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SUMMARY

This research seeks to gain insight into the design of distributed multi-agent systems.

Distributed multi-agent systems present opportunities for accomplishing a goal using multiple

simple systems rather than a more complicated monolithic system. Distributed systems, if

properly designed, have the potential to exhibit self-organizing behavior which can lead to

systems that require less centralized control in addition to improved robustness, reliability,

scalability, and adaptability than traditional monolithic, centralized systems.

As engineered systems become more complex, their behavior is more difficult to char-

acterize and predict. Self-organizing systems are difficult to analyze and design since the

system behavior is emergent, i.e., the collective behavior only becomes apparent once the

system is integrated. The collective behavior is primarily driven by the local interactions of

the agents and their environment. This poses an enormous challenge for engineering these

systems. The task of system design—selecting the right rules and system parameters—is

difficult due to the opaque connection between inputs and responses. The goal of this

research is to develop a methodology that provides a way of systematically exploring the

design space in order to identify the conditions that give rise to emergent behavior. This

information can be used as part of the scientific process of providing feedback through the

iterative design process.

In order to address this goal, this research seeks to answer the question on how to define,

measure, and use the concept of emergence in the design of a multi-agent system. Similarly,

it will address the more general question about how to understand "complex systems" in

order to analyze and engineer them. This will be used to guide the development of an

appropriate methodology. This research develops the Systematic Exploration for Emergence

Detection (SEED) methodology for evaluating computer simulations of complex systems

in order to identify conditions that lead to emergent behavior. This research proposes a

new quantitative measure of emergence which can identify critical transitions in macro-level

xxiii



performance/function of the system due to changes in system context (i.e., environmental

conditions or system parameters). The methodology provides the framework for performing

a design space exploration using this measure of emergence to identify critical regions in

the design space. These regions help to characterize the design space and will help guide

the design process by providing insight into design points where the system behavior is

unexpected or changing rapidly, which are possible indicators of emergent behavior.

The SEED methodology is based on a statistical analysis approach. The design space is

efficiently sampled using Design of Experiments methods. At each of these design points,

the system behavior is characterized statistically using repeated runs of the simulation.

The proposed measure of emergence, Design Space Divergence, is then evaluated across

the design space and critical regions are identified using data visualization and clustering

methods.

A case study is performed on a multi-UAV distributed surveillance problem to investigate

whether this framework is capable of identifying emergent behavior. The SEED methodology

is used to explore the system design space, including the number of UAVs used in the system

and influential vehicle and system parameters. The results show that this methodology

provides insights into the landscape of system performance across the design space. More

specifically, it identifies a number of candidate designs which exhibit emergent behavior

where the system performance rapidly improves as the system undergoes a transition from

disorganized to organized behavior. The SEED methodology provides for a more rigorous,

traceable, and thorough design process for systems which have been difficult to understand

and design using traditional engineering methods.

xxiv



CHAPTER I

INTRODUCTION

1.1 Introduction to Multi-Agent Systems

Decentralized and distributed systems are of great interest to engineers. They present

opportunities for accomplishing a goal using multiple simple systems rather than a more

complicated monolithic system. Distributed systems, if properly designed, have the potential

to exhibit self-organizing behavior which can lead to more robust systems that require less

centralized control in addition to improved robustness, reliability, scalability, and adaptability

than traditional monolithic, centralized systems [59, 170, 118]. On the other hand, distributed

self-organizing systems also have a number of disadvantages including low predictability and

understandability, difficulty of control, and difficulty of design and engineering [118]. An

important question is deciding whether a distributed multi-agent makes more sense than a

monolithic system. If the problem is inherently decentralized and has distributed information

availability, the multi-agent approach may be better [92]. Examples of aerospace multi-

agent distributed systems in the research literature include multi-static radar network using

unmanned aerial vehicles (UAVs) [62], low-altitude short-endurance UAVs for tracking fires

[61], a multi-UAV distributed communication system for agricultural monitoring [100], and

a multi-agent autonomous system for space exploration [242]. These examples demonstrate

reasons for using multi-agent systems such as the presence of a treacherous or adversarial

environment where the loss of vehicles is a significant risk (e.g., wild fire tracking) or in

situations where communication with a centralized controller is difficult due to bandwidth

limitations, power requirements, and communication delays (e.g., deep space exploration).
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1.1.1 Biologically-Inspired Design

The potential of improving robustness, scalability, and adaptability using multi-agent systems

is clearly enticing. A significant amount of the inspiration for multi-agent systems comes

from biological systems such as ants, bees, and other social insects. Through the course of

evolution, many biological systems have been able to reach remarkable levels of robustness,

efficiency, or adaptability. Using these types of systems as inspiration for designing evolvable

or robust engineered systems allows us to use the lessons of millions of years of adaptation.

Biological inspiration is particularly relevant for distributed multi-agent systems, where

cooperative behavior between autonomous agents is desired [135]. One of the enticing

aspects of designing systems based on collective behavior is the idea that effective and robust

behavior can be achieved with simple agents following simple rules. Natural systems provide

proof that systems of simple agents are capable of robustly performing tasks beyond the

capability of any single agent [59].

Using social insects societies as a design metaphor, it seems possible to create highly

effective systems comprised of relatively simple components [44]. Simple agents that exhibit

significant interactions can lead to collective behavior that far exceeds the capability of

an agent in isolation. In fact, it is the interaction between components that determines

the system behavior. As will be discussed later, the interaction between components is

what makes the analysis and design of these types of systems so difficult. Research into

ant colonies has shown that ants in highly social species (i.e., strongly interacting ants) can

be less complex than individual ants from less social species [8]. This suggests that there

can be a tradeoff between individual agent complexity and inter-agent interactivity while

maintaining system effectiveness. In other words, if we can increase the cooperation between

agents then we can decrease the complexity of the individual agents (thereby making them

cheaper and easier to design).

Ant-inspired behavior is a canonical example of a distributed multi-agent system and

is of interest in many fields [224]. The following quotes from Maier & Rechtin and Nicolis,

respectively, summarize why distributed multi-agent systems like foraging ants are so

compelling to the scientist and engineer:
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“Ant colonies, for example, exhibit complex and highly organized behaviors

that emerge from the interaction of behaviorally simple, nearly identical, sets

of components (the ants). The behavioral programming of each individual

ant, and its chaotic local interactions with other ants and the environment,

is sufficient for complex high-level behaviors to emerge from the colony as a

whole. There is considerable interest in using this truly distributed architecture,

but traditional top-down, decomposition-oriented models and their bottom-up,

integration-oriented complements do not describe it.” [177]

“What is most striking in many insect societies is the existence of two scales: one

at the level of the individual, characterized by a pronounced probabilistic behavior,

and another at the level of the society as a whole, where, despite the inefficiency

and unpredictability of the individuals, coherent patterns characteristic of the

species develop at the scale of an entire colony.” [204, p. 232]

1.2 Characterizing Multi-Agent Systems

The goal of this research is to gain insight into the design of multi-agent systems through

the development of a methodology for exploring the landscape of possible behaviors in

a multi-agent system (MAS). A multi-agent system consists of a group of agents, where

an agent is an autonomous robot capable of performing a task (e.g., manipulating the

environment or processing information). A defining feature of multi-agent systems is that

the agents are spatially distributed. However, since the agents are spatially distributed,

coordination of the agents becomes a fundamentally important aspect of the system design.

The first major decision is whether the system has centralized or decentralized control [59].

1.2.1 Centralized vs. Decentralized Control

Centralized control relies on a single controller having knowledge of the states of all of the

agents and directly influencing their behavior. If each agent is afforded little to no autonomy,

a centrally controlled system will resemble a traditional monolithic system with spatially

distributed components. Decentralized systems can be divided into either hierarchical
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or distributed control schemes. In hierarchical decentralized systems, specialized agents

exert control influence upon other agents within their zone of influence. In a completely

distributed system, the control laws are identical among all of the agents and there is no

explicit hierarchy or preference built into the system. This breakdown of multi-agent systems

according to control structure is shown in Figure 1.

Multi-Agent Systems

Centralized Control Decentralized Control

Hierarchical Distributed

Figure 1: Multi-agent systems: centralized versus decentralized

Multi-agent systems with decentralized and distributed control, highlighted in Figure

1, will be the focus of this research. Although this class of problem is the most difficult

to analyze and design, it also represents a revolutionary approach for engineering systems.

It is clear that if we are to take advantage of multi-agent systems, we must maintain the

individual agent’s autonomy and leave open degrees of freedom. This autonomy (i.e., open

degrees of freedom) provides both the benefits seen in multi-agent systems, but also leaves the

possibility of misbehavior and other undesirable effects. However, the benefit of decentralized

systems is that they are easier to scale. There is less effort required as the system grows in

size compared to a monolithic system with an equal number of subsystems. The control

laws are fixed at the agent level, so there is little additional effort required of a system of

100 agents compared to 10 agents.

1.2.2 Differentiation

Differentiation refers to the diversity of agent types within a multi-agent system. A ho-

mogeneous group is a more straightforward approach and is a common assumption within

swarm engineering [59]. A heterogeneous group allows for agent specialization; however,
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this requires additional effort for the coordination required to take advantage of specialized

agents. At the extreme end of the spectrum, a completely heterogeneous group results in

a system where each agent can only complete one task, thus defeating one of the main

benefits of using swarms. A large degree of agent homogeneity is required to take advantage

of redundancy in multi-agent systems [221]. Within the context of this research, agent

homogeneity will be assumed.

1.3 Self-Organization and Emergence

The goal of swarm engineering is to achieve a self-organizing system. Self-organization

is a “set of a dynamical mechanisms whereby structures appear at the global level of a

system from interactions among its lower-level components” where the “rules specifying the

interactions among the system’s constituent units are executed on the basis of purely local

information, without reference to the global pattern, which is an emergent property of the

system rather than a property imposed upon the system by an external ordering influence”

[48]. While spatial structure is the easiest to observe, structure can refer to spatial, temporal,

or functional structure [91]. The most important feature of self-organization is the lack of

external or centralized control [15, 91, 190].

As Cao et al. explain, “the behavior of decentralized systems is often described using

such terms as ‘emergence’ and ‘self-organization’ ” [59]. This naturally leads to the research

questions: (1) what is emergence? and (2) what is self-organization? Many authors have

used the terms emergence and self-organization interchangeably. As Di Marzo Serugendo et

al. explain, “emergent properties appear transcending the properties of all the individual

sub-units of the system” [97]. However, there are a number of conflicting positions in

the literature. While a number of definitions of emergence include the requirement of

self-organization, others argue that emergence is possible without self-organization, and vice

versa [90, 91, 76]. Within the context of this research, the emergent behavior of interest is

the self-organization of the system.

A swarm is a distributed multi-agent system that emphasizes using a large number of

robots that are autonomous, relatively simple, and are typically homogeneous [59]. Bonabeau
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and Théraulaz argue “the potential of swarm intelligence is enormous. It offers an alternative

way of designing systems that have traditionally required centralized control and extensive

preprogramming. It instead boasts autonomy and self-sufficiency, relying on direct or indirect

interactions among simple individual agents” [47]. The goal is for the desired collective

behavior to emerge from these interactions between the agents and environment [221].

Self-organization is central to swarm robotics [170], which makes the field very relevant to

understanding how self-organization can be engineered. Thus, the objective when designing

swarm systems is to understand how to achieve self-organization.

1.4 Emergence in Multi-Agent Systems

Distributed systems with strongly interacting components have the potential to exhibit

emergent behavior which is difficult to predict [1, 2]. This emergent behavior can be either

beneficial or detrimental to the performance of the system. Emergence can be a mechanism

to achieve robustness and improve system capabilities. If subsystems were allowed to be

self-organizing or adaptive, a whole new range of functionality may be uncovered. “Because

systems with emergent functionality rely on self-organizing processes that require less

control, they tend to be not only more adaptive and robust but also cheaper” [208]. However,

emergence can also be undesirable and detrimental. In the same way that emergence can

lead to new beneficial functionalities, it can also lead to emergent vulnerabilities. Predicting

the conditions under which this behavior will occur is challenging. In complex systems,

there is an emergence of behaviors at higher levels of organization which cannot be predicted

at the subsystem level. These unexpected behaviors can be a result of a myriad intricate

interdependencies and interactions between components, sensitivity to initial conditions

or boundary conditions, enforcement of higher-level constraints on the system, or latent

functions or variables in the system. These mechanisms leading to emergence will be

discussed in more detail in Chapter 3.1.1. Emergence is a highly debated topic that will be

discussed in detail in Chapter 2 and Appendix A. The concept of emergence is well-known

and often discussed in biology, sociology, artificial life, solid state physics, and other fields.

While scientists from many fields have attempted to study and understand emergence for over
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a hundred years, the concept of engineering for emergence has taken hold only within the last

several decades. This is because it has been difficult up to this point to quantify emergence in

a way which makes it a usable concept within engineering design. The fragmented concept of

emergence has also resulted in long standing debates about the definition and interpretation.

Some conceptions of emergence have resulted in a definition that is essentially “I’ll know it

when I see it.” Clearly this type of definition makes the concept of emergence of little use

in engineering. This work will attempt to highlight the issues of defining emergence and

will propose a definition of emergence that is useful in engineering design. The goal is to

address not only emergence in distributed multi-agent systems, but to propose solutions

that can be generally applicable towards many complex systems relevant to engineering.

As engineered systems continue to grow in complexity, techniques need to be developed to

either take advantage of or inhibit emergent phenomena. But before we can use emergence,

we have to identify it first. As Ryan asks, “is it possible to measure and detect emergence in

simulations and in the real world?” [219, p. 177]. In order to help address this question, the

first research question (RQ1) is posed:

Research Question (RQ):

• (RQ1) What is emergence?

– (RQ1.1) What are the characteristics of emergence and what makes it difficult

to understand and predict?

– (RQ1.2) How can emergence be defined?

– (RQ1.3) How can emergence be detected or measured?

– (RQ1.4) How can emergence be understood in the context of engineering?

Research Objective: The objective of this research is to develop a method for identifying

emergent behavior, both beneficial and detrimental, in complex systems.
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1.5 Multi-Agent Systems as a Complex System

The scale of engineered systems has followed an increasing trend. Complexity, which often

follows with scale, has like-wise increased. Bar-Yam claims that “all systems contain a

fundamental tradeoff between complexity and scale” [26]. Initially, engineers designed

mechanisms and simple, independent systems. As design, analysis, and manufacturing

techniques improved, the capability of designing more complex systems improved. Systems

that are more complex provide improved capabilities but are harder to design and analyze.

Maier and Rechtin argue that “increasing complexity is at the heart of the most difficult

problems facing today’s systems architecting and engineering” [177]. We can analyze and

design simple systems (e.g., mechanical clocks) with minimal engineering effort. In simple

systems, the interactions between components are minimized or well-defined so that the

system can be analyzed individually. In these types of simple systems, there is minimal

iteration and testing required. In complex systems (such as distributed multi-agent systems),

the interactions of the components determine the system behavior to the same degree as (or

even greater than) the individual components themselves. With increased complexity, we

can still analyze and design much more complicated systems (e.g., cars, aircraft). However,

these types of systems have required long design cycle times even with the use of systems

engineering techniques. Increased complexity is dealt with using iterative design cycles and

extensive testing. The goal of the iterative design process is to converge on a design by

identifying the interaction effects caused by each design decision. However, in truly complex

systems, the interactions are of the same order of importance as the primary effects of the

component. This means that it may not be possible to converge to a design using an iterative

approach within the typically small number of iterations during the design process.

While increasing scale (in the form of systems comprising a much greater amount of

subsystems) is one source of complexity, complexity can also be a result from increased

autonomy of the components of a system (as is the case for multi-agent systems). Engineering

design has traditionally attempted to restrict the amount of interactions and autonomy of a

subsystem in order to keep the behavior predictable. However, it is clear that as systems

continue to increase in complexity, the existing paradigm of minimizing interactions is not
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sustainable—in fact, it is likely stifling the performance of the system and burdening the

design process. Bar-Yam argues that the “fundamental reason for the difficulties with modern

large engineering projects is their inherent complexity” [27]. As engineered systems become

more complex, their behavior is more difficult to characterize. More critically, complex

systems exhibit behaviors that are unexpected during design that only become apparent

when the system is integrated and tested. Complexity is caused by the interdependence

of various parts and levels within the system. This is problematic because the dominant

engineering design paradigm up to this point has been top-down subsystem-based design,

where components of a system are designed separately and later integrated to build the

complete system [99, pp. 212–218]. However, complex systems often cannot be decomposed

in such a way to eliminate descriptions of interdependencies [24]. In fact, we can roughly

characterize complex systems as those in which the behavior of the system is dominated

by interaction effects between components and the environment. There is a strong context

dependence in which the subsystems cannot be analyzed separately from other components

and the environment in which they operate. Informally, systems are cast as “complex” when

traditional analysis and engineering techniques have failed to work [219]. This leads to the

next research question (RQ2), which seeks to answer the question of what makes a system

complex and how can we analyze them.

Research Question (RQ2):

• (RQ2) How do we analyze and design complex systems?

– (RQ2.1) What characterizes a complex system?

– (RQ2.2) What causes a system to be complex?

– (RQ2.3) How can the complexity of a system be measured?

– (RQ2.4) How should a complex system be analyzed?

The purpose of studying not just distributed multi-agent systems, but the larger topic

of complex systems, is to gain insight into the greater problem and to hopefully be able

to utilize analysis and design techniques used across the spectrum of complex systems. A
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number of real world engineered systems have been identified that exhibit complex behavior.

Examples include smart energy grids [67], manufacturing systems [247, 248, 95], and road

networks [179]. Within the domain of aerospace engineering, air transportation systems and

air traffic management have been shown to be complex systems [111, 228, 121, 113]. The

dynamics of an airplane moving between airports can exhibit nonlinear, complex behavior

[201]. Bouarfa et al. [53] study air transportation system safety using agent-based modeling

to identify emergent behavior and lever-points in the system which can improve safety for

runway crossing operations. In addition to existing complex systems, there are visions for

future systems that truly take advantage of self-organization in order to achieve mission

effectiveness. The goal will be to identify common threads in these types of systems that

may enable us a greater understanding of how to solve these engineering problems.

1.5.1 Importance of Understanding Complex Systems

There are two important reasons for understanding complex systems and developing the

appropriate engineering methodology. The first reason is to avoid system failures as a

result of unforeseen behaviors. For critical systems, the importance of understanding the

behavior and vulnerabilities of complex systems cannot be overstated. In the field of critical

infrastructure protection [4], “vulnerabilities resulting from system complexity are expanding

at a much faster pace than our means of understanding them” [199]. Not only are the

number of possible vulnerabilities increasing, but the nature of the vulnerability is different

as well. This is different from how typical vulnerability analysis is viewed—the vulnerability

cannot be traced to a single system or component. The vulnerability exists because of the

interactions between components. Emergent vulnerabilities are certainly one of the most

important reasons for studying emergent behavior in complex systems. For applications

like critical infrastructure, the amount of damage a vulnerability can inflict is staggering.

Mussington argues that complex adaptive systems modeling approaches are necessary to

understand interdependencies between critical infrastructure components leading to emergent

vulnerabilities [199]. Although critical vulnerabilities are of course important, there are

lesser degrees of undesirable behavior that cause deviation from the desired behavior or

10



reduced effectiveness.

The second reason is that complex systems also have the potential to be more robust,

flexible, and effective than monolithic systems. If complex systems are properly understood

and designed, there can be improved system performance. Emergent behavior can be

beneficial: “emergent complexity is often more robust, flexible and fault-tolerant than

programmed, top-down organized complexity” [176]. Therefore, the engineered systems

that utilize emergent behavior can benefit from better performance. As was noted earlier,

traditional engineering approaches aim to isolate subsystems and minimize and control

subsystem interactions. The purpose of this research is to improve system tractability and

understanding. As Bar-Yam notes, “conventional engineering places [limitations] on system

capabilities,” capabilities that might otherwise “be exclusive to systems that have strong

emergent behaviors” [24]. Emergent behavior can “unlock” highly desirable properties and

behaviors in systems.

Additionally, one of the major uses of simulation during design is to gain an understanding

of the system being studied. Emergent behavior is often characterized as being “surprising.”

Understanding surprising behavior is one of the best learning opportunities because it

represents a condition that can yield the most amount of information. In the aerospace

field (and probably others), it is commonly said that a failure during a test of a system is

more useful than a success. A failure provides the opportunity to uncover flaws and remedy

them. Similarly, finding the conditions for emergence would be very useful during design. It

allows designers to scientifically examine the behavior and to take additional steps to either

promote or inhibit its occurrence.

1.6 Difficulty of Analysis and Design of Multi-Agent Systems

One of the biggest difficulties when designing multi-agent systems is understanding how

individual agent rules and properties affect the system level behavior [170]. The collective

behavior of the agents cannot be predicted from the individual agent’s rules [46]. The

fundamental reason for this is due to various mechanisms common to complex systems.

Mechanisms such as nonlinearity and chaos tend to separate the causes from the effects
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in such a way as to make the connection between them very difficult to predict. The lack

of analytical solutions necessitates the need for simulation for analysis. In fact, as will be

discussed in Chapter 2.3.1 and Appendix A.2.5.2, simulation is the fundamental analysis

tool for the study of emergence. A bottom-up simulation approach, especially agent-based

modeling, is the best way of observing the collective (i.e., emergent) behavior in the system

behavior of distributed multi-agent systems [46]. Although defining the rules a priori that

yield a particular behavior is difficult (i.e., inverse design), explaining the behavior of a

simulation is straightforward since each agent acts according to the rules [208].

1.6.1 The Ad Hoc Nature of Design

As Brambilla et al. explains, “unfortunately, in swarm robotics there are still no formal or

precise ways to design individual level behaviors that produce the desired collective behavior.

The intuition of the human designer is still the main ingredient in the development of swarm

robotics systems” [54]. Similarly, Pfeifer and Bongard [208] argue that “design for emergence”

lacks a systematic framework and is an art rather than a science. Bonabeau et al. [46]

provide two reasons why the design of swarms is ad hoc: (1) there is lack of mathematical

detector for collective behavior, and (2) all of the possible behaviors of the system are not

known ahead of time. To address the first limitation, this research will identify measures

that can be used to quantify the degree of emergence (see RQ1.3). The use of a quantitative

measure enables the use of automated tools to evaluate designs. In particular, it allows for

parameter tuning to identify the conditions for cooperative behavior (i.e., emergence) to take

place [59]. The second limitation will be addressed by the formulation of a methodology that

enables an thorough exploration of the design space. This provides a characterization of the

design space and gives insight into the range of possible behaviors the system is capable of.

Identified Gap 1: The design process for distributed multi-agent systems is ad hoc and

heavily based on designer intuition. To overcome this problem, a methodology is needed for

systematically exploring the design space in order to make the design process more thorough

and traceable.

Since traditional engineering methods often fail for designing complex systems and ad
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hoc methods lack a scientific basis, this naturally leads to the third research question (RQ3).

Research Question (RQ3):

• (RQ3) What is the appropriate methodology for engineering complex systems?

1.7 Developing a Framework for Engineering Emergence

There is a need for a well-developed methodology for carrying out the exploration of complex

systems. Holland explains that “complex adaptive systems are so intricate that there

is little hope of a coherent theory without the controlled experiments that a massively

parallel computer makes possible. At the same time, in an area this complex, experiments

unguided by an appropriate theoretical framework usually amount to little more than

‘watching the pot boil’ ” [142]. High performance computers have allowed for massive

explorations of simulations; however, these simulations have to be properly designed in

order to provide information effectively and efficiently. The types of uncertainties that

are inherent in complex systems are statistically characterized variables (i.e., inherently

stochastic) and known-unknowns (i.e., uncertainty that is understood in principle but nearly

impossible to track due to combinatorial explosion, chaotic behavior, or context-dependence).

Uncertainties pose risks of system failure or degradation (i.e., vulnerabilities) but also may

allow for beneficial emergent behavior. The best way to understand these uncertainties is

through tradespace exploration (e.g., parameter tuning) and design space characterization.

Unfortunately, the traditional paradigm of the engineering design process does not

translate well to complex systems. De Wolf and Holvoet argue that a “fundamental problem

is the lack of a step plan that allows to systematically specify desirable macroscopic properties,

map them to the behaviour of individual agents, build the system, and verify it to guarantee

the required macroscopic properties, i.e. a full life-cycle engineering process or methodology”

[92]. Significant parts of the design process needs to be modified to meet the needs of

complex systems. In Figure 2, De Wolf and Holvoet [92] show an attempt to modify the

traditional engineering design process in order to better handle emergent behavior.
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Figure 2: The traditional engineering design process annotated with modifications for

dealing with emergent behavior (from [92])

The most important modification to the traditional engineering process is the addition of

feedback loops as a way of introducing mechanisms to properly guide the emergent behavior

toward the desired outcome. In the traditional engineering design process, there is exploration

of the design space during iteration that is guided by optimization methods. Even though

optimization is credited with helping to turn engineering design from art into a science

[253, pp. 9–10], as will be discussed in Chapter 4.3.4, optimization is often inappropriate

for complex systems. To replace the role that optimization held in the traditional design

process, complex systems engineering needs an objective and widely-applicable measure of

emergence and a way to explore the design space to identify it.

The path from design to verification and testing is long and difficult. To make matters

worse, the design process will require a significant amount of iterations. In Figure 3, De

Wolf and Holvoet [92] show how the emphasis on various portions of the scientific analysis

feedback loop changes as a function of the iteration. Early iterations focus on setting up the

elements of the system so that they are capable of performing a high-level function. Later

iterations focus on tuning the system and characterizing the behavior.
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Figure 3: Different focus in early iterations versus later iterations in the scientific analysis

feedback loop (from [92])

To address Identified Gap 1, the focus of this research presented in this thesis cor-

responds with the parameter-tuning and design space characterization steps of the design

process. The goal of this research is to provide a methodology for carrying out this portion

of the scientific analysis. By improving the effectiveness of this step, the secondary goal is

to help shift parameter-tuning and characterization of macroscopic behavior to earlier in the

design process. Complex systems can be strongly influenced by these tuning parameters; it

is clearly not beneficial to wait until late in the design process before understanding how

these parameters affect the system behavior. As Cavallo explains, “design cycles that cannot

adapt to rapidly changing conditions miss emergent phenomena that either need correction

because they are undesirable, or need capitalization if desirable” [63]. Understanding complex

systems and emergent behaviors is one of the major keys to reduce re-design work during

development and system failures during deployment. Thus, the overall research goal can be

stated as follows:
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Research Goal: The proposed methodology should be able to: 1) identify design points

(i.e., parameter settings) which are candidates for emergent behavior, 2) present the candidate

points in a manner which allows the designer to characterize the design space and make

proper inferences in coming up with strategies to exploit or avoid behavior. The success of

this research will be judged based on the ability of the proposed approach to rigorously and

robustly identify the design space parameters which lead to emergent effects.

The successful application of this methodology has the potential to improve system

behavior assurance. Behavior assurance is becoming a more important part of engineering

complex systems [217, 256]. Wulf, in a National Academy of Engineering report, wrote

that “the key point is that we are increasingly building engineered systems that, because of

their inherent complexity, have the potential for behaviors that are impossible to predict

in advance. Let me stress what I just said. It isn’t just hard to predict the behavior of

these systems, it isn’t just a matter of taking more into account or thinking more deeply—it

is impossible to predict all of their behaviors” [261]. He goes on to ask, “How do we

ethically engineer when we know this—when we know that systems will have behaviors,

some with negative or even catastrophic consequences—but we just don’t know what those

behaviors will be?” [261]. Alderson and Doyle argue that “we are better at ‘trial and error

via deployment’ than provable guarantees on performance, stability, etc. Moreover, it has

perhaps given the false impression that the emergence of collective behavior is sufficient as a

design outcome. However, as technological visions increasingly emphasize ubiquitous control,

communications, and computing, with systems requiring a high degree of not only autonomy

and adaptation, but also evolvability, scalability, and verifiability, a more rigorous, coherent,

and reasonably complete mathematical theory underpinning . . . is needed” [4].

To be clear, the methodology proposed in this research is not designed for system

certification. This methodology is intended for conceptual design where the goal is gain

insight into the design space and the landscape of possible system behaviors. This will enable

the downselection of appropriate concepts for further study. Validation and certification of

the system will need to take place once the system is embodied. A significant portion of the
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research on behavior assurance is based on the use of formal methods [217]; however, formal

methods are not appropriate for conceptual design since there will be crucial differences

between the initial concept and the fielded system. This difference will invalidate the results

of the formal methods. Instead, it is more likely that behavior assurance for complex

system will be accomplished probabilistically and test via simulation [255]. However, by

characterizing the design space early in the design process, there can be more confidence

that the concepts chosen represent desirable solutions including initial estimates for the

statistical performance of the system.

1.8 Research Road Map

A mapping between the research questions introduced in this Introduction and the chapters

within this dissertation that will address these questions is shown in Figure 4. Chapter 2

and Appendix A will examine the concept of emergence and attempt to address the some of

the research questions posed by RQ1. Chapter 3 examines complex systems and the idea of

complexity, including how complexity comes about and ways of measuring it. This chapter

addresses RQ2. Chapter 4 is a discussion on the approaches taken to analyze and design

complex systems. This chapter explains why traditional design approaches are not well

suited for multi-agent distributed systems. Chapter 5 reviews many of the approaches that

researchers have taken when trying to develop a method for measuring emergence in a system.

This chapter addresses a portion of RQ1 and contains the emergence measure proposed as

part of this research. Chapter 6 introduces Distributed Multi-Agent Surveillance Simulation

(Distributed-MASS), an example of a distributed multi-agent system that will be used to

test the methodology developed in this research. Chapter 7 contains the development of the

Systematic Exploration for Emergence Detection (SEED) methodology that is proposed as

the solution for exploring the design space of a complex system in order to identify emergent

behavior. This chapter addresses RQ3. Chapter 8 contains the results from the experiments

as part of the methodology development. A case study, based on the Distributed Multi-Agent

Surveillance Simulation, is shown in Chapter 9. Finally, Chapter 10 summarizes the results

from this research and offers conclusions about the success of this research. Appendix B
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provides a basic overview of information theory. Information theory has deep and useful

connections for the study of complex systems and some of the basic results from information

theory are used throughout this research.
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CHAPTER II

EMERGENCE

Chapter Road Map: The goal of this chapter is to define the concept of emergence and

to work towards a definition that can be used in this research to identify emergent behavior

in a distributed multi-agent system. This chapter addresses research question RQ1 and

related sub-questions:

• (RQ1.1) What are the characteristics of emergence and what makes it difficult to

understand and predict?

• (RQ1.2) How can emergence be defined?

2.1 Introduction

The concept of emergence was introduced in Chapter 1. For distributed multi-agent systems,

emergence has an intuitive definition: the collective behavior “emerges” from the interactions

between agents and the environment. This collective behavior far exceeds the capabilities of

any single agent. As discussed earlier, social insects can be used as inspiration and provide

concrete examples of how their underlying mechanisms can give rise to robust, effective, and

interesting behavior. However, the concept of emergence is present in fields as diverse as

solid state physics, biology, sociology, and economics. In fact, the landscape of definitions

and applications of emergence is more diverse than at any time in the history of the concept.

Each of these fields has their own understanding of what emergence means. Unfortunately,

trying to unify these ideas into a single coherent definition is difficult.

The concept of emergence has a long and contentious history. In fact, the debate about

what emergence is and its validity in scientific understanding continues to this day. To

deeply understand emergence, it is best to understand the circumstances under which the
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term has been used, including its historical context. At its historical roots, emergence is a

concept deeply rooted in philosophy of science and metaphysics. There are many concepts

in philosophy of physics and metaphysics that are useful for understanding what emergence

is and why it is a contentious topic. While emergence originated in the philosophy of

science in the mid-nineteenth century, it has become common in scientific and engineering

literature today. However, in between, emergence has a cyclical history that closely follows

the successes and failures of various scientific programs. Unfortunately, some scientific and

philosophical failures have left a trail of mischaracterizations that persist to this day. These

issues are discussed in detail in Appendix A. Although that discussion is useful to understand

the issues in defining emergence, it is not strictly necessary for understanding the results

presented in this chapter and within the remainder of the research. It is therefore left for

the Appendix for the interested reader.

There are two major goals when it comes to emergence: 1) defining emergence, and 2)

quantifying or detecting emergence. The first goal is straight forward—provide a definition

that is coherent, specific, and useful. The second goal is dependent upon meeting the first

goal. Meeting the second goal of identifying emergence will give us the ability to understand,

explain, and perhaps even design for emergence. Detecting emergence can take on a number

of different interpretations depending on the application and goal. It could mean testing

a candidate behavior to prove that it meets our definition of emergence. It could also be

interpreted to mean observing a system or process and identifying whether or not emergence

is part of the system’s behavior. Or, as is the goal of this thesis, searching through the

landscape of possible configurations and conditions of a given system to see if emergence

can be identified. At its core, identifying emergence requires a definition that is objective,

concrete, and actionable.

While the primary goal of this research is to develop a methodology capable of providing

solutions to the distributed multi-agent problem, a secondary goal is to create a methodology

(including appropriate definitions for emergence) that can be expanded to a wider range of

complex systems. After all, design methods like optimization have reached wide-use because

of their applicability to a wide range of problems. So too must emergence eventually reach a
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point of consistency and acceptance across the range of disciplines if it is to become a useful

tool.

2.2 Defining Emergence

Having a definition of emergence is critical for this research. Identification of emergence can

only occur once a definition is made. However, the history of emergence has shown that the

definition of emergence is inconsistent and sometimes controversial. Part of this is due to

history. Emergence started as an empirical phenomenon. Therefore, it could not be defined

axiomatically. Emergence was observed and then a definition was created that attempted

to capture the characteristics of the observation. A universal definition of emergence may

not be possible (although we should continue to try until we have evidence that emergence

escapes a rigorous definition). A universal theory of emergence must be consistent with

the underlying causality. Such a theory should be metaphysically rigorous and logically

coherent—but it might be a long time before such a theory exists. In the mean time, a

definition that simply captures the observed behavior might be sufficient for engineering

design. Presented below is a small sampling of the definitions from the literature:

• Assad and Packard (1992): Coming from the perspective of artificial life, Assad

and Packard’s definition reflects the field’s characteristic approach of using simple

rules to exhibit surprisingly complex behavior. In their definition (which is based on

a characterization of the body of literature in their field rather than a prescriptive

definition), emergence can be described as “unexpected macroscopic behavior that is

not immediately predictable upon inspection of the specification of the system” [12].

They acknowledge the subjectivity in this definition. The characterization of emergence

using terms like surprise or unexpectedness is troublesome. This language implies the

subjectivity of the observer or the epistemological nature of emergence. The trouble

with using a subjective definition, as well as the general misunderstanding of this

approach, will be discussed in detail later in this chapter. Assad and Packard also

attempted to introduce a spectrum of emergence depending on the difficulty level on the

deducibility of the emergent behavior. They proposed a scale from “weak” emergence

22



that is simple to deduce in hindsight, up to “strong” emergence that is impossible to

deduce from the specification of lower levels [12]. The final contribution from Assad

and Packard is the distinction between three different types of emergence: structure

(emergence of patterned structure), computation (emergence of novel computational

processing capabilities), and functionality (emergence of novel functions that are used

by the micro-level components) [12]. Furthermore, they hypothesize that these types

of emergence are hierarchical where the first type of emergence is required before the

subsequent type can take place, thus, functionality emergence requires emergence of

computation which requires emergence of structure.

• Bonabeau (1995): “emergence is a dynamic process through which some quantity

[complexity] is rapidly/dramatically varying with respect to the time constant/the

spatial granularity, or more generally to the model or the level of description used by

the observer.” [45].

• Chalmers (1996): “an interesting property that is unexpected, given the underlying

principles governing the system” [64, p. 253].

• Crutchfield (1994): “Emergence is generally understood to be a process that leads

to the appearance of structure not directly described by the defining constraints and

instantaneous forces that control a system. Over time ‘something new’ appears at

scales not directly specified by the equations of motion. An emergent feature also

cannot be explicitly represented in the initial and boundary conditions” [82].

• Wimsatt (1997): “An emergent property is—roughly—a system property which is

dependent upon the mode of organization of the system’s parts” [254].

• Holland (1998): “Emergence is above all a product of coupled, context-dependent

interactions. Technically these interactions, and the resulting system, are nonlinear :

The behavior of the overall system cannot be obtained by summing the behaviors of

its constituent parts.” [143, p. 121–122]

• Goldstein (1999): Emergence is “the arising of novel and coherent structures,
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patterns, and properties during the process of self-organization in complex systems”

[128, p. 49]. Emergence has the properties of being or having: 1) radical novelty, 2)

coherence or correlation, 3) global or macro level, 4) dynamical, and are ostensive

[128].

• Kim (1999): Emergent properties have two main characteristics: 1) “emergent proper-

ties are ‘novel’ and ‘unpredictable’ from knowledge of their lower-level bases, and that

they are not ‘explainable’ or ‘mechanistically reducible’ in terms of their underlying

properties;” b) emergents have “novel causal powers irreducible to the causal powers

of their basal constituents.” These causal powers “influence and control the direction

of the lower-level processes from which they emerge.” They are novel in that they “did

not exist before its emergence” [158].

• Ryan (2007): “Emergence is the process whereby the assembly, breakdown or re-

structuring of a system results in one or more novel emergent properties. Assembly

and breakdown are the dual processes of adding and removing interactions between

system components that change the cardinality of the set of components in the system,

while restructuring changes interactions between components without changing the

cardinality” [220, p. 73].

There are a number of common themes in the above definitions: nonlinearity, irreducibility,

novelty, and hierarchy. Each of these topics is discussed at length in Appendix A.2. These

terms will be briefly summarized. Nonlinearity generally refers to small inputs to a system

causing disproportionately large responses or a non-additivity when coming effects. Irre-

ducibility is the inability to describe a property or behavior using properties or behaviors

from the constituent parts. Novelty refers to the creation of new properties or behaviors

that were not present in the past or under different conditions. Hierarchy refers to either

the creation of physical organization and connectedness of the constituent parts or to the

levels of description that describe the properties or behavior.
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2.3 Emergence in Simulation

In the beginning, the concept of emergence was studied in physical and biological systems.

While emergence in natural systems is an active field of research, much of the current research

is on the study of emergent properties within computational models. The purpose of this

section is help establish a foundation of part of this research. The exploration of computer

models for the purpose of understanding emergence is well established. This section will

review a few concepts with respect to emergence within computational models.

2.3.1 Computational Emergence

Irreducibility, the idea that a property cannot be deduced from the properties of its con-

stituent parts, takes on a more concrete notion when dealing with simulation in the form

of computational irreducibility. A system is considered computationally irreducibility if the

outcome of its evolution can only be found through direct simulation [258]. There is no

shortcut in deriving the output short of carrying out the computational steps that govern

the underlying dynamics. Wolfram claims that “many complex or chaotic dynamical systems

are expected to be computationally irreducible, and their behavior effectively found only

by explicit simulation” [258]. In the same way that irreducibility was one of the defining

characteristics of emergence, we can extend that concept and say that simulations of complex

systems are characterized by computational irreducibility. Darley’s definition of emergence

is based on this concept of computational irreducibility: “emergent phenomena are those

for which the amount of computation necessary for prediction from an optimal set of rules,

classifications and analysis, even derived from an idealised perfect understanding, can never

improve upon the amount of computation necessary to simulate the system directly from

our knowledge of the rules of its interactions” [86].

2.3.2 Artificial Life

The study of emergence in the computational domain is well-established, especially in the

field of artificial life. Artificial life is particularly focused on emergence that comes about

through self-generated complexity—the repeated application of a simple set of rules that
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leads to complex behavior which mimics behaviors observed in nature. In his well-known

paper, Reynolds [214] showed how simple rules for agents can demonstrate flocking behavior.

Langton is credited [31] with coining the phrase “artificial life” and setting the foundation for

the field. He defined the key features of artificial life as: 1) populations of simple programs

or specifications, 2) no central controller, 3) rules describing how the simple entity reacts

to local situations in its environment, 4) no rules dictating global behavior, 5) behavior at

levels higher than the individual programs are automatically emergent [166].

2.3.3 Cellular Automata

Cellular automata (CA) is a dynamic system consisting of a lattice of discrete, deterministic

machines [150]. Each cell’s state is governed by a rule-set which governs its transition

behavior. These rules are a function of the states of the neighboring cells, resulting in

macro-level behavior that is a due to micro-level rules. CA are computationally irreducible,

which, along with the micro- to macro-level dynamics, makes them a candidate for exhibiting

emergent behavior. Cellular automata are widely studied in the field of complexity science

[33, 150]. They were introduced by von Neumann to study the behavior of extended complex

systems. This approach helped to form the ideas and methods of Artificial Life. Additionally,

CA can be used as discrete approximations to a set of partial differential equations, allowing

them to model many physical phenomena [258]. Of particular interest to the aerospace field

is the use of CA to model fluid flows in the form of lattice gas models. Ilachinksi [150, p. 18]

outlines variations of CA that allow for stochasticity, non-homogeneity, mobility of cells, and

even structurally dynamic lattices; however, once more than one of the key characteristics

of CAs are modified or removed, it can be argued that the system more closely resembles

another modeling technique, such as agent-based modeling. In fact, cellular automata can

be considered as part of the roots of agent-based modeling [109, p. 306], another widely

used modeling and simulation technique in the study of complex systems.

As Dogaru explains, “complex emergent behaviors in cellular automata are rare, and

consequently difficult to locate” [101, p. 70]. This difficulty has lead to the large amount of

research to identify the principles and rules which lead reliably lead to emergence. Kauffman
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found that there is an optimal (intermediate) degree of connectivity that leads to emergence

and Chua found that an array of Boolean cells must be not linearly separable to lead to

emergence [101].

2.3.3.1 Conway’s Game of Life

Conway’s Game of Life (GOL) [120] is an application of cellular automata. It is one of the

most studied examples of emergence using cellular automata. The Game of Life is based

on a cellular automata in which each cell follows a simple rule at each iteration: a living

cell remains alive if and only if either two or three of its neighbors are alive; a dead cell

becomes alive if and only if three of its neighbors were alive at the previous iteration. The

resulting dynamics exhibit a wide range of complex behavior, including the generation of

structures which move cohesively through the domain (“gliders”). The glider and other

structures and properties in the Game of Life are recognized by many researchers as being

an example of emergence [165, 33, 216, 101]. As Holland explains, “the possibility of such a

spatially coherent moving pattern is not something easily determined by direct inspection of

the laws of Conway’s universe. The possibility only exists because of the strongly nonlinear

interactions of the particles (states) in adjacent cells” [143, p. 140]. The macro-level laws

“comes from our prior empirical observations of how the systems behave under different

initial conditions” [33].

The Game of Life also has a number of interesting properties that make it an attractive

system of study and as an archetype of emergent systems. The GOL is computationally

irreducible. The R-pentomino, a five-cell edge-connected unstable pattern, has been shown

to be underivable [34]. Additionally, it has been shown that the GOL can be designed to

function as a Universal Turing Machine [40], and is therefore capable of computing any

algorithm, at least in principle.

2.4 Characterizing Emergence in Complex Systems

The discussion in the previous section provides insights but not any practical solutions

for defining emergence. Although we expect our simulation to exhibit computational

irreducibility, it is not a sufficient condition for emergence. As a counter example, a simple

27



chaotic system (e.g., a double pendulum) would be computationally irreducible but would not

meet our intuitive understanding of emergence. Beni [37] defines an intelligent swarm as a

group of non-intelligent machines capable of universal material computation (i.e., the ability

to arbitrarily transform matter, energy, or information). What Beni calls “unpredictability”

is the concept of computational irreducibility, whereby there is no prediction possible

that is more efficient than simulation. In addition to the already mentioned problem

that computational irreducibility is not a sufficient condition for emergence, a proof of

irreducibility would be very difficult to achieve. The best case scenario is a proof by counter-

example; however, even a counter-example would not provide much insight into system

behavior.

Other investigations into emergence in simulations like artificial life and cellular automata

have focused almost exclusively on pattern formation. While pattern formation is eye-

catching, it is unlikely to be a useful paradigm for engineering design. Pattern-formation

and investigations of complexity using analysis of structure will be discussed in Chapter

3; however, patterns and structure are not a generally applicable and useful approach for

designing engineering systems. Although there will often be some correlations between the

degree of organization and system effectiveness, the connection is not clear. Using foraging

ants as an example, completely disorganized and random paths by all of the agents is a

clear sign that the system has not achieved self-organized behavior. However, at the other

end of the spectrum, a perfectly fixed structure is not ideal either. The robustness of ant

foraging allows for paths to dynamically change in response to changes in the environment

and due to the natural exploration behavior of the ants. Another example is an ant mill,

which is a completely degenerative behavior in which ants form a closed loop which they

traverse until their exhaustion and death. It should be clear that analysis of patterns is not

the right approach; instead, we need to examine the function of the system as a measure of

the effectiveness.

Claim: Direct measures of system effectiveness are a better way of comparing system

behavior rather than indirect methods such as pattern analysis.
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Characterizations of complex behavior are naturally probabilistic. Despite the added

complications of representing distributions, a probabilistic viewpoint is also useful and

relatively well behaved in the sense that a probability distribution is bounded. Nicolis and

Prigogine explain how “the problem of instability and multiplicity of solutions, familiar

from the study of bifurcations in nonlinear dynamical systems, simply does not arise at the

probabilistic level. . . . Bifurcation is reflected by a qualitative change in the structure of

the underlying probability distribution, such as the appearance of multiple humps, rather

than by the multiplicity of the probability distribution itself” [204, p. 162]. Kernstine

et al. found that the design spaces of complex systems are typically characterized as

stochastic, heteroscedastic, and conditionally variant [157, p. 2]. Kernstine gives three

characteristics of emergence: nonlinearities, changes in variance, and discrete changes in the

metric [156, p. 245]. All three of these characteristics are easily generalized when dealing

with probability distributions: discrete changes are manifested as either rapid shifts in

the probability distribution or the existence of a multimodal distribution, where there is

more than one peak in distribution. An example of a probability distribution changing as a

function of a parameter (in this case time, but generalizable to any parameter space) is shown

in Figure 5 (a) while a bimodal distribution is shown in Figure 5 (b). Nonlinearities are

manifested as rapidly changing probability distributions for small changes in the parameter

space. Kernstine writes that “neighboring points in a simulation [design space] are expected

to have similar features, and transitions from one distribution or state are expected to be

smooth far from emergent behaviors” [156, p. 83]. While Kernstine argues that “areas of

high variance may be indicative of an emergent behavior” [156, p. 178], I do not believe

that high variance is necessarily an indicator for emergence. Typically, the emergence of

self-organization is manifested by reduced variance. Therefore, all variance shifts should be

regarded as possible indicators of emergence.
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Figure 5: (a) Probability distribution shifts in both time and parameter space; (b) Bimodal

probability distribution (both from [109])

Claim: Emergence is manifested by qualitatively different probability distributions compared

to non-emergent design points. Both mean and variance shifts, relative to neighboring design

points, are important in identifying emergent behavior. Emergent behavior can be identified

by locating shifts in the shape of a metric’s probability distribution.

2.5 Synthesizing a Definition of Emergence

Part of the difficulty of defining emergence is that there are really two related tasks. The

first task is to define emergence with respect to the various types of systems that exist. The

second task is defining emergence for a specific system. While the former task seeks to

classify the wide range of possible systems, the latter is focused on the specific states in a

single given system that are associated with emergence. Since this research is looking at

the design of a single system under investigation, the definition presented here is within the

context of identifying system states associated with emergence. Although some parts of

the definition attempt to capture entire classes of systems, other parts of the definition are

specific to a system’s states. This difference between the two tasks is the reason why the

presented definition will have multiple components.

There is no shortage of definitions of emergence in the literature. While I disfavor an

addition to the list of definitions, the lack of a clear, comprehensive, and accepted definition

necessitates the creation of a refined definition. The definition of emergence I propose will
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be synthesized from the ideas presented in this chapter. The goal is to capture the following

properties of emergence:

• Novelty: The instantiation of new, unexpected properties and qualitative change in

behavior.

• Context dependence: The system exhibits qualitatively different behavior depending

on the context (e.g., inputs, the environment, memory effects).

• Irreducibility: Borrowing from Bedau [34], Darley [86], and Huneman [148], emergence

requires discovery through simulation due to its computational irreducibility.

I propose the following definition of emergence:

Emergence: Emergence is the phenomenon in a complex system that is characterized by

unexpected qualitative changes in macro-level behavior due to context-dependence of the

micro-level components.

However, it is not clear how this definition could be used in a quantitative and useful

way. What is lacking is the engineering perspective: a definition of emergence that also

includes a concept of affecting change. From an engineer’s perspective, emergence is only

useful if it helps us to achieve a function. Therefore, a second related definition will be

proposed. As will be discussed in the Chapter 5, the idea of a critical transition is common

in many measures of emergence. As Fromm explains, using “the colloquial meaning [of]

‘appearance’ in the broad sense, the sudden emergence of something is always possible at a

clear boundary or border of something, someone, or some form of system” [118]. Therefore,

I introduce a secondary definition for engineered emergence:

Engineered Emergence: Engineered emergence is the critical transition in macro-level

behavior due to changes in system context (i.e., environmental conditions or system parame-

ters).

This second definition is actionable since unexpected qualitative changes, which is a

nebulous concept, is replaced with a critical transition, which can be measured directly.

31



2.6 Emergence for a Distributed Multi-Agent System

The final section in this chapter will examine whether the proposed definition of emergence

is consistent with the concept of emergence for distributed multi-agent systems. More

generally, the question is: what does emergence look like for distributed multi-agent systems?

