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SUMMARY

Hybrid zero dynamics (HZD) has emerged as a popular framework for dy-

namic and underactuated bipedal walking, but has significant implementation diffi-

culties when applied to the high degrees of freedom present in humanoid robots. The

primary impediment is the process of gait design–it is difficult for optimizers to con-

verge on a viable set of virtual constraints defining a gait. This dissertation presents a

methodology that allows for the fast and reliable generation of efficient multi-domain

robotic walking gaits through the framework of HZD, even in the presence of under-

actuation. To achieve this goal, we unify methods from trajectory optimization with

the control framework of multi-domain hybrid zero dynamics. We present a novel op-

timization formulation in the context of direct collocation methods and HZD where

we rigorously generate analytic Jacobians for the constraints. Two collocation meth-

ods, local collocation and pseudospectral (global) collocation, are developed within an

unified framework, and their performance in different circumstances is comparatively

studied. As a result, solving the resulting nonlinear program becomes tractable for

large-scale NLP solvers, even for systems as high-dimensional as humanoid robots. We

experimentally validate our methodology on multiple humanoid platforms, showing

that the optimization approach yields dynamic and stable walking gaits for different

walking configurations, including sustained 3D dynamic multi-contact walking.
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CHAPTER I

INTRODUCTION

Humanoid robots have long held the promise of walking around in the human world

the dynamic way that people walk. However, demonstrating dynamic and agile lo-

comotion for humanoid robots that allows for navigation of terrain not approachable

by wheeled robots is a challenging task. While humans and other biological bipeds

can perform these motions with relative ease, translation of these capabilities to 3D

humanoid systems is fraught with complexities in the form of nonlinearities and high

degrees of freedom which must be coordinated. The faster and more nimble we de-

mand these machines to be, the more the robot needs to reason about its full-order

dynamics. It can be helpful tilt on the edges of its feet for toe-off and heel-strike

maneuvers, exploit compliant linkages for impact reduction, and embrace the under-

actuated dynamics of falling forward to the advantage of locomotion. These useful

phenomena are frequently assumed away in more reduced-order frameworks, but are

captured in more detailed full-order robot dynamics.

With the goal of bridging this gap in natural and efficient locomotion on bipedal

robots, it becomes prudent for theorists to develop algorithmic approaches which are

capable of exploiting the natural dynamics of the robot. However, to date, planning

dynamic motion that reconciles the full body dynamics of the complex robot model

has been primarily prevented by a particular computational bottleneck: gait synthe-

sis. The focus of this thesis is on developing a systematic framework for implementing

dynamic locomotion gaits for humanoids through unified hybrid zero dynamics (HZD)

control framework and direct collocation based trajectory optimization methods.
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1.1 The State-of-the-Art

The study of robotic walking presents a wide range of mathematical and algorithmic

challenges for which many solutions have been proposed. On the simpler side of

the spectrum, many humanoid control methods will use a reduced-order model as a

basis. Whereas formal methods for humanoid locomotion reason about a model of

the machine, but only exist on a spectrum of the complexity of the model.

1.1.1 Zero Moment Point

Many existing methods for planning humanoid locomotion typically simplify the robot

to a reduced-order model to mitigate the complexity of the gait planning operation.

Since the origin of humanoid control, the zero moment point (ZMP) approaches have

certified balance by ensuring that the center of pressure always rests within the sup-

port polygon of its feet [130, 131]. By ensuring ZMP condition, many approaches

plan trajectories for a simple dynamical model, e.g., linear inverted pendulum model

(LIPM), assumptions about the robot dynamics and then generate the whole body

motion by conforming the robot to these analytically tractable dynamics [80]. Con-

straining the robot to these reduced-order dynamics, controllers can plan the position

of the ZMP to ensure fall-free motions [81, 100, 114, 142], or quickly compute recovery

steps [105, 114, 124]. The maturity and reliability of the LIPM-based planning ap-

proaches made it a prevalent component in control algorithms for humanoid walking

at the DARPA Robotics Challenge [78, 85, 40].

These linear inverted pendulum based model simplification methods come at a

cost; they limit the flexibility and capability of available control. These simplifica-

tions place stringent requirements on the design of the robot (e.g. all joints must be

actuated with no significant compliance) and restrictions on the overall locomotion

capabilities of the machine (e.g. the robot must always walk with a constant center-

of-mass height [80]). This class of walking robots has very large feet to increase the
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area of support polygon. The resulting walking motions are flat footed and quasi-

static, which is a rather artificial behaviors when compared to energy-optimal bipedal

trajectories [4, 123, 139].

Further, these methods cannot handle underactuation that presents in the system,

a property that is very common in some of the most agile [106], robust [99], or

efficient [20] bipedal robots. Both the planning framework and mechanics of these

fully-actuated bipeds also demand near-zero leg-impact forces [70], which rules out

the dynamic foot-strike behaviors documented in human locomotion [28] and other

biological bipeds [21].

Finally, it is very difficult to provide a priori guarantees on whether any given

reduced-order plan is feasible to execute given the full-order dynamics. Such methods

typically employ inverse kinematics [79] or inverse dynamics [97] methods to compute

the full-order control inputs at each instant. Solving such near-term inverse calcu-

lations does not imply that future inverse problems later in the trajectory will be

feasible, which requires more computationally intensive planning [63, 148].

1.1.2 Spring-Loaded Inverted Pendulum

The Spring Loaded Inverted Pendulum (SLIP), based upon the concept of coupled

compliant pendula, provides a low-dimensional representation of locomotion inspired

by biological principles that has been shown to approximate animal walking and

running behaviors in everything from cockroaches, to quail, to kangaroos [23], to

humans [22]. As a result of this biological motivation, the ability to realize SLIP-

like walking gaits on bipedal robots promises to result in natural, efficient and robust

locomotion. This is evidenced by the classic work by Raibert on hopping robots [106],

which has since motivated the study of walking and running in robotic systems with

simple SLIP models [5, 49, 90, 113, 134].

Through very careful mechanical design, more dynamic bipeds have been built
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to emulate the spring-mass like dynamical behaviors [6, 71, 76, 110, 112]. In this

approach, the dynamics of the robot naturally follow a mathematical model which

reproduces bipedal dynamics demonstrated by many animals. This model is attractive

to the bipedal community as it allows control engineers to utilize an ideal model which

does not suffer from the inherent nonlinearities, hybrid dynamics, and numerous

degrees of freedom as considering a full-order biped.

However, if the dynamics of the robot do not closely follow the SLIP model, then

more rigid mathematical guarantees must be made. Ultimately, the fundamental

limitation in realizing the benefits of SLIP inspired locomotion is the low-dimensional

nature of the SLIP model, and the difficulty of realizing this low-dimensional behavior

on full-order high-dimensional walking robots.

1.1.3 Whole Body Optimization Based Methods

The rapid development of mechanical and actuation capabilities of modern robots

has already made more dynamical locomotion on robot possible, however, current

ZMP based criterion still requires the robot moves slowly and statically due to the

lack of knowledge of the system dynamics. Adapted from the trajectory optimization

community, some researchers began to utilize whole body dynamic gait optimization

to generate walking motion, but still subjects to ZMP criterion as the stability con-

dition [82]. A few others are able to demonstrate effective multi-contact locomotion

by optimizing the whole robot actuation on a relatively small time duration [87].

The complexity and nonlinearity of the whole body dynamics, however, increase the

difficulty of these optimization being converged a viable solution, and as a result,

impede the applications of these optimization based approaches on actual humanoid

platforms.

To mitigate the computational difficulty that arises from the full body dynamics

of humanoids, roboticists have begun planning more general motions with versatile
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contact conditions by using the machine’s center-of-mass (COM) dynamics and whole-

body contact forces as a planning foundation [29, 84]. In those application, the

whole body dynamics is represented by the six dimensional COM dynamics using the

augmented linear and angular momentum at the COM due to the ground contact

forces [124]. Instead of checking the stability via ZMP criterion, these optimization

based methods rationale if the contact wrench sum (CWS) lies within the contact

wrench cone (CWC) [37] as the stable balancing condition. The stability criterion

based on the contact wrenches are checked as the contact wrench sum is equal to

the rate of linear and angular momentum of the robot. This condition coupled with

the COM dynamics, a nonlinear constrained optimization problem is formulated to

generate more dynamic gaits for full-order humanoids [69, 85].

On the other end of the spectrum, it is also necessary to mention the trending

fact that the application of advanced trajectory optimization methods, such as direct

collocation, allows formulating the dynamic gait optimization in terms of the full

body dynamics [103]. Using the open-loop trajectory from the direct collocation

optimization, a classical linear quadratic regulator (LQR) based feedback controller

can be constructed to stabilize the resulting open-loop trajectory for the contact-

constrained dynamical system [102].

1.1.4 Hybrid Zero Dynamics

Hybrid zero dynamics (HZD) is a formal framework for synthesizing control for nonlin-

ear hybrid systems that does not require simplifying dynamical assumptions [57, 135].

Since its inception, HZD has built a strong history of success in planar robot imple-

mentations for bipedal walking [7, 30, 31, 68, 89, 116, 120, 137] and running [88, 121].

Recent work has begun expanding the method into 3D applications [8, 26, 109]. HZD

works by designing a set of virtual constraints that define the gait, which are en-

forced via feedback control of the actuated degrees of freedom. If these constraints
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satisfy a hybrid invariant condition, i.e., the system is invariant through impact, all

of the stability properties of the high-dimensional system are effectively captured in

a lower-dimensional representation, termed as the hybrid zero dynamics. This key

task of finding an appropriate set of virtual constraints (and parameters thereof)

is typically relegated to a nonlinear optimization problem. When robots have as

many linkages as humanoids, optimizing motions which meet HZD criteria becomes

increasingly difficult for nonlinear programming (NLP) tools to solve. This has been

a significant impediment toward applying HZD to full humanoid robots, which have

far more degrees of freedom than the typical HZD testbed machines. In a broader

view, this is where the HZD approach has had to pay the piper for its admissibility

of highly dynamic gaits. While ZMP synthesis methods enjoy better computational

tractability by restricting allowable gaits, HZD methods must confront the nonlinear

gait optimization problem head on.

HZD optimizations are typically formulated by assigning one design variable to

each virtual constraint parameter, and evaluate the objective and constraint violations

of candidate solutions with a time-marching numerical integration method. This is

highly analogous to a direct single shooting formulation in optimal control. Such

“single shooting” is the most prevalent formulation for optimizing virtual constraints

in the context of HZD [7, 56, 107]. This approach of optimizing only parameters and

boundary state values reflects an instinctive desire to minimize the number of design

variables for the optimization. Intuitively, one might assume that such minimization

of the nonlinear programming problems dimensionality would be an advisable practice

for maximizing an optimization’s speed and reliability. However, this formulation is

prone to a number of issues, such as nonsmooth approximations of the constraint

Jacobian [123] and the “tail wagging the dog” phenomenon [19], which can introduce

pseudominima [129] or simply cause the algorithm to fail to find a solution. Given

the nonlinearity of bipedal robot dynamics, it can be difficult to achieve reliable
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convergence via this optimization and often relies upon expert users to seed it.

1.2 Objectives of the Thesis

Embracing planning and formal control that exploits the full body dynamics of the

robot is a path toward unlocking the fully dynamic capabilities of the machine. We

seek a formal framework that both synthesizes and stably controls dynamic gaits in

a manner that reasons about the full-order nonlinear dynamics of a humanoid robot.

With that being said, we employ the hybrid zero dynamics framework to realized

dynamic humanoid locomotion.

The main goals of the thesis are twofold: (1) designing a computationally effi-

cient optimization framework to overcomes the scalability issues of the hybrid zero

dynamics gait synthesis; and (2) realizing dynamic and efficient walking behaviors on

humanoid platforms by exploiting the natural dynamics of the machines.

To better solve HZD gait optimizations, we take some important lessons from

the optimal control community. The formulation of the NLP can make an enormous

difference: fewer design variables is not always better and not all design variables are

equally complicated for an NLP solver to navigate. For common NLP-solving methods

like interior point and sequential quadratic programming, convergence is more reliable

when the objectives and constraints are smooth and relatively linear [108]. In a single

shooting formulation, a change to a parameter or boundary state value can have a

very nonlinear effect on the final state, after integrating nonlinear dynamics over non-

trivial time scales. This type of nonlinearity can cause an optimizer to fail to converge

or be uncertain if it has found a solution.

In this thesis, we systematically unify the hybrid zero dynamics framework with

a technique from the trajectory optimization community: direct collocation methods

[43, 62, 128]. A direct collocation formulation represents both the time-varying states
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and inputs as parameterized curves, where system dynamics are enforced as equal-

ity constraints (called defect constraints), then transcribes the infinite optimal control

problem into a finite nonlinear programming problem [19, 73]. This property has made

direct collocation methods fast and reliable for trajectory optimization of dynamical

systems [35, 48, 53, 138]. In particular, we consider two different collocation methods

local standard collocation [62, 128] and global orthogonal collocation [43, 53]. In the

local direct collocation, the time interval is divided into a finite set of subintervals,

and the solution of the system is approximated with some specified functions—such

as Hermite interpolation polynomials—within each subinterval. The pseudospectral

method (a.k.a. global orthogonal collocation) employs particular orthogonal poly-

nomial functions, e.g., Legendre polynomials, to approximate the solution of the

system over an entire continuous domain. Satisfying collocation constraints at each

subinterval (local method) or orthogonally collcated nodes (pseudospectral method)

guarantees that the approximated continuous polynomials converge to the exact so-

lution of the system. One main difference between these two approaches is that the

degree of the polynomial is fixed and the number of subintervals is varied in a local

collocation scheme, whereas the degree of the polynomial varies in a pseudospectral

method [73].

As validation of this direct collocation based HZD optimization framework, we

use the proposed gait optimization framework to generate dynamic walking gaits on

three different robotic platforms (see Figure 1.1):

• DURUS: a 23-DOF underactuated humanoid with springy feet;

• DRC-HUBO: a 33-DOF fully-actuated humanoid with arms;

• PROXI: a planar point-feet underactuated biped.

We then experimentally implement the walking gaits on the robot hardware, demon-

strate efficient and dynamic maneuvers for high DOFs humanoids. Through these

8



(a) DURUS (b) DRC-HUBO (c) PROXI

Figure 1.1: Experimental robotic platforms.

applications, we establish the scalability and effectiveness of the direct HZD opti-

mization on a wide variety of robots. More importantly, we establish that the hybrid

zero dynamics approach is capable of realizing efficient, robust and agile locomotion

of humanoids by exploiting the natural dynamics, such as arm swings or compliant

elements, of the robots.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows.

Chapter 2 presents the formal construction of the hybrid zero dynamics control

framework. We start with defining a general multi-domain hybrid system model with

a predetermined directed cyclic structure. The construction of individual elements

of the hybrid system model that is specific to bipedal locomotion is then introduced

as a systematic methodology to model dynamic walking notion. With the model in

hand, a class of feedback control laws based on virtual constraints, are designed to

formulate the hybrid zero dynamics for bipedal walking gaits.

Chapter 3 introduces the main goal of gait optimization in the context of HZD. We
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present necessary requirements of the HZD optimization and illustrate this process

via the traditional single shooting method. Further, we introduce a direct multiple

shooting formulation of HZD gait optimization as an alternative approach to the

single shooting, and demonstrate its improved reliability with a case study of a planar

underactuated robot with compliant mechanical designs. Finally, the pros and cons

of direct shooting methods are discussed to show the limitations of these approaches.

Chapter 4 presents the main contribution of the thesis: an unified direct HZD

optimization framework based on the collocation. Capitalizing the special formulation

of collocation methods, we deform the reduced-dimensional hybrid zero dynamics

into a dynamical system of constrained manifold with the dynamic equations given

in an implicit DAEs system. Two different direct collocation optimization problems,

local direct collocation and pseudospectral optimization, are formulated in terms

of this constrained dynamical system. In addition, a sparsely structured nonlinear

programming problem is designed based on defect variables and smart indexing, to

improve the robustness and computational speed of the optimization.

Chapter 5 illustrates real-world applications of the direct HZD gait optimization

on three different robotic platforms to demonstrate the flexibility, effectiveness and

reliability of these novel hybrid zero dynamics based gait synthesizing methodologies.

More importantly, we presents the experimental results of sustained 3D walking of

full size humanoids, showing that the walking can be more efficient by exploiting the

natural dynamics of the full order system. Further, an example of fast online gait

generation is presented to illustrate the significant improvement of convergence speed

of the HZD gait optimization, raising the possibility of designing gaits online, so that

the robot can adjust its behavior to accommodate changes in environment.

In Chapter 6, we systematically evaluate the computational performances of the

direct collocation optimization. The accuracy of the solution is validated by checking

the discretization errors, and the robustness of convergence is tested via seeding the
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optimizers with randomly generated initial guesses. Further, we compare the compu-

tational efficiency of the direct collocation optimization with direct shooting methods

and other full body dynamic gait optimization approaches. Finally, we summarize

the performance of the direct HZD optimization on different robotic platforms, and

show the scalability of the approach with respect to the complexity of the system.

Chapter 7 concludes the important remarks and achievements of the thesis, and

highlights the future works of the application.

Finally, Appendix A introduces a general procedure of deriving the reduced di-

mensional equations of motion of the partial zero dynamics for the multi-domain

hybrid system model.
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CHAPTER II

HYBRID ZERO DYNAMICS FRAMEWORK

In this chapter, we review the mathematical background and properties of hybrid zero

dynamics framework for dynamical humanoid locomotion. The hybrid zero dynamics

(HZD) methodology utilizes the hybrid nature of legged robots and realizes stable

periodic behaviors by enforcing invariant reduced dimensional manifold via virtual

constraints based feedback controllers.

2.1 Multi-Domain Hybrid Systems

Hybrid systems or systems with impulse effects are systems that exhibit both con-

tinuous dynamics and discrete dynamics, and thus have a wide range of applications

to various types of physical systems [60]. One major application would be robotic

legged locomotion, which consists of phases of continuous dynamics (e.g., when the

leg swings forward) and discrete dynamics (e.g., when the foot strikes the ground);

formally modeling this interplay of continuous and discrete dynamics results in a hy-

brid system model of robotic walking [7, 58]. In this section, the formal definition of

hybrid systems is introduced.

2.1.1 Directed Cycle

A bipedal walking gait often consists of a collection of continuous phases, with discrete

events triggering transitions between these different phases. The ordering structure

of discrete domains can be represented via directed graphs.

Definition 2.1 (Directed Graph). A directed graph is a tuple Γ = (V,E), where V

is the set of vertices and E ∈ V × V is the set of edges. Let sor : E → V and
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Heel StrikeHeel LiftToe Lift

Toe Strike

Figure 2.1: An example of directed cycle, i.e., discrete phases and transitions that
represents the walking pattern of typical human walking pattern.

tar : E → V be the maps that determine the source and target vertices of an edge,

respectively. In other words, an edge e ∈ E can be given as e = {sor(e)→ tar(e)}.

When using a directed graph to model the ordering structure of a locomotion

behavior, each vertex represents a admissible continuous phase (or domain) and each

edge represents a possible discrete transition between two continuous phases. In this

study, we interest in a periodic steady-state walking gait, in which the transitions

between the continuous phases become predetermined and periodic; this motivates

the use of a multi-domain hybrid system with a predetermined ordering of phases (or

domains) as represented by a directed cycle, i.e., a cyclic directed graph.

Definition 2.2 (Directed Cycle). A directed cycle is a directed graph Γ = (V,E),

with V = {v1, v2 . . . , vnp} a set of vertices and E = {e1 = (v1 → v2), e2 = (v2 →

v3), . . . , enp = (vnp → v1)} a set of edges. For a directed cycle, the maps sor and tar

are one-to-one and onto. Hence, their inverse maps sor−1 : V → E and tar−1 : V → E

exist and are well-defined.

Example 2.1. In Figure 2.1, a directed cycle with four discrete domains illustrates

the domain structure of a typical human walking gait pattern consists of four different

discrete phases depends on the different contact conditions. This gait pattern is

obtained by recording kinematic trajectories from walking of multiple human subjects

[127]. This directed cycle is given by a graph Γ = (V,E) consisting of four vertices

13



and four edges:

V = {ts, tl, hl, hs},

E = {ts→ tl, tl→ hl, hl→ hs, hs→ ts}.

2.1.2 Hybrid System Model

With the notation of the directed cycle in hand, we introduce the formal definition

of the multi-domain hybrid control system as a tuple that is consistent with the

literature on hybrid systems (see [7, 58, 117]).

Definition 2.3 (Multi-Domain Hybrid Control System). A multi-domain hybrid con-

trol system is a tuple,

H C = (Γ,D, S,∆,FG), (2.1)

where

• Γ = {V,E} is a directed cycle,

• D = {Dv}v∈V is a set of admissible domains with Dv ⊆ Xv×Uv a open connected

smooth submanifold of the state space Xv ∈ Rnv and the control space Uv ∈ Rmv ,

• S = {Se}e∈E is a set of guards or switching surfaces with Se = {(x, u) ∈

Dsor(e)|He(x, u) = 0, Ḣe(x, u) 6= 0} a nonempty embedded submanifold of co-

dimension one of the domain Dsor(e),

• ∆ = {∆e}e∈E is a set of reset maps with ∆e : SXe ∩ Xsor(e) → Xtar(e) a smooth

map, where SXe := Se|X is a canonical projection of Se onto the state space X ,

• FG = {FGv}v∈V is a set of continuous affine control systems defined on Dv, i.e.,

ẋ = fv(x) + gv(x)u, where x ∈ Xv and u ∈ Uv.
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Consequently, a multi-domain hybrid system is a multi-domain hybrid control

system with Uv = {∅} for all v ∈ V , e.g., if any state-based feedback controller has

been applied to make the system closed-loop.

Definition 2.4 (Multi-Domain Hybrid System). The formal definition of a multi-

domain hybrid system is given as a tuple,

H = (Γ,X , SX ,∆,F), (2.2)

where Γ = {V,E} is a directed cycle, X = {Xv}v∈V is a set of admissible domains,

SX = {SXe }e∈E is a set of guards with SXe ⊂ Xsor(e), ∆ = {∆e}e∈E is a set of reset

maps and F = {Fv}v∈V is a set of autonomous dynamical systems defined on Xv, i.e.,

ẋ = fv(x) where x ∈ Xv.

2.1.3 Periodic Orbits and the Poincaré Return Map

Periodic behaviors of robotic legged locomotion can be represented by periodic orbits

of the multi-domain hybrid systems defined in (2.2). Let X = Xv1∪Xv2 · · ·∪Xvnp
be an

open connected submanifold, a solution φ(t) of an autonomous multi-domain hybrid

system H in (2.2) is periodic if there exists a finite T > 0 such that φ(t+ T ) = φ(t)

for all t ∈ [t0,∞) with an initial condition x0 ∈ X at time t0, i.e., φ(t0) = x0. A set

O ⊂ X is a periodic orbit of H if O = {φ(t)|t ≥ t0} for some periodic solution φ(t).

If a periodic solution has discrete transitions, then the corresponding periodic orbit

O is not closed (see [57, 94]). We denote Ō as the set closure of O.

A periodic orbit O is transversal to SXe if for all x∗ = Ō ∩ SXe the vector field fv

is not tangent to SXe at the point x∗, i.e., ∂He(x)
∂x

fsor(e)(x) 6= 0. A periodic orbit O

is transversal if it is transversal to Se for all e ∈ E, and is period-one if its closure

intersects SXe at exactly one point for all e ∈ E. The orbital stability in the context

of Lyapunov can be determined by the Poincaré return map of multi-domain hybrid

systems followed from the general development in [58] and analogous to those of

single domain hybrid systems defined in [95]. Let φv(t, x0) be the maximal solution
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of (2.2) with initial condition x0 ∈ Xv at time t = 0. The time-to-impact function,

TI,v : Xv → R, is the time from the initialization of the system on a given domain v

to the first intersection with the subsequent guard SXe and is given as a partial map:

TI,v(x0) := inf{t ≥ 0|φv(t, x0) ∈ SXe }, (2.3)

if ∃ t such that φv(t, x0) ∈ SXe . Moreover, we denote that

x−e = lim
t↗TI,v

φsor(e)(t), (2.4)

x+
e = lim

t↘TI,v
φtar(e)(t) (2.5)

be the left and right limits of a solution φ(t) at the guard SXe respectively. By

definition, x−e ∈ SXe ∩ Xsor(e) and x+
e = ∆e(x

−
e ) ∈ Xtar(e). The generalized Poincaré

map Pv : SXtar−1(v) → SXsor−1(v) for a domain Dv from its preceding guard SXtar−1(v) to

the subsequent guard SXtar−1(v) is then defined as a partial map:

Pv(x
−
tar−1(v)

) := φv(TI,v ◦∆tar−1(v)(x
−
tar−1(v)

),∆tar−1(v)(x
−
tar−1(v)

)), (2.6)

so that x−sor−1(v) = Pv(x
−
tar−1(v)

). For a multi-domain hybrid system in (2.2) with Γ, the

Poincaré return map can be defined as the composition of generalized Poincaré maps

of each domain v, starting at any point in the cycle Γ. For example, if we select SXe1

as the Poincaré section of the system (2.2), the Poincaré return map P : Se1 → Se1 is

given as:

P := Pv1 ◦ Pvnp
◦ · · · ◦ Pv2 . (2.7)

If an orbit O is period-one, then it has a fixed point x∗ = P (x∗), where x∗ = Ō ∩SXe1 .

According to the Proposition 4. in [58], P is also the Poincaré return map for the

single domain hybrid system:

H̄ = {X̄ , S̄X , ∆̄, F̄}, (2.8)
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where X̄ = Xe1 , S̄X = SXe1 , F̄ = fv1 , and ∆̄ = ∆enp
◦ Pvnp

◦ · · · ◦ Pv2 . By connect-

ing multi-domain models to single-domain models, the stability of a periodic orbit

O of (2.2) can be determined by the stability of the equivalent single-domain model.

According to the Theorem. 0 in [95], the stability of the periodic orbit can be deter-

mined by the stability of the fixed point x∗ given that the periodic orbit is transversal

to S̄X . Results in [135] show that if H̄ in (2.8) is C1, then the partial map P is

well-defined and differentiable in a neighborhood of a fixed point x∗, and hence, the

stability property of the fixed point can be checked by evaluating the spectral radius

of the Jacobian of P at x∗. More specifically, if all eigenvalues lie within the unit

circle, i.e., have magnitude less than 1, then the periodic orbit is stable.

2.2 Humanoid Locomotion as Hybrid Systems

As discussed in previous section, dynamic locomotion of legged robots can be modeled

as a hybrid control system H C in (2.1). In this section, the construction of each

element of the hybrid control system model for dynamical humanoid locomotion is

developed based on the Lagrangian and kinematic constraints of a generalized robot

model. The continuous dynamics is determined by the Lagrangian model of the me-

chanical system and contact points with the external environment, e.g. the ground.

The transitions between different domains occur at the changes of contact points.

Utilizing the formal definition of multi-domain hybrid systems, there is the necessary

framework to discuss how to use the Lagrangian and contact constraints of the me-

chanical system of a bipedal robot to determine each element of the corresponding

multi-domain hybrid system model.

2.2.1 Lagrangian Model

Motivated by the desire to consider robot models in a generalized position, i.e., not

impose assumptions on contact constraints, we consider the floating base coordinates

of the robot (see [58]). Assuming R0 is a fixed inertial frame and Rb is a reference
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frame rigidly attached to the base link on the robot, then the Cartesian position

pb ∈ R3 and the orientation φb ∈ SO(3) of Rb with respect to R0, respectively,

compose the floating base coordinates of the robot, i.e., qb = (pb, φb). The multi-body

system of a robot is often modeled as a kinematic tree of rigid links. Let qr ∈ Qr be

the body coordinates of the robot, where Qr is the configuration space of the body

coordinates, then

q = (qb, qr) ∈ Q = R3 × SO(3)×Qr (2.9)

is a set of generalized coordinates for the robot.

Remark 2.1. If the interested behavior of bipedal locomotion is planar, i.e., the

motion of the robot is confined within the sagittal plane only, the base coordinates

that are not on the sagittal plane will be constrained to zero. These coordinates

includes the Cartisian position in y−axis and orientations of the base link along

x−axis and z−axis. As a result, the base coordinates of the robot becomes

qb = (px, pz, φy), (2.10)

and correspondingly the generalized coordinates of the system is

q = (qb, qr) ∈ Q = R2 × SO(2)×Qr. (2.11)

Let TQ be the tangent bundle of Q. The Lagrangian of the robot, L : TQ → R,

is given as the difference between the kinetic energy, T : TQ → R, and the potential

energy, V : Q → R, as:

L(q, q̇) := T (q, q̇)− V (q). (2.12)

The equations of motion of the mulit-body system can be determined from the La-

grangian using the classic Euler-Lagrange equations [96]

d

dt

∂L
∂q
− ∂L
∂q

= Υ(q, q̇, u), (2.13)

where Υ(q, q̇) is the vector of external forces, such as ground reaction forces, actuator

torques, and joint friction forces (if applicable).
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2.2.2 Constrained Dynamics

We assume that the robot and the ground are modeled as rigid bodies. That is,

the following assumptions should hold: the bodies cannot exert a force when there

is no contact and the bodies that constitute a contact cannot interpenetrate, e.g.,

the distance between the ground and the feet cannot be negative. Therefore, these

contacts characterize a set of unilateral constraints in the form given as [74]:

λTh(q) = 0, h(q) ≥ 0, λ ≥ 0, (2.14)

where h(q) is a vector represents a set of possible contact conditions of the feet and

the ground; λ is a vector of normal ground reaction forces, which are sometimes re-

ferred as Lagrangian multiplier [86]. The orthogonality condition λTh(q) = 0 shows

that for each possible contact i, if hi(q) > 0, then there is no such contact and the

corresponding normal force λi should be zero; on the other hand, if there exists a

non-zero contact force, i.e., λi > 0, then a contact has been established, hi(q) = 0.

These unilateral constraints are described as “complementarity conditions”, and con-

sequently the system can be modeled as a complementarity dynamical system [74, 93].

Such complementarity Lagrangian systems are very useful for “real-world” simulation

of rigid body dynamics with contact constraints [15, 125], or trajectory optimization

of constrained rigid body systems without a priori defined sequence of contact types

and events [103]. In the context of multi-domain hybrid systems, however, the order-

ing of contact conditions is predetermined as a directed cycle. Hence, we use another

commonly used method in the robotic community—holonomic constraints—to model

the contact condition [58, 59]. The unilateral constraints in (2.14) describe necessary

conditions for the control law design and trajectory optimization, and the condition

at which either a contact distance and a force crosses zero determines each switching

surface of the multi-domain hybrid system model.

Generally speaking, a holonomic constraint, hc : Q → R, is a function of the robot
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Figure 2.2: Illustration of the flat foot ground contact.

configuration that describes the kinematic constraints resulting from a contact that

must be satisfied throughout the period of a given domain. For example, if the stance

foot of a robot is assumed to be flat on the ground, then the associated holonomic

constraints are defined as the Cartesian positions of a point on the stance foot link and

the orientations of the stance foot link. To construct holonomic constraints of a rigid

link that may have contacts with the external environment, we consider a reference

frame, Rc, attached to the rigid link on which the contact point c is located, as shown

in Figure 2.2. Let [pxc , p
y
c , p

z
c ]
T : Q → R3 be the 3-dimensional Cartesian position of

the point, [φxc , φ
y
c , φ

z
c ]
T : Q → SO(3) be the orientations1 of Rc with respect to the

inertial frame, R0, respectively. At most, we have six possible holonomic constraints

associated with a given rigid link of the robot. In [58], Grizzle at el. presented

thorough discussions of different types of foot contacts, including flat foot contact,

heel or toe only contact, and point foot contact. Corresponding constraints on the

ground reaction wrenches are also discussed in [58].

Let Cv be a indexing set of all holonomic constraints defined on Dv, we state the

1Euler angles calculated from the transformation matrix can be used to express the orientation

of the link to which the reference frame rigidly attached [96].
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holonomic constraints of the domain as a vector contains all constraints:

hv(q) = {hc(q)}c∈Cv ≡ constant . (2.15)

Let kv is the number of total holonomic constraints, hv(q) ∈ Rkv constrains the po-

sitions and/or orientations of the contact links to be fixed, as a consequence, the

associated velocities (or angular velocities) and accelerations (or angular accelera-

tions) should be zero. Hence, the kinematic constraints are defined as

Jv(q)q̇ = 0, (2.16)

where Jv(q) = ∂hv(q)
∂q

is the Jacobian of hv(q).

Given the mass, inertia and length properties of each link of a robot model, the

equations of motion for a domain Dv are determined by the classical Euler-Lagrange

equation in (2.13):

D(q)q̈ +H(q, q̇) = Bvu+ JTv (q)λv, (2.17)

where D(q) is the inertia matrix, H(q, q̇) = C(q, q̇)q̇+G(q) is the vector containing the

Coriolis and gravity term, Bv is the actuator distribution matrix, and λv : TQ×Uv →

Rkv is a vector of contact wrenches containing the constraints forces and/or moments.

