourmousavi, S. A. and Nehrir, M. H. 2012. Real-time central demand response for primary fre-
quency regulation in microgrids. Smart Grid, IEEE Transactions on, 3(4):1988–1996.

Priddle, R. 2015. World energy outlook 2015. International Energy Agency, 1.

Quan, S. J., Li, Q., Augenbroe, G., Brown, J., and Yang, P. P.-J. 2015. Urban data and building en-
ergy modeling: A gis-based urban building energy modeling system using the urban-epc engine.
In Planning Support Systems and Smart Cities, pages 447–469. Springer.

Razanousky, M. and Hyams, M. 2010. Microgrids: An assessment of the value, oppor-
tunities, and barriers to deployment in new york state. http://www.nyserda.ny.
gov/-/media/Files/Publications/Research/Electic-Power-Delivery/
microgrids-value-opportunities-barriers.pdf. [Online; accessed 21-
November-2015].

Reinhart, C. F. and Davila, C. C. 2016. Urban building energy modeling–a review of a nascent field.
Building and Environment, 97:196–202.

Rezaee, R., Brown, J., Augenbroe, G., and Kim, J. 2015. Assessment of uncertainty and confi-
dence in building design exploration. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 29(04):429–441.

Robinson, D. 2012. Computer modelling for sustainable urban design: Physical principles, meth-
ods and applications. Routledge.

Sartori, I., Napolitano, A., and Voss, K. 2012. Net zero energy buildings: A consistent definition
framework. Energy and Buildings, 48:220–232.

Sharma, I., Dong, J., Malikopoulos, A. A., Street, M., Ostrowski, J., Kuruganti, T., and Jackson, R.
2016. A modeling framework for optimal energy management of a residential building. Energy
and Buildings.

Siddiqui, A. S., Marnay, C., Edwards, J. L., Firestone, R., Ghosh, S., and Stadler, M. 2005. Effects
of carbon tax on microgrid combined heat and power adoption. Journal of Energy Engineering,
131(1):2–25.

Simpkins, T., Cutler, D., Hirsch, B., Olis, D., and Anderson, K. 2015. Cost-optimal pathways to
75% fuel reduction in remote alaskan villages. In Technologies for Sustainability (SusTech), 2015
IEEE Conference on, pages 125–130. IEEE.

Sodha, M. S., Bansal, N., Bansal, P., Kumar, A., and Malik, M. 1986. Solar passive building.

Stadler, M. 2008. Distributed energy resources on-site optimization for commercial buildings with
electric and thermal storage technologies. Lawrence Berkeley National Laboratory.

107



Stadler, M. 2009a. Effect of heat and electricity storage and reliability on microgrid viability: a
study of commercial buildings in california and new york states. Lawrence Berkeley National
Laboratory.

Stadler, M. 2009b. Optimal technology investment and operation in zero-net-energy buildings with
demand response. Lawrence Berkeley National Laboratory.
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