Again, we can use social insects to help understand the collective behavior of multi-agent

systems. Characterization of foraging ant species has shown that there is a nonlinear phase

transition between organized and disorganized behavior upon reaching a critical colony size

[36]. Similarly, Bonabeau et al. argue that a characteristic signature of self-organization

is “the existence of bifurcations when some parameters are varied: the behavior of a self-

organized system changes dramatically at bifurcations” [48]. This idea of a phase transition

is consistent with the “critical transition in macro-level behavior” in the proposed definition

for engineered emergence. Furthermore, it has been demonstrated in ant foraging models

that the system is sensitive to fairly small changes in the properties of the individual ant

[105]. This idea is consistent with the second half of the engineered emergence definition

where we are searching for shifts in behavior as system parameters change. Thus, emergence

in the distributed multi-agent system is going to consist in searching the design space to

identify the critical transitions in behavior.
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CHAPTER III

COMPLEX SYSTEMS

Chapter Road Map: The goal of this chapter is to define what it means for a system to be

“complex.” This chapter will also explore the mechanisms that drive complex behavior and

various measures that have been proposed to measure the amount of complexity in a system.

Although complexity and emergence are not equivalent, there are enough similarities and

overlap in features that warrant the discussion about complex systems in this research. This

chapter addresses most portions of Research Question 2 (RQ2):

• (RQ2) How do we analyze and design complex systems?

– (RQ2.1) What characterizes a complex system?

– (RQ2.2) What causes a system to be complex?

– (RQ2.3) How can the complexity of a system be measured?

3.1 Characterizing Complex Systems

It has been argued in Chapter 1 that distributed multi-agent systems are an example of a

complex system. The goal of this chapter will be to understand what causes a system to be

complex and to gain insight into how complex systems should be analyzed and designed.

The simplest definition of a complex system is given by Crutchfield, a “highly-structured

collective behavior emerges over time from the interaction of simple subsystems” [80]. It

is this juxtaposition of simple components with “complex” behavior that make complex

systems such a compelling topic of study. Weaver [250] proposed three classes of problems:

simple, disorganized complexity, and organized complexity. Simple problems, such as in

classical mechanics, have a deterministic solution. At the other end of the spectrum, is

disorganized complexity; however, this class of problems has a probabilistic solution (e.g.,
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classical thermodynamics). The hardest set of problems is organized complexity. These

problems are too big to be solved using traditional analysis methods but they are too small

to be solved using strictly probabilistic methods. These problems involve both randomness

and structure. Organized complexity is observed in a range of systems. These include

many physico-chemical systems that exhibit phase transitions or the formation of patterns.

Moving up in scale, the Earth’s weather and climate system exhibits many characteristics of

complexity [204, pp. 226–232]. Biological systems, from biological subsystems like the brain

[244, Ch. 5] and the immune system to social insects [204, pp. 232–238] to human systems,

are the epitomic examples of organized complexity. One of the issues raised by multi-agent

systems is the size of the system under investigation. There are extensive techniques available

for analyzing and designing small monolithic systems. At the other end of the spectrum,

statistical techniques can be used for characterizing very large systems. However, systems

of intermediate size are proving to be the most difficult due to the lack of methods for

analyzing and designing these systems.

One way of understanding complex systems is contrasting them with simple systems.

Erdi lists three important characteristics of simple systems: 1) single cause and single effect;

2) a small change in the cause implies a small change in the effects; and 3) predictability [109,

p. 6]. These are directly opposed to characteristics of complex systems: 1) circular causality,

feedback loops, 2) small change in the cause implies dramatic effects, 3) emergence and

unpredictability [109, p. 7]. Prokopenko et al. list other important characteristics of complex

systems: 1) complex systems are open to the transfer of energy, information, and/or matter

from the environment; 2) a large ensemble of individual components interact in a nontrivial

fashion; and 3) the nontrivial interactions result in internal constraints which results in

coherent global behavior [212]. Complex systems are intimately tied with emergence. In fact,

many have defined a complex system as a system that exhibits emergence. Complex systems

“typically have a large number of components, where the interactions lead to collective

emergent behaviours that cannot, even qualitatively, be derived as a plain resultant from the

individual components’ behavior” [222, p. 248]. This is in contrast to complicated systems

that “have a large number of components which behave in a well-understood way and
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have well-defined roles leading to the resulting effect” [222, p. 248]. Nicolis and Prigogine

claim that the “fingerprint of complexity” is the “emergence of a new level of description

brought out by the underlying dynamics” [204, p. 191, original emphasis]. In this way, the

characterization of complex systems follows closely with that of emergence.

One important question, similar to the question of emergence, is whether or not complexity

is a fundamental property of a system/process or whether it is a reflection of our ability

to understand it. While the complexity of physical systems is distinct from computational

complexity, they also share some similarities that may help to understand properties of

emergence. Moore and Mertens explain that, in the field of computational complexity theory,

the complexity class is a “fundamental property of a problem” and not a “subjective question

about our abilities to compute” [191, p. 29]. Likewise, emergence and complexity of physical

systems are intrinsic properties.

3.1.1 Mechanisms of Complex Behavior

We seek to understand how basic low-level interactions can give rise to complex behaviors.

Huygen’s pendulum clock is an interesting example of a relatively simple system that still

exhibits complex behavior. Wimsatt describes Huygen’s discovery in 1656 of the coupled

oscillation in pendulum clocks as an example of an emergent effect: “clocks hung together

on a beam became synchronized and kept better time than either did alone” [254]. This

effect was due to the arrangement of the pendulum clocks with a connecting rod between

them that provided the mechanism for the coupled dynamics. While this would seem to be

a fairly simple system, it was profound for several reasons. The first is the unexpectedness

of the result. Huygens was eventually able to determine the mechanism for the coupling

effect as “the imperceptible movements” of the connecting beam [39, p. 565]. This stark

difference in scale between the large motions of the pendulums and the “imperceptible”

motion of the connecting beam is characteristic of many complex systems. The system is

also governed by nonlinear dynamics that escape easy characterization, especially at the

time of its discovery. The second reason for the importance of this observed example of

emergence is the importance of the nonseparability of the system. While many current
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discussions of complex systems deal with large, engineered systems, Nicolis and Prigogine

explained in their book Exploring Complexity: An Introduction (1989) [204] how

relatively simple physico-chemical systems can also exhibit complex behavior. There are

a number of characteristic mechanisms that are associated with complex behavior. The

following is a list of some of the most common and their description.

3.1.1.1 Nonlinearity

In a linear system, the property of superposition holds. The combined effect of two causes is

the superposition of the causes taken individually. Systems that are either linear or can be

approximated by a linear system are of great interest to scientists and engineers because of

this simplification. A system which can be recast as a summation of a number of simpler

systems can often be solved by the summation of the solutions to each of the simpler systems.

In the case of a nonlinear system, this simplification is not possible. Furthermore, the effects

are not proportional to the causes—a small change in the cause leads to a disproportionately

large change in the effect. Amaral and Ottino [6] argue that nonlinearity is the key to novel

behaviors in complex systems since nonlinear effects drive the system to qualitatively new

operating regimes.

3.1.1.2 Chaos

Chaos is a phenomenon where the behavior of the system exhibits extreme sensitivity to

initial conditions. Two trajectories of a system will eventually diverge, even for infinitesimal

differences in initial conditions. The unique property of chaotic systems is that fluctuations

at the microlevel are amplified by the dynamics and affect the macrolevel behavior. This is

different from most other systems, where microlevel fluctuations are local effects only (e.g.,

a gas system). This makes analyzing and designing systems which exhibit chaotic motion

difficult, since their state at any future point in time cannot be predicted with any certainty

more than an ensemble of possible trajectories. This requires that analysis and design of

chaotic systems has to rely on statistical and geometric properties rather than on detailed

prediction [79].

Chaos is an interesting topic to study because it is a mechanism which leads to complex
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behavior, but it also exhibits many of the properties of emergence by itself. Crutchfield

et al. describe chaos as “the interaction of components on one scale can lead to complex

global behavior on a larger scale that in general cannot be deduced from knowledge of

the individual components” [79]. This is the same language of emergence. Chaos also

faces the philosophical issue of whether the lack of predictability comes from an intrinsic

property of the system or from limitations of the observer. Crutchfield et al. claim it

is a “product of both the complicated behavior of nonlinear dynamical systems and the

limitations of the observer” [79]. However, I would place more emphasis on unpredictability

being a fundamental property of the system. When prediction requires an infinite amount

of information (i.e., infinite precision on the state variables), the limitations on the observer

are fundamental and unchangeable.

The types of systems that are considered chaotic has increased greatly. Initially, only

small systems which could be analytically studied were found to be chaotic. In 1963, Lorenz

discovered chaotic behavior in a low-dimensional model of fluid flow describing the weather

system [204, pp. 124]. While simple systems could be analytically studied, larger systems

had to be studied using computer simulations [234]. Since then, information systems [181],

manufacturing, combat systems [174], and others have been shown to be chaotic.

3.1.1.3 Feedback

Feedback is a common mechanism in both natural and engineered systems. Feedback

occurs when the system’s effect influences the action of the cause. This process leads to

complexity because causation is iterative—both causes and effects are linked through a

circular connectivity. Since the concept of feedback is well-known, in both regular and

complex systems analysis, this mechanism will not elaborated further in this section.

3.1.1.4 Symmetry-breaking and Bifurcations

Symmetry-breaking is the phenomenon where there exists an intrinsic differentiation between

different parts of a system, or between the system and its environment where there was none

before [204, p. 74]. Anderson describes symmetry-breaking as the “shift from quantitative

to qualitative differentiation” [9]. Phase transitions in materials are common examples of
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broken symmetry phenomena. Superconductivity, antiferromagnets, ferroelectrics, liquid

crystals are all material phenomena that are governed by symmetry-breaking mechanisms

[9]. Nicolis considers symmetry-breaking and bifurcations to be one of the prerequisites to

complex behavior [204, pp. 73–74]. Symmetry-breaking also has deep connections to the

concept of information; symmetry-breaking is a prerequisite to information and information

processing [204, p. 143]. It is the selection between possible states that is the basis for

information; symmetry-breaking is the selection process.

3.1.1.5 Large Differences in Spatiotemporal Scales

There is an order of magnitude (or more) difference in the spatiotemporal scale between

the lowest and highest levels within the hierarchical structure of complex systems. The

fundamental “unit” of a system is orders of magnitude smaller than the overall system or the

highest-level at which coherent behavior occurs; however, the unit is important to the overall

behavior of the system and cannot be abstracted away. This effect is often seen in chaotic

systems, where small variations at the microlevel are amplified by the dynamics and bring

about changes at the macrolevel. The connection between the micro and macro levels vary

greatly. Some systems can be represented using continuum models where the micro level are

almost completely abstracted. As Batterman explains, “continuum model equations such as

the Navier-Stokes equations of hydrodynamics or the equations for elastic solids work despite

the fact that they completely (actually, almost completely) ignore small scale or atomistic

details of various fluids” [30, p. 256]. However, it should be noted that it is often the case

that continuum models are not derived from micro-level models [30, p. 271]. Other systems

exhibit some regularity or statistical similarity that allow for “coarse-graining” procedures

where microlevel effects are replaced with statistical averages. “Much philosophical confusion

about reduction, emergence, atomism, and antirealism follows from the absolute choice

between bottom-up and top-down modeling that the tyranny of scales apparently forces

upon us” [30, p. 257].
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3.1.1.6 Large Number of Components

Complex behavior is often attributed to systems that comprise many elements. Physico-

chemical systems have an astronomical number of elements. Similarly, biological systems and

sociological systems also contain a large number of interacting entities. This characteristic is

inherently related to systems that exhibit large differences in spatiotemporal scales; therefore,

the treatment of these types of problems is often through statistical averaging [204, p. 66].

3.1.1.7 Self-generated Complexity

Self-generated complexity comes about from the (infinite) iteration of a few finite rules

[17, pp. 9, 249]. Phelan argues that “one of the defining characteristics of complexity

research” is the search “for the simple rules that purportedly explain the behavior of complex

systems” [209, p. 239]. Some examples of self-generated complexity include fractal geometry,

symmetry breaking of superconductors, long-ranged correlations of phase transitions, and

Conway’s Game of Life. This mechanism is similar to that seen in nonlinear dynamics,

where the repeated application of a simple map leads to chaotic behavior.

3.1.1.8 Adaptation or Evolution

Evolution and adaptation can be considered as a special case of a feedback process [76],

where the system or the components of the system adapt (i.e., change their behavior) in

response to their environment or other components in the system in order to maximize their

fitness. Evolution is adaptation that takes place over successive generations of agents, whose

fitness improves over time.

If the dominant mechanism driving complex behavior is adaptation, the resulting system

can be classified as a Complex Adaptive Systems (CAS). CAS are class of complex systems

in which a large number of less complex agents work together to produce coherent high

level behaviors. More importantly, these systems have three key characteristics: evolution,

aggregate behavior, and anticipation (internal models). Anticipation (“basing current actions

on expected outcomes” [142]) is the defining feature of adaptive systems and what separates

them from other complex systems. Holland [144] gives four properties of complex adaptive
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systems: 1) aggregation, 2) nonlinearity, 3) flows, and 4) diversity. The nonlinearity property

makes possible “lever points” where “a small input can produce major predictable, directed

changes—an amplifier effect” [144, p. 5]. Additionally, there are three mechanisms which

facilitate the coordinated behavior: 1) tagging, 2) internal models, and 3) building blocks

[144]. The tagging mechanism “consistently facilitates the formation of aggregates” [144, p.

12]. This aggregation gives rise the hierarchical structure. The property of diversity and

the internal model mechanism allows for adaptation. “The three essential functions for an

adaptive mechanism are generating variety, observing feedback from interactions with the

environment, and selection to reinforce some interactions and inhibit others” [212, p. 23].

3.1.1.9 Large Number of Dimensions

As the number of characteristic dimensions of the system increases, there is the possibility

of new behaviors that the additional degrees of freedom allow [204, pp. 82]. Any degree of

freedom that is not fully constrained leaves the system open to traverse the state-space and

encounter states that are not being controlled.

3.1.1.10 Fluctuations

The system being open to the influx of matter or energy from the environment introduces

fluctuations into the system state variables. “Physico-chemical systems are capable of

exploring the phase space continuously and of performing excursions around the state

predicted by the solution of the phenomenological, deterministic equations that describe the

systems” [204, p. 148]. These excursions of the phase space provide the variety of the large

number of trajectories of each of system components. This mechanism provides “access to

novelty” [79] that enables other mechanisms like adaptation or high-dimension dynamics to

take hold.

Certainly there are other mechanisms than the ones listed above which lead to complex

behaviors. Complex behavior is possible in under-determined systems, where there are many

important degrees of freedom that are determined by outside or context-dependent factors.

Similarly, emergence is common in open-systems, where the system exchanges energy and

matter with its environment. As Polanyi explains, “the structure and functioning of an
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organism is determined, like that of a machine, by constructional and operational principles

that control boundary conditions left open by physics and chemistry” [211, p. 219].

3.1.2 Pattern-Formation

Patterns are often considered evidence of complex behavior. However, it would be incorrect

to say that all patterns are signs of complex behaviors and are due to the same mechanism.

Patterns reflect a spectrum of behaviors that range from the pattern itself being fundamental

unit of the system to being a mere epiphenomenon. In the former case, the patterns seen in

Conway’s Game of Life represent the fundamental entities in the system and the patterns

are the reason the behavior has been studied extensively. On the other extreme are patterns

like rainbows; while they may be indicative of a certain arrangement and conditions in

the atmosphere, they are observer-dependent and they have no meaningful feedback on

the system. In the middle of this spectrum is a wide range of systems that have coherent

patterns that reflect the state of the underlying system and but also have some causal effect

due to feedback effects. Examples include Bénard cells in convective flows or vortices in

fluid flows.

A pattern can be defined as a series where there exists “some more efficient way of

describing it” [94]. A pattern is therefore a sign of structure that “relates the components”

that act “like a constraint in the product space of possibilities” [220, p. 70]. What is the

connection between pattern formation and complexity and emergence? Boschetti explains

that “pattern formation captures the most intuitive view of emergence. The interaction of

low-level simple entities, leading to symmetry breaking, generates a coordinated behaviour;

this is expressed by patterns which are novel and identifiable as such by an external observer”

[51]. This explanation leads to two questions: Does the pattern have causal influence in

order to coordinate behavior? And is the pattern objective? To answer the first question,

Crutchfield defines intrinsic emergence as features that are “important within the system

because they confer additional functionality on the system itself” [82]. While Crutchfield

acknowledges that patterns can be intrinsic emergence, they are observer-dependent in that

the structure and novelty of the patterns is in the eye of the beholder and are subject to
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their biases [82, 80].

3.2 Types of Complexity: Structural and Behavioral

While there are many examples of complexity, most can be classified as either structural or

behavioral complexity. Structural complexity is the complexity of the organization of the

components of a system and their connections. Structural complexity deals with the physical

organization and the flow of matter, energy, and information between components and the

environment. Behavioral complexity deals with how the system responds throughout the

range of possible inputs. Erdi calls this “dynamical” complexity [109]. Similarly, Deshmukh

et al. argue for two types of complexity measures for a complex manufacturing system:

static complexity related to the structure of the system and dynamic complexity [95].

Balestrini-Robinson argues that “understanding the relationship between topology (struc-

ture) and dynamics (behavior) is of critical importance to understanding the behavior of

complex systems” [20]. However, I argue that the greater and more fundamental challenge

is understanding and managing the behavioral complexity—after all, the function (behavior)

of the system is our end goal. What is the connection between structural and behavior

complexity? Erdi argues that “there is no strict correlation between structural and dynamical

complexity” [109, p. 3]. Many researchers attempt to measure structural complexity (some

of which will be reviewed in this chapter), but it is not clear that there is any fundamental

reason to believe that structural complexity is correlated with behavioral complexity in a

context-independent way. Systems with large structural complexity can produce simple

behaviors, and systems with simple structural complexity can produce complex behavior

(one of the hallmarks of emergence). “The structure of a system need not be complicated

for its behavior to be highly complex” [258]. The structure and organization of a system

clearly influences its behavior; therefore, behavior is function of the organization. An even

more interesting case is when the behavior of the system drives its organization, as in

self-organizing systems.

Structural complexity, without behavioral complexity, can be handled by systems engi-

neering methods in principle. Although the large number of components typical of complex
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systems makes systems engineering difficult, the systems engineering process can decompose

the system and define interfaces. Granted, the number of interfaces can grow exponentially

large if there are a large number of heterogeneous components with many possible connec-

tions. However, the greater challenge arises only when behavior complexity is added. It

is here that systems engineering methods generally fail. Kitto argues that “the systems

most consistently defying our techniques are those that exhibit contextual behaviour” [160,

p. 1]. As Muncion et al. explains, the connections in a complex system “may be created

and destroyed dynamically” and the structure, “instead of being engineered beforehand

and imposing its constraints to the system, is the emergent result of the local interactions

between the entities of the system” [190]. This coupling between behavior and structure

of the system makes analyzing the structural complexity difficult. In that case, structural

complexity has to be itself dynamic or considered as a maximum (i.e., worst-case scenario).

When the behavior and the structure of the system change in various contexts, especially

feedback between structure and behavior, new methods are required to study these systems.

Claim: Since emergent behavior is not correlated with structural complexity, its study is

more fundamentally tied to behavioral complexity.

Scope: This work does not attempt to measure the structural complexity. It also does not

assume or imply any connection between structural complexity and behavioral complexity.

The goal of this research is to focus strictly on the behavioral/dynamical complexity.

3.3 Measures of Complexity

One of the main goals of complexity science is to develop a measure of the amount of

complexity present in a system. Complexity is inherently tied to processes that can be

described on a spectrum between random or structured. Figure 6 depicts two conceptions of

complexity: deterministic and statistical [82]. Deterministic complexity is a monotonically

increasing function of the degree of randomness in a process, governed by the Shannon

entropy rate ℎ𝜇 [82]. However, statistical complexity is maximal somewhere between a

process that is purely ordered (no randomness) and purely disordered (complete randomness).

It reflects that our intuitive notion of complexity lies somewhere between these two extremes.
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Like the distinction between Weaver’s [250] simple, organized complexity, and disorganized

complexity, the type of complexity we are most interested in lies between the two extremes.
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Figure 6: Complexity vs. randomness for deterministic (a) and statistical (b) complexity

(from [82])

A number of measures exist that attempt to quantify the amount of complexity in a

system. A number of complexity measures will be discussed in this chapter. Although the list

of discussed measures is nowhere near exhaustive, it does represent a good cross-section of

complexity measures. The complexity measures presented here are grouped into three classes:

descriptive complexity, statistical complexity, and entropy-based. Descriptive complexity

measures are based on the idea that complex systems require more “description” in order

to reproduce their behavior. The Information Processing class of measures try to capture

the idea that patterns in the system state carry transmit information that can be used to

understand and predict the system.
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Table 1: Taxonomy of complexity measures

Class Complexity Measure Key References

Descriptive Complexity Kolmogorov-Chaitin

Complexity

Descriptive Complexity Logical Depth Bennett [38]

Descriptive Complexity Effective Complexity Gell-Mann and Lloyd [123,

122]

Information Processing Predictive Information /

Effective measure complexity /

Excess entropy

Bialek et al. [41], Grassberger

[131]

Information Processing Thermodynamic Depth Lloyd and Pagels [173]

Statistical Structure Multiscale Complexity Bar-Yam [23]

3.3.1 Descriptive Complexity Measures

The Descriptive Complexity class of measures is based on the idea that complexity is “the

amount of information needed to describe a process, a system, or an object” [212, p. 14].

All of the complexity measures in this class use the notion of a computational algorithm as

a model for describing the system.

3.3.1.1 Algorithmic Complexity

Algorithmic complexity is a measure of how complex a corresponding algorithm would be

to reproduce a certain output based on an input. This type of complexity is known as

Kolmogorov-Chaitin complexity or Minimal Descriptive Length (MDL). Kolmogorov-Chaitin

complexity, 𝐾 (𝑥), is (the number of bits of) the smallest computer program that will run

on a Universal Turing Machine that outputs 𝑥 and then halt. There are several fundamental

problems with Kolmogorov-Chaitin complexity. The first is that this measure does not match

our intuitive understanding of complexity. Algorithmic complexity is maximized by complete

randomness, where the shortest program is simply the data set itself. In this case, the data

set is considered incompressible—there is no way to represent the data short of printing the

45



data itself. This brings us to the intuitive mismatch in understanding complexity. Systems

that are completely random do not exhibit coherent structure and are therefore not complex.

On the other hand, periodic behavior would have a very low algorithmic complexity even

though the underlying behavior is more representative of what we intuitively consider as

complex. This difference in types of complexity is illustrated in Figure 6 (b). Therefore,

algorithmic complexity is often a poor representation of complex behavior between the two

extremes of interpretation [204, p. 28]. Related to the above issue is when a process has

both structured and random processes occurring simultaneously. In this case, it is likely

that the Kolmogorov-Chaitin complexity metric will be dominated by the random portion

and will obscure any structured processes. The last problem with Kolmogorov-Chaitin,

and all MDL-based approaches, is that they are generally uncomputable [82, 229]. For any

practical problem, Kolmogorov-Chaitin complexity is considered biased since the shortest

computer program is dependent on both the type of data and the computer language used

to implement the program. Clearly, some languages represent a class of data using a shorter

syntax and more efficient data structures than others.

Crutchfield et al. argue that all algorithmic complexity approaches are flawed: “Unfortu-

nately, almost all interesting mathematical and quantitative questions about these measures

of structure inherit the uncomputability associated with [Universal Turing Machines]. More

fundamentally, though, the idea that everything in the world is really a discrete-state

computer strikes one as inadequate; at a minimum nature is parallel, continuous, spatially

extended, noisy, and quantum mechanical” [84]. Furthermore, Crutchfield argues that

algorithmic complexity requires an exact replication of a string; therefore, it is dominated

by the randomness in the input [81].

3.3.1.2 Logical Depth

Logical depth, developed by Bennett [38], is the run time of the Universal Turing Machine

that uses the minimal algorithmic description. It is similar to the minimal descriptive length

approach. Logical depth “mediates between algorithmic information, where the size of the

shortest program is considered, and computational complexity, where the run time for the
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fastest program is investigated” [17, p. 236] However, since this approach relies on a minimal

algorithmic description, it is effectively uncomputable [17, p. 237].

3.3.1.3 Effective Complexity

Gell-Mann and Lloyd’s [123, 122] Effective Complexity measure is based on the concept of

a minimum descriptive length, which they call the algorithmic information content. They

split the algorithmic information content measure into two parts: one term (the Effective

Complexity) to capture the regularities in the system and the other for random components.

Thus, the Effective Complexity is a measure of the minimum descriptive length of the

system’s regularities [122]. This approach is similar to the idea that the “best” model of

a system is one that minimizes sum of the model size and the unmodeled errors. A poor

model may have a small model size but at the expense of an increased unmodeled errors. On

the other hand, reducing the unmodeled errors usually requires a larger model. By finding

the minimum descriptive length for the total information, the Effective Complexity is the

best description of the system’s regularities.

3.3.2 Information Processing Measures

Algorithmic complexity deals with the amount of work it takes to reproduce an output

exactly. This description is not appropriate for real systems that have noise and must be

treated statistically. To address this issue, Crutchfield and Young introduced statistical

complexity, 𝐶𝜇 [85]. Statistical complexity is that it is the minimum amount of information

about the past required to make optimal prediction of the future at the error rate ℎ𝜇 [82]. It

measures the degree the system departs from statistical independence [229]. In other words,

statistical complexity is a measure of the average amount of historical information stored in

the current state [84].

3.3.2.1 Predictive Information

A measure that tries the capture how well past information helps to predict the future states

is predictive information [41]. It is the amount of information that past observations 𝑇
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provide about the future observations 𝑇 ′, as shown in Equation 1.

𝐼𝑝𝑟𝑒𝑑

(︀
𝑇, 𝑇 ′)︀ =

⟨
log2

𝑃 (𝑥𝑓𝑢𝑡𝑢𝑟𝑒|𝑥𝑝𝑎𝑠𝑡)
𝑃 (𝑥𝑓𝑢𝑡𝑢𝑟𝑒)

⟩
= 𝐻

(︀
𝑇 ′)︀−𝐻

(︀
𝑇 ′|𝑇

)︀
(1)

This concept has been defined by a number of different researchers under a number of

names. Excess entropy is a measure of the total apparent memory or structure in a source

[83, 127]. It considers how much is explained away by considering larger sets of observations

(i.e., further back in time). Effective measure complexity is the amount of information

required for optimal prediction [131, 16]. All of these measures, including others like stored

information, are based on the same idea. These are also similar to statistical complexity,

which is always at least as large as the predictive information [229].

3.3.2.2 Thermodynamic Depth

Lloyd and Pagels [173] introduce a measure called Thermodynamic Depth. As they explain,

“thermodynamic depth identifies the complexity of a state of a physical system with the

amount of information processed in the course of constructing that state” [173]. The

thermodynamic depth is calculated as the difference in entropy of the macro and micro-level

of the system.

3.3.3 Statistical Structure Measures

The final class of complexity measures uses statistical methods to measure the amount of

structure present in a system.

3.3.3.1 Multiscale Complexity

Bar-Yam proposes a complexity measure called Multiscale Complexity [23]. Entropy-based

measures are one of the most common measures of complexity. Although some of the previous

measures are closely related to entropy and other information-theoretic concepts, Multiscale

Complexity uses a more traditional interpretation of entropy. In its simplest interpretation,

entropy is a measure of the system’s state space volume [23] (i.e., the distribution of possible

states). He examines how entropy changes as the system is viewed from various scales of

observation, thus building a “complexity profile” of a system.
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3.4 Conclusions
3.4.1 Measures of Complexity versus Measures of Emergence

One point of confusion may be the difference between complexity measures and emergence

measures. This confusion is natural since some authors use these terms interchangeably.

However, in general, there is no evidence that high complexity measures necessarily leads

to emergence, and vice versa. Furthermore, even the relationship between complexity and

entropy-based measures is not established. Li argues that “there is no universal relationship

between complexity and entropy independent of the underlying sequences” [172].

Therefore, I have attempted to keep separate strictly complexity measures (where

emergence is not concerned) and measures where emergence is explicitly sought. The

latter measures will be explored in more detail in the section of Measures of Emergence.

Complexity measures, without necessarily emergence, are included here since many measures

of emergence are related to complexity measures and use similar underlying techniques.

Furthermore, a discussion on complex systems cannot be complete without the inclusion of

complexity measures.

3.4.2 From Structure to Function

Many of the complexity approaches presented above focus on either the complexity of

description or the spatiotemporal structure of the system. In particular, many complexity

measures are based on entropy. Bialek et al. criticize the over-reliance on “disorder” based

complexity measures: “In an attempt to create a universal measure, the constructions can

be made over-universal: many proposed complexity measures depend only on the entropy

density 𝑆 and thus are functions only of disorder—not a desired feature. In addition,

many of these and other definitions are flawed because they fail to distinguish among the

richness of classes beyond some very simple ones” [41]. Another criticism of entropy-based

statistical structural measures is that “the relationship between complexity and entropy is

not one-to-one, but rather many-to-one or one-to-many” [172]. Therefore, entropy does not

provide a unique measure of complexity.

However, what is lacking from this viewpoint is a focus on system function. The shift

49



towards a function-based complexity measure becomes much more important as we move

from understanding canonical systems towards engineering realistic systems. It is not clear

that there exists a logical connection between the complexity of description or structure

and the system’s efficacy. Hazen et al. [138] argue against an algorithmic interpretation

of complex systems; instead, they claim that function is “the essence of complex systems.”

They propose a measure, degree of function (𝐸𝑥), of a configuration’s ability to perform a

specific function 𝑥. They consider the distribution of system states, 𝐹 (𝐸𝑥), that achieves a

minimum degree of function. They define the functional information as shown in Equation

2.

𝐼 (𝐸𝑥) = − log2 [𝐹 (𝐸𝑥)] (2)

Although this approach is a good step towards the goal of using complex systems to

accomplish a useful function, this formulation is not well-suited for the engineering design

problem. Its first flaw is that it requires the evaluation of every system configuration.

State-space explosion for realistic-sized systems would make this infeasible. This approach

also does not guide us in the parameter-tuning process.

Takeaway: The study of complexity has focused too much on structure and representation

but has neglected function. A more useful complexity measure must include how well the

system can perform a function.

This argument is consistent with the claim made in Chapter 2.4 that direct measures

of system effectiveness are a better way of evaluating system behavior rather than indirect

methods such as analysis of structure or information processing.

3.4.3 Complexity in the Distributed Multi-Agent Problem

Returning to the distributed multi-agent problem, it is clear that it has many of the

hallmarks of complexity such as nonlinearity, feedback, differences in spatiotemporal scales,

large number of components, self-generated complexity, and fluctuations. By having many

of the mechanisms and characteristics of complex systems, it will be easier to see that the

methodology presented in this research should be generally applicable to other complex

systems.
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The research presented in this chapter has shown that complexity measures do not appear

to be appropriate for detecting emergence. A review of various complexity measures has

not shown the necessary connection between the measures of complexity and corresponding

changes in system function. It was argued in Chapter 2 that emergence in distributed

multi-agent systems should focus on measures of system effectiveness rather than structure

or description.
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CHAPTER IV

ENGINEERING OF COMPLEX SYSTEMS

Chapter Road Map: The goal of this chapter is to address the overall research question,

“how can complex systems that exhibit emergent behavior be engineered?” Various approaches

to engineering complex systems are discussed with the goal of developing a methodology

that is capable of addressing the challenges posed by complexity and emergent behavior.

This chapter addresses portions of Research Question 1 (RQ1), Research Question 2 (RQ2),

and Research Question 3 (RQ3):

• (RQ1.4) How can emergence be understood in the context of engineering?

• (RQ2.4) How should a complex system be analyzed?

• (RQ3) What is the appropriate methodology for engineering complex systems?

4.1 Engineering Complex Systems

Engineering requires the analysis and design of a system in order to meet a given set of

requirements. Analysis involves the methods used to understand, explain, and predict how

a system will behave under a given set of conditions. Design is the process of selecting

the configuration and parameters of a system to achieve a desired outcome. This chapter

will examine important issues in both the analysis and design of complex systems. In

the same way that “emergence” was initially a catch-all term for behaviors that seemed

unexplainable, researchers have noticed that systems are similarly cast as “complex” when

traditional analysis and engineering techniques have failed to work [219, p. x]. Therefore,

we need a new set of methods to study complex systems. Complex systems are often

characterized by the difficulty of analysis. Complex systems require analysis and design

through a different viewpoint when compared those used on simpler systems. The methods
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used in the analysis of complex systems come from many different fields of math and science.

Important contributions have come from the fields of nonlinear dynamical systems, systems

analysis, cybernetics, biology, and the social sciences.

Rouse [218] proposes four views of systems engineering that reflect how researchers have

approached understanding and engineering complex systems. These four views, along with

the dominant engineering approach and focus, is shown in Table 2. The first view, which he

calls Hierarchical Mappings, is the traditional systems engineering approach. In this approach,

the system is viewed as a hierarchical decomposition of components. The components are

well-defined and the behavior of the overall system is a straightforward aggregation of the

behavior of the components. This view of systems engineering is compatible with the top-

down engineering approach using system decomposition followed by synthesis and verification.

The second view, named State Equations, seeks to understand and control the state of the

system. This view focuses understanding state transitions and on feedback mechanisms

to control the system. This viewpoint can be traced back to the Systems Analysis and

Cybernetics studies of complex systems. The third view, Nonlinear Mechanisms, sees complex

behavior as the product of nonlinear interactions between components. The key insight is that

“many apparently complex phenomena can be attributed to surprisingly simple mechanisms”

[218]. This view is most often seen in the field of physics (i.e., nonlinear dynamics) where

complex observed behavior, such as chaos, has a relatively simple mechanistic cause. The

final view, Autonomous Agents, sees complexity as the interaction of a large number of

relatively simple agents. Because of the dominance of the interactions in determining

behavior, these systems cannot be decomposed. In this view, the focus is on emergent

behavior.
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Table 2: Contrasting views of systems engineering of complex systems (adapted from [218])

View Approach Focus

Hierarchical Mappings Design composition Engineering solutions

State Equations Axiomatic derivation Control performance

Nonlinear Mechanisms Behavior demonstration Basis of complexity

Autonomous Agents Empirical assessment Emergent behaviors

The Autonomous Agents view of empirical assessment using autonomous agents to

study emergent behavior is consistent with the methodology presented in this thesis. It is

important to understand that these views are not mutually exclusive or exhaustive. Various

views can be used for different aspects of the system or phases of the design. As Rouse

argues, “investments in systems engineering research should focus on elaboration of the

multiple views and creation of means for translating among these views” [218]. Although

the methodology proposed in this thesis will be based on the Autonomous Agents view, the

other methods of understanding complex systems will be discussed in this chapter.

4.2 Methods for the Analysis of Complex Systems
4.2.1 Nonlinear Dynamics

Nicolis and Prigogine argue that physico-chemical systems can act as archetypes for under-

standing other types complex systems [204, pp. 217–218]; however, the types of complex

systems we are interested in are not amenable to the types of analysis used on classical

dynamical systems. Typically, we have many more dimensions and number of parameters in

engineered complex systems than we do in physico-chemical systems. Engineered complex

systems are also heterogeneous, with many constituent components operating under vastly

different governing dynamics. Because of this, we are not able to use any kind of analytic

method, such as those used to study nonlinear dynamical systems. We cannot come up with

a unified set of governing equations and analytically study the solutions to those equations.

Statistical mechanics has dealt with the issue of large-scale, multi-scale, stochastic, dynamic,

nonlinear, emergent phenomena for a long time. In essence, it is the study of aggregated
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effects of interactions.

4.2.2 Systems Analysis

Both systems analysis and complex systems approaches focus are centered on complex

systems. However, there is a difference in philosophy between the two fields. As Phelan

explains, “systems theory is predominantly focused on intervention, whereas complex systems

is more interested in exploration and explanation” [209]. Systems theory sees complexity

as a result of a large number of constituent parts and interactions. On the other hand,

complex systems sees complexity as a result of simple rules of agents (i.e., self-generated

complexity). Systems theory examines feedbacks [209, p. 239–240] among subsystems;

complex systems looks at iterated interactions. Feedback and self-referentiality is important

in both, but the emphasis is different. In complex systems, the feedback mechanisms can

be context dependent and may be relayed through the environment instead of through

direct measurement. As Phelan notes, these differences are not necessarily irreconcilable

differences in philosophy; rather, they reflect the state of the art and overall goals at the

time of their prominence. This means that as our understanding and analysis capabilities

increase, we can unify the approaches of both complexity science and systems analysis. Since

the approach advocated in this thesis is primarily focused on exploration and explanation,

there will generally be more overlap with terminology and methods from complexity science

as compared to systems engineering methods.

Another important difference between systems analysis and complex systems is the

assumption of fixed structure. As Manson explains, while complex systems “concerns

non-linear relationships between constantly changing entities. Systems theory, in contrast,

studies static entities linked by linear relationships defined by flows and stocks (e.g., of

energy, information)” [180]. In systems theory, even though the overall behavior may be

nonlinear, the underlying relationships are fixed. This structure allows the use of traditional

analysis methods, such as solving systems of differential equations.

Systems analysis has its roots in von Bertalanffy’s General Systems Theory that used

interdisciplinary principles to study open systems. However, of more relevance to the work
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in this thesis is the theory of cybernetics. Cybernetics is better suited to the study of

behavioral complexity; therefore, it will be especially useful for developing the theoretical

underpinnings of this thesis. It is important because it provides context and establishes

the use of several techniques and ideas, especially the use of black-box analysis and the

connection to information theory.

4.2.3 Cybernetics

Cybernetics was the study of how to coordinate, regulate, and control behavior of machines.

It is important to the study of complex systems for several reasons. The first is that

cybernetics helped to establish the connection between information theory and all systems

(not just communication systems). The second is that cybernetics also helped to support the

view that complex systems have to be viewed as an ensemble. Norbert Wiener and W. Ross

Ashby were particularly influential in establishing the cybernetics movement in the 1950s.

Wiener was a mathematician and originally motivated by his work in computing machines

used for prediction theory in anti-aircraft systems. He coined the term cybernetics to refer

to “the entire field of control and communication theory, whether in the machine or in

the animal” [253, p. 11]. The term is derived from the Greek word for “steersman” and

reflects the study of mechanisms (i.e., feedback) that are used to control systems. In 1948,

Wiener developed a statistical theory of information when working on the “problem of

noise and message in electrical filters” [253, p. 10–11]. Many aspects of Wiener’s statistical

theory of information were later formalized and captured by Shannon’s information theory.

Wiener wrote, “Just as the amount of information in a system is a measure of its degree of

organization, so the entropy of a system is a measure of its degree of disorganization; and the

one is simply the negative of the other” [253, p. 11]. This connection to information theory

would be an important contribution of cybernetics to the study of complex systems that

continues to be used to this day. Wiener advocates for the statistical analysis of complex

systems [253, p. 33, 37, 92–93]. Although Wiener did not discuss emergence in the same

explicit way that Ashby would do, he did claim that the transition from classical mechanics

(reversible Newtonian) to irreversible Gibbsian mechanics enabled a framework that allowed
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the novelty seen in complex systems to exist and parallels the divide between mechanism

and emergence [253, pp. 37–38].

While Wiener focused on applications in engineered systems, Ashby was a psychiatrist

and focused on studying the brain. According to Ashby, cybernetics sought to ask “what are

all possible behaviors that a machine can reproduce?” [11, p. 3]. Ashby applied Shannon’s

information theory to the study of systems. He recognized that a communication channel

can be generalized to include any process that describes “behavioural relations between two

points” [11, p. 180]. Cybernetics embraced complex systems and recognized that systems that

large can only be treated statistically. Cybernetics also realized the importance of feedback

in systems, which is a circularity of affect. In a way, cybernetics is the study of change in

a system. It seeks to identify the transformations between the possible states of a system

focusing on what happens instead of why it happens [11, p. 11]. This causation-agnostic

approach allows Ashby to use a black-box approach to study systems. This is necessitated by

very large systems that can only be specified incompletely (i.e., statistically) and/or direct

observations of the system were not possible. In a black box analysis, once the inputs and

outputs are given, no more information can be gained. There is no unique transformation

between inputs and outputs. The canonical representation specifies a mechanism up to an

isomorphism. Ashby conceived of emergence arising only in the case that information is

incomplete. If the canonical representation of a black box and all of its arrangements is

known, then the outcome is completely determinate (i.e., predictable) and emergence is

not possible [11, pp. 110–111]. However, Ashby recognizes that it is often the case that

complete knowledge of a black box is not possible, which means that emergence is likely in

real systems. Nevertheless, emergence as a concept had a limited role in cybernetics.

Ashby proposed the Law of Requisite Variety as a useful principle within cybernetics

[11]. This law stated that the variety in a controller had to be at least as large as the variety

of disturbances that it encountered. If the variety in the system was greater than the variety

within the controller, the system could not be effectively controlled [26]. Using this law, we

can see why complex systems are so difficult to control. In a complex system, the many

interacting components have the potential to create an astronomical number of possible
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states in the system. Although it is not necessarily the number of system states that is

the issue, the variety of possible disturbances within the system is likely to increase as the

number of possible states increases.

Cybernetics is particularly important because it provided a framework for analyzing

the behavior of complex systems that was based on a statistical analysis of behaviors. It

provided the connection to information theory, a common technique in the study of complex

systems today.

4.3 Characterizing the Difficulty of Engineering Complex Systems

There are a number of characteristics of complex systems that make traditional engineering

analysis difficult. The failure of hierarchical decomposition severely hinders the use of

traditional, top-down systems engineering methods. This failure is an impediment to the

Hierarchical Mappings view presented earlier. State-space explosion occurs when the number

of possible states describing the system reaches astronomical numbers due to the number

of components, number of interactions, combinations of components, and unconstrained

behaviors. The State-Equation view described above becomes impossible to rigorously apply

in the face of state-space explosion. Another major issue is the lack of predictability and

optimality for complex systems. There are a number of mechanisms—enumerated in the

Section Complex Systems: Mechanisms of Complex Behavior (Chapter 3.1.1)—that can

contribute to the system having a fundamental property of unpredictability. In the domain

of nonlinear physics, most interesting behavior occurs “far-from-equilibrium” [75]. Both of

these characteristics contribute to the notion that optimality either does not exist or, more

importantly, is not the most interesting and important behavior that we are after. These

issues, described in more detail below, make traditional engineering methods inappropriate

for studying complex systems.

4.3.1 Failure of Simple Decomposition

The problem of studying and designing complex systems is difficult because the traditional

engineering approach is ill-suited for studying complex systems. Traditional engineering

design has relied on decomposing the system into modular components that have well-defined
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interfaces. As Bar-Yam explains, “modularity incorrectly assumes that complex system

behavior can be reduced to the sum of its parts. As systems become more complex, the

design of interfaces between parts occupies increasing attention and eventually the process

breaks down” [25]. The V-Model [192] for systems engineering (typically applied to software

systems), shown in Figure 7, is based on two phases of the engineering process: decomposition

and definition followed by integration and verification. The failure of decomposition makes

this design process fundamentally incompatible.
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Figure 7: V-model for systems engineering (from [192])

Emergence can only be discovered in a bottom-up approach. In a bottom-up approach,

individual components are designed and then integrated to yield the complete system.

However, traditional engineering design has often followed a top-down approach where an

overall system is designed and then decomposed into subsystems to achieve the overall

functionality. This mismatch between approaches is one of the reasons that emergent effects

are missed when using a top-down design methodology. Haglich et al. explain how systems

with “emergent behavior simply cannot be fully considered through the use of traditional
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system development methods, such as testing and model checking” [133]. Emergent behavior

cannot be anticipated and designed for. It must be observed through inductive methods

(i.e., experiments and simulations).

4.3.2 State-Space Explosion

Searching for emergence in the design space is difficult because of high dimensionality.

Surprising results can occur from the combination of state spaces of the systems, which

can become astronomically large due to the curse of dimensionality and the large number

of components in a system. The number of interactions between components increases

combinatorially with the number of components. The complexity of the systems, coupled

with the high dimensionality and uncertainty of the scenario space make this task very

difficult. Identifying emergent behavior is challenging because they are often the result of a

confluence of many uncertain factors and component interactions. Many of these complex

systems operate in highly uncertain environments in which uncertainty masks underlying

behavior by confounding the conditions for which the behavior appears. These factors, along

with the large number of components in a complex system make the problem intractable for

any decision maker or designer. It becomes clear that any analysis technique that requires

enumeration of the state-space or its transitions for the system is infeasible [112, 141].

While this combinatorial explosion does make the problem difficult to engineer, it also has

the potential to enable new behaviors. As Minai et al. explain, complex systems “benefit from

the combinatorial explosion. In combination with a mechanism for selective reinforcement,

the diversity provided by exponential possibilities represents an opportunity rather than a

problem. The extreme diversity of configurations makes it likelier that solutions to difficult

sub-problems are present within this space, and complex systems—notably exemplified by

biological evolution—have discovered ways to ‘mine’ it” [188].

4.3.3 Open Degrees of Freedom

Complex systems are characterized by having unconstrained degrees of freedom [188, 56].

This is both a blessing and a curse. The unconstrained degrees of freedom allow for the system

to exhibit emergent behavior such as self-organization and adaptation; however, leaving open
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important degrees of freedom goes against the traditional engineering design. As Wolfram

explains, “Conventional engineering requires detailed specification of the precise behaviour

of each component in a system. To make use of complex systems in engineering, one must

relax this constraint, and instead require only some general or approximate specification of

the overall behaviour of systems” [257]. The unconstrained degrees of freedom may exist for

several reasons: either they must be left open by design to allow the system to adapt to its

environment, or the degrees of freedom cannot be constrained due to deep uncertainty about

the environment, or because it is infeasible to apply any constraint on a particular degree of

freedom. As an example of the last point, any system which has a human element will be

difficult to constrain the interaction between the human and the other parts of the system.

Although training and carefully designed interfaces help, making sure humans interacts with

the system as designed is a herculean task.

4.3.4 Inappropriateness of Optimization

While many have argued towards the use of modeling and simulation for exploratory analysis,

the dominant use of simulations in engineering is used for prediction and analysis. When

models of systems are well-understood and well-behaved, they can be used for prediction

and design. However, in complex systems, the ensemble approach must be used to account

for all of the possible range of behaviors. Prediction typically implies the determination

of a single outcome, which does not make sense with respect to complex systems. Much

of the current design paradigm is based around the use of models for predictive analysis,

which consequently allows the use of optimization methods for the purpose of design. Design,

simply stated, is the process of making choices in order to meet some objective. Norbert

Wiener, one of the founders of the Cybernetics movement, describes how “engineering design

has been held to be an art rather than a science. By reducing a problem of this sort to a

minimization principle, we had established the subject on a far more scientific basis” [253, pp.

9–10]. Maier and Rechtin, nevertheless, advocate for the necessity of the “art” in complex

systems design, despite it being “a process of insights, vision, intuitions, judgment calls,

and even ‘taste’ ” [177]. Design is often considered an “art” rather than a science because
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the choices are often made based on intuition and there is little documentation along the

way that describes each choice and why it was made that way. While we certainly cannot

capture every decision that goes into designing and implementing a system, it is my goal for

this research to add rigor to the design space exploration phase of conceptual design.

The introduction of optimization methods coupled with analytic models helped to trans-

form engineering design from art to science. However, the scientific rigor that optimization

methods lent to engineering design gets lost with complex systems. John Holland, one of

the preeminent complex systems researchers as well as writing one of the seminal works

on genetic algorithms, writes that “optimization in complex adaptive systems is rarely

possible, and it is often not even meaningful” [143, pp. 244–245]. Complex systems are

characterized by unpredictable, stochastic, and sometimes chaotic behavior—all of which

make optimization around a single design point meaningless.

Davis [87] argues for “demoting the paradigm of optimization” when dealing with

models that exhibit adaptive and complex behavior. He argues that we must embrace the

inconvenience and messiness caused by the use of agent-based models. I would agree that

complex behavior should be treated with the same rigor as traditional models. However,

new techniques and viewpoints will be required to understand complex behavior. At this

point, the design of complex systems is not yet a science and still lives in the “art” world.

If complex systems cannot be treated as an optimization problem, then how do we design

them rigorously? The method proposed in this thesis will provide traceability to the design

process of complex systems by helping to eliminate the subjectivity of judgments by the

designer. No longer will we rely on luck on the part of the designer to identify interesting

behavior.

Observation: Traditional, optimization-based engineering design does not make sense

for complex systems. Emergent behavior and other unexpected results yield more insight

into the system than do "optimal" points. Furthermore, complex systems and modeling

approaches demand a shift from simulation for prediction to simulation for insight.
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Research Objective: The goal is to develop a method that will help to guide the design

space exploration process. It will be based on an objective and quantitative approach toward

identifying informative regions of the design space that will yield the most insight into the

system behavior.

Claim: An empirical, agent-based approach is the most consistent and feasible method of

understanding emergent behavior in complex systems.

4.4 Design Methodologies (i.e., Design for Emergence)

Maes asks, “How can a globally desired structure or functionality be designed on the basis

of interactions between many simple modules?” [176]. This is the issue facing designers

of complex systems. The section above detailed a number of issues that make engineering

complex systems difficult. A number of various approaches have been proposed, which will

be discussed in this section. Anderson [7] lists four types of approaches that can be used to

design self-organizing systems:

1. Top-down engineering

2. Bottom-up simulation

3. Design patterns (i.e., analogy, mimicry)

4. Evolutionary methods

These four approaches should not be seen as alternatives; rather, elements from each of

these approaches can be used as necessitated by the problem at hand.

4.4.1 Top-down Engineering

The first approach, top-down engineering, is the traditional engineering process where

requirements, subsystems, and interfaces are specified very early in the design process. By

definition, emergent behavior is not specified in the system description. Since macro-level

behavior (i.e., the system response) cannot be predicted from the micro-level specification,

top-down engineering is precluded from being the primary design approach.
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As discussed earlier, complex system behavior cannot be predicted from component

specifications. Top-down engineering is a poor fit for designing complex systems. It is not

difficult to construct a system which exhibits emergent behavior; however, engineering a

system for a specific global behavior is difficult. The global behavior is not predictable and

therefore the local behaviors cannot be defined a priori in order to meet some target global

behavior. Emergent behavior can only be identified a posteriori of the integration of the

system.