To enforce the holonomic constraints, the differentiation of (2.16) should be zero, i.e.,

Jv(q)q̈ + J̇v(q, q̇)q̇ = 0. (2.18)

In addition, the wrenches λv(q, q̇, u) can be determined by solving (2.17) and (2.18)

simultaneously (see [117]):

λv(q, q̇, u) = −Ξv(q)
(
J̇v(q, q̇)q̇ + Jv(q)D

−1(q) (Bv(q)u−H(q, q̇))
)
, (2.19)

where, for simplicity, Ξv(q) =
(
Jv(q)D

−1(q)JTv (q)
)−1

. Substituting the closed form

solution of λv(q, q̇, u) into (2.17) yields the affine control system of the continuous

dynamics,

ẋ = fv(x) + gv(x)u, (2.20)
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with x = (q, q̇) ∈ TQ being the states of the system. The vector fields of the

dynamical system, fv(x) and gv(x), are determined by:

fv(x) =

 q̇

D−1(q)
((
JTv (q)Ξv(q)Jv(q)D

−1(q)− I
)
H(q, q̇)− JTv (q)Ξv(q)J̇

T
v (q, q̇)q̇

)
 ,

(2.21)

gv(x) =

 0

D−1(q)
(
I − JTv (q)Ξv(q)Jv(q)D

−1(q)
)
Bv(q)

 , (2.22)

respectively.

2.2.3 Domains and Guards

As discussed in the previous section, the foot contact with the ground is unilateral in

essence, therefore, a certain set of conditions should be enforced on constraints forces

and moments in order to satisfy the holonomic constraints assumption. Specifically,

we state these conditions for a given domain Dv in the form of inequalities:

νv(q)λv(q, q̇, u) ≥ 0, (2.23)

where νv(q) depends on the physical parameters of the system, such as the geometry

of the foot and the friction coefficient with the ground. Furthermore, the admissible

domain configuration should also consider other unilateral constraints related to the

robot postures. For example, the non-stance foot should always be above the ground

during the swing phase. In other words, the height of the non-stance foot should

always be positive. We denote these unilateral constraints as υv(q) ≥ 0. Combining

(2.23) and unilateral constraints (if present) together yields the domain of admissi-

bility for each v ∈ V :

Dv = {(q, q̇, u) ∈ TQ× Uv|Av(q, q̇, u) ≥ 0}, (2.24)
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where

Av(q, q̇, u) =

 νv(q)λv(q, q̇, u)

υv(q)

 , (2.25)

defines the boundary of the domain manifold.

Consequently, a guard Se is a proper subset of the boundary of the domain, Dsor(e),

determined by an edge condition associated with the transition from Dsor(e) to the

subsequent domain, Dtar(e). Let He(q, q̇, u) be an appropriate element from the vector

in (2.25) corresponding to a transition, then the guard is defined as

Se = {(q, q̇, u) ∈ TQ× Uv|He(q, q̇, u) = 0, Ḣe(q, q̇, u) 6= 0}. (2.26)

When a guard is reached, it indicates a change in the contact. For bipedal locomotion,

it could be the establishment of new contacts, e.g., the heel or sole of the swing

foot hits the ground, or the break of existing contacts, e.g., the lift-off events of

the swing foot. As a consequence, the states of the robot will undergo a discrete

change. This discrete dynamics of the system can be encaptured as a reset map

∆e : SXe ∩ Xsor(e) → Xtar(e) that maps the current states of the system on a guard to

the subsequent domain. Given pre-impact states (q−e , q̇
−
e ) on SXe ∩ Xsor(e), the post-

impact states (q+
e , q̇

+
e ) of Xtar(e) are computed using a reset map ∆e by assuming

a perfectly plastic impact (if an impact occurs) [52, 75] for the reason that both

robot and ground are modeled as rigid bodies. Following the presentation in [58], the

robot configuration is invariant through impact, i.e., q+
e = q−e . Because the impact

occurs instantaneously by the rigid body assumption, and due to the conservation of

generalized momentum we have

D(q+
e )(q̇+

e − q̇−e ) = JTtar(e)(q
+
e )δFtar(e), (2.27)

where δFtar(e) : TQ → Rktar(e) is a vector of the intensity of impulsive contact wrenches

over the infinitesimal impact event. In addition, the kinematic constraints of the
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subsequent domain should be satisfied after the impact, i.e.,

Jtar(e)(q
+
e )q̇+

e = 0. (2.28)

Combining (2.27) and (2.28) together, we obtain the direct relationship between the

pre- and post-impact velocities:

q̇+
e =

(
I −D−1(q+

e )JTtar(e)(q
+
e )Ξtar(e)(q

+
e )Jtar(e)(q

+
e )
)︸ ︷︷ ︸

∆q̇(q)

q̇−e . (2.29)

Therefore, the reset map of a given guard can be written as

(q+
e , q̇

+
e ) = ∆e(q

−
e , q̇

−
e ) :=

 ∆q(q
−
e )

∆q̇(q)q̇
−
e

 , (2.30)

where ∆q(q
−
e ) represents the change in the robot configuration, which is often an

identity map (see Remark 2.2) and ∆q̇(q) is determined from (2.29).

Remark 2.2 (Coordinate Relabeling). In the study of symmetric walking gaits, a

bipedal robot is often modeled in terms of “stance” and “non-stance” leg angles

instead of physical “left” and “right” leg angles to reduce the number of discrete

domains. In these cases, the robot configuration needs to be relabeled if there is a

change in the “stance” and “non-stance” leg, e.g., when the “non-stance” leg becomes

the “stance” leg. As a result, ∆q(q
−
e ) is no longer an identity map. This relabeling

process can be denoted as:

∆q(q
−
e ) := R(q−e ), (2.31)

where ∂R(q)
∂q

has full rank. It is important to note that this map is a linear map in

many application [7, 146].

With the definition of each element of the multi-domain robotic locomotion, we

can construct the corresponding multi-domain hybrid control system model H C of

the dynamic robotic locomotion as in (2.1), where D is given in (2.24), S is given

in (2.26), ∆ is given in (2.30), and the affine control systems are defined in (2.20),

respectively.
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2.3 Feedback Control Law Design

In this section, virtual constraint is introduced as a mean to synthesis feedback con-

trollers that realize stable and robust multi-domain robotic walking on humanoid

robots. By formulating virtual constraints in a way such that the multi-domain hy-

brid system is hybrid invariant, the result is a feedback controller that drives the

full-order model of the robot to a reduced-dimensional space—termed the zero dy-

namics—wherein the evolution of the system is dictated by the low dimensional

hybrid dynamical system. The behavior on this reduced-order space can be used to

encode the full-order behavior of the bipedal humanoid robot.

2.3.1 Virtual Constraints

Analogous to holonomic constraints, virtual constraints (also termed outputs in the

control literature [7]) are defined as holonomic functions that modulate the robot

states in order to achieve a certain desired behavior via stated-based feedback con-

trollers [135]. The term “virtual” comes from the fact that these constraints are

enforced via actuators instead of mechanical constraints. Given a set of functions of

the mechanical configuration of a robot ya(q), and corresponding stated-based desired

trajectories yd(q), virtual constraints is defined as the difference between actual and

desired outputs:

y(q) := ya(q)− yd(q), (2.32)

where ya(q) is termed as actual outputs and yd(q) is termed as desired output. In par-

ticular, desired outputs are often given in terms of particular parameterized smooth

curves. The following definition provides a systematical construction of virtual con-

straints for the multi-domain hybrid control system of bipedal locomotion.

Definition 2.5. Given v ∈ V , yav = (ya1,v, y
a
2,v) is an admissible combination of robot

outputs consisting of velocity-modulating outputs, ya1,v : Q → Rn1,v , and position-

modulating outputs, ya2,v : Q → Rn2,v . Given mv be the total number of admissible
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controls and kv be the total number of holonomic constraints, the total number of

position-modulating outputs, n2,v, is determined by

n2,v =

 mv − n1,v, if mv ≤ N − kv,

N − kv − n1,v, if mv > N − kv.
(2.33)

Let Ov be an indexing set for ya2,v whereby ya2,v(q) = [ya2,o(q)]o∈Ov . A output combina-

tion is independent if the Jacobian of yav(q) has a full rank.

Remark 2.3. The idea of the velocity modulating output is originated from the

study of human-inspired control. By analyzing the human locomotion data, Ames et.

al. proposed that the forward velocity of the hip renders almost constant [13]. Hence,

if there are enough admissible actuators present in the bipedal robot, the forward

velocity can be controlled via feedback controllers as a velocity-modulating output.

The admissible condition is determined by if the forward velocity of the hip is fully

controllable. For example, we define the forward velocity as the velocity-modulating

output if the stance foot is flat on the ground and both ankle and knee joints are

actuated. In the case of point-feet bipedal robots [30, 136] or if the stance foot is in

contact with the ground at the heel or toe only [144], the forward velocity cannot be

controlled directly. Consequently, we will not define a velocity-modulating output for

these cases.

Remark 2.4. The idea of virtual constraints is based on the method of computed

torques [135], the total number of output should not exceed the total degrees of actu-

ation and total unconstrained degrees of freedom, whichever is smaller. If the number

of outputs is more than the total unconstrained degrees of freedom–which is the total

degrees of freedom minus the number of holonomic constraints–the system becomes

an over-constrained system. Such over-constrained systems should be avoided in the

control law design.
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Despite the desired output can be given in various forms, we typically define

desired outputs as follows:

• the desired velocity-modulating output (if present) is assumed to be a constant

[7] and denoted as v̄v, and

• the desired position-modulating outputs are given in term of Bézier polynomials:

yd2,v(τ(q)) =
[
yd2(τ(q), αo)

]
o∈Ov

,

dictated by a set of parameters {αo}o∈Ov and a state-based parameterization of

time τ(q).

In particular, the Bézier polynomial of degree M , determined by M + 1 coefficients,

is given as:

yd2(τ(q), αo) :=
M∑
k=0

αo[k]
M !

k!(M − k)!
τ(q)k(1− τ(q))M−k, (2.34)

for each output o ∈ Ov. The introduction of state-based parameterization of time,

τ(q), is motivated by the desire to create an autonomous controller, considering the

fact that autonomous systems are more robust than non-autonomous systems [135].

To have a well-defined continuous reference trajectory, τ(q) must be monotonic over a

given time interval. This time interval could be the duration of a continuous domain

or the entire gait cycle of one step. For the forward motion of humanoid robots,

one possible candidate could be the linearized hip position of the robot [8, 38, 104].

Let θ(q) is a strictly monotonic (strictly increasing or decreasing) function of q, the

parameterization of time is given as the normalization of the θ over the time duration,

τ(q) :=
θ(q)− θ(q0)

θ(qf )− θ(q0)
∈ [0, 1], (2.35)

where q0 and qf are the configurations of the robot at the beginning and end of the

particular time duration.
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With the definition of outputs in hand, the virtual constraints of locomotion at a

given domain are defined as the difference between the actual and desired outputs of

the robot:

y1,v(q, q̇, v̄v) = ẏa1,v(q, q̇)− v̄v, (2.36)

y2,v(q, αv) = ya2,v(q)− yd2,v(τ(q), αv), (2.37)

for v ∈ V , where (y1,v, y2,v) is a set of admissible outputs as defined in Definition 2.5,

and are relative degree 1 and (vector) relative degree 2 by definition (see [115] for the

definition of relative degree), respectively, due to the assumption of the admissible

output combinations are only depends on q. In particular, we combine the parameters

of virtual constraints for a domain so that αv = v̄v ∪ {αo}o∈Ov ∈ Rpv .

2.3.2 Input-Output Feedback Linearization

In this section, we introduce a state-based feedback controller to enforce the virtual

constraints on the robot. With this objective in mind, differentiating the relative

degree 1 output once and differentiating the relative degree 2 outputs twice yields: ẏ1,v

ÿ2,v

 =

 Lfvy1,v(q, q̇)

L2
fv
y2,v(q, q̇)


︸ ︷︷ ︸

Lfv

+

 Lgvy1,v(q, q̇)

LgvLfvy2,v(q, q̇)


︸ ︷︷ ︸

Av

u, (2.38)

where Lfv and Lgv are the Lie derivatives with respect to the vector fields fv and gv,

Av is the decoupling matrix which is invertible due to the specific choice of virtual

constraints. To drive the virtual constraints yv = (y1,v, y2,v) → 0 exponentially, we

consider the input-output feedback linearization control law,

uαv = Av(−Lfv + µv), (2.39)

for some µv ∈ Rn1,v+n2,v yields linear output dynamics of the form: ẏ1,v

ÿ2,v

 = µv (2.40)
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Figure 2.3: Illustration of the zero dynamics under the exponentially stable feedback
controllers.

An example choice of µv is given by [11]:

µv =

 −εy1,v

−2εẏ2,v − ε2y2,v

 (2.41)

for some ε > 0. In particular, it results in the output dynamics:
ẏ1,v

ẏ2,v

ÿ2,v

 =


−ε 0 0

0 0 I

0 −ε2I −2εI


︸ ︷︷ ︸

F cl
v


y1,v

y2,v

ẏ2,v

 . (2.42)

Since F cl
v is Hurwitz by definition, the resulting linear dynamics is exponentially

stable. The convergence rate of (2.42) is determined by ε due to the fact that all

eigenvalues of F cl
v are located at −ε. By choosing ε large enough, the feedback

controller yields the output dynamics being rapidly attractive (see Figure 2.3).

2.3.3 Hybrid Zero Dynamics

Applying the feedback controllers given in (2.39) in each domain of the hybrid control

system (2.3) yields a hybrid system model H α given as,

H α = (Γ,X , SX ,∆,Fα), (2.43)
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where Fα is a set of dynamical systems defined on X , i.e., ẋ = fαv
v (x) = fv(x) +

gv(x)uαv with x ∈ Xv. Moreover, the control law in (2.39) renders the zero dynamics

submanifold Zαv of Xv, given in

Zαv = {(q, q̇) ∈ Xv|y1,v = 0, y2,v = 0, ẏ2,v = 0}, (2.44)

forward invariant and rapidly attractive over all continuous domain v ∈ V . That is,

any solution that starts in Zαv remains on Zαv until it reaches a guard. In particular,

we explicitly show that the zero dynamics is dependent on the parameter set α.

For the simplicity of the notation, we drop the superscript α in the remainder of

the thesis. As a result, the full-dimensional dynamical system is restricted to a

low-dimensional invariant embedded submanifold of X v. However, the controller not

necessarily guarantees that the reduced dimensional manifold being invariant through

the impact dynamics due to the discrete change of joint velocities. Hence, we define

that at a given edge e ∈ E, the reduced dimensional system is impact invariant if and

only if Zsor(e) ∩ SXe 6= ∅ and

∆e(Zsor(e) ∩ SXe ) ⊂ Ztar(e). (2.45)

A manifold Z =
⋃
v∈V Zv is called hybrid invariant if it is invariant over all domains

of continuous dynamics and impact invariant through all discrete impacts, i.e., any

solution that starts in Z still remains in Z even after impulse effects. If a feedback

control law renders Z hybrid invariant, then we say that the multi-domain hybrid

control system has a hybrid zero dynamics (HZD). The hybrid invariance of the hybrid

zero dynamics also reflects on the generalized partial map Pv in (2.6), i.e.,

Pv(S
X
tar−1(v) ∩ Zv) ⊂ SXsor−1(v) ∩ Zv. (2.46)

By enforcing hybrid zero dynamics, the full order behavior of the hybrid system

is restricted to a reduced-dimensional dynamical system that is independent of the

control inputs [94]. The advantage of studying the hybrid zero dynamics manifold is
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that the evaluation of orbital stability of the full order system can be performed on

the reduced dimensional restricted system. With the far less degrees of freedom, the

numerical computation time on the hybrid zero dynamics manifold could be reduced

significantly. In some special cases, the solutions of restricted Poincaré return map

could be obtained analytically [8, 135, 137].

To construct the restricted hybrid system mode, let ξv ∈ Zv ⊂ R`v be the local

coordinates of the Zv and ηv ∈ X a
v ⊂ Rnv−`v be the vector of controlled normal states.

In addition, suppose that there exist local coordinates transformations Φz
v : Xv → Zv

and Φη
v : Xv → X a

v , so that (ξv, ηv) = (Φz
v(x),Φη

v(x)) := Φv(x). With this coordinate

transformation, the affine control system in (2.20) can be represented in the zero

dynamics normal form as [115]:

η̇v = bv(ηv, ξv) + av(ηv, ξv)u (2.47)

ξ̇v = zv(ηv, ξv) (2.48)

where the vector fields bv, av, and zv are assumed to be locally Lipschitz continuous.

The affine control system in (2.47) is termed as the output dynamics, and sometimes

also called as transverse dynamics; the autonomous system in (2.48) is termed as the

zero dynamics. In addition, under the feedback control law in (2.39), ηv vanishes on

the zero dynamics manifold, i.e., bv(0, ξv) = 0. Hence, the dynamic equation of the

restricted manifold Zv can be given as

ξ̇v = zv(0, ξv). (2.49)

Using the discussions in Section 2.1.3, we denote the solution of (2.49) by φz(t, ξ0)

with ξ0 ∈ Z, and correspondingly, the restricted periodic orbit of the zero dynamics

is denoted as OZ ⊂ Z. On the basis of (2.46), we define the restricted Poincaré map,

ρv : SXtar−1(v) ∩ Zv → SXsor−1(v) ∩ Zv, as ρv = Pv|Z . Suppose that ∆Ze := ∆e|Se∩Zsor(e)

is the restricted reset map for the zero dynamics and Tρ,v(ξ0) := TI,v(x0|Zv) is the
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Figure 2.4: Illustration of the restricted hybrid invariant periodic orbit of a two-
domain hybrid system.

restricted time-to-impact function, then the restricted Poincaré map for the domain

Dv can be explicitly expressed as:

ρv(ξ
−
tar−1(v)

) := φzv(Tρ,v ◦∆Z
tar− 1(v)

(ξ−
tar−1(v)

),∆Z
tar− 1(v)

(ξ−
tar−1(v)

)). (2.50)

Particularly, the Poincaré return map for the multi-domain hybrid zero dynamics can

be defined similarly as:

ρ := ρv1 ◦ ρvnp
◦ · · · ◦ ρv2 , (2.51)

therefore, ρ is also the restricted Poincaré map of the single domain hybrid system:

H (α,ε)
Z = {Z̄, S̄Z , ∆̄Z , F̄Z}, (2.52)

where Z̄ = Zv1 , S̄Z = SXe1∩Zv1 , ∆̄Z = ∆Zenp
◦ρvnp

◦· · ·◦ρv2 , and F̄Z = zv1 , respectively.

Hence, the invariance of the multi-domain hybrid zero dynamics which is guaranteed

by the satisfaction of the multi-domain HZD constraints in (2.45) is equivalent to the

invariance of the hybrid zero dynamics of the single-domain hybrid system in (2.52).

The stability of hybrid systems, particularly those exhibiting periodic behaviors,

is determined by the existence and stability properties of periodic orbits. It is shown

in [9, 95] that if there exists a feedback control law that ensures the invariant manifold

is sufficiently rapidly attractive, then the existence and stability of the periodic orbit
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O of the full order system can be determined from those of the reduced-dimensional

zero dynamics periodic orbit, OZ ∈ Z, through the canonical embedding ι : Z → X .

In other words, if the system has HZD and there exists a hybrid periodic orbit, OZ ,

of H α
Z , as shown in Figure 2.4, then the full order system also has a hybrid periodic

orbit O obtained by O = ι(OZ).

Theorem 2.1 (Periodic orbits of the multi-domain system [146]). Suppose that OZ

be an exponentially stable transverse periodic orbit of the corresponding hybrid zero

dynamics system (2.52), and there exists ε > 0 such that the feedback control law

defined in (2.39) renders Zv exponentially attractive for all v ∈ V , then O = ι(OZ) is

an exponentially stable periodic orbit for the full order dynamics of the multi-domain

hybrid system (2.43).

Proof. The proof comes directly from the Proposition 4 in [58] along with the proof in

Theorem 2 in [10] with the reconstructed single-domain hybrid zero dynamics system

(2.52). From discussion in [10], we know the feedback control law as defined in (2.39)

is Lipschitz continuous and belong to the rapidly exponential stable-control Lyapunov

function (RES-CLF) based control set Kε as defined in [10], which therefore illustrates

the proof of this theorem.

Remark 2.5 (Partial Hybrid Zero Dynamics). In fact, if the reset map involves a

plastic impact, it is quite difficult to guarantee the velocity-modulating output to be

a constant due to the discrete changes in joint velocities caused by impact. Hence,

we enforce hybrid zero dynamics condition only on virtual constraints that related to

the relative degree 2 outputs: y2,v. We term the resulting embedded submanifold the

partial zero dynamics manifold (see [7]), given by:

PZv = {(q, q̇) ∈ Xv|y2,v = 0, ẏ2,v = 0}. (2.53)

The hybrid invariance of the partial zero dynamics can be defined similarly as above.

If there exists a set of parameters α = {αv}v∈V so that for any edge e ∈ E, the

33



submanifold PZsor(e) is impact invariant if, and only if

∆e(S
X
e ∩ PZsor(e)) ⊂ PZtar(e). (2.54)

A manifold PZ = {PZv}v∈V is called hybrid invariant if it is invariant over all

domains of continuous dynamics and impact invariant through all discrete dynamics,

i.e., solutions that start in PZ remain in PZ , even after impulse effects. If a feedback

control law renders PZ hybrid invariant, then we say that the multi-domain hybrid

control system has a partial hybrid zero dynamics (PHZD). Note that, the reason

we term this dynamics as partial zero dynamics is because the actual zero dynamics

also contains the relative degree one output which is in fact controlled. For a domain

that only has relative degree two outputs, the PZv surface is actually the full zero

dynamic surface, i.e., PZv = Zv.

For the partial zero dynamics surface, we could explicitly define the relative degree

one output as part of ξv satisfying (2.48) with applying a pre-feedback controller. That

is to say, because of the full control authority, we could carefully shape the dynamics

of relative degree one outputs to the form of (2.48), which can be reasonably viewed

as a “controllable” zero dynamics. This discussion is important because it allows the

general construction of the zero dynamics as in (2.47) and (2.48) to suit for all domains

with different types of actuation and outputs defined. Hence the discussion developed

for the hybrid zero dynamics case can also be applied directly for the partial hybrid

zero dynamics. The partial hybrid zero dynamics (PHZD) can be seen as a more

general formulation of hybrid zero dynamics, therefore, we use the partial hybrid zero

dynamics in the remainder of the thesis in all cases.

2.3.4 Control Lyapunov Functions

In the previous section, the transverse dynamics in (2.47) is stabilized with the input-

output feedback linearization controllers in (2.39). In fact, there are many other

feedback controllers can be utilized to stabilize the output dynamics for a given set of
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virtual constraints parameters. In this section, we briefly survey a family of rapidly

exponentially stabilizing control Lyapunov functions (CLFs) in the context of hybrid

system based on the classical notations of CLF in control literature [16, 118, 119].

Definition 2.6 (RES-CLF [9, 10, 14]). A continuously differentiable function V ε
v :

X a
v → R is a rapidly exponentially stabilizing control Lyapunov function

(RES-CLF) if there exist positive constants c1, c2, c3 > 0 such that for all 0 < ε < 1

c1‖x‖2 ≤ V ε
v (ηv) ≤

1

ε2
c2‖x‖2 (2.55)

inf
u∈Uv

[
LavV

ε
v (ηv, ξv) + LbvV

ε
v (ηv, ξv)u+

1

ε
c3V

ε
v (ηv)

]
≤ 0. (2.56)

Motivated by [44], we can consider a set

Kε
v(ηv, ξv) = {u ∈ Uv : LavV

ε
v (ηv, ξv) + LbvV

ε
v (ηv, ξv)u+

1

ε
c3V

ε
v (ηv) ≤ 0} (2.57)

that consists of a family of control inputs that yields V̇ ε
v (ηv, ξv, u) ≤ − c3

ε
V ε
v (ηv) and

exponentially stabilizes the output dynamics in (2.47) at a rate of ε. This can be

verified from the definition of the RES-CLF [9]. More importantly, this results in a

family of optimal control inputs, given as

mε
v(ηv, ξv) = argmin{‖u‖ : u ∈ Kε

v(ηv, ξv)} (2.58)

= argmin{‖u‖ : ψε0,v(ηv, ξv) + ψε1,v(ηv, ξv)
Tu ≤ 0}, (2.59)

where

ψε0,v(ηv, ξv) = LavV
ε
v (ηv, ξv) +

1

ε
γV ε

v (ηv) (2.60)

ψε1,v(ηv, ξv) = LbvV
ε
v (ηv, ξv)

T , (2.61)

which can be solved by a quadratic program (QP) that minimizes the control efforts:

mε
v(ηv, ξv) = argminu∈Uv u

Tu (2.62)

s.t ψε0,v(ηv, ξv) + ψε1,v(ηv, ξv)
Tu ≤ 0.
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The end result is a family of optimal controllers solved via CLF based quadratic

program to stabilize the transverse dynamics. This has been successfully applied to

locomotion and manipulation in bipedal robots [11, 65], and has been implemented

experimentally on planar bipedal walking [45].

2.4 Summary

In this chapter, we present the mathematical background of the hybrid zero dynamics

framework for dynamic locomotion of humanoid robots. In particular, the generalized

multi-domain hybrid system model with a predetermined directed cycle is introduced

to model the behavior of humanoid locomotion. By properly designing a set of virtual

constraints to enforce via feedback control, hybrid invariance can be achieved, assuring

stable periodic locomotion despite periodic leg impacts and contact changes. The

hybrid zero dynamics framework provides a general approach to model, design, and

control legged robotic locomotion, even in the presence of underactuation.

With the mathematical model of the humanoid locomotion defined, the next task

is to determine a feasible gait trajectory for the hybrid dynamical system so that

the proposed control can be applied to realize dynamic locomotion on the humanoid

robots. This process is typically relegated to a nonlinear trajectory optimization

problem. In the next two chapters, we introduce several different approaches to

formulate the gait optimization problem, particularly within the context of the hybrid

zero dynamics framework.
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CHAPTER III

DIRECT SHOOTING METHODS

In this chapter, we present how to use nonlinear optimization techniques to generate

feasible locomotion gaits for the legged robots. We start with the general statement of

the gait optimization problem, and then introduce the commonly used direct shoot-

ing method as a mean to solve the nonlinear optimization problem. Two different

approaches are discussed in this chapter, and illustrated via specific examples.

3.1 Gait Optimization Problem

The goal of gait generation of the legged robotic locomotion in essence is to determine

a trajectory of robot states, x(t), of the multi-domain hybrid system model defined in

(2.1). This problem can be formulated as a infinite-dimensional trajectory optimiza-

tion or optimal control problem, in which the state trajectory x(t) and control inputs

u(t) are determined by optimizing a certain cost function while satisfying both path

and boundary constraints. This problem can be formulated as a optimal control (or

trajectory optimization) problem as follows: determine the a solution or trajectory,

x(t), of the system defined in Definition 2.3 under a control profile u(t),

(x∗(t), u∗(t)) = argminJ (x(t), u(t)) (3.1)

that minimize the cost function given in the Bolza form as

J :=
∑
v∈V

(
Ev

(
x(t0v), u(t0v), x(tfv), u(tfv)

)
+

∫ tfv

t0v

Lv (x(t), u(t)) dt

)
, (3.2)

subject to the dynamic equations as in (2.20)

ẋ = fv(x(t)) + gv(x(t))u(t), (3.3)
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the path constraints

Cmin
v ≤ Cv(x(t), u(t)) ≤ Cmax

v , (3.4)

and the boundary constraints

Bmin
v ≤ Bv(x(t0v), u(t0v), x(tfv), u(tfv) ≤ Bmax

v , (3.5)

for all v ∈ V . In particular, Ev is the terminal cost and Lv is the running cost, and

t0v and tfv is the initial and final time correspond to the solution on the domain Dv,

respectively. It is obvious to note that this formulation corresponds to the definition of

the multi-domain hybrid system. In particular, the admissible domains D determine

the path constraints in (3.4), and the guard S and reset maps ∆ are encoded in the

boundary constraints in (3.5).

In the classic trajectory optimization problem, the control u(t) is considered as

an “open-loop” controller and is optimized alongside the state trajectory as an input

profile. In the framework of hybrid zero dynamics, however, the control inputs u(t) are

determined by the virtual constraints based feedback controllers as in (2.39). Hence,

the task of the hybrid zero dynamics based gait optimization problem is to determine

a set of parameters α = {αv1 , αv2 , · · · , αvnp
} so that the system has a hybrid invariant

periodic orbit, OZ , on the reduced dimensional hybrid zero dynamics submanifold.

The most intuitive approach to formulating such an optimal control problem is

arguably the direct shooting method. In this chapter, we present how to formulate the

hybrid zero dynamics based gait optimization problem using direct shooting meth-

ods. In particular, two different approaches are introduced: the direct single shoot-

ing method and the direct multiple shooting method. In a detailed survey paper,

[108] makes a clear conceptual distinction between indirect methods (such as indirect

shooting, indirect multiple shooting) and direct methods (e.g. the direct shooting and

direct multiple shooting methods addressed in this chapter). In practice, direct meth-

ods are significantly more common in legged robot control than indirect methods. So
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for ease of communication, we both drop the “direct” adjective and rename “direct

single shooting” to “single shooting” [83] to verbally distinguish it from “multiple

shooting.”.

3.2 Single Shooting Optimization

A subset of direct optimization methods [108], the direct single shooting method

(heretofore referred to as single shooting method) simulates the dynamics via a single

time-marching numerical integration, and then evaluates the objective and all con-

straints along that solution. Such “single shooting” is the most prevalent formulation

for optimizing virtual constraints in the context of HZD.

3.2.1 Problem Formulation

Let

α = {αv1 , αv2 , · · · , αvnp
} ∈ Rp (3.6)

be a set of virtual constraints parameters, where p =
∑

v∈V dim(αv), and ξ− ∈ S̄Z be

a point on the guard of the connected single domain hybrid restricted system given

in (2.52), the HZD based gait optimization problem can be formulated as:

(α∗, ξ−∗) = argmin
(α,ξ−)

∑
v∈V

(
EZv
(
ξvi(t

0
v), ξv(t

f
v), αv

)
+

∫ tfv

t0v

LZv (ξv(t), αv) dt

)
(3.7)

s.t ∆Ze (Zsor(e) ∩ SXe ) ⊂ Ztar(e), ∀e ∈ E, (3.8)

ξ− = ρ(ξ−), (3.9)

Cmin
v ≤ CZv (ξv(t), αv) ≤ Cmax

v , (3.10)

Bmin
v ≤ BZv (ξv(t

0
v), ξv(t

f
v), αv) ≤ Bmax

v . (3.11)

where ξv(t) is the solution of zero dynamics subject to the ODE given in (2.49),

and EZv , LZv , CZv , and BZv are the terminal costs, running costs, path constraints

and terminal constraints computed on the zero dynamics manifold, respectively. The
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Figure 3.1: Illustration of the single shooting hybrid zero dynamics gait optimiza-
tion. The optimizer picks a α and ξ− at every iteration, where α determine the
reduced dimensional surface Zα and ξ− determine the initial point of the restricted
trajectory, then evaluate the zero dynamics forward to check if all constraints are
satisfied. If neither constraints are satisfied nor the cost function has the optimal
value, the optimizer search for the next pair of parameters and boundary values (i.e.,
α and ξ−). The iteration repeats until the optimizer reaches an optimal solution.

full-order states and the feedback control inputs are calculated from the canonical

embedding ι and the input-output feedback linearization control law defined in (2.39).

The evaluation the cost function and constraints is performed by simulating the hybrid

zero dynamics via a single time-marching numerical integration.

In particular, the constraint (3.8) ensures that the system is hybrid invariant under

the parameters set α∗ and the constraint (3.9) guarantees that there exist a periodic

orbit OZ on the hybrid zero dynamics manifold. Moreover, ξ−∗ is the fixed point of

the restricted periodic orbit by the constraints (3.9), i.e., ξ−∗ = ρ(ξ−∗). Figure 3.1

illustrates the procedure of this single shooting optimization. In general, it is very

difficult to formulate the stability condition of the fixed point in the optimization,

therefore, the stability of the fixed point is verified a posteriori. In some special cases,

however, the Jacobian of the Poincaré return map ρ can be obtained analytically, so

that it could be evaluated directly in the optimization to make sure the resulting

periodic orbit is stable [8, 135].

The single shooting formulation has been widely used in the hybrid zero dynamics

literature [7, 120, 136, 137] due to its simple and straightforward description of the
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problem. Particularly, when the system has only one discrete domain and the zero

dynamics has dimension of only two, the hybrid invariant and periodic constraints

can be constructed explicitly. This feature has been successfully employed in the

single shooting optimization, as illustrated in the following example.

