
GRAPH-LEVEL OPERATIONS:
A HIGH-LEVEL INTERFACE FOR GRAPH

VISUALIZATION TECHNIQUE SPECIFICATION

A Thesis
Presented to

The Academic Faculty

by

Charles D. Stolper

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Computer Science

School of Interactive Computing
Georgia Institute of Technology

December 2016

Copyright c� 2016 by Charles D. Stolper

GRAPH-LEVEL OPERATIONS:
A HIGH-LEVEL INTERFACE FOR GRAPH

VISUALIZATION TECHNIQUE SPECIFICATION

Approved by:

John Stasko, Advisor
School of Interactive Computing
Georgia Institute of Technology

Rahul Basole
School of Interactive Computing
Georgia Institute of Technology

Duen Horng (Polo) Chau, Co-Advisor
School of Computational Science and
Engineering
Georgia Institute of Technology

Alex Endert
School of Interactive Computing
Georgia Institute of Technology

James Foley
School of Interactive Computing
Georgia Institute of Technology

Jarke J. van Wijk
Dept. of Math and Computer Science
Eindhoven University of Technology

Date Approved: 9 August 2016

For Tory,

my sister,

my favorite one.

iii

ACKNOWLEDGEMENTS

I, and therefore this thesis, have benefited from the advice, encouragement, time,

and skill of so many over the course of my five years at Georgia Tech, let alone my

twenty-three before that. Everyone I am about to mention (and plenty that I had to

leave out) deserve far more than my brief thanks here.

Thank you to my parents (Charlie and Christy), my sister (Tory), my grandfathers

(Dave and Max), and my family (Ted, Paige, Pierce, Tim, Lori, Tona, and Bob) who

have loved, encouraged, and supported me my whole life.

Thank you to the B-105 women (Amy, Mary Katherine, Mary Leah, May Lauren,

and Cissy) for adopting me seven and a half years ago and the resulting hugs, smiles,

encouragement, and food. Thank you to Sara, Caitlin, Lauren, Justin, Katie, Rachel,

Courtney, and Bobby for all the fun. Thank you to Kate, Sam, and the MDP crew for

the same. Thank you to Jon and the rest of the CoC/EES frisbee teams over the years

and Nolan, Qiyu, Jeremy, and the rest of the pickup gang for the exercise, fun, and an

all-school championship. Thank you to Lacy for always listening and for occassionally

telling me that I am an idiot. Thank you to Daniel for the conversations about sports,

grad school, and engineering. Thank you to Aayush, Guarav, Nasser, Brad, Brad,

Cody, and Brendan for being such great roommates over the years. Thank you to

Paul, Angelica, J-D, Kim, and Verun for the board game nights. Thank you to Jon

for all the Red Sox games. Sam and Mark, you two are my oldest friends, and my life

has only been better because of you. Thank you to Paul and Koh for the tech talk,

the jokes, and the far-too-infrequent reunions.

Sarah, Ben, Miranda, Emily, Heather, Jess, Casey, David, Mariam, Kim, Cather-

ine, Hank, Chris, Emma, Yacin, Andrew, and the rest of the Happy Hour, Tailgating,

iv

and TSRB crews: Someday I will write a thousand words about how much you all

mean to me. You all were my lifeline throughout my entire time in Atlanta. I could

never have done this without you.

Thank you to Kayla for being my partner in first-time ethics educating. Thank

you to Gabriel for surviving quals with me, snowstorm slumber parties, beautiful

lakeside weddings, and giant bear hugs. Thank you to Bri for the lunches, the rants,

the high fives, and for joining me in panicking over and then hitting every milestone

in the PhD and job search processes. Thank you to Maia for being my secretkeeper

and, of course, for Friends. Thank you to Emily for never letting me forget that

she will always be one of my closest friends. Thank you to Prateek for the puzzles,

karaoke, board games, lifting, countless stories, and sprinting to the finish with me.

Thank you to Lydia for helping me check o↵ nearly my entire Atlanta bucket list

while also getting me to write this thesis. Thank you to my roommate Matt for

being an amazing friend and my externalized common sense. Thank you to Arya for

the random meals, the random video games, the random conversations, and for the

random round of Rock Band that helped my decision to come to Georgia Tech in

the first place. Brian, thank you for the football games, baseball talk, ca↵eine, and

always telling me that I could do it. Max, thank you for epic road trips, epic games

of telephone tag, and for listening to everything.

Thank you to everyone who has ever shared the Interactive Interfaces Lab (and the

GT Vis Lab, when it formed) with me over the years, including Youn-ah, Mengdie,

Ramik, Yi, Julian, Jaegul, Tanyoung, Rosa, HP, Hannah, Anand, Sanjay, Bahador,

John, Melanie, Alexander, Sakshi, Arjun, Emily, Valentino, Swarnika, Andrew, and

Ari. Thank you to those that came before me who were happy to share their advice,

wisdom, and friendship: Carsten, Chris, James, Duke, Ji Soo, Scott, and Dorn.

Thank you to Leo for being my friend, mentor, and inspiration since Day 1. Thank

you to everyone in the Polo Club for Data Science. Special thanks especially to Jerry,

v

Florian, and Aakash for being wonderful as well as for all of your work with GLOv1

and GLO-STIX. Even more thanks to Brian for the same, and also for helping revise

the paper while on your honeymoon. Thank you to the XDATA team (Je↵, Roni,

Curt, Arvind, Alex, Alex, Hendrik, and Kris) for your feedback on early designs of

GLOs. Thank you to all of my VIS, SIGCSE, and internship friends. Thank you

to Joyce for the Summer of NY Baseball. Thank you to Joseph for the discussions

on visualization languages, dancing, and getting me a glass of water. Thank you to

Eli for the food, the advice, and the hugs. Thank you to Robert for being a friend,

a labmate, a sounding board, and a stand-up comic and for the pleasure of sharing

five years at Tech with you. Thank you to Alex for being my labmate, my sounding

board, my sage, and one of my dearest friends and confidants. Thank you to Hannah

for the lifelong friendship that can only be forged in the furnace that is the first years

of a PhD.

Thank you to all of my mentors over the years at Thoreau, Sandborn, Fessenden,

Concord Academy, and Furman. Thank you to Ben Stumpf for the advice, especially

to write in a text editor with spell-check turned o↵. Thank you to Bill Adams for

teaching me Java and the basics of computer science and starting me on this crazy

path. Thank you to Craig Caldwell, John Barrington, Tim Fehler, David Spear,

and Lane Harris for the classes, academic life conversations, and grudging acceptance

that I was not going to get a PhD in History. Thank you to Kala Kennemore for

all of the help and smiles. Thank you to Chris Healy, Bryan Catron, John Harris,

and Mark Woodard without whose excellent computer science and math education I

could never have attended Georgia Tech, let alone done the work I have done. Thank

you to Kevin Treu for his mentorship and friendship, as much during my time at

Furman as since I graduated. A huge thanks to Hayden Porter for pulling me aside

in October of my freshman year and recruiting me to do a research project with him.

It was related to graph visualization. I clearly still haven’t looked back.

vi

Thank you to Stuart Rose, Court Corley, and the Visual Analytics group at PNNL,

Adam Perer, David Gotz, and the Healthcare Analytics group at IBM, Bongshin

Lee, Nathalie Riche, and the CUE and neXus groups at MSR. Thank you for the

mentorship, advice, brainstorming, and patience. I learned so much from each of

you.

Thank you to Chris Collins and Shixia Liu and the rest of the InfoVis DC partic-

ipants for all of their advice on what would become this work.

Thank you to all of faculty and sta↵ at Georgia Tech for five incredible years.

Thank you to Monica Ross and Wanda Purinton, who are the nicest women in the

world and without whose talent and skill I am convinced IC would not function.

Thank you to Jacob Eisenstein, who taught me everything I know about machine

learning. Thank you to Keith Edwards for the smiles, the jokes, the font nerd talk,

and for declaring me Qualified. Thank you to Mark Guzdial for his mentorship in how

to teach computer science and for breaking the news early that I got into Tech. Thank

you to Amy Bruckman for being a passionate faculty voice for students. Thank you

to Annie Anton for her leadership, zeal, energy, and for inviting me into her circle of

councilors.

Finally, my most important thanks go to my patient, supportive, and brilliant

thesis committee. Jack, thank you for your dry sense of humor, spot-on probing

questions, and for finding me at the VIS reception in Paris to talk about GLOs.

Rahul, thank you as much for our conversations about soccer as our conversations

about network visualization. Alex, you could have been in any number of prior

sections here: from VIS friend, to internship mentor, to professor, and finally thesis

committee member. Thank you for being an incredible friend and mentor to me

through every stage of our relationship. Jim, you have been one of my greatest

advocates during my entire tenure at Tech. Thank you for sharing your wisdom,

experience, and humor with me. Polo, you are caring and honest and I cannot

vii

imagine the last three years without you. Thank you so much for inviting me out to

Starbucks to talk about a new way to describe graph visualization transitions. My

relationship with John can be summed up by the first time we ever met when I was

looking at grad school programs: we spent fifteen minutes talking about aspects of

visualization research I was interested in, fifteen minutes talking about aspects of

visualization research he was interested in, and fifteen minutes talking about the Red

Sox and Braves. John, thank you for everything.

Research for this thesis was funded by the National Science Foundation under

Grants No. IIS-1320537 and IIS-1563816 and the XDATA program sponsored by

DARPA and the Air Force Research Laboratory (AFRL). Prior portions of my PhD

were funded by the National Science Foundation under Grant No. CCF-0808863 and

a Department of Homeland Security Ph.D. Fellowship in Data Analysis and Visual

Analytics. The content of the information in this document does not necessarily

reflect the position or the policy of the Government, and no o�cial endorsement

should be inferred.

viii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xii

LIST OF FIGURES . xiii

I INTRODUCTION . 1

1.1 Term Definitions . 5

1.2 Thesis Statement and Research Questions 8

1.3 Contributions and Impact . 9

II BACKGROUND . 11

2.1 Visualization Toolkits and Grammars 11

2.2 Systems for Applying Techniques to Data 17

2.3 Systems for Specifying Visualization Techniques 19

2.4 Visualization Design Space Analysis 21

III A METHOD FOR GLO MODEL INDUCTION 22

3.1 Seed Technique Identification . 23

3.1.1 GLOv1 Identification . 24

3.1.2 GLOv2 Identification . 25

3.2 Transitions, GLOs, and the Transition Matrix 28

3.2.1 Semantic Substrates to PivotGraph 29

3.2.2 Force-Directed Layout to Matrix Plot 35

3.2.3 Graph-Level Operations and the Transition Matrix 41

3.2.4 Handling GLO Uncertainty 43

3.3 Inducing an Expected Data Model, Model of Visual Elements, and
Set of Graph-Level Operations from the Transition Matrix 51

3.4 Augmenting the Operations Set . 53

ix

IV THE GRAPH-LEVEL OPERATIONS MODEL 55

4.1 Graph Data Model . 55

4.2 GLO Visual Element Model . 58

4.2.1 Glyphs . 58

4.2.2 Generations . 64

4.2.3 Canvases . 68

4.2.4 GLO Display . 69

4.3 Operation Sets . 71

4.4 Language Properties of Graph-Level Operations 72

4.5 Di↵erences Between GLOv1 and GLOv2 77

4.6 Specifying Techniques Using GLOs 80

V UTILITY OF GRAPH-LEVEL OPERATIONS 85

5.1 Easing the Engineering Challenge 85

5.1.1 Implementations . 88

5.1.2 GLO-STIX . 89

5.1.3 GLO-CLI . 92

5.2 Enabling A Deeper Understanding of Techniques 93

5.2.1 Feature Space Analysis . 94

5.2.2 GLO Distance . 101

5.3 Identifying New Techniques . 102

5.3.1 Approximate Measures of GLO Expressiveness 109

VI CONCLUSION . 112

6.1 Contributions and Impact . 112

6.2 Limits of GLOs . 113

6.3 Future Research Directions . 116

APPENDIX A — GLOV1 SEED TECHNIQUES 121

APPENDIX B — GLOV2 SEED TECHNIQUES 127

APPENDIX C — GLOV1 OPERATIONS SET 176

x

APPENDIX D — GLOV2 OPERATIONS SET 182

APPENDIX E — GLOV2 LITERATURE REVIEW RESULTS . 193

APPENDIX F — HIERARCHICAL CLUSTERINGS 200

REFERENCES . 237

xi

LIST OF TABLES

1 GLOv2 seed techniques . 28

2 GLOv2 Constants . 77

3 GLOv2 operations equivalent to GLOv1 operations. 80

4 Inverse GLOs required for GLOv2 GLOs. For each GLO in the first
column that the technique specification contains, the corresponding
inverse GLO(s) in the second column must be applied to return to the
null state. 83

5 Number of GLOv2 seed technique specifications (out of 29) containing
each GLOv2 operation. 84

6 GLOv2 operations that do not appear in any GLOv2 seed technique
specifications. 84

7 Results of hierarchically clustering technique vectors created by ignor-
ing optional parameters (no-flags). 96

8 Results of hierarchically clustering technique vectors with optional pa-
rameters (flags). 97

9 Results of hierarchically clustering technique vectors created by adding
features for optional parameters (flags-xtra). 97

10 GLOv2 specification for modified NodeTrix display in Figure 62b. . . 106

11 GLOv2 specification for ‘GLO’ teaser technique in Figure 1. 108

12 GLOv2 operations unique to a single seed technique. 114

xii

LIST OF FIGURES

1 Graph-Level Operations . 1

2 Arc Diagram rendered in GLO.js. 3

3 Novel graph visualization technique combining the layout of Pivot-
Graphs [244] with the interaction of Semantic Substrates [96]. The
nodes in the graph (characters in a book) are aggregated by cluster
label (rows) and gender (column). Edges are clustered by the cluster
and gender of the source and target endpoint nodes and colored by the
target node’s cluster. These aggregated edges are only shown when the
analyst mouses over an endpoint node. 4

4 GLOv2 EdgeMap B seed technique from [74]. 24

5 First example transition techniques 29

6 GLOv2 GraphDice seed technique from [36]. 32

7 Unmodified Semantic Substrates representation. 32

8 Semantic Substrates representation modified to show all edges. 33

9 Semantic Substrates representation modified to show all edges and po-
sition nodes on x by the discrete gender attribute. 33

10 Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, and show x axis labels. . 34

11 Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, show x axis labels, and
aggregate nodes into super-nodes. 35

12 Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, show x axis labels, aggre-
gate nodes into super-nodes, and size the super-nodes by the number
of nodes they represent. 36

13 Semantic Substrates representation modified to show all edges, posi-
tion nodes on x by the discrete gender attribute, show x axis labels,
aggregate nodes into super-nodes, size the super-nodes by the number
of nodes they represent, and aggregate the edges by the edges’ source
gender, source cluster, target gender, and target cluster. 37

xiii

14 Semantic Substrates representation modified to show all edges, posi-
tion nodes on x by the discrete gender attribute, show x axis labels,
aggregate nodes into super-nodes, size the super-nodes by the num-
ber of original nodes they represent, aggregate the edges by the edges’
source gender, source cluster, target gender, and target cluster, and
size the super-edges by the number of original edges they represent. In
other words, a PivotGraph representation of the graph. 38

15 Second example transition techniques 38

16 Unmodified Force Directed Diagram representation. 39

17 Abstract Force Directed Diagram representation after evenly distribut-
ing nodes on x (a) and after evenly distributing nodes along the x axis
sorted by cluster and aligning the nodes at the top of the display. . . 39

18 Abstract Force Directed Diagram representation after evenly distribut-
ing nodes on x sorted by cluster, aligning the nodes at the top of the
display, and cloning the set of node glyphs. 40

19 Abstract Force Directed Diagram representation after evenly distribut-
ing nodes on x sorted by cluster, aligning the nodes at the top of the
display, cloning the set of node glyphs, and evenly distributing the new
nodes on y sorted by cluster without (a) and with (b) an inverted axis. 41

20 Abstract Force Directed Diagram representation after evenly distribut-
ing nodes on x sorted by cluster, aligning the nodes at the top of the
display, cloning the set of node glyphs, evenly distributing the new
nodes on y sorted by cluster with an inverted axis, and aligning the
new nodes to the left of the display. 42

21 Abstract Force Directed Diagram representation after evenly distribut-
ing nodes on x sorted by cluster, aligning the nodes at the top of the
display, cloning the set of node glyphs, evenly distributing the new
nodes on y sorted by cluster with an inverted axis, aligning the new
nodes to the left of the display, and drawing edges from the second set
of nodes (on the left) to the first set of nodes (on top). 43

22 Abstract Force Directed Diagram representation after evenly distribut-
ing nodes on x, aligning the nodes at the top of the display, cloning
the set of node glyphs, evenly distributing the new nodes on y with an
inverted axis, aligning the new nodes to the left of the display, drawing
edges from the second set of nodes (on the left) to the first set of nodes
(on top), and displaying edges as squares. In other words, the target
abstract Matrix Plot representation. 44

23 Sample abstract techniques where (⇤, technique) transition matrix en-
tries share operations. 45

xiv

24 Four abstract techniques where (⇤, technique) transition matrix en-
tries contain the evenly distribute nodes on {axis} GLO with di↵erent
mandatory parameters and optional parameters. 46

25 Abstract Arc Diagram representations with di↵erent optional sorting
parameters. 47

26 Representations with and without the optional within parameter. . . 48

27 Sample abstract techniques where (⇤, technique) transition matrix en-
tries use or do not use the group-by optional parameter. 49

28 Sample abstract techniques where (⇤, technique) transition matrix en-
tries use or do not use the group-by optional parameter including
bounding boxes determined by the Circle Graph node positions. . . . 49

29 Sample abstract techniques where (⇤, technique) transition matrix en-
tries use a group-by optional parameter to display intra-group edges
di↵erently than inter-group edges. 50

30 The GLOv2 position nodes by {attr} operation positions node glyphs
evenly along the axis with discrete parameters and relatively along the
axis with continuous parameters. 52

31 GLOv2 GMap seed technique from [94]. 53

32 GLOv2 CiteVis seed technique based on [213]. 54

33 Demonstration of axis uncertainty. 54

34 GLOv2 seed techniques with di↵ering node and edge glyph displays. . 59

35 GLOv2 EdgeMap B seed technique from [74]. 59

36 GLOv2 Citevis seed technique based on [213]. 61

37 GLOv2 Force-Directed Layout seed technique and GLOv2 GMap seed
technique. The straight-line edge glyphs in the Force-Directed Layout
have the show all edges interaction mode, while the straight-line edge
glyphs in the GMap technique have the show faded interaction mode. 62

38 GLOv2 Semantic Substrates seed technique from [204] with edge glyphs
in the show incident edges display mode. 62

39 GLOv2 List View seed technique from [199]. Edge glyphs utilize the
show faded-and-incident interaction mode. 63

40 GLOv2 EdgeMap A and Edgemap B seed techniques from [74]. Both
techniques utilize the in-out edges interaction mode where in edges of
the selected node are displayed di↵erently from out edges. 64

xv

41 GLOv2 Edge-Label-Centric seed technique from [182]. The red straight-
line edges are drawn from the source generation on the left to the target
generation on the right through the waypoint generation of super-edge
glyphs in the center. 67

42 GLOv2 MatLink seed technique from [118] demonstrates source and
target node generations. 67

43 GLOv2 ScatterNet seed technique from [27] demonstrates axis labels. 69

44 GLOv2 MatrixExplorer seed technique from [116] demonstrates canvas
partitioning within a GLO Display. 69

45 GLOv2 Attribute Matrix seed technique from [153] demonstrates filter-
partitioning canvases and meta-axis labels. 70

46 GLOv2 GMap seed technique from [94] utilizing convex hulls. 72

47 GLOv2 DOSA seed technique from [232] utilizes the all-canvases op-
tional parameter. 74

48 Evenly distribute nodes on {x} with and without a within attribute. . 75

49 Align nodes {center} with and without a group-by attribute. 76

50 (a) Force-Directed Layout, (b) Force-Directed Layout after applying
hide edges, (c) Force-Directed Layout after applying hide edges and
show all edges (group-by: {cluster}) 76

51 (a) GLOv1 Adjacency Matrix seed technique with circles for edges and
(b) equivalent Adjacency Matrix in GLOv2 with squares for edges. . . 79

52 Force-Directed Layout, Matrix Plot, and EdgeMap A techniques ren-
dered in GLO.js. 81

53 Visualization software stack . 86

54 The GLO-STIX interface. 90

55 The GLO-CLI interface. 92

56 Dendrogram results for three hierarchical clustering using three vector-
ization methods, Hamming distance, and average cluster comparison
rendered using Matplotlib [129]. 99

57 GLOv2 NodeTrix seed technique from [117]. 100

58 GLOv2 seed techniques clustered by symmetric transition distance ren-
dered with GLO.js. On the left, edges are colored by the one-way tran-
sition distance. On the right, edges are colored by the symmetric sum
of the transition distances. Rendered using GLO.js 102

xvi

59 Clusters visible in the symmetric GLO Distance matrix. 103

60 Novel graph visualization technique combining the layout of Pivot-
Graphs [244] with the interaction of Semantic Substrates [96]. 104

61 Example of a minor tweak to a seed technique by changing the Force-
Directed Layout seed technique’s edge display mode to curved lines. . 105

62 NodeTrix [117] GLOv2 seed technique and modified NodeTrix display
with nodes colored by cluster, intra-cluster edges colored by a constant,
faded intra-cluster edges, and highlighting intra-cluster edges incident
to a selected node created using GLO.js. 105

63 Arc Diagram [243] created using GLOv1 within GLO-STIX. 107

64 Matrix Plot and MatLink [118] techniques rendered in GLO.js. Tran-
sitioning between these two techniques is more e�cient without tran-
sitioning through an intermediate null state. 114

65 Single technique defined using two distinct specifications. 115

66 Examples of edge bundling from [120]. 118

67 Bring-and-Go interaction from [166]. 119

68 GLOv1 force-directed layout seed technique. 121

69 GLOv1 circle plot seed technique. 122

70 GLOv1 scatterplot seed technique. 123

71 GLOv1 semantic substrates [204] seed technique. 124

72 GLOv1 PivotGraph [244] seed technique. 124

73 GLOv1 adjacency matrix seed technique. 125

74 GLOv2 Force-Directed Layout seed technique from [138]. 128

75 Force-directed layout [138] rendered in GLO.js. 128

76 GLOv2 Matrix Plot seed technique from [34]. 129

77 Approximate matrix plot [34] rendered in GLO.js. 129

78 GLOv2 Cluster Circles seed technique from [69]. 131

79 Cluster circles [69] rendered in GLO.js. 131

80 GLOv2 Circle Graph seed technique from [207]. 132

81 Circle graph [207] rendered in GLO.js. 132

82 GLOv2 GeneVis A seed technique from [23]. 133

xvii

83 Genevis A [23] rendered in GLO.js. 134

84 GLOv2 GeneVis B seed technique from [23]. 135

85 Approximate Genevis B [23] rendered in GLO.js. 135

86 GLOv2 Arc Diagram seed technique from [141]. (Specifically the ‘con-
tributor coloring’ subfigure.) . 136

87 Arc diagram [141] rendered in GLO.js. 136

88 GLOv2 Matrix Browser seed technique from [262]. 137

89 GLOv2 Matrix with Bars seed technique from [205]. 139

90 GLOv2 MatrixExplorer seed technique from [116]. 140

91 Approximate MatrixExplorer [116] rendered in GLO.js. 141

92 GLOv2 NetLens seed technique from [140]. 143

93 GLOv2 Semantic Substrates seed technique from [204]. 145

94 Semantic Substrates [204] rendered in GLO.js. 145

95 GLOv2 PivotGraph seed technique from [244]. 146

96 PivotGraph [244] rendered in GLO.js. 147

97 GLOv2 MatLink seed technique from [118]. 148

98 Approximate MatLink [118] rendered in GLO.js. 148

99 GLOv2 List View seed technique from [199]. 150

100 List view [199] rendered in GLO.js. 151

101 GLOv2 Edge-Label-Centric seed technique from [182]. 152

102 GLOv2 Honeycomb seed technique from [106]. 154

103 Approximate Honeycomb [106] rendered in GLO.js. 154

104 GLOv2 GraphDice Segment seed technique from [36]. 156

105 GraphDice segment [36] rendered in GLO.js. 156

106 GLOv2 GraphDice seed technique from [36]. 157

107 Approximate 3x3 GraphDice [36] rendered in GLO.js. 157

108 GLOv2 GMap seed technique from [94]. 159

109 GLOv2 Attribute Matrix seed technique from [153]. 160

110 GLOv2 EdgeMap A seed technique from [74]. 161

xviii

111 Approximate EdgeMap A [74] rendered in GLO.js. 162

112 GLOv2 EdgeMap B seed technique from [74]. 163

113 Approximate EdgeMap B [74] rendered in GLO.js. 163

114 GLOv2 Hive Plot seed technique from [144]. 164

115 Hive Plot [144] rendered in GLO.js. 165

116 GLOv2 Hive Panel seed technique from [144]. 166

117 2x3 Hive Panel [144] rendered in GLO.js. 166

118 GLOv2 ScatterNet seed technique from [27]. 168

119 ScatterNet [27] rendered in GLO.js. 168

120 GLOv2 Citevis seed technique based on [213]. 169

121 Citevis [213] rendered in GLO.js. 170

122 GLOv2 DOSA seed technique from [232]. 171

123 Approximate DOSA [232] rendered in GLO.js. 171

124 GLOv2 NodeTrix seed technique from [117]. 173

125 Approximate NodeTrix [117] rendered in GLO.js. 173

126 SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using average method and Hamming distance. 201

127 SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using weighted method and Hamming distance. 202

128 SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using weighted method and Jaccard distance. 203

129 SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using complete method and Hamming distance. 204

130 SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using average method and cosine distance. 205

131 SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using average method and Jaccard distance. 206

132 SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using complete method and Jaccard distance. 207

133 SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using weighted method and cosine distance. 208

xix

134 SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using complete method and cosine distance. 209

135 SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using single method and Hamming distance. 210

136 SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using single method and Jaccard distance. 211

137 SciPy hierarchical clustering of GLO-Vectors without optional param-
eters using single method and cosine distance. 212

138 SciPy hierarchical clustering of GLO-Vectors with optional parameters
using average method and Hamming distance. 213

139 SciPy hierarchical clustering of GLO-Vectors with optional parameters
using weighted method and Hamming distance. 214

140 SciPy hierarchical clustering of GLO-Vectors with optional parameters
using complete method and Hamming distance. 215

141 SciPy hierarchical clustering of GLO-Vectors with optional parameters
using single method and Hamming distance. 216

142 SciPy hierarchical clustering of GLO-Vectors with optional parameters
using average method and cosine distance. 217

143 SciPy hierarchical clustering of GLO-Vectors with optional parameters
using weighted method and cosine distance. 218

144 SciPy hierarchical clustering of GLO-Vectors with optional parameters
using weighted method and Jaccard distance. 219

145 SciPy hierarchical clustering of GLO-Vectors with optional parameters
using average method and Jaccard distance. 220

146 SciPy hierarchical clustering of GLO-Vectors with optional parameters
using single method and Jaccard distance. 221

147 SciPy hierarchical clustering of GLO-Vectors with optional parameters
using single method and cosine distance. 222

148 SciPy hierarchical clustering of GLO-Vectors with optional parameters
using complete method and Jaccard distance. 223

149 SciPy hierarchical clustering of GLO-Vectors with optional parameters
using complete method and cosine distance. 224

150 SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using average method and Hamming distance. . 225

xx

151 SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using weighted method and Hamming distance. 226

152 SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using complete method and Hamming distance. 227

153 SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using average method and cosine distance. . . . 228

154 SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using average method and Jaccard distance. . . 229

155 SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using weighted method and cosine distance. . . 230

156 SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using weighted method and Jaccard distance. . 231

157 SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using single method and Hamming distance. . . 232

158 SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using complete method and cosine distance. . . 233

159 SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using complete method and Jaccard distance. . 234

160 SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using single method and Jaccard distance. . . . 235

161 SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using single method and cosine distance. 236

xxi

CHAPTER I

INTRODUCTION

Figure 1: Graph-Level Operations

More and more the world is being described as networks—as connections between

people, places, and ideas. Businesses share technology and ideas [27], friends commu-

nicate with each other [108], and authors frequently use pairs of words together [235].

Networks (or graphs, as the data structure is often called) provide a richer model than

simply understanding each item in isolation. Identifying corporations that produce

a critical component, or mutual friends amongst acquaintances, or topically-related

terms are all key tasks for those analyzing, exploring, or studying these domains and

all benefit from an understanding of the underlying connections. Meanwhile, data

visualization has long provided tools for better making sense of data [52, 84]. Visu-

alization harnesses the human visual processing system’s ability to rapidly translate

representation into cognition. Graph visualization, as one might expect, applies the

tools and methods of visualization to graph data [119].

No single representation of a graph (visual or otherwise) is the perfect fit for every

1

graph analysis task. Over the years, researchers have developed a wide variety of

graph visualization techniques for helping analysts solve their wide variety of analysis

tasks. Though the breadth of techniques represents solutions to a panoply of tasks,

it introduces a new issue: complexity. So many techniques introduces complexity in

comparing techniques in an objective way and engineering complexity of implementing

so many techniques. In this dissertation, I introduce a class of models for graph

visualization, graph-level operations models (or GLO models) [216], as an elegant

solution to this complexity. The crux of a GLO model is recognizing that there are

common features among graph visualization techniques. Similar to understanding a

watch by taking it apart, by identifying these commonalities we can better understand

the techniques themselves. We can also use these shared properties to abstract away

many of the details usually required to specify techniques, instead recognizing an

e↵ective “mid-level” between low-level graphics code and high-level techniques.

A graph-level operations model (GLO model) is a domain-specific language (DSL)

defined around these commonalities. A GLO model consists of two parts: a model of

the visual elements of graph visualization and a set of functions (called graph-level

operations, operations, or GLOs) for manipulating those elements. Each operation

encapsulates a manipulation of some aspect of a graph visualization. Such aspects

include:

• the position of node and edge glyphs

• visual properties of glyphs (e.g. color and size)

• glyph interactivity (e.g. highlighting incident edges or neighbors of a selected

node)

• the underlying data (e.g. through aggregating nodes or edges)

For example, one operation may position all of the glyphs representing the nodes

along an axis based upon an attribute of the nodes; another might adjust all of the

edge glyphs to use counter-clockwise Bézier curves rather than using straight lines

2

between the nodes associated with the edge; a third might be to apply a force-directed

layout algorithm to the node glyphs.

Figure 2: Arc Diagram rendered in GLO.js.

Using GLOs, one can then define graph visualization techniques using ordered lists

of these operations. For example, the Arc Diagram [243, 141] depicted in Figure 2 is

defined as:

• display nodes as circles

• size nodes by constant

• color nodes by {node-color-attr}

• align nodes {middle}

• display edges as curved lines

• size edges by constant

• color edges by {target.node-color-attr}

• show all edges

• evenly distribute nodes on x (sort-by:{sort-attr})

These software-environment-independent definitions can then be used by develop-

ers to simplify adding additional visualization techniques to graph analysis systems,

3

thereby providing analysts with a wider variety of tools and solutions. These defi-

nitions also enable researchers exploring the space of graph visualizations to have a

concrete means of comparing techniques, which simplifies identifying clusters amongst

techniques or identifying aspects of visualizations that correlate to better results

on analysis tasks. Finally, having a set of building-blocks enables visualization re-

searchers to identify novel, e↵ective graph visualization techniques. As a very simple

example, one can combine the grid-based layout, node and edge aggregation, and

curved edge display of a PivotGraph [244] with the interaction of only showing inci-

dent edges of Semantic Substrates [204] to create a novel visual representation to see

interactions between clusters while minimizing the occlusion of edges (Figure 3).

Figure 3: Novel graph visualization technique combining the layout of Pivot-
Graphs [244] with the interaction of Semantic Substrates [96]. The nodes in the graph
(characters in a book) are aggregated by cluster label (rows) and gender (column).
Edges are clustered by the cluster and gender of the source and target endpoint nodes
and colored by the target node’s cluster. These aggregated edges are only shown when
the analyst mouses over an endpoint node.

This dissertation presents the methods and results of my work inducing two graph-

level operations models from sets of canonical graph visualization seed techniques. I

presented the initial work on GLOs at IEEE Infovis 2014 [216]. In that work, I and my

colleagues identified the model necessary to specify 6 hand-picked seed techniques.

In this dissertation, I refer to the results of that work as GLOv1. In subsequent

4

research, I performed a similar induction process with a set of 29 seed techniques

resulting from a literature review of 430 graph visualization publications. I refer to

model resulting from that work as GLOv2.

For the remainder of this chapter, I will specifically define common terminology

that I will be using throughout this dissertation. I will then state the thesis of my

research and the research questions that I addressed over the course of this work.

Finally, I will present the contributions the work presented here.

1.1 Term Definitions

Before I move forward, let me specify terminology I will be using throughout this

dissertation. For those that work with graphs and with visualization toolkits, these

definitions will be standard, but I include them here for completeness. In a few cases,

this is to clarify which definition I will be using when there are di↵ering common

interpretations of a term.

• Graphs are a data structure consisting of a set of nodes (or vertices) and

a set of relationships between these nodes called edges (or links). The nodes

associated with an edge are called endpoints of the edge. A subgraph is a

subset of these nodes and a subset of these edges. Graphs can be directed

(each edge has a distinct source node and target node) or undirected (each

edge has two associated nodes, but the order does not matter). In the case of

directed graphs, an edge is an out-edge of the source and an in-edge of the

target. In the case of undirected graphs, each edge is both and in-edge and an

out-edge of its associated vertices. The in-nodes of a vertex are the source

nodes of all of the vertex’s in-edges and the out-nodes are all of the target

nodes of the vertex’s out-edges. The neighborhood of a vertex is the union

of the vertex’s in-nodes and out-nodes. The degree of a node is the size of its

neighborhood, while its in-degree and out-degree are the sizes of its in-node

5

set and out-node set, respectively. A self-edge is an edge where both endpoints

are the same node. Nodes and edges might have attributes (or properties)

that define more information about the data.

• A visualization technique consists of the method for mapping raw data

to visual primitives (or glyphs or marks) and positioning those primitives

into a representation (or visualization) as well as a specification for any

interactive capabilities. For example, a bar chart creates a rectangular glyph

for each data item and maps the length of that bar to a chosen quantitative

attribute of the data item. The bars are aligned along a single axis and then

evenly distributed over the perpendicular axis. A bar chart often does not have

any interaction associated with it, though an alternative technique might include

highlighting the bar when the user hovers over it. A second alternative might

show a tooltip when the user mouses over the bar. A graph visualization

technique is a visualization technique where the input data is expected to be

a graph data structure.

• An Embedded Domain-Specific Language is a focused API built upon an

existing programming language (called the host or host language). While the

specifics can di↵er, the embedded language often uses the host language’s op-

erators and syntax, but with additional method names, operators, or reserved

words. In other cases, such as regular expressions or number formatting lan-

guages, the embedded language is independent of the host language, except that

the parser for the embedded language is implemented in the host language in

order to interact with the rest of the code. A GLO model is of the latter variety:

a set of functions that each implementation can adapt to the host language’s

conventions.

• Low-level graphics code manipulates the graphical primitives of a host lan-

guage’s graphics system. For example, manipulating Scalable Vector Graphics

6

(SVG) elements in a web-based visualization system or Swing elements in a

Java-based visualization system. This code is written in the host language.

Low-level visualization toolkits are domain-specific languages for manipu-

lating these primitives. These languages provide a layer of abstraction, simpli-

fying the code necessary to specify aspects of a visualization. Examples include

D3.js and prefuse.

• The expressiveness of a language or model describes how much the language

or model can represent. In other words, what can the language or model define

and what cannot be defined using the model.

• A language is portable if code written in the language can be run in a vari-

ety of environments. Since I will be discussing an embedded domain-specific

language, I will be referring to portability between host software environments

such as Javascript with SVG graphics, Javascript with Canvas graphics, Java

with Swing graphics, or python with tcl/tk graphics. In other words, portable

DSL code be run on interpreters written in a variety of host languages.

• Finally, throughout the visualization software stack are a variety of di↵erent

classes of user, of which three are notable with respect to GLOs. A program-

mer or developer writes the code that will either generate visualizations or the

software that presents visualizations within a larger application. A designer

defines visualization techniques, i.e. specifies how data is mapped to marks. An

analyst is someone who wishes to generate insights from a collection of data.

In other words, an analyst is a user of a visualization. These three categories

are not mutually exclusive. Some designers are skilled programmers; some an-

alysts have strong design skills; many analysts have programming experience.

However, when discussing various tasks, I will be specific about which type of

user needs to accomplish that task and target the solution to them.

7

1.2 Thesis Statement and Research Questions

Thesis Statement The graph-level operations (GLO) model consists of a visual

element model and a set of high-level functions that harness commonalities between

graph visualization techniques. This model enables e↵ectively describing graph vi-

sualizations, simplifying graph visualization engineering, more deeply understanding

graph visualization techniques, and discovering novel graph visualization techniques.

RQ1 What are the elements of a portable, expressive, high-level model for

graph visualization? In Chapter 3, I describe a method for inducing a high-level

model for graph visualization (a GLO model) from a set of canonical graph visualiza-

tion seed techniques and describe two such sets of seed techniques. In Chapter 4, I

describe the resulting GLO models (GLOv1 and GLOv2) each consisting of a model of

visual elements and a set of operations for manipulating those elements, and I define

how to use GLOs as a specification language for graph visualization techniques.

RQ2 What is the utility of a such a model? In Chapter 5, I describe three

use cases of a GLO model: simplifying graph visualization engineering, more deeply

understanding the design space of graph visualization techniques, and identifying

novel graph visualization techniques. In Chapter 6, I consider further applications of

GLO models and research opportunities introduced by GLO models.

RQ3 Does the model work in practice as well as in theory? In Chapter 5,

I describe Javascript and SVG implementations of the GLOv1 and GLOv2 models

and describe two applications built using the implementations (GLO-CLI and GLO-

STIX).

RQ4 What are the bounds on the model’s expressiveness? In Chapter 4, I

show how a GLO model can express its seed techniques. In Chapter 5, I describe how

8

GLOs can express novel techniques and I approximately quantify the expressiveness of

the GLOv1 and GLOv2 models and my GLO.js Javascript implementation of GLOv2.

In Chapter 6, I briefly discuss possible limits on the expressiveness of the GLO model

and the generalizability of the model.

1.3 Contributions and Impact

This dissertation contributes to (and provides a direct impact on) five facets of graph

visualization research and practice: models, analysis methods, software, techniques,

and education.

Models I present a novel class of graph visualization model, the graph-level oper-

ations model (GLO model). I introduce a method for inducing a model from a set

of canonical seed techniques in Chapter 3 as well as two instances of GLO models

(GLOv1 and GLOv2) and a means of defining techniques using the model in Chap-

ter 4. I include definitions for the 6 hand-picked GLOv1 seed techniques and the

29 GLOv2 seed techniques selected by means of a review of 430 graph visualization

publications in Appendices C and D. All of the following additional contributions

stem from the GLO model.

Analysis Methods The GLO model represents a giant leap forward in our abil-

ity to easily and e↵ectively compare and cluster graph visualization techniques. To

demonstrate this, I introduce GLO-based methods for reducing techniques to vector

representations as well as a novel GLO-based distance metric for techniques in Chap-

ter 5. Furthermore, GLO models open numerous avenues for future research into the

design space of graph visualization. I list a sample of these avenues in Chapter 6.

Open-Source Software GLOmodels significantly reduce the engineering overhead

of incorporating a wide range of graph visualization techniques into graph analysis

9

software. I have developed the GLO.js graph visualization toolkit to easily incorpo-

rate a large variety of graph visualization techniques into web-based graph analysis

software. I have used the toolkit to build the GLO-STIX GUI application and GLO-

CLI command-line application for using visualization to explore a network. These

three packages are described in Chapter 5 and are available as open-source software

at https://github.com/chadstolper/glo.

Techniques Graph-level operations greatly simplify identifying novel graph visual-

ization techniques. Throughout this dissertation (especially in Chapter 5), I introduce

a number of novel techniques and provide their definitions using GLOs.

Education Graph-level operations have the potential to revolutionize graph visual-

ization education through demonstrating the variety and interconnectedness of graph

visualization techniques. The model could also have a sizable impact on discrete

mathematics education through enabling demonstrations of graph theory properties

and algorithms. I briefly discuss this potential in Chapter 6.

10

CHAPTER II

BACKGROUND

Because of the e↵ect that graph-level operations (GLOs) have throughout the visu-

alization development stack, the related work for this this covers a wide breadth of

visualization research. The set of operations and GLO.js implementation fall under

visualization systems, or toolkit, research. The applications that I have built on top

of the GLO layer fit a variety of visualization application categories, including vi-

sualization creation systems and graph analysis tools. The analysis I conduct using

GLOs comparing and clustering graph visualizations falls under visualization design

space analysis research.

I am going to limit my discussions to just those systems that draw visualiza-

tions from data. In other words, while a skilled artist could likely create any static

visualization using Microsoft Paint, Adobe Illustrator [8], or (for graphs) Microsoft

Visio [165], I will not be including these in my discussion.

2.1 Visualization Toolkits and Grammars

Graph-level operations are intended to act as a semantically-meaningful middle-layer

between the low-level graphics environment and top-level applications. Thus, it is

important to understand the state-of-the-art at the low-level, in order to understand

why having such a middle-layer is worthwhile.

Some of the earliest work on a visualization language was Mackinlay’s APT sys-

tem [159]. Mackinlay was attempting to automate the choice of visualization based

upon the structure of the (tabular) input data. In doing so, he built a framework

for describing visualization techniques, especially bar charts and scatterplots. The

11

work also introduces concepts relevant to any visualization framework: expressive-

ness (what can the framework represent) and composition (can techniques be com-

bined, such as a scatterplot matrix or node-link diagram of matrix displays ala Node-

Trix [117]).

Building o↵ of this foundational work, a number of visualization toolkits have been

developed. In most cases, the designers of these toolkits set out to abstract away the

graphical details of the host language they were implemented in. One of the more

influential toolkits was Heer et al.’s Prefuse [113]. Prefuse was built in contrast to

prior toolkits such as the Infovis Toolkit [83] and the XML Toolkit [30]. Those systems

allowed a developer to incorporate specific techniques into their applications, but did

not enable him or her to implement new techniques. Prefuse enabled the developer

to implement new techniques either through composition or from raw primitives and

marks. Prefuse was designed around Card, Mackinlay, and Shneiderman’s reference

model [52]: raw data is data transformed into data tables that are then mapped onto

visual structures that are then view transformed into views. Prefuse was built on

top of Java and Java2d, though it was eventually ported to ActionScript/Flash as

well (the port was called flare [111]). Prefuse contained a variety of components

for creating graph and tree visualizations, including force-directed layouts, circular

layouts, physics simulation modules, and view distortions such as fisheye distortions.

The social network visualization system Vizster [108] is one of the graph systems built

using the toolkit.

JUNG [173] is another Java-based library. Rather than being designed primarily

for visualization, JUNG was designed to be a general purpose graph library. JUNG

(and similarly the python library NetworkX [105]) has a large focus on managing the

graph data structure itself. Unlike NetworkX, however, JUNG does have a strong vi-

sualization component for easily enabling node-link diagrams within Java2d or Java3d

12

with various pre-defined layout algorithms. A developer still has the freedom to im-

plement their own layout algorithms on top of the framework as well, or even write

their own visualization code and just use the underlying graph model. While Net-

workX does not support visualization itself, the popular python visualization library

Matplotlib [129] does. Matplotlib (a library originally based on Matlab’s plotting

functionality [160]) supports drawing node-link diagrams and adjacency matrices of

NetworkX graph structures.

Adar’s Gython language [7] (a component of the GUESS system) is similar to

JUNG in being a toolkit for managing graph data structures and visualizing them.

Gython is built on top of Jython (python implemented in Java). Gython includes a

wide range of syntax support for graph-specific queries such as alice<->bob, alice-

>bob, alice<-bob, and alice?bob to select (respectively) all undirected or bidirected

edges between the nodes (or node-groups) alice and bob, all edges from alice to

bob, all edges from bob to alice, and all edges between alice and bob regardless of

directionality. Gython also (explicitly) di↵ers from JUNG and prefuse in treating

visual properties and data properties equivalently. The developer can adjust or check

the value of the node or edge in the same manner as he or she can adjust or check

the color or size of the glyph representing the node or edge.

With the trend of moving away from desktop applications to web applications,

the developers of prefuse and flare set out to write a Javascript- (as opposed to

Java-) based visualization toolkit. Bostock and Heer’s first Javascript toolkit was

Protovis [40]. Soon after, they recognized a number of issues with Protovis, and

ceased development in favor of D3.js [41]. Protovis used a set of custom mark types,

whereas D3 was designed to be general and work with existing web technologies,

especially Scalable Vector Graphics (SVG) [240], the W3C-standardized XML vector

graphics format. D3 allows the developer to map arrays of data to elements in the

webpage’s document object model (or DOM) and set properties of those elements

13

based on the data. In addition to this base functionality, D3 includes a number

of helper functions and layouts such as numerical and color scales, code for easily

creating axes, and force-based graph layouts.

These toolkits (prefuse, flare, JUNG, Gython, Protovis, D3, and Matplotlib) are

all embedded domain-specific languages (or DSLs) [128] for visualization. In this

role, they all provide abstractions beyond what their host languages (respectively:

Java, ActionScript, Java, Jython, Javascript, Javascript, and python) provide for

developers incorporating visualization into their applications or building standalone

visualization applications. However, each of these systems is very closely entangled

with the host language. Prefuse is written to make sense to a Java developer and

depends on features built into the Java language. D3 is written in Javascript and

is structured to make sense to a Javascript developer and depends on features built

into the Javascript language. There are clear advantages to going this route. Most

importantly, if someone is building an application in a language, her or she is likely

comfortable with the paradigms and built-in functionality associated with that lan-

guage. There is also the benefit that comes with any DSL that the library does not

need to ‘reinvent the wheel’ with standard functionality. The downside is that by

depending on the host language as much as they do, the code generated by these sys-

tems is inherently unportable. An interesting graph visualization implemented in D3

is only available in a Javascript-based system and the same holds true with prefuse

and Java. (One toolkit that acts as an exception to this rule is The Visualization

Toolkit (or VTK) [197]. VTK is an API for developing scientific visualization systems

using the dataflow architecture. VTK was originally written for C++, but the API

has also been ported to Java and Python through bindings that call the C++ code.)

Visualization grammars do not have these host-language constraints. One of the

most successful visualization grammars is Wilkinson’s Grammar of Graphics [247].

14

The GoG breaks down techniques into seven stages: variables, algebra, scales, statis-

tics, geometry, coordinates, and aesthetics. The variable, algebra, scales, and statis-

tics stages cover the data component of the technique while the geometry, coordi-

nates, and aesthetics cover the ‘visual’ component. (The grammar does not include

interaction specification.) Graph visualization in the GoG is handled by the ‘net-

work geometry’ that generates a node-link diagram of the nodes and edges in the

graph. The most popular instantiation of the grammar is Wikham’s ggplot2 plu-

gin [245, 246] for the R statistics package. A related technology is VISO [238], an

ontology for visualization. The ontology includes a vocabulary for specifying heuristic

rules, information about the user, and information his or her environment.

Another, more recent, example of language-independent visualization specification

languages is the Vega visualization grammar [225]. Analogous to how DSLs are built

on top of a programming language, Vega is built on top of a markup language,

namely JSON. Unlike the toolkits described above, Vega specifications were never

designed to be written ‘by hand’. Rather, Vega was designed to act as a file format

equivalent to docx or svg. In that sense, Vega is not written by a developer, but

rather by another system (such as Word writing docx files or Illustrator generating

svg files). The Vega specification that a system writes consists of the data (either

the raw data tables or the location of those tables), transforms on the data (such

as normalizing a property or finding unique values), scales, axes, legends, and finally

marks (how the data is mapped to glyphs in the display). These Vega files can then be

rendered in any graphics environment for which someone has written a Vega renderer.

(Vega’s website currently lists support for two W3C standard web-based graphics

environments: HTML Canvas and SVG). In addition to data transformations, the

Vega specification supports what it calls view encoding transforms. One of these view

encoding transforms is a force-directed layout that takes an array of nodes and an

array of edges and generates the x,y coordinates of the node-link diagram. (This is

15

also how D3 handles its force-directed layout.) While the first release of Vega had

minimal support for interaction (the display properties of a glyph could be updated

when the mouse hovered over it), the designers have implemented a more thorough

interaction library using the reactive programming paradigm [195]. In addition to

Vega, Vega-lite [253] is built atop Vega and uses smart-defaults to significantly shrink

the size of specifications.

The goal of my work with GLOs is to provide the same functionality that Vega

provides for tabular visualization techniques, but for graph visualization techniques.

Rather than treating network visualization as composed of simply node-link diagrams

and shoehorning it into a framework designed for tabular data, GLOs are explicitly

for visualizing graph data structures. (Of course, by considering tabular data as graph

data without any connections between the data items we can always shoehorn tabular

data visualization into a graph-focused framework.) Furthermore, like the Grammar

of Graphics, one of the goals of this work is to better understand the techniques

themselves by understanding how they are put together.

I am also approaching the structure of the framework di↵erently than the Vega

designers. While the high-level nature of the GLOs means that the expressiveness of

GLOs may never be equivalent to that of Vega, there are still advantages to the GLO

approach. One is that GLO specifications are shorter and more ‘human-readable’

than equivalent Vega specifications would be. Another is that GLO models push

many of the low-level details of rendering the visualization to the interpreter. This

enables the interpreter instance to implement each operation in the best manner for

the target language and graphics system.

Finally, a brief note on two other toolkits. Raphael [26] and Processing [1] are not

visualization libraries explicitly, but have both been used for visualization. Raphael

is a Javascript library for drawing vector graphics using SVG elements designed for

beginning programmers. Processing is a programming language and environment for

16

building interactive art. Processing’s primary implementation is in Java, though the

creators also have a Javacript-based implementation (most, but not all, code in one

implementation ports to the other). Processing has been immensely popular amongst

artists and other creatives, with a very shallow learning curve compared to most other

visualization libraries.

2.2 Systems for Applying Techniques to Data

At the application level, there are a number of systems that allow a user to apply a

variety of pre-defined visualization techniques to their tabular data. The most ubiq-

uitous of these tools is Microsoft’s Excel spreadsheet software [164]. Excel has long

supported a wide variety of techniques including barcharts, linecharts, scatterplots,

and pie charts. Polaris [217], and its present commercial form Tableau [219], go be-

yond Excel in a number of ways. First, it supports a wider variety of techniques such

as maps and treemaps. Second, it uses an underlying language (called VizQL [158]) to

understand the data-field signatures of di↵erent techniques. For example, a scatter-

plot expects two quantitative data fields; a scatterplot matrix expects n quantitative

fields. Using this language, Tableau is able to suggest optimal visualization techniques

based on the analyst’s choice of data fields to show (a feature they call Show Me).

The Spotfire system [223] and the ManyEyes site [237] similarly supports a wider

range of techniques than Excel and limit techniques to only those where the field

data types make sense. SageBook [62] allows an analyst to apply (data-appropriate)

techniques created using SageBrush (described below). Common to all these systems

though is a notable lack of support for graph data structures. Each can treat a graph

as a table of nodes or a table of edges and then visualize that, but none of them

actually support any of the visualization techniques that show the structure of the

network.

At the other end of the spectrum are those system explicitly for visualizing graphs.

17

Some early systems include UCINet [39], Pajek [29], and Tulip [19]. Two systems

that have gained popularity in recent years are Gephi [28] and NodeXL [209]. There

are also two commercial graph visualization and analysis systems: Centrifuge [56]

and ToughGraph Navigator [224]. (All of these systems are stand-alone except for

NodeXL, which is an extension for Microsoft Excel.) All of these systems are for both

analyzing networks (e.g. calculating statistics such as betweenness centrality [87, 88]

and PageRank [176]) and for visualizing the network as a node-link diagram. The

systems allow the analyst to customize the display such as setting what attributes of

the nodes and edges should map to the various visual properties such as the size of the

nodes, the color (hue, value, saturation) of the nodes and edges, and the thickness

of the edges. Each includes a number of di↵erent force-directed layout algorithms

such as Fruchterman-Reingold [90] or Kamada-Kawai [138]. Gephi and NodeXL were

also designed to allow a developer to easily implement alternative layout algorithms.

For example, the user-built Gephi plugin library includes an implementation of the

hive plot [144] technique as a layout option. NodeXL’s developers have experimented

with techniques beyond node-link diagrams, such as Dunne and Shneiderman’s mo-

tif simplification [71]. Two other graph visualization and analysis systems of note

are Ploceus [153, 154] and Orion [110, 114]. Both systems provide an interface for

converting tabular database records into graphs and then manipulating the graph

structure through a direct manipulation interface. Both then allow the analyst to

view the current state of the network using node-link visualization techniques. Orion

(unlike Ploceus, Gephi, and NodeXL) also includes the ability to show a network

as an adjacency matrix or a scatterplot. Most recently, the DOSA system [232] pro-

vides a system for exploring large graphs by showing summaries of selected subgraphs

while simultaneously showing the full subgraph in a di↵erent display. One of the ad-

vantages of a technology like GLOs is to make it easier for engineers to add these

additional visualization techniques (and potentially more) to these analysis systems

18

without needing to learn a one-o↵ API or development environment (such as Gephi’s

or NodeXL’s). This work will also allow traditional tabular visualization systems

(such as Excel and Tableau) to more easily integrate network visualization into their

existing products.

2.3 Systems for Specifying Visualization Techniques

While the toolkits in Section 2.1 allow a programmer or developer to specify tech-

niques in code, and the systems in Section 2.2 allow an analyst to apply a predefined

technique to their data, the systems in this category allow a non-programmer to spec-

ify new or customized techniques. In a sense, these systems enable someone to build

templates of visualizations to be applied in the future. Many, though not all, of these

systems tend to fall into one of two categories: those that use the dataflow or pipeline

model and those that use a drag-and-drop/direct manipulation metaphor.

The data-pipeline or dataflow model allows a user to visually build pipelines from

data to visualization using modules with specific inputs and outputs. These modules

might include normalizing a data feature or mapping features to visual attributes.

Early examples of the category are the AVS [231] and apE [73] scientific visualiza-

tion systems, followed by Data Explorer [155], SCIRun [178], IRIS Explorer [85],

VTK [197], and VisTrails [31]. VisIt [61] and VisMashup [192] represent the third

generation of the dataflow metaphor. VisMashup provides a more usable front-end

for VTK by simplifying VTK’s pipeline modules into more readable displays as well

as VisMashup supporting multi-view systems through multiple pipelines with syn-

chronized input parameters. The Tioga-2 [10] and Impure [174] systems applied the

dataflow model to non-scientific visualization. Graph-level operations draw heavily

from the dataflow system’s use of encapsulation. Each task in the visualization-

creation process is operationalized. However, the pipeline systems also operationalize

the very low-level tasks such as database accesses. It is these low-level tasks that a

19

GLO model abstracts away from the designer. Furthermore, GLOs are designed to be

as order-independent as possible, as opposed to pipeline systems that are rigorously

sequential with fixed input and output specifications.

The system that first brought the drag-and-drop/direct manipulation metaphor

for visualization specification was SageBrush, a component of the SageTools [190]

suite. SageBrush employs the drag-and-drop metaphor to enable an analyst to add

marks to a canvas and then set properties of the marks by dragging data features

onto handles of the marks. The designer could then save the technique as a template

that could be used by the other components of SageTools (SageBook and SAGE).

The Delaunay system [64], built for creating custom visualizations of database data,

continued the trend. Delaunay uses a similar declarative drag-and-drop metaphor

for visualization creation as SageBook, combined with a constraint solver for realiz-

ing the specification. Delaunay provides support for recursive definitions of visual-

izations, thus making techniques such as node-link tree diagrams easier to specify.

DataSplash [256] was designed explicitly for building semantic zoom applications, al-

lowing the user to define di↵erent views at di↵erent levels of zoom elevation. Flexible

Linked Axes (FLAs) [63] takes a slightly di↵erent tack, allowing a user to add, remove,

and manipulate only axes using drag-and-drop. The user drags axes onto a canvas,

selects the data features to which the axes are mapped, and then links the axes to-

gether using either lines (equivalent to parallel coordinate plots) or dots (equivalent

to scatterplots). Visualization Primitives [208] uses the drag-and-drop metaphor, but

includes support for a greater number of features of each graphical primitive than

previous systems as well as more easily supporting compound visualizations such as

stacked bar charts. Lyra [196] works similarly to Visualization Primitives, though is a

more complete system. Lyra is most interesting in that it saves its templates as Vega

specifications. The Vega-Lyra relationship mirrors the relationship between GLOs

and the applications built on it. Lyra (and applications) allow a designer to specify

20

techniques that can then be used in any system that supports the standardized Vega

(or GLO) format.