4.4.1.1 Traditional Design Process

Figure 8 shows the steps of the conceptual and embodiment design within the traditional

engineering design process [99]. This design process is strongly linear and relies heavily

on designer intuition. This design process is incompatible with complex systems due to

the failure of decomposition and the inability to separate the concept evaluation, product

architecture, configuration design steps, and parametric design steps. In a complex system,

all four of these steps are strongly coupled and must be evaluated concurrently.
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Figure 8: Traditional engineering early design process (from [99])

4.4.1.2 Spiral Development

The traditional engineering design process is inherently linear and makes it difficult to

account for complexity within the design process. The spiral development process [177],

shown in Figure 9, has built in iteration that allows for changes in the system design to

account for better information about changing requirements, system performance, and other

sources of uncertainty. It is clear that the spiral development process is a better fit for

engineering complex systems. However, it is likely that the spiral development process for a

complex system is likely to need many more iterations than is practical. Thus, although

spiral development offers a better design process, the number of iterations required to

converge on a design will most likely require another process better suited towards massive

iteration.
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Figure 9: Spiral development model for systems engineering (from [177])

4.4.2 Bottom-up Simulation

Bottom-up simulation is based on the recognition that top-down specification is not feasible

and that system behavior must be determined through building a sufficient model of the

system and then simulating the behavior. Ulieru and Doursat argue that engineering complex

systems needs to shift from a top-down to a bottom-up approach, which enables the system

to manifest its emergent properties [243, p. 41]. However, by itself, bottom-up simulation

is not a design methodology—it is just a small part of a much larger process. Although

it would appear as though top-down and bottom-up methodologies are incompatible, it is

likely that the correct design methodology will need to use a mixture of the two. High-level

design requirements and partial specification of subsystems and interfaces may be specified

in a top-down manner, while many other system parameters are left unspecified until the

system can be simulated and the effects of the parameters can be evaluated.

However, bottom-up design is not a panacea for the difficulties associated with top-down

engineering. As Carreras et al. [60] note, bottom-up approaches simply shift the difficulty

from the initial specification to the design of the appropriate framework and components

which will be capable of generating the desired behavior. The design process attempts to

develop the correct set of rules, and the right mixture of components, that will reliably
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achieve the goal behavior. Fromm notes that a bottom-up approach faces a severe challenge

as “the number of combinations and configurations grows exponentially with the number of

states, elements, and rules” [117].

4.4.3 Design Patterns

Design patterns are reusable coordination methods which result in a desired behavior[237,

60]. For a limited set of problems, design patterns provide a short-cut to bridging the gap

between micro-level coordination and macro-level behavior. There are many examples of

nature generating elegant or robust systems. Analogy and mimicry are attempts to replicate

natural processes in the design of engineered systems. If a system can be designed in a

way that is analogous to a well-understood phenomenon, analogous mechanisms can be put

in place to achieve a similar behavior observed in nature. However, it is likely that most

problems that system designers are not amenable to natural systems. Additionally, many

natural systems may not be as efficient as required or we may not be able to tolerate failure

in individual components as nature would (e.g., the loss of a small number of ants in an

ant colony is not a problem; however, if we use that analogy when designing transportation

systems, we would not want to tolerate the loss of vehicles if lives are at stake).

Although not necessarily, almost all design patterns used have been taken from nature

[97]. Sudeikat and Renz [237] provide a list of design patterns from nature: molding and

aggregation, quorum, web weaving, morphogenesis, brood sorting, flocking, schooling and

herding, nest building, and foraging. These design patterns provide a catalog of possible

coordination mechanisms; however, these are only a small fraction of possible coordination

mechanisms and are not general enough to be a solution to the design problem.

4.4.4 Evolutionary Design

Bottom-up simulation approach does not specify how to manipulate the system and the rules

in order to achieve a specified behavior. Although design patterns offer a solution in cases

where the analogy is appropriate, more generally, it is not clear how to modify the micro-level

behavior. There are many researchers advocating a design methodology that takes advantage

of evolutionary techniques [25, 178, 27, 188, 231]. Ulieru and Doursat propose a methodology
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called emergent engineering (EE) which uses general principles that will produce the desired

global behavior without dictating them using an evolutionary meta-design process [243, 103,

104]. The meta-design process is based on “designing the components of the system and

endow them with capabilities of dynamic self-assembly, disassembly, and re-assembly, in

order to enable evolve-ability” [243, p. 44]. The goal of the meta-design process is to come

up with the correct framework of components and rules that are able to evolve towards the

desired functionality.

When using evolutionary techniques in the design process, there are generally two

approaches. The first approach uses evolutionary algorithms, most commonly genetic

algorithms, to optimize system parameters to improve the fitness of the system. The second

approach, called interactive evolution [7, 46], replaces the evolutionary algorithm with a user

who guides the evolutionary process by selecting the winning design at each iteration. The

motivation for this approach is to take advantage of the user’s insight, experience, and ability

to evaluate patterns and other interesting behaviors. However, this approach may also be

biased by the user—a user’s “experience” may make them less likely to select unorthodox

solutions. Rather, the goal should be to minimize the designer’s bias towards a particular

outcome [42]. One major problem with both of these approaches is the lack of traceability.

Especially within interactive evolution, it is difficult to understand and document how the

final solution was obtained.

Similar to the other approaches presented above, evolutionary methods alone are not

sufficient as a design methodology. Edmonds [106] argues that we need an approach that

combines engineering and adaptation. Evolutionary methods focus too much on adapting

random designs while formal methods rely too much on strict proofs. Bottom-up simulation,

combined with evolutionary techniques, offers a more complete picture about a possible

methodology.

Genetic algorithms (GA) are a popular way of implementing evolutionary design [32].

However, GA suffer from a number of issues. They do not scale well to large design problems

that have many design variables with many potential settings. GA also only consider the final

solutions and do not take advantage of the structure of the solution space [251]; therefore,
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they are inefficient evaluators of models that are also plagued by stochasticity and that

require long execution times. Because of these issues, it is not likely that GA will be able to

handle exploring the entire design problem. Additionally, we will always have some design

parameters under our control. The desired methodology should include a way to evaluate

the design parameters we control along with those that are subject to evolutionary changes.

Observation: The desired methodology needs to be able to evaluate the influence of both

design variables under our control and those under evolutionary influence.

4.5 Developing a Methodology

One of the most important elements of a design for emergence is a methodology for searching

the system design space to identify emergent behavior. As Dogaru explains, “it is of practical

interest to develop methods to locate in this space of parameters the regions where emergent

phenomena are likely to occur. This question is in fact difficult to answer since ‘the surprise

effect’ associated with emergence does not allow us to specify in advance what we are

looking for i.e. the desired emergent behavior” [102, p. 4]. The design space exploration

methodology should be general enough to allow us to identify specific design points while

still allowing us to evaluate the points within the greater context of the landscape of possible

behaviors of the system. This leads to the general research question below:

Research Question (RQ3.1): What are the required features of a design methodology

for emergence?

A partial answer has already been identified as a crucial part of the design methodology—

the systematic exploration of the design space.

Claim: Design space exploration is required in order to identify emergent behavior in a

system.

4.5.1 Design Space Exploration

Design space exploration is the key element in a design for emergence methodology. Design

space exploration, simply stated, is the evaluation of various candidate solutions. The goal

is to understand the system behavior as the various design variables are modified. As shown
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Design Space Performance Space

Figure 10: Mapping between the design space and performance space (adapted from [71])

in Figure 10, both the design and performance space can be represented as a hypercube,

where each dimension in each space represents either a design variable or a performance

measure, respectively.

There are two complementary goals when performing design space exploration: 1)

parameter tuning, and 2) design space characterization. Parameter tuning is the selection of

appropriate values of the design variables in order to achieve a particular behavior. Design

space characterization is a less well-defined process; however, it is generally the identification

of all possible behaviors the system is capable of exhibiting over a range of initial conditions.

This step also includes features such transition points in behaviors and any other “interesting”

features.

Davis [88] argues that the appropriate method of evaluating complex systems is using

exploratory analysis, in which the entire domain of possible initial states is evaluated.

Hastings and McManus [137] note the importance of performing this exploration in order

to identify both the positive and negative outcomes so that they can either be exploited

or mitigated, respectively. Dogaru [102] proposes a “design for emergence” approach that

focuses on the parameter tuning aspect of the process; however, the proposed approach

cannot be applied to the general design space exploration problem because of its reliance on

cellular neural networks. Despite the lack of applicability of Dogaru’s method, it does help

to establish the body of methodologies that try to identify the parameter settings that lead

to emergent behavior. Both De Wolf and Holvoet [92] and Welch et al. [252] advocate a
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scientific-approach to parameter tuning; however, neither suggest a specific methodology of

exploring the parameter space. This leads to a sub-question of Research Question 3 (RQ3):

Research Question (RQ3.2): How can the design space of a complex system be system-

atically explored in order to identify emergent behavior?

A review of various design space exploration techniques will be explored below.

4.6 Design Space Exploration Methods

The appropriate method for design space exploration depends on the characteristics of the

design space and response variables. A number of strategies are shown in Figure 11 based on

the characteristics of the design space 𝜃 and the response variable 𝑓 of interest. If the design

space is discrete and the response is deterministic, an exhaustive evaluation and ranking of

all design points can be performed for small design spaces while search methods will have

to be used for large design spaces. If the design space is continuous and the response is

deterministic and continuous, surrogate models and gradient-based optimization can be used.

The goal of this research is to develop a method for design space exploration if the design

space is continuous but the response variable is stochastic. This is stated as a research

question:

Research Question (RQ3.3): What is the appropriate way to perform design space

exploration on a complex, stochastic space?
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response, 𝑓 , characteristics (adapted from [22])

4.6.1 Ad Hoc

Many steps in the design process rely on the designer’s intuition, thus making them ad hoc.

Although design’s intuition can serve as a shortcut, it eliminates the traceability of a design.

More importantly, unexpectedness is a common characteristic of emergence—intuition will

no longer be valid. Instead, a systematic and thorough exploration of the options must be

carried out.

4.6.2 Design of Experiments

Design of Experiments (DOE) is a set of methods for structuring experimental setups in

order to yield the most amount of information from the data. Given the factors we wish

to explore and their ranges, DOE methods can tell us the combinations of factors to run

in the most effective manner. The method used depends on the goal of the experiment. A

full-factorial design is the most exhaustive way of sampling the design space; however, the

number of points grows exponentially with the number of dimensions. Fractional factorial

designs use a fraction of the full factorial design in order to cut down on the number of points

required at the expensive of confounding in determining the interactions between factors.

Building a 2nd-order response surface model can be done effective using a central composite

design. However, these last two methods are primarily useful for building regression models,
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which is not the goal within this research. The sampling used for the fractional factorial and

response surface is generally fairly sparse and assumes that the underlying model or process

is fairly well-behaved and follows the principle of parsimony, where the number of factors

and interactions are relatively small. For the purpose of this research, the objective of DOE

methods will be to thoroughly sample the design space; therefore, full-factorial designs and

space-filling designs are appropriate candidate solutions.

4.6.3 Surrogate Modeling

Surrogate modeling is a design space exploration technique that can be used to rapidly

evaluate the design space [88]. In this approach, a mapping between the design space and the

performance space is created using a mathematical function, usually a statistical regression.

The surrogate model is a deterministic function that is easy to evaluate. Surrogate models

are limited to capturing a single valued regressed variable and not a distribution that we need

to accurately capture the range of possible outcomes. In the surrogate modeling approach,

𝑓 (𝜃) is the system response as a function of the design variables, where 𝜃 is the vector of

design variables of the system. Typically, the surrogate model is the expected value of some

system performance measure 𝑌 (𝜃) as shown in Equation 3.

𝑓 (𝜃) = 𝐸 (𝑌 (𝜃)) (3)

Although surrogate models are purportedly developed based on stochastic response

functions, the nature of the assumed uncertainty is very limited. The range of behaviors in

the performance space of a complex system are not due to simple uncertainty. In traditional

engineering design problems, the variation in the response can be treated as a “noise”

variable where there is a relatively small variation around the mean. As an example of this

assumption, in the Response Surface Methodology, the response is modeled as a deterministic

regression plus an error term 𝜀 ∼ 𝑁
(︀
0, 𝜎2)︀ that is assumed to be normally distributed with

a constant variance (i.e., homoscedastic). Uncertainty is always present; however, the degree

to which it influences the outcome is the difference in whether we are able to treat it as noise

or as a deep and fundamental uncertainty in the range out possible outcomes. In the latter

case, the range in possible behaviors may be driven by adaptive or evolutionary behavior.
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Claim: Due to the inability of surrogate models to capture nonparametric distributions,

the surrogate modeling approach is not an appropriate design space exploration method for

complex systems.

This approach assumes a form (i.e., model) of the performance space. Although some

surrogate model approaches (e.g., neural nets) are capable of handling nonlinear responses,

they still impose a limitation on the form of the response. Kriging methods are more

general than polynomial models but similarly assume a smooth response function [22].

Kriging models generally perform better when attempting to model the global response of a

simulation [161].

Kernstine’s research focused on creating surrogate models of complex systems. He

showed the difficulty of creating surrogate models of stochastic design spaces [156, 157, 155].

Kriging is an interpolation method that is often used as a surrogate modeling technique. Its

response is traditionally a single deterministic value; however, using a “nugget” parameter, a

stochastic response can be attained. The “noise” in the response is assumed to be normally

distributed and with constant variance (i.e., homoscedastic), which is not a good model for

complex systems [156]. Kernstine et al. found that both Kriging and the Beers method

performed poorly with complex systems [157]. Due to Kriging’s computational expense, it is

not capable of handling very large data sets. Kriging was found to be prohibitively slow for

data sets above 500 points [156]. Additionally, it was found that MARS methods “may be

incapable of determining interactions in the presence of noise” [156]. In summary, Kernstine

writes, “it can be concluded that [system of systems (i.e., complex systems)] simulations

may not follow traditional assumptions for regression methods (parametric, normally and

identically distributed)” [156]. However, his work focused on capturing mean and variance,

but not the actual distribution, greatly limiting the amount of information we could get

from a complete distribution.

It is clear that regression methods that only capture a single value (often just the

deterministic response or the mean of a stochastic response) are insufficient for adequately

characterizing the behavior of a system. One proposed approach is the use of quantile
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regression, where regions of the probability distribution are modeled as a way of characterizing

the system behavior [213]. Although this is a step in the right direction, a fully nonparametric

model of the probability distribution is superior to regressions based on quantile subsets of

the distribution. A data-driven approach is necessary to avoid introducing artifacts in the

response that may not be actually be present in the underlying data.

4.6.4 Optimization

Optimization methods are well-suited for the task of automatic parameter tuning. Once an

objective function has been defined, an optimization algorithm can be used to modify the

design variables to improve the value of the objective function. Terano [240] uses genetic

algorithms to explore the parameter space of an agent-based simulation. The parameter

values which lead to the best solution at the end of the optimization are selected. This

approach has the benefit of providing objective, specific solutions. The use of the objective

function results in all candidates being evaluated rigorously and consistently. As mentioned

earlier, the use of optimization helped to turn design from “art” to “science.”

However, optimization methods have several flaws as a design space exploration method.

They focus heavily on the specific solutions at the expense of characterizing the landscape of

all behaviors in the design space. The singular focus on maximizing the system performance

(i.e., optimality) often leads to solutions that are not robust.

Observation: Optimization methods have the beneficial property of focusing on specific

solutions and can be used to reduce the ad hoc nature of design. The proposed methodology

should likewise be an objective measure that leads to specific candidate designs.

4.6.5 Inverse Design

Another common method for design space exploration is the use of inverse design. In

inverse design, the design space is sampled thoroughly and the corresponding responses

are stored. Afterward, the desired responses are selected based on their ability to meet

the desired performance metrics and constraints. The design points which result in these

selected configurations are chosen as candidate designs. This process works well if there is a

one-to-one mapping between outcomes and input design points. However, this approach does
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Figure 12: Mapping between the design space and performance space for complex systems

not work when dealing with complex systems where the metrics are ensembles of possible

outcomes. This one-to-many mapping between design points and outcomes means that it is

impossible to invert the problem. In a complex system, the performance space is uncertain

and has to be treated as an ensemble (i.e., the set of all possible outcomes). Figure 12 shows

the difficulty of mapping the performance space back to the design space. It is likely that

any selection from the performance space will not lead to a unique design point.

Observation: Current design methods make it difficult to explore design space for complex

systems. In particular, inverse design methods are difficult to interpret for complex systems.

4.6.6 Sensitivity Analysis

There are two types of sensitivity analyses: local and global. Local sensitivity determines the

sensitivity around a specific solution; on the other hand, global sensitivity determines the

sensitivity of the entire model to the inputs. Local sensitivity examines the perturbations

on the response from each of the individual function dimension. Given a model 𝑦 = 𝑓 (x),

where x = (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑛), the local sensitivity of the solution 𝑦* = 𝑓 (x*) is the partial

derivative (𝜕𝑦/𝜕𝑥𝑖)𝑥=𝑥* . Local sensitivities are typically evaluated one dimension at a time.

Because of this, they may not capture the coupling between variables. Complex systems

often have highly-coupled variables, so this limitation is significant. Furthermore, local

sensitivity is usually formulated with a scalar response; however, complex systems are

inherently stochastic, so local sensitivity needs to be re-formulated to capture more general
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changes in probability distributions. Despite these limitations, the idea of a local sensitivity

may still be useful within the context of complex system design. Complex systems are

context-dependent (i.e., their behavior is strongly influenced by the parameters of the system

and the environment), so it is useful to find the design points x* that have a highly sensitive

response, which may indicate a system lever-point that allows the designer to affect behavior.

Global sensitivity considers the response 𝑦 of the model as all of the inputs are varied

simultaneously over the domain of x. The local sensitivity studies a specific solution while

the global sensitivity studies the model as a whole [235]. Most sensitivity analysis techniques

are local [71, p. 97], but the Monte Carlo approach described briefly in the next section is an

example of a global sensitivity method. The drawback with the global sensitivity approach

for complex systems is not useful for parameter value selection—it does not tell us how to

achieve a particular behavior.

4.6.7 Monte Carlo Methods

Markov chain Monte Carlo (MCMC) techniques use repeated samples from allowed input

distributions to estimate output distributions. MCMC techniques are also used to estimate

numerical integrals over a large number of dimensions. They are useful because of the

relative ease in which they can be implemented. Additionally, MCMC techniques are not

affected by the number of dimensions—the accuracy of an estimate is not dependent on

the dimensionality of the problem, although getting independent samples becomes more

difficult as the dimensionality increases [229, pp. 42–43]. The Metropolis algorithm [186] is

the classical implementation of the MCMC sampling method. Another use of Monte Carlo

methods is for sensitivity analysis. Monte Carlo can be used to examine the global system

sensitivity subject to the distributions on the inputs [235].

4.7 Conclusion

The research presented in this chapter examined various types of design methodologies

as well as techniques for performing design space exploration. It is clear that top-down

methods are incompatible with our current understanding of emergence. On the other

hand, bottom-up simulation fits perfectly with the theory and practice of complex systems.
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Bottom-up simulation is an appropriate choice for designing a methodology. The final two

possibilities have limitations that will eliminate their further consideration. Design patterns

are great because they provide us with examples and mechanisms for building complex

systems. However, as discussed earlier, design patterns have limited applicability and are

unlikely to be helpful outside of very specific applications. Finally, evolutionary design

can solve the problem of parameter tuning but leaves out the equally important task of

design space characterization. Evolutionary design is based on optimization techniques, so

they suffer from all of the issues related to optimizing complex systems. This approach

would also only show beneficial emergent conditions but would completely neglect emergent

vulnerabilities, which are equally important.

The final outcome from the research in this chapter is the selection of the design space

exploration technique. It was clear that several approaches are inappropriate. Surrogate

modeling, optimization, and inverse design techniques were argued as flawed due to several

important considerations. However, Design of Experiments offers a potential solution

for performing design space characterization. DOE techniques can be used to efficiently

sample the design space to understand how the system changes behavior. Sensitivity

analysis also offered some insights that proved to be useful. The proposed definition for

engineered emergence (as a reminder, engineered emergence is the critical transition in macro-

level behavior due to changes in system context (i.e., environmental conditions or system

parameters)), is analogous to a measure of local sensitivity. Thus, evaluating the proposed

emergence measure will be similar to evaluating local sensitivities with modifications to take

into account the probabilistic nature of the problem.
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CHAPTER V

MEASURES OF EMERGENCE

Chapter Road Map: For emergence to be a useful concept, there must exist a way to

quantify it in an objective manner. This goal is often called quantitative emergence. This

chapter will review different approaches that researchers have taken to measure the amount

of emergence in a system or process. Finally, a measure of emergence for the methodology

presented in this thesis will be presented. This chapter addresses portions of the Research

Question 1 (RQ1):

• (RQ1.3) How can emergence be detected or measured?

5.1 Overview

There are a variety of approaches used to measure or detect emergence. These methods

will be organized into three groups: model-based, multi-scale, and metric-based. Model-

based methods recast the system using a particular formalism that enables detection via a

fundamental feature of the formalism. By using a model that naturally lends itself to an

interpretation of emergence, model-based approaches offer a rigorous and self-consistent

method for emergence detection. However, model-based approaches are also the most

restrictive. They are limited in their ability to model systems of all types. Many model-

based approaches (e.g., those based on automata theory) become unwieldy when faced with

realistic systems due to state-space explosion. Like many model-based approaches, multi-scale

methods corresponds nicely with a particular interpretation of emergence. While coarse-

graining is good for identifying coherent structures in a multi-scale system, its usefulness for

finding general forms of emergence is limited. Coarse-graining is well-suited for examining

systems large-scale systems exhibiting spatial and temporal patterns. This type of emergence

is common in biology, chemistry, and condensed-matter physics; however, it may not be as
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common in engineered systems. The last group of methods are the metric-based methods.

These methods attempt to detect emergence by measuring some aspect of the system state

or a measure of system performance. This approach provides the most generality since it

can be applied to almost any system or model. The main drawback of this approach is that

the connection to emergence (especially any of the formal definitions of emergence) is more

tenuous. All three groups of methods will be discussed in more detail below.

5.2 Model-Based Methods

Model-based methods attempt to understand and classify the underlying dynamics of the

system rather than measuring the state of the system directly. They can be thought of as a

meta-model approach: build a model to capture the observed dynamics and then study the

behavior or complexity of the meta-model in order to understand the behavior of the original

system. The goal is to select a model which both captures the structure and dynamics of

the system while also having a correspondence with a definition of emergence.

Many of the model-based approaches have used automata theory to model the behavior of

the system. This approach was convenient because the study of the formal languages of the

automata systems allowed for a rigorous comparison between the language of the individual

components and the whole system. Other research has focused on the computational

complexity of the resulting automata machines. The machine complexity, rather than the

state or output, is examined. A number of methods using this approach are described below.

5.2.1 Automata Theory

A number of techniques used to model and detect emergence are based on automata theory

and the resulting symbolic dynamics of the system. An automaton is a discrete finite model

that process sets of symbols (i.e., strings that map to discrete states). The automaton

operates under a set of rewriting rules (i.e., grammar system) on the input, and outputs a

formal language, L , that is the set of all finite strings that it can produce.

Kubik [165] uses grammar systems to study multi-agent systems. In this language-

theoretic approach, he studies the difference in language that can be generated by the

whole grammar system compared with the languages generated by individual grammars
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of individual agents. The summation of agents’ languages is considered to be the overall

system behavior. Kubik calls this the “sum of conditions the agents can bring about in

the environment if they act individually in the environment” [165, p. 51]. A language (i.e.,

behavior) is considered emergent if it can be generated in the whole system but cannot be

generated in the individual agents.

Some limitations of this approach include how the formalism restricts it to fairly simple

idealized systems. Since the automaton is discrete and must operate on a finite alphabet,

continuous systems and time-series data must be partitioned, where an interval in the

continuous domain corresponds with a symbol in the discrete domain. However, the

dynamics of the system are quite sensitive to the choice of partitions when transforming

continuous systems into discrete [229]. As Bollt explains, “the consequence of a misplaced

partition can be severe, including significantly reduced topological entropies and a high

degree of non-uniqueness” [43]. Similarly, if the time-series is constructed from a measuring

instrument, noise can lead to measurement-induced complexity [82]. The other serious issue

is that this approach suffers from state-space explosion due to the combinatorial nature of

the sets of strings that comprise the language observed in the system [239].

5.2.1.1 Computational Mechanics

In Crutchfield’s intrinsic emergence, emergent structures “confer additional functionality

which supports global information processing” which leads to “an increase in intrinsic

computational capability” [80]. Emergence, in this computation-theoretic approach, is

defined if “a process undergoes emergence if at some time the architecture of information

processing has changed in such a way that a distinct and more powerful level of intrinsic

computation has appeared that was not present in earlier conditions” [80]. A computational

model is constructed that attempts to predict a discrete series of measurements from a

process. The architecture and complexity of the resulting machines therefore reflects the

information processing capabilities of the system it models. The computational machines are

classified according to their computational resources: amount of historical data, available

memory, and time available for estimation [82]. This approach is known as computational
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mechanics.

However, this focuses on information processing within a system. While the mechanism

that drives emergence is interesting, it is the outcome we are most interested in. As Auer et

al. explain, “Computational mechanics discusses how a [system] computes but not what it

computes” [13].

5.2.1.2 Hierarchical ε-Machine Reconstruction

The process of using computational mechanics involves the discovery of new model classes

that better describe the underlying process it attempts to model [80]. “The key step in

the emergence of complexity is the ‘innovation’ of new model classes from old. This occurs

when resource limits can no longer support the large models—often patchworks of special

cases—forced by a lower-level model class” [82]. Hierarchical ε-machine reconstruction

is an approach to model the appearance of novelty through the generation of increasing

computational capabilities of the computational machines. An ε-machine is a minimal model

at the least computationally powerful class yielding an optimal finite description [82]. The

statistical complexity, 𝐶𝜇, is the size of the reconstructed ε-machine and the entropy rate, ℎ𝜇,

is the rate at which information is produced. The entropy rate (also known as the entropy

density or metric entropy) is shown in Equation 4, where Pr(𝑠𝐿) is the marginal distribution

over the set of length 𝐿 sequences 𝑠𝐿 and 𝐻 is the average of the self-information.

ℎ𝜇 = lim
𝐿→∞

𝐻
(︁
Pr(𝑠𝐿)

)︁
𝐿

(4)

Hierarchical ε-machine reconstruction is based on causal states, which are the set of

subsequences that render the future conditionally independent of the past [85]. If two

configurations lead to an identical outcome, they can be represented by the same state.

Once the causal states, 𝑆, are found, the symbolic dynamics capture the transitions, 𝑇 ,

(i.e., the map) from state to state. The ε-machine is the set 𝑀 = (𝑆, 𝑇 ) and the process

of generating the machines is known as hierarchical ε-machine reconstruction. In practical

situations, ε-machines can be generated using the CSSR algorithm [230]. Vrabič and Butala

apply the ε-machine approach to studying complexity in manufacturing systems [247, 248].
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This approach captures the information flow in the process since the information can

be determined from the transition probabilities between causal states. The complexity of

the underlying process can be inferred from the ε-machine themselves. In this way, the

complexity of the language is determined by looking at the minimal automaton capable

of recognizing the language. The Chomsky hierarchy is often used to delineate increasing

computational complexity in formal language systems. It is essentially based on the memory

requirements for each automaton. However, the automata classes are fairly coarse and

changes between classes may not actually correspond to any meaningful changes in the

actual system. As Badii writes, “even apparently simple physical systems may turn out to

correspond to high computational classes” [17]. It is quite possible that simple physical

systems can only be characterized using a Universal Turing Machine, leaving us with little

to no room to differentiate between observed behaviors.

5.2.2 Regression-Based Methods

Seth [226, 227] propose a method of detecting emergence using the Granger causality

formalism. This is a model-based technique because it models the system behavior in terms

of a statistical regression. A number of concepts are defined within this framework. A

variable is autonomous if its own past history better predicts future states than the history

of other system variables. A variable 𝑋 causes another variable 𝑌 if the inclusion of the 𝑋

reduces the variance of the prediction of future states of 𝑌 . In his framework, a variable

is emergent with respect to another variable if it is both autonomous from and caused by

that variable. The fundamental flaw with this approach is that it relies too heavily on the

ability to model the system with a given regression. Although the regression technique

can be improved to include nonlinear terms and more generalized regression models; it is

still fundamentally tied to the fit between the real system and the regression model. In

the vast majority of cases, I believe that the regression model would not be an accurate

representation of a system in order to enable claims of causality.
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5.2.3 Disadvantage of Model-Based Methods

As alluded to earlier, the fundamental flaw with all of the model-based approaches is that

they assume that the model fundamentally captures the behavior of the physical process.

For example, it is not clear that computational models using automata theory is justified as

an accurate representation of the mechanisms at play in the real world. As Polani explains,

model-based approaches “make it difficult to allow for a ‘natural’ concept of emergence

to arise from the intrinsic structure of a system” [210, p. 282]. Wolpert and Macready

similarly argue that “before a model-driven approach can be used to assign a complexity

to a system, one must already fully understand that system (to the point that the system

is formally encapsulated in terms of one’s model class). So only once most of the work in

analyzing the system has already been done can one investigate that system using these

proposed measures of complexity. Another major problem with model driven approaches is

that they are prone to degeneration into theorizing and simulating, in isolation from the

real world” [259]. Instead, they argue that a data-driven approach in general is more likely

to be successful.

Claim: A model-free approach, being the most generally applicable, is ideal for a design for

emergence methodology.

5.3 Multi-Scale Methods

Coarse-graining methods attempt to take a system comprised of many individual elements

and to represent the structure or behavior of the system using less detail than afforded by

the lowest-level elements. This approach is a natural extension of the successful use of a

coarse-graining approach in condensed-matter physics, chemistry, biology, and other natural

systems. For example, the cell is often a convenient level that offers more explanatory

power than any of its individual components when describing the structure and function of

a living organism. In fact, this idea of improved explanatory power when defining levels of

abstraction is one of the most fundamental aspects in the concept of emergence. For this

reason, coarse-graining methods are theoretically well-positioned to address the question

of emergence. However, in practical terms, this formalism is suited for systems with a
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very large number of components that exhibit spatial or temporal patterns across a wide

range of scales. For example, computational biology [223] uses coarse-graining methods

to bridge the gap between the atomistic and mesoscopic scales. In the natural sciences,

there are several orders of magnitude difference in the number of atomistic and mesoscale

elements, as well as in the time scales of the governing dynamics. For the foreseeable future,

engineered systems will not approach these scales, which makes coarse-graining methods a

poor fit. This approach makes sense for systems that exhibit spatial and temporal patterns

and that have many coupled components; however, coarse-graining will not be the correct

approach for most classes of complex systems. As another significant hurdle when applying

coarse-graining techniques, Weeks [251] demonstrates the explosion in the number of possible

coarse-grainings even for a simple system like a cellular automata and the sensitivity of an

emergence measure to various coarse-grainings.

Balduzzi [19] applies a coarse-graining technique to cellular automata systems. Emergence

is defined as a process that is “best expressed at coarse granularities” [19]. Two information-

theory based measures are defined. Effective information captures how selective the system

output is given an input. Excess information is extra information generated by the system

compared to the sum of the subsystems. A coarse-grained unit is emergent if it has excess

information relative to its sub-units and more excess information than its neighboring grains.

As the Balduzzi notes, even for a system as simple as a 2D cellular automata, the space of

all possible coarse-grainings is vast [19].

Chen et al. [69, 70] use a method of defining emergence in terms of its lower-level

constituent components. They propose defining “complex event types” that are composed

of simple events types. A complex event type is an emergent property that defines a set

of relationships between lower-level components. During a simulation, the occurrence of

complex events (i.e., those events that match the set of relationships defined by the complex

event type) is used to detect emergence. The fundamental flaw with this approach is

that it requires the a priori specification of the emergent behavior. As such, it is only

potentially useful for a small subset of complex systems in which the emergent behavior is

well-understood. Even with hind-sight, it is difficult to come up with specific relationships
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which uniquely define the emergent condition. Overall, this approach suffers from a severe

lack of generalizability.

Wolpert and Macready [259] argue that the best way to detect emergence is to measure the

degree of self-dissimilarity between scales. The dissimilarity between scales is related to the

amount of information present between levels. They propose using an information-theoretic

approach to measure the dissimilarity of the probabilistic description of the structure of

each level.

O’Toole et al. [207] attempt to detect emergence in a distributed manner at the micro-

scale. In their framework, each agent observes the correlation between variables describing

their state and their observations of the environment. They argue that the presence of

emergence can be detected if these correlations come into existence after a period of no

correlation. Their approach has each agent tracking the correlation between certain sets of

variables using a sliding window time series history. This approaches introduces a number

of issues, including the necessity to include some type of consensus algorithm and additional

criteria to determine if enough agents are experiencing correlations sufficient to declare

emergence for the system. Additionally, this approach focuses on micro-level variables

which are generally of less interest to a system designer; rather, the focus should be on the

macro-level variables that describe the system behavior. As described by Anderson [7, p.

112], individual agents with myopic views can enter into pathological system wide behavior.

Anderson describes the formation of circular mills by army ants. Each individual ant may

experience local correlations as they circle endlessly, but the global behavior has entered a

fatal scenario.

Dogaru [101] proposes a “local activity theory” for reaction-diffusion cellular [automata]

systems where knowledge of the local cell structure improves the likelihood of prediction of

emergent behaviors. However, the applicability of this method to general complex systems

is not clear and would need to be demonstrated on a case-by-case basis.
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5.4 Metric-Based Methods

These attempt to measure the “amount” of emergence present using a quantitative metric

based on an observation or measurement of the system. These are of great interest because

they provide the potential for us to measure emergence and complexity using a single scalar

value and possibly allow for comparisons between different systems. The collapsing of a great

number of ideas about what emergence and complexity entails down to a single scalar value

brings with it the obvious discussion about whether or not that single value is representative

of emergent behavior in general.

These are often “global measures” and can allow us to detect whether emergence may be

occurring or not. The downside of a global measure is that it does not give us insight into

how or why emergence is occurring. However, during complex system exploratory design,

our first objective should be to learn if emergence may happen or not.

5.4.1 Complexity-Based Approaches

A number of approaches have focused on using complexity measures (discussed in the chapter

on Complex Systems) as a measure of emergence. These measures are often closely related to

the complexity measures such as algorithmic complexity, logical depth, statistical complexity,

or predictive information.

Hovda [146] tries to determine the amount of simulation needed to derive a fact about a

system (whether or not a feature exists). His premise is that “the more simulation required

to derive something, the more emergent it is” [146]. Hovda tries to develop a “canonical

description” that uniquely and minimally describes the state of the system and the rules for

evolution. The amount of simulation is equal to the amount of times of the application of the

rules to the micro-elements of the system to reach the desired time step or to reach a state

at which there is no further evolution possible. However, this approach is troublesome. Like

other approaches based on algorithmic complexity, this is not a scheme that can actually

be computed for most real systems. Furthermore, if something takes longer to develop

(more iterations), there is no reason to believe that it is more emergent or more interesting.

In fact, emergence is most interesting in the intermediate evolution of the system. While
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something that only takes one time step to emerge might be considered somewhat trivial,

on the other hand, something that takes an excessively long time to develop also starts to

lose its interestingness and usefulness.

Fuentes [119] uses Gell-Mann and Lloyd’s [123] effective complexity to define a criterion

for detecting emergence. He argues that a property is emergent if the effective complexity

measure has a discontinuity at some location in the parameter-space describing the system.

However, the biggest problem with this approach is that it relies heavily on Kolmogorov

complexity to define the algorithmic complexity of the system. As discussed in the Complex

Systems chapter, Kolmogorov complexity is generally uncomputable [82, 229]; therefore, it

is difficult to apply to realistic complex systems.

Wright et al. [260] propose a method to use where the complexity of the system is

measured using entropy. Emergence is defined as sudden transitions in the system complexity

measure relative to smooth transitions in system parameter changes.

The trouble with many of these approaches is that there is not a clear link between high

complexity measures and emergence, as was clearly seen with algorithmic complexity. These

complexity measures only measure how much work it takes to describe or explain a process

but does not actually capture the aspect we are most interested in: the system behavior.

5.4.2 Interaction Metrics

Chan [66] uses the metric of interaction counts to detect emergent behavior. However,

there are a number of things that interaction counting gets wrong. There’s no connection

between number of interactions and the system actually becoming more effective. Also,

“interactions” are very implementation dependent constructs. Whether something interacts

with another entity or not depends on how it is modeled: some interactions are indeed direct

connections/interfaces, other interactions can be modeled through interactions with the

environment only (e.g., ant foraging), while other interactions are interactions at a distance

(e.g., gravity). This approach might work for some systems, but it does not seem general

enough for the vast majority of complex systems. In a traffic jam, the number of interactions

is simple and scales identically with the number of cars on the road. While it is possible to
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re-define “interaction” to be when two adjacent cars dip below a critical distance, this shows

how this approach is not general and does not capture the subtleties of the interactions.

5.4.3 Information-Theoretic Approaches

5.4.3.1 Information Flow

A number of approaches look at the information flow through the system (or available to an

agent) as an indicator for emergence. Chibaya and Bangay [73] investigate the ant foraging

system and look at the amount of information an agent uses when making path selection

decisions while moving in the environment. They argue that “the amount of information that

is made available to agents provides a measure of the degree of emergence to be accomplished”

[73]. Johnson et al. [154] define emergence based on the flow of information between various

levels in a system. In their formulation, a reduction in the information flow between levels

results in less organization which can result in unexpected system states.

5.4.3.2 Discrete Entropy Difference

Mnif and Müller-Schloer [189] define emergence as the difference between an entropy at the

beginning of a process and at the end. A self-organizing process is emergent if ΔH > 0, where

𝐻 (𝑥) is the entropy with respect to the observed attributes of a system. This formulation

restricts measuring emergence to just between two points in a single dimension: time.

Δ𝐻 = 𝐻𝑠𝑡𝑎𝑟𝑡 (𝑥)−𝐻𝑒𝑛𝑑 (𝑥)

5.4.3.3 Information Transformation

Gershenson and Fernandez define emergence as “information at a higher scale that is not

present at a lower scale” [124]. Emergence, 𝐸, is simply defined as the information that

a system produced relative to the information received: 𝐸 = 𝐼𝑜𝑢𝑡
𝐼𝑖𝑛

. The transformation

between the information out and the information in can be dynamic evolution of a process,

or a change in scale. They define self-organization, 𝑆, as as the difference between the

information the system received and the information produced: 𝑆 = 𝐼𝑖𝑛 − 𝐼𝑜𝑢𝑡. Complexity,

𝐶, is the product of emergence and self-organization: 𝐶 = 𝐸 × 𝑆. Assuming random inputs,

they claim that emergence is the opposite of self-information [124, p. 37]. I do not feel that
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these definitions accurately capture emergence and self-organization. These oversimplified

definitions are misleading and do not reflect complex behavior.

5.4.3.4 Persistent Mutual Information (PMI)

Ball et al. [21] use predictive information to detect emergence in a time series. They use the

mutual information between the past and future history which persists across an interval

of time 𝜏 . Persistent Mutual Information (PMI), 𝐼(𝜏), is the relative entropy of the joint

history compared to that of past and future taken independently, as shown in Equation 5,

where 𝑥−0 are the observations up to the present time 0, 𝑥𝜏+ are the observations from time

𝜏 onward, 𝑝 (𝑥−0, 𝑥𝜏+) is the joint probability density of the past and future, and 𝑝 (𝑥−0)

and 𝑝 (𝑥𝜏+) are the marginal distributions of the past and future, respectively.

𝐼(𝜏) =
ˆ

log
(︂

𝑝 (𝑥−0, 𝑥𝜏+)
𝑝 (𝑥−0) 𝑝 (𝑥𝜏+)

)︂
𝑝 (𝑥−0, 𝑥𝜏+) 𝑑𝑥−0𝑑𝑥𝜏+ (5)

This is a measure of how much of the future can be predicted from the past, and thus

measures the difficulty in predicting the future based on the past. It is important to note

the inclusion of the 𝜏 parameter, which captures only correlations which exist across time

scales greater than 𝜏 . One important limitation of this approach is the difficulty of choosing

the value of this parameter a priori and without biasing the outcome. At the extreme

values, 𝐼(0) is equivalent to Bialek’s predictive information [41]. Ball et al. also define 𝐼(∞)

as Permanently Persistent Mutual Information (PPMI). They claim that this is the best

measure of emergence, and reflects the “the degree of permanent choice spontaneously made

by the system” [21]. This approach is limited to a single dimension, either in time, space,

or another causal dimension. Ball et al. use the k-Nearest Neighbor (k-NN) approach of

Kraskov et al. [162] to estimate the entropy.

5.4.3.5 Divergence-based Measures

Fisch et al. [114] define emergence as “an unexpected or unpredictable change of the distri-

bution underlying the observed samples.” Although the Kullback-Leibler (KL) divergence is

generally the most commonly used divergence measure in information-theoretic formulations,

they propose to use the Hellinger distance (Hel) due to its easier implementation. The
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Hellinger distance is shown below in Equation 24 where BC is the Bhattacharyya coefficient,

BC (𝑝, 𝑞) =
∑︀

𝑥∈X

√︀
𝑝 (𝑥) 𝑞 (𝑥) .

Hel (𝑝, 𝑞) =
√︁

1− BC (𝑝, 𝑞) (6)

They find that the Hellinger distance is superior to the discrete entropy difference of

Mnif and Müller-Schloer [189] for detecting emergence. They used a Parzen window kernel

density estimator to estimate the probability density functions. They estimate 𝑝 and 𝑞,

two distributions of samples from a dynamic process, in a sliding data window with a fixed

length in time.

MacKay introduces the concept of a space-time phase, which is the probability distri-

butions for state of a system as a function of space and time which evolved from an initial

distribution [98]. Emergence is defined as the distance of the space-time phase to the set of

products for the probability distributions of the independent units. He uses the Dobrushin

metric to measure the distance between probability distributions. In this approach, the

measure is indicative of how the behavior deviates from the mean-field approximations. This

approach is an improvement over previous divergence-based approaches because it includes

the additional spatial dimensions.

The approach of Fisch et al. represents the best candidate for developing a measure of

emergence for use in the methodology in this thesis. Most importantly, it is general enough

to be applied to any complex system. It is also well suited towards design space exploration;

although the original formulation looked at a stochastic time-series, it is easily adapted

towards evaluation of stochastic responses at various design points.

5.4.4 Measures for Complex Networks

Complex networks are also a significant area of study. Boschetti et al. [52] argue for using

information-theoretic measures for measuring the correlations between components in a

complex network as a means of detecting emergence. Moncion et al. [190] use a graph-

theoretic approach to identify nodes that form clusters of strongly interacting components

within a self-organizing complex network. For them, the dynamic formation of these clusters

constitutes emergence. Both of these approaches analyze the topology of the complex
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network and are therefore only concerned with the structure of the system. Neither of these

approaches are capable of measuring the global behavior or performance of the system.

5.5 Other Approaches

There are several approaches that do not fit neatly into the above categories. Ronald et al.

[215] approach the problem from the perspective of Artificial Life, where emergence has

often been seen in a subjective way and open to interpretation. Their criteria for emergence

is based upon the degree of surprise that an observer experiences based on knowledge of

the system’s design. They define a language of design, 𝐿1, and a language of observation,

𝐿2. The degree of surprise in observing 𝐿2 given 𝐿1 becomes the criteria for emergence.

This approach has two issues. The first is the subjective view of emergence, which I’ve

argued against in the chapter on Emergence. The second is the difficulty in actually applying

this test to realistic systems. Artificial Life has typically dealt with toy problems which

may be amenable to this type of analysis; however, this approach would not be feasible for

engineered complex systems.

Moshirpour et al. [197, 195, 196] propose a method of detecting emergence by searching

the system definition for implied scenarios. Implied scenarios occur due to indeterminism,

where the rules governing the behavior are not specified for certain scenarios. This method is

basically a requirements analysis to make sure that no ambiguities are specified in the system

definition. However, implied scenarios are just a small subset of the causes of emergent

behavior. Additionally, searching the scenario space for any practical system is infeasible.

Fully defining a system for every scenario becomes an impossible task. Bar-Yam argues that

the “explosion of interface specification” [25] becomes overwhelming in a complex system.

This method also goes against the goal of self-organizing systems, which are purposefully

left under-determined so that there are additional degrees of freedom left for adaptation.

The authors’ goals were to eliminate the surprise of emergent behavior during system

development, so their work approaches the problem from a different perspective than many

of the other approaches presented here.

Reconstructability Analysis (RA) is an analysis method based on information theory that
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attempts to identify the relations between variables (input and/or output) in a system. In the

analysis of emergent behavior, the goal of the analysis is to identify the microlevel variables

that are responsible for the generation of the macro effect [238]. The simulation is executed

and the values of the micro and macro-level variables are recorded. Reconstructability

Analysis is essentially a model building procedure between inputs and outputs. However, RA

is not an emergent behavior identification approach. It is an analysis method to help identify

the important relationships once a candidate emergent behavior has been identified. It is

much more appropriate as a verification method, where a candidate emergence condition is

tested to substantiate emergent behavior. This approach attempts to identify causality and

explanation for the underlying behavior.

Gore et al. advance an approach called Explanation Exploration (EE) which attempts

to understand unexpected model behavior [130]. Explanation Exploration allows for both

structural and parametric explorations of the system models. However, like reconstructability

analysis, it is up to the subject matter expert to identify candidate emergent behavior.

Therefore, EE is an automated “observed simulation behavior hypothesis testing that allows

users to validate or reject emergent model behaviors efficiently” [129]. Gore’s approach

uses directed acyclic graphs and probability theory to infer causality. Part of the method

uses program slicing to decompose the simulation source code to identify which statements

affect the target variable [129]. However, I would argue that this is not a useful approach.

This approach ignores self-generated complexity where simple rules lead to complex be-

haviors. As in chaotic maps in nonlinear dynamics, some simple mappings can lead to

very intricate/chaotic behavior. Analysis of the map does not make this complexity clear.

Furthermore, causality cannot be assigned to a small set of elements or features or line of

codes—the true causality is due to the myriad individual contributions and interactions.

Furthermore, these dependencies and sensitivities are context dependent and are only true

for the particular conditions observed, not for the system in general.

Boschetti [49, 50] takes an anomaly detection approach toward detecting novel behaviors.

In his approach, a time series data set is embedded in a feature space, a similarity measure

is defined and then various behaviors are identified using classification/clustering techniques.
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Data points which fall outside of the clusters identified represent possibly qualitatively

different behaviors. The fundamental aspect of all anomaly detection methods is the

definition of typical behaviors and then classifying whether candidate behaviors are typical

or not.

5.6 A Common Theme: Critical Transition

One of the common themes in a number of the measures of emergence presented above, and

within complexity science, is the idea of a critical transition as an indicator of emergence. As

discussed in the chapter on Emergence (Chapter 2), an informal definition of emergence is the

appearance of qualitatively different behavior. This implies that there is a transition between

regions of similar behavior and different behavior (or properties). Batterman has argued

that phase transitions in condensed matter physics represent emergent behavior [29]. When

studying the behavior of cellular automata (CA), Langton proposed the idea of “edge of

chaos” [167]. He argued that “CAs exhibiting the most complex behavior—both qualitatively

and quantitatively—are found generically in the vicinity of this phase transition. . . . Most

importantly, we observe that CAs in the transition region have the greatest potential for

the support of information storage, transmission, and modification, and therefore for the

emergence of computation” [167]. Although the specifics of his results have been criticized,

the underlying concept of a transition region as a useful indicator of emergence remains.

Vicsek similarly argued that systems operating on the edge of chaos may “be a general

property of systems that are capable of producing interesting (complex) behaviour” [246].

The field of catastrophe theory attempted to identify qualitative shifts in systems due to

(small) changes in parameters. Although catastrophe theory did not prove to be a useful and

long-lived field of study, it did provide a useful metaphor for understanding the behavior of

complex systems [234]. Di Marzo Serugendo et al. [97] similarly argue that self-organizing

systems are observed after a critical transition. Grossman et al. [132] define emergent

behavior as a changing point in a time-series and can be found using detection algorithms.

Wright et al. define emergence as “sudden transitions in the [system complexity] measure,

relative to smooth changes in system parameters. Emergent behaviours are those whose
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parameter values are associated with these abrupt transitions in the [system complexity]”

[260].

Claim: The proposed measure of emergence should enable the detection of critical transitions

in behavior.

Another aspect of the critical transition is that it provides the potential for a larger

set of possible outcomes. Minai et al. argue that the one of the fundamental issues in the

complex systems engineering is the search for “solution-rich configuration spaces” [188].

Similarly, Kernstine writes that “these transition regions and areas of rapid change are of

specific interest when investigating [system of systems] simulations” [156]. Finding emergence

requires identifying critical conditions for its manifestation. The key idea is that, at the

critical conditions for emergence, changes in the system configuration or parameters will

produce a corresponding shift in behavior. Therefore, searching for emergence can be reduced

to comparing behavior at neighboring points in the design space.

5.7 Proposed Quantitative Emergence Measure

Identified Gap 2: Few of the measures of emergence would be appropriate for use in a

design space exploration methodology. Divergence-measures have been applied to identify

emergence in time-series data but there exists a need to extend the approach to design space

exploration.