3.2.2 Case Study: 5-link Planar Underactuated Biped

Arguably the most common application of the single shooting method for the hybrid

zero dynamics gait optimization is the single-domain walking of 5-link planar point

feet biped [7, 135]. The robot has only one degree of underactuation.

Robot Model. As shown in Figure 3.2a, the generalized coordinates of such a robot

is given by

q = (px, pz, qsf , qsk, qsh, qnsh, qnsk),

where px and pz are the positions of the stance foot with respect to the world frame,

qsf , qsk, and qsh represents stance foot, knee and hip angles, respectively, and qnsk

and qnsh represents non-stance knee and hip angles respectively, in which the last four

joints are actuated.

Due to the plastic impact of the rigid links, the double support phase is regarded

as instantaneous [58]. Thus, the walking of such a biped has only one continuous

domain as the non-stance leg swings in the air and one discrete event when the non-

stance foot hits the ground. We model it as a single domain hybrid control system as

a special case of (2.1). The holonomic constraints of D are the positions of the stance

foot (px, pz) and the guard condition is the height of the non-stance foot, hnsf (q).

The reset map of the system is then given by (2.30), with a coordinate relabeling

occurring at impact to switch the stance and non-stance leg joints [7].

Zero Dynamics. Since the robot has four actuated joints, the following four virtual

constraints are considered, with the actual outputs defined as

ya2(q) =

[
qsk qnsk qtor δmnsl

]T
, (3.12)
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(a) Robot model

x

z

qsk

qtor

mnsl

qnsk

(b) Outputs

Figure 3.2: Model configuration and outputs representation of a 5-link point feet
planar robot.

where δmnsl is the linearized non-stance slope [7], as shown in Figure 3.2b. The

desired outputs, yd2(τ(q), α), are given in terms of the parameters set α and the

parameterized time given in (2.35). In particular, we pick parameterized time θ(q) as

θ(q) := qsf (3.13)

considering that the stance foot angle is monotonically decreasing.

With the definition of virtual constraints given in (3.12), the resulting zero dynam-

ics Z has only dimension of two due to the fact that there is only one underactuated

degree of freedom. We begin by picking the zero dynamics coordinates as

ξ1 = θ(q), (3.14)

ξ2 = γ0(q)q̇ (3.15)

based on the discussion in Appendix A. In fact, γ0 is the row in the inertia matrix

D(q) that corresponds to the underactuated degree of freedom in this case [135].

Moreover, the zero dynamics equation can be given in a way so that both ξ̇1 and ξ̇2

can be written as functions of ξ1. For more details of the construction of the zero
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dynamics equation, we refer to Chapter 5 of [135]. An advantage of this formulation

is the restricted Poincaré map ρ : S ∩ Z → S ∩ Z is a one dimensional partial map

that is only a function of ξ2. Thus, S ∩ Z is an one-dimensional embedded smooth

submanifold of D, and as a result, there exist a unique point q− ∈ Q such that y2(q−, α)

hnsf (q
−)

 =

 0

0

 . (3.16)

That is, given a parameter set α, q−(α) ∈ S ∩ Z can be explicitly solved [135].

This fact has been exploited in [7], so that the HZD constraint in (3.8) and (3.9)

of the hybrid zero dynamics gait optimization can be re-formulated in terms of pa-

rameters α only. Let ϑ(α) = q be the solution to y2(∆qq)

hnsf (q)

 =

 0

0

 , (3.17)

and ϑ̇(α) is then given by

ϑ̇(α) :=

 ∂y2
∂q

(ϑ(α))

γ0(ϑ(α))


−1  0

1

 . (3.18)

Further, assume that ∆Z(q−) be the restricted reset map of the zero dynamics,

i.e.,ξ+
2 = ∆Z(q−)ξ−2 , and VZ(ξ1) be the potential energy of the zero dynamics, re-

spectively. Based on Theorem 3 in [7], if a set of parameters α that satisfies the

following constraints:

y2(ϑ(α)) = 0, (3.19)

dy2(∆qϑ(α))∆q̇(ϑ(α))ϑ̇(α) = 0, (3.20)

dhnsf (ϑ(α))ϑ̇(α) < 0, (3.21)

∆Z(ϑ(α))2

1−∆Z(ϑ(α))2
VZ(ϑ(α)) + V max

Z < 0, (3.22)

0 < ∆Z(ϑ(α)) < 1, (3.23)
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then it yields hybrid zero dynamics ∆(S ∩ Z) ⊂ Z. Moreover, there exist an ε̃ > 0

such that for all ε > ε̃ the hybrid system has a stable periodic orbit OZ with a fixed

point (q−, q̇−) ∈ S ∩ Z can be computed explicitly from the parameters.

This property of explicitly determining the stable periodic orbit only in terms of

the parameters set greatly reduced the difficulty of the gait optimization. However,

it is benefited from the fact that there is only one degree of freedom in the system.

The same method could not extend to general cases, especially for robots that have

multiple degrees of underactuation.

3.2.3 Issues

The single shooting approach of optimizing only parameters and boundary state val-

ues reflects an instinctive desire to reduce the number of design variables for the

optimization. Intuitively, one might assume that such minimization of the nonlinear

programming problem’s (NLP’s) dimensionality would be an advisable practice for

maximizing an optimization’s speed and reliability. In practice, this approach en-

counters several issues that impede the convergence of the optimization, especially

when the nonlinearity of the system increases.

The major concern is the sensitivity of the optimization variables. Any change in

the parameters or the initial (or boundary) values propagates along the evaluation of

the trajectory. The consequence is that the constraints behave very nonlinearly with

respect to NLP variables, thereby making the optimization difficult to converge.

Secondly, the computational cost of calculating the gradient information of the

cost and constraints also causes the evaluation of the optimization very slow. Very

often, the cost function and constraints can only be computed numerically due to the

their complicated dependence on the optimization variables. Hence, the only way to

calculate the gradients is using numerical finite difference approximations. In order

to calculate the gradient information, it is necessary to integrate the dynamics for
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the perturbation in the direction of each optimization variables during each iteration.

If the second order Hessian is required for the optimizer, then the number of such

evaluation increases even more, so does the computation time. Further, the finite dif-

ference approximations only provide estimated values, which might be not necessarily

accurate enough. Despite many optimization solver does not require very accurate

estimation of the gradient information, an inaccurate information could results in a

slow convergence to feasible solutions.

Finally, it is often difficult to solve unstable systems when using the single-shooting

method. Considering that the restricted Poincaré map is a partial map, that is, not

any initial states can be guaranteed to have a complete solution. More specifically,

the robot might not be able to complete one step starting from any initial condition,

or the time-to-impact might be infinity. An exception would be the cases in which the

zero dynamics has a dimension of two, as illustrated the previous example. Hence the

initial condition can be solved explicitly from the parameters to make sure the zero

dynamics has a complete solution, the single shooting optimization does not suffer

from the partial map issue. On the other hand, if the dimension of the zero dynamics

is higher than two, there is no such explicit solution exists. As a result, the single

shooting method is not appropriate to solve such a system.

3.3 Multiple Shooting Optimization

It is noted in the trajectory optimization community, not all design variables are

equally complicated for an NLP solver to navigate, a fact which multiple shooting

methods exploit [18]. In a single shooting formulation, a change to a parameter

or boundary state value can have a very nonlinear effect on the final state, after

integrating nonlinear dynamics over non-trivial time scales. This type of nonlinearity

can cause an optimizer to fail to converge or be uncertain if it has found a solution.
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(a) Periodic orbit on hybrid zero dynamics
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Figure 3.3: The discretization of the periodic orbit on the hybrid zero dynamics
manifold when using multiple shooting optimization methods.

Multiple shooting is designed to ameliorate this manner of nonlinearity [24]; specif-

ically it splits each discretization segment of the input tape into its own small trajec-

tory optimization problem, each with its own set of control parameters and of initial

state conditions, but a shorter horizon for integration. With finer discretization, this

integration horizon approaches zero, rendering the relationship between control inputs

and the post-integration state increasingly linear. This property has made multiple

shooting methods fast and reliable for planning gaits for walking robots [41, 64, 82].

3.3.1 Problem Formulation

We start with uniformly dividing the continuous domain time interval into Nv shoot-

ing grids,

t0v = t0 < t1 < t2 · · · < tNv = tfv , Nv ≥ 1. (3.24)
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with an abstract example shown in Figure 3.3. For each shooting grid defined on

t ∈ [ti, ti+1] ⊂ R, we define the initial condition ξiv and control parameters αiv of

the zero dynamics as the augmented optimization variables. Then solve the zero

dynamics ODE on the shooting grid independently from an artificial initial values ξiv:

ξ̇v(t) = zv(ξv(t), α
i
v), t ∈ [ti, ti+1], (3.25)

ξv(ti) = ξiv, (3.26)

where i ∈ {0, 1, . . . , Nv−1}. By integrating (3.25) forward till the end of the time in-

terval, we obtain the trajectory pieces of the zero dynamics, denoted by ξv(ti+1; ξiv, α
i
v),

where the extra arguments after the semicolon represent the dependence on the initial

values and parameters. In order to ensure the continuity of states and the consistency

of parameters between two neighboring grids, we impose equality constraints on each

grid, given by

ξv(ti+1; ξiv, α
i
v)− ξi+1

v = 0, (3.27)

αiv − αi+1
v = 0, (3.28)

for all i ∈ {0, 1, . . . , Nv − 1}. In addition, the initial states of each shooting grid ξiv

must be on the zero dynamics manifold determined by αv, and the final states of the

domain ξnv must be on the corresponding switching surface. These constraints can be

formulated as

ξiv ∈ Zv, ξNv
v ∈ Zv ∩ SXsor−1(v). (3.29)

The periodic orbit requirement is imposed through the restricted reset map:

∆Ze (ξ
Nsor(e)

sor(e) )− ξ0
tar(e) = 0, (3.30)

for all e ∈ E. Let w is the combination of optimization variables defined on each

domain, i.e., w = {wv}v∈V , where

wv = [ξ0
v , α

0
v, . . . , ξ

Nv
v , αNv

v , Tv]
T (3.31)
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with Tv = tfv − t0v, the hybrid zero dynamics based multiple shooting optimization

problem for a multi-domain hybrid system is constructed as:

w∗ = argmin
w

∑
v∈V

(
EZv
(
ξvi(t

0
v), ξv(t

f
v), αv

)
+

n−1∑
i=0

(∫ ti+1
v

tiv

LZv (ξv(t), αv) dt

))
(3.32)

s.t ξv(ti+1; ξiv, α
i
v)− ξi+1

v = 0,

αiv − αi+1
v = 0,

ξiv ∈ Zv,

ξNv
v ∈ Zv ∩ SXsor−1(v),

∆Ze (ξ
Nsor(e)

sor(e) )− ξ0
tar(e) = 0,

Cmin
v ≤ CZv (ξiv, α

i
v) ≤ Cmax

v ,

Bmin
v ≤ BZv (ξ0

v , ξ
n
v , α

0
v) ≤ Bmax

v ,

for all v ∈ V and e ∈ E. Note that, the running cost is calculated as the sum of

integrals on all shooting grids, and the path and terminal constraints are evaluated at

each point of the discretization. Moreover, the constraints (3.29) and (3.30) together

guarantee that the system is hybrid invariant at least on these particular points ξNv
v

and the resulting reduced dimensional manifold has a periodic orbit.

3.3.2 Case Study: 7-Link Planar Biped with Compliant Legs

In this example, we apply the direct multiple shooting formulation of the hybrid

zero dynamics gait optimization approach to generate dynamic walking gaits for a

underactuated 7-link planar biped, DURUS-2D.

3.3.2.1 Robot Model

DURUS-2D is a prototype design of the humanoid robot DURUS, which will be

discussed in Section 5.1, built by SRI International. One key improvement present

in DURUS-2D which differs from typical 5-link planar point-feet biped is a linear

spring at the end of each leg, as shown in Figure 3.4a. The compliance provided by
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(a) Mechanical design.
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Figure 3.4: DURUS-2D biped designed and built by SRI International. Each leg of
the robot has an actuated hip and knee joint, a constrained ankle joint, and a passive
linear spring. The ankle joints are constrained to rotate in the reverse direction of the
knee joints via a mechanical structure that consists of two pulleys and a string. The
rotation angle of the ankle joint is half of the knee joint, and the calf and the thigh
are designed to have the same length. These mechanical structures are designed to
approximately align the passive linear springs along the line that connects the feet
and the hip point all the time, so that the walking of the robot emulates the spring
loaded inverted pendulum (SLIP) walking.

the linear springs is designed to absorb energy at impact and reduce the energy loss

so that more efficient locomotion can be achieved. The design of the compliant legs

is inspired by the Spring-Loaded Inverted Pendulum model (SLIP). The SLIP model

is widely used as a low-dimensional representation of bipedal locomotion to generate

efficient behaviors due to the presence of compliance [22, 32].

While the mechanical design of compliant elements provides better energy effi-

ciency, the increased underactuated degrees of freedom cause designing a HZD gait

for such a highly underactuated robot becomes very challenging problem. Especially

with the typical single shooting approach, the gait optimization problem encounters
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convergence issues due to the increased dimensions of the hybrid zero dynamics man-

ifold. Even with good initial guesses, we found that the single shooting optimization

often fails to converge to a feasible solution. In this example, we demonstrate that

the multiple shooting approach is capable of improving the reliability of the HZD gait

optimization problem.

Robot Configuration. The configuration

q = (px, pz, qsf , qsr, qsa, qsk, qsh, qnsh, qnsk, qnsa, qnsr) ∈ Q ⊂ R11 (3.33)

of the robot is shown in Figure 3.4b, where qsr and qnsr represent the deflections of

the springs, and px and pz represent the position of the stance foot. In particular,

we model the linear springs as prismatic joints with forces that equal to the actual

spring forces. Hence, the continuous dynamics of the robot can be obtained via

(2.17) augmented with the spring forces, which can be achieved by modifying the

vector H(q, q̇) in (2.17) as

H(q, q̇) = C(q, q̇)q̇ +G(q) +Bs(kq + bq̇), (3.34)

where where k is the spring stiffness and b is the damping coefficient, and Bs is the

distribution matrix for the spring forces. Because the springs cannot exert impulsive

forces at impact, the discrete dynamics in (2.27) still applies to DURUS-2D model.

Hybrid System Model. Due to the existence of the springs, the stance foot will not

leave the ground immediately after the non-stance foot hits the ground. Therefore,

the walking of DURUS-2D has two continuous domains: the double support domain

Dds, where both feet are on the ground, and the single support domain Dss, where the

non-stance leg swings in the air, as shown in Figure 3.5. In addition to the contact

constraints, we have to consider the kinematic constraints of the pulley system. Based

on the description of the mechanical design in Figure 5.34, these constraints can be

written as:

hsa(q) := qsa +
qsk
2
, hnsa(q) := qnsa +

qnsk
2
. (3.35)
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Dds

Sss→ds

Sds→ss

Dss

Figure 3.5: The directed cycle of the hybrid control system model of DURUS-2D.

Based on the contact conditions and kinematic constraints, the corresponding two-

domain hybrid control system model can be constructed as in Definition 2.3. The

holonomic constraints of each domain are given by

hds(q) = (px, pz, hsa(q), hnsa(q)) ∈ R4, (3.36)

hss(q) = (px, pz, hsa(q), hnsa(q), p
x
nsf (q), p

z
nsf (q)) ∈ R6, (3.37)

where pnsf (q) is the Cartesian position of the non-stance foot. Let λxsf , λ
z
sf , λ

x
nsf , and

λznsf be the ground constraint forces on the stance and non-stance foot respectively,

the domains of admissibility are given as

Dds := {(q, q̇, u) ∈ TQ× U |λzsf ≥ 0, λznsf ≥ 0, |λxsf | ≤ µλzsf , |λxnsf | ≤ µλznsf}, (3.38)

Dss := {(q, q̇, u) ∈ TQ× U |λzsf ≥ 0, |λxsf | ≤ µλzsf , p
z
nsf (q) ≥ 0}. (3.39)

The transition Dss → Dds occurs when the non-stance foot hits the ground, and

the transition Dds → Dss occurs when the normal force acting on the non-stance foot

becomes zero. Hence the guards are defined as

Sds→ss = {(q, q̇, u) ∈ Dds|λznsf (q, q̇, u) = 0}, (3.40)

Sss→ds = {(q, q̇, u) ∈ Dss|pznsf (q) = 0, ṗznsf (q, q̇) ≤ 0}. (3.41)

Because there is no impact occurs at the transition from the double-support to single-

support domain, therefore, ∆ds→ss = I. The reset map from the single-support to
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double-support domain comply the impact equation in (2.29). Note that there will

be a coordinate change after the foot hits the ground, which can be determined by

the relabeling matrix

R =



1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 1 −1 −1 −1 0

0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0



. (3.42)

Hence, the reset map, ∆ss→ds, is determined by (2.30).

3.3.2.2 Multiple-Shooting Virtual Constraint Optimization

In this section, we use the direct multiple shooting optimization in (3.32) to generate

optimal walking gaits for DURUS-2D.

Virtual Constraints. Considering that the robot has underactuated point feet,

we only define position-modulating outputs. Because the stance foot angle, qsf , is

monotonically decreasing within a step duration, we pick the phase variable θ(q) in

(2.35) as the stance foot angle, i.e., θ(q) := qsf . The choice of virtual constraints for

DURUS-2D is inspired by the work in [13]. Thus, we define the following outputs for

each domain:

ya2,ss(q) =

[
qsk qnsk qtor δmnsl

]T
, (3.43)
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ya2,ds(q) =

[
qsk qnsk qtor

]T
, (3.44)

where qtor = −qsf − qsa − qsk − qsh is the torso angle and δmnsl = −qsf − qsa −

qsk − qsh + qnsh + 1
2
qnsk is the non-stance slope. It can be noted that the non-stance

slope, δmnsl, is omitted during the double support domain due to the fact that both

legs are constrained on the ground so that the output δmnsl—which represents the

forward motion of swing leg—becomes redundant. With the definition of virtual

constraints and holonomic constraints of each domain, we can formulate the zero

dynamics equation based on the discussion in Appendix A.

Remark 3.1. To have a square system, i.e., the inputs and the outputs have the same

dimension, we assume that there are only three actuated joints, (qsk, qsh, qnsk), in the

system during the double-support domain of DURUS-2D walking by considering one

of the originally actuated joints as passive joint. We pick the non-stance hip joint

as the passive joint, since all outputs defined on the double-support domain are not

directly related to this joint.

Cost Function and Constraints. To seek an efficient walking gait, we define the

cost function as the mechanical cost of transport of the gait. To use the Bolza form

of the cost function, we define the running cost as

Lv(ξ
i
v, α

i
v) =

1

mgd
Wv(ξ

i
v, α

i
v), (3.45)

where m is the total mass of the robot, g is the acceleration due to gravity, d is

the distance traveled during one step, and Wv is the sum of the work done at each

shooting grid with

Wv(ξ
i
v, α

i
r) =

mv∑
j=1

∥∥uaj (ξv(t), αiv) · q̇aj (ξv(t), αiv)∥∥ , (3.46)

where mv is the number of actuated joints of the domain v ∈ V , and q̇aj and uaj are

the velocity and the actuator torque of the actuated joint j, computed from the zero
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Figure 3.6: Periodic limit cycles of a stable periodic walking gait of DURUR-2D in
simulation.

dynamics states, ξv(t), and virtual constraints parameters, αv. There is no terminal

cost defined in this case.

The multiple shooting virtual constraint gait optimization is then formulated as

in (3.32). Since the time duration of Dds is much shorter than that of Dss, we set

the shooting grids for the two domains to be 15 and 25, respectively. In particular,

following path constraints are considered:

• actuator torque limits,

• joint velocity limits,

• joint angle ranges,

• non-stance foot height clearance, and

• torso angle range.

Because the stability condition of the periodic orbit cannot be explicitly computed

for a high dimensional zero dynamics model. Thus, the stability of the resulting hybrid

zero dynamics is checked a posteriori by numerically solving for the fixed point of the

Poincaré map of the zero dynamics.
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Figure 3.7: Desired outputs of a stable periodic walking gait of DURUR-2D in
simulation.

3.3.2.3 Simulation and Experimental Results

A simulation of a stable, periodic walking gait for DURUS-R is performed in which

the robot starts from the fixed point on the guard and is controlled by the feedback

linearization controller defined in (2.39). The virtual constraints parameters are ob-

tained from the HZD based multiple shooting optimization and we set ε = 10 as the

control gain. The phase portraits of the robot joints in Figure 3.6 show the result-

ing stable periodic orbit of the underactuated degrees of freedom, i.e., the reduced

dimensional zero dynamics. The maximum magnitude of eigenvalues of the full order

system Poincaré map is 0.6461, which further proves the stability of the walking gait.

Figure 3.7 shows the tracking performance of the proposed controller.

The resulting walking gait is implemented experimentally on the hardware. The

robot is supported by a freely-rotating four-bar linkage boom that restricts the motion

of the robot to the sagittal plane while keeping the robot level with the ground. This

boom design ensures that the boom neither holds the robot upward nor adds weight to

the robot. The experiment was conducted by performing several trials under the same

conditions. For each trial, the robot walks approximately 300 steps with no sign of

failing before being stopped by the experimenter. Figure 3.8 shows the phase portraits
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Figure 3.8: Stable periodic orbits of walking gait of DURUR-2D. The dashed lines
represent the phase portraits joints from simulation, the solid lines represent the
phase portraits of actuated joints during one step in experiment, and the shaded
areas represent the history of the actuated joints phase portraits over approximately
300 steps.

of the robot joints from the experimental data. The limit cycles deviate slightly from

the corresponding limit cycles of the simulated gait, which are shown by dotted lines.

The tracking of the actuated joints from the experiment is shown in Figure 3.9. The

maximum tracking error appears on the stance knee joint. A possible reason for this

to happen could be the velocity changes of the robot at impact during the experiment

are greater than those in simulation, due to the mismatch of the model information

that used in the optimization, especially the spring constants. In addition, Figure 3.10

shows a stroboscopic comparison of the walking gait in simulation and experiment

during one step. The average cost of electrical transport for this gait is 0.99.
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Figure 3.9: Joint angles tracking performance of DURUS-2D.

Figure 3.10: The walking gait snapshot comparison of the simulation and experi-
mental results with DURUS-2D over one step.

3.3.2.4 Optimization Performance

Since the mechanical structure of DURUS-2D is inspired by the SLIP model, the

initial guess of the parameter set is determined from the stable walking gait of the
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SLIP model. A similar approach can be found in [68]. Even with these raw fitted data

as the initial guesses, the proposed optimization converges reliably. Despite DURUS-

2D has a higher dimension of zero dynamics manifolds, the gait optimization converges

to an optimal solution as fast as the same gait optimization of a simple 5-link planar

underactuated biped.

In summary, the hybrid zero dynamics based multiple shooting method converges

reliably and rapidly even with bad initial guesses. Moreover, this method outperforms

the single shooting method in the case of compliant DURUS-2D biped. In many cases,

the single shooting optimization fails to converge to a feasible solution due to the high

underactuated degrees of freedom of the robot. The end result is a stable, efficient

gait for the robot.

3.3.3 Issues

The multiple shooting method improves the robustness of the HZD optimization

problem, particularly of the robot that has compliant elements. By discretizing the

continuous time intervals to shorter shooting grids, it increasingly reduces the non-

linearity of constraints. Further, previous knowledge of state trajectory can utilized

in the initialization of the optimization variables, so that the negative effects of the

partial maps are reduced noticeably. As a result, the multiple shooting method is

more robust to unstable system than the single shooting method. Since it still uses

explicit integration for the system dynamics, the multiple shooting method is still

unable to completely overcome issues risen from unstable systems and partial maps.

Despite that the reliability of the optimization is enhanced via the multiple shoot-

ing approach, the performance of the convergence speed does not have significant

improvement over the single shooting method. This is mainly due to the numeri-

cal evaluation of the Jacobian and gradient information. As in the single shooting

method, it also uses the finite difference approximations to compute the gradients.
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Moreover, the number of optimization variables is increased significantly compared

the single shooting method, the computational effort for calculating the numerical Ja-

cobian increase even more. However, the Jacobian is a block sparse matrix due to the

discretization, which could be effectively utilized in the calculation of the Jacobian.

3.4 Summary

In this chapter, we begin with formulating the basic gait trajectory optimization

problem for the multi-domain hybrid systems. Two prevalent shooting methods are

introduced and illustrated by examples. Despite being simple and straightforward,

these two methods both have a few issues that prevent their applications on high

degrees of freedom and highly underactuated humanoids. These optimization ap-

proaches are often very slow to converge and extremely sensitive to initial guesses

seeded to the solver. With regard to the reliability and computational issues of the

direct shooting methods, in the next chapter we propose a novel HZD optimization

framework unified with the direct collocation methods—an effective approach has

been successfully applied in many trajectory optimization problems [35, 48, 53, 138].
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CHAPTER IV

DIRECT COLLOCATION METHODS

As we discussed in the previous chapter, a straightforward and traditional approach to

transcribing the hybrid zero dynamics gait design optimization is via direct shooting

methods. However, it is extremely difficult to extend this approach to general cases,

especially to higher dimensional humanoid robots or highly underactuated robots

with compliant joints. The forward integration of the zero dynamics is required if the

closed-form solution cannot be obtained analytically. As robots are built with more

actuated linkages or have higher degrees of underactuation, such gait optimization

problems become increasingly intractable for direct shooting methods. Despite that it

improves the reliability of the hybrid zero dynamics gait optimization via discretiza-

tion, the multiple shooting approach also runs into scalability issues with increasing

degrees of freedom, e.g. when applying it to humanoids [64].

In this chapter, we present the optimization formulation of multi-domain bipedal

locomotion using the direct collocation methods. Motivated by the desire to provide

a generalized gait optimization tool for HZD type bipedal locomotion, the discussion

in this chapter is based on the general multi-domain hybrid system model and hybrid

zero dynamics framework presented in Chapter 2.

4.1 Mathematical Background

We start with review the mathematical background of the collocation methods. His-

torically, collocation methods are widely used in solving numerical solution of differen-

tial algebraic equations (DAEs) or ordinary differential equations (ODEs). Consider
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an ODE given in

ẏ(t) = f(y(t)). (4.1)

Suppose we consider an approximation of the solution of the (4.1) by a polynomial

of degree K over a time interval [ti, ti+1]:

ỹ(i)(t) =
K∑
k=0

a
(i)
k (t− ti)k, t ∈ [ti, ti+1] (4.2)

with coefficients a(i) = (a
(i)
0 , a

(i)
1 , · · · , a

(i)
K ). To ensure that ỹ(i)(t) is indeed an accurate

approximation of the actual solution, these coefficients must be chosen such that the

approximation matches the solution at the beginning of the interval, that is,

ỹ(i)(ti) = y(ti), (4.3)

and the derivatives match at the points τj = ti + (ti+1 − ti)ρj with

0 ≤ ρ1 ≤ ρ2 ≤ · · · ≤ ρK ≤ 1 (4.4)

for 1 ≤ j ≤ K:

˙̃y(i)(τj) = f(ỹ(i)(τj)). (4.5)

The conditions (4.5) are called collocation conditions, and the intermediate points τj

are called collocation points. If the coefficients a(i) satisfy the initial value in (4.3)

and collocation conditions in (4.5), then the polynomial ỹ(i)(t) given in (4.2) yields

is an approximated solution of the ODE over the time interval [ti, ti+1]. There are

many different collocation methods based on the form of polynomials and colloca-

tion conditions being used. The most commonly used collocation methods for the

optimal control problem are the piece-wise continuous standard collocation method

and the orthogonal collocation method. Here, we briefly overview the mathematical

formulation of these two collocation methods.
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4.1.1 Standard Collocation

As opposed to solving the state sequentially as in a time-marching method, the col-

location methods solve the differential equations simultaneously and implicitly due

to the fact that the solution of states at each collocation point are determined at

the same time. The standard collocation method usually uses implicit Runge-Kutta

methods, such as the Trapezoidal method and the Hermite-Simpson method, be-

cause implicit Runge-Kutta methods have better stability properties than explicit

methods. The Trapezoidal and Hermite-Simpson methods are also referred as the

Lobatto IIIA method of order 2 and the Lobatto IIIA method of order 4 [133]. For a

Lobatto method, both endpoints of the time interval are also the collocation points,

i.e. τ1 = ti and τK = ti+1. For instance, the trapezoidal approach uses a quadratic in-

terpolating polynomial, in which the three coefficients are determined by the solution

matches at the beginning of the interval and the derivative matches at the begin-

ning and the end of the interval. On the other hand, the Hermite-Simpson scheme

uses cubic interpolating polynomial with four coefficients determined by the solution

matches at the beginning of the interval and the derivative matches at the beginning,

midpoint, and the end of the interval.

The process starts with dividing the integration duration [t0, tf ] into N intervals

t0 = t0 ≤ t1 ≤ · · · ≤ tN = tf , (4.6)

where the points are referred to as nodes or grid points. Suppose that y(i) = y(ti)

be the values of states at time ti that to be determined, we first approximate the

solution over each mesh with a polynomial function with coefficients determined via

the collocation constraints, and then define a defect constraint at each grid

ζi := y(i+1) − ỹ(i)(ti+1), (4.7)

so that the approximated solution is piece-wise continuous between two meshes.

Hence the goal becomes determining (y(0), y(1), · · · , y(N)) at all nodes in order to
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solve Z = (ζ0, ζ1, · · · , ζN−1) being zero. For example, the Hermite-Simpson colloca-

tion scheme uses a cubic Hermite interpolation polynomial to approximate the so-

lution and then integrates the differential equations using the Simpson’s quadrature

rule. In particular, the defect constraints are defined as

ζi = y(i+1) −
(
y(i) +

∆ti
6

(f(y(i)) + 4f(ȳi+1) + f(y(i+1)))

)
(4.8)

where the approximated value of the states at the midpoint ȳi+1 is determined by the

cubic interpolation polynomial:

ȳi+1 =
1

2
(y(i) + y(i+1)) +

∆ti
8

(f(y(i))− f(y(i+1))). (4.9)

Solving the defect constraints being zero yields a piecewise-cubic approximation of the

system solution. Let y(t) be the exact solution and ỹ(t) be a piece-wise cubic poly-

nomial approximation over the interval t ∈ [t0, tf ] that satisfies the defect constraints

in (4.8), then the approximation error is estimated by the following lemma.

Lemma 4.1. Suppose that y(t) ∈ C4[t0, tf ] and has bounded derivatives, then

‖y(t)− ỹ(t)‖ ≤ 1

384
max
t0∈[0,tf ]

|y(4)(t)|h4 ≤ Ch4, (4.10)

for some constant C that is independent of N , with h := maxi ∆ti.

Proof. This is a standard result of the Hermite-Simpson collocation; for more detail

see [83, 39].

This shows that the Hermite-Simpson collocation method has O(h4) accuracy

within a fixed time interval [t0, tf ]. More importantly, the approximated solution

converges to the true solution in a rate of at least 4.

4.1.2 Orthogonal Collocation

Different from the standard collocation, in an orthogonal collocation method the collo-

cation points are chosen at roots of a family of orthogonal polynomials, such as Cheby-

shev polynomials or Legendre polynomials [126]. The three most commonly used sets
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Figure 4.1: Distributions of LG, LGR, and LGL points (N = 7).

of collocation points are Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR), and

Legendre-Gauss-Lobatto (LGL) points. In particular, the LG points are the roots

of Kth-order Legendre polynomials PK(τ) that lies on the interval τ ∈ (−1, 1), the

LGR points are the roots of PK−1(τ) + PK(τ), and the LGL points are the roots of

(τ 2−1)ṖK−1(τ), respectively [47]. The LG points contain neither −1 nor 1, the LGR

points contain only one end point, and the LGL points contain both end points −1

and 1, as shown in Figure 4.1.

In the orthogonal collocation, the states are typically approximated on the time

interval τ ∈ [−1, 1] as

y(τ) ≈ ỹ(τ) =
K∑
k=0

ckLk(τ) (4.11)

where Lk(τ) are Lagrange basic polynomials defined as

Lk(τ) :=
∏

0≤j≤K
j 6=k

τ − τj
τk − τj

, (4.12)

which has a isolation property

Lk(τj) =

 1, k = j

0, k 6= j
. (4.13)

The isolation property yields the fact that

ỹ(τk) = ck. (4.14)
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The collocation constraints are defined in a manner such that

ζj := f(ỹ(τj))− ˙̃y(τj) = f(ỹ(τj))−
K∑
k=0

ỹ(τj)L̇k(τj) = 0, (4.15)

for all j ∈ [0, K], and where the derivatives of Lk(τ) at the collocation nodes are only

depend on j and k. If there exist a series of approximated states ỹ(τj) at orthogonal

collocation points that satisfies the collocation constraints, the resulting polynomial

in (4.11) is an accurate approximation of the system solution. For the accuracy of

the orthogonal approximation, we refer the readers to [27, 54].

