GRAPH-LEVEL OPERATIONS:
A HIGH-LEVEL INTERFACE FOR GRAPH
VISUALIZATION TECHNIQUE SPECIFICATION

A Thesis
Presented to
The Academic Faculty

by

Charles D. Stolper

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in
Computer Science

School of Interactive Computing
Georgia Institute of Technology
December 2016

Copyright (© 2016 by Charles D. Stolper

GRAPH-LEVEL OPERATIONS:
A HIGH-LEVEL INTERFACE FOR GRAPH
VISUALIZATION TECHNIQUE SPECIFICATION

Approved by:

John Stasko, Advisor
School of Interactive Computing
Georgia Institute of Technology

Duen Horng (Polo) Chau, Co-Advisor
School of Computational Science and
Engineering

Georgia Institute of Technology

James Foley
School of Interactive Computing
Georgia Institute of Technology

Rahul Basole
School of Interactive Computing
Georgia Institute of Technology

Alex Endert
School of Interactive Computing
Georgia Institute of Technology

Jarke J. van Wijk
Dept. of Math and Computer Science
Eindhoven University of Technology

Date Approved: 9 August 2016

For Tory,

my sister,

my favorite one.

1l

ACKNOWLEDGEMENTS

I, and therefore this thesis, have benefited from the advice, encouragement, time,
and skill of so many over the course of my five years at Georgia Tech, let alone my
twenty-three before that. Everyone I am about to mention (and plenty that I had to
leave out) deserve far more than my brief thanks here.

Thank you to my parents (Charlie and Christy), my sister (Tory), my grandfathers
(Dave and Max), and my family (Ted, Paige, Pierce, Tim, Lori, Tona, and Bob) who
have loved, encouraged, and supported me my whole life.

Thank you to the B-105 women (Amy, Mary Katherine, Mary Leah, May Lauren,
and Cissy) for adopting me seven and a half years ago and the resulting hugs, smiles,
encouragement, and food. Thank you to Sara, Caitlin, Lauren, Justin, Katie, Rachel,
Courtney, and Bobby for all the fun. Thank you to Kate, Sam, and the MDP crew for
the same. Thank you to Jon and the rest of the CoC/EES frisbee teams over the years
and Nolan, Qiyu, Jeremy, and the rest of the pickup gang for the exercise, fun, and an
all-school championship. Thank you to Lacy for always listening and for occassionally
telling me that I am an idiot. Thank you to Daniel for the conversations about sports,
grad school, and engineering. Thank you to Aayush, Guarav, Nasser, Brad, Brad,
Cody, and Brendan for being such great roommates over the years. Thank you to
Paul, Angelica, J-D, Kim, and Verun for the board game nights. Thank you to Jon
for all the Red Sox games. Sam and Mark, you two are my oldest friends, and my life
has only been better because of you. Thank you to Paul and Koh for the tech talk,
the jokes, and the far-too-infrequent reunions.

Sarah, Ben, Miranda, Emily, Heather, Jess, Casey, David, Mariam, Kim, Cather-

ine, Hank, Chris, Emma, Yacin, Andrew, and the rest of the Happy Hour, Tailgating,

v

and TSRB crews: Someday I will write a thousand words about how much you all
mean to me. You all were my lifeline throughout my entire time in Atlanta. I could
never have done this without you.

Thank you to Kayla for being my partner in first-time ethics educating. Thank
you to Gabriel for surviving quals with me, snowstorm slumber parties, beautiful
lakeside weddings, and giant bear hugs. Thank you to Bri for the lunches, the rants,
the high fives, and for joining me in panicking over and then hitting every milestone
in the PhD and job search processes. Thank you to Maia for being my secretkeeper
and, of course, for Friends. Thank you to Emily for never letting me forget that
she will always be one of my closest friends. Thank you to Prateek for the puzzles,
karaoke, board games, lifting, countless stories, and sprinting to the finish with me.
Thank you to Lydia for helping me check off nearly my entire Atlanta bucket list
while also getting me to write this thesis. Thank you to my roommate Matt for
being an amazing friend and my externalized common sense. Thank you to Arya for
the random meals, the random video games, the random conversations, and for the
random round of Rock Band that helped my decision to come to Georgia Tech in
the first place. Brian, thank you for the football games, baseball talk, caffeine, and
always telling me that I could do it. Max, thank you for epic road trips, epic games
of telephone tag, and for listening to everything.

Thank you to everyone who has ever shared the Interactive Interfaces Lab (and the
GT Vis Lab, when it formed) with me over the years, including Youn-ah, Mengdie,
Ramik, Yi, Julian, Jaegul, Tanyoung, Rosa, HP, Hannah, Anand, Sanjay, Bahador,
John, Melanie, Alexander, Sakshi, Arjun, Emily, Valentino, Swarnika, Andrew, and
Ari. Thank you to those that came before me who were happy to share their advice,
wisdom, and friendship: Carsten, Chris, James, Duke, Ji Soo, Scott, and Dorn.
Thank you to Leo for being my friend, mentor, and inspiration since Day 1. Thank

you to everyone in the Polo Club for Data Science. Special thanks especially to Jerry,

Florian, and Aakash for being wonderful as well as for all of your work with GLOv1
and GLO-STIX. Even more thanks to Brian for the same, and also for helping revise
the paper while on your honeymoon. Thank you to the XDATA team (Jeff, Roni,
Curt, Arvind, Alex, Alex, Hendrik, and Kris) for your feedback on early designs of
GLOs. Thank you to all of my VIS, SIGCSE, and internship friends. Thank you
to Joyce for the Summer of NY Baseball. Thank you to Joseph for the discussions
on visualization languages, dancing, and getting me a glass of water. Thank you to
Eli for the food, the advice, and the hugs. Thank you to Robert for being a friend,
a labmate, a sounding board, and a stand-up comic and for the pleasure of sharing
five years at Tech with you. Thank you to Alex for being my labmate, my sounding
board, my sage, and one of my dearest friends and confidants. Thank you to Hannah
for the lifelong friendship that can only be forged in the furnace that is the first years
of a PhD.

Thank you to all of my mentors over the years at Thoreau, Sandborn, Fessenden,
Concord Academy, and Furman. Thank you to Ben Stumpf for the advice, especially
to write in a text editor with spell-check turned off. Thank you to Bill Adams for
teaching me Java and the basics of computer science and starting me on this crazy
path. Thank you to Craig Caldwell, John Barrington, Tim Fehler, David Spear,
and Lane Harris for the classes, academic life conversations, and grudging acceptance
that T was not going to get a PhD in History. Thank you to Kala Kennemore for
all of the help and smiles. Thank you to Chris Healy, Bryan Catron, John Harris,
and Mark Woodard without whose excellent computer science and math education I
could never have attended Georgia Tech, let alone done the work I have done. Thank
you to Kevin Treu for his mentorship and friendship, as much during my time at
Furman as since I graduated. A huge thanks to Hayden Porter for pulling me aside
in October of my freshman year and recruiting me to do a research project with him.

It was related to graph visualization. I clearly still haven’t looked back.

vi

Thank you to Stuart Rose, Court Corley, and the Visual Analytics group at PNNL,
Adam Perer, David Gotz, and the Healthcare Analytics group at IBM, Bongshin
Lee, Nathalie Riche, and the CUE and neXus groups at MSR. Thank you for the
mentorship, advice, brainstorming, and patience. I learned so much from each of
you.

Thank you to Chris Collins and Shixia Liu and the rest of the InfoVis DC partic-
ipants for all of their advice on what would become this work.

Thank you to all of faculty and staff at Georgia Tech for five incredible years.
Thank you to Monica Ross and Wanda Purinton, who are the nicest women in the
world and without whose talent and skill I am convinced IC would not function.
Thank you to Jacob Eisenstein, who taught me everything I know about machine
learning. Thank you to Keith Edwards for the smiles, the jokes, the font nerd talk,
and for declaring me Qualified. Thank you to Mark Guzdial for his mentorship in how
to teach computer science and for breaking the news early that I got into Tech. Thank
you to Amy Bruckman for being a passionate faculty voice for students. Thank you
to Annie Anton for her leadership, zeal, energy, and for inviting me into her circle of
councilors.

Finally, my most important thanks go to my patient, supportive, and brilliant
thesis committee. Jack, thank you for your dry sense of humor, spot-on probing
questions, and for finding me at the VIS reception in Paris to talk about GLOs.
Rahul, thank you as much for our conversations about soccer as our conversations
about network visualization. Alex, you could have been in any number of prior
sections here: from VIS friend, to internship mentor, to professor, and finally thesis
committee member. Thank you for being an incredible friend and mentor to me
through every stage of our relationship. Jim, you have been one of my greatest
advocates during my entire tenure at Tech. Thank you for sharing your wisdom,

experience, and humor with me. Polo, you are caring and honest and I cannot

vil

imagine the last three years without you. Thank you so much for inviting me out to
Starbucks to talk about a new way to describe graph visualization transitions. My
relationship with John can be summed up by the first time we ever met when I was
looking at grad school programs: we spent fifteen minutes talking about aspects of
visualization research I was interested in, fifteen minutes talking about aspects of
visualization research he was interested in, and fifteen minutes talking about the Red

Sox and Braves. John, thank you for everything.

Research for this thesis was funded by the National Science Foundation under
Grants No. IIS-1320537 and IIS-1563816 and the XDATA program sponsored by
DARPA and the Air Force Research Laboratory (AFRL). Prior portions of my PhD
were funded by the National Science Foundation under Grant No. CCF-0808863 and
a Department of Homeland Security Ph.D. Fellowship in Data Analysis and Visual
Analytics. The content of the information in this document does not necessarily
reflect the position or the policy of the Government, and no official endorsement

should be inferred.

viil

TABLE OF CONTENTS

DEDICATION iii
ACKNOWLEDGEMENTS iv
LIST OF TABLES oo xii
LIST OF FIGURES xiii
I INTRODUCTION e 1
1.1 Term Definitions Lo)
1.2 Thesis Statement and Research Questions 8
1.3 Contributions and Impact 9
I BACKGROUND 11
2.1 Visualization Toolkits and Grammars 11
2.2 Systems for Applying Techniques to Data 17
2.3 Systems for Specifying Visualization Techniques 19
2.4 Visualization Design Space Analysis 21
IIT A METHOD FOR GLO MODEL INDUCTION 22
3.1 Seed Technique Identification 23
3.1.1 GLOv1 Identification 24
3.1.2 GLOv2 Identification 25
3.2 Transitions, GLOs, and the Transition Matrix 28
3.2.1 Semantic Substrates to PivotGraph 29
3.2.2 Force-Directed Layout to Matrix Plot 35
3.2.3 Graph-Level Operations and the Transition Matrix 41
3.2.4 Handling GLO Uncertainty 43

3.3 Inducing an Expected Data Model, Model of Visual Elements, and
Set of Graph-Level Operations from the Transition Matrix. 51
3.4 Augmenting the Operations Set 53

X

IV THE GRAPH-LEVEL OPERATIONS MODEL 55

4.1 Graph Data Model 55

4.2 GLO Visual Element Model 58
421 Glyphs 58

4.2.2 Generationso 64

4.2.3 Canvases 68

424 GLODisplay 69

4.3 Operation Sets 71

4.4 Language Properties of Graph-Level Operations 72

4.5 Differences Between GLOv1 and GLOv2. 7

4.6 Specifying Techniques Using GLOs 80

V UTILITY OF GRAPH-LEVEL OPERATIONS 85
5.1 Easing the Engineering Challenge 85
5.1.1 Implementations 88

51.2 GLO-STIX 89

51.3 GLO-CLI. 92

5.2 Enabling A Deeper Understanding of Techniques 93
5.2.1 Feature Space Analysis, 94

5.2.2 GLO Distance 101

5.3 Identifying New Techniques 102
5.3.1 Approximate Measures of GLO Expressiveness 109

VI CONCLUSION 112
6.1 Contributions and Impact 112

6.2 Limits of GLOs 113

6.3 Future Research Directions 116
APPENDIX A — GLOV1 SEED TECHNIQUES 121
APPENDIX B — GLOV2 SEED TECHNIQUES 127
APPENDIX C — GLOV1 OPERATIONS SET 176

APPENDIX D — GLOV2 OPERATIONS SET 182
APPENDIX E — GLOV2 LITERATURE REVIEW RESULTS . 193
APPENDIX F — HIERARCHICAL CLUSTERINGS 200

REFERENCES 237

x1

= GC R \V)

10
11
12

LIST OF TABLES

GLOV2 seed techniques,
GLOv2 Constants

GLOvV2 operations equivalent to GLOv1 operations.

Inverse GLOs required for GLOv2 GLOs. For each GLO in the first
column that the technique specification contains, the corresponding
inverse GLO(s) in the second column must be applied to return to the
null state.

Number of GLOv2 seed technique specifications (out of 29) containing
each GLOvV2 operation.

GLOv2 operations that do not appear in any GLOv2 seed technique
specifications.

Results of hierarchically clustering technique vectors created by ignor-
ing optional parameters (no-flags).

Results of hierarchically clustering technique vectors with optional pa-
rameters (flags).

Results of hierarchically clustering technique vectors created by adding
features for optional parameters (flags-xtra).

GLOvV2 specification for modified NodeTrix display in Figure 62b.
GLOV2 specification for ‘GLO’ teaser technique in Figure 1.

GLOvV2 operations unique to a single seed technique.

xii

84

84

96

97

© o0 N O Ot =

11

12

13

LIST OF FIGURES

Graph-Level Operations
Arc Diagram rendered in GLO.js.

Novel graph visualization technique combining the layout of Pivot-
Graphs [244] with the interaction of Semantic Substrates [96]. The
nodes in the graph (characters in a book) are aggregated by cluster
label (rows) and gender (column). Edges are clustered by the cluster
and gender of the source and target endpoint nodes and colored by the
target node’s cluster. These aggregated edges are only shown when the
analyst mouses over an endpoint node.

GLOv2 EdgeMap B seed technique from [74].
First example transition techniques
GLOv2 GraphDice seed technique from [36].
Unmodified Semantic Substrates representation.
Semantic Substrates representation modified to show all edges.

Semantic Substrates representation modified to show all edges and po-
sition nodes on = by the discrete gender attribute.

Semantic Substrates representation modified to show all edges, position
nodes on z by the discrete gender attribute, and show x axis labels. .

Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, show x axis labels, and
aggregate nodes into super-nodes.

Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, show x axis labels, aggre-
gate nodes into super-nodes, and size the super-nodes by the number
of nodes they represent.

Semantic Substrates representation modified to show all edges, posi-
tion nodes on x by the discrete gender attribute, show z axis labels,
aggregate nodes into super-nodes, size the super-nodes by the number
of nodes they represent, and aggregate the edges by the edges’ source
gender, source cluster, target gender, and target cluster..

xiil

24
29
32
32
33

33

34

35

36

14

15
16
17

18

19

20

21

22

23

Semantic Substrates representation modified to show all edges, posi-
tion nodes on x by the discrete gender attribute, show z axis labels,
aggregate nodes into super-nodes, size the super-nodes by the num-
ber of original nodes they represent, aggregate the edges by the edges’
source gender, source cluster, target gender, and target cluster, and
size the super-edges by the number of original edges they represent. In
other words, a PivotGraph representation of the graph.

Second example transition techniques
Unmodified Force Directed Diagram representation.

Abstract Force Directed Diagram representation after evenly distribut-
ing nodes on x (a) and after evenly distributing nodes along the x axis
sorted by cluster and aligning the nodes at the top of the display.

Abstract Force Directed Diagram representation after evenly distribut-
ing nodes on x sorted by cluster, aligning the nodes at the top of the
display, and cloning the set of node glyphs.

Abstract Force Directed Diagram representation after evenly distribut-
ing nodes on z sorted by cluster, aligning the nodes at the top of the
display, cloning the set of node glyphs, and evenly distributing the new

nodes on y sorted by cluster without (a) and with (b) an inverted axis.

Abstract Force Directed Diagram representation after evenly distribut-
ing nodes on x sorted by cluster, aligning the nodes at the top of the
display, cloning the set of node glyphs, evenly distributing the new
nodes on y sorted by cluster with an inverted axis, and aligning the
new nodes to the left of the display.

Abstract Force Directed Diagram representation after evenly distribut-
ing nodes on x sorted by cluster, aligning the nodes at the top of the
display, cloning the set of node glyphs, evenly distributing the new
nodes on y sorted by cluster with an inverted axis, aligning the new
nodes to the left of the display, and drawing edges from the second set
of nodes (on the left) to the first set of nodes (on top).

Abstract Force Directed Diagram representation after evenly distribut-
ing nodes on x, aligning the nodes at the top of the display, cloning
the set of node glyphs, evenly distributing the new nodes on y with an
inverted axis, aligning the new nodes to the left of the display, drawing
edges from the second set of nodes (on the left) to the first set of nodes
(on top), and displaying edges as squares. In other words, the target
abstract Matrix Plot representation.

Sample abstract techniques where (%, technique) transition matrix en-
tries share operations.

Xiv

39

41

24

25

26
27

28

29

30

31
32
33
34
35
36
37

38

39

40

Four abstract techniques where (%, technique) transition matrix en-
tries contain the evenly distribute nodes on {axis} GLO with different
mandatory parameters and optional parameters.

Abstract Arc Diagram representations with different optional sorting
parameters. Lo L L e e e e e

Representations with and without the optional within parameter.

Sample abstract techniques where (*, technique) transition matrix en-
tries use or do not use the group-by optional parameter.

Sample abstract techniques where (x, technique) transition matrix en-
tries use or do not use the group-by optional parameter including
bounding boxes determined by the Circle Graph node positions.

Sample abstract techniques where (*, technique) transition matrix en-
tries use a group-by optional parameter to display intra-group edges
differently than inter-group edges.

The GLOV2 position nodes by {attr} operation positions node glyphs
evenly along the axis with discrete parameters and relatively along the
axis with continuous parameters.

GLOv2 GMap seed technique from [94].,
GLOv2 CiteVis seed technique based on [213].
Demonstration of axis uncertainty.
GLOvV2 seed techniques with differing node and edge glyph displays. .
GLOv2 EdgeMap B seed technique from [74].
GLOv2 Citevis seed technique based on [213].

GLOvV2 Force-Directed Layout seed technique and GLOv2 GMap seed
technique. The straight-line edge glyphs in the Force-Directed Layout
have the show all edges interaction mode, while the straight-line edge
glyphs in the GMap technique have the show faded interaction mode.

GLOv2 Semantic Substrates seed technique from [204] with edge glyphs
in the show incident edges display mode.

GLOV2 List View seed technique from [199]. Edge glyphs utilize the
show faded-and-incident interaction mode.

GLOv2 EdgeMap A and Edgemap B seed techniques from [74]. Both
techniques utilize the in-out edges interaction mode where in edges of
the selected node are displayed differently from out edges.

XV

46

47
48

49

49

50

52
23
54
54
29
29
61

62

62

63

41

42

43
44

45

46
47

48
49
50

ol

52

53
54
%)
56

57
o8

GLOv2 Edge-Label-Centric seed technique from [182]. The red straight-
line edges are drawn from the source generation on the left to the target
generation on the right through the waypoint generation of super-edge
glyphs in the center. o 0oL

GLOv2 MatLink seed technique from [118] demonstrates source and
target node generations. L.

GLOvV2 ScatterNet seed technique from [27] demonstrates axis labels.

GLOv2 MatrixExplorer seed technique from [116] demonstrates canvas
partitioning within a GLO Display.

GLOv2 Attribute Matrix seed technique from [153] demonstrates filter-
partitioning canvases and meta-axis labels.

GLOv2 GMap seed technique from [94] utilizing convex hulls.

GLOv2 DOSA seed technique from [232] utilizes the all-canvases op-
tional parameter.

FEvenly distribute nodes on {x} with and without a within attribute. .
Align nodes {center} with and without a group-by attribute.

(a) Force-Directed Layout, (b) Force-Directed Layout after applying
hide edges, (c) Force-Directed Layout after applying hide edges and
show all edges (group-by: {cluster})

(a) GLOv1 Adjacency Matrix seed technique with circles for edges and
(b) equivalent Adjacency Matrix in GLOv2 with squares for edges. . .

Force-Directed Layout, Matrix Plot, and EdgeMap A techniques ren-
dered in GLO.js.

Visualization software stack
The GLO-STIX interface.
The GLO-CLI interface.

Dendrogram results for three hierarchical clustering using three vector-
ization methods, Hamming distance, and average cluster comparison
rendered using Matplotlib [129].

GLOv2 NodeTrix seed technique from [117].

GLOV2 seed techniques clustered by symmetric transition distance ren-
dered with GLO.js. On the left, edges are colored by the one-way tran-
sition distance. On the right, edges are colored by the symmetric sum
of the transition distances. Rendered using GLO.js

Xvi

67
69

69

70
72

74
75
76

76

79

81
36
90
92

99
100

59
60

61

62

63
64

65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

Clusters visible in the symmetric GLO Distance matrix. 103

Novel graph visualization technique combining the layout of Pivot-
Graphs [244] with the interaction of Semantic Substrates [96]. 104

Example of a minor tweak to a seed technique by changing the Force-
Directed Layout seed technique’s edge display mode to curved lines. . 105

NodeTrix [117] GLOvV2 seed technique and modified NodeTrix display
with nodes colored by cluster, intra-cluster edges colored by a constant,
faded intra-cluster edges, and highlighting intra-cluster edges incident
to a selected node created using GLO.js. 105

Arc Diagram [243] created using GLOv1 within GLO-STIX. 107

Matrix Plot and MatLink [118] techniques rendered in GLO.js. Tran-
sitioning between these two techniques is more efficient without tran-

sitioning through an intermediate null state. 114
Single technique defined using two distinct specifications. 115
Examples of edge bundling from [120]. 118
Bring-and-Go interaction from [166]. 119
GLOv1 force-directed layout seed technique. 121
GLOvV1 circle plot seed technique. 122
GLOvV1 scatterplot seed technique. 123
GLOv1 semantic substrates [204] seed technique. 124
GLOv1 PivotGraph [244] seed technique. 124
GLOv1 adjacency matrix seed technique. 125
GLOvV2 Force-Directed Layout seed technique from [138]. 128
Force-directed layout [138] rendered in GLO.js. 128
GLOv2 Matrix Plot seed technique from [34]. 129
Approximate matrix plot [34] rendered in GLO.js. 129
GLOv2 Cluster Circles seed technique from [69]. 131
Cluster circles [69] rendered in GLO.js. 131
GLOv2 Circle Graph seed technique from [207]. 132
Circle graph [207] rendered in GLO.js. 132
GLOvV2 GeneVis A seed technique from [23]. 133

XVvil

83
84
85
86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Genevis A [23] rendered in GLO.js., 134

GLOv2 GeneVis B seed technique from [23]. 135
Approximate Genevis B [23] rendered in GLO.js. 135
GLOv2 Arc Diagram seed technique from [141]. (Specifically the ‘con-

tributor coloring’ subfigure.) 0oL 136
Arc diagram [141] rendered in GLO.js. 136
GLOv2 Matrix Browser seed technique from [262]. 137
GLOv2 Matrix with Bars seed technique from [205]. 139
GLOv2 MatrixExplorer seed technique from [116]. 140
Approximate MatrixExplorer [116] rendered in GLO.js. 141
GLOvV2 NetLens seed technique from [140]. 143
GLOvV2 Semantic Substrates seed technique from [204]. 145
Semantic Substrates [204] rendered in GLO.js. 145
GLOvV2 PivotGraph seed technique from [244]. 146
PivotGraph [244] rendered in GLO.js. 147
GLOv2 MatLink seed technique from [118].. 148
Approximate MatLink [118] rendered in GLO.js. 148
GLOv2 List View seed technique from [199]. 150
List view [199] rendered in GLO.js. 151
GLOv2 Edge-Label-Centric seed technique from [182]. 152
GLOv2 Honeycomb seed technique from [106]. 154
Approximate Honeycomb [106] rendered in GLO.js. 154
GLOv2 GraphDice Segment seed technique from [36]. 156
GraphDice segment [36] rendered in GLO.js. 156
GLOv2 GraphDice seed technique from [36]. 157
Approximate 3x3 GraphDice [36] rendered in GLO.js. 157
GLOv2 GMap seed technique from [94]. 159
GLOv2 Attribute Matrix seed technique from [153]. 160
GLOv2 EdgeMap A seed technique from [74]. 161

xXviil

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127

128

129

130

131

132

133

Approximate EdgeMap A [74] rendered in GLO.js. 162

GLOv2 EdgeMap B seed technique from [74]. 163
Approximate EdgeMap B [74] rendered in GLO.js. 163
GLOv2 Hive Plot seed technique from [144]. 164
Hive Plot [144] rendered in GLO.js. 165
GLOv2 Hive Panel seed technique from [144]. 166
2x3 Hive Panel [144] rendered in GLOjs. 166
GLOV2 ScatterNet seed technique from [27]. 168
ScatterNet [27] rendered in GLO.js. 168
GLOv2 Citevis seed technique based on [213]. 169
Citevis [213] rendered in GLO.js. 170
GLOv2 DOSA seed technique from [232]. 171
Approximate DOSA [232] rendered in GLO.js. 171
GLOv2 NodeTrix seed technique from [117]. 173
Approximate NodeTrix [117] rendered in GLO.js. 173

SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using average method and Hamming distance. 201

SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using weighted method and Hamming distance. 202

SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using weighted method and Jaccard distance. 203

SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using complete method and Hamming distance. 204

SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using average method and cosine distance. 205

SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using average method and Jaccard distance. 206

SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using complete method and Jaccard distance. 207

SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using weighted method and cosine distance. 208

Xix

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using complete method and cosine distance.

SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using single method and Hamming distance.

SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using single method and Jaccard distance.

SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using single method and cosine distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
using average method and Hamming distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
using weighted method and Hamming distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
using complete method and Hamming distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
using single method and Hamming distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
using average method and cosine distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
using weighted method and cosine distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
using weighted method and Jaccard distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
using average method and Jaccard distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
using single method and Jaccard distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
using single method and cosine distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
using complete method and Jaccard distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
using complete method and cosine distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using average method and Hamming distance. .

225

151

152

153

154

155

156

157

158

159

160

161

SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using weighted method and Hamming distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using complete method and Hamming distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using average method and cosine distance. . . .

SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using average method and Jaccard distance. . .

SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using weighted method and cosine distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using weighted method and Jaccard distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using single method and Hamming distance. . .

SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using complete method and cosine distance. . .

SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using complete method and Jaccard distance.

SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using single method and Jaccard distance. . . .

SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using single method and cosine distance.

xxi

226

227

228

229

230

231

232

233

234

235

CHAPTER I

INTRODUCTION

-~
a
a
a
a]
o® a _¢® o
O a @)
0 a 0)
o a2 @)
& 2 0y e
a
®) Q)
® a2 ® o
[a () o,
H J)
: : :
® 2
® Wy 2 ° ®
o = A 2 () °
% " s
o, a °
%)
' 2 %
%, a
251050) %
a)
a2)
-~
a) e
a .. ~
) P - a®
2 o _o0°
-~
-~
a
-~
-~
-~
-~
a
-~
-~
a
)

@MMMMMMMMMMMMMMMMMMMMMMMMMMMMMN)

Figure 1: Graph-Level Operations

More and more the world is being described as networks—as connections between
people, places, and ideas. Businesses share technology and ideas [27], friends commu-
nicate with each other [108], and authors frequently use pairs of words together [235].
Networks (or graphs, as the data structure is often called) provide a richer model than
simply understanding each item in isolation. Identifying corporations that produce
a critical component, or mutual friends amongst acquaintances, or topically-related
terms are all key tasks for those analyzing, exploring, or studying these domains and
all benefit from an understanding of the underlying connections. Meanwhile, data
visualization has long provided tools for better making sense of data [52, 84]. Visu-
alization harnesses the human visual processing system’s ability to rapidly translate
representation into cognition. Graph visualization, as one might expect, applies the
tools and methods of visualization to graph data [119].

No single representation of a graph (visual or otherwise) is the perfect fit for every

graph analysis task. Over the years, researchers have developed a wide variety of
graph visualization techniques for helping analysts solve their wide variety of analysis
tasks. Though the breadth of techniques represents solutions to a panoply of tasks,
it introduces a new issue: complexity. So many techniques introduces complexity in
comparing techniques in an objective way and engineering complexity of implementing
so many techniques. In this dissertation, I introduce a class of models for graph
visualization, graph-level operations models (or GLO models) [216], as an elegant
solution to this complexity. The crux of a GLO model is recognizing that there are
common features among graph visualization techniques. Similar to understanding a
watch by taking it apart, by identifying these commonalities we can better understand
the techniques themselves. We can also use these shared properties to abstract away
many of the details usually required to specify techniques, instead recognizing an
effective “mid-level” between low-level graphics code and high-level techniques.

A graph-level operations model (GLO model) is a domain-specific language (DSL)
defined around these commonalities. A GLO model consists of two parts: a model of
the visual elements of graph visualization and a set of functions (called graph-level
operations, operations, or GLOs) for manipulating those elements. Each operation
encapsulates a manipulation of some aspect of a graph visualization. Such aspects

include:

e the position of node and edge glyphs

e visual properties of glyphs (e.g. color and size)

e glyph interactivity (e.g. highlighting incident edges or neighbors of a selected
node)

e the underlying data (e.g. through aggregating nodes or edges)

For example, one operation may position all of the glyphs representing the nodes
along an axis based upon an attribute of the nodes; another might adjust all of the

edge glyphs to use counter-clockwise Bézier curves rather than using straight lines

between the nodes associated with the edge; a third might be to apply a force-directed

layout algorithm to the node glyphs.

O S (eCEO1(EeEeeetoI(eetieeteetitee
S~—

Figure 2: Arc Diagram rendered in GLO.js.

Using GLOs, one can then define graph visualization techniques using ordered lists
of these operations. For example, the Arc Diagram [243, 141] depicted in Figure 2 is
defined as:

e display nodes as circles

e size nodes by constant

e color nodes by {node-color-attr}

e align nodes {middle}

e display edges as curved lines

e size edges by constant

e color edges by {target.node-color-attr}
e show all edges

e cvenly distribute nodes on z (sort-by:{sort-attr})

These software-environment-independent definitions can then be used by develop-

ers to simplify adding additional visualization techniques to graph analysis systems,

thereby providing analysts with a wider variety of tools and solutions. These defi-
nitions also enable researchers exploring the space of graph visualizations to have a
concrete means of comparing techniques, which simplifies identifying clusters amongst
techniques or identifying aspects of visualizations that correlate to better results
on analysis tasks. Finally, having a set of building-blocks enables visualization re-
searchers to identify novel, effective graph visualization techniques. As a very simple
example, one can combine the grid-based layout, node and edge aggregation, and
curved edge display of a PivotGraph [244] with the interaction of only showing inci-
dent edges of Semantic Substrates [204] to create a novel visual representation to see

interactions between clusters while minimizing the occlusion of edges (Figure 3).

. . ®
4 ® .
b [
14 ® [
0 [) ([
T

F M

Figure 3: Novel graph visualization technique combining the layout of Pivot-
Graphs [244] with the interaction of Semantic Substrates [96]. The nodes in the graph
(characters in a book) are aggregated by cluster label (rows) and gender (column).
Edges are clustered by the cluster and gender of the source and target endpoint nodes
and colored by the target node’s cluster. These aggregated edges are only shown when
the analyst mouses over an endpoint node.

This dissertation presents the methods and results of my work inducing two graph-
level operations models from sets of canonical graph visualization seed techniques. I
presented the initial work on GLOs at IEEE Infovis 2014 [216]. In that work, I and my
colleagues identified the model necessary to specify 6 hand-picked seed techniques.

In this dissertation, I refer to the results of that work as GLOv1. In subsequent

research, I performed a similar induction process with a set of 29 seed techniques
resulting from a literature review of 430 graph visualization publications. I refer to
model resulting from that work as GLOv2.

For the remainder of this chapter, I will specifically define common terminology
that I will be using throughout this dissertation. I will then state the thesis of my
research and the research questions that I addressed over the course of this work.

Finally, I will present the contributions the work presented here.

1.1 Term Definitions

Before I move forward, let me specify terminology I will be using throughout this
dissertation. For those that work with graphs and with visualization toolkits, these
definitions will be standard, but I include them here for completeness. In a few cases,
this is to clarify which definition I will be using when there are differing common

interpretations of a term.

e Graphs are a data structure consisting of a set of nodes (or vertices) and
a set of relationships between these nodes called edges (or links). The nodes
associated with an edge are called endpoints of the edge. A subgraph is a
subset of these nodes and a subset of these edges. Graphs can be directed
(each edge has a distinct source node and target node) or undirected (each
edge has two associated nodes, but the order does not matter). In the case of
directed graphs, an edge is an out-edge of the source and an in-edge of the
target. In the case of undirected graphs, each edge is both and in-edge and an
out-edge of its associated vertices. The in-nodes of a vertex are the source
nodes of all of the vertex’s in-edges and the out-nodes are all of the target
nodes of the vertex’s out-edges. The neighborhood of a vertex is the union
of the vertex’s in-nodes and out-nodes. The degree of a node is the size of its

neighborhood, while its in-degree and out-degree are the sizes of its in-node

set and out-node set, respectively. A self-edge is an edge where both endpoints
are the same node. Nodes and edges might have attributes (or properties)
that define more information about the data.

A visualization technique consists of the method for mapping raw data
to visual primitives (or glyphs or marks) and positioning those primitives
into a representation (or visualization) as well as a specification for any
interactive capabilities. For example, a bar chart creates a rectangular glyph
for each data item and maps the length of that bar to a chosen quantitative
attribute of the data item. The bars are aligned along a single axis and then
evenly distributed over the perpendicular axis. A bar chart often does not have
any interaction associated with it, though an alternative technique might include
highlighting the bar when the user hovers over it. A second alternative might
show a tooltip when the user mouses over the bar. A graph visualization
technique is a visualization technique where the input data is expected to be
a graph data structure.

An Embedded Domain-Specific Language is a focused API built upon an
existing programming language (called the host or host language). While the
specifics can differ, the embedded language often uses the host language’s op-
erators and syntax, but with additional method names, operators, or reserved
words. In other cases, such as regular expressions or number formatting lan-
guages, the embedded language is independent of the host language, except that
the parser for the embedded language is implemented in the host language in
order to interact with the rest of the code. A GLO model is of the latter variety:
a set of functions that each implementation can adapt to the host language’s
conventions.

Low-level graphics code manipulates the graphical primitives of a host lan-

guage’s graphics system. For example, manipulating Scalable Vector Graphics

(SVG) elements in a web-based visualization system or Swing elements in a
Java-based visualization system. This code is written in the host language.
Low-level visualization toolkits are domain-specific languages for manipu-
lating these primitives. These languages provide a layer of abstraction, simpli-
fying the code necessary to specify aspects of a visualization. Examples include
D3.js and prefuse.

The expressiveness of a language or model describes how much the language
or model can represent. In other words, what can the language or model define
and what cannot be defined using the model.

A language is portable if code written in the language can be run in a vari-
ety of environments. Since I will be discussing an embedded domain-specific
language, I will be referring to portability between host software environments
such as Javascript with SVG graphics, Javascript with Canvas graphics, Java
with Swing graphics, or python with tcl/tk graphics. In other words, portable
DSL code be run on interpreters written in a variety of host languages.
Finally, throughout the visualization software stack are a variety of different
classes of user, of which three are notable with respect to GLOs. A program-
mer or developer writes the code that will either generate visualizations or the
software that presents visualizations within a larger application. A designer
defines visualization techniques, i.e. specifies how data is mapped to marks. An
analyst is someone who wishes to generate insights from a collection of data.
In other words, an analyst is a user of a visualization. These three categories
are not mutually exclusive. Some designers are skilled programmers; some an-
alysts have strong design skills; many analysts have programming experience.
However, when discussing various tasks, I will be specific about which type of

user needs to accomplish that task and target the solution to them.

1.2 Thesis Statement and Research Questions

Thesis Statement The graph-level operations (GLO) model consists of a visual
element model and a set of high-level functions that harness commonalities between
graph visualization techniques. This model enables effectively describing graph vi-
sualizations, simplifying graph visualization engineering, more deeply understanding

graph visualization techniques, and discovering novel graph visualization techniques.

RQ1 What are the elements of a portable, expressive, high-level model for
graph visualization? In Chapter 3, I describe a method for inducing a high-level
model for graph visualization (a GLO model) from a set of canonical graph visualiza-
tion seed techniques and describe two such sets of seed techniques. In Chapter 4, [
describe the resulting GLO models (GLOv1 and GLOv2) each consisting of a model of
visual elements and a set of operations for manipulating those elements, and I define

how to use GLOs as a specification language for graph visualization techniques.

RQ2 What is the utility of a such a model? In Chapter 5, I describe three
use cases of a GLO model: simplifying graph visualization engineering, more deeply
understanding the design space of graph visualization techniques, and identifying
novel graph visualization techniques. In Chapter 6, I consider further applications of

GLO models and research opportunities introduced by GLO models.

RQ3 Does the model work in practice as well as in theory? In Chapter 5,
I describe Javascript and SVG implementations of the GLOv1 and GLOv2 models
and describe two applications built using the implementations (GLO-CLI and GLO-
STIX).

RQ4 What are the bounds on the model’s expressiveness? In Chapter 4, [

show how a GLO model can express its seed techniques. In Chapter 5, I describe how

GLOs can express novel techniques and I approximately quantify the expressiveness of
the GLOv1 and GLOv2 models and my GLO.js Javascript implementation of GLOv2.
In Chapter 6, I briefly discuss possible limits on the expressiveness of the GLO model

and the generalizability of the model.

1.3 Contributions and Impact

This dissertation contributes to (and provides a direct impact on) five facets of graph
visualization research and practice: models, analysis methods, software, techniques,

and education.

Models 1 present a novel class of graph visualization model, the graph-level oper-
ations model (GLO model). I introduce a method for inducing a model from a set
of canonical seed techniques in Chapter 3 as well as two instances of GLO models
(GLOv1 and GLOv2) and a means of defining techniques using the model in Chap-
ter 4. I include definitions for the 6 hand-picked GLOv1 seed techniques and the
29 GLOV2 seed techniques selected by means of a review of 430 graph visualization
publications in Appendices C and D. All of the following additional contributions

stem from the GLO model.

Analysis Methods The GLO model represents a giant leap forward in our abil-
ity to easily and effectively compare and cluster graph visualization techniques. To
demonstrate this, I introduce GLO-based methods for reducing techniques to vector
representations as well as a novel GLO-based distance metric for techniques in Chap-
ter 5. Furthermore, GLO models open numerous avenues for future research into the

design space of graph visualization. I list a sample of these avenues in Chapter 6.

Open-Source Software GLO models significantly reduce the engineering overhead

of incorporating a wide range of graph visualization techniques into graph analysis

software. I have developed the GLO.js graph visualization toolkit to easily incorpo-
rate a large variety of graph visualization techniques into web-based graph analysis
software. I have used the toolkit to build the GLO-STIX GUI application and GLO-
CLI command-line application for using visualization to explore a network. These
three packages are described in Chapter 5 and are available as open-source software

at https://github.com/chadstolper/glo.

Techniques Graph-level operations greatly simplify identifying novel graph visual-
ization techniques. Throughout this dissertation (especially in Chapter 5), I introduce

a number of novel techniques and provide their definitions using GLOs.

Education Graph-level operations have the potential to revolutionize graph visual-
ization education through demonstrating the variety and interconnectedness of graph
visualization techniques. The model could also have a sizable impact on discrete
mathematics education through enabling demonstrations of graph theory properties

and algorithms. I briefly discuss this potential in Chapter 6.

10

CHAPTER 11

BACKGROUND

Because of the effect that graph-level operations (GLOs) have throughout the visu-
alization development stack, the related work for this this covers a wide breadth of
visualization research. The set of operations and GLO.js implementation fall under
visualization systems, or toolkit, research. The applications that I have built on top
of the GLO layer fit a variety of visualization application categories, including vi-
sualization creation systems and graph analysis tools. The analysis I conduct using
GLOs comparing and clustering graph visualizations falls under visualization design
space analysis research.

I am going to limit my discussions to just those systems that draw visualiza-
tions from data. In other words, while a skilled artist could likely create any static
visualization using Microsoft Paint, Adobe Illustrator [8], or (for graphs) Microsoft

Visio [165], T will not be including these in my discussion.

2.1 Visualization Toolkits and Grammars

Graph-level operations are intended to act as a semantically-meaningful middle-layer
between the low-level graphics environment and top-level applications. Thus, it is
important to understand the state-of-the-art at the low-level, in order to understand
why having such a middle-layer is worthwhile.

Some of the earliest work on a visualization language was Mackinlay’s APT sys-
tem [159]. Mackinlay was attempting to automate the choice of visualization based
upon the structure of the (tabular) input data. In doing so, he built a framework

for describing visualization techniques, especially bar charts and scatterplots. The

11

work also introduces concepts relevant to any visualization framework: expressive-
ness (what can the framework represent) and composition (can techniques be com-
bined, such as a scatterplot matrix or node-link diagram of matrix displays ala Node-
Trix [117]).

Building off of this foundational work, a number of visualization toolkits have been
developed. In most cases, the designers of these toolkits set out to abstract away the
graphical details of the host language they were implemented in. One of the more
influential toolkits was Heer et al.’s Prefuse [113]. Prefuse was built in contrast to
prior toolkits such as the Infovis Toolkit [83] and the XML Toolkit [30]. Those systems
allowed a developer to incorporate specific techniques into their applications, but did
not enable him or her to implement new techniques. Prefuse enabled the developer
to implement new techniques either through composition or from raw primitives and
marks. Prefuse was designed around Card, Mackinlay, and Shneiderman’s reference
model [52]: raw data is data transformed into data tables that are then mapped onto
visual structures that are then wview transformed into views. Prefuse was built on
top of Java and Java2d, though it was eventually ported to ActionScript/Flash as
well (the port was called flare [111]). Prefuse contained a variety of components
for creating graph and tree visualizations, including force-directed layouts, circular
layouts, physics simulation modules, and view distortions such as fisheye distortions.
The social network visualization system Vizster [108] is one of the graph systems built
using the toolkit.

JUNG [173] is another Java-based library. Rather than being designed primarily
for visualization, JUNG was designed to be a general purpose graph library. JUNG
(and similarly the python library NetworkX [105]) has a large focus on managing the
graph data structure itself. Unlike NetworkX, however, JUNG does have a strong vi-

sualization component for easily enabling node-link diagrams within Java2d or Java3d

12

with various pre-defined layout algorithms. A developer still has the freedom to im-
plement their own layout algorithms on top of the framework as well, or even write
their own visualization code and just use the underlying graph model. While Net-
workX does not support visualization itself, the popular python visualization library
Matplotlib [129] does. Matplotlib (a library originally based on Matlab’s plotting
functionality [160]) supports drawing node-link diagrams and adjacency matrices of
NetworkX graph structures.

Adar’s Gython language [7] (a component of the GUESS system) is similar to
JUNG in being a toolkit for managing graph data structures and visualizing them.
Gython is built on top of Jython (python implemented in Java). Gython includes a
wide range of syntax support for graph-specific queries such as alice<->bob, alice-
>bob, alice<-bob, and alice?bob to select (respectively) all undirected or bidirected
edges between the nodes (or node-groups) alice and bob, all edges from alice to
bob, all edges from bob to alice, and all edges between alice and bob regardless of
directionality. Gython also (explicitly) differs from JUNG and prefuse in treating
visual properties and data properties equivalently. The developer can adjust or check
the value of the node or edge in the same manner as he or she can adjust or check
the color or size of the glyph representing the node or edge.