Based on a review from the literature about different methods to identify emergence in a

complex system, divergence-based measures are most appropriate to meet the needs of this

work. The lack of connection between algorithmic complexity and emergence as well as its

difficulty to apply to general systems means that algorithmic complexity based measures

are not useful. Approaches based on symbolic dynamics and computational mechanics

have a plausible relation to emergent behavior; however, it is not clear that studying the

discrete automata representation of a process actually represents a meaningful distinction

when designing a complex system. A metric-based approach is most general and practical

approach for a design space exploration. A divergence-measure based on information theory
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is general enough to be applied to a wide range of problems and retains the deep connection

to complex systems and emergence. However, almost all applications of divergence measures

in complex systems have focused on time-series observations and have not been applied to

design space exploration.

The definition of engineered emergence from the chapter on Emergence (Chapter 2) is

reviewed below. This has similarities to the definition is given by Fisch et al., “emergence is

regarded as an unexpected or unpredictable change of the distribution underlying certain

observations of the system” [115]. The problem with this definition, at least in terms of being

a quantitative measure, is the ability to address the unexpectedness or unpredictability of the

change in the distribution. Applying this definition as stated would require a way to capture

the expectedness or predictability of an observation. Although this may be possible through

the creation of a model that captures the expected behavior, doing so would be fraught with

issues. This model would necessarily be incorrect; therefore, any conclusions drawn from it

would not be justified. Like the concept of observer-dependent emergence (see Section A.2.6

in the chapter on Emergence), this approach would make the emergence relative to a model

and would not capture the intrinsic emergent functionality. To get around this issue in the

emergence measure used within this research, there will be no explicit model to establish

the expectedness of any particular observation; rather, the change of the distribution will be

measured relative to the current observation. Therefore, the expected model is implicitly

assumed to be the same as the current observation in a local neighborhood.

Engineered Emergence: Engineered emergence is the critical transition in macro-level

behavior due to changes in system context (i.e., environmental conditions or system parame-

ters).

The “transition in macro-level behavior” in the definition of engineered emergence is

captured by the change of the underlying probability distribution from the current observation

to the next, as measured by the statistical distance between them. In order to make the

quantification of engineered emergence complete, the engineered emergence measure needs

to capture the second part of the definition (i.e., “due to changes in system context”) as
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well as the idea of a critical transition. Therefore, the proposed measure considers not only

the statistical distance between two probability distributions but the distance between the

system parameters corresponding to each observation.

The combined terms are shown in Equation 27. This expression will be called design

space divergence (DSD) and is the proposed measure of engineered emergence. As discussed

in the above section, an emergent design point represents a transition of a system-level

measure relative to (small) changes in the system parameters. For small changes in system

parameters, the system behavior is not expected to change in non-emergent regions of the

design space. The corollary, and more salient idea, is that emergent behavior is expected to

be manifested as a large change in the probability distribution due to small changes in the

system parameters.

Hypothesis (HYP1): Assuming a desired range of system behavior has been identified,

large divergence measures of the distributions in the response variables reflects possible

emergent conditions near critical conditions while low divergence measures reflect robust

design points.

Engineered Emergence ≡ Design Space Divergence = Statistical Distance(P, Q)
Design Space Distance(xp, xq) (7)

It is obvious that this proposed measure for emergence does not capture every definition

of emergence, such as the property of irreducibility or of various levels of representation.

However, from a practical standpoint, this measure becomes much more useful in for

engineering, where system function is the primary goal. As Kernstine argues, “the only

emergent phenomena that are important are those that influence the metrics of interest in

the specified amount of time” [156, p. 62]. Like Müller-Schloer and Sick [198], I argue that

a loss in philosophical rigor in the definition of an emergence measure is more than made up

for by the increase in generality and practicality. The designs that this measure will identify

can be the starting point for a more rigorous evaluation to determine the emergent nature

of the behavior. Thus, Design Space Divergence is appropriate for use in the methodology

developed in this research.
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CHAPTER VI

MULTI-AGENT SYSTEMS

Chapter Road Map: The goal of this chapter is to introduce the distributed multi-agent

system being studied within this research. The multi-agent surveillance will serve as an

example of the type of complex systems that motivate this research. The goal of this chapter

is to demonstrate how to perform a design space exploration on a multi-agent complex

system with the goal of characterizing the design space in order to identify how the system

changes behavior as the design variables change. The methodology developed in this thesis

will be demonstrated on this problem.

6.1 Agent-Based Modeling

Simulation offers an approach to address posed by multi-agent systems. Simulating these

systems under a large number of conditions will help to characterize the behavior of the

system and identify critical design variables. Agent-based modeling (ABM) is a commonly

used approach to study complex systems that can be represented as the interaction of agents

with each other and the environment. Like cellular automata (discussed in Chapter 2.3.3),

agent-based models are predicated on the assumption that complex behavior arises from the

simple rules applied at the micro-level [150]. However, unlike cellular automata, where cells

are static and have fixed relationships with their neighbors, agents are often mobile and

whose interactions with other agents and the environment are much more dynamic. This

additional freedom makes agent-based models much more usable than cellular automata

and applicable to a much wider range of problems.

One of the reasons that ABM is popular, especially in models dealing with social

sciences, is that this modeling approach allows an ontological correspondence between the

agents and the real world elements that they model [125]. This allows the agents and their
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interactions to be modeled directly, rather than relying on having to construct a system of

equations to describe the dynamics of the system. This is especially important in the case

of heterogeneous agents, where each agent has its own different properties and operating

rules. However, although there is an ontological correspondence between the model and

the real world, agent-based modeling is rarely an accurate representation of the real world

capable of making predictions [14]. Because of this inability to make predictions, validation

of agent-based models is a particularly difficult problem. Because of this difficulty (and the

general inapplicability of predictive methods to complex systems), agent-based models are

used as an exploratory tool. The goal is to understand the rules and conditions at the agent

level that yield complex behavior at the system level [150, p. 566].

6.2 Multi-Agent Surveillance Simulation

The simulation used in this research is inspired by the Multi-Agent Surveillance Simulation

(MASS) studied by Aksaray [1]. In this simulation, multiple unmanned aerial vehicles

(UAVs) patrol a set of waypoints and relay information back to the base using a distributed

peer-to-peer communication network. Information about the targets located at the waypoints

is sent back to base via multi-hop communications as long as a connected network can be

established between the transmitting UAV and the base. The aircraft have limited endurance

and must return to base for refueling which leads to reduced coverage of the patrol area

and possible disruptions to the communication network if critical communication links are

removed. This problem is an example of a Mobile Ad-Hoc Networks (MANET).

The original purpose of the simulation was to examine the effects of vehicle design

parameters and control strategies on being able to maintain surveillance coverage of the

targets. The simulation was part of an overall methodology examining the effects of both

vehicle design variables and various control strategies during the design process [1]. The

simulation varied vehicle design variables such as the maximum velocity, fuel capacity,

communication range, fuel consumption ratio of low altitude to high altitude loitering, and

a time required to detect a threat (a measure of sensor capabilities). The simulation also

examined control strategies for varying UAV replacement strategies in order to maintain
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the communication network when disturbed as well as the UAV refueling strategies for

determining when a vehicle would choose to return to base to refuel. The simulation used

identical UAVs and a single control base. The UAVs were tasked with monitoring a set of

waypoints, represented by a graph of nodes which the UAVs moved among. The system

effectiveness measure was based on a the amount of time that each target was monitored.

6.2.1 Limitations of MASS

While the Multi-Agent Surveillance Simulation provided a good starting point for demon-

strating the design of a complex system and testing the methodology presented in this thesis,

it lacked several key characteristics. Most importantly, while the original simulation had

some aspects of complexity, the model needed more agents, more interactions between agents,

and more stochasticity to be representative of the types of problems this thesis is motivated

by. The original Multi-Agent Surveillance Simulation also focused heavily on examining

the effects of various control strategies. These schemes are inherently binary in nature (i.e.,

they are either on or off), while the problems motivating this research are typically governed

by a number of parameters. Therefore, the simulation used for this research will use a

single strategy. The focus will be on the parametric design variables rather than control

strategies. The control strategies used in MASS looked at UAV replacement in order to

maintain the communication network and UAV refueling strategies for determining when a

vehicle would choose to return to base to refuel. The results from the simulation showed that

the randomized UAV refuel policy was not a significant factor in determining the overall

system performance [2]. Therefore, only the deterministic refuel policy will be kept for the

simulation used in this thesis. The other strategy MASS considered was how to treat UAVs

that were removed from the system in order to refuel. The replacement strategy used a

local neighbor message passing system to shift assigned waypoints in order to maintain the

communication network. However, a “no replacement” strategy will be used for the UAV

replacement policy in this research. The simulation will be modified to be more dynamic

and stochastic, making a replacement strategy much less useful. The goal is to design a

system which is more inherently robust to local disruptions and can maintain connectivity

100



without explicit replacements taking place. As will be detailed later in this chapter, the

agent rules implicitly take care of any agents which need replacement.

6.2.2 Emergent Behavior by Analogy

A short aside is necessary to avoid getting caught in a philosophical debate. Defining

what constitutes an emergent behavior is a controversial and context-dependent task. The

difficulty in defining and identifying emergence was discussed in depth in the chapter on

emergence. But the philosophical challenges do not have to be a toll gate towards making

progress in understanding complex systems. There are a number of natural systems where

emergent behavior has been studied and there exists a body of literature supporting the

claims of emergence. In particular, ant foraging has been widely studied and is often accepted

to be a natural complex system with emergent behavior [135, 177, 204, 203]. This design

problem seeks to identify the set of parameters (e.g., number of ants, pheromone evaporation

rate, pheromone diffusion rate) for which the ant foraging system exhibits emergent behavior.

The emergent behavior, in the context of ant systems, is the set of conditions which leads

to the formation of stable pheromone trails which results in an efficient collection of food

from the environment. For many other distributed systems, what constitutes emergent

behavior is less clear. However, explicitly defining the emergent behavior is not necessary.

By generalizing the type of behavior seen in the ant foraging problem, we can utilize the

techniques presented in this thesis for a wide class of problems that share similar modeling

and behavioral characteristics. By avoiding the philosophical debate about whether a

behavior is truly emergent or not, the proposed methodology will be useful regardless of

the status of emergence in any specific complex system. Rather, it is useful to show that

the multi-agent surveillance problem has the structure of a problem in which emergence

may take place. It has the defining feature of self-organizing systems that agent rules are

defined at the local level only. The problem also has micro- and macro-level states where the

micro-level consists of the agents and their individual states while the macro-level contains

the connected network. There are feedback loops between the micro- and macro-levels. As

Ilachinski explains, “in order to properly understand complex systems, such systems must
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be viewed as coherent wholes whose open-ended evolution is continually fueled by nonlinear

feedback between their macroscopic states and microscopic constituents” [150, p. 558]. The

upward causality exists since the macro-level network consists of micro-level agents. The

downward causality is the influence of the network on the agents at the micro-level. This

demonstrates that the multi-agent surveillance problem has the characteristics of a complex

system that is likely to exhibit self-organizing, emergent behavior and is thus a good test

problem for this research.

Macro-Level

Micro-Level

Figure 13: Multiple levels in multi-agent surveillance system problem

Using the analogy of emergence and the similarity to the ant foraging problem, a working

definition for emergent behavior can be defined for the multi-agent surveillance system.

Emergence will be defined as the conditions which lead to the creation of a self-organized

and robust communication network that results in high system performance. Of particular

interest are systems that can yield high performance for relatively low capability UAVs

(i.e., improved situational awareness with decreased technological capability). Like the ant

foraging problem, the goal is to find simpler systems (with fewer rules) that lead to high

overall system capability. In essence, the goal of this case study will be to determine if

a distributed surveillance system can be designed in which the network effects of a large

102



number of UAVs create additional capability that would not be expected otherwise.

We can generally expect monotonically increasing system performance metrics as we

increase the number of vehicles, increase vehicle performance, and increase sensor and

communication capabilities. Therefore, we’re not interested in the design points which

are globally optimal, since these points are often uninteresting. More importantly, we’re

interested in the design points which lead to the most significant shift in behavior. Critical

points are common in complex systems: phase transitions [29, p. 214], bifurcations and

chaotic behavior [79], edge of chaos [167], self-organized criticality [18], etc. All of these

capture the idea that most complex systems have critical points where we have qualitatively

different behavior. The goal is to identify the location of the critical points. Likewise, our

goal for identifying emergent behavior in the multi-agent simulation is to find the design

points which are the most critical in determining system behavior.

6.3 Distributed-MASS

Much of the research regarding complex systems is motivated by the complex, emergent

behavior seen when agents are allowed to evolve according to a relatively small set of simple

rules. Following this guiding principle of keeping the simulation as simple as possible results

in a number of benefits. It improves the ability to re-create these results, which is a keystone

of the scientific process and repeatable experiments. It also simplifies the model building

process and allows for rapid execution of the simulation. And lastly, by keeping the governing

rules as simple as possible, it makes the results more compelling and improves confidence

that the observed behaviors are a consequence of the governing dynamics and not simply

a fluke of the implementation or one of a myriad possible lines of logic in the code. This

is similar to Fromm’s argument, “the phenomenon of emergence is better comprehensible

and understandable for simple agents, and in fact it is most useful for a large number of

small and stupid elements. The context-dependent influence is certainly stronger for simple,

stupid and purely reactive agents, and weaker for more complex, intelligent, proactive and

goal-directed agents” [118].

With this set of considerations in mind, the Multi-Agent Surveillance Simulation was
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re-formulated into the Distributed Multi-Agent Surveillance Simulation (Distributed-MASS).

The purpose of the simulation is to measure how system design variables affect overall system

performance. The simulation has four main classes of components: the environment, the

base, the targets, and the agents. Each will be described in the subsections below. The

system design variables as well as the metrics used to evaluate the system performance will

be discussed below.

6.3.1 Environment

The environment is the simplest component of the simulation. The environment consists

of a two-dimensional plane in which the targets and agents are free to move. The size of

the environment is defined by the user. For all of the simulations performed in this thesis,

the size of the environment is assumed to be a 100× 100 unit square. The bounds of the

environment are treated as fixed walls. Collisions between the targets or agents and the

walls are modeled as elastic collisions.

Time is treated at discrete steps in order to make the problem tractable. However,

space is a continuous variable with the agents and targets able to move to any location

within the environment. Space could have been treated discretely to create a Cellular

Automata (CA) implementation. CA is a popular modeling technique popular for studying

complex systems; however, a continuous space treatment is simply a generalization of the

CA modeling approach [150]. Therefore, this choice should not be regarded as a fundamental

distinction, but rather as a matter of convenience.

6.3.2 Base

The base is a single entity located at a specified point in the environment. For all of

the simulations performed in this thesis, the location of the base is assumed to be at the

coordinate position (10, 10). Agents start the simulation at this location and return when

they need to refuel. The agents communicate with the base the location of all of the targets

that they are tracking. The goal of the system is to relay real-time information about all

of the targets back to the base. Therefore, the system performance is measured by the

amount of real-time information that the base receives. Like the agents, the base has its
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own limited range in order to establish a communication link. This communication range

is a design variable; however, for the simulation results shown, the base’s communication

range is assumed to be the same value as the agent’s.

6.3.3 Targets

The targets are the system components that the agents are trying to locate within the

environment. The targets’ behavior is generally quite simple. They are initially at random

locations within the environment. At every time step, the target takes a random step

within the environment. The target has a specified maximum velocity, which limits the

maximum distance traveled between time steps. The targets do not have knowledge of

other targets or the agents that are trying to follow them, so their trajectory is simply a

random walk through the environment. Each target keeps track of its own position and a

direction vector, which is a unit vector that represents the direction the step will be taken.

To make step random, the direction vector is rotated at every time step using a random

variable. This rotation angle is a normally distributed random variable with a mean of zero

and a user-defined standard deviation. The user-defined standard deviation controls the

erraticness of the target’s movement—a small standard deviation leads to relatively straight

trajectories while a larger standard deviation leads to more dramatic direction changes. A

representative trajectory is shown in Figure 14.
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Figure 14: A representative target trajectory
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6.3.4 Agents

The agents have the most complicated dynamics in this simulation. Each agent represents

an Unmanned Aerial Vehicle (UAV). The agents have a number of design parameters that

can be set by the user. All of the agents are assumed to have the same design parameter

values (i.e., they agents are assumed to be identical). A list of agent design parameters is

shown in Table 3.

Table 3: Agent design variables

Agent Design Variable Baseline Value Units

Maximum Fuel Capacity 4500 fuel-unit

Maximum Velocity 3 distance-unit per time step

Target Detect Radius 20 distance-unit

Communication Radius 35 distance-unit

Fuel Consumption Rate

(Cruise)

30 fuel-units per time step

Fuel Consumption Rate

(Tracking/Loitering)

30 fuel-units per time step

Fuel Consumption Rate

(Relay)

15 fuel-units per time step

At the start of the simulation, the agents start at the base. Each agent proceeds to

search the environment until a target is located within its detection range. If an agent

locates a target, it will proceed to follow the target for as long as its endurance allows.

Once the agent reaches a critical fuel level, it changes objectives and returns to the base

location to refuel. When it is returning to base, it can communicate with other nearby

agents and with the base; however, it cannot detect or track any targets. When it is done

refueling and is ready to return to searching, it is assigned a new waypoint based on the

last tracked location of an unassigned target. When the agent is traveling to this waypoint,

it is set to a cruise mode where it can communicate with other agents but it cannot track
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new targets. Once it reaches its assigned waypoint, it will begin tracking. The agent can be

in one of five operating modes, described below. These modes control the behavior of the

agent throughout the course of the simulation.

Refuel Mode (Mode 0) At every time step, the agent evaluates how much fuel it would

take to return to base. Once a critical fuel level is reached, the agent switches to refuel

mode. During this mode, it moves in a straight line path towards the base. During

this return trip, the agent can communicate with other agents and the base itself, but

it cannot track new targets. Once it returns to base, it is immediately returned to full

fuel capacity and it is able to return to the field at the next time step.

Cruise Mode (Mode 1) Cruise mode is used when the agent is given an initial waypoint

assignment after refueling. The agent will proceed to the assigned waypoint in a

straight line path. It can communicate with other agents but it cannot acquire or

follow new targets until it reaches the waypoint.

Tracking Mode (Mode 2) When the agent detects one or more targets, it will switch

in tracking mode. In this mode, it will move towards the nearest target. It will

communicate with other agents and the base if they are within communication range.

Information is exchanged between all connected agents on the location of targets

within their target detect radius. Connected agents will attempt to deconflict among

themselves the tracked targets. An agent will not track the same target that another

connected agent is tracking.

Search Mode (Mode 3) When the agent does not detect any targets and there are no

untracked targets among any connected agents, the agent switches to search mode. In

this mode, the agent takes a random step in the environment at each time step. It uses

the same random step method as described above for the targets. If the agent detects

a target, it will switch to tracking mode. If no targets are detected, it will proceed in

search mode until it reaches a critical fuel level and switches to refuel mode.

Communication Relay Mode (Mode 4) If the agent is in search mode and becomes
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a critical communication node between the base and other agents, it will enter into

communication relay mode. In this mode, the agent holds position until it is no longer

a critical communication node or until it detects an untracked target in its detection

range. Since the communication network is an important part of the simulation, more

details regarding this mode will be discussed later in this section.

A representative time history of a set of agent’s modes is shown in Figure 15. The fuel

consumption rate for an agent in communication relay mode is set to be lower than an

agent searching for or tracking a target since an agent in relay mode should be able to loiter

at an energy efficient speed. Because of this reduced fuel consumption, agents acting as

communication relays have longer endurance. As shown in the Figure 15, the agents which

spent the majority of their time as communication relays only had to refuel twice in this time

window while the agent which was actively tracking a target had to refuel three times. This

figure also shows the coupling of modes between agents. As some agents leave the search

area to refuel, other nearby agents have to switch modes to take over tracking and relay

duties. As discussed earlier, the Distributed-MASS model does not include an explicit agent

replacement policy; however, agent replacement is implicitly handled by agents switching

operating modes based on their knowledge of target locations and network connectivity. The

rules prioritize tracking a target over maintaining a communication network. If the sensing

range is small and search time is a significant factor, the best approach is to exploit any

knowledge of the target distribution [108, p. 2093] and to prioritize following a target once it

is found. Since finding the target is difficult, preference is given to tracking it at the expense

of network connectivity.
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Figure 15: Agent mode history

6.3.4.1 Agent Search Strategy

As explained earlier, the agents use a random search strategy for locating the targets in

the search space. Various patrolling strategies exist that attempt to optimize the agent’s

trajectories in order to search the space most effectively. The strategies generally fall into

three categories: cyclic-based, randomized, and partition-based strategies [1, 72, p. 11].

The randomized search strategy was used because it is most consistent with a distributed

and decentralized system. It is also the most uncertain and the most straightforward to

implement. A cyclic-based approach would likely not be appropriate since defining a search

graph would eliminate the strongly decentralized and autonomous nature of the system. A

search graph would have to be defined a priori and it would not correspond well to the system

being studied in which there are no well-defined waypoints or paths to take (e.g., roads).

Partition-based approaches require centralized control since no decentralized algorithms

exist for dynamic partitions [108]. Like a cyclic-based approach, a partition-based search

created by a central controller would overly constrain the behavior of each agent to the point

where self-organizing behavior becomes unlikely.
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6.3.5 Communication Network

The communication network formed among the agents and base is the mechanism which

governs the global behavior of the system. Since the communication network is a critical

component of the simulation, it will be described in detail in this section. Every agent has a

communication radius. If another agent is within that communication radius, the two agents

can communicate with each other. As shown in Figure 16, Agent A can communicate with

Agent B but not with Agent C. There is no limit to the number of connected agents. Agents

can form a communication chain; if Agent C can communicate with Agent B, and Agent B

can communicate with Agent A, then Agent C and Agent A can communicate with each other.

A single value for the communication range is used for all agents. This simplifies the analysis

so that every communication link is bi-directional (and the resulting graph is undirected).

In deployed systems, communication systems are often subject to communication issues

such as obstruction, interference, jamming, and limited range. However, in this research,

it is assumed that as long as two agents are within the critical communication range, any

communication between them is perfect.
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The content of the communication between agents is the list of targets that are within

each agent’s detection range. By sharing target information, every connected agent knows

the location of every target that is within the detection range of any of the connected agents.

In Figure 16, a target is within the detection radius (𝑅𝐷𝐸𝑇 ) of Agent A. Therefore, both

Agent A and Agent B know the location of the target.

However, the ultimate goal of the system is to relay the target information back to the

base. In order for this to happen, the base must be within the communication range of an

agent that has real-time target information. Since agents have limited communication range,

the most effective system is one in which the agents form a communication chain to link

agents which are actively tracking targets to the base. However, forming a multi-hop network

in a dynamic environment without centralized control is a challenge. Each individual agent

has limited information from which to decide which course of action to take. Specifically, an

agent has to decide whether it should search for new targets or whether it should stay in

place in order to form a communication chain. The agent performs a relatively simply check
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to determine whether it is a critical node in the communication chain (i.e., if it is removed

from the network, a path between another connected agent and the base does not exist).

If the agent is determined to be a critical node and it is not currently tracking a target,

then it will switch to communication relay mode (described in the section above). In this

mode, the agent will stay in place as long as it remains a critical node and as long as it does

not detect a target. In order to determine if the agent is a critical node, it checks to see

if two conditions are met: 1) the base is one of the connected nodes, and 2) whether the

agent is part of the shortest path between any pair of 1-hop neighbors. If the agent itself

is part of the shortest path, then it is a critical node between the neighbors. This check

would be simple to implement in a real system and would not violate any assumptions of

a completely distributed system. An agent will query each connected neighbor to return

the list of each of neighbor’s list of neighbors. For example, examining the system shown in

Figure 17, Agent A has neighbors B, D, and E. Examining the neighbor pair (𝐷, 𝐸), Agent

D can communicate with Agent A and Agent E can communicate with Agent A, but Agent

D cannot communicate directly with Agent E. This configuration leads to Agent D being

able to communicate with Agent E only through Agent A. This means that Agent A is

part of the shortest path between Agent D and Agent E and is therefore a critical node.

Therefore, if Agent A is not tracking a target, it will enter into communication relay mode.

For the system represented in Figure 17, Agents A, B, and D are all critical nodes.
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Figure 17: Multi-hop communication network

6.3.6 System Measures of Performance

In order to evaluate the performance of the system, several high-level measures are introduced.

One of the measures of system performance is the Total Target Track Count Percentage

(TTTCP) . This is the percentage of time that the targets were tracked during the course of

the simulation. A low TTTCP value indicates that the agents were not successful in finding

and tracking the targets while a high value indicates that the agents were able to track

the targets during a large portion of the simulation. This metric only considers whether

or not the targets were tracked by the agents and does not consider if the information was

relayed back to the base. Therefore, it can be considered a metric of the aggregate vehicle

performance while ignoring the overall system performance. It is calculated as shown below
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in Equation 8.

TTTCP = 1
𝑡𝑒𝑛𝑑

1
𝑛𝑡𝑎𝑟𝑔𝑒𝑡

𝑡𝑒𝑛𝑑∑︁
𝑡=1

𝑛𝑡𝑎𝑟𝑔𝑒𝑡∑︁
𝑖=1

𝜏𝑖 (𝑡) (8)

Where,

𝜏𝑖 (𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if target 𝑖 is not tracked at time 𝑡

1 if target 𝑖 is tracked at time 𝑡

(9)

However, for the overall system to be effective, it must convey target tracking information

back to the base in real time. Therefore, the TTTCP metric is modified to take into account

the target information available at the base. This new metric is called Base Target Track

Count Percentage (BTTCP), shown in Equation 10.

BTTCP = 1
𝑡𝑒𝑛𝑑

1
𝑛𝑡𝑎𝑟𝑔𝑒𝑡

𝑡𝑒𝑛𝑑∑︁
𝑡=1

𝑛𝑡𝑎𝑟𝑔𝑒𝑡∑︁
𝑖=1

𝛽𝑖 (𝑡) (10)

Where,

𝛽𝑖 (𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if base has knowledge of target 𝑖 at time 𝑡

1 if base has knowledge of target 𝑖 at time 𝑡

(11)

The BTTCP and TTTCP are measures of the system effectiveness. These metrics can

be combined to evaluate another measure of system performance: efficiency. Since TTTCP

sets the maximum amount of information about the targets that was acquired during the

simulation, the ratio of BTTCP to TTTCP is a measure of the amount of information that

the base received compared to the amount of information known to the agents. The network

efficiency, 𝜂network, is shown in Equation 12. These three system level metrics are measured

for each run of the simulation.

𝜂network = BTTCP
TTTCP (12)

6.4 Implementing the Simulation

Distributed-MASS was implemented using MathWorks MATLAB. MATLAB was selected

due to its general purpose computing capabilities (including data storage, processing, and

visualization) and its wide-spread use within the research community. Another major benefit

of using MATLAB is the ability to use built-in parallel processing to take advantage of

the computational resources available. Although specialized programs exist for building
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agent-based models, as will be demonstrated in this section, it is relatively straight forward

to implement an agent-based model in a general purpose computing language.

As was discussed earlier, an advantage of agent-based modeling is the straight-forward

correspondence between the system itself and the model used to simulate it. The main

procedure of Distributed-MASS is shown below using pseudo-code. The simulation updates

the states of the targets and agents at each time step until the simulation terminates. Since

the states of all of the agents cannot be updated instantaneously and must be calculated

serially, an intermediate subroutine is used to update the network connectivity and propagate

shared information so that all agents are using consistent information when determining

their next course of action.

Algorithm 1 Main Procedure
1: procedure RunSimulation(Parameters)
2: 𝑆𝑖𝑚𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠← 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ◁ Initialize simulation variables
3: for 𝑡← 1, 𝑡𝑚𝑎𝑥 do ◁ Iterate through time steps
4: for 𝑖𝑇𝑎𝑟𝑔𝑒𝑡← 1, 𝑛𝑢𝑚𝑇𝑎𝑟𝑔𝑒𝑡𝑠 do ◁ Take step for each target and update state
5: 𝑇𝑎𝑟𝑔𝑒𝑡(𝑖𝑇𝑎𝑟𝑔𝑒𝑡) = TargetStep(𝑇𝑎𝑟𝑔𝑒𝑡(𝑖𝑇𝑎𝑟𝑔𝑒𝑡))
6: end for
7: PropagateNetwork() ◁ Updates network and shares targeting data
8: for 𝑖𝐴𝑔𝑒𝑛𝑡← 1, 𝑛𝑢𝑚𝐴𝑔𝑒𝑛𝑡 do ◁ Take step for each agent and update state
9: 𝐴𝑔𝑒𝑛𝑡(𝑖𝐴𝑔𝑒𝑛𝑡) = AgentStep(𝐴𝑔𝑒𝑛𝑡(𝑖𝐴𝑔𝑒𝑛𝑡))

10: end for
11: CalculateNetworkProperties() ◁ Network properties for post-processing
12: end for
13: ProcessResults() ◁ Process results
14: end procedure

The logic for updating the target is straight forward (i.e., a random walk) and will not

need detailed explanation. The logic for the agents, excluding the logic for refueling and

dispatching, is shown below in Figure 18. This decision tree matches the description of

agent behavior described in Section 6.3.4; however, this way of representing the logic should

make it clear how the operating modes are related and are continuously changing based on

the conditions encountered during the course of the simulation. The decision tree for the

refueling and dispatch portions are shown in Figure 19. This portion was separated from

the main portion of the logic tree in order to simplify the representation. Unlike the main
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logic tree where the agents transition between modes as shown in Figure 18, agents can

immediately transition to the refuel and dispatch logic tree once the critical fuel level is

reached. The critical fuel for each agent is calculated at every time step, so the possibility

of transitioning from the main logic to the refuel logic can occur at any time. At the end

of the refuel and dispatch logic tree, the agent will resume the main logic tree starting at

search mode (mode 3).

Search (Mode 3)

Targets Detected?

Track (Mode 2)

Untracked Target? Critical Link?

Relay (Mode 4)

Y

NY

N

N

Y

Figure 18: Decision tree for agent operating modes
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Fuel Critical?

Refuel Mode (Mode 0)

At Base?

Refuel

Dispatch

Cruise (Mode 1)

At Destination?

Search (Mode 3)

Y

Y

N

Y

N

Figure 19: Decision tree for agent refuel and dispatch

The pseudo-code for the agent logic is shown below. In order to simplify the pseudo-code
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and make it easier to parse, the logic shown in Figures 18 and 19 is not shown in this

pseudo-code. Instead, the decision trees should be substituted at the indicated locations

within the pseudo-code.

Algorithm 2 Agent Logic
1: procedure AgentStep
2: if 𝐴𝑔𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ̸= 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 then
3: 𝑁𝑒𝑥𝑡𝑃𝑜𝑖𝑛𝑡←FindNextPoint(𝐴𝑔𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)
4: else
5: Start Logic Tree
6: end if
7: 𝐹𝑢𝑒𝑙𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑←CalcFuelRequired(𝐴𝑔𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑁𝑒𝑥𝑡𝑃𝑜𝑖𝑛𝑡, 𝑀𝑜𝑑𝑒)
8: 𝐹𝑢𝑒𝑙𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒← 𝐹𝑢𝑒𝑙𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒− 𝐹𝑢𝑒𝑙𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑
9: 𝐴𝑔𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛← 𝑁𝑒𝑥𝑡𝑃𝑜𝑖𝑛𝑡 ◁ Agent takes step to new point

10: Evaluate Logic Tree
11: if 𝑀𝑜𝑑𝑒 = 2 then
12: 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛← 𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ◁ Pursue target
13: else if 𝑀𝑜𝑑𝑒 = 3 then
14: 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛←PerformRandomWalk(𝐴𝑔𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)
15: else if 𝑀𝑜𝑑𝑒 = 4 then
16: 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛← 𝐴𝑔𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ◁ Hold position
17: end if
18: 𝐹𝑢𝑒𝑙𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑←CalcFuelRequired(𝐴𝑔𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝐵𝑎𝑠𝑒)
19: if 𝐹𝑢𝑒𝑙𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ≥ 𝐹𝑢𝑒𝑙𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 * 𝐹𝑢𝑒𝑙𝑆𝑎𝑓𝑒𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟 then
20: 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛← 𝐵𝑎𝑠𝑒
21: 𝑀𝑜𝑑𝑒← 0
22: end if
23: end procedure

The pseudo-code for the PropagateNetwork is shown below. This algorithm computes

the network connectedness and shares targeting information among connected neighbors.

6.5 Characterizing the Simulation Results

The next step is to execute the simulation in order to understand the system behavior.

Initially, the system behavior at a single design point will be examined. After that, a design

space exploration will be performed in order to investigate how the system behavior changes

throughout the design space.
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Algorithm 3 Propagate Network and Information Sharing Procedure
1: procedure PropagateNetwork
2: for 𝑖𝐴𝑔𝑒𝑛𝑡← 1, 𝑛𝑢𝑚𝐴𝑔𝑒𝑛𝑡𝑠 do
3: 𝐴𝑔𝑒𝑛𝑡(𝑖𝐴𝑔𝑒𝑛𝑡)← FindTargetsInRange(𝐴𝑔𝑒𝑛𝑡(𝑖𝐴𝑔𝑒𝑛𝑡)) ◁ Find all in range

targets
4: end for
5: for 𝑖𝑇𝑎𝑟𝑔𝑒𝑡← 1, 𝑛𝑢𝑚𝑇𝑎𝑟𝑔𝑒𝑡𝑠 do
6: 𝑇𝑎𝑟𝑔𝑒𝑡(𝑖𝑇𝑎𝑟𝑔𝑒𝑡)← UpdateTrackedTargets(𝑇𝑎𝑟𝑔𝑒𝑡(𝑖𝑇𝑎𝑟𝑔𝑒𝑡)) ◁ Update targets

that are actively tracked
7: end for
8: 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 ← ComputeAdjacency(𝐴𝑔𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) ◁ Calculate adjacency

matrix
9: for 𝑖𝐴𝑔𝑒𝑛𝑡← 1, 𝑛𝑢𝑚𝐴𝑔𝑒𝑛𝑡𝑠 do

10: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠← GetConnectedNodes(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦, 𝑖𝐴𝑔𝑒𝑛𝑡) ◁ Get all
connected agents

11: if 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑇𝑜𝐵𝑎𝑠𝑒 then
12: for all 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃𝑎𝑖𝑟 ∈ 𝐴𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
13: 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ← FindShortestPath(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃𝑎𝑖𝑟) ◁ Find shortest path

between neighbors
14: if 𝑖𝐴𝑔𝑒𝑛𝑡 ∈ 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ then
15: 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐿𝑖𝑛𝑘 ← 𝑇𝑟𝑢𝑒
16: end if
17: end for
18: end if
19: for all 𝐴𝑔𝑒𝑛𝑡 ∈ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 do
20: 𝐾𝑛𝑜𝑤𝑛𝑇𝑎𝑟𝑔𝑒𝑡𝑠← ∪(𝐾𝑛𝑜𝑤𝑛𝑇𝑎𝑟𝑔𝑒𝑡𝑠, GetKnownTargets(𝐴𝑔𝑒𝑛𝑡)) ◁ Share

targeting information with connected agents
21: end for
22: end for
23: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠𝐵𝑎𝑠𝑒← GetConnectedNodes(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦, 𝐵𝑎𝑠𝑒) ◁ Get all

agents connected to Base
24: for all 𝐴𝑔𝑒𝑛𝑡 ∈ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠𝐵𝑎𝑠𝑒 do
25: 𝐵𝑎𝑠𝑒𝐾𝑛𝑜𝑤𝑛𝑇𝑎𝑟𝑔𝑒𝑡𝑠← ∪(𝐵𝑎𝑠𝑒𝐾𝑛𝑜𝑤𝑛𝑇𝑎𝑟𝑔𝑒𝑡𝑠, GetKnownTargets(𝐴𝑔𝑒𝑛𝑡)) ◁

Get all targets known to Base
26: end for
27: end procedure
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6.5.1 Simulation Design Variables

The design variables for the individual component classes used in the simulation were

described above in Section 6.3. However, there are additional design variables and simulation

parameters that define the operation of the system. These design variables and simulation

parameters are shown in Table 4. While the number of agents and targets are obvious system

level parameters, the number of time steps is also an important simulation parameter. Since

the agents have limited endurance, the number of time steps for the simulation is important

to evaluate how the periodic refueling affects the results. The number of time steps should

be chosen to reflect the appropriate time scale for the system.

Table 4: Simulation design variables

Design Variable Value

Number of Agents 10

Number of Targets 3

Number of Time Steps 2500

6.5.2 Characterizing a Single Design Point

The goal of this section is to characterize the system-level behavior shown in the simulation.

The Distributed-MASS simulation is an example of a self-organizing complex system, so it

is expected to exhibit several key characteristics of complex systems, especially nonlinearity

and stochasticity.

Since the problem formulation is inherently probabilistic, the behavior of the system can

only be seen through many replications of the simulation. The simulation was executed

using the design variable values specified in Tables 3 and 4. The simulation was replicated

250 times using the same set of design parameter values. The time history of the cumulative

BTTCP metric is shown for each replication in Figure 20. This plot is indicative of the

range of behavior the system can exhibit at this design point.
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Figure 20: Time history of cumulative BTTCP metric for 250 replications

Tracking the time history of the system metrics is cumbersome, so only the value at

the end of the simulation will be used. The distribution of the BTTCP values for the 250

replications is shown in Figure 21. This distribution corresponds with the distribution of

values at the final time step from Figure 20. This figure shows that the system effectiveness

ranged from about 50% to 80% with a mean value of 67%.
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Figure 21: Base Target Track Count Percentage (BTTCP) distribution

121



Similarly, the distribution of the other system metrics can be examined. The TTTCP

distribution is shown in Figure 22. This distribution shows that the targets were reliably

tracked by the agents. This metric had a range from about 84% to 94% with a mean of

89%. As discussed earlier, this metric captures the effective rate that the agents were able

to track the targets without consideration of the ability to relay that information back to

the base. Since this metric does not consider the communication network, this distribution

is well-behaved with a fairly narrow range of values.
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Figure 22: Total Target Track Count Percentage (TTTCP) distribution

The distribution of the final system metric, 𝜂network, is shown in Figure 23. This

distribution shows that the network efficiency ranged from about 59% to 85% with a mean

of 75%.
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Figure 23: Network efficiency distribution

6.5.3 Design Space Exploration

While understanding the behavior of a single design point is important, the ultimate goal

of the methodology presented in this thesis is to improve the design space exploration of

complex systems. The first step toward this goal is to examine the behavior of the system

over a small design space. For this initial exploration, the design space will be kept small so

that it can be visualized and points of interest can be identified by inspection. The design

variables chosen for this exploration are the number of agents and the communication range.

The agent detection range is included as an implicit design variable. The detection range

is not an independent design variable but rather assumed to be half of the value of the

communication range. This is done to manipulate the agent’s overall sensor performance

without increasing the dimensionality of the problem. These variables are meant to help

answer the question of whether the system is more effective with a smaller number of highly

capable agents or a larger number of less capable agents. This is a fundamental question

that a system designer must answer when looking at distributed autonomous systems.
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Table 5: Design space exploration variables

Design Variable Min Value Max Value

Number of Agents 4 22

Communication Range 10 50

Detection Range* 5 25
* assumed to be 1/2 of the Communication Range

The design variables and their range of values used in this experiment are shown in

Table 5. The number of targets was set to 5 and the simulation was executed for 2500 time

steps. The remainder of the simulation parameters were kept at the baseline values shown in

Tables 3. A Design of Experiments (DOE) was created for these two design variables at 10

levels per variable using a full-factorial design resulting in 100 design points. One hundred

replications were done at each design point resulting in 10,000 executions of the simulation.

Although the primary goal of this subsection is to examine how the system level metrics

change for various design points, it is illustrative to examine the aggregated behavior over

the entire design space. The system metrics for all 10,000 simulations are shown in Figure

24. The most obvious characteristic of the system behavior is the multimodal behavior. In

subsection 6.2.2 of this chapter, the ant foraging problem was introduced as an archetype

of complex systems that exhibit emergent behavior and are of interest to scientists and

engineers for their self-organizing behavior. It is interesting to observe that both the ant

foraging simulation (Figure 25) and the Distributed-MASS simulation show this multimodal

behavior with peaks at both the bottom and top end of the system metrics. The peak at the

lower end of the metric shows that much of the design space is characterized by disorganized

behavior. Intermediate values of the system metric are not particularly interesting and do

not dominate the system behavior. Finally, another peak is seen at the high end of the

metric. This peak represents highly effective systems that may be indicative of self-organizing

behavior.
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Observation: Complex multi-agent systems are often characterized by multimodal behavior

over the design space. At lower end of the system measure, the system is dominated by

disorganized or effectively random behavior. The peak on the upper end of the system

measure is indicative of possible self-organization. This result also demonstrates that complex

systems must often be carefully tuned in order to attain the desired performance.
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Figure 24: System metric distributions over entire design space
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Figure 25: Ant foraging system metric distribution over entire design space

The next step is to investigate a range of design points and to examine how the system

behavior changes across the design space. One way of characterizing the design space is to

plot the variation of the system metrics across the design variable value range. In Figures

26–29, the network efficiency mean and standard deviation are shown for a range of values
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for the number of agents and the communication range. Due to the strong coupling between

the two design variables, the data is shown in the form of box plots. These plots allow

the display of both the mean and the spread of the data. However, it should be clarified

that the data shown in these plots are the means and standard deviations of the underlying

distributions and not the underlying distributions themselves. The whiskers in the box plot

are not low-probability extremes but rather the upper and lower bounds for the estimates of

the means at this design variable setting. In the context of design space exploration, this

means that the desired value of the metric is achievable within the design space evaluated.

The best way to interpret this graph is to imagine the ends of the whiskers forming the

upper and lower envelope for the expected values for each of the measures evaluated.

Figure 26 shows that there generally is an increase in the system performance for

increasing number of agents; however, the spread of the means is too large to be ignored.

Due to the coupling between the number of agents and the communication range, every

setting of the number of agents exhibits a wide range of performance. As shown in Figure

27, the communication range has a much stronger direct effect on the mean of the network

efficiency metric. Compared to the number of agents design, the communication range

strongly impacts the range of system performance seen at each level. Figure 28 shows that

increasing the number of agents does decrease the mean of the standard deviations, but

there is an inherently large range of values seen at each level for the number of agents.

Figure 29 shows the variation of the standard deviation with the communication range.

It is interesting to note the wide range of possible behaviors at various settings of the

communication range value. The mean of the standard deviations has a local peak, however,

increasing the communication range beyond this peak value introduces a lot more variability

into the expected value of the standard deviations due to the coupling with the number of

agents.
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Figure 26: Variation of network efficiency mean against number of agents
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Figure 27: Variation of network efficiency mean against communication radius
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Figure 28: Variation of network efficiency standard deviation against number of agents
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Figure 29: Variation of network efficiency standard deviation against communication radius

The previous discussion shows the difficulty when looking at the mean and variance

separately or when considering the effect of one variable at a time. In order to attempt to

look at the problem more holistically, Figure 30 shows a matrix of histograms which represent

the distribution of the BTTCP system metric at various settings of the two design variables
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examined in this design space exploration. Each histogram depicts the same variable, with

the BTTCP value on the horizontal axis and the frequency on the vertical axis. The position

within the matrix corresponds with the combination of design variable values. Each row of

histograms represents a different value for the agent’s communication range and each column

represents a different value for the number of agents in the simulation. The magnitude of

the mean shift between two adjacent distributions is labeled between the two corresponding

distributions. For example, when the communication range was set to 32.2, increasing the

number of agents from 4 to 6 resulted in the mean BTTCP increasing by 0.093. Similarly,

when the number of agents was kept fixed at 4, increasing the communication range from

32.2 to 36.7 resulted in a mean shift of 0.064. Each histogram has to be small to fit within

the matrix, so the details of each distribution are obscured. These mean shift indicators

are included to improve the ability to quickly interpret the data presented in the histogram

matrix. Although we are interested in both the mean and the shape of the distribution, using

a measure based on just the mean is sufficient to make observations about these results.

129



0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

0 0.5 1
0

10

20

BTTCP

Fr
eq

ue
nc

y

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

10.0

0.
00

6

0.
00

6

0.
00

3

0.
00

3

0.
00

7

0.
00

2

0.
00

0

0.
00

3

0.
00

3

14.4

0.019

0.
00

9

0.022

0.
01

1

0.028

0.
01

1

0.036

0.
00

4

0.036

0.
01

5

0.044

0.
00

9

0.051

0.
01

1

0.062

0.
01

0

0.069

0.
00

9

0.076

18.9

0.021

0.
02

0

0.033

0.
01

9

0.040

0.
02

3

0.051

0.
02

8

0.075

0.
02

4

0.085

0.
03

2

0.108

0.
03

5

0.132

0.
04

4

0.165

0.
03

7

0.193

23.3

0.034
0.

03
2

0.046

0.
03

9

0.066

0.
05

0

0.094

0.
04

8

0.114

0.
06

1

0.150

0.
06

8

0.187

0.
06

5

0.217

0.
05

1

0.224

0.
04

6

0.234

27.8

0.043

0.
06

3

0.074
0.

06
6

0.101

0.
09

3

0.144

0.
08

4

0.180

0.
08

9

0.208

0.
06

9

0.209

0.
05

8

0.202

0.
05

2

0.202

0.
03

0

0.186

32.2

0.058

0.
09

3

0.087

0.
11

3

0.134
0.

11
5

0.156

0.
10

2

0.174

0.
07

8

0.163

0.
05

4

0.148

0.
04

7

0.136

0.
03

1

0.116

0.
01

8

0.104

36.7

0.064

0.
13

9

0.110

0.
14

3

0.141

0.
12

4

0.150
0.

08
5

0.133

0.
06

1

0.116

0.
03

7

0.099

0.
02

7

0.079

0.
01

6

0.064

0.
01

1

0.057

41.1

0.074

0.
17

3

0.108

0.
16

4

0.129

0.
10

6

0.110

0.
05

9

0.084
0.

04
6

0.069

0.
02

2

0.055

0.
01

7

0.044

0.
01

1

0.038

0.
00

7

0.035

45.6

0.087

0.
20

9

0.122

0.
14

4

0.101

0.
08

0

0.076

0.
04

6

0.062

0.
02

1

0.038
0.

01
6

0.032

0.
00

9

0.024

0.
00

9

0.023

0.
00

4

0.020

50.0

4

0.082

0.
21

3

0.087

6

0.
13

1

0.074

8

0.
05

5

0.049

10

0.
02

9

0.032

12

0.
01

6

0.027

14

0.
00

8

0.019

16

0.
00

8
0.018

18

0.
00

5

0.014

20
0.

00
4

0.014

22

C
om

m
un

ic
at

io
n 

R
an

ge

Number of Agents

Figure 30: Design space histogram matrix with the magnitude of the mean shift indicated

between adjacent graphs

The goal for this design space exploration is not to simply identify the values of the

design variable that maximize the system metrics—that would be a trivial exercise by simply

setting the communication range and number of agents to the maximum values. Arguably,

the more interesting regions in the design space are regions that represent shifts in behavior

as indicated by either rapid shifts in mean or in the shape of the distribution of the system

metrics. Examining the data in Figure 30, there are several candidate points that are
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indicative of rapid changes of behavior. The largest mean shifts occur between the design

points pairs represented by the two following pairs:

Point A : {(𝑅𝐶𝑂𝑀𝑀 = 50, Num Agents = 4) , (𝑅𝐶𝑂𝑀𝑀 = 50, Num Agents = 6)}

Point B : {(𝑅𝐶𝑂𝑀𝑀 = 18.9, Num Agents = 22) , (𝑅𝐶𝑂𝑀𝑀 = 23.3, Num Agents = 22)}

These two points represent the two intuitive approaches to the problem: 1) a small

number of agents with a large communication radius, and 2) a large number of agents with

a smaller communication radius. In Figure 31, we can examine the lower left corner from

Figure 30, which corresponds with the first design region of interest. In this region, there are

a small number of agents with a large communication range. An increase from 4 to 6 agents

results in a mean shift of 0.213 of the BTTCP system metric. At this communication range

design value, the system is very sensitive to the number of agents and the change from 4 to

6 agents can be interpreted as a threshold value where the system undergoes rapid changes

in behavior. Although the increase in the mean moving from 6 to 8 agents is not as large as

the shift going from 4 to 6 agents, it is also important to note that the distribution at 8

agents has a significantly lower standard deviation compared to 6 agents. For 6 agents, the

standard deviation is 0.0369 while the standard deviation at 8 agents is 0.0228, a decrease

of over 38%. The change in the shape of the distribution (as measured by the decreased

variance) is a feature that would be missed if we were simply to look at metrics that are

based on the mean. This decrease in variance is a possible indicator of self-organization.