Remark 4.1. Because the collocation methods use implicit integration schemes to

simultaneously simulate the dynamical equations, they are applicable to solve the

differential algebraic equations, where the dynamics of the system is given implicitly

in terms of states. Typically, the differential algebraic equations are more general than

the ordinary differential equations, and often are represented by simpler expressions.

Hence this adaptation of the direct collocation methods to a DAE system can be

utilized to simplify the analytic expression of system dynamics. This is very useful

when applying the collocation methods on high dimensional systems.

4.2 Constrained Dynamics

The direct collocation based optimization is based on the fundamental idea of col-

location methods, converts the original trajectory optimization problem, e.g., the

problem described in Section 3.1, into a nonlinear programming problem by replac-

ing the forward integration of the dynamics by a set of defect constraints. The first

step in the construction of such a NLP is to determine how to represent the dynamic

equations of the system. Recall that in the direct shooting optimization, we use the

restricted zero dynamics equations. While it indeed helps to reduce the dimension

of the system, the zero dynamics equations bears a scalability issue; the closed form

expression of zero dynamics is difficult to obtain analytically for the reason that the
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full order dynamics needs to be inverted. This is why the direct shooting methods

perform extremely poor for high-dimensional humanoid robots.

The states of the full order system can be re-constructed from the partial zero

dynamics states using the inverse mapping of Φv(x) (see Appendix A for more de-

tail). Though this approach yields low dimensional representation of the full order

system, the closed form solution of the partial zero dynamics equations is not trivial

to determine analytically. In addition, the partial zero dynamics derivation requires

to invert the inertia matrix Dv(q) and the decoupling matrix Av(q, q̇), resulting in

very complicated expressions that are usually extremely expensive to compute sym-

bolically. Not to mention that the inverse map Φ−1
v (ξ) is often difficult to solve for

high dimensional humanoid. Further, the initial condition of the zero dynamics must

satisfy the admissible conditions of the domain manifold of the full order system,

hence additional conditions must be taken into consideration when determining the

initial condition of the zero dynamics states.

On the other hand, the direct collocation method provides an alternative option.

Different from the shooting methods which explicitly solves the system ODE via some

time-marching forward integration techniques, the direct collocation methods allows

to define system dynamics in more general implicit differential algebraic equations

(DAE) forms, e.g., F (y(t), ẏ(t)) = 0. In this case, the f(y(t)) terms in the defect

constraints (4.8) are replaced by the derivatives of the states ẏ(t), which in turn must

satisfy the system dynamics equations F (y(t), ẏ(t)) = 0.

Recall that the zero dynamics is based on the full order dynamics (2.17) subject

to the holonomic constraints and virtual constraints being zero. In other words, the

restricted dynamics can be described as differential algebraic equations:
D(q)q̈ +H(q, q̇)−Bvu− JTv (q)λv = 0

hv(q) = 0

y2,v(q) = 0

(4.16)
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This problem has a differentiation index of 3 due to the fact that the acceleration

terms appear in the second derivatives of the constraints [17, 25]. As as we discussed

in the Chapter 2, we could differentiate the constraints twice to reduce the index of

(4.16), yields an index-1 implicit DAE problem:

Fv(q, q̇, q̈, u, λv, αv) :=


D(q)q̈ +H(q, q̇)−Bvu− JTv (q)λv = 0

Jv(q)q̈ + J̇v(q, q̇)q̇ = 0

η̇v(q, q̇, q̈, αv)− F cl
v η(q, q̇, αv) = 0

(4.17a)

subject to the initial value conditions

hv(q(t0)) = h̄v, Jv(q(t0))q̇(t0) = 0, (4.17b)

y2,v(q(t0), αv) = 0, ẏ2,v(q(t0), q̇(t0), αv)= 0, (4.17c)

where ηv = (y1,v, y2,v, ẏ2,v) and h̄v is a vector of constants determined by the contact

conditions. Note that we introduce the stable linear output dynamics that described

in (2.42) in the virtual constraints differentiation. This system can be considered as

an implicit form that is equivalent to the zero dynamics equation by construction. It

turns out that fully utilizing this fact in the direct collocation optimization is the key

to the unification the hybrid zero dynamics and direct collocation methods.

Lemma 4.2. Suppose that φv(t) ⊂ X is a solution of the initial value problem in

(4.17), then φv(t) ⊂ PZv. That is, φv(t) is also a solution on the partial hybrid zero

dynamics.

Proof. The result follows immediately from the construction of the constrained dy-

namics in (4.17). By assumption, φv(t0) = [q(t0), q̇(t0)]T satisfy the initial conditions

in (4.17b). Further ḧv(q(t), q̇(t), q̈(t)) = 0 from the second equation in (4.17a) guar-

antees that hv(q) ≡ h̄v along any solution of (4.17a). Hence, φv(t) ⊂ Xv where Xv is

a canonical projection of Dv onto the state space X . Similarly, the third equation in

(4.17a) stabilizes the virtual constraints ηv exponentially to the origin. Considering
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that y2,v(t0) = 0 and ẏ2,v(0) = 0, therefore, we have

y2,v(q(t), αv) = 0,

ẏ2,v(q(t), q̇(t), αv) = 0

for all t0 ≤ t ≤ tf until the solution φv(t) reaches a guard, i.e., φv(tf ) ∈ Xv ∩Ssor−1(v).

By the definition of the partial hybrid zero dynamics in (2.53), we conclude that

φv(t) ⊂ PZv.

Remark 4.2. Due to the fact we do not need to invert the inertia matrix D(q)

anymore to explicitly solve the zero dynamics equations, the implicit DAE system

given in (4.17a) yields much simpler expressions of the constrained system dynamics

from the computational point of view.

4.3 Local Direct Collocation Optimization

The local direct collocation optimization utilizes the fundamental idea of the standard

collocation methods of solving the differential equations. By replacing the forward

integration of the dynamical systems with the series of defect constraints, it converts

the optimal control problem into a nonlinear programming problem (NLP). Hence

this method is also referred to as the direct transcription formulation [19]. In this

section, we particularly use the Hermite-Simpson collocation method to construct

the direct collocation formulation of the hybrid zero dynamics based gait trajectory

optimization. For ease of communication, we refer it to the direct HZD optimization

in the remainder of the thesis.

4.3.1 Collocation Constraints

In the Hermite-Simpson collocation scheme, the states at the midpoint are typically

computed by the boundary states of the two collocation nodes as in (4.9). In [19],

Betts et al. introduced a modified version of Hermite-Simpson scheme, in which

the states at the midpoints are also included in the optimization variables which

68



satisfy the midpoint states constraints as described in (4.9). This modified scheme is

termed as Hermite-Simpson separated (HSS) scheme. Based on the HSS scheme, we

propose an improved formulation via introducing defect variables. Defect variables are

supplementary decision variables that could be computed in closed-form originally.

For instance, the states at the midpoints are defect variables in the HSS formulation.

To formulate the collocation constraints for implicit DAEs, we also introduce the

first order derivatives of state variables as the defect decision variables of the NLP.

Consequently, the system dynamics in the form of implicit DAEs is then enforced for

state variables and their derivatives as a set of equality constraints.

Assuming TI,v > 0 is the time at which the system reaches the guard associ-

ated with a given domain, Dv, the time discretization of the duration of continuous

dynamics is given as,

0 = t0 < t1 < t2 < · · · < tNv = TI,v, (4.18)

with Nv = 2(N c
v − 1), where the even points are called cardinal nodes and the odd

points are called interior nodes (see Figure 4.2). The total number of cardinal nodes

specified per domain, N c
v , has to be greater or equal to 2. The distribution of cardi-

nal nodes within a domain could be arbitrary, however, an interior point has to be

placed at the center of two adjacent cardinal nodes. Our formulation allows the car-

dinal nodes to be placed at the uniformly distributed points or the Chebyshev-Gauss-

Lobatto (CGL) points. While the former provides simplicity in implementation, the

latter yields better accuracy due to the fact that more nodes are placed close to two

terminals.

Given the discretization, the HSS scheme uses Hermite interpolation polynomials

to approximate the solution within two neighboring cardinal nodes using the esti-

mated states and their derivatives. As illustrated in Figure 4.2, there are two defect

constraints defined at each collocation mesh: 1) the difference between the estimated

states from the optimizer and the interpolated states at the interior node from the
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Figure 4.2: Illustration of defect constraints and node distribution.

approximated polynomial (δi in Figure 4.2), and 2) the difference between the deriva-

tives of states from the optimizer and the first-order derivatives of the approximated

polynomial at the interior point (ζi in Figure 4.2). These constraints can be stated

as1,

δ(i) := x(i) − x̃(i) = 0, (4.19)

ζ(i) := ẋ(i) − ˙̃x(i) = 0, (4.20)

where

˙̃x(i) =
3

2∆t(i)
(x(i+1) − x(i−1))− 1

4
(ẋ(i−1) + ẋ(i+1)), (4.21)

x̃(i) =
1

2
(x(i+1) + x(i−1)) +

∆t(i)

8
(ẋ(i−1) − ẋ(i+1)), (4.22)

and x(i) = (q(i), q̇(i)) and ẋ(i) = (q̇(i), q̈(i)), respectively. In particular, ∆t(i) = ti+1 −

ti−1, for i ∈ {1, 3, 5, . . . , Nv − 1} and for all v ∈ V . For example,

∆t(i) =
TI,v

N c
v − 1

, (4.23)

if cardinal nodes are uniformly distributed, and

∆t(i) =
TI,v
2

(
cos(

(i− 1)π

Nv

)− cos(
(i+ 1)π

Nv

)

)
, (4.24)

1An animated version of the illustration of direct collocation formulations can be found in https:

//youtu.be/aL-B2eIoCK4.
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if cardinal nodes are placed at CGL points. These two cases are just two practical

examples of the node distribution schemes. In Section 6.1, we will evaluate the dis-

cretization errors in these two different node distribution cases. It is important to

note that the decision variables x(i) and ẋ(i) at each node must satisfy the system

dynamics given in (4.17a). The detail of the dynamics constraints is presented in the

next section together with other HZD specific constraints.

4.3.2 Problem Formulation

With the formulation of collocation constraints, now we can formally state the main

result of the thesis—the direct HZD optimization problem. The ultimate goal of the

optimization is to find a set of virtual constraints parameters α that result in a hybrid

invariant periodic orbit O for the multi-domain hybrid system in (2.43), yielding a

periodic walking gait of the robot.

We start with defining the optimization variables of the problem. Consider the

time discretization in (4.18) for each domain Dv with Nv + 1 nodes, let

qv = (q(0), q(1), · · · , q(Nv)),

q̇v = (q̇(0), q̇(1), · · · , q̇(Nv)),

q̈v = (q̈(0), q̈(1), · · · , q̈(Nv)),

uv = (u(0), u(1), · · · , u(Nv)),

λv = (λ(0)
v , λ(1)

v , · · · , λ(Nv)
v ),

be collections of optimization variables defined on all nodes. The defect constraints

in (4.19) and (4.20) are defined on all interior nodes. Thus we define that

ζv(qv, q̇v, q̈v) :=



ζ(1)

ζ(3)

...

ζ(Nv−1)


= 0, δv(qv, q̇v, q̈v) :=



δ(1)

δ(3)

...

δ(Nv−1)


= 0,
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for each v ∈ V . In addition, the state variables must satisfy the dynamic equations

in (4.17a) at all nodes. Similarly, we have

F v(qv, q̇v, q̈v,uv,λv, αv) :=



Fv(q
(0), q̇(0), q̈(0), u(0), λ

(0)
v , αv)

Fv(q
(1), q̇(1), q̈(1), u(1), λ

(1)
v , αv)

...

Fv(q
(Nv), q̇(Nv), q̈(Nv), u(Nv), λ

(Nv)
v , αv)


= 0.

In the context of the hybrid system model, any solution should satisfy the domain

of admissibility conditions. Thus from (2.24), we define that

Av(qv, q̇v,λv) :=



Av(q
(0), q̇(0), λ

(0)
v )

Av(q
(1), q̇(1), λ

(1)
v )

...

Av(q
(Nv), q̇(Nv), λ

(Nv)
v )


≥ 0.

Note that we state any constraints that involves the contact wrenches explicitly in

terms of λ(i), considering that they are already parts of the optimization variables and

there is no need to compute them from the states and control inputs. In addition,

it must be guaranteed that the system reaches the corresponding guard surface of a

domain v ∈ V at TI,v. This is equivalent to imposing the guard condition in (2.26)

at the last node of each domain, i.e.,

He(q
(Nv), q̇(Nv), λ(Nv)

v ) = 0,

Ḣe(q
(Nv), q̇(Nv), λ(Nv)

v ) < 0,

for all v ∈ V with e being the subsequent edge of vertex v, i.e., e = sor−1(v). We

also replace uv with λv because the guard condition is determined by the unilateral

constraints which are defined as functions of either robot configuration or contact

wrenches.

While the continuous dynamics is determined by collocation, the discrete dynam-

ics given in (2.30) can be directly imposed as an equality constraint that connect
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the solutions of two neighboring domains. Because this constraint involves variables

defined on two different domains, we denote that 2(0v+) be a variable defined on the

first node of the next domain of Dv. Let Z = {TI,v, qv, q̇v, q̈v,uv,λv, αv, h̄v}v∈V be

the set of NLP variables, the direct HZD optimization problem can be stated as [66]:

Z ∗ = argmin
Z

vnp∑
v∈v1

Jv(TI,v, qv, q̇v, q̈v,uv,λv, αv, h̄v) (4.25a)

s.t ζv(qv, q̇v, q̈v) = 0, (4.25b)

δv(qv, q̇v, q̈v) = 0, (4.25c)

F v(qv, q̇v, q̈v,uv,λv, αv) = 0, (4.25d)

Av(qv, q̇v,λv) ≥ 0 (4.25e)

He(q
(Nv), q̇(Nv), λ(Nv)

v ) = 0, (4.25f)

Ḣe(q
(Nv), q̇(Nv), λ(Nv)

v ) < 0, (4.25g)

∆e(q
(Nv), q̇(Nv))− (q(0v+), q̇(Nv)) = 0, (4.25h)

hv(q
(0))− h̄v = 0, (4.25i)

y2,v(q
(0), αv) = 0, (4.25j)

ẏ2,v(q
(0), q̇(0), αv) = 0, (4.25k)

umin ≤ u(i) ≤ umax, (4.25l)

qmin ≤ q(i) ≤ qmax, (4.25m)

q̇min ≤ q̇(i) ≤ q̇max, (4.25n)

for all v ∈ V , where Jv is the cost function. In the direct collocation optimization,

any integral in the cost function is computed using quadrature rules, which we will

introduce in Section 4.3.3.

Remark 4.3. Note that the control input u and the contact wrenches λv are defined

as decision variables at each node explicitly. We will explain the reasoning of this
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choice in Section 4.5. More importantly, it is straightforward to verify from (4.17a)

that the constraint wrenches, λ
(i)
v , are determined (implicitly) via the acceleration level

holonomic constraints and the control inputs, u(i), are determined (also implicitly)

from the linear output dynamics. Hence by definition, the control inputs determined

from the optimization are equal to the feedback controllers defined in (2.39). That is,

the feedback control law is encoded in the trajectory optimization problem through

the virtual constraints, which is different from other classic trajectory optimization

formulations, in which the control inputs are often assumed to be open-loop, discrete

or piece-wise continuous values determined by the optimizer. This is because we are

more interested in determining a set of parameters α = {αv}v∈V to represent the

optimal gait behavior for bipedal robot, rather than open-loop control inputs that

results in optimal trajectories. More importantly, for a set of optimal parameters

from the nonlinear optimization, we can always construct a family of feedback control

laws via rapidly exponentially stabilizing control Lyapunov functions (RES-CLF) to

stabilize the output dynamics.

Remark 4.4. The equality constraint of the reset map can be simplified with the in-

troduction of defect variable δFv. More specifically, the joint configuration continuity

constraints can be expressed as

q(0v+) −R(q(Nv)) = 0, (4.26)

for all v ∈ V . The impact velocity equation, however, involves inversions of com-

plicated matrix expression as seen in (2.29). Therefore, we introduce the impact

wrenches δFv in the NLP decision variables, so that the impact velocity constraints

can be imposed in its original, yet simpler, form:

Jv(q
(0))q̇(0) = 0, (4.27)

D(q(0v+))(q̇(0v+) −R(q̇(Nv)))− JTv+(q(0v+))δFv = 0, (4.28)
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for all v ∈ V . Note that (4.27) is also one of the initial conditions (velocities of

holonomic contact constraints) in (4.17). In a word, this initial condition is already

enforced via the reset map.

Any feasible solution of the NLP in (4.25) yields a periodic orbit of the hybrid

system H α, and more importantly, the orbit is hybrid invariant, which we state as a

theorem below.

Assumption 4.1. In the local direct collocation optimization, the trajectories of

state variables are approximated by piece-wise cubic polynomials. From Lemma 4.1,

we know that the approximated trajectories converges to the true solution when

Nv → ∞. While we could not pick infinite number of nodes in practice, we assume

that there exists sufficiently large number of nodes such that the error between the

approximated and true solutions becomes negligible. More specifically, suppose that

φv(t) and φ̃v(t) are the true and approximated solution of the hybrid system during

a given domain Dv, respectively. Then for a sufficiently small tolerance ε > 0, there

always exists an positive integer N̄v > 0 such that for all Nv ≥ N̄v, the following

inequality holds true:

‖φv(t)− φ̃v(t)‖ ≤ ε. (4.29)

Thus we assume that the solution of the NLP in (4.25) is the actual solution of

the system. Note that the φ̃v(t) with t ∈ [0, TI,v) is a piece-wise cubic polynomial

determined by the time distribution (t0, t1, · · · , tNv) and the discrete state variables

at each time point, {qv, q̇v, q̈v}, for a given domain v ∈ V . Let TI =
∑vnp

v=v1
TI,v, then

the (approximated) solution, φ̃(t), of the multi-domain hybrid system is given by

φ̃(t) =



φ̃v1(t), 0 ≤ t < TI,v1

φ̃v2(t− TI,v1), TI,v1 ≤ t < TI,v1 + TI,v2
...

...

φ̃vnp
(t− TI,vnp−1), TI,v1 + · · ·+ TI,vnp−1 ≤ t < TI,v1 + · · ·TI,vnp

(4.30)
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with t ∈ [0, TI).

Theorem 4.1. Suppose that Z ∗ is a feasible solution of the constrained nonlinear

programming problem in (4.25), then the solution φ̃∗(t) given in (4.30) is periodic.

Moreover, φ̃∗(t) is hybrid invariant under the virtual constraints based feedback control

law in (2.39) with the parameters α∗, i.e., φ̃∗(t) ⊂ PZα∗.

Proof. Let φ̃∗v(t) be a piece-wise continuous polynomial determined by the solution

{T ∗I,v, q∗v, q̇
∗
v, q̈

∗
v} from the optimization (4.25) for each domainDv. Then from (4.25b)–

(4.25d), φ̃∗v(t) is a approximated solution of the continuous constrained dynamics

(4.17a), and by Assumption 4.1, φ̃∗v(t) ⊂ Xv is also considered as the exact solution

of (4.17a). Further from (4.25f) and (4.25g), we can conclude that

(q(Nv), q̇(Nv)) ∈ Se ∩ Xv, (4.31)

and from (4.25h), the solutions of two adjacent continuous domains are connected via

the continuous reset map ∆e, i.e.,

φ̃∗v+(0) = ∆e(q
(Nv), q̇(Nv)). (4.32)

So that φ̃∗(t) in (4.30) is a valid solution of the hybrid system model. Both Fv and ∆e

are C1 continuous by definition, therefore, there exists an unique solution for some

given initial condition x(0). Moreover, with the constraint of reset maps, we have

φ̃∗(TI) = ∆e(q
(Nvnp

), q̇(Nvnp
)) = (q(0v1 ), q̇(0v1 )) = φ̃∗(0). (4.33)

Hence, φ̃∗(t) is periodic due to the uniqueness of the solution. In particular TI is the

period of the periodic solution.

The hybrid invariant of the periodic solution can be verified by constraints (4.25i)–

(4.25k). In other words, φ̃∗(t) ⊂ PZv by Lemma 4.2, and (q(Nv), q̇(Nv)) ∈ Se ∩ PZv.

Moreover from (4.25h), we know that

∆e(q
(Nv), q̇(Nv)) = φ̃∗v+(0).
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By Lemma 4.2, φ̃v+(0) ∈ PZv+. therefore

∆e(q
(Nv), q̇(Nv)) ∈ PZv+, (4.34)

for all v ∈ V . This shows that the solution is impact invariant over all discrete

dynamics. We also know that the solution is forward invariant under the feedback

controller u∗v. As a result φ̃∗(t) ⊂ PZα∗ , where the partial hybrid zero dynamics

manifold, PZα∗ := PZv1 ∪ PZv2 · · · ∪ PZvnp
, depends on the parameters α∗.

Note that here we only prove that the periodic solution is hybrid invariant and

lies on the restricted partial hybrid zero dynamics manifold. In other words, only one

point on the surface Se ∩ PZv is impact invariant. This result cannot extend to the

full switching surface in general cases, especially when the partial zero dynamics has

dimension of more than two. However, in some special cases we can conclude that

the optimal parameters α∗ of the optimization in (4.25) guarantee that the hybrid

system has partial hybrid zero dynamics (PHZD). In fact, this is a quite typical case

that could encounter in practice. If the robot is fully actuated or there is only one

degree of underactuation on all continuous domains, the corresponding partial zero

dynamics has dimension of at most two. This can be verified by the construction of

zero dynamics equations in Appendix A.

Corollary 4.1. If all continuous domains Dv with v ∈ V in the hybrid system H α

have partial zero dynamics PZv of dimension two, the parameters α∗ solving the

constrained optimization (4.25) yields partial hybrid zero dynamics (PHZD).

Proof. From Theorem 4.1, a feasible solution of (4.25) results in a periodic orbit that

is hybrid invariant. In [7, 135], it shows that if the dimension of the partial zero

dynamics (or zero dynamics for underactuated domain) has dimension of two, then

Se∩PZv is a singleton. We have already shown that the singleton is hybrid invariant

in Theorem 4.1, therefore, we have

Se ∩ PZv ∈ PZv+, (4.35)
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for all v ∈ V . This result completes the proof.

4.3.3 Cost Function

Normally the cost function of a trajectory optimization problem consists of the ter-

minal cost and the running cost. While it is trivial to compute the terminal cost, the

computation of the running cost requires further discussions. One possible approach

is introducing an additional state variables and the differential equation

ẋn+1(t) = Lv(x(t), u(t)) (4.36)

with an initial condition xn+1(t0v) = 0. Then the original running cost can be replaced

with the Mayer form representation:∫ tfv

t0v

Lv (x(t), u(t)) dt = xn+1(tfv). (4.37)

However it might be computationally expensive as it increase the dimension of the

states so as the size of the problem [19].

A more computationally efficient approach would be using the quadrature approx-

imation rules to compute function integrals. In numerical integration, a quadrature

rule is an approximation of a function integral on a finite time interval, usually formu-

lated as a weighted sum of function values at discrete points within the interval [126].

For example, the Simpson’s quadrature rule between two cardinal nodes t ∈ [ti−1, ti+1]

with ti is an interior node is given by∫ ti+1

ti−1

Lv(x(t), u(t))dt ≈ ∆t(i)

6

(
Lv(x

(i−1), u(i−1)) + 4Lv(x
(i), u(i)) + Lv(x

(i+1), u(i+1))
)
.

(4.38)

For a sufficiently smooth cost function Lv(x, u), the local estimation error in the

Simpson’s quadrature approximation is given by

εi =
1

90
(
∆t(i)

2
)5L(4)

v (x(ξ), u(ξ)) (4.39)
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for some ξ ∈ [ti−1, ti+1] [126]. The integral of the cost function over the entire domain

is computed via adding the quadrature approximation of each collocation mesh:∫ tfv

t0v

Lv (x(t), u(t)) dt

=

Nc
v−1∑
i=1

∫ t2i

t2i−2

Lv(x(t), u(t))dt

=

Nc
v−1∑
i=1

∆t(2i−1)

6

(
Lv(x

(2i−2), u(2i−2)) + 4Lv(x
(2i−1), u(2i−1)) + Lv(x

(2i), u(2i))
)

=
Nv∑
i=0

wiLv(x
(i), u(i)), (4.40)

where wi is a weight given by

wi =



1
6
∆t(i+1), i = 0,

2
3
∆t(i), if i is an interior node,

1
3
(∆t(i−1) + ∆t(i+1)), if i is a cardinal node but i 6= 0 and i 6= Nv,

1
6
∆t(i−1), i = Nv,

.

Then the global estimation error in Simpson’s quadrature approximation is

ε ≤ TI,v
180

h4L(4)
v (x(ξ), u(ξ)) (4.41)

for some ξ ∈ [t0v, t
f
v ], where h = maxi∈[1,Nc

v ] ∆
(2i−1)
v . That is, the Simpson’s rule has an

order of 4 and the error proportional to h4.

With the quadrature approximation, the cost function can be computed as

J =
∑
v∈V

(
Ev

(
x(0), u(0), x(Nv), u(Nv))

)
+

Nv∑
i=0

wiLv(x
(i), u(i))

)
. (4.42)

Since the Simpson quadrature approximation rule is the same method that we use in

the Hermite-Simpson collocation, this computation is equivalent to the Mayer form

defined in (4.37).

4.4 Pseudospectral Optimization

As a subset of direct collocation methods, the pseudospectral optimization approach

employs the idea of orthogonal collocation techniques. Instead of using piecewise

79



continuous polynomials, this approach uses a global orthogonal polynomial to ap-

proximate the solution of the system, and consequently, collocation constraints are

enforced at particularly chosen points. Therefore, the pseudospectral optimization

is also referred to as global orthogonal collocation method [108]. In this thesis, we

particularly use LGL points as collocation points, however, the same formulation can

be extended to other cases.

4.4.1 Orthogonal Collocation Constraints

As discussed in Section 4.1.2, in the Legendre pseudospectral method, the basic idea

is to approximate the solution of a given continuous domain, Dv, by Lagrange in-

terpolating polynomials which interpolate the solutions at Legendre-Gauss-Lobatto

(LGL) nodes (see Figure 4.1). Suppose that

−1 = τ0 < τ1 < τ2 < · · · < τNv = 1, (4.43)

are the LGL points where Nv + 1 is the number of points chosen for the domain

v ∈ V . These LGL points are located at the zeros of (τ 2 − 1)ṖNv(τ) distributed over

the interval τ ∈ [−1, 1], where ṖNv(τ) is the derivative of the Nv-th order Legendre

polynomial PNv(τ) [53]. Let x(i) = (q(i), q̇(i)) be approximated states at node τi, then

the solution x(τ) on τ ∈ [−1, 1] is approximated by

x(τ) ≈ x̂(τ) =
Nv∑
i=0

xiLi(τ) (4.44)

where

Li(τ) =
1

Nv(Nv + 1)PNv(τi)

(τ 2 − 1)ṖNv(τ)

τ − τi
, (4.45)

for i ∈ [0, Nv] is a family of Lagrange interpolating polynomials of order Nv. It can be

easily checked that the isolation property as in (4.13) holds for Li(τ). Similarly, the

derivate of x(τ) is approximated by differentiating the approximation x̂(τ) in (4.44),

˙̂x(τ) =
Nv∑
i=0

xiL̇i(τ). (4.46)
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Interestingly, the derivative of Li(τk) is a constant determined only by i and k and

independent of the state variables [111]. This feature leads to the LGL differentia-

tion matrix DLGL ∈ R(Nv+1)×(Nv+1). Let DLGL
ki = L̇i(τk) be the (k, i) entry of the

differentiation matrix, we have

DLGL
ki =



LNv (τi)

LNv (τk)(τi−τk)
, if i 6= k,

−Nv(Nv+1)
4

, if i = k = 0,

Nv(Nv+1)
4

, if i = k = Nv,

0, otherwise.

(4.47)

The orthogonal collocation condition is defined such that at all LGL points, the ap-

proximated derivatives ˙̂x(τi) in (4.46) match the derivatives ẋ(i) that determined by

the optimizer. Before formulating the collocation constraints, note that the Leg-

endre interpolating polynomials are defined on the interval [−1, 1], which must be

transformed to the actual time interval [0, TI,v] via the affine transformation [46]:

t =
TI,v
2

(τ + 1).

Hence, the collocation constraint at the k-th LGL point is given as

Nv∑
i=0

x(i)L̇i(τk)−
TI,v
2
ẋ(k) =

Nv∑
i=0

x(i)DLGL
ki −

TI,v
2
ẋ(k) = 0, (4.48)

for all k ∈ {0, 1, . . . , Nv} (see Figure 4.3). We can combine this collocation constraints

in a single equation by letting

X =



x(0)

x(1)

...

x(Nv)


, Ẋ =



ẋ(0)

ẋ(1)

...

ẋ(Nv)


, (4.49)

be the stacked vectors of states and their derivatives in the NLP variables, then the

collocation constraints can be stated as

(DLGL ⊗ Inv)X− TI,v
2

Ẋ = 0, (4.50)
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Figure 4.3: Demonstration of the global orthogonal collocation at Legendre-Gauss-
Lobatto (LGL) points.

where ⊗ represents the Kronecker products and Inv is an identity matrix of dimension

nv = dimXv.

In the pseudospectral optimization, the function integral is calculated using the

Guass quadrature approximation. The running cost function of the NLP is computed

as ∫ tfv

t0v

Lv (x(t), u(t)) dt =
N∑
k=0

wkLv

(
x(i), u(i)

)
(4.51)

where wk is the LGL weight given by

wk =
2

Nv(Nv + 1)

1

[PNv(τk)]2
. (4.52)

The pseudospectral optimization can be considered as an extension of the local

direct collocation optimization. The key difference is the way of imposing colloca-

tion conditions. Different from the local direct collocation, in which the collocation

constraints depend on three neighboring nodes, in pseudospectral optimization the

collocation constraints depend on states of all LGL nodes. By using global orthog-

onal polynomials which interpolate at Legendre-Gauss-Lobatto (LGL) points, the

pseudospectral method provides an approximation of the solution that has exponen-

tial convergence (as a rate of the number of LGL nodes increases) to the smooth

solution [111].
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With the definition of orthogonal collocation constraints and the Gauss quadrature

rule, the HZD based pseudospectral optimization can be formulated as Section 4.3.2.

The problem can be stated similar to (4.25), except that we replace the collocation

constraints (4.25b) and (4.25c) in the original optimization problem with the global

collocation constraints given in (4.50).

4.5 Structured NLP Construction

It is known that the direct collocation formulations significantly increase the number

of constraints and optimization variables, leading to a large nonlinear programming

problem. Yet, the Jacobian matrix of constraints is very sparse; the density of the

matrix is far less than 1% in most cases. This feature allows the problem to be solved

efficiently using appropriate large sparse NLP solvers such as IPOPT [132], SNOPT [51],

etc. The fact that the optimization variables and constraints are defined in terms

of collocation nodes inspire us to formulate the problem in a structured manner.

This structured formulation is based on the defect variables and smart indexing of

NLP variables and constraints. We have already introduce many defect variables

in our previous formulation, for example, ẋ, u and λ, etc. The idea of introducing

defect variables in the NLP is that instead of computing these variables explicitly

using relatively complicated functions, we impose implicit but equivalent equality

constraints, which are often computationally easier. The purposes are twofold:(1) it

helps simplify the constraint expression, so that symbolically computing the analytic

first-order Jacobian of constraints becomes feasible, (2) it distributes the “decision”

weight of some particular variables. In large-scale sparse NLPs, providing analytic

Jacobian of constraints would significantly reduce the computation time and improve

the robustness the optimization convergence. The second reason particularly applies

to some constant variables.

Different from the definition of optimization variables as in Section 4.3.2, we define
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optimization variables at each node following the idea of defect variables as follows:

Y(i)
v := (T

(i)
I,v, q

(i), q̇(i), q̈(i), u(i), λ(i)
v , α

(i)
v , h̄

(i)
v ) (4.53)

be a vector of optimization variables defined at each node i ∈ {0, 1, 2, . . . , Nv} based

on the time discretization of the domain Dv. By defining variables in this way, we

could group both optimization variables and constraints of one node as a unit, which

simplifies the indexing of variables and constraints.

Remark 4.5. In particular, we include the constant vectors h̄v as decision variables

for the (desired) holonomic constraints values so that they can be determined by the

optimizer. These constants often include the gait properties such as the step length

and width. By including h̄v as optimization variables, we have direct control over

these properties in the optimization.

Remark 4.6. In addition, it can be noted that we define the time TI,v and parameters

αv, and h̄v at each node in spite of the fact that they are constants on a given

domain. The reason of defining them in this way is that it distributes these parameters

at isolated nodes, so that the “weights” of these parameters are spread over the

entire domain. If these constant parameters are defined locally on each node, the

following constraints must be enforced to guarantee that they are indeed constant.