With the trend of moving away from desktop applications to web applications,
the developers of prefuse and flare set out to write a Javascript- (as opposed to
Java-) based visualization toolkit. Bostock and Heer’s first Javascript toolkit was
Protovis [40]. Soon after, they recognized a number of issues with Protovis, and
ceased development in favor of D3.js [41]. Protovis used a set of custom mark types,
whereas D3 was designed to be general and work with existing web technologies,
especially Scalable Vector Graphics (SVG) [240], the W3C-standardized XML vector
graphics format. D3 allows the developer to map arrays of data to elements in the

webpage’s document object model (or DOM) and set properties of those elements

13

based on the data. In addition to this base functionality, D3 includes a number
of helper functions and layouts such as numerical and color scales, code for easily
creating axes, and force-based graph layouts.

These toolkits (prefuse, flare, JUNG, Gython, Protovis, D3, and Matplotlib) are
all embedded domain-specific languages (or DSLs) [128] for visualization. In this
role, they all provide abstractions beyond what their host languages (respectively:
Java, ActionScript, Java, Jython, Javascript, Javascript, and python) provide for
developers incorporating visualization into their applications or building standalone
visualization applications. However, each of these systems is very closely entangled
with the host language. Prefuse is written to make sense to a Java developer and
depends on features built into the Java language. D3 is written in Javascript and
is structured to make sense to a Javascript developer and depends on features built
into the Javascript language. There are clear advantages to going this route. Most
importantly, if someone is building an application in a language, her or she is likely
comfortable with the paradigms and built-in functionality associated with that lan-
guage. There is also the benefit that comes with any DSL that the library does not
need to ‘reinvent the wheel’ with standard functionality. The downside is that by
depending on the host language as much as they do, the code generated by these sys-
tems is inherently unportable. An interesting graph visualization implemented in D3
is only available in a Javascript-based system and the same holds true with prefuse
and Java. (One toolkit that acts as an exception to this rule is The Visualization
Toolkit (or VTK) [197]. VTK is an API for developing scientific visualization systems
using the dataflow architecture. VTK was originally written for C++, but the API
has also been ported to Java and Python through bindings that call the C++ code.)

Visualization grammars do not have these host-language constraints. One of the

most successful visualization grammars is Wilkinson’s Grammar of Graphics [247].

14

The GoG breaks down techniques into seven stages: variables, algebra, scales, statis-
tics, geometry, coordinates, and aesthetics. The variable, algebra, scales, and statis-
tics stages cover the data component of the technique while the geometry, coordi-
nates, and aesthetics cover the ‘visual’ component. (The grammar does not include
interaction specification.) Graph visualization in the GoG is handled by the ‘net-
work geometry’ that generates a node-link diagram of the nodes and edges in the
graph. The most popular instantiation of the grammar is Wikham’s ggplot2 plu-
gin [245, 246] for the R statistics package. A related technology is VISO [238], an
ontology for visualization. The ontology includes a vocabulary for specifying heuristic
rules, information about the user, and information his or her environment.

Another, more recent, example of language-independent visualization specification
languages is the Vega visualization grammar [225]. Analogous to how DSLs are built
on top of a programming language, Vega is built on top of a markup language,
namely JSON. Unlike the toolkits described above, Vega specifications were never
designed to be written ‘by hand’. Rather, Vega was designed to act as a file format
equivalent to docx or svg. In that sense, Vega is not written by a developer, but
rather by another system (such as Word writing docx files or Illustrator generating
svg files). The Vega specification that a system writes consists of the data (either
the raw data tables or the location of those tables), transforms on the data (such
as normalizing a property or finding unique values), scales, axes, legends, and finally
marks (how the data is mapped to glyphs in the display). These Vega files can then be
rendered in any graphics environment for which someone has written a Vega renderer.
(Vega’s website currently lists support for two W3C standard web-based graphics
environments: HTML Canvas and SVG). In addition to data transformations, the
Vega specification supports what it calls view encoding transforms. One of these view
encoding transforms is a force-directed layout that takes an array of nodes and an

array of edges and generates the x,y coordinates of the node-link diagram. (This is

15

also how D3 handles its force-directed layout.) While the first release of Vega had
minimal support for interaction (the display properties of a glyph could be updated
when the mouse hovered over it), the designers have implemented a more thorough
interaction library using the reactive programming paradigm [195]. In addition to
Vega, Vega-lite [253] is built atop Vega and uses smart-defaults to significantly shrink
the size of specifications.

The goal of my work with GLOs is to provide the same functionality that Vega
provides for tabular visualization techniques, but for graph visualization techniques.
Rather than treating network visualization as composed of simply node-link diagrams
and shoehorning it into a framework designed for tabular data, GLOs are explicitly
for visualizing graph data structures. (Of course, by considering tabular data as graph
data without any connections between the data items we can always shoehorn tabular
data visualization into a graph-focused framework.) Furthermore, like the Grammar
of Graphics, one of the goals of this work is to better understand the techniques
themselves by understanding how they are put together.

I am also approaching the structure of the framework differently than the Vega
designers. While the high-level nature of the GLOs means that the expressiveness of
GLOs may never be equivalent to that of Vega, there are still advantages to the GLO
approach. One is that GLO specifications are shorter and more ‘human-readable’
than equivalent Vega specifications would be. Another is that GLO models push
many of the low-level details of rendering the visualization to the interpreter. This
enables the interpreter instance to implement each operation in the best manner for
the target language and graphics system.

Finally, a brief note on two other toolkits. Raphael [26] and Processing [1] are not
visualization libraries explicitly, but have both been used for visualization. Raphael
is a Javascript library for drawing vector graphics using SVG elements designed for

beginning programmers. Processing is a programming language and environment for

16

building interactive art. Processing’s primary implementation is in Java, though the
creators also have a Javacript-based implementation (most, but not all, code in one
implementation ports to the other). Processing has been immensely popular amongst
artists and other creatives, with a very shallow learning curve compared to most other

visualization libraries.

2.2 Systems for Applying Techniques to Data

At the application level, there are a number of systems that allow a user to apply a
variety of pre-defined visualization techniques to their tabular data. The most ubiq-
uitous of these tools is Microsoft’s Excel spreadsheet software [164]. Excel has long
supported a wide variety of techniques including barcharts, linecharts, scatterplots,
and pie charts. Polaris [217], and its present commercial form Tableau [219], go be-
yond Excel in a number of ways. First, it supports a wider variety of techniques such
as maps and treemaps. Second, it uses an underlying language (called VizQL [158]) to
understand the data-field signatures of different techniques. For example, a scatter-
plot expects two quantitative data fields; a scatterplot matrix expects n quantitative
fields. Using this language, Tableau is able to suggest optimal visualization techniques
based on the analyst’s choice of data fields to show (a feature they call Show Me).
The Spotfire system [223] and the ManyEyes site [237] similarly supports a wider
range of techniques than Excel and limit techniques to only those where the field
data types make sense. SageBook [62] allows an analyst to apply (data-appropriate)
techniques created using SageBrush (described below). Common to all these systems
though is a notable lack of support for graph data structures. Each can treat a graph
as a table of nodes or a table of edges and then visualize that, but none of them
actually support any of the visualization techniques that show the structure of the
network.

At the other end of the spectrum are those system explicitly for visualizing graphs.

17

Some early systems include UCINet [39], Pajek [29], and Tulip [19]. Two systems
that have gained popularity in recent years are Gephi [28] and NodeXL [209]. There
are also two commercial graph visualization and analysis systems: Centrifuge [56]
and ToughGraph Navigator [224]. (All of these systems are stand-alone except for
NodeXL, which is an extension for Microsoft Excel.) All of these systems are for both
analyzing networks (e.g. calculating statistics such as betweenness centrality [87, 88|
and PageRank [176]) and for visualizing the network as a node-link diagram. The
systems allow the analyst to customize the display such as setting what attributes of
the nodes and edges should map to the various visual properties such as the size of the
nodes, the color (hue, value, saturation) of the nodes and edges, and the thickness
of the edges. Each includes a number of different force-directed layout algorithms
such as Fruchterman-Reingold [90] or Kamada-Kawai [138]. Gephi and NodeXL were
also designed to allow a developer to easily implement alternative layout algorithms.
For example, the user-built Gephi plugin library includes an implementation of the
hive plot [144] technique as a layout option. NodeXL’s developers have experimented
with techniques beyond node-link diagrams, such as Dunne and Shneiderman’s mo-
tif simplification [71]. Two other graph visualization and analysis systems of note
are Ploceus [153, 154] and Orion [110, 114]. Both systems provide an interface for
converting tabular database records into graphs and then manipulating the graph
structure through a direct manipulation interface. Both then allow the analyst to
view the current state of the network using node-link visualization techniques. Orion
(unlike Ploceus, Gephi, and NodeXL) also includes the ability to show a network
as an adjacency matrix or a scatterplot. Most recently, the DOSA system [232] pro-
vides a system for exploring large graphs by showing summaries of selected subgraphs
while simultaneously showing the full subgraph in a different display. One of the ad-
vantages of a technology like GLOs is to make it easier for engineers to add these

additional visualization techniques (and potentially more) to these analysis systems

18

without needing to learn a one-off API or development environment (such as Gephi’s
or NodeXL’s). This work will also allow traditional tabular visualization systems
(such as Excel and Tableau) to more easily integrate network visualization into their

existing products.

2.3 Systems for Specifying Visualization Techniques

While the toolkits in Section 2.1 allow a programmer or developer to specify tech-
niques in code, and the systems in Section 2.2 allow an analyst to apply a predefined
technique to their data, the systems in this category allow a non-programmer to spec-
ify new or customized techniques. In a sense, these systems enable someone to build
templates of visualizations to be applied in the future. Many, though not all, of these
systems tend to fall into one of two categories: those that use the dataflow or pipeline
model and those that use a drag-and-drop/direct manipulation metaphor.

The data-pipeline or dataflow model allows a user to visually build pipelines from
data to visualization using modules with specific inputs and outputs. These modules
might include normalizing a data feature or mapping features to visual attributes.
Early examples of the category are the AVS [231] and apE [73] scientific visualiza-
tion systems, followed by Data Explorer [155], SCIRun [178], IRIS Explorer [85],
VTK [197], and VisTrails [31]. Vislt [61] and VisMashup [192] represent the third
generation of the dataflow metaphor. VisMashup provides a more usable front-end
for VTK by simplifying VTK’s pipeline modules into more readable displays as well
as VisMashup supporting multi-view systems through multiple pipelines with syn-
chronized input parameters. The Tioga-2 [10] and Impure [174] systems applied the
dataflow model to non-scientific visualization. Graph-level operations draw heavily
from the dataflow system’s use of encapsulation. Each task in the visualization-
creation process is operationalized. However, the pipeline systems also operationalize

the very low-level tasks such as database accesses. It is these low-level tasks that a

19

GLO model abstracts away from the designer. Furthermore, GLOs are designed to be
as order-independent as possible, as opposed to pipeline systems that are rigorously
sequential with fixed input and output specifications.

The system that first brought the drag-and-drop/direct manipulation metaphor
for visualization specification was SageBrush, a component of the SageTools [190]
suite. SageBrush employs the drag-and-drop metaphor to enable an analyst to add
marks to a canvas and then set properties of the marks by dragging data features
onto handles of the marks. The designer could then save the technique as a template
that could be used by the other components of SageTools (SageBook and SAGE).
The Delaunay system [64], built for creating custom visualizations of database data,
continued the trend. Delaunay uses a similar declarative drag-and-drop metaphor
for visualization creation as SageBook, combined with a constraint solver for realiz-
ing the specification. Delaunay provides support for recursive definitions of visual-
izations, thus making techniques such as node-link tree diagrams easier to specify.
DataSplash [256] was designed explicitly for building semantic zoom applications, al-
lowing the user to define different views at different levels of zoom elevation. Flexible
Linked Axes (FLAs) [63] takes a slightly different tack, allowing a user to add, remove,
and manipulate only axes using drag-and-drop. The user drags axes onto a canvas,
selects the data features to which the axes are mapped, and then links the axes to-
gether using either lines (equivalent to parallel coordinate plots) or dots (equivalent
to scatterplots). Visualization Primitives [208] uses the drag-and-drop metaphor, but
includes support for a greater number of features of each graphical primitive than
previous systems as well as more easily supporting compound visualizations such as
stacked bar charts. Lyra [196] works similarly to Visualization Primitives, though is a
more complete system. Lyra is most interesting in that it saves its templates as Vega
specifications. The Vega-Lyra relationship mirrors the relationship between GLOs

and the applications built on it. Lyra (and applications) allow a designer to specify

20

techniques that can then be used in any system that supports the standardized Vega
(or GLO) format.

Finally, and graph-specifically, the GUESS system [7] (discussed earlier in respect
to its Gython language) provided the user with the ability to change the visual proper-
ties of the nodes and edges in a node-link visualization in one pane through interacting
with a command-line interpreter in another. Furthermore, the interpreter and dis-
play pane were linked, in that mousing over a node’s or group of nodes’ identifier in
the interpreter highlighted the node or group of nodes in the display. This provided
the analyst with more control than applying a preset layout algorithm (though the
analyst could always call those from the interpreter as well). GUESS also had some
standard tabular visualization techniques (such as bar charts and pie charts) avail-
able to render, using separate panes for each chart type. The GLO-CLI described in

Section 5.1 is directly based on this aspect of GUESS.

2.4 Visualization Design Space Analysis

There is a body of work in visualization on understanding the design space of visu-
alizations. Li et al. [152] provide a good summary of the research in their research
on analyzing the design space of tree visualizations. They define a feature space for
tree visualizations and cluster a variety of techniques from literature using the feature
space. Schulz et al. [198] represents the most relevant work to GLOs. The authors
define the design space of implicit hierarchy visualizations (e.g. treemaps and icicle
plots) according to four dimensions: dimensionality (2D or 3D), Node Representa-
tion, Edge Representation, and Layout. They produced a tool that allows a designer
to load a hierarchical dataset and select values for each dimension. The tool then

generates the technique with those values.

21

CHAPTER III

A METHOD FOR GLO MODEL INDUCTION

In order to take advantage of a model of graph visualization, one must first deter-
mine the elements of that model. In this chapter, I present and describe a repeatable
method for inducing a model of graph visualization from a set of exemplar graph
visualization seed techniques. The method is designed to identify recurring features
within the set of techniques at a practical level of complexity. In other words, the
resulting model should not be so fine-grained as to be tedious, but also not so coarse-
grained as to not be expressive. The method relies on one or more human identifiers
to determine steps to change the glyphs of one technique into the glyphs of another
technique (i.e. to transition from one technique to another). This is conceivably
problematic since there are infinitely many ways to transition between any two tech-
niques by transitioning through intermediate states that have nothing to do with
the two techniques (such as hiding all of the edges and then showing them again
when both techniques have all of their edges permanently displayed). However, when
identifiers aim towards identifying a small set of atomic units of graph visualization
and avoiding unrelated states, the method works well in practice. Furthermore, the
method helps define how to describe techniques using the resulting model and guar-
antees that you can describe each member of the set of seed techniques using the
resulting model. (I discuss these latter points in Chapter 4.)

At a high level, the method is broken down into four steps:

1. Identify a set of exemplar seed techniques.
2. Determine the set of reusable, high-level operations needed to transition from

each technique in the set to each technique in the set (including self-transitions).

22

3. Use those transitions to identify a visual element model and set of graph-level
operations that manipulate the visual element model.

4. Augment the set of operations.

In the following sections, I walk through each of these steps, including examples

from the GLOv1 and GLOvV2 induction processes.

3.1 Seed Technique Identification

The first step of the induction process is to identify a set of techniques commonly
used for graph visualization—the seed techniques. These techniques should provide
a good cross-section of network visualization features. Equivalent to a training set
in a machine learning scenario, features that do not appear in the seed techniques
will not be represented in the resulting model. In order to maximize the variety of
techniques, one strategy is to identify the seed techniques through a comprehensive
search of graph visualization literature and tools. An alternative strategy might be
to seed the method with a set of techniques that must be modeled (for example,
in a software package). The former strategy is more useful from both a theoretical
perspective (such as understanding the design space of visualization techniques) and
for future-proofing software packages towards adding additional techniques.

This step also includes identifying the inherent features of each technique that
define the technique. In other words, if an instance of a technique uses a specific
color scheme or an unusual shape, an identifier must determine whether the scheme
or shape is inherent to the technique or specific only to the given instance of the
technique. Using abstract forms of techniques enables the resulting visual elements
model and operations set to be simpler, while still expressing the critical features of
the techniques.

For example, the critical components of the Edgemap B technique shown in Fig-

ure 4 are that the nodes are evenly distributed and aligned along the middle of the

23

........

d
philosophy, notably ism and postmodernism.

Figure 4: GLOv2 EdgeMap B seed technique from [74].

display, nodes are colored by a property and sized relatively by a property, edges
are only shown when an analyst mouses over an endpoint node and are displayed
differently based on whether the edge is an in- or out-edge of the node, edges are
colored the same as their source node, and when the analyst mouses over a node the
neighbors of that node are highlighted. I chose to abstract away the specific styling of
the edge glyphs (that in-edges and out-edges are rendered differently is more critical
aspect of the technique), the color schemes for the nodes and edges (that the nodes
are colored by a discrete attribute is more critical than the choice of blue, purple,
and pink as the colors), and the labels (since they are closely tied to time rather than
a generic continuous attribute). I also chose to abstract away the detail-on-demand
panel. With GLOv2, I wanted to focus on the different ways that techniques visu-
ally represent nodes and edges. Therefore, I abstracted away features that involved

additional glyphs (such as details-on-demand panels).
3.1.1 GLOv1 Identification

During the GLOv1 induction process, I (and my coauthors of [216]) seeded the method

with six techniques: Force-Directed Layouts, Circle Plots, Scatterplots, Semantic

24

Substrates [204], PivotGraphs [244], and Adjacency Matrices. (Descriptions and de-
pictions of these can be found in Appendix A.) These techniques were hand-picked
to provided good coverage of 2D graph visualizations while intentionally excluding
techniques (most notably Arc Diagrams) in order to demonstrate the expressiveness

of GLOs. (As I show in Section 5.3, Arc Diagrams can still be represented using the
GLOv1 model.)

3.1.2 GLOvV2 Identification

The GLOV1 seed technique set has two notable limitations. First, there are only six
techniques, which limits the expressiveness of the resulting model. Second, the set of
seed techniques was hand-picked, rather than chosen through a repeatable method.

In order to identify a broader set of seed techniques (with the purposes of iden-
tifying a more expressive GLO model), I conducted a literature review of graph vi-
sualization techniques. I seeded my literature review with papers with graph-related
terms from the IEEE Infovis, IEEE Vis/SciVis, and IEEE VAST conferences us-
ing the Visualization Publication Dataset [131]. T then added publications on graph
visualization techniques referenced by these works, and then publications on graph
visualization techniques referenced by those works, and so on. In all, I reviewed 430
graph visualization publications.

Through the course of the review, I identified seven categories of ‘techniques’:
graph visualization techniques, tree visualization techniques, directed acyclic graph
visualization techniques, dynamic graph visualization techniques, graph visualization
interactions, graph visualization display options, and graph visualization systems.
Graph visualization interactions and graph visualization display options are not com-
plete techniques, but rather specific interactions or display options that could be
applied to any number of other techniques. An example of a graph visualization dis-

play option is edge bundling [257, 120]. Edge bundling is not a technique to display

25

the data of a graph, but rather an additional step that can be applied to any graph or
tree visualization technique that displays its edges as lines. Graph visualization sys-
tems are applications that implement one or more graph visualization techniques. In
the case where those techniques are novel, I included the system in the list of systems
and the technique in the list of techniques. For example, the Ploceus system [153]
utilizes the novel Attribute Matrix technique.

Having completed the literature review, I set out to determine the seed techniques
for what would become GLOv2. I immediately ruled out the graph visualization sys-
tems, as they are not techniques, but rather collections of techniques (which are
included in the other categories as appropriate). I next ruled out the dynamic graph
visualization systems as dynamic graphs represent an additional dimension of com-
plexity over the standard graph data model.

When it came to directed acyclic graph (DAG) visualization techniques and tree
visualization techniques, I chose to exclude these techniques as well. Put simply,
all graphs (including trees and DAGs) can be visualized using graph visualization
techniques whereas general graphs can only be visualized using DAG and tree vi-
sualization techniques by designating one of the nodes as the root and (in the case
of trees) removing edges from the graph. One of the core properties of GLOv1 was
that operations apply to every node equivalently. In tree and DAG visualizations,
many aspects of the techniques depend on considering nodes differently based on their
distance from the root.

I eventually chose to ignore the graph visualization interactions and visualization
display options as well. The sub-techniques in these two categories fit well under the
premise of graph-level operations model—they are discrete modifications that apply
equally to all elements of the visualization. However, I chose to focus the model
towards full graph techniques, rather than these technique-independent opera-

tions. Some of the display options and interactions in fact appear in the chosen seed

26

techniques and are represented in the GLOv2 model in Chapter 4. (For example, dis-
playing convex hulls around clusters occurs in the GMap seed technique and selective
highlighting of neighbors occurs in the EdgeMap A and B seed techniques.) On the
other hand, many of the display modifications and interactions do not occur in the
final set of seed techniques and are therefore not represented in the GLOv2 model. I
will discuss technique-independent operations further in Chapter 6.

Finally, I pared down the approximately 55 general-purpose graph visualization
techniques to 29 seed techniques. First, I removed the techniques that begin by reduc-
ing the graph to a tree (usually using a minimum-spanning tree algorithm or hierarchi-
cal clustering algorithm) and then visualizing the graph using a tree visualization tech-
nique as these are practically tree visualization techniques. (These included SPF [14],
MO-Tree [42], Space-Filling Curves [167], Treemap of hierarchy [168], Treemaps
with Links [82], Similarity trees [177], ArcTree [171], TreePlus [149], Grouse [17],
GrouseFlocks [15], and TreeNetViz [98].) I then removed any three-dimensional
techniques in order to focus on two-dimensional techniques. (3D techniques in-
cluded Ask-Graphview [5], 3D node-link using stereoscope [242], Graph Surfaces [6],
Cityscape [57], State-Transition Graphs [233], Landscape [45], and WilmaScope [9]).

Lastly, there were a class of techniques that were highly dependent on knowing
the topology of the network to calculate node and edge positions. I chose to ex-
clude all but one technique this class. These techniques included C-Group [139, 27],
B-Matrix [22], compressed adjacency matrix [68], and Edge-Compression [72]. In ad-
dition, two techniques (SegmentView [27] and JauntyNet [137]) are similar to each
other in that nodes are positioned based on their attributes, which are represented
in a circle along the radius of the visualization display. Rather than only including
glyphs representing nodes and edges, these two techniques introduce glyphs represent-
ing attributes. Positioning glyphs relative to the position of these attribute glyphs is

similar to the case where the topology is driving the layout.

27

Force-Directed Layout [138] Edge-Label-Centric [182]

Matrix Plot [34] Honeycomb [106]
Cluster Circles [69] GraphDice Segment [36]
Circle Graph [207, 93] 3x3 GraphDice [36]
GeneVis A [23] GMap [94]

GeneVis B [23] Attribute Matrix [153]
Arc Diagram [243, 141] EdgeMap A [74]
Matrix Browser [262] EdgeMap B [74]
Matrix with Bars [205] Hive Plot [144]
MatrixExplorer [116] 2x3 Hive Panel [144]
NetLens [140] ScatterNet [27]
Semantic Substrates [204, 18] Citevis [213]
PivotGraph [244] DOSA [232]

MatLink [118] NodeTrix [117]

List View [199, 214]

Table 1: GLOvV2 seed techniques

The one topology-dependent technique (and its variants) that I left in the set was
the Force-Directed Layout. The decision to do so was that, as the most-used network
visualization technique, any model of graph visualization should be able to describe
Force-Directed Layouts. This decision would eventually result in a stand-alone apply
force-directed algorithm to nodes GLO.

The final result of this selection process was a final set of 29 graph visualization
seed techniques that can be found in Table 1 Appendix B. Lists of the non-system
techniques not chosen as seed techniques can be found broken down by category in

Appendix E.

3.2 Transitions, GLOs, and the Transition Matrix

Having identified a set of seed techniques, the second step is to identify the high-
level operations necessary to transition from an instance of each technique in the
set to another instance of each technique in the set. (This includes transitioning
from an instance of a technique to an alternate instance of the technique.) In other
words, what is different between the two techniques/instances? Is the only difference
the position of the elements? Or should the glyphs be drawn differently? Does the

underlying data have to be manipulated (such as through aggregation)?

28

The goal of this second step is to generate a transition matrix of the seed tech-
niques. Each (i, j) value of this matrix is a list of operations necessary to transition
from the ¢th seed technique to the jth seed technique. Let me demonstrate this

process with two such transitions (i.e. transition matrix entries).
3.2.1 Semantic Substrates to PivotGraph

For the first example transition, consider the abstract Semantic Substrates [204] rep-
resentation of a graph in Figure 5a and the abstract PivotGraph [244] representation

of the same data in Figure 5b.!

1 Q90000000000 - - -0 g o

i o

10 @ - @ o O O 0 o o “1 LS .‘

° ° ° ° ° ° S J

T 5

e @ © o o o o o O [°

°® o o o N °
(a) Semantic Substrates [204] (b) PivotGraph [244]

Figure 5: First example transition techniques

The graph data? represented concerns book characters and includes discrete at-
tributes gender and cluster and quantitative properties such as the degree of each
character in the network. In the abstract Semantic Substrate representation, glyphs
representing nodes are positioned along the y axis by a discrete attribute (here a
cluster label) and are colored by the same attribute. The node glyphs are distributed
along the = axis within the clusters (more precisely, within the groups defined by the
discrete attribute). Axis labels are shown for the y axis using the discrete attribute

values. The node glyphs are sized by a quantitative attribute (here the degree of the

!Note that these are the GLOv1, not GLOV2, seed technique versions of these two techniques.
2Les Misérables character co-occurrence graph included with D3.js based on Donald Knuth’s
jean.dat file available at http://www-cs-staff.stanford.edu/ uno/sgb.html

29

node). Edges are displayed as constant-sized, curved line glyphs. Each edge glyph is
colored by the same discrete attribute that the nodes are colored by in order to have
the same color as their target nodes’ glyphs (i.e., here the lines are colored by the
cluster of their target node). However, edge glyphs are only shown when the analyst
interacts with an endpoint node of the edge. (For example, the analyst is interacting
with the node represented by the glyph circled in black in the figure).

In the abstract PivotGraph representation, node glyphs are similarly positioned
on the y axis by a discrete attribute and axis labels for the y axis are shown. The
node glyphs are colored by a property (discrete or continuous), here by the discrete
cluster property. Each edge’s curved line glyph is colored by a property (discrete or
continuous), here (as with the Semantic Substrates abstract technique) by the cluster
of the edge’s target node. Unlike the abstract Semantic Substrates representation,
the abstract PivotGraph does not display a glyph for every node and edge in the
graph. Rather, the technique displays glyphs representing multiple nodes and edges.
These super-nodes and super-edges represent aggregations of the nodes and edges
based on properties of the data. In the abstract PivotGraph, nodes are aggregated
by two discrete properties (here, cluster and gender). In other words, each super-
node glyph represents a super-node that is an aggregate of all of the nodes that share
both the same cluster and gender properties. Edges are then aggregated based on the
values of those same two discrete properties of both their source and target endpoints.
Therefore in this display, each super-edge glyph represents a super-edge aggregating
all of the edges in the graph whose source nodes have the same cluster and gender
and whose target nodes have the same cluster and gender. The super-node glyphs are
then positioned on the = axis based on the second discrete attribute (here the gender
of the super-nodes) and axis labels are shown for the z axis. The super-node and
super-edge glyphs are then sized by an attribute. Here, the attribute is how many

original nodes or edges the glyph represents.

30

Having defined the two abstract techniques, let me now demonstrate transitioning
from the Semantic Substrates representation to the PivotGraph representation. Each
step of the transition involves recognizing a difference between the two techniques
and altering the representation to resolve the difference.

During this process, one can choose between two approaches. The first is to take
a best-case approach, where anything that can stay the same between the two
techniques does. For example, since both representations have the nodes aligned on
the y axis by an attribute, that does not need to change. An second approach is
a worst-case approach. Under this approach, one assumes that though the two
displays position nodes on the y axis, they do so by different attributes and thus this
must be included in the transition. During the GLOv]1 identification process, my
colleagues and I used the worst-case approach. In practice, however, this approach
generates unnecessarily long lists of differences when transitioning between different
techniques. Therefore, for GLOv2, I followed the best-case approach when tran-
sitioning between instances of two different techniques. (However, when determining
the steps to transition between two arbitrary instances of the same technique I used
the worst-case approach. Some operations are only necessary for specific techniques.
For example, transitioning between two arbitrary instances of the 3x3 GraphDice
GLOv2 seed technique (Figure 6) requires a transition step that does not occur in
any other transition.)

In Figure 7, I begin with the abstract representation of the Semantic Substrates
technique described above.

The first difference between the two abstract techniques is that the PivotGraph
representation displays every edge glyph, not simply those of edges incident to a single
node. Therefore one can show all of the edges, resulting in the display in Figure 8.

The second difference is that the node glyphs are not distributed across the display

in the PivotGraph, but rather are positioned on = according to a discrete attribute.

31

I Overwew
csT . (o S £\ U M ame i i

e) 7 AN B
Nt ddadaada
oo DN AL LS & A 4
o DN AEFF Fdid A
e DN ABFEF £ dhd

o VA AEELF i
| rank ' 5 %F’*F—F?/ﬁ$::3-3
r | 2SFFPRPE /R
e !%%F‘FFF;‘!‘?‘/M

Figure 6: GLOv2 GraphDice seed technique from [36].

1 - Q90000000000 - - -0

10. @ - ® o @ 0 0 o o

7] o [L] [J L]
-

;_..- . n... e 9 c o000 e Qo P ®

{1+ @ © o o o o o ©

0—. . ® o . . .

Figure 7: Unmodified Semantic Substrates representation.

Taking the display in Figure 8 and positioning the node glyphs along the x axis
based on a discrete attribute (namely the gender of the nodes) results in the display
in Figure 9.

The third difference is that the PivotGraph has axis labels displayed for the z
axis. Figure 10 is Figure 9 with those labels displayed.

The fourth difference is the PivotGraph’s use of glyphs representing super-nodes
rather than a glyph for each node. In Figure 10, the nodes that share the same cluster
and gender are stacked at the same grid position. Since the nodes in the Semantic

Substrates display were sized by a continuous property (namely, their degree) and

32

Figure 9: Semantic Substrates representation modified to show all edges and position
nodes on x by the discrete gender attribute.

this has not been modified, the stack of node glyphs form bullseye-like displays.
Aggregating the nodes represented by each stack (i.e. nodes that have the same
values for both axes’ discrete variables, in this case cluster and gender) into super-
nodes (and the associated glyphs) results in the display in Figure 11. The size of each
super-node glyph is an average of the sizes of the constituent nodes.

The fifth difference is that the super-node glyphs are not sized by their degree in
the abstract PivotGraph, but rather by the number of original nodes that the super-

node represents. Sizing the super-node glyphs in Figure 11 by the number of nodes

33

| b.
¢ 0 ©

i

|
=

Figure 10: Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, and show z axis labels.

they represent results in the display in Figure 12. (This change is rather subtle with
this dataset, but compare the size of the cluster-3/female super-node glyph in the
two figures.)

The sixth difference is that the PivotGraph also displays super-edge glyphs. The
difference between Figure 12 with individual edge glyphs and Figure 13 with super-
edge glyphs is subtle. The reason for this is that the edge glyphs used by the Semantic
Substrates abstract technique are constant-sized. This means that unlike the “bulls-
eye stacks” of unaggregated node glyphs, the “stacked” edge glyphs are hidden behind
the top-most drawn edge glyph in each stack. In Figure 13, each stack is aggregated
into a single glyph by aggregating edges that share the same discrete properties.
These discrete properties are not of the edges themselves, but rather of the endpoint
nodes of each edge. Thus, for this display, those edges with source nodes having the
same gender and cluster values and target nodes each having the same gender and
cluster values are aggregated together into super-edges and represented by super-edge
glyphs.

The seventh and final difference between the Semantic Substrates abstract tech-

nique and the PivotGraph abstract technique is that rather than the constant-sized

34

Figure 11: Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, show x axis labels, and aggregate nodes
into super-nodes.

edge glyphs of the Semantic Substrates display, the PivotGraph display’s super-edge
glyphs are sized by the number of original edges aggregated to form the super-edge.
Figure 14 is Figure 13 with the super-edges sized in this way. In fact, Figure 14 is

the target abstract PivotGraph representation from Figure 5b.
3.2.2 Force-Directed Layout to Matrix Plot

As a second example transition, consider the Force-Directed Layout and Matrix Plot
abstract techniques in Figure 15.3

The graph data displayed in the abstract techniques is the same as the prior tran-
sition, and once again the nodes are colored by the discrete cluster attribute. In
the Force-Directed Layout, the nodes are represented as constantly-sized circles posi-
tioned using a force-directed algorithm and edges are represented as constant-colored,

constant-sized straight-lines between their endpoint nodes’ glyphs. In the Matrix Plot,

3Note that these are not the GLOv2 seed technique versions of these two techniques. Unlike
in both seed techniques, the node glyphs in both abstract techniques are colored by an attribute
(namely, the cluster of the nodes) in order to make the steps of the transition clearer. Furthermore,
in order to simplify the transition and highlight the need for cloning representations, the nodes in the
Matrix Plot are represented by circle glyphs instead of the GLOvV2 seed technique version’s textual
labels, and the edges in the Matrix Plot are displayed as constantly-colored squares, rather than
relatively-colored squares as they are in the GLOv2 seed technique.

35

Figure 12: Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, show x axis labels, aggregate nodes into
super-nodes, and size the super-nodes by the number of nodes they represent.

nodes are represented as constant-sized circles colored by an attribute (in this case,
the cluster of the node). The nodes are represented in both an evenly distributed row
along the top of the display as well as in an evenly distributed column along the left
of the display such that the left-most node of the top row matches the top-most node
of the left column. Each edge is represented as a constant-size, constantly-colored
square positioned at the y coordinate of the edge’s source node’s representation on
the left and the x coordinate of the edge’s target node’s representation along the top.

Once again, let me walk through the steps to resolve the differences between
these two representations. I start with the Force Directed Diagram representation in
Figure 16.

The first difference between the two techniques is the position of the nodes. Rather
than positioned by a force-directed algorithm, the Matrix Plot has the nodes aligned
along the top and left of the display. In order to form the row at the top using the
node glyphs of the Force-Directed Layout, I first evenly distribute the nodes along the
horizontal = axis. (I also signal that the nodes should be sorted by an attribute of the

nodes (namely, the cluster attribute) so that the nodes of each cluster are adjacent

36

5+ L) .
. B \

4 @ .
s °
/

1 L L
o] ® ®

Figure 13: Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, show z axis labels, aggregate nodes
into super-nodes, size the super-nodes by the number of nodes they represent, and
aggregate the edges by the edges’ source gender, source cluster, target gender, and
target cluster.

to each other.) I then align the node glyphs to the top of the display. The results of
these two steps can be seen in Figures 17a and 17b. These two steps were separated
(rather than simply aligning nodes on top in a row as one step) in order to increase
the reusability of each step. Generalized steps can be used in multiple transitions.
As T discuss below, many different transitions involve evenly distributing nodes along
the x axis though they do not necessarily include aligning the nodes along the top of
the display.

The second difference between the Force-Directed Layout and Matrix Plot is that
the Matrix Plot includes a second set of node glyphs. Rather than a single glyph
representing each node in the underlying data, the Matrix Plot has two glyphs for
each node. Therefore, another glyph for each node must be introduced into the
display. One way to do this would be to introduce a completely new set of glyphs.
However, what form would this new set of glyphs take? Where would these new
glyphs be positioned? A simple answer to these questions is that the new glyphs

could be positioned where the current glyphs are positioned and be of the form and

37

5+ [) .
- e |"\
4 .{ .
—_ ~—
3 ®
2+ . .
1o [) =@
Vd
e ——
0 [) (]
T T 1

Figure 14: Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, show x axis labels, aggregate nodes into
super-nodes, size the super-nodes by the number of original nodes they represent,
aggregate the edges by the edges’ source gender, source cluster, target gender, and
target cluster, and size the super-edges by the number of original edges they represent.
In other words, a PivotGraph representation of the graph.

style of the existing set of glyphs. This would leave no ambiguity about the extra set
of glyphs. In other words, in order to introduce another set of node glyphs into the
display I can clone the current set of node glyphs to create a duplicate set of glyphs.
The result of this step is shown in Figure 18. As a 2d image, this representation is
identical to the representation in Figure 17b since the second set of glyphs is directly

on top of (in the z axis) the first set of glyphs.

(a) Force-Directed Layout (b) Matrix Plot

Figure 15: Second example transition techniques

38

Figure 16:

Figure 17: Abstract Force Directed Diagram representation after evenly distributing
nodes on x (a) and after evenly distributing nodes along the x axis sorted by cluster
and aligning the nodes at the top of the display.

With the second set of glyphs created, they must then be repositioned to form the
column on the left of the Matrix Plot display. A logical next step is then to evenly
distribute the new node glyphs along the vertical y axis. Given the Matrix Plot in
Figure 15b, the node glyphs should be positioned such that the “blue” cluster is at the
top of the column and the “brown” cluster at the bottom. If we were to assign values
1-77 to the nodes in the top row based on their position from left to right, then the
column on the left should have nodes ordered from 1-77 downward. In other words,
the origin point (0,0) of the display is considered the top-right corner. While this is the

case for many matrix-based techniques (e.g. the Matrix Plot [34], MatLink [118], and

39

[LCCCL L0000

Figure 18: Abstract Force Directed Diagram representation after evenly distributing
nodes on z sorted by cluster, aligning the nodes at the top of the display, and cloning
the set of node glyphs.

Honeycomb [106] GLOv2 seed techniques), this is not the case for other techniques
(e.g. the Scatternet [27], and GraphDice Segment [36], and DOSA [232] GLOv2 seed
techniques) which assume an origin at the bottom-left corner. I chose to use the latter
(bottom-left) origin point and therefore simply evenly distributing the second set of
nodes sorted by cluster along the y axis would result in the display in Figure 19a,
which is not the intended result. Instead, I evenly distribute the nodes along a
“flipped” or inverted y axis (i.e. with the origin at the top rather than the bottom
of the display) resulting in the display in Figure 19b.

I finish positioning the second set of nodes by aligning them to the left of the
display, resulting in the display in Figure 20.

The third major difference between the Force-Directed Layout and the Matrix
Plot is that the edges are not represented as lines, but rather as squares positioned
based on the locations of the source and target endpoints of the edge in the left-side
column and top row, respectively. In Figures 16-20, the edges have been drawn as
straight lines between the nodes in the top row. Thus, one change that has to be

made is to draw the edges from the left-hand set of nodes to the top set of nodes.

40

L/
)
'.'
L/l
o* “oee,
os* 000,
¢
O
®e,

o,
0
%00,
e,
e,
e,
%0,
o o,
os* e,
o* %0,
o %0,
%06,
®e¢
o,
®

Figure 19: Abstract Force Directed Diagram representation after evenly distributing
nodes on x sorted by cluster, aligning the nodes at the top of the display, cloning
the set of node glyphs, and evenly distributing the new nodes on y sorted by cluster
without (a) and with (b) an inverted axis.

Doing so results in the display in Figure 21.
The final change is therefore to display the edges as squares, rather than as straight
lines. Doing so results in the target abstract Matrix Plot technique displayed in

Figure 22.
3.2.3 Graph-Level Operations and the Transition Matrix

Each of the individual changes made to the displays during these transitions can be
summarized as a graph-level operation (or GLO). Each operation represents a
change to either the glyphs displayed in the visual representation (such as positioning
the nodes by a property, aligning the nodes, or cloning the nodes), a change to the
underlying data of the representation (such as aggregating nodes into super-nodes or
aggregating edges into super-edges), or a change to an interaction in the display (such
as showing every edge rather than only some edges based on analyst interaction).
One can thus represent the seven-step (Semantic Substrates, PivotGraph) transi-

tion as the following list of GLOs*:

e show all edges

e position nodes on {x} by {attribute}

41 will discuss the {parameters} of the GLOs in the next section.

41

€EEEeEeeeeeeeeeeeee

DM

@DNMINMIMIMNNMII))]

Figure 20: Abstract Force Directed Diagram representation after evenly distributing
nodes on x sorted by cluster, aligning the nodes at the top of the display, cloning the
set of node glyphs, evenly distributing the new nodes on y sorted by cluster with an
inverted axis, and aligning the new nodes to the left of the display.

e show {x} axis

e aggregate nodes by {discrete attribute(s)}

e size nodes by {attribute}

e aggregate edges by {discrete attribute(s)}

o size edges by {attribute}

The transition matrix entry for (Semantic Substrates, PivotGraph) would then be
this list of operations.
Equivalently, one can represent the seven-step (Force-Directed Layout, Matrix

Plot) transition as the following list of GLOs:

o cvenly distribute nodes on {z} (sort-by:{attr})

e align nodes {top}

e clone nodes

o cvenly distribute nodes on {y} (sort-by:{attr}, invert:true)

e align nodes left

e set source generation {1} #i.e., draw edges from the second set of node glyphs

(0-indexed)

42

Figure 21: Abstract Force Directed Diagram representation after evenly distributing
nodes on x sorted by cluster, aligning the nodes at the top of the display, cloning the
set of node glyphs, evenly distributing the new nodes on y sorted by cluster with an
inverted axis, aligning the new nodes to the left of the display, and drawing edges
from the second set of nodes (on the left) to the first set of nodes (on top).

e display edges as squares

and therefore the transition matrix entry for (Force-Directed Layout, Matrix Plot)
would be this list of operations.

By identifying the operations to transition to and from each pair of techniques in
the seed technique set (including self-transitions), one generates a complete transition

matrix.
3.2.4 Handling GLO Uncertainty

Over the course of identifying the transitions for each ordered pair of techniques (i.e.,
each entry in the transition matrix), ideally operations are reused. For example, con-
sider the four displays in Figure 23. Many (x, CiteVis) and (*, Semantic Substrates)
transition matrix entries include the position nodes on {y} by {attribute} GLO. Many
(%, MatLink) and (%, Arc Diagram) entries include the evenly distribute nodes on {x}
operation. (I say “many” because not all (x, Semantic Substrates) entries will contain

the same operations. For example, the (CiteVis, Semantic Substrates) entry would

43

€CEEeEeeeeeeeeeeeee

MMM
—

@DNMMIMIIINMMIINIMII))]

Figure 22: Abstract Force Directed Diagram representation after evenly distributing
nodes on z, aligning the nodes at the top of the display, cloning the set of node glyphs,
evenly distributing the new nodes on y with an inverted axis, aligning the new nodes
to the left of the display, drawing edges from the second set of nodes (on the left) to
the first set of nodes (on top), and displaying edges as squares. In other words, the
target abstract Matrix Plot representation.

not include the position nodes on {y} by {attribute} GLO since the nodes in that
display are already positioned along the y axis by an attribute.)

Positioning nodes by an attribute of the data is clearly distinct from evenly dis-
tributing nodes along an axis. Notably, the former requires a parameter specifying the
attribute while the latter does not. On the other hand, sometimes deciding whether
two changes should be considered the same operation can be unclear. Should posi-
tioning nodes by a discrete attribute and positioning nodes by a continuous attribute
be considered the same operation or different? During the GLOv1 identification pro-
cess, I and my colleagues erred on the side of distinct operations. Therefore, entries in
our GLOvV1 transition matrix separated operations for positioning nodes by discrete
versus continuous attributes or for positioning nodes along Cartesian axes versus po-
lar axes. During the GLOv2 identification process, I initially bootstrapped the set
of operations with the GLOv1 operations. However, I eventually chose to err on the
side of minimizing the number of distinct operations. This led to some GLOv1 op-

erations being combined into a single GLOv2 operation. For example, entries in my

44

1 90000000000 - - -0
0 10. @ +© @ o © 6 o o o
) ° ° 0) °
8000 0 00 O C
o e ® e o o o o o O
J 1 @® ° °
(a) CiteVis [213] (b) Semantic Substrates [204]
A .ll)'l”)l))'lIllnlilIII'llnllll]”lll)’wml’)lll'
§ .II"Il. -
E : 1) e 7‘ (01O 1(ECEOIOEEeTeeeoIeeeTTtttteeiitce
])
Cé ' | Illl. .
5 1 [ITWE
E 1 o N 1
L il
H | [—
(¢) MatLink [118] (d) Arc Diagram [243, 141]

Figure 23: Sample abstract techniques where (%, technique) transition matrix entries
share operations.