Observation: Rapid shifts of both the mean and the shape of the distribution are important

indicators for changes in the system behavior. They are possible indicators of emergent

behavior and/or self-organization.
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Figure 31: Design space histogram matrix with the magnitude of the mean shift and

change in standard deviation indicated between adjacent graphs (Detail Point A)

The next region of interest corresponds with the design point that uses a large number of

agents with a smaller communication radius. This region is potentially more interesting than

the design region examined above, since a large number of agents is an enabler of complex

behavior. The results from this simulation show that this is indeed the case: the greatest

shifts in the mean and the standard deviation are seen when the largest number of agents

are used. A detail of this region of the design space is shown in Figure 32. As introduced

above, the design point of interest is the transition from a communication range of 18.9 to

23.3 with 22 agents. The mean shift between these two design points is the largest seen in

the design space with a value of 0.234. Continuing to increase the communication range

from 23.3 to 27.8 also continues to improve performance with a smaller mean shift of 0.186

but it is important to note that the shift in standard deviation (0.018) is also significant
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and represents an important change in system behavior.
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Figure 32: Design space histogram matrix with the magnitude of the mean shift and

change in standard deviation indicated between adjacent graphs (Detail Point B)

A similar design space histogram matrix for the network efficiency system metric is shown

in Figure 33. Overall, the trends are similar to those seen when looking at the BTTCP

system metric. However, from a network efficiency standpoint, it becomes clear that the

design points corresponding to a large number of agents with a smaller communication radius

(Point B) is an even stronger candidate for self-organized behavior. This design point sees a

mean shift of 0.272 in the network efficiency metric while the other region corresponding to

Point A saw a mean shift of just 0.131. This makes sense since the dramatic increase in

performance at Point B was due to improved network effects while the improvement at Point

A was primarily due to individual agent performance. Since network effects in a distributed

system are of great interest, Point B is the design point that the methodology presented in
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this thesis should help identify.
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Figure 33: Design space histogram matrix for the network efficiency system metric with

the magnitude of the mean shift indicated between adjacent graphs

A contour plot of the mean of the network efficiency at each design point evaluated is

shown in Figure 34. The mean network efficiency is fairly well behaved with the efficiency

improving with increasing number of agents and increasing communication range. The

standard deviation of the network efficiency at each design point, as shown in Figure 35,
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shows that the behavior is much more complicated than if only the mean behavior is

considered. The first observation is that the variance in the distribution is not homogeneous

throughout the design space, a property known as heteroscedasticity. This property makes

regression based analysis difficult, since homoscedasticity is a required property for many

statistical estimations. The other observation is the existence of a band of higher variance

that separates the two regions identified above. The low variance region at the top of

standard deviation figure corresponds to the left peak of network efficiency distribution

shown in Figure 24, while the low variance region at the bottom of the figure corresponds

to the right peak. In between these two regions is the transition region where potentially

interesting behavior occurs.
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Figure 34: Design space contour plot of the network efficiency system metric mean
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Figure 35: Design space contour plot of the network efficiency system metric standard

deviation

To visualize how the mean and standard deviation shifts vary across the design space,

these values were plotted as a contour plot. The magnitude of the mean shift between

adjacent design points is shown in Figure 36; the standard deviation shifts is shown in

Figure 37. In these contour plots, the design points are indicated by solid black dots. The

change in the mean and the standard deviation for each pair of adjacent design points is

calculated and then plotted at the geometric midpoint between the pair of points. The

contour plot helps to confirm the design space regions of interest identified earlier in this

chapter. The mean shifts are greatest in the upper right portion of the figure. In this

region, the plot highlights the strong contrast between the mean shift in each design variable

direction surrounding a design point. A small change in the communication range results

in a significant shift in the distribution while a small change in the number of agents has

relatively small effect. Examining the contour plot for the shifts in the standard deviation

of the network efficiency metric shows that, while the highest magnitude was seen in the

lower left corner (corresponding to Point A, identified earlier), the region in the upper right
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corner also saw significant shifts in the standard deviations. It is interesting to note that

the shifts in the standard deviation are often complementary to the shifts in the mean.

For example, examining the local peak in the contour plot of the mean shift along the

𝑅𝐶𝑂𝑀𝑀 = 30 line, the maximum shifts in the mean are seen at Number of Agents = 12 with

the mean shift magnitude decreasing as the number of agents increases above this point.

However, the corresponding region in the standard deviation contour plot shows that the

shifts in the standard deviation increase as the number of agents increases. This shows that

beyond a certain point, adding more agents to the system reduces the variance of the system

performance more than improves the magnitude of the network efficiency metric.
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Figure 36: Contour plot of the magnitude of the mean shift of the network efficiency metric

between adjacent design points
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Figure 37: Contour plot of the magnitude of the standard deviation shift of the network

efficiency metric between adjacent design points

6.6 The Design Space Exploration Problem

Although the problems with performing design space exploration have already been dis-

cussed earlier in this thesis, some of these issues will be revisited using the context of the

Distributed-MASS simulation. The first approach considered to identify candidate design

points displaying emergent behavior is the inverse design method. In this approach, the

desired outcomes are selected from a thorough sampling of the design space and then the de-

sign points that correspond with these outcomes are selected as candidate designs. The most

fundamental flaw with the inverse design method for a complex system can be illustrated

by returning to Figure 20. This figure illustrates the many-to-one relationship between

the outputs and the inputs for a complex and probabilistic system. Selecting a subset of

the outputs is not likely to uniquely determine a candidate design. Furthermore, there is
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no consideration for the likelihood of the candidate point producing the desired behavior.

Cherry-picking the very best observations from a particular design point is fundamentally

unsound and would lead to incorrect design decisions. The inverse design method can be

modified by either requiring that all outcomes associated with a single design point are

simultaneously selected or that desired outcomes are weighted by their likelihood of outcome.

The former approach will be unwieldy while the latter approach would also be difficult to

use and interpret.

Despite these limitations, an inverse design approach will be illustrated below to highlight

some of these issues. All of the results from the design space exploration are filtered to select

only those runs which had a network efficiency of 0.8 or greater. This value was chosen since

it represents designs which are generally well performing. This value also captures Point B

from the design space exploration performed in section 6.5.3. The filtered design points along

with histograms showing the frequency distribution of the design variable inputs are shown

in Figure 38. As was seen in the earlier design space exploration results, the best performing

systems were those that simultaneously had the most number of agents and the largest

communication range. The histograms in Figure 38 clearly show how these design points

dominate the cases where the system had a network efficiency greater than 0.8. Despite

the dominance of this overall trend, the histogram shows that there were a small number

of points that were able to also meet the network efficiency at a relatively low number of

agents or communication range. A designer would hopefully investigate these points as they

represent an opportunity to meet the objective using fewer resources and at a lower overall

system cost. However, this approach relies heavily on the designer being able to visualize the

data, identify both the trends and the outliers, and interpret the data to identify candidate

solutions. This becomes increasingly difficult as the dimensionality and stochasticity of the

problem increase. It is also highly sensitive to the thresholds set—a higher threshold value

for the network efficiency would eliminate Point B from the filtered data set and eliminate it

from further investigation. This threshold approach also neglects emergent vulnerabilities.

Focusing on the top performing systems blinds the designer to systems which may be severely

degraded if system or environmental variables change to unexpected values. Furthermore,
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while setting a high threshold value will show the best performing design variable values,

it will actually provide little understanding of the underlying system. It is obvious that

simultaneously maximizing the number of agents and communication range would maximize

the performance of the system. However, to understand the system, the design process

should illuminate more than just the obvious solutions. These problems make inverse design

for a complex system an ad hoc approach that is highly dependent on the designer. The

goal of this thesis is to introduce a methodology that makes the design process repeatable

and reliable in the face of increased problem dimensionality and stochasticity.
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Figure 38: Design points filtered for Network Efficiency > 0.8

The design space exploration performed in section 6.5.3 leads to the identification of

several regions of the design space that are candidates for further study. These points

represented a transition region where the system performed significantly better for small

changes in the design variables. Although these points were not strictly the best performing

in the design space, they provide the most information about the system. Although the

concept of information will be discussed in length in the chapter on information theory, the

salient point is that information is the change in uncertainty regarding a set of outcomes.
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If the outcomes (i.e., the distribution of the system metric) do not change much from one

design point to the next, then there is little information being conveyed. On the other hand,

if the outcomes change rapidly from one design point to the next, these points provide the

most information about the underlying system. Identifying the design points that correspond

to shifts in behavior directly leads to an overall characterization of the design space. These

critical points are the boundaries separating regions of the design space where the behavior

(as measured by the distribution of the system metrics) is similar. In this way, a topology of

system behavior is generated across the design space.

Claim: When performing a design space exploration of a complex system, one of the primary

goals of the process is to identify the critical regions that provide the most information

about the design space and the underlying behavior of the system.
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CHAPTER VII

METHODOLOGY

Chapter Road Map: The goal of this chapter is to synthesize a methodology that will

enable the systematic exploration of a design space to identify design points potentially

exhibiting emergent behavior. This chapter addresses research question RQ3 and related

sub-questions:

• (RQ3) What is the appropriate methodology for engineering complex systems?

– (RQ3.1) What are the required features of a design methodology for emergence?

– (RQ3.2) How can the design space of a complex system be systematically explored

in order to identify emergent behavior?

– (RQ3.3) What is the appropriate way to perform design space exploration on a

complex, stochastic space?

7.1 Methodology Foundations

The purpose of this research is to develop a systematic method of interrogating computer

models of complex systems in order to identify conditions that lead to emergent behavior.

This research proposes a novel use of modeling and simulation tools during analysis, design,

and evaluation of complex systems. More specifically, this work will propose a method

for systematically identifying regions of the design space which are possible indicators of

emergent behavior in the system under consideration. It is assumed that these emergent

behaviors are only apparent in subspaces of the entire design space being explored (i.e., a

critical transition can be found). If the emergent behavior exists over the entire design space,

the proposed method is not necessary to identify these behaviors.

Before diving into the formulation of the methodology, this chapter will discuss several
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of the cornerstones of the approach. These form both the philosophical and practical

foundations of the methodology. These cornerstones are modeling and simulation, statistical

methods, and information theory . Modeling and simulation is a cornerstone of modern

engineering methods. Traditionally, this approach has been used for prediction: finding

the output or result of a model given a set of input conditions. However, modeling and

simulation can also be used as a tool for discovery of new relationships and principles—a use

which is argued to be of equal or greater importance than just prediction [14]. As simulation

tools grow in complexity and computing power increases, there becomes an overwhelming

amount of data to observe. This leads to the use of statistical methods to facilitate the

knowledge creation process by highlighting interesting or unexpected results in the data.

Even more fundamental is the inductive nature of design. Tribus argues that “every problem

in engineering design is a problem of inductive logic” [241]. Inference through statistical

methods is the way we can gather knowledge in the design process. Furthermore, complex

systems are inherently stochastic and they must be treated as ensembles. Finally, information

theory has deep connections within the study of complex systems. It is useful for capturing

both the structure and uncertainty that are characteristics of complexity. Information theory

is also very practical and offers methods are widely applicable.

7.1.1 Modeling and Simulation

When a system’s complexity makes obtaining analytical relations impractical or impossible,

simulation takes the place of analytical relations. As Maier and Rechtin explain, “a simulation

of a system is an analytical model of the system’s behavior and performance in terms of

the simulation parameters. The connection is just more complex and difficult to explicitly

identify” [177]. Clayton and Davies explain that “the use of computer simulations as an

experimental tool to model complex systems has encouraged the view that many features of

the world cannot be foreseen from contemplating a set of underlying dynamical equations.

Rather, they are discovered only from a systematic study of the solutions in the form of

numerical simulations” [74, p. xi].

Axelrod [14] characterizes seven categorical purposes for the use of simulation: 1)
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prediction, 2) performance, 3) training, 4) entertainment, 5) education, 6) proof, and 7)

discovery. He notes that science and engineering primarily rely on prediction, proof, and

discovery. Furthermore, the use of simulation for prediction has been the most common

purpose. He argues that the “use of simulation for the discovery of new relationships and

principles is at least as important as proof or prediction” [14]. In simulations of complex

systems, prediction is not a useful concept. In these cases, the discovery of relationships and

behaviors is the more enlightening purpose.

Axelrod sees simulation as a “third way” of doing science compared to the methods of

deduction and induction [14]. Like deduction, simulation relies on the execution of a set of

logical statements and assumptions. In that way, we know that the results of a simulation

are deductively true based on the logic of the program. However, we can also inductively

study the outcome of a simulation in the same way we study natural phenomena. This

becomes necessary when we deal in systems that exhibit emergent properties and deducing

the consequences is often impossible [14]. As O. Holland argues, “the science of modeling

and simulation is not only suitable as a platform for the parametric exploration of such

systems, but may very well prove the discipline by which such systems must be implemented”

[145].

Bedau’s [34, 33] and Darley’s [86] definition of emergence are based on the idea that

emergence is a phenomena that can only be realized through simulation. Although the word

simulation is used to mean the more general process of iterating a given model, it certainly

also applies to the more common meaning of a simulation on a digital computer using a

programmed model.

7.1.2 Exploratory Investigations

As has been argued throughout this dissertation, the goal of this research is to enable

exploratory investigations of complex systems. The result of this methodology should enable

a designer to gain insight into the behavior of the system. More so, it should help identify

lever-points in the design space that provide effective means of achieving a desired outcome.

In a complex system, emergent behavior is likely to associated with these lever-points that
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correspond to critical transitions in system behavior.

Lever-points and critical transitions evoke the concept of sensitivity analysis in helping

to identify which parameters are most useful for achieving a change in behavior. In fact,

it is possible to understand the methodology presented in this dissertation as a type of

sensitivity analysis. Similarly, it is common to understand exploratory analysis as a series of

“what-if” scenarios. Again, it may be useful to view this methodology as the identification of

interesting “what-if” design points that correspond to critical transitions in behavior and

as possible candidates of emergent behavior. Evans et al. [110] argue that the distinction

between sensitivity analysis and “what-if” analysis is a distinction based primarily on intent

and less on fundamentals. The methodology presented in this thesis uses a type of sensitivity

analysis to identify the most important “what-if” scenarios.

7.1.3 Statistical Formulation

7.1.3.1 Ensemble Approach

Complex systems are inherently stochastic. Bar-Yam argues that “physical systems are only

meaningful as ensembles rather than individual states. Emergent properties reside in the

properties of the ensemble rather than of any individual state” [24]. In statistical physics,

this concept is known as the Gibbs ensemble. Nicolis and Prigogine, both well-known in

the field of complex systems and statistical mechanics, argue that complex systems must

be understood using this statistical ensemble approach: “when the motion in phase space

becomes very complex, as in the chaotic regime, it is no longer meaningful to argue in terms

of individual trajectories” [204, pp. 85]. A Gibbs ensemble consists of a large number of

identical systems, all subject to the same constraints [204, pp. 85].

In many complex systems, the behavior system is often path-dependent, which means

that the time history of state of the simulation is important. Each replication of a simulation

will have its own trajectory. The goal will be to run enough replications of the simulation

in order to establish a distributional equivalence [14]. That is, the results of a simulation

run are statistically equivalent to the ensemble. Ball et al. also recognized the need for a

formulation based on ensembles when studying emergence [21]. They defined emergence
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based on difficulty of forecasting a realization of a system with respect to the ensemble of

all possible outcomes. If the outcome “can be anticipated from observing other realizations,”

then the observation is weakly emergent; on the other hand, if the observation “can only be

forecast from the observation of the past of each particular instance” then the observation is

strongly emergent [21].

As an example, ensembles are both a needed and useful approach within the field of

climate science. The weather system is a classic example of a complex system that exhibits

chaotic behavior. This means that any single prediction is highly improbable; therefore, the

collection of all possible outcomes must be analyzed. Clearly, we must change our viewpoint

from studying the results of individual trajectories to studying ensembles. The goal of this

thesis is to help understand the question, “how does the ensemble of all possible outcomes

of the system change through the design space?” The key to enable this type of analysis is

the use of statistical methods.

7.1.3.2 Statistical Methods

Statistical methods in data analysis can be grouped into the following classes [134]:

• Exploratory Data Analysis: (e.g., scatter plot matrices, and other visual analytic

techniques)

• Predictive Modeling: (e.g., regression, classification, and model building)

• Descriptive Modeling: (e.g., density estimation, cluster analysis, dependency

modeling)

• Pattern Detection: (e.g., many data mining methods)

In the language of machine learning, predictive modeling is a supervised learning technique.

In supervised learning, we attempt to define the relationship between input variables and

output variables. More specifically, the output variables are labeled, either by a quantitative

value or a categorical value. This provides the learning technique with the goal value of

the output for a given input. On the other hand, descriptive modeling is an unsupervised

learning technique. In unsupervised learning, there is no goal output value associated with
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an input. Therefore, the goal of descriptive modeling is to only characterize the input

variables.

Exploratory Data Analysis is an interactive, visual, user-guided method for discovering

trends, patterns, and outliers in data sets. However, this approach is difficult for high

dimensional data sets and relies on the intuition and expertise of the individual performing

the analysis. Scatter plot matrices are projections of high dimensional data sets into an

array of bivariate plots of all pairwise combinations of dimensions. In each two-dimensional

plot, information about all of the other dimensions are lost. The result is that only pairwise

relationship can be examined, but higher dimensional relationships are concealed. The

methodology developed in this research will use descriptive modeling techniques to enable

and improve exploratory data analysis.

Descriptive modeling is a statistical approach to describing a set of input variables that

do not have a corresponding output that we are trying to predict. Within the context of the

methodology presented in this thesis, a density estimation technique is required. Density

estimation, simply stated, is the determination of a probability distribution from discrete

data points.

7.1.4 Tackling Dimensionality

Large dimensional problems that have many explanatory variables are very difficult to deal

with. The curse of dimensionality means that it becomes exponentially more difficult to

accurately sample the space with increasing dimensions. This requires very large data sets,

otherwise, there is a risk of instability of the estimates of the data [134].

The curse of dimensionality, a phrase coined by Richard Bellman in 1961, describes the

problem of the exponential growth in the volume of a space as the number of dimensions

increase. This means that sampling a high dimensional space become more and more sparse

with increasing dimensions. Additionally, with increasing dimensions, most data points are

closer to a boundary of the domain than to any other data point [136, p. 23]. This makes it

difficult to sample the interior of a design space thoroughly. Stated another way, in high

dimensions, distances between any two points become more similar. The sampling density is
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proportional to 𝑁 1/𝑝, where 𝑝 is the number of dimensions and 𝑁 is the sample size [136, p.

23]. The number of samples required to achieve a given accuracy grows exponentially [232,

p. 93–94].

More specifically, density estimation becomes difficult with increasing number of dimen-

sions. Kernel and nearest neighbor methods are local neighborhood models; however, as the

number of dimensions increases, the “neighborhood” of a point becomes much larger and

harder to define well. Additionally, the density in the tails becomes much more important

in higher dimensions; in fact, almost every portion of the domain takes on the property of

becoming low-probability space [232]. As Hand argues, “kernel models are really practical

only for relatively low-dimensional problems” [134]. Silverman shows how the required

sample size in order to achieve a given accuracy using kernel methods grows with the

dimensionality of the problem. Assuming a unit multivariate normal distribution and using

a normal kernel, selecting the window width to minimize the mean square error, and then

estimating the density at the point 0 to within relative error of 0.1 requires only 4 data

points in 1 dimension but 2,790 points in 6 dimensions and 842,000 data points for 10

dimensions [232, p. 93–94].

7.1.5 Summary of Foundational Issues

These foundational issues lead to the following sub-Research Questions:

Research Question (RQ3.4): What is the appropriate way to represent and evaluate

probability distributions?

• (RQ3.4.1): Should probability distributions be modeled as parametric or non-

parametric distributions?

Research Question (RQ3.5): How can emergent behavior be identified in higher-

dimensional systems?

The issue of high dimensionality raised by RQ3.5 has already been partially addressed.

It is clear from the literature that multi-dimensional probability estimation is difficult.

Therefore, the methodology presented in this chapter specifically avoids having to model
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multi-dimensional probability distributions explicitly. Rather, it treats the design space as

multi-dimensional but allows the probability distribution of the system behavior to stay a

univariate function of the response function.

Claim: Density estimation of high dimensional probabilities is difficult. A design space

methodology that can take advantage of low-dimensional estimates will be more useful than

trying to estimate the entire high-dimensional probability distribution.

7.2 Methodology Formulation

The Systematic Exploration for Emergence Detection (SEED) methodology is shown below

in Figure 39. The purpose and development of each step in the methodology will be discussed

below. The methodology consists of three main phases: data collection, data analysis, and

data exploration. The data collection phases consists of selecting the experimental design and

executing the simulation to build a database of results. The data analysis phase evaluates

the Design Space Divergence measure that was proposed as part of this research. The data

exploration phase attempts to locate regions of high Design Space Divergence measures

within the design space.
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Selection of Design Variables and Ranges

Selection of Response Variables

Rescale Design Space Variables

Design Point Selection

Design Point Replication Sampling

Evaluate Simulation and Build Database of Results

Select Design Point

Perform Neighbor Search

Select Neighboring Pairs

Density Estimation

Evaluate Design Space Divergence

Identify High DSD Measure Points

Data Collection

Data Analysis

Data Exploration

Figure 39: Phases of SEED methodology

This methodology performs a systematic exploration of the design space for the variables

and ranges specified. The experimental design, which consists of the DOE design and the
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number of replications at each point, is selected to efficiently sample the design space and to

characterize the probabilistic response(s) at each point. The simulation under investigation

is then executed according to the experimental design. The results of the simulation are

stored in a database for all of the responses of interest and for every replication. Since this is

a data-driven approach, all of the data must be saved and not just the statistics. Once the

database of results is complete, the data analysis portion of the methodology is executed.

The data analysis phase can be computationally expensive due to evaluating every neighbor

pair at every design point. The result of this is another large database of Design Space

Divergence measures for every local neighbor pair.
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Iterate to refine exploration

Figure 40: The iterative nature of the SEED methodology

The final phase of the SEED methodology is the data exploration phase. In this phase,

the goal is to identify regions of the design space that have a large DSD measure. The

techniques used in this phase will depend on the dimensionality of the problem and the type

of structure in the results. For small problems, visualization techniques may be the most
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straight forward approach. For a large number of dimensions, machine learning and data

mining techniques may be needed to assist the designer in identifying trends in the data.

7.2.1 Selection of Design Variables and Ranges

The design variables are the system parameters of interest during the design process. They

represent the variables that will be investigated for their effect on the system behavior as

measured by the response variables. Design space exploration is typically sequential in

nature [200, pp. 10–12] where variables and their ranges are modified based on significance

and regions of interest in an iterative process. If some variables are determined to be

less important in influencing the responses of interest, they should be removed from the

exploration to reduce the dimensionality of the problem. The ranges for each variable may

also need to be adjusted to eliminate uninteresting or infeasible values from the design space.

A common technique for downselecting variables is through the use of screening designs to

test the influence of all of the variables on the variability of the response. However, common

designs like 2𝑘 factorial designs may be flawed for the design spaces of complex systems due to

strong nonlinearity and localized effects (i.e., variables that exhibit conditional dependence,

which may be common for emergent effects). A 2𝑘 factorial design tests each variable at only

the high and low values and assumes linearity in between. Estimates of the main effects of

each variable are based on an averaging across all of the other factors and levels. If the local

sensitivity of a variable is significantly different from the global sensitivity, this averaging

may mask the local effects and lead to variables being incorrectly classified as insignificant.

The variables should either represent continuous quantities or at least be on an interval

scale. Since the denominator in the Design Space Divergence measure is the distance between

design points, the difference between two values should represent a meaningful quantity.

Although continuous variables work best, discrete values are acceptable if the variable is on

the interval scale so that differences between values is meaningful. However, binary values

or other coded values (e.g., a variable that takes on the discrete values 1-5 that represents

a system’s operating mode) would most likely lead to less interpretable results. Although

there is no absolute restriction against using coded variables, their use should done with
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care.

It is also necessary to select the range of values for each variable. This information is

necessary for the design space point selection step as well as the design space rescaling step.

The range of values should represent the range of interest for the exploration.

7.2.2 Selection of Response Variables

The response variables are the measures of system performance or function. They should be

a measure of the system’s high-level behavior. The Design Space Divergence measure can

only be applied to a single variable; however, Design Space Divergence calculations can be

carried out for each response variable of interest. This may be useful if the best measures of

system performance have not been identified yet or if various behaviors manifest themselves

only in one system metric and not another.

7.2.3 Rescale Design Space Variables

The set of all design variables forms an 𝑛-dimensional hypercube where 𝑛 is the number of

design variables and each dimension represents a design variable. However, it is important

to re-scale each dimension to remove coordinate scaling effects. For example, if two design

variables in an aircraft design problem include the wing planform area and thrust to weight

ratio, without rescaling, the distance between design points in this design space will be

dominated by the wing area while the thrust to weight ratio will be negligible. To get around

this problem, each variable is transformed so that the design variable’s interval of interest is

mapped onto the unit scale. This is a straightforward step where each variable is shifted

left by the minimum value over the interval of interest so that the scale starts at zero. The

second step is to divide by the interval’s maximum value so that the new transformed scale

is on the unit interval [0, 1]. This is shown graphically in Figure 41.
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Figure 41: Design variable coordinate transformation: (a) original, (b) shifted, (c) shifted

and scaled

This is performed for each variable resulting in an 𝑛-dimensional unit hypercube of

design variables x ∈ I𝑛 where I𝑛 is the 𝑛-dimensional unit interval. Since the data set is

discrete, the 𝑖th position of the rescaled variable �̂� is calculated as shown in Equation 13.

𝑥𝑖 = 𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥
(13)

7.2.4 Design Point Selection

This purpose of this methodology is for design space exploration, so design points should

be selected to sample the space as thoroughly as possible. Design of Experiments (DOE)

methods provide a way to efficiently sample points from a space. Traditional DOE designs

are based on full factorial, fractional factorial, and other designs that primarily sample from

the boundaries of the design space.

Full factorial designs generate points in an 𝑛-dimensional lattice. This type of design

samples the space very thoroughly but the number of points grows exponentially with the

number of dimensions. This design generates design points at all combinations of levels for

all factors. The number of design points is 𝑚𝑛, where 𝑚 is the number of levels and 𝑛 is the

number of factors (i.e., dimensions). This makes this design impractical for problems with

more than a small number of dimensions. For many experimental designs, two levels are

used resulting in an 2𝑛 design; however, since there are only two levels per variable, this

design requires linearity over the interval in order to be valid.
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Fractional factorial designs use a fraction of the full factorial design. If the design is used

for the purpose of factor estimation (i.e., building a regression model) and the sparsity of

effects principle is valid (i.e., only a small number of factors are important and higher-order

interactions are not important), a fractional factorial design can be used [10].

Space-filling designs attempt to fill the interior of the design space as uniformly as

possible given the number of design points required. Response surface designs are often used

for sequential designs, where progressively smaller regions of the design space are modeled

using the polynomial model. However, response surface designs are often not appropriate

for capturing model over the entire design space or for more complex models. Space-filling

designs are better suited for complex models and where the entire design space is required

[200, 28, p. 483]. Latin hypercube sampling (LHS) [182] is a popular space-filling design.

In LHS, each dimension is broken up into bins of equal probability. For a given number of

samples, each sample is placed randomly inside a bin and the points are distributed so that

there is only one sample per bin for any one dimensional projection [126].

A number DOE designs exist for a specific modeling purpose. Screening designs sample

variables at the low and high values in order to determine the relative effect that variable

has on the response. For example, Plackett-Burman designs can be used to select important

main effects while neglecting interactions [10]. Central-composite designs sample the upper

and lower values plus central points. This design is good for creating polynomial response

surface models [22]; however, the sparse interior sampling requires the system to be relatively

well behaved in order to make any conclusions about how the variables affect the response

and where within that interval interesting behavior may be found.

As an alternative to these DOE designs, adaptive design point selection is also possible.

However, this option would require additional research in order to develop an algorithm

that includes a convergence/stopping criterion and samples points in a way that maintains

good discriminability in the results. Adaptive sampling methods will not be examined in

this research and is left for future research. A summary of the methodological alternatives

for the design point selection is shown in Table 6.
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Table 6: Methodological alternatives: design point selection

Methodology Step Primary Alternatives Secondary Alternatives

Design Point Selection

Design of Experiments

(DOE)

Full Factorial

Space Filling Design

Adaptive -

7.2.4.1 DOE Designs

Several DOE designs will be investigated in this research. Since this is a new methodology,

only several basic DOE designs will be investigated as this time: full factorial designs and

space-filling designs with varying numbers of design points. Two representative DOE designs

are shown in Figure 42.
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Figure 42: Full factorial design for 2 variables, 10 levels (left); space filling design for 2

variables, 50 runs (right)

The appropriateness of the various DOE designs will be tested as part of Experiment

A.

Experiment: This investigation will be carried out as Experiment A: Design Space

Sampling (Section 8.1). See the corresponding section in the Experiments chapter for the

results and discussion of this experiment.

7.2.5 Design Point Replication Sampling

Since complex systems are inherently stochastic, each design point must be replicated many

times in order to build a representative probability distribution describing the response.
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For physical experiments, replication is the use of repeated runs of the experiment in order

to estimate experimental error [10]; however, in computer simulations, the same type of

experimental error (e.g., bias due to experimenter, day-to-day variation in experimental

conditions, variation in material suppliers) is not present. For computer simulations, the

stochasticity is inherent in the simulation model. Two possible approaches for determining

the number of replications are using a predetermined number or using an adaptive method

that stops the replications once the probability distribution has converged according to a

given criterion.

7.2.5.1 Fixed Number

The fixed number of replication samples is the simplest choice. Each design point is replicated

the specified number of times. If a fixed number of replications produces acceptable results

across the entire design space, this method is an adequate choice. For this research, a fixed

number of replications will be used.

7.2.5.2 Adaptive Number

There are many examples of complex systems having a landscape of behaviors, where one

type of behavior is dominant in one region of the design space and a qualitatively different

behavior is dominant in another. In this situation, it is likely that each behavior will

be best sampled a different number of times. For example, if one region produces either

deterministic or purely random outcomes, a smaller number of replications are necessary.

On the other hand, more “interesting” behavior will require more samples in order to fully

characterize features like multimodality and fat tails. Additional research will be necessary

to use an adaptive approach for selecting the number of replications at each design point. A

convergence/stopping criterion would need to be developed.

A summary of the methodological alternatives for the design point replication sampling

is shown in Table 7.
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Table 7: Methodological alternatives: design point replication sampling

Methodology Step Primary Alternatives Secondary Alternatives

Design Point

Replication Sampling

Fixed Number -

Adaptive Number -

7.2.6 Search for Nearest Neighbors

Since this method relies on evaluating neighboring pairs of design points, identifying the

neighbors of a design point is necessary. A neighbor can be defined as either the closest 𝑚

points or all of the points that fall within a specified distance of a point in 𝑘-dimensional

space with sample size 𝑁 . Many techniques exist for performing this search. The most

straightforward approach is the exhaustive search where all pairs are evaluated as potential

neighbors. However, exhaustive searches are both computationally and memory intensive,

so partitioning methods exist that cut down on the number of evaluations that have to be

done.

7.2.6.1 Exhaustive

Exhaustive searches for neighbors is straightforward. Every pair of data points is selected

and the distance between them is evaluated and stored. This list is then searched to find

points that are neighbors as defined by the search criteria. However, as the number of

points in the data set grows, the number of evaluations required explodes. An exhaustive

search requires an evaluation and storage of every pair of data points. The computational

complexity of an exhaustive search will be given by the combination of all the data points.

This can be calculated using the binomial coefficient as shown in Equation 14, where 𝑛 will

be the number of data points and 𝑘 = 2 to find all of the pair-wise combinations.(︃
𝑛

𝑘

)︃
= 𝑛!

𝑘! (𝑛− 𝑘)! (14)

(︃
𝑛

2

)︃
= 𝑛!

2 (𝑛− 2)! = 𝑛 (𝑛− 1) (𝑛− 2)!
2 (𝑛− 2)! = 𝑛 (𝑛− 1)

2(︃
𝑛

2

)︃
= 𝒪

(︁
𝑛2
)︁
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7.2.6.2 Partitioning Method

Partitioning methods attempt to get around the explosion in the number of evaluations

in the exhaustive search by pruning possible candidates for neighbors. Friedman et al.

[116] proposed a nearest neighbor search algorithm based on a 𝑘-dimensional tree search.

𝑘-dimensional (shortened to 𝑘-d) trees are a generalization of the binary tree. The data is

partitioned along a discriminating dimension at a partition value. The goal is to partition

the data so that the average number of comparisons is small compared to the original data

set. Since the distribution of data points is not known a priori, the algorithm is optimized

to minimize the expected cost of the search (by adjusting the discriminating dimension,

the partition value, and the number of data points at each terminal node in the tree). At

every nonterminal node, the dimension with the largest spread in values is chosen as the

discrimination variable. Along this discrimination dimension, the median value is chosen as

the partition value, as it maximizes the information content in a binary choice when the

two alternatives are equally likely. The outcome of the algorithm is a partitioning scheme

which divides the space into hypercubes, each containing a similar number of data points.

The algorithm computational complexity is proportional to 𝑘𝑁 log 𝑁 while the storage

requirement is proportional to 𝑁 . The 𝑘-d tree approach can work with a variety of distance

measures as discussed in the next section.

A summary of the methodological alternatives for performing the search for nearest

neighbors is shown in Table 8.

Table 8: Methodological alternatives: search for nearest neighbors

Methodology Step Primary Alternatives Secondary Alternatives

Nearest Neighbor Search

Exhaustive -

Partitioning Method
𝑘-d trees

Heuristic methods
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7.2.7 Neighbor Distance Measure

Distance is measure of dissimilarity between two points. If this dissimilarity measure has

the properties of symmetry, monotonicity, and obeys the triangle inequality, it is a metric

distance. Distance can be defined using a number of different measures. One of the most

commonly used measures are the vector space 𝑝-norms (generally equivalent to 𝐿𝑝-space),

as shown in Equation 15.

𝐷𝑝 (𝑋, 𝑌 ) =
[︃

𝑘∑︁
𝑖=1
|𝑋 (𝑖)− 𝑌 (𝑖)|𝑝

]︃1/𝑝

(15)

The Euclidean (𝐿2-norm) distance is well-known and often used. However, the 𝐿1 and

𝐿∞-norms are also possible choices. Table 9 shows a list of vectors from 1 to 10 dimensions

where one unit step is taken in each available dimension. Figure 43 shows the distance of each

vector from the origin versus the number of dimensions for the 𝐿1, 𝐿2, and 𝐿∞-norms. This

figure shows that using an 𝐿1-norm, each additional dimensional adds an equal increment

to the distance metric. The 𝐿2-norm is quadratic and each additional dimension adds a

smaller increment as the number of dimensions increases. This has the negative consequence

that, for high dimensional spaces, points become more similar to each other in distance.

The 𝐿∞-norm is not dependent on the number of dimensions and each vector has the same

distance from the origin.

The choice of which distance measure to use in a design space is not obvious. Using the

𝐿2-norm is often recommended because it is well understood and generally well-behaved.

However, in the context of a parameter space, it certainly warrants careful examination

if the 𝐿2-norm really captures the “closeness” of two neighbors. As an example, in a 4

dimensional space using the 𝐿2-norm, taking 1 step in each dimension has a distance of 2

units from the origin. However, this means that taking 2 steps in one dimension is the same

as taking 1 step in each of 4 dimensions.

161



Table 9: Multi-dimensional vectors with a unit step in each dimension

X1 = [1]

X2 = [1, 1]

X3 = [1, 1, 1]

X4 = [1, 1, 1, 1]

X5 = [1, 1, 1, 1, 1]

X6 = [1, 1, 1, 1, 1, 1]

X7 = [1, 1, 1, 1, 1, 1, 1]

X8 = [1, 1, 1, 1, 1, 1, 1, 1]

X9 = [1, 1, 1, 1, 1, 1, 1, 1, 1]

X10 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
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Figure 43: Distance measures from origin versus number of dimensions

Within the context of this methodology, the choice of distance measure is used as a

selection criterion for determining which design points fall within a local neighborhood. This

is shown in Figure 44 where the Chebyshev neighborhood includes corner points in a grid

structure while the Euclidean neighborhood excludes corner points.
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Figure 44: Neighborhoods using Euclidean and Chebyshev distance measures

7.2.7.1 Euclidean (𝐿2-norm)

Using the 𝐿2-norm when finding the nearest neighbors is demonstrated on the four variable

design space for the Distributed-MASS problem in Figure 45. In this problem, the design

space points are selected using a full factorial design with an equal number of levels for each

variable. This results in an equally spaced lattice with neighbors at equal distances in all

dimensions. When the neighbor search is performed, one neighbor at the next higher level

and the nearest lower level is found, if available within the design space. The important

point to notice is that corner points are not selected since they are at a greater distance

than any of the single dimension components. The 𝐿2-norm can be visualized as the search

for points within a hypersphere with a fixed radius from the current design point. This

results in the 𝐿2 measure generating pairs of neighbors along one dimension. This has the

effect of performing a one-variable-at-a-time analysis.
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Figure 45: Nearest neighbors using Euclidean distance measure

7.2.7.2 Chebyshev (𝐿∞-norm)

Since the 𝐿∞-norm is based on the maximum distance along any one dimension, the search

for neighbors can be visualized as the selection of all points within a hypercube of fixed

dimension centered at the current design point. This search will return corner points of all

possible combinations of dimensions. This allows the evaluation of the same neighboring

points as the 𝐿2-norm plus all of the interactions between those points. However, the

curse of dimensionality leads to an explosion in the number of neighboring points for high

dimensional spaces.
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Figure 46: Nearest neighbors using Chebyshev distance measure

A summary of the methodological alternatives for selecting the distance measure is shown

in Table 10.

Table 10: Methodological alternatives: neighbor distance measure

Methodology Step Primary Alternatives Secondary Alternatives

Neighbor Distance Measure

Manhattan (𝐿1) -

Euclidean (𝐿2) -

Chebyshev (𝐿∞) -

7.2.8 Density Estimation Problem: Parametric versus Nonparametric Distri-
butions

Density estimation attempts to uncover the underlying probability density function of a

random variable. The goal of density estimation is to develop the best estimate that we

can of the true probability density function, 𝑝 (𝑥). Our best estimate is denoted 𝑝 (𝑥). The

165



estimation is performed using observations of the random variable 𝑥, which is a vector of

[𝑥1, . . . , 𝑥𝑛] where 𝑥 ∈ R𝑟, where 𝑟 is the dimension of the data and 𝑛 is the number of

observations.

Density estimation can be broken down into parametric and nonparametric approaches.

In the parametric approach, a functional form of the probability distribution (e.g., uniform,

Gaussian, Poisson, exponential, power-law) is assumed. As the name implies, a parametric

distribution can be completely characterized using a small number of parameters. Therefore,

the goal of parametric density estimation is to estimate the parameters that best describe the

underlying distribution. On the other hand, for situations where a parametric probability

distribution cannot be assumed (as has been noted when dealing with complex systems),

the nonparametric approach must be used.

Score functions allow us to choose a model which “best” describe a model. In a linear

regression, the method of least squares acts as the scoring function used. However, for

descriptive models with no target/predicted value, scoring is more difficult. Maximum

likelihood are one of the most common approaches used. One of the problems with the

maximum likelihood approach is that the error can be dominated by errors in the tails of

the density function where the probabilities are negligible and, therefore, do not significantly

contribute to the utility of the model [134, Ch. 7.3].

We desire a number of properties for a measure to be good:

• Unbiased: 𝐸 [𝑝 (𝑥)] = 𝑝 (𝑥), that is, our estimate approaches the true value at a given

location.

• Consistent: 𝑝 (𝑥) → 𝑝 (𝑥) for every 𝑥 ∈ R𝑟, our estimate approaches the true value

over the entire domain.

• Convergence rate: Our measure has a good convergence rate as a function of the

number of observations.

Many different performance measures exist, a number of which are shown are Table 11.

These measures are used to evaluate the goodness of fit between the estimate and the
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true distribution. Of course, the true distribution is usually unknown, so the measures are

between an estimate of the distribution and the observed data.

Table 11: Density estimation performance measures

Performance Measure Equation

Integrated Mean-Squared Error
´

[𝑝 (𝑥)− 𝑝 (𝑥)]2 𝑑𝑥

Integrated Absolute Error
´
|𝑝 (𝑥)− 𝑝 (𝑥)| 𝑑𝑥

Kullback-Leibler Relative Entropy
´

𝑝 (𝑥) log
{︁

𝑝(𝑥)
𝑝(𝑥)

}︁
𝑑𝑥

Hellinger Distance HD (𝑚) =
{︁´ (︁

[𝑝 (𝑥)]1/𝑚 − [𝑝 (𝑥)]1/𝑚
)︁𝑚

𝑑𝑥
}︁1/𝑚

The 𝐿2-based approaches are the most popular for nonparametric density estimation

performance measures [151, p. 78]. 𝑝 is assumed to be square integrable. Mean-squared error,

a commonly used measure, is integrated for all 𝑥 ∈ R𝑟 to yield the integrated mean-squared

error (IMSE). In certain situations, a measure based on an 𝐿1 measure is preferred. The

𝐿2 approach gives less preference to the behavior at the tails of the density, which can lead

to poor tail behavior. A common 𝐿1 measure is the integrated absolute error (IAE), also

known as total variation. Izenman notes that 𝐿1 measures are often harder to compute than

analogous 𝐿2 results [151, p. 79]. Another issue is that 𝐿1 measures can have discontinuities

in their derivatives, while the squared-error 𝐿2 measures are better behaved analytically

[136, p. 20].

All performance measures require knowledge of the true distribution. Since the true

distribution is not known, these performance measures cannot be calculated and will not

be evaluated in this research. However, the information is presented here for background

information.

7.2.8.1 Parametric Distributions

In general, the probability distributions of metrics of complex systems cannot be described

using standard parametric distributions (e.g., Gaussian, Poisson, exponential). It is certainly

possible that a parametric distribution can accurately capture a particular metric of interest;

however, there is no reason to assume that this will be possible in the general case. In
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many complex systems, the distribution changes shape drastically throughout the design

space in both mean, variance, and the existence of long-tails. The second point is closely

related to the first: if the probability distributions cannot be captured by a parametric

distribution (in which the probability distributions are reduced to the parameters that best

match the observed data), a nonparametric representation must be used in order to capture

the distribution of interest. Kernstine came to the same conclusion that complex systems are

characterized by nonparametric and heteroscedastic distributions [155]. However, Kernstine

attempted to capture the behavior of the mean and variance statistics across the design

space without capturing the entire distribution. By only capturing the two distribution

statistics, many possible indicators of emergent behavior, such as multimodal distributions,

are neglected. In addition, unlike with parametric distribution, where the shape parameters

uniquely define a distribution, there are potentially an infinite number of nonparametric

distributions that can be represented by the same magnitude of a mean or variance measure.

Observation: Complex system behaviors must be characterized by the complete probability

distribution for all possible outcomes.

While in some situations the Gaussian is an accurate and useful representation of a

probability distribution of interest, complex systems are often characterized by a variety of

other distributions. Erdi describes other common distributions in complex systems including

multimodal distributions, lognormal and power law, including some of the mechanisms which

might explain why these distribution shapes are found [109, ch. 6]. We simply have no way

of predicting or assuming a distribution type a priori—we must assume that the distribution

can take on any shape.

Throughout this thesis, it has been argued that a nonparametric approach should be

taken when characterizing the probability distributions. I have argued earlier that this

approach is more general and more conservative (i.e., safer). However, the approach of

assuming a parametric distribution and then testing the validity of the assumption is

a defensible alternative. Although assuming a nonparametric distribution is safer, this

approach may needlessly decrease the statistical performance. On the other hand, assuming
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a parametric distribution when it is not warranted may increase the error in the estimates

and lead to incorrect inferences. Regardless of the approach taken, the assumption of either

a nonparametric or parametric distribution should be tested.

Experiment: This investigation will be carried out as Experiment C: Parametric vs.

Nonparametric Probability Distributions (Chapter 8.3). See the corresponding section

in the Experiments chapter for the results and discussion of this experiment.

Conclusion: For the system under investigation in this research, it is clear from the results

of the experiment that a nonparametric approach is necessary. Although the result will

often be context-dependent, it is quite likely that complex system behavior is characterized

by nonparametric distributions.

7.2.8.2 Nonparametric Methods

There are a number of nonparametric density estimation methods available. The simplest

form is the well-known histogram method, where the frequency of data points lying within

fixed intervals (i.e., bins) is used to estimate the probability density. The naive estimator

is an improvement from the histogram method by allowing the locations of the bins to be

centered on the data points. Kernel methods use kernel weighting functions that allow for

the creation of smooth probability density estimates. These nonparametric methods will be

investigated below.

One of the simplest nonparametric approaches is the histogram method. Probability

densities are estimated based on frequency counts in interval bins that span the domain.

Despite their ubiquity, histograms suffer from a number of problems. The first is that

histograms are sensitive to the choice of origin, which can lead to a substantially different

estimates [151, pp. 80–81]. This effect is shown in Figure 47.
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Figure 47: A shift in origin leads to significantly different estimate (from [151, p. 81])

The second major issue with histograms is that they require large sample sizes. As the

dimensionality of the problem increases, the more difficult it is to have a significantly many

number of observations in each bin due to the curse of dimensionality. A two dimensional

histogram is shown in Figure 48.

Figure 48: A multidimensional histogram (from [151, p. 86])

Other issues with histograms include its relatively poor convergence rate. Using the

optimal bin width that yields the asymptotically optimal integrated mean-squared error,

the convergence rate is 𝒪
(︁
𝑛−2/3

)︁
, which is slower than most density estimators [151, p. 84].

Additionally, histograms are not smooth and discontinuities cause issues if derivatives of the

probability density estimate are needed. Silverman [232, p. 10] argues that histograms are a

poor choice as a density estimate when the estimates are used as intermediate steps within

a methodology. These issues mean that a histogram is a poor choice as a nonparametric

density estimate for the proposed methodology.

The next step up in sophistication from the histogram method is the naive estimator

[232]. The form of the naive estimator is shown in Equation 16, where 𝑛 is the number of

observations, ℎ is the bin width, 𝑋𝑖 is the 𝑖th observation, and 𝑤 is the weight function that
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is equal to 1
2 if |𝑥| < 1 and equal to 0 otherwise. The naive estimator is a generalization of

the histogram where the bins are centered at each data point; therefore, the naive estimator

still suffers from discontinuities.

𝑓 (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

1
ℎ

𝑤

(︂
𝑥−𝑋𝑖

ℎ

)︂
(16)

7.2.8.3 Nearest Neighbor Estimator

The nearest neighbor method is attempt to adapt the amount of smoothing to the local

density of the data [232]. The generalized kth-nearest neighbor estimator is shown in

Equation 17, where 𝐾 is a kernel function integrating to unity.

𝑓 (𝑡) = 1
𝑛𝑑𝑘 (𝑡)

𝑛∑︁
𝑖=1

𝐾

(︂
𝑡−𝑋𝑖

𝑑𝑘 (𝑡)

)︂
(17)

The nearest neighbor estimator is not smooth, so it suffers from the same issues as the

naive estimator. Also, estimates are sensitive to local noise, tend to have very heavy tails,

and are generally an unsatisfactory overall estimator [232, p. 97]. These issues are not

important when estimating the density at a single point; however, since the objective of the

estimation of the entire density function, the kernel method is a better approach compared

to the nearest neighbor method [232, p. 97].

7.2.8.4 Kernel Methods

Kernel methods are one of the most popular nonparametric approaches. Kernel methods are

an improvement on the 𝑘-nearest neighbor approach, instead using weights that decrease

smoothly based on distance from the target point [136, p. 17]. Given 𝑛 i.i.d. univariate

observations 𝑥1, 𝑥2, ..., 𝑥𝑛, drawn from the density 𝑝 (𝑥), the kernel density estimator 𝑝ℎ (𝑥)

for 𝑥 ∈ R with ℎ > 0 is given by Equation 18. 𝐾 is the kernel weighting function and

ℎ is the window width (also called the bandwidth or smoothing parameter) of the local

neighborhood which determines the smoothness of the density estimate. The kernel weight

function integrates to unity:
´∞

−∞ 𝐾 (𝑥) 𝑑𝑥 = 1.

𝑝ℎ (𝑥) = 1
𝑛ℎ

𝑛∑︁
𝑖=1

𝐾

(︂
𝑥− 𝑥𝑖

ℎ

)︂
(18)
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In this research, kernel methods will be considered sufficient for the requirements of the

methodology. Other more advanced techniques exist such as orthogonal series estimation

[107] and penalized likelihood density estimation [233]. However, unless a specific application

requires the use of those methods, standard kernel methods should be sufficient. Kernel

methods are memory-based methods, where the model is the data-set itself. Evaluation of

the kernel function involves access to the entire data set. Radial basis functions, an approach

used for regression, are similar to the kernel method with a symmetric 𝑝-dimensional kernel

function.

7.2.8.5 Selection of Kernel Function

A number of widely used kernel functions are listed in Table 12. The Epanechnikov kernel is

a weight function which minimizes the mean integrated square error of the estimate and

has an efficiency of unity. It is clear that most kernel functions have efficiencies that are

almost as good as the Epanechnikov. Although the bias of the estimate does depend on the

function selected, the choice of kernel is not critical and can be selected on criteria other

than efficiency [232].

Table 12: Kernel functions
Kernel Functional Form 𝐾 (𝑡) Efficiency

Biweight 15
16
(︀
1− 𝑡2)︀2 for |𝑡| < 1 0.994

Rectangular 1
2 for |𝑡| < 1 0.930

Triangular 1− |𝑡| for |𝑡| < 1 0.986

Gaussian 1√
2𝜋

𝑒−1/2𝑡2 0.951

Epanechnikov 3
4 (1− 1

5 𝑡2)/√
5 for |𝑡| <

√
5, 0 otherwise 1.000

7.2.8.6 Selection of Smoothing Parameter

The window width (also called smoothing parameter or bandwidth) is an important parameter

when performing the density estimation. The value of the window width balances the trade-

off between random and systematic error [232, p. 40]. The optimal window width depends

explicitly on unknown density 𝑝 (𝑥), so the optimal window width cannot be determined a

172



priori [151, p. 95]. Several methods exist to determine the window size. The first is rule-of-

thumb, which is the simplest. Another method is cross-validation, but it is computationally

intensive; therefore, it is a poor choice for large data sets. Least-squares cross-validation is an

automatic method and aims at an optimal value of the smoothing parameter to minimize the

integrated square error [232, p. 51]. Likelihood cross-validation uses leave-one-observation-

out approach but can be sensitive to outliers [232]. If an optimal value of the smoothing

parameter cannot be used, Silverman argues that it is generally better to under-smooth

than to over-smooth and risk losing important features in the data [232, p. 43].

Scott [225, p. 131] describes the development of the normal kernel reference rule, shown

in Equation 19, which estimates the optimal bandwidth parameter that minimizes the mean

integrated squared error when using the normal kernel for univariate data. However, the

optimal parameter depends on the true distribution (specifically the standard deviation, 𝜎);

however, since the true distribution is not known, the estimate for optimal bandwidth uses

the estimated standard deviation, �̂�. In fact, the large number of approaches that exist in

the literature are often due to the fact that the quantities in the expressions are random

variables and must be estimated from the data at hand. This means that any estimate

is only optimal on average (or via some other statistic). Scott [225, p. 162] argues that

AMISE-derived optimal bandwidth ℎ* is an appropriate target.