The consistency of parameters is formulated as:

T
(i)
I,v − T

(i+1)
I,v = 0, (4.54)

α(i)
v − α(i+1)

v = 0, (4.55)

h̄(i)
v − h̄(i+1)

v = 0, (4.56)

for all i ∈ {0, 1, 2, . . . , Nv − 1} and v ∈ V . Some parameters are in fact the same

on different domains, therefore, they should be enforced to be consistent throughout

these domains. For example, the desired holonomic constraints h̄c should be consistent
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if a particular holonomic constraint c ∈ Cv is defined on both neighboring domains.

Hence, we impose that

h̄(Nv)
c − h̄(0v+)

c = 0, ∀ c ∈ (Cv ∩ Cv+). (4.57)

for all vertices except the last one, i.e., v ∈ V \{vnp}.

We start with stacking the decision variables of the NLP that were defined on all

domains into a single vector of optimization variables, i.e.,

Y = (Y(0)
v1
,Y(1)

v1
, . . . ,Y(Nv)

v1
,Y(0)

v2
,Y(1)

v2
, . . . ,Y(Nv)

v2
, · · · ,Y(0)

vnp
,Y(1)

vnp
, . . . ,Y(Nv)

vnp
),

where Y
(i)
v given in (4.53). Due to the introduction of defect variables, the size of

the resulting NLP problem is very large. To facilitate the construction of the sparse

Jacobian matrix of the constraints or the gradient of the cost function, we arrange

these variables in terms of collocation nodes (as defined in (4.53)) and then index

them based on the positions in the stacked vector Y. Similarly, we organize all

constraints in (4.25) into a stacked vector of NLP constraints, C(Y). Then we state

the structured NLP problem as,

Y∗ = argmin
Y

J (Y) (4.58)

s.t Cmin ≤ C(Y) ≤ Cmax,

Ymin ≤ Y ≤ Ymax,

where the cost function J (Y) is computed via (4.42). In addition, Ymin and Ymax

are the vectors containing the minimum and maximum values of optimization vari-

ables, respectively, and Cmin and Cmax are the vectors containing the minimum and

maximum values for the constraints, respectively. In the case of equality constraints,

the corresponding minimum and maximum values are set to zero. It is also impor-

tant to notice that physical constraints, such as torque bounds, joint velocity and

angle limits, etc., can be imposed directly as the boundary value of corresponding

optimization variables in Ymin or Ymax.
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Figure 4.4: The illustration of sparse Jacobian matrix construction. For each con-
straint c, assuming it has two rows and depends on variables x1, x2, x3, the partial
derivatives are computed using symbolically generated function, and three vectors id,
jd, and Jd are formulated based on indices of constraints and variables and corre-
sponding partial derivatives to construct the sparse Jacobian matrix.

Usually, the Jacobian matrix of constraints is obtained through the finite differ-

encing or the automatic differentiation (also referred as algorithmic differentiation)

[55]. Despite being straightforward to compute, the finite difference approach is very

slow to evaluate numerically and often has very low accuracy. Automatic differenti-

ation provides better accuracy, however, it often suffers from limitations caused by

restrictions of the tools available. In our formulation, however, the introduction of

defect variables significantly reduce the complexities of the analytic expression of the

constraints and the cost function, so that symbolically generating the constraints’ Ja-

cobian becomes feasible. Furthermore, the symbolic Jacobian of a constraint equation

could be generated a priori and stored as a function to be called by the optimizer

during optimization process. For the same constraints that are imposed on multiple

nodes, only one symbolic Jacobian function is required to be generated. This greatly

reduces the overhead time of generating the full Jacobian matrix directly.

To expedite the optimization process, we exploit the sparsity pattern of the Ja-

cobian matrix further. First, let ic be the indices of an arbitrary constraint c, and
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jx be the indices of dependent variables xc of the constraint c. Then the Jacobian

of this constraint is given by a nc × nx matrix with nc = Dim(ic), nx = Dim(jx).

Based on the indices of variables and constraints, the large sparse Jacobian matrix

can be constructed based on the compressed column storage (CCS) format [50]. The

following vectors are determined for the constraint c:

idc := [ic, ic, · · · , ic],

jdc := [jx[1]1×nc , jx[2]1×nc , · · · , jx[nx]1×nc ],

Jdc := [ ∂c
∂xc 1

, ∂c
∂xc 2

, · · · , ∂c
∂xc jx

]

with jx[k]1×nc a 1×nc vector of jx[k] at each element, and ∂c
∂xc k

the kth column in the

Jacobian matrix of the constraint c obtained by evaluating the associated symbolic

Jacobian function of the current constraint. Among them, idc and jdc store the

information of row and column indices of the constraints Jacobian, and Jdc stores

the values of the partial derivatives, respectively. Combining idc, jdc, and Jdc of all

constraints together, the whole Jacobian matrix of constraints is created using the

MATLAB function, sparse. See Figure 4.4 for an illustration of this process.

4.6 Control Lyapunov Function Synthesis

With the construction of the direct HZD optimization problem as discussed in pre-

vious section, any feasible solution of (4.58) yields an optimal walking gait of the

robot. While we explicitly constrain the output dynamics based on the input-output

linearization controllers, there are wider ranges of optimal controllers that can be

utilized to stabilize the resulting gaits. They are the rapidly exponentially stabiliz-

ing control Lyapunov functions (RES-CLF) as we introduced in Section 2.3.4. In

this section, we explicitly construct the RES-CLF controllers in terms of a quadratic

programming (QP) problem for the hybrid zero dynamics optimal gaits.

Theorem 4.2. If the parameters α∗ that solves the direct HZD optimization problem,
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then there exists a family of rapidly exponentially stabilizing control Lyapunov func-

tions (RES-CLFs) based feedback controllers that can be constructed to exponentially

stabilize the transverse dynamics.

Proof. Recall that under the feedback control law uαv given in (2.39), we have a linear

output dynamics of the form:  ẏ1,v

ÿ2,v

 = µv, (4.59)

for some auxiliary inputs µv. Therefore, given that ηv = (y1,v, y2,v, ẏ2,v), the above

output dynamics can be equivalently written as a linear control system:

η̇v =


0 0

0 I

0 0


︸ ︷︷ ︸

Fv

ηv +


1 0

0 0

0 I


︸ ︷︷ ︸

Gv

µv. (4.60)

Then in the context of this control system, we consider the continuous time algebraic

Riccati equations (CARE):

F T
v Pv + PvFv − PvGvG

T
v Pv +Qv = 0, (4.61)

for Qv = QT
v > 0 with solution Pv = P T

v > 0. One can use Pv to construct a RES-CLF

that can be used to exponentially stabilize the output dynamics at a user defined rate

of 1
ε

(see [9, 10]). In particular, define

V ε
v (ηv) = ηTv I

εPvI
ε︸ ︷︷ ︸

P ε
v

ηv, with Iε = diag(εI, I), (4.62)

wherein it follows that:

V̇ ε
v (ηv) = LFvV

ε
v (ηv) + LGvV

ε
v (ηv)µv,

with

LFvV
ε
v (ηv) = ηTv (F T

v P
ε
v + P ε

vFv)ηv, (4.63)
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LGvV
ε
v (ηv) = 2ηTv P

ε
vGv.

With the goal of exponentially stabilizing the ηv to zero, we wish to find µv such

that,

LFvV
ε
v (ηv) + LGvV

ε
v (ηv)µv ≤ −

γ

ε
V ε
v (ηv),

for some γ > 0. In particular, it allows for specific feedback controllers, e.g., the

min-norm controller, which can be stated as the closed form solution to a quadratic

program (QP) stated in (2.62).

Recalling that Avu = −Lfv + µv, it follows that:

µTv µv = uTATvAvu+ 2LTfvAvu+ LTfvLfv ,

which allows for reformulating the QP problem in terms of u instead of µv, so that

additional constraints on torques or reaction forces can be directly implemented in the

formulation. To achieve an optimal control law, we can relax the CLF constraints and

penalize this relaxation. In particular, we consider the following modified CLF-based

QP in terms of u and a relaxation factor δv:

argmin
(u,δv)

pvδ
2
v + uTATvAvu+ 2LTfvAvu (4.64)

s.t ÃCLF
v (q, q̇)u ≤ b̃CLF

v (q, q̇) + δv (CLF)

where,

ÃCLF
v (q, q̇) :=LGvV

ε
v (q, q̇)Av(q, q̇), (4.65)

b̃CLF
v (q, q̇) :=− γ

ε
V ε
v (q, q̇)− LFvV

ε
v (q, q̇)− LGvV

ε
v (q, q̇)Lfv , (4.66)

and pv > 0 is a large positive constant that penalizes violations of the CLF constraint.

Note that we use the fact that ηv is a function of the system states (q, q̇), so the

constraints can be expressed in the term of system states.

The end result of solving this QP is the optimal control law that guarantees

exponential convergence of the control objective yv → 0 if δv ≡ 0. In the case of
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sufficiently small δv, we still achieve exponential convergence of the outputs, which

motivates the minimization of δv in the cost of QP.

4.7 Summary

We presented a generalized optimization framework for synthesizing formally stable

gaits on robots as complex as humanoids. This framework blends the theoretical foun-

dation of hybrid zero dynamics (HZD) with direct collocation trajectory optimization

techniques.

While at first glance this direct collocation approach adds thousands of design

variables and constraints that are (seemingly) superfluous, it bears counterintuitive

advantages. For one, the result is a very sparse NLP, for which the vast majority of

constraint Jacobian entries are zero. In essence, each design variable only needs to

worry about its effect on its neighboring points, not the full problem. Due to local

linearity, this makes the effective problem much more linear at each iteration of the

optimization, which is helpful for NLP solvers that iterate on linear approximations of

the problem (e.g. sequential quadratic programming (SQP) and interior point (IP)).

Second, these additional constraints can be expressed in closed form, not requiring

an computationally iterative integration process, even when the original dynamical

equations are unsolvable.

Further, this method optimizes the interactions of the full multi-domain multi-

body dynamics of humanoid system models, without conforming motions to simpler

more-tractable dynamics. Admittedly, optimizing the full order dynamics increases

the number of optimization variables significantly. However, the simplification of

expressions and the sparsity of the constraints Jacobian by the implicit constrained

dynamics form and defect variables at the expense of the problem size can be fully

utilized to make the optimization more robust and fast, as a result it can be scaled

to higher degrees of freedom systems. With these simplified expressions, we are able
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to rigorously compute analytic expressions of the gradient of the cost function and

the Jacobian of the constraints, even the Hessian of the optimization problem, us-

ing any proper symbolic mathematics software. The end result is a fast and reliably

converging nonlinear programming problem for generating dynamic walking gaits.

More importantly, for any feasible periodic gait obtained from the direct HZD

optimization, there exists a class of feedback controllers that can be applied to stabi-

lize the transverse dynamics while respecting the torque limits of the physical robots.

This is a distinctive property of the proposed direct HZD gait optimization from

other locomotion gait generation problems that appear in bipedal locomotion liter-

ates [37, 69, 82].
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CHAPTER V

APPLICATIONS TO HUMANOID ROBOTS

In this chapter, we present applications of the direct collocation formulations of hybrid

zero dynamics gait optimization framework on three different bipedal robots. These

examples demonstrates the scalability, robust and fast convergence of the direct HZD

optimization even though a robot has many underactuated degrees of freedom (DU-

RUS) or very high DOFs (HUBO). By exploiting of the full-order dynamics of the

robot in the optimization, it results in not only energy-efficient but also very natu-

ral, human-like locomotion. Finally, we will show that the advanced pseudospectral

optimization method is even capable of generating new gaits on-line to accommodate

the environmental changes.

With the systematic framework of the hybrid zero dynamics and direct collocation

optimization, the process of implementing dynamic walking on a robot can be auto-

mated, see Figure 5.1 for the illustration of the process. Given a robot of the interest,

we first model the desired behavior as a multi-domain hybrid system model, and then

design a set of virtual constraints as our control objectives. This direct collocation

HZD optimization framework parses the multi-body model of the robot and a set of

parameterized virtual constraints into a large and sparse nonlinear program (NLP)

with upwards of 10,000 design variables and constraints. Large-scale algorithms can

typically solve this NLP, thereby optimizing a dynamic gait for the robot that exploits

the full multi-body dynamics of the machine, despite underactuation. The solution of

such a NLP yields a periodic behavior for the system. By implementing the resulting

joint trajectories on the actual hardware, we realize dynamic locomotion of the robot.
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Figure 5.1: Illustration of the process used to generate dynamic walking gaits.

5.1 DURUS – Efficient Humanoid Walking

In this section, we explicitly generate energy efficient walking gaits on a spring-legged

humanoid robot–DURUS. The goal is to demonstrate that the proposed gait gener-

ation framework is capable of generating energy efficient walking gaits by embracing

the high-dimensional full-order dynamics of the particular mechanical design that

consists of underactuated linear springs.

5.1.1 Robot Model

Developed by SRI International, DURUS was designed with the overarching goal

of achieving never before seen efficiency in locomotion, thereby allowing for longer

autonomous battery-powered operation. This goal is in response to the current state

of the art in humanoid robots. The underlying mechanical and electrical components

incorporated into the design of DURUS provide an essential foundation from which

the control design can build upon.
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Figure 5.2: The mechanical design of the humanoid DURUS. The design of linear
springs at the end of legs is to absorb the energy at impact.

5.1.1.1 Mechanical Design

The primary mechanical components which provided gains in overall efficiency were

the actuator and transmission elements (see Figure 5.2). Each actuator-gearbox com-

bination consists of an electric motor connected via a chain reduction to a custom-

designed cycloid transmission, which can achieve up to 97% efficiency. Each actuator-

gearbox unit was lightweight, weighing only 2.7 kg and able to output 250 Nm of

torque with maximum joint accelerations exceeding 130 rad/s2. To ultimately realize

dynamic and efficient locomotion on the humanoid robot DURUS, precision in con-

trol implementation is required at every level of the hardware. Therefore, an essential

component in the process of realizing locomotion is a motor controller which can ac-

curately track the trajectories. Custom motor controllers are employed on DURUS,

allowing for 10 kHz control of torque, current, and position. For the duration of the

walking, these motor controllers tracked joint positions with an overall rms error of

0.005 rad and a peak error of 0.026 rad. Additionally, DURUS is self-powered with

a 1.1 kWh battery pack weighing 9.5 kg.
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Figure 5.3: Iterative design process which facilitated a leg morphology satisfying
hardware constraints in simulation.

A key difference between DURUS and many humanoid robots is the use of pas-

sive springs in the ankles with significant compliance. To leverage the greatest re-

turns, the springs are much more compliant than typically seen on powered humanoid

robots leveraging springs for efficiency [105, 141]. The morphology of DURUS, and

specifically the role of passive-compliant elements, directly impacts how well a control

scheme can achieve efficient and stable dynamic gaits. The leg morphology of DURUS

is the result of an iterative collaboration between the designer and control engineers.

Specifically, designs for the leg geometry and passive-compliant ankles were passed

to rigorous simulation for evaluation. In particular, the nonlinear control and gait

approach in [64] was utilized to realize walking in simulation and the design was eval-

uated with regard to performance parameters such as the joint torques and walking

stability. These findings were then compiled and passed back to the design engineer
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for improvement. The result of this iterative process was a leg design which walked in

simulation with worst case torques of 150 Nm, as opposed to initial leg designs which

demonstrated peak torques of 450 Nm; this procedure, along with several of the leg

designs and their associated simulation torques, is illustrated in Figure 5.3. We be-

lieve that this “control in the loop” mechanical design methodology was a key factor

in the ability of the control scheme presented in Section 2.3 to maintain smooth, sta-

ble walking while exploiting the energy saving capabilities of the passive-compliant

ankle structures. The higher degree of compliance in DURUS allows for the design

of gaits which can be designed with significant energy savings at impact. The draw-

back to this compliance is the injection of additional passive degrees of freedom in

the robot which are difficult to control. This difficulty motivates the use of hybrid

zero dynamics control framework combined with direct HZD optimization techniques

which can generate and control stable walking gaits on an underactuated robots.

5.1.1.2 Kinematic Model

DURUS consists of fifteen actuated joints and two passive springs (see Figure 5.4).

The passive springs, which are rigidly perpendicular to the feet, are designed to reduce

the energy loss during foot impact while walking. Here we use the floating base coordi-

nates, assuming that the origin of the six-dimensional base coordinates, Rb, is rigidly

attached at the center of the pelvis link. In addition, the robot consists of 15 actuated

joints and 2 passive springs shown in Figure 5.4, where R0 is the inertial frame, Rb is

the robot base frame located at the center of the pelvis with pb, φb is the position and

orientation of Rb. ψw, φw, and θw are the waist yaw, roll, and pitch angles, ψlh, φlh,

θlh, θlk, θla, φla, and rls are the left hip yaw, hip roll, hip pitch, knee pitch, ankle pitch,

ankle roll angles, and spring deflection, respectively, and ψrh, φrh, θrh, θrk, θra, φra,

and rrs are the right hip yaw, hip roll, hip pitch, knee pitch, ankle pitch, ankle roll

angles, and spring deflection, respectively. The red arrow of each joint represents the
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Figure 5.4: The coordinates of DURUS robot.

positive rotation (or translation) axis of the corresponding joint using the right hand

rule. The kinematic tree structure of body coordinates consists of three branches: the

waist joints, qw = [ψw, φw, θw]T , the left leg joints, ql = [ψlh, φlh, θlh, θlk, θla, φla, rls]
T ,

and the right leg joints, qr = [ψrh, φrh, θrh, θrk, θra, φra, rrs]
T , respectively. Specifically,

we model the passive spring as prismatic joints, and then apply the spring forces as

“feedback controllers” on these joints by ensuring that the “feedback controllers” in-

deed equal to the spring forces. Including the floating base coordinates, the robot has

23 degrees of freedom, therefore, the generalized coordinates of the robot are given

by

q = (pb, φb, qw, ql, qr) ∈ Q ⊂ R23. (5.1)

The continuous dynamics of the robot is determined by (2.17). In addition, we

incorporate the reflected motor inertia of actuators as a decoupled addition to the

inertia matrix as in [36]. Let Dm ∈ R23×23 be a diagonal matrix with each element
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in the diagonal line corresponding to the reflected inertia of a rotational actuator

through the gearbox (zero if not actuated), then for a given domain Dv, we modify

(2.17) such that:

DR(q)q̈ +HR(q, q̇) = Bvuv + JTv (q)λv, (5.2)

where DR(q) = D(q) +Dm, and HR(q, q̇) = H(q, q̇) +κ(q, q̇) with κ(q, q̇) : TQ → R23

is a vector of spring forces. Let ks be the stiffness and bs be the damping coefficient

of the spring, the spring force vector κ(q, q̇) : TQ → R23 is a vector that has only two

non-zero entries, given by

κ(q, q̇) = [01×15, ksrls + bsṙls,01×6, ksrrs + bsṙrs]
T , (5.3)

where 0n×m represents n×m matrix with all entries being zero.

Remark 5.1 (Symmetric Gait Model). In the study of symmetric walking gaits, a

“common” trick is to define the coordinates in terms of stance/non-stance legs instead

of using left/right legs. Followed by this definition is a relabeling of coordinates at

foot impact due to the change of stance leg, which can be done by a linear map,

R : Q → Q, in which left and right leg angles are switched accordingly and the signs

of all roll and yaw angles as well as the base position in y−axis direction are “flipped”

[59]. For the coordinates system defined in (5.1), the relabeling matrix can be given

as

R :=



Rb 0 0 0

0 Rw 0 0

0 0 0 Rl

0 0 Rl 0


, (5.4)

where Rb, Rw, and Rl are the sign “flipping” matrix for base, waist and leg coordi-

nates, given by

Rb = diag(1,−1, 1,−1, 1,−1), (5.5)
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Rw = diag(−1,−1, 1), (5.6)

Rl = diag(−1,−1, 1, 1, 1,−1, 1), (5.7)

where diag represents a diagonal matrix. For the sake of simplicity, we assume the

right leg is the stance leg in the remainder of the section. The advantage of defining

in this manner is that it reduces the number of domains by half. In this thesis, all

gaits considered have left-right symmetry, therefore, we assume the right leg is the

stance leg and the left leg is the non-stance leg in the following discussion.

Given the configuration of DURUS, we now construct hybrid system models of

different walking patterns based on contact conditions and domain orderings. To

define the different foot contact configurations, we define the following foot contact

points: the stance foot, psf , the stance toe, pst, the stance heel, psh, the non-stance

foot, pnsf , the non-stance toe, pnst, and the non-stance heel, pnsh, as depicted in

Figure 5.5. In the following discussions, we denote that p2(q) = (px2, p
y
2, p

z
2) : Q → R3

be the three dimensional Cartesian position of a point in the world frame, and φ2(q) =

(φx2, φ
y
2, φ

z
2) : Q → SO(3) be the three dimensional orientations of the link–to which

the point attached–with respect to the world inertial frame. Correspondingly, we

denote λ2 := (λfx2 , λ
fy
2 , λ

fz
2 , λ

mx
2 , λmy2 , λmz2 ) be the six-dimensional wrenches associated

with the contact constraints at the point 2, among which (λfx2 , λ
fy
2 , λ

fz
2 ) be the ground

reaction forces acting on the point along x, y, and z directions, and (λmx2 , λmy2 , λmz2 ) be

the ground reaction moments acting on the foot around x, y, and z axes, respectively.

5.1.2 3D Flat-Footed Walking

The term “flat-footed” indicates that the feet remain flat with respect to the ground

plane when on the ground. It is used to distinguish this type of walking from the

multi-contact case—which will be discussed in the next subsection—where feet can

be angled in any number of ways. To characterize the unsupported walking of the

humanoid robot from the restricted planar 2D walking gaits, we specifically name
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Figure 5.5: Illustration of the position of different contact points.

the walking as 3D walking. In this case, the two-domain hybrid system model of the

flat-footed walking gaits is constructed based on the discussion in Chapter 2. The

direct HZD optimization framework is then formulated to generate energy efficient

walking gaits that fully exploits the special mechanical design of the robot.

5.1.2.1 Multi-Domain Hybrid System Model

The design of passive springs at the end of each leg permits a non-trivial double

support phase, therefore, the hybrid system model of 3D flat-footed walking, consists

of two domains: a double-support domain, Dds, when both feet are on the ground, and

a single-support domain, Dss, when only one foot is on the ground (see Figure 5.6).

Contact constraints. Let psf and pnsf be a point on the stance foot and non-

stance foot respectively (see Figure 5.5), the holonomic constraints of each domain

are defined as follows:

hds(q) := (psf , φsf , pnsf , φnsf ) ∈ R12, (5.8)

hss(q) := (psf , φsf ) ∈ R6. (5.9)

Further, all orientation constraints, φsf and φnsf , should be zero because the feet

should remain flat on the ground. The desired values of the position depend on the

relative position of the point within the inertia frame. Assume that the origin of the
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Foot Lift

Foot Strike

DssDds

Figure 5.6: Domain graph of the two-domain 3D flat-footed walking model.

inertia frame, R0, is located at a position as shown in Figure 5.5, and lstep be the step

length and wstep be the step width, respectively, then we have

p̄sf = [0,−wstep
2

, 0]T , p̄nsf = [−lstep,
wstep

2
, 0]T . (5.10)

Domains. The admissibility conditions for each domain are determined so that

constraint wrenches associated with foot contacts should ensure that any foot on the

ground should remain flat. These conditions include: (1) normal forces of the ground

acting against the feet should be positive; (2) feet should not slide on the ground; and

(3) the robot should not roll over the edge of the feet. For instance, these constraints

regarding the stance foot contact are given as:

λfzsf ≥ 0, (5.11)

|λfxsf | <
µ√
2
λfzsf , (5.12)

|λfysf | <
µ√
2
λfzsf , (5.13)

−wf
2
λfzsf < λmxsf <

wf
2
λfzsf , (5.14)

−lhλfzsf < λmysf < ltλ
fz
sf , (5.15)

where lh = |psf − psh| and lt = |psf − pst| are the distances from the stance foot point

to stance heel and stance toe, respectively, and mu is the assumed friction coefficient
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of the ground contact. Considering that both feet remains flat on the ground during

the double-support domain, these constraints should apply to both feet. The domain

of admissibility condition for the double-support domain is given as:

Ads(q, q̇, u) =

 νsf (q)λsf (q, q̇, u)

νnsf (q)λnsf (q, q̇, u)

 ≥ 0, (5.16)

where νsf (q)λsf (q, q̇, u) is obtained by grouping constraints (5.11)–(5.15) together.

The same is done for the non-stance foot constraint wrenches. For the single-support

domain, only the stance foot is on the ground. In addition, the non-stance foot

should be always above the ground during the single-support domain, which could be

formulated as an unilateral constraint of the domain. Hence we have

Ass(q, q̇, u) =

 νsf (q)λsf (q, q̇, u)

pznsf

 ≥ 0. (5.17)

Consequently, we can define Dds and Dss as in (2.24).

Guards. Accordingly, a transition from double-support to single-support domain

takes place when the normal force on non-stance foot reaches zero, and a transition

from single-support to double-support domain occurs when the non-stance foot strikes

the ground, i.e.,

Hds(q, q̇, u) := λfznsf (q, q̇, u), (5.18)

Hss(q, q̇, u) := pznsf (q), (5.19)

and thereby the guards Sds→ss and Sss→ds are determined by (2.26).

Reset maps. No impact or coordinate change occurs when transitioning from a

double-support to single-support domain, i.e., ∆ds→ss = I where I is an identity

matrix. On the other hand, the reset map, ∆ss→ds, needs to incorporate the impact

of the non-stance foot strikes and the change of coordinates caused by the switching

of stance leg, as described in (2.30). In particular, the coordinate relabeling map R

for DURUS is defined in (5.4).
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Figure 5.7: 3D flat-footed walking outputs defined in the sagittal plane.

With the definition of individual elements, the two-domain hybrid control system

model H C ff for the 3D flat-footed walking behavior can be constructed as in (2.1).

5.1.2.2 Virtual Constraints

The choice of virtual constraints is inspired by Ames et al. previous work regarding

the human-inspired bipedal locomotion [12]. Instead of using the canonical walking

function as the desired output function form, we use 4th-order Bézier polynomial, as

given in (2.34). Due to the fact that the robot has actuated ankle pitch joints that are

active during both double-support and single-support domains, we pick the linearized

hip position given by

y1,v(q) := δphip(q) = Laθra + (La + Lc)θrk + (La + Lc + Lt)(θrh + φyb) (5.20)

as the velocity-modulating output ya1,v(q) for both domains, where La, Lc, and Lt

are the height of ankle1, the length of calf and thigh of the robot, respectively. For

simplicity, we mostly consider linear outputs as our position-modulating outputs.

1This is measured when the spring has zero deflection.
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Table 5.1: Position-modulating outputs library for DURUS 3D walking.

name definition

stance knee pitch (skp): ya2,skp = θrk,
stance ankle pitch (sap): ya2,sap = θra,
stance torso pitch (stp): ya2,stp = −θra − θrk − θrh,
stance ankle roll (sar): ya2,sar = φra,
stance torso roll (str): ya2,str = −φra − φrh,
stance hip yaw (shy): ya2,shy = ψrh.
waist roll (wr): ya2,wr = φw,
waist pitch (wp): ya2,wp = θw,
waist yaw (wy): ya2,wy = ψw,
non-stance ankle pitch (nsap): ya2,nsap = θla.
non-stance knee pitch (nskp): ya2,nskp = θlk,
linearized non-stance slope (nsl): ya2,nsl = −θra − θrk − θrh + Lc

Lc+Lt
θlk + θlh,

non-stance leg roll (nslr): ya2,nslr = φrh − φlh,
non-stance foot roll (nsfr): ya2,nsfr = pznsf I(q)− p

z
nsfO(q),

non-stance foot pitch (nsfp): ya2,nsfp = pznst(q)− pznsh(q),
non-stance foot yaw (nsfy): ya2,nsfy = pynst(q)− p

y
nsh(q).

Specifically, we define a library that consists of all available outputs for use, as listed

in Table 5.1. We assume the right leg is the stance leg here. For domains in which

the left leg is the stance leg, we swap the left and right leg angles accordingly in the

definition. Figure 5.7 illustrates outputs that are defined in the sagittal plane. The

last three outputs of the single-support domain are nonlinear outputs equivalently

representing the orientations of the non-stance foot. The locations of points nst,

nsh, nsf I, and nsfO are shown in Figure 5.5. These outputs were chosen over Euler

angles in order to avoid expressions which contain inverse trigonometric functions.

To guarantee that the non-stance foot remains flat, the desired outputs associated

with these three outputs should be zero.

Due to the holonomic constraints imposed on the non-stance foot, non-stance leg

joints should not be controlled via virtual constraints, otherwise, the system will be

over-constrained. Notwithstanding, we include the non-stance knee pitch angle output

for the double support domain because the passive spring introduces one additional

degree of freedom to the non-stance leg. For the single-support domain, the outputs
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selection takes the fact that the non-stance foot is no longer constrained in contact

with the ground into consideration. As a result, we have the following output indexing

sets for each domain:

Ods = {skp, stp, sar, str, shy,wr,wp,wy, nskp} , (5.21)

Oss = {skp, stp, sar, str, shy,wr,wp,wy, nskp, nsl, nslr, nsfr, nsfp, nsfy} . (5.22)

With the selection of virtual constraints for each domain, we can apply the feedback

controllers as in (2.39) to make the system closed loop. Let α := {v̄v, αds, αss} be the

parameters of desired velocity and position modulating outputs, the next step is find

a set of parameters α so that the closed-loop hybrid system has a hybrid invariant

periodic orbit.

5.1.2.3 Gait Optimization

The formulation of the optimization problem follows the direct HZD optimization

framework presented in Chapter 4.

Cost Function. To achieve efficient walking, we set the objective function to mini-

mize the mechanical cost of transport of the walking gait, which is given as the total

mechanical work done by the actuators divided by the weight of the robot and the

distance traveled during one step [32]. Hence, the running cost is defined as

Lv(h̄v, q̇
(i), u(i)) :=

‖Pv(u(i), q̇(i))‖
mglstep(h̄v)

, (5.23)

where mg is the robot weight, lstep(h̄v) is the distance traveled during a gait which

could be determined from the desired holonomic constraints, and Pv(u
(i), q̇(i)) is the

total power consumed assuming no power-regeneration (see [77]) computed at each

node. No terminal cost is defined. The cost function of the gait generating NLP is then

can constructed using the Simpson’s quadrature rule as described in Section 4.3.3.

Constraints. The necessary NLP constraints can be formulated based on the hybrid
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system model defined in the previous subsection with proper upper and lower bound-

aries imposed on both optimization variables and constraints according to physical

limitations of the robot hardware. For more detailed description of these necessary

constraints, please refer to Section 4.3. In addition to the necessary constraints of the

HZD direct collocation optimization in (4.25), we iteratively add additional physical

constraints based on the observations of actual hardware implementation as gaits are

tested on the physical hardware. Using this approach, the following constraints are

added to the gait optimization and are configured specifically to provide favorable

conditions for experimental walking in order to achieve sustainable 3D flat-footed

walking gaits

Restricting torso movement . The robot tends to fall more easily when the upper

body wobbles. This can be prevented by constraining the torso movement in the gait

design. Let φtor(q) : Q → R3 be the three dimensional orientations of the upper torso

link, we restrict them within a small range [φmin
tor , φ

max
tor ], i.e.,

φmin
tor ≤ φtor(q) ≤ φmax

tor . (5.24)

Keeping non-stance foot flat . the non-stance foot is constrained to be flat in the air

so that it strikes the ground flat, i.e., three outputs associated with the orientation

of the non-stance foot, {yd2,nsfr, y
d
2,nsfp, y

d
2,nsfy}, should be zero. This can be enforced by

setting parameters of the desired functions to zero.

Constraining impact velocities . It became apparent through testing that if the swing

foot impacts the ground too hard, it can destabilize the robot’s balance. Therefore,

we constrain the impact velocities of the heel to be within a reasonable range. Let

vmax
x , vmax

y , vmax
z > 0 be the maximum allowable impact velocities in x, y, and z

direction respectively, then the swing foot velocities ḣnsf (q
−, q̇−) should satisfy

|ḣxnsf (q−, q̇−)| ≤ vmax
x , (5.25)

|ḣynsf (q
−, q̇−)| ≤ vmax

y , (5.26)
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|ḣznsf (q−, q̇−)| ≤ vmax
z , (5.27)

where (q−, q̇−) ∈ Dss ∩ Sss→ds.

Avoiding swing leg collision. Due to the existence of compliance in the mechanical

system, the swing leg can strike the stance leg if they are not separated enough. The

separation of legs can be expressed as the difference between stance and swing hip roll

angles. Therefore during the single-support domain, the non-stance leg roll output is

constrained as

φmin ≤ ya2,nslr(q) ≤ φmax, (5.28)

where φmax > φmin ≥ 0 are the maximum and minimum allowable separation angles.