Finally, and graph-specifically, the GUESS system [7] (discussed earlier in respect

to its Gython language) provided the user with the ability to change the visual proper-

ties of the nodes and edges in a node-link visualization in one pane through interacting

with a command-line interpreter in another. Furthermore, the interpreter and dis-

play pane were linked, in that mousing over a node’s or group of nodes’ identifier in

the interpreter highlighted the node or group of nodes in the display. This provided

the analyst with more control than applying a preset layout algorithm (though the

analyst could always call those from the interpreter as well). GUESS also had some

standard tabular visualization techniques (such as bar charts and pie charts) avail-

able to render, using separate panes for each chart type. The GLO-CLI described in

Section 5.1 is directly based on this aspect of GUESS.

2.4 Visualization Design Space Analysis

There is a body of work in visualization on understanding the design space of visu-

alizations. Li et al. [152] provide a good summary of the research in their research

on analyzing the design space of tree visualizations. They define a feature space for

tree visualizations and cluster a variety of techniques from literature using the feature

space. Schulz et al. [198] represents the most relevant work to GLOs. The authors

define the design space of implicit hierarchy visualizations (e.g. treemaps and icicle

plots) according to four dimensions: dimensionality (2D or 3D), Node Representa-

tion, Edge Representation, and Layout. They produced a tool that allows a designer

to load a hierarchical dataset and select values for each dimension. The tool then

generates the technique with those values.

21

CHAPTER III

A METHOD FOR GLO MODEL INDUCTION

In order to take advantage of a model of graph visualization, one must first deter-

mine the elements of that model. In this chapter, I present and describe a repeatable

method for inducing a model of graph visualization from a set of exemplar graph

visualization seed techniques. The method is designed to identify recurring features

within the set of techniques at a practical level of complexity. In other words, the

resulting model should not be so fine-grained as to be tedious, but also not so coarse-

grained as to not be expressive. The method relies on one or more human identifiers

to determine steps to change the glyphs of one technique into the glyphs of another

technique (i.e. to transition from one technique to another). This is conceivably

problematic since there are infinitely many ways to transition between any two tech-

niques by transitioning through intermediate states that have nothing to do with

the two techniques (such as hiding all of the edges and then showing them again

when both techniques have all of their edges permanently displayed). However, when

identifiers aim towards identifying a small set of atomic units of graph visualization

and avoiding unrelated states, the method works well in practice. Furthermore, the

method helps define how to describe techniques using the resulting model and guar-

antees that you can describe each member of the set of seed techniques using the

resulting model. (I discuss these latter points in Chapter 4.)

At a high level, the method is broken down into four steps:

1. Identify a set of exemplar seed techniques.

2. Determine the set of reusable, high-level operations needed to transition from

each technique in the set to each technique in the set (including self-transitions).

22

3. Use those transitions to identify a visual element model and set of graph-level

operations that manipulate the visual element model.

4. Augment the set of operations.

In the following sections, I walk through each of these steps, including examples

from the GLOv1 and GLOv2 induction processes.

3.1 Seed Technique Identification

The first step of the induction process is to identify a set of techniques commonly

used for graph visualization—the seed techniques. These techniques should provide

a good cross-section of network visualization features. Equivalent to a training set

in a machine learning scenario, features that do not appear in the seed techniques

will not be represented in the resulting model. In order to maximize the variety of

techniques, one strategy is to identify the seed techniques through a comprehensive

search of graph visualization literature and tools. An alternative strategy might be

to seed the method with a set of techniques that must be modeled (for example,

in a software package). The former strategy is more useful from both a theoretical

perspective (such as understanding the design space of visualization techniques) and

for future-proofing software packages towards adding additional techniques.

This step also includes identifying the inherent features of each technique that

define the technique. In other words, if an instance of a technique uses a specific

color scheme or an unusual shape, an identifier must determine whether the scheme

or shape is inherent to the technique or specific only to the given instance of the

technique. Using abstract forms of techniques enables the resulting visual elements

model and operations set to be simpler, while still expressing the critical features of

the techniques.

For example, the critical components of the Edgemap B technique shown in Fig-

ure 4 are that the nodes are evenly distributed and aligned along the middle of the

23

web-based interface design (‘Creating a web-based visu-
alization interface’ section). Using the case studies, we
illustrate new ways for exploring complex relations
(‘Revealing complex relationships’ section). We then
discuss the limitations and open questions of this
work (‘Discussion’ section) and conclude the paper.

Related work

As visualizing relationships is at the heart of informa-
tion visualization, our work builds upon many previous
contributions in the field, with particular regard to the
use of visual variables, graph drawing methods, and
casual visualization.

While not part of his visual information-seeking
mantra (‘Overview first, zoom and filter, then details-
on-demand’), Shneiderman1 notes the challenge of
being able to explore relationships between information
items. He stresses the importance of interaction for
relating data entries; however, equally if not more
important are the appropriate visual representations
of different types of relations. To think about repre-
senting relationships visually, it is worth considering
the visual variables that are at our disposal. In
Semiology of Graphics, Bertin2 distinguishes between
eight visual variables: size, value, texture, colour, ori-
entation, shape, and the two dimensions for the posi-
tion on the plane. MDS renderings use planar position
as the primary visual variable, while NLDs typically
rearrange position in order to minimize edge crossings.
Stone3 makes the case that colour can make visualiza-
tions more effective and beautiful when used well. She
shows how colour can be used for labelling and quan-
tifying data. It would be interesting to explore the use

of colour for conveying similarity between items as a
degree of association in Bertin’s terms.

There has been extensive research on drawing and
interacting with NLDs,4 often aiming at reducing
edge crossings, which is one of several geometrical
and graph-theoretical metrics for graph aesthetics.5

Recent additions to this research include EdgeLens, a
technique for interactively exploring overlapping
edges,6 and EdgeBundles, a method for combining
edges with similar paths.7 Another problem of large
graphs is occlusion, especially when arrowheads of
directed edges impair the perception of the actual
nodes. A study of directed graphs examined a range
of visual cues for directionality and their effect on
determining direct and two-step connections.8 While
these contributions can significantly improve the read-
ability of large NLDs, we argue that contextual attrib-
utes of graph elements need to be more acknowledged.
This perspective is supported in earlier work on com-
puter network visualization, where edge and node
attributes (e.g. flow, capacity, utilization) of regional
and international Internet links were regarded to be
more important than the network topology.9 As part
of a social network visualization, it was shown how the
visual representation of number of friends, gender, and
community structure enriches the NLD and allows for
interactive filtering.10

While conventional NLD techniques focus almost
entirely on explicit relations, MDS can be seen as a
complementary approach focusing on proximity as a
visual representation of implicit relations or similarity.
MDS has been used for document visualizations with
the goal of visually conveying ‘thematic patterns and
relationships’ of text collections.11 While the idea

Figure 2. Visualizing influence relations between philosophers; Friedrich Nietzsche is selected in the timeline view.

Dörk et al. 7

Figure 4: GLOv2 EdgeMap B seed technique from [74].

display, nodes are colored by a property and sized relatively by a property, edges

are only shown when an analyst mouses over an endpoint node and are displayed

di↵erently based on whether the edge is an in- or out-edge of the node, edges are

colored the same as their source node, and when the analyst mouses over a node the

neighbors of that node are highlighted. I chose to abstract away the specific styling of

the edge glyphs (that in-edges and out-edges are rendered di↵erently is more critical

aspect of the technique), the color schemes for the nodes and edges (that the nodes

are colored by a discrete attribute is more critical than the choice of blue, purple,

and pink as the colors), and the labels (since they are closely tied to time rather than

a generic continuous attribute). I also chose to abstract away the detail-on-demand

panel. With GLOv2, I wanted to focus on the di↵erent ways that techniques visu-

ally represent nodes and edges. Therefore, I abstracted away features that involved

additional glyphs (such as details-on-demand panels).

3.1.1 GLOv1 Identification

During the GLOv1 induction process, I (and my coauthors of [216]) seeded the method

with six techniques: Force-Directed Layouts, Circle Plots, Scatterplots, Semantic

24

Substrates [204], PivotGraphs [244], and Adjacency Matrices. (Descriptions and de-

pictions of these can be found in Appendix A.) These techniques were hand-picked

to provided good coverage of 2D graph visualizations while intentionally excluding

techniques (most notably Arc Diagrams) in order to demonstrate the expressiveness

of GLOs. (As I show in Section 5.3, Arc Diagrams can still be represented using the

GLOv1 model.)

3.1.2 GLOv2 Identification

The GLOv1 seed technique set has two notable limitations. First, there are only six

techniques, which limits the expressiveness of the resulting model. Second, the set of

seed techniques was hand-picked, rather than chosen through a repeatable method.

In order to identify a broader set of seed techniques (with the purposes of iden-

tifying a more expressive GLO model), I conducted a literature review of graph vi-

sualization techniques. I seeded my literature review with papers with graph-related

terms from the IEEE Infovis, IEEE Vis/SciVis, and IEEE VAST conferences us-

ing the Visualization Publication Dataset [131]. I then added publications on graph

visualization techniques referenced by these works, and then publications on graph

visualization techniques referenced by those works, and so on. In all, I reviewed 430

graph visualization publications.

Through the course of the review, I identified seven categories of ‘techniques’:

graph visualization techniques, tree visualization techniques, directed acyclic graph

visualization techniques, dynamic graph visualization techniques, graph visualization

interactions, graph visualization display options, and graph visualization systems.

Graph visualization interactions and graph visualization display options are not com-

plete techniques, but rather specific interactions or display options that could be

applied to any number of other techniques. An example of a graph visualization dis-

play option is edge bundling [257, 120]. Edge bundling is not a technique to display

25

the data of a graph, but rather an additional step that can be applied to any graph or

tree visualization technique that displays its edges as lines. Graph visualization sys-

tems are applications that implement one or more graph visualization techniques. In

the case where those techniques are novel, I included the system in the list of systems

and the technique in the list of techniques. For example, the Ploceus system [153]

utilizes the novel Attribute Matrix technique.

Having completed the literature review, I set out to determine the seed techniques

for what would become GLOv2. I immediately ruled out the graph visualization sys-

tems, as they are not techniques, but rather collections of techniques (which are

included in the other categories as appropriate). I next ruled out the dynamic graph

visualization systems as dynamic graphs represent an additional dimension of com-

plexity over the standard graph data model.

When it came to directed acyclic graph (DAG) visualization techniques and tree

visualization techniques, I chose to exclude these techniques as well. Put simply,

all graphs (including trees and DAGs) can be visualized using graph visualization

techniques whereas general graphs can only be visualized using DAG and tree vi-

sualization techniques by designating one of the nodes as the root and (in the case

of trees) removing edges from the graph. One of the core properties of GLOv1 was

that operations apply to every node equivalently. In tree and DAG visualizations,

many aspects of the techniques depend on considering nodes di↵erently based on their

distance from the root.

I eventually chose to ignore the graph visualization interactions and visualization

display options as well. The sub-techniques in these two categories fit well under the

premise of graph-level operations model—they are discrete modifications that apply

equally to all elements of the visualization. However, I chose to focus the model

towards full graph techniques, rather than these technique-independent opera-

tions. Some of the display options and interactions in fact appear in the chosen seed

26

techniques and are represented in the GLOv2 model in Chapter 4. (For example, dis-

playing convex hulls around clusters occurs in the GMap seed technique and selective

highlighting of neighbors occurs in the EdgeMap A and B seed techniques.) On the

other hand, many of the display modifications and interactions do not occur in the

final set of seed techniques and are therefore not represented in the GLOv2 model. I

will discuss technique-independent operations further in Chapter 6.

Finally, I pared down the approximately 55 general-purpose graph visualization

techniques to 29 seed techniques. First, I removed the techniques that begin by reduc-

ing the graph to a tree (usually using a minimum-spanning tree algorithm or hierarchi-

cal clustering algorithm) and then visualizing the graph using a tree visualization tech-

nique as these are practically tree visualization techniques. (These included SPF [14],

MO-Tree [42], Space-Filling Curves [167], Treemap of hierarchy [168], Treemaps

with Links [82], Similarity trees [177], ArcTree [171], TreePlus [149], Grouse [17],

GrouseFlocks [15], and TreeNetViz [98].) I then removed any three-dimensional

techniques in order to focus on two-dimensional techniques. (3D techniques in-

cluded Ask-Graphview [5], 3D node-link using stereoscope [242], Graph Surfaces [6],

Cityscape [57], State-Transition Graphs [233], Landscape [45], and WilmaScope [9]).

Lastly, there were a class of techniques that were highly dependent on knowing

the topology of the network to calculate node and edge positions. I chose to ex-

clude all but one technique this class. These techniques included C-Group [139, 27],

B-Matrix [22], compressed adjacency matrix [68], and Edge-Compression [72]. In ad-

dition, two techniques (SegmentView [27] and JauntyNet [137]) are similar to each

other in that nodes are positioned based on their attributes, which are represented

in a circle along the radius of the visualization display. Rather than only including

glyphs representing nodes and edges, these two techniques introduce glyphs represent-

ing attributes. Positioning glyphs relative to the position of these attribute glyphs is

similar to the case where the topology is driving the layout.

27

Force-Directed Layout [138]
Matrix Plot [34]
Cluster Circles [69]
Circle Graph [207, 93]
GeneVis A [23]
GeneVis B [23]
Arc Diagram [243, 141]
Matrix Browser [262]
Matrix with Bars [205]
MatrixExplorer [116]
NetLens [140]
Semantic Substrates [204, 18]
PivotGraph [244]
MatLink [118]
List View [199, 214]

Edge-Label-Centric [182]
Honeycomb [106]
GraphDice Segment [36]
3x3 GraphDice [36]
GMap [94]
Attribute Matrix [153]
EdgeMap A [74]
EdgeMap B [74]
Hive Plot [144]
2x3 Hive Panel [144]
ScatterNet [27]
Citevis [213]
DOSA [232]
NodeTrix [117]

Table 1: GLOv2 seed techniques

The one topology-dependent technique (and its variants) that I left in the set was

the Force-Directed Layout. The decision to do so was that, as the most-used network

visualization technique, any model of graph visualization should be able to describe

Force-Directed Layouts. This decision would eventually result in a stand-alone apply

force-directed algorithm to nodes GLO.

The final result of this selection process was a final set of 29 graph visualization

seed techniques that can be found in Table 1 Appendix B. Lists of the non-system

techniques not chosen as seed techniques can be found broken down by category in

Appendix E.

3.2 Transitions, GLOs, and the Transition Matrix

Having identified a set of seed techniques, the second step is to identify the high-

level operations necessary to transition from an instance of each technique in the

set to another instance of each technique in the set. (This includes transitioning

from an instance of a technique to an alternate instance of the technique.) In other

words, what is di↵erent between the two techniques/instances? Is the only di↵erence

the position of the elements? Or should the glyphs be drawn di↵erently? Does the

underlying data have to be manipulated (such as through aggregation)?

28

The goal of this second step is to generate a transition matrix of the seed tech-

niques. Each (i, j) value of this matrix is a list of operations necessary to transition

from the ith seed technique to the jth seed technique. Let me demonstrate this

process with two such transitions (i.e. transition matrix entries).

3.2.1 Semantic Substrates to PivotGraph

For the first example transition, consider the abstract Semantic Substrates [204] rep-

resentation of a graph in Figure 5a and the abstract PivotGraph [244] representation

of the same data in Figure 5b.1

(a) Semantic Substrates [204] (b) PivotGraph [244]

Figure 5: First example transition techniques

The graph data2 represented concerns book characters and includes discrete at-

tributes gender and cluster and quantitative properties such as the degree of each

character in the network. In the abstract Semantic Substrate representation, glyphs

representing nodes are positioned along the y axis by a discrete attribute (here a

cluster label) and are colored by the same attribute. The node glyphs are distributed

along the x axis within the clusters (more precisely, within the groups defined by the

discrete attribute). Axis labels are shown for the y axis using the discrete attribute

values. The node glyphs are sized by a quantitative attribute (here the degree of the

1Note that these are the GLOv1, not GLOv2, seed technique versions of these two techniques.
2Les Misérables character co-occurrence graph included with D3.js based on Donald Knuth’s

jean.dat file available at http://www-cs-sta↵.stanford.edu/ uno/sgb.html

29

node). Edges are displayed as constant-sized, curved line glyphs. Each edge glyph is

colored by the same discrete attribute that the nodes are colored by in order to have

the same color as their target nodes’ glyphs (i.e., here the lines are colored by the

cluster of their target node). However, edge glyphs are only shown when the analyst

interacts with an endpoint node of the edge. (For example, the analyst is interacting

with the node represented by the glyph circled in black in the figure).

In the abstract PivotGraph representation, node glyphs are similarly positioned

on the y axis by a discrete attribute and axis labels for the y axis are shown. The

node glyphs are colored by a property (discrete or continuous), here by the discrete

cluster property. Each edge’s curved line glyph is colored by a property (discrete or

continuous), here (as with the Semantic Substrates abstract technique) by the cluster

of the edge’s target node. Unlike the abstract Semantic Substrates representation,

the abstract PivotGraph does not display a glyph for every node and edge in the

graph. Rather, the technique displays glyphs representing multiple nodes and edges.

These super-nodes and super-edges represent aggregations of the nodes and edges

based on properties of the data. In the abstract PivotGraph, nodes are aggregated

by two discrete properties (here, cluster and gender). In other words, each super-

node glyph represents a super-node that is an aggregate of all of the nodes that share

both the same cluster and gender properties. Edges are then aggregated based on the

values of those same two discrete properties of both their source and target endpoints.

Therefore in this display, each super-edge glyph represents a super-edge aggregating

all of the edges in the graph whose source nodes have the same cluster and gender

and whose target nodes have the same cluster and gender. The super-node glyphs are

then positioned on the x axis based on the second discrete attribute (here the gender

of the super-nodes) and axis labels are shown for the x axis. The super-node and

super-edge glyphs are then sized by an attribute. Here, the attribute is how many

original nodes or edges the glyph represents.

30

Having defined the two abstract techniques, let me now demonstrate transitioning

from the Semantic Substrates representation to the PivotGraph representation. Each

step of the transition involves recognizing a di↵erence between the two techniques

and altering the representation to resolve the di↵erence.

During this process, one can choose between two approaches. The first is to take

a best-case approach, where anything that can stay the same between the two

techniques does. For example, since both representations have the nodes aligned on

the y axis by an attribute, that does not need to change. An second approach is

a worst-case approach. Under this approach, one assumes that though the two

displays position nodes on the y axis, they do so by di↵erent attributes and thus this

must be included in the transition. During the GLOv1 identification process, my

colleagues and I used the worst-case approach. In practice, however, this approach

generates unnecessarily long lists of di↵erences when transitioning between di↵erent

techniques. Therefore, for GLOv2, I followed the best-case approach when tran-

sitioning between instances of two di↵erent techniques. (However, when determining

the steps to transition between two arbitrary instances of the same technique I used

the worst-case approach. Some operations are only necessary for specific techniques.

For example, transitioning between two arbitrary instances of the 3x3 GraphDice

GLOv2 seed technique (Figure 6) requires a transition step that does not occur in

any other transition.)

In Figure 7, I begin with the abstract representation of the Semantic Substrates

technique described above.

The first di↵erence between the two abstract techniques is that the PivotGraph

representation displays every edge glyph, not simply those of edges incident to a single

node. Therefore one can show all of the edges, resulting in the display in Figure 8.

The second di↵erence is that the node glyphs are not distributed across the display

in the PivotGraph, but rather are positioned on x according to a discrete attribute.

31

Eurographics/ IEEE-VGTC Symposium on Visualization 2010
G. Melançon, T. Munzner, and D. Weiskopf
(Guest Editors)

Volume 29 (2010), Number 3

GraphDice: A System for Exploring
Multivariate Social Networks

A. Bezerianos1, F. Chevalier2, P. Dragicevic2, N. Elmqvist3, and J.D. Fekete2

1École Centrale Paris, France 2INRIA Saclay - Île-de-France, France 3Purdue University, USA

d

a

b

e

f

c

g

Figure 1: Exploration of the InfoVis 2004 Contest co-authorship dataset using GraphDice. On the left is the main visualization
window of GraphDice including (a) an overview plot matrix, (b) a selection history tool, (c) a selection query window, (d) a
main plot, and (e) a toolbar. Overlapping nodes in the main plot are drawn using jitter (visible in the yellow selection query).
On the right are actor (f) and link (g) tables with query data entries highlighted in the corresponding color.

Abstract
Social networks collected by historians or sociologists typically have a large number of actors and edge attributes.
Applying social network analysis (SNA) algorithms to these networks produces additional attributes such as de-
gree, centrality, and clustering coefficients. Understanding the effects of this plethora of attributes is one of the
main challenges of multivariate SNA. We present the design of GraphDice, a multivariate network visualization
system for exploring the attribute space of edges and actors. GraphDice builds upon the ScatterDice system for
its main multidimensional navigation paradigm, and extends it with novel mechanisms to support network explo-
ration in general and SNA tasks in particular. Novel mechanisms include visualization of attributes of interval
type and projection of numerical edge attributes to node attributes. We show how these extensions to the original
ScatterDice system allow to support complex visual analysis tasks on networks with hundreds of actors and up to
30 attributes, while providing a simple and consistent interface for interacting with network data.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Systems]: Information Interfaces
and Presentation—User Interfaces; E.1 [Data]: Data Structures—Graphs and Networks

1. Introduction

A quite recent development in social network analysis
(SNA) [WF94] has been the adoption of visualization to
explore networks and support social scientists in detecting,
understanding, and characterizing unexpected patterns and
trends in complex social networks [Ada06, HF06, HF07].

However, with a few exceptions (notably [AS07, PvW08,
Wat06]), current state-of-the-art social network visualization
tools focus on displaying the topology of the networks, and
fail to provide a convenient way of explicitly visualizing
more than a few (two to three) attributes associated with the
network entities, usually using color and shapes. In contrast,

c� 2010 The Author(s)
Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

DOI: 10.1111/j.1467-8659.2009.01687.x

863

Figure 6: GLOv2 GraphDice seed technique from [36].

Figure 7: Unmodified Semantic Substrates representation.

Taking the display in Figure 8 and positioning the node glyphs along the x axis

based on a discrete attribute (namely the gender of the nodes) results in the display

in Figure 9.

The third di↵erence is that the PivotGraph has axis labels displayed for the x

axis. Figure 10 is Figure 9 with those labels displayed.

The fourth di↵erence is the PivotGraph’s use of glyphs representing super-nodes

rather than a glyph for each node. In Figure 10, the nodes that share the same cluster

and gender are stacked at the same grid position. Since the nodes in the Semantic

Substrates display were sized by a continuous property (namely, their degree) and

32

Figure 8: Semantic Substrates representation modified to show all edges.

Figure 9: Semantic Substrates representation modified to show all edges and position
nodes on x by the discrete gender attribute.

this has not been modified, the stack of node glyphs form bullseye-like displays.

Aggregating the nodes represented by each stack (i.e. nodes that have the same

values for both axes’ discrete variables, in this case cluster and gender) into super-

nodes (and the associated glyphs) results in the display in Figure 11. The size of each

super-node glyph is an average of the sizes of the constituent nodes.

The fifth di↵erence is that the super-node glyphs are not sized by their degree in

the abstract PivotGraph, but rather by the number of original nodes that the super-

node represents. Sizing the super-node glyphs in Figure 11 by the number of nodes

33

Figure 10: Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, and show x axis labels.

they represent results in the display in Figure 12. (This change is rather subtle with

this dataset, but compare the size of the cluster-3/female super-node glyph in the

two figures.)

The sixth di↵erence is that the PivotGraph also displays super-edge glyphs. The

di↵erence between Figure 12 with individual edge glyphs and Figure 13 with super-

edge glyphs is subtle. The reason for this is that the edge glyphs used by the Semantic

Substrates abstract technique are constant-sized. This means that unlike the “bulls-

eye stacks” of unaggregated node glyphs, the “stacked” edge glyphs are hidden behind

the top-most drawn edge glyph in each stack. In Figure 13, each stack is aggregated

into a single glyph by aggregating edges that share the same discrete properties.

These discrete properties are not of the edges themselves, but rather of the endpoint

nodes of each edge. Thus, for this display, those edges with source nodes having the

same gender and cluster values and target nodes each having the same gender and

cluster values are aggregated together into super-edges and represented by super-edge

glyphs.

The seventh and final di↵erence between the Semantic Substrates abstract tech-

nique and the PivotGraph abstract technique is that rather than the constant-sized

34

Figure 11: Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, show x axis labels, and aggregate nodes
into super-nodes.

edge glyphs of the Semantic Substrates display, the PivotGraph display’s super-edge

glyphs are sized by the number of original edges aggregated to form the super-edge.

Figure 14 is Figure 13 with the super-edges sized in this way. In fact, Figure 14 is

the target abstract PivotGraph representation from Figure 5b.

3.2.2 Force-Directed Layout to Matrix Plot

As a second example transition, consider the Force-Directed Layout and Matrix Plot

abstract techniques in Figure 15.3

The graph data displayed in the abstract techniques is the same as the prior tran-

sition, and once again the nodes are colored by the discrete cluster attribute. In

the Force-Directed Layout, the nodes are represented as constantly-sized circles posi-

tioned using a force-directed algorithm and edges are represented as constant-colored,

constant-sized straight-lines between their endpoint nodes’ glyphs. In the Matrix Plot,

3Note that these are not the GLOv2 seed technique versions of these two techniques. Unlike
in both seed techniques, the node glyphs in both abstract techniques are colored by an attribute
(namely, the cluster of the nodes) in order to make the steps of the transition clearer. Furthermore,
in order to simplify the transition and highlight the need for cloning representations, the nodes in the
Matrix Plot are represented by circle glyphs instead of the GLOv2 seed technique version’s textual
labels, and the edges in the Matrix Plot are displayed as constantly-colored squares, rather than
relatively-colored squares as they are in the GLOv2 seed technique.

35

Figure 12: Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, show x axis labels, aggregate nodes into
super-nodes, and size the super-nodes by the number of nodes they represent.

nodes are represented as constant-sized circles colored by an attribute (in this case,

the cluster of the node). The nodes are represented in both an evenly distributed row

along the top of the display as well as in an evenly distributed column along the left

of the display such that the left-most node of the top row matches the top-most node

of the left column. Each edge is represented as a constant-size, constantly-colored

square positioned at the y coordinate of the edge’s source node’s representation on

the left and the x coordinate of the edge’s target node’s representation along the top.

Once again, let me walk through the steps to resolve the di↵erences between

these two representations. I start with the Force Directed Diagram representation in

Figure 16.

The first di↵erence between the two techniques is the position of the nodes. Rather

than positioned by a force-directed algorithm, the Matrix Plot has the nodes aligned

along the top and left of the display. In order to form the row at the top using the

node glyphs of the Force-Directed Layout, I first evenly distribute the nodes along the

horizontal x axis. (I also signal that the nodes should be sorted by an attribute of the

nodes (namely, the cluster attribute) so that the nodes of each cluster are adjacent

36

Figure 13: Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, show x axis labels, aggregate nodes
into super-nodes, size the super-nodes by the number of nodes they represent, and
aggregate the edges by the edges’ source gender, source cluster, target gender, and
target cluster.

to each other.) I then align the node glyphs to the top of the display. The results of

these two steps can be seen in Figures 17a and 17b. These two steps were separated

(rather than simply aligning nodes on top in a row as one step) in order to increase

the reusability of each step. Generalized steps can be used in multiple transitions.

As I discuss below, many di↵erent transitions involve evenly distributing nodes along

the x axis though they do not necessarily include aligning the nodes along the top of

the display.

The second di↵erence between the Force-Directed Layout and Matrix Plot is that

the Matrix Plot includes a second set of node glyphs. Rather than a single glyph

representing each node in the underlying data, the Matrix Plot has two glyphs for

each node. Therefore, another glyph for each node must be introduced into the

display. One way to do this would be to introduce a completely new set of glyphs.

However, what form would this new set of glyphs take? Where would these new

glyphs be positioned? A simple answer to these questions is that the new glyphs

could be positioned where the current glyphs are positioned and be of the form and

37

Figure 14: Semantic Substrates representation modified to show all edges, position
nodes on x by the discrete gender attribute, show x axis labels, aggregate nodes into
super-nodes, size the super-nodes by the number of original nodes they represent,
aggregate the edges by the edges’ source gender, source cluster, target gender, and
target cluster, and size the super-edges by the number of original edges they represent.
In other words, a PivotGraph representation of the graph.

style of the existing set of glyphs. This would leave no ambiguity about the extra set

of glyphs. In other words, in order to introduce another set of node glyphs into the

display I can clone the current set of node glyphs to create a duplicate set of glyphs.

The result of this step is shown in Figure 18. As a 2d image, this representation is

identical to the representation in Figure 17b since the second set of glyphs is directly

on top of (in the z axis) the first set of glyphs.

(a) Force-Directed Layout (b) Matrix Plot

Figure 15: Second example transition techniques

38

Figure 16: Unmodified Force Directed Diagram representation.

Figure 17: Abstract Force Directed Diagram representation after evenly distributing
nodes on x (a) and after evenly distributing nodes along the x axis sorted by cluster
and aligning the nodes at the top of the display.

With the second set of glyphs created, they must then be repositioned to form the

column on the left of the Matrix Plot display. A logical next step is then to evenly

distribute the new node glyphs along the vertical y axis. Given the Matrix Plot in

Figure 15b, the node glyphs should be positioned such that the “blue” cluster is at the

top of the column and the “brown” cluster at the bottom. If we were to assign values

1-77 to the nodes in the top row based on their position from left to right, then the

column on the left should have nodes ordered from 1-77 downward. In other words,

the origin point (0,0) of the display is considered the top-right corner. While this is the

case for many matrix-based techniques (e.g. the Matrix Plot [34], MatLink [118], and

39

Figure 18: Abstract Force Directed Diagram representation after evenly distributing
nodes on x sorted by cluster, aligning the nodes at the top of the display, and cloning
the set of node glyphs.

Honeycomb [106] GLOv2 seed techniques), this is not the case for other techniques

(e.g. the Scatternet [27], and GraphDice Segment [36], and DOSA [232] GLOv2 seed

techniques) which assume an origin at the bottom-left corner. I chose to use the latter

(bottom-left) origin point and therefore simply evenly distributing the second set of

nodes sorted by cluster along the y axis would result in the display in Figure 19a,

which is not the intended result. Instead, I evenly distribute the nodes along a

“flipped” or inverted y axis (i.e. with the origin at the top rather than the bottom

of the display) resulting in the display in Figure 19b.

I finish positioning the second set of nodes by aligning them to the left of the

display, resulting in the display in Figure 20.

The third major di↵erence between the Force-Directed Layout and the Matrix

Plot is that the edges are not represented as lines, but rather as squares positioned

based on the locations of the source and target endpoints of the edge in the left-side

column and top row, respectively. In Figures 16-20, the edges have been drawn as

straight lines between the nodes in the top row. Thus, one change that has to be

made is to draw the edges from the left-hand set of nodes to the top set of nodes.

40

Figure 19: Abstract Force Directed Diagram representation after evenly distributing
nodes on x sorted by cluster, aligning the nodes at the top of the display, cloning
the set of node glyphs, and evenly distributing the new nodes on y sorted by cluster
without (a) and with (b) an inverted axis.

Doing so results in the display in Figure 21.

The final change is therefore to display the edges as squares, rather than as straight

lines. Doing so results in the target abstract Matrix Plot technique displayed in

Figure 22.

3.2.3 Graph-Level Operations and the Transition Matrix

Each of the individual changes made to the displays during these transitions can be

summarized as a graph-level operation (or GLO). Each operation represents a

change to either the glyphs displayed in the visual representation (such as positioning

the nodes by a property, aligning the nodes, or cloning the nodes), a change to the

underlying data of the representation (such as aggregating nodes into super-nodes or

aggregating edges into super-edges), or a change to an interaction in the display (such

as showing every edge rather than only some edges based on analyst interaction).

One can thus represent the seven-step (Semantic Substrates, PivotGraph) transi-

tion as the following list of GLOs4:

• show all edges

• position nodes on {x} by {attribute}

4I will discuss the {parameters} of the GLOs in the next section.

41

Figure 20: Abstract Force Directed Diagram representation after evenly distributing
nodes on x sorted by cluster, aligning the nodes at the top of the display, cloning the
set of node glyphs, evenly distributing the new nodes on y sorted by cluster with an
inverted axis, and aligning the new nodes to the left of the display.

• show {x} axis

• aggregate nodes by {discrete attribute(s)}

• size nodes by {attribute}

• aggregate edges by {discrete attribute(s)}

• size edges by {attribute}

The transition matrix entry for (Semantic Substrates, PivotGraph) would then be

this list of operations.

Equivalently, one can represent the seven-step (Force-Directed Layout, Matrix

Plot) transition as the following list of GLOs:

• evenly distribute nodes on {x} (sort-by:{attr})

• align nodes {top}

• clone nodes

• evenly distribute nodes on {y} (sort-by:{attr}, invert:true)

• align nodes left

• set source generation {1} #i.e., draw edges from the second set of node glyphs

(0-indexed)

42

Figure 21: Abstract Force Directed Diagram representation after evenly distributing
nodes on x sorted by cluster, aligning the nodes at the top of the display, cloning the
set of node glyphs, evenly distributing the new nodes on y sorted by cluster with an
inverted axis, aligning the new nodes to the left of the display, and drawing edges
from the second set of nodes (on the left) to the first set of nodes (on top).

• display edges as squares

and therefore the transition matrix entry for (Force-Directed Layout, Matrix Plot)

would be this list of operations.

By identifying the operations to transition to and from each pair of techniques in

the seed technique set (including self-transitions), one generates a complete transition

matrix.

3.2.4 Handling GLO Uncertainty

Over the course of identifying the transitions for each ordered pair of techniques (i.e.,

each entry in the transition matrix), ideally operations are reused. For example, con-

sider the four displays in Figure 23. Many (⇤, CiteVis) and (⇤, Semantic Substrates)

transition matrix entries include the position nodes on {y} by {attribute} GLO. Many

(⇤, MatLink) and (⇤, Arc Diagram) entries include the evenly distribute nodes on {x}

operation. (I say “many” because not all (⇤, Semantic Substrates) entries will contain

the same operations. For example, the (CiteVis, Semantic Substrates) entry would

43

Figure 22: Abstract Force Directed Diagram representation after evenly distributing
nodes on x, aligning the nodes at the top of the display, cloning the set of node glyphs,
evenly distributing the new nodes on y with an inverted axis, aligning the new nodes
to the left of the display, drawing edges from the second set of nodes (on the left) to
the first set of nodes (on top), and displaying edges as squares. In other words, the
target abstract Matrix Plot representation.

not include the position nodes on {y} by {attribute} GLO since the nodes in that

display are already positioned along the y axis by an attribute.)

Positioning nodes by an attribute of the data is clearly distinct from evenly dis-

tributing nodes along an axis. Notably, the former requires a parameter specifying the

attribute while the latter does not. On the other hand, sometimes deciding whether

two changes should be considered the same operation can be unclear. Should posi-

tioning nodes by a discrete attribute and positioning nodes by a continuous attribute

be considered the same operation or di↵erent? During the GLOv1 identification pro-

cess, I and my colleagues erred on the side of distinct operations. Therefore, entries in

our GLOv1 transition matrix separated operations for positioning nodes by discrete

versus continuous attributes or for positioning nodes along Cartesian axes versus po-

lar axes. During the GLOv2 identification process, I initially bootstrapped the set

of operations with the GLOv1 operations. However, I eventually chose to err on the

side of minimizing the number of distinct operations. This led to some GLOv1 op-

erations being combined into a single GLOv2 operation. For example, entries in my

44

(a) CiteVis [213] (b) Semantic Substrates [204]

(c) MatLink [118] (d) Arc Diagram [243, 141]

Figure 23: Sample abstract techniques where (⇤, technique) transition matrix entries
share operations.

GLOv2 transition matrix contain a single operation for positioning nodes along any

axis (Cartesian x and y or polar ⇢ and ✓) by any attribute (discrete or continuous). (I

will discuss the other resulting di↵erences between the GLOv1 and GLOv2 operations

sets in Chapter 4 once I have presented the two models.)

As part of the goal of minimizing the number of distinct operations, two interesting

sub-cases arose. In the abstract Arc Diagram in Figure 24a, all of the nodes are

evenly distributed horizontally across the display. In the abstract Semantic Substrates

display in Figure 24b, the nodes are also evenly distributed horizontally across the

display, but not as a single set of nodes. Instead, the nodes are evenly distributed

within each row (where the row of a node is determined by a discrete property of

the node). Similarly, while the abstract Circle Graph in Figure 24c evenly distributes

the nodes along the angular polar (✓) axis, the abstract Cluster Circles display in

45

(a) Arc Diagram [243, 141] (b) Semantic Substrates [204]

(c) Circle Graph [207] (d) Cluster Circles [69]

Figure 24: Four abstract techniques where (⇤, technique) transition matrix entries
contain the evenly distribute nodes on {axis} GLO with di↵erent mandatory param-
eters and optional parameters.

Figure 24d evenly distributes the nodes in each cluster around center points scattered

around the display.

In all four abstract techniques, the operation being performed is the same (evenly

distributing nodes along an axis) but how the operation is performed is clearly di↵er-

ent. Between the Arc Diagram and the Circle Graph, the di↵erence is simply which

axis the GLO is applied to, and thus this axis becomes a mandatory parameter

of the operation. Mandatory parameters are used when the operation cannot be

performed without the information provided by the parameter. Other mandatory

parameters include the {attribute} used to size nodes by an attribute in many (⇤,

Semantic Substrates) transition matrix entries and the {discrete attribute(s)} used to

aggregate nodes or edges in many (⇤, PivotGraph) entries.

46

(a) No sorting parameter (b) Sorted by discrete cluster attribute

Figure 25: Abstract Arc Diagram representations with di↵erent optional sorting pa-
rameters.

In contrast to mandatory parameters, consider the two di↵erent Arc Diagram rep-

resentations in Figure 25. Both displays are identical, except that the representation

on the left has the nodes sorted seemingly randomly, while on the right the nodes are

sorted by cluster (identified through color). The sort order on the left is not actually

random; it is simply the order of the nodes as stored in memory. This sort order-

ing provides a useful default case when an alternative sort order is not provided. In

other words, the attribute by which the nodes are sorted during the evenly distribute

operation is an optional parameter. Another optional parameter is a binary flag

signaling to invert the ordering of the sort. This optional parameter is used when

positioning nodes by an attribute in order to ‘flip’ an axis (e.g. position nodes with

larger values on the left and smaller values on the right when positioning nodes on

the x axis).

On the other hand, while both the Arc Diagram and Semantic Substrates tech-

niques in Figure 24 have the same xmandatory axis parameter, they are still di↵erent.

In the Semantic Substrates display, the distribute nodes operation is being performed

on the nodes of each cluster independent of all the other nodes. Note that this vari-

ation is not unique to the abstract Semantic Substrates technique. The abstract

CiteVis representation in Figure 26a has nodes stacked on the x axis within each row

47

(again, determined by the discrete cluster attribute) whereas the display Figure 26b

shows what would happen if the nodes were stacked on the x axis independent of the

row. In GLOv1, I and my colleagues chose to treat the Arc Diagram and Semantic

Substrates cases as distinct (i.e., one was evenly distributing nodes on an axis and the

other was evenly distributing nodes on an axis within a discrete attribute). With the

goal of minimizing the number of distinct operations in GLOv2, these two variations

were considered the same operation (i.e. evenly distribute nodes on axis), but the

Semantic Substrates case requires an optional within parameter. Using a within

parameter applies the operation to each subgroup (as defined by the nodes that share

values of the parameter attribute) independently. This same parameter can be used

to align left all of the stacks in the CiteVis abstract technique and evenly distribute

each of the rows in the Semantic Substrates abstract technique.

The di↵erence between the Circle Graph and Cluster Circles abstract techniques

(Figure 27) is distinct from the di↵erence between Semantic Substrates and Arc

Diagrams. The nodes in each row of the Semantic Substrates technique are still

distributed across the entire display. In other words, the coordinate-space used to

position the nodes within each row in the Semantic Substrates display is the same

coordinate-space used to position the nodes in the single row in the Arc Diagram

display. This is not the case with the two circle-based techniques. Instead, while the

(a) CiteVis [213] (b) Without within parameter

Figure 26: Representations with and without the optional within parameter.

48

(a) Circle Graph [207] (b) Cluster Circles [69]

Figure 27: Sample abstract techniques where (⇤, technique) transition matrix entries
use or do not use the group-by optional parameter.

Circle Graph distributes the nodes along a ✓ axis centered at the center point of the

entire display space, the Cluster Circles representation distributes the nodes of each

category along angular ✓ axes of sub-displays centered throughout the full display. In

fact, the center points of each of these sub-displays is the center point of the bounding

box of the nodes of each cluster in the Circle Graph (see Figure 28). Just as the within

(a) Circle Graph [207] (b) Cluster Circles [69]

Figure 28: Sample abstract techniques where (⇤, technique) transition matrix en-
tries use or do not use the group-by optional parameter including bounding boxes
determined by the Circle Graph node positions.

optional parameter signals to apply an operation to subsets of nodes using the full

coordinate-space (i.e., the full display’s x, y, ⇢, and ✓ axes), a group-by parameter

applies an operation to subsets of nodes within sub-coordinate spaces of the overall

coordinate-space. Thus many (⇤,Cluster Circles) transition matrix entries include an

49

Evenly distribute nodes on {axis} GLO adjusted by a discrete group-by parameter

(in this case the cluster of the nodes).

(a) NodeTrix [117] (b) List View [199]

Figure 29: Sample abstract techniques where (⇤, technique) transition matrix entries
use a group-by optional parameter to display intra-group edges di↵erently than inter-
group edges.

Operations in transitions to the NodeTrix abstract technique in Figure 29a also

utilize optional group-by parameters to position the nodes. But this abstract Node-

Trix technique and the abstract List View representation in Figure 29b both also

display edges di↵erently depending on whether the edge’s endpoints are in the same

group or di↵erent groups (represented in these displays by the color of the nodes).

In the NodeTrix display, intra-group edges are displayed as squares while inter-group

edges are displayed as curved lines. In the List View display, intra-group edges are

displayed as curved lines while inter-group edges are displayed as straight lines. Just

as I attempted to minimize the number of distinct operations used in the GLOv2

transition matrix’s entries, I also chose to minimize the number of optional parame-

ters. Therefore, I chose to overload the group-by optional parameter to handle this

case. Including a group-by parameter with an operation that changes how edges are

displayed (such as a GLO to display edges as squares) only applies the operation

to the intra-group edges. Thus, to transition to the List View technique might re-

quire first displaying edges as straight lines (without a group-by parameter), and then

displaying the edges as curved lines (with the group-by parameter).

50

3.3 Inducing an Expected Data Model, Model of Visual El-
ements, and Set of Graph-Level Operations from the
Transition Matrix

Once a transition matrix has been generated for a set of seed techniques, this tran-

sition matrix can then be used to identify both a visual element model of graph

visualization and the set of operations to manipulate the visual element model. The

matrix also implies the data model that these two components expect.

The operations set is the easiest to identify: the set is simply the union of the

set of operations in each entry of the matrix. In other words, since each entry is a

list of operations, one simply reduces each list to a set and then unions all of the

sets together. As optional parameters such as the within or group-by parameters are

ignored during this set-generation step, all of the optional parameters used in the

matrix are then collected.

Identifying the visual element model is more subtle. The operations in the matrix

entries imply a visual element model that the operations manipulate. For example,

operations change representations of nodes and edges, which mandates that the model

being manipulated have some notion of a glyph for nodes and edges. Another exam-

ples is that operations in many entries refer to axes, namely the Cartesian horizontal

x axis, the Cartesian vertical y axis, the polar radial ⇢ axis, and the polar angular

✓ axis. Identifying all of these elements produces the GLO model’s visual element

model.

The transition matrix also helps to identify overarching properties of a model’s set

of operations. Most importantly, in both GLOv1 and GLOv2 each operation applies

to all of the nodes and edges in a given set of nodes or edges. The set consists of

either a glyph for each node or edge in the backing graph or glyphs of super-nodes

and super-edges created from those nodes and edges. For example, during the (Force

Directed Diagram, Matrix Plot) transition, aligning the second set of nodes to the left

51

aligned the entire set. The GLOv1 and GLOv2 models refer to these sets of nodes as

generations. Even operations that a↵ect groups of nodes independently from each

other, such as operations modified with a group-by or within optional parameter, still

apply to every node or edge in the generation.

This also begins to imply an underlying graph data model that the operations

expect. If operations apply to every node (or every edge), this requires that every

node/edge have the same set of attributes (though with likely di↵erent values of those

attributes) in order to avoid referencing an attribute that any one element does not

have. In addition, the operations sometimes di↵erentiate discrete attributes (whether

ordinal or categorical) from continuous (quantitative) attributes. For example, the

position nodes by {attribute}operation positions nodes relatively along an axis for

continuous attributes and into evenly distributed sets for discrete attributes (see

Figure 30). Furthermore, aggregating edges by properties of their endpoints implies

data visibility requirements (namely that edges can know the decorations of their

endpoints).

(a) Discrete (b) Continuous

Figure 30: The GLOv2 position nodes by {attr} operation positions node glyphs
evenly along the axis with discrete parameters and relatively along the axis with
continuous parameters.

52

3.4 Augmenting the Operations Set

The final step is to augment the set of operations derived from the transition matrix

with obvious missing operations. Given a large and varied enough seed technique set,

this step should not result in many additional operations. In the case of GLOv2, this

required the addition of only three operations compared to the sixty-nine operations

that occurred in transitions.
Figure 5: Graph Drawing author collaboration, 1994-2004.

Figure 6: Collaboration graph drawn by GMap.

Figure 7: Map without interior artificial points.

by the logarithm of the number of publications and the edge thick-
ness is similarly proportional to the number of collaborations. How-
ever, node weights and edge weights are not used in the layout cal-

culations.
From Fig. 6, it is easy to see that European authors dominate the

main continent. Several well-defined German groups can be seen
on the west and southwest coasts. A largely Italian cluster occu-
pies the center, with an adjacent Spanish peninsula in the east. The
northwest contains a mostly Australasian cluster. Two North Amer-
ican clusters are to be found in the southeast and in the southwest,
the latter one made up of three distinct components. A combina-
torial geometry cluster forms the northernmost point of the main
continent. Most Canadian researchers can be found in the central
Italian cluster and the Spanish peninsula. Northeast of the mainland
lies a large Japanese island and southeast of the mainland there is
a large Czech island. Northwest of the mainland is an island of
authors focused on crossing numbers.

Fig. 7 shows a map generated without adding artificial points
around the labels, which results in more regular boundaries, when
compared to the map in Fig. 6. The sizes of the two maps in the pa-
per make it difficult to compare them, but the differences are easy
to see on the screen when the images are zoomed in. We found
that the map in Fig. 6 with more irregular borders was more ap-
pealing but, as noted earlier, our algorithm can generate maps of
both styles. The map generated without adding random points to
define the outer boundaries is even more noticeably un-map-like;
see Fig. 8.

Figure 8: Map without outer artificial points.

4.2 BookLand maps
Many e-commerce websites provide recommendations to allow for
exploration of related items. Traditionally this is done in the form
of a flat list. For example, Amazon typically lists around 5-6 books
under “Customers Who Bought This Item Also Bought”, with a
clickable arrow to allow a customer to see further related items.

Instead of a flat list, which provides a very limited view of the
neighborhood, there have been attempts to convey the underlining
connectivity of the products through graph visualization. For exam-
ple, TouchGraph [3], has an Amazon browser which shows a graph
defined on a small neighborhood surrounding the book of interest.
None of the existing approaches, however, gives a comprehensive
view of the relationship and the clustering structures.

Using our GMap algorithm, we obtained the map in Fig. 1. The
underlying data is obtained with a breadth-first traversal following
Amazon’s “Customers Who Bought This Item Also Bought” links,
starting from the root node, Orwell’s 1984. Links are followed up
to a distance of 12 from the root node. We then trim the graph by

205

Figure 31: GLOv2 GMap seed technique from [94].

First, during the GLOv2 identification process, transitions to the GMap seed

technique (Figure 31) included drawing convex hulls around nodes and then the op-

eration color convex hulls by {attribute}. Operations for coloring nodes and edges by

attributes also appeared in transitions, as did operations for coloring node and edge

glyphs by constants. Thus, for consistency, the color convex hulls by constant GLO

was added to the set.

Second, many transitions to the CiteVis seed technique (Figure 32) required the

position nodes evenly stacked {direction} operation. The paired operations evenly

distribute nodes on {axis} and position nodes on {axis} by {attribute} were similarly

required for various transitions. However, a stacking GLO equivalent to the relative

positioning position nodes on {axis} by {attribute} did not appear in any transitions.

Thus, I added a position nodes stacked {direction} by {attr} operation that stacks

53

Figure 32: GLOv2 CiteVis seed technique based on [213].

the nodes distances apart relative to an attribute of the data.

Figure 33: Demonstration of axis uncertainty.

Third, no GLOv2 seed technique that includes axis labels has multiple generations

of nodes referring to the same axis. This meant that among these techniques there

was no uncertainty as to which generation of nodes any given axis labels should

refer. However, consider the display in Figure 33. The axis labels should refer to the

generation of nodes positioned by an attribute rather than the left-aligned generation,

but that may need to be communicated through a GLO. Thus, the set {axis} axis node

generation {num} GLO was added to the operations set to provide this information.

54

CHAPTER IV

THE GRAPH-LEVEL OPERATIONS MODEL

In Chapter 3, I described a method for inducing a model of graph visualization from a

set of seed techniques and two sets of seed techniques consisting of 6 and 29 techniques.

In this chapter, I present the models that resulted from applying the method to the

two sets of seed techniques (GLOv1 and GLOv2, respectively). As mentioned in the

last chapter, each model consist of two components: a visual elements model and the

set of graph-level operations for manipulating that visual elements model.

I begin by describing the data model that the GLO models expect. I then describe

the GLO visual element model including glyphs, generations, canvases, axes, and

the GLO Display. I then present the two sets of operations discuss the di↵erences

between them. I will then describe properties of GLOs that enable them to function

as a domain-specific graph visualization language. Finally, I describe how we can use

lists of operations to describe techniques, starting with the seed techniques.

4.1 Graph Data Model

Before discussing the graph-level operations models directly, let me first describe the

graph data model that the models expect. At the highest level, the GLO models

expect a graph consisting of a set of nodes and a set of edges between those nodes.

Note, however, that such a graph can have no nodes and no edges or the graph can

have nodes but no edges. The latter of these two cases is schematically equivalent to

tabular data if each row of the data is considered a node.

Each node must have an identifier (id) unique to the node relative to the other

nodes’ identifiers and these identifiers must be sortable. Equivalently, each edge must

also have a unique, sortable identifier. These identifiers are used as the default sorting

55

attribute for GLOs (such as evenly distribute nodes on {axis}) when no optional sort-

by parameter is provided. Two simple and e↵ective identifier schemes are to label the

nodes and edges with the address (e.g. 0x440B...0x44AF) or index of the element’s

position (e.g. 1...n) in memory.

Each edge must have some reference to its endpoints. These references must be

in the form of a source reference and a target reference. For directed graphs, these

references map directly to the source and target nodes of the edge. Undirected graphs,

however, must be converted to directed graphs. There are two simple algorithms to

perform this conversion. The first algorithm is to set one endpoint of each undirected

edge to be the source and the other to be the target (for example, by selecting the

node with the lower id as the source). The advantage of this algorithm is that the

degree of each node in the adjusted graph is equal to the degree of each node in the

unadjusted graph and the number of edges in both graphs remains the same. On the

other hand, the in-degree and out-degree of each node is not guaranteed to remain

the same. The second algorithm is to create a second copy of each non-self-edge

in the graph, with each pair of otherwise-duplicate edges having reverse source and

target references. This second algorithm reverses the advantages and disadvantages of

the first algorithm—the original nodes and the new nodes have the same in-degrees

and out-degrees, but the nodes in the new graph have di↵erent degrees than their

counterparts and the total number of edges has changed.

Each node and edge can be decorated with attributes (or properties). These

attributes can be discrete attributes (where the values of the attribute are drawn

from a finite set of values) or continuous attributes (where the values of the at-

tributes are drawn from an infinite set or series of values). (Using Card, Mackinlay,

and Shneiderman’s taxonomy [52], discrete attributes cover both nominal and ordinal

data types and continuous attributes are quantitative data types.) Unless explicitly

specified, continuous or discrete attributes can be passed as attribute parameters.

56

Certain GLOs (and optional parameters) do explicitly depend on accepting only

discrete attributes. Namely, aggregation operations require any number of discrete

attributes to be passed, the filter-partition operation takes a discrete parameter, and

the group-by and within optional parameters must be discrete attributes. All of

these operations and optional parameters concern partitioning the set nodes into cat-

egories or clusters, which can be done without additional information using discrete

attributes. In contrast, to reduce a continuous attribute to a discrete attribute re-

quires binning the values. However, this introduces uncertainty. Most importantly,

how many bins should be used? To circumvent this uncertainty, both models expect

that if binning a continuous attribute is necessary, that the attribute be pre-binned

and represented as a discrete attribute before any operation is applied.

As I discuss later in this chapter, every operation applies to glyphs representing

every node or edge in the graph. Therefore, any nodes or edges lacking an attribute

that is referenced will lead to an unpredictable response. Therefore, all nodes must

have the same set of attributes and all edges must have the same set of attributes.

Of course, the values of these attributes are not expected to be the same. This

requirement can be limiting, for example, if the data for a certain attribute of a

specific node or edge does not exist. For discrete attributes, missing values can be

represented as a “missing” (or null) value that will simply be considered as another

value of the attribute. Missing continuous attributes pose a larger challenge. Unlike

discrete attributes, a null value for continuous attribute would cause issues whenever

a visualization of the data is rendered. Thus, each missing value must be replaced.

The replacement value could be a statistic (such as min, max, mean, median, or

mode) over the non-missing values or could be a pre-determined value (such as �1

among otherwise non-negative values). Regardless, all of these replacements must be

performed before a GLO is applied using the data.

Finally, from a data visibility perspective, the GLO models expect that each node

57

can access the values of its own attributes, its in- and out-edges, and the nodes

making up its in- and out-neighborhoods. (Note that there is no expectation that a

node can access the attributes of these incident edges and neighboring nodes, only

the edges and nodes themselves.) Conversely, the model expects that each edge can

access the values of its own attributes, its two endpoint nodes, and the attributes of

its endpoints.

4.2 GLO Visual Element Model

As I described in the previous chapter, various changes are made to representations

in order to transition between them. The elements (and their properties) manipu-

lated through those changes describes a visual element model. In this section I will

describe the GLO visual element model induced from the GLOv2 transition matrix.

This visual element model serves as a super-set of the GLOv1 visual element model.

(I will postpone describing the precise di↵erences between the two visual element

models until after I have presented both the GLOv2 visual elements model and both

operations sets.)

4.2.1 Glyphs

The primary unit of the GLO visual element model is the glyph. A glyph is a visual

representation of a given node or edge in the graph data, called the backing node

or backing edge of the glyph. Nodes are represented by node glyphs, while edges

are represented by edge glyphs.

Glyphs can be displayed in a variety of ways. For example, consider the Force-

Directed Layout and Matrix Plot GLOv2 seed techniques in Figure 34. The Force-

Directed Layout’s nodes are represented as circles, while its edges are represented

as straight lines. Alternatively, the Matrix Plot’s nodes are represented as textual

labels, while its edges are represented as small squares colored by an attribute of the

data.

58

Volume 31, Number 1 INFORMATION PROCESSING LETTERS 12 April 1989

a
Fig. 4. Pictures of asymmetric graphs.

+Japhs is visualized pleasingly as symmetric pictures in our system. Figure 4 shows two pictures of
asymmetric graphs. In these cases needless edge crossings are avoided completely.

-The CPU time needed to compute a layout in these pictures is
seconds (Fig. 3(d)) on a VAX 8600.

4.2. Isomorphic graphs

When the viewer wants to
isomorphic graphs as the same

compare some graphs, it is highly required of the system to display
picture. otherwise the viewer cannot make proper comparisons from the

D C D C

F F A
A

H I H I

from 0.4 seconds (Fig. 3(a)) to 7.6

a b

G E

F
B

J
F

C

Fig. 5. Pictures of isomorphic graphs.