ℎ* =
(︂4

3

)︂1/5

𝜎𝑛
−1/5 ≈ 1.06�̂�𝑛

−1/5 (19)

Venables and Ripley [245] use a slightly modified form of the rule, shown in Equation

20, uses the minimum of either the estimated standard deviation or a value based on the

interquartile range (IQR).

ℎ = 1.06𝑛
−1/5 min (�̂�, IQR/1.34) (20)

A summary of the methodological alternatives for performing the density estimation is

shown in Table 13.
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Table 13: Methodological alternatives: density estimation

Methodology Step Primary Alternatives Secondary Alternatives

Density Estimation

Parametric Distribution Family

Histogram -

Kernel Method
Kernel function selection

Bandwidth parameter selection

7.2.9 Statistical Distance

There are a number of ways to quantify the difference between two probability distributions on

the same probability space. These quantities are zero when the two probability distributions

are identical and increase as the distributions become more dissimilar. Since some of these

quantities do not satisfy the requirement of symmetry and/or the triangle inequality, they

are called divergences instead of distances. A number of distances and divergences, listed

below, will be examined for their suitability in this research.

• Kullback-Leibler divergence

• Jensen-Shannon divergence

• Hellinger distance

• Bhattacharyya distance

The goal will be to identify which measures offer the best discriminability between two

probability distributions while being well-behaved and relatively insensitive to noise. The

measure must be equally sensitive to both shifts in mean and variation.

The probability density is estimated from the underlying data using the kernel method

described above. The probability estimate is discretized over the support interval of the

combined distributions. This allows the probability from each distribution to be evaluated at

discrete points 𝑝𝑖 and 𝑞𝑖 from distributions 𝑃 and 𝑄, respectively. This process is illustrated

in Figure 49.
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Figure 49: Discrete probability estimate

The discrete Kullback-Leibler divergence, KL (𝑝, 𝑞), is shown below in Equation 33.

KL (𝑝, 𝑞) =
𝑛∑︁

𝑖=1
𝑝𝑖 log 𝑝𝑖

𝑞𝑖
(21)

Since Kullback-Leibler is not symmetric with respect to 𝑝 and 𝑞, the simplest way to

achieve a symmetric measure, KL2, is by taking the average of KL (𝑝, 𝑞) and KL (𝑞, 𝑝), as

shown in Equation 22.

KL2 (𝑝, 𝑞) = 1
2KL (𝑝, 𝑞) + 1

2KL (𝑞, 𝑝) (22)

KL2 is symmetric but is not finite-valued. To overcome this limitation, Jensen-Shannon

divergence is based on the Kullback-Leibler divergence of each distribution relative to the

average distribution of 𝑝 and 𝑞.⎧⎪⎪⎪⎨⎪⎪⎪⎩
JS (𝑝, 𝑞) = 1

2KL (𝑝, 𝑟) + 1
2KL (𝑞, 𝑟)

𝑟 = 1
2 (𝑝 + 𝑞)

(23)
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The Hellinger distance, Hel (𝑝, 𝑞), is shown below in Equation 24.

Hel (𝑝, 𝑞) = 1√
2

√︃∑︁
𝑖

(√𝑝𝑖 −
√

𝑞𝑖)2 (24)

The Bhattacharyya distance, BD (𝑝, 𝑞), is shown below in Equation 25, where BC is the

Bhattacharyya coefficient. The Hellinger distance is related to the Bhattacharyya coefficient

where Hel (𝑝, 𝑞) =
√︀

1− BC (𝑝, 𝑞).⎧⎪⎪⎪⎨⎪⎪⎪⎩
BD (𝑝, 𝑞) = − ln (BC (𝑝, 𝑞))

BC (𝑝, 𝑞) =
∑︀
𝑖

√
𝑝𝑖𝑞𝑖

(25)

A summary of the methodological alternatives for calculating the statistical distance is

shown in Table 14.

Table 14: Methodological alternatives: statistical distance

Methodology Step Primary Alternatives Secondary Alternatives

Statistical Distance

Kullback-Leibler divergence -

Jensen-Shannon divergence -

Hellinger distance -

Bhattacharyya distance -

Since there are a number of candidate statistical distances, an experiment will be carried

out to characterize their performance and to help downselect the appropriate distance for

use in the methodology.

Experiment: This investigation will be carried out as Experiment B: Statistical Dis-

tance Measures (Chapter 8.2). See the corresponding section in the Experiments chapter

for the results and discussion of this experiment.

7.2.10 Evaluate Design Space Divergence

In order to formalize the methodology, following the approach taken in Morris and Mitchell

[194], the response of the system, 𝑌 , is assumed to be a stochastic function defined over the

design space X. More specifically, the Design Space Divergence (𝐷𝑆𝐷) between responses
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at two design points is a function of the distance between the two points. This is shown in

Equation 26.

DSD (𝑌 (𝑥𝑝) ‖𝑌 (𝑥𝑞)) = 𝐹 (𝑑 (𝑥𝑝, 𝑥𝑞)) (26)

Evans et al. [110] argue that there are two important steps when using simulations

for exploratory design: finding “important” patterns and then determining causality. The

proposed design space emergence measure attempts to capture elements of both of these

tasks. The numerator in the measure captures the “importance” while the denominator

captures an element of the causality issue. The Design Space Divergence measure proposed

in this methodology is the ratio of the statistical distance to the design space distance

between two points. Recalling that the statistical distance is a measure of the difference

between two probability distributions, the probability distributions are defined as 𝑃 = 𝑌 (𝑥𝑝)

and 𝑄 = 𝑌 (𝑥𝑞). The design space distance is evaluated on the rescaled coordinate space as

described in Chapter 7.2.3. The equation for the Design Space Divergence measure is shown

below in 27.

DSD (𝑥) = Statistical Distance (P, Q)
Design Space Distance (�̂�𝑝, �̂�𝑞) (27)

This measure is evaluated according to the methodology steps defined earlier. The

statistical distance function and the corresponding options were described earlier and were

studied in Experiment B. The design space distance function also follows from the discussion

above in the section on Neighbor Distance (Section 7.2.7). It is important to note that the

Design Space Distance measure is independent of the distance measure used in the neighbor

search portion of the methodology. In the neighbor search step, the distance measure was

used for the selection of the neighboring points; however, any other distance measure can

be used to evaluate the distance between points. As will be done in the Case Study, the

neighbor search will carried out using the Chebyshev distance but the Euclidean distance will

be used when evaluating the DSD measure. The Chebyshev measure considers the distance

to be the maximum difference along any single dimension. This provides an easy way of

selecting all of the neighbors including corner points; however, this measure does not match

our intuitive understanding of how close two points are to each other. Therefore, using the

Euclidean distance when evaluating the DSD measure is a more appropriate choice.
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7.2.11 Identify High Design Space Divergence Measure Regions

The final step in the methodology is the exploration of the DSD measure data set to identify

regions of the design space with high DSD values. There are a variety of techniques available

to perform this step. If the number of dimensions is small, visual analytic techniques can be

used to locate the data using common visualizations and interactive plotting. For higher

dimensional data, machine learning techniques like clustering or dimensionality reduction

techniques can be used to assist the user in identifying trends in the data. A summary of the

methodological alternatives for performing the identification of high DSD measure regions is

shown in Table 15.

Table 15: Methodological alternatives: identify high DSD measure points

Methodology Step Primary Alternatives Secondary Alternatives

Identify High DSD Measure

Points

Visual Analytics -

Machine Learning

Clustering

Dimensionality Reduction

...(other)

7.2.12 Iterate to Refine Exploration

The final step of the methodology is to use the information gained during the data exploration

phase to refine design space. This refinement step can be used for a number of different

purposes. Once a candidate region has been identified, a more detailed exploration in a

smaller region can be performed to get a higher resolution picture of the search space. Design

variables can be added or removed and their ranges modified to take advantage of a new

understanding of the problem. This step of the methodology may be optional if additional

refinement is deemed unnecessary.

7.3 Methodology Implementation

The first phase (data collection) of the SEED methodology is relatively straight forward

and will not need implementation details. The data exploration phase will depend on the

resulting data, so it would be difficult to come up with an algorithm that will always be
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appropriate. However, the data analysis phase of the methodology is involved and will be

detailed here. The pseudo-code for data analysis phase is given below. This algorithm was

implemented in MathWorks MATLAB due to its data processing capabilities and the ability

to access the results from the Distributed-MASS simulation runs.

Algorithm 4 SEED Methodology Data Analysis
1: procedure ProcessData(DataResults, DOE)
2: 𝑋 ← 𝐷𝑂𝐸 ◁ Read in design point values
3: 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 ← 𝑅𝑒𝑆𝑐𝑎𝑙𝑒𝐷𝑒𝑠𝑖𝑔𝑛(𝑋) ◁ Rescale design space
4: for 𝑖𝐷𝑒𝑠𝑖𝑔𝑛𝑃𝑡← 1, 𝑛𝐷𝑒𝑠𝑖𝑔𝑛𝑃𝑡 do ◁ Iterate through all design points
5: 𝑋𝐷𝑒𝑠𝑖𝑔𝑛𝑃𝑡𝑠𝑐𝑎𝑙𝑒𝑑 ← 𝑅𝑒𝑆𝑐𝑎𝑙𝑒𝐷𝑒𝑠𝑖𝑔𝑛(𝑋𝐷𝑒𝑠𝑖𝑔𝑛𝑃𝑡) ◁ Rescale design point
6: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠← 𝐹𝑖𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑋𝑠𝑐𝑎𝑙𝑒𝑑, 𝑋𝐷𝑒𝑠𝑖𝑔𝑛𝑃𝑡𝑠𝑐𝑎𝑙𝑒𝑑) ◁ Find neighbors in

design space
7: for all 𝑖𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
8: 𝐷𝑎𝑡𝑎𝑃 ← DataResults(𝑖𝐷𝑒𝑠𝑖𝑔𝑛𝑃𝑡) ◁ Get simulation data
9: 𝐷𝑎𝑡𝑎𝑄← DataResults(𝑖𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡) ◁ Get simulation data

10: 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑃 ← KernelMethod(𝐷𝑎𝑡𝑎𝑃 ,h) ◁ Estimate density
11: 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑄← KernelMethod(𝐷𝑎𝑡𝑎𝑄,h) ◁ Estimate density
12: 𝐷𝑎𝑡𝑎𝑆𝑡𝑎𝑡𝐷𝑖𝑠𝑡(𝑖𝐷𝑒𝑠𝑖𝑔𝑛𝑃𝑡, 𝑖𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡) ← StatDist(𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑃, 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑄)

◁ Calculate Stat. Dist.
13: 𝑋𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑐𝑎𝑙𝑒𝑑 ← 𝑋𝑠𝑐𝑎𝑙𝑒𝑑(𝑖𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡) ◁ Get neighbor location
14: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋𝐷𝑒𝑠𝑖𝑔𝑛𝑃𝑡𝑠𝑐𝑎𝑙𝑒𝑑, 𝑋𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑐𝑎𝑙𝑒𝑑) ◁ Get

neighbor distance
15: 𝐷𝑎𝑡𝑎𝐷𝑆𝐷(𝑖𝐷𝑒𝑠𝑖𝑔𝑛𝑃𝑡, 𝑖𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡) ← 𝐷𝑎𝑡𝑎𝑆𝑡𝑎𝑡𝐷𝑖𝑠𝑡/𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

◁ Calculate Stat. Dist.
16: 𝑋𝑀𝑖𝑑(𝑖𝐷𝑒𝑠𝑖𝑔𝑛𝑃𝑡, 𝑖𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡)← CalculateMidPt(
17: 𝑋𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑐𝑎𝑙𝑒𝑑, 𝑋𝐷𝑒𝑠𝑖𝑔𝑛𝑃𝑡𝑠𝑐𝑎𝑙𝑒𝑑) ◁ Get midpoint between neighbors
18: end for
19: end for
20: end procedure

7.4 Methodology Evaluation

The final step is to test and evaluate the performance of the proposed methodology. This

will done as part of the final experiment in this dissertation.

Experiment: This investigation will be carried out as Experiment D: Evaluating

the Methodology Performance (Chapter 8.4). See the corresponding section in the

Experiments chapter for the results and discussion of this experiment.
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CHAPTER VIII

EXPERIMENTS

Chapter Road Map: The goal of this chapter is to present the results of the experiments

conducted as part of this research.

8.1 Experiment A: Design Space Sampling

Research Question for Experiment A.

• (RQ3.2): How can the design space of a complex system be systematically explored

in order to identify emergent behavior?

– (RQ3.2.1): How should the design points be distributed in the design space?

Three cases will be compared for this experiment. A full factorial design will be the first

case. Although a full factorial exploration is usually not the most efficient, it explores the

space uniformly and has the potential to improve statistical inferences due to its uniform

sampling. Space-filling designs (e.g., Latin Hypercube Sampling) is known to be efficient for

surrogate modeling, but its efficiency for divergence-based measures has yet to be proven.

The resulting divergence measures will be compared to see if space-filling designs produce

reliable and interpretable results (i.e., comparable resolution and discriminability compared

to the full factorial design). The comparison will be made by visual inspection of the contour

plots in the 2D design space.

The hypothesis for research question RQ3.2.1 is akin to a null hypothesis where there

is no significant difference between the two sampling strategies. The goal of this experiment

is therefore to test whether a significant difference exists or not.
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Hypothesis 2 (HYP2): If there is a similar sampling density, there will be no significant

difference in discriminability between sampling methods (i.e., both full factorial and space

filling designs will yield the same similar divergence measures).

8.1.1 Full Factorial - 100 Points
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Figure 50: Full factorial design for 2 variables, 10 levels

Summary statistics for the execution of this design are shown in Table 16.

Table 16: Summary statistics for 100 case full factorial design

Parameter Value

Number of Cases 100

Number of Replications 100

The variation of the mean and standard deviation of the BTTCP measure of system

performance is shown in Figure 51.
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Figure 51: Contour plot of the mean (left) and standard deviation (right) of BTTCP as a

function of design variables

As was shown in the initial characterization of the design space for the Distributed

Multi-Agent Surveillance System problem (Chapter 6.3), a grid differencing scheme can be

used as a way of understanding how the probability distribution changes across the design

space. This approach is possible due to the full factorial design, which makes it easy to find

neighbors and to ignore design space distances since the grid is consistent. This approach

also only considers neighbors along each dimension and does not consider corner points in

the neighbor search. The resulting contour plots are shown in Figure 52. This figure can be

used as a reference for future analysis conducted as part of this experiment.
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Figure 52: Contour plot of the grid differencing mean shift (left) and standard deviation

shift (right) of BTTCP as a function of design variables

Carrying out the evaluation of the design space divergence measure leads to the results

shown in the contour plot in Figure 53. This contour plot is generally as expected and

provides the clearest picture of the divergence measure since the design points are relatively

dense and the grid is consistent. This result will set the benchmark when evaluating the

appropriateness of the space filling designs.
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Figure 53: Contour plot of design space divergence measure as a function of design variables

8.1.2 Full Factorial - 100 Points (Refined)

An additional experiment was carried out to investigate whether the results are consistent

and would refine with a finer grid. A 100 point full factorial design over a smaller portion of

the design space was created and run. The range for the design variables is shown in Table

17. The resulting design is shown in Figure 54. Summary statistics for the execution of this

design are shown in Table 18.

Table 17: Design space exploration variables for 100 case full factorial design, refined

Design Variable Min Value Max Value

Number of Agents 15 24

Communication Range 14 32

Detection Range* 7 16
* assumed to be 1/2 of the Communication Range
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Figure 54: Full factorial design for 2 variables, 10 levels, refined

Table 18: Summary statistics for 100 case full factorial design, refined

Parameter Value

Number of Cases 100

Number of Replications 200

The resulting Design Space Divergence measure is shown in Figure 55. The original plot

of the DSD measure is shown on the left while the refined results are shown on the right.

This shows that the DSD does refine and generally provides consistent results. Since the

refined exploration is being performed over a much finer grid, neighboring points are closer

together in both response and design space distance. The magnitude of the DSD measure is

significantly smaller; however, the major features remain. In particular, there is a significant

shift in behavior near a communication range of 25 and when the number of agents is

approximately 20. However, it should be emphasized that a very fine grid is not necessarily

desirable. Unless the transition behavior is very sharp (i.e., almost discontinuous), a very

fine grid will not yield interesting results. There is an intermediate level of resolution that

is fine enough to capture transition regions but sparse enough that there is a statistically
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significant difference of behavior between points. In the limit, the DSD measure is expected

to approach 0
0 as both the difference in statistical distributes is expected to go to zero while

the design space distance also approaches zero. However, before that point is reached, the

DSD measure is expected to be dominated by sampling noise.
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Figure 55: Contour plot of Design Space Divergence measure as a function of design

variables for 100 case full factorial: original (left), refined (right)

8.1.3 Space Filling Design - 100 Points

The goal of this portion of the experiment is to evaluate the appropriateness of using

space-filling designs to evaluate the design space divergence measure. In this experiment, a

100 point design space design was used. The space filling design was generated in JMP12

using 2 factors where the communication range was treated as a continuous variable and the

number of agents was treated as a 7-level categorical variable. The resulting design is shown

in Figure 56.
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Figure 56: Space filling design for 2 variables, 100 runs

Summary statistics for the execution of this design are shown in Table 19.

Table 19: Summary statistics for 100 case space filling design

Parameter Value Units

Number of Cases 100

Number of Replications 100

Total Run Time for Experiment 16:03:08:28 DD:HH:MM:SS

Average Run Time Per Replication 139.37 seconds

The contour plot of the design space divergence measure for the 100 case space filling

design is shown in Figure 57. Although there are similarities to the 100 case full factorial

design, the result for the 100 case space filling design shows unexpected irregularities.
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Figure 57: Contour plot of design space divergence measure as a function of design variables

for 100 case space filling design

It appears that the cause of the irregularities is due to the irregular spacing and clustering

of neighboring points when performing the analysis. A typical neighborhood of points is

shown in Figure 58. This type of arrangement causes a large of number of solutions to be

calculated in close proximity, which makes visualization of the results difficult. Some design

points are also very close to each other and the differences in the underlying probabilities

may be due mostly to sampling noise. Although it is expected that design points will have

underlying distributions which converge to each other as two design points approach each

other, it is likely that anything less than a large amount of samples will have sampling noise

which keeps the divergence measure from reaching zero. This is further amplified by the

design space divergence measure since the solutions have a very small design space distance

between them.
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Figure 58: Representative nearest neighbor cluster for 100 case space filling design

8.1.4 Space Filling Design - 75 Points

A space filling design using 75 points, shown in Figure 59, will be analyzed in this portion of

the experiment.
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Figure 59: Space filling design for 2 variables, 75 runs

Summary statistics for the execution of this design are shown in Table 20.

Table 20: Summary statistics for 75 case space filling design

Parameter Value Units

Number of Cases 75

Number of Replications 100

Total Run Time for Experiment 11:13:23:14 DD:HH:MM:SS

Average Run Time Per Replication 133.15 seconds

The contour plot of the design space divergence measure for the 75 case space filling

design is shown in Figure 60. This figure shows the expected trends as demonstrated in the

100 case full factorial design.
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Figure 60: Contour plot of design space divergence measure as a function of design variables

for 75 case space filling design

These results do not suffer from the irregularities seen in the 100 case space filling design.

A typical neighborhood of points for this design is shown in Figure 61. This distribution of

points in the neighborhood is close to the ideal scenario where neighboring points are evenly

distributed in the space surrounding the reference design point.
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Figure 61: Representative nearest neighbor cluster for 75 case space filling design

8.1.5 Space Filling Design - 50 Points

A space filling design using 50 points, shown in Figure 62, will be analyzed in this portion of

the experiment.
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Figure 62: Space filling design for 2 variables, 50 runs

Summary statistics for the execution of this design are shown in Table 21.

Table 21: Summary statistics for 50 case space filling design

Parameter Value Units

Number of Cases 50

Number of Replications 100

Total Run Time for Experiment 08:12:00:19 DD:HH:MM:SS

Average Run Time Per Replication 146.88 seconds

The contour plot of the design space divergence measure for the 50 case space filling

design is shown in Figure 63. This figure shows some undesirable behavior due to large gaps

and uneven spacing in the sampling.
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Figure 63: Contour plot of design space divergence measure as a function of design variables

for 50 case space filling design

The large uneven spaces and large gaps between points make identifying neighbors

difficult. A typical neighborhood of points for this design is shown in Figure 64. This

distribution of points in the neighborhood shows that some directions do not have near

neighbors and the design space distance between points is not consistent for this design.
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Figure 64: Representative nearest neighbor cluster for 50 case space filling design

8.1.6 Experiment Conclusions

The space filling design using 75 points provided the best result when compared to the

full factorial design. The 75 point space filling design had excellent discriminability and

captured the desired trends. However, the 100 point space filling design resulted in a lot of

irregularities due to the clustering of neighboring points. On the other hand, the 50 point

space filling design had large gaps in the design space and identified structure that was not

present in the full factorial design. It appears that the most successful designs have points

that are evenly distributed in the design point’s neighborhood.

Conclusion: If the design points are distributed across the design space in a regular pattern,

both full factorial and space filling designs will both work well within this methodology. The

hypothesis is partially substantiated: although both full factorial and space filling are capable

of achieving good results, both sampling density and the spacing within the neighborhood

are important. Sampling density is not sufficient since uniformity is also required for good

discriminability.

195



8.2 Experiment B: Statistical Distance Measures

Research Question for Experiment B.

• (RQ3.4): What is the appropriate way to represent and evaluate probability distribu-

tions?

– (RQ3.4.2): What is the appropriate statistical distance measure to use when

evaluating probability distribution similarity?

The purpose of this experiment is to characterize the statistical distance measures in order

to provide guidance for the appropriateness of each measure in the overall methodology. The

statistical distance for two distributions with varying means and variances will be examined.

The Kullback-Leibler divergence (KL), symmetric Kullback-Leibler divergence (KL2), Jensen-

Shannon divergence (JS), Hellinger distance (Hel), and Bhattacharyya distance (BD) will be

examined using both a canonical example (a parameterized normal distribution) and using

the distributions generated from the complex system under investigation in this research

(the Distributed Multi-Agent Surveillance Simulation).

The hypothesis for research question RQ3.4.2 is akin to a null hypothesis where there

is no significant difference between the statistical distance measures. The goal of this

experiment is therefore to test whether a significant difference exists or not.

Hypothesis 3 (HYP3): There will be no qualitative difference in discriminability between

statistical distance measures.

8.2.1 Mean Shift

In the first portion of this experiment, the effect of a mean shift on the statistical distances

will be measured. A standard normal distribution 𝒩 (0, 1) is assigned to the distribution for

𝑃 while 𝑄 will be a normal distribution of increasing mean with a unity standard deviation,

𝒩 (𝑄𝜇, 1). This is shown in Figure 65.
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Figure 65: Distribution mean shift

The Kullback-Leibler divergence (KL), symmetric Kullback-Leibler divergence (KL2),

Jensen-Shannon divergence (JS), Hellinger distance (Hel), and Bhattacharyya distance (BD)

are measured as 𝑄𝜇 is increased while 𝑃 = 𝒩 (0, 1) is held fixed. The plot of these measures

as a function of 𝑄𝜇 is shown in Figure 66. Since the two distributions are identical except for

the mean, both KL and KL2 are equivalent and grow quickly and unbounded in magnitude.

BD is also not upper-bound but grows more slowly than either of the KL measures. Jensen-

Shannon and Hellinger distance are both bound; however, it can be seen that these two

measures offer very little discriminability for large differences between distributions.
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Figure 66: Divergence measures versus mean shift

Figure 67 shows a detail from Figure 66 for small values of mean shift. Although

Hellinger distance (Hel) has poor discriminability for large mean shifts, it provides better

discriminability for small mean shifts compared to the other distance measures. If the data

set is comprised of mostly similar distributions, Hellinger distance would be well suited for

detecting smaller shifts in the distributions while BD and JS offer very little discriminability

for small differences.
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Figure 67: Divergence measures versus mean shift (detail)

8.2.2 Variance Shift

In this second part of this experiment, the effect of shifts in variance on the distance measures

will be investigated. A standard normal distribution 𝒩 (0, 1) is assigned to the distribution

for 𝑃 while 𝑄 will be a normal distribution of varying variance with a mean of zero, 𝒩 (0, 𝑄𝜎).

This is shown in Figure 68.
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Figure 68: Distribution variance shift

The Kullback-Leibler divergence (KL), symmetric Kullback-Leibler divergence (KL2),

Jensen-Shannon divergence (JS), Hellinger distance (Hel), and Bhattacharyya distance (BD)

are measured as 𝑄𝜎 is varied while 𝑃 = 𝒩 (0, 1) is held fixed. The plot of these measures

as a function of 𝑄𝜎 is shown in Figure 69. As expected, all of the measures approach zero

as the two distributions become identical at 𝑄𝜎 = 0. KL and KL2 are both unbound in

magnitude.
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Figure 69: Divergence measures versus variance shift

Zooming into the region of small differences between distributions is shown in Figure

70. Jensen-Shannon and BD distances offer very little discriminability for small differences

between distributions. Hellinger provides a better distance measure for detecting small

differences between distributions since it has a higher sensitivity.
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Figure 70: Divergence measures versus variance shift (detail)
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8.2.3 Design Space Divergence

The final step of this experiment is to evaluate each of the divergence measures within the

context of measuring the design space divergence of the test problem. The design space

divergence is measured for the 2D Distributed Multi-Agent Surveillance System problem. The

symmetric Kullback-Leibler divergence (KL2), Jensen-Shannon divergence (JS), Hellinger

distance (Hel), and Bhattacharyya distance (BD) is shown in Figure 71.
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Figure 71: Design space divergence measure using various divergence measures: symmetric

Kullback-Leibler divergence (KL2) (top left), Jensen-Shannon divergence (JS) (top right),

Hellinger distance (Hel) (bottom left), and Bhattacharyya distance (BD) (bottom right)

8.2.4 Experiment Conclusions

Conclusion: There does appear to be a qualitative difference in discriminability between

the statistical distances measures; therefore, HYP3 is not substantiated and has been

falsified.

It is clear that there are two qualitatively different results. Symmetric Kullback-Leibler
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divergence (KL2) and Bhattacharyya distance (BD) are qualitatively similar while Jensen-

Shannon divergence (JS) and Hellinger distance (Hel) form another qualitatively similar pair.

The commonality in measures within each pair is whether or not the measure is bounded.

KL2 and Bhattacharyya distance BD are unbounded and are able to discriminate among

strongly dissimilar probability distributions. On the other hand, JS and Hel measures are

bounded and tend to get saturated for design spaces with strongly dissimilar distributions.

This suggests that the appropriate statistical distance to use is context dependent. If the

design space is characterized by relatively small shifts in mean and variance, a more sensitive

measure, especially Hel, would be more appropriate. From the results of the parametric

normal portion of the experiment, Hel generated the largest measure among all of the ones

tested for very small shifts in mean and variance. On the other hand, if the design space

is characterized by strongly varying distributions (as is the case in the D-MASS problem),

KL2 or BD would be appropriate measures to use.

8.3 Experiment C: Parametric vs. Nonparametric Probability Distri-
butions

Research Question for Experiment C.

• (RQ3.4): What is the appropriate way to represent probability distributions?

– (RQ3.4.1): Should probability distributions be modeled as parametric or non-

parametric distributions?

It has been argued earlier in this dissertation that a nonparametric approach may be

more appropriate based on grounds related to the philosophical approach of doing statistical

analysis. However, the purpose of this experiment is to demonstrate scenarios where a

nonparametric approach is necessary because a parametric approach is severely flawed.

Hypothesis 4 (HYP4): In situations where probability distributions are constrained

or when a large degree of flexibility is needed, a nonparametric probability distribution,

specifically the data-driven kernel method, provides a better model for capturing probabilistic

features.

204



The probability distributions observed will depend on the underlying process and is

therefore context dependent. In this dissertation, the problem being investigated is the

Distributed Multi-Agent Surveillance Simulation. Using the results from this simulation,

the distributions from two design points where the a priori assumption of a parametric

distribution is problematic are shown in Figure 72. Although a cursory review of the

probability distributions shows that many design points could conceivably be modeled as

normal distributions, there are clearly design points where the assumption of normality is not

valid. Figure 72 shows several examples of distributions in which an assumption of normality

is not a good one. In the left figure, the distribution is not symmetric due to a constraint:

reaching a limiting value of maximum efficiency. Assuming a normal distribution and using

the observed mean and variance would imply values that are above the maximum value

possible. The subfigure on the right shows a distribution that exhibits skewness. Although

it is possible that more samples (than the current 150) would yield a more symmetric

distribution, at this time, there is not enough evidence that a normal distribution is a

good model for this data. A nonparametric approach ensures that any inferences made

are consistent with the data. Taking inspiration from Jaynes, the goal is to be “maximally

noncommittal with regards to missing information” [152].
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Figure 72: Two design point distributions from Distributed Multi-Agent Surveillance

Simulation exhibiting non-normal distributions
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In order to make this investigation more rigorous, a systematic test of normality at each

design point was carried out. Four tests were performed at three levels of significance. The

Jarque-Bera, Lilliefors, Anderson-Darling, and Chi-Square Goodness-of-Fit can all be used

to test whether a data sample comes from a normal distribution whose parameters are not

specified and must be determined using the sample estimates. Each of these tests uses a

null hypothesis that the sample comes from a normal distribution; the hypothesis is either

accepted or rejected based on a specified significance level. These tests were performed at a

significance level of 0.1%, 1%, and 5%. The results, shown in Table 22, indicate that a large

percentage of design points where the null hypothesis was rejected, indicating that the data

did not come from a normal distribution.

It should be obvious that distributions other than normal could also have been tested.

Rather, these results are intended to show that, in general, parametric distributions lack

flexibility. Even looking at the most optimistic interpretation of this portion of the experiment,

about 20% of the design space cannot be treated as Gaussian even if the remaining portion

can be.

Table 22: Tests for normality of design points in Distributed-MASS design space

Test Percent

Non-Normal

(𝑝 = 0.001)

Percent

Non-Normal

(𝑝 = 0.01)

Percent

Non-Normal

(𝑝 = 0.05)

Jarque-Bera 16.13% 29.01% 46.06%

Lilliefors 23.07% 35.34% 51.62%

Anderson-Darling 28.09% 40.97% 54.17%

Chi-Square Goodness-of-Fit 13.81% 29.01% 44.98%

The histogram, kernel density estimate, and the estimate assuming a normal distribution

is shown in Figure 73. It is clear that assuming a normal distribution results in a poor

qualitative fit of the data. Although there are other parametric distributions which might

have provided for a better fit than the normal distribution, there is little a priori justification

for any particular distribution for a given design point. This figure show that the kernel
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density estimate qualitatively captures the shape of the distribution and provides a good

estimate of the underlying distribution.
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Figure 73: Two design point distributions from Distributed Multi-Agent Surveillance

Simulation exhibiting non-normal distributions including kernel density estimates and

normal distribution estimates

Conclusion: The results show that nonparametric approaches are more appropriate when

maximum flexibility is needed or trying to model distributions that are constrained. HYP4

is substantiated and is not falsified.

8.4 Experiment D: Evaluating the Methodology Performance

Research Question for Experiment D:

• (RQ3) What is the appropriate methodology for engineering complex systems?

The goal for Experiment D is to test the overall methodology under the umbrella of

RQ3, which is the research question that drove the development of the methodology. The
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natural hypothesis for this experiment is that the methodology does what it was intended

to do: identify design points that are candidates of emergent behavior.

Hypothesis 5 (HYP5): The proposed methodology is capable of identifying conditions

for candidate emergent behavior in a complex system model.

This experiment results will be shown and discussed in the Case Study (Chapter 9).

Conclusion: The results show that the proposed methodology is capable of identifying a

small handful of candidate points that correspond to critical transitions in system behavior

and are interesting candidates of emergent behavior.
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CHAPTER IX

CASE STUDY: IMPLEMENTING SEED METHODOLOGY

Chapter Road Map: The goal of this chapter is to demonstrate the methodology developed

in this thesis toward an engineering design problem.

In this chapter, the design space for the Distributed Multi-Agent Surveillance Simulation,

initially described in Chapter 6.3, will be explored using the SEED methodology.

9.1 SEED Methodology – Phase 1: Data Collection
9.1.1 Selection of Design Variables and Ranges

To make the investigation tractable, the design space will be limited to just four design

variables. Like the initial design space exploration developed in Chapter 6, the number of

agents and the communication range will be examined. These two design variables represent

one of the most fundamental trade studies to be addressed when designing a multi-agent

system: the inherent tradeoff between the number of agents and the individual capabilities

of each agent. These design variables help to answer the question whether it is better to

have a large number of less-capable agents or a smaller number of more-capable agents.

In this case study, the communication range is varied from 10-50 units. Since the

environment is assumed to be a 100× 100 unit square, the upper end of the communication

range allows a single agent to cover almost all of the environment (i.e., a circle of 100

diameter inscribed in a square with an edge length of 100). This is kept as the upper limit

since a defining characteristic of distributed multi-agent systems with cooperative behavior is

that an individual agent is not capable of accomplishing the system task individually [164].

As in the earlier investigation, the each agent’s detection range is assumed to be half of the

communication range. This is done to help reduce the dimensionality of the design problem

by making the communication range a surrogate for the entire sensor suite capability. This
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enables consideration of subsystem capabilities at the system level with a fidelity that is

more appropriate for conceptual design.

It is difficult to define the required number of agents to constitute a swarm since the

number would be highly dependent on the application and the coordination mechanisms

used. Sahin [221] argues that 10-20 agents is a sufficient number to constitute a swarm. The

Office of Naval Research LOCUST project envisions 30 UAVs in a swarm [249]. Similarly, the

Naval Postgraduate School’s Advanced Robotic Systems Engineering Laboratory (ARSENL)

swarm is envisaged with up to 50 UAVs [89]. For this case study, the number of agents is

varied from 6 to 26. The upper end of this range is representative of the size of problems of

interest for multi-UAV problems. From a practical point of view, this number cannot be

made arbitrarily large due to the computational burden placed on the simulation for large

number of agents. Once the system is physically implemented, the agents can take advantage

of the reduced computational requirements made possible by the distributed architecture;

however, our simulation of this system still requires the simulation of each agent and the

resulting network which requires more computational resources as the system grows in size.

Aksaray, in her investigation of the multi-UAV persistent surveillance problem, found

that the agent’s velocity and communication radius were two of the most important variables

determining the system performance [1, 2]. Like the communication range, the maximum

velocity is a measure of the capability of the agent’s capability and performance. While the

communication range is a measure of the agent’s sensor capability, the maximum velocity is a

measure of the performance of the propulsion subsystem and airframe aerodynamics. Again,

these variables serve as surrogates for capturing the various trades between subdisciplines

during the design process. In Aksaray’s investigation, the targets to be tracked were a fixed

number of stationary waypoints. In the Distributed-MASS problem, the targets are mobile

with their own maximum velocity. In order to reduce the dimensionality of the problem,

instead of considering the maximum velocities of the agents and targets independently, these

two quantities will be linked together using a new variable called the Agent-Target Velocity

Factor. The baseline velocity for the agents and targets is set to 1 and is modified by the

Agent-Target Velocity Factor. The mapping between Agent-Target Velocity Ratio and the
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settings in the simulation for the target and agent maximum velocities are shown below in

equations 28 and 29, respectively.

Target 𝑉𝑚𝑎𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + |Agent Target Velocity Factor| if Agent Target Velocity Factor < 0

1 if Agent Target Velocity Factor > 0
(28)

Agent 𝑉𝑚𝑎𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if Agent Target Velocity Factor < 0

1 + |Agent Target Velocity Factor| if Agent Target Velocity Factor > 0
(29)

In addition to reducing the dimensionality of the problem, this mapping also captures

the more salient aspect of the problem: the relative velocity between the agents and the

targets. This approach is similar to those taken in predator-prey simulations [3], where the

relative velocity is one of the most important factors for determining the outcome of the

simulation. However, unlike the predator-prey model where the predator has to physically

intercept the prey, agents in the Distributed-MASS problem are able to track the targets

within a limited distance. This design variable enables the investigation of performance

requirements: how fast must an individual agent be in order for the system to be effective?

Recalling the motivation of distributed multi-agent systems, the goal is cooperative behavior;

therefore, it will be interesting to investigate if the information sharing between connected

agents results in cooperative behavior where individual agent velocity becomes less relevant

because agents are able to hand-off tracking duties to other nearby agents. In this case

study, the Agent-Target Velocity Factor is varied from -1 to 1. When the Agent-Target

Velocity Factor is -1, the target is twice as fast as the agent; when the Agent-Target Velocity

Factor is equal to 1, the agent is twice as fast as the target. The relative velocity between

the agent and target varies linearly with the Agent-Target Velocity Factor variable between

these two extremes.

Finally, the fourth design variable will be the number of targets to be tracked in the

environment. It should be clear that the number of targets is not a design variable in the

211



same sense as the communication range or number of agents. However, it is introduced into

this problem in order to investigate the robustness of the multi-agent system. As system

designers, we are not able to anticipate how many targets may exist in the environment;

however, we certainly must be able to demonstrate that our system is capable of handling a

wide range in number of targets with potentially more targets than agents to track them.

The number of targets is varied from 4 to 14.

In summary, the design variables explored in this case study and their ranges are shown

in Table 23.

Table 23: Design space exploration variables

Design Variable Min Value Max Value

Number of Agents 6 26

Communication Range 10 50

Detection Range* 5 25

Number of Targets 4 14

Agent-Target Velocity Factor -1 1
* assumed to be 1/2 of the Communication Range

9.1.2 Selection of Response Variables

The data analysis and exploration phases of the SEED methodology are applied on all

responses of interest. The response variables of interest should be measures that are both

important measures of system performance and are likely to be directly influenced by

emergent behavior. As an example using the Distributed-MASS problem, the time to locate

the first target may be of interest to the system analyst; however, it is unlikely that this

metric would be strongly indicative of emergent behavior. This metric would be more likely

to be influenced by individual agent performance and not the cooperative behavior of the

system. Therefore, performing the SEED methodology using this as the measure of system

effectiveness would not yield interesting results. For this case study, the measure of system

effectiveness will be the Base Target Track Count Percentage (BTTCP). This measure best

captures the overall system effectiveness.
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9.1.3 Design Point Selection

The design point selection step involves the choice of sampling design. As described in the

methodology chapter, Design of Experiments (DOE) techniques can be used to thoroughly

sample the design space. For this case study, a full factorial design was selected. Although

Experiment A showed that a space-filling design is capable of generating results comparable

to the full-factorial design if the spacing is relatively uniform, a full factorial design provides

a more reliable approach at the expense of more design points to evaluate. For this case

study, a full-factorial design at six levels per variable was created. The resulting design is

shown in Figure 74.
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Figure 74: Full factorial design
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Only six levels per variable were chosen for the initial evaluation due to limited computa-

tional resources. Due to the local neighborhood search of this methodology, neither an overly

fine nor an overly coarse search grid is desirable. A grid that is too coarse will result in a

situation where all neighboring points have a large divergence measure and it will be difficult

to distinguish behaviors which are a result of critical transitions and those that are simply

due to large changes in the underlying conditions. On the other hand, a search grid that is

too fine also has a number of drawbacks. A very fine grid will result in a large number of

design points which increase the number of required evaluations and computational burden

of the methodology. Both the numerator and denominator in the Design Space Divergence

measure will tend to approach zero as the grid becomes finer. However, since the numerator

is estimated from a statistical sample, it is likely to be dominated by sampling noise for

arbitrarily close design points.

The SEED methodology includes a high-level iteration to allow for refinement of the

design space. The results from this exploration can be used to refine the search space using

a smaller range to improve the resolution and fine tune the design variables.

9.1.4 Design Point Replication Sampling

The number of samples at each design point must be selected. The number of samples

should be sufficient to adequately characterize the underlying probability distribution of

the response of interest. As discussed in the methodology chapter, either a fixed number of

samples or an adaptive sampling approach can be used. For simplicity and due to limited

computational resources, a fixed number of samples were used in this case study. It is

important to test whether the selected number of samples is sufficient to characterize the

probability distribution for the purposes of this methodology. Using a representative design

point, a large number of samples were carried out in order to test the convergence of the

distribution. The convergence of the statistics of the representative design point are shown

in Figure 75. The mean, standard deviation, and kurtosis converge quickly. The sample

skewness does not converge as nicely; however, the magnitude of the sampling noise seems

to be fairly constant after about 150 samples. This figure indicates that 150 samples is
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adequate to get an accurate estimate of the distribution statistics.
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Figure 75: Probability distribution statistics convergence

Since the methodology is based on the use of statistical distance measures, it is more

appropriate to test the convergence using a statistical distance. In Figure 76, the convergence

of the KL2 statistical distance between the sampled distribution and a reference distribution

based on 700 samples is shown. This figure shows that 150 samples is sufficient and that

most of the variation due to sampling is eliminated with that many samples.
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Figure 76: Convergence of the statistical distance with the number of samples

Of course, the number of samples to adequately characterize a distribution will be heavily

dependent on the system under investigation. Therefore, using an adaptive scheme is a

straight forward way of improving this methodology.

9.1.5 Evaluate Simulation and Build Database of Results

The full factorial design resulted in 1296 design points. Summary statistics for this design

are shown in Table 24. Using 150 replications at each design point, there were 194,000

runs of the simulation. The Distributed-MASS simulation was executed at the required

design points for the specified number of replications. This large number of runs was very

computationally expensive requiring a cumulative run-time of almost 2 years! The ability

to use parallel processing made this task feasible; however, it is clear that this is a very

computationally intensive process. The results from all of the runs were compiled for further

processing during the data analysis phase of the SEED methodology.
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Table 24: Full factorial design summary

Summary Statistic Value

Number of design points 1296

Number of design point replications 150

Total number of simulation runs 194,400

Average simulation run time (seconds) 322.7

Total simulation run time (days) 726.1

9.2 Characterization of the System Measures

The system level metrics of interest, Base Target Track Count Percentage (BTTCP) and

Network Efficiency, were captured for each run of the simulation. The distributions for

these metrics as a function of the design variables are shown in Figures 77 and 78 for

BTTCP and Network Efficiency, respectively. These plots can be interpreted as showing the

global sensitivity of the response at each setting of the design variable. The most obvious

observation is that the system exhibits a wide range of possible performance across almost

the entire range of variable settings. Looking at the BTTCP metric, the general trends

(i.e., mean response) of increasing performance with increasing number of agents, increasing

communication range, decreasing number of targets, and increased agent velocity, make

intuitive sense. At first glance, it is surprising that the number of targets and the velocity

factor did not have a bigger impact on the system performance. However, this can be

explained by examining the network efficiency as a function of these variables. Although

the system performance does improve for fewer number of targets and faster agents, the

network efficiency actually degrades. Since the agents give priority to following agents rather

than maintaining network connectivity, the larger number of targets will tend to cause lower

connectivity. The higher agent velocity tends to break communication links as the agents

generally spend less time within the communication range of other nearby agents.
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Figure 77: Box plots showing the variation of the mean of the Base Target Track Count

Percentage (BTTCP) versus design variable parameters
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Figure 78: Box plots showing the variation of the mean of the Network Efficiency versus

design variable parameters

One of the foundational assumptions in this thesis is that the statistical distribution—and

not just the mean—is important when characterizing the behavior of the system. Although

using a single statistic like standard deviation is not likely to capture all important features

in a nonparametric distribution, it does provide a straightforward way of understanding

how the spread of the distribution changes as a function of the design variables. The

standard deviation of BTTCP and of the Network Efficiency is shown in Figure 79 and 80,
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respectively. Typically, smaller standard deviations are desirable since they are indicative of

robust designs that are less affected by inherent stochasticity in the problem. However, one

region of interest that becomes clear when examining these figures is the dramatic change in

the standard deviation as a function of the communication range. It is clear that an 𝑅𝐶𝑂𝑀𝑀

value between 18-26 not only produced significant changes to the mean of both BTTCP and

Network Efficiency, but also significant changes to the standard deviation. These types of

shifts are reminiscent of the concept of “edge of chaos” discussed earlier, where there exists

a critical transition between types of behaviors and is a possible indicator for emergent

behavior.
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Figure 79: Box plots showing the variation of the standard deviation of Base Target Track

Count Percentage (BTTCP) versus design variable parameters
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Figure 80: Box plots showing the variation of the standard deviation of Network Efficiency

versus design variable parameters

This visualization does provide insight into the behavior of the system and general

trends; however, since the data is projected onto a single dimension, higher-dimensional

structure is lost and makes characterization and parameter tuning difficult. The next step

toward improved visualization of the landscape of the system response is to use contour

plots. Contour plots are useful in visualizing the structure of the data projected onto a

two-dimensional plane. In this case study, there are four design variables which results in

6 combinations of pairs of variables. The downside of using contour plots is that they are

still a projection onto a lower-dimension, which means that higher-dimensional structure is

lost. Additionally, the number of combinations of pairs of variables grows quickly; in a 10

dimensional problem, there are 45 combinations.

The contour plots for every pair of variables for the variation of the mean BTTCP and

network efficiency in Figure 81 and Figure 82, respectively. These contour plots show the

communication range and number of agents dominate the structure of the mean response.

Both BTTCP and network efficiency often show the same trends in the mean response;

however, as was seen earlier, a smaller number of targets and increased agent velocity tends

to improve BTTCP but simultaneously degrades the network efficiency.
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Figure 81: Contour plots showing the variation of the mean of Base Target Track Count

Percentage (BTTCP) for design variable pairs
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Figure 82: Contour plots showing the variation of the mean of network efficiency for design

variable pairs

Once again, the importance of the entire probability distribution is emphasized here.

Understanding how the design variables influences the standard deviation of the response

variables is an important part of understanding the system behavior. The variation of the

standard deviation of BTTCP and network efficiency is shown in Figure 83 and Figure

84, respectively. It is interesting to see that the structure of the standard deviation is

markedly different from the trends seen in the mean response. The standard deviation has

local maxima that may be indicative of shifts in behavior and critical transitions. While

the number of targets and the velocity factor did not affect the mean response as much as
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might be expected, these variables have a significant effect on the standard deviation of the

responses.
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Figure 83: Contour plots showing the variation of the standard deviation of Base Target

Track Count Percentage (BTTCP) for design variable pairs
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Figure 84: Contour plots showing the variation of the standard deviation of network

efficiency for design variable pairs

9.3 SEED Methodology – Phase 2: Data Analysis

The data analysis phase as implemented in the SEED methodology is largely an automated

process. Once the various alternatives for each step in the process are selected for appropri-

ateness for the problem, the data analysis phase, as implemented in Chapter 7.3, can proceed.

Only several of the steps in the data analysis phase will require any further discussion for

this case study.
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9.3.1 Select Neighbor Distance Measure and Perform Neighbor Search

One of the decisions to make before performing the neighbor search is to select the distance

measure to be used. As discussed in the methodology chapter, two of the most likely

options are the Euclidean (𝐿2) and Chebyshev (𝐿∞) distances. The effect of this choice will

determine which nearby points are selected as neighbors. As discussed earlier, the Chebyshev

distance will tend to capture “corner” points. This results in neighbors which have multiple

variables changing simultaneously and therefore will include interaction effects between

variables. On the other hand, the Euclidean measure will not capture the corner points and

each neighbor will tend to be along a single dimension only. This has the effect of measuring

one-at-a-time effects and neglects interactions. Since emergent behavior may be brought

about by simultaneous changes of variables, it is suggested that the Chebyshev distance be

used for selecting neighbors. The downside of selecting Chebyshev over Euclidean is the large

increase in the number of neighbors selected. As the dimensionality of the problem increases,

the number of neighbors will grow very quickly. As a demonstration, the total number of

neighbors in the case study using the Euclidean and Chebyshev distances is shown in Table

25. Even in only 4 dimensions, allowing corner points to be selected as neighbors resulting

in nearly an 8-fold increase in the total number of points to evaluate. This evaluation is

relatively inexpensive; however, it is clear that for large dimensional problems, it is likely to

become infeasible. Switching to using a Euclidean distance measure for neighbor selection

will likely be an acceptable solution—allowing the search of a higher dimensional space while

higher-order interaction effects (using the Chebyshev distance, all higher-order interactions

would be identical in distance in a regular grid).

Table 25: Number of total neighbors for 4D full factorial design

Distance Measure Number of Total Neighbors

Euclidean 8,640

Chebyshev 64,240

In addition to selecting the distance measure, a corresponding search distance must be
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defined. Any neighbor within that distance according to the distance measure selected will

be considered a neighbor. In this case study, a full factorial design is being used with an

equal number of levels per dimension. This creates a regular grid where all neighbors are

equally spaced from each other. The use of 6 levels per variable results in a normalized

distance of 0.2 along each dimension. Using a search distance of 0.2 with a Chebyshev

measure results in the adjacent design points along each dimension plus all of the corner

points being selected.

9.3.2 Density Estimation

The density estimation was performed using a univariate kernel method. As discussed

in Chapter 7.2.8.5, once a kernel function provides the required amount of smoothness,

the exact choice of kernel function is not critical. Therefore, a Gaussian kernel function

was used due to its ubiquity in kernel estimation algorithms. The bandwidth parameter

was automatically selected using Equation 20. As demonstrated in Experiment C, this

approach produced good estimates of the sampled data.

9.3.3 Evaluate Design Space Divergence

Evaluating the Design Space Divergence requires the selection of two options: the statistical

distance measure being used and the design space distance measure. The numerator of the

DSD measure uses the selected statistical distance measure. Experiment B demonstrated

that the [symmetric] Kullback-Leibler divergence (KL2) provides good results for problem.