GLOV2 transition matrix contain a single operation for positioning nodes along any
axis (Cartesian = and y or polar p and 6) by any attribute (discrete or continuous). (I
will discuss the other resulting differences between the GLOv1 and GLOvV2 operations
sets in Chapter 4 once I have presented the two models.)

As part of the goal of minimizing the number of distinct operations, two interesting
sub-cases arose. In the abstract Arc Diagram in Figure 24a, all of the nodes are
evenly distributed horizontally across the display. In the abstract Semantic Substrates
display in Figure 24b, the nodes are also evenly distributed horizontally across the
display, but not as a single set of nodes. Instead, the nodes are evenly distributed
within each row (where the row of a node is determined by a discrete property of
the node). Similarly, while the abstract Circle Graph in Figure 24c evenly distributes

the nodes along the angular polar () axis, the abstract Cluster Circles display in

45

1- 90000000000 - - -0
10 @ - @ ¢« @ 0 0 o o

B P~ —— e m—— i
uulu«uuul«on(«nWu«u«@u«u«u«ua 3 [) [[) L] (] []
z,..........--.c.-.-..-..-.

{¢e ® © © © o o o O

(a) Arc Diagram [243, 141] (b) Semantic Substrates [204]

(c) Circle Graph [207] (d) Cluster Circles [69]

Figure 24: Four abstract techniques where (x, technique) transition matrix entries
contain the evenly distribute nodes on {axis} GLO with different mandatory param-
eters and optional parameters.

Figure 24d evenly distributes the nodes in each cluster around center points scattered
around the display.

In all four abstract techniques, the operation being performed is the same (evenly
distributing nodes along an axis) but how the operation is performed is clearly differ-
ent. Between the Arc Diagram and the Circle Graph, the difference is simply which
axis the GLO is applied to, and thus this axis becomes a mandatory parameter
of the operation. Mandatory parameters are used when the operation cannot be
performed without the information provided by the parameter. Other mandatory
parameters include the {attribute} used to size nodes by an attribute in many (x,
Semantic Substrates) transition matrix entries and the {discrete attribute(s)} used to

aggregate nodes or edges in many (*, PivotGraph) entries.

46

e

T = B —— - = e
S) CETEEEEEeeeeaieeeee! o \—}&u«uuu;,uu«uuu«uo

— ————
LTI T CTCECCEET (DT DL I €EeaeTeeeiaeeeq

(a) No sorting parameter (b) Sorted by discrete cluster attribute

Figure 25: Abstract Arc Diagram representations with different optional sorting pa-
rameters.

In contrast to mandatory parameters, consider the two different Arc Diagram rep-
resentations in Figure 25. Both displays are identical, except that the representation
on the left has the nodes sorted seemingly randomly, while on the right the nodes are
sorted by cluster (identified through color). The sort order on the left is not actually
random; it is simply the order of the nodes as stored in memory. This sort order-
ing provides a useful default case when an alternative sort order is not provided. In
other words, the attribute by which the nodes are sorted during the evenly distribute
operation is an optional parameter. Another optional parameter is a binary flag
signaling to invert the ordering of the sort. This optional parameter is used when
positioning nodes by an attribute in order to ‘flip’ an axis (e.g. position nodes with
larger values on the left and smaller values on the right when positioning nodes on
the z axis).

On the other hand, while both the Arc Diagram and Semantic Substrates tech-
niques in Figure 24 have the same x mandatory axis parameter, they are still different.
In the Semantic Substrates display, the distribute nodes operation is being performed
on the nodes of each cluster independent of all the other nodes. Note that this vari-
ation is not unique to the abstract Semantic Substrates technique. The abstract

CiteVis representation in Figure 26a has nodes stacked on the x axis within each row

47

(again, determined by the discrete cluster attribute) whereas the display Figure 26b
shows what would happen if the nodes were stacked on the z axis independent of the
row. In GLOv]1, I and my colleagues chose to treat the Arc Diagram and Semantic
Substrates cases as distinct (i.e., one was evenly distributing nodes on an axis and the
other was evenly distributing nodes on an axis within a discrete attribute). With the
goal of minimizing the number of distinct operations in GLOv2, these two variations
were considered the same operation (i.e. evenly distribute nodes on axis), but the
Semantic Substrates case requires an optional within parameter. Using a within
parameter applies the operation to each subgroup (as defined by the nodes that share
values of the parameter attribute) independently. This same parameter can be used
to align left all of the stacks in the CiteVis abstract technique and evenly distribute
each of the rows in the Semantic Substrates abstract technique.

The difference between the Circle Graph and Cluster Circles abstract techniques
(Figure 27) is distinct from the difference between Semantic Substrates and Arc
Diagrams. The nodes in each row of the Semantic Substrates technique are still
distributed across the entire display. In other words, the coordinate-space used to
position the nodes within each row in the Semantic Substrates display is the same
coordinate-space used to position the nodes in the single row in the Arc Diagram

display. This is not the case with the two circle-based techniques. Instead, while the

(a) CiteVis [213] (b) Without within parameter

Figure 26: Representations with and without the optional within parameter.

48

(a) Circle Graph [207] (b) Cluster Circles [69]

Figure 27: Sample abstract techniques where (*, technique) transition matrix entries
use or do not use the group-by optional parameter.

Circle Graph distributes the nodes along a 6 axis centered at the center point of the
entire display space, the Cluster Circles representation distributes the nodes of each
category along angular # axes of sub-displays centered throughout the full display. In
fact, the center points of each of these sub-displays is the center point of the bounding

box of the nodes of each cluster in the Circle Graph (see Figure 28). Just as the within

[((C

(a) Circle Graph [207] (b) Cluster Circles [69]

Figure 28: Sample abstract techniques where (%, technique) transition matrix en-
tries use or do not use the group-by optional parameter including bounding boxes

determined by the Circle Graph node positions.

optional parameter signals to apply an operation to subsets of nodes using the full
coordinate-space (i.e., the full display’s z, y, p, and 6 axes), a group-by parameter
applies an operation to subsets of nodes within sub-coordinate spaces of the overall

coordinate-space. Thus many (*,Cluster Circles) transition matrix entries include an

49

Evenly distribute nodes on {axis} GLO adjusted by a discrete group-by parameter

(in this case the cluster of the nodes).

oM

e

(.

oMM

(a) NodeTrix [117] (b) List View [199]

Figure 29: Sample abstract techniques where (*, technique) transition matrix entries
use a group-by optional parameter to display intra-group edges differently than inter-
group edges.

Operations in transitions to the NodeTrix abstract technique in Figure 29a also
utilize optional group-by parameters to position the nodes. But this abstract Node-
Trix technique and the abstract List View representation in Figure 29b both also
display edges differently depending on whether the edge’s endpoints are in the same
group or different groups (represented in these displays by the color of the nodes).
In the NodeTrix display, intra-group edges are displayed as squares while inter-group
edges are displayed as curved lines. In the List View display, intra-group edges are
displayed as curved lines while inter-group edges are displayed as straight lines. Just
as | attempted to minimize the number of distinct operations used in the GLOv2
transition matrix’s entries, I also chose to minimize the number of optional parame-
ters. Therefore, I chose to overload the group-by optional parameter to handle this
case. Including a group-by parameter with an operation that changes how edges are
displayed (such as a GLO to display edges as squares) only applies the operation
to the intra-group edges. Thus, to transition to the List View technique might re-
quire first displaying edges as straight lines (without a group-by parameter), and then

displaying the edges as curved lines (with the group-by parameter).

20

3.3 Inducing an Expected Data Model, Model of Visual El-
ements, and Set of Graph-Level Operations from the
Transition Matrix

Once a transition matrix has been generated for a set of seed techniques, this tran-
sition matrix can then be used to identify both a visual element model of graph
visualization and the set of operations to manipulate the visual element model. The
matrix also implies the data model that these two components expect.

The operations set is the easiest to identify: the set is simply the union of the
set of operations in each entry of the matrix. In other words, since each entry is a
list of operations, one simply reduces each list to a set and then unions all of the
sets together. As optional parameters such as the within or group-by parameters are
ignored during this set-generation step, all of the optional parameters used in the
matrix are then collected.

Identifying the visual element model is more subtle. The operations in the matrix
entries imply a visual element model that the operations manipulate. For example,
operations change representations of nodes and edges, which mandates that the model
being manipulated have some notion of a glyph for nodes and edges. Another exam-
ples is that operations in many entries refer to axes, namely the Cartesian horizontal
x axis, the Cartesian vertical y axis, the polar radial p axis, and the polar angular
6 axis. Identifying all of these elements produces the GLO model’s visual element
model.

The transition matrix also helps to identify overarching properties of a model’s set
of operations. Most importantly, in both GLOv1 and GLOv2 each operation applies
to all of the nodes and edges in a given set of nodes or edges. The set consists of
either a glyph for each node or edge in the backing graph or glyphs of super-nodes
and super-edges created from those nodes and edges. For example, during the (Force

Directed Diagram, Matrix Plot) transition, aligning the second set of nodes to the left

o1

aligned the entire set. The GLOv1 and GLOv2 models refer to these sets of nodes as
generations. Even operations that affect groups of nodes independently from each
other, such as operations modified with a group-by or within optional parameter, still
apply to every node or edge in the generation.

This also begins to imply an underlying graph data model that the operations
expect. If operations apply to every node (or every edge), this requires that every
node/edge have the same set of attributes (though with likely different values of those
attributes) in order to avoid referencing an attribute that any one element does not
have. In addition, the operations sometimes differentiate discrete attributes (whether
ordinal or categorical) from continuous (quantitative) attributes. For example, the
position nodes by {attribute}operation positions nodes relatively along an axis for
continuous attributes and into evenly distributed sets for discrete attributes (see
Figure 30). Furthermore, aggregating edges by properties of their endpoints implies

data visibility requirements (namely that edges can know the decorations of their

endpoints).
(a) Discrete (b) Continuous

Figure 30: The GLOvV2 position nodes by {attr} operation positions node glyphs
evenly along the axis with discrete parameters and relatively along the axis with
continuous parameters.

52

3.4 Augmenting the Operations Set

The final step is to augment the set of operations derived from the transition matrix
with obvious missing operations. Given a large and varied enough seed technique set,
this step should not result in many additional operations. In the case of GLOvV2, this
required the addition of only three operations compared to the sixty-nine operations

that occurred in transitions.

Figure 31: GLOv2 GMap seed technique from [94].

First, during the GLOv2 identification process, transitions to the GMap seed
technique (Figure 31) included drawing convex hulls around nodes and then the op-
eration color convez hulls by {attribute}. Operations for coloring nodes and edges by
attributes also appeared in transitions, as did operations for coloring node and edge
glyphs by constants. Thus, for consistency, the color convex hulls by constant GLO
was added to the set.

Second, many transitions to the CiteVis seed technique (Figure 32) required the
position nodes evenly stacked {direction} operation. The paired operations evenly
distribute nodes on {axis} and position nodes on {axis} by {attribute} were similarly
required for various transitions. However, a stacking GLO equivalent to the relative
positioning position nodes on {axis} by {attribute} did not appear in any transitions.

Thus, I added a position nodes stacked {direction} by {attr} operation that stacks

93

The Informetion Interfaces Group of Georgie Tech presents.

Authors: | --- B Affil B Concepts: --- B Title Search:

Clear Al | Shade by Inernal Cies Help

2015 o o (] (]

ling of the Role of in Information

Jacko, |
rology; Emory University

Figure 32: GLOv2 CiteVis seed technique based on [213].

the nodes distances apart relative to an attribute of the data.

wee o
(]

L))

wwe

e

.)))))))))))))))..))))))))..))))
[]
[]

94 @
(]
[]

Figure 33: Demonstration of axis uncertainty.

Third, no GLOvV2 seed technique that includes axis labels has multiple generations
of nodes referring to the same axis. This meant that among these techniques there
was no uncertainty as to which generation of nodes any given axis labels should
refer. However, consider the display in Figure 33. The axis labels should refer to the
generation of nodes positioned by an attribute rather than the left-aligned generation,
but that may need to be communicated through a GLO. Thus, the set {axis} axis node

generation {num} GLO was added to the operations set to provide this information.

o4

CHAPTER IV

THE GRAPH-LEVEL OPERATIONS MODEL

In Chapter 3, I described a method for inducing a model of graph visualization from a
set of seed techniques and two sets of seed techniques consisting of 6 and 29 techniques.
In this chapter, I present the models that resulted from applying the method to the
two sets of seed techniques (GLOv1 and GLOV2, respectively). As mentioned in the
last chapter, each model consist of two components: a visual elements model and the
set of graph-level operations for manipulating that visual elements model.

I begin by describing the data model that the GLO models expect. I then describe
the GLO visual element model including glyphs, generations, canvases, axes, and
the GLO Display. I then present the two sets of operations discuss the differences
between them. I will then describe properties of GLOs that enable them to function
as a domain-specific graph visualization language. Finally, I describe how we can use

lists of operations to describe techniques, starting with the seed techniques.

4.1 Graph Data Model

Before discussing the graph-level operations models directly, let me first describe the
graph data model that the models expect. At the highest level, the GLO models
expect a graph consisting of a set of nodes and a set of edges between those nodes.
Note, however, that such a graph can have no nodes and no edges or the graph can
have nodes but no edges. The latter of these two cases is schematically equivalent to
tabular data if each row of the data is considered a node.

Each node must have an identifier (id) unique to the node relative to the other
nodes’ identifiers and these identifiers must be sortable. Equivalently, each edge must

also have a unique, sortable identifier. These identifiers are used as the default sorting

95

attribute for GLOs (such as evenly distribute nodes on {axis}) when no optional sort-
by parameter is provided. Two simple and effective identifier schemes are to label the
nodes and edges with the address (e.g. 0x440B...0x44AF) or index of the element’s
position (e.g. 1...n) in memory.

Each edge must have some reference to its endpoints. These references must be
in the form of a source reference and a target reference. For directed graphs, these
references map directly to the source and target nodes of the edge. Undirected graphs,
however, must be converted to directed graphs. There are two simple algorithms to
perform this conversion. The first algorithm is to set one endpoint of each undirected
edge to be the source and the other to be the target (for example, by selecting the
node with the lower id as the source). The advantage of this algorithm is that the
degree of each node in the adjusted graph is equal to the degree of each node in the
unadjusted graph and the number of edges in both graphs remains the same. On the
other hand, the in-degree and out-degree of each node is not guaranteed to remain
the same. The second algorithm is to create a second copy of each non-self-edge
in the graph, with each pair of otherwise-duplicate edges having reverse source and
target references. This second algorithm reverses the advantages and disadvantages of
the first algorithm—the original nodes and the new nodes have the same in-degrees
and out-degrees, but the nodes in the new graph have different degrees than their
counterparts and the total number of edges has changed.

Each node and edge can be decorated with attributes (or properties). These
attributes can be discrete attributes (where the values of the attribute are drawn
from a finite set of values) or continuous attributes (where the values of the at-
tributes are drawn from an infinite set or series of values). (Using Card, Mackinlay,
and Shneiderman’s taxonomy [52], discrete attributes cover both nominal and ordinal
data types and continuous attributes are quantitative data types.) Unless explicitly

specified, continuous or discrete attributes can be passed as attribute parameters.

o6

Certain GLOs (and optional parameters) do explicitly depend on accepting only
discrete attributes. Namely, aggregation operations require any number of discrete
attributes to be passed, the filter-partition operation takes a discrete parameter, and
the group-by and within optional parameters must be discrete attributes. All of
these operations and optional parameters concern partitioning the set nodes into cat-
egories or clusters, which can be done without additional information using discrete
attributes. In contrast, to reduce a continuous attribute to a discrete attribute re-
quires binning the values. However, this introduces uncertainty. Most importantly,
how many bins should be used? To circumvent this uncertainty, both models expect
that if binning a continuous attribute is necessary, that the attribute be pre-binned
and represented as a discrete attribute before any operation is applied.

As I discuss later in this chapter, every operation applies to glyphs representing
every node or edge in the graph. Therefore, any nodes or edges lacking an attribute
that is referenced will lead to an unpredictable response. Therefore, all nodes must
have the same set of attributes and all edges must have the same set of attributes.
Of course, the values of these attributes are not expected to be the same. This
requirement can be limiting, for example, if the data for a certain attribute of a
specific node or edge does not exist. For discrete attributes, missing values can be
represented as a “missing” (or null) value that will simply be considered as another
value of the attribute. Missing continuous attributes pose a larger challenge. Unlike
discrete attributes, a null value for continuous attribute would cause issues whenever
a visualization of the data is rendered. Thus, each missing value must be replaced.
The replacement value could be a statistic (such as min, max, mean, median, or
mode) over the non-missing values or could be a pre-determined value (such as —1
among otherwise non-negative values). Regardless, all of these replacements must be
performed before a GLO is applied using the data.

Finally, from a data visibility perspective, the GLO models expect that each node

o7

can access the values of its own attributes, its in- and out-edges, and the nodes
making up its in- and out-neighborhoods. (Note that there is no expectation that a
node can access the attributes of these incident edges and neighboring nodes, only
the edges and nodes themselves.) Conversely, the model expects that each edge can
access the values of its own attributes, its two endpoint nodes, and the attributes of

its endpoints.

4.2 GLO Visual Element Model

As I described in the previous chapter, various changes are made to representations
in order to transition between them. The elements (and their properties) manipu-
lated through those changes describes a visual element model. In this section I will
describe the GLO visual element model induced from the GLOv2 transition matrix.
This visual element model serves as a super-set of the GLOv1 visual element model.
(I will postpone describing the precise differences between the two visual element
models until after I have presented both the GLOv2 visual elements model and both

operations sets.)
4.2.1 Glyphs

The primary unit of the GLO visual element model is the glyph. A glyph is a visual
representation of a given node or edge in the graph data, called the backing node
or backing edge of the glyph. Nodes are represented by node glyphs, while edges
are represented by edge glyphs.

Glyphs can be displayed in a variety of ways. For example, consider the Force-
Directed Layout and Matrix Plot GLOv2 seed techniques in Figure 34. The Force-
Directed Layout’s nodes are represented as circles, while its edges are represented
as straight lines. Alternatively, the Matrix Plot’s nodes are represented as textual
labels, while its edges are represented as small squares colored by an attribute of the

data.

o8

(a) Force-Directed Layout from [138] (b) Matrix Plot from [34]

Figure 34: GLOvV2 seed techniques with differing node and edge glyph displays.

Node glyphs under GLOv2 have one of four display modes: circles, squares,
bars, or textual labels. Edge glyphs under GLOvV2 have one of six: straight lines,
curved lines, squares, textual labels, bars, or right angles. Furthermore each node
and edge glyph has a size and a color.

Beyond its display mode, each glyph has three additional visual properties: po-

sition, size, and color.

Timeline + | [Philosophers *

Figure 35: GLOv2 EdgeMap B seed technique from [74].

In addition, each glyph has an interaction mode. Interaction is enabled through

29

a selected node model. For example, in the GLOv2 Edgemap B seed technique in
Figure 35, the Nietzsche node is the selected node. In this display, the node glyphs’
interaction mode (highlight neighbors) causes node glyphs to highlight if the backing
node is a neighbor of the selected node and fade out if the backing node is not
a neighbor of the selected node. The interaction mode of the edge glyphs in this
display (show in-out edges) signals for edge glyphs to be visible if the backing edge
is incident to the selected node and hidden otherwise.

The GLOvV2 model does not explicitly specify how the selected node is determined.
Instead, this is left to each implementation of the model. For example, the Javascript
GLOV2 implementation I present in the next chapter (GLO.js) considers the node
backing a node glyph the analyst is mousing over the selected node. Alternate selec-
tion mechanisms could include mouse clicking, finger tapping, or even eye tracking.
However, the GLOv2 model does explicitly require that either no nodes are selected
or a single node is selected. The model explicitly does not support multi-selection.
Consider the Edgemap B seed technique again. The edges are displayed such that in-
edges of the selected node (thin lines) are displayed differently than the out-edges of
the selected node (thin lines). These edge glyphs are not sized by an attribute of the
edges, but rather by their relationship to the selected node. If there were two selected
nodes that were endpoints of the same edge, this would lead to an undefined state
for the edge where it was both an in-edge and an out-edge of a selected node. (I will
discuss in Chapter 6 how multi-selection within a GLO model is an open challenge.)

GLOvV2 supports three interaction modes for node glyphs: no interaction, highlight
neighbors, and highlight-in-out-neighbors.

In the no interaction case, selecting a node (again, however the implementation
has defined selection) has no effect on the representation. In the highlight neighbors
mode, node glyphs are shown fully rendered when no node is selected and node glyphs

are in some way highlighted when they are neighbors of a selected node. In the case

60

of the Edgemap B seed technique above, this was handled by reducing the saturation
of non-highlighted nodes. However, a given GLO implementation can perform this
highlighting however it deems fit. For example, in my GLO.js implementation, a
thin black ring is drawn around highlighted nodes. The critical aspect is that the
neighborhood of the selected node be visually distinct from the non-neighbor node

glyphs in the generation.

The Informetion Interfaces Group ot Georgia Tech presens.

Pl X X]
200000000
20000000

Figure 36: GLOv2 Citevis seed technique based on [213].

In the highlight-in-out-neighbors case, exemplified through the CiteVis GLOv2
seed technique in Figure 36, nodes are highlighted differently if they are in-nodes or
out-nodes of the selected node. In the seed technique, this is handled by coloring in-
nodes green and out-nodes blue. However, once again, the specific manner in which
the node are visually modified is left to the implementation.

Edges glyphs in GLOvV2 have six interaction modes: show none, show all, show
faded, show incident, show in-out, and show faded and incident.

The show none, show all, and show faded interaction modes remove any interaction
from the edge glyphs. In the show none case, all edge glyphs in the generation are
hidden. This is the edge interaction mode of the CiteVis seed technique above.
Note that the edge glyphs are not removed when they are hidden. Properties of the

glyphs can still be manipulated and will be reflected should the interaction mode

61

(a) Force-Directed Layout from [138] (b) GMap from [94]

Figure 37: GLOv2 Force-Directed Layout seed technique and GLOv2 GMap seed
technique. The straight-line edge glyphs in the Force-Directed Layout have the show
all edges interaction mode, while the straight-line edge glyphs in the GMap technique
have the show faded interaction mode.

change. In the show all case, each edge glyph is displayed fully rendered. In the
show faded case, every edge glyph is displayed with a lower saturation. For example,
in Figure 37, compare the fully-rendered straight-line edges of the Force-Directed
Layout seed technique (show all edges interaction mode) with those of the GMap

seed technique (show faded interaction mode).

Supreme 1982 1987 1992 1997 2002

Circuit 1982 1987 1992 [1997 2002

District 1982 1987 1992 1997 2002

Figure 38: GLOv2 Semantic Substrates seed technique from [204] with edge glyphs
in the show incident edges display mode.

62

In the show incident interaction mode, an edge glyph is only displayed when one
of the endpoints of the edge glyph’s backing edge is selected. This is the interaction

mode used by the Semantic Substrates GLOV2 seed technique in Figure 38.

Rﬁmwww

G
D) B (W
!) 753“ | =] }M'!g

s e oW e

Figure 39: GLOv2 List View seed technique from [199]. Edge glyphs utilize the show
faded-and-incident interaction mode.

The List View GLOvV2 seed technique in Figure 39 utilizes the show faded-and-
incident interaction mode. In the show faded-and-incident interaction mode, edge
glyphs are displayed as faded (i.e. with a lower saturation) both when there is no
selected node or when a selected node is not an endpoint of the edge glyph’s backing
edge. In the case where the backing edge is an endpoint of the selected node, then
the edge glyph is drawn fully rendered.

Finally, the Edgemap A and Edgemap B GLOv2 seed techniques in Figure 40
demonstrate the show in-out interaction mode. Like the show incident interaction
mode, under the show in-out interaction mode, edges are hidden unless there is a
selected node. When a node is selected, edge glyphs representing in-edges of the node
are rendered one way, while out-edges of the node are rendered another way. It is

again left to each implementation how the edges are rendered differently.

63

° O% %% _—
(a) Edgemap A (b) Edgemap B

Figure 40: GLOv2 EdgeMap A and Edgemap B seed techniques from [74]. Both
techniques utilize the in-out edges interaction mode where in edges of the selected
node are displayed differently from out edges.

4.2.2 Generations

At the next level of the visual element model, glyphs are grouped into generations.
To summarize the logic behind generations from Chapter 3, changes between tech-
niques are described as changes to sets of glyphs, not to individual glyphs. Specifically,
operations that manipulate the visual element model operate on sets of one glyph per
node or one glyph per edge. Therefore, in a given generation, there is one glyph per
node or edge in the graph. L.e., in a given node generation there is a single node
glyph for each backing node in the underlying graph data, and in a given edge
generation there is a single edge glyph for each backing edge in the underlying
graph data.

The backing nodes and edges of a generation may not necessarily be the nodes
and edges of the underlying graph data. As I demonstrated during the (Semantic
Substrates, PivotGraph) transition, nodes and edges can be aggregated into super-
nodes and super-edges. These super-elements represent multiple nodes or edges. A
generation of super-node glyphs backed by super-nodes will therefore have fewer

glyphs than the total number of nodes in the original graph and equivalently for

64

super-edge glyphs.

When nodes or edges are aggregated to form super-nodes and super-edges, the
attributes of the aggregated nodes and edges are shared by the super-element. In
other words, super-elements have the same data attributes as the original graph’s
nodes and edges. For continuous attributes, super-elements summarize the original
element’s attributes using a summary statistic such as mean, median, min, or max.
The choice of summary statistic is therefore a mandatory parameter of aggregation
GLOs. For discrete attributes, the super-elements have the same values as the most
common value among the original elements. If there is a tie between values, the value
associated with the element with the lowest identifier among the elements with one
of the candidate values is chosen.

Every node glyph and edge glyph backed by an element of the original graph in-
cludes an immutable count attribute with a value of 1. This value signifies that
the glyph represents a single element of the original graph. Super-elements have
count attributes equal to the number of original elements they represent. For exam-
ple, if three original nodes are aggregated into a super node, then the super-node
has a count attribute value of 3. Techniques such as the PivotGraph GLOv2 seed
technique depend on this value to properly size its super-node-backed node glyphs.
Furthermore, should super-elements be aggregated, the new (super-)super-elements
have count attributes equal to the sum of the count attributes of the super-elements.

Super-nodes and super-edges can be deaggregated to restore the nodes and
edges or super-nodes and super-edges (and the associated glyphs) that made up the
aggregates. Note that the restored node and edge glyphs may have been modified.
Operations performed on a generation of super-node glyphs or super-edge glyphs are
reflected in the glyphs of the original nodes and edges. For example, any operations
that change properties of a super-glyph (display mode, position, size, color, or inter-

action mode) will be reflected in the restored nodes. For example, if a super-glyph

65

is colored red by an operation, then all of the node glyphs aggregated to form the
super-glyph will be restored as red-colored.

In the (Force-Directed Layout, Matrix Plot) transition in the previous chapter,
I showed that some techniques (such as Matrix Plots) require multiple glyphs to
represent the same graph elements. Furthermore, I showed that these additional
generations of glyphs can be introduced into a display unambiguously by cloning
an existing generation. Cloning a generation creates a new generation, with its own
set of glyphs, each of which is a duplicate of one of the original generation’s glyphs.
With the exception of a default generation, generations can only be created through
cloning. A default generation consists of a single generation of unaggregated elements.
Notably, the new generation’s glyphs are still backed by the same underlying nodes,
edges, super-nodes, or super-edges of the generation being cloned. In other words, the
glyphs in cloned generations can still have properties such as size and color derived
from data attributes.

Recall that interaction is handled by a selected node model, as opposed to a
selected node glyph model. This means that any interaction with a glyph representing
a node will simulate interaction on (i.e., brush to) all other glyphs representing the
node.

Just as node and edge glyphs have properties, so too do edge generations. Specif-
ically, each edge generation has a source node generation and target node gen-
eration. Consider the Edge-Label-Centric GLOv2 seed technique in Figure 41. The
technique consists of two generations of nodes, one on the left and one on the right.
Edges (represented by the red line glyphs) are drawn from the glyph representing
the source node in the left generation to the glyph representing the target node in
the right generation. In order to correctly draw these edges, the edge generation

knows its source node generation and target node generation. Edges displayed

66

Source nodes Edge Target nodes
| labels

|

; I

ST D5 v S
!

|

L ;
. abel 3K\ 5
Ldi “.ﬁt‘ i

I

|

R bR

|

|

|

Figure 41: GLOv2 Edge-Label-Centric seed technique from [182]. The red straight-
line edges are drawn from the source generation on the left to the target generation
on the right through the waypoint generation of super-edge glyphs in the center.

as straight or curved lines or right-angles can then be drawn between the appropri-

ate source and target glyphs. Edges displayed as squares or attribute labels can be

positioned relative to the source and target node glyphs.

==

Figure 42: GLOv2 MatLink seed technique from [118] demonstrates source and target
node generations.

For example, consider the MatLink GLOv2 seed technique in Figure 42. One
generation of curved edges is drawn with the nodes on the left-side as both the source
and target generation. Similarly, the other generation of curved edges is drawn with

the nodes on the top as both the source and target generation. In contrast, the nodes

67

displayed as squares making up the majority of the display are drawn such that
they share a y coordinate value with their source nodes on the left and share an z
coordinate value with the target node in the top generation. Therefore, the left-hand
node generation is the source generation of the square edge generation, while the top
node generation is its target generation.

An additional property of edge generations are waypoint generations. A way-
point generation is a different edge generation through which edge glyphs with line-
based display modes (straight lines and curved lines) are drawn. For example, in in
Figure 41, the generation of super-edge glyphs with display mode labels in the center
of the display is an edge waypoint generation of the generation of red straight-line

edge glyphs. By default, edge generations do not have a waypoint generation.
4.2.3 Canvases

The third level of the GLOv2 visual element model is the canvas, on which the glyphs
of each generation are drawn. Each canvas has four axes: x, y, p, and 6. The x and
y axes map to the Cartesian coordinate system (i.e. lower-left origin). Each canvas
has three preset values for the x axis (left, center, and right) and three preset values
for the y axis (top, middle, and bottom). Conversely, the radial p and angular 6 axes
define a polar coordinate system around the (center,middle) point in the Cartesian
coordinate system. Single preset (constant) values for p and 6 are defined by each
implementation of the GLOv2 model. The GLO.js implementation uses the positive
y direction as its constant 6 value and quarter the shorter of the = or y axis lengths
as its constant p value.

Canvases can also display axis labels along their edges. (For example, see the
Scatternet GLOvV2 seed technique in Figure 43.) If node glyphs are repositioned
along an axis by a different attribute, the axis labels update accordingly. Similar

to each edge generation have source and target node generations, each axis on each

68

¥ MKTCAP v | Scale: logarithmic -

§1000.0B
L]
IBM (Portfolio Diversity Index:0.6 HKTCAP:!Z:M.‘%‘D e
$100 08 es .
& L
L]
™ . ’ ng\elt-F‘adgrd Co®
.
L]
$10.08 .Seaqale Technology Inc g . e ® . .
L] . L d
.
.
g . it
51.08 & & *
[] []
® # ®
§ .
$0.18 .
0.0 0.1 02 03 04 0.5 0.6 0.7
x: I Portfolio Diversity Index - J Scale: linsar -

Figure 43: GLOv2 ScatterNet seed technique from [27] demonstrates axis labels.

canvas also has an associated node generation. In this way, each axis knows when to

update the labels.

4.2.4 GLO Display

The highest level of the GLO visual element model is the GLO Display. Unlike
canvases, generations, and glyphs, there is only one GLO Display. The GLO Display
consists of canvases arranged in a grid along the x and y axes. Similar to how new node
and edge generations can be created by cloning existing node and edge generations,

new canvases can be created by partitioning existing canvases.

BE]

= [ke v | Excnte | rnoyes |
Detal | Fiters Vi |

|77 West Gt East
> soun

HEREEE R R R
s

ogros grtegen)
Detau

o—

0=t L =

Backaround

Sont
o)

Figure 44: GLOv2 MatrixExplorer seed technique from [116] demonstrates canvas
partitioning within a GLO Display.

69

Partitioning a canvas divides the area of the GLO Display originally designed to
the canvas into n equal-sized partitions along an axis. Each partition is a clone of
the original canvas except for the smaller dimensions. The partitions each contain
clones of all the node and edge generations in the original canvas. Once a canvas
is partitioned, each of the canvases can be modified independently. For example,
to transition to the MatrixExplorer GLOvV2 seed technique in Figure 44 requires
partitioning the GLO Display into two canvases. After the partitioning, each of the
two canvases can be adjusted independently, one into a Force-Directed Layout and
the other into a Matrix Plot.

Recall that interaction is derived from selected nodes (rather than selected node
glyphs). Thus, interaction does not simply brush to other glyphs backed by the
selected node in a single canvas, but rather to node glyphs backed by the selected
node in all canvases. In this way, the GLO visual elements model brushing and

linking between different representations, such as the two displays that make up the

MatrixExplorer.
@82) (262) __ e 2003 (427)
a .: L O.: e A A) . ..O N . o.. o:
8% o * * e % ° .. *)
= . o [] . o0 o ° <
L . ¢ * . : %) o o @
° +0 °, ® . . « 0
° . °
® oo P .°. . ® e 9o ..'.
2 (2] oo [o e ®e [
g * 9o o o - : oo : L O
H A o« U . . ° ..
9o ° ° ¢ o
. S e . . ¢ s oo
see . - =< ®
. 3 o [— . o %o o o
e o ® :. e o oo [4 s
= .. e . ® . o0 ee 20 e
2 | ™ . . L] L o g
. » .. . ° ° e o ..
L] ° .
o @ e oy © -« o eo o o %
.O.o. ® o. O.o C o. °.: 0...o

Figure 45: GLOv2 Attribute Matrix seed technique from [153] demonstrates filter-
partitioning canvases and meta-axis labels.

While partitioning canvases into a specific number of smaller canvases enables

70

linked representations, other techniques make use of Tufte’s principle of small mul-
tiples [229]. For example, consider the Attribute Matrix GLOv2 seed technique in
Figure 45. The Attribute Matrix displays a grid of small multiples of Force-Directed
Layouts, where each small multiple consists of the subgraph induced by the nodes that
have the same pair of properties. GLOv2 supports this small multiples functionality
through filter-partitioning. Filter-partitioning not only partitions the canvas, but
does so by splitting each node generation on the canvas based on a discrete value of
the data. Similar to axis labels on canvases, the GLO Display can display meta-axes

when the canvases themselves are data-driven in this way.

4.3 Operation Sets

While the visual element model represents one component of a full GLO model, the
other component is a set of graph-level operations that modify an instance of the
visual element model. These operations represent the various steps used to transi-
tion between techniques during the identification process, such as sizing nodes by an
attribute, cloning a generation, or displaying edges as squares.

Rather than list the operations here, I instead refer the reader to the full set of
34 GLOvV1 operations in Appendix C and the full set of 72 GLOv2 operations in
Appendix D.

In this space, let me instead briefly describe the categories of operations in each
model.

The 34-element GLOv1 operations set can be broken down into five overarching
categories. Positioning operations adjust the coordinate positions of nodes glyphs
in the GLO Display. There are operations that modify element properties, such as
how edges are displayed or whether nodes are constant-sized or sized by an attribute.
This category includes operations for specifying interaction modes. Cloning opera-

tions allow the visualization to represent the same set of nodes with multiple glyphs

71

(and remove those extra glyphs.) The model provides operations for aggregating
nodes and edges into super-nodes and super-edges. Finally, GLOv1 enables showing

and hiding axes labels that update as the positions of the nodes are changed.

Figure 46: GLOv2 GMap seed technique from [94] utilizing convex hulls.

The 72-element GLOvV2 operations set can be broken down into eight categories.
Some are the same as GLOv1, such as those for adjusting node (and edge) glyph
positions and other visual properties. GLOv2 also supports cloning nodes (and
edges), aggregating nodes (and edges), and displaying axes. However, GLOv2 also
adds support for partitioning canvases within the GLO Display, drawing translu-
cent convex hulls around groups of nodes (e.g. see the GMap GLOvV2 seed technique
in Figure 46), and a wider variety of interaction operations to change the interaction

modes of the glyphs.

4.4 Language Properties of Graph-Level Operations

If one considers a set of operations as an application programming interface (API),
72 unique GLOvV2 operations (functions) over 8 categories (classes) is actually com-
paratively small. As I discuss in the next chapter, utilizing GLOs as an API is one
of the primary advantages of GLO models. Thus, in this section, I want to define

properties of the domain-specific language that such an API represents.

72

First, each canvas has an active node generation and an active edge gener-
ation and each GLO Display has one or more active canvases. Operations that act
on a canvas will only act on the active canvas(es). Operations that act on a generation
will (by default) only act on the active generation (node or edge as appropriate) of
the active canvas(es). This is, in my opinion, the most important feature of the GLO
DSL—operations apply to every glyph in a generation. No operations act on a single
glyph. In other words, if the size nodes by {attr} GLO is applied, it is applied to the
entire active generation rather than to a specific glyph.

As I discussed in the previous chapter, operations can have mandatory param-
eters as well as optional parameters. For example, the evenly distribute nodes
on {axis} operation has a mandatory {azis} parameter that can be any of the four
axes supported by GLOv2: z, y, p, or 8. This GLO also recognizes two optional
parameters. A sort-by attribute parameter that distributes the nodes in order of the
nodes’ attribute values. An invert flag parameter reverses the order of the sorting.
The value of the {direction} parameter in GLOs such as align nodes {direction} can
be top, middle, bottom, left, right, or center.

With two notable exceptions, all mandatory parameters take a single value. The
exceptions to this are the parameters of the aggregate nodes by {discrete attributes}
using {method} and aggregate edges by {discrete attributes} using {method} GLOs.
Rather than a single attribute parameter, these two operations can take one or more
discrete attributes as a set of parameters. This enables aggregation by more than a
single attribute such as in the PivotGraph transition in the previous chapter.

In the GLOvV2 operations list in Appendix D, mandatory parameters are defined
for those operations that require them. For consistency, any optional parameters may
be passed to any operation. However, operations that do not utilize a given optional
parameter can simply ignore that parameter. For example, the clone nodes operation

would ignore any sort-by or invert optional parameters passed to it.

73

Figure 47: GLOv2 DOSA seed technique from [232] utilizes the all-canvases optional
parameter.

Two specific optional parameters are utilized for every operation. Recall that
GLOs only apply to either the active canvas or the active generation of the active
canvas depending on the GLO. There are instances, however, when applying an op-
eration to more than only a single canvas or generation is useful. For example, in the
DOSA GLOvV2 seed technique in Figure 47, one might need to color the node glyphs
in both canvases by the same property. In these cases, either or both of two optional
parameters can be passed to adjust the GLO’s scope: the all-generations flag and
all-canvases flag. The all-generations flag applies the operation to every generation
(node or edge, as appropriate) in the active canvas(es). The all-canvases flag applies
the operation to the active generation in every canvas in the GLO Display. Both flags
together apply the operation to every generation (node or edge, as appropriate) in
every canvas.

As I discussed in the previous chapter, sometimes a generation of glyphs must
be considered not as a single unit, but as a collection of pair-wise distinct clusters.
In the graph data, these clusters are represented as a single discrete attribute of the
nodes with different values for each cluster. GLOs utilize two optional parameters to

handle these cluster cases: the within attribute the group-by attribute.

74

The within attribute signals that the operation should consider each cluster dis-
tinctly, but utilize the entire canvas’s coordinate space. For example, Figure 48 shows
the difference between evenly distributing nodes on z without and with a within at-
tribute. Without the attribute, the distribution is performed amongst all of the
glyphs. With the attribute, the distribution is performed independently for each

cluster (here represented by glyph color).

(a) without within attribute (b) with within attribute

Figure 48: Evenly distribute nodes on {x} with and without a within attribute.

While the within attribute enables positioning glyphs using the canvas’s coor-
dinate space, a group-by attribute enables positioning glyphs using sub-coordinate
spaces of the canvas. The coordinate space for each cluster is defined as the bounding-
box of the the clusters’ glyphs’ current positions. Figure 49a displays the nodes posi-
tioned in a circle, sorted by cluster (again represented by glyph color). In Figure 49b,
the align nodes {center} GLO is applied without an optional group-by attribute.
Note that the nodes are all aligned to the center of the canvas. In Figure 49c, the
same GLO is applied, but with the cluster attribute passed as a group-by parameter.
The glyphs are each aligned to the center of the bounding box of each cluster in
Figure 49a.

As T explained in the previous chapter, the group-by parameter is overloaded to
also be used to modify only intra-cluster edges. For example, Figure 50 demonstrates

applying a hide edges GLO (to set the interaction mode of the entire active edge

75

(a) inital layout (b) without group-by attribute (c¢) with group-by attribute

Figure 49: Align nodes {center} with and without a group-by attribute.

B

b iz
I %ﬁ%{ %

|

Figure 50: (a) Force-Directed Layout, (b) Force-Directed Layout after applying hide
edges, (c) Force-Directed Layout after applying hide edges and show all edges (group-
by: {cluster})

generation to show none) followed by a show all edges GLO with a group-by attribute
(to change the interaction mode of only intra-cluster edges to show all). The effect of
these two operations is to show the edges whose endpoints share a cluster and hide
edges between nodes in different clusters.

Note that this last example reiterates an import point: each node or edge glyph
has only a single interaction mode, display mode, size, and color. Therefore, any
operations that modify these values overwrite the prior value. Therefore, the order
that GLOs are applied matters. The result of applying GLOs in one order may be
quite different than the result of applying the same GLOs in an alternate order.

A number of GLOs refer to or depend on various pre-defined constants. For
example, the GLOv2 operations to color nodes by constant or align nodes {direction}.
Table 2 lists the constants that must be defined by each GLOvV2 implementation. The
values of the ‘Canvas %" constants are functions of the dimensions of the canvas. An

implementation may tweak these values, such as to avoid clipping scale axes with

76

Canvas Left The left of the given canvas

Canvas Center The center of the given canvas

Canvas Right The right of the given canvas

Canvas Top The top of the given canvas

Canvas Middle The middle of the given canvas

Canvas Bottom The bottom of the given canvas

Default p p value to use when positioning by constant on p
Default 0 0 value to use when positioning by constant on 6
Default node size Node size to use when sizing nodes by constant
Default edge size Edge size to use when sizing nodes by constant
Default stack distance Distance between nodes to use when stacking nodes evenly
Default node color Node color to use when coloring nodes by constant
Default edge color Edge color to use when coloring nodes by constant
Default convex hull color Color to use when coloring convex hulls by a constant

Table 2: GLOv2 Constants

aligned nodes. (I have chosen to do this in the GLO.js implementation.) The values
of the ‘Default %’ constants, however, are left to each implementation. As I discuss
in the next chapter, this provides implementations with additional customization
without sacrificing the important aspects of techniques.

Finally, GLOs are atomic. No operation depends on another operation having
been applied in order to determine the effect of the operation. In other words, the
result of applying a GLO is always well-defined. As I will discuss in the next section,
this GLO independence is a strict property of GLOv2 but notably not a property of
GLOv1.