13

(a) Force-Directed Layout from [138]

9

> <Grid OnLabels OnBoth ActiveStopHelpAll OnAll OffZoomUnzoomVariablesMinMaxtoc0.359716 924119:15

19:15

-2123114621693192410.369241.00tocSlowFast

FROM

TO

SNFCCA2147T

SNJSCA0241T

OKLDCA0344T

SKTNCA0107T

SCRMCA0404T

SHOKCA0296T

PTLDOR6203T

GRDNCA0294T

RENONV0344T

LSANCA0301T

ANHMCA0211T

LSANCA0292T

STTLWA0604T

SNBRCA0101T

SNDGCA0787T

SPKNWA0102T

PHNXAZMA03T

SLKCUTMA02T

ALBQNMMA02T

CLSPCOMA02T

DNVRCOZJ05T

MDLDTXMU02T

SNANTXCA02T

AUSTTXGR07T

FTWOTXED24T

OKCYOKCE04T

WCHTKSBR24T

OMAHNENW14T

DLLSTXTL44T

DLLSTXTL34T

TULSOKTB04T

HSTNTX0154T

HSTNTX0144T

KSCYMO0904T

MPLSMNDT40T

MPLSMNDT18T

DESMIADT08T

LTRKARFR15T

BTRGLAMA04T

STLSMO0934T

PEORILPJ51T

SPFDILSD51T

OKBRILOA53T

NWORLAMA04T

WKSHWI0231T

JCSNMSPS14T

OKBRILOA52T

MMPHTNMA43T

CHCGILCL57T

CHCGILCL59T

MOBLALAZ01T

SBNDIN0502T

IPLSIN0102T

GDRPMIBL50T

BRHMALMT01T

NSVLTNMT43T

LSVLKYCS02T

MTGMALMT01T

LNNGMIMN50T

DYTNOH1504T

DTRTMIBH50T

CNCNOHWS14T

TOLDOH2103T

ATLNGATL04T

KNVLTNMA71T

ATLNGANW05T

CLMBOH1103T

ATLNGATL01T

MACNGAGA02T

CLEVOH0203T

AKRNOH2505T

CHTNWVLE25T

CHRLNCCA03T

PITBPADG43T

PITBPADG09T

TAMPFLCO02T

JCVLFLCL03T

CLMASCTL03T

BFLONYFR05T

ORLDFLMA03T

WPBHFLAN04T

GNBONCEU03T

HRBGPAHA42T

OJUSFLTL03T

SYRCNYSU13T

ARTNVACK04T

RCMDVAIT03T

BLTMMDCH01T

RCMTNCXA03T

WASHDCSW06T

NRFLVABS03T

ALBYNYSS05T

WAYNPALA42T

SPFDMABR02T

NWHNCT0205T

NYCQNYRP08T

MNCHNHCO03T

FRMNMAWA04T

PHLAPASL42T

CMBRMA0119T

CMDNNJCE03T

NWRKNJ0208T

WHPLNY0504T

FRHDNJ0202T

RCPKNJ0203T

WHPLNY0203T

NYCMNYBW24T

NYCMNYBW55T

NYCMNYBW51T

NYCMNY5450T

SN
FC
CA
21
47
T

SN
JS
CA
02
41
T

O
KL
DC
A0
34
4T

SK
TN
CA
01
07
T

SC
RM

CA
04
04
T

SH
O
KC
A0
29
6T

PT
LD
O
R6
20
3T

G
RD
NC
A0
29
4T

RE
NO

NV
03
44
T

LS
AN
CA
03
01
T

AN
HM

CA
02
11
T

LS
AN
CA
02
92
T

ST
TL
W
A0
60
4T

SN
BR
CA
01
01
T

SN
DG

CA
07
87
T

SP
KN
W
A0
10
2T

PH
NX
AZ
M
A0
3T

SL
KC
UT
M
A0
2T

AL
BQ

NM
M
A0
2T

CL
SP
CO

M
A0
2T

DN
VR
CO

ZJ
05
T

M
DL
DT
XM

U0
2T

SN
AN
TX
CA
02
T

AU
ST
TX
G
R0
7T

FT
W
O
TX
ED
24
T

O
KC
YO

KC
E0
4T

W
CH
TK
SB
R2
4T

O
M
AH
NE
NW

14
T

DL
LS
TX
TL
44
T

DL
LS
TX
TL
34
T

TU
LS
O
KT
B0
4T

HS
TN
TX
01
54
T

HS
TN
TX
01
44
T

KS
CY
M
O
09
04
T

M
PL
SM

ND
T4
0T

M
PL
SM

ND
T1
8T

DE
SM

IA
DT
08
T

LT
RK
AR
FR
15
T

BT
RG

LA
M
A0
4T

ST
LS
M
O
09
34
T

PE
O
RI
LP
J5
1T

SP
FD
IL
SD
51
T

O
KB
RI
LO
A5
3T

NW
O
RL
AM

A0
4T

W
KS
HW

I0
23
1T

JC
SN
M
SP
S1
4T

O
KB
RI
LO
A5
2T

M
M
PH
TN
M
A4
3T

CH
CG

IL
CL
57
T

CH
CG

IL
CL
59
T

M
O
BL
AL
AZ
01
T

SB
ND
IN
05
02
T

IP
LS
IN
01
02
T

G
DR
PM

IB
L5
0T

BR
HM

AL
M
T0
1T

NS
VL
TN
M
T4
3T

LS
VL
KY
CS
02
T

M
TG
M
AL
M
T0
1T

LN
NG

M
IM
N5
0T

DY
TN
O
H1
50
4T

DT
RT
M
IB
H5
0T

CN
CN
O
HW

S1
4T

TO
LD
O
H2
10
3T

AT
LN
G
AT
L0
4T

KN
VL
TN
M
A7
1T

AT
LN
G
AN
W
05
T

CL
M
BO

H1
10
3T

AT
LN
G
AT
L0
1T

M
AC
NG

AG
A0
2T

CL
EV
O
H0
20
3T

AK
RN
O
H2
50
5T

CH
TN
W
VL
E2
5T

CH
RL
NC
CA
03
T

PI
TB
PA
DG

43
T

PI
TB
PA
DG

09
T

TA
M
PF
LC
O
02
T

JC
VL
FL
CL
03
T

CL
M
AS
CT
L0
3T

BF
LO
NY
FR
05
T

O
RL
DF
LM
A0
3T

W
PB
HF
LA
N0
4T

G
NB
O
NC
EU
03
T

HR
BG

PA
HA
42
T

O
JU
SF
LT
L0
3T

SY
RC
NY
SU
13
T

AR
TN
VA
CK
04
T

RC
M
DV
AI
T0
3T

BL
TM
M
DC
H0
1T

RC
M
TN
CX
A0
3T

W
AS
HD
CS
W
06
T

NR
FL
VA
BS
03
T

AL
BY
NY
SS
05
T

W
AY
NP
AL
A4
2T

SP
FD
M
AB
R0
2T

NW
HN
CT
02
05
T

NY
CQ

NY
RP
08
T

M
NC
HN
HC
O
03
T

FR
M
NM

AW
A0
4T

PH
LA
PA
SL
42
T

CM
BR
M
A0
11
9T

CM
DN
NJ
CE
03
T

NW
RK
NJ
02
08
T

W
HP
LN
Y0
50
4T

FR
HD
NJ
02
02
T

RC
PK
NJ
02
03
T

W
HP
LN
Y0
20
3T

NY
CM

NY
BW

24
T

NY
CM

NY
BW

55
T

NY
CM

NY
BW

51
T

NY
CM

NY
54
50
T

Figure 5. Network Overload As Matrix

The same overload as in Figure 3 shown using a matrix representation instead of a network map. The nodes are
shown along the rows and columns in approximate West-to-East order in matrix form, with columns
corresponding to ‘‘from’’ nodes and rows corresponding to ‘‘to’’ nodes. At the intersection of each row and
column there is a square whose color codes the link statistic. The colored squares on the left and bottom
correspond to the lines on Figure 3. The nonsymmetry is due to the directed nature of the traffic.

Both problems may be solved simultaneously, however, by using a matrix display, which

deemphasizes the geography by displaying the network in a matrix form with each matrix element allocated

to a link. Each node is assigned to one row and column with the (i , j) and (j ,i) matrix elements associated

with the j-to-i and i-to-j links. If the link data is not directed, both of these elements are assigned the same

value. Figure 5 demonstrates this technique with each of the small squares corresponding to one of the

potential half-lines in Figure 3, and the colored squares corresponding to the realized lines. The nodes are

arranged in approximate geographical order with west-to-east along the horizontal axis and correspondingly

along the vertical axis. The matrix representation shows that the earthquake overload is highly focused on

(b) Matrix Plot from [34]

Figure 34: GLOv2 seed techniques with di↵ering node and edge glyph displays.

Node glyphs under GLOv2 have one of four display modes: circles, squares,

bars, or textual labels. Edge glyphs under GLOv2 have one of six: straight lines,

curved lines, squares, textual labels, bars, or right angles. Furthermore each node

and edge glyph has a size and a color.

Beyond its display mode, each glyph has three additional visual properties: po-

sition, size, and color.

web-based interface design (‘Creating a web-based visu-
alization interface’ section). Using the case studies, we
illustrate new ways for exploring complex relations
(‘Revealing complex relationships’ section). We then
discuss the limitations and open questions of this
work (‘Discussion’ section) and conclude the paper.

Related work

As visualizing relationships is at the heart of informa-
tion visualization, our work builds upon many previous
contributions in the field, with particular regard to the
use of visual variables, graph drawing methods, and
casual visualization.

While not part of his visual information-seeking
mantra (‘Overview first, zoom and filter, then details-
on-demand’), Shneiderman1 notes the challenge of
being able to explore relationships between information
items. He stresses the importance of interaction for
relating data entries; however, equally if not more
important are the appropriate visual representations
of different types of relations. To think about repre-
senting relationships visually, it is worth considering
the visual variables that are at our disposal. In
Semiology of Graphics, Bertin2 distinguishes between
eight visual variables: size, value, texture, colour, ori-
entation, shape, and the two dimensions for the posi-
tion on the plane. MDS renderings use planar position
as the primary visual variable, while NLDs typically
rearrange position in order to minimize edge crossings.
Stone3 makes the case that colour can make visualiza-
tions more effective and beautiful when used well. She
shows how colour can be used for labelling and quan-
tifying data. It would be interesting to explore the use

of colour for conveying similarity between items as a
degree of association in Bertin’s terms.

There has been extensive research on drawing and
interacting with NLDs,4 often aiming at reducing
edge crossings, which is one of several geometrical
and graph-theoretical metrics for graph aesthetics.5

Recent additions to this research include EdgeLens, a
technique for interactively exploring overlapping
edges,6 and EdgeBundles, a method for combining
edges with similar paths.7 Another problem of large
graphs is occlusion, especially when arrowheads of
directed edges impair the perception of the actual
nodes. A study of directed graphs examined a range
of visual cues for directionality and their effect on
determining direct and two-step connections.8 While
these contributions can significantly improve the read-
ability of large NLDs, we argue that contextual attrib-
utes of graph elements need to be more acknowledged.
This perspective is supported in earlier work on com-
puter network visualization, where edge and node
attributes (e.g. flow, capacity, utilization) of regional
and international Internet links were regarded to be
more important than the network topology.9 As part
of a social network visualization, it was shown how the
visual representation of number of friends, gender, and
community structure enriches the NLD and allows for
interactive filtering.10

While conventional NLD techniques focus almost
entirely on explicit relations, MDS can be seen as a
complementary approach focusing on proximity as a
visual representation of implicit relations or similarity.
MDS has been used for document visualizations with
the goal of visually conveying ‘thematic patterns and
relationships’ of text collections.11 While the idea

Figure 2. Visualizing influence relations between philosophers; Friedrich Nietzsche is selected in the timeline view.

Dörk et al. 7

Figure 35: GLOv2 EdgeMap B seed technique from [74].

In addition, each glyph has an interaction mode. Interaction is enabled through

59

a selected node model. For example, in the GLOv2 Edgemap B seed technique in

Figure 35, the Nietzsche node is the selected node. In this display, the node glyphs’

interaction mode (highlight neighbors) causes node glyphs to highlight if the backing

node is a neighbor of the selected node and fade out if the backing node is not

a neighbor of the selected node. The interaction mode of the edge glyphs in this

display (show in-out edges) signals for edge glyphs to be visible if the backing edge

is incident to the selected node and hidden otherwise.

The GLOv2 model does not explicitly specify how the selected node is determined.

Instead, this is left to each implementation of the model. For example, the Javascript

GLOv2 implementation I present in the next chapter (GLO.js) considers the node

backing a node glyph the analyst is mousing over the selected node. Alternate selec-

tion mechanisms could include mouse clicking, finger tapping, or even eye tracking.

However, the GLOv2 model does explicitly require that either no nodes are selected

or a single node is selected. The model explicitly does not support multi-selection.

Consider the Edgemap B seed technique again. The edges are displayed such that in-

edges of the selected node (thin lines) are displayed di↵erently than the out-edges of

the selected node (thin lines). These edge glyphs are not sized by an attribute of the

edges, but rather by their relationship to the selected node. If there were two selected

nodes that were endpoints of the same edge, this would lead to an undefined state

for the edge where it was both an in-edge and an out-edge of a selected node. (I will

discuss in Chapter 6 how multi-selection within a GLO model is an open challenge.)

GLOv2 supports three interaction modes for node glyphs: no interaction, highlight

neighbors, and highlight-in-out-neighbors.

In the no interaction case, selecting a node (again, however the implementation

has defined selection) has no e↵ect on the representation. In the highlight neighbors

mode, node glyphs are shown fully rendered when no node is selected and node glyphs

are in some way highlighted when they are neighbors of a selected node. In the case

60

of the Edgemap B seed technique above, this was handled by reducing the saturation

of non-highlighted nodes. However, a given GLO implementation can perform this

highlighting however it deems fit. For example, in my GLO.js implementation, a

thin black ring is drawn around highlighted nodes. The critical aspect is that the

neighborhood of the selected node be visually distinct from the non-neighbor node

glyphs in the generation.

Figure 36: GLOv2 Citevis seed technique based on [213].

In the highlight-in-out-neighbors case, exemplified through the CiteVis GLOv2

seed technique in Figure 36, nodes are highlighted di↵erently if they are in-nodes or

out-nodes of the selected node. In the seed technique, this is handled by coloring in-

nodes green and out-nodes blue. However, once again, the specific manner in which

the node are visually modified is left to the implementation.

Edges glyphs in GLOv2 have six interaction modes: show none, show all, show

faded, show incident, show in-out, and show faded and incident.

The show none, show all, and show faded interaction modes remove any interaction

from the edge glyphs. In the show none case, all edge glyphs in the generation are

hidden. This is the edge interaction mode of the CiteVis seed technique above.

Note that the edge glyphs are not removed when they are hidden. Properties of the

glyphs can still be manipulated and will be reflected should the interaction mode

61

Volume 31, Number 1 INFORMATION PROCESSING LETTERS 12 April 1989

a
Fig. 4. Pictures of asymmetric graphs.

+Japhs is visualized pleasingly as symmetric pictures in our system. Figure 4 shows two pictures of
asymmetric graphs. In these cases needless edge crossings are avoided completely.

-The CPU time needed to compute a layout in these pictures is
seconds (Fig. 3(d)) on a VAX 8600.

4.2. Isomorphic graphs

When the viewer wants to
isomorphic graphs as the same

compare some graphs, it is highly required of the system to display
picture. otherwise the viewer cannot make proper comparisons from the

D C D C

F F A
A

H I H I

from 0.4 seconds (Fig. 3(a)) to 7.6

a b

G E

F
B

J
F

C

Fig. 5. Pictures of isomorphic graphs.

13

(a) Force-Directed Layout from [138]

Figure 5: Graph Drawing author collaboration, 1994-2004.

Figure 6: Collaboration graph drawn by GMap.

Figure 7: Map without interior artificial points.

by the logarithm of the number of publications and the edge thick-
ness is similarly proportional to the number of collaborations. How-
ever, node weights and edge weights are not used in the layout cal-

culations.
From Fig. 6, it is easy to see that European authors dominate the

main continent. Several well-defined German groups can be seen
on the west and southwest coasts. A largely Italian cluster occu-
pies the center, with an adjacent Spanish peninsula in the east. The
northwest contains a mostly Australasian cluster. Two North Amer-
ican clusters are to be found in the southeast and in the southwest,
the latter one made up of three distinct components. A combina-
torial geometry cluster forms the northernmost point of the main
continent. Most Canadian researchers can be found in the central
Italian cluster and the Spanish peninsula. Northeast of the mainland
lies a large Japanese island and southeast of the mainland there is
a large Czech island. Northwest of the mainland is an island of
authors focused on crossing numbers.

Fig. 7 shows a map generated without adding artificial points
around the labels, which results in more regular boundaries, when
compared to the map in Fig. 6. The sizes of the two maps in the pa-
per make it difficult to compare them, but the differences are easy
to see on the screen when the images are zoomed in. We found
that the map in Fig. 6 with more irregular borders was more ap-
pealing but, as noted earlier, our algorithm can generate maps of
both styles. The map generated without adding random points to
define the outer boundaries is even more noticeably un-map-like;
see Fig. 8.

Figure 8: Map without outer artificial points.

4.2 BookLand maps
Many e-commerce websites provide recommendations to allow for
exploration of related items. Traditionally this is done in the form
of a flat list. For example, Amazon typically lists around 5-6 books
under “Customers Who Bought This Item Also Bought”, with a
clickable arrow to allow a customer to see further related items.

Instead of a flat list, which provides a very limited view of the
neighborhood, there have been attempts to convey the underlining
connectivity of the products through graph visualization. For exam-
ple, TouchGraph [3], has an Amazon browser which shows a graph
defined on a small neighborhood surrounding the book of interest.
None of the existing approaches, however, gives a comprehensive
view of the relationship and the clustering structures.

Using our GMap algorithm, we obtained the map in Fig. 1. The
underlying data is obtained with a breadth-first traversal following
Amazon’s “Customers Who Bought This Item Also Bought” links,
starting from the root node, Orwell’s 1984. Links are followed up
to a distance of 12 from the root node. We then trim the graph by

205

(b) GMap from [94]

Figure 37: GLOv2 Force-Directed Layout seed technique and GLOv2 GMap seed
technique. The straight-line edge glyphs in the Force-Directed Layout have the show
all edges interaction mode, while the straight-line edge glyphs in the GMap technique
have the show faded interaction mode.

change. In the show all case, each edge glyph is displayed fully rendered. In the

show faded case, every edge glyph is displayed with a lower saturation. For example,

in Figure 37, compare the fully-rendered straight-line edges of the Force-Directed

Layout seed technique (show all edges interaction mode) with those of the GMap

seed technique (show faded interaction mode).
SHNEIDERMAN ET AL.: NETWORK VISUALIZATION BY SEMANTIC SUBSTRATES

Fig. 8. The layout for Circuit Court cases is now organized by the 13
Circuits and the link pattern shows the strong likelihood that cases will
reference precedents within the same Circuit.

Fig. 9. Displaying 1,122 nodes and 7,645 links at a 1280x1024
resolution. The relatively small number of Supreme Court cases is
apparent, as is the similar number of Circuit and District Court cases.

Distributions within years are also visible, enabling users to see the
ebb and flow of activity.

As with many new ideas, there are numerous refinements that are

needed. Designs for 3, 4, and 5 regions get more complex but we are
finding strategies to deal with them.

In this example, our collaborators were certain about the
important attributes, which we used as ingredients determining
placement. In general, however, there may be many attributes and
that users may have little awareness of which attributes are best to
use to determine regions and placement for their task. Considering
that users with such data exist, a user interface to help users explore
combinations of attributes seems to be a promising future direction.

We have a plan for an iconic representation that would replace
multiple check boxes, allowing easy selection of links within or
between up to 5 regions.

The NVSS implementation is still developing and more features
are needed in the user interface to simplify the specification of region
size, location, color, labels, node layout strategy, etc. In addition,
greater flexibility will certainly be needed for node, link, and label
properties such as placement, size, color, font, and background. We
plan to add dynamic properties to control node and link visibility,
plus infotips, excentric labels, and window panes for textual lists.

Future work might also include elastic window strategies that
enable users to enlarge one region while shrinking the others in a
smooth animation [25]. For networks with millions of nodes, further
work is needed on dynamic query sliders to limit node visibility

739

Figure 38: GLOv2 Semantic Substrates seed technique from [204] with edge glyphs
in the show incident edges display mode.

62

In the show incident interaction mode, an edge glyph is only displayed when one

of the endpoints of the edge glyph’s backing edge is selected. This is the interaction

mode used by the Semantic Substrates GLOv2 seed technique in Figure 38.
H.-J. Schulz, M. John, A. Unger & H. Schumann / Visual Analysis of Bipartite Biological Networks

Figure 1: This screenshot shows the two node sets as tables, the connecting edges in between, and both 1-mode projections at
the sides. The markers point to the special visualization features we added to the basic concept. (A) - Focus+Context in table,
(B) - Fisheye scrollbars with selection markers, (C) - Hide unselected rows, (D) - Minimization of edge crossings, (E) - Clickable
edges, (F) - URL-references, (G) - Columns for the two different selections, (H) - Maximum level of script, (I) - Highlighting of
traversed edges and 1-mode projections.

Fisheye scrollbar with selection markers (B): As rows of
interest can also be selected (see Section 3), such selections
can span over both of the tables and be scattered all over
them. To easily find regions with selected rows in large ta-
bles, we have integrated additional selection markers into the
scrollbars at the sides. They indicate where selected rows
are located in a table. The user can either use the scrollbar
to scroll up/down to a selection or directly click on a selec-
tion marker to jump instantly to the respective row. Because
the selection markers can be placed quite densely and are
hard to pinpoint for clicking, we have also added a fisheye
lens to the scrollbar. This lens follows the mouse cursor and
spreads out the focus area so that, even in crowded regions,
individual selection markers can be clicked. A tooltip dis-
plays information about the row to which a selection marker
belongs. This feature is also shown in detail in Figure 2.

Hide unselected rows (C): In very large data sets, even with
the help of the selection markers, the exploration of a scat-
tered selection can be tiresome. Therefore, we allow the user

to reduce the view of the tables to show only selected rows.
In this condensed view, unselected rows will be substituted
blockwise by a single row that gives information about how
many rows have been hidden at that point. An example is
given in Figure 2, where only the selected rows of a table are
shown.

2.2. Additional Features for Large Edge Sets

Minimization of edge crossings (D): As the node sets in
the tables can be freely ordered, the edges running in be-
tween the tables just follow the ordering of the rows. Thus,
for a minimization of edge crossings, at least one of the ta-
bles needs to be reordered. A barycentric crossing minimiza-
tion heuristic [JM97] can be called with just one mouse click
to rearrange one of the tables. This immensely reduces the
visual clutter in most real-world cases.

Clickable edges (E): The visual tracking of edges is ham-
pered by their crossings. This makes it hard to discern the

c� The Eurographics Association 2008.

Figure 39: GLOv2 List View seed technique from [199]. Edge glyphs utilize the show
faded-and-incident interaction mode.

The List View GLOv2 seed technique in Figure 39 utilizes the show faded-and-

incident interaction mode. In the show faded-and-incident interaction mode, edge

glyphs are displayed as faded (i.e. with a lower saturation) both when there is no

selected node or when a selected node is not an endpoint of the edge glyph’s backing

edge. In the case where the backing edge is an endpoint of the selected node, then

the edge glyph is drawn fully rendered.

Finally, the Edgemap A and Edgemap B GLOv2 seed techniques in Figure 40

demonstrate the show in-out interaction mode. Like the show incident interaction

mode, under the show in-out interaction mode, edges are hidden unless there is a

selected node. When a node is selected, edge glyphs representing in-edges of the node

are rendered one way, while out-edges of the node are rendered another way. It is

again left to each implementation how the edges are rendered di↵erently.

63

spatialization. EdgeMaps integrate NLD and MDS
techniques utilizing both visual linkage and proximity
for the representation of complex – explicit and implicit
– relations between items. The intent behind this
approach is to make effective use of visual variables
that have been underutilized in NLD and MDS
techniques.

As case studies for this paper, we have chosen data
sets of philosophers, painters, and musicians from the
Freebase data community. While there are many bio-
graphical records associated with these prominent per-
sonalities of philosophy, art, and music, a particularly
interesting aspect is the existence of influence connec-
tions between people, which are a type of explicit
relations. On the other hand, birth dates, interests,
movements, and genres are attributes that indicate
implicit relations between philosophers, painters, and

musicians. We chose these dimensions because they
provide a compelling case for the visualization of expli-
cit and implicit relationships and allow us to explore
complex data relationships. Visualizing influences
between musicians or philosophers as edges may indi-
cate who had more impact, yet it is not possible with
these links alone to see the extent of the impact. By
encoding meaningful data relations into both position
and edges, it becomes possible, for example, to explore
the influence of musicians across genres or of philoso-
phers over time (see Figures 1 and 2).

The remainder of the paper is structured as follows.
First, we provide an overview of prior work, after
which we explain our design goals and the data sets
we use as case studies. We then introduce the visual
representations provided with EdgeMaps (‘Visualizing
explicit and implicit relations’ section) and describe the

Figure 1. Visualizing relations among musicians. The influence of The Beatles is visualized in the similarity map.

6 Information Visualization 11(1)

(a) Edgemap A

web-based interface design (‘Creating a web-based visu-
alization interface’ section). Using the case studies, we
illustrate new ways for exploring complex relations
(‘Revealing complex relationships’ section). We then
discuss the limitations and open questions of this
work (‘Discussion’ section) and conclude the paper.

Related work

As visualizing relationships is at the heart of informa-
tion visualization, our work builds upon many previous
contributions in the field, with particular regard to the
use of visual variables, graph drawing methods, and
casual visualization.

While not part of his visual information-seeking
mantra (‘Overview first, zoom and filter, then details-
on-demand’), Shneiderman1 notes the challenge of
being able to explore relationships between information
items. He stresses the importance of interaction for
relating data entries; however, equally if not more
important are the appropriate visual representations
of different types of relations. To think about repre-
senting relationships visually, it is worth considering
the visual variables that are at our disposal. In
Semiology of Graphics, Bertin2 distinguishes between
eight visual variables: size, value, texture, colour, ori-
entation, shape, and the two dimensions for the posi-
tion on the plane. MDS renderings use planar position
as the primary visual variable, while NLDs typically
rearrange position in order to minimize edge crossings.
Stone3 makes the case that colour can make visualiza-
tions more effective and beautiful when used well. She
shows how colour can be used for labelling and quan-
tifying data. It would be interesting to explore the use

of colour for conveying similarity between items as a
degree of association in Bertin’s terms.

There has been extensive research on drawing and
interacting with NLDs,4 often aiming at reducing
edge crossings, which is one of several geometrical
and graph-theoretical metrics for graph aesthetics.5

Recent additions to this research include EdgeLens, a
technique for interactively exploring overlapping
edges,6 and EdgeBundles, a method for combining
edges with similar paths.7 Another problem of large
graphs is occlusion, especially when arrowheads of
directed edges impair the perception of the actual
nodes. A study of directed graphs examined a range
of visual cues for directionality and their effect on
determining direct and two-step connections.8 While
these contributions can significantly improve the read-
ability of large NLDs, we argue that contextual attrib-
utes of graph elements need to be more acknowledged.
This perspective is supported in earlier work on com-
puter network visualization, where edge and node
attributes (e.g. flow, capacity, utilization) of regional
and international Internet links were regarded to be
more important than the network topology.9 As part
of a social network visualization, it was shown how the
visual representation of number of friends, gender, and
community structure enriches the NLD and allows for
interactive filtering.10

While conventional NLD techniques focus almost
entirely on explicit relations, MDS can be seen as a
complementary approach focusing on proximity as a
visual representation of implicit relations or similarity.
MDS has been used for document visualizations with
the goal of visually conveying ‘thematic patterns and
relationships’ of text collections.11 While the idea

Figure 2. Visualizing influence relations between philosophers; Friedrich Nietzsche is selected in the timeline view.

Dörk et al. 7

(b) Edgemap B

Figure 40: GLOv2 EdgeMap A and Edgemap B seed techniques from [74]. Both
techniques utilize the in-out edges interaction mode where in edges of the selected
node are displayed di↵erently from out edges.

4.2.2 Generations

At the next level of the visual element model, glyphs are grouped into generations.

To summarize the logic behind generations from Chapter 3, changes between tech-

niques are described as changes to sets of glyphs, not to individual glyphs. Specifically,

operations that manipulate the visual element model operate on sets of one glyph per

node or one glyph per edge. Therefore, in a given generation, there is one glyph per

node or edge in the graph. I.e., in a given node generation there is a single node

glyph for each backing node in the underlying graph data, and in a given edge

generation there is a single edge glyph for each backing edge in the underlying

graph data.

The backing nodes and edges of a generation may not necessarily be the nodes

and edges of the underlying graph data. As I demonstrated during the (Semantic

Substrates, PivotGraph) transition, nodes and edges can be aggregated into super-

nodes and super-edges. These super-elements represent multiple nodes or edges. A

generation of super-node glyphs backed by super-nodes will therefore have fewer

glyphs than the total number of nodes in the original graph and equivalently for

64

super-edge glyphs.

When nodes or edges are aggregated to form super-nodes and super-edges, the

attributes of the aggregated nodes and edges are shared by the super-element. In

other words, super-elements have the same data attributes as the original graph’s

nodes and edges. For continuous attributes, super-elements summarize the original

element’s attributes using a summary statistic such as mean, median, min, or max.

The choice of summary statistic is therefore a mandatory parameter of aggregation

GLOs. For discrete attributes, the super-elements have the same values as the most

common value among the original elements. If there is a tie between values, the value

associated with the element with the lowest identifier among the elements with one

of the candidate values is chosen.

Every node glyph and edge glyph backed by an element of the original graph in-

cludes an immutable count attribute with a value of 1. This value signifies that

the glyph represents a single element of the original graph. Super-elements have

count attributes equal to the number of original elements they represent. For exam-

ple, if three original nodes are aggregated into a super node, then the super-node

has a count attribute value of 3. Techniques such as the PivotGraph GLOv2 seed

technique depend on this value to properly size its super-node-backed node glyphs.

Furthermore, should super-elements be aggregated, the new (super-)super-elements

have count attributes equal to the sum of the count attributes of the super-elements.

Super-nodes and super-edges can be deaggregated to restore the nodes and

edges or super-nodes and super-edges (and the associated glyphs) that made up the

aggregates. Note that the restored node and edge glyphs may have been modified.

Operations performed on a generation of super-node glyphs or super-edge glyphs are

reflected in the glyphs of the original nodes and edges. For example, any operations

that change properties of a super-glyph (display mode, position, size, color, or inter-

action mode) will be reflected in the restored nodes. For example, if a super-glyph

65

is colored red by an operation, then all of the node glyphs aggregated to form the

super-glyph will be restored as red-colored.

In the (Force-Directed Layout, Matrix Plot) transition in the previous chapter,

I showed that some techniques (such as Matrix Plots) require multiple glyphs to

represent the same graph elements. Furthermore, I showed that these additional

generations of glyphs can be introduced into a display unambiguously by cloning

an existing generation. Cloning a generation creates a new generation, with its own

set of glyphs, each of which is a duplicate of one of the original generation’s glyphs.

With the exception of a default generation, generations can only be created through

cloning. A default generation consists of a single generation of unaggregated elements.

Notably, the new generation’s glyphs are still backed by the same underlying nodes,

edges, super-nodes, or super-edges of the generation being cloned. In other words, the

glyphs in cloned generations can still have properties such as size and color derived

from data attributes.

Recall that interaction is handled by a selected node model, as opposed to a

selected node glyph model. This means that any interaction with a glyph representing

a node will simulate interaction on (i.e., brush to) all other glyphs representing the

node.

Just as node and edge glyphs have properties, so too do edge generations. Specif-

ically, each edge generation has a source node generation and target node gen-

eration. Consider the Edge-Label-Centric GLOv2 seed technique in Figure 41. The

technique consists of two generations of nodes, one on the left and one on the right.

Edges (represented by the red line glyphs) are drawn from the glyph representing

the source node in the left generation to the glyph representing the target node in

the right generation. In order to correctly draw these edges, the edge generation

knows its source node generation and target node generation. Edges displayed

66

(a)

(b)

(c)

Figure 2: Approach.

by showing a list of edge labels at the center of our visualiza-

tion. Every unique edge label is represented by a rectangular

region. We partition the set of edges by letting every edge

pass through that region that represents its edge label.

We are dealing with directed edges (see Section 1) which

impose an ordering on the two nodes they connect. For an

edge (v, l,v�) � E, v is called the source and v� the target.

We follow the convention of visualizing ordinal data from

left to right [Tuf01]: all source nodes are represented by a

region at the left of the visualization while all target nodes

are represented by a region at the right (see Figure 2(a)).

This implies that the collection of nodes is represented twice,

once in its capacity as source and once as target.

The effectiveness of the techniques discussed in Section 3

results from being able to consider clusters of nodes that

share properties expressed in terms of a few attributes. We

take a similar approach by enabling the user to select a sub-

set of node attributes. The entire set of nodes is partitioned

based on the different values assumed for the first attribute

in this selection (Figure 2(b)). Every one of the resulting

clusters now contains a disjoint subset of the original set of

nodes. Next, each of these clusters is sub-partitioned based

on the second variable (Figure 2(c)), resulting in another

level in the hierarchy. By recursive partitioning, a new layer

of clusters is computed for every attribute selected by the

user. Every cluster, apart from the root, has a child-of rela-

tionship with one higher level cluster.

A line that connects a leaf cluster on the left with an edge

label X in the center implies that the cluster contains at least

one (source) node with an outgoing edge of type X . Sim-

ilarly, a line that connects edge label X with a leaf cluster

on the right means that it contains at least one (target) node

with an incoming edge of type X . In this way, the visual-

ization intuitively reads from left to right. This, combined

with real time interaction and visual feedback, supports user

queries in a natural way, as we show in following sections.

In our final visualization (Figure 3), we do not show the

root cluster since it simply represents the set of all nodes.

In early versions of our prototype we represented the clus-

tering hierarchy with a node link diagram. Since we already

represent edges with lines, we have replaced this with an ici-

cle plot. We use subtle cushioning to differentiate regions

better [War06]. The different attribute values assumed in a

particular level are encoded with labels and distinct colors to

enable users to identify repeated patterns (Figure 3(a)).

We encode the number of nodes in every cluster and the

number of edges with a particular edge label with the length

of the colored bar inside the region (Figure 3(b)). A logarith-

mic scale can be used to amplify differences for small quan-

tities. This improves on earlier work by combining hierarchi-

cal and quantitative data in a single representation [PW06].

It also avoids issues encountered when encoding quantitative

information with region size.

5. Interaction

Interaction plays an important role in our technique. As we

describe below, we enable the user to interactively inspect

and query multivariate graphs based on the data associated

with nodes and edges. We illustrate this by showing how the

questions introduced in Section 2.2 can be answered with

our technique in a straightforward fashion. In the discussion

that follows, consider how the user is able to rapidly find

the answers with no more than three clicks and contrast this

with the effort needed to formulate and evaluate the formal

queries discussed in Section 2.3.

When the user selects a source cluster, the cluster and all

nodes contained in it are selected. The same holds for all out-

going edges and their edge labels, as well as target nodes and

their parent clusters. Selected clusters and edge labels are

highlighted in red. Note that for a target cluster selected in

this way, it is possible that only some of the contained nodes

are selected. The same holds for edge labels (representing

collections of edges). Knowing this may be important when

interpreting the results and we show the fraction of selected

edges and nodes with a red bar overlaid on a lighter bar that

encodes the total (see Figure 3(c)). When an edge label or

target cluster is selected, the same reasoning is applied. We

now know enough to answer the first question posed to users.

Question 1. Cluster on robot_1_rgt, prep_stage and

proc_stage. Select the source cluster containing all nodes

where robot_1_rgt = empty, prep_stage = prepared and

c� 2008 The Author(s)
Journal compilation c� 2008 The Eurographics Association and Blackwell Publishing Ltd.

A.J. Pretorius & J.J. van Wijk / Visual Inspection of Multivariate Graphs970

Figure 41: GLOv2 Edge-Label-Centric seed technique from [182]. The red straight-
line edges are drawn from the source generation on the left to the target generation
on the right through the waypoint generation of super-edge glyphs in the center.

as straight or curved lines or right-angles can then be drawn between the appropri-

ate source and target glyphs. Edges displayed as squares or attribute labels can be

positioned relative to the source and target node glyphs.

MatLink: Enhanced Matrix Visualization for Analyzing Social Networks 289

(a) Node-Link(NL) (b) Matrix(MAT) (c) MatLink

(d) Zoom on MatLink

Fig. 1. Three representations of a social network

To address these limitations, we developed MatLink, an enhanced matrix-
based graph visualization that overlays a linear node-link diagram on the edges
and adds dynamic feedback of relationship between nodes (Figure 1c). To assess
its e↵ectiveness, we performed an experiment comparing user performance with
NL, MAT and MatLink on a set of representative social network analysis tasks.

The rest of the paper is organized as follows: the next section describes pre-
vious work on social network characterization, evaluating graph visualizations
and analysis tasks, visual exploration systems and layout algorithms. We then
describe our novel visualization and present an experimental evaluation compar-
ing it to existing network visualizations. A discussion on the results and their
implications follows.

2 Related Work

2.1 Social Network Characterization

Social networks involve persons or groups called actors and relationships between
them, with a lot of variety in the kind of actors and relationships. As described
in Wasserman and Faust [2], actors can be people, subgroups, organizations or
collectivities; relations may be friendship (relationships), interactions, commu-
nications, transactions, movement or kinship. However, the nature of actors and
relations does not really matter: we focus on their structure.

Very often in the literature, social networks are confused with small-world
networks. After studying real social networks, we identified three categories.

Figure 42: GLOv2 MatLink seed technique from [118] demonstrates source and target
node generations.

For example, consider the MatLink GLOv2 seed technique in Figure 42. One

generation of curved edges is drawn with the nodes on the left-side as both the source

and target generation. Similarly, the other generation of curved edges is drawn with

the nodes on the top as both the source and target generation. In contrast, the nodes

67

displayed as squares making up the majority of the display are drawn such that

they share a y coordinate value with their source nodes on the left and share an x

coordinate value with the target node in the top generation. Therefore, the left-hand

node generation is the source generation of the square edge generation, while the top

node generation is its target generation.

An additional property of edge generations are waypoint generations. A way-

point generation is a di↵erent edge generation through which edge glyphs with line-

based display modes (straight lines and curved lines) are drawn. For example, in in

Figure 41, the generation of super-edge glyphs with display mode labels in the center

of the display is an edge waypoint generation of the generation of red straight-line

edge glyphs. By default, edge generations do not have a waypoint generation.

4.2.3 Canvases

The third level of the GLOv2 visual element model is the canvas, on which the glyphs

of each generation are drawn. Each canvas has four axes: x, y, ⇢, and ✓. The x and

y axes map to the Cartesian coordinate system (i.e. lower-left origin). Each canvas

has three preset values for the x axis (left, center, and right) and three preset values

for the y axis (top, middle, and bottom). Conversely, the radial ⇢ and angular ✓ axes

define a polar coordinate system around the (center,middle) point in the Cartesian

coordinate system. Single preset (constant) values for ⇢ and ✓ are defined by each

implementation of the GLOv2 model. The GLO.js implementation uses the positive

y direction as its constant ✓ value and quarter the shorter of the x or y axis lengths

as its constant ⇢ value.

Canvases can also display axis labels along their edges. (For example, see the

Scatternet GLOv2 seed technique in Figure 43.) If node glyphs are repositioned

along an axis by a di↵erent attribute, the axis labels update accordingly. Similar

to each edge generation have source and target node generations, each axis on each

68

through the familiar network edges. This type of circle-relative layout
of nodes has been suggested in earlier systems such as VisAware [32]
and StarGate [35]. We felt that it would effectively convey both seg-
ment membership and company agreement links.

Fig. 6. The Segment View showing HP, Seagate and its partners and
emphasizing Seagate’s market segments and partner companies.

In this view, the size of each segment arc is proportional to the num-
ber of companies in that segment across the entire ecosystem. Three
different orderings of the segment arcs around the circle are available:
by value chain, by existing versus emerging segments, and by seg-
ment size. As mentioned above, companies dropped into the view are
represented by nodes placed at the centroid of their market segments.
Companies residing in only one segment are drawn in a band along
the segment in order to differentiate them from each other. Hovering
the mouse over a company highlights its segments, and hovering over
a segment highlights all of the companies in the view resident in that
segment. Figure 6 illustrates HP, Seagate and their partners. It shows
that Seagate participates in three market segments in the value chain
and has agreements with companies across a range of segments. This
view is applicable to set-valued categorical attribute data and would be
appropriate for similar data from other domains.

5.3.3 ScatterNet
Because the dataset contains such a wide variety of metrics and infor-
mation about each company in the ecosystem, we felt that dotlink360
should provide one view of the company-to-company agreement infor-
mation in the context of those metrics. The ScatterNet view (Figure 7)
provides this perspective and is essentially a node-link diagram em-
bedded in a scatterplot. Rather than have company (node) positions
determined via a graph layout algorithm, their x and y positions in the
view are determined by the company’s values along the two ecosys-
tem attributes assigned to the two axes. Available ecosystem attributes
include agreement activity descriptors, financial performance descrip-
tors, and network structure properties such as centrality and cluster
coefficient computed from the agreement network. Within the scat-
terplot, company nodes still react as in the other connectivity views:
expanding (double-clicking) on a company adds its partners at their
appropriate x,y scatterplot positions according to the current metrics
shown, connected to the initial company via gray edges. The analyst
is able to zoom into a particular region of the scatterplot by mouse
drag-selection of that region.

The benefits of attribute-related network node positioning have
been illustrated in systems such as PivotGraph [46], Semantic Sub-
strates [42] and GraphDice [12]. dotlink360’s ScatterNet view am-
plifies this idea and provides network-connected nodes embedded in
a flexible multivariate scatterplot. It could be used for multivariate
network data from many different domains as well.

Figure 7 shows the ScatterNet view populated by HP, Seagate Tech-
nology, and both its partners. The x-axis encodes portfolio diversity

Fig. 7. The ScatterNet View that embeds a network visualization in
a scatterplot. Here, portfolio diversity index and market cap uniquely
determine company positions. The mouse cursor is over IBM so its
partners, including HP, are blue.

index on a linear scale and and the y-axis encodes market capitaliza-
tion along a logarithmic scale. Hovering the mouse over IBM, a shared
partner of HP and Seagate, displays its values for the two metrics in a
tooltip. This view allows the analyst to observe HP’s position relative
to its agreement partners along these key metrics.

5.3.4 Geography

The Geography view (Figure 8) provides an additional perspective on
the network of companies and agreements. In this view, nodes are
placed on an interactive world map, located at latitude and longitude
coordinates derived from the primary address for each company. Ana-
lysts interact with nodes as previously described for the other connec-
tivity views and can zoom, recenter, and toggle the display of labels
and network edges. In addition, analysts can pan the map by clicking
and dragging anywhere in the main visualization.

Fig. 8. The Geography View, here zoomed in to show HP’s headquarters
location and the locations of its partners in Europe and the U.S.

Considering the running example of HP, an analyst places its node
on the map by dragging from the navigator panel, or by broadcast-
ing from one of the other views. Double-clicking on HP’s node adds
its partners to the view. This operation provides a convenient means
of observing the physical distribution of partners in a company’s net-
work. In this case, we note that many of HP’s partners are nearby,
the details of which can be examined by zooming into the Bay Area
around San Francisco. Other groups of partners are visible around the
world, including Europe, the UK, and Scandanavia.

2531BASOLE ET AL: UNDERSTANDING INTERFIRM RELATIONSHIPS IN BUSINESS ECOSYSTEMS WITH INTERACTIVE VISUALIZATION

Figure 43: GLOv2 ScatterNet seed technique from [27] demonstrates axis labels.

canvas also has an associated node generation. In this way, each axis knows when to

update the labels.

4.2.4 GLO Display

The highest level of the GLO visual element model is the GLO Display. Unlike

canvases, generations, and glyphs, there is only one GLO Display. The GLO Display

consists of canvases arranged in a grid along the x and y axes. Similar to how new node

and edge generations can be created by cloning existing node and edge generations,

new canvases can be created by partitioning existing canvases.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

MatrixExplorer: a Dual-Representation System to Explore
Social Networks

Nathalie Henry and Jean-Daniel Fekete

Abstract— MatrixExplorer is a network visualization system that uses two representations: node-link diagrams and matrices. Its
design comes from a list of requirements formalized after several interviews and a participatory design session conducted with
social science researchers. Although matrices are commonly used in social networks analysis, very few systems support the
matrix-based representations to visualize and analyze networks.

MatrixExplorer provides several novel features to support the exploration of social networks with a matrix-based representation, in
addition to the standard interactive filtering and clustering functions. It provides tools to reorder (layout) matrices, to annotate and
compare findings across different layouts and find consensus among several clusterings. MatrixExplorer also supports Node-link
diagram views which are familiar to most users and remain a convenient way to publish or communicate exploration results.
Matrix and node-link representations are kept synchronized at all stages of the exploration process.

Index Terms— social networks visualization, node-link diagrams, matrix-based representations, exploratory process, matrix
ordering, interactive clustering, consensus.

Fig. 1. MatrixExplorer showing two synchronized representations of the same network: matrix on the left and node-link on the right.

1 INTRODUCTION
Information visualization has been used to support social network

analysis since the 1930s. Social scientists use visual representations
both to explore datasets and to communicate their results. Some
information visualization systems focus on exploration, taking
advantage of features of the human perceptual system to discern
visual patterns in the data. Others help researchers draw social
networks, usually in the form of node-link diagrams to represent
trees and graphs. Although adjacency matrices have played an
important role in social networks analysis since the 1940s [16], few

social scientists use their visual representations to communicate their
findings.

This article presents MatrixExplorer (Figure 1), which offers both
node-link and matrix representations to help sociologists and
historians explore and communicate social networks. The node-link
diagrams provide intuitive representations for relatively small
networks, and, when adequately visualized, remain a powerful means
of communication. MatrixExplorer also provides tools for
reorganizing, clustering and filtering graphs using a matrix
representation. These matrices are always readable, even for large
and dense graphs, and thus support exploration throughout the
analysis process. MatrixExplorer offers several novel features to
help explore complex social networks, using the most suitable
representation at any time.

This paper is organized as follows: we first present related work
and describe the requirements for a visual exploration system that we
defined together with social sciences researchers. We then describe
MatrixExplorer and detail its major features for matrix-based
representations. We conclude with discussion and future work.

 Nathalie Henry is with INRIA Futurs/LRI and University of Sydney,

E-Mail: Nathalie.henry@lri.fr.
 Jean-Daniel Fekete is INRIA Futurs/LRI,

E-Mail: jean-daniel.fekete@inria.fr.
Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6
November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

677

1077-2626/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society

Figure 44: GLOv2 MatrixExplorer seed technique from [116] demonstrates canvas
partitioning within a GLO Display.

69

Partitioning a canvas divides the area of the GLO Display originally designed to

the canvas into n equal-sized partitions along an axis. Each partition is a clone of

the original canvas except for the smaller dimensions. The partitions each contain

clones of all the node and edge generations in the original canvas. Once a canvas

is partitioned, each of the canvases can be modified independently. For example,

to transition to the MatrixExplorer GLOv2 seed technique in Figure 44 requires

partitioning the GLO Display into two canvases. After the partitioning, each of the

two canvases can be adjusted independently, one into a Force-Directed Layout and

the other into a Matrix Plot.

Recall that interaction is derived from selected nodes (rather than selected node

glyphs). Thus, interaction does not simply brush to other glyphs backed by the

selected node in a single canvas, but rather to node glyphs backed by the selected

node in all canvases. In this way, the GLO visual elements model brushing and

linking between di↵erent representations, such as the two displays that make up the

MatrixExplorer. In particular, there is a high level of collaboration occurring in large
grants awarded in 2003.

Figure 8: Collaboration between organizations on NSF IIS grants,
broken down by year and amount

To investigate further, we right click in the 2003-large grant

cell and choose “Analyze in detail” to open a new tab show-
ing that subnetwork for closer analysis. We can see that
University of Colorado at Boulder (CU Boulder for short) occupies an im-
portant position in this subnetwork where it connects multiple local
clusters (Figure 9). This observation is confirmed after running the
computational analysis, where CU Boulder has the highest between-
ness centrality score, indicating that it is linking many organizations
that are otherwise not linked. One reason for this is that CU Boulder

has collaborated on quite a few different large grants with differ-
ent organizations in 2003. To see the grants it has received as well
as the collaborating institutions for each grant, we clear the cur-
rent subnetwork while keeping the 2003-large grant slice specifica-
tion, and construct an organization-name-title network, connecting or-
ganizations with the researchers who are connected with the grants
they receive. We see the specific researchers from this school as
well as the three large grants they have worked on: emotion in
speech, tangible media and semantic interpretation (Figure 10).

Figure 9: CU Boulder is an important actor in the 2003-large grant
collaboration network

To look further at the role of program managers in the collab-
oration dynamics, we now go back to the previous tab and re-
place the date slices with program manager slices. Noting that
William Bainbridge, Maria Zemankova, and Ephraim Glinert are the top 3
grant awarding managers, we find that a significant portion of their

Figure 10: Large grants received by CU Boulder and other institutions
in conjunction in 2003

grants is small grants. After filtering out non-collaborating institu-
tions, we find that grants awarded by them do not particularly show
greater activities of collaboration (Figure 11). It is also obvious
from the visualization that Ephraim Glinert has awarded a number of
grants to groups of 4 institutions (visualized in the form of tetra-
hedra), and Stephen Gri�n awarded one grant to a group of 5 collab-
orating institutions (in the form of a pentahedron). Such patterns,
some of which are highlighted in the figure, are not seen in grants
awarded by other program managers.

Figure 11: Collaboration between organizations on NSF IIS grants,
broken down by program manager and amount

4 COMPUTING CONNECTIONS

The logic underlying Ploceus is built on top of a formal framework
that systematically specifies how to compute edge connections and
assign edge weights. We will present a detailed treatment of the
framework at the level of formal definitions and proofs in a partner
paper. Here, we provide an overview of the framework.

4.1 Approach and assumptions
Analysts that organize data into structured rows and columns in ta-
bles are implicitly declaring relationships between data elements.
When data elements appear in the same column, they usually be-
long to the same type (e.g. 142 and 16 are both GroupSize in Ta-
ble 1). When data elements appear in the same row, they are usu-
ally semantically related, and the specific semantics depend on the
context. When Aarnio, Alicia and OEOB appear in a single row of
the White House visit logs, this co-occurrence can be interpreted
as a visiting relationship between two entities: the person Alicia
Aarnio visited the Old Executive Office Building (OEOB). When

47

Figure 45: GLOv2 Attribute Matrix seed technique from [153] demonstrates filter-
partitioning canvases and meta-axis labels.

While partitioning canvases into a specific number of smaller canvases enables

70

linked representations, other techniques make use of Tufte’s principle of small mul-

tiples [229]. For example, consider the Attribute Matrix GLOv2 seed technique in

Figure 45. The Attribute Matrix displays a grid of small multiples of Force-Directed

Layouts, where each small multiple consists of the subgraph induced by the nodes that

have the same pair of properties. GLOv2 supports this small multiples functionality

through filter-partitioning. Filter-partitioning not only partitions the canvas, but

does so by splitting each node generation on the canvas based on a discrete value of

the data. Similar to axis labels on canvases, the GLO Display can display meta-axes

when the canvases themselves are data-driven in this way.

4.3 Operation Sets

While the visual element model represents one component of a full GLO model, the

other component is a set of graph-level operations that modify an instance of the

visual element model. These operations represent the various steps used to transi-

tion between techniques during the identification process, such as sizing nodes by an

attribute, cloning a generation, or displaying edges as squares.

Rather than list the operations here, I instead refer the reader to the full set of

34 GLOv1 operations in Appendix C and the full set of 72 GLOv2 operations in

Appendix D.

In this space, let me instead briefly describe the categories of operations in each

model.

The 34-element GLOv1 operations set can be broken down into five overarching

categories. Positioning operations adjust the coordinate positions of nodes glyphs

in the GLO Display. There are operations that modify element properties, such as

how edges are displayed or whether nodes are constant-sized or sized by an attribute.

This category includes operations for specifying interaction modes. Cloning opera-

tions allow the visualization to represent the same set of nodes with multiple glyphs

71

(and remove those extra glyphs.) The model provides operations for aggregating

nodes and edges into super-nodes and super-edges. Finally, GLOv1 enables showing

and hiding axes labels that update as the positions of the nodes are changed.
Figure 5: Graph Drawing author collaboration, 1994-2004.

Figure 6: Collaboration graph drawn by GMap.

Figure 7: Map without interior artificial points.

by the logarithm of the number of publications and the edge thick-
ness is similarly proportional to the number of collaborations. How-
ever, node weights and edge weights are not used in the layout cal-

culations.
From Fig. 6, it is easy to see that European authors dominate the

main continent. Several well-defined German groups can be seen
on the west and southwest coasts. A largely Italian cluster occu-
pies the center, with an adjacent Spanish peninsula in the east. The
northwest contains a mostly Australasian cluster. Two North Amer-
ican clusters are to be found in the southeast and in the southwest,
the latter one made up of three distinct components. A combina-
torial geometry cluster forms the northernmost point of the main
continent. Most Canadian researchers can be found in the central
Italian cluster and the Spanish peninsula. Northeast of the mainland
lies a large Japanese island and southeast of the mainland there is
a large Czech island. Northwest of the mainland is an island of
authors focused on crossing numbers.

Fig. 7 shows a map generated without adding artificial points
around the labels, which results in more regular boundaries, when
compared to the map in Fig. 6. The sizes of the two maps in the pa-
per make it difficult to compare them, but the differences are easy
to see on the screen when the images are zoomed in. We found
that the map in Fig. 6 with more irregular borders was more ap-
pealing but, as noted earlier, our algorithm can generate maps of
both styles. The map generated without adding random points to
define the outer boundaries is even more noticeably un-map-like;
see Fig. 8.

Figure 8: Map without outer artificial points.

4.2 BookLand maps
Many e-commerce websites provide recommendations to allow for
exploration of related items. Traditionally this is done in the form
of a flat list. For example, Amazon typically lists around 5-6 books
under “Customers Who Bought This Item Also Bought”, with a
clickable arrow to allow a customer to see further related items.

Instead of a flat list, which provides a very limited view of the
neighborhood, there have been attempts to convey the underlining
connectivity of the products through graph visualization. For exam-
ple, TouchGraph [3], has an Amazon browser which shows a graph
defined on a small neighborhood surrounding the book of interest.
None of the existing approaches, however, gives a comprehensive
view of the relationship and the clustering structures.

Using our GMap algorithm, we obtained the map in Fig. 1. The
underlying data is obtained with a breadth-first traversal following
Amazon’s “Customers Who Bought This Item Also Bought” links,
starting from the root node, Orwell’s 1984. Links are followed up
to a distance of 12 from the root node. We then trim the graph by

205

Figure 46: GLOv2 GMap seed technique from [94] utilizing convex hulls.

The 72-element GLOv2 operations set can be broken down into eight categories.

Some are the same as GLOv1, such as those for adjusting node (and edge) glyph

positions and other visual properties. GLOv2 also supports cloning nodes (and

edges), aggregating nodes (and edges), and displaying axes. However, GLOv2 also

adds support for partitioning canvases within the GLO Display, drawing translu-

cent convex hulls around groups of nodes (e.g. see the GMap GLOv2 seed technique

in Figure 46), and a wider variety of interaction operations to change the interaction

modes of the glyphs.

4.4 Language Properties of Graph-Level Operations

If one considers a set of operations as an application programming interface (API),

72 unique GLOv2 operations (functions) over 8 categories (classes) is actually com-

paratively small. As I discuss in the next chapter, utilizing GLOs as an API is one

of the primary advantages of GLO models. Thus, in this section, I want to define

properties of the domain-specific language that such an API represents.

72

First, each canvas has an active node generation and an active edge gener-

ation and each GLO Display has one or more active canvases. Operations that act

on a canvas will only act on the active canvas(es). Operations that act on a generation

will (by default) only act on the active generation (node or edge as appropriate) of

the active canvas(es). This is, in my opinion, the most important feature of the GLO

DSL—operations apply to every glyph in a generation. No operations act on a single

glyph. In other words, if the size nodes by {attr} GLO is applied, it is applied to the

entire active generation rather than to a specific glyph.

As I discussed in the previous chapter, operations can have mandatory param-

eters as well as optional parameters. For example, the evenly distribute nodes

on {axis} operation has a mandatory {axis} parameter that can be any of the four

axes supported by GLOv2: x, y, ⇢, or ✓. This GLO also recognizes two optional

parameters. A sort-by attribute parameter that distributes the nodes in order of the

nodes’ attribute values. An invert flag parameter reverses the order of the sorting.

The value of the {direction} parameter in GLOs such as align nodes {direction} can

be top, middle, bottom, left, right, or center.

With two notable exceptions, all mandatory parameters take a single value. The

exceptions to this are the parameters of the aggregate nodes by {discrete attributes}

using {method} and aggregate edges by {discrete attributes} using {method} GLOs.

Rather than a single attribute parameter, these two operations can take one or more

discrete attributes as a set of parameters. This enables aggregation by more than a

single attribute such as in the PivotGraph transition in the previous chapter.

In the GLOv2 operations list in Appendix D, mandatory parameters are defined

for those operations that require them. For consistency, any optional parameters may

be passed to any operation. However, operations that do not utilize a given optional

parameter can simply ignore that parameter. For example, the clone nodes operation

would ignore any sort-by or invert optional parameters passed to it.

73

2310 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

1077-2626 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Multivariate Network Exploration and Presentation:
From Detail to Overview via Selections and Aggregations

Stef van den Elzen and Jarke J. van Wijk

Fig. 1. Multivariate network exploration using selections of interest, detail view (left) and high-level infographic-style overview (right).

Abstract—Network data is ubiquitous; e-mail traffic between persons, telecommunication, transport and financial networks are some
examples. Often these networks are large and multivariate, besides the topological structure of the network, multivariate data on
the nodes and links is available. Currently, exploration and analysis methods are focused on a single aspect; the network topology
or the multivariate data. In addition, tools and techniques are highly domain specific and require expert knowledge. We focus on
the non-expert user and propose a novel solution for multivariate network exploration and analysis that tightly couples structural and
multivariate analysis. In short, we go from Detail to Overview via Selections and Aggregations (DOSA): users are enabled to gain
insights through the creation of selections of interest (manually or automatically), and producing high-level, infographic-style overviews
simultaneously. Finally, we present example explorations on real-world datasets that demonstrate the effectiveness of our method for
the exploration and understanding of multivariate networks where presentation of findings comes for free.