Since the sampling design is relatively coarse, the KL2 divergence is appropriate for distri-

butions which are likely to be very different due to the larger distances between neighboring

design points. The denominator of the DSD measure is the design space distance between

the pair of neighbors. In this case study, the Euclidean distance is used to define the distance

between two points. Even though the Chebyshev distance was used to select the points,

the distance used to evaluate the DSD measure can be independent of the measure used

to select the points. The Euclidean distance was selected due to its ubiquity and general

acceptance as a distance measure.
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9.4 SEED Methodology – Phase 3: Data Exploration

The data exploration phase of the SEED methodology can be carried out on the data

generated from Phase 2. That phase generated a very large data set (i.e., 64,240 values) to

explore. Since this is a large data set, a combination of data mining techniques and visual

analytics will be used to identify trends in the data.

It is clear from Figure 77 that a communication range value of 10 results in poor perfor-

mance over the entire design space; therefore, any design region including this communication

range value are filtered so that they are not included in the results. Since it is obvious that

increasing the communication range above a value of 10, the filtering will help to focus on

other portions of the design space that may yield interesting results.

The design space divergence measure is evaluated according to the methodology presented

in this thesis. The 2D contour plots of the design space divergence measure for every pairwise

combination of design variables is shown in Figure 85. Since the contour plots are 2D

projections from the higher-dimensional space, an aggregating function is used in order to

collapse the remaining dimensions. In Figure 85, the design space divergence measure is

averaged with respect to the remaining dimensions for each plot.
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Figure 85: Design space divergence measure for Base Target Track Count Percentage

(BTTCP) system metric of the Distributed Multi-Agent Surveillance Simulation

This collapsing of higher dimensional data onto lower-dimensional projections in order to

visual the results shows one of the major flaws in the visual analytics approach to locating

design points of interest. In order to assist the analyst, techniques are used to highlight

high-dimensional structure that may be lost due to projections. Clustering techniques can

help to identify regions of interest instead of relying on the analyst’s judgment. This will also

help improve the traceability of the process and provides a handful of candidate solutions

for further investigation. For this case study, k-means clustering was used to help identify

regions with high design space divergence measures. Silhouette plots are used to identify
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how many clusters should be used in the analysis and the goodness of the results. Figure 86

(left) shows the variation of the mean silhouette value as a function of the number of clusters.

This figure shows that 7 clusters results in the highest mean value and will therefore be the

number of clusters selected in this analysis. The silhouette plot on the right side of 86 shows

the resulting silhouette plot for 7 clusters. These figures show that there is a moderate

amount of structure captured using these clusters.
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Figure 86: (Left) Mean of silhouette values for various number of clusters; (Right) silhouette

plot for 7 clusters (maximum value from plot on left)

Figure 87 shows one resulting cluster from the preceding cluster analysis. The nearest

point to the cluster centroid is shown as a red circle; this point will be used as the prototypical

solution for the cluster.

229



5 10 15 20 25
10

20

30

40

50

Number of Agents

R
C

om
m

5 10 15 20 25

4

6

8

10

12

14

Number of Agents

N
um

be
r 

of
 T

ar
ge

ts

5 10 15 20 25

−1.0

−0.5

0.0

0.5

1.0

Number of Agents

V
el

oc
ity

 F
ac

to
r

20 40

4

6

8

10

12

14

R
Comm

N
um

be
r 

of
 T

ar
ge

ts

20 40

−1.0

−0.5

0.0

0.5

1.0

R
Comm

V
el

oc
ity

 F
ac

to
r

5 10 15

−1.0

−0.5

0.0

0.5

1.0

Number of Targets

V
el

oc
ity

 F
ac

to
r

Figure 87: A single cluster of high design space divergence values with nearest point to

cluster centroid shown as red circle

Figure 88 shows all of the 7 clusters selected from the cluster analysis.
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Figure 88: Cluster centroidal points

The clusters in Figure 88 are shown overlaid the design space divergence measure;

however, the measure is averaged over the other dimensions. Because of this averaging, the

visual identification of some of the clusters is difficult to accomplish if the cluster is a local

effect that varies significantly from the average. In order to illustrate this issue, cluster #2

in Figure 88 is difficult to justify based on the contour plots: it is not clear that cluster

#2 represents a location with one of the highest design space divergence measures. To

demonstrate that this is due to high-dimensional structure projected onto a lower dimensional

space, instead of using the averaged contour plots, the contours are taken at a slices through

the cluster location. As shown in Figure 89, the distribution of the design space divergence
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measure is significantly different from the averaged distribution shown in Figure 88. It

becomes much more clear how the local structure represents a location of high design space

divergence.
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Figure 89: Design space divergence measure contour plot taken at slices through cluster

#2

Although all of the clusters are potential emergent design points, this case study will

focus on two of the clusters identified above as candidates for emergence. Clusters #1 and

#2 are selected for further investigation. These two candidates are far away from each

other in the design space so they represent two distinct solutions. They also correspond to

the two types of interesting solutions initially identified in the chapter on the Distributed
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Multi-Agent Surveillance System (Chapter 6.5.3). Cluster #1 will be labeled as Scenario A,

a solution using a large number of agents. Cluster #2 will be labeled as Scenario B in which

a small number of agents are used. Both scenarios will be investigated in depth below.

9.4.0.1 Scenario A

Scenario A represents a critical transition in system performance using a large number

of agents. In this scenario, the number of agents is increased from 22 to 26 and the

communication range is increased from 18 to 26. The design point values at this transition

are shown in Table 26.

Table 26: Scenario A design space variables

Design Variable Point 1 Point 2

Number of Agents 22 26

Communication Range 18 26

Detection Range* 9 13

Number of Targets 12 12

Agent-Target Velocity Factor 1 1
* assumed to be 1/2 of the Communication Range

Figure 90 shows the variation of the system performance as a function of the design

variables including the design points corresponding to Scenario A. The green and blue dots

correspond to the design points in this scenario and illustrate the significant change in

system performance between the two points.
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Figure 90: Box plots showing the variation of the mean of the Base Target Track Count

Percentage (BTTCP) versus design variable parameters including design points at Scenario

A

Figure 91 shows the contour plots of the system performance as a function of the design

variables including the design points corresponding to Scenario A. The green and blue dots

correspond to the design points in this scenario and illustrate the significant change in

system performance between the two points. The use of contour plots helps to illustrate how

this scenario is related to rapidly changing regions in the design space (i.e., large gradients).
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Figure 91: Contour plots showing the variation of the mean of Base Target Track Count

Percentage (BTTCP) for design variable pairs including design points at Scenario A

Figure 92 illustrates the variation of the standard deviation of the system performance.

Since the design space divergence measure considers not only shifts in the mean but also

changes in the spread of the underlying probability distribution, it is interesting to see that

this identified scenario also represents a location where there is a significant shift in variance

from one design point to the next. It is clear that the number of agents and communication

range dominate the response; however, by examining the variation of the spread of the

probability distribution as a function of the design variables. It can be seen how the values

for the other design variables (i.e., number of targets and velocity factor) are selected due to
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their influence on increasing the change in the variance from one design point to the next.

Using just the mean response, the effect of the number of targets is very small; in fact, it

is tempting to say that the number of targets is an insignificant variable. However, the

analysis shows that the number of targets is important in determining the variance of the

system performance. It can be seen that the scenario involving 12 targets represents a local

maximum in the standard deviation of the system response.
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Figure 92: Contour plots showing the variation of the standard deviation of Base Target

Track Count Percentage (BTTCP) for design variable pairs including design points at

Scenario A

While the above figures are useful in visualizing the design space, it is useful to see the
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underlying probability distributions for this scenario. The probability distribution for the

Base Target Track Count Percentage (BTTCP) measure for both design points is shown

in Figure 93. This figure makes clear the significant shift in system performance from one

design point to the next: the change in design variables corresponds to over a doubling of

the system performance measure.
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Figure 93: Probability distributions for design points at Scenario A

To further substantiate that this design point corresponds to an emergent design, the

corresponding network degree over the course of the simulation for both design points in

this scenario are shown in Figure 94. Each line in the figure represents the average of 150

replications. Moncion et al. [190, p. 5] argue that the mean degree of the network graph

should increase as a complex system organizes. The degree of a node is the number of

connected edges; therefore, the average network degree is a measure of the average number

of links for all of the nodes. This analysis shows that there is a significant difference in the

system connectivity, with Point 2 having a steady-state degree of roughly 6.6 while Point 1
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has a steady-state degree of approximately 3.1. The oscillations in the network degree is due

to the agents returning to base to refuel. It is interesting to note that these oscillations die

out for Design Point 2 while they continue with only very slight damping in Design Point

1. This demonstrates that the system undergoes a significant transition from disorganized

behavior to organized behavior in which it takes advantage of the mechanisms built into the

system to produce a system which goes beyond the capabilities of any single agent to create

an effective, coherent system.
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Figure 94: Average network degree vs. time for Scenario A design points

9.4.0.2 Scenario B

Scenario B represents a critical transition in system performance using a small number of

agents. In this scenario, the number of agents is increased from 6 to 10 and the communication

range is increased from 42 to 50. The design point values at this transition are shown in

Table 27.
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Table 27: Scenario A design space variables

Design Variable Point 1 Point 2

Number of Agents 6 10

Communication Range 42 50

Detection Range* 21 25

Number of Targets 6 6

Agent-Target Velocity Factor 1 1
* assumed to be 1/2 of the Communication Range

Figure 95 shows the variation of the system performance as a function of the design

variables including the design points corresponding to Scenario A. The green and blue dots

correspond to the design points in this scenario and illustrate the significant change in

system performance between the two points.
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Figure 95: Box plots showing the variation of the mean of the Base Target Track Count

Percentage (BTTCP) versus design variable parameters including design points at Scenario

B

Figure 96 shows the contour plots of the system performance as a function of the design

variables including the design points corresponding to Scenario B. The green and blue dots

correspond to the design points in this scenario and illustrate the significant change in

system performance between the two points. The use of contour plots helps to illustrate how

239



this scenario is related to rapidly changing regions in the design space (i.e., large gradients).
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Figure 96: Contour plots showing the variation of the mean of Base Target Track Count

Percentage (BTTCP) for design variable pairs including design points at Scenario B

Figure 97 illustrates the variation of the standard deviation of the system performance.

Since the design space divergence measure considers not only shifts in the mean but also

changes in the spread of the underlying probability distribution, it is interesting to see that

this identified scenario also represents a location where there is a significant shift in variance

from one design point to the next. It is clear that the number of agents and communication

range dominate the response; however, by examining the variation of the spread of the

probability distribution as a function of the design variables. It can be seen how the values
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for the other design variables (i.e., number of targets and velocity factor) are selected due to

their influence on increasing the change in the variance from one design point to the next.

Using just the mean response, the effect of the number of targets is very small; in fact, it

is tempting to say that the number of targets is an insignificant variable. However, the

analysis shows that the number of targets is important in determining the variance of the

system performance. It can be seen that the scenario involving 6 targets represents a local

maximum in the standard deviation of the system response.
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Figure 97: Contour plots showing the variation of the standard deviation of Base Target

Track Count Percentage (BTTCP) for design variable pairs including design points at

Scenario B
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While the above figures are useful in visualizing the design space, it is useful to see the

underlying probability distributions for this scenario. The probability distribution for the

Base Target Track Count Percentage (BTTCP) measure for both design points is shown

in Figure 98. This figure makes clear the significant shift in system performance from one

design point to the next including both shifts in mean and variance.
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CHAPTER X

SUMMARY AND CONCLUSIONS

10.1 Summary

The objective for this research was to develop a new methodology which is capable of

systematically exploring the design space of a distributed multi-agent system and identifying

parameters that may yield emergent behavior. A new measure for emergence, Design Space

Divergence, was proposed as part of this research. It was demonstrated that the new

measure of emergence corresponds to regions in the design space where the probability

distributions of the system effectiveness measures are rapidly changing as a function of the

system parameters. This measure of emergence allows us to identify critical transitions in

behavior. Identifying critical regions is potentially more useful because it allows us to see

situations where our system can just as easily change behavior towards a less effective state.

This gives the system designer the ability to tailor the use of emergence for various purposes.

Keeping the system near the critical transition region will make the system less robust;

however, it may make it more adaptable and able to quickly adjust to changing conditions.

Research Objective: The objective of this research is to develop a method for identifying

emergent behavior, both beneficial and detrimental, in complex systems.

Research Goal: The proposed methodology should be able to: 1) identify design points

(i.e., parameter settings) which are candidates for emergent behavior, 2) present the candidate

points in a manner which allows the designer to characterize the design space and make

proper inferences in coming up with strategies to exploit or avoid behavior. The success of

this research will be judged based on the ability of the proposed approach to rigorously and

robustly identify the design space parameters which lead to emergent effects.

A case study using a distributed multi-agent system was used to test the methodology
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and emergence measure. The results from this case study show that the SEED methodology

presented in this research has successfully completed the research goal. The methodology

did provide design points which correspond to interesting and potentially emergent designs.

Furthermore, the methodology is able to provide views about the behavior of the system

across the design space which gives the designer confidence that the results are not spurious

results but rather due to a fundamental underlying behavior.

10.1.1 Summary of Research Questions

During the development of the emergence measure and the SEED methodology, a number

of research questions were examined. The first research question (RQ1) examined the

concept of emergence in order to guide the process of developing a definition that is useful

for engineering design but also consistent with the literature and with our understanding of

distributed multi-agent and other complex systems.

• (RQ1): What is emergence?

– (RQ1.1): What are the characteristics of emergence and what makes it difficult

to understand and predict?

– (RQ1.2): How can emergence be defined?

– (RQ1.3): How can emergence be detected or measured?

– (RQ1.4): How can emergence be understood in the context of engineering?

A number of definitions of emergence were found in literature and were considered for their

suitability in describing emergent collective behavior in a distributed multi-agent system.

Since an existing definition did not capture emergence in objective and actionable way, a

new definition was proposed that allowed it to be used for engineering. Various techniques

for detecting or measuring emergence were reviewed for their applicability to the distributed

multi-agent problem. Divergence-based approaches were deemed to be most appropriate and

general enough to be applied to a range of multi-agent systems. In fact, the probabilistic

nature of the divergence-based approach makes it applicable to most stochastic problems.
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Finally, a new emergence measure—Design Space Divergence—was proposed as a way to

measure emergence through design space exploration.

The second research question (RQ2) examined ways of analyzing and designing complex

systems. The purpose of this research question was to understand the underlying problem to

make sure that the proposed solution captures the important features of complex behavior

and emergence.

• (RQ2): How do we analyze and design complex systems?

– (RQ2.1): What characterizes a complex system?

– (RQ2.2): What causes a system to be complex?

– (RQ2.3): How can the complexity of a system be measured?

– (RQ2.4): How should a complex system be analyzed?

The subject of complexity was explored in order to gain insight into the distributed multi-

agent problem. By understanding the mechanisms that give rise to complexity, they can

be harnessed to generate “good” complexity—complexity that leads to emergent behaviors

that helps to create an effective system. Although complexity and emergence are often

related, a review of the literature showed that most of the measures of complexity were

not appropriate for measuring emergence for the multi-agent distributed problem. Many

complexity measures were focused on measures of organization, complexity of description,

or amount of information processing. However, all of these approaches are difficult to justify

as effective measures when designing systems. The final part of this research question

sought to answer what the right approach is for analyzing complex systems. Various design

methodologies and approaches were reviewed to help understand how complexity helps shape

the design process. It became clear that complexity makes design harder by obfuscating

how inputs lead to certain outputs. This necessitates a rigorous, traceable, and objective

methodology for systematically exploring the input space and then using insights from the

results to help guide future iterations of the design process.

Finally, the main research question (RQ3) drove the development of the SEED method-

ology. The experiments that were performed in this research were done to answer portions
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of this research question. The results from the experiments helped to select from the various

alternatives available when developing the methodology. Not only did they help to make

decisions, they also illustrated the consequences for making the incorrect selection when

developing and using the methodology.

• (RQ3): What is the appropriate methodology for engineering complex systems?

– (RQ3.1): What are the required features of a design methodology for emergence?

– (RQ3.2): How can the design space of a complex system be systematically

explored in order to identify emergent behavior?

∗ (RQ3.2.1): How should the design points be distributed in the design space?

– (RQ3.3): What is the appropriate way to perform design space exploration on a

complex, stochastic space?

– (RQ3.4): What is the appropriate way to represent and evaluate probability

distributions?

∗ (RQ3.4.1): Should probability distributions be modeled as parametric or

non-parametric distributions?

∗ (RQ3.4.2): What is the appropriate statistical distance measure to use

when evaluating probability distribution similarity?

– (RQ3.5): How can emergent behavior be identified in higher-dimensional sys-

tems?

∗ (RQ3.5.1): How can the design space be visualized (especially in high-

dimensional spaces) in order to facilitate emergent behavior identification

and system characterization?

A number of these research questions lead to hypotheses and corresponding experiments

to these them. These hypotheses and experiments will be reviewed in the next section. In

summary, all of the research questions that were introduced at the beginning of the thesis

have been addressed either through a literature review or argumentation or through an

experiment.
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10.2 Summary of Hypotheses and Experiments

The hypotheses developed in the course of this research are shown below. Although a number

of hypotheses were either partially or completely falsified, all served a useful purpose. The

hypotheses related to developing the methodology helped to identify whether there is a

consequence or not for making the incorrect selection within the methodology. The two

most important hypotheses were HYP1 and HYP5, which tested the proposed emergence

measure and overall methodology, respectively. Both of these hypotheses were supported

through the experiments and case study.

10.2.1 Hypothesis 1

• Hypothesis 1 (HYP1): Assuming a desired range of system behavior has been

identified, large divergence measures of the distributions in the response variables

reflects possible emergent conditions near critical conditions while low divergence

measures reflect robust design points.

Hypothesis 1 represents one of the fundamental hypotheses of this research. This hy-

pothesis posits that the transition to emergent behavior can be identified by a high Design

Space Divergence measure. This hypothesis was tested through Experiment D (i.e., the

case study). The data exploration phase identified a number of points with high DSD

measures. Several of these points were investigated in depth in the case study. Scenario

A showed a marked transition in behavior between the corresponding neighboring points.

An investigation into the average network degree (which has been argued [190] that this

measure would increase as the system self-organizes) versus time for both of these points

show how there is a significant difference between the average network degree before versus

after the critical transition. This seems to be strong evidence of self-organizing, emergent

behavior in the system. Since this behavior also corresponded with a high DSD measure,

this supports Hypothesis 1.
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10.2.2 Hypothesis 2

• Hypothesis 2 (HYP2): If there is a similar sampling density, there will be no

significant difference in discriminability between sampling methods (i.e., both full

factorial and space filling designs will yield the same similar divergence measures).

Hypothesis 2 is used to help develop the SEED methodology. The methodology requires

a thorough sampling of the design space. However, since orthogonality is not required

for the evaluation of the Design Space Divergence measure, there is no strong a priori

justification for saying with certainty that one sampling method will yield better results

than the another. Since sampling density initially appears to be important, the hypothesis

is essentially a null hypothesis that there will be no significant difference in results between

the sampling methods given that the sampling density is similar. Experiment A was used

to test Hypothesis 2 by testing various sampling designs and number of points per design.

The results from this experiment showed that not only was sampling density important,

but having a regularly spaced design yielded much better results. This result partially

supported Hypothesis 2 but also demonstrated that sampling density was not sufficient

since uniformity was also required for good discriminability.

10.2.3 Hypothesis 3

• Hypothesis 3 (HYP3): There will be no qualitative difference in discriminability

between statistical distance measures.

Hypothesis 3 is also used as part of the development of the SEED methodology. An

important component of the methodology is the selection of the statistical distance measure

used. Although the analytical properties of each statistical distance could be used to gain

insight into how its use would affect the Design Space Divergence measure, it is also dependent

on the system being tested. Therefore, the more straightforward way to understand the

behavior of the statistical distance measures is through an experiment. Hypothesis 3 was

akin to a null hypothesis that stated there will be significant difference in discriminability

between the various measures. Hypothesis 3 was tested via Experiment B. The results
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from that experiment showed that demonstrated how the probability distribution affects

the statistical distance measure. This experiment was used to develop guidelines about

the nature of the underlying probability distribution and the more appropriate statistical

distance measure to use in that scenario. This experiment demonstrated that there was a

significant difference between the various statistical distance measures and therefore the

hypothesis is rejected. However, this result was not an issue since the goal was to help

develop the guidelines and the success of the methodology is not dependent on the support

or rejection of this hypothesis.

10.2.4 Hypothesis 4

• Hypothesis 4 (HYP4): In situations where probability distributions are constrained

or when a large degree of flexibility is needed, a nonparametric probability distribution

provides a better model for capturing probabilistic features.

Hypothesis 4 is also used to help develop the steps in the SEED methodology. Although

the methodology could be developed with either a parametric or nonparametric probability

distribution, I have argued that a nonparametric approach is more appropriate for complex

systems. By using the more general approach towards modeling probability distributions,

the methodology is more flexible and is better able to handle the variety of distributions that

might be seen when analyzing and designing engineered systems. However, the nonparametric

approach is not without costs—it requires more fine-tuning when performing the estimation

and the convergence rates are much slower compared to parametric estimation techniques.

This hypothesis is tested using Experiment C. This experiment investigated whether a

parametric approach is possible for the Distributed-MASS problem. The results showed

that a parametric approach was not possible and that the nonparametric approach provided

a better solution for density estimation using the approach laid out as part of the SEED

methodology. Therefore, Hypothesis 4 was supported.
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10.2.5 Hypothesis 5

• Hypothesis 5 (HYP5): The proposed methodology is capable of identifying condi-

tions for candidate emergent behavior in a complex system model.

Finally, Hypothesis 5 sought to test the overall SEED methodology and whether it was

capable of attaining the research goal of identifying candidates for emergent behavior within

the design space. This hypothesis is related to Hypothesis 1, which was primarily testing

whether the proposed Design Space Divergence measure corresponds with emergent behavior;

however, Hypothesis 5 takes this to the next step and is testing whether the proposed

methodology is capable of identifying regions in the design space with high Design Space

Divergence measures. Not falsifying Hypothesis 1 is a prerequisite for Hypothesis 5. This

hypothesis is tested using Experiment D. By carrying out the SEED methodology on the

Distributed-MASS problem, it was demonstrated that a number of candidate design points

exhibiting emergent behavior were identified. Therefore, the hypothesis was supported.

10.3 Contributions

Two significant contributions from this research are the a new emergence measure and the

SEED methodology. Both of these contributions have been successfully demonstrated on

the case study to show the value that they provide to a designer when studying distributed

multi-agent systems. Both of these contributions are solutions to the two main gaps that

were identified early within this dissertation. These two contributions have helped to close

the identified gaps.

Identified Gap 1: The design process for distributed multi-agent systems is ad hoc and

heavily based on designer intuition. The goal is to create a methodology for systematically

exploring the design space in order to make the design process more thorough and traceable.

Identified Gap 2: Few of the measures of emergence would be appropriate for use in a

design space exploration methodology. Divergence-measures have been applied to identify

emergence in time-series data but there exists a need to extend the approach to design space

exploration.
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The Distributed-MASS model was another contribution of this research. This model

expanded the multi-agent surveillance simulation developed by Aksaray [1] to create a

simulation that is more capable, flexible, and easier to use. Aksaray’s simulation was

completely refactored with new data structures that emphasize the agent-based nature

of the simulation. The Distributed-MASS simulation easily allows for parallel processing,

necessitated by the large amount of runs necessary needed to probabilistically characterize

the design space.

Most importantly, the SEED methodology provides the capability to generate new

insights into the distributed multi-agent problem. Exploratory analysis seeks to characterize

the problem space and identify potential solutions as starting points in the design process.

It has been demonstrated that the SEED methodology is capable of providing candidate

solutions which exhibit emergent behavior. More so, these design points are effective levers

[169], solutions that demonstrate ways of affecting change in the system behavior. These

design points help identify interesting regions of the design space and help in the refinement

of the parameter space as the design process progresses through a number of iterations.

In addition to identifying particular solutions, the SEED methodology also generates data

which can be used to characterize the design space and to gain confidence about how the

system behavior changes throughout the design space. This not only helps to reduce the risk

of re-work due to unforeseen behavior but also starts down the path of behavior assurance

and system certification.

10.4 Areas of Future Research

There are a few areas of future research that could be pursued to gain more insights into

the challenges and opportunities when designing distributed multi-agent systems. The first

area of additional research could continue the exploration of the multi-agent persistent

surveillance simulation via improvements to the simulation.
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10.4.1 Improvements to Distributed-MASS

For the purpose of this research, the Distributed-MASS simulation was purposefully kept

relatively simple in order to allow a thorough analysis and explanation of the system behavior.

However, further improvements will improve the fidelity of the simulation and to allow

explorations into additional behaviors enabled by new mechanisms for agent coordination

and adaptation.

To improve the simulation fidelity, a number of assumptions that were used during

the development can be replaced with more realistic models. In the Distributed-MASS

simulation, the agents were assumed to be point masses and were able to maneuver instanta-

neously throughout the 2D environment. A higher fidelity three-degree of freedom (3DOF)

flight dynamics model would allow for additional investigations into the maneuverability

requirements for the individual vehicles and how they affect the system effectiveness. The

3DOF flight dynamics model would require the addition of the third dimension (i.e., altitude).

Additional collision avoidance rules can be added to the simulation and to help deconflict

multiple UAVs in close proximity. Communications and sensor behavior was assumed to be

perfect; however, a more realistic model would include losses and other degradations.

In addition to the simulation fidelity, improvements to the simulation implementation

are also possible. The required runtime for all of the simulations was clearly prohibitive.

Although runtime issues were considered during the development of Distributed-MASS, it is

clear that even more significant steps must be taken to help alleviate this issue. Potential

improvements include trading simulation memory for processing power. A number of

computationally expensive network properties were calculated at each time step in the

simulation. It seems possible that building in a memory into the simulation will allow

expensive computations to be performed only if the connectedness changes between time

steps. Although the network connectedness does change often, it seems likely that there is

a significant savings possible since the number of times the connectedness changes is still

smaller than the total number of time steps in the simulation.

The effects of adding additional intelligence to either the agents or the targets might

have interesting effects on the behavior of the system. Adding more intelligence to the

252



system along with more parameters to control the behavior of the agent itself would make

the design space more interesting and even harder to explore; however, that may potentially

make the proposed methodology even more compelling as a solution. As more mechanisms

are allowed, such as adaptation, the potential for truly surprising behavior is unlocked.

10.4.2 Improvements to the SEED Methodology

Potential additional research on the methodology was briefly mentioned within the method-

ology chapter: adaptive sampling strategies, for both design point selection and replication,

could improve the efficiency of the methodology. The multi-agent surveillance problem

demonstrated that there are often large regions of the design space that are rather uniform

and uninteresting. For very low communication ranges, the system performed poorly ev-

erywhere. On the other hand, for very large communication ranges, the system was almost

always near maximum performance. Design points in either of these regions would not

need a large amount of replications to characterize the probability distribution at each

point. Similarly, design points would not need to be densely sampled in this space since the

performance is not expected to change rapidly. The goal of an adaptive method is to locate

points in more interesting regions of the design space—where the Design Space Divergence

measure is expected to be large due to a transition in underlying behavior.

Exploring even higher dimensional problems would also be important to show that

the methodology remains useful as the problem grows in size. A number of steps in the

methodology work best for relatively small dimensional problems but will need adjustment

to handle larger problems. For example, the 𝑘-d tree partitioning method works is efficient

compared to the brute-force approach only when 𝑁 ≫ 2𝑘. This means that as 𝑘 approaches

on the order of 10 dimensions, the 𝑘-d tree partitioning method is likely to be no better than

brute force, which itself will be very computationally expensive. Another issue with high

dimensions is that the design space distance measure may become less significant. As the

number of dimensions increases, points tend to get equally far away from each other when

using the Euclidean distance, which results in a less significant distance measure. Continuing

to adapt the methodology to handle larger dimensions will improve its applicability and
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usefulness.
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APPENDIX A

PHILOSOPHY OF EMERGENCE

Chapter Road Map: The discussion in this chapter is primarily from the philosophy of

science viewpoint and addresses the many—sometimes conflicting—properties of emergence

that have made it a pervasive, captivating, yet controversial topic.

A.1 A Brief History of Emergence

This section will examine the historical context of emergence and how the definition and

philosophy of emergence has changed through time. This has lead some to believe that

emergence is a current fad and a “buzz-word” that will eventually go away. While there

have been legitimate issues in creating rigorous and coherent definitions for emergence, the

concept is compelling enough that it has continued to attract attention for over a hundred

years—and its popularity today is as high as ever.

A.1.1 The Emergence of Emergence: British Emergentist Movement

Although the intuitive notion of emergence can be traced back to Aristotle’s famous quote of

the whole being greater than the sum of its parts, a more complete foundation for emergence

was laid during the British Emergentist movement in the mid-1800s to the early part of the

20th century. It was this movement that formed the first major push to advance the concept

of emergence as a principle of scientific understanding. McLaughlin [183] discusses the history

of emergence during the British Emergentist period between the years 1843–1925. This

period spans from J.S. Mill’s System of Logic (1843) to C.D. Broad’s The Mind and Its

Place in Nature (1925). This movement was a philosophical movement that included the

first coinage of the term emergent. Since this period coincided (and was therefore influenced

by) with great advances made in physics, chemistry, and biology, this movement sought to
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understand the relationship between properties and the nature of matter and science. This

period focuses heavily on developing a principle of composition—how properties combine

among constituent parts. The essential question driving this debate is whether or not the

properties or behavior of an object can be determined from its constituent parts. It is

also insightful to keep in mind the problems that the British Emergentists were facing. A

large portion of the British Emergentist movement was devoted to trying to understand the

nature of Life. The main question being asked was whether Life could be reduced to nothing

but physico-chemical processes. What gave rise to life, the mind, and biological evolution?

Could these topics be answered by appealing to basic physical and chemical properties and

without appealing to any supernatural forces? As Broad writes, “in a philosophy based

on the procedure sanctioned by progress in scientific research and thought, the advent of

novelty of any kind is loyally to be accepted wherever it is found, without invoking any

extra-natural Power (Force, Entelechy, Elan, or God) through the efficient Activity of which

the observed facts may be explained” [193, p. 2].

While the British Emergentist movement was important because it established emergence

as a concept in science and philosophy, it also posed a number of problems. Positions taken

by Emergentists could be considered by some as anti-science. A philosophy of emergence

that claims some phenomena admit “no explanation” and rely on the investigator to accept

it with “natural piety” [5, pp. 46–47] would be inconsistent with the analytic methods

of science require breaking down the object studied into its constituent components. It

was debated whether or not chemistry, biology, and even psychology could be explained by

examining the principles of composition for elementary particles. The physics and chemistry

of atomic elements were a common subject of Emergentist thought. During this period,

it appeared that chemical phenomena resulted in emergent properties as compared to the

constituent elements. Emergentists claimed that it was impossible to predict chemical many

properties; however, as McLaughlin explains, the quantum mechanical revolution would go

on to discredit Emergentist thought by providing a law governing many atomic properties

[183]. Similarly, in the field of biology, “far more damaging to the cause of emergent evolution

was the rise of the science of genetics in the 1920s and 1930s and the triumph of an analytical,
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experimental approach to biology” [76, p. 20]. The history of British Emergentism provides

an interesting lesson. It is clear that many of the arguments used to support Emergentism

were incorrect; however, the arguments were based on the understanding of the science

at the time. As physics underwent a major paradigm shift in the first half of the 20th

century with the improved atomic models and the introduction of quantum theory, so did

our understanding of the governing laws. As the possibility of emergent configurational

forces faded, so did the Emergentist movement. According to some, the lesson is that it is

quite possible that phenomena which are currently regarded as being emergent could be

easily deducible in the future. This gave rise to the idea that emergence is nothing but

a stop-gap measure that is a product of incomplete knowledge and is theory-dependent.

By the end of the Emergentist movement, the popularity and relevance of emergence was

diminished, replaced by the great advances made by reductionist scientific approaches in the

field of chemistry, biology, and physics. For the time being, it seemed that the reductionist

approach had won the war against the Emergentists.

A.1.2 Re-Emergence of Emergence: The Limits of Reductionism

The central battle in the philosophy of emergence is commonly framed as the reductionists

versus the emergentists. The reductionists believe that everything in the universe can be

explained by an underlying micro-level behavior. Emergentists claim that some effects cannot

be explained by any underlying mechanisms. However, both viewpoints are important to

solving problems in science and engineering. Wimsatt explains how both reductionists and

emergentists are neglecting the contributions that the other side brings to the understanding

of complex systems:

“Both sides here conflict with most scientists’ intuitions about when some-

thing is emergent. Discussions of emergent properties in nonlinear dynamics,

connectionist modeling, chaos, artificial life, and elsewhere give no support for tra-

ditional antireductionism or woolly-headed antiscientism. Emergent phenomena

like those discussed here are often subject to surprising and revealing reduc-

tionistic explanations. But reductionists often misunderstand the consequences
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of their explanatory successes. Giving such explanations does not deny their

importance or make them any less emergent—quite the contrary: it explains

why and how they are important, and ineliminably so.” [254]

The new question is not whether emergence or reductionism is correct; rather, how can

both of these approaches be used to advance science? The success of reductionism in

science cannot be ignored. The advances made in understanding how the world works

using a reductionist approach are clear. Any attempt to frame emergence as a superior and

exclusive explanatory approach in science is doomed to fail. As Anderson acknowledges, “the

reductionist hypothesis may still be a topic for controversy among philosophers, but among

the great majority of active scientists I think it is accepted without question” [9]. Clearly, a

framework for emergence has to allow for and utilize the benefits of reductionism. However,

reductionism has its limits. Laughlin summarizes this dilemma, “We have succeeded in

reducing all of ordinary physical behavior to a simple, correct Theory of Everything only

to discover that it has revealed exactly nothing about many things of great importance”

[168]. Instead, we should look to see where the reductionist approach has failed and how we

can overcome those failures. As Goldstein notes, “it wasn’t emergence itself that was the

problem but the examples that the emergentists used to exemplify it” [128]. Explaining the

resurgence of emergence as scientific principle, Kim writes:

“but the idea of emergence refused to die, continuing to attract a small but

steady stream of advocates from both the philosophical and the scientific ranks,

and it now appears to be making a strong comeback. This turn of events is not

surprising, given the nearly total collapse of positivistic reductionism and the

ideal of unified science which was well underway by the early ’70s. The lowly

fortunes of reductionism have continued to this day, providing a fertile soil for

the reemergence of emergentism.” [158]

One of the well-known champions of the concept of emergence that came out of this period is

P. W. Anderson, a Nobel Laureate known for his work in condensed matter physics. He is a

contemporary champion of the concept of emergence in science. His paper “More is Different”
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[9] is considered a seminal article advocating for emergence. Similarly, R. Laughlin is another

Nobel Laureate who advocates for emergent phenomena in his well-known paper “The Theory

of Everything” [168] in which he argues that reducing physics to simple equations fails to

reveal anything about important phenomena in solid-state physics. Anderson continues this

line of thinking, “the main fallacy in this kind of thinking is that the reductionist hypothesis

does not by any means imply a ‘constructionist’ one: The ability to reduce everything to

simple fundamental laws does not imply the ability to start from those laws and reconstruct

the universe” [9]. More generally, this is known at the fallacy of composition: the mistaken

belief in a property of a part belonging to that of the whole. “The constructionist hypothesis

breaks down when confronted with the twin difficulties of scale and complexity. The behavior

of large and complex aggregates of elementary particles, it turns out, is not to be understood

in terms of a simple extrapolation of the properties of a few particles. Instead, at each level

of complexity entirely new properties appear, and the understanding of the new behaviors

requires research which I think is as fundamental in its nature as any other” [9]. Bringing

us full circle to the central idea of emergence, Anderson “the whole becomes not only more

than but very different from the sum of its parts.” [9]

This reincarnated version of emergence is more nuanced and less strictly enforced than

some of those seen during the British Emergentist period. Another Nobel Laureate, F.

Crick accepts the scientific validity of emergence in this new form. He rejects the early

type of thinking that said that “emergent behavior cannot in any way, even in principle,

be understood as the combined behavior of its separate parts” [78, p. 11]. Instead, “the

scientific meaning of emergent . . . assumes that, while the whole may not be the simple sum

of its separate parts, its behavior can, at least in principle, be understood from the nature

and behavior of its parts plus the knowledge of how all these parts interact” [78, p. 11].

A.2 Characterizing Emergence
A.2.1 Nonlinearity

The concept of an emergent, as opposed to a resultant, was common to most of the

thinkers of the British Emergentist movement. This aspect sought to characterize how
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properties combine among constituent parts. While this distinction is no longer present in

the contemporary discussion of emergence, it will be presented here for historical context.

Furthermore, while the distinction between emergents and resultants no longer exists, they

did provide some ideas that remain central to emergence today.

J.S. Mill was a British empiricist philosopher that proposed a framework using the

principle of composition of causes, “the principle which is exemplified in all cases in which

the joint effect of several causes is identical with the sum of their separate effects” [187, p.

267]. Although he did not use the term emergent, he called effects of causes that failed to

obey the principle of additivity as “heteropathic” [187, p. 269]. For example, in Newtonian

mechanics, the kinematics of a body with two simultaneously applied forces is equivalent to

the linear superposition of the kinematics of the body with the forces acting separately. This

system would obey the composition of causes. However, it should be made clear that even

the composition of causes should not be taken for granted. As Broad says about the result of

vector-sum additivity in Newtonian mechanics, “there is not the least possibility of deducing

this law of composition from the laws of each force taken separately” [55, p. 62]. The

principle of additivity should not be regarded as a default or most common principle—even

simple additive laws must be determined through induction.

English philosopher G.H. Lewes is credited with coining the term emergent. Lewes’

“emergent” effects are similar to Mill’s “heteropathic” effects. Lewes advanced the idea

that emergents and resultants were two classes of effects separated by the modes of their

combination. In contrasting resultants with emergents, “each agent, indestructible and

independent, has its own individual value; and the effect or combination of agents has

two modes: in the one case we have an addition or mixture; in the other a combination,

with an emergent” [171, p. 368]. “Every resultant is either a sum or a difference of the

co-operant forces: their sum, when their directions are the same; their difference, when their

directions are contrary” [171, p. 369]. The major claim here is that emergents are a result of

nonadditive effects. Lewes also made a further distinction about emergents, “every resultant

is clearly traceable in its components, because these are homogeneous and commensurable”

[171, p. 369]. “It is otherwise with emergents, when, instead of adding measurable motion
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to measurable motion, or things of one kind to other individuals of their kind, there is a

co-operation of things of unlike kinds. . . . The emergent is unlike its components in so far as

these are incommensurable, and it cannot be reduced either to their sum or their difference”

[171, p. 369]. Emergents are characterized by nonlinear behavior and differences in scale

of the underlying components. Nonlinearity means that the effects of causes are nonlinear

with respect to their combination. The consequence of this leads means that “although each

effect is the resultant of its components, the product of its factors, we cannot always trace

the steps of the process, so as to see in the product the mode of operation of each factor.

. . . It arises out of the combined agencies, but in a form which does not display the agents

in action” [171, p. 368]. This characterization of emergence is consistent with the Bedau’s

viewpoint of weak emergence [34], discussed later in this chapter. This view of emergence,

although well ahead of its time, bears resemblance to the view of emergence as seen from

the field of nonlinear dynamics and chaotic systems.

“The essential feature of . . . a mechanistic interpretation is that it is in terms of

resultant effects only, calculable by algebraical summation. . . . Against such a mechanical

interpretation such a mechanistic dogma emergent evolution rises in protest. The gist of

its contention is that such an interpretation is quite inadequate. Resultants there are; but

there is emergence also” [193, p. 8]. While Morgan was not advocating for an enlarged

view for what it means for something to be mechanistically reducible, his argument makes

it clear that if we limit ourselves to systems that can be described using only “algebraical

summation” we are left with very few systems that meet this requirement. It should be noted

that this distinction between resultants and emergents is quite simplistic and should not be

regarded as the key distinguishing feature of emergence. While nonlinearity and multiscale

behavior are indeed important properties of emergence, they should not be regarded as the

defining feature. The goal of this section is to provide historical context. As aforementioned,

the linear additivity property is by no means common and should not be considered the

default principle of composition. Relatively few systems exhibit this type of additivity and

the only way to establish this is through induction. If we regard anything that is not the

result of summation as emergent, then we have not captured the essence of emergence.
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A modern interpretation of the idea of a resultant effect is based on W.C. Wimsatt’s

aggregativity heuristics. An approach advocated by Wimsatt, known for his work in the

field of philosophy of biology, is a formalization based on the idea of aggregativity. An

aggregative property is similar to British Emergentists’ concept of a “resultant”—an outcome

that is simply an aggregation of its constituent parts. Wimsatt’s aggregativity approach

[254] evaluates decompositions and alternative descriptions of a system seeking to find

whether descriptions are aggregative or not. Those systems which fail to be aggregative are

considered emergent. A system property is an aggregative with respect to a decomposition

and description if all of the following conditions are met [254]:

• Intersubstitution: Invariance of the system property under operations rearranging

the parts in the system or interchanging any number of parts with a corresponding

numbers of parts from a relevant equivalence class of parts.

• Qualitative Similarity: Qualitative similarity of the system property under addition

or subtraction of parts.

• Decomposition and Re-aggregation: Invariance of the system property under

operations involving decomposition and re-aggregation of parts.

• Linearity: There are no cooperative or inhibitory interactions among the parts of the

system for this property.

Wimsatt proposes that these heuristics are used to guide the process when developing a

theory that describes the system behavior. The system is manipulated by the transformations

implied by the criteria in search of invariances. These invariances, Wimsatt claims, imply

a system that is more ‘natural’ “because they provide simpler and less context-dependent

regularities, theory, and mathematical models involving these aspects of their behavior” [254].

While Wimsatt advocates this approach for identifying emergent behavior, its usefulness

towards that goal is much more limited and subtle. The suggested approach finds the

complement of emergence—this is, systems that are not emergent. The implication is that

the arrangements that failed to be aggregative are therefore emergent. However, as Wimsatt
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himself asserts, “very few system properties are aggregative, suggesting that emergence,

defined as failure of aggregativity, is extremely common—the rule, rather than the exception”

[254]. This means that the number of systems and decompositions of a system that this

approach identifies is vastly overwhelmed by the remainder of the space of possibilities.

Despite this limitation, I include this approach here as a possible stepping stone towards

helping construct a theory about an emergent property. This desire is typical of the approach

of science. An unexplainable or surprising phenomenon is identified, then a reductionist

approach is taken to identify the underlying mechanisms. Once a candidate emergent

property has been identified, it is natural to prove its emergent status and develop a theory

which explicates the phenomenon. In order to prove that something emergent, it must be

shown that each of the constituent components is necessary and that the system composition

is both necessary and sufficient to result in a particular property. The aggregativity approach

can be used to substantiate an emergent property by showing its dependence with respect

to various transformations and decompositions of the system.

Contemporary definitions of emergence no longer rely on such a simplistic distinction.

More generally, emergent properties are a result of nonlinear combination of effects. The non-

linearity enables multiscale effects where microlevel effects can affect higher level properties.

Nonlinearity is a necessary condition for emergence [96] [220, p. 70].

A.2.2 Irreducibility

One of the main reasons for the existence of the concept of emergence is for scientific

explanation. Explanation seeks to identify theories that elucidate an observation. One of

the primary methods of explanation is through the use of reduction, where an phenomenon

is explained by referencing the behavior of the underlying constitutive components. An

irreducible property is a one that cannot be deduced from the properties of its constituent

parts. Irreducibility implies the existence of ontologically real properties and objects in the

world. After all, if an object cannot be reduced to something else, then it must be real in its

own right. This is the central philosophical battle concerning the relevance of emergence.

One of the core definitions of emergence deals with the irreducibility between levels that
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are part of the hierarchical structure of reality. Irreducibility and hierarchical levels are

nonseparable concepts. If something is reducible, then it can be equivalently represented

using a lower-level representation. On the other hand, if it is irreducible, then it cannot be

explained or represented in terms of the lower-level features. This idea was common during

the Emergentist movement, as well as in definitions of emergence used today. Understanding

reducibility is the first step to understanding irreducibility. “A reductive explanation of a

behavior or a property of a system is one showing it to be mechanistically explicable in terms

of the properties of and interactions among the parts of the system” [254]. Furthermore,

“the explanations are causal, but need not be deductive or involve laws” [254]. In a rigorous

way, “a theory 𝑇ℎ reduces to a lower-level theory 𝑇𝑙 if all the nomic claims made by 𝑇ℎ can

be explained using only the resources of 𝑇𝑙 and necessary truths” [29, p. 198]. This is very

similar to the reduction framework proposed by Nagel [202] where “bridge laws” are used

as supplementary premises to connect terms between adjacent levels when not all of the

claims in 𝑇ℎ can be explained using only the terms in 𝑇𝑙. The use of bridge laws necessarily

implies irreducibility. Broad’s use of irreducible “trans-ordinal laws” to connect emergent

properties between adjacent levels are a form of Nagel’s bridge laws. Alexander describes

the irreducible relationship as a “higher quality emerges from the lower level of existence

and has its roots therein, but it emerges therefrom, and it does not belong to that lower

level, but constitutes its possessor a new order of existent with its special laws of behaviour.

The existence of emergent qualities thus described is something to be noted . . . under the

compulsion of brute empirical fact, or . . . to be accepted with the ‘natural piety’ of the

investigator. It admits no explanation” [5, pp. 46–47].

During the Emergentist movement, Broad describes two theories of explanation. The

first, the “Theory of Emergence,” describes a theory in which “the characteristic behaviour

of the whole could not, even in theory, be deduced from the most complete knowledge of

the behaviour of its components, taken separately or in other combinations, and of their

proportions and arrangements in this whole” [55, p. 59]. The second, the “Mechanistic

Theory,” in which “the characteristic behaviour of the whole is not only completely determined

by the nature and arrangement of its components; in addition to this it is held that the
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behaviour of the whole could, in theory at least, be deduced from a sufficient knowledge

of how the components behave in isolation or in other wholes of a simpler kind” [55, p.

59]. An important concept when determining if something is emergent or not is whether

the properties of the higher level can be deduced from the properties of the lower level. In

Broad’s conception, the various aggregates of orders represent the hierarchical and multiscale

structure of complex systems. Broad distinguishes between “intra-ordinal” and “trans-

ordinal” laws that describe the behavior of each aggregation level and the relationships

between adjacent orders, respectively. “A trans-ordinal law would be one which connects

the properties of aggregates of adjacent orders” [55, pp. 77-78]. “An intra-ordinal law

would be one which connects the properties of aggregates of the same order” [55, p. 78].

Properties of an order “which could in theory be deduced from the structure of the aggregate,

the properties of its constituents, and certain laws of composition which have manifested

themselves in lower orders” are called “reducible characteristics” [55, p. 78]. On the other

hand, those properties which could not have been likewise deduced represent emergent

properties which are described by emergent trans-ordinal laws.

One of the outcomes of this irreducibility is that emergents could only be identified

through induction. Experimentation and observation are the fundamental method for

gaining knowledge about a system—emergent properties must be discovered by empirical

methods. Logically, this must be so: if emergents are defined in a way that makes deducibility

impossible, experimentation is the only way to know the properties given a certain situation.

“Were all effects simple resultants . . . our deductive power would be almost absolute. . . It is

precisely because effects are mostly emergents that Deduction is insecure, and Experience is

requisite to confirm even the most plausible deductions” [171, p. 370]. Broad claims “we

do not know all the properties of any element, and that there is always the possibility of

their manifesting unpredictable properties when put into new situations” [55, p. 66]. As

Mill explains regarding the chemical reaction of hydrogen and oxygen producing water (a

canonical example used during this period), “no experimentation on oxygen and hydrogen

separately, no knowledge of their laws, could have enabled us deductively to infer that they

would produce water. We require a specific experiment on the two combined” [187, pp.
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315–316].

The criterion for the impossibility of deduction is obviously troublesome. If new scien-

tific laws and mathematical principles are discovered that allow us to deduce previously

emergent phenomena, the concept of emergence loses its credibility. To get around this issue,

contemporary interpretations of emergence, such as Bedau’s weak emergence, do not require

a strict notion of irreducibility. Rather, the irreducibility is interpreted as a computational

incompressibility. Huneman [148] argues that the computational interpretation of emergence

can be made consistent with the lack of deducibility in the sense of incompressible deduction.

A.2.3 Novelty

The idea of novelty is a defining characteristic of emergence. However, there are different

types of novelty, all of which are used in the discussion on emergence. According to

Bunge, there are three types of novelty: conceptual, empirical, and ontological [57, p.

127]. I would add a fourth type of novelty that is relevant to the discussion of emergence:

observer-dependent novelty. Conceptual novelty, the weakest form of emergence, is a type of

irreducibility where “a natural kind in a higher-level theory is conceptually novel if there is

no kind in any potential reducing theory that captures the same set of phenomena” [185,

p. 204]. Conceptual novelty is the overcoming of irreducibility through the introduction

of new theories and explanations. “The conceptual approach maintains that a system that

has reached a critical level of complexity can be described effectively only by introducing a

conceptual or descriptive apparatus that is new compared to what is used for more basic

phenomena. This conceptual novelty can range from the invention of a new term to the

introduction of an entirely new theory” [35, p. 10]. Conceptual novelty also has a range

of interpretations. One end is rigorous and based on the sets of axioms needed to deduce

the system’s behavior. On the other end of the spectrum is the novelty due to a change

in language or description of a system. While this is an intuitive concept and one that is

common in the literature, it is also one fraught with problems. A discourse-based theory of

emergence would be subjective and would greatly minimize the utility of emergence as a

scientific concept. Empirical novelty is the first realization of a concept. For example, a new
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atomic element may be theorized; however, it is not until it is discovered in nature or created

in a laboratory environment that it has attained empirical novelty. This interpretation

of novelty is closest to the everyday usage of something being “new.” Finally, there is

ontological novelty. This type of novelty is concerned not with new concepts entering into

scientific knowledge, but rather on whether a new physical entity or property has come

into existence. The existence of examples of ontological novelty are debated; therefore, I

will leave it to the philosophers of science. Finally, many discussions in emergence focus

on observer-dependent novelty. The system acts under its governing dynamics without

knowledge or concern that its behavior is emergent; however, its behavior is interpreted to

be novel by an outside observer. “The ‘newness’ in each case is only heightened by the fact

that the emergent feature stands in direct opposition to the systems’ defining character:

complete determinism underlies chaos and near-complete stochasticity, the orderliness of

self-similarity” [82]. While this interpretation can be found in the literature on emergence,

it is not one that I am advocating. Observer-dependence brings in a host of issues, none of

which are necessary for emergence to stand on its own. This issue will be discussed in more

detail later in this chapter.