We incorporate these practical constraints into the direct HZD optimization prob-

lem in (4.58). For this application, we use the piece-wise continuous local direct col-

location method particularly. In addition, the number of cardinal nodes are picked

as 10 and 20 for the double-support and single-support domain, respectively. Solving

the direct HZD optimization problem results in periodic energy-efficient flat-footed

walking gaits for DURUS. More importantly, these gaits does not comply to any

simplified models, thereby exhibiting more dynamic motions.

The gait optimization NLP is solved using IPOPT within MATLAB on a laptop

computer with an Intel Core i7-6820HQ processor (2.7 GHz x 8) and 8 GB of RAM.In

addition, we use the linear solver ma57 for IPOPT and set the feasibility tolerance to

be 1× 10−6. The convergence of the NLP depends on the initial guess seeded to the

solver and the constraints imposed. For the 3D flat-footed walking of DURUS, the

NLP converges typically from 5-20 minutes from randomly generated initial guesses.

It can be reduced to less then 3 minutes if seeded with better initial guesses. More

thorough discussions of the performance of the direct HZD optimization are presented

in Chapter 6.
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Figure 5.8: Desired outputs of the 3D flat-footed walking gait. The vertical dotted
lines represent the moment of domain transition.

5.1.2.4 Simulation and Experimental Results

In the subsection, we present the simulation and experimental results of one of many

stable periodic gaits obtained from the optimization. The step length of this particular

gait is 0.1304 m and the step width is 0.2370 m. The total elapsed time of one

complete gait step is 0.4767 seconds. The desired linearized hip velocity is 0.2974 m/s

for this gait, and the resulting desired trajectories of position-modulating outputs are

shown in Figure 5.8. The desired last three outputs, (yd2,nsfr, y
d
2,nsfp, y

d
2,nsfy), are all zero,

therefore, we omit them from the plot. A video of this 3D flat-footed walking gait in

simulation and experiment can be found in [1].

Simulation results. To demonstrate the convergence of actual outputs to given de-

sired trajectories under the feedback controllers, we simulate the system starting from

a disturbed rest position. This initial condition is determined by slightly disturbing

the fixed point of the original periodic orbit on the Poincaré section, and set all joint

velocities to be zero. As shown in Figure 5.9, the outputs y2 and derivatives ẏ2 con-

verged to zero at the end of every step under the input-output linearization control

given in (2.39). More importantly, the output errors due to the swing foot impact

decreased in every step, and reduced to less than 1× 10−3 after just two steps. The
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Figure 5.9: Convergence of outputs y2 and ẏ2 in 4 steps with input-output lineariza-
tion controllers when simulating the flat-footed walking gait from rest. We only show
errors of sagittal plane outputs because these outputs have larger errors than others.
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Figure 5.10: Tracking of the velocity-modulating output using both IO linearization
controllers and QP based CLF controllers in flat-footed walking simulation.

convergence of the relative degree one output y1 is also shown in Figure 5.10a, from

which it can be seen that the initial velocity of the robot is zero. The torque inputs

when using the input-output linearization controllers, however, exceeds the maximum

250 Nm torque limit of the robot during the first step, as shown in Figure 5.11a.

Hence, we simulated the system from the same initial condition using QP based CLF

controllers given in (4.64) with proper torque limits imposed in the QP. In particular,

all position-modulating relative degree two outputs are relaxed. Figure 5.10b shows

the tracking of the linearized hip velocity using QP based CLF controllers, and the
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Figure 5.11: Joint torque profiles when using two different feedback control laws in
DURUS flat-footed walking simulation. Here we show torques of stance ankle pitch,
usap, stance knee pitch, uskp, stance hip pitch, ushp, and non-stance ankle pitch, unsap,
considering that these joints often require larger torques than others.
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Figure 5.12: Phase portraits of representative joints in the 3D flat-footed walking
simulation starting from the rest. The red 4 shows the initial point of the simulation.
The dashed lines represent the discrete jump in system states at the end of each step.
The domain transitions are represented by � and blue ◦, respectively.
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feedback control torques in simulation are shown in Figure 5.11b. The torque plot

demonstrates that the RES-CLF controllers respect the torque limit while still be

able to track the outputs exponentially, as shown in Figure 5.10b.

Further, the feedback controllers drive the system to periodic limit cycles even

starting from a point that is not on the orbit. This is demonstrated in Figure 5.12,

where we show phase portrait plots of four representative joints. As shown in these

figures, both uncontrolled states (stance spring) and controlled states (waist pitch,

stance knee pitch, and non-stance hip roll) converge to periodic limit cycles under

the feedback controllers. In particular, the waist pitch and stance knee pitch joints

exhibit nice and smooth transitions from the double-support to single support domain

because they are determined by the same set of virtual constraints. On the other

hand, the non-stance hip roll joint is determined by the holonomic constraints during

the double-support domain but is determined by virtual constraints during the single

support domain. As a result, there is discrete changes in the acceleration of these

non-stance leg joints, even though the angles and velocities are continuous.

It is important to note that there is no NLP constraint that guarantees the stabil-

ity of the periodic orbit in the current optimization framework. In fact, incorporating

the stability constraint of periodic walking gaits to the direct collocation optimiza-

tion remains computationally challenging. Therefore, the stability of a walking gait is

evaluated a posteriori through checking whether the maximum magnitude of eigen-

values of the Jacobian of the Poincaré return map of the closed loop hybrid system.

In particular, we select the guard Sss→ds as the Poincaré section. The evaluation of

the Poincaré return map of this periodic orbit revealed that the maximum magnitude

of the eigenvalues of the Jacobian of the Poincaré return map is 0.24, indicating that

the gait is stable.

Experimental setup. The experimental setup of the DURUS 3D walking is shown in

Figure 5.13. During the experiments, the robot walked on a large treadmill platform.
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Figure 5.13: The setup of unsupported 3D DURUS walking experiments on tread-
mill. The treadmill speed is programmed to match the actual walking velocity.

The treadmill speed is programmed to match the actual walking velocity. There is a

rope that loosely hangs the torso of the robot from the roof due to the safety concern

in the case the robot falls. During the walking experiments, there is enough slack on

the rope to guarantee that it will not intervene the robot behaviors.

Sustained walking in experiments. The 3D flat-footed gait walked stably over

hours in multiple occasions. The stable walking of DURUS was showcased at the

Robot Endurance Test at DARPA Robotic Challenge finals, during which DURUS

exhibited sustained walking over large distances with a consistently low cost of trans-

port. Regarding the detail of the experimental implementation of DURUS 3D walk-

ing, we refer the readers to [109]. Figure 5.14 shows the periodic phase portraits of

each of the actuated joint angles in one of the experiments. Particularly, we show

the periodic limit cycles of in term of left/right leg angles instead of stance and non-

stance. The comparison of corresponding periodic orbit in simulation is also plotted

in the figure, which shows that very close match between experimental and simulation

trajectories despite noise signals from the hardware. These periodic limit cycles in
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Figure 5.14: Periodic limit cycles of actuated joints in experiment and overlaid on
the simulated gait (units: rad and rad/s; symmetric joints omitted for clarity).

Figure 5.15: Tiled still images from the simulation and experiment of DURUS
flat-footed walking in 3D at 0.3m/s.
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Figure 5.16: Domains graph of 3D multi-contact walking. The red circles represent
foot contact points.

turn represent a cycle behavior of the robot, i.e., periodic walking gaits. We show

tiled images of during one gait step of the stable 3D walking in experiment and sim-

ulation in Figure 5.15. This successful stable walking in 3D is a strong indication of

the practicality of the presented optimization approach on humanoid robots, even in

the presence of compliant elements.

5.1.3 3D Multi-Contact Walking

Different from the flat-footed walking, 3D multi-contact walking allows rotation of

the foot about the toe or the heel edges. We no longer constrain feet to remain flat,

resulting in heel- or toe-only contacts with the ground. Based on Ames et al. study

on the human locomotion data analysis in [12, 117], we develop a four-domain hybrid

system model for the 3D multi-contact walking gaits using the same procedure as its

counterpart flat-footed walking.
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5.1.3.1 Multi-Domain Hybrid System Model

This style of locomotion has four domains: a toe-strike domain, Dts, a toe-lift domain,

Dtl, a heel-lift domain, Dhl, and a heel-strike domain, Dhs, as illustrated in Figure 5.16.

We assume the walking gait cycle starts from the toe-strike domain, and ends at the

heel-strike domain.

Contact constraints. The four-domain hybrid system model of 3D multi-contact

walking, can be determined from the domain graph and contact conditions of all

domains shown in Figure 5.16. We particularly exclude the cases in which the robot

tilt over the side edge of the foot. In other words, we assume that the heel- or toe-only

contact only allows the rotation along the y−axis, rotations along other two axes are

constrained by the contact. Consequently, the holonomic constraints for each domain

are defined as:

hts(q) := (pst, φst, pnst, φ
x
nst, φ

z
nst) ∈ R11, (5.29)

htl(q) := (pst, φst) ∈ R6, (5.30)

hhl(q) := (pst, φ
x
st, φ

z
st) ∈ R5, (5.31)

hhs(q) := (pst, φ
x
st, φ

z
st, pnsh, φ

x
nsh, φ

z
nsh) ∈ R10, (5.32)

where pst, pnst, and pnsh are the position of the stance toe, the non-stance toe, and

the non-stance heel, respectively, as depicted in Figure 5.5. Given the origin of the

inertia frame, R0, depicted in Figure 5.5, the desired position for these contact points

are given in term of gait metrics–step length and step width–as

p̄st =


lt

−wstep

2

0

 , p̄nst =


lt − lstep
wstep

2

0

 , p̄nsh =


−lh − lstep

wstep

2

0

 (5.33)

Domains. Similar to flat-footed walking model, domains are determined by the lim-

iting conditions on the ground reaction wrenches and additional unilateral constraints
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of the robot configuration. We have listed these constraints for the flat-foot contact

in (5.11)–(5.15). For heel- or toe-only contacts, the constraint in (5.15) is no longer

required. In addition, the unilateral constraints are determined so that toe or heel

position of the foot should be above the ground, i.e.,

υts(q) := (pznsh) , υtl(q) := (pznsh, p
z
nst) , (5.34)

υhl(q) := (pzsh, p
z
nsh, p

z
nst) , υhs(q) := (pzsh, p

z
nst) . (5.35)

Therefore, the admissibility condition Av(q, q̇, u) for each v ∈ {ts, tl, hl, hs} is deter-

mined from the reaction force constraints and unilateral constraints accordingly.

Guards and Reset Maps. It can be noted that, from the graph shown in Figure 5.16,

the name of a given domain indicates the previous discrete event that results in the

transition to that domain. In other words, the guard conditions are specified as,

Hts→tl(q, q̇, u) := λfznst(q, q̇, u), (5.36)

Htl→hl(q, q̇, u) := λfzsh(q, q̇, u), (5.37)

Hhl→hs(q, q̇, u) := pznsh(q), (5.38)

Hhs→ts(q, q̇, u) := pznst(q). (5.39)

There is no impact or coordinate change involved with the toe-lift and the heel-lift

event, therefore, the associated reset map is an identity map for these two transitions.

The non-stance heel impacts the ground when the heel-strike event occurs. In addition

to the non-stance toe impact, there exists a change of coordinates of switching of the

stance and the non-stance foot at the toe-strike event.

With the definition of individual elements, the four-domain hybrid control system

model H C mc for the 3D multi-contact walking behavior can be modeled as in (2.1).

5.1.3.2 Virtual Constraints

For domains Dts and Dtl, we define the same velocity-modulating output as stated

in (5.20). Considering the fact that the non-flat stance foot will make it difficult
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(perhaps impossible) to directly control the forward speed of the system, there is no

velocity-modulating output defined on Dhl and Dhs. In addition, we determine the

position-modulating outputs of each domain in terms of the following output indexing

sets:

Ots = {skp, stp, sar, str, shy,wr,wp,wy, nskp} , (5.40)

Otl = {skp, stp, sar, str, shy,wr,wp,wy, nskp, nsl, nsap, nslr, nsfr, nsfy} , (5.41)

Ohl = {skp, stp, sar, str, shy,wr,wp,wy, nskp, sap, nsl, nsap, nslr, nsfr, nsfy} , (5.42)

Ohs = {skp, stp, sar, str, shy,wr,wp,wy, nskp, sap, nsap} , (5.43)

where each position-modulating output is chosen from the output library given in

Table 5.1. The rule how to select these outputs, we refer to the definition of position-

modulating outputs in Definition 2.5.

5.1.3.3 Gait Optimization

Similar to the flat-footed walking gait optimization, we incorporate a few additional

user preference constraints into the direct HZD optimization problem. In addition to

the torso movement restriction and swing leg collision avoidance constraints, we also

consider the following gait constraints:

Impact Velocity . It became apparent through testing that if the swing foot im-

pacts the ground too hard, it can destabilize the robot’s balance. Therefore, we

constrain the impact velocities of the heel to be within a reasonable range. Let

vmax
x , vmax

y , vmax
z > 0 be the maximum allowable impact velocities in x, y, and z direc-

tion respectively, then the swing heel velocities ḣnsh(q
−, q̇−) should satisfy

|ḣxnsh(q−, q̇−)| ≤ vmax
x , |ḣynsh(q

−, q̇−)| ≤ vmax
y , |ḣznsh(q−, q̇−)| ≤ vmax

z , (5.44)

where (q−, q̇−) ∈ Dhl ∩ Shl.

Ground Reaction Wrench Constraints . The ground reaction wrenches resulting from

the contact conditions cannot be infinitely large. The limitations of ground reaction
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Figure 5.17: Desired outputs of the 3D multi-contact walking gait. The vertical
dotted lines represent the moment of domain transition.

wrenches are often described as the Zero Moment Point (ZMP) constraints, which are

discussed thoroughly in [58]. In particular, we only enforce the ZMP constraints only

during the single support domain Dtl when the stance foot is flat on the ground. In

addition, we also constrain the yaw reaction moment of the stance foot, λmzsf , being

reasonably small:

‖λmzsf ‖ ≤ λmax (5.45)

where λmax is the maximum acceptable yaw reaction moment.

The 3D multi-contact walking gait optimization problem is formulated based on

the hybrid system model and virtual constraints of the walking gait according to the

standard procedure as the 3D flat-footed walking. Specifically, the number of cardinal

nodes are picked as 10, 15, 20, and 12 for the toe-strike, toe-lift, heel-strike, and toe-

strike domain, respectively. With the same goal of minimizing the energy cost of the

gait, We use the same cost function as the flat-footed walking case given in (5.23).

Because the 3D multi-contact walking gait consists of four domains, the wall time of

the optimization is often twice as much as the flat-footed gait optimization.
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Figure 5.18: Convergence of outputs y2 and ẏ2 in 4 steps with input-output lin-
earization controllers when simulating the multi-contact walking gait from rest. We
only show errors of sagittal plane outputs because these outputs have larger errors
than others.

5.1.3.4 Simulation and Experimental Results

The end result of the gait optimization is a stable multi-contact dynamic walking gait

that can be implemented on DURUS. Different from the 3D flat-footed walking gait,

the feet are no longer required to must be flat when on the ground or in the air for

the 3D multi-contact walking.

Human-like walking. The most apparent benefit of the multi-contact walking is

the longer step length than its counterpart flat-footed gaits, exhibiting more aesthet-

ically human-like behaviors, likely because the feet can stretch further out in front by

landing on their heels. As a result, the step length of this multi-contact walking gait

is 0.4 m, which is almost three times larger than the flat-footed walking gait. The

Table 5.2: A comparison of domain durations between human locomotion data
versus the multi-contact walking gait on DURUS through optimization.

Domain Human DURUS
Dts 6% 4.6%
Dtl 59% 52.4%
Dhl 18% 29.6%
Dhs 17% 13.4%
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robot walks twice as fast as the flat-footed walking with the multi-contact behavior

with a desired velocity of 0.6 m/s. In addition, the elapsed time of each gait step is

0.6559 seconds. In Table 5.2, we show that the duration percentages of each discrete

domain of the optimal gait match very closely to that of the human walking data

[12], despite forcing no explicit human-like domain interval constraints. That is, we

recover human-like behavior without explicit human reference as a consequence of the

natural dynamics of the robot.

Simulation results. Similarly, we run the DURUS 3D multi-contact walking gait

simulation starting from a disturbed rest position. As shown in Figure 5.18, the

outputs y2 and ẏ2 decreased to zero under the input-output linearization feedback

controllers, and the maximum error after impact reduced to less than 2× 10−3 after

two steps. The torques applied in this simulation is shown in Figure 5.20a, which

obviously exceeds the maximum torque limits. On the other hand, the QP based

RES-CLF controllers reduces the maximum torques within the limits, as shown in

Figure 5.20b. More importantly, both feedback controllers demonstrate exponentially

convergence of virtual constraints, as depicted in Figure 5.19 and Figure 5.19b respec-

tively. These plots of actual and desired (linearized) hip velocity also indicate that

the velocity of the robot is zero at the starting moment.

The convergence to periodic limit cycles is illustrated by phase portrait plots

of several robot joints, including un-actuated and actuated joints, in Figure 5.21.

Despite these limit cycles are totally different than that of the flat-footed walking

gait simulation, they all have a common feature: exponential convergence to periodic

limit cycles under the feedback controllers. The maximum magnitude of eigenvalues

of the Jacobian of the Poincaré return map of this gait is 0.21, which demonstrates

the stability of the walking gait.

Sustained walking in experiments. In the context of bipedal walking, a sta-

ble limit cycle implies stable walking. The limit cycles achieved experimentally on
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Figure 5.19: Tracking of the velocity-modulating output using both IO linearization
controllers and QP based CLF controllers in multi-contact walking simulation.
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Figure 5.20: Joint torque profiles when using two different feedback control laws
in DURUS multi-contact walking simulation. Here we show torques of stance ankle
pitch, usap, stance knee pitch, uskp, stance hip pitch, ushp, and non-stance ankle pitch,
unsap, considering that these joints often require larger torques than others.

DURUS and shown in Figure 5.22 exhibit a closed behavior, indicating that the multi-

contact walking behaviors are stable in both the saggital and coronal planes. It is clear

from the hip roll limit cycle that this is the joint of primary deviation from theory

through the implementation of feedback regulators. Figure 5.23 shows the synchro-

nized tiled images of the multi-contact walking gait in simulation and experiment.

From these images, we can see the heel and toe contact during the gaits, resulting

in more dynamic and human-like behaviors. A video illustrating the experimental
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Figure 5.21: Phase portraits of representative joints in the 3D multi-contact walking
simulation starting from the rest. The red 4 shows the initial point of the simulation.
The dashed lines represent the discrete jump in system states at the end of each step.
The domain transitions are illustrated with ◦, �, �, and 4, respectively.

Figure 5.22: Experimental results of multi-contact walking with DURUS in 3D,
showing phase plots of some representative joints in both in simulation and experiment
(units: rad and rad/s).
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Figure 5.23: Tiled still images from the simulation and experiment of DURUS
multi-contact walking in 3D at 0.6 m/s.

results of the 3D multi-contact walking gait can be found in [2].

5.1.4 3D Walking Efficiency

The efficiency of the walking gait is demonstrated by the specific cost of electrical

transport based on all power consumed, including the electrical power of central

control computer, motor drivers and controllers, motors and sensors. The specific cost

of electrical transport cet was calculated as in [36], where the total energy consumed

over the weight and distance traveled is represented for step i as:

cet,i =
1

mgdi

∫ t−i

t+i

(
Pel +

15∑
j=1

Ij(t)Vj(t)

)
dt, (5.46)

where Pel = 86.4W is logic power consumed by the onboard computer and motor

controllers, di is the distance traveled through the ith step, and Ij(t) and Vj(t) are

the currents and voltage recorded for the jth motor. We compute the electrica COT

numbers of each step for both flat-footed and multi-contact walking experiments of

DURUS robot. In particular, Figure 5.24 shows measurements of the electrical cost
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Figure 5.24: Electrical cost of transport (COT) for a 3D flat-footed walking exper-
iment over 800 steps with a mean cost of transport of 1.33.

Figure 5.25: Electrical cost of transport (COT) for a 3D multi-contact walking
experiment over 200 steps with a mean cost of transport of 1.02.

of transport of 3D flat-footed walking gait over 800 sustainable steps, and Figure 5.25

shows measurements of 3D multi-contact walking gait over 200 steps. The average

transport cost of DURUS when walking with flat-foot was measured to be 1.33, which

represents a significant improvement in humanoid locomotion economy. Even better,

the mean COT for DURUS during steady-state multi-contact locmotion is c̄et = 1.02,

which is 23% more efficient than experimental results obtained on DURUS for flat-

footed walking, which was previously the lowest recorded CoT on a humanoid robot.

The reported electrical cost of transport for several robots is summarized in

Table 5.3, from which we observe the robots utilizing passive elements, small motors,

or anthropomorphic designs to leverage energy savings demonstrating the lowest en-

ergy expenses (Cornell Ranger and Biped). Notably, other non-humanoid bipeds1

have been built specifically to demonstrate more efficient locomotion [20], yielding

1Specifically, the Cornell Ranger is pseudo-planarized to avoid frontal-plane tipping.
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Table 5.3: Comparison of gait efficiency on various robot platforms

Name c̄et m (kg)

Human 0.2 ·
ATLAS [20] 5 102
ASIMO [33] 3.23 52
AMBER 1 [140] 1.88 3.3
ATRIAS [110] 1.13 62
DURUS-2D [36] 0.63 31.5
Cornell Biped [33] 0.2 13
Cornell Ranger [20] 0.19 9.9
DURUS (flat-footed) 1.33 79.5
DURUS (multi-contact) 1.02 79.5

transport costs under 0.2. Additionally, robots employing HZD to achieve locomo-

tion exhibit efficient locomotion (AMBER 1 and DURUS-2D), although these are re-

stricted to walking in a 2D plane. The closest efficiency numbers come from ATRIAS–

possibly since it inspired the compliment elements in the design of DURUS–yet this

robot not humanoid in nature. Therefore, in the category of full-scale bipedal hu-

manoid robots (e.g., ATLAS and ASIMO) the electrical cost of transport on DURUS

is the lowest ever reported. By these results, we demonstrate that gait economy can

be advanced in more-traditional 3D humanoid forms, at least in part, as a result of

our scalable and energy-optimized gait generation.

5.2 DRC-HUBO – Walks with Arm Swing

Humanoid robots are designed with dozens of actuated joints to suit a variety of

tasks, but walking controllers rarely make the best use of all of this freedom. Achiev-

ing dynamic walking on humanoids is hard; their dynamics are inherently nonlinear

and their numerous actuators render their computational search spaces very high-

dimensional. As such, it’s often simplest to just ignore their arms when generating

their locomotion patterns. This can be a missed opportunity. Beyond the obvious

manipulation tasks, arms can be helpful for improving the balance [101] and econ-

omy [34] of locomotion by swinging them as part of a dynamic gait. As such, we use
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Figure 5.26: DRC-HUBO, a humanoid robotic platform with 27 actuated degrees
of freedom from its feet to its wrists.

the direct HZD optimization to fully exploit the internal dynamics of the robot. In

this section, we present dynamic and stable walking with dynamic arm swing of the

DRC-HUBO, a fully-actuated humanoid with 27 actuators (see Figure 5.26). Impor-

tantly, the humanoid swings its arms as a consequence of optimizing the dynamic gait

for energy-efficient locomotion subject to no-net-moment constraints, not by a priori

specification.

We present simulations of two different stable full-body-optimized walking gaits

(including arm motions) on a DRC-HUBO model in the DART simulation environ-

ment1. This includes an optimized startup motion to accelerate from rest to the

steady periodic gait. We also present a preliminary implementation of one of these

walking gaits on the DRC-HUBO robot using open-loop position control.

1The DART simulation environment is available at https://github.com/dartsim/dart.
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5.2.1 Hybrid System Model

The DRC-HUBO model has 27 actuated degrees of freedom from its wrists to its feet

[100]1, which are depicted in Figure 5.27. The robot has 6 actuated joints on each

leg, 7 actuated joints on each arm and 1 actuated torso yaw joint. Assume that the

floating base coordinate, Rb, is attached to the pelvis link of the robot, the generalized

coordinates of the robot is given as

q = (pb, φb, qlleg, qrleg, ψtor, qlarm, qrarm) ∈ Q ⊂ R33 (5.47)

Given the coordinate system, the equations of motion of the robot is then determined

via the classic Euler-Lagrangian equations given in (2.17).

We constrain our continuous domains to only allow flat-footed contact with the

ground as to minimize the necessary torques at the foot actuators. We thus model

the domains of DRC-HUBO as a sequence of alternating single-support domains, Dss,

as depicted in Figure 5.28. In the later discussion, we assume that the right leg is the

stance leg. During the single-support domain, only the stance foot is in contact with

the ground. The holonomic constraints of the domain then consists of the Cartesian

positions of a point on the stance foot link and the orientations of the stance foot

link being zero:

hss = (pxsf , p
y
sf , p

z
sf , φ

x
sf , φ

y
sf , φ

z
sf ) ∈ R6. (5.48)

Besides, the non-stance foot should be above the ground all the time, i.e., pznsf (q) ≥ 0.

Combining them yields the domain of admissibility condition Ass(q, q̇, u) ≥ 0, as

discussed in (2.25), where u ∈ U ⊂ R27 is the vector of actuator inputs. Therefore,

Dss = {(q, q̇, u) ∈ TQ× U |Ass(q, q̇, u) ≥ 0}. (5.49)

The switching surface is determined by the condition in which the non-stance foot

1Fingers are excluded from dynamic optimization in this study.
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Figure 5.27: Kinematic tree diagram of the DRC-HUBO platform. The float-
ing base frame Rb is located at the pelvis link. The body coordinates of the
robot consists of the left leg joints, qlleg = (ψlh, φlh, θlh, θlk, θla, φla), the right leg
joints, qrleg = (ψrh, φrh, θrh, θrk, θra, φra), the torso yaw joint, ψtor, the left arm
joints, qlarm = (θls, φls, ψls, θle, ψlw, θlw, φlw), and the right arm joints, qrarm =
(θrs, φrs, ψrs, θre, ψrw, θrw, φrw). Here, we use θ to denote pitch joints, φ to denote
roll joints, and ψ to denote yaw joints respectively.

Single-support
domain

Rigid impact
and relabel

Stance leg Nonstance leg

Figure 5.28: Flow of domains for single-support walking with DRC-HUBO.
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hits the ground. That is,

Sss→ss = {(q, q̇, u) ∈ TQ× U |pznsf (q) = 0, ṗznsf (q, q̇) ≤ 0}. (5.50)

Correspondingly, the reset map ∆ss→ss is determined by the plastic impact equation

given in (2.30). Similar to the DURUS robot that we described in Remark 5.1, a rela-

beling of coordinates takes place at the discrete domain change. With the definition

of each element, the single domain hybrid system model for DRC-HUBO flat-footed

walking is given as

H CH = {Dss, Sss→ss,∆ss→ss, FG}. (5.51)

5.2.2 Virtual Constraints

The feedback controller is determined through virtual constraints, as given in (2.39).

Due to the fact that DRC-HUBO is fully-actuated, we have one velocity-modulating

output, given as

y1,ss(q) := δphip(q) = Lc(−θra) + Lt(−θra − θrk), (5.52)

where Lc and Lt are lengths of the calf and thigh. In addition, the following position-

modulating outputs are defined:

y2,ss(q) :=
(
ya2,nsl, y

a
2,stp, y

a
2,str, y

a
2,nslr, y

a
2,nsfr, y

a
2,nsfp, y

a
2,nsfy, ψrh, θrk, φra, θlk, ψtor,

θrs, φrs, ψrs, θre, ψrw, θrw, φrw, θls, φls, ψls, θle, ψlw, θlw, φlw) ∈ R26, (5.53)

where

• non-stance slope:

ya2,nsl = −θra − θrk − θrh +
Lc

Lc + Lt
θlk + θlh,
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• stance torso pitch: ya2,stp = −θra − θrk − θrh,

• stance torso roll: ya2,str = −φra − φrh,

• non-stance leg roll: ya2,nslr = φrh − φlh,

• non-stance foot roll: ya2,nsfr = pznsf I(q)− p
z
nsfO(q),

• non-stance foot pitch: ya2,nsfp = pznst(q)− pznsh(q),

• non-stance foot yaw: ya2,nsfy = pynst(q)− p
y
nsh(q).

and other outputs are directly defined as joint angles. Specifically, the non-stance

foot roll, pitch and yaw outputs are required to be zero, so that the non-stance foot

is flat. In particular, the desired position-modulating outputs are given in terms of

4th order Bézier polynomials.

5.2.3 Optimization and Task Definitions

With the definition of the hybrid system model and the virtual constraints, We use

direct HZD optimization framework to generate dynamic locomotion that reasons

about the multibody dynamics of all degrees of freedom of DRC-HUBO, including

its swinging arms, without restricting motions to a planning template. In addition

to the base-level constraints defined in Section 4.3, we also enforced a number of

task-specific constraints in the optimization. For one, we ensure there is no net

moment about the foot (note: we do not explicitly compute a zero moment point or

enforce LIPM, see [58]). We impose impact velocity constraints of the nonstance foot,

which limits potential damage to DRC-HUBO’s drive mechanisms, as well as limits

on joint rotation, velocity, and acceleration. Further, the feet must be separated by a

minimum horizontal distance, and the nonstance foot height must exceed a clearance

function above the ground.

We hypothesized that optimizing the robotic gait for energy economy would en-

courage DRC-HUBO to swing its arms. As such, we chose an objective to minimize
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the mechanical cost of transport over the course of the stride cycle:

L(h̄, q̇(i), u(i)) :=
‖P (ui, q̇i)‖
mglstep(h̄)

, (5.54)

where mg is the robot weight, lstep(h̄) is the distance traveled during a gait which

could be determined from the desired holonomic constraints, and P (ui, q̇i) is the total

power consumed assuming no power-regeneration (see [77]) computed at each node.

The cost function of the gait generating NLP is then can constructed as described in

Section 4.3.3. The optimization problem was formulated with 20 cardinal nodes.

In this study, we use our direct collocation optimization to generate outputs for

two types of motions: startup and periodic locomotion. We first optimize an efficient

periodic gait subject to all listed constraints and objectives. Secondly, we optimize a

startup motion, which requires all initial generalized coordinate velocities (q̇0) be set

to zero, with final positions and velocities (qf , q̇f ) equal to our periodic gait.

We also tested this optimization method by generating two different periodic gaits.

The first was allowed more liberal constraints on arm-joint velocities and effective foot

size as well as slower stepping frequencies1. The result of this optimization (Gait A)

was a very natural-looking, counter-rotating arm swing, but was less likely to be suc-

cessful on hardware. The second result (Gait B) was restricted by tighter constraints

on arm-joint velocities, smaller effective foot size, and higher step frequencies. In ad-

dition to simulation, Gait B is presented with preliminary hardware results. Each

of these gaits were solved with IPOPT (using the linear solver ma57) in approximately

7-10 minutes on a laptop computer (Intel Core i7-3820QM processor, 2.7 GHz, with

12 GB of RAM).

1In open-loop position control, dynamic gaits tend to be more robust with higher stepping

frequencies than typical humanoid gaits.
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Figure 5.29: A stroboscopic image of full-body-optimized stable walking in simula-
tion (DART environment). The robot starts at rest, executes an optimized startup
motion, and runs a pre-scripted open-loop trajectory representing optimized PHZD
outputs for ten steps. Outputs are computed by inverse kinematics methods, which
solve at an average rate of 5kHz.

5.2.4 Simulation Results

We tested both Gait A and Gait B in the DART simulation environment. DART is

a wholly different dynamics engine than the equations of motion seen by the optimizer

to generate stable and dynamic gaits (for instance, DART uses LCP-based contact

solving, while the optimizer sees an explicit formulation of the holonomic constraints).

This makes for a good independent check that the optimizer is in fact generating

stable walking controllers. After executing the optimized startup sequence, the robot

was commanded to walk ten steps, playing back the trajectory generated by the gait

optimization problem.

Both Gait A and Gait B resulted in stable, dynamic walking in the DART
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Figure 5.30: Center-of-mass position over time for the simulated gait, compared
to the raw kinematic trajectory from the optimization. This pendulum-like bouncing
while walking demonstrates that the resulting gait is not restricted to a constant CoM
height, as per LIPM-based techniques.

simulator. Figure 5.29 shows a stroboscopic image of Gait B walking in Cartesian

space, while Figure 5.31 shows a tiled comparison of the optimization dynamics and

the DART simulation for both gaits. The exhibited gaits showed a bouncing center-

of-mass behavior, not restricted to constant CoM heights as demanded by many

LIPM-based methods, as plotted in Figure 5.30 for Gait B. Further, the arms in

Gait A exhibit a natural-looking counter-rotating swing.