Index Terms—Multivariate Networks, Selections of Interest, Interaction, Direct Manipulation

1 INTRODUCTION

Many real-world phenomena can be modeled as multivariate net-
works: e-mail traffic between persons within a company, a telecom-
munication network, money flowing between bank accounts, or physi-
cal objects such as airplanes flying from airport to airport or migration
of people between cities. The common theme here is the connection
(relation, link, edge) between objects (nodes, vertices). The number
of nodes and links of real-world data is generally large, in the order of
thousands. For these networks often more information on the nodes
and links is available. For example, in case of a company e-mail net-

• Stef van den Elzen is with the Department of Mathematics and Computer
Science, Eindhoven University of Technology, The Netherlands, and
SynerScope BV, Eindhoven, The Netherlands. E-mail: s.j.v.d.elzen@tue.nl.

• Jarke J. van Wijk is with the Department of Mathematics and Computer
Science, Eindhoven University of Technology, The Netherlands. E-mail:
j.j.v.wijk@tue.nl.

work we know more attributes of the persons (nodes) involved, like
age, gender, and job title. We also have more information about the
e-mails (links) such as time-sent, header-information, and body text.

The exploration and analysis of large multivariate networks is still
a challenge. Current methods are focused on either the structural as-
pect of the multivariate network, e.g., [46] or the multidimensional
data attached to the nodes and links, e.g., [35]. However, we be-
lieve the greatest insights are gained from simultaneous exploration,
as the two might be correlated or influence each other. For example,
we are not only interested in who is e-mailing to whom (structure)
or whether females or males are communicating more (multivariate
data), but we are more interested in whether females are communicat-
ing more with females or more with males and also between which
departments and what the distribution over time is (both structure and
multivariate data). For this we need to be able to inspect the attributes
in context of the underlying network topology. We provide a method
that enables users to explore both aspects in a uniform method using
selections of interest as central element. In summary, we go from De-
tail to Overview via Selections and Aggregations, which explains the
acronym we selected for our approach: DOSA. And also, a dosa is a
spicy Indian wrap, which resonates with our aim to combine existing
ingredients into a tasteful result.

For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014 ate of
publication 2014; date of current version 2014.11 Aug. 9 Nov.

D.

Digital Object Identifier 10.1109/TVCG.2014.2346441

Figure 47: GLOv2 DOSA seed technique from [232] utilizes the all-canvases optional
parameter.

Two specific optional parameters are utilized for every operation. Recall that

GLOs only apply to either the active canvas or the active generation of the active

canvas depending on the GLO. There are instances, however, when applying an op-

eration to more than only a single canvas or generation is useful. For example, in the

DOSA GLOv2 seed technique in Figure 47, one might need to color the node glyphs

in both canvases by the same property. In these cases, either or both of two optional

parameters can be passed to adjust the GLO’s scope: the all-generations flag and

all-canvases flag. The all-generations flag applies the operation to every generation

(node or edge, as appropriate) in the active canvas(es). The all-canvases flag applies

the operation to the active generation in every canvas in the GLO Display. Both flags

together apply the operation to every generation (node or edge, as appropriate) in

every canvas.

As I discussed in the previous chapter, sometimes a generation of glyphs must

be considered not as a single unit, but as a collection of pair-wise distinct clusters.

In the graph data, these clusters are represented as a single discrete attribute of the

nodes with di↵erent values for each cluster. GLOs utilize two optional parameters to

handle these cluster cases: the within attribute the group-by attribute.

74

The within attribute signals that the operation should consider each cluster dis-

tinctly, but utilize the entire canvas’s coordinate space. For example, Figure 48 shows

the di↵erence between evenly distributing nodes on x without and with a within at-

tribute. Without the attribute, the distribution is performed amongst all of the

glyphs. With the attribute, the distribution is performed independently for each

cluster (here represented by glyph color).

(a) without within attribute (b) with within attribute

Figure 48: Evenly distribute nodes on {x} with and without a within attribute.

While the within attribute enables positioning glyphs using the canvas’s coor-

dinate space, a group-by attribute enables positioning glyphs using sub-coordinate

spaces of the canvas. The coordinate space for each cluster is defined as the bounding-

box of the the clusters’ glyphs’ current positions. Figure 49a displays the nodes posi-

tioned in a circle, sorted by cluster (again represented by glyph color). In Figure 49b,

the align nodes {center} GLO is applied without an optional group-by attribute.

Note that the nodes are all aligned to the center of the canvas. In Figure 49c, the

same GLO is applied, but with the cluster attribute passed as a group-by parameter.

The glyphs are each aligned to the center of the bounding box of each cluster in

Figure 49a.

As I explained in the previous chapter, the group-by parameter is overloaded to

also be used to modify only intra-cluster edges. For example, Figure 50 demonstrates

applying a hide edges GLO (to set the interaction mode of the entire active edge

75

(a) inital layout (b) without group-by attribute (c) with group-by attribute

Figure 49: Align nodes {center} with and without a group-by attribute.

Figure 50: (a) Force-Directed Layout, (b) Force-Directed Layout after applying hide
edges, (c) Force-Directed Layout after applying hide edges and show all edges (group-
by: {cluster})

generation to show none) followed by a show all edges GLO with a group-by attribute

(to change the interaction mode of only intra-cluster edges to show all). The e↵ect of

these two operations is to show the edges whose endpoints share a cluster and hide

edges between nodes in di↵erent clusters.

Note that this last example reiterates an import point: each node or edge glyph

has only a single interaction mode, display mode, size, and color. Therefore, any

operations that modify these values overwrite the prior value. Therefore, the order

that GLOs are applied matters. The result of applying GLOs in one order may be

quite di↵erent than the result of applying the same GLOs in an alternate order.

A number of GLOs refer to or depend on various pre-defined constants. For

example, the GLOv2 operations to color nodes by constant or align nodes {direction}.

Table 2 lists the constants that must be defined by each GLOv2 implementation. The

values of the ‘Canvas ⇤’ constants are functions of the dimensions of the canvas. An

implementation may tweak these values, such as to avoid clipping scale axes with

76

Canvas Left The left of the given canvas
Canvas Center The center of the given canvas
Canvas Right The right of the given canvas
Canvas Top The top of the given canvas
Canvas Middle The middle of the given canvas
Canvas Bottom The bottom of the given canvas
Default ⇢ ⇢ value to use when positioning by constant on ⇢

Default ✓ ✓ value to use when positioning by constant on ✓

Default node size Node size to use when sizing nodes by constant
Default edge size Edge size to use when sizing nodes by constant
Default stack distance Distance between nodes to use when stacking nodes evenly
Default node color Node color to use when coloring nodes by constant
Default edge color Edge color to use when coloring nodes by constant
Default convex hull color Color to use when coloring convex hulls by a constant

Table 2: GLOv2 Constants

aligned nodes. (I have chosen to do this in the GLO.js implementation.) The values

of the ‘Default ⇤’ constants, however, are left to each implementation. As I discuss

in the next chapter, this provides implementations with additional customization

without sacrificing the important aspects of techniques.

Finally, GLOs are atomic. No operation depends on another operation having

been applied in order to determine the e↵ect of the operation. In other words, the

result of applying a GLO is always well-defined. As I will discuss in the next section,

this GLO independence is a strict property of GLOv2 but notably not a property of

GLOv1.

4.5 Di↵erences Between GLOv1 and GLOv2

Recall that the visual element model described above is the visual element model

for GLOv2. GLOv1’s visual element model is a subset of GLOv2’s. The GLOv1

visual element model consists of a single canvas with any number of node generations

(including generations of super-node glyphs) and a single edge generation. GLOv1

does not support changing the color of nodes, simply the size. GLOv2 extended

GLOv1’s visual element model to include multiple edge generations, multiple can-

vases, colorable node and edge glyphs, convex hulls, and a larger number of display

and interaction modes for both node and edge glyphs.

With respect to the operations sets, as Table 3 shows, of the 72 GLOv2 GLOs, 22

77

are equivalent to the 34 GLOv1 operations. The reason for this reduction is four-fold.

First, GLOv2 includes optional parameters. In GLOv1, evenly distribute nodes

on x or y and evenly distribute nodes on x or y by {attribute} are considered two

distinct operations. In GLOv2, these are both covered by evenly distribute nodes on

{axis} GLO, which can take an optional sort-by parameter and/or an optional invert

parameter.

Second, GLOv1 di↵erentiates between operations for positioning by categorical

and continuous attributes. Substrate nodes on x or y by {categorical attribute}

and position nodes on x or y relatively by {continuous attribute} are two distinct

operations. In GLOv2, these are simply both covered by position nodes on {axis} by

{attribute}.

Third, GLOv1’s has distinct polar coordinate operations. In fact, GLOv1 has

separate operations for radial operations and angular operations. In contrast, GLOv2

treats the four axes (x,y,⇢,✓) equivalently with a single set of operations, with the

axis a mandatory parameter of any relevant operation.

Fourth, GLOv1 does not support multiple parameters. As I mentioned above,

the GLOv2 operations aggregate nodes by {discrete attributes} using {method} and

aggregate edges by {discrete attributes} using {method} GLOs allow for multiple

discrete attribute parameters to be passed. Under GLOv1, aggregating by a sin-

gle attribute or two attributes are two distinct operations. Furthermore, under the

GLOv1 model nodes cannot be aggregated by three or more attributes.

Note that in Table 3 the GLOv1 GLO display links as circles is marked as equiva-

lent to the GLOv2 GLO display edges as squares. Under GLOv1, the edges in matrix

displays were shown as circles (e.g. see Figure 51). GLOv2 replaced these circles with

squares, as that is how they are traditionally represented.

There are two more critical di↵erences between the two operation sets that I

78

Figure 51: (a) GLOv1 Adjacency Matrix seed technique with circles for edges and
(b) equivalent Adjacency Matrix in GLOv2 with squares for edges.

wish to highlight. The first critical di↵erence relates to the GLOv1 operations sub-

strate nodes on x or y by {categorical attribute} and evenly distribute nodes within

substrates. Under GLOv2, GLOs do not have any dependencies on other GLOs—

each GLO is well-defined regardless of the current state of the GLO Display. Under

GLOv1, the evenly distribute nodes within substrates operation depends upon the

substrate nodes operation being called first and setting a global ‘substrate’ variable.

GLOv2 replaces this global variable with the within optional parameter. Without

this dependency, GLOv2’s operations are fully independent of each other.

The second critical di↵erence is replacing the GLOv1 operation apply {algorithm}

to the nodes with the GLOv2 operation apply force-directed algorithm to nodes. In

Chapter 5, I describe how a distinct force-directed algorithm GLO allows for a more

precise comparison between techniques than a catch-all algorithm GLO.

The remaining 50 of the 72 GLOv2 operations are for either manipulating the

extended visual model (e.g. clone edges and select canvas {num}) or for providing

additional expressiveness. As mentioned above, GLOv2 includes a larger variety of

node and edge glyph display modes and interaction modes.

79

GLOv1 GLOv2 Equivalent
align nodes {left, center, right, top, middle, bottom} align nodes {dir}
evenly distribute nodes on x or y by {attribute} evenly distribute nodes on {axis} (by {attr})
evenly distribute nodes on x or y evenly distribute nodes on {axis} (by {attr})
substrate nodes on x or y by {cat. attribute} position nodes on {axis} by {attr}
evenly distribute nodes within substrates evenly distribute nodes on {axis} (by {attr})
position nodes on x or y relatively by {cont. attribute} position nodes on {axis} by {attr}
evenly distribute nodes radially by {attribute} evenly distribute nodes on {axis} (by {attr})
evenly distribute nodes radially evenly distribute nodes on {axis} (by {attr})
position nodes radially by {cont. attribute} position nodes on {axis} by {attr}
substrate nodes radially by {cat. attribute} position nodes on {axis} by {attr}
evenly distribute nodes along plot radius by {attribute} evenly distribute nodes on {axis} (by {attr})
evenly distribute nodes along plot radius evenly distribute nodes on {axis} (by {attr})
position nodes along plot radius by {cont. attribute} position nodes on {axis} by {attr}
substrate nodes along plot radius by {cat. attribute} position nodes on {axis} by {attr}
position nodes along plot radius by constant position nodes on {axis} by constant
apply {algorithm} to the nodes apply force-directed algorithm to nodes
size nodes by constant size nodes by constant
size nodes relatively by {cont. attribute} size nodes by {attr}
display all links show all edges
display selected links show incident edges
hide links hide edges
display links as straight display edges as straight lines
display links as curved display edges as curved lines
display links as circles display edges as squares
clone active generation clone nodes
select generation k select node generation {num}
set source generation k set source generation {num}
set target generation k set target generation {num}
remove generation k remove node generation {num}
aggregate by {cat. attribute} aggregate nodes by {discrete} using {method}
aggregate by {cat. attribute} and {cat. attribute} aggregate nodes by {discrete} using {method}
deaggregate generation k deaggregate nodes
show x or y axis show {axis} axis
hide x or y axis hide {axis} axis

Table 3: GLOv2 operations equivalent to GLOv1 operations.

4.6 Specifying Techniques Using GLOs

Since each GLO is a step of a transition, one should be able to describe a technique

by the GLOs necessary to transition to it. However, what is the source state of such

a transition? Transitioning to a technique from di↵erent source states might lead to

drastically di↵erent definitions. If the initial state was, for example, a Force-Directed

Layout in Figure 52a, then the definition of the Edgemap A technique in Figure 52c

would not include the apply force-directed algorithm to nodes GLO since the nodes

would already be in those positions. However, if the initial state was a Matrix Plot

technique in Figure 52b, then the definition for the Edgemap A technique would have

to include either the remove all cloned nodes GLO or the remove node generation

{num} GLO.

80

(a) Force-Directed Layout (b) Matrix Plot (c) Edgemap A

Figure 52: Force-Directed Layout, Matrix Plot, and EdgeMap A techniques rendered
in GLO.js.

In order to avoid this inconsistency, a state can be defined such that transitions

from the state to a given technique are consistent. I call this state the null state.

The null state is defined as a GLO Display with the following properties:

• a single unpartitioned canvas,

• a single generation of unaggregated, unrotated node glyphs in the ‘no interac-

tion’ mode,

• a single generation of unaggregated edge glyphs,

• no edge waypoints (implied by only a single generation of edge glyphs),

• no convex hulls drawn,

• no axes drawn,

• and no meta-axes drawn.

Defining the null state in this way has two notable advantages.

First, this state avoids the need for any inverse GLOs:

• remove canvas num

• remove all partitions

• deaggregate nodes

• deaggregate edges

• unrotate nodes

• remove all cloned nodes

81

• remove all cloned edges

• remove node generation num

• remove edge generation num

• hide axis axis

• hide meta axis axis

• hide convex hulls

• remove all edge waypoints

• stop highlight neighbors

Appearing in many transition matrix entries, inverse GLOs more often than not

communicate information about the source technique rather than helping describe the

target technique. For example, the remove all cloned nodes operation of a (Matrix

Plot, Edgemap A) transition mostly communicates that the Matrix Plot has multiple

generations.

Second, this null state is highly under-constrained. The positions, display modes,

sizes, and colors of glyphs are not defined. The interaction mode of the edges is also

undefined. This mandates that GLOs for setting these properties be included in a

technique’s definition.

Using this null state, one can define a technique by the ordered list of GLOs neces-

sary to transition from a null state to the technique. This list is a GLO specification

of the technique. For example, here is the GLO specification for the EdgeMap A seed

technique:

• display nodes as circles

• size nodes by {node size attr}

• color nodes by {node color attr}

• display edges as curved lines

• size edges by constant

• color edges by {source.node color attr}

82

GLO Inverse GLO(s)

partition canvas on {axis} (by {num})
remove all partitions,
remove all cloned nodes,
remove all cloned edges

filter partition canvas on {axis} by {discrete}
remove all partitions,
remove all cloned nodes,
remove all cloned edges

show meta {axis} axis hide meta axis axis

clone nodes

remove all cloned nodes

clone edges remove all cloned edges

set edge waypoint edge generation {num} remove all edge waypoints

aggregate edges by {discrete} using {method} deaggregate edges

aggregate nodes by {discrete} using {method} deaggregate nodes

highlight in-out neighbors

stop highlight neighbors

highlight neighbors stop highlight neighbors

rotate nodes {num} degrees unrotate nodes

show convex hulls hide convex hulls

show {axis} axis hide axis axis

Table 4: Inverse GLOs required for GLOv2 GLOs. For each GLO in the first column
that the technique specification contains, the corresponding inverse GLO(s) in the
second column must be applied to return to the null state.

• show in-out edges

• highlight neighbors

• apply force-directed algorithm to nodes

Note that this specification includes variables (node size attr and node color attr)

passed as parameters to the operations. GLO specifications are e↵ectively functions

that call GLOs and therefore can take their own parameters.

Using a GLO specification, one can easily determine the inverse GLOs necessary

to return to the null state from the technique. In order to return to the null state

from a given technique, for each GLO on the left-side of Table 4 that appears in the

specification, one must apply the corresponding inverse GLO(s) from the right-side

of the table. Transitioning from any source technique to any target technique can be

expressed as first transitioning to the null state and then transitioning to the target

technique. (Though note that this may not be the most e�cient transition.)

In Appendix A and B, I provide GLOv1 and GLOv2 specifications for each of the

GLOv1 and GLOv2 seed techniques, respectively. Using the GLOv2 specifications,

I calculated the usage of each of the 72 GLOv2 operations. Table 5 lists the 55

83

24 size edges by constant
21 size nodes by constant
18 color nodes by constant
17 display nodes as circles
16 show all edges
14 display edges as curved lines
13 color edges by constant
13 evenly distribute nodes on {axis}
12 color edges by {attr}
12 position nodes on {axis} by {attr}
11 align nodes {dir}
11 color nodes by {attr}
9 display edges as straight lines
9 display nodes as {attr} labels
9 size nodes by {attr}
8 clone nodes
8 set target generation {num}
7 show {axis} axis
6 Position edges by {attr},{attr}
6 display edges as squares
6 rotate nodes {deg}
5 partition canvas on {axis}
4 aggregate edges by {attrs} using {method}
4 aggregate nodes by {attrs} using {method}
4 apply force-directed algorithm to nodes
4 clone edges
4 display nodes as squares
4 hide edges

4 position nodes by constant on {axis}
4 select canvas {num}
4 size edges by {attr}
3 highlight neighbors
3 show faded and incident edges
2 color edges by {attr},{attr}
2 display nodes as bars
2 filter partition canvas on {axis} by {attr}
2 position nodes evenly stacked attr
2 select row {num}
2 show in-out edges
2 show incident edges
1 align edges attr
1 color convex hulls by attr
1 display edges as {attr} labels
1 display edges as bars
1 display edges as right angles
1 evenly distribute edges on {axis}
1 highlight in-out neighbors
1 select column {num}
1 select edge generation {num}
1 select node generation {num}
1 set edge waypoint generation {num}
1 set source generation {num}
1 show convex hulls
1 show edges as faded
1 show meta {axis} axis

Table 5: Number of GLOv2 seed technique specifications (out of 29) containing each
GLOv2 operation.

operations that are used in the specifications, along with the number of specifications

in which each occurs. Table 6 lists the remaining 17 operations that do not appear

in any of the 29 seed technique specifications. Each of these is either an inverse GLO

or a GLO added during the augmentation stage of the induction method.

position nodes stacked on {axis} by {attr}
color convex hulls by constant
set {axis} axis node generation {num}
unrotate nodes
remove all edge waypoints
hide convex hulls
stop highlight neighbors
deaggregate nodes
deaggregate edges

remove node generation {num}
remove edge generation {num}
remove all cloned nodes
remove all cloned edges
remove canvas {num}
remove all partitions
hide {axis} axis
hide meta {axis} axis

Table 6: GLOv2 operations that do not appear in any GLOv2 seed technique speci-
fications.

84

CHAPTER V

UTILITY OF GRAPH-LEVEL OPERATIONS

In the prior chapters, I described how to induce a model of graph visualization from

a set of graph visualization seed techniques, presented two models induced using the

method (GLOv1 and GLOv2), and defined how to describe techniques using those

models. In this chapter, I reflect on how these models can positively a↵ect three

di↵erent common visualization tasks: simplifying graph visualization engineering,

understanding the design space of graph visualization techniques, and identifying

novel graph visualization techniques.

5.1 Easing the Engineering Challenge

In today’s environment, developers can take advantage of the power and breadth

of graph visualization and incorporate its tools and methods into their applications.

However, such development hinges on: non-portability; detailed knowledge of low-

level graphics technologies such as SVG, WebGL, CoreGraphics, and Swing; and

repetitive “boilerplate” code to get even simple visualization elements onto the screen.

This is striking, since abstractions have always been at the core of much of computer

science. While one can still write the machine or assembly code to write a file to

a hard drive, such low-level programming is no longer necessary with the advent of

high-level programming languages that abstract away the details of hardware access.

Graph-level operations provide an equivalent abstraction layer within the visualiza-

tion software stack (see Figure 53).

At the base of the stack is a host language and a graphics library. Recently,

Javacript/SVG (or Javascript/Canvas or Javascript/WebGL) has been a common

85

Figure 53: Visualization software stack

choice for these layers, replacing Java/Swing. The next layer of the stack is the vi-

sualization toolkit. These include the popular D3.js [41] toolkit for Javascript and

prefuse [113] toolkit for Java. These toolkits are designed to abstract away some of

the graphics code necessary to render visualizations while still providing maximum

expressiveness. In exchange for the improved expressiveness, however, these toolkits

often require a large amount of toolkit-specific “boilerplate” code to set up the en-

vironment. D3 requires far less than prefuse does, but it is still non-trivial. These

toolkits also tend to be heavily tied to the host language and graphics system, re-

quiring a developer to have a strong knowledge of both. For example, writing code

using D3 requires a strong knowledge of Javascript, how the Document Object Model

(DOM) is constructed, and about the underlying graphics system (such as SVG) and

the system’s elements.

At the top of the stack are user-facing applications. Examples of these might be

a standalone interactive visualization of a network or a graph visualization design

application such as Gephi [28]. As it stands, these applications must be built either

directly on the host language or on a combination of the host language and the visu-

alization toolkit. In order for developers to implement a given visualization technique

within that application, they would need to either implement it from scratch or be

86

lucky enough to find an implementation using their chosen language and graphics

model. They would also need to do this for each visualization technique that they

wish to support.

A GLO model provides a bu↵er layer between the toolkit and the application.

Since GLO specifications of techniques are portable (i.e. they are not tied to a specific

software environment), one simply needs a way to convert a GLO specification into a

visualization using the host language and graphics library. This conversion of GLO

specifications into displays is performed by a GLO interpreter. A GLO interpreter

takes as input a GLO specification of a technique and a graph dataset and outputs a

visualization of the dataset using the technique.

In the previous chapter, I alluded to the fact that considering the operations set

of a GLO model as an API is powerful. A GLO interpreter simply implements the

API defined by the model’s operations set. Once an interpreter for the appropriate

language-graphics pairing exists, a developer can take advantage of any techniques

already specified using GLOs rather than implementing each technique from scratch.

In the cases where an application only requires the use of specific visualization

techniques, a developer can use an interpreter and GLO specifications to easily in-

tegrate pre-defined techniques into applications. In other cases, developers can pass

along the power of GLOs to analysts (i.e. users of these applications) to allow them

to explore their data or communicate their findings by customizing techniques (see

Section 5.3). The GLO-STIX application described in Section 5.1.2 is an example of

this latter case.

Finally, the GLO interpreter model provides developers with increased super-

ficial expressiveness. More specifically, how each GLO interpreter implements a

set of GLOs can be di↵erent. To start, each implementation must define the vari-

ous constants that GLOs reference and an interpreter’s developer could chose colors

and typefaces that fit with a branding strategy. Another developer might build an

87

interpreter that renders all elements using “sketch-like” graphics [255] for showing

uncertainty or encouraging others to feel comfortable critiquing visualizations. One

could imagine an implementation where the elements wiggle in place like gelatin or

look as if they are floating on water. In this sense, the specification-interpreter model

functions like the HTML-CSS model of separating the look-and-feel from the under-

lying structure of the techniques. In all of these cases (assuming that the GLO API

is implemented as it is defined) the visualizations that are produced by these cus-

tom implementations still retain the critical aspects of each of the input visualization

techniques.

5.1.1 Implementations

In order to demonstrate the feasibility of implementing a GLO interpreter, I have

built two GLO interpreters, one for GLOv1 and one for GLOv2. Both interpreters

are written in Javascript and use Scalable Vector Graphics (SVG) [240] for graphics.

Both interpreters utilize the D3.js library [41] for managing the SVG elements. The

GLOv1 implementation covers the full operations set of GLOv1. However, the archi-

tecture of the implementation proved di�cult to extend to include the larger GLOv2

visual element model and operations set. Therefore, the GLOv2 implementation is a

complete rebuild, dubbed GLO.js.

To use the GLO.js implementation, a developer provides a node list, an edge list,

a set of type descriptions (discrete or continuous) of the node and edge attributes,

and an SVG element in the DOM where the resulting visualizations should appear.

The developer can then apply pre-set techniques stored as functions to the data or

apply GLOs one at a time using the GLO.js API (an implementation of the GLOv2

API). Information regarding node and edge glyph properties are stored on the backing

nodes and edges, enabling the developer to easily access any SVG properties if he or

she wishes to customize the glyphs beyond the scope of GLOs.

88

At the time of this dissertation, GLO.js supports 38 of the 72 GLOv2 GLOs,

including the 22 GLOv2 operations necessary to fully support GLOv1 definitions.

With its implemented operations, GLO.js can render 14 (and closely approximate 9

more, for a total of 23) of the 29 GLOv2 seed techniques (see figures in Appendix B).

The remaining GLOs include inverse GLOs, GLOs with very similar functionality to

implemented GLOs (e.g., displaying nodes as circles is implemented while displaying

nodes as circles is not), and GLOs used only by one or two seed techniques (e.g.

filter-partitioning canvases). GLO.js supports all of GLOv2’s optional parameters:

group-by, within, sort-by, invert, all-canvases, and all-generations. Furthermore, the

GLO.js architecture is designed to support the full GLOv2 visual element model and

operation set.

GLO.js currently consists of approximately 4000 lines of code (including line

breaks and comments). This does not include the technique implementations, which

each requires the number of lines as its specification in Appendix B. The code was

written by a single developer (myself) over the course of approximately two months.

The GLO.js project is open-source and available on Github at http://github.

com/chadstolper/glo. Open-sourcing the project enables both for collaborative

future development as well as enables developers to easily access the GLO API in

order to port GLOs to other popular software environments (such as R or python) in

order to further increase their the utility of the GLO models.

5.1.2 GLO-STIX

GLO-STIX (Graph-LevelOperations for Specifying Techniques and Interactive eXploration)

is a prototype application for exploring graphs using GLOs. A team of undergraduate

and graduate student researchers assisted me in designing and building the applica-

tion atop my GLOv1 Javascript implementation.

89

Figure 54: The GLO-STIX interface.

Our goal in designing the prototype focused on enabling a graph analyst to inter-

actively explore a newly encountered graph dataset. We envisioned an analyst, upon

first receiving a dataset, wishing to better understand the graph’s features. The tool

was designed to enable the analyst to apply individual GLOs with the possibility of

identifying interesting views of the data to save for future use. In addition, developing

the GLO-STIX prototype provided a testbed for evaluating the viability of GLOs and

the GLOv1 model.

We generated a number of requirements for the prototype application that would

become GLO-STIX:

• The prototype should implement the full set of GLOv1 operations.

• As our intent was to enable an analyst to explore their network data more e↵ec-

tively using GLOs, the prototype should enable an analyst to apply individual

GLOs to a graph.

• The analyst should be able to experiment with applying various GLOs and

therefore the prototype should enable an analyst to move backwards and for-

wards through the GLO history.

90

• If an analyst has identified an e↵ective display of the network, he or she may

wish to know the GLOs necessary to recreate the display, as opposed to the

full path he or she took to reach the display. Therefore the prototype should

suggest to the analyst which GLOs in the history might no longer be relevant

to the current visualization due to more recently applied GLOs.

• An analyst should be able to easily recall techniques that he or she found inter-

esting as well as be able to easily compare them side-by-side and switch between

them seamlessly. Therefore the prototype should allow an analyst to save an

image (snapshot) of the current visualization along with its GLO history to

compare techniques.

A number of these requirements concern the analyst seeing both how he or she

reached the current display and saving interesting displays for future analysis. These

were influenced by the work on visualization provenance such as VisTrails [51] and

Graphical Histories [109].

We began the development of the user interface by translating the requirements

listed above into necessary software functions and user interface (UI) elements. We

settled on four UI elements: a list of all available GLOs, a history view of applied

GLOs, the visualization display, and a region for displaying the snapshotted tech-

niques. The functions we identified included the GLOs themselves, support for un-

applying and re-applying a GLO to a graph, and snapshotting the current configura-

tion of GLOs.

Using these elements and functions we sketched a number of designs for the user

interface. We discussed these drawings amongst the team, identifying potential advan-

tages and disadvantages of each. We eventually settled on the interface in Figure 54.

This interface features all of the basic elements (available GLOs, view of the history,

visualization area, view of visualization states captured) and the functions envisioned.

On the left, in the Select GLOs panel, are the GLOv1 operations grouped by category.

91

These can be dragged and dropped into the Applied GLOs panel to apply them to the

GLO Display in the center. GLOs can be removed by pressing the X on each GLO

in the Applied GLOs panel. The interface attempts to identify overwritten GLOs

through tables of which GLOs manipulate the same node or edge glyph properties.1

Finally, the analyst can use the Camera button to save the current technique to the

snapshot list at the bottom of the interface. Clicking on one of these techniques

restores it to the GLO Display.

We implemented GLO-STIX as a browser-based application in JavaScript using

D3.js [41], jQuery2, Bootstrap3, and jQueryUI4. The code for the application is open-

sourced as part of the GLO.js project (http://github.com/chadstolper/glo).

5.1.3 GLO-CLI

Figure 55: The GLO-CLI interface.

While GLO-STIX is a web-based application for manipulating a GLO Display

using drag-and-drop elements, GLO-CLI is a web-based application for manipulating

1Since GLOv1 does not support the group-by flags supported by GLOv2, this method works
reasonably well. The algorithm does has issues with cloned generations, since it considers the
applied operations as a single, non-branching list.

2http://jquery.com
3http://getbootstrap.com
4http://jqueryui.com

92

a GLO Display using the browser’s console (i.e., a command-line). The application

loads a graph dataset, sets up a GLO Display, and populates the display in a null

state. An analyst can then apply GLOs to the GLO Display using GLOv2 operations

defined in the GLO.js API. (GLOv2 operations that have not yet been implemented

in GLO.js fail gracefully by outputting a message that the operation has not yet been

implemented or by outputting a message and applying a closely related operation.)

As shown in Figure 55, the application makes use of modern browsers’ advanced con-

soles to provide auto-complete and enable the analyst to inspect underlying GLO.js

variables and resulting SVG elements.

The GLO-CLI tool has proved useful both for debugging the GLO.js interpreter

as well as for identifying the novel visualization techniques described in Section 5.3.

5.2 Enabling A Deeper Understanding of Techniques

One of the most important aspects of visualization research is identifying techniques

that are e↵ective for various analytical tasks. One means to do this is to identify

which techniques are similar to techniques that are known to be e↵ective for certain

tasks. However, determining the similarity between techniques is not trivial.

There is a body of visualization research on more formally understanding the de-

sign space of visualization techniques and then comparing techniques’ distances within

that space. Attempts at accomplishing this often fall into one of two strategies. One

strategy defines a feature space over techniques then performs analysis on techniques

using vector representations within that feature space. Another strategy defines a

distance metric between techniques and performs analysis on the graph formed using

the distance metric. In the following subsections, I show how graph-level operations

provide an elegant means to identify both feature spaces and distance metrics and

briefly demonstrate how these can be used to better understand the design space of

graph visualization.

93

5.2.1 Feature Space Analysis

One of the primary challenges of feature space analysis is identifying a meaningful set

of features to represent each technique instance. Because GLO specifications represent

techniques as lists of operations, they suggest a number of elegant and useful feature

sets that can be described as vectorization methods.

As a first vectorization method, one can consider graph-level operations as binary

features. For a given technique, the value of each GLO’s feature is a 1 if the technique’s

specification includes the operation and 0 otherwise. In this way, any technique can

be easily represented as a vector in {0, 1}72. (These vectorization methods are why

GLOv2’s specific apply force-directed algorithm GLO is preferred over GLOv1’s catch-

all apply algorithm GLO.)

The optional parameters built into GLOv2 (sort-by, invert, group-by, within, all-

canvases, all-generations) can be used to controllably and predictably increase this

feature space. Representations resulting from calling operations with group-by and

within parameters, especially, can significantly di↵er from representations resulting

from the operation without the parameters. One could incorporate these optional

parameters into the feature space using one of two methods.5

For the second vectorization method, rather than each operation being a feature,

instead there are four features for each operation: the operation with no group-by or

within attributes, the operation with a group-by attribute but no within attribute, the

operation with a within attribute but no group-by attribute, and the operation with

both group-by and within attributes. Once again, a technique’s value for each feature

is 1 if the technique’s specification contains the relevant operation and parameter

combination and 0 otherwise. In this space, a technique is represented as a vector in

{0, 1}288. The first four elements of the vector correspond to the first operation, the

5I have focused on the group-by and within parameters, but these methods would work equiva-
lently for the sort-by, invert, all-canvases and all-generations parameters as well.

94

next four to the second operation, and so on for each of the 72 operations.

For the third vectorization method, each operation remains a single feature ala the

first vectorization method. However, two additional features are added to the vector,

one for the group-by optional parameter and one for the within optional parameter.

If the technique’s specification includes any group-by parameters, then the first of

these features has a value of 1 (otherwise a value of 0) and equivalently for the within

parameter and the second extra feature. In this space, a technique is represented as

a vector in {0, 1}74.

Using the GLOv2 specifications in Appendix B, I have applied the three vector-

ization methods (which for brevity I will refer to as no-flags, flags, and flags-xtra,

respectively) to generate three vector representations for each of the 29 GLOv2 seed

techniques.

I then used the hierarchical clustering function included with the SciPy pack-

age [135] to cluster the techniques. The hierarchical clustering function takes two

parameters: a distance metric and a cluster-comparison method.

I chose three distance metrics suitable for binary feature vectors: Hamming dis-

tance [107], Jaccard distance [151], and cosine distance [206]. The Hamming distance

is the number of positions in which two vectors have di↵ering values. The Jaccard

distance takes the ratio of positions where the two vectors are 1 and agree over to the

positions where the two vectors are 1 and either agree or disagree and then subtracts

this value from 1. The cosine distance between two vectors is the cosine of the angle

formed by the two vectors.

I chose four cluster-comparison methods included with SciPy suitable for these

distance metrics: nearest-point, farthest-point, average, and weighted.6 The nearest-

point algorithm (or single method) considers the distance between two clusters to

6
http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.

linkage.html

95

Method Metric Cophenetic Correlation
average hamming 0.832799904046
weighted hamming 0.821886497865
weighted jaccard 0.755900447652
complete hamming 0.726395383264
average cosine 0.703449587146
average jaccard 0.706271040351
complete jaccard 0.68661661651
weighted cosine 0.693924001138
complete cosine 0.676424420188
single hamming 0.592861499268
single jaccard 0.468258988449
single cosine 0.425621644926

Table 7: Results of hierarchically clustering technique vectors created by ignoring
optional parameters (no-flags).

be the minimum distance between any point in the first cluster to any point in the

second cluster. The farthest-point algorithm (or complete method) [239] considers the

distance between two clusters to be the maximum distance between any point in the

first cluster to any point in the second cluster. The average method [210] considers

the distance between two clusters to be the mean over all distances between pairs

of nodes where one node is in the first cluster and the second node is in the second

cluster. Finally the weighted method [210] considers the distance between a cluster

and a second cluster to be the average of the distance between the two clusters that

make up the first cluster to the second using the average method. (In other words,

the method weights larger contributing sub-clusters higher than lower-contributing

sub-clusters).

I therefore generated 36 total hierarchical clusterings (3 vectorization functions x

3 distance metrics x 4 cluster comparison methods). For each clustering, I used SciPy

to calculate the cophenetic correlation coe�cient [211] which is a measure from 0-1 of

how faithfully a hierarchical clustering preserves pair-wise distances between items.

Tables 7, 8, 9 report the results for the no-flags, flags, and flags-xtra vectorization

methods, respectively. For all three vectorization methods, Hamming distance with

the average clustering method provided the highest cophenetic clustering correlation.

Using Matplotlib [129], I rendered the resulting dendrograms generated by the

96

Method Metric Cophenetic Correlation
average hamming 0.832799904046
weighted hamming 0.821886497865
weighted jaccard 0.755900447652
complete hamming 0.726395383264
average cosine 0.703449587146
average jaccard 0.706271040351
complete jaccard 0.68661661651
weighted cosine 0.693924001138
complete cosine 0.676424420188
single hamming 0.592861499268
single jaccard 0.468258988449
single cosine 0.425621644926

Table 8: Results of hierarchically clustering technique vectors with optional parame-
ters (flags).

Method Metric Cophenetic Correlation
average hamming 0.832799904046
weighted hamming 0.821886497865
weighted jaccard 0.755900447652
complete hamming 0.726395383264
average cosine 0.703449587146
average jaccard 0.706271040351
complete jaccard 0.68661661651
weighted cosine 0.693924001138
complete cosine 0.676424420188
single hamming 0.592861499268
single jaccard 0.468258988449
single cosine 0.425621644926

Table 9: Results of hierarchically clustering technique vectors created by adding
features for optional parameters (flags-xtra).

97

hierarchical clusters. Figure 56 consists of the three dendrograms created using the

Hamming distance and average method.7 There are a number of interesting features

of these three clusterings.

First, note that all three clusterings cluster the matrix-based seed techniques

(Matrix Plot, Matrix Browser, Honeycomb, MatLink, NodeTrix, Matrix with Bars,

and MatrixExplorer) together. (The cluster red cluster in the no-flags clustering,

green cluster in the flags clustering, and red cluster in the flags-xtra clustering.)

This aligns with the expectation that these techniques are similar to each other and

di↵erent from the other techniques.

Second, within these matrix-technique clusters, note how the NodeTrix technique

(Figure 57) moves between the three clustering techniques. As the only technique in

the matrix-based cluster that utilizes the group-by parameter, it makes sense that

the technique would be less closely aligned with the other techniques using the flags

vectorization method. What is encouraging is that even though it is the last member

of the cluster to be included in the flags case, it is still considered nearer to the

matrix-based techniques than to any other technique.

Third, consider the Cluster Circles and Circle Graph techniques. Specifications

for these techniques consist of the same operations. The Cluster Circles technique

includes duplicate operations, with the second set using the group-by parameter.

When optional parameters are ignored (no-flags) the two techniques have identical

vector representations. When optional parameters are taken into account (flags, flags-

xtra) the two techniques are still considered very similar.

Fourth, the Semantic Substrates, PivotGraph, HivePlot, GeneVis A, GeneVis B,

3x3 GraphDice, GraphDice Segment, CiteVis, Scatternet, DOSA, and 2x3 Hive Panel

seed techniques all concern positioning nodes based on attributes of those nodes.

Thus, it is encouraging that they are all clustered together in all three clusterings.

7For completeness, I include all 36 dendrograms in Appendix F.

98

(a) no-flags (b) flags

(c) flags-xtra

Figure 56: Dendrogram results for three hierarchical clustering using three vector-
ization methods, Hamming distance, and average cluster comparison rendered using
Matplotlib [129].

99

Fig. 7: NodeTrix visualization of the information visualization field. This is the largest connected component extracted from the dataset used
in the Infovis’04 Contest available at http://www.cs.umd.edu/hcil/iv04contest/. We manually removed a couple of remaining
duplicated authors. Colors on axes of matrices represent the number of citations of each author. Color intensity within the matrices represents
the strength of each collaboration.

1309IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

Figure 57: GLOv2 NodeTrix seed technique from [117].

Interestingly, the EdgeMap A, EdgeMap B, and Arc Diagram seed techniques also

are clustered along with these.

Fifth, notice how Force Directed Layouts and Attribute Matrices (which consist

of small multiples of force-directed layouts), and GMaps (force-directed layout with

convex hulls) are clustered together in all three clusterings. In each of these seed

techniques, there is no node interaction, no edge interaction, and all of the node

and edge glyphs are colored and sized by a constant. Notably, the EdgeMap A

seed technique is not clustered with these techniques. While the node glyphs in the

EdgeMap A technique are also positioned using a force-directed layout, they are sized

and colored by attributes, and have non-static interaction modes (as do its edges).

The EdgeMap A/Force-Directed Layout case might suggest weighting di↵erent

features (such as operations that a↵ect node glyph position) more than other fea-

tures (such as operations that size node and edge glyphs). In addition, one could

consider non-binary feature vectors in order to encode specifications that call the

same operation more than once (such as the Circle Plot/ Circle Clusters case). While

I have studied the unweighted, binary feature vector case, both weighted and non-

binary feature vectors illustrate the breadth of interesting future research directions

enabled by GLOs.

100

5.2.2 GLO Distance

Beyond reducing techniques to vectors and comparing their distances in vector space,

GLOs enable a novel, non-vector-based distance metric for comparing techniques.

During the GLO identification process, a transition matrix was created where each of

the cells of the matrix were the operations necessary to transition from one technique

to another. For example, the seven operation transition-matrix entry for (Semantic

Substrates, PivotGraph) described in Section 3.2.1.

These transitions can be used to define a GLO Distance between two tech-

niques. In other words, how many operations are required to transition between two

techniques? Notably, this is not a symmetric distance (see Figure 58a). This can

make comparing two techniques more di�cult. To simplify the comparison, one can

simply sum the number of operations to transition back and forth between any two

techniques to create a symmetric distance metric (see Figure 58b).8

Two clear clusters appear in the top-left and bottom-right corners of both ma-

trices. The top corner cluster (Figure 59a) consists of the matrix-based plots. Note,

the NodeTrix seed technique is the darker last row/column in this cluster. The bot-

tom corner cluster (Figure 59b) consists of all techniques with a single generation

of constantly-sized nodes (Force-Directed Layout, Arc Diagram, Circle Plot, Cluster

Circles, GeneVis A, GeneVis B, and Hive Plots). Notably, these techniques are fairly

easy for other techniques to transition to, since they are all instances of the null state.

In the symmetric distance matrix plot, a third cluster is visible in the middle

of the display (Figure 59c). This cluster consists of seed techniques that position

and/or color a single generation of unaggregated nodes based on attributes of the

data (ScatterNet, CiteVis, EdgeMap A, EdgeMap B, and Semantic Substrates).

8In order to achieve a reasonable node ordering for the Matrix Plot displays in Figure 58, I
clustered the GLOv2 seed techniques using the symmetric distance metric using scikit-learn’s [179]
agglomerative clustering (n=5 clusters, average linkage, and pre-computed distance parameters).

101

(a) Non-Symmetric (b) Symmetric

Figure 58: GLOv2 seed techniques clustered by symmetric transition distance ren-
dered with GLO.js. On the left, edges are colored by the one-way transition distance.
On the right, edges are colored by the symmetric sum of the transition distances.
Rendered using GLO.js

Identifying these clusters demonstrates the analysis potential of the GLO Distance

metric.

5.3 Identifying New Techniques

Most graph visualization techniques were developed with a specific task in mind.

For example, sorted matrix layouts are e↵ective for showing clusters in a graph;

PivotGraphs are useful for showing how nodes with di↵erent properties interact; and

the interaction of Semantic Substrates (showing only the edges adjacent to a specific

node) is useful for reducing edge occlusion. But what if someone wanted a technique

designed for the task of reducing occlusion while also seeing how groups of nodes

interact with other groups? In this case, combining the layout of PivotGraphs with

the interaction of semantic substrates would be highly e↵ective.

We can describe such a technique using GLOv2:

• display nodes as circles

102

GLO Distance

49

UNDERSTANDING TECHNIQUES
SHNEIDERMAN ET AL.: NETWORK VISUALIZATION BY SEMANTIC SUBSTRATES

Fig. 8. The layout for Circuit Court cases is now organized by the 13
Circuits and the link pattern shows the strong likelihood that cases will
reference precedents within the same Circuit.

Fig. 9. Displaying 1,122 nodes and 7,645 links at a 1280x1024
resolution. The relatively small number of Supreme Court cases is
apparent, as is the similar number of Circuit and District Court cases.

Distributions within years are also visible, enabling users to see the
ebb and flow of activity.

As with many new ideas, there are numerous refinements that are

needed. Designs for 3, 4, and 5 regions get more complex but we are
finding strategies to deal with them.

In this example, our collaborators were certain about the
important attributes, which we used as ingredients determining
placement. In general, however, there may be many attributes and
that users may have little awareness of which attributes are best to
use to determine regions and placement for their task. Considering
that users with such data exist, a user interface to help users explore
combinations of attributes seems to be a promising future direction.

We have a plan for an iconic representation that would replace
multiple check boxes, allowing easy selection of links within or
between up to 5 regions.

The NVSS implementation is still developing and more features
are needed in the user interface to simplify the specification of region
size, location, color, labels, node layout strategy, etc. In addition,
greater flexibility will certainly be needed for node, link, and label
properties such as placement, size, color, font, and background. We
plan to add dynamic properties to control node and link visibility,
plus infotips, excentric labels, and window panes for textual lists.

Future work might also include elastic window strategies that
enable users to enlarge one region while shrinking the others in a
smooth animation [25]. For networks with millions of nodes, further
work is needed on dynamic query sliders to limit node visibility

739

THE PIVOTGRAPH APPLICATION
This section describes the PivotGraph software that allows
users to interactively explore roll-ups and selections of
multivariate graphs. PivotGraph is a desktop application
written in Java. See Figure 5 for a screenshot. (Note that in
this and several other screenshots some text was changed in
order to mask confidential data.) The PivotGraph interface
has three components. A traditional menu bar lets users
handle files and change various viewing parameters. At the
left is a panel with three parts: two drop-down menus to
determine roll-up dimensions for the x- and y-axes; a
legend; and a set of drop-down menus, one for each
dimension, that allow the user to specify selection
parameters. Finally, the bulk of the screen is devoted to the
graph visualization itself.

Visualization
Although the basic idea of the scatterplot representation
described in the previous section is simple, it turns out there
are a number of subtle challenges that need to be addressed
for the visualization to remain legible.

Before diving into the details, it may be helpful to describe
the data shown in Figure 5, which is a good example of the

Figure 5. Screenshot of PivotGraph in action.

 visualization at work. The screenshot shows an
anonymized view of a real social network within a
corporation. Nodes in the graph represent people, and edges
represent communication. The graph is rolled up by gender
(x-axis) and office location (y-axis). Several patterns can be
seen in the visualization. There is a large amount of cross-
gender communication in Location B, for example, but very
little elsewhere. Men in Location B seem to be especially
central, with women in locations C, D, and E
communicating more with them than with men in their own
locations. The node sizes provide an indication of how
many men and women are at each location, and it is easy to
see that in the graph one location (A) has only men.

Layout
Each node is represented by a circle whose x- and y-
coordinates are determined by the current roll-up
dimensions. (If there is only one roll-up dimension, then the
dots are laid out on a line, as in figure 6.) The area of each
circle is proportional to the size variable of the node. In an
early version of the program, the sequence of dimension
values on the axes was determined simply by alphabetical
ordering. A second version of the program rearranged the
order of the values to create a more meaningful use of
space. To do this for a given dimension, the roll-up of the
graph onto that dimension is created, after which a

814

CHI 2006 Proceedings • Visualization 1 April 22-27, 2006 • Montréal, Québec, Canada

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

MatrixExplorer: a Dual-Representation System to Explore
Social Networks

Nathalie Henry and Jean-Daniel Fekete

Abstract— MatrixExplorer is a network visualization system that uses two representations: node-link diagrams and matrices. Its
design comes from a list of requirements formalized after several interviews and a participatory design session conducted with
social science researchers. Although matrices are commonly used in social networks analysis, very few systems support the
matrix-based representations to visualize and analyze networks.

MatrixExplorer provides several novel features to support the exploration of social networks with a matrix-based representation, in
addition to the standard interactive filtering and clustering functions. It provides tools to reorder (layout) matrices, to annotate and
compare findings across different layouts and find consensus among several clusterings. MatrixExplorer also supports Node-link
diagram views which are familiar to most users and remain a convenient way to publish or communicate exploration results.
Matrix and node-link representations are kept synchronized at all stages of the exploration process.

Index Terms— social networks visualization, node-link diagrams, matrix-based representations, exploratory process, matrix
ordering, interactive clustering, consensus.

Fig. 1. MatrixExplorer showing two synchronized representations of the same network: matrix on the left and node-link on the right.

1 INTRODUCTION
Information visualization has been used to support social network

analysis since the 1930s. Social scientists use visual representations
both to explore datasets and to communicate their results. Some
information visualization systems focus on exploration, taking
advantage of features of the human perceptual system to discern
visual patterns in the data. Others help researchers draw social
networks, usually in the form of node-link diagrams to represent
trees and graphs. Although adjacency matrices have played an
important role in social networks analysis since the 1940s [16], few

social scientists use their visual representations to communicate their
findings.

This article presents MatrixExplorer (Figure 1), which offers both
node-link and matrix representations to help sociologists and
historians explore and communicate social networks. The node-link
diagrams provide intuitive representations for relatively small
networks, and, when adequately visualized, remain a powerful means
of communication. MatrixExplorer also provides tools for
reorganizing, clustering and filtering graphs using a matrix
representation. These matrices are always readable, even for large
and dense graphs, and thus support exploration throughout the
analysis process. MatrixExplorer offers several novel features to
help explore complex social networks, using the most suitable
representation at any time.

This paper is organized as follows: we first present related work
and describe the requirements for a visual exploration system that we
defined together with social sciences researchers. We then describe
MatrixExplorer and detail its major features for matrix-based
representations. We conclude with discussion and future work.

 Nathalie Henry is with INRIA Futurs/LRI and University of Sydney,

E-Mail: Nathalie.henry@lri.fr.
 Jean-Daniel Fekete is INRIA Futurs/LRI,

E-Mail: jean-daniel.fekete@inria.fr.
Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6
November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

677

1077-2626/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society

Figure 3: Topic Map visualization with relations as

nodes or arcs

Figure 4: Prototype of the Matrix Browser

a continuous, direct-manipulative type of interaction.
However, it is mainly suited for hierarchical information.
Due to its visual deformity, only relations between the
node in the display focus and spatial neighbored nodes are
completely recognizable. Yet in some cases it was used
for the visualization of topic maps and ontologies where it
is only suitable to some degree, since the non-hierarchical
network structure causes some nodes to appear more than
one time in the visual representation. A well-known
example for this case is OntoBroker[8], an ontology-based
query and answering service for the semantic web.

A 3-dimensional visualization technique [9] of XML
Topic Maps (Figure 3) was developed at the Laboratoire
d’Informatique de Paris 6. The underlying cone trees [10]
were enhanced of interactive capabilities like reducing the
number of shown nodes by the use of filtering and
classifying algorithms. By the means of two visual
transformations, the represented topic map can be
explored. On the one hand n-ary relationships can be
visualized as nodes and on the other hand binary relations
can be depicted as arcs between nodes. In this view n-ary
relationships have to be decomposed in binary relations.

Alternatively, static net representations including
matrix displays of networks were already proposed by
Bertin [11], but his work did not make use of interactive
features. Also Becker et al. [12] used matrix-like displays
for network traffic visualization.

However, none of the introduced approaches
supports the visualization of arbitrary networked data with
regard to different user tasks like the search for specific
nodes or arcs, the discovery of relationships between
nodes or all relationships of particular nodes. Furthermore
they lack of substantial interactive exploration features
such as a systematic drill-down or condensation of
fragment structures. For these reasons, non of the existing
approaches is particularly suited to visualizing and
interacting with large networks of abstract data.

3: Matrix Browser – Design Principles

The central idea of the Matrix Browser approach and

prototype is to map the underlying graph structure to a
highly interactive adjacency matrix (Figure 4). Adjacency
matrices are a well understood alternative graph represent-
ation where the nodes of the network are shown along the

horizontal and vertical axes of a matrix. Both the direction
of an association (for directed graphs) as well as different
types of associations can be visualized by using arrows
and graphical symbols shown inside the cells. This can be
done in conjunction with other techniques such as tool tip
descriptions of different association types. Displaying all
nodes on both axis of the matrix is the simplest possibility
the matrix browser provides to represent a network. A first
extension of this standard matrix model is the capability to
flexibly filter the node sets shown on each axis of the
matrix. This filtering can be done either based on arbitrary
attributes of the nodes or on properties of the relations
displayed in the cells.

The second main design feature is that Matrix
Browser provides mechanisms for presenting hierarchical
information structures directly as interactive tree widgets.
This “Windows Explorer”-like technique is widely known
and intuitive to use. Information networks typically
contain hierarchical substructures which may either based
on merely syntactic properties of the graph or on the
semantic types of the relations. In Matrix Browser, the
user can flexibly place such hierarchical substructures
along both axes and explore them with the familiar
expand/collapse procedure. In this way, the information
shown in the matrix can be better structured and the
amount of visually displayed material reduced.

As a result of using tree widgets as axes of the
matrix, not all concepts and relations are visible all the
time. Matrix Browser allows to use expand/collapse
functions not only for the trees but also for the cells. If the
explicit relations in the net are not visible because their
superordinate concepts are in a collapsed state, an
interactive symbol is shown, that can be clicked for
expanding/collapsing the associated trees. With these
techniques, the user can flexibly drill-down into the
network or condense parts of it.

A net-like interactive visualization in the upper left
corner of the matrix shows all of the neighbors in the net
of a node, which is selected in one of the two hierarchies.

Proceedings of the Sixth International Conference on Information Visualisation (IV’02)
1093-9547/02 $17.00 © 2002 IEEE

MatLink: Enhanced Matrix Visualization for Analyzing Social Networks 289

(a) Node-Link(NL) (b) Matrix(MAT) (c) MatLink

(d) Zoom on MatLink

Fig. 1. Three representations of a social network

To address these limitations, we developed MatLink, an enhanced matrix-
based graph visualization that overlays a linear node-link diagram on the edges
and adds dynamic feedback of relationship between nodes (Figure 1c). To assess
its e↵ectiveness, we performed an experiment comparing user performance with
NL, MAT and MatLink on a set of representative social network analysis tasks.

The rest of the paper is organized as follows: the next section describes pre-
vious work on social network characterization, evaluating graph visualizations
and analysis tasks, visual exploration systems and layout algorithms. We then
describe our novel visualization and present an experimental evaluation compar-
ing it to existing network visualizations. A discussion on the results and their
implications follows.

2 Related Work

2.1 Social Network Characterization

Social networks involve persons or groups called actors and relationships between
them, with a lot of variety in the kind of actors and relationships. As described
in Wasserman and Faust [2], actors can be people, subgroups, organizations or
collectivities; relations may be friendship (relationships), interactions, commu-
nications, transactions, movement or kinship. However, the nature of actors and
relations does not really matter: we focus on their structure.

Very often in the literature, social networks are confused with small-world
networks. After studying real social networks, we identified three categories.

experiment, 179). The matrix generation process was
parameterized so that the resulting matrices contained
varying types of clusters. The median number of clusters
in a matrix was 6 and the median size of a cluster was 3.

Procedure Participants were given the same general
instructions as in the first experiment, but in English
this time. The procedure was repeated 15 times using
one of the interfaces and then another 15 times using
the other interface. In both sets, the first three tasks
were used for training and practicing, and no data were
collected for them.
Participants gave the answer by filling a text field that

forced them to mention all of the column names before
leaving the task. The groups were indicated by leaving a
space between column labels. On the right side of the text
field, there is a text label that displays the yet unentered
column names as a hint. As a shortcut, by writing an
asterisk the participants could indicate that the not yet
entered columns are all in their own groups.

Design In the experiment, there were two conditions
called Normal and Slider. The Normal condition does not
have the column similarity view, but is otherwise similar
to the first experiment’s Traditional condition.
The participants were divided randomly into two

groups. One group took the Normal condition first, and
then Slider and the other group had the opposite order.
Counterbalancing involved the two groups and the two
task sets with randomized task order, requiring the
number of participants to be a multiple of four.
The experiment was treated as 2! 2!12 mixed design.

Groupwas a between-subjects factor with two levels (eight

participants per group). The within-subjects factors were
UI with two levels (Normal vs Slider) and Task with 12
levels. The total amount of input was 8 participants/
group! two groups! two layouts!12 trials¼384 obser-
vations.
Two measurements were collected for each trial: time

spent (in seconds) and the given solution. The solutions
were later transformed manually into distances com-
puted from the appropriate lattice.