4.5 Differences Between GLOv1 and GLOv2

Recall that the visual element model described above is the visual element model
for GLOv2. GLOv1’s visual element model is a subset of GLOv2’s. The GLOv1
visual element model consists of a single canvas with any number of node generations
(including generations of super-node glyphs) and a single edge generation. GLOv1
does not support changing the color of nodes, simply the size. GLOvV2 extended
GLOv1’s visual element model to include multiple edge generations, multiple can-
vases, colorable node and edge glyphs, convex hulls, and a larger number of display
and interaction modes for both node and edge glyphs.

With respect to the operations sets, as Table 3 shows, of the 72 GLOv2 GLOs, 22

7

are equivalent to the 34 GLOv1 operations. The reason for this reduction is four-fold.

First, GLOv2 includes optional parameters. In GLOvV1, evenly distribute nodes
on x ory and evenly distribute nodes on x ory by {attribute} are considered two
distinct operations. In GLOv2, these are both covered by evenly distribute nodes on
{axis} GLO, which can take an optional sort-by parameter and/or an optional invert
parameter.

Second, GLOv1 differentiates between operations for positioning by categorical
and continuous attributes. Substrate nodes on x or y by {categorical attribute}
and position nodes on x or y relatively by {continuous attribute} are two distinct
operations. In GLOv2, these are simply both covered by position nodes on {axis} by
{attribute}.

Third, GLOv1’s has distinct polar coordinate operations. In fact, GLOv1 has
separate operations for radial operations and angular operations. In contrast, GLOv2
treats the four axes (z,y,p,0) equivalently with a single set of operations, with the
axis a mandatory parameter of any relevant operation.

Fourth, GLOv1 does not support multiple parameters. As I mentioned above,
the GLOv2 operations aggregate nodes by {discrete attributes} using {method} and
aggregate edges by {discrete attributes} wsing {method} GLOs allow for multiple
discrete attribute parameters to be passed. Under GLOv1, aggregating by a sin-
gle attribute or two attributes are two distinct operations. Furthermore, under the
GLOvV1 model nodes cannot be aggregated by three or more attributes.

Note that in Table 3 the GLOv1 GLO display links as circles is marked as equiva-
lent to the GLOv2 GLO display edges as squares. Under GLOv1, the edges in matrix
displays were shown as circles (e.g. see Figure 51). GLOv2 replaced these circles with
squares, as that is how they are traditionally represented.

There are two more critical differences between the two operation sets that I

78

T

L

-
@DDMINIDIINIININNIIINNIMINIMINIIMNNIMIIMIMDD

SDDNNINIIIGINNINIIE@NDI@ININNNNINNIINIII SN
.

@MMMMMMMIOMMIGNI OIS

@ @ @@ @@ OOOO@EOUOOUUe

Figure 51: (a) GLOv1 Adjacency Matrix seed technique with circles for edges and
(b) equivalent Adjacency Matrix in GLOv2 with squares for edges.

wish to highlight. The first critical difference relates to the GLOv1 operations sub-
strate nodes on x or y by {categorical attribute} and evenly distribute nodes within
substrates. Under GLOv2, GLOs do not have any dependencies on other GLOs—
each GLO is well-defined regardless of the current state of the GLO Display. Under
GLOv1, the evenly distribute nodes within substrates operation depends upon the
substrate nodes operation being called first and setting a global ‘substrate’ variable.
GLOvV2 replaces this global variable with the within optional parameter. Without
this dependency, GLOvV2’s operations are fully independent of each other.

The second critical difference is replacing the GLOv1 operation apply {algorithm}
to the nodes with the GLOv2 operation apply force-directed algorithm to nodes. In
Chapter 5, I describe how a distinct force-directed algorithm GLO allows for a more
precise comparison between techniques than a catch-all algorithm GLO.

The remaining 50 of the 72 GLOvV2 operations are for either manipulating the
extended visual model (e.g. clone edges and select canvas {num}) or for providing
additional expressiveness. As mentioned above, GLOv2 includes a larger variety of

node and edge glyph display modes and interaction modes.

79

GLOv1

GLOv2 Equivalent

align nodes {left, center, right, top, middle, bottom}
evenly distribute nodes on z or y by {attribute}
evenly distribute nodes on z or y

substrate nodes on z or y by {cat. attribute}

evenly distribute nodes within substrates

position nodes on x or y relatively by {cont. attribute}
evenly distribute nodes radially by {attribute}
evenly distribute nodes radially

position nodes radially by {cont. attribute}
substrate nodes radially by {cat. attribute}

evenly distribute nodes along plot radius by {attribute}
evenly distribute nodes along plot radius

position nodes along plot radius by {cont. attribute}
substrate nodes along plot radius by {cat. attribute}
position nodes along plot radius by constant

apply {algorithm} to the nodes

size nodes by constant

size nodes relatively by {cont. attribute}

display all links

display selected links

hide links

display links as straight

display links as curved

display links as circles

clone active generation

select generation k

set source generation k

set target generation k

remove generation k

aggregate by {cat. attribute}

aggregate by {cat. attribute} and {cat. attribute}
deaggregate generation k

show x or y axis

hide z or y axis

align nodes {dir}

evenly distribute nodes on {azis} (by {attr})
evenly distribute nodes on {axzis} (by {attr})
position nodes on {azis} by {attr}

evenly distribute nodes on {azis} (by {attr})
position nodes on {azis} by {attr}

evenly distribute nodes on {azis} (by {attr})
evenly distribute nodes on {axzis} (by {attr})
position nodes on {azis} by {attr}

position nodes on {azis} by {attr}

evenly distribute nodes on {azis} (by {attr})
evenly distribute nodes on {azis} (by {attr})
position nodes on {azis} by {attr}

position nodes on {azis} by {atir}

position nodes on {azis} by constant

apply force-directed algorithm to nodes

size nodes by constant

size nodes by {attr}

show all edges

show incident edges

hide edges

display edges as straight lines

display edges as curved lines

display edges as squares

clone nodes

select node generation {num}

set source generation {num}

set target generation {num}

remove node generation {num}

aggregate nodes by {discrete} using {method}
aggregate nodes by {discrete} using {method}
deaggregate nodes

show {azis} axis

hide {azis} axis

Table 3: GLOvV2 operations equivalent to GLOv1 operations.

4.6 Specifying Techniques Using GLOs

Since each GLO is a step of a transition, one should be able to describe a technique
by the GLOs necessary to transition to it. However, what is the source state of such
a transition? Transitioning to a technique from different source states might lead to
drastically different definitions. If the initial state was, for example, a Force-Directed
Layout in Figure 52a, then the definition of the Edgemap A technique in Figure 52¢
would not include the apply force-directed algorithm to nodes GLO since the nodes
would already be in those positions. However, if the initial state was a Matrix Plot
technique in Figure 52b, then the definition for the Edgemap A technique would have
to include either the remove all cloned nodes GLO or the remove node generation

{num} GLO.

80

(a) Force-Directed Layout (b) Matrix Plot (c) Edgemap A

Figure 52: Force-Directed Layout, Matrix Plot, and EdgeMap A techniques rendered
in GLO.js.

In order to avoid this inconsistency, a state can be defined such that transitions
from the state to a given technique are consistent. I call this state the null state.

The null state is defined as a GLO Display with the following properties:

e a single unpartitioned canvas,

e a single generation of unaggregated, unrotated node glyphs in the ‘no interac-
tion” mode,

e a single generation of unaggregated edge glyphs,

e 1o edge waypoints (implied by only a single generation of edge glyphs),

e no convex hulls drawn,

e no axes drawn,

e and no meta-axes drawn.

Defining the null state in this way has two notable advantages.

First, this state avoids the need for any inverse GLOs:

e remove canvas num
e remove all partitions
e deaggregate nodes

e deaggregate edges

e unrotate nodes

o remove all cloned nodes

81

e remove all cloned edges

e remove node generation num
e remove edge generation num
e hide aris axis

e hide meta axis axis

e hide convex hulls

e remove all edge waypoints

e stop highlight neighbors

Appearing in many transition matrix entries, inverse GLOs more often than not
communicate information about the source technique rather than helping describe the
target technique. For example, the remove all cloned nodes operation of a (Matrix
Plot, Edgemap A) transition mostly communicates that the Matrix Plot has multiple
generations.

Second, this null state is highly under-constrained. The positions, display modes,
sizes, and colors of glyphs are not defined. The interaction mode of the edges is also
undefined. This mandates that GLOs for setting these properties be included in a
technique’s definition.

Using this null state, one can define a technique by the ordered list of GLOs neces-
sary to transition from a null state to the technique. This list is a GLO specification
of the technique. For example, here is the GLO specification for the EdgeMap A seed

technique:

e display nodes as circles

e size nodes by {node_size_attr}

e color nodes by {node_color_attr}
e display edges as curved lines

e size edges by constant

e color edges by {source.node_color_attr}

82

GLO Inverse GLO(s)

remove all partitions,
partition canvas on {axis} (by {num}) remove all cloned nodes,
remove all cloned edges

remove all partitions,
filter partition canvas on {axis} by {discrete} remove all cloned nodes,
remove all cloned edges

show meta {axis} azis hide meta azis axis
clone nodes remove all cloned nodes
clone edges remove all cloned edges
set edge waypoint edge generation {num} remove all edge waypoints
aggregate edges by {discrete} using {method} deaggregate edges
aggregate nodes by {discrete} using {method} deaggregate nodes
highlight in-out neighbors stop highlight neighbors
highlight neighbors stop highlight neighbors
rotate nodes {num} degrees unrotate nodes

show convez hulls hide convex hulls

show {axis} awzis hide axis azis

Table 4: Inverse GLOs required for GLOv2 GLOs. For each GLO in the first column
that the technique specification contains, the corresponding inverse GLO(s) in the
second column must be applied to return to the null state.

e show in-out edges
e highlight neighbors

e apply force-directed algorithm to nodes

Note that this specification includes variables (node_size_attr and node_color_attr)
passed as parameters to the operations. GLO specifications are effectively functions
that call GLOs and therefore can take their own parameters.

Using a GLO specification, one can easily determine the inverse GLOs necessary
to return to the null state from the technique. In order to return to the null state
from a given technique, for each GLO on the left-side of Table 4 that appears in the
specification, one must apply the corresponding inverse GLO(s) from the right-side
of the table. Transitioning from any source technique to any target technique can be
expressed as first transitioning to the null state and then transitioning to the target
technique. (Though note that this may not be the most efficient transition.)

In Appendix A and B, I provide GLOv1 and GLOv2 specifications for each of the
GLOv1 and GLOvV2 seed techniques, respectively. Using the GLOv2 specifications,

I calculated the usage of each of the 72 GLOvV2 operations. Table 5 lists the 55

83

24 size edges by constant

21 size nodes by constant

18 color nodes by constant

17 display nodes as circles

16 show all edges

14 display edges as curved lines

13 color edges by constant

13 evenly distribute nodes on {azis}

12 color edges by {atir}

12 position nodes on {azis} by {attr}

11 align nodes {dir}

11 color nodes by {attr}

9 display edges as straight lines

9 display nodes as {attr} labels

9 size nodes by {attr}

8 clone nodes

8 set target generation {num}

7 show {awis} axis

6 Position edges by {attr},{attr}

6 display edges as squares

6 rotate nodes {deg}

5 partition canvas on {azis}

4 aggregate edges by {attrs} using {method}
4 aggregate nodes by {attrs} using {method}
4 apply force-directed algorithm to nodes
4 clone edges

4 display nodes as squares

4 hide edges

4 position nodes by constant on {azis}
4 select canvas {num}

4 size edges by {attr}

3 highlight neighbors

3 show faded and incident edges

2 color edges by {attr},{attr}

2 display nodes as bars

2 filter partition canvas on {azis} by {atir}
2 position nodes evenly stacked attr

2 select row {num}

2 show in-out edges

2 show incident edges

1 align edges attr

1 color convex hulls by attr

1 display edges as {attr} labels

1 display edges as bars

1 display edges as right angles

1 evenly distribute edges on {azis}

1 highlight in-out neighbors

1 select column {num}

1 select edge generation {num}

1 select node generation {num}

1 set edge waypoint generation {num}
1 set source generation {num}

1 show convex hulls

1 show edges as faded

1 show meta {azis} axis

Table 5: Number of GLOvV2 seed technique specifications (out of 29) containing each

GLOv2 operation.

operations that are used in the specifications, along with the number of specifications

in which each occurs. Table 6 lists the remaining 17 operations that do not appear

in any of the 29 seed technique specifications. Each of these is either an inverse GLO

or a GLO added during the augmentation stage of the induction method.

position nodes stacked on {azis} by {atir}
color convex hulls by constant

set {axis} axis node generation {num}
unrotate nodes

remove all edge waypoints

hide convex hulls

stop highlight neighbors

deaggregate nodes

deaggregate edges

remove node generation {num}
remove edge generation {num}
remove all cloned nodes
remove all cloned edges
remove canvas {num}

remove all partitions

hide {azis} axis

hide meta {axzis} axis

Table 6: GLOv2 operations that do not appear in any GLOv2 seed technique speci-

fications.

84

CHAPTER V

UTILITY OF GRAPH-LEVEL OPERATIONS

In the prior chapters, I described how to induce a model of graph visualization from
a set of graph visualization seed techniques, presented two models induced using the
method (GLOv1 and GLOv2), and defined how to describe techniques using those
models. In this chapter, I reflect on how these models can positively affect three
different common visualization tasks: simplifying graph visualization engineering,
understanding the design space of graph visualization techniques, and identifying

novel graph visualization techniques.

5.1 FEasing the Engineering Challenge

In today’s environment, developers can take advantage of the power and breadth
of graph visualization and incorporate its tools and methods into their applications.
However, such development hinges on: non-portability; detailed knowledge of low-
level graphics technologies such as SVG, WebGL, CoreGraphics, and Swing; and
repetitive “boilerplate” code to get even simple visualization elements onto the screen.
This is striking, since abstractions have always been at the core of much of computer
science. While one can still write the machine or assembly code to write a file to
a hard drive, such low-level programming is no longer necessary with the advent of
high-level programming languages that abstract away the details of hardware access.
Graph-level operations provide an equivalent abstraction layer within the visualiza-
tion software stack (see Figure 53).

At the base of the stack is a host language and a graphics library. Recently,

Javacript/SVG (or Javascript/Canvas or Javascript/WebGL) has been a common

85

(Application]
1

(cLoar ")
¥

GLO Interpreter

L
Y

Visualization Toolkit

¥
Host Language j
|
v
Graphics Library]

Figure 53: Visualization software stack

YYD

choice for these layers, replacing Java/Swing. The next layer of the stack is the vi-
sualization toolkit. These include the popular D3.js [41] toolkit for Javascript and
prefuse [113] toolkit for Java. These toolkits are designed to abstract away some of
the graphics code necessary to render visualizations while still providing maximum
expressiveness. In exchange for the improved expressiveness, however, these toolkits
often require a large amount of toolkit-specific “boilerplate” code to set up the en-
vironment. D3 requires far less than prefuse does, but it is still non-trivial. These
toolkits also tend to be heavily tied to the host language and graphics system, re-
quiring a developer to have a strong knowledge of both. For example, writing code
using D3 requires a strong knowledge of Javascript, how the Document Object Model
(DOM) is constructed, and about the underlying graphics system (such as SVG) and
the system’s elements.

At the top of the stack are user-facing applications. Examples of these might be
a standalone interactive visualization of a network or a graph visualization design
application such as Gephi [28]. As it stands, these applications must be built either
directly on the host language or on a combination of the host language and the visu-
alization toolkit. In order for developers to implement a given visualization technique

within that application, they would need to either implement it from scratch or be

86

lucky enough to find an implementation using their chosen language and graphics
model. They would also need to do this for each visualization technique that they
wish to support.

A GLO model provides a buffer layer between the toolkit and the application.
Since GLO specifications of techniques are portable (i.e. they are not tied to a specific
software environment), one simply needs a way to convert a GLO specification into a
visualization using the host language and graphics library. This conversion of GLO
specifications into displays is performed by a GLO interpreter. A GLO interpreter
takes as input a GLO specification of a technique and a graph dataset and outputs a
visualization of the dataset using the technique.

In the previous chapter, I alluded to the fact that considering the operations set
of a GLO model as an API is powerful. A GLO interpreter simply implements the
API defined by the model’s operations set. Once an interpreter for the appropriate
language-graphics pairing exists, a developer can take advantage of any techniques
already specified using GLOs rather than implementing each technique from scratch.

In the cases where an application only requires the use of specific visualization
techniques, a developer can use an interpreter and GLO specifications to easily in-
tegrate pre-defined techniques into applications. In other cases, developers can pass
along the power of GLOs to analysts (i.e. users of these applications) to allow them
to explore their data or communicate their findings by customizing techniques (see
Section 5.3). The GLO-STIX application described in Section 5.1.2 is an example of
this latter case.

Finally, the GLO interpreter model provides developers with increased super-
ficial expressiveness. More specifically, how each GLO interpreter implements a
set of GLOs can be different. To start, each implementation must define the vari-
ous constants that GLOs reference and an interpreter’s developer could chose colors

and typefaces that fit with a branding strategy. Another developer might build an

87

interpreter that renders all elements using “sketch-like” graphics [255] for showing
uncertainty or encouraging others to feel comfortable critiquing visualizations. One
could imagine an implementation where the elements wiggle in place like gelatin or
look as if they are floating on water. In this sense, the specification-interpreter model
functions like the HTML-CSS model of separating the look-and-feel from the under-
lying structure of the techniques. In all of these cases (assuming that the GLO API
is implemented as it is defined) the visualizations that are produced by these cus-
tom implementations still retain the critical aspects of each of the input visualization

techniques.
5.1.1 Implementations

In order to demonstrate the feasibility of implementing a GLO interpreter, I have
built two GLO interpreters, one for GLOv1 and one for GLOv2. Both interpreters
are written in Javascript and use Scalable Vector Graphics (SVG) [240] for graphics.
Both interpreters utilize the D3.js library [41] for managing the SVG elements. The
GLOv1 implementation covers the full operations set of GLOv1. However, the archi-
tecture of the implementation proved difficult to extend to include the larger GLOv2
visual element model and operations set. Therefore, the GLOv2 implementation is a
complete rebuild, dubbed GLO.js.

To use the GLO.js implementation, a developer provides a node list, an edge list,
a set of type descriptions (discrete or continuous) of the node and edge attributes,
and an SVG element in the DOM where the resulting visualizations should appear.
The developer can then apply pre-set techniques stored as functions to the data or
apply GLOs one at a time using the GLO.js API (an implementation of the GLOv2
API). Information regarding node and edge glyph properties are stored on the backing
nodes and edges, enabling the developer to easily access any SVG properties if he or

she wishes to customize the glyphs beyond the scope of GLOs.

88

At the time of this dissertation, GLO.js supports 38 of the 72 GLOv2 GLOs,
including the 22 GLOv2 operations necessary to fully support GLOv1 definitions.
With its implemented operations, GLO.js can render 14 (and closely approximate 9
more, for a total of 23) of the 29 GLOv2 seed techniques (see figures in Appendix B).
The remaining GLOs include inverse GLOs, GLOs with very similar functionality to
implemented GLOs (e.g., displaying nodes as circles is implemented while displaying
nodes as circles is not), and GLOs used only by one or two seed techniques (e.g.
filter-partitioning canvases). GLO.js supports all of GLOv2’s optional parameters:
group-by, within, sort-by, invert, all-canvases, and all-generations. Furthermore, the
GLO.js architecture is designed to support the full GLOv2 visual element model and
operation set.

GLO.js currently consists of approximately 4000 lines of code (including line
breaks and comments). This does not include the technique implementations, which
each requires the number of lines as its specification in Appendix B. The code was
written by a single developer (myself) over the course of approximately two months.

The GLO.js project is open-source and available on Github at http://github.
com/chadstolper/glo. Open-sourcing the project enables both for collaborative
future development as well as enables developers to easily access the GLO API in
order to port GLOs to other popular software environments (such as R or python) in

order to further increase their the utility of the GLO models.

5.1.2 GLO-STIX

GLO-STIX (Graph-Level Operations for Specifying Techniques and Interactive eXploration)

is a prototype application for exploring graphs using GLOs. A team of undergraduate
and graduate student researchers assisted me in designing and building the applica-

tion atop my GLOv1 Javascript implementation.

89

GL.O-5TIX: Croph-Level Operations for Specitying Téchrigues and Interactive eXploration

Show AllLinks %
Substrate on X by Gender™®
Show X Axis

x
i
showy axs X BPE
- 3%

Aggregate by Gender and
Category

Figure 54: The GLO-STIX interface.

Our goal in designing the prototype focused on enabling a graph analyst to inter-
actively explore a newly encountered graph dataset. We envisioned an analyst, upon
first receiving a dataset, wishing to better understand the graph’s features. The tool
was designed to enable the analyst to apply individual GLOs with the possibility of
identifying interesting views of the data to save for future use. In addition, developing
the GLO-STIX prototype provided a testbed for evaluating the viability of GLOs and
the GLOv1 model.

We generated a number of requirements for the prototype application that would

become GLO-STIX:

e The prototype should implement the full set of GLOv1 operations.

e As our intent was to enable an analyst to explore their network data more effec-
tively using GLOs, the prototype should enable an analyst to apply individual
GLOs to a graph.

e The analyst should be able to experiment with applying various GLOs and
therefore the prototype should enable an analyst to move backwards and for-

wards through the GLO history.

90

e [f an analyst has identified an effective display of the network, he or she may
wish to know the GLOs necessary to recreate the display, as opposed to the
full path he or she took to reach the display. Therefore the prototype should
suggest to the analyst which GLOs in the history might no longer be relevant

to the current visualization due to more recently applied GLOs.

e An analyst should be able to easily recall techniques that he or she found inter-
esting as well as be able to easily compare them side-by-side and switch between
them seamlessly. Therefore the prototype should allow an analyst to save an
image (snapshot) of the current visualization along with its GLO history to

compare techniques.

A number of these requirements concern the analyst seeing both how he or she
reached the current display and saving interesting displays for future analysis. These
were influenced by the work on visualization provenance such as VisTrails [51] and
Graphical Histories [109].

We began the development of the user interface by translating the requirements
listed above into necessary software functions and user interface (UI) elements. We
settled on four Ul elements: a list of all available GLOs, a history view of applied
GLOs, the visualization display, and a region for displaying the snapshotted tech-
niques. The functions we identified included the GLOs themselves, support for un-
applying and re-applying a GLO to a graph, and snapshotting the current configura-
tion of GLOs.

Using these elements and functions we sketched a number of designs for the user
interface. We discussed these drawings amongst the team, identifying potential advan-
tages and disadvantages of each. We eventually settled on the interface in Figure 54.
This interface features all of the basic elements (available GLOs, view of the history,
visualization area, view of visualization states captured) and the functions envisioned.

On the left, in the Select GLOs panel, are the GLOv1 operations grouped by category.

91

These can be dragged and dropped into the Applied GLOs panel to apply them to the
GLO Display in the center. GLOs can be removed by pressing the X on each GLO
in the Applied GLOs panel. The interface attempts to identify overwritten GLOs
through tables of which GLOs manipulate the same node or edge glyph properties.!
Finally, the analyst can use the Camera button to save the current technique to the
snapshot list at the bottom of the interface. Clicking on one of these techniques
restores it to the GLO Display.

We implemented GLO-STIX as a browser-based application in JavaScript using
D3.js [41], jQuery?, Bootstrap®, and jQueryUI*. The code for the application is open-

sourced as part of the GLO.js project (http://github.com/chadstolper/glo).

5.1.3 GLO-CLI

Figure 55: The GLO-CLI interface.

While GLO-STIX is a web-based application for manipulating a GLO Display

using drag-and-drop elements, GLO-CLI is a web-based application for manipulating

1Since GLOv1 does not support the group-by flags supported by GLOv2, this method works
reasonably well. The algorithm does has issues with cloned generations, since it considers the
applied operations as a single, non-branching list.

Zhttp:/ /jquery.com

3http://getbootstrap.com

4http:/ /jqueryui.com

92

a GLO Display using the browser’s console (i.e., a command-line). The application
loads a graph dataset, sets up a GLO Display, and populates the display in a null
state. An analyst can then apply GLOs to the GLO Display using GLOv2 operations
defined in the GLO.js API. (GLOv2 operations that have not yet been implemented
in GLO.js fail gracefully by outputting a message that the operation has not yet been
implemented or by outputting a message and applying a closely related operation.)
As shown in Figure 55, the application makes use of modern browsers’ advanced con-
soles to provide auto-complete and enable the analyst to inspect underlying GLO.js
variables and resulting SVG elements.

The GLO-CLI tool has proved useful both for debugging the GLO.js interpreter

as well as for identifying the novel visualization techniques described in Section 5.3.

5.2 Enabling A Deeper Understanding of Techniques

One of the most important aspects of visualization research is identifying techniques
that are effective for various analytical tasks. One means to do this is to identify
which techniques are similar to techniques that are known to be effective for certain
tasks. However, determining the similarity between techniques is not trivial.

There is a body of visualization research on more formally understanding the de-
sign space of visualization techniques and then comparing techniques’ distances within
that space. Attempts at accomplishing this often fall into one of two strategies. One
strategy defines a feature space over techniques then performs analysis on techniques
using vector representations within that feature space. Another strategy defines a
distance metric between techniques and performs analysis on the graph formed using
the distance metric. In the following subsections, I show how graph-level operations
provide an elegant means to identify both feature spaces and distance metrics and
briefly demonstrate how these can be used to better understand the design space of

graph visualization.

93

5.2.1 Feature Space Analysis

One of the primary challenges of feature space analysis is identifying a meaningful set
of features to represent each technique instance. Because GLO specifications represent
techniques as lists of operations, they suggest a number of elegant and useful feature
sets that can be described as vectorization methods.

As a first vectorization method, one can consider graph-level operations as binary
features. For a given technique, the value of each GLO’s feature is a 1 if the technique’s
specification includes the operation and 0 otherwise. In this way, any technique can
be easily represented as a vector in {0,1}7. (These vectorization methods are why
GLOvV2’s specific apply force-directed algorithm GLO is preferred over GLOv1’s catch-
all apply algorithm GLO.)

The optional parameters built into GLOv2 (sort-by, invert, group-by, within, all-
canvases, all-generations) can be used to controllably and predictably increase this
feature space. Representations resulting from calling operations with group-by and
within parameters, especially, can significantly differ from representations resulting
from the operation without the parameters. One could incorporate these optional
parameters into the feature space using one of two methods.’

For the second vectorization method, rather than each operation being a feature,
instead there are four features for each operation: the operation with no group-by or
within attributes, the operation with a group-by attribute but no within attribute, the
operation with a within attribute but no group-by attribute, and the operation with
both group-by and within attributes. Once again, a technique’s value for each feature
is 1 if the technique’s specification contains the relevant operation and parameter
combination and 0 otherwise. In this space, a technique is represented as a vector in

{0,1}2%8. The first four elements of the vector correspond to the first operation, the

5T have focused on the group-by and within parameters, but these methods would work equiva-
lently for the sort-by, invert, all-canvases and all-generations parameters as well.

94

next four to the second operation, and so on for each of the 72 operations.

For the third vectorization method, each operation remains a single feature ala the
first vectorization method. However, two additional features are added to the vector,
one for the group-by optional parameter and one for the within optional parameter.
If the technique’s specification includes any group-by parameters, then the first of
these features has a value of 1 (otherwise a value of 0) and equivalently for the within
parameter and the second extra feature. In this space, a technique is represented as
a vector in {0,1}"™.

Using the GLOvV2 specifications in Appendix B, I have applied the three vector-
ization methods (which for brevity I will refer to as no-flags, flags, and flags-xtra,
respectively) to generate three vector representations for each of the 29 GLOV2 seed
techniques.

I then used the hierarchical clustering function included with the SciPy pack-
age [135] to cluster the techniques. The hierarchical clustering function takes two
parameters: a distance metric and a cluster-comparison method.

I chose three distance metrics suitable for binary feature vectors: Hamming dis-
tance [107], Jaccard distance [151], and cosine distance [206]. The Hamming distance
is the number of positions in which two vectors have differing values. The Jaccard
distance takes the ratio of positions where the two vectors are 1 and agree over to the
positions where the two vectors are 1 and either agree or disagree and then subtracts
this value from 1. The cosine distance between two vectors is the cosine of the angle
formed by the two vectors.

I chose four cluster-comparison methods included with SciPy suitable for these
distance metrics: nearest-point, farthest-point, average, and weighted.® The nearest-

point algorithm (or single method) considers the distance between two clusters to

Shttp://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.
linkage.html

95

Method Metric Cophenetic Correlation

average hamming 0.832799904046
weighted hamming 0.821886497865
weighted jaccard 0.755900447652
complete hamming 0.726395383264
average cosine 0.703449587146
average jaccard 0.706271040351
complete jaccard 0.68661661651

weighted cosine 0.693924001138
complete cosine 0.676424420188
single hamming 0.592861499268
single jaccard 0.468258988449
single cosine 0.425621644926

Table 7: Results of hierarchically clustering technique vectors created by ignoring
optional parameters (no-flags).

be the minimum distance between any point in the first cluster to any point in the
second cluster. The farthest-point algorithm (or complete method) [239] considers the
distance between two clusters to be the maximum distance between any point in the
first cluster to any point in the second cluster. The average method [210] considers
the distance between two clusters to be the mean over all distances between pairs
of nodes where one node is in the first cluster and the second node is in the second
cluster. Finally the weighted method [210] considers the distance between a cluster
and a second cluster to be the average of the distance between the two clusters that
make up the first cluster to the second using the average method. (In other words,
the method weights larger contributing sub-clusters higher than lower-contributing
sub-clusters).

I therefore generated 36 total hierarchical clusterings (3 vectorization functions x
3 distance metrics x 4 cluster comparison methods). For each clustering, I used SciPy
to calculate the cophenetic correlation coefficient [211] which is a measure from 0-1 of
how faithfully a hierarchical clustering preserves pair-wise distances between items.
Tables 7, 8, 9 report the results for the no-flags, flags, and flags-xtra vectorization
methods, respectively. For all three vectorization methods, Hamming distance with
the average clustering method provided the highest cophenetic clustering correlation.

Using Matplotlib [129], T rendered the resulting dendrograms generated by the

96

Method Metric Cophenetic Correlation

average hamming 0.832799904046
weighted hamming 0.821886497865
weighted jaccard 0.755900447652
complete hamming 0.726395383264
average cosine 0.703449587146
average jaccard 0.706271040351
complete jaccard 0.68661661651

weighted cosine 0.693924001138
complete cosine 0.676424420188
single hamming 0.592861499268
single jaccard 0.468258988449
single cosine 0.425621644926

Table 8: Results of hierarchically clustering technique vectors with optional parame-
ters (flags).

Method Metric Cophenetic Correlation

average hamming 0.832799904046
weighted hamming 0.821886497865
weighted jaccard 0.755900447652
complete hamming 0.726395383264
average cosine 0.703449587146
average jaccard 0.706271040351
complete jaccard 0.68661661651

weighted cosine 0.693924001138
complete cosine 0.676424420188
single hamming 0.592861499268
single jaccard 0.468258988449
single cosine 0.425621644926

Table 9: Results of hierarchically clustering technique vectors created by adding
features for optional parameters (flags-xtra).

97

hierarchical clusters. Figure 56 consists of the three dendrograms created using the
Hamming distance and average method.” There are a number of interesting features
of these three clusterings.

First, note that all three clusterings cluster the matrix-based seed techniques
(Matrix Plot, Matrix Browser, Honeycomb, MatLink, NodeTrix, Matrix with Bars,
and MatrixExplorer) together. (The cluster red cluster in the no-flags clustering,
green cluster in the flags clustering, and red cluster in the flags-xtra clustering.)
This aligns with the expectation that these techniques are similar to each other and
different from the other techniques.

Second, within these matrix-technique clusters, note how the NodeTrix technique
(Figure 57) moves between the three clustering techniques. As the only technique in
the matrix-based cluster that utilizes the group-by parameter, it makes sense that
the technique would be less closely aligned with the other techniques using the flags
vectorization method. What is encouraging is that even though it is the last member
of the cluster to be included in the flags case, it is still considered nearer to the
matrix-based techniques than to any other technique.

Third, consider the Cluster Circles and Circle Graph techniques. Specifications
for these techniques consist of the same operations. The Cluster Circles technique
includes duplicate operations, with the second set using the group-by parameter.
When optional parameters are ignored (no-flags) the two techniques have identical
vector representations. When optional parameters are taken into account (flags, flags-
xtra) the two techniques are still considered very similar.

Fourth, the Semantic Substrates, PivotGraph, HivePlot, GeneVis A, GeneVis B,
3x3 GraphDice, GraphDice Segment, CiteVis, Scatternet, DOSA, and 2x3 Hive Panel
seed techniques all concern positioning nodes based on attributes of those nodes.

Thus, it is encouraging that they are all clustered together in all three clusterings.

"For completeness, I include all 36 dendrograms in Appendix F.

98

Semantic Substrates
PivotGraph

Hive Plot

GeneVis B
GraphDice Segment
3x3 GraphDice
DOSA

2x3 Hive Panel
EdgeMap B
EdgeMap A

Arc Diagram
GeneVis A

Citevis

ScatterNet
Force-Directed Layout
Attribute Matrix
Cluster Circles
Circle Graph

GMap

List View

Matrix Plot

Matrix Browser
Honeycomb
MatLink

NodeTrix

Matrix with Bars
MatrixExplorer
Edge-Label-Centric

NetLens

0.350.300.250.200.150.100.050.00

Semantic Substrates
PivotGraph
EdgeMap B
EdgeMap A

Hive Plot

GeneVis B

Arc Diagram
GraphDice Segment
3x3 GraphDice
GeneVis A

Citevis

ScatterNet

DOSA

2x3 Hive Panel
Force-Directed Layout
Attribute Matrix
Cluster Circles
Circle Graph

GMap

List View

NetlLens

Matrix Plot

Matrix Browser
Honeycomb
MatLink

Matrix with Bars
MatrixExplorer
NodeTrix
Edge-Label-Centric

Distance

(a) no-flags

L L L L L L
0.30 0.25 0.20 0.15 0.10 0.05 0.00

E

Distance
(b) flags

Matrix Plot

Matrix Browser
Honeycomb
MatLink

Matrix with Bars
NodeTrix
MatrixExplorer
Edge-Label-Centric
Semantic Substrates
PivotGraph
GraphDice Segment
3x3 GraphDice

Hive Plot

GeneVis B

Arc Diagram

2x3 Hive Panel
EdgeMap B
EdgeMap A

DOSA

GeneVis A

Citevis

ScatterNet
Force-Directed Layout
Attribute Matrix
Cluster Circles
Circle Graph

GMap

List View

NetlLens

0.350.300.250.200.150.100.050.00
Distance

(c) flags-xtra

Figure 56: Dendrogram results for three hierarchical clustering using three vector-
ization methods, Hamming distance, and average cluster comparison rendered using

Matplotlib [129].

99

Figure 57: GLOv2 NodeTrix seed technique from [117].

Interestingly, the EdgeMap A, EdgeMap B, and Arc Diagram seed techniques also
are clustered along with these.

Fifth, notice how Force Directed Layouts and Attribute Matrices (which consist
of small multiples of force-directed layouts), and GMaps (force-directed layout with
convex hulls) are clustered together in all three clusterings. In each of these seed
techniques, there is no node interaction, no edge interaction, and all of the node
and edge glyphs are colored and sized by a constant. Notably, the EdgeMap A
seed technique is not clustered with these techniques. While the node glyphs in the
EdgeMap A technique are also positioned using a force-directed layout, they are sized
and colored by attributes, and have non-static interaction modes (as do its edges).

The EdgeMap A /Force-Directed Layout case might suggest weighting different
features (such as operations that affect node glyph position) more than other fea-
tures (such as operations that size node and edge glyphs). In addition, one could
consider non-binary feature vectors in order to encode specifications that call the
same operation more than once (such as the Circle Plot/ Circle Clusters case). While
I have studied the unweighted, binary feature vector case, both weighted and non-
binary feature vectors illustrate the breadth of interesting future research directions

enabled by GLOs.

100

5.2.2 GLO Distance

Beyond reducing techniques to vectors and comparing their distances in vector space,
GLOs enable a novel, non-vector-based distance metric for comparing techniques.
During the GLO identification process, a transition matrix was created where each of
the cells of the matrix were the operations necessary to transition from one technique
to another. For example, the seven operation transition-matrix entry for (Semantic
Substrates, PivotGraph) described in Section 3.2.1.

These transitions can be used to define a GLO Distance between two tech-
niques. In other words, how many operations are required to transition between two
techniques? Notably, this is not a symmetric distance (see Figure 58a). This can
make comparing two techniques more difficult. To simplify the comparison, one can
simply sum the number of operations to transition back and forth between any two
techniques to create a symmetric distance metric (see Figure 58b).8

Two clear clusters appear in the top-left and bottom-right corners of both ma-
trices. The top corner cluster (Figure 59a) consists of the matrix-based plots. Note,
the NodeTrix seed technique is the darker last row/column in this cluster. The bot-
tom corner cluster (Figure 59b) consists of all techniques with a single generation
of constantly-sized nodes (Force-Directed Layout, Arc Diagram, Circle Plot, Cluster
Circles, GeneVis A, GeneVis B, and Hive Plots). Notably, these techniques are fairly
easy for other techniques to transition to, since they are all instances of the null state.

In the symmetric distance matrix plot, a third cluster is visible in the middle
of the display (Figure 59¢). This cluster consists of seed techniques that position
and/or color a single generation of unaggregated nodes based on attributes of the

data (ScatterNet, CiteVis, EdgeMap A, EdgeMap B, and Semantic Substrates).

8In order to achieve a reasonable node ordering for the Matrix Plot displays in Figure 58, I
clustered the GLOv2 seed techniques using the symmetric distance metric using scikit-learn’s [179]
agglomerative clustering (n=>5 clusters, average linkage, and pre-computed distance parameters).

101

(a) Non-Symmetric (b) Symmetric

Figure 58: GLOv2 seed techniques clustered by symmetric transition distance ren-
dered with GLO.js. On the left, edges are colored by the one-way transition distance.
On the right, edges are colored by the symmetric sum of the transition distances.
Rendered using GLO.js

Identifying these clusters demonstrates the analysis potential of the GLO Distance

metric.

5.3 Identifying New Techniques

Most graph visualization techniques were developed with a specific task in mind.
For example, sorted matrix layouts are effective for showing clusters in a graph;
PivotGraphs are useful for showing how nodes with different properties interact; and
the interaction of Semantic Substrates (showing only the edges adjacent to a specific
node) is useful for reducing edge occlusion. But what if someone wanted a technique
designed for the task of reducing occlusion while also seeing how groups of nodes
interact with other groups? In this case, combining the layout of PivotGraphs with
the interaction of semantic substrates would be highly effective.

We can describe such a technique using GLOv2:

e display nodes as circles

102

o
°f

. At
I PRCAC
.‘ I !

: u
ol

(c) Attribute-Driven Cluster

Figure 59: Clusters visible in the symmetric GLO Distance matrix.

show incident edges

aggregate nodes by { [discretel,discrete2]} using {agg-method}
size nodes by {size-attr}

color nodes by {node-color-attr}

aggregate edges by { [source.discretel,
source.discrete2,target.discretel target. discrete2[} using {agg-method}
display edges as curved lines

size edges by {count}

color edges by {count}

position nodes on {y} by {discretel}

position nodes on {z} by {discrete2}

show axis(x)

103

] . ®

o . [

B ®

1 @
2aM

B o o

J ™ O

Figure 60: Novel graph visualization technique combining the layout of Pivot-
Graphs [244] with the interaction of Semantic Substrates [96].

e show axis(y)

Figure 60 shows this novel technique. In this case, the only difference between this
specification and the PivotGraph GLOv2 seed technique specification in Appendix B
is replacing the show all edges GLO with the show incident edges GLO.

Predefined techniques are quite powerful and are certainly popular. We can see
this in systems such as Excel [164], Spotfire [223], and Tableau [219] that enable
analysts to visualize data sets using pre-defined, standard techniques. However, vi-
sualization researchers and analysts are always on the look out for new techniques
for effectively communicating data. The PivotGraph/Semantic Substrates hybrid
demonstrates that there exist interesting techniques to be found in the “space be-
tween” existing techniques. Simply changing a single GLO in the specification of
a known effective technique can result in an interesting modified technique that is
potentially effective at other tasks. In this way, GLOs provide a benefit to the visu-
alization community by providing a novel means of identifying new techniques.

In some cases, like the modified PivotGraph above, seed techniques can be tweaked
using GLOs. In the trivial case, one could display a force-directed layout with curved

edges instead of the seed technique’s straight edges (see Figure 61). While this hardly

104

constitutes a radical new graph visualization technique, it might be useful for cer-
tain purposes. For example, the curved edges are always drawn counter-clockwise,
and therefore they might make it easier to recognize features of the graph that are

dependent on directionality than with straight lines.

(a) Seed Technique (b) Tweaked Technique

Figure 61: Example of a minor tweak to a seed technique by changing the Force-
Directed Layout seed technique’s edge display mode to curved lines.

On the other hand, one can also use GLOs to more substantially fix techniques.
For example, consider the NodeTrix [117] GLOv2 seed technique in Figure 62a. The
over-duplication of nodes adds little to the display and a few high edge weights and

node degrees overwhelm the technique’s color scales.

s e) > < : \f(((((((. = ! = -
g1 2 n
(a) Seed Technique (b) Modified Technique

Figure 62: NodeTrix [117] GLOv2 seed technique and modified NodeTrix display with
nodes colored by cluster, intra-cluster edges colored by a constant, faded intra-cluster
edges, and highlighting intra-cluster edges incident to a selected node created using

GLO.js.

105

The specification in Table 10 (and rendered in Figure 62b) modifies the seed
technique significantly. Rather than degree, nodes are colored by their clusters, edges
are colored by their target nodes, intra-cluster edges are shown at full opacity, and
the specification uses the show faded and incident edges operation with a group-
by optional parameter to show inter-cluster edges as faded, but inter-cluster edges
incident to a selected node (shown circled in black) with full opacity.

Is this modified NodeTrix an entirely novel technique? Not necessarily, yet it

certainly provides much more utility than the tweaked Force-Directed Layout.

Glyph properties

display nodes as {label-attr} labels
color nodes by {discrete}

size nodes by constant

size edges by constant

Circle of nodes
position nodes by constant on {p}
evenly distribute nodes on {6} (sort-by:discrete)

Left columns
align nodes {left} (group-by:discrete)
evenly distribute nodes on {y} (group-by:discrete, invert:true)

Top rows

clone nodes

rotate nodes {90}

evenly distribute nodes on {z} (group-by:discrete)
align nodes {top} (group-by:discrete)

All edges (incl. inter-cluster edges to row)
set target generation {1}
color edges by {target.discrete}

Inter-cluster edges
display edges as curved lines
show faded and incident edges

Intra-cluster edges

display edges as squares (group-by:discrete)
show all edges (group-by:discrete)

Additional inter-cluster edges to column
clone edges

hide edges (group-by:discrete)

set source generation {1}
set target generation {0}

Table 10: GLOvV2 specification for modified NodeTrix display in Figure 62b.

GLOs can also enable the specification of completely new techniques beyond the

initial set of seed techniques. Let me use a simple example to demonstrate this point.

106

GLO-STIX: Groph-Level Operations for Specitying Technigues and Interoctive eXplorotion
Soact aL0s

« = B a @
Size Nodes by Constant
Align Micidle

Evenly Distribute on X by ¥
Category

Show All Links
Links to Curved

— e
W@ @ @@ @@ @O @@ O U e
— —

Figure 63: Arc Diagram [243] created using GLOv1 within GLO-STIX.

Consider GLOv1 and recall that the seed techniques for GLOv1 (Section A) explicitly
did not include Arc Diagrams [243]. This was a conscious decision. Using GLOVI,

we can still specify Arc Diagrams as:

Size Nodes by Constant

Align Nodes Middle

Evenly Distribute Nodes on x

Display All Links

Display Links as Curved

Figure 63 shows an Arc Diagram created using this specification in GLO-STIX.