As Bedau acknowledged about his conception of weak emergence, one vital piece missing

from his formulation is the desire to identify interesting emergent phenomena. A useful and

interesting definition of emergence must incorporate the concept that an emergent property

represents a qualitative change in behavior. British biologist C.L. Morgan approaches

emergence from the viewpoint of biological evolution. “The orderly sequence, historically

viewed, appears to present, from time to time, something genuinely new” [193, p. 1]. This

interpretation of emergence captures the more intuitive sense that emergence is not just

nonlinear or irreducible behavior, but also represents qualitative novelty. “There may often

be resultants without emergence; but there are no emergents that do not involve resultant

effects also. Resultants give quantitative continuity which underlies new constitutive steps

in emergence. And the emergent step, though it may seem more or less saltatory, is best

regarded as a qualitative change of direction, or critical turning-point, in the course of events”

[193, p. 5]. What we are really interested in identifying when studying emergence are those
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critical turning points that lead to new behaviors. Corning includes both of these conditions,

“coherence” (Morgan’s quantitative continuity) and “radical novelty” (Morgan’s “something

genuinely new”) as characteristics of emergence [76].

A.2.4 Hierarchy

The idea of a hierarchy is common to the philosophy of emergence. Since emergence was

initially used for scientific explanation (e.g., how chemical properties can be predicted from

their constituent elements; or how life can be explained by chemical processes), the structure

of emergence mirrors the structure of the sciences. There is a level that contains fundamental

particles and is governed by fundamental laws. Aggregates of the fundamental particles form

the next level higher of increasing complexity. Each level also includes a “special science”

(e.g., physics, chemistry, biology, psychology) that governs the behavior of that level.

The two most important questions when dealing with hierarchies are 1) how levels are

defined (i.e., how to establish boundaries), and 2) how levels are ordered (i.e., what does it

mean for one level to be higher than another?). Bedau [35, pp. 5-6] provides three general

characteristics of this hierarchical ordering of levels:

• the hierarchy of levels has no precisely defined order, but instead is determined

implicitly by the organizational complexity of objects,

• each level is assumed to contain at least one kind of object and one kind of property

that is not found below that level,

• at each level kinds exist that have novel causal powers that emerge from the organiza-

tional structure of material components.

This conception of the hierarchy is based on emergence—each level in the hierarchy is defined

by the presence of emergent properties. Others, like Checkland have a similar definition,

“there exists a hierarchy of levels of organization, each more complex than the one below,

a level being characterized by emergent properties which do not exist at the lower level”

[68]. This increasing level of complexity at each level is common in the understanding of the

structure of the sciences. As Anderson writes, “with increasing complication at each stage,
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we go on up the hierarchy of the sciences” where each new level is characterized by “new

types of behavior” [9]. Since each level is itself defined by emergent properties, there can be

multiple levels of emergence [33].

A.2.4.1 Supervenience

Supervenience is a term of art used in the philosophy of emergence, but it has an intuitive and

accepted interpretation in the sciences. It is a way of expressing determinism between levels

in a hierarchy. Supervenience means that all properties of a system are only determined by

its micro level [159, 158]. This has several consequences. The first is that every property is

due to only its microlevel structure; there is nothing but the physical. Another consequence

is that there cannot be a change in a higher level property without a corresponding change

in the lower level. Supervenience establishes the causal determinism from the micro level to

the macro level. Supervenience is required for reduction [184]. While supervenience may

pose problems for some formulations of emergent properties [147], supervenience is quite

accepted as the underlying mechanism for how micro-level properties give rise to higher-level

emergent properties [33].

A.2.4.2 Downward Causation

While the micro-to-macro causal determinism specified by supervenience is generally accepted,

the macro-to-micro causal effects, known as downward causation, are much more controversial.

As Bedau writes, “strong emergence has a number of failings, all of which can be traced

to strong downward causation” [34, p. 377]. This process, coined by Campbell [58], refers

to macro-level phenomena having causal influence over the micro-level from which they

arose [158]. Why is downward causation necessary? Emergent properties “are supposed to

represent novel additions to the ontology of the world, and this could be so only if they bring

with them genuinely new causal powers” [158]. Bedau similarly explains that “emergent

phenomena without causal powers would be mere epiphenomena” [33]. O’Connor provides

us with a distinction between macro-level and micro-level causal influence, “an emergent’s

causal influence is irreducible to that of the micro-properties on which it supervenes: it bears

its influence in a direct ‘downward’ fashion, in contrast to the operation of a simple structural
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macro-property, whose causal influence occurs via the activity of the micro-properties which

constitute it” [205].

If we accept supervenience, then downward causation implies that higher-level emergent

phenomena would necessarily have to influence the micro-level properties that determine all

of the properties in the world. Downward causation appears to be necessary for emergence.

However, downward causation poses one important problem of logical coherence, known as

the exclusion argument: “if an emergent, 𝑀 , emerges from basal condition 𝑃 , why can’t 𝑃

displace 𝑀 as a cause of any putative effect of 𝑀?” [158]. In other words, “the micro-level

explanation of the micro-level effects will preempt the macro-level explanation” [33]. Another

problem caused by downward causation is that it “makes a difference only if it violates

micro causal laws” [33]. If the exclusion argument is accepted, the only way for macro-

and micro-level causal powers to coexist is if “the macro and micro causes conflict because

micro causation would have brought about an incompatible micro effect so the downward

causation would violate the fundamental micro laws” [33]. There are some that argue that

this is, in fact, the case. Anderson argues “that matter will undergo mathematically sharp,

singular ‘phase transitions’ to states in which the microscopic symmetries, and even the

microscopic equations of motion, are in a sense violated” [9]. Obviously, this talk of violation

of fundamental micro laws is troublesome.

I would argue that instead of claiming that micro laws are violated, rather the micro

states take on a trajectory that is significantly different due to the presence of the macro-level

cause. This brings about another problem, “how could these higher-level properties causally

influence and alter the conditions from which they arise? [158, p. 25]. Kim addresses this

concern by introducing the notion of a diachronic downward causation, meaning that cause

and effects are separated by an increment in time that breaks the circular dependency. While

this might be necessary to address the philosophical concerns, I believe that this simply

describes the natural feedback loops that exist in nature. As Deacon explains, “emergent

phenomena grow out of an amplification dynamic that can spontaneously develop in very

large ensembles of interacting elements by virtue of the continuing circulation of interaction

constraints and biases, which become expressed as system-wide characteristics” [93, p. 124].
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Furthermore, in terms of causality, there is a “circular connectivity of causal dynamics,

not a special form of causality” [93, p. 124]. This helps to alleviate concerns about strong

emergence’s requirement of new forms of causality. Circular connectivity means that there

is simultaneous upward and downward causal influence. The idea of feedback is well known.

If we look at the system from the viewpoint of feedback, then there is nothing inconsistent

there—the state of a property can be a function of itself (e.g., the partial differential

equations that describe many physical systems). If the emergent property exists then having

a feedback mechanism poses no incoherence. The alternative is a degenerate case: a system

in which property causes the elimination of the underlying emergence condition would not

be emergent and would therefore not be instantiated. The properties that are observed

are the ones that maintain the emergence condition during any downward causation; if the

causal condition is inconsistent with the emergent property, then the emergent property is

either transient or is never instantiated to begin with.

Boschetti and Gray [51] propose a “Turing test” for emergence that seeks to identify

emergence based on the presence of causal downward influence. However, here causality

is severely diminished to mean simply whether or not “by acting upon it, we can change

the effects it produces” [51]. This test for emergence asks “whether a process empowered

with autonomous causal emergent properties (a human) can discriminate between another

causal emergent process and a computer program” [51, p. 358]. They propose three types

of emergence, with increasing downward causal influence: pattern formation, intrinsic

emergence, and causal emergence. Boschetti and Gray claim that pattern formation is not

emergent because it is not possible to manipulate the patterns without directly acting on

the constituent parts [51]. However, this claim that pattern formation is not emergent is

not accepted. As I shall show later in this chapter, Bedau and others claim that pattern

formation does constitute an autonomous effect with causal influence. In the intermediate

form of emergence, intrinsic emergence, is borrowed from Crutchfield [82], where emergent

effects confer additional functionality in the system. In the strongest form of emergence, “we

can exert direct control without manipulating, nor concerning ourselves with, the lower-level

constituents” [51]. This framework by Boschetti and Gray is clearly subject to interpretation,
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something that we would want to avoid. But like the Turing test that this framework

takes inspiration from, their goal is to test whether or not an intelligent observer can

distinguish between simulated causal influence and our conception of real causal influence:

“what matters is the perception by which we believe we can exert causal control over the

higher-level emergent features. Does it look as if those features possess causal control?

Does it look like they do more than the limited number of behaviours purposely encoded in

the local rules? Do system entities behave as if they were autonomously interacting with

external processes and respond accordingly?” [51].

A.2.4.3 Alternative to the hierarchical approach

Ryan proposes a method based on scope, resolution, and state instead of one based on

a hierarchical structure [220]. In Ryan’s framework, the modeling of emergence can be

described by the equation 𝑀 = 𝒞(𝜇), where 𝑀 is the macrostate, 𝜇 is the microstate, and

𝒞 is the hidden mapping from microstate to macrostate. 𝒞 : 𝑀µ →𝑀𝑀 , the map between

coarse-grained macrostate 𝑀 and the microstate 𝜇. If an emergent property𝜌𝑖 exists at

the macrostate, it also exists at the microstate via the mapping 𝒞. In this formulation, “a

property is a novel emergent property iff it is present in a macrostate but it is not present in

any microstate, where the microstates differ from the macrostate only in scope” [220, p. 72].

The difference in scope can be established by determining the minimal macrostate 𝑀*, which

is the smallest possible scope that still exhibits an emergent property. This definition implies

the existence of a critical scope that demarcates emergence. Scope defines a temporal-spatial

boundary, while resolution is the finest temporal-spatial distinction between two alternative

system configurations [219, p. 121]. A higher resolution distinguishes between a larger

number of possible states. The scope defines the boundary between the system and its

environment [220, p. 69]. There are a few problems with this approach. The first is that, by

eliminating the concept of hierarchical levels, Ryan has thrown out many of the concepts

that have been used for centuries and that are common to the understanding of the structure

of the sciences. In its place, Ryan introduced an observer-dependent property, “resolution.”

Furthermore, scope and resolution are not strictly independent.
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A.2.5 Strong versus Weak Emergence

It should be clear at this point that it is difficult to define emergence in a logically coherent

manner. This has caused many to propose a “weak” sense of emergence that helps alleviate

some of the incoherence—however, the existence of a “weak” form also implies that there is

a “strong” form. The distinction between these

A.2.5.1 Strong Emergence

Strong emergence is the strictest conception of emergence. It is the type of emergence

conceived by applying the definition of emergence including “the requirement that emergent

properties are supervenient properties with irreducible causal powers” [33]. The inclusion of

irreducible downward causal influence is the defining feature of strong emergence. However,

it should be noted that the lack of a universally accepted definition of emergence also means

that the conception of weak and strong emergence lie on a spectrum of interpretations

and strictness. Also, it is clear from the literature that some writers use the weak/strong

distinction to refer to a different condition: the degree of difficulty in the reducibility between

the macro and micro levels effects. In this alternate form of emergence, strong emergence

refers to processes where irreducibility is impossible even in principle, while a weak form

of emergence would refer to processes that are straightforward to reduce the macro-level

effects to the micro-level effects with hindsight. There is similarity in both of these types

of weak/strong emergence in that they both imply degrees of irreducibility, but the former

type emphasizes the irreducibility of the causal effects, while the latter emphasizes the

relationship between macro and microlevel effects without necessarily establishing causality.

In this section, I’ll primarily focus on the first type of strong emergence.

O’Connor, coming from the perspective of analytic philosophy, provides a definition

of strong emergence: “Property 𝑃 is an emergent property of a (mereologically-complex)

object 𝑂 iff 𝑃 supervenes on properties of the parts of 𝑂, 𝑃 is not had by any of the object’s

parts, 𝑃 is distinct from any structural property of 𝑂, and 𝑃 has a direct (‘downward’)

determinative influence on the pattern of behavior involving 𝑂’s parts” [205]. Bar-Yam

writes of strong emergence, “properties that are unique to the collective—cannot be identified
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through any observations of the parts, and is counter to the conventional perspective that

parts determine the behavior of the whole. In the case of strong emergence, it is possible

that the properties of the whole determine the behavior of the parts” [24].

“Although strong emergence is logically possible, it is uncomfortably like magic. How

does an irreducible but supervenient downward causal power arise, since by definition it

cannot be due to the aggregation of the micro-level potentialities? Such causal powers

would be quite unlike anything within our scientific ken. This not only indicates how they

will discomfort reasonable forms of materialism. Their mysteriousness will only heighten

the traditional worry that emergence entails illegitimately getting something from nothing”

[34, p. 377]. More so, “the most disappointing aspect of strong emergence is its apparent

scientific irrelevance” [34, p. 377]. Despite all of the philosophical literature on the subject

of emergence, there is little scientific evidence that uses strong emergence as the basis

of understanding. Consciousness represents one of the most compelling and often cited

arguments for downward causation. Chalmers argues that consciousness is the only clear

case of strong emergence [65, p. 246] and quantum mechanics is the best example of

strong downward causation [65, p. 249]. Sperry, a Nobel laureate who studied neurobiology

and neuropsychology writes, “the conscious properties of cerebral patterns are directly

dependent on the action of the component neural elements. Thus, a mutual interdependence

is recognized between the sustaining physico-chemical processes and the enveloping conscious

qualities. The neuro-physiology, in other words, controls the mental effects, and the mental

properties in turn control the neurophysiology” [236, p. 534]. However, Bedau criticizes the

use of an outdated Polanyi and Sperry paper in most claims of evidence of strong emergence.

I would say that we should avoid the use of consciousness as a scientific example of strong

emergence since, at this time, we know little about how consciousness is related to brain

function. I think it is flawed to use a concept that we understand so little of to use it as

an example of a type of behavior. As was the case with quantum mechanics explaining

“emergent” chemical properties, it is quite possible that a new theory of neurobiology can lead

to improved theories of consciousness that does not rely on strong emergence and downward

causation. Emergence would be better served by examples that are better understood so
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that we can understand what emergence means. On the other hand, consciousness is one

of the holy grails of science and philosophy and seems to be the ideal candidate for what

constitutes a complex system.

But strong emergence with downward causation is hardly a discredited philosophy. There

are many that argue for its scientific relevance in explaining behavior. Bar-Yam advocates for

the existence and importance of strong emergence and claims that weaker forms of emergence

do not capture all collective behavior [24]. Bar-Yam explains how downward causation might

work, “when a system is faced with global constraints, the properties of an entire system may

determine the properties of a part, without the properties of a part determining the properties

of the whole system. . . . Only when constraints are defined that act on collectives and not

on components does strong emergence occur” [24]. Batterman similarly argues that phase

transitions in materials are examples of genuine physical discontinuities in nature that are

“ontologically irreducible to any theory of its parts” [29, p. 214]. Menon and Callender [185]

explain the difficulties of explaining transition phenomenon using statistical mechanics—the

sine qua non of studying the thermodynamics of physical systems. Developing a theory for

phase transitions using statistical mechanics, including renormalization group theory, relies

on the assumption of infinite sized systems [185, p. 197]. Once finite systems are considered,

the theories break down; the result of this is that many people believe that phase transitions

are one of the best examples of truly emergent behavior [185, p. 198].

A.2.5.2 Weak Emergence

Bedau proposes a concept he called weak emergence that attempts to get around the

metaphysical conundrum of downward causation in traditional theories of emergence [34, 33].

Why does weak downward causation not violate causality like strong downward causation

does? A weak macro cause is nothing more than the aggregative effect of micro causes,

therefore there is no violation of micro causal laws. For the same reason, the “exclusion”

argument does not apply since the micro and macrolevel causes are equivalent. Weak

downward causation is diachronic, which eliminates the circular causality argument between

levels. Bedau gives two necessary (but not sufficient) conditions for emergence that he calls
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“hallmarks of emergent phenomena” [34, p. 375]. The first condition is roughly in line with

the concept of supervenience. The second condition is a weak form of downward causation;

instead of claiming causality, it simply calls the phenomena autonomous. Together, these

can be used to define any form emergence:

1. Emergent phenomena are constituted by, and generated from, underlying processes

2. Emergent phenomena are autonomous from underlying processes

In weak emergence, all of the information we would need to describe the collective behavior

is present in the microstate: the state of each element and their interactions with each other

and the environment—no macrolevel information is needed to determine the outcome of the

system. As Bedau explains, “the system’s global behavior derives just from the operation of

micro-level processes, but the micro-level interactions are interwoven in such a complicated

network that the global behavior has no simple explanation. The central idea behind weak

emergence is that emergent causal powers can be derived from micro-level information but

only in a certain complex way” [33]. This “certain complex way” refers to “the complex

consequences of myriad non-linear and context-dependent micro-level interactions” [33].

Bedau believes that weak emergence is sufficient to explain virtually all emergent behavior,

so his definition is more general. On the other hand, Bar-Yam argues that even complete

knowledge of microstates is not always sufficient to determine collective behavior, leading to

the claim that strong emergence is a possibility for systems that have macro-level constraints.

Bar-Yam takes a slightly different perspective when defining weak emergence. For him, weak

emergence describes a system in which “collective behaviors of the system cannot be readily

recognized because it is difficult to extract them from the large amount of information present

in the fine scale microscopic view” [24]. In other words, “the relationship of microscopic and

macroscopic views of a system that differ only in precision” [24, p. 17]. For Bar-Yam, weak

emergence happens in systems with overwhelming intricate behavior at the microlevel but

there does not exert downward causal influence from the macrolevel back to the microlevel.

According to Bedau, all weak emergence at least have an epistemic portion to macro

explanatory autonomy. This is due to the large number of aggregate interactions and effects
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that we could only calculate using simulation. The more important question is whether weak

emergence also has sufficient autonomy such that the underlying explanation is not merely

the aggregation of the micro effects. In order to have macro-level explanatory autonomy,

there would need to be “distinctive objective structures in reality” [33]. To demonstrate

that it would be possible for macro-level autonomy, Bedau argues that multiply-realizable

elements (e.g., glider guns in Conway’s Game of Life) are autonomous from the micro-level.

Every macro-level effect (a glider stream) are explained by macro-level causes (a glider

gun). Furthermore, the macro-level structure is multiply-realizable since any number of

micro-histories can lead to the macro-level glider gun. “But weak emergent phenomena that

would be realized in an indefinite variety of different micro contingencies can instantiate

robust macro regularities that can be described and explained only at the macro level.

The point is not just that macro explanation and description is irreducible, but that this

irreducibility signals the existence of an objective macro structure. This kind of robust weak

emergence reveals something about reality, not just about how we describe or explain it. So

the autonomy of this robust weak emergence is ontological, not merely epistemological” [33].

Furthermore, “if those micro histories had been different, the macro explanation could still

have been true. The macro explanation is autonomous from the aggregate micro explanation”

[33].

Bedau gives waves, vortices, and traffic jams as three examples of systems that exhibit

weak emergence including weak downward causation [33]. Taking the example of a water

wave, we intuitively recognize a wave as a coherent macro-level structure. We also understand

that a wave (macro-level) comprises molecules of water (micro-level), so we know that the

aggregative behavior of the individual water molecules constitute the wave. The wave has

autonomy in that the wave retains its coherence regardless of which water molecules enter or

leave the system. It also has weak downward causation in that the wave will entrain water

molecules that constitute the wave as it moves. Bedau claims that weak emergence qualifies

to be emergent since it meets both “hallmarks of emergence” criteria given earlier [33].

Darley proposed a definition for emergence, “a true emergent phenomenon is one for which

the optimal means of prediction is simulation” [86]. Bedau’s definition of weak emergence

277



closely mirrors Darley’s definition. A macrostate of a system with a microdynamic is weakly

emergent if and only if the macrostate can be derived from the microdynamics and the

system’s external conditions only by simulation [34, p. 378]. However, a more general

sense of “simulation” is meant here than simply the execution of a computer model. “A

derivation by simulation involves the temporal iteration of the spatial aggregation of local

causal interactions among micro elements” [33]. For practical purposes, certainly the use

of a algorithm on a digital computer is implied; however, to avoid practical limitations in

storage and computational power, a simulation using a Laplacian supercomputer (based on

the idea of Laplace’s demon, a perfect observer with infinite computing capabilities) is also

sometimes used for thought-experiments. “The behavior of weakly emergent systems cannot

be determined by any computation that is essentially simpler than the intrinsic natural

computational process by which the system’s behavior is generated” [33]. Weak emergent

systems are computationally irreducible by definition, a concept which will be explored in

more depth in the chapter on simulation.

Simon writes that weak emergence allows “reductionism in principle even though it

is not easy . . . to infer rigorously the properties of the whole from knowledge of the

properties of the parts” [234]. If reductionism is possible in principle, it would seem that

reversing the reductive relations would enable prediction. Bedau argues that “since weakly

emergent properties can be derived (via simulation) from complete knowledge of micro-level

information, from that information they can be predicted, at least in principle. If we have

been observing a simulation of some system 𝑆 and at time 𝑡 we saw that 𝑆 was in state 𝑃 ,

then we know that there is an appropriate derivation that 𝑆 will be in macrostate 𝑃 at 𝑡”

[34, p. 393]. “In principle we can derive the system’s behavior because we can simulate

the system and observe its behavior for as long as necessary. And if we can derive how the

system will behave, we can predict its future behavior with complete certainty” [34, p. 393].

However, to me, it seems that this conception of “prediction” is not really prediction at all.

A prediction is a forecast of a future event that has not been observed. Therefore, we cannot

simulate the system up to time 𝑡 and claim that this process is identical to a prediction.

The same mechanism that made it impossible for us to predict any outcome before the start
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of the simulation still exists between the current time step and the next one at which we

seek to make a prediction.

The second (and the more interesting and practical) concern with Bedau’s weak emergence

is that it does not point to any methodology (other than the use of simulation) of how to

find and understand the phenomena that we’re most interested in. Bedau acknowledges

that “not all weak emergence is metaphysically or scientifically significant. In some quarters

emergence per se is treated as a metaphysically significant category that signals a qualitative

difference in the world” [33]. Emergence is “not a special, intrinsically interesting property;

rather, it is widespread, the rule rather than the exception” [34, p. 394]. Chalmers attempts

to combat this problem by defining weak emergence as “an interesting property that is

unexpected, given the underlying principles governing the system” [65, p. 253]. However,

this definition is dependent on an observer for whom the property is interesting. Therefore,

according to Chalmer’s view, an observer would use two criteria for classifying a property as

emergent: 1) how interesting the property is, 2) how difficult it is to deduce (obviousness).

Bedau recognizes that a “central challenge in complexity science is to identify and study

those exceptional, especially interesting weak emergent macrostates that reflect fundamental

aspects of complex systems and are amenable to empirical investigation” [34, p. 394]. This

is the motivation for my work in this thesis. The goal is to find the phenomena that are

both emergent and scientifically significant and interesting. To do this, we will have to

include a definition of emergence that includes a signal of “a qualitative difference in the

world.” Overall, I would agree with Bedau that weak emergence is the most appropriate

conception of emergence to adopt. Even without strong emergence, weak emergence (with

the addition of looking for interesting examples) is compelling enough and provides enough

of a framework for studying emergence.

A.2.6 Ontological versus Epistemological Emergence

One of the most divisive and irreconcilable differences in the viewpoints of emergence is a

fundamental question about whether emergence represents ontological novelty or is a result

of an imperfect observer. While it appears to be a rather subtle question, it is central to the
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debate about the existence and consequences of emergence. Stated in philosophical terms,

the fundamental question is whether emergence is an ontological or epistemological issue.

This leads to two main questions, 1) what does it mean for something to be an ontological

or epistemological problem, and 2) what are the consequences if the problem is ontological

versus epistemological? Some might argue that this debate is of no consequence outside of

the philosophy of science. What are the consequences if emergence is ontological instead of

epistemological? I think this debate is important because it can help us understand how to

approach solving the problem of emergence. If emergence is epistemological, then emergence

has to be understood as a consequence of observer dependence and limited information. The

introduction of an observer necessarily leads to the problem of observations and subjectivity.

On the other hand, if emergence is ontological, then it is not clear that new phenomenological

laws and more accurate knowledge of the state of a system will always help us to address

emergent phenomena.

This idea was also present during the Emergentist period. Most of the Emergentists

had an ontological view of emergence; however, others had a weakened sense or even an

epistemological view of emergence. Early Emergentists, especially Mill and Broad, had a

fairly strong ontological notion, wherein emergence had primitive causal powers that exist in

addition to those of the lower-level [206]. Broad makes it explicit that the unpredictability of

emergence is not a result of perceptual limitations—even a perfect observer would be unable

to deduce the resulting properties. “If the emergent theory of chemical compounds be true, a

mathematical archangel, gifted with the further power of perceiving the microscopic structure

of atoms as easily as we can perceive hay-stacks, could no more predict the behaviour of

silver or of chlorine or the properties of silver-chloride without having observed samples

of those substances than we can at present. And he could no more deduce the rest of the

properties of a chemical element or compound from a selection of its properties than we can”

[55, pp. 70–71]. Alexander had a weaker ontological sense in which emergent qualities were

metaphysically primitive but did not alter the fundamental physical dynamics [206]. At the

other end of the spectrum, Lewes implies emergents can be temporary and epistemological:

“To fill up this gap in our knowledge by the word ‘power,’ or ‘causal link,’ is illusory. Some
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day, perhaps, we shall be able to express the unseen process in a mathematical formula;

till then we must regard the [combination of hydrogen and oxygen to form] water as an

emergent” [171, p. 370, bracketed mine]. Although this was not a major claim by Lewes, this

view of emergence was one of the first in the line of claims that emergence is theory-based

and subjective. This provisional view is neither necessary nor productive, as I will explain

later in this chapter.

Hempel and Oppenheim argue that “emergence of a characteristic is not an ontological

trait inherent in some phenomena; rather it is indicative of the scope of our knowledge at

a given time; thus it has no absolute, but a relative character; and what is emergent with

respect to the theories available today may lose its emergent status tomorrow” [140]. It

then seems that the determining factor of whether something is emergent or not is whether

we have a working micro-theory. The history of physics, chemistry, and biology shows that

certain phenomena that were once considered emergent became not once the underlying

micro-theory was discovered. This supports Hempel’s assertion that emergence is relative

and will eventually be eliminated as a concept. Is this the end of emergence then? Is

every system headed towards being deducible, not just in principle, but also in practice?

I want to argue that unpredictability is, in fact, an ontological issue when dealing with

complex systems. Bedau argues that the epistemological issues associated with emergence

are a byproduct of the ontological structure of emergence. “Some people view the form of

emergence associated with the denial of reduction in practice as essentially limited to this

epistemological import, reflecting just the need for an epistemological crutch when explaining

derivative phenomena. Others view this epistemological feature of scientific emergence

as at least sometimes the consequence of a distinctive ontological structure in derivative

phenomena, and therefore as reflecting a distinctive ontology for those phenomena” [35, p.

214]. The latter viewpoint means that epistemological limitations are the consequence of a

deeper ontological cause.

An important distinction should always be remembered: unpredictability is a consequence

of emergence and not vice-versa. While some conceptions of unpredictability, such as the

notion of surprise or unexpectedness, are subjective (and rely on an underlying model that
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establishes an expectation), there are other definitions of unpredictability that are objective

and rigorous. These latter concepts are much more useful tools because they eliminate

the inherent subjectivity of the former concepts. In particular, concepts like chaos and

computation irreducibility are potentially inherent properties of certain complex systems. In

describing how chaotic behavior in deterministic systems leads to unpredictability, Crutchfield

says, “the effective dynamic, which maps from initial conditions to states at a later time,

becomes so complicated that an observer can neither measure the system accurately enough

nor compute with sufficient power to predict the future behavior when given an initial

condition. The emergence of disorder here is the product of both the complicated behavior

of nonlinear dynamical systems and the limitations of the observer” [79]. It seems that

emergence has elements of both ontological and epistemological characteristics. It should be

emphasized that even though Crutchfield says that unpredictability is partly due to observer

limitations, this should not be interpreted as supporting an exclusively subjective view of

emergence. This type of observer dependence is due to both practical limitations and due to

fundamental limits, e.g. the limits given by the Heisenberg Uncertainty Principle.

Ronald et al. [216] argue that emergence is observer dependent. They propose an

“emergence test” wherein there exists a designer and observer (who could be the same entity

as the designer). The designer constructs a system in language 𝐿1 describing simple and

local interactions between components. The observer is aware of the system rules written in

𝐿1; however, the role of the observer is to describe the behavior of the system in a language

𝐿2. The goal of the observer is to reconcile the “cognitive dissonance between the observer’s

mental image of the system’s design stated in 𝐿1 and his contemporaneous observation

of the system’s behavior stated in 𝐿2” [216, p. 228]. The harder it is for the observer to

bridge the gap between 𝐿2 and 𝐿1, the more surprising the observation and the more likely

it is emergent. It is easy to understand why an approach like this would be advocated;

simple rules leading to intricate patterns and behavior is one of the motivating examples of

emergent behavior. This especially true since Ronald et al. were approaching the problem

from the Artificial Life (ALife) field. ALife seems to be particularly prone to the definition

that emergence is observer-dependent. On the other hand, emergence from the world of
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physics and biology tends to be much more ontological in nature.

I, along with many others, feel that this observer- and language-dependent approach

is troublesome and unnecessary for the study of emergence. This approach has numerous

problems. The first is that it trivializes emergence to a lack of “sophistication of the observer”

[216, p. 230–231]. This makes emergence a useless concept. It makes any example of

emergence as theory-laden and introduces an infinite number of unknowable assumptions.

We have to infer the sophistication of the designer, their intent, the internal model of the

final working system, and their experiences in order to determine if there is a difference

between the observed and intended effects. For scientific work, this approach is a non-starter.

Other problems with Ronald et al.’s approach include that they believe that “artificial

[should be] treated differently from the natural” [216, p. 227]. They argue that their test

for emergence should only apply to artificial systems. I think that emergence should be the

same phenomena in both artificial and natural domains. I see no reason to branch the study

of emergence into natural and artificial systems. The concept and most examples are born

out of natural systems. The goal should be to unify the concept. Surely, Ronald’s approach

does not apply to natural systems, since that would imply the need to apply teleological

arguments. Teleology implies that every entity has a designed purpose, which is a position

that can not be rigorously sustained outside of philosophy. Regardless of the difficulty of

applying Ronald’s approach to natural systems, if we are to motivate our study of emergence

with examples in natural systems, then clearly we should develop a theory of emergence that

is equally valid to natural and artificial systems. Furthermore, Ronald et al. try to justify

the existence of the observer by appealing to the language used by other authors [216, p.

235]. For instance, Holland’s use of the term “direct inspection” or Gell-Mann’s use of the

term “apparently complex.” I am not convinced that the original authors intended so much

to be read into these use of these words. These are not scientific terms. Inspection is often

used in the mathematical field; however, there is no subjectivity implied in this context:

something can be solved by inspection if it fits a pattern for which a solution is known.

Similarly, I think Ronald et al. are misreading Holland’s words. Certainly some of the

words that Holland uses to describe emergence can be interpreted to imply the action of a
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person. But there is no mistaking Holland’s position that he does not believe that emergence

is observer dependent: “It is tempting to take the inability to anticipate—surprise—as a

critical aspect of emergence. It is true that surprise, occasioned by the antics of a rule-based

system, is often a useful psychological guide, directing attention to emergent phenomena.

However, I do not look upon surprise as an essential element in staking out the territory. In

short, I do not think emergence is an ‘eye-of-the-beholder’ phenomenon that goes away once

it is understood” [143, p. 5]. Clearly, Ronald et. al are using Holland’s quote out of context

and without a thorough reading of his position! In addition to these problems, even one of

the authors of this paper has distanced himself from approach advocated [35, p. 302]. Kubik

also criticizes Ronald et al.’s idea about surprise, “We think that judging the behavior of

complex systems on the basis of our subjective feeling of surprise is misleading and obscures

better explanations” [165]. In a more general rejection of observer dependence, Corning

writes, “Must the synergies be perceived/observed in order to qualify as emergent effects, as

some theorists claim? Most emphatically not. The synergies associated with emergence are

real and measurable, even if nobody is there to observe them” [76].

Ryan proposes a modified definition of weak emergence, “a property is weakly emergent

iff it is present in a macrostate but it is not apparent in the microstate, and this macrostate

differs from the microstate only in resolution. A weak emergent property is a limitation

of the observer, not a property of the system” [220, p. 71]. Unlike Bedau, Ryan claims

that weak emergence is epistemic. Ryan claims that once the mapping between macro- and

micro-states has been discovered, a property can no longer be considered emergent [220, p.

71]. I do not agree with this conclusion. If the only reason the mapping is known is through

a computationally irreducible process, then clearly the mapping is identically equal to the

simulation. If this is the case, then the mapping provides no new information. In information

theoretic terms, the mapping contains no new information (i.e., reduction uncertainty). If

uncertainty due to observational limitations is the source of uncertainty about the outcome,

then the emergence is epistemological. However, Bedau makes it explicitly clear that weak

emergence is not an epistemological notion. “Underivability without simulation is a purely

formal notion concerning the existence and nonexistence of certain kinds of derivations
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of macrostates from a system’s underlying dynamic” [34, p. 379]. Bedau claims that

even a Laplacian supercomputer could not derive weakly emergent properties except by

simulation [33]. Ryan claims that “if resolution is the only difference between a macrostate

and microstate, no property of the macrostate can be emergent from the microstate” [220,

p. 71]. Resolution is an observer dependent property and naturally leads to all of the

complications that observer-dependence implies. I believe the goal should be to formulate

emergence in a way that avoids unnecessary references to observer-dependent properties.

While establishing whether emergence is ontological or epistemological is important to

build a coherent definition of emergence, for practical purposes, the distinction may not

be critical. As Broad writes, “it matters little whether we ascribe this to the existence of

innumerable ‘latent’ properties in each element, each of which is manifested only in the

presence of a certain other element; or to the lack of any general principle of composition”

[55, pp. 66–67]. “Whatever the ultimate truth of the matter may be, both the chemist and

the physiologist are forced in practice to behave as if the complexes with which they deal

had emergent properties” [55, p. 76].

A.2.7 Nonseparability

The idea of nonseparability goes back to the core ideas of emergence as defined by the

British Emergentists. Nonseparability is often used to describe the relationships between

entities within the same level. Nonseparability means that spatiotemporally separating the

constituent parts in any way would lead to a qualitatively different system (see Healy [139] for

more discussion on separability). While nonseparability seems to imply a binary distinction,

in practice, there can often exist a spectrum of separability. Separability describes the

amount of coupling between two entities and the degree of uncertainty when the coupling

is broken. In the field of aerospace engineering, the coupling between the structural and

aerodynamic effects is known as aeroelasticity. However, while the combined effects are

important, engineering practice has shown that the structure and aerodynamics can be

analyzed separately and the design can be converged through an iterative approach. In

this case, since the coupling effects do not dominate the solution and an iterative approach
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can be used, this example of aeroelasticity would not be considered strictly nonseparable.

In other cases, the state of one entity is dominated by the state of another entity in the

system. One well known example of nonseparable states is quantum entanglement. In a

quantum entanglement “the composite system can be in a pure state when the component

systems are not, and the state of one component cannot be completely specified without

reference to the state of the other component. Furthermore, the state of the compound

system determines the states of the constituents, but not vice versa” [147]. An example of

this type of nonseparability in quantum states that leads to directly observable phenomena

are phase transitions that lead to superconductivity and superfluidity in helium [147]. This

central issue of separability is the degree of interactions with other components in the system.

Systems with minimal or no interaction between components are easily analyzed separately.

On the other hand, some systems are dominated by the interactions. Corning recognizes

that modern ideas about “reductionism” place a lot more emphasis on the interactions in

a system instead of simply looking at the individual constituent components. He goes on

to argue that the line between systems science and reductionism have blurred. Indeed, it

seems that reductionism and emergentism are converging towards a more singular concept

that recognizes the importance of each approach. Corning recognizes that “the interactions

among the parts may be far more important to the understanding of how a system works

than the nature of the parts alone” [76]. In other words, we can say that emergence is

brought about in systems where the behavior is dominated by interaction effects.

A.3 Concluding Remarks on the Philosophy of Emergence

As Goldstein points out, perhaps we should not look to emergence as an “explanation but

rather as a descriptive term pointing to the patterns, structures or properties that are

exhibited on the macro-scale” [128, p. 58]. It is clear that attempting to attribute novel

causal powers to emergent effects poses irreconcilable theories of explanation. Furthermore,

emergence should not be viewed as strict distinction. There exists a wide range of systems

with various degrees of emergence. Darley argues that there is no discontinuous separation

between emergence and non-emergence [86]. Emergent systems should be considered as a
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class of systems at one end of a spectrum. At one end of the spectrum are systems where the

state of the system can be predicted for all time (e.g., two-bodies subject to Newton’s laws)

while the other end of the spectrum has systems where prediction beyond one increment of

time or space is exceedingly difficult.

While it is possible that some phenomena that were once regarded as emergent less

mysterious as science produces laws and models that can be used for predictions, there

is the likely possibility that it will never be possible or practical to deduce systems that

are primarily governed by human and social behavior. Similarly, it may remain impossible

or impractical to deduce systems that are dominated by chaos or stochasticity. In other

words, while something may be deducible in principle, an emergence viewpoint might serve

as a practical framework to understand the system. As long as there are practical limits to

understanding system behavior, these techniques will remain useful.

Another important philosophical question is whether emergence is rare or ubiquitous. The

answer will often depend on the viewpoint used when defining emergence. The consequence

of this choice will dictate the relevance and usefulness of the entire concept of emergence. If

you accept the view of weak emergence, then emergence is common with many examples of

systems exhibiting emergence in the weak sense. However, if you are of the position that

emergence only exists in the strong form then there will be likely few, if any, examples of

emergent systems. At the other extreme, if emergence is extremely common then it is loses

its utility and interestingness as a concept. We should aim to find a middle ground, one

where the ideas of emergence can be used to help us understand a class of systems that is of

interest to the scientific community. Bedau argues that “the most important goal should be

to show that emergent properties are useful in empirical science. . . A defense of emergence

will be secure only if emergence is more than merely a philosophical curiosity; it must be

shown to be a central and constructive player in our understanding of the natural world”

[34, p. 376]. Towards this goal, I hope to show that emergence is a useful concept not in

just understanding the natural world, but also engineering complex systems.
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APPENDIX B

INFORMATION THEORY

Chapter Road Map: The goal of this chapter is to provide background on the use of

information theory within the study of complex systems. The background and results in

this chapter will be used throughout this dissertation.

B.1 Information Theory

The use of information theory when analyzing complex systems is not new. Ashby laid out

the connections between cybernetic systems and information theory in his 1956 work An

Introduction to Cybernetics [11]. Since then, other researchers have continued in this

tradition in advocating or using information theory as a natural application of information

theory in analyzing complex systems. Krippendorff argues that “entropy measures provide

access to a rich source of data for the construction of theories in which variety, diversity, and

differentiation are the target of generalizations” [163]. Entropy is the “irreducible complexity”

of a random process [77, p. 1]. We can see the overlap in the language used to describe

emergence and complexity and the language of information theory. The connection between

information theory and statistical mechanics is remarkably strong. Shortly after Shannon

formalized information theory, Brillouin showed the equivalence of information theory and

statistical mechanics [241]. Jaynes [152, 153] showed that information theory could be used

to derive the laws of statistical mechanics.

Information theory remains one of the dominant approaches in studying complex systems.

This include the work of Shalizi [229], Ryan [219], Prokopenko et al. [212], and many

others. Many use information theory to measure the complexity in a system. However,

this is not my goal in this thesis. There does not seem to be a clear connection between

complexity measures and emergence. There is neither a “critical” level of complexity that
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yields emergence nor is there a problem-independent case to be made that higher measures

of complexity yield emergence. Instead, information theory is used here because it gives

us the methods to measure changes in probabilistic outcomes. Information theory provides

a much more robust measure of the variability of a distribution than simpler statistical

measures like variance [175].

Information theory is also a useful tool because it is a universal prediction method that

requires no model to make predictions [229, pp. 23–24]. This model-free approach can be

applied to a large range of systems without having to validate a model for the system first.

Even more fundamentally, the lack of a model to predict or explain system behavior is one

of the common features of emergence and complex systems.

B.2 Uncertainty, Information, and Entropy

Information and uncertainty are fundamentally linked concepts. In the simplest definition,

information is the change in uncertainty regarding a set of outcomes. A message that does

not change our uncertainty about an outcome contains no information. At the other extreme,

the most amount of information comes about when all uncertainty is removed and there exists

a single certain outcome. As Wiener wrote, “the transmission of information is impossible

save as a transmission of alternatives” [253, p. 10]. While much of information theory is

couched in communication theory and transmitted messages, the concept of a message can be

generalized to include any process where there is a transmission of information, including the

performing of experiments. In fact, in 1953, Leon Brillouin argued that information theory

applies equally to an observer in the laboratory receiving messages from his instruments

about the outcome of the experiment [241]. Cover and Thomas define a communication

channel as “a system in which the output depends probabilistically on its input” [77, p.

7]—a definition which can apply to almost any system we wish to study. Regardless if we

are studying real world systems or systems in a controlled experiment, information theory

applies. According to Nicolis [204, p. 186], information requires two fundamental conditions:

1. A sharp symmetry breaking in space, owing to which other possible issues of the

reading process are continuously eliminated.
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2. An element of unpredictability, associated with the revealing of an object or a message

that the reader could not infer to begin with.

Information theory is typically formulated in discrete terms. While information theory

can be generalized to a continuous form [149], I will formulate my thesis in the discrete

form for several reasons. The first is that the discrete form is better behaved with many

desirable properties (discussed later in this chapter). Additionally, any measurements of

the real world, and especially computer simulations, are inherently discrete. Crutchfield

argues that “due to the inherent limitations of scientific instruments, all an observer can

know of a process in nature is a discrete-time, discrete-space series of measurements” [80].

Similarly, Badii argues that discretization (i.e., symbolic representation) of physical systems

does not pose any problems; in fact, many natural systems can be easily and usefully

represented discretely. Similarly, Nicolis and Prigogine argue that most physical processes

are fundamentally discrete [204, pp. 159–160].

B.2.1 Discrete Uncertainty and Information

Uncertainty is a measure of the logical variety in a system. Uncertainty 𝑈 is defined by the

base-2 logarithm of the number 𝑁 of options available with reference to some variable X.

𝑈 (X) = log2 𝑁X

The amount of information of message 𝑥 out of the set of all possible messages X is the

difference in uncertainty before and after the message.

𝐼 (𝑥 ∈ X) = 𝑈 (X)− 𝑈 (𝑥) = log2 𝑁X − log2 𝑁𝑥 = − log2
𝑁𝑥

𝑁X
= − log2 𝑝 (𝑥)

B.2.2 Entropy

Entropy is a measure of the uncertainty in a probability distribution. It is a measure of

“how much freedom one is given in the selection of an event, or how uncertain the outcome

is, or how difficult to predict the outcome” [149, p. 5]. More concretely, entropy measures

the number of bits on average required to describe the random variable [77, p. 5].

The entropy 𝐻 of a random variable X with the probability mass distribution 𝑝 (𝑥) =

Pr (X = 𝑥) for 𝑥 ∈ X is defined by Equation 30. The probability distribution of X is given
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by 𝑝 (𝑥) = (𝑝1, ..., 𝑝𝑛) with where 𝑝𝑖 represents the probability of each of the 𝑛 outcomes;

however, to simplify the notation, the limits of summation will be simply noted as 𝑥,

indicating a summation over the domain of the corresponding variable.

𝐻 (X) = −
∑︁

𝑥

𝑝 (𝑥) log2 𝑝 (𝑥) (30)

The entropy function satisfies three conditions: 1) 𝐻 is continuous function of the

probabilities, 2) if all probabilities are equal, the entropy is a monotonically increasing

function of the number of probabilities considered, and 3) the information measure must be

the same regardless of composition of the individual probabilities. Shannon proved that the

only equation that satisfied these conditions is given by 𝐻 (𝑝𝑖) = −𝐾
∑︀
𝑖

𝑝𝑖 ln 𝑝𝑖, where 𝐾 is a

positive constant.

In the discrete case, the entropy is always non-negative and has a maximal value of

ln |𝑁 |, where 𝑁 is the number of possible states, if 𝑝 is uniform. This is intuitive since a

uniform distribution represents the highest uncertainty with no outcome having a higher

probability than any other. When interpreted with respect to a discrete stochastic system,

where 𝑝 represents the probability of each state of the system, the entropy is a measure of

the unpredictability a future state of any system.

Information theory and entropy provide us with not only a theoretical basis for the

analysis of systems, but also a highly practical one. Information theory is a nonparametric

approach since it does not assume a functional form of the probability distribution. This

gives us flexibility in the types of systems we can apply it to. Also, entropy is a “measure

of observational variety or of actual (as opposed to logically possible) diversity” [163].

Unobserved outcomes or any outcomes with probability zero do not enter the measure with

the convention that 0 log 0 = 0.

B.2.2.1 Continuous formulation of entropy

Information theory can also be formulated for random variables with continuous distributions.

The difference between discrete and continuous formulations are straight forward, with the

summations of the discrete form replaced with integrals over the continuous domain. However,

the continuous form loses many of the desirable properties of the discrete form. Unlike
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the discrete form, which measures entropy is an absolute measure, the continuous entropy

is a measure of relative entropy [149, p. 17]. Continuous entropy is not invariant under

coordinate transformation [149, p. 20], and is therefore dependent on the coordinate system

used. Because of these differences, continuous entropy can be negative or infinite, if it exists

at all.

B.3 Mutual Information

Conditional entropy, relative entropy, and mutual information are all closely related concepts.

In fact, their relationship to each other can be defined by Equation 31. Each of these

quantities will be discussed in this section.

𝐼 (X, Y) = 𝐻 (X)−𝐻 (X|Y) (31)

B.3.1 Conditional Entropy

Considering two discrete random variables X and Y, a conditional entropy can be defined

as Equation 32. Conditional entropy is the entropy of a random variable conditional on the

knowledge of another random variable. The joint distribution is given by 𝑝 (𝑥, 𝑦) and the

marginal distributions of X and Y are given by 𝑝X (𝑥) and 𝑝Y (𝑦), respectively.

𝐻 (X|Y) = −
∑︁

𝑥

∑︁
𝑦

𝑝 (𝑥, 𝑦) log 𝑝 (𝑥, 𝑦)
𝑝Y (𝑦) (32)

B.3.2 Relative Entropy

Relative entropy is a measure of the distance between two distributions. The

Kullback-Leibler (KL) divergence between two probability distributions 𝑝 (𝑥) and 𝑞 (𝑥) is

defined as Equation 33.

𝐷 (𝑝‖𝑞) ≡
∑︁

𝑥

𝑝 (𝑥) log 𝑝 (𝑥)
𝑞 (𝑥) (33)

Other terms for relative entropy include Kullback-Leibler information number, infor-

mation divergence, information for discrimination, information gain, and cross entropy.

Kullback-Leibler divergence is a type of Bregman divergence. Like all Bregman divergences,

they are defined on a convex function; therefore, relative entropy has the property of

convexity.
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Relative entropy has the property of being non-negative and equal to zero if and only

if 𝑝 = 𝑞. However, this quantity is not a true measure since it is not symmetric and does

not satisfy the triangle inequality [77, p. 19]. One simple method, as was done by Fisch

et al. [114], to make it symmetric is to define a new metric, 𝐾𝐿2, as the average between

the relative entropy between 𝑝 and 𝑞, and the relative entropy between 𝑞 and 𝑝 as shown in

Equation 34.

𝐾𝐿2 = 1
2𝐷 (𝑝‖𝑞) + 1

2𝐷 (𝑞‖𝑝) (34)

Jensen-Shannon divergence is a further improvement, with the property of being sym-

metric and finite-valued, as defined in Equation 35, where 𝑟 = 1
2 (𝑝 + 𝑞).

𝐽𝑆𝐷 (𝑝‖𝑞) = 1
2𝐷 (𝑝‖𝑟) + 1

2𝐷 (𝑞‖𝑟) (35)

B.3.3 Mutual Information

If two random variables are dependent, knowledge of one variables leads to a reduction in

uncertainty in the other variable. This is called mutual information. Mutual information is

therefore a measure of dependence between X and Y. The mutual information between X

and Y, 𝐼 (X, Y), is the relative entropy between the joint probability distribution 𝑝 (𝑥, 𝑦)

and the product of the marginal distributions 𝑝X (𝑥) and 𝑝Y (𝑦) of X and Y, respectively.

This is shown in Equation 36.

𝐼 (X, Y) ≡ 𝐷 (𝑝 (𝑥, 𝑦) ‖𝑝X (𝑥) 𝑝Y (𝑦)) =
∑︁

𝑥

∑︁
𝑦

𝑝 (𝑥, 𝑦) log 𝑝 (𝑥, 𝑦)
𝑝X (𝑥) 𝑝Y (𝑦) (36)

If the random variables are independent, the mutual information is equal to zero. If the

random variables are dependent, then the mutual information is non-negative and

symmetric [77, p. 7]. The symmetry implies that knowledge of X provides as much

information about Y as knowledge of Y provides about X.
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