Results The median time participants spent in the whole
experiment was 1h and 22min, ranging from 51min to
1h and 50min. This was almost twice as much as
anticipated. The participants were more patient and
thorough than was expected, and many of them wanted
to explore the tasks with more than one strategy. This
applied to both interface styles.
Two of the participants did not complete the experi-

ment. One session was aborted by the supervisor, and one
other participant gave up commenting that the task was
incomprehensible. In both cases, the problem seemed to
be language-related – it appears that the supervisor failed
to communicate the instructions. Two more volunteers
were recruited to complete the counter-balancing.
The main effect and interactions for Group were not

statistically significant. The grand mean for Time was 154
seconds. The time for the Normal user interface was 217
seconds, and for the Slider user interface, it was 91
seconds, approximately 60% improvement. The differ-
ence was statistically significant (F1,15¼8.71, Po0.001).
The grand mean for Distance was 2.9, indicating that

about three single-item shifts were required to reach
the correct solution. The distance for the Normal user

Figure 17 The user interface in the second experiment.

Constructing and reconstructing Harri Siirtola and Erkki Mäkinen

45

Information Visualization

 Honeycomb: Visual Analysis of Large Scale Social Networks 433

(a) (b) (c)

Fig. 2. Collapsing an 8 by 8 adjacency matrix to a smaller 3 by 3 matrix (a) original matrix
with node hierarchy on both sides (b) collapsed version of the matrix with lowest level of the
hierarchy eliminated and edge counts aggregated (c) This collapsed version itself forms a small
section of a higher level adjacency matrix

visualization tool allows users to choose either option. The actual hierarchy used to
drive the above process is variable and depends on the interest of the users of the
visualization. In the samples in this paper we have used two distinct hierarchies. One
uses the management hierarchy to correlate connection behavior with organizational
structure, while the other one uses a geographical hierarchy based on the user’s work-
ing location (i.e. continent - country - state - city - building) to correlate connection
behavior with geographical location. In practice, we can also use different hierarchies
or construct a hierarchy ourselves by using other node attribute information.

In terms of interactivity our tool is very similar to its predecessor described in [18]
but it is more memory efficient and allows for pluggable metrics. The user is initially
presented with an adjacency matrix that displays connections at the highest level of
abstraction (e.g. in the case of the geographical hierarchy connections between em-
ployees in different continents). By left clicking on a cell (X,Y) the user can indicate
he or she wants to examine that particular connection in more detail and the visualiza-
tion then displays the matrix that shows the connections between the direct children of
X and Y. A simple right click brings the user back to the cell he or she came from. The
transition between these two matrices is animated to help the user understand the
relationship between the two representations. Dynamic labels help the user understand
what relation they are looking at and a popup menu provides details on demand.

To deal with the issue of visual scalability we have used the hierarchy to reduce the
matrix to a more manageable size. Computational scalability is obtained by using a
semi-external memory approach, that is, we keep the entire nodeset and the hierarchy
of the network in RAM while a relational database stores the actual connections be-
tween the nodes in the network. When a user requests a higher level view of the net-
work, aggregation of edges in the database is done on the fly using a fast lookup algo-
rithm. Our current prototype is implemented in Java and uses OpenGL for graphics
output. We have successfully loaded and navigated synthetic graphs up to 5 million
edges using only 200MB of RAM.

9

> <Grid OnLabels OnBoth ActiveStopHelpAll OnAll OffZoomUnzoomVariablesMinMaxtoc0.359716 924119:15

19:15

-2123114621693192410.369241.00tocSlowFast

FROM

TO

SNFCCA2147T

SNJSCA0241T

OKLDCA0344T

SKTNCA0107T

SCRMCA0404T

SHOKCA0296T

PTLDOR6203T

GRDNCA0294T

RENONV0344T

LSANCA0301T

ANHMCA0211T

LSANCA0292T

STTLWA0604T

SNBRCA0101T

SNDGCA0787T

SPKNWA0102T

PHNXAZMA03T

SLKCUTMA02T

ALBQNMMA02T

CLSPCOMA02T

DNVRCOZJ05T

MDLDTXMU02T

SNANTXCA02T

AUSTTXGR07T

FTWOTXED24T

OKCYOKCE04T

WCHTKSBR24T

OMAHNENW14T

DLLSTXTL44T

DLLSTXTL34T

TULSOKTB04T

HSTNTX0154T

HSTNTX0144T

KSCYMO0904T

MPLSMNDT40T

MPLSMNDT18T

DESMIADT08T

LTRKARFR15T

BTRGLAMA04T

STLSMO0934T

PEORILPJ51T

SPFDILSD51T

OKBRILOA53T

NWORLAMA04T

WKSHWI0231T

JCSNMSPS14T

OKBRILOA52T

MMPHTNMA43T

CHCGILCL57T

CHCGILCL59T

MOBLALAZ01T

SBNDIN0502T

IPLSIN0102T

GDRPMIBL50T

BRHMALMT01T

NSVLTNMT43T

LSVLKYCS02T

MTGMALMT01T

LNNGMIMN50T

DYTNOH1504T

DTRTMIBH50T

CNCNOHWS14T

TOLDOH2103T

ATLNGATL04T

KNVLTNMA71T

ATLNGANW05T

CLMBOH1103T

ATLNGATL01T

MACNGAGA02T

CLEVOH0203T

AKRNOH2505T

CHTNWVLE25T

CHRLNCCA03T

PITBPADG43T

PITBPADG09T

TAMPFLCO02T

JCVLFLCL03T

CLMASCTL03T

BFLONYFR05T

ORLDFLMA03T

WPBHFLAN04T

GNBONCEU03T

HRBGPAHA42T

OJUSFLTL03T

SYRCNYSU13T

ARTNVACK04T

RCMDVAIT03T

BLTMMDCH01T

RCMTNCXA03T

WASHDCSW06T

NRFLVABS03T

ALBYNYSS05T

WAYNPALA42T

SPFDMABR02T

NWHNCT0205T

NYCQNYRP08T

MNCHNHCO03T

FRMNMAWA04T

PHLAPASL42T

CMBRMA0119T

CMDNNJCE03T

NWRKNJ0208T

WHPLNY0504T

FRHDNJ0202T

RCPKNJ0203T

WHPLNY0203T

NYCMNYBW24T

NYCMNYBW55T

NYCMNYBW51T

NYCMNY5450T

SN
FC
CA

21
47
T

SN
JS
CA

02
41
T

OK
LD
CA

03
44
T

SK
TN
CA

01
07
T

SC
RM

CA
04
04
T

SH
OK

CA
02
96
T

PT
LD
OR

62
03
T

GR
DN

CA
02
94
T

RE
NO

NV
03
44
T

LS
AN

CA
03
01
T

AN
HM

CA
02
11
T

LS
AN

CA
02
92
T

ST
TL
W
A0
60
4T

SN
BR

CA
01
01
T

SN
DG

CA
07
87
T

SP
KN

W
A0
10
2T

PH
NX
AZ
MA

03
T

SL
KC

UT
MA

02
T

AL
BQ

NM
MA

02
T

CL
SP
CO

MA
02
T

DN
VR
CO

ZJ
05
T

MD
LD
TX
MU

02
T

SN
AN

TX
CA

02
T

AU
ST
TX
GR

07
T

FT
W
OT
XE
D2
4T

OK
CY
OK

CE
04
T

W
CH

TK
SB
R2
4T

OM
AH

NE
NW

14
T

DL
LS
TX
TL
44
T

DL
LS
TX
TL
34
T

TU
LS
OK

TB
04
T

HS
TN
TX
01
54
T

HS
TN
TX
01
44
T

KS
CY
MO

09
04
T

MP
LS
MN

DT
40
T

MP
LS
MN

DT
18
T

DE
SM

IA
DT
08
T

LT
RK

AR
FR
15
T

BT
RG

LA
MA

04
T

ST
LS
MO

09
34
T

PE
OR

ILP
J5
1T

SP
FD
ILS

D5
1T

OK
BR

ILO
A5
3T

NW
OR

LA
MA

04
T

W
KS
HW

I02
31
T

JC
SN
MS

PS
14
T

OK
BR

ILO
A5
2T

MM
PH
TN
MA

43
T

CH
CG

ILC
L5
7T

CH
CG

ILC
L5
9T

MO
BL
AL
AZ
01
T

SB
ND

IN
05
02
T

IP
LS
IN
01
02
T

GD
RP
MI
BL
50
T

BR
HM

AL
MT

01
T

NS
VL
TN
MT

43
T

LS
VL
KY
CS
02
T

MT
GM

AL
MT

01
T

LN
NG

MI
MN

50
T

DY
TN
OH

15
04
T

DT
RT
MI
BH

50
T

CN
CN

OH
W
S1
4T

TO
LD
OH

21
03
T

AT
LN
GA

TL
04
T

KN
VL
TN
MA

71
T

AT
LN
GA

NW
05
T

CL
MB

OH
11
03
T

AT
LN
GA

TL
01
T

MA
CN

GA
GA

02
T

CL
EV
OH

02
03
T

AK
RN

OH
25
05
T

CH
TN
W
VL
E2
5T

CH
RL
NC

CA
03
T

PI
TB
PA
DG

43
T

PI
TB
PA
DG

09
T

TA
MP

FL
CO

02
T

JC
VL
FL
CL
03
T

CL
MA

SC
TL
03
T

BF
LO
NY
FR
05
T

OR
LD
FL
MA

03
T

W
PB
HF
LA
N0
4T

GN
BO

NC
EU
03
T

HR
BG

PA
HA

42
T

OJ
US
FL
TL
03
T

SY
RC

NY
SU
13
T

AR
TN
VA
CK

04
T

RC
MD

VA
IT0

3T

BL
TM

MD
CH

01
T

RC
MT

NC
XA
03
T

W
AS
HD

CS
W
06
T

NR
FL
VA
BS
03
T

AL
BY
NY
SS
05
T

W
AY
NP
AL
A4
2T

SP
FD
MA

BR
02
T

NW
HN

CT
02
05
T

NY
CQ

NY
RP
08
T

MN
CH

NH
CO

03
T

FR
MN

MA
W
A0
4T

PH
LA
PA
SL
42
T

CM
BR

MA
01
19
T

CM
DN

NJ
CE
03
T

NW
RK

NJ
02
08
T

W
HP
LN
Y0
50
4T

FR
HD

NJ
02
02
T

RC
PK
NJ
02
03
T

W
HP
LN
Y0
20
3T

NY
CM

NY
BW

24
T

NY
CM

NY
BW

55
T

NY
CM

NY
BW

51
T

NY
CM

NY
54
50
T

Figure 5. Network Overload As Matrix

The same overload as in Figure 3 shown using a matrix representation instead of a network map. The nodes are
shown along the rows and columns in approximate West-to-East order in matrix form, with columns
corresponding to ‘‘from’’ nodes and rows corresponding to ‘‘to’’ nodes. At the intersection of each row and
column there is a square whose color codes the link statistic. The colored squares on the left and bottom
correspond to the lines on Figure 3. The nonsymmetry is due to the directed nature of the traffic.

Both problems may be solved simultaneously, however, by using a matrix display, which

deemphasizes the geography by displaying the network in a matrix form with each matrix element allocated

to a link. Each node is assigned to one row and column with the (i , j) and (j ,i) matrix elements associated

with the j-to-i and i-to-j links. If the link data is not directed, both of these elements are assigned the same

value. Figure 5 demonstrates this technique with each of the small squares corresponding to one of the

potential half-lines in Figure 3, and the colored squares corresponding to the realized lines. The nodes are

arranged in approximate geographical order with west-to-east along the horizontal axis and correspondingly

along the vertical axis. The matrix representation shows that the earthquake overload is highly focused on

Fig. 7: NodeTrix visualization of the information visualization field. This is the largest connected component extracted from the dataset used
in the Infovis’04 Contest available at http://www.cs.umd.edu/hcil/iv04contest/. We manually removed a couple of remaining
duplicated authors. Colors on axes of matrices represent the number of citations of each author. Color intensity within the matrices represents
the strength of each collaboration.

1309IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

(a) ‘Matrix’ Cluster

GLO Distance

48

UNDERSTANDING TECHNIQUES
SHNEIDERMAN ET AL.: NETWORK VISUALIZATION BY SEMANTIC SUBSTRATES

Fig. 8. The layout for Circuit Court cases is now organized by the 13
Circuits and the link pattern shows the strong likelihood that cases will
reference precedents within the same Circuit.

Fig. 9. Displaying 1,122 nodes and 7,645 links at a 1280x1024
resolution. The relatively small number of Supreme Court cases is
apparent, as is the similar number of Circuit and District Court cases.

Distributions within years are also visible, enabling users to see the
ebb and flow of activity.

As with many new ideas, there are numerous refinements that are

needed. Designs for 3, 4, and 5 regions get more complex but we are
finding strategies to deal with them.

In this example, our collaborators were certain about the
important attributes, which we used as ingredients determining
placement. In general, however, there may be many attributes and
that users may have little awareness of which attributes are best to
use to determine regions and placement for their task. Considering
that users with such data exist, a user interface to help users explore
combinations of attributes seems to be a promising future direction.

We have a plan for an iconic representation that would replace
multiple check boxes, allowing easy selection of links within or
between up to 5 regions.

The NVSS implementation is still developing and more features
are needed in the user interface to simplify the specification of region
size, location, color, labels, node layout strategy, etc. In addition,
greater flexibility will certainly be needed for node, link, and label
properties such as placement, size, color, font, and background. We
plan to add dynamic properties to control node and link visibility,
plus infotips, excentric labels, and window panes for textual lists.

Future work might also include elastic window strategies that
enable users to enlarge one region while shrinking the others in a
smooth animation [25]. For networks with millions of nodes, further
work is needed on dynamic query sliders to limit node visibility

739

THE PIVOTGRAPH APPLICATION
This section describes the PivotGraph software that allows
users to interactively explore roll-ups and selections of
multivariate graphs. PivotGraph is a desktop application
written in Java. See Figure 5 for a screenshot. (Note that in
this and several other screenshots some text was changed in
order to mask confidential data.) The PivotGraph interface
has three components. A traditional menu bar lets users
handle files and change various viewing parameters. At the
left is a panel with three parts: two drop-down menus to
determine roll-up dimensions for the x- and y-axes; a
legend; and a set of drop-down menus, one for each
dimension, that allow the user to specify selection
parameters. Finally, the bulk of the screen is devoted to the
graph visualization itself.

Visualization
Although the basic idea of the scatterplot representation
described in the previous section is simple, it turns out there
are a number of subtle challenges that need to be addressed
for the visualization to remain legible.

Before diving into the details, it may be helpful to describe
the data shown in Figure 5, which is a good example of the

Figure 5. Screenshot of PivotGraph in action.

 visualization at work. The screenshot shows an
anonymized view of a real social network within a
corporation. Nodes in the graph represent people, and edges
represent communication. The graph is rolled up by gender
(x-axis) and office location (y-axis). Several patterns can be
seen in the visualization. There is a large amount of cross-
gender communication in Location B, for example, but very
little elsewhere. Men in Location B seem to be especially
central, with women in locations C, D, and E
communicating more with them than with men in their own
locations. The node sizes provide an indication of how
many men and women are at each location, and it is easy to
see that in the graph one location (A) has only men.

Layout
Each node is represented by a circle whose x- and y-
coordinates are determined by the current roll-up
dimensions. (If there is only one roll-up dimension, then the
dots are laid out on a line, as in figure 6.) The area of each
circle is proportional to the size variable of the node. In an
early version of the program, the sequence of dimension
values on the axes was determined simply by alphabetical
ordering. A second version of the program rearranged the
order of the values to create a more meaningful use of
space. To do this for a given dimension, the roll-up of the
graph onto that dimension is created, after which a

814

CHI 2006 Proceedings • Visualization 1 April 22-27, 2006 • Montréal, Québec, Canada

Volume 31, Number 1 INFORMATION PROCESSING LETTERS 12 April 1989

a
Fig. 4. Pictures of asymmetric graphs.

+Japhs is visualized pleasingly as symmetric pictures in our system. Figure 4 shows two pictures of
asymmetric graphs. In these cases needless edge crossings are avoided completely.

-The CPU time needed to compute a layout in these pictures is
seconds (Fig. 3(d)) on a VAX 8600.

4.2. Isomorphic graphs

When the viewer wants to
isomorphic graphs as the same

compare some graphs, it is highly required of the system to display
picture. otherwise the viewer cannot make proper comparisons from the

D C D C

F F A
A

H I H I

from 0.4 seconds (Fig. 3(a)) to 7.6

a b

G E

F
B

J
F

C

Fig. 5. Pictures of isomorphic graphs.

13

94

Fig. 1. Sample drawings produced by the Circular Library.

f) ma in site clusters

-.) sub site clusters
0 vir tual cluster

[] in-nodes

[] out-nodes

in-edges

- - 9 out-edges

. . - ..

i .:

i t

Fig. 2. A circular drawing of a graph with only a portion of the set of nodes and
edges shown as an illustration of the definitions (left), and the corresponding
cluster graph (right).

108 J.M. Six and I.G. Tollis

e

g

h

a

c

d

b

f

j

i

Fig. 1. A circular drawing as produced by our algorithm.

characteristics or can highlight semantic qualities of the network such as sub-
nets. Emphasizing natural group structures within the topology of the network
is vital to pin-point strengths and weaknesses within that design. It is essential
that the number of crossings within the drawing of each cluster remain low and
that nodes have good proximity to their neighbors. Researchers have produced
several circular drawing techniques [2,6,10,12,17], some of which have been in-
tegrated into commercial tools. The resulting drawings can be compared with
each other by counting the number of edge crossings. These drawings are often
visually complex with respect to the number of edge crossings. In fact, the pro-
blem of producing a circular drawing with a minimum number of crossings was
proven to be NP-Complete in [13]. In [15] we present a technique for producing
circular drawings of biconnected graphs on a single embedding circle and an ex-
perimental study which shows the technique to perform well. A refined version
of this approach is discussed in [16]. In this paper, we introduce a framework
of e�cient techniques to produce circular drawings of nonbiconnected networks.
These algorithms require at most O(m) time and have been designed to produce
drawings which clearly show biconnectivity.

2 Circular Drawings of Biconnected Graphs

In this section we present a summary of an algorithm for obtaining circular
drawings of biconnected networks such that all the nodes are placed onto the
circumference of a single embedding circle. In addition, we include the results of
an experimental study which shows this technique to be a significant improve-
ment over the current state of the art.

In order to find a circular drawing with a lower number of crossings than
previous techniques, we have developed an algorithm which tends to place edges
toward the outside of the embedding circle. This characteristic means that there
are not many edges in the middle of the drawing to be crossed and also that
nodes are placed near their neighbors. In fact, this algorithm tries to maximize
the number of edges appearing on the circumference of the embedding circle.
This is achieved by selectively removing some edges and then building a DFS-
based node ordering of the resulting graph. The number of crossings can then
be further reduced with a postprocessing step.

Figure 16 below illustrates some of these highlighting schemes for
the same thread. Personal highlights (P), shows one’s contribution to
the thread. This attribute is important because one’s own messages
often represent “to-do’s” that one expects from others [Bellotti et al.
2002; Whittaker and Sidner 1996].

Time shading (T) shows messages sent on the same day in the same
shade of gray. The last eleven messages in this thread were sent four
days after the thread started. This shading helps emphasize threads
that have large intervals between messages. This type of thread has
been characterized as one of the harder types of thread to keep track
of [Bellotti et al. 2002] because, in conventional email clients, the
older messages drift out of the inbox list view as other messages
arrive.

Contributor coloring (C) shows each contributor to the thread in a
different color. In this example, only four people were involved in
this discussion.

Generational shading (G) uses a different shade for each generation
of the thread, showing the generational depth of the conversation.
This helps users see the branching nature of the Thread Arcs, which
is less apparent from its linear layout. This shading scheme, with
black nodes as the deepest generation, emphasizes the end of
branches, which are the current state of the email conversations.

6. Study

The goal for our study was to learn about the usefulness and
effectiveness of email thread visualizations in users’ own email.
In particular, we investigated which qualities users considered
important in thread visualizations, as described in Section 2,
“Key Qualities”.

As part of this study, we gathered statistics on the size and shape
of threads found in users’ email to give us a better understanding
of the frequency and structure of threads that thread visualizations
need to accommodate.

6.1 Method

We recruited eight participants for our study, four male and four
female. The participants were all software knowledge workers,
and were recruited internally. The participants had intermediate to
advanced experience using the Lotus Notes email client, and had
been using it for three to ten years. Some had previous experience
with large email conversations and discussion databases. None
had any previous knowledge of the Thread Arc visualization.

At the beginning of each test, we used a Java program to traverse
each user’s email database, then collated all of his or her threads,
and output them as a set of XML files. This software implemented
an improved version of the complex Zawinski’s threading
algorithm [2002] originally developed for Netscape Messenger.
The XML files contained each thread’s structure, along with each
message’s basic email content, including the “to”, “from”, “
subject”, “time”, and the first 100 characters of the “body”. We
used this data as the content for the study where users experienced
a simulation of an email client with their own email content. In
addition, we used this information to get statistics on the size and
structure of their email threads.

At the conclusion of each user’s session, we created a series of
large scale posters of all of the threads found in their email
database. This allowed us to analyze quantitatively the entire
spectrum of threads present in a user’s real email. These posters
consisted of nine different attribute highlighting schemes for each
of the visualization techniques tested. Users were comfortable
with us taking this data away, as it showed only the structure,
sizes and shapes of the threads with no text content, thereby
ensuring their privacy.

6.2 Email Prototype

As part of the study, we let users explore their email threads in a
simulation of an email client built using Macromedia Director.
Users were able to switch between Thread Arcs, Tree Diagrams,
and Tree Tables during the test. Each visualization used the same
user controls, behaviors, colors and highlighting schemes, so
access to and manipulation of each visualization was controlled.

We encouraged subjects to switch between the different
visualizations and highlighting schemes to get a better
understanding of the type of information each visualization could
convey so they could assess which one they found most useful.
We asked the users to perform small tasks designed to get them to
think about the key qualities, and to test each visualization against
them. For example, they were asked to find the last message in a
thread, or to figure out how many responses a particular message
received. Another exercise involved letting users observe the
stability of a visualization as new messages were added to a
thread. The prototype allowed us to show the evolution of any of
the threads they encountered. We could demonstrate how the

Proceedings of the IEEE Symposium on Information Visualization 2003 (INFOVIS’03)
0-7695-2055-3/03 $ 17.00 © 2003 IEEE

aesthetic layout [40]: generality (can be applied to
different classes of networks), flexibility (can be
adjusted to suit their purpose), transparency (can be
easily explained and understood), competence

(generate useful and quantitatively interpretable re-
sults) and speed (render typically much faster than
traditional layouts). In addition to these, HPs have
two other critical properties that distinguish them

Figure 3: Process of creating HPs from directed and undirected networks. (A) The structure of the RegulonDB
network [36, 37]. (B) A parallel coordinate plot of the genes highlighted in (A), assigned to axes (x1, x2, x3) based
on their role (regulator, manager, workhorse) and positioned on the axis based on connectivity (deg). (C) HP
of the genes highlighted in (A), showing the conceptual similarity between the HP and parallel coordinate plot.
The circular layout of the HP permits connections between edge axes in the parallel coordinate plot (NSRR/
NRFD) to be accommodated within the plot area. (D) The structure of the gene-disease network [38] that
connects genes implicated in the same disease. Classification of the connecting diseases (e.g. ophthalmological,
bone, connective tissue, etc.) partitions the network into overlapping sets of genes. (E) The clustering coefficient
(cc) measures the extent of connections between a node’s neighbors and is used to place genes on HP axis. HP of
the highlighted nodes in (D) constructed using ranges of the cc, for axis assignment and connectivity for axis
scale. The x1-axis is cloned (x11, x12) to reveal connections between cc¼ 0 nodes.

630 Krzywinski et al.

 at G
eorgia Institute of Technology on Septem

ber 28, 2015
http://bib.oxfordjournals.org/

D
ow

nloaded from

GeneVis: Visualization Tools for Genetic Regulatory Network Dynamics
C.A.H Baker1, M.S.T Carpendale1, P. Prusinkiewicz1 and M.G. Surette2

1Department of Computer Science, University of Calgary
2Department of Microbiology and Infectious Diseases, University of Calgary

1bakerch,sheelagh,pwp@cpsc.ucalgary.ca, 2surette@ucalgary.ca

ABSTRACT
GeneVis provides a visual environment for exploring the dynam-
ics of genetic regulatory networks. At present time, genetic regu-
lation is the focus of intensive research worldwide, and computa-
tional aids are being called for to help in the research of factors that
are difficult to observe directly. GeneVis provides a particle-based
simulation of genetic networks and visualizes the process of this
simulation as it occurs. Two dynamic visualization techniques are
provided, a visualization of the movement of the regulatory proteins
and a visualization of the relative concentrations of these proteins.
Several interactive tools relate the dynamic visualizations to the un-
derlying genetic network structure.

CR Categories: J.3 [Life and Medical Sciences]—Biology and
genetics; I.6.7 [Computing Methodologies]: Computer Graphics—
Simulation and Modeling, Simulation Support Systems, Environ-
ments; I.3.6 [Computing Methodologies]: Information Systems—
Information Interfaces and Presentation, User Interfaces, Interac-
tion techniques.

Keywords: biological visualization, visualization, multi-
representation, genetic networks, lenses, focus and context

1 INTRODUCTION
Since the mapping of the human genome, research interests in biol-
ogy have shifted towards the issue of discovering what the genetic
code actually does. This includes such questions as: what proteins
do genes code for? how does this affect the development and func-
tioning of the organism? how do genes communicate appropriate
information to each other? how do genetic networks function? and
what are their dynamics?
We consider genetic networks to consist of sets of genes that are

regulated by sets of proteins. When genes in the network express
they trigger the production of proteins, which in turn can regulate
the expression of other genes, thus creating a network of depen-
dence. Gene expression can exist in a relatively steady state of
protein production, but the activity levels of genes can also change
over time. With techniques such as DNA micro-arrays [10] it is
now possible for biologists to measure, in parallel, the activity lev-
els of genes as a function of time. Biologists may use these tem-
poral measurements to infer which genes interact with which ones
and what are the patterns of these interactions. However, this is a
non-trivial exercise. The data is expensive and difficult to obtain,
and can be noisy. Furthermore, even relatively small genetic net-
works may have complex dynamics due to positive and negative
feedback loops. To assist in the process of inference, models of the
observed genetic activity are being developed. These models can
be used to create simulations and visualizations, helping us form

mental constructs of the behaviour of regulatory networks and thus
further our understanding them. In order to provide this comprehen-
sion, we have created a Simulation and visualization environment
called GeneVis. In GeneVis spatial organization of the simulated
entities is used and adjusted interactively in order to help illustrate
and support the exploration of mental concepts. Moreover, differ-
ent visualization techniques can assist in understanding different
aspects of the same data set.

Figure 1: A screenshot of GeneVis: The large circle in the middle
of the screen represents the chromosome. Around the circle there
are small spheres, which represent genes. The small fuzzy dots
throughout the image represent proteins.

GeneVis has been designed for use with prokaryotic organ-
isms [5]. It simulates genetic network behaviour using probabilis-
tic occurrences of gene-protein interactions, and creates visualiza-
tions of the genetic network dynamics as they occur during the
simulation. In this paper, we focus on the visualization aspects of
GeneVis. The visualization environment supports several represen-
tational modes, which include: a protein interaction representation,
a protein concentration representation, and a network structure rep-
resentation. The protein interaction representation shows the activ-
ities of the individual proteins. The protein concentration repre-
sentation illustrates the relative spread and concentrations of the
different proteins in the simulation. The network structure repre-
sentation depicts the genetic network dependencies that are present

Figure 9: Visual integration that moves the user from the simulation visualization to the network structure visualization

position of the topmost ring and Bottom is the position of the lowest
ring. PositionRatio is used to calculate the change in ring diameter:

scaleDiameter PositionRatio2 MaxMag 1 0 (3)

Squaring the PositionRatio makes the amount of magnification
drop off more quickly. Adding 1 0 ensures that the ring’s diame-
ter does not diminish. PositionRatio is also used to calculate both
the new vertical location of the ring. To this end, the parameter
VerticalAd just is calculated with the formula:

VerticalAd just
PositionRatio2 Top Bottom

VerticalScaleFactor
(4)

and VerticalAd just is subtracted from Top if the ring is above the
lens center, and added to Bottom if it is below the lens center. Fig-
ure 10 is a diagram that shows how the ring lens works.

Figure 10: Diagram of the Ring Lens distortion function

The vertical position of the Ring Lens is controlled by the mouse.
Figure 11 shows screen shots of the Ring Lens in different posi-
tions. The left image shows the Ring Lens placed at the second
level ring, causing it to be enlarged in diameter. The middle image
shows the lens shifted towards the bottom of the view. This makes
the connections between the lower two level rings more visible by
increasing the amount of space between them. The right image
shows the lens near the top of the view this time opening up the
space between the first two levels. The Ring Lens allows the user
to interactively view the selected levels within the genetic network
structure while maintaining the context of all the other rings.

5 CONCLUSIONS AND FUTURE RESEARCH
In this paper we have presented GeneVis, an interactive simula-
tion and visualization environment that has been developed for the
exploration of genetic regulation networks. GeneVis provides dy-
namic visualizations of simulated genetic network behaviour and
a visualization of the network structure. It supports three visual
representations. The protein interaction representation shows the
dynamics of the simulated network behaviour through the motion
of individual proteins. The protein concentration representation de-
picts the concentrations of proteins during the simulation. The net-
work structure representation shows the dependency structure of
the genetic network using a 3D graph layout. This representation
shows several types of regulatory relationships, including forward,
backward, and self regulation. All of these can have either promot-
ing or inhibiting effects.
GeneVis also provides several specialized viewing tools and

techniques. These include:

The continuous representational transformation between the
protein interaction representation and the concentration rep-
resentation.

The three Fuzzy Lenses, which allow one to view selected
regions of the simulation dynamics with the representation of
choice.

The Base-Pair Lens, which allows one to reposition the genes,
thus separating and more evenly distributing closely clustered
genes.

The animated transition between the dynamic visualizations
and the network structure visualization.

The Ring Lens, which provides detail-in-context viewing for
the network structure.

With these representations and tools, genetic regulation networks
can be viewed and explored.
There are many possible future directions for this research. Some

of the visualization directions include: making a visual front end
that would allow a user to edit the network structure, continuing
to improve the network structure visualization in order to further
clarify the structure, and providing a magnification lens for the dy-
namic visualizations. Also, gene expression graphs could be plotted
in real-time for precise measurement of when equilibrium or con-
stant expression levels are reached.

6 ACKNOWLEDGMENTS
This research support in part by NSERC research grants. We would
like to thank K. Mason and C. Neustaedter for help in the making
of and editing of the video.

(b) ‘Simple’ Cluster

GLO Distance

50

UNDERSTANDING TECHNIQUES
SHNEIDERMAN ET AL.: NETWORK VISUALIZATION BY SEMANTIC SUBSTRATES

Fig. 8. The layout for Circuit Court cases is now organized by the 13
Circuits and the link pattern shows the strong likelihood that cases will
reference precedents within the same Circuit.

Fig. 9. Displaying 1,122 nodes and 7,645 links at a 1280x1024
resolution. The relatively small number of Supreme Court cases is
apparent, as is the similar number of Circuit and District Court cases.

Distributions within years are also visible, enabling users to see the
ebb and flow of activity.

As with many new ideas, there are numerous refinements that are

needed. Designs for 3, 4, and 5 regions get more complex but we are
finding strategies to deal with them.

In this example, our collaborators were certain about the
important attributes, which we used as ingredients determining
placement. In general, however, there may be many attributes and
that users may have little awareness of which attributes are best to
use to determine regions and placement for their task. Considering
that users with such data exist, a user interface to help users explore
combinations of attributes seems to be a promising future direction.

We have a plan for an iconic representation that would replace
multiple check boxes, allowing easy selection of links within or
between up to 5 regions.

The NVSS implementation is still developing and more features
are needed in the user interface to simplify the specification of region
size, location, color, labels, node layout strategy, etc. In addition,
greater flexibility will certainly be needed for node, link, and label
properties such as placement, size, color, font, and background. We
plan to add dynamic properties to control node and link visibility,
plus infotips, excentric labels, and window panes for textual lists.

Future work might also include elastic window strategies that
enable users to enlarge one region while shrinking the others in a
smooth animation [25]. For networks with millions of nodes, further
work is needed on dynamic query sliders to limit node visibility

739

THE PIVOTGRAPH APPLICATION
This section describes the PivotGraph software that allows
users to interactively explore roll-ups and selections of
multivariate graphs. PivotGraph is a desktop application
written in Java. See Figure 5 for a screenshot. (Note that in
this and several other screenshots some text was changed in
order to mask confidential data.) The PivotGraph interface
has three components. A traditional menu bar lets users
handle files and change various viewing parameters. At the
left is a panel with three parts: two drop-down menus to
determine roll-up dimensions for the x- and y-axes; a
legend; and a set of drop-down menus, one for each
dimension, that allow the user to specify selection
parameters. Finally, the bulk of the screen is devoted to the
graph visualization itself.

Visualization
Although the basic idea of the scatterplot representation
described in the previous section is simple, it turns out there
are a number of subtle challenges that need to be addressed
for the visualization to remain legible.

Before diving into the details, it may be helpful to describe
the data shown in Figure 5, which is a good example of the

Figure 5. Screenshot of PivotGraph in action.

 visualization at work. The screenshot shows an
anonymized view of a real social network within a
corporation. Nodes in the graph represent people, and edges
represent communication. The graph is rolled up by gender
(x-axis) and office location (y-axis). Several patterns can be
seen in the visualization. There is a large amount of cross-
gender communication in Location B, for example, but very
little elsewhere. Men in Location B seem to be especially
central, with women in locations C, D, and E
communicating more with them than with men in their own
locations. The node sizes provide an indication of how
many men and women are at each location, and it is easy to
see that in the graph one location (A) has only men.

Layout
Each node is represented by a circle whose x- and y-
coordinates are determined by the current roll-up
dimensions. (If there is only one roll-up dimension, then the
dots are laid out on a line, as in figure 6.) The area of each
circle is proportional to the size variable of the node. In an
early version of the program, the sequence of dimension
values on the axes was determined simply by alphabetical
ordering. A second version of the program rearranged the
order of the values to create a more meaningful use of
space. To do this for a given dimension, the roll-up of the
graph onto that dimension is created, after which a

814

CHI 2006 Proceedings • Visualization 1 April 22-27, 2006 • Montréal, Québec, Canada

SHNEIDERMAN ET AL.: NETWORK VISUALIZATION BY SEMANTIC SUBSTRATES

Fig. 8. The layout for Circuit Court cases is now organized by the 13
Circuits and the link pattern shows the strong likelihood that cases will
reference precedents within the same Circuit.

Fig. 9. Displaying 1,122 nodes and 7,645 links at a 1280x1024
resolution. The relatively small number of Supreme Court cases is
apparent, as is the similar number of Circuit and District Court cases.

Distributions within years are also visible, enabling users to see the
ebb and flow of activity.

As with many new ideas, there are numerous refinements that are

needed. Designs for 3, 4, and 5 regions get more complex but we are
finding strategies to deal with them.

In this example, our collaborators were certain about the
important attributes, which we used as ingredients determining
placement. In general, however, there may be many attributes and
that users may have little awareness of which attributes are best to
use to determine regions and placement for their task. Considering
that users with such data exist, a user interface to help users explore
combinations of attributes seems to be a promising future direction.

We have a plan for an iconic representation that would replace
multiple check boxes, allowing easy selection of links within or
between up to 5 regions.

The NVSS implementation is still developing and more features
are needed in the user interface to simplify the specification of region
size, location, color, labels, node layout strategy, etc. In addition,
greater flexibility will certainly be needed for node, link, and label
properties such as placement, size, color, font, and background. We
plan to add dynamic properties to control node and link visibility,
plus infotips, excentric labels, and window panes for textual lists.

Future work might also include elastic window strategies that
enable users to enlarge one region while shrinking the others in a
smooth animation [25]. For networks with millions of nodes, further
work is needed on dynamic query sliders to limit node visibility

739

Eurographics/ IEEE-VGTC Symposium on Visualization 2010
G. Melançon, T. Munzner, and D. Weiskopf
(Guest Editors)

Volume 29 (2010), Number 3

GraphDice: A System for Exploring
Multivariate Social Networks

A. Bezerianos1, F. Chevalier2, P. Dragicevic2, N. Elmqvist3, and J.D. Fekete2

1École Centrale Paris, France 2INRIA Saclay - Île-de-France, France 3Purdue University, USA

d

a

b

e

f

c

g

Figure 1: Exploration of the InfoVis 2004 Contest co-authorship dataset using GraphDice. On the left is the main visualization
window of GraphDice including (a) an overview plot matrix, (b) a selection history tool, (c) a selection query window, (d) a
main plot, and (e) a toolbar. Overlapping nodes in the main plot are drawn using jitter (visible in the yellow selection query).
On the right are actor (f) and link (g) tables with query data entries highlighted in the corresponding color.

Abstract
Social networks collected by historians or sociologists typically have a large number of actors and edge attributes.
Applying social network analysis (SNA) algorithms to these networks produces additional attributes such as de-
gree, centrality, and clustering coefficients. Understanding the effects of this plethora of attributes is one of the
main challenges of multivariate SNA. We present the design of GraphDice, a multivariate network visualization
system for exploring the attribute space of edges and actors. GraphDice builds upon the ScatterDice system for
its main multidimensional navigation paradigm, and extends it with novel mechanisms to support network explo-
ration in general and SNA tasks in particular. Novel mechanisms include visualization of attributes of interval
type and projection of numerical edge attributes to node attributes. We show how these extensions to the original
ScatterDice system allow to support complex visual analysis tasks on networks with hundreds of actors and up to
30 attributes, while providing a simple and consistent interface for interacting with network data.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Systems]: Information Interfaces
and Presentation—User Interfaces; E.1 [Data]: Data Structures—Graphs and Networks

1. Introduction

A quite recent development in social network analysis
(SNA) [WF94] has been the adoption of visualization to
explore networks and support social scientists in detecting,
understanding, and characterizing unexpected patterns and
trends in complex social networks [Ada06, HF06, HF07].

However, with a few exceptions (notably [AS07, PvW08,
Wat06]), current state-of-the-art social network visualization
tools focus on displaying the topology of the networks, and
fail to provide a convenient way of explicitly visualizing
more than a few (two to three) attributes associated with the
network entities, usually using color and shapes. In contrast,

c� 2010 The Author(s)
Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

DOI: 10.1111/j.1467-8659.2009.01687.x

863

through the familiar network edges. This type of circle-relative layout
of nodes has been suggested in earlier systems such as VisAware [32]
and StarGate [35]. We felt that it would effectively convey both seg-
ment membership and company agreement links.

Fig. 6. The Segment View showing HP, Seagate and its partners and
emphasizing Seagate’s market segments and partner companies.

In this view, the size of each segment arc is proportional to the num-
ber of companies in that segment across the entire ecosystem. Three
different orderings of the segment arcs around the circle are available:
by value chain, by existing versus emerging segments, and by seg-
ment size. As mentioned above, companies dropped into the view are
represented by nodes placed at the centroid of their market segments.
Companies residing in only one segment are drawn in a band along
the segment in order to differentiate them from each other. Hovering
the mouse over a company highlights its segments, and hovering over
a segment highlights all of the companies in the view resident in that
segment. Figure 6 illustrates HP, Seagate and their partners. It shows
that Seagate participates in three market segments in the value chain
and has agreements with companies across a range of segments. This
view is applicable to set-valued categorical attribute data and would be
appropriate for similar data from other domains.

5.3.3 ScatterNet
Because the dataset contains such a wide variety of metrics and infor-
mation about each company in the ecosystem, we felt that dotlink360
should provide one view of the company-to-company agreement infor-
mation in the context of those metrics. The ScatterNet view (Figure 7)
provides this perspective and is essentially a node-link diagram em-
bedded in a scatterplot. Rather than have company (node) positions
determined via a graph layout algorithm, their x and y positions in the
view are determined by the company’s values along the two ecosys-
tem attributes assigned to the two axes. Available ecosystem attributes
include agreement activity descriptors, financial performance descrip-
tors, and network structure properties such as centrality and cluster
coefficient computed from the agreement network. Within the scat-
terplot, company nodes still react as in the other connectivity views:
expanding (double-clicking) on a company adds its partners at their
appropriate x,y scatterplot positions according to the current metrics
shown, connected to the initial company via gray edges. The analyst
is able to zoom into a particular region of the scatterplot by mouse
drag-selection of that region.

The benefits of attribute-related network node positioning have
been illustrated in systems such as PivotGraph [46], Semantic Sub-
strates [42] and GraphDice [12]. dotlink360’s ScatterNet view am-
plifies this idea and provides network-connected nodes embedded in
a flexible multivariate scatterplot. It could be used for multivariate
network data from many different domains as well.

Figure 7 shows the ScatterNet view populated by HP, Seagate Tech-
nology, and both its partners. The x-axis encodes portfolio diversity

Fig. 7. The ScatterNet View that embeds a network visualization in
a scatterplot. Here, portfolio diversity index and market cap uniquely
determine company positions. The mouse cursor is over IBM so its
partners, including HP, are blue.

index on a linear scale and and the y-axis encodes market capitaliza-
tion along a logarithmic scale. Hovering the mouse over IBM, a shared
partner of HP and Seagate, displays its values for the two metrics in a
tooltip. This view allows the analyst to observe HP’s position relative
to its agreement partners along these key metrics.

5.3.4 Geography

The Geography view (Figure 8) provides an additional perspective on
the network of companies and agreements. In this view, nodes are
placed on an interactive world map, located at latitude and longitude
coordinates derived from the primary address for each company. Ana-
lysts interact with nodes as previously described for the other connec-
tivity views and can zoom, recenter, and toggle the display of labels
and network edges. In addition, analysts can pan the map by clicking
and dragging anywhere in the main visualization.

Fig. 8. The Geography View, here zoomed in to show HP’s headquarters
location and the locations of its partners in Europe and the U.S.

Considering the running example of HP, an analyst places its node
on the map by dragging from the navigator panel, or by broadcast-
ing from one of the other views. Double-clicking on HP’s node adds
its partners to the view. This operation provides a convenient means
of observing the physical distribution of partners in a company’s net-
work. In this case, we note that many of HP’s partners are nearby,
the details of which can be examined by zooming into the Bay Area
around San Francisco. Other groups of partners are visible around the
world, including Europe, the UK, and Scandanavia.

2531BASOLE ET AL: UNDERSTANDING INTERFIRM RELATIONSHIPS IN BUSINESS ECOSYSTEMS WITH INTERACTIVE VISUALIZATION

spatialization. EdgeMaps integrate NLD and MDS
techniques utilizing both visual linkage and proximity
for the representation of complex – explicit and implicit
– relations between items. The intent behind this
approach is to make effective use of visual variables
that have been underutilized in NLD and MDS
techniques.

As case studies for this paper, we have chosen data
sets of philosophers, painters, and musicians from the
Freebase data community. While there are many bio-
graphical records associated with these prominent per-
sonalities of philosophy, art, and music, a particularly
interesting aspect is the existence of influence connec-
tions between people, which are a type of explicit
relations. On the other hand, birth dates, interests,
movements, and genres are attributes that indicate
implicit relations between philosophers, painters, and

musicians. We chose these dimensions because they
provide a compelling case for the visualization of expli-
cit and implicit relationships and allow us to explore
complex data relationships. Visualizing influences
between musicians or philosophers as edges may indi-
cate who had more impact, yet it is not possible with
these links alone to see the extent of the impact. By
encoding meaningful data relations into both position
and edges, it becomes possible, for example, to explore
the influence of musicians across genres or of philoso-
phers over time (see Figures 1 and 2).

The remainder of the paper is structured as follows.
First, we provide an overview of prior work, after
which we explain our design goals and the data sets
we use as case studies. We then introduce the visual
representations provided with EdgeMaps (‘Visualizing
explicit and implicit relations’ section) and describe the

Figure 1. Visualizing relations among musicians. The influence of The Beatles is visualized in the similarity map.

6 Information Visualization 11(1)

web-based interface design (‘Creating a web-based visu-
alization interface’ section). Using the case studies, we
illustrate new ways for exploring complex relations
(‘Revealing complex relationships’ section). We then
discuss the limitations and open questions of this
work (‘Discussion’ section) and conclude the paper.

Related work

As visualizing relationships is at the heart of informa-
tion visualization, our work builds upon many previous
contributions in the field, with particular regard to the
use of visual variables, graph drawing methods, and
casual visualization.

While not part of his visual information-seeking
mantra (‘Overview first, zoom and filter, then details-
on-demand’), Shneiderman1 notes the challenge of
being able to explore relationships between information
items. He stresses the importance of interaction for
relating data entries; however, equally if not more
important are the appropriate visual representations
of different types of relations. To think about repre-
senting relationships visually, it is worth considering
the visual variables that are at our disposal. In
Semiology of Graphics, Bertin2 distinguishes between
eight visual variables: size, value, texture, colour, ori-
entation, shape, and the two dimensions for the posi-
tion on the plane. MDS renderings use planar position
as the primary visual variable, while NLDs typically
rearrange position in order to minimize edge crossings.
Stone3 makes the case that colour can make visualiza-
tions more effective and beautiful when used well. She
shows how colour can be used for labelling and quan-
tifying data. It would be interesting to explore the use

of colour for conveying similarity between items as a
degree of association in Bertin’s terms.

There has been extensive research on drawing and
interacting with NLDs,4 often aiming at reducing
edge crossings, which is one of several geometrical
and graph-theoretical metrics for graph aesthetics.5

Recent additions to this research include EdgeLens, a
technique for interactively exploring overlapping
edges,6 and EdgeBundles, a method for combining
edges with similar paths.7 Another problem of large
graphs is occlusion, especially when arrowheads of
directed edges impair the perception of the actual
nodes. A study of directed graphs examined a range
of visual cues for directionality and their effect on
determining direct and two-step connections.8 While
these contributions can significantly improve the read-
ability of large NLDs, we argue that contextual attrib-
utes of graph elements need to be more acknowledged.
This perspective is supported in earlier work on com-
puter network visualization, where edge and node
attributes (e.g. flow, capacity, utilization) of regional
and international Internet links were regarded to be
more important than the network topology.9 As part
of a social network visualization, it was shown how the
visual representation of number of friends, gender, and
community structure enriches the NLD and allows for
interactive filtering.10

While conventional NLD techniques focus almost
entirely on explicit relations, MDS can be seen as a
complementary approach focusing on proximity as a
visual representation of implicit relations or similarity.
MDS has been used for document visualizations with
the goal of visually conveying ‘thematic patterns and
relationships’ of text collections.11 While the idea

Figure 2. Visualizing influence relations between philosophers; Friedrich Nietzsche is selected in the timeline view.

Dörk et al. 7

(c) Attribute-Driven Cluster

Figure 59: Clusters visible in the symmetric GLO Distance matrix.

• show incident edges

• aggregate nodes by {[discrete1,discrete2]} using {agg-method}

• size nodes by {size-attr}

• color nodes by {node-color-attr}

• aggregate edges by {[source.discrete1,

source.discrete2,target.discrete1,target.discrete2]} using {agg-method}

• display edges as curved lines

• size edges by {count}

• color edges by {count}

• position nodes on {y} by {discrete1}

• position nodes on {x} by {discrete2}

• show axis(x)

103

Figure 60: Novel graph visualization technique combining the layout of Pivot-
Graphs [244] with the interaction of Semantic Substrates [96].

• show axis(y)

Figure 60 shows this novel technique. In this case, the only di↵erence between this

specification and the PivotGraph GLOv2 seed technique specification in Appendix B

is replacing the show all edges GLO with the show incident edges GLO.

Predefined techniques are quite powerful and are certainly popular. We can see

this in systems such as Excel [164], Spotfire [223], and Tableau [219] that enable

analysts to visualize data sets using pre-defined, standard techniques. However, vi-

sualization researchers and analysts are always on the look out for new techniques

for e↵ectively communicating data. The PivotGraph/Semantic Substrates hybrid

demonstrates that there exist interesting techniques to be found in the “space be-

tween” existing techniques. Simply changing a single GLO in the specification of

a known e↵ective technique can result in an interesting modified technique that is

potentially e↵ective at other tasks. In this way, GLOs provide a benefit to the visu-

alization community by providing a novel means of identifying new techniques.

In some cases, like the modified PivotGraph above, seed techniques can be tweaked

using GLOs. In the trivial case, one could display a force-directed layout with curved

edges instead of the seed technique’s straight edges (see Figure 61). While this hardly

104

constitutes a radical new graph visualization technique, it might be useful for cer-

tain purposes. For example, the curved edges are always drawn counter-clockwise,

and therefore they might make it easier to recognize features of the graph that are

dependent on directionality than with straight lines.

(a) Seed Technique (b) Tweaked Technique

Figure 61: Example of a minor tweak to a seed technique by changing the Force-
Directed Layout seed technique’s edge display mode to curved lines.

On the other hand, one can also use GLOs to more substantially fix techniques.

For example, consider the NodeTrix [117] GLOv2 seed technique in Figure 62a. The

over-duplication of nodes adds little to the display and a few high edge weights and

node degrees overwhelm the technique’s color scales.

(a) Seed Technique (b) Modified Technique

Figure 62: NodeTrix [117] GLOv2 seed technique and modified NodeTrix display with
nodes colored by cluster, intra-cluster edges colored by a constant, faded intra-cluster
edges, and highlighting intra-cluster edges incident to a selected node created using
GLO.js.

105

The specification in Table 10 (and rendered in Figure 62b) modifies the seed

technique significantly. Rather than degree, nodes are colored by their clusters, edges

are colored by their target nodes, intra-cluster edges are shown at full opacity, and

the specification uses the show faded and incident edges operation with a group-

by optional parameter to show inter-cluster edges as faded, but inter-cluster edges

incident to a selected node (shown circled in black) with full opacity.

Is this modified NodeTrix an entirely novel technique? Not necessarily, yet it

certainly provides much more utility than the tweaked Force-Directed Layout.

Glyph properties
display nodes as {label-attr} labels
color nodes by {discrete}
size nodes by constant
size edges by constant

Circle of nodes
position nodes by constant on {⇢}
evenly distribute nodes on {✓} (sort-by:discrete)

Left columns
align nodes {left} (group-by:discrete)
evenly distribute nodes on {y} (group-by:discrete, invert:true)

Top rows
clone nodes
rotate nodes {90}
evenly distribute nodes on {x} (group-by:discrete)
align nodes {top} (group-by:discrete)

All edges (incl. inter-cluster edges to row)
set target generation {1}
color edges by {target.discrete}

Inter-cluster edges
display edges as curved lines
show faded and incident edges

Intra-cluster edges
display edges as squares (group-by:discrete)
show all edges (group-by:discrete)

Additional inter-cluster edges to column
clone edges
hide edges (group-by:discrete)
set source generation {1}
set target generation {0}

Table 10: GLOv2 specification for modified NodeTrix display in Figure 62b.

GLOs can also enable the specification of completely new techniques beyond the

initial set of seed techniques. Let me use a simple example to demonstrate this point.

106

Figure 63: Arc Diagram [243] created using GLOv1 within GLO-STIX.

Consider GLOv1 and recall that the seed techniques for GLOv1 (Section A) explicitly

did not include Arc Diagrams [243]. This was a conscious decision. Using GLOv1,

we can still specify Arc Diagrams as:

• Size Nodes by Constant

• Align Nodes Middle

• Evenly Distribute Nodes on x

• Display All Links

• Display Links as Curved

Figure 63 shows an Arc Diagram created using this specification in GLO-STIX.

In the case of GLOv2, I did not explicitly choose to leave out a technique in

this way. However, one can simulate this by identifying those seed techniques whose

specifications only include operations found in other specifications. This simulated

leave-one-out approach demonstrates that only 5 (GMap, Matrix with Bars, Matrix

Browser, Edge-Label-Centric, and CiteVis) of the 29 GLOv2 seed techniques could not

have been represented using only operations from other specifications. This represents

107

strong evidence of the reusability and generalizability of GLOs.9

In my experience, I have found the partition canvas and filter partition canvas op-

erations particularly useful for creating novel visualizations. (Recall that the partition

canvas GLO enables interactively linking any stand-alone techniques, while the filter

partition canvas GLO enables creating small multiples of each cluster of a graph.)

It is worth noting that with the expressiveness that graph-level operations provide,

not every novel technique will be all that useful for graph analysis tasks. For exam-

ple, Table 11 is the GLOv2 specification for the ‘GLO’ teaser image (Figure 1) from

Chapter 1. It takes advantage of the partition canvas GLO to create three linked

views of three distinct techniques.

Initial glyph properties
display nodes as circles
display edges as straight lines
color nodes by {discrete}
size nodes by constant
color edges by constant
size edges by constant
show edges as faded

Partition into 3 parts
partition on {x} (parts:3)

G
select canvas {0}
evenly distribute nodes on {✓} (sort-by:discrete)
evenly distribute nodes on {⇢} (sort-by:discrete)

L
select canvas {1}
display edges as squares
align nodes {left}
evenly distribute nodes on {y} (sort-by:discrete, invert:true)
clone nodes
set target generation {3}
align nodes {bottom}
evenly distribute nodes on {x} (sort-by:discrete)

O
select canvas {2}
evenly distribute nodes on {✓} (sort-by:discrete)
position nodes by constant on {⇢}
display edges as curved lines

Table 11: GLOv2 specification for ‘GLO’ teaser technique in Figure 1.

9Furthermore, the only operation in the CiteVis specification that does not occur in another
technique is the highlight in-out neighbors GL. While this operation could simply replaced by the
similar highlight neighbors GLO, the resulting technique would be a slightly di↵erent technique than
the seed technique.

108

While these three techniques were chosen for their similarity to the letters G,

L, and O rather than for their utility for a specific task, one could imagine using

appropriate techniques for a specific task instead.

5.3.1 Approximate Measures of GLO Expressiveness

When discussing specifying novel techniques, it it worth quantifying what can be

expressed under a given GLO model and a given interpreter. To that end, here I

quantify the ways in which a single generation of unaggregated node or edge glyphs

can be represented using GLOs under the GLOv1 and GLOv2 models and the GLO.js

interpreter. Note that this is a lower-bound on the expressiveness since cloning, aggre-

gation, partitioning, and optional parameters can further increase the expressiveness

beyond these counts.

GLOv1 Expressiveness For a given unaggregated node generation in GLOv1

there are:

• 15 positioning operations (4 of which support x or y axes)

• 1 display mode (circles)

• 1 display property (size)

For a given unaggregated edge generation in GLOv1 there are:

• 3 display modes (straight lines, curved lines, and circles)

• 3 interaction modes (show all edges, show incident edges, show no edges)

Node aggregation further increases the expressiveness of the model.

GLOv2 Expressiveness For a given unaggregated node generation in a given

canvas (i.e., with no partitioning or cloning) in GLOv2 there are:

• 7 positioning operations (each with various axis and attribute combinations)

109

• 4 display modes (circles, squares, labels, and bars)

• 3 display properties (size, color, and rotation)

• 2 convex hull display options (show, hide)

• 3 interaction modes (no interaction, highlight neighbors, highlight in-out-neighbors)

For a given unaggregated edge generation in a given canvas (i.e., with no parti-

tioning or cloning) in GLOv2 there are:

• 3 positioning operations (each with various axis and attribute combinations)

• 6 display modes (straight lines, curved lines, squares, labels, bars, and right

angles)

• 2 display properties (size, color)

• 2 waypoint modes (on or o↵)

• 6 interaction/visibility modes (show none, show all, show faded, show incident,

show in-out, and show faded and incident)

Aggregation and cloning of nodes and edges and partitioning of the GLO Display

further increases the expressiveness of the model.

GLO.js Expressiveness For a given unaggregated node generation in a given can-

vas (i.e., with no partitioning or cloning), at the time of this dissertation, GLO.js

supports:

• 6 positioning operations (each with various axis and attribute combinations)

• 1 display mode (circles)

• 2 display properties (size and color)

• 0 convex hull display options

• 2 interaction modes (no interaction or highlight neighbors)

and each of these can be modified using a group-by attribute.

110

For a given unaggregated edge generation in a given canvas (i.e., with no parti-

tioning or cloning) GLO.js supports:

• 2 positioning operations (each with various axis and attribute combinations)

• 3 display modes (straight lines, curved lines, and squares)

• 2 display properties (size, color)

• 0 waypoint modes

• 5 interaction/visibility modes (show none, show all, show faded, show incident,

and show faded and incident)

and each of these can be modified using a group-by attribute.

Aggregation and cloning of nodes and edges and partitioning of the GLO Display

further increases the expressiveness of the implementation.

111

CHAPTER VI

CONCLUSION

6.1 Contributions and Impact

To recap the contribution and impact of this dissertation on five facets of graph

visualization research and practice:

Models I presented a novel class of graph visualization model, the graph-level op-

erations model (GLO model) including a method for inducing a model from a set of

canonical seed techniques, two instances of GLO models (GLOv1 and GLOv2), and

a means of defining techniques using the model.

Analysis Methods I introduced GLO-based methods for reducing techniques to

vector representations as well as a novel GLO-based distance metric for techniques in

Chapter 5 to demonstrate how the GLO model represents a giant leap forward in our

ability to easily and e↵ectively compare and cluster graph visualization techniques.

Open-Source Software I presented the GLO.js graph visualization toolkit to eas-

ily incorporate a large variety of graph visualization techniques into web-based graph

analysis software and used the toolkit to build the GLO-STIX GUI application and

GLO-CLI command-line application for using visualization to explore a network.

All three packages are available as open-source software at https://github.com/

chadstolper/glo.