In the case of GLOvV2, I did not explicitly choose to leave out a technique in
this way. However, one can simulate this by identifying those seed techniques whose
specifications only include operations found in other specifications. This simulated
leave-one-out approach demonstrates that only 5 (GMap, Matrix with Bars, Matrix
Browser, Edge-Label-Centric, and CiteVis) of the 29 GLOvV2 seed techniques could not

have been represented using only operations from other specifications. This represents

107

strong evidence of the reusability and generalizability of GLOs.?

In my experience, I have found the partition canvas and filter partition canvas op-
erations particularly useful for creating novel visualizations. (Recall that the partition
canvas GLO enables interactively linking any stand-alone techniques, while the filter
partition canvas GLO enables creating small multiples of each cluster of a graph.)
It is worth noting that with the expressiveness that graph-level operations provide,
not every novel technique will be all that useful for graph analysis tasks. For exam-
ple, Table 11 is the GLOvV2 specification for the ‘GLO’ teaser image (Figure 1) from
Chapter 1. It takes advantage of the partition canvas GLO to create three linked

views of three distinct techniques.

Initial glyph properties
display nodes as circles
display edges as straight lines
color nodes by {discrete}

size nodes by constant

color edges by constant

size edges by constant

show edges as faded

Partition into 3 parts
partition on {z} (parts:3)

#G

select canvas {0}

evenly distribute nodes on {6} (sort-by:discrete)
evenly distribute nodes on {p} (sort-by:discrete)

L

select canvas {1}

display edges as squares

align nodes {left}

evenly distribute nodes on {y} (sort-by:discrete, invert:true)
clone nodes

set target generation {8}

align nodes {bottom}

evenly distribute nodes on {z} (sort-by:discrete)

O

select canvas {2}

evenly distribute nodes on {6} (sort-by:discrete)
position nodes by constant on {p}

display edges as curved lines

Table 11: GLOvV?2 specification for ‘GLO’ teaser technique in Figure 1.

9Furthermore, the only operation in the CiteVis specification that does not occur in another
technique is the highlight in-out neighbors GL. While this operation could simply replaced by the
similar highlight neighbors GLO, the resulting technique would be a slightly different technique than
the seed technique.

108

While these three techniques were chosen for their similarity to the letters G,
L, and O rather than for their utility for a specific task, one could imagine using

appropriate techniques for a specific task instead.
5.3.1 Approximate Measures of GLO Expressiveness

When discussing specifying novel techniques, it it worth quantifying what can be
expressed under a given GLO model and a given interpreter. To that end, here I
quantify the ways in which a single generation of unaggregated node or edge glyphs
can be represented using GLOs under the GLOv1 and GLOv2 models and the GLO.js
interpreter. Note that this is a lower-bound on the expressiveness since cloning, aggre-
gation, partitioning, and optional parameters can further increase the expressiveness

beyond these counts.

GLOv1 Expressiveness For a given unaggregated node generation in GLOv1

there are:

e 15 positioning operations (4 of which support x or y axes)
e 1 display mode (circles)

e 1 display property (size)
For a given unaggregated edge generation in GLOv1 there are:

e 3 display modes (straight lines, curved lines, and circles)

e 3 interaction modes (show all edges, show incident edges, show no edges)

Node aggregation further increases the expressiveness of the model.

GLOv2 Expressiveness For a given unaggregated node generation in a given

canvas (i.e., with no partitioning or cloning) in GLOv2 there are:

e 7 positioning operations (each with various axis and attribute combinations)

109

4 display modes (circles, squares, labels, and bars)

3 display properties (size, color, and rotation)

2 convex hull display options (show, hide)

3 interaction modes (no interaction, highlight neighbors, highlight in-out-neighbors)

For a given unaggregated edge generation in a given canvas (i.e., with no parti-

tioning or cloning) in GLOvV2 there are:

3 positioning operations (each with various axis and attribute combinations)

6 display modes (straight lines, curved lines, squares, labels, bars, and right

angles)

2 display properties (size, color)

e 2 waypoint modes (on or off)

6 interaction/visibility modes (show none, show all, show faded, show incident,

show in-out, and show faded and incident)

Aggregation and cloning of nodes and edges and partitioning of the GLO Display

further increases the expressiveness of the model.

GLO.js Expressiveness For a given unaggregated node generation in a given can-
vas (i.e., with no partitioning or cloning), at the time of this dissertation, GLO.js

supports:

e (positioning operations (each with various axis and attribute combinations)

1 display mode (circles)

2 display properties (size and color)

0 convex hull display options

2 interaction modes (no interaction or highlight neighbors)

and each of these can be modified using a group-by attribute.

110

For a given unaggregated edge generation in a given canvas (i.e., with no parti-

tioning or cloning) GLO.js supports:

e 2 positioning operations (each with various axis and attribute combinations)

3 display modes (straight lines, curved lines, and squares)

2 display properties (size, color)

e () waypoint modes

5 interaction/visibility modes (show none, show all, show faded, show incident,

and show faded and incident)

and each of these can be modified using a group-by attribute.
Aggregation and cloning of nodes and edges and partitioning of the GLO Display

further increases the expressiveness of the implementation.

111

CHAPTER VI

CONCLUSION

6.1 Contributions and Impact

To recap the contribution and impact of this dissertation on five facets of graph

visualization research and practice:

Models I presented a novel class of graph visualization model, the graph-level op-
erations model (GLO model) including a method for inducing a model from a set of
canonical seed techniques, two instances of GLO models (GLOv1 and GLOv2), and

a means of defining techniques using the model.

Analysis Methods [introduced GLO-based methods for reducing techniques to
vector representations as well as a novel GLO-based distance metric for techniques in
Chapter 5 to demonstrate how the GLO model represents a giant leap forward in our

ability to easily and effectively compare and cluster graph visualization techniques.

Open-Source Software I presented the GLO.js graph visualization toolkit to eas-
ily incorporate a large variety of graph visualization techniques into web-based graph
analysis software and used the toolkit to build the GLO-STIX GUI application and
GLO-CLI command-line application for using visualization to explore a network.
All three packages are available as open-source software at https://github.com/

chadstolper/glo.

Techniques Throughout this dissertation, I introduced a number of novel tech-

niques identified using the GLO model and provide their definitions using GLOs.

112

Education Below, I describe the potential that graph-level operations have to rev-
olutionize graph visualization education through demonstrating the variety and in-
terconnectedness of graph visualization techniques and on discrete mathematics edu-

cation through enabling demonstrations of graph theory properties and algorithms.

6.2 Limits of GLOs

Graph-level operations models are a powerful class of models for graph visualization.
At the same time, they do have limits. First of all, as shown by the differences between
GLOv1 and GLOvV2, there is inherent imprecision in determining the set of operations
using the GLO identification method. This imprecision can be minimized through
precise instructions for an identifier and through consistent adoption of baseline GLO
models (such as GLOv1 or GLOv2). In addition, having mappings between baseline
models (such as the mappings in Table 3 between GLOv1l and GLOv2) can help
ensure this consistency.

As is common with models induced from training data, GLO models are dependent
on the set of seed techniques used to induce them. The GLOv2 operations in Table 12
appear in the specification of a single GLOv2 seed technique. Had the associated
techniques not been included in the set of seed techniques, those operations would
not have been included in the resulting set of operations. Similarly, if every technique
has a feature in common then that feature would not appear in the transition matrix.
For example, Arc Diagrams and EdgeMap B both display node glyphs aligned in
the middle of the y axis. Performing the identification process on only these two
techniques would not identify any operations that adjust the y coordinate of node
glyphs. Identifying seed techniques through extensive searches, such as the literature
review I conducted for GLOv2, can minimize this effect.

In Chapter 5, I described metrics for determining similarity between techniques

such as comparing vector representations of specifications and utilizing the novel GLO

113

GLO

GLOvV2 Seed Technique

show edges as faded

show convex hulls

color convex hulls by {attr}

display edges as bars

display edges as right angles

align edges {dir}

display edges as {atir} labels

evenly distribute edges on {azis} (by {attr})
set edge waypoint edge generation {num}
highlight in-out neighbors

GMap

GMap

GMap

Matrix with Bars
Matrix Browser
Edge-Label-Centric
Edge-Label-Centric
Edge-Label-Centric
Edge-Label-Centric
Citevis

Table 12: GLOv2 operations unique to a single seed technique.

e

2DDDIDIIIIDIIIINDDIIIIDDIIIDIIDDDDIIDIIIIIIID
e— —

D DINNDVIN D)

e
OGN O))))A)
e

(a) Matrix Plot (b) MatLink

Figure 64: Matrix Plot and MatLink [118] techniques rendered in GLO.js. Transi-
tioning between these two techniques is more efficient without transitioning through
an intermediate null state.

Distance metric. Notably, this latter metric can be naively computed by reducing
the first technique to the null state and then creating the new technique from its
specification. While this naive method occasionally results in an optimal transition,
more often there is a more efficient transition that a human identifier can find. For
example, it is more efficient to transition between a Matrix Plot and a MatLink
display (Figure 64) without reducing to a null state since both techniques utilize
two generations of node label glyphs in the same positions. There is potential for
algorithms that can identify more efficient transitions. For example, an algorithm
might start by identifying similar generations in both techniques (e.g. the node
generations in the matrix-based plots) and attempt to transition those elements first

before utilizing inverse GLOs.

Using vectorization to compare techniques is quite useful for computing similarity

114

¢
® 00000000000 090 0 00

Figure 65: Single technique defined using two distinct specifications.

between techniques, as I have shown. However, using vectors to determine equiva-
lence is much more challenging. Two techniques are equivalent if and only if their
specifications result in the same glyphs with the same properties (including display
mode, interaction mode, and visual properties). Note that two techniques with the
same set of operations are not necessarily equivalent (recall the discussion of the Cir-
cle Plot and Cluster Circles seed techniques) and two techniques with different sets
of operations could be equivalent.

For example, the following two techniques are equivalent (both generate the dis-

play in Figure 65) even though they have different operation sets:

e display nodes as circles

e size nodes by constant

e color nodes by {discrete}

e hide edges

e align nodes middle

e aggregate nodes by {discrete}

e cvenly distribute nodes on z (sort-by {discrete})
e deaggregate nodes

e evenly distribute nodes on y (within {discrete})

115

and

e display nodes as circles

e size nodes by constant

e color nodes by {discrete}

e hide edges

e align nodes middle

e position nodes on = by {discrete}

e cvenly distribute nodes on y (within {discrete})

Of course, this equivalence challenge exists with many lossy encoding schemes.
For example, the prevalent ‘bag-of-words’ schemes for text document vectorization
similarly struggle at judging equivalence since the scheme ignores the order of the
words in the document.

Finally, an important property of both the GLOv1 and GLOv2 GLO models is
that operations affect every node glyph or every edge glyph in a generation equally.
In contrast, most tree and DAG visualization techniques (and graph visualization
techniques that reduce the graph to a tree or a DAG such as ego-centric graph visu-
alization) depend on considering nodes differently based on their distance to the root
of the tree. For this reason, I expect that a GLO-like model that covers the variety of
tree visualization techniques will likely need to be considerably different than either

of the two models I have presented here.

6.3 Future Research Directions

Even with their limitation, the GLO models remain powerful and useful. For example,
the models open up numerous pathways for interesting and worthwhile research. I
end this dissertation by briefly describing six research avenues graph-level operations

afford.

First, fully constraining techniques is useful for rendering techniques, but when

116

comparing and understanding techniques, flexibility proves useful. For example,
to transition from the Force-Directed Layout GLOvV2 seed technique to the GMap

GLOV2 seed technique requires the following operations:

e show edges as faded

e size nodes by {attr}

e display nodes as {attr} labels

e show convex hulls within {discrete}

e color convex hulls by {attr}

However, imagine a node-link diagram with solid edges and circular, constant-
sized nodes with convex hulls displayed around each cluster. While not the GLOv2
seed technique GMap, it is still a GMap. In that sense, only the last two operations
are really necessary for a transition between the Force-Directed Layout seed technique
and a GMap (as opposed to the GMap seed technique). This suggests an alternate

description for GMap using GLOv2:

e One of

— show all edges

— show edges as faded

— show faded and incident edges
— show in-out edges

— show incident edges
e One of

— display edges as curved lines

— display edges as straight lines
e One of

— display nodes as labels

117

Figure 66: Examples of edge bundling from [120].

— display nodes as circles

— display nodes as squares

e show convex hulls within {discrete}

e color convex hulls by {attr}

I have not studied these more flexible technique specifications deeply, but they are
certainly worth pursuing further.

The second research direction concerns technique-independent graph-level
operations (TI-GLOs). (I.e., the visual and interaction sub-techniques that I chose
to exclude from the GLOv2 seed technique set.) The most obvious example of a visual
technique-independent operation is edge-bundling [120] (Figure 66). Edge bundling
is not critical to the definition of any technique. Rather, edge-bundling can simply be
applied to any line-based edge generation. Other examples of technique-independent
operations include subgraph motif glyphs [71] and alternate directed edge glyphs [124,
121, 170]. One could imagine a given GLO interpreter applying one or more of these
visual TI-GLOs by default, but it would likely prove useful to allow specifications
to include this class of operations. A potential solution would be to make TI-GLOs

optional for interpreters. In other words, an interpreter can simply support some, all,

118

Figure 67: Bring-and-Go interaction from [166].

or no visual TI-GLOs.

Fitting interaction TI-GLOs into a GLO model might provide a greater challenge.
I expect that some interactions would fit seamlessly. For example, the Bring-and-Go
interaction from [166] (Figure 67) is quite similar in many respects to GLOv2’s high-
light neighbors interaction mode. On the other hand, as I described in Chapter 4,
multi-selection is more challenging. Some aspects of the GLO models that are topol-
ogy dependent (such as the highlight in-out-neighbors interaction mode) do not work
well with multi-selection. Exploring the full extent of whether and how additional
interactions can be integrated into GLO models merits further explorer.

Third, T defined the three technique vectorization methods in order to compare
them to each other. Yet recall that the overarching goal is to automate mapping
techniques to tasks. For example, consider a database of techniques that are known
for their ability to aid in certain analytical tasks. Should a situation require a set of
tasks, one might query this database for a technique that either can solve both tasks
or a technique that is similar to techniques that can solve each of the tasks.

There is also potential for going further. Rather than simply mapping techniques
to tasks, one could potentially map GLOs to tasks. In other words, do certain op-
erations signal that a technique will be effective at a certain task? For example, |
hypothesize that the display incident edges GLO signals that a technique is effective
at analyzing dense graphs since it reduces occlusion. Conversely, this GLO likely
signals that a technique is less effective for sparse graphs, where hiding most of the

edges could lead to the analyst never noticing a critical edge.

119

Another potential result is that certain operations do not signal strength in a
particular task, but rather certain sequences of operations do. A good example is that
simply drawing convex hulls is less effective than drawing convex hulls and coloring
those hulls by an attribute of the data. Performing frequent sequence analysis over a
corpus of techniques known to be effective at a task could provide valuable insights.

Fourth, graph-level operations provide rich potential for teaching discrete math-
ematics and teaching graph visualization. For discrete math education, GLOs can
be used to demonstrate graph theory concepts using appropriate techniques. For
visualization education, GLOs make it easier to demonstrate the variety of graph
visualization techniques and show how they relate to each other through transitions.

Fifth, there are more graph visualization techniques to be discovered! I described
novel techniques in Chapter 5, but there are certainly more to be identified. Some
may be found through matching tasks to GLOs, some through exploration inside the
GLO-CLI terminal, and some may even be found through running a shuffle algorithm
on the set of operations. Identifying (and confirming the effectiveness of) novel GLO-
specified techniques hopefully will lead to a more robust collection of visualization
techniques, and therefore more effective solutions for graph analysts.

Sixth and finally, I hope that GLOs are adopted as a standard. Much of the power
of GLOs rests in their consistency, such as being a portable specification language
between different host language and graphics implementations. I hope that developers
who code for architectures such as python and R write GLO interpreters for them so
that techniques specified using GLOs can be rendered easily no matter the underlying

system.

120

APPENDIX A

GLOV1 SEED TECHNIQUES

Here I present the set of 6 hand-picked abstract seed techniques used to induce GLOv1
(See Chapter 3). For each technique I include a figure representing the technique
rendered using the GLOv1 Javascript interpreter, a description of the technique, and
a GLOV1 specification for the technique (i.e., a transition to the technique from a
null state).

The graph being rendered in each figure is the Les Misérables character co-
occurrence graph included with D3.js based on Donald Knuth’s jean.dat file'. Nodes
are characters, and an edge connects two characters if they co-occur in a chapter of the
novel. For each operation that requires one or more parameters, I note the parameters

used in a #comment the first time the parameter appears in the specification.

Figure 68: GLOvV1 force-directed layout seed technique.

thttp:/ /www-cs-staff.stanford.edu/ uno/sgb.html

121

Force-Directed Layout The GLOv1 seed version of the Force-Directed Layout
technique (Figure 68) has straight line edge glyphs, node glyphs sized by an attribute,
and node glyphs colored by an attribute. Nodes are positioned according to a force-

directed algorithm.

Size Nodes Relatively by {continuous attribute} #degree

Apply {force-directed} algorithm to the Nodes

Display Links as Straight

Display All Links

Figure 69: GLOv1 circle plot seed technique.

Circle Plot The GLOvVI seed version of the Circle Plot technique (Figure 69) has
curved line edge glyphs, node glyphs sized by a constant, node glyphs colored by an

attribute, and the node glyphs are sorted along # by an attribute.

e Size Nodes by Constant

Evenly Distribute Nodes Radially by {attribute} #cluster

Position Nodes Along Plot Radius by Constant

Display All Links

Display Links as Curved

122

e o
10
@
~®
,Ee. . .
[LN J
[]

Figure 70: GLOvV1 scatterplot seed technique.

Scatterplot The GLOv1 seed version of the Scatterplot technique (Figure 70) has
no edge glyphs, node glyphs sized by an attribute, and node glyphs colored by an
attribute. Nodes are positioned along the z and y axes by continuous attributes and

axis labels are displayed on both axes.

e Hide Links

Size Nodes Relatively by {continuous attribute} #degree

Position Nodes on zRelatively by { continuous attribute 1} #degree

Position Nodes on y Relatively by {continuous attribute 2} #betweenness cen-
trality

Show z axis

Show y axis

Semantic Substrates The GLOv]1 seed version of the semantic substrates tech-
nique [204] (Figure 71) has curved line edge glyphs that appear when the mouse
hovers over an endpoint node, node glyphs sized by a constant, and node glyphs col-
ored by an attribute. Nodes are positioned on the y axis by a discrete attribute and
are distributed across the canvas within each row. Axis labels are shown for the y

axis.

123

Figure 71: GLOv1 semantic substrates [204] seed technique.

Size Nodes by Constant

Substrate Nodes on y by {categorical attribute} #cluster

Show y Axis

Evenly Distribute Nodes within Substrates

Display Links as Curved

Display Selected Links

Figure 72: GLOv1 PivotGraph [244] seed technique.

PivotGraph The GLOv1 seed version of the PivotGraph technique [244] (Fig-

ure 72) has nodes and edges aggregated by two attributes, curved line edge glyphs,

124

node glyphs sized by the number of represented nodes, edge glyphs sized by the
number of represented edges, and node glyphs colored by an attribute. Super-nodes
are positioned along a grid based on the two aggregation attributes. Axis labels are

shown along both the x and y axes.

e Display All Links

e Substrate Nodes on = by {categorical attribute 1} #cluster

e Substrate Nodes on y by {categorical attribute 2} #gender

e Show z Axis

e Show y Axis

o Aggregate by {categorical attribute 1} and {categorical attribute 2}

Size Nodes Relatively by {continuous attribute} #count

rrrrrrrr

@MMMIOMMNGNI OMNIMMMMNIOMMMMMMMN)

LCCCCCCCCCLCCCCCCCC XCCCCCLCCCCCCLCCCCCCUCCC L CCLC XCCCCCCCC X CCCCLCCCCCCCCCC]

Figure 73: GLOv1 adjacency matrix seed technique.

Adjacency Matrix The GLOvV1 seed version of the adjacency matrix technique
(Figure 73) has two sets of node glyphs (one aligned on the left and one on the
bottom) sorted by an attribute, node glyphs sized by a constant, and node glyphs
colored by an attribute. Circle edge glyphs are positioned at the y value of the source

node on the left and the x value of the target node on the bottom.

125

#Bottom row of nodes

Size Nodes by Constant

Align Nodes { Bottom}

Evenly Distribute Nodes on x by {attribute 1} #cluster
#Left column of nodes

Clone Active Generation

Align Nodes { Left}

Evenly Distribute Nodes on y by {attribute 1}

#Links

Display All Links

Display Links as Circles #(includes positioning)

126

APPENDIX B

GLOV2 SEED TECHNIQUES

Here I present the 29 seed techniques used to induce GLOv2. For each technique, I
include a figure from an early paper describing the technique, provide a description
of the abstract form of the seed technique, and a GLO specification of the abstract
technique (i.e. a transition from the null state). Any necessary flags or attributes
are marked in the specifications. For those techniques that either can be rendered
precisely or a close approximation can be rendered using the GLO.js implementation
described in Chapter 5.1.1, I also include a rendering of the technique.

The graph being rendered in each figure is the Les Misérables character co-
occurrence graph included with D3.js based on Donald Knuth’s jean.dat file!. Nodes
are characters, and an edge connects two characters if they co-occur in a chapter
of the novel. For each technique that requires one or more parameters, I note the
parameters used (or could be used if a rending was not included) in #comments at

the beginning of the specification.

Force-Directed Layout [138]

The force-directed layout seed technique has constant-sized, constant-colored cir-
cular nodes connected by constant-sized, constant-colored straight-line edges. The
nodes are positioned using a force-directed layout.

I have abstracted away the textual node labels.

e display nodes as circles

e display edges as straight lines

thttp://www-cs-staff.stanford.edu/ uno/sgb.html

127

Q

~

é /\./'s
[
L

Figure 74: GLOv2 Force-Directed Layout seed technique from [138].

Figure 75: Force-directed layout [138] rendered in GLO.js.

e show all edges

e size nodes by constant
e size edges by constant
e color edges by constant
e color nodes by constant

e apply force-directed algorithm to nodes

Matrix Plot [34]

128

Figure 76: GLOv2 Matrix Plot seed technique from [34].

@GN ONOMNMMMMMMMMMMONMNMMMMMMN)

Figure 77: Approximate matrix plot [34] rendered in GLO.js.

The Matrix Plot seed technique has nodes displayed as constant-sized, constant-
colored labels evenly spaced along the top and left, with edges displayed as constant-
sized squares colored by an attribute positioned at the y value of the source node on
the left and z value of the the target node on the top. On the left, the nodes are
sorted top to bottom, while on top the nodes are sorted left to right.

I have abstracted away the specific color choices and the TO and FROM labels

from the seed figure.

e Flabel attr: name

129

#sort_attr: cluster

#edge_color_attr: weight

#Left column

e display nodes as {label_attr} labels

e color nodes by constant

e size nodes by constant

e evenly distribute nodes on y (sort-by:{sort_attr}, invert:true)
e align nodes {left}

e #Top row

e clone nodes

e rotate nodes {90}

e align nodes {top}

e evenly distribute nodes on z (sort-by:{sort_attr})
o #FEdges

e set target generation {1}

e display edges as squares

e position edges by {target.z},{source.y}

e show all edges

e size edges by constant

e color edges by {edge_color_attr}

Cluster Circles [69]
The Circle Clusters seed technique has constant-sized, constant-colored square
nodes connected by constant-sized, constant-colored straight-line edges. The nodes

are positioned such that the nodes each cluster are in evenly-distributed circles.

e #group_by_attr: cluster

e Finternal sort_attr: id

130

Figure 79: Cluster circles [69] rendered in GLO.js.

display nodes as squares
show all edges

display edges as straight lines
color edges by constant

color nodes by constant

size nodes by constant

size edges by constant
#Macro-circle positioning

evenly distribute nodes on 6 (sort-by:{ group_by_attr})

131

e position nodes by constant on p

#Micro-circles positioning

e evenly distribute nodes on 6 (sort-by:{internal_sort_attr}, group-by:{ group_by_attr})

e position nodes by constant on p (group-by:{group_by_attr})

Circle Graph [207, 93]

o\

HEAS AN
iSRS N ——
| v U} —
@) “““‘\‘
b N

Figure 81: Circle graph [207] rendered in GLO.js.

The Circle Graph seed technique consists of constant-sized, constant-colored square

nodes connected by constant-sized, constant-colored straight-line edges. The nodes

132

are positioned such that the nodes are in an evenly-distributed circle around the
center of the canvas.

I have abstracted away the textual labels on the nodes.

e F#sort_attr: cluster

display nodes as squares

e show all edges

e display edges as straight lines

e color edges by constant

e color nodes by constant

e size edges by constant

e size nodes by constant

e evenly distribute nodes on 6 (sort-by:{sort_attr})

e position nodes by constant on p

GeneVis A [23]

e -

Figure 82: GLOv2 GeneVis A seed technique from [23].

The GeneVis A seed technique consists of constantly-sized, constantly-colored
circle nodes positioned at a constant radius from the center of the plot at degrees

relative to an attribute of the data. Edges are hidden.

133

Figure 83: Genevis A [23] rendered in GLO.js.

I have abstracted away the specific color choices, the textual labels aside each

node, and the overarching circle behind the plot.

e F#position_attr: degree

e display nodes as circles

e hide edges

e position nodes on @ by {position_attr}
e position nodes by constant on p

e size nodes by constant

e color nodes by constant

GeneVis B [23]

The GeneVis B seed technique consists of constant-size, constant-colored circle
nodes positioned along the y axis by a discrete attribute and relatively along the
x axis by an attribute. These nodes are connected by constant-sized curved edges
colored by a gradient based on an attribute of the source and target nodes.

I have abstracted away the overarching ring glyphs, the textual labels accompa-

nying each node glyph, and the specific color choices.

e Fcolor_attr: cluster

134

Figure 85: Approximate Genevis B [23] rendered in GLO.js.

e Fdiscrete: cluster

#attr: degree

e display nodes as circles

e size nodes by constant

e color nodes by constant

e show all edges

e display edges as curved lines
e size edges by constant

e color edges by {source.color_attr}—{target.color_attr}

135

e position nodes on y by {discrete}

e position nodes on x by {attr}

Arc Diagram [243, 141]

Figure 86: GLOv2 Arc Diagram seed technique from [141]. (Specifically the ‘contrib-
utor coloring’ subfigure.)

‘(((.l“((‘((“‘...l(l((‘((l(‘(‘l((‘(“\(l“.ﬂ;:l“"‘..l“‘.ll‘((.(l(‘(‘(((‘.

Figure 87: Arc diagram [141] rendered in GLO.js.

The Arc Diagram seed technique consists of constant-sized circle nodes colored by
an attribute evenly distributed along the middle of the y axis. Edges are displayed
as constant-sized curved edges colored the same as their target nodes.

I have abstracted away the specific color choices.

136

#node_color_attr: cluster

#sort_attr: cluster

e display nodes as circles

e size nodes by constant

e color nodes by {node_color_attr}

e align nodes {middle}

e display edges as curved lines

e size edges by constant

e color edges by {target.node_color_attr}
e show all edges

e cvenly distribute nodes on x (sort-by:{sort_attr})

Matrix Browser [262]

W Rl -
e _'_ '; ; ; .-..
i ¥ 1
T 'i::' 'ﬂ 31.+FIHI!!l+l+!1+l+i_3l+!§!l+l+!'-|llHll|+l§
Pt = et ==
R Fegap E!E-ga;gt .E::E 'E'i b ,_3.:.;-2 cEaid
S £
L '"l'.' —i] i i
- g - g .E
| ’ =
o o £
L— T g
L il
I_'_'_"-'_I :1 {1 E E-\,
& Baborsagig b —————————————
B e R L -
bkl] m
LR e bt] 4=
B Tritn :J_'I 1
g g g g b L0
B R | I ol
v b agem - . ¥
o Fo e L —
B oo mids il |
it & 1 s
L] i Lo B i
=3 iy e 4] 1 - i
e L
B P bl e g e E E- i o =
» TorEm - o
B P
T 1 =
B FEA
2 Fipeed i el

Figure 88: GLOv2 Matrix Browser seed technique from [262].

The Matrix Browser seed technique has nodes displayed as constant-sized, constant-
colored labels evenly spaced along the top and left, with edges displayed as constant-
sized squares colored by an attribute positioned at the y value of the source node on
the left and x value of the the target node on the top. The display also has edges

displayed as constant-sized, constant-colored right-angle lines from the source node

137

on the left to the target node on the top. On the left, the nodes are sorted top to
bottom, while on top the nodes are sorted left to right.
I have abstracted away the interaction for collapsing hierarchies and the high-level

node-link diagram.

e #label attr: name

e Hsort_attr: cluster

e Fedge_color_attr: weight
#Left column of nodes

e display nodes as {label_attr} labels

e color nodes by constant

e size nodes by constant

e cvenly distribute nodes on y (sort-by:{sort_attr}, invert:true)

e align nodes {left}
#Top row of nodes

e clone nodes

e rotate nodes {90}

e align nodes {top}

e evenly distribute nodes on z (sort-by:{sort_attr})
#Square edges

e set target generation {1}

e display edges as squares

e position edges by {target.z},{source.y}

e show all edges

e size edges by constant

e color edges by {edge_color_attr}
#Right angle edges

e clone edges

138

e display edges as right angles

e color edges by constant

Matrix with Bars [205]

KASBTFPI DCEMOLUJGRHNG

e p——

ZIQAOCOECMrOO - DA UERD>

Figure 89: GLOv2 Matrix with Bars seed technique from [205].

The Matrix with Bars seed technique has nodes displayed as constant-sized, constant-
colored labels evenly spaced along the top and right, with edges displayed as relatively-
sized, relatively-colored rectangles positioned at the x value of the source node on the
top and y value of the the target node on the right.

To align with the other matrix-based representations, the nodes are sorted top to
bottom, while on top the nodes are sorted left to right and the labels are rotated.

(Note that nodes are not sorted or rotated in the seed technique figure from [205].)

e F#label attr: name

#sort_attr: cluster

#edge _size_attr: weight

#Right column of nodes

display nodes as {label_attr} labels

color nodes by constant

size nodes by constant

139

e evenly distribute nodes on y (sort-by:{sort_attr}, invert:true)
e align nodes {right}

e #Top row of nodes

e clone nodes

e rotate nodes {90}

e align nodes {top}

e cvenly distribute nodes on z (sort-by:{sort_attr})
o #FEdges

e set target generation {1}

e display edges as bars

e position edges by {source.z},{target.y}

e show all edges

e size edges by {edge_size_attr}

MatrixExplorer [116]

f

Figure 90: GLOv2 MatrixExplorer seed technique from [116].

The MatrixExplorer seed technique consists of two canvases. The first canvas has
nodes displayed as constant-sized, constant-colored labels evenly spaced along the

top and left, with edges displayed as constant-sized squares colored by an attribute

140

R e
- " 24 T

~

. -
= -

@A @@ e,

.
(@«

o

.
.
——

Figure 91: Approximate MatrixExplorer [116] rendered in GLO.js.

positioned at the y value of the source node on the left and x value of the the target
node on the top. On the left, the nodes are sorted top to bottom, while on top the
nodes are sorted left to right. Behind the node labels on the left, nodes are represented
as bars sized by the out-degree (an attribute) of the nodes. Behind the node labels
on the top, nodes are represented as bars sized by the in-degree (an attribute) of
the nodes. The second canvas consists of relatively-sized, square nodes colored by
an attribute connected by relatively sized, relatively colored straight line edges. In
addition, a second set of nodes in the same positions are displayed as constant-sized,
constant colored labels.

I have abstracted away the overview and details panes, the specific color scheme,

and the dynamic query widgets.

#sort_attr: cluster

#node _size_attr: degree

#label attr: name

#edge_attr: weight

#Property constants

color edges by {edge_attr}

141

show all edges

partition canvas on x

#Matrix left column bars and labels
color nodes by constant

display nodes as bars

evenly distribute nodes on y (sort-by:{sort_attr}, invert:true)
align nodes {left}

size nodes by {out_degree}

clone nodes

size nodes by constant

display nodes as {label_attr} labels
#Matrix top row bars and labels

select node generation {1} #bars

clone nodes

size nodes by {in_degree}

rotate nodes {90}

align nodes {top}

evenly distribute nodes on z (sort-by:{sort_attr})
clone nodes

size nodes by constant

display nodes as {label_attr} labels
#Matrix edges

size edges by constant

set target generation {4} #top row labels
display edges as squares

position edges by {target.z},{source.y}
#F-D Diagram

142

e select canvas {0}

e display nodes as squares

e size nodes by {node_size_attr}

e display edges as straight lines

e size edges by {edge_attr}

e apply force-directed algorithm to nodes
#F-D Diagram labels

e clone nodes

e display nodes as {label_attr} labels

e size nodes by constant

NetLens [140]

. 4
lll““l"““l“-llll
= |

e {1 [11(][Time

Figure 92: GLOv2 NetLens seed technique from [140].

In the NetLens seed technique, there are multiple canvases. The display is split
into two sides. On one side the nodes are aggregated by a discrete attribute, displayed
as constant-colored bars, aligned along the bottom, and sized by an attribute. On the
other side, the nodes are filter-partitioned by a discrete attribute and then aggregated
by a different discrete attribute and displayed as constant-colored, relatively-sized

bars aligned along the bottoms of the canvases. A meta-axis is displayed on the y

143

axis. Edges are not displayed.
I have abstracted away the list panels, dynamic query widgets, and specific color

scheme.

e F#right_aggr attr: cluster
o F#right_sort_attr: cluster

e #partition_attr: gender

#left_aggr_attr: cluster

e display nodes as bars

e color nodes by constant

e align nodes {bottom}

e hide edges

e #Single panel side

e partition canvas on x

e aggregate nodes by {right_aggr_attr} by {method}
e evenly distribute nodes on x (sort-by:{right_sort_attr})
e size nodes by {count}

e ##Multi-panel side

e select canvas {0}

e filter partition canvas on y by {partition_attr}

e show meta y axis

e select column {0} #all multi-panel-side partitions
e aggregate nodes by {left_aggr_attr} by {method}

e size nodes by {count}

Semantic Substrates [204, 18]

The Semantic Substrates seed technique is simplified from the figure. In the

144

Supreme 1982 1987 1992 1997 2002

Circuit 1982 1987 1992 / 1997 2002

District 1982 1987 1992 1997 2002

Figure 93: GLOv2 Semantic Substrates seed technique from [204].

1. o ¢010) @ [)
“ o o OB o
o0
e o0 ®
0 [] .
5 1'0 15 2‘0 25 30 35

Figure 94: Semantic Substrates [204] rendered in GLO.js.

semantic substrates seed technique, nodes are relatively sized and colored by an at-
tribute. Nodes are separated on the y axis by a discrete attribute and then positioned
relatively on the x axis. Edges are only shown when the analyst mouses over an end-
point node, when they are displayed as constant-sized curved lines colored by an
attribute of the target node.

I have abstracted away the color fills behind the nodes, the multi-node selection,

and the specific color scheme.

e #node_color_attr: cluster

145

#node _size_attr: degree

#node_y_attr: cluster

#node x_attr: degree

e display nodes as circles

e color nodes by {node_color_attr}

e show incident edges

e size nodes by {node_size_attr}

e position nodes on y by {node_y_attr}
e show y axis

e position nodes on = by {node_z_attr}
e show z axis

e display edges as curved lines

e size edges by constant

e color edges by {target.node_color_attr}

PivotGraph [244]

Figure 95: GLOv2 PivotGraph seed technique from [244].

The PivotGraph seed technique consists of aggregated super-nodes positioned on

x and y by discrete attributes forming a grid. The super-nodes are sized by the

146

Figure 96: PivotGraph [244] rendered in GLO.js.

number of nodes represented by the super-nodes and colored by the degree of the

super-node. Edges are displayed as curved lines, sized and colored by an attribute.

I have abstracted away the grid lines, dynamic query widgets, specific color

scheme, and specific glyph rendering style.

#discl: gender

#disc2: cluster

#method: mean

#node_color_attr: in_degree

#edge_attr: count

display nodes as circles

show all edges

aggregate nodes by [{disc1},{disc2}] by {method}
size nodes by {count}

color nodes by {node_color_attr}

aggregate edges by [{source.disc1},{source.disc2} {target.disc1},{target.disc2}
by {method}

display edges as curved lines

147

e size edges by {count}

e color edges by {edge_attr}

e position nodes on = by {disc1}
e position nodes on y by {disc2}
e show z axis

e show y axis

MatLink [118]

Figure 97: GLOv2 MatLink seed technique from [118].

B i T N DL)
e— —

) DODNINNINDOININIINNNY

@SN =
H:

Figure 98: Approximate MatLink [118] rendered in GLO.js.

148

The MatLink seed technique has nodes displayed as constant-sized, constant-
colored labels evenly spaced along the top and left, with edges displayed as constant-
sized, constant-colored squares positioned at the y value of the source node on the left
and z value of the the target node on the top. On the left, the nodes are sorted top to
bottom, while on top the nodes are sorted left to right. Constant-sized and -colored
curved edges are also shown faded between the nodes on each axis, and shown fully
rendered when the analyst interacts with an endpoint.

I have abstracted away the specific color scheme, the background grid, and multi-

selection.

e Flabel attr: name

#sort_attr: cluster
#Constants amongst all glyphs
e color nodes by constant
e size nodes by constant
e size edges by constant
e color edges by constant
#Left column nodes and curved edges
e display nodes as {label_attr} labels
e evenly distribute nodes on y (sort-by:{sort_attr}, invert:true)
e align nodes {left}
e display edges as curved lines
e show faded and incident edges
#Top row nodes and curved edges
e clone nodes
e clone edges
e set source generation {1} #eventual top row

e set target generation {1} #eventual top row

149

e rotate nodes {90}

e align nodes {top}

e evenly distribute nodes on z (sort-by:{sort_attr})
#Square edges

e clone edges

e set source generation {0}

e display edges as squares

e position edges by {target.z},{source.y}

e show all edges

List View [199, 214]

Mg Lo | v g e

Figure 99: GLOv2 List View seed technique from [199].

The List View seed technique consists of nodes displayed as constantly-sized labels
in vertically stacked lists by an attribute and aligned at the bottom of the display.
Edges are constant-sized, colored by an attribute, and are displayed as faded unless
the analyst interacts with an endpoint, when they are fully rendered. Edges are
displayed as curved lines within a list and straight lines between lists.

I have abstracted away the specific color scheme, the fisheye display on the nodes,

150

Figure 100: List view [199] rendered in GLO.js.

multiple-selection, the additional information columns, and the dynamic query wid-

gets.

e Flabel attr: name

e #discrete: gender

#sort_attr: cluster

e display nodes as {label_attr} labels

e size nodes by constant

e color nodes by constant

e size edges by constant

e color edges by constant

e position nodes on x by {discrete}

e position nodes evenly stacked {bottom} (sort-by:{sort_attr}, within:{discrete})

e show z axis

e display edges as straight lines
#Straight intra-cluster edges

e show faded and incident edges

e hide edges (group-by:{discrete})

151

#Curved inter-cluster edges

clone edges

display edges as curved lines

hide edges

show faded and incident edges (group-by:{discrete})

Edge-Label-Centric [182]

5 labels R
E"- - -.M' e _-.._:F-l 5
| -.I..._--\.-'\-H. JI-———I-
ey v R
| » s —fLabel 2 i"‘.;‘;;:.:- 5 S
¥ i ¥ e N -
— ;‘qrj Label 3 *. l .
: _."'-_ b e - L.

Source nodes Edge Target nodes

Figure 101: GLOv2 Edge-Label-Centric seed technique from [182].

In the Edge-Label-Centric seed technique, two sets of nodes are displayed as

constant-sized, constant-colored circles evenly distributed along the y axis. One set

is aligned on the left of the display and the other on the right. One set of edges are

aggregated by a discrete property, displayed as constant-sized labels, aligned in the

center of the display, and distributed along the y axis. A second set of edges are

displayed as constant-sized, constant-colored straight lines from the source node in

the left-hand set through the appropriate edge label in the center to the target node

in the right-hand set.

I have abstracted away the specific color scheme.

e #node_sort_attr: cluster

e F#edge_aggr_attr: target.gender

152

e ##method: mean
e F#edge sort_attr: id
#Left column of nodes
e display nodes as circles
e color nodes by constant
e size nodes by constant
e cvenly distribute nodes on y (sort-by:{node_sort_attr})
e align nodes {left}
#Right column of nodes
e clone nodes
e align nodes {right}
#All edges
e color edges by constant
e size edges by constant
e clone edges
#Center edge labels
e aggregate edges by {edge_aggr_attr} by {method}
e display edges as {edge_label_attr} labels
e align edges {center}
e cvenly distribute edges on y (sort-by:{edge_sort_attr})
#Line edges
e sclect edge generation {0} #unaggregated edges
e set edge waypoint generation {1} #edge label generation
e display edges as straight lines

e set target generation {1} #right column nodes

Honeycomb [106]

153

Figure 102: GLOv2 Honeycomb seed technique from [106].

Figure 103: Approximate Honeycomb [106] rendered in GLO.js.

The Honeycomb seed technique consists of two sets of aggregated super-nodes
displayed as constant-sized, constant-colored labels distributed along the left and
top. The super-nodes along the left are sorted top to bottom, while the super-nodes
on the top are sorted left to right. Aggregated super-edges are displayed as constant-
sized squares colored by an attribute positioned at the y value of the source node on
the left and x value of the the target node on the top.

I have abstracted away the hierarchical dendrograms and have rotated the top

node labels to be consistent with the other matrix-based techniques.

e F#disc: cluster

e #method: mean

154

e #sort_attr: cluster
e Fedge_color_attr: count
#Left column of nodes
e size nodes by constant
e aggregate nodes by {disc} by {method}
e display nodes as {disc} labels
e align nodes {left}
e cvenly distribute nodes on y (sort-by:{ sort_attr}, invert:true) #Top row of nodes
e clone nodes
e align nodes {top}
e evenly distribute nodes on = (sort-by:{sort_attr}) #Edges
e show all edges
e set target generation {4} #top super-node glyphs
e aggregate edges by [{source.disc}{target.disc}] by {method}
e display edges as squares
e position edges by {target.z},{source.y}
e color edges by {edge_color_attr}

e size edges by constant

GraphDice Segment [36]

The seed technique consists of circular nodes sized by an attribute and colored by
a constant. The nodes are positioned relatively along the x and y axes by attributes.
Scale axes are drawn for the x and y axes. Edges are drawn as constantly-sized,
constantly-colored curved lines.

I have abstracted away the multi-selection interaction (and accompanying convex

hull highlighting and non-constant colors) as well as the specific color scheme.

e Fattrl: betweenness centrality

155

\

firstdate
1984 1986 1988 1990 1992 1994 199 1998 2000 2002

10 12 15 17 20 22
papersnb

r

Figure 104: GLOv2 GraphDice Segment seed technique from [36].

Figure 105: GraphDice segment [36] rendered in GLO.js.

#attr2: degree
#node_size_attr: degree
display nodes as circles
position nodes on z by {attr!}
position nodes on y by {attr2}
size nodes by {node_size_attr}
color nodes by constant
display edges as curved lines

show all edges

156

size edges by constant
color edges by constant
show x axis

show y axis

3x3 GraphDice [36]
irsca §
lastda ;i ?‘
citatio 3 L

central ;9 "%‘
paper ;1‘ ;‘Sb ;
degre b) ;’%’

rank ;? ﬁ
N

5T firstda lastda citatio centralpaper deare rank ¥

Figure 106: GLOv2 GraphDice seed technique from [36].