5.2.5 Preliminary Hardware Experiments

As a test of the framework’s ability to produce stable control, we use only DRC-

HUBO’s encoders for position control feedback, and no inertial measurement. We fed

the open-loop position trajectory from Gait B to DRC-HUBO. We noticed that the

robot had a significant propensity to lean forward and fall during the beginning static

position, which we determined was likely due to modeling errors. As such, we used

the gait optimization to adjust the gait intuitively, asking it to move the feet forward

by 4cm to tune its balance. With this adjustment made, DRC-HUBO would start
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Figure 5.31: A walking tiles figure comparing the optimized gait as simulated by the
equations of motion used by the optimizer (top) to the open-loop walking controller
simulated in DART (bottom) using optimized gaits after the startup procedure has
finished: (a) Gait A and (b) Gait B. Both gaits were stable using open-loop position
control and Gait A resulted in a solution with natural-looking counter-rotating arm
swing.

Figure 5.32: Tiled images of a preliminary dynamic walking experiment with DRC-
HUBO with an optimized open-loop controller. After a dynamic startup sequence,
DRC-HUBO walked for nine steps before modeling errors caused a forward fall.
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from rest, execute the startup procedure, and walk nine dynamic steps, open-loop,

before falling forward. Figure 5.32 shows tiled images of the experimental gait.

This preliminary experiment aims to show that these generated dynamic motions

are reasonable to implement on a real humanoid robot, which are subject to physi-

cal limitations like motor saturation limits. Clearly, while stable in simulation, the

result is not very robust to the modeling errors present. Gait A, which has more

exaggerated arm swing, was also implemented on DRC-HUBO but had difficulty per-

forming the startup maneuver without falling, despite its stability in the independent

simulator. We suspect this failure is also likely due to inaccurate modeling of the

link inertias, which are more drastically accelerated in Gait A. Future work will

incorporate feedback control in order to compensate for modeling errors.

5.3 PROXI – Online Optimal Gait Generation

This section presents an application of the pseudospectral HZD gait optimization,

and—for the first time—experimentally realizes online HZD gait generation for a pla-

nar underactuated robot. We show that by taking advantage of the direct transcrip-

tion formulation and the exponential convergence of the pseudospectral method, the

reliability of the HZD gait optimization and the convergence speed are significantly

increased. As a result, generating of HZD gaits online becomes feasible with an aver-

age computation time less than 0.5 seconds, as will be demonstrated experimentally

on a bipedal robot.

5.3.1 Online Motion Planning

The goal of bipedal robots is to demonstrate dynamic and agile locomotion that

allows for navigation of terrain not approachable by wheeled robots. Yet the ability

to accommodate changes in terrain present in uncontrolled environments, however,

is a challenging problem. The difficulty arises from the fact that planning dynamic

motions that are consistent to the full body dynamics of the complex robot model is
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often computationally expensive.

Existing methods of online motion planning typically use reduced-order models,

such as the linear inverted pendulum model (LIPM) [80], to mitigate the complexity

of full body dynamics. By balancing the robot about the Zero Moment Point (ZMP)

[131], these approaches plan trajectories for the simplified model and then generate the

whole body motion by conforming the robot to these analytically tractable dynamics

[79, 100]. These simplifications, however, place stringent requirements on the design

of the robot (e.g. all joints must be actuated with no significant compliance) and

restrictions on the overall locomotion capabilities of the machine (e.g. the robot

must always walk with a constant center-of-mass height). Embracing planning and

formal control that exploits the full body dynamics of the robot is a path toward

unlocking the fully dynamic capabilities of the machine. An increasing number of

methods have been developed to generate optimal gaits using full-body dynamics

optimization [103, 92]. Some researchers also explore a middle path, in which whole

body motion is planned with the robot’s centroidal dynamics subject to full body

kinematic constraints [37]. While these methods can realize more dynamic behaviors,

the optimization requires excessive amount of time to run and may not be able to

converge reliably, and therefore, are only suitable for off-line a priori motion planning.

In the hybrid zero dynamics (HZD) framework, existing methods for generating

hybrid invariant gaits are often time-consuming, and thus must be performed off-line.

While advanced control methods [10, 61] have been developed to robustify the gait

under perturbations and switch between gaits (often encoded as motion primitives)

[104], these methods are restricted to a limited number of gaits generated in advance.

Exploiting the advantages of direct transcription formulation of the pseudospec-

tral method, we show that this approach makes the gait optimization amendable to

being solved in a fast and reliable fashion utilizing existing NLP solvers. More impor-

tantly, the proposed approach opens the possibility of generating optimal gaits online
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while considering the whole body dynamics of the robot. We experimentally evaluate

the performance of this method on a planar underactuated robot which walks on a

treadmill with varying speeds. As a result, the optimizer successfully generates gaits

with different walking speeds online to enable the robot to adjust to the changing

speed of the treadmill—this provides the first example of online HZD gait generation.

5.3.2 Hybrid System Model

We will consider a 5-link underactuated planar robot—PROXI—in this case. As

shown in Figure 5.33a, (px, pz, qsf ) represents the Cartesian position of stance foot

and the angle of stance calf with respect to fixed inertia frame respectively, and

(qsk, qsh, qnsh, qnsk) are the four actuated joints: stance knee, stance hip, non-stance

hip and non-stance knee, respectively. The floating base coordinates of the planar

robot then can be given as,

q = (px, pz, qsf , qsk, qsh, qnsh, qnsk) ∈ Q ⊂ R7. (5.55)

Because there is no compliant joint in the system, the walking of PROXI only has

one domain. During the continuous event (swinging of the non-stance leg), the normal

ground reaction forces constrain the foot to the ground, therefore, the holonomic

constraints for this single domain D is

h(q) = (px, pz) ≡ constant. (5.56)

The ground reaction forces associated with the holonomic constraints must satisfy

the friction cone constraints and the normal force must be positive. In addition, the

non-stance foot must be above the ground throughout a step, i.e., the vertical non-

stance foot position, pznsf , must be greater than or equal to zero. These unilateral

constraints form the domain admissibility condition given as

A(q, q̇, u) =

 RF (q, q̇, u)

pznsf (q)

 ≥ 0, (5.57)
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(a) Robot Coordinates (b) Hybrid System Model

Figure 5.33: Robot model and hybrid system structure of the 5-link underactuated
planar robot–RPOXI.

where u ∈ U ⊂ R4 is the vector of control inputs andR is a constant matrix capturing

the friction cone and the positive normal force condition. Hence, the domain of

admissibility is defined as:

D = {(q, q̇, u) ∈ TQ× U |A(q, q̇, u) ≥ 0}. (5.58)

For the walking of this planar robot, this switching surface is defined when the height

of the non-stance foot crosses zero. Correspondingly, the guard is defined as

S = {(q, q̇, u) ∈ D|pznsf (q) = 0, ṗznsf (q, q̇) < 0}. (5.59)

5.3.3 Virtual Constraints

The definition of virtual constraints follows from the discussion in Chapter 2. For

simplicity of implementation, we pick actuated joint angles as our actual outputs,

ya2(q) = (qsk, qsh, qnsh, qnsk), (5.60)

and desired outputs, yd2 , are defined in terms of 4th order Bézier polynomials. There

is no velocity-modulating output because the robot has underactuated point feet.
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5.3.4 Online Gait Optimization

In this section, we employ the pseudospectral gait generation formulation in Section 4.4

to design optimal gaits online. In particular, we optimize new HZD gaits subject to

a specific desired forward velocity that changes when the robot is still walking, and

apply the newly optimized gait parameters α∗ to change the walking velocity of the

robot in real time.

Objective-Oriented Constraints. In addition to all necessary HZD constraints

introduced in Section 4.3, we formulate following objective-oriented (OC) constraints

for our particular speed-regulation purpose. For periodic walking gait, the distance

travelled during a step equals the step length of the gait. Let v̄d be the desired forward

speed of the robot, the optimized gait should satisfy the following condition:

‖ lstep(qN)

T
− v̄d‖ ≤ δ (5.61)

for a small constant δ > 0, where lstep(qN) = pxnsf (qN) is the step length, and T is

the duration of one step. With a goal to apply optimized gaits to the robot hardware

on the fly, additional constraints must be enforced so that the resulting gaits are

reasonable and feasible from the viewpoint of the actual hardware. In particular, we

consider the following constraints.

• The upper body should be upright as much as possible, i.e., given qtor(q) =

−qsf − qsk − qsh, we impose that

qmin
tor ≤ qtor(q) ≤ qmax

tor . (5.62)

• There should be enough swing foot clearance to prevent scuffing, which we

constrain in such a way that the non-stance foot is always above a curve:

pznsf (q)− hdnsf ≥ 0, (5.63)

where hdnsf (q) is a pre-determined desired foot clearance curve.
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• The joint velocities and actuator torques must be within the specifications of

the motors:

−q̇max ≤ q̇≤ q̇max, (5.64)

−umax ≤ u≤ umax. (5.65)

Cost Function. With a goal to achieve energy efficient locomotion at a specific

speed, the cost function of the NLP is defined as the mechanical cost of transport of

the gait, with the running cost function given as:

L(u, q̇) :=
1

mglstep
P (u, q̇), (5.66)

with P (u, q̇) is the total power consumed on the actuated joints:

P (u, q̇) = ‖u ◦ (BT q̇)‖2, (5.67)

where B is the torque distribution matrix. The cost function of the pseudospectral

optimization is formulated via (4.51).

5.3.5 Experimental Results

In this section, we present the experimental results of the online speed regulation

optimization.

Experimental Setup. As shown by Figure 5.34, the robot is mounted on the tread-

mill utilizing a cage on which a boom is mounted. The robot is constrained to

the lateral plane to restrict the robot to up-down and forward-backward movements

only—that is, the boom only supports the robot in the lateral plane. The boom struc-

ture is freely allowed to slide on the cage in order to ensure that the motion of the

robot is not restricted in its general direction of walking. The two main processing

units: one for actuation, and the other for generating new desired trajectories, are

both mounted on the stationary gantry and connected to the robot via ETHERCAT.

140



5

1
2

3

4

Figure 5.34: Experimental setup of the speed-regulated walking of a planar un-
deractuated robot on a treadmill. The labels represents: (1) PROXI robot, (2) the
control workstation, (3) the linear boom used to constrain the robot to the saggital
plane, (4) the treadmill whose actual velocity is measured by an encoder attached,
(5) the control panel used to change the velocity of the treadmill.

The speed of the treadmill can be changed from its control panel, and the actual speed

of the treadmill is measured by an encoder, the readings are updated and sent to the

off board processing unit at the rate of 1 kHz. The online gait optimizer immediately

generates new virtual contraints and sends them to the first processing unit, waiting

to be updated at the beginning of each robotic step. The desired joint angles and

velocities are generated by the off board processing unit in real time using the optimal

gait parameters α∗ from the gait optimization, and sent to the local controller at the

rate of 1 kHz.

Nominal Gait Generation. First, we use the pseudospectral gait optimization to

generate a nominal gait off-line. In this case, we run the optimization from a set of

random initial guesses (of the decision variables). The desired walking speed of the

nominal gait is chosen to be 0.65 m/s. The offline optimization, which runs on a

laptop computer with an Intel Core i7-3820QM processor (2.7 GHz) and 12 GB of
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Figure 5.35: Snapshots of the nominal gait in simulation.
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Figure 5.36: The histogram plots of total 198 gait optimizations.

RAM, converges to an optimal solution successfully with an average CPU time of 9.5

seconds. Figure 5.35 shows a series of snapshots of the nominal gait during one step

in simulation.

Performance of Online Optimization. The measured treadmill speed serves as

the desired speed v̄d in the pseudospectral online gait optimization and is published

to a ROS message at the beginning of every step. Once the online gait optimizer,

which runs on the same laptop computer, receives an new message from the ROS

message, the optimizer runs a new optimization subject to the new desired walking

speed if the difference between the updated speed and previously optimized speed is

greater than a certain threshold. In particular, we pick both the threshold and the δ

in (5.61) to be 0.01. Once the optimization converges, new gait parameters are sent

to the off board processing unit immediately and applied to the gait controller at the

beginning of the next robotic step.
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Figure 5.37: The tracking of varied treadmill speed, v̄dtread. The dashed line repre-
sents the speed, v̄opt, of the optimazed gait.

In order to achieve faster convergence, we enabled the warm start feature of the

optimizer in IPOPT where we used the results from the previous optimization as the

initial guess for the next optimization. Further we provided the exact Hessian of

the problem using the analytical second order derivatives of all constraints and cost

function instead of the Quasi-Newton approximation of the Hessian. By doing so, the

optimizations converged faster and more reliably. Figure 5.36 shows the histogram

figures of the CPU time spent and total number of iterations of each optimization.

The average CPU time spent of the total 198 gait optimizations during the exper-

iment of 328 seconds is 0.4964 second, which is less than the average time of one

step. There are only two occasions when the optimizer ran for more than 2 seconds.

Furthermore, the online optimizer converged successfully to an optimal solution in

all occurrences within the maximum allowed iterations of 100. In fact, the average

number of iterations is just about 13 with the maximum number being 67.

For the experimental results reported in this thesis, we started from the nominal

gait and then changed the treadmill speed from its control panel within a range

from 0.43 m/s to 0.97 m/s. The treadmill speed was slowed down and speeded up
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Figure 5.38: The gray areas represent desired outputs of optimal gaits at different
walking speeds generated by the online optimizer. The blue lines with red circles
show the desired outputs of the nominal gait.

Table 5.4: Performance comparison of online gait optimization with different meth-
ods of computing the Hessian (Total number of optimizations is: 198.)

Method
CPU Time (sec) NO. of Iteration

Average Std. Average Std.
Exact Hessian 0.4954 0.3997 13.1414 10.13
Quasi-Newton 0.8927 0.8749 44.5657 36.60

multiple times, as the blue line shown in Figure 5.37. The dashed red line showed

that the online optimizer generates new gaits that closely tracked the desired walking

speed. The video demonstration of this experiment can be found in [3].

The performances of the online gait optimization when providing the exact and

Quasi-Newton approximation of the Hessian are also studied. The comparison results
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Figure 5.39: Snapshots of optimal gaits generated from the online optimizer at
different walking speeds.
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Figure 5.40: Phase portraits of optimal gaits at different walking speeds generated
by the online optimizer. The color bar indicates the speed of the gaits, where darker
lines represent slower speeds and lighter lines represent faster speeds.

145



are shown in Table 5.4, in which the optimizer spent more time and required more

iterations to converge when using Quasi-Newton approximation. Further, in 50 of

total 198 occurrences, the optimization stalled at an almost feasible solution, which

is indicated as the “Restoration Failed” in IPOPT outputs1. These failures do not

occur when we were using the exact Hessian for the problem.

Gait Performance. With the proper objective-orientated constraints presented in

Section 5.3.4, all gaits generated from the online optimizer are physically realizable

on the robot hardware. Figure 5.39 shows the snapshots of the gaits during the speed

regulated walking experiment. Figure 5.38 shows the range of desired outputs of

all gaits generated. These gray areas are then compared to the desired outputs of

the nominal gait, which shows very good similarities. Figure 5.40 shows the phase

portraits of robot joints for all gaits generated, where darker lines represent the slower

gaits and lighter lines represent the faster gaits. It can be noted that each gait

produces periodic orbits for the robot joints. Also, the size of the orbits is expanded

when the speed of the robot is increased, which shows that the optimizer generated

gaits with faster joint velocities and wider joints movements as the speed increased.

These results demonstrate that the pseudospectral method empowers a fast and

reliable gait optimization method which is, for the first time, capable of generating

HZD gaits online. We experimentally validated the optimization method on a planar

5-link underactuated robot, PROXI, to generated gaits online subject to varying de-

sired walking speeds. The online full body dynamics optimizer successfully optimized

energy-efficient walking gaits in average of 0.5 seconds, while satisfying all dynamical

and kinematics constraints.

1http://www.coin-or.org/Ipopt/documentation/node35.html
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5.4 Summary

These applications that we introduced in this chapter show that the hybrid zero

dynamics based direct collocation optimization approaches provides a generalized

framework for designing dynamic walking gaits for legged robots. The particular for-

mulation of constraints using defect variables enables the problem can be scaled to

very high dimensional system, as shown in both DURUS and DRC-HUBO applica-

tion. Particularly in the case of DURUS, the optimization still manages to converge

even in the presence of many degrees of underactuation and multiple domains of

locomotion. More importantly, the fact that the optimal solution is based on dis-

tributed information due to the very sparse formulation yields reliable convergence

and much more robustness to initial guess. Especially, the advanced pseudospectral

optimization even makes it feasible to solve the whole body dynamics gait optimiza-

tion online so that new gaits can be updated to accommodate the changes in external

environment, as we seen in the last application.

147



CHAPTER VI

OPTIMIZATION PERFORMANCES

In the previous chapter, we applied the direct collocation optimization on several real

world examples to successfully generate optimal walking gaits of different configu-

rations. Through these example we have shown that the proposed methods can be

scaled to very high dimensional systems, even in the presence of unactuated compo-

nents. Yet, it is an inevitable step to measure overall computational performances of

the proposed methods. In this chapter, we will try to answer the following questions

regarding the direct HZD gait optimization problems presented in Chapter 4:

• How accurate a solution of the problem is to the exact solution of the system?

• How reliable these algorithms perform in case of bad initial guesses?

• How large the problems are and how fast they converge to an optimal solution?

If not specified otherwise, all NLP evaluations in the following discussion are

solved using IPOPT within MATLAB 1 on a laptop computer with an Intel Core i7-

6820HQ processor (2.7 GHz x 8) and 8 GB of RAM. Albeit the computer is able to

perform parallel computation, we only use a single core for the computation for the

reason that the results will not affected by the particular algorithms used by parallel

computing, and therefore, more consistent. In addition, we use the linear solver ma57

for IPOPT and set the feasibility tolerance to be 1× 10−6.

1The MATLAB interface for IPOPT: https://projects.coin-or.org/Ipopt/wiki/

MatlabInterface.
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6.1 Solution Accuracy

The solution obtained via the direct collocation optimization is an approximation

of the actual solution of the system by definition. However, it is often desired that

this approximation is an accurate estimation of the system solution within a certain

tolerance. There are two main measures to represent the accuracy of a discrete

solution. Suppose that x(t) be the exact solution of the system and x(i) be the

computed discrete state variables at time ti from the optimization, the global error

at a point ti+1 is the difference between x(ti+1) and x(i+1), and the local error is the

difference between the compute solution x(i+1) and the exact solution x(ti+1) that

passes through x(i). Typically, if the global error of a solution is O(hp), then the local

error is O(hp+1). Thus, we particularly estimate the local error of the solution from

the direct collocation optimization to assess the solution accuracy in this chapter.

6.1.1 Error Estimation

We start with representing the approximated solution using the discrete state vari-

ables in the case of the local direct collocation method. Suppose i ∈ {1, 3, . . . , Nv−1}

be the index of a interior node, then the approximated solution x̃(t) within two car-

dinal nodes, i.e., ti−1 ≤ t ≤ ti+1, is given as

x̃(s) = C0 + C1s+ C2s
2 + C3s

3 (6.1)

where s = (t− ti−1)/∆ti) ∈ [0, 1] is the scaled time. The coefficients are determined

by the boundary state Variables:

x̃(0) = x(i−1), ˙̃x(0)= ẋ(i−1), (6.2)

x̃(1) = x(i+1), ˙̃x(1)= ẋ(i+1). (6.3)

To calculate the local error, we consider a single integration step between two

neighboring cardinal nodes ti−1 ≤ t ≤ ti+1 . Specifically, we consider the affine
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control system of the full order dynamics in (2.20), and the closed-loop dynamics

f clv (x, αv) obtained via the feedback controllers computed from the virtual constraints

parameters. This is another advantage of considering the feedback controllers in the

NLP, so that the computed control is correct without addition assumptions. Then

the exact solution at point ti+1 that passes through x(i−1) is:

x(ti+1) = x(i−1) +

∫ ti+1

ti−1

f clv (x(t), αv)dt. (6.4)

Note that the computation involves the exact solution of x(t), which is unknown.

Here, we use the approach that discussed in [19] to estimate the local error of interval

i. That is, we consider the approximation of the solution x̃(t) in (6.1) to approximate

the integration. Therefore, we have

x̂(ti+1) := x(i−1) +

∫ ti+1

ti−1

f clv (x̃(t), αv)dt, (6.5)

and define the absolute local error on a particular time interval i as,

ei = |x(i+1) − x̂(ti+1)|

= |x(i−1) +

∫ ti+1

ti−1

˙̃x(t)dt− (x(i−1) +

∫ ti+1

ti−1

f clv (x̃(t), αv)dt)|

=

∫ ti+1

ti−1

| ˙̃x(t)− f clv (x̃(t), αv)|dt. (6.6)

To calculate this error, we numerically integrate the error dynamics | ˙̃x(t)−f clv (x̃(t), αv)|

over the time interval between two cardinal nodes, using MATLAB’s ODE solver

ode451, and compare the states values resulted from the NLP at all collocations

points. From the definition of the absolute error, the maximum relative local error at

the mesh i is defined as the maximum relative error over all components k ∈ [1, nv]:

εi ≈ max
k

ei,k
ωk + 1

, (6.7)

1In particular, we set the relative error tolerance RelTol and the absolute error tolerance AbsTol

to be 1× 10−12.
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where the scaling weight

ωk = max
i∈[1,··· ,Nv−1]

{|x(i)
k |, |ẋ

(i)
k |} (6.8)

defines as the maximum value of the kth state variable or its first-order derivative

over all nodes within a domain.

6.1.2 Numerical Results

For simplicity of calculation, we assess the solution accuracy using two different di-

rect collocation methods–local direct collocation and pseudospectral method– for the

planar PROXI robot (see Section 5.3.1 for the model description). The estimated

errors of solution are computed for direct collocation NLPs with different number of

collocation nodes. Specifically, the initial guess for the NLP is determined in the same

way for each trial, given as follows: the discrete states, torques, etc., are obtained via

interpolating by simulation results of a walking gait that does not satisfy the current

physical constraints, and the initial guess of virtual constraints parameters are given

as zero. In addition, the same physical constraints are enforced for all tests.

Local Direct Collocation. The results of the local direct collocation using two

different node distribution schemes are shown in Table 6.1 and Table 6.2. The number

of nodes is the total number of collocation nodes, Nv +1, including both cardinal and

interior nodes.

It can be seen from Table 6.1 that the discretization error reduces when there are

more collocation nodes. It can also be noticed that the discretization error does not

reduce further significantly when the total number of nodes exceeds a certain value,

e.g. 49, which corresponds to the number of cardinal nodes is 25. A similar phe-

nomenon can be seen in the final values of the cost function for each trial: its changes

become negligibly small with more number of collocation nodes. On the other hand,

the total run time of the NLP escalates noticeably when more collocation nodes are

used in the problem. We also notice that the number of iteration tends to increase
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Table 6.1: Solution accuracy of local direct collocation optimization when using the
CGL node distribution.

Nv + 1 max(εi) Runtime(s) Iteration Cost
9 2.6000× 10−3 0.86626 46 0.051557
19 1.1508× 10−4 2.0375 62 0.052609
29 2.0688× 10−5 3.0186 62 0.052747
39 7.5922× 10−6 4.5471 73 0.052723
49 5.9023× 10−6 5.5129 75 0.052737
59 4.8004× 10−6 13.502 124 0.052753
69 3.9683× 10−6 9.6407 96 0.052741
79 3.3533× 10−6 12.8 90 0.052747
89 2.8189× 10−6 20.116 151 0.052751
99 2.3507× 10−6 13.81 98 0.052747

Table 6.2: Solution accuracy of local direct collocation optimization when using the
uniform node distribution.

Nv + 1 max(εi) Runtime(s) Iteration Cost
9 3.5966× 10−3 1.2876 74 0.052753
19 1.7699× 10−4 2.9308 72 0.053664
29 3.2316× 10−5 2.9287 63 0.053216
39 9.8434× 10−6 10.602 116 0.052975
49 4.0203× 10−6 7.3709 108 0.052844
59 3.0967× 10−6 9.9454 119 0.052775
69 2.596× 10−6 10.808 111 0.052742
79 2.2136× 10−6 11.617 104 0.052726
89 1.8851× 10−6 13.562 102 0.052723
99 1.5809× 10−6 17.383 121 0.052727

albeit very slightly. This is because the total number of optimization variables and

constraints grows proportional to the number of collocation nodes, therefore, the

optimizer consumes more time to evaluate these constraints functions. This obser-

vation shows that using more collocation nodes does not yields better approximated

solutions, instead it increases the total computational burden significantly.

A same observation can be made from Table 6.2 in the case the collocation nodes

are uniformly distributed. When comparing Table 6.2 with Table 6.1, the maximum

estimated approximation error of the uniformly distributed collocation is larger than
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that of the CGL distribution when the total number of nodes is small, and similar

when the total number of nodes is large. Hence, the CGL distribution provides better

approximation when using small number of collocation nodes, however, has little effect

on the approximation accuracy when there is enough number of nodes used. This

shows that placing more points at two ends will benefit the accuracy of the solution

when there is less collocation nodes.

The total run-time and total number of NLP iterations to converge in two dis-

tribution schemes does not differ a lot in general. There is a few examples in which

the run time or the iteration number differs in two cases, however, we believe that is

mostly due to the random initial guess seeded to the NLPs. Despite using different

numbers of collocation nodes, we observe that the final values of the cost function

are almost the same in both distribution schemes. This shows that the local direct

collocation optimization has a very good robustness property, which we will discuss

more in the later section.

Pseudospectral Optimization. In the case of the pseudospectral method, we use

the similar formula in (6.7) to estimate the local discretization error of the NLP so-

lution. Different from the local direct collocation method, the approximated solution

is given by the Lagrange polynomials as shown in (4.44), and the time interval is

between each two neighboring collocation nodes instead of two cardinal nodes. The

numerical results of the pseudospectral method are shown in Table 6.3.

As expected, solutions of the pseudospectral optimization exhibits much better

accuracy even with very small number of collocation nodes. The estimation error can

be reduced around 1× 10−8 with enough nodes, which is very difficult to obtain with

the local direct collocation methods. Due to the better accuracy, we normally have

smaller size of problem with the pseudospectral methods, and thus the wall time

of each iteration becomes shorter. However, this approach tends to less robust to

bad initial guesses because it uses a single high order polynomial to approximate the
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Table 6.3: Solution accuracy of the pseudospectral optimization.

Nv + 1 max(εi) Runtime(s) Iteration Cost
6 1.9672× 10−4 1.4679 126 0.1483
9 1.5330× 10−5 2.8681 139 0.0640
12 6.9968× 10−6 5.9900 231 0.0576
15 5.6788× 10−6 8.7357 253 0.0525
18 4.6710× 10−7 5.4900 145 0.0527
21 4.0865× 10−8 6.2709 146 0.0527
24 1.7321× 10−8 8.9091 175 0.0529
27 1.4928× 10−8 8.3726 149 0.0528

solution, and thus relies on the global information rather than distributed information.

This can be seen from the total number of iterations, which are typically greater than

its counterpart local collocation method. Moreover, when using small number of

collocation nodes, e.g., 6 or 9, the final value of the cost function is greater than the

local methods. The total run time of the pseudospectral methods seems to be in a

similar order of the local methods despite it often takes more iterations to converge.

6.1.3 Summary

It is a mandatory requirement of a NLP formulation that the discrete solution ob-

tained from the direct methods should be sufficiently close to the exact solution of the

system. Numerical results in this section show that both collocation techniques yield

sufficiently small discretization errors with enough collocation points are imposed.

Especially the pseudospectral methods exhibits an excellent accuracy which makes it

possible to reduce the size of the NLP problem.

In addition, the error estimation approach can be utilized to refine the colloca-

tion meshes of the NLP in the local collocation schemes [19, 98]. Admittedly, this

process often requires extensive and iterative evaluations of discretization errors in

order to obtain slightly more accurate solutions. Hence, we do not perform any mesh

refinement algorithm in current formulation by assuming that the resulting solutions
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are accurate enough for our purpose. This leads to choosing the number of collo-

cation nodes becomes very important. All factors should be considered to balance

the trade-offs between the solution accuracy and computational efforts. For example,

one possible good choice in the above tests would be 25 of cardinal nodes, because it

yields an acceptable approximation accuracy for the solution, and at the same time,

it requires reasonably little computational effort.

6.2 Robustness Analysis of NLP Convergence

It is very important for a direct NLP formulation to converge reliably regardless of

good or bad initial guesses. Though there is no formal guarantee that a direct HZD

optimization problem converges to a local minima when starting from arbitrary initial

guesses, it is required that the optimization problem should be able to find a feasible

solution in most instances.

6.2.1 Robustness Measurement

In the previous section, we briefly discuss the robustness of the direct collocation

methods while seeding with relatively good initial guesses. In those experiments,

we obtain the initial guess from the simulated solution of a walking gait that does

not satisfy current physical constraints. To evaluate the global robustness of the

optimization, here we seed the NLPs with arbitrary random initial guesses at each

trial. Typically a NLP that uses direct collocation methods has a very large size of

decision variables, which causes a certain difficulties to generate initial guesses for the

problem. A straightforward approach could be just simply assigning arbitrary random

values to all variables, however, some assigned values might not lie in the feasible

regions of particular decision variables, and as a consequence, could be modified

by the NLP solvers to make sure they are all within their boundary limitations.

For our tests, we use a systematic procedure to generate partially-random partially-

deterministic initial guesses for the problem. First, the time duration of domains, as
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well as step features such as step length or width, are chosen as some reasonable fixed

values 1 because they can be approximated easily by our own experiences. The state

variables (q(i), q̇(i)) and control inputs u(i) are chosen randomly within the boundaries.

Suppose that w
(i)
j is one of these variables with a lower and upper boundary of wmin

j

and wmax
j , then at each node, we set the random initial guess of this variable to be

w
(i)
j = (wmax

j − wmin
j )× r + wmin

j (6.9)

where r ∼ U([0, 1]) is an uniformly distributed random number in the interval [0, 1],

which we use MATLAB’s rand function to generate for every variables at every single

node. The virtual constraints parameters, α
(i)
v , are determined in a similar manner

within a specified range of [−1, 1]. Other optimization variables, such as joint accel-

erations q̈(i) and ground reaction wrenches λ
(i)
v , are then set to be zero because their

upper and lower boundaries are often difficult to determine a priori. In practice, we

often set reasonably large boundary values for these variables to make sure that the

optimization will not be jeopardized by some unreasonably small boundary values.

Seeding with different sets of initial guess that are randomly generated at every

trial, we run the gait optimization 100 times subject to same physical constraints. For

each trial, we first check if the problem converges to a feasible solution before it reaches

the maximum allowable number of NLP iterations. If the problem converges, we then

analyze the following metrics: the total number of iterations, the final cost value, and

the correlations between other solutions. The correlations between different solutions

are computed via the correlation coefficients of two variables, which is a measure

of their linear dependence. If the coefficient is 1, then they are perfectly positive

correlated; there is no correlation between these two variables if the coefficient is 0,

and perfectly negative correlations if this number is −1. Considering that the solution

1These values are not obtained from any previous walking gaits, instead approximately chosen

from human walking patterns.
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of whole NLP variables are often very large and their correlation coefficients might not

be able to correctly represent the similarity between two resulting gaits, we instead

compute the coefficients between the virtual constraints parameters of two solutions

as a mean to examine their similarity. Numerical results of several robustness tests

are presented in the next section.

6.2.2 Numerical Results

From the computational point of view, we first use the simplest model that we

discussed—PROXI—to conduct our numerical evaluations of robustness. In particu-

lar, we set the maximum number of iterations of the NLP solver to be 2000, and the

convergence tolerance to be 1× 10−6 (see Eq. (6) in [132]). The number of colloca-

tion nodes for the local direct collocation and pseudospectral methods are set to be

29 and 15, respectively, and same physical constraints are enforced for both cases.

Local Collocation Optimization. We start with the local collocation method.

The result shows that in 79 out of 100 trials, the optimization problem converges to

an optimal solution. More importantly, the final costs of all converged solutions are

the same, despite they are obtained by seeding with different initial guesses. Fur-

ther the correlation coefficients between these optimal solutions are 1, which show

that the problem actually converges to an exact same optimal solution even though

the problem starting from different initial points at each trial. It is difficult to for-

mally verify whether it reaches a global optimal solution, however, this observation

still demonstrates the excellent reliability and robustness of the direct hybrid zero

dynamics optimization formulations. It shows that the local collocation scheme is

able to find a “very good” local minima in most scenarios regardless of the initial

guess. The failed trials indicate that the location of the starting point does affect the

final convergence to some degree. The outputs from IPOPT solver further reveal that

the constraint violations in these cases are less than the tolerance, however, the dual
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infeasibility condition is not satisfied within the given tolerance. That is, these are

feasible but not optimal solutions.