Techniques Throughout this dissertation, I introduced a number of novel tech-

niques identified using the GLO model and provide their definitions using GLOs.

112

Education Below, I describe the potential that graph-level operations have to rev-

olutionize graph visualization education through demonstrating the variety and in-

terconnectedness of graph visualization techniques and on discrete mathematics edu-

cation through enabling demonstrations of graph theory properties and algorithms.

6.2 Limits of GLOs

Graph-level operations models are a powerful class of models for graph visualization.

At the same time, they do have limits. First of all, as shown by the di↵erences between

GLOv1 and GLOv2, there is inherent imprecision in determining the set of operations

using the GLO identification method. This imprecision can be minimized through

precise instructions for an identifier and through consistent adoption of baseline GLO

models (such as GLOv1 or GLOv2). In addition, having mappings between baseline

models (such as the mappings in Table 3 between GLOv1 and GLOv2) can help

ensure this consistency.

As is common with models induced from training data, GLO models are dependent

on the set of seed techniques used to induce them. The GLOv2 operations in Table 12

appear in the specification of a single GLOv2 seed technique. Had the associated

techniques not been included in the set of seed techniques, those operations would

not have been included in the resulting set of operations. Similarly, if every technique

has a feature in common then that feature would not appear in the transition matrix.

For example, Arc Diagrams and EdgeMap B both display node glyphs aligned in

the middle of the y axis. Performing the identification process on only these two

techniques would not identify any operations that adjust the y coordinate of node

glyphs. Identifying seed techniques through extensive searches, such as the literature

review I conducted for GLOv2, can minimize this e↵ect.

In Chapter 5, I described metrics for determining similarity between techniques

such as comparing vector representations of specifications and utilizing the novel GLO

113

GLO GLOv2 Seed Technique
show edges as faded GMap
show convex hulls GMap
color convex hulls by {attr} GMap
display edges as bars Matrix with Bars
display edges as right angles Matrix Browser
align edges {dir} Edge-Label-Centric
display edges as {attr} labels Edge-Label-Centric
evenly distribute edges on {axis} (by {attr}) Edge-Label-Centric
set edge waypoint edge generation {num} Edge-Label-Centric
highlight in-out neighbors Citevis

Table 12: GLOv2 operations unique to a single seed technique.

(a) Matrix Plot (b) MatLink

Figure 64: Matrix Plot and MatLink [118] techniques rendered in GLO.js. Transi-
tioning between these two techniques is more e�cient without transitioning through
an intermediate null state.

Distance metric. Notably, this latter metric can be naively computed by reducing

the first technique to the null state and then creating the new technique from its

specification. While this naive method occasionally results in an optimal transition,

more often there is a more e�cient transition that a human identifier can find. For

example, it is more e�cient to transition between a Matrix Plot and a MatLink

display (Figure 64) without reducing to a null state since both techniques utilize

two generations of node label glyphs in the same positions. There is potential for

algorithms that can identify more e�cient transitions. For example, an algorithm

might start by identifying similar generations in both techniques (e.g. the node

generations in the matrix-based plots) and attempt to transition those elements first

before utilizing inverse GLOs.

Using vectorization to compare techniques is quite useful for computing similarity

114

Figure 65: Single technique defined using two distinct specifications.

between techniques, as I have shown. However, using vectors to determine equiva-

lence is much more challenging. Two techniques are equivalent if and only if their

specifications result in the same glyphs with the same properties (including display

mode, interaction mode, and visual properties). Note that two techniques with the

same set of operations are not necessarily equivalent (recall the discussion of the Cir-

cle Plot and Cluster Circles seed techniques) and two techniques with di↵erent sets

of operations could be equivalent.

For example, the following two techniques are equivalent (both generate the dis-

play in Figure 65) even though they have di↵erent operation sets:

• display nodes as circles

• size nodes by constant

• color nodes by {discrete}

• hide edges

• align nodes middle

• aggregate nodes by {discrete}

• evenly distribute nodes on x (sort-by {discrete})

• deaggregate nodes

• evenly distribute nodes on y (within {discrete})

115

and

• display nodes as circles

• size nodes by constant

• color nodes by {discrete}

• hide edges

• align nodes middle

• position nodes on x by {discrete}

• evenly distribute nodes on y (within {discrete})

Of course, this equivalence challenge exists with many lossy encoding schemes.

For example, the prevalent ‘bag-of-words’ schemes for text document vectorization

similarly struggle at judging equivalence since the scheme ignores the order of the

words in the document.

Finally, an important property of both the GLOv1 and GLOv2 GLO models is

that operations a↵ect every node glyph or every edge glyph in a generation equally.

In contrast, most tree and DAG visualization techniques (and graph visualization

techniques that reduce the graph to a tree or a DAG such as ego-centric graph visu-

alization) depend on considering nodes di↵erently based on their distance to the root

of the tree. For this reason, I expect that a GLO-like model that covers the variety of

tree visualization techniques will likely need to be considerably di↵erent than either

of the two models I have presented here.

6.3 Future Research Directions

Even with their limitation, the GLO models remain powerful and useful. For example,

the models open up numerous pathways for interesting and worthwhile research. I

end this dissertation by briefly describing six research avenues graph-level operations

a↵ord.

First, fully constraining techniques is useful for rendering techniques, but when

116

comparing and understanding techniques, flexibility proves useful. For example,

to transition from the Force-Directed Layout GLOv2 seed technique to the GMap

GLOv2 seed technique requires the following operations:

• show edges as faded

• size nodes by {attr}

• display nodes as {attr} labels

• show convex hulls within {discrete}

• color convex hulls by {attr}

However, imagine a node-link diagram with solid edges and circular, constant-

sized nodes with convex hulls displayed around each cluster. While not the GLOv2

seed technique GMap, it is still a GMap. In that sense, only the last two operations

are really necessary for a transition between the Force-Directed Layout seed technique

and a GMap (as opposed to the GMap seed technique). This suggests an alternate

description for GMap using GLOv2:

• One of

– show all edges

– show edges as faded

– show faded and incident edges

– show in-out edges

– show incident edges

• One of

– display edges as curved lines

– display edges as straight lines

• One of

– display nodes as labels

117

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength β = 0.85
using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the
actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between
sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled
regions highlight identical parts of the system for (a), (b), and figure 15.

Fig. 14. Using the bundling strength β to provide a trade-off between low-level and high-level views of the adjacency relations. The value of β
increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level
information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their
respective child nodes.

changing the bundling strength β and by switching between differ-
ent tree layouts. The participants from academia were our fellow re-
searchers, PhD students and MSc students from the Computer Science
department of the Technische Universiteit Eindhoven. They all had ex-
perience with either software development, software visualization, or
information visualization in general. Participants from industry were
representatives of the Software Improvement Group (SIG) in Amster-
dam, which delivers insight in the structure and technical quality of
software portfolios, and representatives of FEI Company Eindhoven,
which produces software to operate with FEI’s range of electron mi-
croscopes.

The majority of the participants regarded the technique as useful
for quickly gaining insight in the adjacency relations present in hier-
archically organized systems. In general, the visualizations were also
regarded as being aesthetically pleasing. SIG and FEI Company Eind-
hoven are currently supporting further development by providing us
with additional data sets and feedback regarding the resulting visual-
izations.

More specifically, most of the participants particularly valued the
fact that relations between items at low levels of the hierarchy were
automatically lifted to implicit relations between items at higher lev-
els by means of bundles. This quickly gave them an impression of the
high-level connectivity information while still being able to inspect
the low-level relations that were responsible for the bundles by inter-
actively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using
different values for the bundling strength β . Low values result in vi-
sualizations that mainly provide low-level, node-to-node connectivity
information. High values result in visualizations that provide high-
level information as well by implicit visualization of adjacency edges
between parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

Another aspect that was commented on was how the bundles gave
an impression of the hierarchical organization of the data as well,
thereby strengthening the visualization of the hierarchy. More specif-
ically, a thick bundle shows the presence of two elements at a fairly

746

Figure 66: Examples of edge bundling from [120].

– display nodes as circles

– display nodes as squares

• show convex hulls within {discrete}

• color convex hulls by {attr}

I have not studied these more flexible technique specifications deeply, but they are

certainly worth pursuing further.

The second research direction concerns technique-independent graph-level

operations (TI-GLOs). (I.e., the visual and interaction sub-techniques that I chose

to exclude from the GLOv2 seed technique set.) The most obvious example of a visual

technique-independent operation is edge-bundling [120] (Figure 66). Edge bundling

is not critical to the definition of any technique. Rather, edge-bundling can simply be

applied to any line-based edge generation. Other examples of technique-independent

operations include subgraph motif glyphs [71] and alternate directed edge glyphs [124,

121, 170]. One could imagine a given GLO interpreter applying one or more of these

visual TI-GLOs by default, but it would likely prove useful to allow specifications

to include this class of operations. A potential solution would be to make TI-GLOs

optional for interpreters. In other words, an interpreter can simply support some, all,

118

Figure 67: Bring-and-Go interaction from [166].

or no visual TI-GLOs.

Fitting interaction TI-GLOs into a GLO model might provide a greater challenge.

I expect that some interactions would fit seamlessly. For example, the Bring-and-Go

interaction from [166] (Figure 67) is quite similar in many respects to GLOv2’s high-

light neighbors interaction mode. On the other hand, as I described in Chapter 4,

multi-selection is more challenging. Some aspects of the GLO models that are topol-

ogy dependent (such as the highlight in-out-neighbors interaction mode) do not work

well with multi-selection. Exploring the full extent of whether and how additional

interactions can be integrated into GLO models merits further explorer.

Third, I defined the three technique vectorization methods in order to compare

them to each other. Yet recall that the overarching goal is to automate mapping

techniques to tasks. For example, consider a database of techniques that are known

for their ability to aid in certain analytical tasks. Should a situation require a set of

tasks, one might query this database for a technique that either can solve both tasks

or a technique that is similar to techniques that can solve each of the tasks.

There is also potential for going further. Rather than simply mapping techniques

to tasks, one could potentially map GLOs to tasks. In other words, do certain op-

erations signal that a technique will be e↵ective at a certain task? For example, I

hypothesize that the display incident edges GLO signals that a technique is e↵ective

at analyzing dense graphs since it reduces occlusion. Conversely, this GLO likely

signals that a technique is less e↵ective for sparse graphs, where hiding most of the

edges could lead to the analyst never noticing a critical edge.

119

Another potential result is that certain operations do not signal strength in a

particular task, but rather certain sequences of operations do. A good example is that

simply drawing convex hulls is less e↵ective than drawing convex hulls and coloring

those hulls by an attribute of the data. Performing frequent sequence analysis over a

corpus of techniques known to be e↵ective at a task could provide valuable insights.

Fourth, graph-level operations provide rich potential for teaching discrete math-

ematics and teaching graph visualization. For discrete math education, GLOs can

be used to demonstrate graph theory concepts using appropriate techniques. For

visualization education, GLOs make it easier to demonstrate the variety of graph

visualization techniques and show how they relate to each other through transitions.

Fifth, there are more graph visualization techniques to be discovered! I described

novel techniques in Chapter 5, but there are certainly more to be identified. Some

may be found through matching tasks to GLOs, some through exploration inside the

GLO-CLI terminal, and some may even be found through running a shu✏e algorithm

on the set of operations. Identifying (and confirming the e↵ectiveness of) novel GLO-

specified techniques hopefully will lead to a more robust collection of visualization

techniques, and therefore more e↵ective solutions for graph analysts.

Sixth and finally, I hope that GLOs are adopted as a standard. Much of the power

of GLOs rests in their consistency, such as being a portable specification language

between di↵erent host language and graphics implementations. I hope that developers

who code for architectures such as python and R write GLO interpreters for them so

that techniques specified using GLOs can be rendered easily no matter the underlying

system.

120

APPENDIX A

GLOV1 SEED TECHNIQUES

Here I present the set of 6 hand-picked abstract seed techniques used to induce GLOv1

(See Chapter 3). For each technique I include a figure representing the technique

rendered using the GLOv1 Javascript interpreter, a description of the technique, and

a GLOv1 specification for the technique (i.e., a transition to the technique from a

null state).

The graph being rendered in each figure is the Les Misérables character co-

occurrence graph included with D3.js based on Donald Knuth’s jean.dat file1. Nodes

are characters, and an edge connects two characters if they co-occur in a chapter of the

novel. For each operation that requires one or more parameters, I note the parameters

used in a #comment the first time the parameter appears in the specification.

Figure 68: GLOv1 force-directed layout seed technique.

1http://www-cs-sta↵.stanford.edu/ uno/sgb.html

121

Force-Directed Layout The GLOv1 seed version of the Force-Directed Layout

technique (Figure 68) has straight line edge glyphs, node glyphs sized by an attribute,

and node glyphs colored by an attribute. Nodes are positioned according to a force-

directed algorithm.

• Size Nodes Relatively by {continuous attribute} #degree

• Apply {force-directed} algorithm to the Nodes

• Display Links as Straight

• Display All Links

Figure 69: GLOv1 circle plot seed technique.

Circle Plot The GLOv1 seed version of the Circle Plot technique (Figure 69) has

curved line edge glyphs, node glyphs sized by a constant, node glyphs colored by an

attribute, and the node glyphs are sorted along ✓ by an attribute.

• Size Nodes by Constant

• Evenly Distribute Nodes Radially by {attribute} #cluster

• Position Nodes Along Plot Radius by Constant

• Display All Links

• Display Links as Curved

122

Figure 70: GLOv1 scatterplot seed technique.

Scatterplot The GLOv1 seed version of the Scatterplot technique (Figure 70) has

no edge glyphs, node glyphs sized by an attribute, and node glyphs colored by an

attribute. Nodes are positioned along the x and y axes by continuous attributes and

axis labels are displayed on both axes.

• Hide Links

• Size Nodes Relatively by {continuous attribute} #degree

• Position Nodes on xRelatively by {continuous attribute 1} #degree

• Position Nodes on y Relatively by {continuous attribute 2} #betweenness cen-

trality

• Show x axis

• Show y axis

Semantic Substrates The GLOv1 seed version of the semantic substrates tech-

nique [204] (Figure 71) has curved line edge glyphs that appear when the mouse

hovers over an endpoint node, node glyphs sized by a constant, and node glyphs col-

ored by an attribute. Nodes are positioned on the y axis by a discrete attribute and

are distributed across the canvas within each row. Axis labels are shown for the y

axis.

123

Figure 71: GLOv1 semantic substrates [204] seed technique.

• Size Nodes by Constant

• Substrate Nodes on y by {categorical attribute} #cluster

• Show y Axis

• Evenly Distribute Nodes within Substrates

• Display Links as Curved

• Display Selected Links

Figure 72: GLOv1 PivotGraph [244] seed technique.

PivotGraph The GLOv1 seed version of the PivotGraph technique [244] (Fig-

ure 72) has nodes and edges aggregated by two attributes, curved line edge glyphs,

124

node glyphs sized by the number of represented nodes, edge glyphs sized by the

number of represented edges, and node glyphs colored by an attribute. Super-nodes

are positioned along a grid based on the two aggregation attributes. Axis labels are

shown along both the x and y axes.

• Display All Links

• Substrate Nodes on x by {categorical attribute 1} #cluster

• Substrate Nodes on y by {categorical attribute 2} #gender

• Show x Axis

• Show y Axis

• Aggregate by {categorical attribute 1} and {categorical attribute 2}

• Size Nodes Relatively by {continuous attribute} #count

Figure 73: GLOv1 adjacency matrix seed technique.

Adjacency Matrix The GLOv1 seed version of the adjacency matrix technique

(Figure 73) has two sets of node glyphs (one aligned on the left and one on the

bottom) sorted by an attribute, node glyphs sized by a constant, and node glyphs

colored by an attribute. Circle edge glyphs are positioned at the y value of the source

node on the left and the x value of the target node on the bottom.

125

• #Bottom row of nodes

• Size Nodes by Constant

• Align Nodes {Bottom}

• Evenly Distribute Nodes on x by {attribute 1} #cluster

• #Left column of nodes

• Clone Active Generation

• Align Nodes {Left}

• Evenly Distribute Nodes on y by {attribute 1}

• #Links

• Display All Links

• Display Links as Circles #(includes positioning)

126

APPENDIX B

GLOV2 SEED TECHNIQUES

Here I present the 29 seed techniques used to induce GLOv2. For each technique, I

include a figure from an early paper describing the technique, provide a description

of the abstract form of the seed technique, and a GLO specification of the abstract

technique (i.e. a transition from the null state). Any necessary flags or attributes

are marked in the specifications. For those techniques that either can be rendered

precisely or a close approximation can be rendered using the GLO.js implementation

described in Chapter 5.1.1, I also include a rendering of the technique.

The graph being rendered in each figure is the Les Misérables character co-

occurrence graph included with D3.js based on Donald Knuth’s jean.dat file1. Nodes

are characters, and an edge connects two characters if they co-occur in a chapter

of the novel. For each technique that requires one or more parameters, I note the

parameters used (or could be used if a rending was not included) in #comments at

the beginning of the specification.

Force-Directed Layout [138]

The force-directed layout seed technique has constant-sized, constant-colored cir-

cular nodes connected by constant-sized, constant-colored straight-line edges. The

nodes are positioned using a force-directed layout.

I have abstracted away the textual node labels.

• display nodes as circles

• display edges as straight lines

1http://www-cs-sta↵.stanford.edu/ uno/sgb.html

127

Volume 31, Number 1 INFORMATION PROCESSING LETTERS 12 April 1989

a
Fig. 4. Pictures of asymmetric graphs.

+Japhs is visualized pleasingly as symmetric pictures in our system. Figure 4 shows two pictures of
asymmetric graphs. In these cases needless edge crossings are avoided completely.

-The CPU time needed to compute a layout in these pictures is
seconds (Fig. 3(d)) on a VAX 8600.

4.2. Isomorphic graphs

When the viewer wants to
isomorphic graphs as the same

compare some graphs, it is highly required of the system to display
picture. otherwise the viewer cannot make proper comparisons from the

D C D C

F F A
A

H I H I

from 0.4 seconds (Fig. 3(a)) to 7.6

a b

G E

F
B

J
F

C

Fig. 5. Pictures of isomorphic graphs.

13

Figure 74: GLOv2 Force-Directed Layout seed technique from [138].

Figure 75: Force-directed layout [138] rendered in GLO.js.

• show all edges

• size nodes by constant

• size edges by constant

• color edges by constant

• color nodes by constant

• apply force-directed algorithm to nodes

Matrix Plot [34]

128

9

> <Grid OnLabels OnBoth ActiveStopHelpAll OnAll OffZoomUnzoomVariablesMinMaxtoc0.359716 924119:15

19:15

-2123114621693192410.369241.00tocSlowFast

FROM

TO
SNFCCA2147T

SNJSCA0241T

OKLDCA0344T

SKTNCA0107T

SCRMCA0404T

SHOKCA0296T

PTLDOR6203T

GRDNCA0294T

RENONV0344T

LSANCA0301T

ANHMCA0211T

LSANCA0292T

STTLWA0604T

SNBRCA0101T

SNDGCA0787T

SPKNWA0102T

PHNXAZMA03T

SLKCUTMA02T

ALBQNMMA02T

CLSPCOMA02T

DNVRCOZJ05T

MDLDTXMU02T

SNANTXCA02T

AUSTTXGR07T

FTWOTXED24T

OKCYOKCE04T

WCHTKSBR24T

OMAHNENW14T

DLLSTXTL44T

DLLSTXTL34T

TULSOKTB04T

HSTNTX0154T

HSTNTX0144T

KSCYMO0904T

MPLSMNDT40T

MPLSMNDT18T

DESMIADT08T

LTRKARFR15T

BTRGLAMA04T

STLSMO0934T

PEORILPJ51T

SPFDILSD51T

OKBRILOA53T

NWORLAMA04T

WKSHWI0231T

JCSNMSPS14T

OKBRILOA52T

MMPHTNMA43T

CHCGILCL57T

CHCGILCL59T

MOBLALAZ01T

SBNDIN0502T

IPLSIN0102T

GDRPMIBL50T

BRHMALMT01T

NSVLTNMT43T

LSVLKYCS02T

MTGMALMT01T

LNNGMIMN50T

DYTNOH1504T

DTRTMIBH50T

CNCNOHWS14T

TOLDOH2103T

ATLNGATL04T

KNVLTNMA71T

ATLNGANW05T

CLMBOH1103T

ATLNGATL01T

MACNGAGA02T

CLEVOH0203T

AKRNOH2505T

CHTNWVLE25T

CHRLNCCA03T

PITBPADG43T

PITBPADG09T

TAMPFLCO02T

JCVLFLCL03T

CLMASCTL03T

BFLONYFR05T

ORLDFLMA03T

WPBHFLAN04T

GNBONCEU03T

HRBGPAHA42T

OJUSFLTL03T

SYRCNYSU13T

ARTNVACK04T

RCMDVAIT03T

BLTMMDCH01T

RCMTNCXA03T

WASHDCSW06T

NRFLVABS03T

ALBYNYSS05T

WAYNPALA42T

SPFDMABR02T

NWHNCT0205T

NYCQNYRP08T

MNCHNHCO03T

FRMNMAWA04T

PHLAPASL42T

CMBRMA0119T

CMDNNJCE03T

NWRKNJ0208T

WHPLNY0504T

FRHDNJ0202T

RCPKNJ0203T

WHPLNY0203T

NYCMNYBW24T

NYCMNYBW55T

NYCMNYBW51T

NYCMNY5450T

SN
FC
CA

21
47
T

SN
JS
CA

02
41
T

O
KL
DC

A0
34
4T

SK
TN
CA

01
07
T

SC
RM

CA
04
04
T

SH
O
KC

A0
29
6T

PT
LD
O
R6
20
3T

G
RD

NC
A0
29
4T

RE
NO

NV
03
44
T

LS
AN

CA
03
01
T

AN
HM

CA
02
11
T

LS
AN

CA
02
92
T

ST
TL
W
A0
60
4T

SN
BR

CA
01
01
T

SN
DG

CA
07
87
T

SP
KN

W
A0
10
2T

PH
NX
AZ
M
A0
3T

SL
KC

UT
M
A0
2T

AL
BQ

NM
M
A0
2T

CL
SP
CO

M
A0
2T

DN
VR
CO

ZJ
05
T

M
DL
DT
XM

U0
2T

SN
AN

TX
CA

02
T

AU
ST
TX
G
R0
7T

FT
W
O
TX
ED
24
T

O
KC

YO
KC

E0
4T

W
CH

TK
SB
R2
4T

O
M
AH

NE
NW

14
T

DL
LS
TX
TL
44
T

DL
LS
TX
TL
34
T

TU
LS
O
KT
B0
4T

HS
TN
TX
01
54
T

HS
TN
TX
01
44
T

KS
CY
M
O
09
04
T

M
PL
SM

ND
T4
0T

M
PL
SM

ND
T1
8T

DE
SM

IA
DT
08
T

LT
RK

AR
FR
15
T

BT
RG

LA
M
A0
4T

ST
LS
M
O
09
34
T

PE
O
RI
LP
J5
1T

SP
FD
IL
SD
51
T

O
KB

RI
LO
A5
3T

NW
O
RL
AM

A0
4T

W
KS
HW

I0
23
1T

JC
SN
M
SP
S1
4T

O
KB

RI
LO
A5
2T

M
M
PH
TN
M
A4
3T

CH
CG

IL
CL
57
T

CH
CG

IL
CL
59
T

M
O
BL
AL
AZ
01
T

SB
ND

IN
05
02
T

IP
LS
IN
01
02
T

G
DR

PM
IB
L5
0T

BR
HM

AL
M
T0
1T

NS
VL
TN
M
T4
3T

LS
VL
KY
CS
02
T

M
TG
M
AL
M
T0
1T

LN
NG

M
IM
N5
0T

DY
TN
O
H1
50
4T

DT
RT
M
IB
H5
0T

CN
CN

O
HW

S1
4T

TO
LD
O
H2
10
3T

AT
LN
G
AT
L0
4T

KN
VL
TN
M
A7
1T

AT
LN
G
AN

W
05
T

CL
M
BO

H1
10
3T

AT
LN
G
AT
L0
1T

M
AC

NG
AG

A0
2T

CL
EV
O
H0
20
3T

AK
RN

O
H2
50
5T

CH
TN
W
VL
E2
5T

CH
RL
NC

CA
03
T

PI
TB
PA
DG

43
T

PI
TB
PA
DG

09
T

TA
M
PF
LC
O
02
T

JC
VL
FL
CL
03
T

CL
M
AS
CT
L0
3T

BF
LO
NY
FR
05
T

O
RL
DF
LM

A0
3T

W
PB
HF
LA
N0
4T

G
NB

O
NC

EU
03
T

HR
BG

PA
HA

42
T

O
JU
SF
LT
L0
3T

SY
RC

NY
SU
13
T

AR
TN
VA
CK

04
T

RC
M
DV
AI
T0
3T

BL
TM

M
DC

H0
1T

RC
M
TN
CX
A0
3T

W
AS
HD

CS
W
06
T

NR
FL
VA
BS
03
T

AL
BY
NY
SS
05
T

W
AY
NP
AL
A4
2T

SP
FD
M
AB

R0
2T

NW
HN

CT
02
05
T

NY
CQ

NY
RP
08
T

M
NC

HN
HC

O
03
T

FR
M
NM

AW
A0
4T

PH
LA
PA
SL
42
T

CM
BR

M
A0
11
9T

CM
DN

NJ
CE
03
T

NW
RK

NJ
02
08
T

W
HP
LN
Y0
50
4T

FR
HD

NJ
02
02
T

RC
PK
NJ
02
03
T

W
HP
LN
Y0
20
3T

NY
CM

NY
BW

24
T

NY
CM

NY
BW

55
T

NY
CM

NY
BW

51
T

NY
CM

NY
54
50
T

Figure 5. Network Overload As Matrix

The same overload as in Figure 3 shown using a matrix representation instead of a network map. The nodes are
shown along the rows and columns in approximate West-to-East order in matrix form, with columns
corresponding to ‘‘from’’ nodes and rows corresponding to ‘‘to’’ nodes. At the intersection of each row and
column there is a square whose color codes the link statistic. The colored squares on the left and bottom
correspond to the lines on Figure 3. The nonsymmetry is due to the directed nature of the traffic.

Both problems may be solved simultaneously, however, by using a matrix display, which

deemphasizes the geography by displaying the network in a matrix form with each matrix element allocated

to a link. Each node is assigned to one row and column with the (i , j) and (j ,i) matrix elements associated

with the j-to-i and i-to-j links. If the link data is not directed, both of these elements are assigned the same

value. Figure 5 demonstrates this technique with each of the small squares corresponding to one of the

potential half-lines in Figure 3, and the colored squares corresponding to the realized lines. The nodes are

arranged in approximate geographical order with west-to-east along the horizontal axis and correspondingly

along the vertical axis. The matrix representation shows that the earthquake overload is highly focused on

Figure 76: GLOv2 Matrix Plot seed technique from [34].

Figure 77: Approximate matrix plot [34] rendered in GLO.js.

The Matrix Plot seed technique has nodes displayed as constant-sized, constant-

colored labels evenly spaced along the top and left, with edges displayed as constant-

sized squares colored by an attribute positioned at the y value of the source node on

the left and x value of the the target node on the top. On the left, the nodes are

sorted top to bottom, while on top the nodes are sorted left to right.

I have abstracted away the specific color choices and the TO and FROM labels

from the seed figure.

• #label attr: name

129

• #sort attr: cluster

• #edge color attr: weight

• #Left column

• display nodes as {label attr} labels

• color nodes by constant

• size nodes by constant

• evenly distribute nodes on y (sort-by:{sort attr}, invert:true)

• align nodes {left}

• #Top row

• clone nodes

• rotate nodes {90}

• align nodes {top}

• evenly distribute nodes on x (sort-by:{sort attr})

• #Edges

• set target generation {1}

• display edges as squares

• position edges by {target.x},{source.y}

• show all edges

• size edges by constant

• color edges by {edge color attr}

Cluster Circles [69]

The Circle Clusters seed technique has constant-sized, constant-colored square

nodes connected by constant-sized, constant-colored straight-line edges. The nodes

are positioned such that the nodes each cluster are in evenly-distributed circles.

• #group by attr: cluster

• #internal sort attr: id

130

94

Fig. 1. Sample drawings produced by the Circular Library.

f) ma in site clusters

-.) sub site clusters
0 vir tual cluster

[] in-nodes

[] out-nodes

in-edges

- - 9 out-edges

. . - ..

i .:

i t

Fig. 2. A circular drawing of a graph with only a portion of the set of nodes and
edges shown as an illustration of the definitions (left), and the corresponding
cluster graph (right).

Figure 78: GLOv2 Cluster Circles seed technique from [69].

Figure 79: Cluster circles [69] rendered in GLO.js.

• display nodes as squares

• show all edges

• display edges as straight lines

• color edges by constant

• color nodes by constant

• size nodes by constant

• size edges by constant

#Macro-circle positioning

• evenly distribute nodes on ✓ (sort-by:{group by attr})

131

• position nodes by constant on ⇢

#Micro-circles positioning

• evenly distribute nodes on ✓ (sort-by:{internal sort attr}, group-by:{group by attr})

• position nodes by constant on ⇢ (group-by:{group by attr})

Circle Graph [207, 93]108 J.M. Six and I.G. Tollis

e

g

h

a

c

d

b

f

j

i

Fig. 1. A circular drawing as produced by our algorithm.

characteristics or can highlight semantic qualities of the network such as sub-
nets. Emphasizing natural group structures within the topology of the network
is vital to pin-point strengths and weaknesses within that design. It is essential
that the number of crossings within the drawing of each cluster remain low and
that nodes have good proximity to their neighbors. Researchers have produced
several circular drawing techniques [2,6,10,12,17], some of which have been in-
tegrated into commercial tools. The resulting drawings can be compared with
each other by counting the number of edge crossings. These drawings are often
visually complex with respect to the number of edge crossings. In fact, the pro-
blem of producing a circular drawing with a minimum number of crossings was
proven to be NP-Complete in [13]. In [15] we present a technique for producing
circular drawings of biconnected graphs on a single embedding circle and an ex-
perimental study which shows the technique to perform well. A refined version
of this approach is discussed in [16]. In this paper, we introduce a framework
of e�cient techniques to produce circular drawings of nonbiconnected networks.
These algorithms require at most O(m) time and have been designed to produce
drawings which clearly show biconnectivity.

2 Circular Drawings of Biconnected Graphs

In this section we present a summary of an algorithm for obtaining circular
drawings of biconnected networks such that all the nodes are placed onto the
circumference of a single embedding circle. In addition, we include the results of
an experimental study which shows this technique to be a significant improve-
ment over the current state of the art.

In order to find a circular drawing with a lower number of crossings than
previous techniques, we have developed an algorithm which tends to place edges
toward the outside of the embedding circle. This characteristic means that there
are not many edges in the middle of the drawing to be crossed and also that
nodes are placed near their neighbors. In fact, this algorithm tries to maximize
the number of edges appearing on the circumference of the embedding circle.
This is achieved by selectively removing some edges and then building a DFS-
based node ordering of the resulting graph. The number of crossings can then
be further reduced with a postprocessing step.

Figure 80: GLOv2 Circle Graph seed technique from [207].

Figure 81: Circle graph [207] rendered in GLO.js.

The Circle Graph seed technique consists of constant-sized, constant-colored square

nodes connected by constant-sized, constant-colored straight-line edges. The nodes

132

are positioned such that the nodes are in an evenly-distributed circle around the

center of the canvas.

I have abstracted away the textual labels on the nodes.

• #sort attr: cluster

• display nodes as squares

• show all edges

• display edges as straight lines

• color edges by constant

• color nodes by constant

• size edges by constant

• size nodes by constant

• evenly distribute nodes on ✓ (sort-by:{sort attr})

• position nodes by constant on ⇢

GeneVis A [23]

GeneVis: Visualization Tools for Genetic Regulatory Network Dynamics
C.A.H Baker1, M.S.T Carpendale1, P. Prusinkiewicz1 and M.G. Surette2

1Department of Computer Science, University of Calgary
2Department of Microbiology and Infectious Diseases, University of Calgary

1bakerch,sheelagh,pwp@cpsc.ucalgary.ca, 2surette@ucalgary.ca

ABSTRACT
GeneVis provides a visual environment for exploring the dynam-
ics of genetic regulatory networks. At present time, genetic regu-
lation is the focus of intensive research worldwide, and computa-
tional aids are being called for to help in the research of factors that
are difficult to observe directly. GeneVis provides a particle-based
simulation of genetic networks and visualizes the process of this
simulation as it occurs. Two dynamic visualization techniques are
provided, a visualization of the movement of the regulatory proteins
and a visualization of the relative concentrations of these proteins.
Several interactive tools relate the dynamic visualizations to the un-
derlying genetic network structure.

CR Categories: J.3 [Life and Medical Sciences]—Biology and
genetics; I.6.7 [Computing Methodologies]: Computer Graphics—
Simulation and Modeling, Simulation Support Systems, Environ-
ments; I.3.6 [Computing Methodologies]: Information Systems—
Information Interfaces and Presentation, User Interfaces, Interac-
tion techniques.

Keywords: biological visualization, visualization, multi-
representation, genetic networks, lenses, focus and context

1 INTRODUCTION
Since the mapping of the human genome, research interests in biol-
ogy have shifted towards the issue of discovering what the genetic
code actually does. This includes such questions as: what proteins
do genes code for? how does this affect the development and func-
tioning of the organism? how do genes communicate appropriate
information to each other? how do genetic networks function? and
what are their dynamics?
We consider genetic networks to consist of sets of genes that are

regulated by sets of proteins. When genes in the network express
they trigger the production of proteins, which in turn can regulate
the expression of other genes, thus creating a network of depen-
dence. Gene expression can exist in a relatively steady state of
protein production, but the activity levels of genes can also change
over time. With techniques such as DNA micro-arrays [10] it is
now possible for biologists to measure, in parallel, the activity lev-
els of genes as a function of time. Biologists may use these tem-
poral measurements to infer which genes interact with which ones
and what are the patterns of these interactions. However, this is a
non-trivial exercise. The data is expensive and difficult to obtain,
and can be noisy. Furthermore, even relatively small genetic net-
works may have complex dynamics due to positive and negative
feedback loops. To assist in the process of inference, models of the
observed genetic activity are being developed. These models can
be used to create simulations and visualizations, helping us form

mental constructs of the behaviour of regulatory networks and thus
further our understanding them. In order to provide this comprehen-
sion, we have created a Simulation and visualization environment
called GeneVis. In GeneVis spatial organization of the simulated
entities is used and adjusted interactively in order to help illustrate
and support the exploration of mental concepts. Moreover, differ-
ent visualization techniques can assist in understanding different
aspects of the same data set.

Figure 1: A screenshot of GeneVis: The large circle in the middle
of the screen represents the chromosome. Around the circle there
are small spheres, which represent genes. The small fuzzy dots
throughout the image represent proteins.

GeneVis has been designed for use with prokaryotic organ-
isms [5]. It simulates genetic network behaviour using probabilis-
tic occurrences of gene-protein interactions, and creates visualiza-
tions of the genetic network dynamics as they occur during the
simulation. In this paper, we focus on the visualization aspects of
GeneVis. The visualization environment supports several represen-
tational modes, which include: a protein interaction representation,
a protein concentration representation, and a network structure rep-
resentation. The protein interaction representation shows the activ-
ities of the individual proteins. The protein concentration repre-
sentation illustrates the relative spread and concentrations of the
different proteins in the simulation. The network structure repre-
sentation depicts the genetic network dependencies that are present

Figure 82: GLOv2 GeneVis A seed technique from [23].

The GeneVis A seed technique consists of constantly-sized, constantly-colored

circle nodes positioned at a constant radius from the center of the plot at degrees

relative to an attribute of the data. Edges are hidden.

133

Figure 83: Genevis A [23] rendered in GLO.js.

I have abstracted away the specific color choices, the textual labels aside each

node, and the overarching circle behind the plot.

• #position attr: degree

• display nodes as circles

• hide edges

• position nodes on ✓ by {position attr}

• position nodes by constant on ⇢

• size nodes by constant

• color nodes by constant

GeneVis B [23]

The GeneVis B seed technique consists of constant-size, constant-colored circle

nodes positioned along the y axis by a discrete attribute and relatively along the

x axis by an attribute. These nodes are connected by constant-sized curved edges

colored by a gradient based on an attribute of the source and target nodes.

I have abstracted away the overarching ring glyphs, the textual labels accompa-

nying each node glyph, and the specific color choices.

• #color attr: cluster

134

Figure 9: Visual integration that moves the user from the simulation visualization to the network structure visualization

position of the topmost ring and Bottom is the position of the lowest
ring. PositionRatio is used to calculate the change in ring diameter:

scaleDiameter PositionRatio2 MaxMag 1 0 (3)

Squaring the PositionRatio makes the amount of magnification
drop off more quickly. Adding 1 0 ensures that the ring’s diame-
ter does not diminish. PositionRatio is also used to calculate both
the new vertical location of the ring. To this end, the parameter
VerticalAd just is calculated with the formula:

VerticalAd just
PositionRatio2 Top Bottom

VerticalScaleFactor
(4)

and VerticalAd just is subtracted from Top if the ring is above the
lens center, and added to Bottom if it is below the lens center. Fig-
ure 10 is a diagram that shows how the ring lens works.

Figure 10: Diagram of the Ring Lens distortion function

The vertical position of the Ring Lens is controlled by the mouse.
Figure 11 shows screen shots of the Ring Lens in different posi-
tions. The left image shows the Ring Lens placed at the second
level ring, causing it to be enlarged in diameter. The middle image
shows the lens shifted towards the bottom of the view. This makes
the connections between the lower two level rings more visible by
increasing the amount of space between them. The right image
shows the lens near the top of the view this time opening up the
space between the first two levels. The Ring Lens allows the user
to interactively view the selected levels within the genetic network
structure while maintaining the context of all the other rings.

5 CONCLUSIONS AND FUTURE RESEARCH
In this paper we have presented GeneVis, an interactive simula-
tion and visualization environment that has been developed for the
exploration of genetic regulation networks. GeneVis provides dy-
namic visualizations of simulated genetic network behaviour and
a visualization of the network structure. It supports three visual
representations. The protein interaction representation shows the
dynamics of the simulated network behaviour through the motion
of individual proteins. The protein concentration representation de-
picts the concentrations of proteins during the simulation. The net-
work structure representation shows the dependency structure of
the genetic network using a 3D graph layout. This representation
shows several types of regulatory relationships, including forward,
backward, and self regulation. All of these can have either promot-
ing or inhibiting effects.
GeneVis also provides several specialized viewing tools and

techniques. These include:

The continuous representational transformation between the
protein interaction representation and the concentration rep-
resentation.

The three Fuzzy Lenses, which allow one to view selected
regions of the simulation dynamics with the representation of
choice.

The Base-Pair Lens, which allows one to reposition the genes,
thus separating and more evenly distributing closely clustered
genes.

The animated transition between the dynamic visualizations
and the network structure visualization.

The Ring Lens, which provides detail-in-context viewing for
the network structure.

With these representations and tools, genetic regulation networks
can be viewed and explored.
There are many possible future directions for this research. Some

of the visualization directions include: making a visual front end
that would allow a user to edit the network structure, continuing
to improve the network structure visualization in order to further
clarify the structure, and providing a magnification lens for the dy-
namic visualizations. Also, gene expression graphs could be plotted
in real-time for precise measurement of when equilibrium or con-
stant expression levels are reached.

6 ACKNOWLEDGMENTS
This research support in part by NSERC research grants. We would
like to thank K. Mason and C. Neustaedter for help in the making
of and editing of the video.

Figure 84: GLOv2 GeneVis B seed technique from [23].

Figure 85: Approximate Genevis B [23] rendered in GLO.js.

• #discrete: cluster

• #attr: degree

• display nodes as circles

• size nodes by constant

• color nodes by constant

• show all edges

• display edges as curved lines

• size edges by constant

• color edges by {source.color attr}!{target.color attr}

135

• position nodes on y by {discrete}

• position nodes on x by {attr}

Arc Diagram [243, 141]

Figure 16 below illustrates some of these highlighting schemes for
the same thread. Personal highlights (P), shows one’s contribution to
the thread. This attribute is important because one’s own messages
often represent “to-do’s” that one expects from others [Bellotti et al.
2002; Whittaker and Sidner 1996].

Time shading (T) shows messages sent on the same day in the same
shade of gray. The last eleven messages in this thread were sent four
days after the thread started. This shading helps emphasize threads
that have large intervals between messages. This type of thread has
been characterized as one of the harder types of thread to keep track
of [Bellotti et al. 2002] because, in conventional email clients, the
older messages drift out of the inbox list view as other messages
arrive.

Contributor coloring (C) shows each contributor to the thread in a
different color. In this example, only four people were involved in
this discussion.

Generational shading (G) uses a different shade for each generation
of the thread, showing the generational depth of the conversation.
This helps users see the branching nature of the Thread Arcs, which
is less apparent from its linear layout. This shading scheme, with
black nodes as the deepest generation, emphasizes the end of
branches, which are the current state of the email conversations.

6. Study

The goal for our study was to learn about the usefulness and
effectiveness of email thread visualizations in users’ own email.
In particular, we investigated which qualities users considered
important in thread visualizations, as described in Section 2,
“Key Qualities”.

As part of this study, we gathered statistics on the size and shape
of threads found in users’ email to give us a better understanding
of the frequency and structure of threads that thread visualizations
need to accommodate.

6.1 Method

We recruited eight participants for our study, four male and four
female. The participants were all software knowledge workers,
and were recruited internally. The participants had intermediate to
advanced experience using the Lotus Notes email client, and had
been using it for three to ten years. Some had previous experience
with large email conversations and discussion databases. None
had any previous knowledge of the Thread Arc visualization.

At the beginning of each test, we used a Java program to traverse
each user’s email database, then collated all of his or her threads,
and output them as a set of XML files. This software implemented
an improved version of the complex Zawinski’s threading
algorithm [2002] originally developed for Netscape Messenger.
The XML files contained each thread’s structure, along with each
message’s basic email content, including the “to”, “from”, “
subject”, “time”, and the first 100 characters of the “body”. We
used this data as the content for the study where users experienced
a simulation of an email client with their own email content. In
addition, we used this information to get statistics on the size and
structure of their email threads.

At the conclusion of each user’s session, we created a series of
large scale posters of all of the threads found in their email
database. This allowed us to analyze quantitatively the entire
spectrum of threads present in a user’s real email. These posters
consisted of nine different attribute highlighting schemes for each
of the visualization techniques tested. Users were comfortable
with us taking this data away, as it showed only the structure,
sizes and shapes of the threads with no text content, thereby
ensuring their privacy.

6.2 Email Prototype

As part of the study, we let users explore their email threads in a
simulation of an email client built using Macromedia Director.
Users were able to switch between Thread Arcs, Tree Diagrams,
and Tree Tables during the test. Each visualization used the same
user controls, behaviors, colors and highlighting schemes, so
access to and manipulation of each visualization was controlled.

We encouraged subjects to switch between the different
visualizations and highlighting schemes to get a better
understanding of the type of information each visualization could
convey so they could assess which one they found most useful.
We asked the users to perform small tasks designed to get them to
think about the key qualities, and to test each visualization against
them. For example, they were asked to find the last message in a
thread, or to figure out how many responses a particular message
received. Another exercise involved letting users observe the
stability of a visualization as new messages were added to a
thread. The prototype allowed us to show the evolution of any of
the threads they encountered. We could demonstrate how the

Proceedings of the IEEE Symposium on Information Visualization 2003 (INFOVIS’03)
0-7695-2055-3/03 $ 17.00 © 2003 IEEE

Figure 86: GLOv2 Arc Diagram seed technique from [141]. (Specifically the ‘contrib-
utor coloring’ subfigure.)

Figure 87: Arc diagram [141] rendered in GLO.js.

The Arc Diagram seed technique consists of constant-sized circle nodes colored by

an attribute evenly distributed along the middle of the y axis. Edges are displayed

as constant-sized curved edges colored the same as their target nodes.

I have abstracted away the specific color choices.

136

• #node color attr: cluster

• #sort attr: cluster

• display nodes as circles

• size nodes by constant

• color nodes by {node color attr}

• align nodes {middle}

• display edges as curved lines

• size edges by constant

• color edges by {target.node color attr}

• show all edges

• evenly distribute nodes on x (sort-by:{sort attr})

Matrix Browser [262]

Figure 3: Topic Map visualization with relations as

nodes or arcs

Figure 4: Prototype of the Matrix Browser

a continuous, direct-manipulative type of interaction.
However, it is mainly suited for hierarchical information.
Due to its visual deformity, only relations between the
node in the display focus and spatial neighbored nodes are
completely recognizable. Yet in some cases it was used
for the visualization of topic maps and ontologies where it
is only suitable to some degree, since the non-hierarchical
network structure causes some nodes to appear more than
one time in the visual representation. A well-known
example for this case is OntoBroker[8], an ontology-based
query and answering service for the semantic web.

A 3-dimensional visualization technique [9] of XML
Topic Maps (Figure 3) was developed at the Laboratoire
d’Informatique de Paris 6. The underlying cone trees [10]
were enhanced of interactive capabilities like reducing the
number of shown nodes by the use of filtering and
classifying algorithms. By the means of two visual
transformations, the represented topic map can be
explored. On the one hand n-ary relationships can be
visualized as nodes and on the other hand binary relations
can be depicted as arcs between nodes. In this view n-ary
relationships have to be decomposed in binary relations.

Alternatively, static net representations including
matrix displays of networks were already proposed by
Bertin [11], but his work did not make use of interactive
features. Also Becker et al. [12] used matrix-like displays
for network traffic visualization.

However, none of the introduced approaches
supports the visualization of arbitrary networked data with
regard to different user tasks like the search for specific
nodes or arcs, the discovery of relationships between
nodes or all relationships of particular nodes. Furthermore
they lack of substantial interactive exploration features
such as a systematic drill-down or condensation of
fragment structures. For these reasons, non of the existing
approaches is particularly suited to visualizing and
interacting with large networks of abstract data.

3: Matrix Browser – Design Principles

The central idea of the Matrix Browser approach and

prototype is to map the underlying graph structure to a
highly interactive adjacency matrix (Figure 4). Adjacency
matrices are a well understood alternative graph represent-
ation where the nodes of the network are shown along the

horizontal and vertical axes of a matrix. Both the direction
of an association (for directed graphs) as well as different
types of associations can be visualized by using arrows
and graphical symbols shown inside the cells. This can be
done in conjunction with other techniques such as tool tip
descriptions of different association types. Displaying all
nodes on both axis of the matrix is the simplest possibility
the matrix browser provides to represent a network. A first
extension of this standard matrix model is the capability to
flexibly filter the node sets shown on each axis of the
matrix. This filtering can be done either based on arbitrary
attributes of the nodes or on properties of the relations
displayed in the cells.

The second main design feature is that Matrix
Browser provides mechanisms for presenting hierarchical
information structures directly as interactive tree widgets.
This “Windows Explorer”-like technique is widely known
and intuitive to use. Information networks typically
contain hierarchical substructures which may either based
on merely syntactic properties of the graph or on the
semantic types of the relations. In Matrix Browser, the
user can flexibly place such hierarchical substructures
along both axes and explore them with the familiar
expand/collapse procedure. In this way, the information
shown in the matrix can be better structured and the
amount of visually displayed material reduced.

As a result of using tree widgets as axes of the
matrix, not all concepts and relations are visible all the
time. Matrix Browser allows to use expand/collapse
functions not only for the trees but also for the cells. If the
explicit relations in the net are not visible because their
superordinate concepts are in a collapsed state, an
interactive symbol is shown, that can be clicked for
expanding/collapsing the associated trees. With these
techniques, the user can flexibly drill-down into the
network or condense parts of it.

A net-like interactive visualization in the upper left
corner of the matrix shows all of the neighbors in the net
of a node, which is selected in one of the two hierarchies.

Proceedings of the Sixth International Conference on Information Visualisation (IV’02)
1093-9547/02 $17.00 © 2002 IEEE

Figure 88: GLOv2 Matrix Browser seed technique from [262].

The Matrix Browser seed technique has nodes displayed as constant-sized, constant-

colored labels evenly spaced along the top and left, with edges displayed as constant-

sized squares colored by an attribute positioned at the y value of the source node on

the left and x value of the the target node on the top. The display also has edges

displayed as constant-sized, constant-colored right-angle lines from the source node

137

on the left to the target node on the top. On the left, the nodes are sorted top to

bottom, while on top the nodes are sorted left to right.

I have abstracted away the interaction for collapsing hierarchies and the high-level

node-link diagram.

• #label attr: name

• #sort attr: cluster

• #edge color attr: weight

#Left column of nodes

• display nodes as {label attr} labels

• color nodes by constant

• size nodes by constant

• evenly distribute nodes on y (sort-by:{sort attr}, invert:true)

• align nodes {left}

#Top row of nodes

• clone nodes

• rotate nodes {90}

• align nodes {top}

• evenly distribute nodes on x (sort-by:{sort attr})

#Square edges

• set target generation {1}

• display edges as squares

• position edges by {target.x},{source.y}

• show all edges

• size edges by constant

• color edges by {edge color attr}

#Right angle edges

• clone edges

138

• display edges as right angles

• color edges by constant

Matrix with Bars [205]

experiment, 179). The matrix generation process was
parameterized so that the resulting matrices contained
varying types of clusters. The median number of clusters
in a matrix was 6 and the median size of a cluster was 3.

Procedure Participants were given the same general
instructions as in the first experiment, but in English
this time. The procedure was repeated 15 times using
one of the interfaces and then another 15 times using
the other interface. In both sets, the first three tasks
were used for training and practicing, and no data were
collected for them.
Participants gave the answer by filling a text field that

forced them to mention all of the column names before
leaving the task. The groups were indicated by leaving a
space between column labels. On the right side of the text
field, there is a text label that displays the yet unentered
column names as a hint. As a shortcut, by writing an
asterisk the participants could indicate that the not yet
entered columns are all in their own groups.

Design In the experiment, there were two conditions
called Normal and Slider. The Normal condition does not
have the column similarity view, but is otherwise similar
to the first experiment’s Traditional condition.
The participants were divided randomly into two

groups. One group took the Normal condition first, and
then Slider and the other group had the opposite order.
Counterbalancing involved the two groups and the two
task sets with randomized task order, requiring the
number of participants to be a multiple of four.
The experiment was treated as 2! 2!12 mixed design.

Groupwas a between-subjects factor with two levels (eight

participants per group). The within-subjects factors were
UI with two levels (Normal vs Slider) and Task with 12
levels. The total amount of input was 8 participants/
group! two groups! two layouts!12 trials¼384 obser-
vations.
Two measurements were collected for each trial: time

spent (in seconds) and the given solution. The solutions
were later transformed manually into distances com-
puted from the appropriate lattice.

Results The median time participants spent in the whole
experiment was 1h and 22min, ranging from 51min to
1h and 50min. This was almost twice as much as
anticipated. The participants were more patient and
thorough than was expected, and many of them wanted
to explore the tasks with more than one strategy. This
applied to both interface styles.
Two of the participants did not complete the experi-

ment. One session was aborted by the supervisor, and one
other participant gave up commenting that the task was
incomprehensible. In both cases, the problem seemed to
be language-related – it appears that the supervisor failed
to communicate the instructions. Two more volunteers
were recruited to complete the counter-balancing.
The main effect and interactions for Group were not

statistically significant. The grand mean for Time was 154
seconds. The time for the Normal user interface was 217
seconds, and for the Slider user interface, it was 91
seconds, approximately 60% improvement. The differ-
ence was statistically significant (F1,15¼8.71, Po0.001).
The grand mean for Distance was 2.9, indicating that

about three single-item shifts were required to reach
the correct solution. The distance for the Normal user

Figure 17 The user interface in the second experiment.

Constructing and reconstructing Harri Siirtola and Erkki Mäkinen

45

Information Visualization

Figure 89: GLOv2 Matrix with Bars seed technique from [205].

The Matrix with Bars seed technique has nodes displayed as constant-sized, constant-

colored labels evenly spaced along the top and right, with edges displayed as relatively-

sized, relatively-colored rectangles positioned at the x value of the source node on the

top and y value of the the target node on the right.

To align with the other matrix-based representations, the nodes are sorted top to

bottom, while on top the nodes are sorted left to right and the labels are rotated.

(Note that nodes are not sorted or rotated in the seed technique figure from [205].)

• #label attr: name

• #sort attr: cluster

• #edge size attr: weight

• #Right column of nodes

• display nodes as {label attr} labels

• color nodes by constant

• size nodes by constant

139

• evenly distribute nodes on y (sort-by:{sort attr}, invert:true)

• align nodes {right}

• #Top row of nodes

• clone nodes

• rotate nodes {90}

• align nodes {top}

• evenly distribute nodes on x (sort-by:{sort attr})

• #Edges

• set target generation {1}

• display edges as bars

• position edges by {source.x},{target.y}

• show all edges

• size edges by {edge size attr}

MatrixExplorer [116]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

MatrixExplorer: a Dual-Representation System to Explore
Social Networks

Nathalie Henry and Jean-Daniel Fekete

Abstract— MatrixExplorer is a network visualization system that uses two representations: node-link diagrams and matrices. Its
design comes from a list of requirements formalized after several interviews and a participatory design session conducted with
social science researchers. Although matrices are commonly used in social networks analysis, very few systems support the
matrix-based representations to visualize and analyze networks.

MatrixExplorer provides several novel features to support the exploration of social networks with a matrix-based representation, in
addition to the standard interactive filtering and clustering functions. It provides tools to reorder (layout) matrices, to annotate and
compare findings across different layouts and find consensus among several clusterings. MatrixExplorer also supports Node-link
diagram views which are familiar to most users and remain a convenient way to publish or communicate exploration results.
Matrix and node-link representations are kept synchronized at all stages of the exploration process.

Index Terms— social networks visualization, node-link diagrams, matrix-based representations, exploratory process, matrix
ordering, interactive clustering, consensus.

Fig. 1. MatrixExplorer showing two synchronized representations of the same network: matrix on the left and node-link on the right.

1 INTRODUCTION
Information visualization has been used to support social network

analysis since the 1930s. Social scientists use visual representations
both to explore datasets and to communicate their results. Some
information visualization systems focus on exploration, taking
advantage of features of the human perceptual system to discern
visual patterns in the data. Others help researchers draw social
networks, usually in the form of node-link diagrams to represent
trees and graphs. Although adjacency matrices have played an
important role in social networks analysis since the 1940s [16], few

social scientists use their visual representations to communicate their
findings.

This article presents MatrixExplorer (Figure 1), which offers both
node-link and matrix representations to help sociologists and
historians explore and communicate social networks. The node-link
diagrams provide intuitive representations for relatively small
networks, and, when adequately visualized, remain a powerful means
of communication. MatrixExplorer also provides tools for
reorganizing, clustering and filtering graphs using a matrix
representation. These matrices are always readable, even for large
and dense graphs, and thus support exploration throughout the
analysis process. MatrixExplorer offers several novel features to
help explore complex social networks, using the most suitable
representation at any time.

This paper is organized as follows: we first present related work
and describe the requirements for a visual exploration system that we
defined together with social sciences researchers. We then describe
MatrixExplorer and detail its major features for matrix-based
representations. We conclude with discussion and future work.

 Nathalie Henry is with INRIA Futurs/LRI and University of Sydney,

E-Mail: Nathalie.henry@lri.fr.
 Jean-Daniel Fekete is INRIA Futurs/LRI,

E-Mail: jean-daniel.fekete@inria.fr.
Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6
November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

677

1077-2626/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society

Figure 90: GLOv2 MatrixExplorer seed technique from [116].

The MatrixExplorer seed technique consists of two canvases. The first canvas has

nodes displayed as constant-sized, constant-colored labels evenly spaced along the

top and left, with edges displayed as constant-sized squares colored by an attribute

140

Figure 91: Approximate MatrixExplorer [116] rendered in GLO.js.

positioned at the y value of the source node on the left and x value of the the target

node on the top. On the left, the nodes are sorted top to bottom, while on top the

nodes are sorted left to right. Behind the node labels on the left, nodes are represented

as bars sized by the out-degree (an attribute) of the nodes. Behind the node labels

on the top, nodes are represented as bars sized by the in-degree (an attribute) of

the nodes. The second canvas consists of relatively-sized, square nodes colored by

an attribute connected by relatively sized, relatively colored straight line edges. In

addition, a second set of nodes in the same positions are displayed as constant-sized,

constant colored labels.

I have abstracted away the overview and details panes, the specific color scheme,

and the dynamic query widgets.