Ak b e B WO
daadlde b il
dFEF & 44k

Overview

[N —

dFF 7 Edid

dFAF F4dd

A€ Fr F ddi
PFEFE /A
*FEERRE /R
TPEFEMAR)/

)

(N

hd

Muaru

,‘_\
000000
'+ 0O

0000
<o:o))J)):o| ip So

Figure 107: Approximate 3x3 GraphDice [36] rendered in GLO.js.

The 3x3 GraphDice seed technique consists of a 3x3 grid of canvases. In each

canvas, circular nodes are sized by an attribute and colored by a constant. The nodes

in each canvas are positioned relatively along the x and y axes by attributes. Edges
are drawn as constantly-sized, constantly-colored curved lines. The nodes in each
column are positioned relatively along the x axis by the same attribute. The nodes
in each row are positioned relatively along the y axis by the same attribute. The
attributes are the same on both axes and ordered the same from top to bottom and
from left to right.

I have abstracted away the multi-selection interaction (which resulted in the mul-
tiple colors). While they are a critical component of the GraphDice technique, I have
abstracted away the meta-axis labels. Because the columns and rows represent at-
tributes, rather than data elements, the choice of columns and rows cannot be done
elegantly using the expected data model. This is also why I chose an explicitly 3x3
GraphDice grid.

#attrl: cluster

#Hattr2: gender

#attr3: degree

#Set up a single cell

e display nodes as circles

e show all edges

e color nodes by {node_color_attr}
e size nodes by {node_size_attr}

e size edges by constant

e color edges by constant

e display edges as curved lines

e position nodes on = by {attri}
e position nodes on y by {attri}
#Set up first row (i.e. set each column’s x attribute)

e partition canvas on x (parts:3)

158

e select canvas {1}
e position nodes on x by {attr2}
e select canvas {2}
e position nodes on x by {attrs}
#Create grid and set each row’s y attributes
e partition canvas on y (parts:3, all-canvases:true)
e sclect row {1}
e position nodes on y by {attr2}

e select row {2}

position nodes on y by {attrs}

GMap [94]

Figure 108: GLOv2 GMap seed technique from [94].

The GMap seed technique consists of nodes displayed as constant-colored, relatively-
sized labels connected by faded, constantly-sized straight-line edges. Surrounding
each cluster of nodes is a translucent convex hull colored by an attribute.

I abstracted away the blue background and the specific color scheme.

o #label attr: name

e #node_ size attr: degree

159

#group_by _attr: cluster

e display nodes as {label_attr} labels

e size nodes by {node_size_attr}

e color nodes by constant

e display edges as straight lines

e color edges by constant

e size edges by constant

e show edges as faded

e show convex hulls (group-by:{ group_by_attr})

e color convex hulls by {group_by_attr}

Attribute Matrix [153]

2000 (282) 2001 (262) 2002 (203) 2003 (427)
oo
oo e ..: oo * L L3
] o o L ® L ° L
e © ° ° o o . ®
£ g0 ° « ® * o . ® e
3 O e o o0 ® ol ® '
° o ° L4 . ® . ° e o °
° o © ® [« © o
° o e » L4 =)
. . L] * e o oo L g
e . oo ©® . o ®
- (X o0 . e®e o
g * * o0 Se]
E ® o o . b
. b/ .
. .
i «® . .
[C . .,
o o . V ° .
L[] ' [[] e 0 ® 0
eo o ° O == ¢
* . o« P ® o L] o Pee o o
70 oo ® ° ¢ o oo .0.0 . .
L] e . * . eoe —ge/\®
2 Y . . . b L
« » o« ° v . e o %o
) [] ° L4 ™ g .
o ° ° ? 1 and) an -. oo o o %
=2 L] ° 2 & (] L4
. . Y o o '3 ® e

Figure 109: GLOv2 Attribute Matrix seed technique from [153].

The Attribute Matrix seed technique consists of a grid of canvases. The x and y
meta-axes are of discrete attributes and the nodes in each cell are those that share
those attributes and the edges are those in the subgraph induced by the nodes. Within
each cell, the nodes are displayed as constant-sized, constant-colored circles connected
by constant-sized, constant-colored straight line edges.

I have abstracted away the specific blue-node color scheme.

160

#x_axis_disc: cluster

#y_axis_disc: gender

e display nodes as circles

e size nodes by constant

e color nodes by constant

e display edges as straight lines

e size edges by constant

e color edges by constant

e filter partition canvas on x by {z_azis_disc}

e filter partition canvas on y by {y_azis_disc} (all-canvases:true) #form the grid

e apply force-directed algorithm to nodes (all-canvases:true)

EdgeMap A [74]

Figure 110: GLOv2 EdgeMap A seed technique from [74].

The EdgeMap A seed technique consists of circular nodes colored and sized rela-
tively by attributes. The nodes are positioned using a force-directed algorithm. Edges
are hidden, except when the analyst interacts with an endpoint, in which case the
edge is drawn as a curved line colored the same as the source node. In-edges and

out-edges of the interaction node are drawn differently. Neighbors of the interaction

161

Figure 111: Approximate EdgeMap A [74] rendered in GLO.js.

node are highlighted.

I have abstracted away the specific rendering styles of the edges beyond curved
lines, leaving it up to the implementation to choose how to differentiate the in- and
out-edges. 1 have also abstracted away the specific color scheme, the details-on-

demand panel, and the dynamic query widgets.

e #node_size attr: degree

e ##node_color_attr: cluster

e display nodes as circles

e size nodes by {node_size_attr}

e color nodes by {node_color_attr}

e display edges as curved lines

e size edges by constant

e color edges by {source.node_color_attr}
e show in-out edges

e highlight neighbors

e apply force-directed algorithm to nodes

EdgeMap B [74]

162

Timeline + | Philosophers +

Y Y
&

%
%

%
%

<2
7
2
G,
P
%,
%,

Friedrich Wilhelm Nietzsche (October 15, 1844 - August

25, 1900) (German pronunciation: [i detg

vilhalm ‘niye]) was a nineteenth-century German
philosopher and classical philologist. He wrote critical

texts on religion, morality, contemporary culture,

philosophy, and science, using a distinctive German language
style and displaying a fondness for metaphor and aphorism,
Nietzsche's influence remains substantial within and beyond
philosophy, notably in existentialism and postmodernism...

Figure 112: GLOv2 EdgeMap B seed technique from [74].

[() o ot «-C«-I(‘(((Q(((((iiiﬂ(((((&'«o

Figure 113: Approximate EdgeMap B [74] rendered in GLO.js.

The EdgeMap B seed technique consists of circular nodes colored and sized rela-
tively by attributes. The nodes are evenly distributed along the middle of the y axis
sorted by an attribute. Edges are hidden, except when the analyst interacts with an
endpoint, in which case the edge is drawn as a curved line colored the same as the
source node. In-edges and out-edges of the interaction node are drawn differently.
Neighbors of the interaction node are highlighted.

I have abstracted away the specific rendering styles of the edges beyond curved

lines, leaving it up to the implementation to choose how to differentiate the in- and

163

out-edges. 1 have also abstracted away the specific color scheme, the details-on-

demand panel, and the dynamic query widgets.

#node _size_attr: degree
#node_color_attr: cluster
#x_pos_attr: cluster

display nodes as circles

size nodes by {node_size_attr}
color nodes by {node_color_attr}
display edges as curved lines
size edges by constant

color edges by {source.node_color_attr}
show in-out edges

highlight neighbors

align nodes {middle}

evenly distribute nodes on z (sort-by:{z_pos_attr})

Hive Plot [144]

REGULATOR

x3 xa2
WORKHORSE MANAGER

Figure 114: GLOv2 Hive Plot seed technique from [144].

164

Figure 115: Hive Plot [144] rendered in GLO.js.

In the Hive Plot seed technique, constant-sized circular nodes colored by an at-
tribute are distributed around the center of the display by a discrete attribute. The
nodes are positioned at a distance from the center of the display relatively by an
attribute. Edges are drawn as constant-colored, constant-sized curved lines.

I have abstracted away the radial axis labels and the specific (greyscale) color

scheme.

e Fdiscrete: cluster

#attr: degree

e display nodes as circles

e size nodes by constant

e size edges by constant

e color nodes by {discrete}

e position nodes on @ by {discrete}
e position nodes on p by {attr}

e display edges as curved lines

e color edges by constant

e show all edges

165

2x3 Hive Panel [144]

nnnnnnnnn

Figure 116: GLOv2 Hive Panel seed technique from [144].

~® e
(2] N N
e o LXCUOTY LICIDX
e)(e) uomeNn e(@N®M)»

Figure 117: 2x3 Hive Panel [144] rendered in GLO.js.

The 2x3 Hive Panel seed technique consists of a 2x3 grid of canvases. In each
canvas, constant-sized circular nodes colored by an attribute are distributed around
the center of the display by a discrete attribute and positioned at a distance from the
center of the display relatively by an attribute. The canvases in each row have the
same attribute driving the angular position, while the canvases in each column have
the same attribute driving the radial position. Edges are drawn as faded, constant-

sized curved lines colored the same as their source nodes unless the analyst interacts

166

with an endpoint, then the edge is drawn fully rendered.
As with the 3x3 GraphDice seed technique, I have abstracted away the meta-axis
labels and chose the specific 3x2 grid-size. I have also abstracted away the duplicate

axes.

#node_color_attr: cluster

#discretel: cluster

#discrete2: gender

#attrl: betweenness centrality

#attr2: pagerank

#attr3: degree

e display nodes as circles

e size nodes by constant

e size edges by constant

e color nodes by {node_color_attr}

e display edges as curved lines

e show faded and incident edges

e position nodes on 6 by {discretel}
e position nodes on p by {attri}

e partition canvas on z (parts:3)

e select canvas {1}

e position nodes on p by {attr2}

e select canvas {2}

e position nodes on p by {attr3}

e partition canvas on y (parts:2, all-canvases:true)
e select row {1} #0-indexed

e position nodes on 6 by {discrete2}

e color edges by {source.node_color_attr} (all-canvases:true)

167

ScatterNet [27]

v | MKTCAP w | Scale: logarithmic

IBM (Portfolio Diversity Index:0.6 MKTCAP:5234.4 e

$100.08 = H
® L]
L]
e ’ HBwiett Packgrd U:J:
L]
0.08 ®5eagate Technology Inc g L] e . . .
® - ° {
L] R
| L)
| - v
L . ® ®
® ®
. ®
L] »
B" ™
.0 14
X: | Portfolio Diversity Index - ‘ Scale: linear -

Figure 118: GLOvV2 ScatterNet seed technique from [27].

1,600

1,400 4

1,200 4

)

) /
a2

00-0"00—10-0=2. -0 T T T —

5 10 15 20 25 30 35

Figure 119: ScatterNet [27] rendered in GLO.js.

In the ScatterNet seed technique, nodes are displayed as constant-sized circles
colored by an attribute. Nodes are positioned on the x and y axes relatively by
attributes and scale axes for the attributes are displayed on the x and y axes. Edges
are hidden, except when the analyst interacts with an endpoint, in which case the
edge is drawn as a constant-colored, constant-sized straight line. Neighbors of the
interaction node are highlighted.

I have abstracted away the alternative axis types (e.g. logarithmic), the few node

168

labels, and the specific color scheme.

#node_color_attr: cluster

#attrl: degree

#attr2: betweenness centrality
e display nodes as circles

e size nodes by constant

e color nodes by {node_color_attr}
e display edges as straight lines
e size edges by constant

e color edges by constant

e position nodes on = by {attrl}
e position nodes on y by {attr2}
e show x axis

e show y axis

e show incident edges

e highlight neighbors

Citevis [213]

The Informetion Interfaces Group of Georgie Tech presents.

IEEE InfoVis Citations

Authors: | --- B Afflliations: -- B Concepts: - B Title Search:
Clear Al Shadeby Internal Ctes Hep

2015 o o o (-]
2014

203@ 0000

[
159000000

Toward a Deeper L ling of the Role of in
, Y Y153 Jacko, JA
Technology; Emory University
)

Figure 120: GLOv2 Citevis seed technique based on [213].

169

Figure 121: Citevis [213] rendered in GLO.js.

In the Citevis seed technique, nodes are distributed along the y axis by a discrete
attribute. Within each row, the constant-sized, relatively-colored circular nodes are
stacked to the left. When the analyst interacts with a node, the neighbors of that node
highlight, with the in-neighbors and out-neighbors highlighting differently. Edges are
hidden.

I have abstracted away the specific means by which the in- and out-neighbors are

highlighted, the details-on-demand panel, and the dynamic query widgets.

e Fdiscrete: cluster

e Fcolor_attr: degree

#sort_attr: betweenness centrality
e hide edges

e display nodes as circles

e highlight in-out neighbors

e size nodes by constant

e position nodes on y by {discrete}

e show y axis

170

e position nodes evenly stacked {left} (sort-by:{sort_attr}, within:{discrete}, in-
vert:true)

e color nodes by {color_attr}

DOSA [232]

Figure 122: GLOv2 DOSA seed technique from [232].

Figure 123: Approximate DOSA [232] rendered in GLO.js.

The DOSA seed technique consists of two canvases. In the first canvas, constant-
sized circular nodes colored by an attribute are positioned relatively along the x
and y axes by attributes. Edges are drawn as constant-sized curved lines colored

by a gradient from the source node’s color to the target node’s color. In the second

171

canvas, the nodes in the first canvas are aggregated into super-nodes, displayed as
constant-sized squares colored by the same attribute as the first canvas’s nodes and
positioned at the average position of the nodes aggregated. Super-edges between the
super-nodes are displayed as relatively-sized curved lines colored by a gradient from
the source super-node’s color to the target super-node’s color.

I have abstracted away the multi-selection interaction (instead, the effect is of
every node being a member of a selection based on a discrete attribute). I have
also abstracted away the embedded visualizations replacing the node glyphs in the

aggregated display.

e F#discrete: cluster

#attrl: clustering coefficient

#attr2: number of triangles

#method: mean

#Unaggregated canvas

e display nodes as circles

e color nodes by {discrete}

e size nodes by constant

e display edges as curved lines

e size edges by constant

e color edges by {source.discrete}—{target.discrete}
e position nodes on = by {attri}

e position nodes on y by {attr2}

o #Aggregated canvas

e partition canvas on x

e aggregate nodes by {discrete} by {method}
e display nodes as squares

e aggregate edges by [{source.discrete} {target.discrete}] by {method}

172

e size nodes by {count}

e size edges by {count}

NodeTrix [117]

Figure 124: GLOv2 NodeTrix seed technique from [117].

[]
- a
a a
(]
(.. 988
[J @
o o . e (o
- -
= -
(¢
L] -
[] {] e

Figure 125: Approximate NodeTrix [117] rendered in GLO.js.

The NodeTrix seed technique consists of four sets of constant-sized, relatively-
colored label nodes arranged in squares. Each square represents a cluster. Within
each square, the first set of nodes is aligned to the left of the square and distributed

along the y axis sorted from top to bottom. The second set is aligned to the right

173

right of the square and distributed along the y axis sorted from top to bottom. The
third set is aligned along the top of the square, rotated 90 degrees, and ordered from
left to right. The fourth set is aligned along the bottom of the square, rotated 90
degrees, and ordered from left to right. Edges within each square are displayed as
constant-sized, relatively colored squares positioned at the y position of the source
node in the first set of nodes and the x position of the target node in the third set of
nodes. Edges between nodes in different squares are displayed as relatively-colored,
constant-sized curved lines.

I have abstracted away the specific color scheme, as well as the fact that intra-
cluster edges are drawn from the closest source glyph in one cluster to the closest

target glyph in the second cluster.

e Flabel attr: name

e #node_color_attr: degree

#edge_color_attr: weight

#discrete: cluster

#Visual properties

e display nodes as {label_attr} labels

e color nodes by {node_color_attr}

e size nodes by constant

e color edges by {edge_color_attr}

e size edges by constant

e #Position nodes in a large circle

e position nodes by constant on p

e evenly distribute nodes on 6 (sort-by:{discrete})
o #Left columns within clusters

e align nodes {left} (group-by:{discrete})

e evenly distribute nodes on y (group-by:{discrete}, invert:true)

174

#Right columns within clusters

clone nodes

align nodes {right} (group-by:{discrete})
#Top rows within clusters

clone nodes

rotate nodes {90}

evenly distribute nodes on z (group-by:{ discrete})
align nodes {top} (group-by:{discrete})
#Bottom rows within clusters

clone nodes

align nodes {bottom} (group-by:{discrete})
#Edges

set target generation {2} #Top row
#Intra-cluster edges as curved lines

show all edges

display edges as curved lines
#Inter-cluster edges as squares

display edges as squares (group-by:{discrete})

175

APPENDIX C

GLOV1 OPERATIONS SET

Positioning Nodes The operations in this category each adjust the two-dimensional

(x,y) coordinate positions of node glyphs.

e Align Nodes {Left, Center, Right, Top, Middle, Bottom}: adjusts the
position of the nodes by changing the appropriate coordinate values of all nodes

to a constant value.

e Evenly Distribute Nodes on = or y by {attribute}: disperses the nodes
horizontally or vertically so that the nodes are evenly distributed on the appro-

priate axis, sorted by the provided attribute of the nodes.

e Evenly Distribute Nodes on x or y: disperses the nodes horizontally or
vertically so that the nodes are evenly distributed on the appropriate axis,

defaulting to the nodes’ ordering in the data store.

e Substrate Nodes on z or y by {categorical attribute}: positions the
nodes based on a categorical attribute value. Attribute values are assigned to
locations evenly across the appropriate axis and each node is then positioned

at its value’s location.

e Evenly Distribute Nodes within Substrates: positions the nodes of the
most recently applied substrate evenly along the opposite axis of the substrate

axis.

e Position Nodes on x or y Relatively by {continuous attribute}: posi-

tions each node based on a continuous attribute. The left-most or bottom-most

176

position is assigned a zero value and the right-most or top-most position is as-
signed the maximum value amongst the nodes. Nodes are then positioned along

the axis using a linear scale of their attribute values.

Evenly Distribute Nodes Radially by {attribute}: position the nodes
evenly around the center of the plot clockwise from the top, sorted by the

attribute of the node.

Evenly Distribute Nodes Radially: position the nodes evenly around the
center of the plot clockwise from the top, defaulting to the nodes’ ordering in

the data store.

Position Nodes Radially by { continuous attribute}: positions each node
radially based on a continuous attribute. The top-most position is assigned a
zero value and the position just left of the top value is assigned the maximum
value amongst the nodes. Nodes are then positioned clockwise-radially using a

linear scale of their attribute values.

Substrate Nodes Radially by { categorical attribute}: positions the nodes
based on a categorical attribute value. Attribute values are assigned to loca-
tions evenly around the center of the plot and each node is then positioned at

its value’s location.

Evenly Distribute Nodes Along Plot Radius by {attribute}: disperses
the nodes so that the nodes are evenly distributed in distance from the center
of the plot to the edge of the plot, sorted from the center by the attribute of

the node.

Evenly Distribute Nodes Along Plot Radius: disperses the nodes so that

the nodes are evenly distributed in distance from the center of the plot to the

177

edge of the plot, sorted from the center by the attribute of the node, defaulting

to the nodes’ ordering in the data store.

e Position Nodes Along Plot Radius by {continuous attribute}: posi-
tions each node based on a continuous attribute. The inner-most position is
assigned a zero value and outer-most position is assigned the maximum value
amongst the nodes. Nodes are then positioned from the inner-most position to

the outer-most using a linear scale of their attribute values.

e Substrate Nodes Along Plot Radius by {categorical attribute}: po-
sitions the nodes based on a categorical attribute value. Attribute values are
assigned to locations evenly along the radius of the plot and each node is then

positioned at its value’s location.

e Position Nodes Along Plot Radius by Constant: Positions the nodes a

fixed distance from the center of the plot.
e Apply {algorithm} to the Nodes: positions the nodes using a physics-based
algorithm, such as a force-directed algorithm.
Modifying Element Properties The GLOs in this category each modify the non-
spacial visual properties of the node and edge glyphs.

e Size Nodes by Constant: adjusts the radius of each node to a constant value.

e Size Nodes Relatively by {continuous attribute}: adjusts the radius of
each node using a linear scale between zero and the maximum value amongst

the nodes.
e Display All Links: makes all edges visible.

e Display Selected Links: makes all edges invisible. When the user mouses

over a node, makes the in- and out-edges of that node visible.

178

e Hide Links: makes edges invisible.

e Display Links as Straight: adjusts each edge to be drawn as a straight line

from the center of the source node to the center of the target node.

e Display Links as Curved: draws each edge as a quadratic curve clockwise

from the source node to the target node.

e Display Links as Circles: adjusts each edge to be drawn as a circle with y

coordinate of its source node and x coordinate of its target node.

Cloning Nodes This category of GLOs allows for duplicating node glyphs and
interacting with the various sets of duplicates. Each cloning operation creates a new
generation of nodes, and each generation is assigned an identifying generation number
so that the generation can be referenced by other operations. The initial set of nodes
are assigned generation number 0. After that, the first clone (or aggregate) genera-
tion created is assigned generation number 1, the second 2, and so on. The active
generation is the generation of nodes on which GLOs are applied. For example, if an
evenly distribute nodes on x GLO is applied, only the nodes in the active generation

are repositioned.

e Clone Active Generation: generates copies of all of the node glyphs of the
current generation. The copies have the same visual properties of the cloned
generation. The new generation is assigned a generation number for reference

and becomes the active generation.

e Select Generation k: select a generation of nodes and makes it the active

generation. Subsequent GLOs are applied to this generation.
e Set Source Generation k: adjust edges to be drawn from generation k.

e Set Target Generation k: adjust edges to be drawn to generation k.

179

¢ Remove Generation k: Removes the glyphs of generation k from the display.
If edges were being drawn to or from this generation, they are instead drawn
to or from generation 0 (the initial nodes). If generation k was the active

generation, generation 0 becomes the active generation.

Aggregating Nodes and Edges This category of GLOs enable the creation of
glyphs that represent more than a single node or edge. As with cloning GLOs,
aggregation creates new generations of nodes and assigns them generation numbers

for reference.

e Aggregate by {categorical attribute}: aggregates nodes with the same
attribute into supernodes and aggregates edges into superedges between the
supernodes. The original nodes and edges are discarded. The radius of the
supernodes and width of the superedges are determined relatively by the number
of nodes or edges the supernode or superedge represents. These supernodes and
superedges are assigned a generation number in order to reference them and are

set as the active generation as described in [244].

e Aggregate by {categorical attribute} and {categorical attribute}: as

above, but aggregates nodes where the values of both attributes are the same.

e Deaggregate Generation k: deaggregates the supernodes and superedges of
the kth generation back into the original nodes and edges. The original nodes
retain their original sizes, but are positioned at their respective supernodes’

most recent positions.

Modifying Display Properties The operations in this category do not modify
the elements of the graph (the node and edge glyphs) but instead modify the display

itself.

180

e Show z or y Axis: displays labels on the appropriate axis based on the
currently applied positioning GLO. These labels are updated as new positioning

GLOs are applied.

e Hide = or y Axis: hides the labels on the appropriate axis.

181

APPENDIX D

GLOV2 OPERATIONS SET

Please see Section 4.4 for properties of the GLO domain-specific language and for
descriptions of the optional parameters of each operation: group-by, within, sort-by,

invert, all-generations, and all-canvases.

Node and Edge Positioning The operations in this category reposition either

the node or edge glyphs within a canvas.

e Align nodes {dir}: Position node glyphs at a constant value along an axis.

Valid directions are up, down, left, right, center (z), and middle (y).

e Evenly distribute nodes on {axis}: Evenly disperse the node glyphs along
the provided axis. If a sort-by parameter is provided, the nodes are sorted by
the sort-by attribute. If an invert parameter is provided, the nodes are sorted

in reverse order.

e Position nodes on {axis} by constant: Position node glyphs at a pre-

defined constant value along the provide axis.

e Position nodes on {axis} by {attr}: Position node glyphs relatively along
the axis by the provided attribute. If the attribute is a discrete attribute,
distribute the values along the axis. If an invert parameter is provided, the axis

is flipped.

e Position nodes evenly stacked on {dir}: Position the node glyphs at
axisg + i * de faultstackqistance, where i is the index in the sorted list. (A

suggested default stack distance is the default node size.) Valid directions are

182

up, down, left, and right. The direction determines the value of azisy. If a
sort-by parameter is provided, the nodes are sorted by the sort-by attribute. If

an invert parameter is provided, the nodes are sorted in reverse order.

e Position nodes stacked on {azis} by {attr}: If the provided attribute is
continuous, given the sum of each values of the attribute (s = ¥v,,) and the
total length of the axis ([), the position of the glyph of the largest valued node
is pp = azisy. Position each subsequent node’s glyph at p,_1 + (v,_1/s) * [. If
the provided attribute is discrete, equivalent to Position nodes evenly stacked

on {dir}. If an invert parameter is provided, the axis is flipped.

e Apply force-directed algorithm to nodes: Use a force-directed layout algo-
rithm to position the node glyphs on the canvas. If the nodes are super-nodes,

edges are assumed to be the super-edges induced by the nodes.

e Align edges {dir}: Position edge glyphs at a constant value along an axis.
Valid directions are up, down, left, right, center (z), and middle (y). Operation

has no effect unless edges are displayed as text, squares, or bars.

e Evenly distribute edges on {axis}: Evenly disperses the edge glyphs along
the provided axis, sorted by the optional by attribute. Operation has no effect

unless edges are displayed as text, squares, or bars.

e Position edges by {attr},{attr}: Position the edge glyphs such that the x
coordinate is based on the first attribute and the y coordinate based on the
second attribute. Operation has no effect unless edges are displayed as text,

squares, or bars.

Node and Edge Visual Properties The operations in this category adjust how

the individual glyphs are displayed. A given node or edge glyph has a single display

183

mode, single color, and single size. Node glyphs have a single rotation. Edge glyphs

have a single waypoint or no waypoints.

e Display nodes as circles: Display node glyphs as circles.
e Display nodes as squares: Display node glyphs as squares.

e Display nodes as {attr} labels: Display each node glyph as text with the

string value of the node’s attribute value.
e Display nodes as bars: Display node glyphs as rectangles.

e Display edges as straight lines: Display edges as straight lines between
the source and target nodes’ glyphs in the edge generation’s source and target

generations, respectively.

e Display edges as curved lines: Display edges as curved lines between the
source and target nodes’ glyphs in the edge generation’s source and target gen-
erations, respectively. Edges curve counter-clockwise, unless an invert flag is

passed and then the edges should curve clockwise.
e Display edges as squares: Display edges as squares.

e Display edges as {attr} labels: Display edges as text of the edges’ attribute

values.
e Display edges as bars: Display edges as rectangles.

e Display edges as right angles: Display edges as right angles between the
source and target nodes’ glyphs in the edge generation’s source and target gen-
erations, respectively. Edges are drawn counter-clockwise, unless an invert flag

is passed and then the edges should curve clockwise.

184

Size nodes by constant: Size node glyphs by a implementation-determined

constant.
Size nodes by {attr}: Size node glyphs relatively by the provided attribute.

Size edges by constant: Size edge glyphs by an implementation-determined

constant.
Size edges by {attr}: Size edge glyphs relatively by the provided attribute.

Color nodes by constant: Color node glyphs the implementation-default

node color.

Color nodes by {attr}: Color node glyphs relatively by the provided color

attribute.

Color edges by constant: Color edge glyphs by the implementation-default

edge color.
Color edges by {attr}: Color edges relatively by the provided color attribute.

Color edges by {attr}—{attr}: Color edges using a gradient between the

provided color attributes.

Rotate nodes {num} degrees: Rotate the node glyphs from their current
rotation the specified number of degrees counter-clockwise. This operation is

additive.
Unrotate nodes: Return the node glyphs to their default rotation.

Set edge waypoint edge generation {num}: Edges route through the
glyph in the provided edge generation associated with the same backing edge.
(Operation has no visible effect when edges are displayed as text, squares, or

bars.)

185

¢ Remove all edge waypoints: Edges no longer route through a waypoint

generation, if they did.

Convex Hulls The operations in this category manipulate translucent convex hulls

around node glyphs.

e Show convex hulls: Draw a translucent convex hull around node glyphs in

the default convex hull color.
e Hide convex hulls: Hide convex hulls.

e Color convex hulls by {attr}: Color convex hulls relatively by the provided

attribute.

e Color convex hulls by constant: Color convex hulls the default convex hull

color.

Interaction The operations in this category manipulate if and/or how to render
glyphs differently when the analyst interacts with a node. (It is left to the implemen-
tation what constitutes an interaction.) Only a single interaction mode (including no

interaction) will be active for any given edge or node glyph.

Show all edges: Fully render edge glyphs, regardless of interaction.

Hide edges: Do not render edge glyphs, regardless of interaction.

Show edges as faded: Render edge glyphs with a lower color saturation,

regardless of interaction.

Show incident edges: Do not render edge glyphs, except to fully render edge
glyphs when the analyst interacts with the backing edge’s end-point’s node

glyph. When rendering edge glyphs, fully render the edge glyph.

186

e Show in-out edges: Do not render edge glyphs, except to fully render edge
glyphs when the analyst interacts with the backing edge’s end-point’s node
glyph. When rendering edge glyphs, fully render the edge glyph. Glyphs rep-

resenting in-edges and out-edges are rendered differently.

e Show faded and incident edges: Render edge glyphs with a lower color
saturation, except to fully render edge glyphs when the analyst interacts with

the backing edge’s end-point’s node glyph.

e Highlight neighbors: Render node glyphs differently if the backing node is a

neighbor of the backing node of the glyph which the analyst is interacting.

e Highlight in-out neighbors: Render node glyphs differently if the backing
node is a neighbor of the backing node of the glyph which the analyst is inter-

acting. Further, render glyphs representing in-nodes and out-nodes differently.

e Stop highlight neighbors: Render all node glyphs the same, regardless of

interaction.

Aggregation The operations in this category are for aggregating and deaggregating
node and edge generations. The {discrete} attribute in the two aggregation GLOs
can be an array of discrete attributes. When an array is used, nodes or edges are

aggregated if they have the same values for all of the attributes in the array.

e Aggregate nodes by {discrete} using {method}: Create a new generation
of node glyphs, one node glyph for each value of the discrete attribute with the
display and interaction modes of the generation being aggregated. The new
node glyphs are backed by super-nodes, which have attributes based upon the
aggregated nodes: discrete attribute values are chosen from the most common

values of the aggregated nodes, while continuous attributes are determined using

187

the provided method. (Allowed methods include sum, mean, mode, minimum,
and maximum.) The new nodes are positioned at the mean x and y values of
the aggregated nodes. Hides the original node generation. Sets the new node

generation as the active generation.

e Aggregate edges by {discrete} using {method}: Create a new generation
of edge glyphs, one edge glyph for each value of the discrete attribute with
display and interaction modes and source and target generations of the genera-
tion being aggregated. The new node glyphs are backed by super-edges, which
have attributes based upon the aggregated edges: discrete attribute values are
chosen from the most common values of the aggregated nodes, while continu-
ous attributes are determined using the provided method. (Allowed methods
include sum, mean, mode, minimum, and maximum.) Hides the original edge

generation. Sets the new edge generation as the active generation.

e Deaggregate nodes: If the node generation is backed by super-nodes, re-
move the node generation and unhides the original node generation from which
the aggregate generation was created. The glyphs in the original generation
have the display and interaction modes and positions of the removed aggregate

generation.

e Deaggregate edges: If the node generation is backed by super-edges, remove
the edge generation and unhides the original edge generation from which the
aggregate generation was created. The glyphs in the original generation have
the display and interaction modes and source and target generations of the

removed aggregate generation.

Cloning The operations in this category relate to creating and manipulating gen-

erations of node and edge glyphs. Group-by and within optional parameters are

188

ignored if passed to any operations in this category. A node generation counter and

edge generation counter are used to keep track of the generations.

e Clone nodes: Create a new generation of node glyphs with the same display
mode, interaction mode, convex hull(s), and color and size properties as the
generation to which the operation is applied. The generation is given the next

index based on the generation counter.

e Clone edges: Create a new generation of edge glyphs with the same display
mode, interaction mode, waypoints, and color and size properties as the gener-
ation to which the operation is applied. The generation is given the next index

based on the generation counter.

e Select node generation {num}: Set the given node generation as the active

node generation.

e Select edge generation {num}: Set the given node generation as the active

edge generation.

e Set source generation {num}: Edge glyphs will be drawn with the node

glyphs in the given node generation as their source.

e Set target generation {num}: Edge glyphs will be drawn with the node

glyphs in the given node generation as their target.

¢ Remove node generation {num}: Removes the specified node generation’s
glyphs. If the node generation was the only node generation in its canvas,
a null state node generation is created and assigned an index of 0 if there is
only a single canvas or the next index if there are multiple canvases. If the
node generation was a source (or target) generation for any edge generations,
that edge generation is assigned the lowest-indexed node generation it the same

canvas as the source (or target) generation.

189

e Remove edge generation {num}: Removes the specified edge generation’s
glyphs. If the edge generation was the only edge generation in its canvas, a null
state edge generation is created and assigned an index of 0 if there is only a

single canvas or the next index if there are multiple canvases.

¢ Remove all cloned nodes: Removes all but the lowest-indexed node gener-
ation in the canvas. Remaining node generation is assigned an index of 0 if
there is only a single canvas or the next index if there are multiple canvases.
All edge generations are assigned the remaining node generation as their source

and target generation.

e Remove all cloned edges: Removes all but the lowest-indexed edge genera-
tion in the canvas. Remaining edge generation is assigned an index of 0 if there

is only a single canvas or the next index if there are multiple canvases.

Partitioning The operations in this category relate to creating and manipulating
canvases within the GLO Display. A canvas counter is used to keep track of the

canvases.

e Partition canvas on {azxis} (by {num}): Divide the current (original)
canvas into {num} evenly-sized canvases along the provided axis (z or). Clones
all node and edge generations in the original canvas into the new canvases. Sets
the clones of the former active node and edge generations in the last canvas as

the active node and edge generations and the last canvas as the active canvas.

e Filter partition canvas on {axis} by {discrete}: Divide the current (orig-
inal) canvas into k evenly-sized canvases along the provided axis (x or y), where
k is the number of different values of the provided discrete attribute. Clone all
node and edge generations in the original canvas into the new canvases, however

the cloned node generation in each canvas only includes the node glyphs for the

190

nodes with a single value for the discrete attribute and the edge generation only
includes edge glyphs for the edges in the subgraph induced by the nodes with
that value. Sets the clones of the former active node and edge generations in
the last canvas as the active node and edge generations and the last canvas as

the active canvas.
Select canvas {num}: Set the specified canvas as the active canvas.

Select row {num}: Set the canvases in the specified row (0-indexed from top

to bottom) as active canvases.

Select column {num}: Set the canvases in the specified column (0-indexed

from left to right) as active canvases.

Remove canvas {num}: Remove the specified canvas and merges it (if pos-
sible) with the canvas to the left (if there is no canvas to the left, then canvases
to the right, up, and down are tried in order). All node and edge generations
in the removed canvas are moved (rather than cloned) into the merged canvas.
If the removed canvas is the only active canvas, the merged canvas is set as
the active canvas. The active node and edge generations of the merged canvas

remain the prior active node and edge generations of that canvas.

Remove all partitions: Merge all canvases into the top-left canvas. All node
and edge generations in the removed canvases are moved (rather than cloned)
into the merged canvas. The merged canvas is set as the active canvas. The
active node and edge generations of the merged canvas remain the prior active
node and edge generations of that canvas. If the removed canvases were cre-
ated through filter-partitioning, the node generations are merged and the edge

generations are merged to create single node and edge generations.

191

Axes The operations in this category are for showing, hiding, and manipulating

canvases’ axis labels and the GLO Display’s meta-axis labels.

e Show {axis} axis: If the provided axis’s labels are not currently visible,

display the axis labels for the provided axis on the canvas.

e Hide {awis} axis: If the provided axis’s labels are currently visible, hide the

axis labels for the provided axis on the canvas.

e Set {axis} axis node generation {num} The specified node generation will

be used to determine the values for the specified axis’s labels.

e Show meta {axis} axis: If the provided meta-axis labels are not currently

visible, display the meta-axis labels for the provided axis on the GLO Display.

e Hide meta {axis} axis: If the provided meta-axis’s labels are currently visi-

ble, hide the meta-axis labels for the provided axis on the GLO Display.

192

APPENDIX E

GLOV2 LITERATURE REVIEW RESULTS

In this appendix, I list the visualization techniques that were not chosen as GLOv2
seed techniques during the literature review described in Section 3.1.2. I have grouped

the techniques by their categories described in that section.

E.1 Tree Visualization Techniques

e Reingold and Tilford [185]
e H-Trees [75, 230]

e Radial tree layout [75]

e Cone Tree [187]

e Balloon Tree [55]

e RINGS [222]

e 3D Balloon Trees [24]

e Treemaps [134]

e Squarified Treemaps [254]
e Cushion Treemaps [236)]

e Voronoi Treemaps [172]

e Spiral Treemaps [227]

e Balloon Focus [228]

e Spatially-Ordered Treemaps [254]
e Quantum Treemaps [35]

e Bubblemaps [35]

e Information Slices [12]

193

Sunbursts [212]

Fan Chart [70]
Hyperbolic [169, 148]
CHEOPS [33]

Multitrees [92]

3D Cluster Tree [76]
Information Pyramids [13]
Collapsible Cylindrical Trees [66]
Botanical Trees [143]

Disk Tree [59]

SpaceTree [181]

Beam Trees [234]
TreeWiz [188]
MatrixZoom [4]
PolyPlane [126]
Expand-Ahead [162]
Zoomology [125]
Circle-packing [241]
Elastic Hierarchies [260)]
Bubble tree [102]
CandidTree [150]

Visual tree comparison [122]
Bar trees [183]
Dendogram-matrix [58]
rectangle packing [132]
TreeVersity [97]

Treeversity2 [103]

194

Cascaded Treemap [157]

Flow Map Layout [257]

WebFan [258]

AdaptivTree [220]

E.2 DAG Visualization Techniques

e Sugiyama [218§]

e Needle grid [3, 2]
e Star map [3, 2]

e Multi-comb [3, 2]
e Multi-wedge [3, 2]
e Sketches [3, 2]

e Orthogonal Bars Sketch [3, 2]
o DAGView [100]

o Quilts [21]

e GeneaQuilts [37]

e TimeNet [142]

e DagTreemaps [226]

e pygmybrowser [25]

E.3 Graph Visualization Display Customizations

Motifs [71]

Alternate node glyphs [108]

Clusters as Convex Hulls [108]

Hierarchical Aggregation [77]

Edge Labels as Edge Glyphs [252]

Edge Bundling [257, 120, 65, 123, 261, 221, 79, 147, 200, 95, 146, 156]

Alternate Directed Edge Glyphs [124, 121, 170]

195

In-out Directed Edge Glyphs [74]

Partial Directed Edge Glyphs [50]

Node Duplication [115]

Alternate Node Glyph Techniques [202]

Interactive Link Curvature [186]

E.4 Graph Visualization Interaction Customizations

e Fisheye [194, 54]

e Multiple Fisheye [175]

e Hyperbolic Fisheye [180]

e Fog Fisheye [86]

e DOI-Trees [53, 112]

e EdgeLens [249]

e Space-Folding [78]

e Bring-and-Go [166]

e Selective Highlighting [108, 166]

e Link-Fanning [186]

e Link-Sliding [166]

e Structure-based Brushing [91]

e Edge-Plucking [250]

e Pan [32]

e Geometric Zoom [32]

e Semantic Zoom [251]

e Dynamic Queries [145]

e Prune+Grow (Gardening Ops) [187]
e Prune nodes/labels, but links remain [60]

e Drag Expand-Collapse [161]

196

Treemap Zooming Interactions [38]

Subgraph Selection [248, 163]

MoleView [130]

Complex Node Glyph Lens [136]

Visual Queries [201]

TreemapBar [127]

E.5 Dynamic Graph Visualization Techniques

e Animating [46, 67]

e 3D Columns [43]

e Animating Colors [193]

e Static Dynamic-showing Glyphs [193]
o GestaltMatrix [44]

e Parellel-Coordinate-esque [48]

e TimeRadarTrees [47]

e Timeline Trees [49]

e TimeArcTrees [101]

e Manynets [89]

e InSitu Dynamic Graphs [104]

e Dynamic Differences [16]

e 1.5D Network [203]

e Matrix Cube [20]

e DiffAni [191]

e Alluvial diagram of cluster changes [189, 184]
e stability/consistency slider [81]

e degree heatmap [99]

e Weighted Comparison [11]

197

Dynamic Hypergraph Vis [133]

Pixel-Oriented Matrices [215]

Tree-Ring Social Networks [80]

TimeMatrix [259]

E.6 General Graph Visualization Non-Seed Techniques
E.6.1 Reduce to Tree

e SPF [14]

e MO-Tree [42]

e Space-Filling Curves [167]
e Treemap of hierarchy [168]
e Treemaps with Links [82]

e Similarity trees [177]

o ArcTree [171]

e TreePlus [149]

e Grouse [17]

e GrouseFlocks [15]

e TreeNetViz [98]

E.6.2 Three-Dimensional

e Ask-Graphview [5]

e 3D node-link using stereoscope [242]

Graph Surfaces [6]

Cityscape [57]

State-Transition Graphs [233]

Landscape [45]

WilmaScope [9]

198

E.6.3 Topology-Dependent

e C-Group [139, 27]
e B-Matrix [22]
e Compressed Adjacency Matrix [68]

Edge-Compression [72]

SegmentView [27]

JauntyNet [137]

199

APPENDIX F

HIERARCHICAL CLUSTERINGS

Here I present the results of the various hierarchical clusterings using the three vec-
torization methods (no-flags, flags, and flags-xtra), three distance metrics (Hamming
distance [107], Jaccard distance [151], and cosine distance [206]), and four cluster
comparison methods (single, complete [239], average [210], and weighted [210]) de-
scribed in Section 5.2.1. Within each vectorization method, the clustering results are
sorted by their cophenetic correlation coefficient [211], which is a measure of how
closely a hierarchical clustering maintains pair-wise distances between data points

using the chosen distance metric.

200

F.1 Binary GLO-Vectors without Optional Parameters (no-
flags)

Average Method and Hamming Distance Cophenetic Correlation: 0.832799904046

Matrix Plot
Matrix Browser
Honeycomb
MatLink
NodeTrix

Matrix with Bars

s MatrixExplorer

Edge-Label-Centric
Semantic Substrates

PivotGraph
Hive Plot
GeneVis B
GraphDice Segment
3x3 GraphDice
DOSA
— 2x3 Hive Panel
EdgeMap B
{ EdgeMap A
Arc Diagram
GeneVis A
{ Citevis
— ScatterNet
I: Force-Directed Layout

Attribute Matrix
Cluster Circles
Circle Graph
GMap
List View

NetLens

0.350.300.250.200.150.100.050.00
Distance

Figure 126: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using average method and Hamming distance.

201

Weighted Method and Hamming Distance Cophenetic Correlation: 0.821886497865

Semantic Substrates
PivotGraph

Hive Plot

GeneVis B
GraphDice Segment

[3x3 GraphDice
_|: EdgeMap B
L EdgeMap A

Arc Diagram
DOSA
2x3 Hive Panel

ScatterNet

List View
Force-Directed Layout
Attribute Matrix
Cluster Circles

_|: GeneVis A
Citevis

Circle Graph

GMap
Edge-Label-Centric
Matrix Plot

Matrix Browser

Honeycomb
NodeTrix
MatLink

Matrix with Bars

MatrixExplorer

NetLens

0.400.350.300.25.200.150.100.050.00
Distance

Figure 127: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using weighted method and Hamming distance.