Unlike the final convergence properties, the total number of iterations and corre-

sponding CPU run time are affected by different initial guesses seeded to the opti-

mizer. The total number of iterations varies from 147 to 1837 and the total run time

range from 6.13 seconds to 74.82 seconds, respectively, for those cases in which the

problem converges to the same optimal solution. Moreover, the average number of

iterations is 322 with standard deviation of 218, and the average total CPU time is

16.62 seconds with standard deviation of 10.19 seconds. It is understandable that the

computational performance has such a large deviation considering the fact the initial

guesses are randomly selected without any prior knowledge of a feasible solution.

Pseudospectral Optimization. We also evaluate the pseudospectral method that

uses global orthogonal collocation schemes. In previous section, we observed that the

pseudospectral method appears to be less robust than the local collocation method.

However, our more extensive robustness test indicates otherwise. Under the same

circumstances, the pseudospectral optimization problem converges to an optimal so-

lution in 87 out of the total 100 trials. Similar to the local methods, the constraint

violations in these “failed” cases are quite small but the dual infeasibility conditions

are not satisfied.

We observe that there are three different values appears in the final cost of these

optimal solutions, indicating that the problem might converges to different solutions

when seeding with different initial guesses. Notwithstanding, the numbers of occur-

rences of these three optimal solutions are 82, 4, and 1 respectively, indicating that

the problem converges to a same optimal solution in most instances.

Further, the global method uses almost twice as much iterations in order to con-

verge in most cases, yielding an average of 778 iterations. The average CPU run time

of 17.15 seconds, which show that the average evaluation time of the pseudospectral
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optimization is about the same as of the local collocation, despite requiring more it-

erations. The reason behind this result is that the problem size of the global method

is only about the half of the local collocation problem.

Testing on High Dimensional Systems. In previous two tests, we use a planar

robot for simplicity. It is necessary to evaluate the robustness of the direct HZD

optimization for higher dimensional systems with more complex nonlinear dynamics.

For this goal, we particularly test the robustness of the local direct collocation opti-

mization for the two-domain 3D flat-footed walking of DURUS robot. In particular,

we set the numbers of collocations nodes to be 15 and 25 for the single-support and

double-support domains, respectively. The maximum allowable number of iterations

in this case is set to 3000.

Similar to the local collocation optimization of planar robots, the problem still

converges to an optimal solution in 79 out of 100 trials despite the complexity of the

full humanoid model dynamics. Different from the planar case in which the problem

converges to an universal solution, the gait optimization of DURUS resulted in nine

different optimal solutions. Unfortunately, the “global” convergence property that

exhibited in the planar case does not extend to more complicated 3D humanoids. An

interesting fact is that some solutions are more frequent to obtain, where some only

occur once. For instance, the numbers of occurrence of the trials that corresponds

to the cost value 0.1523, 0.1773, and 0.1861 are 17, 24, and 24, respectively. On the

other hand, there are four instances in which the optimal solution only occurs during

the 100 trials.

In particular, the total number of iterations varies from 464 to 2845 and the total

run time range from 174.06 seconds to 1318.2 seconds, respectively, for those cases

in which the problem converges to the same optimal solution. Moreover, the average

number of iterations is 1080 with standard deviation of 533, and the average total

CPU time is 511.5 seconds with standard deviation of 286.2 seconds.
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6.2.3 Summary

In this section, we tested the robustness to two direct collocation methods under

much harsher conditions. Fortunately, our methods still successfully converged to in

most tests regardless, exhibits a excellent robustness performance.

In principle, it is very difficult to have a formal guarantee of global convergences

from arbitrary starting points for a NLP problem, especially when the problem subject

to complex nonlinear constraints. This is the case for the direct HZD optimization,

for the reason that this method optimizes the interactions of the full body nonlinear

dynamics of the robots hybrid system model, without restricting motions to simpler

more-tractable dynamics (e.g., inverted pendulum models). Even the planar robot—

which we consider as the ”best case scenario”—has a state space dimension of 14,

not to mention the full-size underactuated humanoid, DURUS. Even more, the way

we generate our random initial guesses are quite intensive, and we believe that the

results in this section are enough to demonstrate the reliability of the proposed direct

HZD optimization methods.

Admittedly, there are some discrepancies in robustness among different methods

used and different models tested. To sum up, the local collocation method appears

to be more robust than the global method, as shown in both the final cost and the

number of iterations it takes. Nonetheless, the pseudospectral method has its own

advantage in the computational time due to the smaller problem size. We have also

observed an degradation of robustness in the local collocation method with more

complex systems. Considering that the systems involves two discrete domains and

also consists of compliant elements in the mechanical design, 80% of success rate is

still an impressive result in this regard. After all, we do not expect our optimization

methods are robust to arbitrary random initial guesses. In practice, it would not be

too difficult to find some initial guesses that are much better than those randomly

generated ones we used in our tests.
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6.3 Computational Efficiency

Arguably the most important performance measure of a nonlinear optimization prob-

lem would be its computational effectiveness. While there is no formal mean to

measure the computational efficiency of a NLP problem, the total CPU time used to

converge is a very commonly used metric. The total number of iterations and the

number of function calls are also considered in the evaluation of the effectiveness.

In this section, we first compare the computational performance against other

gait optimization methods, mostly against the direct shooting methods. To have

reasonable comparisons as much as possible, we perform all optimization evaluations

on the same laptop under the same hardware and software environments. Indeed,

there are many possible reasons that might affect the results. As a consequence, it

would be very difficult to have completely commensurable comparisons between two

different methods. Notwithstanding, the following results demonstrates the better

computational efficiency of the direct HZD optimization methods over other methods.

6.3.1 Comparison versus the Single Shooting Optimization

We start with comparing the computational performance between the direct collo-

cation methods and the traditional single shooting optimization. In particular, the

single shooting optimization is formulated as described in Section 3.2.2 for a 5 link

planar biped with a single continuous domain hybrid system model. Then we use

the local direct collocation methods to formulated the HZD gait optimization for the

same robot model subject to same physical constraints.

Specifically, both optimization problems are tested with MATLAB’s fmincon NLP

solver instead of IPOPT in these tests. We use the gradient based interior-point

algorithm, which is the same algorithm that is used in IPOPT solver [132]. Typically,

fmincon is more suitable for general purpose nonlinear constrained optimization,
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Table 6.4: Comparison results between the (local) direct collocation optimization
vs the single shooting optimization.

Method CPU time (s) Iteration Function calls
Single shooting (fmincon) 162.59 21 612
Direct collocation (fmincon) 5.17 23 55
Direct collocation (IPOPT) 1.60 47 59

whereas IPOPT is more efficient in solving large-scale sparse problems. We also in-

cluded the results of the direct collocation optimization using IPOPT as a reference.

Considering that the single shooting method is not robust enough to handle ran-

dom initial guesses, we take the parameters from previous results as the initial guess.

The initial guess of the direct collocation optimization is determined in a same man-

ner. Moreover, we set 10 collocation intervals for the direct collocation optimization,

and at the same time, physical constraints are checked in 10 uniformly distributed

points along the trajectory in the single shooting optimization. The comparison re-

sults are shown in Table 6.4.

The results show that the direct collocation method has approximately 30 to 100

times faster than the single shooting method depends on which solver has been used.

In addition, the total numbers of function calls are significantly less due to the fact

that the analytic first order derivatives of the cost and constraints are provided to

the solvers in the direct collocation optimization. We also noticed that the number

of iterations is in fact very close in two cases. It appears to be that the capabil-

ities of explicitly solving the pre-impact states and the closed form solution of the

two-dimensional zero dynamics benefit the overall convergence of the single shooting

optimization. Unfortunately, the same approach cannot be extend to general hu-

manoid robots. Besides, using numerical finite difference methods to compute the

gradient information requires extensive amount of computing resources. As a result,

the overall CPU time used in the single shooting optimization is much more than

the collocation method. Therefore, even the partial zero dynamics can be computed
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in closed form as it appears in many fully actuated humanoids [104, 38], the single

shooting optimization requires incredible amounts of computing time. Interestingly,

even though the number of iterations is in fact greater when using IPOPT, yet still

it uses the least amount of wall time. This indicates the fact that IPOPT performs

better for large-scale sparse problems.

6.3.2 Comparison versus Multiple Shooting Optimization

As stated in Section 3.2, the single shooting method lacks necessary reliability to be

applied to more complex system, particularly the degree of underactuation exceeds

one. In [64], we demonstrated that the direct multiple shooting method can increase

the reliability of the problem. For simple applications, such as the one we used

in previous section, the convergence speed of the multiple shooting optimization is

on par with that of the single shooting algorithm. In this section, we evaluate the

computational performances of the multiple shooting optimization for some slightly

more complex system, and compare the computational performance with the more

advanced direct HZD optimization method.

In particular, we use the DURUS-2D model that we introduced in Section 3.3.2.

The walking behavior consists of two continuous domains due to the passive springs

in the mechanical design. The robot has three degrees of underactuation during the

single support phase, which corresponds to dimensions of zero dynamics of six. The

multiple shooting optimization of DURUS-2D is formulated as in Section 3.3.2 and

Ref. [64]. A direct HZD gait optimization problem of DURUS-2D is also formulated

using the (local) direct collocation method subjects to same set of physical constraints.

For each optimization, we set the number of shooting grids and the collocation nodes

as 15 and 25 for the single-support and double-support domain, respectively.

Similarly, we use fmincon for both optimization, and provide the reference results

of IPOPT at the same time. The results in Table 6.5 show that the direct collocation
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Table 6.5: Comparison results between the (local) direct collocation optimization
vs the multiple shooting optimization.

Method CPU time (s) Iteration Function calls
Multiple shooting 5027.45 1155 1624687
Direct collocation (fmincon) 84.30 44 123
Direct collocation (IPOPT) 41.47 207 845

method completely outruns the multiple shooting methods speed-wise: the CPU time

elapsed in the multiple shooting optimization is approximately 60 to 100 times greater

than its rival—the direct collocation method. In addition, the number of iterations

and functions calls are notably more than that of the collocation method. Apparently,

the forward integration of zero dynamics using explicit Runge-Kutta methods is much

less reliable than the implicit Runge-Kutta methods used in the collocation methods.

6.3.3 Comparison versus DIRCON

Due to the nonlinear complexity of the humanoid dynamics, many trajectory op-

timization of bipedal locomotion gait tends to use simplified reduced dimensional

model, e.g. LIPM [42], instead of the whole body dynamics. In such applications, the

system dynamics is linear and relatively simple. An notable exception is DIRCON,

developed by Posa at el. at, which optimizes an open loop trajectory for the con-

strained whole body dynamics [103, 102] and then an constrained LQR-based feedback

controller is formulated to stabilize the optimal trajectory. Similar to our proposed

optimization, DIRCON also uses the Hermite-Simpson local collocation method. In

[102], it is reported that this framework can generate an optimal trajectory for a 3D

Atlas robot in ten minutes to two hours on a desktop computer.

In this section, we use our hybrid zero dynamics based direct collocation gait op-

timization formulation to generate dynamic walking gaits on the same 3D humanoid

model of Atlas. A preliminary simulation result of a generated optimal walking gait

of Atlas is illustrated in this section, as well as the typical wall time of the gait op-

timization problem elapsed is given, providing a simple comparison versus DIRCON.
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There are many other factors, for example, hardware/software environments and dif-

ferent constraints used or different number of collocation nodes defined, would affect

the results of the optimization. Hence this comparison should not be considered as

the strict evidence of one formulation is superior than the other. We consider the

comparison as an extension of our algorithm for some popular humanoids, e.g., Atlas.

In this example, based on the Atlas robot model described in [85] we consider a

3D humanoid model with six degrees of freedom in each leg. Including the floating

base coordinates, this model has 18 total degrees of freedom. Similar to the designed

motion in [102], we consider a walking with 3 different contact conditions, resulting

in a multi-domain hybrid system model with a directed cycle Γ = {V,E}, given as

V = {ts, tl, hs} (6.10)

E = {ts→ tl, tl→ hs, hs→ ts} (6.11)

where each vertex is defined similar to the DURUS multi-contact walking case (see

Figure 5.16). The detailed construction of the hybrid system model and correspond-

ing virtual constraints follows the discussion in Chapter 2, and the direct HZD gait

optimization problem is formulated accordingly as in Section 4.3. In particular the

number of cardinal nodes are picked as 8, 15, and 8 for each domain, respectively.

We also set the objective function to minimize the mechanical cost of transport of

the walking gait, which is given as the total mechanical work done by the actuators

divided by the weight of the robot and the distance traveled during one step.

The gait optimization problem converged to a feasible solution after 988 seconds

and 744 iterations when uses randomly generated initial guess. These numbers re-

duced to 269 seconds and total of 246 iterations when seeded with relatively “good”

initial guess taken from the previous results. We also show the simulation result of

one particular optimal walking gait in Figure 6.1. The step length of this gait is

0.48 m, the time duration of a complete step is 0.94 seconds and the mechanical cost
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Figure 6.1: Tiled still images from the simulation of Atlas multi-contact walking in
3D at 0.51m/s.
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Figure 6.2: Periodic limit cycles of right leg joints of the Atlas 3D multi-contact
walking gait in the simulation under the feedback control defined in (2.39). We omit
the symmetric joints for simplicity.

of transport (COT) is 0.201. Because in the simulation we use the same feedback

controllers as used in the optimization via the linear output dynamics constraints,

there is no increase of the COT numbers in simulation. When using QP-based CLF

feedback controllers in the optimization, we noticed a slight reduction in the COT

number, yielding 0.19. Compared to the result in [102], the gait discussed in this

work has slower walking speed but marginally smaller cost of transport number.

In addition, the periodic limit cycles obtained from the simulation over 20 steps

are shown in Figure 6.2. Considering that the gait is symmetric, we only show the

phase portraits plots of right leg joints. Figure 6.2 demonstrates that the resulting
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gaits is periodic and stable.

6.4 Performance Summary of Direct Collocation Methods

Besides the initial guess, the run time and convergence of the optimization problem are

also affected by the reachable set of the optimization variables as determined by the

boundary values and constraints. Hence in this section, we evaluate the performances

of the optimization with respect to different initial guesses and different boundary con-

ditions, by which the reachable set of the problem is determined. Table 6.6 shows

some statistical results of the (local direct collocation) optimization of 3D flat-footed

walking with DURUS using different initial guesses and constraints1. There are two

different seeds: a random generated initial guess and an initial guess obtained from

a walking gait that does not satisfy all constraints. We also considered three dif-

ferent conditions of boundary values: a “relaxed” condition indicates the reachable

set of optimization variables set to be large, for example, larger joint velocity, higher

actuator torques, and relaxed angle limits, etc.; a “regular” condition suggests that

the boundaries of variables are set to reasonable values, mostly set to slightly tighter

limits than what the hardware is capable of; a “restricted” condition restricts the

reachable set of the optimization variables within a very small region so as to achieve

walking gaits with certain fixed behaviors, such as maintaining a straight torso.

Our results showed that adjusting the initial guess and relaxing the constraints

can improve the convergence time of the optimization. However, we observe that

even from a completely random initial guess subject to strict hardware constraints

the NLP problem still converges successfully. This suggests that creative seeding is a

helpful but perhaps unnecessary measure for solving such high-dimensional problems.

It is often difficult to quantitatively evaluate the scalablity of the method. Hence,

1An example of 3D flat-footed walking gait optimization is shown https://youtu.be/

jBVUfDZua4s.
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Table 6.6: Runtime and convergence test of the optimization.

Initial Guess Bound. Iteration Feasibility Runtime (s)

random
relaxed 856 2.24× 10−9 675.49
regular 1209 7.89× 10−13 911.48
restricted 2811 3.08× 10−9 2027.08

good
relaxed 193 4.91× 10−09 150.28
regular 357 3.68× 10−11 375.9
restricted 693 5.21× 10−13 620.03

we recap typical performances of all robot model that we have discussed in the study.

The results are summarized in Table 6.71. In particular, six walking behaviors of five

different bipedal robots are included: PROXI, DURUS-2D, DURUS 3D flat-footed

walking, DURUS 3D multi-contact walking, full-size DRC-HUBO, and Atlas robot.

For each walking behavior of a robot model, the degrees of freedom of the robot model,

total numbers of domain, and degrees of underactuation in each discrete domain are

given. As a reference, we define 15 total cardinal nodes for each domain, which

in turn determines the size of the optimization problem, e.g., the total number of

NLP variables and constraints. As expected, the total number of NLP variables and

constraints increase as the system dimension and the number of domains increase.

Yet the sparsity of the constraints’ Jacobian is very sparse.

Typically, the computational performance of a NLP problem is evaluated metrics

like total computer time or number of iterations. While these two metrics are often

affected by many external conditions, they might not be a good scale to measure how

complex a problem is computational-wise. It is often necessary to check how long

do the NLP functions require to evaluate in per iteration. Hence, in Table 6.7, we

also listed how much CPU time the optimizer requires to evaluate the cost function,

constraints, gradients of the cost function, and Jacobian of constraints in per iteration.

The evaluation time of these functions, particularly the constraints and Jacobians, is

1This result is limited to the local direct collocation optimization.
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noticeably affected by the complexity of the model.

The typical total CPU time and iterations to converge are evaluated by initial

guesses obtained from some previously obtained gait. To add the difficulty to the

evaluation, we provide random values as initial guesses for the parameters of virtual

constraints. Despite these metrics would vary in practice, we could consider them as

a rough reference how the performance of the problem scales up when the size of the

problem and the complexity of the system increases.



Table 6.7: Performance summary of the (local) direct collocation HZD optimization
on different robot platforms.

PROXI DURUS-2D DURUS Flat1 DURUS Multi2 DRC-HUBO Atlas

Degrees of freedom3 7 11 23 23 33 18
Domains ss ds, ss ds, ss ts, tl, hl, hs ss ts, tl, hs
Degrees of underactuation 1 2, 3 1, 2 2, 2, 3, 2 0 0, 0, 0
Number of NLP variables4 1510 3723 8974 21 309 7996 11 811
Number of NLP constraints 1577 4198 9893 22 721 9763 12 151
Sparsity of Jacobian5 0.44% 0.78% 0.13% 0.05% 0.15% 0.09%
Cost function runtime6 (sec) 0.0006 0.0010 0.0009 0.0018 0.0014 0.0013
Cost gradient runtime7 (sec) 0.0006 0.0011 0.0014 0.0020 0.0015 0.0015
Constraints function runtime8 (sec) 0.0104 0.0231 0.0517 0.0671 0.0372 0.1124
Constraints Jacobian runtime9 (sec) 0.0114 0.0571 0.2385 0.3870 0.4271 0.3062
Typical total CPU time (sec) 3 21 146 647 663 282
Typical number of iterations 54 114 226 418 604 321

1DURUS 3D flat-footed walking gait.
2DURUS 3D multi-contact walking gait.
3It includes floating base coordinates, which has 3 for planar robots and 6 for 3D robots.
4The number of NLP variables and constraints depends on the number of nodes defined. Here we list the values assuming that there are 15

cardinal nodes for each domain.
5The sparsity of the Jacobian matrix is the ratio of nonzero entries in the whole Jacobian matrix.
6This is an average time to run the cost function on a laptop computer.
7This is an average time to run the gradient function of the cost function on a laptop computer.
8This is an average time to run all constraints function on a laptop computer.
9This is an average time to run the Jacobian functions of all constraints on a laptop computer.



CHAPTER VII

CONCLUSION

The work presented in this study is built upon and contributes to the well-established

hybrid zero dynamics control framework for bipedal locomotion. We develop a theo-

retical foundation for solving hybrid zero dynamics based dynamic humanoid walking

gait optimization via computationally efficient direct collocation methods. This sys-

tematic framework removes the limitations of hybrid zero dynamics application on

high dimensional systems, and establishes hybrid zero dynamics based controllers in

the analytically tricky domain of humanoid robots.

7.1 Summary of Contributions

The key contributions of the thesis are summarized as follows:

Scalable direct collocation HZD optimization framework. We present a sys-

tematic methodology that allows for the fast and reliable generation of multi-domain

robotic walking gaits in the context of HZD framework. Specifically, we formulate

an optimization framework which builds upon the novel unification of hybrid zero

dynamics and direct collocation methods. The direct collocation methods convert

the continuous trajectory optimization problem into a large-scale nonlinear program-

ming (NLP) problem by enforcing defect constraints at discretized collocation points.

By eschewing the need for time-marching integration schemes (as per to single- and

multiple-shooting methods) in favor these local defect constraints, we open the pos-

sibility of expressing all optimization constraints in closed-form. Fully algebraic con-

straint expressions allow for symbolic Jacobians with fast evaluation times, high ac-

curacy and robustness, which is critical for the scalability of the gait optimization.
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By necessity, this work takes care in addressing the scalability of constraint ex-

pression sizes, which can easily explode to intractable proportions. To understand

this complexity, consider symbolically transcribing the NLP constraints for one of the

presented humanoids—DURUS. Take just one component of humanoid-scale dynam-

ics; the symbolic inertial matrix alone (D(q)) consists of 13 million subexpressions1,

which would then be inverted analytically (D(q)−1), and then symbolically differen-

tiated for the Jacobian (δD(q)−1q̈/δq). So while ostensibly straightforward, such a

trivial approach becomes wildly infeasible very quickly. Instead, we present our for-

mulae for systematically introducing defect variables into the constraints which avoid

symbolically verbose operations, keeping the resulting expressions simple. Further,

by carefully indexing the optimization variables and constraints, we further simplify

the Jacobian matrix to have a banded structure, enabling efficient evaluation and use

by standard large-scale NLP solvers. All such components of this process are crucial

in engineering fast and reliable optimization which synthesizes HZD gaits for hu-

manoid robots. Encouragingly, despite the high-dimensionality of the 10,000-variable

problem, the optimization even converges with random initial guesses. Building upon

the theoretical foundation of HZD, this method optimizes the interactions of the full

body dynamics of the robots hybrid system model, without restricting motions to

simpler more-tractable dynamics (e.g., inverted pendulum models), resulted in more

agile and efficient motions of humanoids.

Experimental realizations of energy efficient 3D humanoid walking with

hybrid zero dynamics controllers. The computationally efficient direct HZD op-

timization enables the hybrid zero dynamics framework can be applied to 3D walking

1These subexpressions of D(q) (as counted by Mathematica’s LeafCount) require over 430 MB of

memory to store (via Mathematica’s ByteCount). To date, we have still not been able to successfully

perform even the symbolic inverse of D(q), which is one of the first steps in explicitly generating

symbolic constraints.
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Figure 7.1: The competition space inhabited by both DURUS and STEPPR at the
DARPA Robot Endurance Test.

of high DOFs humanoids, even in the presence of underactuation. By taking advan-

tages of the natural dynamics—including absorbing impact via passive and compli-

ant elements as well as counter-balancing upper-body and arm motions—we generate

optimal energy efficient 3D walking gaits of several humanoids and experimentally

demonstrate the efficient locomotion on the hardware platforms.

Specifically, we produce two different walking motions of DURUS: a conserved

flat-footed walking and a fast multi-contact walking gait with heel-toe contacts, and

first time experimentally realize sustained 3D walking motions on an underactuated

humanoid using hybrid zero dynamics controllers. The exceptionally efficient and sta-

ble flat-footed locomotion was able to be showcased at the DARPA Robot Endurance

Test, completing against the Sandia National Labs robot STEPPR [91] to demon-

strate humanoid efficiency available on full-scale disaster relief humanoid robots.

DURUS walked for just under five hours in a single day, traveling 3.9 km. Most

notably, we report the best energy economy reported for a full-scale humanoid to

date [109], and approximately twice as much as efficient than STEPPR robot, which

is particularly designed to efficiently walk with the ZMP based controllers.

The same procedure is applied to DRC-HUBO, which has over 27 actuators. As a

consequence of optimizing energy consumption, the resulting gaits swing their arms,
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not by a user defining swinging motions a priori or superimposing them on gaits post

hoc, but as an emergent behavior from optimizing the dynamic gait [72]. We also

present preliminary dynamic walking experiments with DRC-HUBO in hardware,

thereby building a case that hybrid zero dynamics is becoming a viable approach for

controlling the full complexity of very high dimensional humanoid locomotion.

Online whole body dynamics gait optimization. We present an optimal gait

synthesis method that exploits the whole body dynamics of robots–for the first time–

experimentally realizes online HZD gait generation for a planar underactuated robot.

Due to the nonlinearity and complexity of the full body dynamics of the robot, gait

optimization using the full body dynamics requires excessive amount of time to run

and may not be able to converge reliably, and therefore, is limited to off-line a priori

motion planning only. In this thesis, we improve the reliability of the HZD gait

optimization and significantly increase the convergence speed by taking advantage of

the pseudospectral optimization. As a result, generating of HZD gaits online becomes

feasible with an average computation time less than 0.5 seconds. We experimentally

evaluate the performance of this method on a planar underactuated robot which walks

on a treadmill with varying speeds. The optimizer successfully generates gaits with

different walking speeds online to enable the robot to adjust to the changing speed

of the treadmill [67].

7.2 Perspectives on Future Work

Exploring the great potentials of the hybrid zero dynamics framework, our method is

not limited to dynamic bipedal walking, moreover, is capable of extending to a wide

variety of dynamic behaviors. In this section, we exhibit a few extensions of the work

and preliminary results of the applications.

Dynamic Running. Bipedal running is an important benchmark for humanoid con-

trol for a number of mathematical and practical reasons. Unlike walking, running is
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Foot Lift

Foot Strike

Figure 7.2: Two-domain hybrid system model of dynamic running on DURUS.

an inherently underactuated control problem. Whenever the robot leaves the ground,

it fundamentally loses its ability to actuate all of its degrees of freedom, and is at

the mercy of its ballistic trajectory. Due to its capability to seamlessly handle un-

deractuation, the hybrid zero dynamics framework has long-held promise of realizing

dynamic running of bipedal robots [121, 122, 147].

In [88], our group present a preliminary result of extending the direct collocation

HZD optimization method to generate stable dynamic running of 3D DURUS hu-

manoid. Similar to the flat-footed walking of DURUS, the dynamic running behavior

is modeled as a two-domain hybrid system, as shown in Figure 7.2. The system has

degrees of underactuation of 2 and 5 for the stance and flight domain respectively,

resulting in very high dimensional of zero dynamics manifold. By formulating the

gait optimization problem in a similar manner with a few necessary modifications, we

are able to generate a family of dynamic walking gaits over a range of speeds (1.5–3.0

Figure 7.3: Tiled still images the DURUS running at 2.0 m/s.
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Figure 7.4: Two-step domain graph of the asymmetric amputee- prosthesis gait.

m/s) with an average convergence time of 323 seconds and 609 iterations.

The ability of generating multiple different gaits that respects all physical limi-

tations of the robot within an acceptable time frame places a great expectation on

experimentally realizing dynamic walking on actual robots in the next step.

Prosthetic Leg. Prosthetic devices are the most commonly seen daily-life appli-

cations of robotic techniques. Amputees with energetically passive prosthetic de-

vices are found to be less stable, constrained with locomotion capabilities and require

more force and energy during locomotion than healthy human. Powered-lower-limb

prostheses capable of providing net power in conjunction with various prostheses

controllers have been developed in recent decades with the potential to regain fully

mobility in various terrains of amputees.

Among many other powered prosthetic lower leg application, AMPRO utilized

the hybrid zero dynamics framework to realize stable periodic prosthetic walking

that is human-like both kinetically and kinematically [143]. Despite the improve-

ments achieved by the framework of virtual constraints, the current researches are

still limited with several basic assumptions and open problems: a) forward human

walking is simplified as a 2D model, i.e., a simple 2D planar model is usually chosen

for generating the desired prosthetic trajectory; b) the amputee-prosthesis system is
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Figure 7.5: Phase portraits of the ankle and knee joints of both the amputee and
prosthesis over 20 steps. The solid lines represent the prosthetic joints, and the dashed
lines represent the amputee joints.

assumed to be symmetric, i.e., the amputee side and prosthetic side share the same

requirements and model parameters; c) realistic requirements (human comfortability,

energy consumption, hardware torque and velocity limitations) of a prosthetic gait

have not yet been considered intuitively during the gait design procedure.

Based on the work presented in the study, a preliminary result is presented to suc-

cessfully generate two-step asymmetric 3D human-like multi-contact walking gaits in

simulation [145]. Based on the asymmetric amputee-prosthesis model, an eight do-

main hybrid system model is constructed, as shown in Figure 7.4. A two-step direct

collocation virtual constraints optimization is formulated to generate stable walking

gaits for the asymmetric system. More importantly, the flexibility of the direct collo-

cation formulation, human-likeness constraints and comfortability constraints can be

easily imposed in the nonlinear constrained optimization. The resulting gait exhibits

two-step periodic locomotion as shown in Figure 7.5. Because of the general formu-

lation of this work, this two-step modeling and optimization methods can potentially

be applied to other asymmetric robot systems.

177



APPENDIX A

EQUATIONS OF MOTION OF ZERO DYNAMICS

By enforcing virtual constraints via feedback controllers, the full order dynamics of

the robotic system is constrained on a reduced dimensional manifold, termed as zero

dynamics. The low-dimensional representation of the restricted manifold, however, is

not trivial to be obtained. In this chapter, we present the derivation of the equations

of motion of zero dynamics. Due to the fact that the relative degree 1 output is

excluded from the condition of partial zero dynamics manifolds, we determine the

governing equation of motion of the reduced dimensional dynamics in two different

cases based on whether the velocity-modulating output is defined or not on a given

domain.

Before introducing the derivation, we start with formulating the affine control

system of the continuous dynamics in (2.20). Instead of computing the constraint

wrenches explicitly, we can consider them as parts of (pseudo) control inputs that

satisfy the holonomic constraints. Recall that the equations of motion for a domain

Dv is determined by the classical Euler-Lagrange equation and holonomic constraints

[58]:

D(q)q̈ +H(q, q̇) = Bvuv + JTv (q)λv, (A.1)

Jv(q)q̈ + J̇v(q, q̇)q̇ = 0, (A.2)

Then let

B̄v(q) =

[
Bv JTv (q)

]
, ūv =

[
uv λv

]T
, (A.3)

to yield equations of motion as the affine control system

ẋ = f̄(x) + ḡv(x)ūv (A.4)
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from (A.1) with x = (q, q̇) the system states, where

f̄(x) =

 q̇

−D−1(q)H(q, q̇)

 , ḡv(x) =

 0

D−1(q)B̄v(q)

 .
Case A.1. If the velocity-modulating output is not defined on a domain Dv, then

we have yv(q) = y2,v(q). Let zv(q) be a real-valued function representing the local

coordinates of the partial zero dynamics PZv, i.e., the coordinates that are neither

actuated nor constrained, we have

Φv(q) :=


yv(q)

hv(q)

zv(q)

 : Q → Rn (A.5)

is a diffeomorphism onto its image and there exists at least one point where both the

virtual and holonomic constraints vanish, i.e., the partial zero dynamics manifold.

We consider (ξ1,v, ξ2,v) be the states of the zero dynamics, which are given by

ξ1,v = zv(q), ξ2,v = γv(q, q̇), (A.6)

where

γv(q, q̇) := γ0
v(q)q̇, (A.7)

where γ0
v(q) = `v(q)D(q) with `v(q) ∈ Null(B̄v(q)). It is obvious to verify that

Lḡvγv(q, q̇) = 0. Hence, the equations of motion of the zero dynamics can be expressed

explicitly:

ξ̇1,v = Lf̄zv(q, q̇), (A.8)

ξ̇2,v = Lf̄γv(q, q̇), (A.9)

which is independent of the control torque input ūv. When the system evolves on the
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partial zero dynamics manifold, the full order states can be reconstructed as follows:

q = Φ−1
v (0, 0, ξ1,v), q̇ =


∂yv(q)
∂q

Jv(q)

∂ξ2,v(q)

∂q


−1 

0

0

ξ2,v

 , (A.10)

where ∂ξ2,v(q)

∂q
= γ0

v(q) by its definition in this case.

Case A.2. In the case if a velocity-modulating output is defined on a domain Dv,

we define a diffeomorphism of the robot generalized coordinates via:

Φv(q) :=



ya1,v

y2,v(q)

hv(q)

zv(q)


: Q → Rn. (A.11)

When the system evolves on the partial zero dynamics manifold, both y2,v(q) and

hv(q) vanish. Hence the states of the partial zero dynamics are given as:

ξ1,v =

 ya1,v(q)

zv(q)

 , ξ2,v =

 ẏa1,v(q, q̇)

γv(q, q̇)

 , (A.12)

where γv(q, q̇) is given by (A.7). Consequently, the governing equation of motion of

the partial zero dynamics can be obtained straightforwardly:

ξ̇1,v =

 ẏa1,v(q, q̇)

Lf̄zv(q, q̇)

 , ξ̇2,v =

 −ε(ẏa1,v − v̄v)
Lf̄γv(q, q̇)

 . (A.13)

Similarly, the full order states of the system can be re-constructed from the reduced

dimensional manifold as in (A.10).
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