• #sort attr: cluster

• #node size attr: degree

• #label attr: name

• #edge attr: weight

• #Property constants

• color edges by {edge attr}

141

• show all edges

• partition canvas on x

• #Matrix left column bars and labels

• color nodes by constant

• display nodes as bars

• evenly distribute nodes on y (sort-by:{sort attr}, invert:true)

• align nodes {left}

• size nodes by {out degree}

• clone nodes

• size nodes by constant

• display nodes as {label attr} labels

• #Matrix top row bars and labels

• select node generation {1} #bars

• clone nodes

• size nodes by {in degree}

• rotate nodes {90}

• align nodes {top}

• evenly distribute nodes on x (sort-by:{sort attr})

• clone nodes

• size nodes by constant

• display nodes as {label attr} labels

• #Matrix edges

• size edges by constant

• set target generation {4} #top row labels

• display edges as squares

• position edges by {target.x},{source.y}

#F-D Diagram

142

• select canvas {0}

• display nodes as squares

• size nodes by {node size attr}

• display edges as straight lines

• size edges by {edge attr}

• apply force-directed algorithm to nodes

#F-D Diagram labels

• clone nodes

• display nodes as {label attr} labels

• size nodes by constant

NetLens [140]

single table in different types of views, such as scatter plots and
bar charts. All the views are coordinated by brushing [4] to allow
users to relate data points across views. Visage [22] provides
richer data manipulation operations such as drill-down, drag,
paint, and roll-up to enable users to compose a complex query,
but all the views are coordinated based on a single centralized
table so it can not represent the relationships across multiple
tables. Snap-Together [19] enables users to create different types
of coordinations such as brushing, drill down, overview and detail
view, and synchronized scrolling. Although some types of
coordinations can represent joined tables, their relationships are
limited only to one-to-one or one-to-many and thus are not
appropriate for representing network relationships.

2.3 Iterative Query Refinement
Conventional search interfaces to online resources allow users to
specify several query fields and initiate the query by pressing a
button. While these systems are easy to manipulate, it is often
difficult to formulate or express queries effectively. Furthermore,
users often learn what they need to ask and how to do it through
the query process. Thus, iterative query refinement has been used
in many information retrieval systems. For example, SIS [9]
commits queries whenever users change any of the filtering
widgets. VQuery [14] enables users to interactively refine query
results, using Venn diagrams to provide dynamic query previews.
PESTO [7] provides a query history mechanism enables users to
reuse old queries.

3. NETLENS INTERFACE

While NetLens supports any dataset that can be represented with
our abstract Content-Actor data model (see Section 4), we first
illustrate the interface using a specific dataset and describe simple
scenarios of use in this context. The dataset consists of a subset of
the ACM digital library and contains 4,073 papers from the CHI
conference from 1982 to 2004 authored by 6,358 people. The
NetLens display (Figure 1) is divided into two symmetric
sections. On the left is the content (i.e. the papers) for this dataset,
and on the right are the actors (i.e. the authors) of the papers.
Each section includes several panels: overviews at the top
(showing histograms which can show distributions of items over
all the available attributes), filters on the right side, and lists of
items in the lower area. In each section the different panels are
tightly-coupled [19] so that any changes such as selection in one
panel is immediately reflected in the other panels. All elements of
the display are used to specify queries and to display results: for
example, selecting a histogram bar filters the list of papers, and
hiding certain papers from the list (e.g. the less cited ones) is
reflected in the histogram.

Initially the two sections for papers and authors are not linked
and are explored individually. The red oval at the center of the
display indicates that nothing will flow in between, and users can
change this and set the direction of the flow by right clicking on
the red oval. When flow is allowed the oval is replaced by a
directional arrow (Figure 2c).

Figure 1. NetLens has two symmetric windows. The left is for Content (papers), the right for Actors (authors). Each side is further divided into
panels; overview at the top, filters on the right, and lists at the bottom. Here the Content side has two lists to reflect the citation or reference
relationship between papers. The paper overview panel shows the distribution of papers (in logarithmic scale) over time, grouped by topics.

Users can see which topics have seen their number of papers increase or decrease over 22 years. On the right side the overview of the
authors shows the distribution of countries of origin in logarithmic scale.

92

Figure 92: GLOv2 NetLens seed technique from [140].

In the NetLens seed technique, there are multiple canvases. The display is split

into two sides. On one side the nodes are aggregated by a discrete attribute, displayed

as constant-colored bars, aligned along the bottom, and sized by an attribute. On the

other side, the nodes are filter-partitioned by a discrete attribute and then aggregated

by a di↵erent discrete attribute and displayed as constant-colored, relatively-sized

bars aligned along the bottoms of the canvases. A meta-axis is displayed on the y

143

axis. Edges are not displayed.

I have abstracted away the list panels, dynamic query widgets, and specific color

scheme.

• #right aggr attr: cluster

• #right sort attr: cluster

• #partition attr: gender

• #left aggr attr: cluster

• display nodes as bars

• color nodes by constant

• align nodes {bottom}

• hide edges

• #Single panel side

• partition canvas on x

• aggregate nodes by {right aggr attr} by {method}

• evenly distribute nodes on x (sort-by:{right sort attr})

• size nodes by {count}

• #Multi-panel side

• select canvas {0}

• filter partition canvas on y by {partition attr}

• show meta y axis

• select column {0} #all multi-panel-side partitions

• aggregate nodes by {left aggr attr} by {method}

• size nodes by {count}

Semantic Substrates [204, 18]

The Semantic Substrates seed technique is simplified from the figure. In the

144

SHNEIDERMAN ET AL.: NETWORK VISUALIZATION BY SEMANTIC SUBSTRATES

Fig. 8. The layout for Circuit Court cases is now organized by the 13
Circuits and the link pattern shows the strong likelihood that cases will
reference precedents within the same Circuit.

Fig. 9. Displaying 1,122 nodes and 7,645 links at a 1280x1024
resolution. The relatively small number of Supreme Court cases is
apparent, as is the similar number of Circuit and District Court cases.

Distributions within years are also visible, enabling users to see the
ebb and flow of activity.

As with many new ideas, there are numerous refinements that are

needed. Designs for 3, 4, and 5 regions get more complex but we are
finding strategies to deal with them.

In this example, our collaborators were certain about the
important attributes, which we used as ingredients determining
placement. In general, however, there may be many attributes and
that users may have little awareness of which attributes are best to
use to determine regions and placement for their task. Considering
that users with such data exist, a user interface to help users explore
combinations of attributes seems to be a promising future direction.

We have a plan for an iconic representation that would replace
multiple check boxes, allowing easy selection of links within or
between up to 5 regions.

The NVSS implementation is still developing and more features
are needed in the user interface to simplify the specification of region
size, location, color, labels, node layout strategy, etc. In addition,
greater flexibility will certainly be needed for node, link, and label
properties such as placement, size, color, font, and background. We
plan to add dynamic properties to control node and link visibility,
plus infotips, excentric labels, and window panes for textual lists.

Future work might also include elastic window strategies that
enable users to enlarge one region while shrinking the others in a
smooth animation [25]. For networks with millions of nodes, further
work is needed on dynamic query sliders to limit node visibility

739

Figure 93: GLOv2 Semantic Substrates seed technique from [204].

Figure 94: Semantic Substrates [204] rendered in GLO.js.

semantic substrates seed technique, nodes are relatively sized and colored by an at-

tribute. Nodes are separated on the y axis by a discrete attribute and then positioned

relatively on the x axis. Edges are only shown when the analyst mouses over an end-

point node, when they are displayed as constant-sized curved lines colored by an

attribute of the target node.

I have abstracted away the color fills behind the nodes, the multi-node selection,

and the specific color scheme.

• #node color attr: cluster

145

• #node size attr: degree

• #node y attr: cluster

• #node x attr: degree

• display nodes as circles

• color nodes by {node color attr}

• show incident edges

• size nodes by {node size attr}

• position nodes on y by {node y attr}

• show y axis

• position nodes on x by {node x attr}

• show x axis

• display edges as curved lines

• size edges by constant

• color edges by {target.node color attr}

PivotGraph [244]

THE PIVOTGRAPH APPLICATION
This section describes the PivotGraph software that allows
users to interactively explore roll-ups and selections of
multivariate graphs. PivotGraph is a desktop application
written in Java. See Figure 5 for a screenshot. (Note that in
this and several other screenshots some text was changed in
order to mask confidential data.) The PivotGraph interface
has three components. A traditional menu bar lets users
handle files and change various viewing parameters. At the
left is a panel with three parts: two drop-down menus to
determine roll-up dimensions for the x- and y-axes; a
legend; and a set of drop-down menus, one for each
dimension, that allow the user to specify selection
parameters. Finally, the bulk of the screen is devoted to the
graph visualization itself.

Visualization
Although the basic idea of the scatterplot representation
described in the previous section is simple, it turns out there
are a number of subtle challenges that need to be addressed
for the visualization to remain legible.

Before diving into the details, it may be helpful to describe
the data shown in Figure 5, which is a good example of the

Figure 5. Screenshot of PivotGraph in action.

 visualization at work. The screenshot shows an
anonymized view of a real social network within a
corporation. Nodes in the graph represent people, and edges
represent communication. The graph is rolled up by gender
(x-axis) and office location (y-axis). Several patterns can be
seen in the visualization. There is a large amount of cross-
gender communication in Location B, for example, but very
little elsewhere. Men in Location B seem to be especially
central, with women in locations C, D, and E
communicating more with them than with men in their own
locations. The node sizes provide an indication of how
many men and women are at each location, and it is easy to
see that in the graph one location (A) has only men.

Layout
Each node is represented by a circle whose x- and y-
coordinates are determined by the current roll-up
dimensions. (If there is only one roll-up dimension, then the
dots are laid out on a line, as in figure 6.) The area of each
circle is proportional to the size variable of the node. In an
early version of the program, the sequence of dimension
values on the axes was determined simply by alphabetical
ordering. A second version of the program rearranged the
order of the values to create a more meaningful use of
space. To do this for a given dimension, the roll-up of the
graph onto that dimension is created, after which a

814

CHI 2006 Proceedings • Visualization 1 April 22-27, 2006 • Montréal, Québec, Canada

Figure 95: GLOv2 PivotGraph seed technique from [244].

The PivotGraph seed technique consists of aggregated super-nodes positioned on

x and y by discrete attributes forming a grid. The super-nodes are sized by the

146

Figure 96: PivotGraph [244] rendered in GLO.js.

number of nodes represented by the super-nodes and colored by the degree of the

super-node. Edges are displayed as curved lines, sized and colored by an attribute.

I have abstracted away the grid lines, dynamic query widgets, specific color

scheme, and specific glyph rendering style.

• #disc1: gender

• #disc2: cluster

• #method: mean

• #node color attr: in degree

• #edge attr: count

• display nodes as circles

• show all edges

• aggregate nodes by [{disc1},{disc2}] by {method}

• size nodes by {count}

• color nodes by {node color attr}

• aggregate edges by [{source.disc1},{source.disc2},{target.disc1},{target.disc2}]

by {method}

• display edges as curved lines

147

• size edges by {count}

• color edges by {edge attr}

• position nodes on x by {disc1}

• position nodes on y by {disc2}

• show x axis

• show y axis

MatLink [118]

MatLink: Enhanced Matrix Visualization for Analyzing Social Networks 289

(a) Node-Link(NL) (b) Matrix(MAT) (c) MatLink

(d) Zoom on MatLink

Fig. 1. Three representations of a social network

To address these limitations, we developed MatLink, an enhanced matrix-
based graph visualization that overlays a linear node-link diagram on the edges
and adds dynamic feedback of relationship between nodes (Figure 1c). To assess
its e↵ectiveness, we performed an experiment comparing user performance with
NL, MAT and MatLink on a set of representative social network analysis tasks.

The rest of the paper is organized as follows: the next section describes pre-
vious work on social network characterization, evaluating graph visualizations
and analysis tasks, visual exploration systems and layout algorithms. We then
describe our novel visualization and present an experimental evaluation compar-
ing it to existing network visualizations. A discussion on the results and their
implications follows.

2 Related Work

2.1 Social Network Characterization

Social networks involve persons or groups called actors and relationships between
them, with a lot of variety in the kind of actors and relationships. As described
in Wasserman and Faust [2], actors can be people, subgroups, organizations or
collectivities; relations may be friendship (relationships), interactions, commu-
nications, transactions, movement or kinship. However, the nature of actors and
relations does not really matter: we focus on their structure.

Very often in the literature, social networks are confused with small-world
networks. After studying real social networks, we identified three categories.

Figure 97: GLOv2 MatLink seed technique from [118].

Figure 98: Approximate MatLink [118] rendered in GLO.js.

148

The MatLink seed technique has nodes displayed as constant-sized, constant-

colored labels evenly spaced along the top and left, with edges displayed as constant-

sized, constant-colored squares positioned at the y value of the source node on the left

and x value of the the target node on the top. On the left, the nodes are sorted top to

bottom, while on top the nodes are sorted left to right. Constant-sized and -colored

curved edges are also shown faded between the nodes on each axis, and shown fully

rendered when the analyst interacts with an endpoint.

I have abstracted away the specific color scheme, the background grid, and multi-

selection.

• #label attr: name

• #sort attr: cluster

#Constants amongst all glyphs

• color nodes by constant

• size nodes by constant

• size edges by constant

• color edges by constant

#Left column nodes and curved edges

• display nodes as {label attr} labels

• evenly distribute nodes on y (sort-by:{sort attr}, invert:true)

• align nodes {left}

• display edges as curved lines

• show faded and incident edges

#Top row nodes and curved edges

• clone nodes

• clone edges

• set source generation {1} #eventual top row

• set target generation {1} #eventual top row

149

• rotate nodes {90}

• align nodes {top}

• evenly distribute nodes on x (sort-by:{sort attr})

#Square edges

• clone edges

• set source generation {0}

• display edges as squares

• position edges by {target.x},{source.y}

• show all edges

List View [199, 214]
H.-J. Schulz, M. John, A. Unger & H. Schumann / Visual Analysis of Bipartite Biological Networks

Figure 1: This screenshot shows the two node sets as tables, the connecting edges in between, and both 1-mode projections at
the sides. The markers point to the special visualization features we added to the basic concept. (A) - Focus+Context in table,
(B) - Fisheye scrollbars with selection markers, (C) - Hide unselected rows, (D) - Minimization of edge crossings, (E) - Clickable
edges, (F) - URL-references, (G) - Columns for the two different selections, (H) - Maximum level of script, (I) - Highlighting of
traversed edges and 1-mode projections.

Fisheye scrollbar with selection markers (B): As rows of
interest can also be selected (see Section 3), such selections
can span over both of the tables and be scattered all over
them. To easily find regions with selected rows in large ta-
bles, we have integrated additional selection markers into the
scrollbars at the sides. They indicate where selected rows
are located in a table. The user can either use the scrollbar
to scroll up/down to a selection or directly click on a selec-
tion marker to jump instantly to the respective row. Because
the selection markers can be placed quite densely and are
hard to pinpoint for clicking, we have also added a fisheye
lens to the scrollbar. This lens follows the mouse cursor and
spreads out the focus area so that, even in crowded regions,
individual selection markers can be clicked. A tooltip dis-
plays information about the row to which a selection marker
belongs. This feature is also shown in detail in Figure 2.

Hide unselected rows (C): In very large data sets, even with
the help of the selection markers, the exploration of a scat-
tered selection can be tiresome. Therefore, we allow the user

to reduce the view of the tables to show only selected rows.
In this condensed view, unselected rows will be substituted
blockwise by a single row that gives information about how
many rows have been hidden at that point. An example is
given in Figure 2, where only the selected rows of a table are
shown.

2.2. Additional Features for Large Edge Sets

Minimization of edge crossings (D): As the node sets in
the tables can be freely ordered, the edges running in be-
tween the tables just follow the ordering of the rows. Thus,
for a minimization of edge crossings, at least one of the ta-
bles needs to be reordered. A barycentric crossing minimiza-
tion heuristic [JM97] can be called with just one mouse click
to rearrange one of the tables. This immensely reduces the
visual clutter in most real-world cases.

Clickable edges (E): The visual tracking of edges is ham-
pered by their crossings. This makes it hard to discern the

c� The Eurographics Association 2008.

Figure 99: GLOv2 List View seed technique from [199].

The List View seed technique consists of nodes displayed as constantly-sized labels

in vertically stacked lists by an attribute and aligned at the bottom of the display.

Edges are constant-sized, colored by an attribute, and are displayed as faded unless

the analyst interacts with an endpoint, when they are fully rendered. Edges are

displayed as curved lines within a list and straight lines between lists.

I have abstracted away the specific color scheme, the fisheye display on the nodes,

150

Figure 100: List view [199] rendered in GLO.js.

multiple-selection, the additional information columns, and the dynamic query wid-

gets.

• #label attr: name

• #discrete: gender

• #sort attr: cluster

• display nodes as {label attr} labels

• size nodes by constant

• color nodes by constant

• size edges by constant

• color edges by constant

• position nodes on x by {discrete}

• position nodes evenly stacked {bottom} (sort-by:{sort attr}, within:{discrete})

• show x axis

• display edges as straight lines

#Straight intra-cluster edges

• show faded and incident edges

• hide edges (group-by:{discrete})

151

#Curved inter-cluster edges

• clone edges

• display edges as curved lines

• hide edges

• show faded and incident edges (group-by:{discrete})

Edge-Label-Centric [182]

(a)

(b)

(c)

Figure 2: Approach.

by showing a list of edge labels at the center of our visualiza-

tion. Every unique edge label is represented by a rectangular

region. We partition the set of edges by letting every edge

pass through that region that represents its edge label.

We are dealing with directed edges (see Section 1) which

impose an ordering on the two nodes they connect. For an

edge (v, l,v�) � E, v is called the source and v� the target.

We follow the convention of visualizing ordinal data from

left to right [Tuf01]: all source nodes are represented by a

region at the left of the visualization while all target nodes

are represented by a region at the right (see Figure 2(a)).

This implies that the collection of nodes is represented twice,

once in its capacity as source and once as target.

The effectiveness of the techniques discussed in Section 3

results from being able to consider clusters of nodes that

share properties expressed in terms of a few attributes. We

take a similar approach by enabling the user to select a sub-

set of node attributes. The entire set of nodes is partitioned

based on the different values assumed for the first attribute

in this selection (Figure 2(b)). Every one of the resulting

clusters now contains a disjoint subset of the original set of

nodes. Next, each of these clusters is sub-partitioned based

on the second variable (Figure 2(c)), resulting in another

level in the hierarchy. By recursive partitioning, a new layer

of clusters is computed for every attribute selected by the

user. Every cluster, apart from the root, has a child-of rela-

tionship with one higher level cluster.

A line that connects a leaf cluster on the left with an edge

label X in the center implies that the cluster contains at least

one (source) node with an outgoing edge of type X . Sim-

ilarly, a line that connects edge label X with a leaf cluster

on the right means that it contains at least one (target) node

with an incoming edge of type X . In this way, the visual-

ization intuitively reads from left to right. This, combined

with real time interaction and visual feedback, supports user

queries in a natural way, as we show in following sections.

In our final visualization (Figure 3), we do not show the

root cluster since it simply represents the set of all nodes.

In early versions of our prototype we represented the clus-

tering hierarchy with a node link diagram. Since we already

represent edges with lines, we have replaced this with an ici-

cle plot. We use subtle cushioning to differentiate regions

better [War06]. The different attribute values assumed in a

particular level are encoded with labels and distinct colors to

enable users to identify repeated patterns (Figure 3(a)).

We encode the number of nodes in every cluster and the

number of edges with a particular edge label with the length

of the colored bar inside the region (Figure 3(b)). A logarith-

mic scale can be used to amplify differences for small quan-

tities. This improves on earlier work by combining hierarchi-

cal and quantitative data in a single representation [PW06].

It also avoids issues encountered when encoding quantitative

information with region size.

5. Interaction

Interaction plays an important role in our technique. As we

describe below, we enable the user to interactively inspect

and query multivariate graphs based on the data associated

with nodes and edges. We illustrate this by showing how the

questions introduced in Section 2.2 can be answered with

our technique in a straightforward fashion. In the discussion

that follows, consider how the user is able to rapidly find

the answers with no more than three clicks and contrast this

with the effort needed to formulate and evaluate the formal

queries discussed in Section 2.3.

When the user selects a source cluster, the cluster and all

nodes contained in it are selected. The same holds for all out-

going edges and their edge labels, as well as target nodes and

their parent clusters. Selected clusters and edge labels are

highlighted in red. Note that for a target cluster selected in

this way, it is possible that only some of the contained nodes

are selected. The same holds for edge labels (representing

collections of edges). Knowing this may be important when

interpreting the results and we show the fraction of selected

edges and nodes with a red bar overlaid on a lighter bar that

encodes the total (see Figure 3(c)). When an edge label or

target cluster is selected, the same reasoning is applied. We

now know enough to answer the first question posed to users.

Question 1. Cluster on robot_1_rgt, prep_stage and

proc_stage. Select the source cluster containing all nodes

where robot_1_rgt = empty, prep_stage = prepared and

c� 2008 The Author(s)
Journal compilation c� 2008 The Eurographics Association and Blackwell Publishing Ltd.

A.J. Pretorius & J.J. van Wijk / Visual Inspection of Multivariate Graphs970

Figure 101: GLOv2 Edge-Label-Centric seed technique from [182].

In the Edge-Label-Centric seed technique, two sets of nodes are displayed as

constant-sized, constant-colored circles evenly distributed along the y axis. One set

is aligned on the left of the display and the other on the right. One set of edges are

aggregated by a discrete property, displayed as constant-sized labels, aligned in the

center of the display, and distributed along the y axis. A second set of edges are

displayed as constant-sized, constant-colored straight lines from the source node in

the left-hand set through the appropriate edge label in the center to the target node

in the right-hand set.

I have abstracted away the specific color scheme.

• #node sort attr: cluster

• #edge aggr attr: target.gender

152

• #method: mean

• #edge sort attr: id

#Left column of nodes

• display nodes as circles

• color nodes by constant

• size nodes by constant

• evenly distribute nodes on y (sort-by:{node sort attr})

• align nodes {left}

#Right column of nodes

• clone nodes

• align nodes {right}

#All edges

• color edges by constant

• size edges by constant

• clone edges

#Center edge labels

• aggregate edges by {edge aggr attr} by {method}

• display edges as {edge label attr} labels

• align edges {center}

• evenly distribute edges on y (sort-by:{edge sort attr})

#Line edges

• select edge generation {0} #unaggregated edges

• set edge waypoint generation {1} #edge label generation

• display edges as straight lines

• set target generation {1} #right column nodes

Honeycomb [106]

153

 Honeycomb: Visual Analysis of Large Scale Social Networks 433

(a) (b) (c)

Fig. 2. Collapsing an 8 by 8 adjacency matrix to a smaller 3 by 3 matrix (a) original matrix
with node hierarchy on both sides (b) collapsed version of the matrix with lowest level of the
hierarchy eliminated and edge counts aggregated (c) This collapsed version itself forms a small
section of a higher level adjacency matrix

visualization tool allows users to choose either option. The actual hierarchy used to
drive the above process is variable and depends on the interest of the users of the
visualization. In the samples in this paper we have used two distinct hierarchies. One
uses the management hierarchy to correlate connection behavior with organizational
structure, while the other one uses a geographical hierarchy based on the user’s work-
ing location (i.e. continent - country - state - city - building) to correlate connection
behavior with geographical location. In practice, we can also use different hierarchies
or construct a hierarchy ourselves by using other node attribute information.

In terms of interactivity our tool is very similar to its predecessor described in [18]
but it is more memory efficient and allows for pluggable metrics. The user is initially
presented with an adjacency matrix that displays connections at the highest level of
abstraction (e.g. in the case of the geographical hierarchy connections between em-
ployees in different continents). By left clicking on a cell (X,Y) the user can indicate
he or she wants to examine that particular connection in more detail and the visualiza-
tion then displays the matrix that shows the connections between the direct children of
X and Y. A simple right click brings the user back to the cell he or she came from. The
transition between these two matrices is animated to help the user understand the
relationship between the two representations. Dynamic labels help the user understand
what relation they are looking at and a popup menu provides details on demand.

To deal with the issue of visual scalability we have used the hierarchy to reduce the
matrix to a more manageable size. Computational scalability is obtained by using a
semi-external memory approach, that is, we keep the entire nodeset and the hierarchy
of the network in RAM while a relational database stores the actual connections be-
tween the nodes in the network. When a user requests a higher level view of the net-
work, aggregation of edges in the database is done on the fly using a fast lookup algo-
rithm. Our current prototype is implemented in Java and uses OpenGL for graphics
output. We have successfully loaded and navigated synthetic graphs up to 5 million
edges using only 200MB of RAM.

Figure 102: GLOv2 Honeycomb seed technique from [106].

Figure 103: Approximate Honeycomb [106] rendered in GLO.js.

The Honeycomb seed technique consists of two sets of aggregated super-nodes

displayed as constant-sized, constant-colored labels distributed along the left and

top. The super-nodes along the left are sorted top to bottom, while the super-nodes

on the top are sorted left to right. Aggregated super-edges are displayed as constant-

sized squares colored by an attribute positioned at the y value of the source node on

the left and x value of the the target node on the top.

I have abstracted away the hierarchical dendrograms and have rotated the top

node labels to be consistent with the other matrix-based techniques.

• #disc: cluster

• #method: mean

154

• #sort attr: cluster

• #edge color attr: count

#Left column of nodes

• size nodes by constant

• aggregate nodes by {disc} by {method}

• display nodes as {disc} labels

• align nodes {left}

• evenly distribute nodes on y (sort-by:{sort attr}, invert:true) #Top row of nodes

• clone nodes

• align nodes {top}

• evenly distribute nodes on x (sort-by:{sort attr}) #Edges

• show all edges

• set target generation {4} #top super-node glyphs

• aggregate edges by [{source.disc},{target.disc}] by {method}

• display edges as squares

• position edges by {target.x},{source.y}

• color edges by {edge color attr}

• size edges by constant

GraphDice Segment [36]

The seed technique consists of circular nodes sized by an attribute and colored by

a constant. The nodes are positioned relatively along the x and y axes by attributes.

Scale axes are drawn for the x and y axes. Edges are drawn as constantly-sized,

constantly-colored curved lines.

I have abstracted away the multi-selection interaction (and accompanying convex

hull highlighting and non-constant colors) as well as the specific color scheme.

• #attr1: betweenness centrality

155

Eurographics/ IEEE-VGTC Symposium on Visualization 2010
G. Melançon, T. Munzner, and D. Weiskopf
(Guest Editors)

Volume 29 (2010), Number 3

GraphDice: A System for Exploring
Multivariate Social Networks

A. Bezerianos1, F. Chevalier2, P. Dragicevic2, N. Elmqvist3, and J.D. Fekete2

1École Centrale Paris, France 2INRIA Saclay - Île-de-France, France 3Purdue University, USA

d

a

b

e

f

c

g

Figure 1: Exploration of the InfoVis 2004 Contest co-authorship dataset using GraphDice. On the left is the main visualization
window of GraphDice including (a) an overview plot matrix, (b) a selection history tool, (c) a selection query window, (d) a
main plot, and (e) a toolbar. Overlapping nodes in the main plot are drawn using jitter (visible in the yellow selection query).
On the right are actor (f) and link (g) tables with query data entries highlighted in the corresponding color.

Abstract
Social networks collected by historians or sociologists typically have a large number of actors and edge attributes.
Applying social network analysis (SNA) algorithms to these networks produces additional attributes such as de-
gree, centrality, and clustering coefficients. Understanding the effects of this plethora of attributes is one of the
main challenges of multivariate SNA. We present the design of GraphDice, a multivariate network visualization
system for exploring the attribute space of edges and actors. GraphDice builds upon the ScatterDice system for
its main multidimensional navigation paradigm, and extends it with novel mechanisms to support network explo-
ration in general and SNA tasks in particular. Novel mechanisms include visualization of attributes of interval
type and projection of numerical edge attributes to node attributes. We show how these extensions to the original
ScatterDice system allow to support complex visual analysis tasks on networks with hundreds of actors and up to
30 attributes, while providing a simple and consistent interface for interacting with network data.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Systems]: Information Interfaces
and Presentation—User Interfaces; E.1 [Data]: Data Structures—Graphs and Networks

1. Introduction

A quite recent development in social network analysis
(SNA) [WF94] has been the adoption of visualization to
explore networks and support social scientists in detecting,
understanding, and characterizing unexpected patterns and
trends in complex social networks [Ada06, HF06, HF07].

However, with a few exceptions (notably [AS07, PvW08,
Wat06]), current state-of-the-art social network visualization
tools focus on displaying the topology of the networks, and
fail to provide a convenient way of explicitly visualizing
more than a few (two to three) attributes associated with the
network entities, usually using color and shapes. In contrast,

c� 2010 The Author(s)
Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

DOI: 10.1111/j.1467-8659.2009.01687.x

863

Figure 104: GLOv2 GraphDice Segment seed technique from [36].

Figure 105: GraphDice segment [36] rendered in GLO.js.

• #attr2: degree

• #node size attr: degree

• display nodes as circles

• position nodes on x by {attr1}

• position nodes on y by {attr2}

• size nodes by {node size attr}

• color nodes by constant

• display edges as curved lines

• show all edges

156

• size edges by constant

• color edges by constant

• show x axis

• show y axis

3x3 GraphDice [36]

Eurographics/ IEEE-VGTC Symposium on Visualization 2010
G. Melançon, T. Munzner, and D. Weiskopf
(Guest Editors)

Volume 29 (2010), Number 3

GraphDice: A System for Exploring
Multivariate Social Networks

A. Bezerianos1, F. Chevalier2, P. Dragicevic2, N. Elmqvist3, and J.D. Fekete2

1École Centrale Paris, France 2INRIA Saclay - Île-de-France, France 3Purdue University, USA

d

a

b

e

f

c

g

Figure 1: Exploration of the InfoVis 2004 Contest co-authorship dataset using GraphDice. On the left is the main visualization
window of GraphDice including (a) an overview plot matrix, (b) a selection history tool, (c) a selection query window, (d) a
main plot, and (e) a toolbar. Overlapping nodes in the main plot are drawn using jitter (visible in the yellow selection query).
On the right are actor (f) and link (g) tables with query data entries highlighted in the corresponding color.

Abstract
Social networks collected by historians or sociologists typically have a large number of actors and edge attributes.
Applying social network analysis (SNA) algorithms to these networks produces additional attributes such as de-
gree, centrality, and clustering coefficients. Understanding the effects of this plethora of attributes is one of the
main challenges of multivariate SNA. We present the design of GraphDice, a multivariate network visualization
system for exploring the attribute space of edges and actors. GraphDice builds upon the ScatterDice system for
its main multidimensional navigation paradigm, and extends it with novel mechanisms to support network explo-
ration in general and SNA tasks in particular. Novel mechanisms include visualization of attributes of interval
type and projection of numerical edge attributes to node attributes. We show how these extensions to the original
ScatterDice system allow to support complex visual analysis tasks on networks with hundreds of actors and up to
30 attributes, while providing a simple and consistent interface for interacting with network data.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Systems]: Information Interfaces
and Presentation—User Interfaces; E.1 [Data]: Data Structures—Graphs and Networks

1. Introduction

A quite recent development in social network analysis
(SNA) [WF94] has been the adoption of visualization to
explore networks and support social scientists in detecting,
understanding, and characterizing unexpected patterns and
trends in complex social networks [Ada06, HF06, HF07].

However, with a few exceptions (notably [AS07, PvW08,
Wat06]), current state-of-the-art social network visualization
tools focus on displaying the topology of the networks, and
fail to provide a convenient way of explicitly visualizing
more than a few (two to three) attributes associated with the
network entities, usually using color and shapes. In contrast,

c� 2010 The Author(s)
Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

DOI: 10.1111/j.1467-8659.2009.01687.x

863

Figure 106: GLOv2 GraphDice seed technique from [36].

Figure 107: Approximate 3x3 GraphDice [36] rendered in GLO.js.

The 3x3 GraphDice seed technique consists of a 3x3 grid of canvases. In each

canvas, circular nodes are sized by an attribute and colored by a constant. The nodes

157

in each canvas are positioned relatively along the x and y axes by attributes. Edges

are drawn as constantly-sized, constantly-colored curved lines. The nodes in each

column are positioned relatively along the x axis by the same attribute. The nodes

in each row are positioned relatively along the y axis by the same attribute. The

attributes are the same on both axes and ordered the same from top to bottom and

from left to right.

I have abstracted away the multi-selection interaction (which resulted in the mul-

tiple colors). While they are a critical component of the GraphDice technique, I have

abstracted away the meta-axis labels. Because the columns and rows represent at-

tributes, rather than data elements, the choice of columns and rows cannot be done

elegantly using the expected data model. This is also why I chose an explicitly 3x3

GraphDice grid.

• #attr1: cluster

• #attr2: gender

• #attr3: degree

• #Set up a single cell

• display nodes as circles

• show all edges

• color nodes by {node color attr}

• size nodes by {node size attr}

• size edges by constant

• color edges by constant

• display edges as curved lines

• position nodes on x by {attr1}

• position nodes on y by {attr1}

#Set up first row (i.e. set each column’s x attribute)

• partition canvas on x (parts:3)

158

• select canvas {1}

• position nodes on x by {attr2}

• select canvas {2}

• position nodes on x by {attr3}

#Create grid and set each row’s y attributes

• partition canvas on y (parts:3, all-canvases:true)

• select row {1}

• position nodes on y by {attr2}

• select row {2}

• position nodes on y by {attr3}

GMap [94]
Figure 5: Graph Drawing author collaboration, 1994-2004.

Figure 6: Collaboration graph drawn by GMap.

Figure 7: Map without interior artificial points.

by the logarithm of the number of publications and the edge thick-
ness is similarly proportional to the number of collaborations. How-
ever, node weights and edge weights are not used in the layout cal-

culations.
From Fig. 6, it is easy to see that European authors dominate the

main continent. Several well-defined German groups can be seen
on the west and southwest coasts. A largely Italian cluster occu-
pies the center, with an adjacent Spanish peninsula in the east. The
northwest contains a mostly Australasian cluster. Two North Amer-
ican clusters are to be found in the southeast and in the southwest,
the latter one made up of three distinct components. A combina-
torial geometry cluster forms the northernmost point of the main
continent. Most Canadian researchers can be found in the central
Italian cluster and the Spanish peninsula. Northeast of the mainland
lies a large Japanese island and southeast of the mainland there is
a large Czech island. Northwest of the mainland is an island of
authors focused on crossing numbers.

Fig. 7 shows a map generated without adding artificial points
around the labels, which results in more regular boundaries, when
compared to the map in Fig. 6. The sizes of the two maps in the pa-
per make it difficult to compare them, but the differences are easy
to see on the screen when the images are zoomed in. We found
that the map in Fig. 6 with more irregular borders was more ap-
pealing but, as noted earlier, our algorithm can generate maps of
both styles. The map generated without adding random points to
define the outer boundaries is even more noticeably un-map-like;
see Fig. 8.

Figure 8: Map without outer artificial points.

4.2 BookLand maps
Many e-commerce websites provide recommendations to allow for
exploration of related items. Traditionally this is done in the form
of a flat list. For example, Amazon typically lists around 5-6 books
under “Customers Who Bought This Item Also Bought”, with a
clickable arrow to allow a customer to see further related items.

Instead of a flat list, which provides a very limited view of the
neighborhood, there have been attempts to convey the underlining
connectivity of the products through graph visualization. For exam-
ple, TouchGraph [3], has an Amazon browser which shows a graph
defined on a small neighborhood surrounding the book of interest.
None of the existing approaches, however, gives a comprehensive
view of the relationship and the clustering structures.

Using our GMap algorithm, we obtained the map in Fig. 1. The
underlying data is obtained with a breadth-first traversal following
Amazon’s “Customers Who Bought This Item Also Bought” links,
starting from the root node, Orwell’s 1984. Links are followed up
to a distance of 12 from the root node. We then trim the graph by

205

Figure 108: GLOv2 GMap seed technique from [94].

The GMap seed technique consists of nodes displayed as constant-colored, relatively-

sized labels connected by faded, constantly-sized straight-line edges. Surrounding

each cluster of nodes is a translucent convex hull colored by an attribute.

I abstracted away the blue background and the specific color scheme.

• #label attr: name

• #node size attr: degree

159

• #group by attr: cluster

• display nodes as {label attr} labels

• size nodes by {node size attr}

• color nodes by constant

• display edges as straight lines

• color edges by constant

• size edges by constant

• show edges as faded

• show convex hulls (group-by:{group by attr})

• color convex hulls by {group by attr}

Attribute Matrix [153]In particular, there is a high level of collaboration occurring in large
grants awarded in 2003.

Figure 8: Collaboration between organizations on NSF IIS grants,
broken down by year and amount

To investigate further, we right click in the 2003-large grant

cell and choose “Analyze in detail” to open a new tab show-
ing that subnetwork for closer analysis. We can see that
University of Colorado at Boulder (CU Boulder for short) occupies an im-
portant position in this subnetwork where it connects multiple local
clusters (Figure 9). This observation is confirmed after running the
computational analysis, where CU Boulder has the highest between-
ness centrality score, indicating that it is linking many organizations
that are otherwise not linked. One reason for this is that CU Boulder

has collaborated on quite a few different large grants with differ-
ent organizations in 2003. To see the grants it has received as well
as the collaborating institutions for each grant, we clear the cur-
rent subnetwork while keeping the 2003-large grant slice specifica-
tion, and construct an organization-name-title network, connecting or-
ganizations with the researchers who are connected with the grants
they receive. We see the specific researchers from this school as
well as the three large grants they have worked on: emotion in
speech, tangible media and semantic interpretation (Figure 10).

Figure 9: CU Boulder is an important actor in the 2003-large grant
collaboration network

To look further at the role of program managers in the collab-
oration dynamics, we now go back to the previous tab and re-
place the date slices with program manager slices. Noting that
William Bainbridge, Maria Zemankova, and Ephraim Glinert are the top 3
grant awarding managers, we find that a significant portion of their

Figure 10: Large grants received by CU Boulder and other institutions
in conjunction in 2003

grants is small grants. After filtering out non-collaborating institu-
tions, we find that grants awarded by them do not particularly show
greater activities of collaboration (Figure 11). It is also obvious
from the visualization that Ephraim Glinert has awarded a number of
grants to groups of 4 institutions (visualized in the form of tetra-
hedra), and Stephen Gri�n awarded one grant to a group of 5 collab-
orating institutions (in the form of a pentahedron). Such patterns,
some of which are highlighted in the figure, are not seen in grants
awarded by other program managers.

Figure 11: Collaboration between organizations on NSF IIS grants,
broken down by program manager and amount

4 COMPUTING CONNECTIONS

The logic underlying Ploceus is built on top of a formal framework
that systematically specifies how to compute edge connections and
assign edge weights. We will present a detailed treatment of the
framework at the level of formal definitions and proofs in a partner
paper. Here, we provide an overview of the framework.

4.1 Approach and assumptions
Analysts that organize data into structured rows and columns in ta-
bles are implicitly declaring relationships between data elements.
When data elements appear in the same column, they usually be-
long to the same type (e.g. 142 and 16 are both GroupSize in Ta-
ble 1). When data elements appear in the same row, they are usu-
ally semantically related, and the specific semantics depend on the
context. When Aarnio, Alicia and OEOB appear in a single row of
the White House visit logs, this co-occurrence can be interpreted
as a visiting relationship between two entities: the person Alicia
Aarnio visited the Old Executive Office Building (OEOB). When

47

Figure 109: GLOv2 Attribute Matrix seed technique from [153].

The Attribute Matrix seed technique consists of a grid of canvases. The x and y

meta-axes are of discrete attributes and the nodes in each cell are those that share

those attributes and the edges are those in the subgraph induced by the nodes. Within

each cell, the nodes are displayed as constant-sized, constant-colored circles connected

by constant-sized, constant-colored straight line edges.

I have abstracted away the specific blue-node color scheme.

160

• #x axis disc: cluster

• #y axis disc: gender

• display nodes as circles

• size nodes by constant

• color nodes by constant

• display edges as straight lines

• size edges by constant

• color edges by constant

• filter partition canvas on x by {x axis disc}

• filter partition canvas on y by {y axis disc} (all-canvases:true) #form the grid

• apply force-directed algorithm to nodes (all-canvases:true)

EdgeMap A [74]

spatialization. EdgeMaps integrate NLD and MDS
techniques utilizing both visual linkage and proximity
for the representation of complex – explicit and implicit
– relations between items. The intent behind this
approach is to make effective use of visual variables
that have been underutilized in NLD and MDS
techniques.

As case studies for this paper, we have chosen data
sets of philosophers, painters, and musicians from the
Freebase data community. While there are many bio-
graphical records associated with these prominent per-
sonalities of philosophy, art, and music, a particularly
interesting aspect is the existence of influence connec-
tions between people, which are a type of explicit
relations. On the other hand, birth dates, interests,
movements, and genres are attributes that indicate
implicit relations between philosophers, painters, and

musicians. We chose these dimensions because they
provide a compelling case for the visualization of expli-
cit and implicit relationships and allow us to explore
complex data relationships. Visualizing influences
between musicians or philosophers as edges may indi-
cate who had more impact, yet it is not possible with
these links alone to see the extent of the impact. By
encoding meaningful data relations into both position
and edges, it becomes possible, for example, to explore
the influence of musicians across genres or of philoso-
phers over time (see Figures 1 and 2).

The remainder of the paper is structured as follows.
First, we provide an overview of prior work, after
which we explain our design goals and the data sets
we use as case studies. We then introduce the visual
representations provided with EdgeMaps (‘Visualizing
explicit and implicit relations’ section) and describe the

Figure 1. Visualizing relations among musicians. The influence of The Beatles is visualized in the similarity map.

6 Information Visualization 11(1)

Figure 110: GLOv2 EdgeMap A seed technique from [74].

The EdgeMap A seed technique consists of circular nodes colored and sized rela-

tively by attributes. The nodes are positioned using a force-directed algorithm. Edges

are hidden, except when the analyst interacts with an endpoint, in which case the

edge is drawn as a curved line colored the same as the source node. In-edges and

out-edges of the interaction node are drawn di↵erently. Neighbors of the interaction

161

Figure 111: Approximate EdgeMap A [74] rendered in GLO.js.

node are highlighted.

I have abstracted away the specific rendering styles of the edges beyond curved

lines, leaving it up to the implementation to choose how to di↵erentiate the in- and

out-edges. I have also abstracted away the specific color scheme, the details-on-

demand panel, and the dynamic query widgets.

• #node size attr: degree

• #node color attr: cluster

• display nodes as circles

• size nodes by {node size attr}

• color nodes by {node color attr}

• display edges as curved lines

• size edges by constant

• color edges by {source.node color attr}

• show in-out edges

• highlight neighbors

• apply force-directed algorithm to nodes

EdgeMap B [74]

162

web-based interface design (‘Creating a web-based visu-
alization interface’ section). Using the case studies, we
illustrate new ways for exploring complex relations
(‘Revealing complex relationships’ section). We then
discuss the limitations and open questions of this
work (‘Discussion’ section) and conclude the paper.

Related work

As visualizing relationships is at the heart of informa-
tion visualization, our work builds upon many previous
contributions in the field, with particular regard to the
use of visual variables, graph drawing methods, and
casual visualization.

While not part of his visual information-seeking
mantra (‘Overview first, zoom and filter, then details-
on-demand’), Shneiderman1 notes the challenge of
being able to explore relationships between information
items. He stresses the importance of interaction for
relating data entries; however, equally if not more
important are the appropriate visual representations
of different types of relations. To think about repre-
senting relationships visually, it is worth considering
the visual variables that are at our disposal. In
Semiology of Graphics, Bertin2 distinguishes between
eight visual variables: size, value, texture, colour, ori-
entation, shape, and the two dimensions for the posi-
tion on the plane. MDS renderings use planar position
as the primary visual variable, while NLDs typically
rearrange position in order to minimize edge crossings.
Stone3 makes the case that colour can make visualiza-
tions more effective and beautiful when used well. She
shows how colour can be used for labelling and quan-
tifying data. It would be interesting to explore the use

of colour for conveying similarity between items as a
degree of association in Bertin’s terms.

There has been extensive research on drawing and
interacting with NLDs,4 often aiming at reducing
edge crossings, which is one of several geometrical
and graph-theoretical metrics for graph aesthetics.5

Recent additions to this research include EdgeLens, a
technique for interactively exploring overlapping
edges,6 and EdgeBundles, a method for combining
edges with similar paths.7 Another problem of large
graphs is occlusion, especially when arrowheads of
directed edges impair the perception of the actual
nodes. A study of directed graphs examined a range
of visual cues for directionality and their effect on
determining direct and two-step connections.8 While
these contributions can significantly improve the read-
ability of large NLDs, we argue that contextual attrib-
utes of graph elements need to be more acknowledged.
This perspective is supported in earlier work on com-
puter network visualization, where edge and node
attributes (e.g. flow, capacity, utilization) of regional
and international Internet links were regarded to be
more important than the network topology.9 As part
of a social network visualization, it was shown how the
visual representation of number of friends, gender, and
community structure enriches the NLD and allows for
interactive filtering.10

While conventional NLD techniques focus almost
entirely on explicit relations, MDS can be seen as a
complementary approach focusing on proximity as a
visual representation of implicit relations or similarity.
MDS has been used for document visualizations with
the goal of visually conveying ‘thematic patterns and
relationships’ of text collections.11 While the idea

Figure 2. Visualizing influence relations between philosophers; Friedrich Nietzsche is selected in the timeline view.

Dörk et al. 7

Figure 112: GLOv2 EdgeMap B seed technique from [74].

Figure 113: Approximate EdgeMap B [74] rendered in GLO.js.

The EdgeMap B seed technique consists of circular nodes colored and sized rela-

tively by attributes. The nodes are evenly distributed along the middle of the y axis

sorted by an attribute. Edges are hidden, except when the analyst interacts with an

endpoint, in which case the edge is drawn as a curved line colored the same as the

source node. In-edges and out-edges of the interaction node are drawn di↵erently.

Neighbors of the interaction node are highlighted.

I have abstracted away the specific rendering styles of the edges beyond curved

lines, leaving it up to the implementation to choose how to di↵erentiate the in- and

163

out-edges. I have also abstracted away the specific color scheme, the details-on-

demand panel, and the dynamic query widgets.

• #node size attr: degree

• #node color attr: cluster

• #x pos attr: cluster

• display nodes as circles

• size nodes by {node size attr}

• color nodes by {node color attr}

• display edges as curved lines

• size edges by constant

• color edges by {source.node color attr}

• show in-out edges

• highlight neighbors

• align nodes {middle}

• evenly distribute nodes on x (sort-by:{x pos attr})

Hive Plot [144]

aesthetic layout [40]: generality (can be applied to
different classes of networks), flexibility (can be
adjusted to suit their purpose), transparency (can be
easily explained and understood), competence

(generate useful and quantitatively interpretable re-
sults) and speed (render typically much faster than
traditional layouts). In addition to these, HPs have
two other critical properties that distinguish them

Figure 3: Process of creating HPs from directed and undirected networks. (A) The structure of the RegulonDB
network [36, 37]. (B) A parallel coordinate plot of the genes highlighted in (A), assigned to axes (x1, x2, x3) based
on their role (regulator, manager, workhorse) and positioned on the axis based on connectivity (deg). (C) HP
of the genes highlighted in (A), showing the conceptual similarity between the HP and parallel coordinate plot.
The circular layout of the HP permits connections between edge axes in the parallel coordinate plot (NSRR/
NRFD) to be accommodated within the plot area. (D) The structure of the gene-disease network [38] that
connects genes implicated in the same disease. Classification of the connecting diseases (e.g. ophthalmological,
bone, connective tissue, etc.) partitions the network into overlapping sets of genes. (E) The clustering coefficient
(cc) measures the extent of connections between a node’s neighbors and is used to place genes on HP axis. HP of
the highlighted nodes in (D) constructed using ranges of the cc, for axis assignment and connectivity for axis
scale. The x1-axis is cloned (x11, x12) to reveal connections between cc¼ 0 nodes.

630 Krzywinski et al.

 at G
eorgia Institute of Technology on Septem

ber 28, 2015
http://bib.oxfordjournals.org/

D
ow

nloaded from

Figure 114: GLOv2 Hive Plot seed technique from [144].

164

Figure 115: Hive Plot [144] rendered in GLO.js.

In the Hive Plot seed technique, constant-sized circular nodes colored by an at-

tribute are distributed around the center of the display by a discrete attribute. The

nodes are positioned at a distance from the center of the display relatively by an

attribute. Edges are drawn as constant-colored, constant-sized curved lines.

I have abstracted away the radial axis labels and the specific (greyscale) color

scheme.

• #discrete: cluster

• #attr: degree

• display nodes as circles

• size nodes by constant

• size edges by constant

• color nodes by {discrete}

• position nodes on ✓ by {discrete}

• position nodes on ⇢ by {attr}

• display edges as curved lines

• color edges by constant

• show all edges

165

2x3 Hive Panel [144]

Figure 9: Demonstration of correlation between pairs of structural components in a network using a hive panel.
The cancer DGN from Figure 7A is shown as a matrix of HPs. Links to KRAS,VHL and NBS are highlighted to illus-
trate how a panel can be used to distinguish nodes of this kind (KRAS mediates connections between two clusters,
VHL is a sparsely connected gene at the edge of the network and NBS is within the largest fully connected cluster).
Each HP uses a unique combination of parameters for axis assignment (shown in rows) and node placement
(shown in columns) from the set: betweenness (b), clustering coefficient (cc), closeness (c, remapped to c!1), con-
nectivity (deg) and branching (nn/n, ratio of next-neighbors to neighbors). For example, the plot in row betweenness
(b) and column clustering coefficient (cc) uses b for axis assignment and cc for node placement. Parameter cutoffs
for b, cc, c, deg and nn/n used to determine node axis assignment to x1, x2 and x3-axes for are b:(0, 0^0.05,>0.05),
cc:(0^0.7, 0.7^1, 1), c:(<2, 2^2.5, >2.5), deg:(<30, 30^60, >60) and nn/n:(<2, 2^5, >5). These cutoffs were selected
heuristically to efficiently populate all axes of the graph.

640 Krzywinski et al.

 at G
eorgia Institute of Technology on Septem

ber 28, 2015
http://bib.oxfordjournals.org/

D
ow

nloaded from

Figure 116: GLOv2 Hive Panel seed technique from [144].

Figure 117: 2x3 Hive Panel [144] rendered in GLO.js.

The 2x3 Hive Panel seed technique consists of a 2x3 grid of canvases. In each

canvas, constant-sized circular nodes colored by an attribute are distributed around

the center of the display by a discrete attribute and positioned at a distance from the

center of the display relatively by an attribute. The canvases in each row have the

same attribute driving the angular position, while the canvases in each column have

the same attribute driving the radial position. Edges are drawn as faded, constant-

sized curved lines colored the same as their source nodes unless the analyst interacts

166

with an endpoint, then the edge is drawn fully rendered.

As with the 3x3 GraphDice seed technique, I have abstracted away the meta-axis

labels and chose the specific 3x2 grid-size. I have also abstracted away the duplicate

axes.

• #node color attr: cluster

• #discrete1: cluster

• #discrete2: gender

• #attr1: betweenness centrality

• #attr2: pagerank

• #attr3: degree

• display nodes as circles

• size nodes by constant

• size edges by constant

• color nodes by {node color attr}

• display edges as curved lines

• show faded and incident edges

• position nodes on ✓ by {discrete1}

• position nodes on ⇢ by {attr1}

• partition canvas on x (parts:3)

• select canvas {1}

• position nodes on ⇢ by {attr2}

• select canvas {2}

• position nodes on ⇢ by {attr3}

• partition canvas on y (parts:2, all-canvases:true)

• select row {1} #0-indexed

• position nodes on ✓ by {discrete2}

• color edges by {source.node color attr} (all-canvases:true)

167

ScatterNet [27]

through the familiar network edges. This type of circle-relative layout
of nodes has been suggested in earlier systems such as VisAware [32]
and StarGate [35]. We felt that it would effectively convey both seg-
ment membership and company agreement links.

Fig. 6. The Segment View showing HP, Seagate and its partners and
emphasizing Seagate’s market segments and partner companies.

In this view, the size of each segment arc is proportional to the num-
ber of companies in that segment across the entire ecosystem. Three
different orderings of the segment arcs around the circle are available:
by value chain, by existing versus emerging segments, and by seg-
ment size. As mentioned above, companies dropped into the view are
represented by nodes placed at the centroid of their market segments.
Companies residing in only one segment are drawn in a band along
the segment in order to differentiate them from each other. Hovering
the mouse over a company highlights its segments, and hovering over
a segment highlights all of the companies in the view resident in that
segment. Figure 6 illustrates HP, Seagate and their partners. It shows
that Seagate participates in three market segments in the value chain
and has agreements with companies across a range of segments. This
view is applicable to set-valued categorical attribute data and would be
appropriate for similar data from other domains.

5.3.3 ScatterNet
Because the dataset contains such a wide variety of metrics and infor-
mation about each company in the ecosystem, we felt that dotlink360
should provide one view of the company-to-company agreement infor-
mation in the context of those metrics. The ScatterNet view (Figure 7)
provides this perspective and is essentially a node-link diagram em-
bedded in a scatterplot. Rather than have company (node) positions
determined via a graph layout algorithm, their x and y positions in the
view are determined by the company’s values along the two ecosys-
tem attributes assigned to the two axes. Available ecosystem attributes
include agreement activity descriptors, financial performance descrip-
tors, and network structure properties such as centrality and cluster
coefficient computed from the agreement network. Within the scat-
terplot, company nodes still react as in the other connectivity views:
expanding (double-clicking) on a company adds its partners at their
appropriate x,y scatterplot positions according to the current metrics
shown, connected to the initial company via gray edges. The analyst
is able to zoom into a particular region of the scatterplot by mouse
drag-selection of that region.

The benefits of attribute-related network node positioning have
been illustrated in systems such as PivotGraph [46], Semantic Sub-
strates [42] and GraphDice [12]. dotlink360’s ScatterNet view am-
plifies this idea and provides network-connected nodes embedded in
a flexible multivariate scatterplot. It could be used for multivariate
network data from many different domains as well.

Figure 7 shows the ScatterNet view populated by HP, Seagate Tech-
nology, and both its partners. The x-axis encodes portfolio diversity

Fig. 7. The ScatterNet View that embeds a network visualization in
a scatterplot. Here, portfolio diversity index and market cap uniquely
determine company positions. The mouse cursor is over IBM so its
partners, including HP, are blue.

index on a linear scale and and the y-axis encodes market capitaliza-
tion along a logarithmic scale. Hovering the mouse over IBM, a shared
partner of HP and Seagate, displays its values for the two metrics in a
tooltip. This view allows the analyst to observe HP’s position relative
to its agreement partners along these key metrics.

5.3.4 Geography

The Geography view (Figure 8) provides an additional perspective on
the network of companies and agreements. In this view, nodes are
placed on an interactive world map, located at latitude and longitude
coordinates derived from the primary address for each company. Ana-
lysts interact with nodes as previously described for the other connec-
tivity views and can zoom, recenter, and toggle the display of labels
and network edges. In addition, analysts can pan the map by clicking
and dragging anywhere in the main visualization.

Fig. 8. The Geography View, here zoomed in to show HP’s headquarters
location and the locations of its partners in Europe and the U.S.

Considering the running example of HP, an analyst places its node
on the map by dragging from the navigator panel, or by broadcast-
ing from one of the other views. Double-clicking on HP’s node adds
its partners to the view. This operation provides a convenient means
of observing the physical distribution of partners in a company’s net-
work. In this case, we note that many of HP’s partners are nearby,
the details of which can be examined by zooming into the Bay Area
around San Francisco. Other groups of partners are visible around the
world, including Europe, the UK, and Scandanavia.

2531BASOLE ET AL: UNDERSTANDING INTERFIRM RELATIONSHIPS IN BUSINESS ECOSYSTEMS WITH INTERACTIVE VISUALIZATION

Figure 118: GLOv2 ScatterNet seed technique from [27].

Figure 119: ScatterNet [27] rendered in GLO.js.

In the ScatterNet seed technique, nodes are displayed as constant-sized circles

colored by an attribute. Nodes are positioned on the x and y axes relatively by

attributes and scale axes for the attributes are displayed on the x and y axes. Edges

are hidden, except when the analyst interacts with an endpoint, in which case the

edge is drawn as a constant-colored, constant-sized straight line. Neighbors of the

interaction node are highlighted.

I have abstracted away the alternative axis types (e.g. logarithmic), the few node

168

labels, and the specific color scheme.

• #node color attr: cluster

• #attr1: degree

• #attr2: betweenness centrality

• display nodes as circles

• size nodes by constant

• color nodes by {node color attr}

• display edges as straight lines

• size edges by constant

• color edges by constant

• position nodes on x by {attr1}

• position nodes on y by {attr2}

• show x axis

• show y axis

• show incident edges

• highlight neighbors

Citevis [213]

Figure 120: GLOv2 Citevis seed technique based on [213].

169

Figure 121: Citevis [213] rendered in GLO.js.

In the Citevis seed technique, nodes are distributed along the y axis by a discrete

attribute. Within each row, the constant-sized, relatively-colored circular nodes are

stacked to the left. When the analyst interacts with a node, the neighbors of that node

highlight, with the in-neighbors and out-neighbors highlighting di↵erently. Edges are

hidden.

I have abstracted away the specific means by which the in- and out-neighbors are

highlighted, the details-on-demand panel, and the dynamic query widgets.

• #discrete: cluster

• #color attr: degree

• #sort attr: betweenness centrality

• hide edges

• display nodes as circles

• highlight in-out neighbors

• size nodes by constant

• position nodes on y by {discrete}

• show y axis

170

• position nodes evenly stacked {left} (sort-by:{sort attr}, within:{discrete}, in-

vert:true)

• color nodes by {color attr}

DOSA [232]

2310 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

1077-2626 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Multivariate Network Exploration and Presentation:
From Detail to Overview via Selections and Aggregations

Stef van den Elzen and Jarke J. van Wijk

Fig. 1. Multivariate network exploration using selections of interest, detail view (left) and high-level infographic-style overview (right).