202

Weighted Method and Jaccard Distance Cophenetic Correlation: 0.755900447652

Matrix Plot

Matrix Browser

Honeycomb

MatLink

NodeTrix

Matrix with Bars
MatrixExplorer

F Edge-Label-Centric
GMap

GeneVis A

Citevis

List View

Force-Directed Layout
[{ Attribute Matrix

Cluster Circles

Circle Graph

ScatterNet

Hive Plot

GeneVis B

GraphDice Segment

3x3 GraphDice

Semantic Substrates

PivotGraph

DOSA

2x3 Hive Panel
EdgeMap B

{ EdgeMap A

Arc Diagram

. . NetLens

0.8 06 04 02 0.0
Distance

Figure 128: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using weighted method and Jaccard distance.

203

Complete Method and Hamming Distance Cophenetic Correlation: 0.726395383264

NetLens
_|

MatrixExplorer
Matrix with Bars
Honeycomb
Matrix Plot
Matrix Browser
MatLink
NodeTrix

Arc Diagram

Edge-Label-Centric
Force-Directed Layout
Attribute Matrix
Cluster Circles

L7

Circle Graph
GMap

List View
DOSA

2x3 Hive Panel

Semantic Substrates

PivotGraph

GeneVis A

Citevis

ScatterNet

Hive Plot

GeneVis B

GraphDice Segment

3x3 GraphDice

EdgeMap B

. EdgeMap A

05 04 03 02 01 0.0
Distance

o Rar

L

Figure 129: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using complete method and Hamming distance.

204

Average Method and Cosine Distance Cophenetic Correlation: 0.703449587146

GeneVis A
Citevis
List View

DOSA
2x3 Hive Panel
Hive Plot
] _|: GeneVis B
|: GraphDice Segment
3x3 GraphDice
ScatterNet
—

EdgeMap B
EdgeMap A
Arc Diagram

Semantic Substrates
PivotGraph
Force-Directed Layout
Attribute Matrix

Cluster Circles

Circle Graph

Edge-Label-Centric
GMap

—1
Matrix Plot
Matrix Browser
o Honeycomb
MatLink
NodeTrix
Matrix with Bars

MatrixExplorer

NetLens

0.80.70.60.50.40.30.20.10.0
Distance

Figure 130: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using average method and cosine distance.

205

Average Method and Jaccard Distance Cophenetic Correlation: 0.706271040351

GeneVis A
_i—{ Citevis
List View

DOSA
2x3 Hive Panel

Hive Plot
] _|: GeneVis B
GraphDice Segment
{ 3x3 GraphDice
ScatterNet
EdgeMap B
{ EdgeMap A

Arc Diagram

Semantic Substrates
PivotGraph

{ Force-Directed Layout
Attribute Matrix

Cluster Circles

Circle Graph
GMap

Matrix Plot
Matrix Browser

— Honeycomb
MatLink
NodeTrix

Matrix with Bars

L MatrixExplorer

Edge-Label-Centric

. . NetLens

0.8 06 04 02 0.0
Distance

Figure 131: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using average method and Jaccard distance.

206

Complete Method and Jaccard Distance Cophenetic Correlation: 0.68661661651

{ Force-Directed Layout
Attribute Matrix

Cluster Circles

Circle Graph

Edge-Label-Centric
GMap
MatrixExplorer

Matrix with Bars
NodeTrix
Honeycomb
Matrix Plot
Matrix Browser
MatLink
NetLens

2x3 Hive Panel

ScatterNet
Hive Plot
C GeneVis B
GraphDice Segment
— { 3x3 GraphDice
EdgeMap B
{ EdgeMap A

Arc Diagram

Semantic Substrates

PivotGraph
GeneVis A
_| Citevis
. List View
1.0 08 06 04 02 0.0

Distance

Figure 132: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using complete method and Jaccard distance.

207

Weighted Method and Cosine Distance Cophenetic Correlation: 0.693924001138

Force-Directed Layout
Attribute Matrix
Cluster Circles

|

Circle Graph

Edge-Label-Centric
Matrix Plot

Matrix Browser
Honeycomb
MatLink

NodeTrix

Matrix with Bars

It

MatrixExplorer
GMap

GeneVis A

Citevis

ScatterNet

List View

Hive Plot

GeneVis B
GraphDice Segment
3x3 GraphDice
Semantic Substrates
PivotGraph

DOSA

2x3 Hive Panel
EdgeMap B
EdgeMap A

Arc Diagram

il

NetLens

0.80.70.60.50.40.30.20.10.0
Distance

Figure 133: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using weighted method and cosine distance.

208

Complete Method and Cosine Distance Cophenetic Correlation: 0.676424420188

' ' I: Force-Directed Layout
Attribute Matrix

Cluster Circles

Circle Graph

Edge-Label-Centric

GMap

— MatrixExplorer

Matrix with Bars

NodeTrix

Honeycomb

Matrix Plot

Matrix Browser

MatLink

NetLens

DOSA

2x3 Hive Panel

ScatterNet

Hive Plot

GeneVis B

GraphDice Segment

3x3 GraphDice

EdgeMap B

EdgeMap A

Arc Diagram

Semantic Substrates

PivotGraph

GeneVis A

Citevis

. . List View

1.0 0.8 0.6 04 0.2 0.0
Distance

0L Lallls

Figure 134: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using complete method and cosine distance.

209

Single Method and Hamming Distance Cophenetic Correlation: 0.592861499268

Hive Plot

GeneVis B

GraphDice Segment
3x3 GraphDice

Arc Diagram
EdgeMap B

EdgeMap A
Force-Directed Layout
Attribute Matrix
Cluster Circles

el

Circle Graph
Semantic Substrates
ScatterNet
PivotGraph

GeneVis A

Citevis

2x3 Hive Panel
Matrix Plot
Matrix Browser

Honeycomb
NodeTrix

Matrix with Bars
MatLink

DOSA

GMap
MatrixExplorer

List View
’7 Edge-Label-Centric
NetLens

0.25 0.20 0.15 0.10 0.05 0.00
Distance

Figure 135: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using single method and Hamming distance.

210

Single Method and Jaccard Distance Cophenetic Correlation: 0.468258988449

EdgeMap B

—|: EdgeMap A
Arc Diagram

Hive Plot
_|: GeneVis B

GraphDice Segment
{ 3x3 GraphDice
Matrix Plot
— Matrix Browser

Honeycomb
MatLink
NodeTrix

Matrix with Bars

MatrixExplorer

Semantic Substrates
—I PivotGraph
ScatterNet
2x3 Hive Panel
DOSA
Force-Directed Layout
{ Attribute Matrix

Cluster Circles

Circle Graph
GeneVis A
Citevis

Edge-Label-Centric
List View

GMap

NetLens

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Distance

Figure 136: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using single method and Jaccard distance.

211

Single Method and Cosine Distance Cophenetic Correlation: 0.425621644926

— EdgeMap B
L EdgeMap A

Arc Diagram
Matrix Plot
Matrix Browser

Honeycomb
MatLink
NodeTrix

Matrix with Bars
MatrixExplorer

— Hive Plot
_|: GeneVis B
GraphDice Segment
I: 3x3 GraphDice
ScatterNet
2x3 Hive Panel

_|: Semantic Substrates
PivotGraph

DOSA
{ Force-Directed Layout
Attribute Matrix

Cluster Circles

Circle Graph
GeneVis A
Citevis

Edge-Label-Centric
List View

GMap

NetLens

0.6 05 04 0.3 0.2 0.1 0.0
Distance

Figure 137: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using single method and cosine distance.

212

F.2 Binary GLO-Vectors with Optional Parameters (flags)

Average Method and Hamming Distance Cophenetic Correlation: 0.82737073354

Semantic Substrates
PivotGraph
EdgeMap B
EdgeMap A

Hive Plot

GeneVis B

Arc Diagram
GraphDice Segment
3x3 GraphDice
GeneVis A

Citevis

ScatterNet
2x3 Hive Panel

Force-Directed Layout
Attribute Matrix

Cluster Circles

Circle Graph
GMap
List View

Matrix Plot
Matrix Browser
Honeycomb

MatLink
Matrix with Bars

NetLens

MatrixExplorer
— NodeTrix
Edge-Label-Centric

0.30 0.25 0.20 0.15 0.10 0.05 0.00
Distance

Figure 138: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using average method and Hamming distance.

213

Weighted Method and Hamming Distance Cophenetic Correlation: 0.818087307422

Hive Plot

GeneVis B

Arc Diagram
EdgeMap B
EdgeMap A
Semantic Substrates
PivotGraph

GraphDice Segment
3x3 GraphDice
GeneVis A

Citevis

ScatterNet

DOSA

2x3 Hive Panel

Force-Directed Layout
Attribute Matrix
Cluster Circles

Circle Graph
GMap

List View
Edge-Label-Centric
Matrix Plot

Matrix Browser

Honeycomb

= |

Matrix with Bars
MatLink
MatrixExplorer
NodeTrix
NetLens

0.350.300.250.200.150.100.050.00
Distance

Figure 139: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using weighted method and Hamming distance.

214

Complete Method and Hamming Distance Cophenetic Correlation: 0.783238551964

Matrix with Bars
Honeycomb

Matrix Plot

Matrix Browser
MatLink
MatrixExplorer
NodeTrix
Edge-Label-Centric

Cluster Circles
Circle Graph
GMap
Force-Directed Layout
Attribute Matrix
ScatterNet

List View

DOSA

2x3 Hive Panel
Hive Plot
GeneVis B

Arc Diagram
GeneVis A
Citevis

[ET

Semantic Substrates

PivotGraph

GraphDice Segment
3x3 GraphDice
EdgeMap B
EdgeMap A

. . NetLens

04 03 02 01 0.0
Distance

| THhE

Figure 140: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using complete method and Hamming distance.

215

Single Method and Hamming Distance Cophenetic Correlation: 0.712729004514

Hive Plot

GeneVis B
GraphDice Segment
3x3 GraphDice

Arc Diagram
EdgeMap B
EdgeMap A

Cluster Circles

L]

Circle Graph

- Force-Directed Layout
Attribute Matrix
Semantic Substrates
ScatterNet
PivotGraph

GeneVis A

Citevis

2x3 Hive Panel
DOSA

GMap

Matrix Plot
Matrix Browser

Honeycomb
Matrix with Bars
MatLink
MatrixExplorer
NodeTrix

List View
’7 Edge-Label-Centric
NetLens

0.20 0.15 0.10 0.05 o0.00
Distance

Figure 141: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using single method and Hamming distance.

216

Average Method and Cosine Distance Cophenetic Correlation: 0.683772174974

GeneVis A
Citevis
List View

—

DOSA
2x3 Hive Panel
Hive Plot

N _|: GeneVis B
GraphDice Segment

{ 3x3 GraphDice

ScatterNet

EdgeMap B
EdgeMap A

Arc Diagram
Semantic Substrates
— PivotGraph

Force-Directed Layout
Attribute Matrix
Cluster Circles

Circle Graph
Edge-Label-Centric
GMap

Matrix Plot
Matrix Browser

L

Honeycomb
MatLink
Matrix with Bars

MatrixExplorer
NodeTrix
NetLens

0.80.70.60.50.40.30.20.10.0
Distance

Figure 142: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using average method and cosine distance.

217

Weighted Method and Cosine Distance Cophenetic Correlation: 0.693246619992

Force-Directed Layout
Attribute Matrix
Cluster Circles

i

Circle Graph

Edge-Label-Centric
Matrix Plot

Matrix Browser
Honeycomb
MatLink

Matrix with Bars

MatrixExplorer
NodeTrix
GMap

GeneVis A
Citevis

List View
DOSA

2x3 Hive Panel
Hive Plot
GeneVis B
GraphDice Segment
3x3 GraphDice
ScatterNet
EdgeMap B
EdgeMap A
Arc Diagram

Semantic Substrates
PivotGraph
NetLens

0.80.70.60.50.40.30.20.10.0
Distance

gl

Figure 143: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using weighted method and cosine distance.

218

Weighted Method and Jaccard Distance Cophenetic Correlation: 0.694940609581

Force-Directed Layout
_|: Attribute Matrix
I: Cluster Circles
1 Circle Graph
Edge-Label-Centric

Matrix Plot
Matrix Browser

Honeycomb
MatLink
— Matrix with Bars

L MatrixExplorer
NodeTrix
GMap

GeneVis A

B _| Citevis
List View
Hive Plot
C GeneVis B
GraphDice Segment
o { 3x3 GraphDice
ScatterNet

DOSA
2x3 Hive Panel

EdgeMap A

Arc Diagram

Semantic Substrates
PivotGraph
. . NetLens

0.8 06 04 02 0.0
Distance

Figure 144: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using weighted method and Jaccard distance.

219

Average Method and Jaccard Distance Cophenetic Correlation: 0.681375526271

GeneVis A

_| Citevis

List View

Hive Plot

GeneVis B
GraphDice Segment
3x3 GraphDice

. ScatterNet

DOSA
_| 2x3 Hive Panel
T EdgeMap B
{ EdgeMap A

Arc Diagram

Semantic Substrates
PivotGraph

Force-Directed Layout
_|: Attribute Matrix
Cluster Circles
] I: Circle Graph
GMap

Matrix Plot
Matrix Browser

— Honeycomb
MatLink
Matrix with Bars

MatrixExplorer
~|7 NodeTrix
Edge-Label-Centric

. . NetLens

0.8 06 04 02 0.0
Distance

Figure 145: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using average method and Jaccard distance.

220

Single Method and Jaccard Distance Cophenetic Correlation

Distance

0.7 0.6 0.5 0.4 0.3 0.2 0.10.0

Semantic Substrates
PivotGraph
EdgeMap B
EdgeMap A

Arc Diagram

Hive Plot

GeneVis B
GraphDice Segment
3x3 GraphDice
ScatterNet

2x3 Hive Panel
Cluster Circles
Circle Graph
Force-Directed Layout
Attribute Matrix
DOSA

GeneVis A

Citevis

Matrix Plot

Matrix Browser
Honeycomb
MatLink

Matrix with Bars
MatrixExplorer
NodeTrix
Edge-Label-Centric
GMap

List View

NetLens

: 0.659515346766

Figure 146: SciPy hierarchical clustering of GLO-Vectors with optional parameters

using single method and Jaccard distance.

221

Single Method and Cosine Distance Cophenetic Correlation: 0.607775788637

EdgeMap B
EdgeMap A

—
L

Arc Diagram
Hive Plot
GeneVis B
GraphDice Segment
3x3 GraphDice
ScatterNet

Semantic Substrates
PivotGraph
2x3 Hive Panel

I: Cluster Circles

Circle Graph

Force-Directed Layout
Attribute Matrix
DOSA

Matrix Plot
Matrix Browser

Honeycomb
MatLink
Matrix with Bars

— MatrixExplorer
NodeTrix
GeneVis A
Citevis

Edge-Label-Centric
GMap

List View

NetLens

0.6 05 04 0.3 0.2 0.1 0.0
Distance

Figure 147: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using single method and cosine distance.

222

Complete Method and Jaccard Distance Cophenetic Correlation: 0.581438654173

Cluster Circles
Circle Graph

Edge-Label-Centric
GMap

_|: Force-Directed Layout
Attribute Matrix

ScatterNet

Hive Plot

GeneVis B
GraphDice Segment
3x3 GraphDice
NodeTrix

Arc Diagram

Matrix Plot

Matrix Browser

MatLink
Honeycomb
Matrix with Bars

MatrixExplorer

Semantic Substrates
PivotGraph

EdgeMap A

DOSA

2x3 Hive Panel
GeneVis A
Citevis

List View

. . NetLens

1.0 0.8 0.6 04 0.2 0.0
Distance

Figure 148: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using complete method and Jaccard distance.

223

Complete Method and Cosine Distance Cophenetic Correlation: 0.567172438706

Cluster Circles

Circle Graph

| Edge-Label-Centric
GMap

Force-Directed Layout
Attribute Matrix
ScatterNet

— |
Hive Plot
_|: GeneVis B
—

GraphDice Segment
3x3 GraphDice
NodeTrix

Arc Diagram

Matrix Plot

Matrix Browser
MatLink
Honeycomb

Matrix with Bars

ﬁ

MatrixExplorer
Semantic Substrates
PivotGraph
EdgeMap B
EdgeMap A
DOSA

2x3 Hive Panel
GeneVis A
Citevis

List View

. . NetLens

1.0 0.8 0.6 04 0.2 0.0
Distance

i

Figure 149: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using complete method and cosine distance.

224

F.3 Binary GLO-Vectors with Optional Parameters as Fea-
tures (flags-xtra)

Average Method and Hamming Distance Cophenetic Correlation: 0.824649599232

Matrix Plot

Matrix Browser
Honeycomb
MatLink

Matrix with Bars
NodeTrix
MatrixExplorer
Edge-Label-Centric

Semantic Substrates
PivotGraph
GraphDice Segment
3x3 GraphDice

Hive Plot

GeneVis B

Arc Diagram

2x3 Hive Panel
EdgeMap B
EdgeMap A

DOSA

GeneVis A

Citevis

ScatterNet
Force-Directed Layout
Attribute Matrix
Cluster Circles

el

L

Circle Graph
GMap

List View
NetLens

0.350.300.250.200.150.100.050.00
Distance

Figure 150: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using average method and Hamming distance.

225

Weighted Method and Hamming Distance Cophenetic Correlation: 0.813288450195

Semantic Substrates
PivotGraph
GraphDice Segment
3x3 GraphDice
EdgeMap B
EdgeMap A

Hive Plot

GeneVis B

Arc Diagram

2x3 Hive Panel

DOSA

GeneVis A

Citevis

ScatterNet
Force-Directed Layout
Attribute Matrix
Cluster Circles

[l

Circle Graph

GMap

List View
Edge-Label-Centric
Matrix Plot

Matrix Browser

Honeycomb
Matrix with Bars
MatLink
NodeTrix
MatrixExplorer

iIE

NetLens

0.350.300.250.200.150.100.050.00
Distance

Figure 151: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using weighted method and Hamming distance.

226

Complete Method and Hamming Distance Cophenetic Correlation: 0.780160002224

Matrix with Bars
Honeycomb
Matrix Plot
Matrix Browser
MatLink
NodeTrix

M MatrixExplorer

Edge-Label-Centric

NetLens
Force-Directed Layout
Attribute Matrix
Cluster Circles

Circle Graph

GMap

List View

Semantic Substrates

PivotGraph
GraphDice Segment
3x3 GraphDice
EdgeMap B
EdgeMap A

Hive Plot

GeneVis B

Arc Diagram

2x3 Hive Panel

BinAI !

DOSA
GeneVis A
Citevis
. ScatterNet
05 04 03 0.2 01 o0.0
Distance

Figure 152: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using complete method and Hamming distance.

227

Average Method and Cosine Distance Cophenetic Correlation: 0.699558498029

GeneVis A
Citevis
List View

-
DOSA
2x3 Hive Panel
Hive Plot
] _|: GeneVis B
GraphDice Segment
{ 3x3 GraphDice
ScatterNet
—1
—

EdgeMap B
EdgeMap A
Arc Diagram

Semantic Substrates
PivotGraph
Force-Directed Layout
Attribute Matrix

Cluster Circles
I: Circle Graph
‘|7 Edge-Label-Centric
GMap

Matrix Plot
Matrix Browser

Honeycomb
MatLink

Matrix with Bars
NodeTrix
MatrixExplorer

NetLens

0.80.70.60.50.40.30.20.10.0
Distance

Figure 153: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using average method and cosine distance.

228

Average Method and Jaccard Distance Cophenetic Correlation: 0.698051712306

GeneVis A
ﬂi_{ Citevis
List View

Hive Plot

GeneVis B
GraphDice Segment
3x3 GraphDice

| ScatterNet

DOSA
_| 2x3 Hive Panel
] EdgeMap B
{ EdgeMap A

Arc Diagram

Semantic Substrates
PivotGraph

Force-Directed Layout
{ Attribute Matrix
Cluster Circles
1 I: Circle Graph
GMap

Matrix Plot
Matrix Browser

— Honeycomb
MatLink

Matrix with Bars
NodeTrix

L MatrixExplorer

Edge-Label-Centric

. . NetLens

0.8 06 04 02 0.0
Distance

Figure 154: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using average method and Jaccard distance.

229

Weighted Method and Cosine Distance

Distance

0.80.70.60.50.40.30.20.10.0

Cophenetic Correlation

Force-Directed Layout
Attribute Matrix
Cluster Circles
Circle Graph
Edge-Label-Centric
Matrix Plot

Matrix Browser
Honeycomb
MatLink

Matrix with Bars
MatrixExplorer
NodeTrix

Arc Diagram

GMap

GeneVis A

Citevis

List View

DOSA

2x3 Hive Panel

Hive Plot

GeneVis B
GraphDice Segment
3x3 GraphDice
ScatterNet
Semantic Substrates
PivotGraph
EdgeMap B
EdgeMap A

NetLens

: 0.660528026618

Figure 155: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using weighted method and cosine distance.

230

Weighted Method and Jaccard Distance Cophenetic Correlation: 0.668918009918

Force-Directed Layout
{ Attribute Matrix
I: Cluster Circles
B Circle Graph
Edge-Label-Centric

Matrix Plot
Matrix Browser

Honeycomb
MatLink
— Matrix with Bars

MatrixExplorer
NodeTrix
_|: Arc Diagram
GMap
GeneVis A
[_{_{ Citevis
List View
Hive Plot
Z GeneVis B
L GraphDice Segment
{ 3x3 GraphDice
ScatterNet

DOSA
2x3 Hive Panel

Semantic Substrates
_: PivotGraph
EdgeMap B
{ EdgeMap A
. . NetLens

0.8 06 04 02 0.0
Distance

Figure 156: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using weighted method and Jaccard distance.

231

Single Method and Hamming Distance Cophenetic Correlation: 0.639731210892

Hive Plot

GeneVis B

GraphDice Segment
3x3 GraphDice

Arc Diagram
EdgeMap B

EdgeMap A
Force-Directed Layout
Attribute Matrix
Cluster Circles

Lol

Circle Graph
Semantic Substrates
ScatterNet

1 PivotGraph

GeneVis A

Citevis

2x3 Hive Panel
Matrix Plot
Matrix Browser

Honeycomb

Matrix with Bars
MatLink

NodeTrix

DOSA
MatrixExplorer
GMap

List View
Edge-Label-Centric

NetLens

0.25 0.20 0.15 0.10 0.05 0.00
Distance

Figure 157: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using single method and Hamming distance.

232

Complete Method and Cosine Distance Cophenetic Correlation: 0.643819269884

Matrix Plot
Matrix Browser
MatLink
Honeycomb

Matrix with Bars

MatrixExplorer
NodeTrix
Arc Diagram

NetLens
Force-Directed Layout
Attribute Matrix
Cluster Circles

Circle Graph

Edge-Label-Centric
GMap

DOSA

2x3 Hive Panel
ScatterNet

Hive Plot

GeneVis B
GraphDice Segment
3x3 GraphDice
Semantic Substrates

PivotGraph
EdgeMap B
EdgeMap A
GeneVis A

Citevis

. . List View

1.0 0.8 0.6 04 0.2 0.0
Distance

gl

Figure 158: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using complete method and cosine distance.

233

Complete Method and Jaccard Distance Cophenetic Correlation: 0.63682320527

Matrix Plot
_|: Matrix Browser
MatLink
Honeycomb

Matrix with Bars

MatrixExplorer
NodeTrix

{ Arc Diagram

NetLens

List View

GMap

Force-Directed Layout

Attribute Matrix
Cluster Circles

Circle Graph
Edge-Label-Centric

2x3 Hive Panel

ScatterNet
Hive Plot
_|: GeneVis B
GraphDice Segment
] { 3x3 GraphDice
Semantic Substrates
—: PivotGraph
EdgeMap B
{ EdgeMap A
GeneVis A
4' Citevis

1.0 0.8 0.6 04 0.2 0.0
Distance

Figure 159: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using complete method and Jaccard distance.

234

Single Method and Jaccard Distance Cophenetic Correlation: 0.514020768581

Semantic Substrates
PivotGraph
EdgeMap B
EdgeMap A

1

—L_ |
Arc Diagram
Hive Plot
GeneVis B
GraphDice Segment
3x3 GraphDice
Matrix Plot
Matrix Browser
Honeycomb
MatLink
Matrix with Bars
NodeTrix
MatrixExplorer

ScatterNet
2x3 Hive Panel

Force-Directed Layout
Attribute Matrix
Cluster Circles

I: Circle Graph
DOSA

GeneVis A
Edge-Label-Centric

Citevis
List View
GMap
NetLens

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Distance

Figure 160: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using single method and Jaccard distance.

235

Single Method and Cosine Distance Cophenetic Correlation: 0.471452345878

EdgeMap B
EdgeMap A

Arc Diagram

Hive Plot

GeneVis B
GraphDice Segment
3x3 GraphDice

—
L
Matrix Plot
2 Matrix Browser
Honeycomb
MatLink

Matrix with Bars
NodeTrix
MatrixExplorer
ScatterNet
Semantic Substrates

PivotGraph

2x3 Hive Panel

_|: Force-Directed Layout
Attribute Matrix

Cluster Circles
Circle Graph

DOSA

GeneVis A
Edge-Label-Centric

Citevis
List View
GMap
NetLens

0.6 05 04 0.3 0.2 0.1 0.0
Distance

Figure 161: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using single method and cosine distance.

236

REFERENCES

[1] “Processing.” http://processing.org.

[2] ABELLO, J., FinoccHI, 1., and KORN, J., “Graph sketches,” in IEEE Sym-
postum on Information Visualization, 2001. INFOVIS 2001, pp. 6770, 2001.

[3] ABELLO, J. and KORN, J., “Visualizing massive multi-digraphs,” in IEEFE
Symposium on Information Visualization, 2000. InfoVis 2000, pp. 39-47, 2000.

[4] ABELLO, J. and vAN Hawm, F., “Matrix Zoom: A Visual Interface to Semi-
External Graphs,” in IEEE Symposium on Information Visualization, 200.

INFOVIS 2004, pp. 183-190, 2004.

[5] ABELLO, J., vAN HawMm, F. and KRrRISHNAN, N., “ASK-GraphView: A Large
Scale Graph Visualization System,” IEFE Transactions on Visualization and
Computer Graphics, vol. 12, pp. 669-676, Sept. 2006.

[6] ABELLO, J. and KRISHNAN, S., “Graph Surfaces,” in Proceedings of Interna-
tional Congress on Industrial and Applied Math, pp. 234-244, 1999.

[7] ADAR, E., “GUESS: A Language and Interface for Graph Exploration,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI 06, (New York, NY, USA), pp. 791-800, ACM, 2006.

[8] ADOBE SOFTWARE, “Illustrator.” https://www.adobe.com/products/illustrator.html.

[9] AHMED, A., DWYER, T., MURRAY, C., SONG, L., and Wu, Y. X., “WilmasS-
cope Graph Visualisation,” in IEEE Symposium on Information Visualization,

2004. INFOVIS 2004, pp. r4-r4, Oct. 2004.

[10] AIKEN, A., CHEN, J., LN, M., SPALDING, M., STONEBRAKER, M.,
and WOODRUFF, A., “The Tioga-2 database visualization environment,” in
Database Issues for Data Visualization (WIERSE, A., GRINSTEIN, G., and
LANG, U., eds.), vol. 1183 of Lecture Notes in Computer Science, pp. 181-207,
Springer Berlin / Heidelberg, 1996.

[11] ALPER, B., BAcH, B., HENRY RICHE, N., ISENBERG, T., and FEKETE, J.-
D., “Weighted Graph Comparison Techniques for Brain Connectivity Analysis,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI "13, (New York, NY, USA), pp. 483-492, ACM, 2013.

[12] ANDREWS, K. and HEIDEGGER, H., “Information slices: Visualising and ex-

ploring large hierarchies using cascading, semi-circular discs,” in Proc of IEEFE
Infovis 98 late breaking Hot Topics, pp. 9-11, 1998.

237

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[21]

[22]

23]

ANDREWS, K., WoOLTE, J., and PICHLER, M., “Information PyramidsTM:

A new approach to visualizing large hierarchies,” in Proceedings of the IEEFE
Visualization97, pp. 49-52, 1997.

ARCHAMBAULT, D., MUNzZNER, T., and AUBER, D., “Smashing Peacocks
Further: Drawing Quasi-Trees from Biconnected Components,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 12, pp. 813-820, Sept.
2006.

ARCHAMBAULT, D., MUNzZNER, T., and AUBER, D., “GrouseFlocks: Steer-
able Exploration of Graph Hierarchy Space,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 14, pp. 900-913, July 2008.

ARCHAMBAULT, D., “Structural Differences Between Two Graphs Through
Hierarchies,” in Proceedings of Graphics Interface 2009, GI '09, (Toronto, Ont.,
Canada, Canada), pp. 87-94, Canadian Information Processing Society, 2009.

ARCHAMBAULT, D., MUNZNER, T., and AUBER, D., “Grouse: Feature-Based,
Steerable Graph Hierarchy Exploration,” in Eurographics/ IEEE-VGTC Sym-
posium on Visualization (MUSETH, K., MOELLER, T., and YNNERMAN, A.,
eds.), The Eurographics Association, 2007.

ARIS, A. and SHNEIDERMAN, B., “Designing Semantic Substrates for Visual
Network Exploration,” Information Visualization, vol. 6, pp. 281-300, Dec.
2007.

AUBER, D., “Tulip A Huge Graph Visualization Framework,” in Graph Draw-
ing Software (JNGER, M. and MUTZEL, P., eds.), Mathematics and Visualiza-
tion, pp. 105-126, Springer Berlin Heidelberg, 2004.

BacH, B., PIETRIGA, E., and FEKETE, J.-D., “Visualizing Dynamic Net-
works with Matrix Cubes,” in Proceedings of the 32Nd Annual ACM Confer-
ence on Human Factors in Computing Systems, CHI 14, (New York, NY, USA),
pp. 877-886, ACM, 2014.

Bag, J. and WATSON, B., “Developing and Evaluating Quilts for the Depiction
of Large Layered Graphs,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, pp. 2268-2275, Dec. 2011.

BaGgrow, J. P., BoLrr, E. M., SKUFCA, J. D., and BEN AVRAHAM, D.,
“Portraits of complex networks,” EPL (FEurophysics Letters), vol. 81, p. 68004,
Mar. 2008.

BAkER, C., CARPENDALE, M., PRUSINKIEWICZ, P., and SURETTE, M.,
“GeneVis: visualization tools for genetic regulatory network dynamics,” in

IEEE Visualization, 2002. VIS 2002, pp. 243-250, Nov. 2002.

BavLzeEr, M. and DEUSSEN, O., “Hierarchy Based 3d Visualization of Large
Software Structures,” in IEEFE Visualization, 2004, pp. 4p—4p, Oct. 2004.

238

[25]

[31]

[32]

[33]

BAND, Z. and WHITE, R. W., “PygmyBrowse: A Small Screen Tree Browser,”
in CHI '06 Extended Abstracts on Human Factors in Computing Systems, CHI
EA '06, (New York, NY, USA), pp. 514-519, ACM, 2006.

BARANOVSKIY, D., “Raphael.”

BasoLE, R., CLEAR, T., Hu, M., MEHROTRA, H., and STASKO, J., “Un-
derstanding Interfirm Relationships in Business Ecosystems with Interactive

Visualization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 19, pp. 2526-2535, Dec. 2013.

BASTIAN, M., HEYMANN, S., and JAcomMmy, M., “Gephi: An Open Source

Software for Exploring and Manipulating Networks,” in Proceedings of the Third
International ICWSM Conference, pp. 361-362, AAAI 2009.

BATAGELJ, V. and MRVAR, A., “Pajek Analysis and Visualization of Large
Networks,” in Graph Drawing Software (JNGER, M., MuUTZEL, P., FARIN,
G., HEGE, H.-C.; HOFFrMAN, D., Jounson, C. R., PorLTHIER, K., and
RuMPF, M., eds.), Mathematics and Visualization, pp. 77-103, Springer Berlin
Heidelberg, 2004.

BAUMGARTNER, J., BOERNER, K., DECKARD, N. J., and SHETH, N.,
“Poster: An XML Toolkit for an Information Visualization Software Repos-

itory.,” in Poster Compendium, IEEE Information Visualization Conference,
pp. 72-73, 2003.

Bavorir, L., CALLAHAN, S., CROSSNO, P., FREIRE, J., SCHEIDEGGER, C.,

Sitva, C., and Vo, H., “VisTrails: enabling interactive multiple-view visual-
izations,” in IFEFE Visualization, 2005. VIS 05, pp. 135-142, Oct. 2005.

BEARD, D. V. and WALKER 11, J. Q., “Navigational techniques to improve the
display of large two-dimensional spaces,” Behaviour & Information Technology,
vol. 9, pp. 451466, Nov. 1990.

BEAUDOIN, L., PARENT, M.-A., and VROOMEN, L., “Cheops: a compact

explorer for complex hierarchies,” in Visualization '96. Proceedings., pp. 87-92,
Oct. 1996.

BECKER, R., E1ck, S., and WILKS, A., “Visualizing network data,” IFEE
Transactions on Visualization and Computer Graphics, vol. 1, pp. 16-28, Mar.
1995.

BEDERSON, B. B., “PhotoMesa: A Zoomable Image Browser Using Quantum
Treemaps and Bubblemaps,” in Proceedings of the 14th Annual ACM Sympo-
sium on User Interface Software and Technology, UIST 01, (New York, NY,
USA), pp. 71-80, ACM, 2001.

239

[36]

[47]

BEZERIANOS, A., CHEVALIER, F., DRAGICEVIC, P., ELMQVIsT, N., and
FEKETE, J., “GraphDice: A System for Exploring Multivariate Social Net-
works,” Computer Graphics Forum, vol. 29, pp. 863-872, June 2010.

BEZERIANOS, A., DRAGICEVIC, P., FEKETE, J., BAE, J., and WATSON, B.,
“GeneaQuilts: A System for Exploring Large Genealogies,” IEEFE Transactions
on Visualization and Computer Graphics, vol. 16, pp. 1073-1081, Nov. 2010.

BrancH, R. and LECOLINET, E., “Browsing Zoomable Treemaps: Structure-

Aware Multi-Scale Navigation Techniques,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 13, pp. 1248-1253, Nov. 2007.

BoraatTi, S. P., EVERETT, M. G., and FREEMAN, L. C., “UCINet for
Windows: Software for Social Network Analysis,” 2002.

Bostock, M. and HEER, J., “Protovis: A Graphical Toolkit for Visualiza-

tion,” IEEE Trans. on Visualization and Computer Graphics, vol. 15, pp. 1121
—1128, Dec. 2009.

Bostock, M., OGIEVETSKY, V., and HEER, J., “D3: Data-Driven Docu-
ments,” Visualization and Computer Graphics, IEEE Transactions on, vol. 17,
pp- 2301 —2309, Dec. 2011.

Bourin, F. and Hascor, M., “Focus Dependent Multi-level Graph Cluster-

ing,” in Proceedings of the Working Conference on Advanced Visual Interfaces,
AVI 04, (New York, NY, USA), pp. 167-170, ACM, 2004.

BrANDES, U. and CORMAN, S., “Visual unrolling of network evolution and
the analysis of dynamic discourse,” in IEEFE Symposium on Information Visu-
alization, 2002. INFOVIS 2002, pp. 145-151, 2002.

BraNnDES, U. and Nick, B., “Asymmetric Relations in Longitudinal So-
cial Networks,” IFEEE Transactions on Visualization and Computer Graphics,
vol. 17, pp. 22832290, Dec. 2011.

BraNDES, U. and WILLHALM, T., “Visualization of Bibliographic Networks

with a Reshaped Landscape Metaphor,” in Proceedings of the Symposium on
Data Visualisation 2002, VISSYM 02, (Aire-la-Ville, Switzerland, Switzer-
land), pp. 159-f, Eurographics Association, 2002.

BRANKE, J., “Dynamic Graph Drawing,” in Drawing Graphs (KAUFMANN,
M. and WAGNER, D., eds.), no. 2025 in Lecture Notes in Computer Science,
pp. 228-246, Springer Berlin Heidelberg, 2001.

BurcH, M. and DieHL, S., “TimeRadarTrees: Visualizing Dynamic Com-
pound Digraphs,” Computer Graphics Forum, vol. 27, pp. 823-830, May 2008.

240

[48]

[49]

[50]

[52]

[53]

[54]

BurcH, M., VEHLOW, C., BECK, F., DIEHL, S., and WEISKOPF, D., “Par-
allel Edge Splatting for Scalable Dynamic Graph Visualization,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 17, pp. 2344-2353, Dec.
2011.

BurcH, M., BECK, F., and DIEHL, S., “Timeline Trees: Visualizing Sequences
of Transactions in Information Hierarchies,” in Proceedings of the Working Con-
ference on Advanced Visual Interfaces, AVI 08, (New York, NY, USA), pp. 75—
82, ACM, 2008.

BurcH, M., VEHLOW, C., KONEVTSOVA, N., and WEISKOPF, D., “Eval-
uating Partially Drawn Links for Directed Graph Edges,” in Graph Drawing
(KREVELD, M. v. and SPECKMANN, B., eds.), no. 7034 in Lecture Notes in
Computer Science, pp. 226237, Springer Berlin Heidelberg, Sept. 2011.

CALLAHAN, S. P., FREIRE, J., SANTOS, E., SCHEIDEGGER, C. E., SiLvA,
C. T., and Vo, H. T., “VisTrails: Visualization Meets Data Management,”
in Proceedings of the 2006 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’06, (New York, NY, USA), pp. 745-747, ACM,
2006.

CARD, S. K., MACKINLAY, J. D., and SHNEIDERMAN, B., Readings in Infor-
mation Visualization: Using Vision to Think. Morgan Kaufmann, 1999.

CARD, S. K. and NATION, D., “Degree-of-interest Trees: A Component of an
Attention-reactive User Interface,” in Proceedings of the Working Conference
on Advanced Visual Interfaces, AVI ’02, (New York, NY, USA), pp. 231-245,
ACM, 2002.

CARPENDALE, M. S. T., COWPERTHWAITE, D. J., FrRACCHIA, F. D., and
SHERMER, T., “Graph folding: Extending detail and context viewing into a
tool for subgraph comparisons,” in Graph Drawing (BRANDENBURG, F. J.,
ed.), no. 1027 in Lecture Notes in Computer Science, pp. 127-139, Springer
Berlin Heidelberg, Sept. 1995.

CARRIERE, J. and KAzMAN, R., “Research report. Interacting with huge hier-

archies: beyond cone trees,” in Information Visualization, 1995. Proceedings.,
pp. 74-81, Oct. 1995.

CENTRIFUGE SYSTEMS, “Centrifuge.” http://centrifugesystems.com/.

CHEN, C. and CARR, L., “Visualizing the Evolution of a Subject Domain: A
Case Study,” in Proceedings of the Conference on Visualization '99: Celebrating
Ten Years, VIS 99, (Los Alamitos, CA, USA), pp. 449452, IEEE Computer
Society Press, 1999.

CHEN, J., MACEACHREN, A., and PEUQUET, D., “Constructing Overview
+ Detail Dendrogram-Matrix Views,” IEEE Transactions on Visualization and
Computer Graphics, vol. 15, pp. 889-896, Nov. 2009.

241

[59]

[60]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

CHi, E. H., Prrkow, J., MACKINLAY, J., PIROLLI, P., GOSSWEILER, R.,
and CARD, S. K., “Visualizing the Evolution of Web Ecologies,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’98,
(New York, NY, USA), pp. 400-407, ACM Press/Addison-Wesley Publishing
Co., 1998.

CHIGNELL, M. H., POBLETE, F., and ZUBEREC, S., “An Exploration in the
Design Space of Three Dimensional Hierarchies,” Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, vol. 37, pp. 333-337, Oct.
1993.

CHILDS, H., BRUGGER, E., BONNELL, K., MEREDITH, J., MILLER, M.,
WHITLOCK, B., and MAX, N., “A contract based system for large data visu-
alization,” in Visualization, 2005. VIS 05. IEEE, pp. 191 — 198, Oct. 2005.

CHuAH, M. C., RoTH, S. F., KOLOJEJCHICK, J., MATTIS, J., and JUAREZ,
O., “SageBook: searching data-graphics by content,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI 95, (New
York, NY, USA), pp. 338-345, ACM Press/Addison-Wesley Publishing Co.,
1995.

CLAESSEN, J. and VAN WLJK, J., “Flexible Linked Axes for Multivariate Data
Visualization,” IEFE Transactions on Visualization and Computer Graphics,
vol. 17, pp. 2310 —2316, Dec. 2011.

Cruz, I. F. and LEVEILLE, P. S., “As You Like It: Personalized Database
Visualization Using a Visual Language,” Journal of Visual Languages & Com-
puting, vol. 12, pp. 525-549, Oct. 2001.

Cul, W., Zaou, H., Qu, H., Wong, P. C., and L1, X., “Geometry-Based
Edge Clustering for Graph Visualization,” IEEFE Transactions on Visualization
and Computer Graphics, vol. 14, pp. 1277-1284, Nov. 2008.

DacHseLT, R. and EBERT, J., “Collapsible cylindrical trees: a fast hierarchical
navigation technique,” in IEEE Symposium on Information Visualization, 2001.
INFOVIS 2001, pp. 79-86, 2001.

DieHL, S. and GraG, C., “Graphs, They Are Changing,” in Graph Drawing
(GoobpricH, M. T. and KOBOUROV, S. G., eds.), no. 2528 in Lecture Notes
in Computer Science, pp. 23-31, Springer Berlin Heidelberg, Aug. 2002.

DiNkLA, K., WESTENBERG, M., and VAN WIJK, J., “Compressed Adjacency
Matrices: Untangling Gene Regulatory Networks,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 18, pp. 24572466, Dec. 2012.

Dorusz, U., MADDEN, B., and MADDEN, P., “Circular layout in the Graph
Layout toolkit,” in Graph Drawing (NORTH, S., ed.), no. 1190 in Lecture Notes
in Computer Science, pp. 92-100, Springer Berlin Heidelberg, 1997.

242

[70]

[71]

[81]

DRAPER, G. and RIESENFELD, R., “Interactive Fan Charts: A Space-saving
Technique for Genealogical Graph Exploration,” in Proceedings of the 8th An-
nual Workshop on Technology for Family History and Genealogical Research
(FHTW 2008), 2008.

DunnE, C. and SHNEIDERMAN, B., “Motif Simplification: Improving Network
Visualization Readability with Fan, Connector, and Clique Glyphs,” in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
"13, (New York, NY, USA), pp. 3247-3256, ACM, 2013.

DwvYER, T., RiIcHE, N., MARRIOTT, K., and MEARS, C., “Edge Compression
Techniques for Visualization of Dense Directed Graphs,” IEEE Transactions on
Visualization and Computer Graphics, vol. 19, pp. 2596-2605, Dec. 2013.

DvYER, D., “A dataflow toolkit for visualization,” IEFE Computer Graphics
and Applications, vol. 10, pp. 60 =69, July 1990.

DRk, M., CARPENDALE, S., and WILLIAMSON, C., “Visualizing explicit and
implicit relations of complex information spaces,” Information Visualization,
vol. 11, pp. 521, Jan. 2012.

EADES, P., “Drawing Free Trees,” Bulletin of the ICA, vol. 5, pp. 10-36, 1992.

EADEs, P. and FENG, Q.-W., “Multilevel visualization of clustered graphs,”
in Graph Drawing (NORTH, S., ed.), no. 1190 in Lecture Notes in Computer
Science, pp. 101-112, Springer Berlin Heidelberg, 1997.

ErLmMmqQvisT, N. and FEKETE, J., “Hierarchical Aggregation for Information Vi-
sualization: Overview, Techniques, and Design Guidelines,” IEEFE Transactions
on Visualization and Computer Graphics, vol. 16, pp. 439-454, May 2010.

ELmqvisT, N., RicHE, Y., HENRY-RICHE, N., and FEKETE, J., “M
#x0e9:;lange: Space Folding for Visual Exploration,” IEEE Transactions on
Visualization and Computer Graphics, vol. 16, pp. 468-483, May 2010.

Ersoy, O., HURTER, C., PAULOVICH, F., CANTAREIRO, G., and TELEA, A.,
“Skeleton-Based Edge Bundling for Graph Visualization,” IEEFE Transactions
on Visualization and Computer Graphics, vol. 17, pp. 2364-2373, Dec. 2011.

FARRUGIA, M., HURLEY, N., and QUIGLEY, A., “Exploring Temporal Ego
Networks Using Small Multiples and Tree-ring Layouts,” in ACHI 2011 : The
Fourth International Conference on Advances in Computer-Human Interac-
tions, pp. 79-88, IARIA, 2011.

FEDERICO, P., AIGNER, W., MIKSCH, S., WINDHAGER, F., and ZENK, L.,
“A Visual Analytics Approach to Dynamic Social Networks,” in Proceedings of
the 11th International Conference on Knowledge Management and Knowledge
Technologies, i-KNOW 11, (New York, NY, USA), pp. 47:1-47:8, ACM, 2011.

243

[82]

FEKETE, J., WANG, D., DANG, N., ARIS, A., and PLAISANT, C., “Interactive
poster: Overlaying graph links on treemaps,” in Proceedings of the IEEE Sym-
posium. on Information Visualization Conference Compendium (InfoVis 03),
2003.

FEKETE, J.-D., “The InfoVis Toolkit,” in IEEE Symposium on Information
Visualization, 2004. INFOVIS 2004, pp. 167 —174, 2004.

FeEkeTE, J.-D., Wk, J. J. v., Stasko, J. T., and NorrH, C., “The
Value of Information Visualization,” in Information Visualization (KERREN,
A., Stasko, J. T., FEKETE, J.-D., and NORTH, C., eds.), no. 4950 in Lecture
Notes in Computer Science, pp. 1-18, Springer Berlin Heidelberg, 2008.

FouLser, D., “IRIS Explorer: a framework for investigation,” SIGGRAPH
Comput. Graph., vol. 29, pp. 13-16, May 1995.

FrEcCON, E. and SMITH, G., “WEBPATH-a three dimensional Web history,”
in IEEE Symposium on Information Visualization, 1998. Proceedings, pp. 3—10,
148, Oct. 1998.

FrREEMAN, L. C.; “A Set of Measures of Centrality Based on Betweenness,”
Sociometry, vol. 40, pp. 3541, Mar. 1977.

FrREEMAN, L. C., “Centrality in social networks conceptual clarification,” So-
cial Networks, vol. 1, no. 3, pp. 215-239, 1978.

FrREIRE, M., PrAIisaANT, C., SHNEIDERMAN, B., and GOLBECK, J.,
“ManyNets: An Interface for Multiple Network Analysis and Visualization,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI "10, (New York, NY, USA), pp. 213-222, ACM, 2010.

FRUCHTERMAN, T. M. J. and REINGOLD, E. M., “Graph drawing by force-
directed placement,” Softw: Pract. Exper., vol. 21, pp. 1129-1164, Nov. 1991.

Fua, Y.-H., WARD, M., and RUNDENSTEINER, E., “Navigating hierarchies
with structure-based brushes,” in 1999 IEEE Symposium on Information Visu-
alization, 1999. (Info Vis ’99) Proceedings, pp. 5864, 146, 1999.

Furnas, G. W. and ZAcCKS, J., “Multitrees: Enriching and Reusing Hierar-
chical Structure,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI '94, (New York, NY, USA), pp. 330-336, ACM,
1994.

GANSNER, E. R. and KOREN, Y., “Improved Circular Layouts,” in Graph
Drawing (KAUFMANN, M. and WAGNER, D., eds.), no. 4372 in Lecture Notes
in Computer Science, pp. 386-398, Springer Berlin Heidelberg, Sept. 2006.

244

[94]

[100]

[101]

[102]

103]

GANSNER, E., HU, Y., and KoBOUROV, S., “GMap: Visualizing graphs and
clusters as maps,” in Visualization Symposium (PacificVis), 2010 IEEE Pacific,
pp- 201-208, Mar. 2010.

GANSNER, E., HU, Y., NORTH, S., and SCHEIDEGGER, C., “Multilevel ag-

glomerative edge bundling for visualizing large graphs,” in Visualization Sym-
posium (PacificVis), 2011 IEEE Pacific, pp. 187-194, Mar. 2011.

Giacomo, E. D., Dipimo, W., LiorTA, G., and PALLADINO, P., “Visual
Analysis of One-to-Many Matched Graphs,” in Graph Drawing (ToLLis, 1. G.
and PATRIGNANI, M., eds.), no. 5417 in Lecture Notes in Computer Science,
pp. 133-144, Springer Berlin Heidelberg, Sept. 2008.

GoMEzZ, J., BUCK-COLEMAN, A., PLAISANT, C., and SHNEIDERMAN, B.,
“TreeVersity: Comparing tree structures by topology and node’s attributes dif-
ferences,” in 2011 IEEE Conference on Visual Analytics Science and Technology
(VAST), pp. 275-276, Oct. 2011.

Gou, L. and ZHANG, X., “TreeNetViz: Revealing Patterns of Networks over

Tree Structures,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, pp. 2449-2458, Dec. 2011.

GovE, R., GRAMSKY, N., KIrRBY, R., SEFER, E., SopaNn, A., DuUNNE, C.,
SHNEIDERMAN, B., and TAIEB-MAIMON, M., “NetVisia: Heat Map #x0026;
Matrix Visualization of Dynamic Social Network Statistics #x0026; Content,”
in 2011 IEEFE Third International Conference on Privacy, Security, Risk and
Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Com-
puting (SocialCom), pp. 19-26, Oct. 2011.

GRrAHAM, M. and KENNEDY, J., “Exploring Multiple Trees through DAG
Representations,” IFEE Transactions on Visualization and Computer Graphics,
vol. 13, pp. 1294-1301, Nov. 2007.

GREILICH, M., BURCH, M., and DIEHL, S., “Visualizing the Evolution of

Compound Digraphs with TimeArcTrees,” Computer Graphics Forum, vol. 28,
pp. 975982, June 2009.

GRIVET, S., AUBER, D., DOMENGER, J. P., and MELANCON, G., “Bubble
tree drawing algorithm,” in Computer Vision and Graphics (WOJCIECHOWSKI,
K., SMoOLKA, B., PALus, H., KOZERA, R. S., SKARBEK, W., and NOAKES,
L., eds.), no. 32 in Computational Imaging and Vision, pp. 633-641, Springer
Netherlands, 2006.

GUERRA-GOMEZ, J., PACK, M., PLAISANT, C., and SHNEIDERMAN, B.,
“Visualizing Change over Time Using Dynamic Hierarchies: TreeVersity2 and
the StemView,” IEEE Transactions on Visualization and Computer Graphics,
vol. 19, pp. 2566-2575, Dec. 2013.

245

[104]

[105]

[106]

107]

108

[109]

[110]

[111]

[112]

[113]

114]

HADpLAK, S., ScHULz, H., and SCHUMANN, H., “In Situ Exploration of

Large Dynamic Networks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, pp. 2334-2343, Dec. 2011.

HAGBERG, A. A., ScHuLT, D. A., and SwART, P. J., “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings of the 7Tth
Python in Science Conference (SciPy2008), (Pasadena, CA USA), pp. 11-15,
Aug. 2008.

Hawm, F. v., ScHuLz, H.-J., and Dimicco, J. M., “Honeycomb: Visual
Analysis of Large Scale Social Networks,” in Human-Computer Interaction IN-
TERACT 2009 (Gross, T., GULLIKSEN, J., KoTz, P., OESTREICHER, L.,
PALANQUE, P., PRATES, R. O., and WINCKLER, M., eds.), no. 5727 in Lec-
ture Notes in Computer Science, pp. 429-442, Springer Berlin Heidelberg, Aug.
2009.

HamMmiInG, R. W., “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, pp. 147-160, Apr. 1950.

HEeER, J. and BoyD, D., “Vizster: visualizing online social networks,” in
IEEE Symposium on Information Visualization, 2005. INFOVIS 2005, pp. 32—
39, Oct. 2005.

HEER, J., MACKINLAY, J., STOLTE, C., and AGRAWALA, M., “Graphical
Histories for Visualization: Supporting Analysis, Communication, and Evalu-
ation,” IEFEE Transactions on Visualization and Computer Graphics, vol. 14,
pp. 1189-1196, Nov. 2008.

HEER, J. and PERER, A., “Orion: A system for modeling, transformation
and visualization of multidimensional heterogeneous networks,” in 2011 IEEE
Conference on Visual Analytics Science and Technology (VAST), pp. 51-60,
Oct. 2011.

HEER, J., “Flare.”

HEER, J. and CARD, S. K., “DOITrees Revisited: Scalable, Space-constrained
Visualization of Hierarchical Data,” in Proceedings of the Working Conference
on Advanced Visual Interfaces, AVI ’04, (New York, NY, USA), pp. 421-424,
ACM, 2004.

HEER, J., CARD, S. K., and LANDAY, J. A., “Prefuse: A Toolkit for Inter-
active Information Visualization,” in Proc. of the ACM SIGCHI Conference on
Human Factors in Computing Systems, (CHI 2005), (New York, NY, USA),
pp. 421 —430, ACM, 2005.

HEER, J. and PERER, A., “Orion: A system for modeling, transformation

and visualization of multidimensional heterogeneous networks,” Information
Visualization, vol. 13, pp. 111-133, Apr. 2014.

246

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

124]

[125]

HENR, N., BEZERIANOS, A., and FEKETE, J., “Improving the Readability

of Clustered Social Networks using Node Duplication,” IFEE Transactions on
Visualization and Computer Graphics, vol. 14, pp. 1317-1324, Nov. 2008.

HENRY, N. and FEKETE, J., “MatrixExplorer: a Dual-Representation System
to Explore Social Networks,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 12, pp. 677-684, Sept. 2006.

HeENRY, N., FEKETE, J., and MCcGUFFIN, M., “NodeTrix: a Hybrid Visual-
ization of Social Networks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 13, pp. 1302-1309, Nov. 2007.

HENRY, N. and FEKETE, J.-D., “MatLink: Enhanced Matrix Visualization
for Analyzing Social Networks,” in Human-Computer Interaction INTERACT
2007 (BARANAUSKAS, C., PALANQUE, P., ABASCAL, J., and BARBOSA, S.
D. J., eds.), no. 4663 in Lecture Notes in Computer Science, pp. 288-302,
Springer Berlin Heidelberg, Sept. 2007.

HERMAN, I., MELANCON, G., and MARSHALL, M., “Graph visualization and
navigation in information visualization: A survey,” IEEFE Transactions on Vi-
sualization and Computer Graphics, vol. 6, pp. 24-43, Mar. 2000.

HovrTreEN, D., “Hierarchical Edge Bundles: Visualization of Adjacency Rela-

tions in Hierarchical Data,” IEEFE Transactions on Visualization and Computer
Graphics, vol. 12, pp. 741-748, Sept. 2006.

HoLTEN, D., ISENBERG, P., VAN WLJK, J., and FEKETE, J., “An extended
evaluation of the readability of tapered, animated, and textured directed-edge

representations in node-link graphs,” in Visualization Symposium (PacificVis),
2011 IEEFE Pacific, pp. 195-202, Mar. 2011.

HorTEN, D. and VAN WwDK, J. J., “Visual Comparison of Hierarchically
Organized Data,” Computer Graphics Forum, vol. 27, pp. 759-766, May 2008.

HortEN, D. and VAN WUIK, J. J., “Force-Directed Edge Bundling for Graph
Visualization,” Computer Graphics Forum, vol. 28, pp. 983-990, June 2009.

HorTEN, D. and vAN WuK, J. J.; “A User Study on Visualizing Directed
Edges in Graphs,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI 09, (New York, NY, USA), pp. 2299-2308, ACM,
2009.

Hong, J. Y., D’ANDRIES, J., RICHMAN, M., and WESTFALL, M., “Zoomol-
ogy: comparing two large hierarchical trees,” in Posters Compendium of Infor-
mation Visualization, pp. 120-121, 2003.

247

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

134]

[135]

[136]

[137]

Honga, S.-H. and MurTAGH, T., “Visualisation of Large and Complex Net-
works Using PolyPlane,” in Graph Drawing (PACH, J., ed.), no. 3383 in Lec-
ture Notes in Computer Science, pp. 471-481, Springer Berlin Heidelberg, Sept.
2004.

Huang, M. L., HuaNG, T.-H., and ZHANG, J., “TreemapBar: Visualizing
Additional Dimensions of Data in Bar Chart,” in Information Visualisation,
2009 13th International Conference, pp. 98-103, July 2009.

HupAk, P., “Building Domain-specific Embedded Languages,” ACM Comput.
Surv., vol. 28, Dec. 1996.

HUNTER, J., “Matplotlib: A 2d Graphics Environment,” Computing in Science
Engineering, vol. 9, pp. 90 —95, June 2007.

HUrTER, C., TELEA, A., and ERrsoy, O., “MoleView: An Attribute and
Structure-Based Semantic Lens for Large Element-Based Plots,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 17, pp. 2600-2609, Dec.
2011.

IseNBERG, P., HemMERL, F., KocH, S., ISENBErG, T., Xu, P.,
STOLPER, C., SEDLMAIR, M., CHEN, J., MLLER, T., and STASKO,
J., Visualization Publication Dataset. 2015. Published: Dataset:
http://vispubdata.org/http://vispubdata.org/\, Published Jun.\ 2015.

IToHn, T., YAMAGUCHI, Y., IKEHATA, Y., and KAJINAGA, Y., “Hierarchical
data visualization using a fast rectangle-packing algorithm,” IFEFE Transactions
on Visualization and Computer Graphics, vol. 10, pp. 302-313, May 2004.

JOHN, M., ScHULz, H., SCHUMANN, H. UHRMACHER, A., and UNGER,
A., “Exploring time-varying hypergraphs,” in Poster Compendium of IEEE
Conference on Information Visualization, 2009.

JOHNSON, B. and SHNEIDERMAN, B., “Tree-maps: a space-filling approach to
the visualization of hierarchical information structures,” in , IEEE Conference
on Visualization, 1991. Visualization ’91, Proceedings, pp. 284-291, Oct. 1991.

JONES, E., OLIPHANT, T., PETERSON, P., and OTHERS, “SciPy: Open source
scientific tools for Python,” 2001.

Jusurl, 1., DINGJIE, Y., and KERREN, A., “The Network Lens: Interactive
Exploration of Multivariate Networks Using Visual Filtering,” in Information
Visualisation (IV), 2010 14th International Conference, pp. 35-42, July 2010.

Jusurl, 1., KERREN, A., and ZIMMER, B., “Multivariate Network Exploration
with JauntyNets,” in Information Visualisation (IV), 2013 17th International
Conference, pp. 19-27, July 2013.

248

138

[139]

[140]

141]

142]

[143]

144]

[145]

[146]

[147]

[148]

[149]

KamMADA, T. and Kawal, S., “An algorithm for drawing general undirected
graphs,” Information Processing Letters, vol. 31, pp. 7-15, Apr. 1989.

KaANG, H., GETOOR, L., and SINGH, L., “C-GROUP: A Visual Analytic Tool
for Pairwise Analysis of Dynamic Group Membership,” in IEEE Symposium on
Visual Analytics Science and Technology, 2007. VAST 2007, pp. 211-212, Oct.
2007.

KanG, H., Praisant, C., LEE, B., and BEDERSON, B., “NetLens: Iterative

Exploration of Content-Actor Network Data,” in Visual Analytics Science And
Technology, 2006 IEEE Symposium On, pp. 91-98, Oct. 2006.

KERR, B., “Thread Arcs: an email thread visualization,” in IEEE Symposium
on Information Visualization, 2003. INFOVIS 2003, pp. 211-218, Oct. 2003.

Kimm, N. W., CARD, S. K., and HEER, J., “Tracing Genealogical Data with
TimeNets,” in Proceedings of the International Conference on Advanced Visual
Interfaces, AVI "10, (New York, NY, USA), pp. 241-248, ACM, 2010.

KLEIBERG, E., VAN DE WETERING, H., and vAN WDJK, J., “Botanical visual-

ization of huge hierarchies,” in IEEE Symposium on Information Visualization,
2001. INFOVIS 2001, pp. 87-94, 2001.

KRrzywiNski, M., BIROL, I., JONES, S. J., and MARRA, M. A., “Hive plot-

srational approach to visualizing networks,” Brief Bioinform, vol. 13, pp. 627—
644, Sept. 2012.

Kumar, H. P., PraisanT, C., and SHNEIDERMAN, B., “Browsing hierarchi-

cal data with multi-level dynamic queries and pruning,” International Journal
of Human-Computer Studies, vol. 46, pp. 103-124, Jan. 1997.

LAMBERT, A., BourQul, R., and AUBER, D., “3d Edge Bundling for Ge-
ographical Data Visualization,” in Information Visualisation (IV), 2010 14th
International Conference, pp. 329-335, July 2010.

LAMBERT, A., BourQul, R., and AUBER, D., “Winding Roads: Routing

edges into bundles,” Computer Graphics Forum, vol. 29, pp. 853-862, June
2010.

LampiNg, J., RAo, R., and P1rOLLI, P., “A Focus+Context Technique Based
on Hyperbolic Geometry for Visualizing Large Hierarchies,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’95,
(New York, NY, USA), pp. 401-408, ACM Press/Addison-Wesley Publishing
Co., 1995.

LeEE, B., PARR, C., PraisanT, C., BEDERSON, B., VEKSLER, V., GRAY,
W., and KoTFiLA, C., “TreePlus: Interactive Exploration of Networks with

Enhanced Tree Layouts,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, pp. 1414-1426, Nov. 2006.

249

[150] LEE, B., ROBERTSON, G. G., CZERWINSKI, M., and PARR, C. S., “Can-
didTree: Visualizing Structural Uncertainty in Similar Hierarchies,” Informa-
tion Visualization, vol. 6, pp. 233-246, Sept. 2007.

[151] LEVANDOWSKY, M. and WINTER, D., “Distance between Sets,” Nature,
vol. 234, pp. 34-35, Nov. 1971.

[152] L1, S., CROUSER, R. J., GrIFFIN, G., GrRaMAzIO, C., ScHuLz, H.-J.,
CHILDS, H., and CHANG, R., “Exploring hierarchical visualization designs
using phylogenetic trees,” vol. 9397, pp. 939709-939709-14, 2015.

[153] Liu, Z., NAVATHE, S., and STASKO, J., “Network-based visual analysis of
tabular data,” in 2011 IEEFE Conference on Visual Analytics Science and Tech-
nology (VAST), pp. 41-50, Oct. 2011.

[154] Liu, Z., NAVATHE, S. B., and STASKO, J. T., “Ploceus: Modeling, visualizing,

and analyzing tabular data as networks,” Information Visualization, vol. 13,
pp- 59-89, Jan. 2014.

[155] Lucas, B., ABrRaM, G. D., CorLiNs, N. S., EpSTEIN, D. A., GRESH,
D. L., and MCAULIFFE, K. P., “An architecture for a scientific visualization

system,” in Proceedings of the 3rd conference on Visualization °92, VIS ’92,
(Los Alamitos, CA, USA), pp. 107-114, IEEE Computer Society Press, 1992.

[156] Luo, S.-J., Liu, C.-L., CHEN, B.-Y., and MA, K.-L., “Ambiguity-Free Edge-
Bundling for Interactive Graph Visualization,” IEFEE Transactions on Visual-
ization and Computer Graphics, vol. 18, pp. 810-821, May 2012.

[157] L, H. and FOGARTY, J., “Cascaded Treemaps: Examining the Visibility and
Stability of Structure in Treemaps,” in Proceedings of Graphics Interface 2008,
GI 08, (Toronto, Ont., Canada, Canada), pp. 259-266, Canadian Information
Processing Society, 2008.

[158] MACKINLAY, J., HANRAHAN, P., and STOLTE, C., “Show Me: Automatic
Presentation for Visual Analysis,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 13, pp. 1137 —1144, Dec. 2007.

[159] MACKINLAY, J., “Automating the design of graphical presentations of rela-
tional information,” ACM Trans. Graph., vol. 5, pp. 110-141, Apr. 1986.

[160] MATHWORKS, INC., “Matlab.” http://www.mathworks.com/products/matlab/.

[161] McGUFFIN, M. and BALAKRISHNAN, R., “Interactive visualization of ge-

nealogical graphs,” in IEEFE Symposium on Information Visualization, 2005.
INFOVIS 2005, pp. 16-23, Oct. 2005.

[162] McGUFFIN, M., DAVISON, G., and BALAKRISHNAN, R., “Expand-Ahead: A
Space-Filling Strategy for Browsing Trees,” in IEEE Symposium on Information
Visualization, 2004. INFOVIS 2004, pp. 119-126, 2004.

250

163]

164]
[165]
[166]

[167]

[168]

[169]

[170]

171]

[172]

173

[174]

[175]

McGUFFIN, M. and JURISICA, 1., “Interaction Techniques for Selecting and
Manipulating Subgraphs in Network Visualizations,” [IEFEE Transactions on
Visualization and Computer Graphics, vol. 15, pp. 937-944, Nov. 2009.

MiICROSOFT CORP., “Excel.” http://products.office.com/en-US /excel.
MI1CROSOFT CORP., “Visio.” http://products.office.com/en-us/visio/.

MoscovicH, T., CHEVALIER, F., HENRY, N., PIETRIGA, E., and FEKETE,
J.-D., “Topology-aware Navigation in Large Networks,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI *09, (New
York, NY, USA), pp. 23192328, ACM, 2009.

MUELDER, C. and MA, K.-L., “Rapid Graph Layout Using Space Filling
Curves,” IEEFE Transactions on Visualization and Computer Graphics, vol. 14,
pp. 1301-1308, Nov. 2008.

MUELDER, C. and MA, K.-L., “A Treemap Based Method for Rapid Layout
of Large Graphs,” in Visualization Symposium, 2008. PacificVIS '08. IEEE
Pacific, pp. 231-238, Mar. 2008.

MUNZNER, T'., “H3: laying out large directed graphs in 3d hyperbolic space,” in
, IEEE Symposium on Information Visualization, 1997. Proceedings, pp. 2-10,
Oct. 1997.

NeTZEL, R., BURCH, M., and WEISKOPF, D., “Comparative Eye Tracking
Study on Node-Link Visualizations of Trajectories,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 20, pp. 2221-2230, Dec. 2014.

NEUMANN, P., SCHLECHTWEG, D. S., and CARPENDALE, S., “ArcTrees:
Visualizing Relations in Hierarchical Data,” in FUROVIS 2005: Eurographics
/ IEEE VGTC Symposium on Visualization (BRODLIE, K., DUKE, D., and
Joy, K., eds.), The Eurographics Association, 2005.

NocaJ, A. and BRANDES, U., “Organizing Search Results with a Reference
Map,” IEEE Transactions on Visualization and Computer Graphics, vol. 18,
pp- 25462555, Dec. 2012.

O’MADADHAIN, J., FisHER, D., SmyTH, P., WHITE, S., and BOEY, Y.-
B., “Analysis and Visualization of Network Data Using JUNG,” Journal of
Statistical Software, vol. 10, no. 2, pp. 1 —35, 2005.

ORT1Z, S. and CiD, V. P., “Use cases of Impure, an information interface,” in
VisWeek 2010 Discovery Exhibition, (Salt Lake City, UT), 2010.

Osawa, N., “A multiple-focus graph browsing technique using heat models
and force-directed layout,” in Fifth International Conference on Information
Visualisation, 2001. Proceedings, pp. 277-283, 2001.

251

[176]

[177]

178

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

PAGE, L., BrIN, S., MoTwANI, R., and WINOGRAD, T., “The PageRank
Citation Ranking: Bringing Order to the Web.,” Technical Report 1999-66,
Stanford InfoLab, Nov. 1999. Previous number = SIDL-WP-1999-0120.

Parva, J., FLorIAN, L., PEDRINI, H., TELLES, G., and MINGHIM, R., “Im-
proved Similarity Trees and their Application to Visual Data Classification,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17, pp. 2459—
2468, Dec. 2011.

PARKER, S. and JOHNSON, C., “SCIRun: A Scientific Programming Environ-
ment for Computational Steering,” in Supercomputing, 1995. Proceedings of the

IEEE/ACM SC95 Conference, p. 52, 1995.

PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL, V., THIRION,
B., GRrISEL, O., BLONDEL, M., PRETTENHOFER, P., WEIsS, R., DUBOURG,
V., VANDERPLAS, J., PAssos, A., COURNAPEAU, D., BRUCHER, M., PER-
ROT, M., and DUCHESNAY, E., “Scikit-learn: Machine Learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

PiroLL1, P., CARD, S. K., and VAN DER WEGE, M. M., “The Effects of
Information Scent on Visual Search in the Hyperbolic Tree Browser,” ACM
Trans. Comput.-Hum. Interact., vol. 10, pp. 20-53, Mar. 2003.

PrarsanT, C., GROSJEAN, J., and BEDERSON, B., “SpaceTree: support-
ing exploration in large node link tree, design evolution and empirical evalua-
tion,” in IEEE Symposium on Information Visualization, 2002. INFOVIS 2002,
pp- 5764, 2002.

PrRETORIUS, A. J. and VAN WLJK, J. J., “Visual Inspection of Multivariate
Graphs,” Computer Graphics Forum, vol. 27, pp. 967-974, May 2008.

PRETORIUS, A. and VAN WDIK, J., “Visual Analysis of Multivariate State
Transition Graphs,” IEFEE Transactions on Visualization and Computer Graph-
ics, vol. 12, pp. 685-692, Sept. 2006.

REDA, K., TANTIPATHANANANDH, C., JOHNSON, A., LEIGH, J., and
BERGER-WOLF, T., “Visualizing the Evolution of Community Structures in
Dynamic Social Networks,” Computer Graphics Forum, vol. 30, pp. 1061-1070,
June 2011.

REINGOLD, E. M. and TILFORD, J., “Tidier Drawings of Trees,” IEEE Trans-
actions on Software Engineering, vol. SE-7, pp. 223-228, Mar. 1981.

RicHe, N. H., DWYER, T., LEE, B., and CARPENDALE, S., “Exploring the
Design Space of Interactive Link Curvature in Network Diagrams,” in Proceed-
ings of the International Working Conference on Advanced Visual Interfaces,

AVI ’12, (New York, NY, USA), pp. 506-513, ACM, 2012.

252

[187]

[188]

[189)]

[190]

[191]

192]

193]

194]

[195]

[196]

[197]

193]

ROBERTSON, G. G., MACKINLAY, J. D., and CARD, S. K., “Cone Trees:
Animated 3d Visualizations of Hierarchical Information,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI '91, (New
York, NY, USA), pp. 189-194, ACM, 1991.

RosT, U. and BORNBERG-BAUER, E., “TreeWiz: interactive exploration of
huge trees,” Bioinformatics, vol. 18, pp. 109-114, Jan. 2002.

RosvALL, M. and BERGSTROM, C. T.; “Mapping Change in Large Networks,”
PLoS ONE, vol. 5, p. 8694, Jan. 2010.

RotH, S. F., KOLOJEJCHICK, J., MATTIS, J., CHUAH, M. C., GOLDSTEIN,
J., and JUAREZ, O., “SAGE tools: a knowledge-based environment for de-
signing and perusing data visualizations,” in Conference companion on Human
factors in computing systems, CHI '94, (New York, NY, USA), pp. 27-28, ACM,
1994.

RUFIANGE, S. and MCGUFFIN, M., “DiffAni: Visualizing Dynamic Graphs
with a Hybrid of Difference Maps and Animation,” IEFEE Transactions on Vi-
sualization and Computer Graphics, vol. 19, pp. 25562565, Dec. 2013.

SAnTOs, E., Lins, L., AHRENS, J., FREIRE, J., and SiLva, C., “VisMashup:
Streamlining the Creation of Custom Visualization Applications,” Visualization
and Computer Graphics, IEEE Transactions on, vol. 15, pp. 1539 —1546, Dec.
2009.

SARAIYA, P., LEE, P., and NoRrTH, C., “Visualization of graphs with associ-

ated timeseries data,” in IEEE Symposium on Information Visualization, 2005.
INFOVIS 2005, pp. 225-232, Oct. 2005.

SARKAR, M. and BROwWN, M. H., “Graphical Fisheye Views of Graphs,” in

Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI '92, (New York, NY, USA), pp. 83-91, ACM, 1992.

SATYANARAYAN, A., RUSSELL, R., HOFFSWELL, J., and HEER, J., “Reactive
Vega: A Streaming Dataflow Architecture for Declarative Interactive Visual-
ization,” IEEE Transactions on Visualization and Computer Graphics, vol. 22,

pp- 659-668, Jan. 2016.

SATYANARAYAN, A. and HEER, J., “Lyra: An Interactive Visualization Design
Environment,” Computer Graphics Forum, vol. 33, no. 3, pp. 351-360, 2014.

SCHROEDER, W., AviLA, L., MARTIN, K., HOFFMAN, W., and Law, C.,
The Visualization Toolkit-Users Guide. Kitware, Inc., 2001.

ScHuLz, H. J., HADLAK, S., and SCHUMANN, H., “The Design Space of Im-

plicit Hierarchy Visualization: A Survey,” IEEE Transactions on Visualization
and Computer Graphics, vol. 17, pp. 393-411, Apr. 2011.

253

199]

200

201]

202]

203]

204]

[205]

206]

207]

208]

209

210]

ScHuLz, H.-J., JOHN, M., UNGER, A., and SCHUMANN, H., “Visual Analysis
of Bipartite Biological Networks,” in Furographics Workshop on Visual Com-
puting for Biomedicine (BoTHA, C., KINDLMANN, G., NIESSEN, W., and
PRrEIM, B., eds.), The Eurographics Association, 2008.

SELASSIE, D., HELLER, B., and HEER, J., “Divided Edge Bundling for Di-
rectional Network Data,” IEEFE Transactions on Visualization and Computer
Graphics, vol. 17, pp. 2354-2363, Dec. 2011.

SHAMIR, A. and STOLPNIK, A., “Interactive visual queries for multivariate
graphs exploration,” Computers & Graphics, vol. 36, pp. 257-264, June 2012.

SHARARA, H., SOPAN, A., NaAMATA, G., GETOOR, L., and SINGH, L., “G-
PARE: A visual analytic tool for comparative analysis of uncertain graphs,” in
2011 IEEE Conference on Visual Analytics Science and Technology (VAST),
pp- 61-70, Oct. 2011.

SHi, L., WANG, C., and WEN, Z., “Dynamic network visualization in 1.5d,” in
Visualization Symposium (PacificVis), 2011 IEEE Pacific, pp. 179-186, Mar.
2011.

SHNEIDERMAN, B. and ARIS, A., “Network Visualization by Semantic Sub-

strates,” IEEE Transactions on Visualization and Computer Graphics, vol. 12,
pp. 733-740, Sept. 2006.

StirTOLA, H. and MKINEN, E., “Constructing and Reconstructing the Re-
orderable Matrix,” Information Visualization, vol. 4, pp. 32—48, Mar. 2005.

SINGHAL, A., “Modern information retrieval: A brief overview,” IEEE Data
Eng. Bull., vol. 24, no. 4, pp. 35-43, 2001.

Six, J. M. and Toruis, I. G., “A Framework for Circular Drawings of Net-
works,” in Graph Drawing (KRATOCHVYL, J., ed.), no. 1731 in Lecture Notes
in Computer Science, pp. 107-116, Springer Berlin Heidelberg, Sept. 1999.

SKAU, D. and KOsSARA, R., “Interactive Poster: Designing New Visualizations
from Scratch without Programming,” in InfoVis 2011 Poster Compendium,
2011.

SMITH, M. A., SHNEIDERMAN, B., MILIC-FRAYLING, N., MENDES RoO-
DRIGUES, E., BArRASH, V., DuUNNE, C., CAPONE, T., PERER, A., and
GLEAVE, E., “Analyzing (Social Media) Networks with NodeXL,” in Proc. of
the Fourth International Conference on Communities and Technologies, (C€T
09), (New York, NY, USA), pp. 255 -264, ACM, 2009.

SOkAL, R. R. and MICHENER, C., “A statistical method for evaluating sys-
tematic relationships,” Univ Kans Sci Bull, vol. 38, pp. 1409-1438, 1958.

254

[211] SokAL, R. R. and ROHLF, F. J., “The Comparison of Dendrograms by Ob-
jective Methods,” Tazon, vol. 11, no. 2, pp. 33-40, 1962.

[212] STASkoO, J. and ZHANG, E., “Focus+context display and navigation techniques

for enhancing radial, space-filling hierarchy visualizations,” in IEEE Symposium
on Information Visualization, 2000. InfoVis 2000, pp. 57—65, 2000.

[213] Stasko, J., CHooO, J., Hu, M., PiLEGGI, H., SADANA, R., and STOLPER,
C. D., “Poster: Citevis: Exploring Conference Paper Citation Data Visually,”
in IEEE 2013 Infovis Poster Compendium, 2013.

[214] Stasko, J., G\"{o}rG, C., and Liu, Z., “Jigsaw: Supporting Investigative
Analysis through Interactive Visualization,” Information Visualization, vol. 7,
pp- 118-132, June 2008.

[215] STEIN, K., WEGENER, R., and SCHLIEDER, C., “Pixel-Oriented Visualization

of Change in Social Networks,” in 2010 International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), pp. 233-240, Aug. 2010.

[216] STOLPER, C., KAHNG, M., LIN, Z., FOERSTER, F., GOEL, A., STASKO,
J., and CHAU, D., “GLO-STIX: Graph-Level Operations for Specifying Tech-
niques and Interactive eXploration,” IEFE Transactions on Visualization and
Computer Graphics, vol. 20, pp. 2320-2328, Dec. 2014.

[217] SToLTE, C., TANG, D., and HANRAHAN, P., “Polaris: a System for Query,
Analysis, and Visualization of Multidimensional Relational Databases,” IFEFE

Transactions on Visualization and Computer Graphics, vol. 8, no. 1, pp. 52 —65,
2002.

[218] Suaryama, K., Tacawa, S., and Topa, M., “Methods for Visual Under-
standing of Hierarchical System Structures,” IEFE Transactions on Systems,
Man and Cybernetics, vol. 11, pp. 109-125, Feb. 1981.

[219] TABLEAU SOFTWARE, “Tableau.” http://www.tableausoftware.com/.

[220] TAN, D., SmiTH, G., LEE, B., and ROBERTSON, G., “AdaptiviTree: Adap-
tive Tree Visualization for Tournament-Style Brackets,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, pp. 1113-1120, Nov. 2007.

[221] TELEA, A. and Ersoy, O., “Image-Based Edge Bundles: Simplified Visualiza-
tion of Large Graphs,” Computer Graphics Forum, vol. 29, pp. 843-852, June
2010.

[222] TEOH, S. T. and KwaN-Liu, M., “RINGS: A Technique for Visualizing Large
Hierarchies,” in Graph Drawing (GOODRICH, M. T. and KoBourov, S. G.,
eds.), no. 2528 in Lecture Notes in Computer Science, pp. 268-275, Springer
Berlin Heidelberg, Aug. 2002.

[223] T1BCO SOFTWARE, “Spotfire.” http://spotfire.tibco.com/.

255

224]

[225]
[226]

[227]

[228]

[229]

230]

[231]

[232]

[233]

[234]

[235]

ToUCHGRAPH, LLC, “TouchGraph Navigator 2.7
http://www.touchgraph.com /navigator.

TRIFACTA INC., “Vega.” http://trifacta.github.io/vega/.

Ts1ARAS, V., TRIANTAFILOU, S., and Toruis, I. G., “Treemaps for Directed
Acyclic Graphs,” in Graph Drawing (HONG, S.-H., NI1sHIZEKI, T., and QUAN,
W., eds.), no. 4875 in Lecture Notes in Computer Science, pp. 377-388, Springer
Berlin Heidelberg, Sept. 2007.

Tu, Y. and SHEN, H.-W., “Visualizing Changes of Hierarchical Data us-

ing Treemaps,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, pp. 1286-1293, Nov. 2007.

Tu, Y. and SHEN, H.-W., “Balloon Focus: a Seamless Multi-Focus+Context
Method for Treemaps,” IEEE Transactions on Visualization and Computer
Graphics, vol. 14, pp. 1157-1164, Nov. 2008.

TurTE, E. R., Envisioning information. Cheshire, Conn.: Graphics Press,
1995.

TurTLE, C., NONATO, L., and Siwva, C., “PedVis: A Structured, Space-
Efficient Technique for Pedigree Visualization,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 16, pp. 1063-1072, Nov. 2010.

UpsoN, C., FAULHABER, T.A., J., KaMINs, D., LAIDLAW, D., SCHLEGEL,
D., VrRoowMm, J., GUrRwITZ, R., and VAN DaM, A., “The application visual-
ization system: a computational environment for scientific visualization,” Com-
puter Graphics and Applications, IEEFE, vol. 9, pp. 30 —42, July 1989.

VAN DEN ELZEN, S. and vAN WUK, J., “Multivariate Network Exploration
and Presentation: From Detail to Overview via Selections and Aggregations,”
IEEFE Transactions on Visualization and Computer Graphics, vol. 20, pp. 2310—
2319, Dec. 2014.

VAN HaMm, F., vAN DE WETERING, H., and vAN WUK, J., “Visualization

of state transition graphs,” in IEEE Symposium on Information Visualization,
2001. INFOVIS 2001, pp. 59-66, 2001.

VAN HaMm, F. and vAN WK, J., “Beamtrees: compact visualization of large
hierarchies,” in IEEE Symposium on Information Visualization, 2002. INFO-
VIS 2002, pp. 93-100, 2002.

VAN HAwM, F., WATTENBERG, M., and VIEGAS, F., “Mapping Text with
Phrase Nets,” IEEE Transactions on Visualization and Computer Graphics,
vol. 15, pp. 11691176, Nov. 2009.

256

[236]

1237]

238

239

[240]
[241]

[242]

[243)

[244]

[245]
[246]
[247]

248]

[249]

VAN WK, J. and VAN DE WETERING, H., “Cushion treemaps: visualization

of hierarchical information,” in 1999 IEEE Symposium on Information Visual-
ization, 1999. (Info Vis ’99) Proceedings, pp. 73-78, 147, 1999.

VIEGAS, F., WATTENBERG, M., vAN HaAwMm, F., Kriss, J., and McKEON,
M., “ManyEyes: a Site for Visualization at Internet Scale,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 13, pp. 1121 —1128, Dec. 2007.

VoicT, M., PIETSCHMANN, S., GRAMMEL, L., and MEINER, K., “Context-
aware Recommendation of Visualization Components,” pp. 101-109, Jan. 2012.

VOORHEES, E. M., “Implementing agglomerative hierarchic clustering algo-
rithms for use in document retrieval,” Information Processing €& Management,
vol. 22, pp. 465-476, Jan. 1986.

W3C, “SVG Specification.”

Wanag, W., WaNG, H., Da1, G., and WANG, H., “Visualization of Large
Hierarchical Data by Circle Packing,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’06, (New York, NY, USA),
pp- 517-520, ACM, 2006.

WARE, C. and FRANCK, G., “Evaluating Stereo and Motion Cues for Visu-
alizing Information Nets in Three Dimensions,” ACM Trans. Graph., vol. 15,
pp. 121-140, Apr. 1996.

WATTENBERG, M., “Arc Diagrams: Visualizing Structure in Strings,” in Proc.
of IEEE Infovis 2002, pp. 110 —116, 2002.

WATTENBERG, M., “Visual Exploration of Multivariate Graphs,” in Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
06, (New York, NY, USA), pp. 811-819, ACM, 2006.

WICKHAM, H., ggplot2 Elegant Graphics for Data Analysis. Use R!, New York,
NY, USA: Springer, 2009. DOI: 10.1007/978-0-387-98141-3.

WickHAM, H., “A Layered Grammar of Graphics,” Journal of Computational
and Graphical Statistics, vol. 19, no. 1, pp. 3-28, 2010.

WILKINSON, L., The grammar of graphics. New York: Springer, 2005.

WILLS, G., “Selection: 524,288 ways to say ldquo;this is interesting rdquo;,”
in Proceedings IEEE Symposium on Information Visualization '96, pp. 54—60,
120, Oct. 1996.

WonNG, N., CARPENDALE, S., and GREENBERG, S., “Edgelens: an interac-
tive method for managing edge congestion in graphs,” in IEEE Symposium on
Information Visualization, 2003. INFOVIS 2003, pp. 51-58, Oct. 2003.

257

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

259

260]

1261]

WonNa, N. and CARPENDALE, S., “Supporting interactive graph exploration
using edge plucking,” vol. 6495, pp. 649508-649508-12, 2007.

Wona, P. C., Foore, H., MAckeEy, P., CHIN, G., SoriA, H., and
THOMAS, J., “A Dynamic Multiscale Magnifying Tool for Exploring Large
Sparse Graphs,” Information Visualization, vol. 7, pp. 105-117, June 2008.

Wonag, P. C., MAckEY, P., PERRINE, K., EAGAN, J., FOOTE, H., and
THOMAS, J., “Dynamic visualization of graphs with extended labels,” in IEFEE
Symposium on Information Visualization, 2005. INFOVIS 2005, pp. 73-80,
Oct. 2005.

WONGSUPHASAWAT, K., MORITZ, D., ANAND, A., MACKINLAY, J., HOWE,
B., and HEER, J., “Voyager: Exploratory Analysis via Faceted Browsing of Vi-
sualization Recommendations,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 22, pp. 649658, Jan. 2016.

Woob, J. and DYKES, J., “Spatially Ordered Treemaps,” IEEE Transactions
on Visualization and Computer Graphics, vol. 14, pp. 1348-1355, Nov. 2008.

Woob, J., ISENBERG, P., ISENBERG, T., DYKES, J., BOUKHELIFA, N.,
and SLINGSBY, A., “Sketchy Rendering for Information Visualization,” IFEE
Transactions on Visualization and Computer Graphics, vol. 18, pp. 27492758,
Dec. 2012.

WOODRUFF, A., OLSTON, C., AIKEN, A., CHU, M., ERCEGOVAC, V., LIN,
M., SPALDING, M., and STONEBRAKER, M., “DataSplash: A Direct Manipu-
lation Environment for Programming Semantic Zoom Visualizations of Tabular
Data,” J. of Visual Languages & Computing, vol. 12, pp. 551-571, Oct. 2001.

X1A0, L., YEH, R., and HANRAHAN, P., “Flow map layout,” in IEEE Sym-
postum on Information Visualization, 2005. INFOVIS 2005, pp. 219-224, Oct.
2005.

XIONG, R. and BRITTAIN, E., “LiveWeb: Visualizing Live User Activities
on the Web,” in ACM SIGGRAPH 99 Conference Abstracts and Applications,
SIGGRAPH 99, (New York, NY, USA), pp. 254—, ACM, 1999.

Y1, J. S., ELmqQvisT, N., and LEE, S., “TimeMatrix: Analyzing Temporal
Social Networks Using Interactive Matrix-Based Visualizations,” International
Journal of Human-Computer Interaction, vol. 26, pp. 1031-1051, Nov. 2010.

ZHAO, S., McGUFFIN, M., and CHIGNELL, M., “Elastic hierarchies: com-
bining treemaps and node-link diagrams,” in IEEE Symposium on Information

Visualization, 2005. INFOVIS 2005, pp. 57-64, Oct. 2005.

Zuou, H., Yuan, X., Cui, W., Qu, H., and CHEN, B., “Energy-Based
Hierarchical Edge Clustering of Graphs,” in Visualization Symposium, 2008.
PacificVIS 08. IEEE Pacific, pp. 55-61, Mar. 2008.

258

[262] Z1EGLER, L., Kunz, C., BOTSCH, V., and SCHNEEBERGER, J., “Visualiz-
ing and exploring large networked information spaces with matrix browser,”
in Sizth International Conference on Information Visualisation, 2002. Proceed-
ings, pp. 361-366, 2002.

259