Abstract—Network data is ubiquitous; e-mail traffic between persons, telecommunication, transport and financial networks are some
examples. Often these networks are large and multivariate, besides the topological structure of the network, multivariate data on
the nodes and links is available. Currently, exploration and analysis methods are focused on a single aspect; the network topology
or the multivariate data. In addition, tools and techniques are highly domain specific and require expert knowledge. We focus on
the non-expert user and propose a novel solution for multivariate network exploration and analysis that tightly couples structural and
multivariate analysis. In short, we go from Detail to Overview via Selections and Aggregations (DOSA): users are enabled to gain
insights through the creation of selections of interest (manually or automatically), and producing high-level, infographic-style overviews
simultaneously. Finally, we present example explorations on real-world datasets that demonstrate the effectiveness of our method for
the exploration and understanding of multivariate networks where presentation of findings comes for free.

Index Terms—Multivariate Networks, Selections of Interest, Interaction, Direct Manipulation

1 INTRODUCTION

Many real-world phenomena can be modeled as multivariate net-
works: e-mail traffic between persons within a company, a telecom-
munication network, money flowing between bank accounts, or physi-
cal objects such as airplanes flying from airport to airport or migration
of people between cities. The common theme here is the connection
(relation, link, edge) between objects (nodes, vertices). The number
of nodes and links of real-world data is generally large, in the order of
thousands. For these networks often more information on the nodes
and links is available. For example, in case of a company e-mail net-

• Stef van den Elzen is with the Department of Mathematics and Computer
Science, Eindhoven University of Technology, The Netherlands, and
SynerScope BV, Eindhoven, The Netherlands. E-mail: s.j.v.d.elzen@tue.nl.

• Jarke J. van Wijk is with the Department of Mathematics and Computer
Science, Eindhoven University of Technology, The Netherlands. E-mail:
j.j.v.wijk@tue.nl.

work we know more attributes of the persons (nodes) involved, like
age, gender, and job title. We also have more information about the
e-mails (links) such as time-sent, header-information, and body text.

The exploration and analysis of large multivariate networks is still
a challenge. Current methods are focused on either the structural as-
pect of the multivariate network, e.g., [46] or the multidimensional
data attached to the nodes and links, e.g., [35]. However, we be-
lieve the greatest insights are gained from simultaneous exploration,
as the two might be correlated or influence each other. For example,
we are not only interested in who is e-mailing to whom (structure)
or whether females or males are communicating more (multivariate
data), but we are more interested in whether females are communicat-
ing more with females or more with males and also between which
departments and what the distribution over time is (both structure and
multivariate data). For this we need to be able to inspect the attributes
in context of the underlying network topology. We provide a method
that enables users to explore both aspects in a uniform method using
selections of interest as central element. In summary, we go from De-
tail to Overview via Selections and Aggregations, which explains the
acronym we selected for our approach: DOSA. And also, a dosa is a
spicy Indian wrap, which resonates with our aim to combine existing
ingredients into a tasteful result.

For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014 ate of
publication 2014; date of current version 2014.11 Aug. 9 Nov.

D.

Digital Object Identifier 10.1109/TVCG.2014.2346441

Figure 122: GLOv2 DOSA seed technique from [232].

Figure 123: Approximate DOSA [232] rendered in GLO.js.

The DOSA seed technique consists of two canvases. In the first canvas, constant-

sized circular nodes colored by an attribute are positioned relatively along the x

and y axes by attributes. Edges are drawn as constant-sized curved lines colored

by a gradient from the source node’s color to the target node’s color. In the second

171

canvas, the nodes in the first canvas are aggregated into super-nodes, displayed as

constant-sized squares colored by the same attribute as the first canvas’s nodes and

positioned at the average position of the nodes aggregated. Super-edges between the

super-nodes are displayed as relatively-sized curved lines colored by a gradient from

the source super-node’s color to the target super-node’s color.

I have abstracted away the multi-selection interaction (instead, the e↵ect is of

every node being a member of a selection based on a discrete attribute). I have

also abstracted away the embedded visualizations replacing the node glyphs in the

aggregated display.

• #discrete: cluster

• #attr1: clustering coe�cient

• #attr2: number of triangles

• #method: mean

• #Unaggregated canvas

• display nodes as circles

• color nodes by {discrete}

• size nodes by constant

• display edges as curved lines

• size edges by constant

• color edges by {source.discrete}!{target.discrete}

• position nodes on x by {attr1}

• position nodes on y by {attr2}

• #Aggregated canvas

• partition canvas on x

• aggregate nodes by {discrete} by {method}

• display nodes as squares

• aggregate edges by [{source.discrete},{target.discrete}] by {method}

172

• size nodes by {count}

• size edges by {count}

NodeTrix [117]

Fig. 7: NodeTrix visualization of the information visualization field. This is the largest connected component extracted from the dataset used
in the Infovis’04 Contest available at http://www.cs.umd.edu/hcil/iv04contest/. We manually removed a couple of remaining
duplicated authors. Colors on axes of matrices represent the number of citations of each author. Color intensity within the matrices represents
the strength of each collaboration.

1309IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

Figure 124: GLOv2 NodeTrix seed technique from [117].

Figure 125: Approximate NodeTrix [117] rendered in GLO.js.

The NodeTrix seed technique consists of four sets of constant-sized, relatively-

colored label nodes arranged in squares. Each square represents a cluster. Within

each square, the first set of nodes is aligned to the left of the square and distributed

along the y axis sorted from top to bottom. The second set is aligned to the right

173

right of the square and distributed along the y axis sorted from top to bottom. The

third set is aligned along the top of the square, rotated 90 degrees, and ordered from

left to right. The fourth set is aligned along the bottom of the square, rotated 90

degrees, and ordered from left to right. Edges within each square are displayed as

constant-sized, relatively colored squares positioned at the y position of the source

node in the first set of nodes and the x position of the target node in the third set of

nodes. Edges between nodes in di↵erent squares are displayed as relatively-colored,

constant-sized curved lines.

I have abstracted away the specific color scheme, as well as the fact that intra-

cluster edges are drawn from the closest source glyph in one cluster to the closest

target glyph in the second cluster.

• #label attr: name

• #node color attr: degree

• #edge color attr: weight

• #discrete: cluster

• #Visual properties

• display nodes as {label attr} labels

• color nodes by {node color attr}

• size nodes by constant

• color edges by {edge color attr}

• size edges by constant

• #Position nodes in a large circle

• position nodes by constant on ⇢

• evenly distribute nodes on ✓ (sort-by:{discrete})

• #Left columns within clusters

• align nodes {left} (group-by:{discrete})

• evenly distribute nodes on y (group-by:{discrete}, invert:true)

174

• #Right columns within clusters

• clone nodes

• align nodes {right} (group-by:{discrete})

• #Top rows within clusters

• clone nodes

• rotate nodes {90}

• evenly distribute nodes on x (group-by:{discrete})

• align nodes {top} (group-by:{discrete})

• #Bottom rows within clusters

• clone nodes

• align nodes {bottom} (group-by:{discrete})

• #Edges

• set target generation {2} #Top row

• #Intra-cluster edges as curved lines

• show all edges

• display edges as curved lines

• #Inter-cluster edges as squares

• display edges as squares (group-by:{discrete})

175

APPENDIX C

GLOV1 OPERATIONS SET

Positioning Nodes The operations in this category each adjust the two-dimensional

(x,y) coordinate positions of node glyphs.

• Align Nodes {Left, Center, Right, Top, Middle, Bottom}: adjusts the

position of the nodes by changing the appropriate coordinate values of all nodes

to a constant value.

• Evenly Distribute Nodes on x or y by {attribute}: disperses the nodes

horizontally or vertically so that the nodes are evenly distributed on the appro-

priate axis, sorted by the provided attribute of the nodes.

• Evenly Distribute Nodes on x or y: disperses the nodes horizontally or

vertically so that the nodes are evenly distributed on the appropriate axis,

defaulting to the nodes’ ordering in the data store.

• Substrate Nodes on x or y by {categorical attribute}: positions the

nodes based on a categorical attribute value. Attribute values are assigned to

locations evenly across the appropriate axis and each node is then positioned

at its value’s location.

• Evenly Distribute Nodes within Substrates: positions the nodes of the

most recently applied substrate evenly along the opposite axis of the substrate

axis.

• Position Nodes on x or y Relatively by {continuous attribute}: posi-

tions each node based on a continuous attribute. The left-most or bottom-most

176

position is assigned a zero value and the right-most or top-most position is as-

signed the maximum value amongst the nodes. Nodes are then positioned along

the axis using a linear scale of their attribute values.

• Evenly Distribute Nodes Radially by {attribute}: position the nodes

evenly around the center of the plot clockwise from the top, sorted by the

attribute of the node.

• Evenly Distribute Nodes Radially: position the nodes evenly around the

center of the plot clockwise from the top, defaulting to the nodes’ ordering in

the data store.

• Position Nodes Radially by {continuous attribute}: positions each node

radially based on a continuous attribute. The top-most position is assigned a

zero value and the position just left of the top value is assigned the maximum

value amongst the nodes. Nodes are then positioned clockwise-radially using a

linear scale of their attribute values.

• Substrate Nodes Radially by {categorical attribute}: positions the nodes

based on a categorical attribute value. Attribute values are assigned to loca-

tions evenly around the center of the plot and each node is then positioned at

its value’s location.

• Evenly Distribute Nodes Along Plot Radius by {attribute}: disperses

the nodes so that the nodes are evenly distributed in distance from the center

of the plot to the edge of the plot, sorted from the center by the attribute of

the node.

• Evenly Distribute Nodes Along Plot Radius: disperses the nodes so that

the nodes are evenly distributed in distance from the center of the plot to the

177

edge of the plot, sorted from the center by the attribute of the node, defaulting

to the nodes’ ordering in the data store.

• Position Nodes Along Plot Radius by {continuous attribute}: posi-

tions each node based on a continuous attribute. The inner-most position is

assigned a zero value and outer-most position is assigned the maximum value

amongst the nodes. Nodes are then positioned from the inner-most position to

the outer-most using a linear scale of their attribute values.

• Substrate Nodes Along Plot Radius by {categorical attribute}: po-

sitions the nodes based on a categorical attribute value. Attribute values are

assigned to locations evenly along the radius of the plot and each node is then

positioned at its value’s location.

• Position Nodes Along Plot Radius by Constant: Positions the nodes a

fixed distance from the center of the plot.

• Apply {algorithm} to the Nodes: positions the nodes using a physics-based

algorithm, such as a force-directed algorithm.

Modifying Element Properties The GLOs in this category each modify the non-

spacial visual properties of the node and edge glyphs.

• Size Nodes by Constant: adjusts the radius of each node to a constant value.

• Size Nodes Relatively by {continuous attribute}: adjusts the radius of

each node using a linear scale between zero and the maximum value amongst

the nodes.

• Display All Links: makes all edges visible.

• Display Selected Links: makes all edges invisible. When the user mouses

over a node, makes the in- and out-edges of that node visible.

178

• Hide Links: makes edges invisible.

• Display Links as Straight: adjusts each edge to be drawn as a straight line

from the center of the source node to the center of the target node.

• Display Links as Curved: draws each edge as a quadratic curve clockwise

from the source node to the target node.

• Display Links as Circles: adjusts each edge to be drawn as a circle with y

coordinate of its source node and x coordinate of its target node.

Cloning Nodes This category of GLOs allows for duplicating node glyphs and

interacting with the various sets of duplicates. Each cloning operation creates a new

generation of nodes, and each generation is assigned an identifying generation number

so that the generation can be referenced by other operations. The initial set of nodes

are assigned generation number 0. After that, the first clone (or aggregate) genera-

tion created is assigned generation number 1, the second 2, and so on. The active

generation is the generation of nodes on which GLOs are applied. For example, if an

evenly distribute nodes on x GLO is applied, only the nodes in the active generation

are repositioned.

• Clone Active Generation: generates copies of all of the node glyphs of the

current generation. The copies have the same visual properties of the cloned

generation. The new generation is assigned a generation number for reference

and becomes the active generation.

• Select Generation k: select a generation of nodes and makes it the active

generation. Subsequent GLOs are applied to this generation.

• Set Source Generation k: adjust edges to be drawn from generation k.

• Set Target Generation k: adjust edges to be drawn to generation k.

179

• Remove Generation k: Removes the glyphs of generation k from the display.

If edges were being drawn to or from this generation, they are instead drawn

to or from generation 0 (the initial nodes). If generation k was the active

generation, generation 0 becomes the active generation.

Aggregating Nodes and Edges This category of GLOs enable the creation of

glyphs that represent more than a single node or edge. As with cloning GLOs,

aggregation creates new generations of nodes and assigns them generation numbers

for reference.

• Aggregate by {categorical attribute}: aggregates nodes with the same

attribute into supernodes and aggregates edges into superedges between the

supernodes. The original nodes and edges are discarded. The radius of the

supernodes and width of the superedges are determined relatively by the number

of nodes or edges the supernode or superedge represents. These supernodes and

superedges are assigned a generation number in order to reference them and are

set as the active generation as described in [244].

• Aggregate by {categorical attribute} and {categorical attribute}: as

above, but aggregates nodes where the values of both attributes are the same.

• Deaggregate Generation k: deaggregates the supernodes and superedges of

the kth generation back into the original nodes and edges. The original nodes

retain their original sizes, but are positioned at their respective supernodes’

most recent positions.

Modifying Display Properties The operations in this category do not modify

the elements of the graph (the node and edge glyphs) but instead modify the display

itself.

180

• Show x or y Axis: displays labels on the appropriate axis based on the

currently applied positioning GLO. These labels are updated as new positioning

GLOs are applied.

• Hide x or y Axis: hides the labels on the appropriate axis.

181

APPENDIX D

GLOV2 OPERATIONS SET

Please see Section 4.4 for properties of the GLO domain-specific language and for

descriptions of the optional parameters of each operation: group-by, within, sort-by,

invert, all-generations, and all-canvases.

Node and Edge Positioning The operations in this category reposition either

the node or edge glyphs within a canvas.

• Align nodes {dir}: Position node glyphs at a constant value along an axis.

Valid directions are up, down, left, right, center (x), and middle (y).

• Evenly distribute nodes on {axis}: Evenly disperse the node glyphs along

the provided axis. If a sort-by parameter is provided, the nodes are sorted by

the sort-by attribute. If an invert parameter is provided, the nodes are sorted

in reverse order.

• Position nodes on {axis} by constant: Position node glyphs at a pre-

defined constant value along the provide axis.

• Position nodes on {axis} by {attr}: Position node glyphs relatively along

the axis by the provided attribute. If the attribute is a discrete attribute,

distribute the values along the axis. If an invert parameter is provided, the axis

is flipped.

• Position nodes evenly stacked on {dir}: Position the node glyphs at

axis0 + i ⇤ default

s

tack

d

istance, where i is the index in the sorted list. (A

suggested default stack distance is the default node size.) Valid directions are

182

up, down, left, and right. The direction determines the value of axis0. If a

sort-by parameter is provided, the nodes are sorted by the sort-by attribute. If

an invert parameter is provided, the nodes are sorted in reverse order.

• Position nodes stacked on {axis} by {attr}: If the provided attribute is

continuous, given the sum of each values of the attribute (s = ⌃v
n

) and the

total length of the axis (l), the position of the glyph of the largest valued node

is p0 = axis0. Position each subsequent node’s glyph at p
n�1 + (v

n�1/s) ⇤ l. If

the provided attribute is discrete, equivalent to Position nodes evenly stacked

on {dir}. If an invert parameter is provided, the axis is flipped.

• Apply force-directed algorithm to nodes: Use a force-directed layout algo-

rithm to position the node glyphs on the canvas. If the nodes are super-nodes,

edges are assumed to be the super-edges induced by the nodes.

• Align edges {dir}: Position edge glyphs at a constant value along an axis.

Valid directions are up, down, left, right, center (x), and middle (y). Operation

has no e↵ect unless edges are displayed as text, squares, or bars.

• Evenly distribute edges on {axis}: Evenly disperses the edge glyphs along

the provided axis, sorted by the optional by attribute. Operation has no e↵ect

unless edges are displayed as text, squares, or bars.

• Position edges by {attr},{attr}: Position the edge glyphs such that the x

coordinate is based on the first attribute and the y coordinate based on the

second attribute. Operation has no e↵ect unless edges are displayed as text,

squares, or bars.

Node and Edge Visual Properties The operations in this category adjust how

the individual glyphs are displayed. A given node or edge glyph has a single display

183

mode, single color, and single size. Node glyphs have a single rotation. Edge glyphs

have a single waypoint or no waypoints.

• Display nodes as circles: Display node glyphs as circles.

• Display nodes as squares: Display node glyphs as squares.

• Display nodes as {attr} labels: Display each node glyph as text with the

string value of the node’s attribute value.

• Display nodes as bars: Display node glyphs as rectangles.

• Display edges as straight lines: Display edges as straight lines between

the source and target nodes’ glyphs in the edge generation’s source and target

generations, respectively.

• Display edges as curved lines: Display edges as curved lines between the

source and target nodes’ glyphs in the edge generation’s source and target gen-

erations, respectively. Edges curve counter-clockwise, unless an invert flag is

passed and then the edges should curve clockwise.

• Display edges as squares: Display edges as squares.

• Display edges as {attr} labels: Display edges as text of the edges’ attribute

values.

• Display edges as bars: Display edges as rectangles.

• Display edges as right angles: Display edges as right angles between the

source and target nodes’ glyphs in the edge generation’s source and target gen-

erations, respectively. Edges are drawn counter-clockwise, unless an invert flag

is passed and then the edges should curve clockwise.

184

• Size nodes by constant: Size node glyphs by a implementation-determined

constant.

• Size nodes by {attr}: Size node glyphs relatively by the provided attribute.

• Size edges by constant: Size edge glyphs by an implementation-determined

constant.

• Size edges by {attr}: Size edge glyphs relatively by the provided attribute.

• Color nodes by constant: Color node glyphs the implementation-default

node color.

• Color nodes by {attr}: Color node glyphs relatively by the provided color

attribute.

• Color edges by constant: Color edge glyphs by the implementation-default

edge color.

• Color edges by {attr}: Color edges relatively by the provided color attribute.

• Color edges by {attr}!{attr}: Color edges using a gradient between the

provided color attributes.

• Rotate nodes {num} degrees: Rotate the node glyphs from their current

rotation the specified number of degrees counter-clockwise. This operation is

additive.

• Unrotate nodes: Return the node glyphs to their default rotation.

• Set edge waypoint edge generation {num}: Edges route through the

glyph in the provided edge generation associated with the same backing edge.

(Operation has no visible e↵ect when edges are displayed as text, squares, or

bars.)

185

• Remove all edge waypoints: Edges no longer route through a waypoint

generation, if they did.

Convex Hulls The operations in this category manipulate translucent convex hulls

around node glyphs.

• Show convex hulls: Draw a translucent convex hull around node glyphs in

the default convex hull color.

• Hide convex hulls: Hide convex hulls.

• Color convex hulls by {attr}: Color convex hulls relatively by the provided

attribute.

• Color convex hulls by constant: Color convex hulls the default convex hull

color.

Interaction The operations in this category manipulate if and/or how to render

glyphs di↵erently when the analyst interacts with a node. (It is left to the implemen-

tation what constitutes an interaction.) Only a single interaction mode (including no

interaction) will be active for any given edge or node glyph.

• Show all edges: Fully render edge glyphs, regardless of interaction.

• Hide edges: Do not render edge glyphs, regardless of interaction.

• Show edges as faded: Render edge glyphs with a lower color saturation,

regardless of interaction.

• Show incident edges: Do not render edge glyphs, except to fully render edge

glyphs when the analyst interacts with the backing edge’s end-point’s node

glyph. When rendering edge glyphs, fully render the edge glyph.

186

• Show in-out edges: Do not render edge glyphs, except to fully render edge

glyphs when the analyst interacts with the backing edge’s end-point’s node

glyph. When rendering edge glyphs, fully render the edge glyph. Glyphs rep-

resenting in-edges and out-edges are rendered di↵erently.

• Show faded and incident edges: Render edge glyphs with a lower color

saturation, except to fully render edge glyphs when the analyst interacts with

the backing edge’s end-point’s node glyph.

• Highlight neighbors: Render node glyphs di↵erently if the backing node is a

neighbor of the backing node of the glyph which the analyst is interacting.

• Highlight in-out neighbors: Render node glyphs di↵erently if the backing

node is a neighbor of the backing node of the glyph which the analyst is inter-

acting. Further, render glyphs representing in-nodes and out-nodes di↵erently.

• Stop highlight neighbors: Render all node glyphs the same, regardless of

interaction.

Aggregation The operations in this category are for aggregating and deaggregating

node and edge generations. The {discrete} attribute in the two aggregation GLOs

can be an array of discrete attributes. When an array is used, nodes or edges are

aggregated if they have the same values for all of the attributes in the array.

• Aggregate nodes by {discrete} using {method}: Create a new generation

of node glyphs, one node glyph for each value of the discrete attribute with the

display and interaction modes of the generation being aggregated. The new

node glyphs are backed by super-nodes, which have attributes based upon the

aggregated nodes: discrete attribute values are chosen from the most common

values of the aggregated nodes, while continuous attributes are determined using

187

the provided method. (Allowed methods include sum, mean, mode, minimum,

and maximum.) The new nodes are positioned at the mean x and y values of

the aggregated nodes. Hides the original node generation. Sets the new node

generation as the active generation.

• Aggregate edges by {discrete} using {method}: Create a new generation

of edge glyphs, one edge glyph for each value of the discrete attribute with

display and interaction modes and source and target generations of the genera-

tion being aggregated. The new node glyphs are backed by super-edges, which

have attributes based upon the aggregated edges: discrete attribute values are

chosen from the most common values of the aggregated nodes, while continu-

ous attributes are determined using the provided method. (Allowed methods

include sum, mean, mode, minimum, and maximum.) Hides the original edge

generation. Sets the new edge generation as the active generation.

• Deaggregate nodes: If the node generation is backed by super-nodes, re-

move the node generation and unhides the original node generation from which

the aggregate generation was created. The glyphs in the original generation

have the display and interaction modes and positions of the removed aggregate

generation.

• Deaggregate edges: If the node generation is backed by super-edges, remove

the edge generation and unhides the original edge generation from which the

aggregate generation was created. The glyphs in the original generation have

the display and interaction modes and source and target generations of the

removed aggregate generation.

Cloning The operations in this category relate to creating and manipulating gen-

erations of node and edge glyphs. Group-by and within optional parameters are

188

ignored if passed to any operations in this category. A node generation counter and

edge generation counter are used to keep track of the generations.

• Clone nodes: Create a new generation of node glyphs with the same display

mode, interaction mode, convex hull(s), and color and size properties as the

generation to which the operation is applied. The generation is given the next

index based on the generation counter.

• Clone edges: Create a new generation of edge glyphs with the same display

mode, interaction mode, waypoints, and color and size properties as the gener-

ation to which the operation is applied. The generation is given the next index

based on the generation counter.

• Select node generation {num}: Set the given node generation as the active

node generation.

• Select edge generation {num}: Set the given node generation as the active

edge generation.

• Set source generation {num}: Edge glyphs will be drawn with the node

glyphs in the given node generation as their source.

• Set target generation {num}: Edge glyphs will be drawn with the node

glyphs in the given node generation as their target.

• Remove node generation {num}: Removes the specified node generation’s

glyphs. If the node generation was the only node generation in its canvas,

a null state node generation is created and assigned an index of 0 if there is

only a single canvas or the next index if there are multiple canvases. If the

node generation was a source (or target) generation for any edge generations,

that edge generation is assigned the lowest-indexed node generation it the same

canvas as the source (or target) generation.

189

• Remove edge generation {num}: Removes the specified edge generation’s

glyphs. If the edge generation was the only edge generation in its canvas, a null

state edge generation is created and assigned an index of 0 if there is only a

single canvas or the next index if there are multiple canvases.

• Remove all cloned nodes: Removes all but the lowest-indexed node gener-

ation in the canvas. Remaining node generation is assigned an index of 0 if

there is only a single canvas or the next index if there are multiple canvases.

All edge generations are assigned the remaining node generation as their source

and target generation.

• Remove all cloned edges: Removes all but the lowest-indexed edge genera-

tion in the canvas. Remaining edge generation is assigned an index of 0 if there

is only a single canvas or the next index if there are multiple canvases.

Partitioning The operations in this category relate to creating and manipulating

canvases within the GLO Display. A canvas counter is used to keep track of the

canvases.

• Partition canvas on {axis} (by {num}): Divide the current (original)

canvas into {num} evenly-sized canvases along the provided axis (x or y). Clones

all node and edge generations in the original canvas into the new canvases. Sets

the clones of the former active node and edge generations in the last canvas as

the active node and edge generations and the last canvas as the active canvas.

• Filter partition canvas on {axis} by {discrete}: Divide the current (orig-

inal) canvas into k evenly-sized canvases along the provided axis (x or y), where

k is the number of di↵erent values of the provided discrete attribute. Clone all

node and edge generations in the original canvas into the new canvases, however

the cloned node generation in each canvas only includes the node glyphs for the

190

nodes with a single value for the discrete attribute and the edge generation only

includes edge glyphs for the edges in the subgraph induced by the nodes with

that value. Sets the clones of the former active node and edge generations in

the last canvas as the active node and edge generations and the last canvas as

the active canvas.

• Select canvas {num}: Set the specified canvas as the active canvas.

• Select row {num}: Set the canvases in the specified row (0-indexed from top

to bottom) as active canvases.

• Select column {num}: Set the canvases in the specified column (0-indexed

from left to right) as active canvases.

• Remove canvas {num}: Remove the specified canvas and merges it (if pos-

sible) with the canvas to the left (if there is no canvas to the left, then canvases

to the right, up, and down are tried in order). All node and edge generations

in the removed canvas are moved (rather than cloned) into the merged canvas.

If the removed canvas is the only active canvas, the merged canvas is set as

the active canvas. The active node and edge generations of the merged canvas

remain the prior active node and edge generations of that canvas.

• Remove all partitions: Merge all canvases into the top-left canvas. All node

and edge generations in the removed canvases are moved (rather than cloned)

into the merged canvas. The merged canvas is set as the active canvas. The

active node and edge generations of the merged canvas remain the prior active

node and edge generations of that canvas. If the removed canvases were cre-

ated through filter-partitioning, the node generations are merged and the edge

generations are merged to create single node and edge generations.

191

Axes The operations in this category are for showing, hiding, and manipulating

canvases’ axis labels and the GLO Display’s meta-axis labels.

• Show {axis} axis: If the provided axis’s labels are not currently visible,

display the axis labels for the provided axis on the canvas.

• Hide {axis} axis: If the provided axis’s labels are currently visible, hide the

axis labels for the provided axis on the canvas.

• Set {axis} axis node generation {num} The specified node generation will

be used to determine the values for the specified axis’s labels.

• Show meta {axis} axis: If the provided meta-axis labels are not currently

visible, display the meta-axis labels for the provided axis on the GLO Display.

• Hide meta {axis} axis: If the provided meta-axis’s labels are currently visi-

ble, hide the meta-axis labels for the provided axis on the GLO Display.

192

APPENDIX E

GLOV2 LITERATURE REVIEW RESULTS

In this appendix, I list the visualization techniques that were not chosen as GLOv2

seed techniques during the literature review described in Section 3.1.2. I have grouped

the techniques by their categories described in that section.

E.1 Tree Visualization Techniques

• Reingold and Tilford [185]

• H-Trees [75, 230]

• Radial tree layout [75]

• Cone Tree [187]

• Balloon Tree [55]

• RINGS [222]

• 3D Balloon Trees [24]

• Treemaps [134]

• Squarified Treemaps [254]

• Cushion Treemaps [236]

• Voronoi Treemaps [172]

• Spiral Treemaps [227]

• Balloon Focus [228]

• Spatially-Ordered Treemaps [254]

• Quantum Treemaps [35]

• Bubblemaps [35]

• Information Slices [12]

193

• Sunbursts [212]

• Fan Chart [70]

• Hyperbolic [169, 148]

• CHEOPS [33]

• Multitrees [92]

• 3D Cluster Tree [76]

• Information Pyramids [13]

• Collapsible Cylindrical Trees [66]

• Botanical Trees [143]

• Disk Tree [59]

• SpaceTree [181]

• Beam Trees [234]

• TreeWiz [188]

• MatrixZoom [4]

• PolyPlane [126]

• Expand-Ahead [162]

• Zoomology [125]

• Circle-packing [241]

• Elastic Hierarchies [260]

• Bubble tree [102]

• CandidTree [150]

• Visual tree comparison [122]

• Bar trees [183]

• Dendogram-matrix [58]

• rectangle packing [132]

• TreeVersity [97]

• Treeversity2 [103]

194

• Cascaded Treemap [157]

• Flow Map Layout [257]

• WebFan [258]

• AdaptivTree [220]

E.2 DAG Visualization Techniques

• Sugiyama [218]

• Needle grid [3, 2]

• Star map [3, 2]

• Multi-comb [3, 2]

• Multi-wedge [3, 2]

• Sketches [3, 2]

• Orthogonal Bars Sketch [3, 2]

• DAGView [100]

• Quilts [21]

• GeneaQuilts [37]

• TimeNet [142]

• DagTreemaps [226]

• pygmybrowser [25]

E.3 Graph Visualization Display Customizations

• Motifs [71]

• Alternate node glyphs [108]

• Clusters as Convex Hulls [108]

• Hierarchical Aggregation [77]

• Edge Labels as Edge Glyphs [252]

• Edge Bundling [257, 120, 65, 123, 261, 221, 79, 147, 200, 95, 146, 156]

• Alternate Directed Edge Glyphs [124, 121, 170]

195

• In-out Directed Edge Glyphs [74]

• Partial Directed Edge Glyphs [50]

• Node Duplication [115]

• Alternate Node Glyph Techniques [202]

• Interactive Link Curvature [186]

E.4 Graph Visualization Interaction Customizations

• Fisheye [194, 54]

• Multiple Fisheye [175]

• Hyperbolic Fisheye [180]

• Fog Fisheye [86]

• DOI-Trees [53, 112]

• EdgeLens [249]

• Space-Folding [78]

• Bring-and-Go [166]

• Selective Highlighting [108, 166]

• Link-Fanning [186]

• Link-Sliding [166]

• Structure-based Brushing [91]

• Edge-Plucking [250]

• Pan [32]

• Geometric Zoom [32]

• Semantic Zoom [251]

• Dynamic Queries [145]

• Prune+Grow (Gardening Ops) [187]

• Prune nodes/labels, but links remain [60]

• Drag Expand-Collapse [161]

196

• Treemap Zooming Interactions [38]

• Subgraph Selection [248, 163]

• MoleView [130]

• Complex Node Glyph Lens [136]

• Visual Queries [201]

• TreemapBar [127]

E.5 Dynamic Graph Visualization Techniques

• Animating [46, 67]

• 3D Columns [43]

• Animating Colors [193]

• Static Dynamic-showing Glyphs [193]

• GestaltMatrix [44]

• Parellel-Coordinate-esque [48]

• TimeRadarTrees [47]

• Timeline Trees [49]

• TimeArcTrees [101]

• Manynets [89]

• InSitu Dynamic Graphs [104]

• Dynamic Di↵erences [16]

• 1.5D Network [203]

• Matrix Cube [20]

• Di↵Ani [191]

• Alluvial diagram of cluster changes [189, 184]

• stability/consistency slider [81]

• degree heatmap [99]

• Weighted Comparison [11]

197

• Dynamic Hypergraph Vis [133]

• Pixel-Oriented Matrices [215]

• Tree-Ring Social Networks [80]

• TimeMatrix [259]

E.6 General Graph Visualization Non-Seed Techniques

E.6.1 Reduce to Tree

• SPF [14]

• MO-Tree [42]

• Space-Filling Curves [167]

• Treemap of hierarchy [168]

• Treemaps with Links [82]

• Similarity trees [177]

• ArcTree [171]

• TreePlus [149]

• Grouse [17]

• GrouseFlocks [15]

• TreeNetViz [98]

E.6.2 Three-Dimensional

• Ask-Graphview [5]

• 3D node-link using stereoscope [242]

• Graph Surfaces [6]

• Cityscape [57]

• State-Transition Graphs [233]

• Landscape [45]

• WilmaScope [9]

198

E.6.3 Topology-Dependent

• C-Group [139, 27]

• B-Matrix [22]

• Compressed Adjacency Matrix [68]

• Edge-Compression [72]

• SegmentView [27]

• JauntyNet [137]

199

APPENDIX F

HIERARCHICAL CLUSTERINGS

Here I present the results of the various hierarchical clusterings using the three vec-

torization methods (no-flags, flags, and flags-xtra), three distance metrics (Hamming

distance [107], Jaccard distance [151], and cosine distance [206]), and four cluster

comparison methods (single, complete [239], average [210], and weighted [210]) de-

scribed in Section 5.2.1. Within each vectorization method, the clustering results are

sorted by their cophenetic correlation coe�cient [211], which is a measure of how

closely a hierarchical clustering maintains pair-wise distances between data points

using the chosen distance metric.

200

F.1 Binary GLO-Vectors without Optional Parameters (no-
flags)

Average Method and Hamming Distance Cophenetic Correlation: 0.832799904046

Figure 126: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using average method and Hamming distance.

201

Weighted Method and Hamming Distance Cophenetic Correlation: 0.821886497865

Figure 127: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using weighted method and Hamming distance.

202

Weighted Method and Jaccard Distance Cophenetic Correlation: 0.755900447652

Figure 128: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using weighted method and Jaccard distance.

203

Complete Method and Hamming Distance Cophenetic Correlation: 0.726395383264

Figure 129: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using complete method and Hamming distance.

204

Average Method and Cosine Distance Cophenetic Correlation: 0.703449587146

Figure 130: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using average method and cosine distance.

205

Average Method and Jaccard Distance Cophenetic Correlation: 0.706271040351

Figure 131: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using average method and Jaccard distance.

206

Complete Method and Jaccard Distance Cophenetic Correlation: 0.68661661651

Figure 132: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using complete method and Jaccard distance.

207

Weighted Method and Cosine Distance Cophenetic Correlation: 0.693924001138

Figure 133: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using weighted method and cosine distance.

208

Complete Method and Cosine Distance Cophenetic Correlation: 0.676424420188

Figure 134: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using complete method and cosine distance.

209

Single Method and Hamming Distance Cophenetic Correlation: 0.592861499268

Figure 135: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using single method and Hamming distance.

210

Single Method and Jaccard Distance Cophenetic Correlation: 0.468258988449

Figure 136: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using single method and Jaccard distance.

211

Single Method and Cosine Distance Cophenetic Correlation: 0.425621644926

Figure 137: SciPy hierarchical clustering of GLO-Vectors without optional parameters
using single method and cosine distance.

212

F.2 Binary GLO-Vectors with Optional Parameters (flags)

Average Method and Hamming Distance Cophenetic Correlation: 0.82737073354

Figure 138: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using average method and Hamming distance.

213

Weighted Method and Hamming Distance Cophenetic Correlation: 0.818087307422

Figure 139: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using weighted method and Hamming distance.

214

Complete Method and Hamming Distance Cophenetic Correlation: 0.783238551964

Figure 140: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using complete method and Hamming distance.

215

Single Method and Hamming Distance Cophenetic Correlation: 0.712729004514

Figure 141: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using single method and Hamming distance.

216

Average Method and Cosine Distance Cophenetic Correlation: 0.683772174974

Figure 142: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using average method and cosine distance.

217

Weighted Method and Cosine Distance Cophenetic Correlation: 0.693246619992

Figure 143: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using weighted method and cosine distance.

218

Weighted Method and Jaccard Distance Cophenetic Correlation: 0.694940609581

Figure 144: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using weighted method and Jaccard distance.

219

Average Method and Jaccard Distance Cophenetic Correlation: 0.681375526271

Figure 145: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using average method and Jaccard distance.

220

Single Method and Jaccard Distance Cophenetic Correlation: 0.659515346766

Figure 146: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using single method and Jaccard distance.

221

Single Method and Cosine Distance Cophenetic Correlation: 0.607775788637

Figure 147: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using single method and cosine distance.

222

Complete Method and Jaccard Distance Cophenetic Correlation: 0.581438654173

Figure 148: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using complete method and Jaccard distance.

223

Complete Method and Cosine Distance Cophenetic Correlation: 0.567172438706

Figure 149: SciPy hierarchical clustering of GLO-Vectors with optional parameters
using complete method and cosine distance.

224

F.3 Binary GLO-Vectors with Optional Parameters as Fea-
tures (flags-xtra)

Average Method and Hamming Distance Cophenetic Correlation: 0.824649599232

Figure 150: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using average method and Hamming distance.

225

Weighted Method and Hamming Distance Cophenetic Correlation: 0.813288450195

Figure 151: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using weighted method and Hamming distance.

226

Complete Method and Hamming Distance Cophenetic Correlation: 0.780160002224

Figure 152: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using complete method and Hamming distance.

227

Average Method and Cosine Distance Cophenetic Correlation: 0.699558498029

Figure 153: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using average method and cosine distance.

228

Average Method and Jaccard Distance Cophenetic Correlation: 0.698051712306

Figure 154: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using average method and Jaccard distance.

229

Weighted Method and Cosine Distance Cophenetic Correlation: 0.660528026618

Figure 155: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using weighted method and cosine distance.

230

Weighted Method and Jaccard Distance Cophenetic Correlation: 0.668918009918

Figure 156: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using weighted method and Jaccard distance.

231

Single Method and Hamming Distance Cophenetic Correlation: 0.639731210892

Figure 157: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using single method and Hamming distance.

232

Complete Method and Cosine Distance Cophenetic Correlation: 0.643819269884

Figure 158: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using complete method and cosine distance.

233

Complete Method and Jaccard Distance Cophenetic Correlation: 0.63682320527

Figure 159: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using complete method and Jaccard distance.

234

Single Method and Jaccard Distance Cophenetic Correlation: 0.514020768581

Figure 160: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using single method and Jaccard distance.

235

Single Method and Cosine Distance Cophenetic Correlation: 0.471452345878

Figure 161: SciPy hierarchical clustering of GLO-Vectors with optional parameters
as additional features using single method and cosine distance.

236

REFERENCES

[1] “Processing.” http://processing.org.

[2] Abello, J., Finocchi, I., and Korn, J., “Graph sketches,” in IEEE Sym-
posium on Information Visualization, 2001. INFOVIS 2001, pp. 67–70, 2001.

[3] Abello, J. and Korn, J., “Visualizing massive multi-digraphs,” in IEEE
Symposium on Information Visualization, 2000. InfoVis 2000, pp. 39–47, 2000.

[4] Abello, J. and van Ham, F., “Matrix Zoom: A Visual Interface to Semi-
External Graphs,” in IEEE Symposium on Information Visualization, 2004.
INFOVIS 2004, pp. 183–190, 2004.

[5] Abello, J., van Ham, F., and Krishnan, N., “ASK-GraphView: A Large
Scale Graph Visualization System,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, pp. 669–676, Sept. 2006.

[6] Abello, J. and Krishnan, S., “Graph Surfaces,” in Proceedings of Interna-
tional Congress on Industrial and Applied Math, pp. 234–244, 1999.

[7] Adar, E., “GUESS: A Language and Interface for Graph Exploration,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’06, (New York, NY, USA), pp. 791–800, ACM, 2006.

[8] Adobe Software, “Illustrator.” https://www.adobe.com/products/illustrator.html.

[9] Ahmed, A., Dwyer, T., Murray, C., Song, L., andWu, Y. X., “WilmaS-
cope Graph Visualisation,” in IEEE Symposium on Information Visualization,
2004. INFOVIS 2004, pp. r4–r4, Oct. 2004.

[10] Aiken, A., Chen, J., Lin, M., Spalding, M., Stonebraker, M.,
and Woodruff, A., “The Tioga-2 database visualization environment,” in
Database Issues for Data Visualization (Wierse, A., Grinstein, G., and
Lang, U., eds.), vol. 1183 of Lecture Notes in Computer Science, pp. 181–207,
Springer Berlin / Heidelberg, 1996.

[11] Alper, B., Bach, B., Henry Riche, N., Isenberg, T., and Fekete, J.-
D., “Weighted Graph Comparison Techniques for Brain Connectivity Analysis,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’13, (New York, NY, USA), pp. 483–492, ACM, 2013.

[12] Andrews, K. and Heidegger, H., “Information slices: Visualising and ex-
ploring large hierarchies using cascading, semi-circular discs,” in Proc of IEEE
Infovis 98 late breaking Hot Topics, pp. 9–11, 1998.

237

[13] Andrews, K., Wolte, J., and Pichler, M., “Information PyramidsTM:
A new approach to visualizing large hierarchies,” in Proceedings of the IEEE
Visualization97, pp. 49–52, 1997.

[14] Archambault, D., Munzner, T., and Auber, D., “Smashing Peacocks
Further: Drawing Quasi-Trees from Biconnected Components,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 12, pp. 813–820, Sept.
2006.

[15] Archambault, D., Munzner, T., and Auber, D., “GrouseFlocks: Steer-
able Exploration of Graph Hierarchy Space,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 14, pp. 900–913, July 2008.

[16] Archambault, D., “Structural Di↵erences Between Two Graphs Through
Hierarchies,” in Proceedings of Graphics Interface 2009, GI ’09, (Toronto, Ont.,
Canada, Canada), pp. 87–94, Canadian Information Processing Society, 2009.

[17] Archambault, D., Munzner, T., and Auber, D., “Grouse: Feature-Based,
Steerable Graph Hierarchy Exploration,” in Eurographics/ IEEE-VGTC Sym-
posium on Visualization (Museth, K., Moeller, T., and Ynnerman, A.,
eds.), The Eurographics Association, 2007.

[18] Aris, A. and Shneiderman, B., “Designing Semantic Substrates for Visual
Network Exploration,” Information Visualization, vol. 6, pp. 281–300, Dec.
2007.

[19] Auber, D., “Tulip A Huge Graph Visualization Framework,” in Graph Draw-
ing Software (Jnger, M. and Mutzel, P., eds.), Mathematics and Visualiza-
tion, pp. 105–126, Springer Berlin Heidelberg, 2004.

[20] Bach, B., Pietriga, E., and Fekete, J.-D., “Visualizing Dynamic Net-
works with Matrix Cubes,” in Proceedings of the 32Nd Annual ACM Confer-
ence on Human Factors in Computing Systems, CHI ’14, (New York, NY, USA),
pp. 877–886, ACM, 2014.

[21] Bae, J. andWatson, B., “Developing and Evaluating Quilts for the Depiction
of Large Layered Graphs,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, pp. 2268–2275, Dec. 2011.

[22] Bagrow, J. P., Bollt, E. M., Skufca, J. D., and ben Avraham, D.,
“Portraits of complex networks,” EPL (Europhysics Letters), vol. 81, p. 68004,
Mar. 2008.

[23] Baker, C., Carpendale, M., Prusinkiewicz, P., and Surette, M.,
“GeneVis: visualization tools for genetic regulatory network dynamics,” in
IEEE Visualization, 2002. VIS 2002, pp. 243–250, Nov. 2002.

[24] Balzer, M. and Deussen, O., “Hierarchy Based 3d Visualization of Large
Software Structures,” in IEEE Visualization, 2004, pp. 4p–4p, Oct. 2004.

238

[25] Band, Z. andWhite, R. W., “PygmyBrowse: A Small Screen Tree Browser,”
in CHI ’06 Extended Abstracts on Human Factors in Computing Systems, CHI
EA ’06, (New York, NY, USA), pp. 514–519, ACM, 2006.

[26] Baranovskiy, D., “Raphael.”

[27] Basole, R., Clear, T., Hu, M., Mehrotra, H., and Stasko, J., “Un-
derstanding Interfirm Relationships in Business Ecosystems with Interactive
Visualization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 19, pp. 2526–2535, Dec. 2013.

[28] Bastian, M., Heymann, S., and Jacomy, M., “Gephi: An Open Source
Software for Exploring and Manipulating Networks,” in Proceedings of the Third
International ICWSM Conference, pp. 361–362, AAAI, 2009.

[29] Batagelj, V. and Mrvar, A., “Pajek Analysis and Visualization of Large
Networks,” in Graph Drawing Software (Jnger, M., Mutzel, P., Farin,
G., Hege, H.-C., Hoffman, D., Johnson, C. R., Polthier, K., and
Rumpf, M., eds.), Mathematics and Visualization, pp. 77–103, Springer Berlin
Heidelberg, 2004.

[30] Baumgartner, J., Boerner, K., Deckard, N. J., and Sheth, N.,
“Poster: An XML Toolkit for an Information Visualization Software Repos-
itory.,” in Poster Compendium, IEEE Information Visualization Conference,
pp. 72–73, 2003.

[31] Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C.,
Silva, C., and Vo, H., “VisTrails: enabling interactive multiple-view visual-
izations,” in IEEE Visualization, 2005. VIS 05, pp. 135–142, Oct. 2005.

[32] Beard, D. V. andWalker II, J. Q., “Navigational techniques to improve the
display of large two-dimensional spaces,” Behaviour & Information Technology,
vol. 9, pp. 451–466, Nov. 1990.

[33] Beaudoin, L., Parent, M.-A., and Vroomen, L., “Cheops: a compact
explorer for complex hierarchies,” in Visualization ’96. Proceedings., pp. 87–92,
Oct. 1996.

[34] Becker, R., Eick, S., and Wilks, A., “Visualizing network data,” IEEE
Transactions on Visualization and Computer Graphics, vol. 1, pp. 16–28, Mar.
1995.

[35] Bederson, B. B., “PhotoMesa: A Zoomable Image Browser Using Quantum
Treemaps and Bubblemaps,” in Proceedings of the 14th Annual ACM Sympo-
sium on User Interface Software and Technology, UIST ’01, (New York, NY,
USA), pp. 71–80, ACM, 2001.

239

[36] Bezerianos, A., Chevalier, F., Dragicevic, P., Elmqvist, N., and
Fekete, J., “GraphDice: A System for Exploring Multivariate Social Net-
works,” Computer Graphics Forum, vol. 29, pp. 863–872, June 2010.

[37] Bezerianos, A., Dragicevic, P., Fekete, J., Bae, J., and Watson, B.,
“GeneaQuilts: A System for Exploring Large Genealogies,” IEEE Transactions
on Visualization and Computer Graphics, vol. 16, pp. 1073–1081, Nov. 2010.

[38] Blanch, R. and Lecolinet, E., “Browsing Zoomable Treemaps: Structure-
Aware Multi-Scale Navigation Techniques,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 13, pp. 1248–1253, Nov. 2007.

[39] Borgatti, S. P., Everett, M. G., and Freeman, L. C., “UCINet for
Windows: Software for Social Network Analysis,” 2002.

[40] Bostock, M. and Heer, J., “Protovis: A Graphical Toolkit for Visualiza-
tion,” IEEE Trans. on Visualization and Computer Graphics, vol. 15, pp. 1121
–1128, Dec. 2009.

[41] Bostock, M., Ogievetsky, V., and Heer, J., “D3: Data-Driven Docu-
ments,” Visualization and Computer Graphics, IEEE Transactions on, vol. 17,
pp. 2301 –2309, Dec. 2011.

[42] Boutin, F. and Hascot, M., “Focus Dependent Multi-level Graph Cluster-
ing,” in Proceedings of the Working Conference on Advanced Visual Interfaces,
AVI ’04, (New York, NY, USA), pp. 167–170, ACM, 2004.

[43] Brandes, U. and Corman, S., “Visual unrolling of network evolution and
the analysis of dynamic discourse,” in IEEE Symposium on Information Visu-
alization, 2002. INFOVIS 2002, pp. 145–151, 2002.

[44] Brandes, U. and Nick, B., “Asymmetric Relations in Longitudinal So-
cial Networks,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, pp. 2283–2290, Dec. 2011.

[45] Brandes, U. and Willhalm, T., “Visualization of Bibliographic Networks
with a Reshaped Landscape Metaphor,” in Proceedings of the Symposium on
Data Visualisation 2002, VISSYM ’02, (Aire-la-Ville, Switzerland, Switzer-
land), pp. 159–↵, Eurographics Association, 2002.

[46] Branke, J., “Dynamic Graph Drawing,” in Drawing Graphs (Kaufmann,
M. and Wagner, D., eds.), no. 2025 in Lecture Notes in Computer Science,
pp. 228–246, Springer Berlin Heidelberg, 2001.

[47] Burch, M. and Diehl, S., “TimeRadarTrees: Visualizing Dynamic Com-
pound Digraphs,” Computer Graphics Forum, vol. 27, pp. 823–830, May 2008.

240

[48] Burch, M., Vehlow, C., Beck, F., Diehl, S., and Weiskopf, D., “Par-
allel Edge Splatting for Scalable Dynamic Graph Visualization,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 17, pp. 2344–2353, Dec.
2011.

[49] Burch, M., Beck, F., andDiehl, S., “Timeline Trees: Visualizing Sequences
of Transactions in Information Hierarchies,” in Proceedings of the Working Con-
ference on Advanced Visual Interfaces, AVI ’08, (New York, NY, USA), pp. 75–
82, ACM, 2008.

[50] Burch, M., Vehlow, C., Konevtsova, N., and Weiskopf, D., “Eval-
uating Partially Drawn Links for Directed Graph Edges,” in Graph Drawing
(Kreveld, M. v. and Speckmann, B., eds.), no. 7034 in Lecture Notes in
Computer Science, pp. 226–237, Springer Berlin Heidelberg, Sept. 2011.

[51] Callahan, S. P., Freire, J., Santos, E., Scheidegger, C. E., Silva,
C. T., and Vo, H. T., “VisTrails: Visualization Meets Data Management,”
in Proceedings of the 2006 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’06, (New York, NY, USA), pp. 745–747, ACM,
2006.

[52] Card, S. K., Mackinlay, J. D., and Shneiderman, B., Readings in Infor-
mation Visualization: Using Vision to Think. Morgan Kaufmann, 1999.

[53] Card, S. K. and Nation, D., “Degree-of-interest Trees: A Component of an
Attention-reactive User Interface,” in Proceedings of the Working Conference
on Advanced Visual Interfaces, AVI ’02, (New York, NY, USA), pp. 231–245,
ACM, 2002.

[54] Carpendale, M. S. T., Cowperthwaite, D. J., Fracchia, F. D., and
Shermer, T., “Graph folding: Extending detail and context viewing into a
tool for subgraph comparisons,” in Graph Drawing (Brandenburg, F. J.,
ed.), no. 1027 in Lecture Notes in Computer Science, pp. 127–139, Springer
Berlin Heidelberg, Sept. 1995.

[55] Carriere, J. and Kazman, R., “Research report. Interacting with huge hier-
archies: beyond cone trees,” in Information Visualization, 1995. Proceedings.,
pp. 74–81, Oct. 1995.

[56] Centrifuge Systems, “Centrifuge.” http://centrifugesystems.com/.

[57] Chen, C. and Carr, L., “Visualizing the Evolution of a Subject Domain: A
Case Study,” in Proceedings of the Conference on Visualization ’99: Celebrating
Ten Years, VIS ’99, (Los Alamitos, CA, USA), pp. 449–452, IEEE Computer
Society Press, 1999.

[58] Chen, J., MacEachren, A., and Peuquet, D., “Constructing Overview
+ Detail Dendrogram-Matrix Views,” IEEE Transactions on Visualization and
Computer Graphics, vol. 15, pp. 889–896, Nov. 2009.

241

[59] Chi, E. H., Pitkow, J., Mackinlay, J., Pirolli, P., Gossweiler, R.,
and Card, S. K., “Visualizing the Evolution of Web Ecologies,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’98,
(New York, NY, USA), pp. 400–407, ACM Press/Addison-Wesley Publishing
Co., 1998.

[60] Chignell, M. H., Poblete, F., and Zuberec, S., “An Exploration in the
Design Space of Three Dimensional Hierarchies,” Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, vol. 37, pp. 333–337, Oct.
1993.

[61] Childs, H., Brugger, E., Bonnell, K., Meredith, J., Miller, M.,
Whitlock, B., and Max, N., “A contract based system for large data visu-
alization,” in Visualization, 2005. VIS 05. IEEE, pp. 191 – 198, Oct. 2005.

[62] Chuah, M. C., Roth, S. F., Kolojejchick, J., Mattis, J., and Juarez,
O., “SageBook: searching data-graphics by content,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’95, (New
York, NY, USA), pp. 338–345, ACM Press/Addison-Wesley Publishing Co.,
1995.

[63] Claessen, J. and van Wijk, J., “Flexible Linked Axes for Multivariate Data
Visualization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, pp. 2310 –2316, Dec. 2011.

[64] Cruz, I. F. and Leveille, P. S., “As You Like It: Personalized Database
Visualization Using a Visual Language,” Journal of Visual Languages & Com-
puting, vol. 12, pp. 525–549, Oct. 2001.

[65] Cui, W., Zhou, H., Qu, H., Wong, P. C., and Li, X., “Geometry-Based
Edge Clustering for Graph Visualization,” IEEE Transactions on Visualization
and Computer Graphics, vol. 14, pp. 1277–1284, Nov. 2008.

[66] Dachselt, R. and Ebert, J., “Collapsible cylindrical trees: a fast hierarchical
navigation technique,” in IEEE Symposium on Information Visualization, 2001.
INFOVIS 2001, pp. 79–86, 2001.

[67] Diehl, S. and Grg, C., “Graphs, They Are Changing,” in Graph Drawing
(Goodrich, M. T. and Kobourov, S. G., eds.), no. 2528 in Lecture Notes
in Computer Science, pp. 23–31, Springer Berlin Heidelberg, Aug. 2002.

[68] Dinkla, K., Westenberg, M., and van Wijk, J., “Compressed Adjacency
Matrices: Untangling Gene Regulatory Networks,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 18, pp. 2457–2466, Dec. 2012.

[69] Dorusz, U., Madden, B., and Madden, P., “Circular layout in the Graph
Layout toolkit,” in Graph Drawing (North, S., ed.), no. 1190 in Lecture Notes
in Computer Science, pp. 92–100, Springer Berlin Heidelberg, 1997.

242

[70] Draper, G. and Riesenfeld, R., “Interactive Fan Charts: A Space-saving
Technique for Genealogical Graph Exploration,” in Proceedings of the 8th An-
nual Workshop on Technology for Family History and Genealogical Research
(FHTW 2008), 2008.

[71] Dunne, C. and Shneiderman, B., “Motif Simplification: Improving Network
Visualization Readability with Fan, Connector, and Clique Glyphs,” in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’13, (New York, NY, USA), pp. 3247–3256, ACM, 2013.

[72] Dwyer, T., Riche, N., Marriott, K., andMears, C., “Edge Compression
Techniques for Visualization of Dense Directed Graphs,” IEEE Transactions on
Visualization and Computer Graphics, vol. 19, pp. 2596–2605, Dec. 2013.

[73] Dyer, D., “A dataflow toolkit for visualization,” IEEE Computer Graphics
and Applications, vol. 10, pp. 60 –69, July 1990.

[74] Drk, M., Carpendale, S., and Williamson, C., “Visualizing explicit and
implicit relations of complex information spaces,” Information Visualization,
vol. 11, pp. 5–21, Jan. 2012.

[75] Eades, P., “Drawing Free Trees,” Bulletin of the ICA, vol. 5, pp. 10–36, 1992.

[76] Eades, P. and Feng, Q.-W., “Multilevel visualization of clustered graphs,”
in Graph Drawing (North, S., ed.), no. 1190 in Lecture Notes in Computer
Science, pp. 101–112, Springer Berlin Heidelberg, 1997.

[77] Elmqvist, N. and Fekete, J., “Hierarchical Aggregation for Information Vi-
sualization: Overview, Techniques, and Design Guidelines,” IEEE Transactions
on Visualization and Computer Graphics, vol. 16, pp. 439–454, May 2010.

[78] Elmqvist, N., Riche, Y., Henry-Riche, N., and Fekete, J., “M
#x0e9;lange: Space Folding for Visual Exploration,” IEEE Transactions on
Visualization and Computer Graphics, vol. 16, pp. 468–483, May 2010.

[79] Ersoy, O., Hurter, C., Paulovich, F., Cantareiro, G., and Telea, A.,
“Skeleton-Based Edge Bundling for Graph Visualization,” IEEE Transactions
on Visualization and Computer Graphics, vol. 17, pp. 2364–2373, Dec. 2011.

[80] Farrugia, M., Hurley, N., and Quigley, A., “Exploring Temporal Ego
Networks Using Small Multiples and Tree-ring Layouts,” in ACHI 2011 : The
Fourth International Conference on Advances in Computer-Human Interac-
tions, pp. 79–88, IARIA, 2011.

[81] Federico, P., Aigner, W., Miksch, S., Windhager, F., and Zenk, L.,
“A Visual Analytics Approach to Dynamic Social Networks,” in Proceedings of
the 11th International Conference on Knowledge Management and Knowledge
Technologies, i-KNOW ’11, (New York, NY, USA), pp. 47:1–47:8, ACM, 2011.

243

[82] Fekete, J.,Wang, D.,Dang, N.,Aris, A., and Plaisant, C., “Interactive
poster: Overlaying graph links on treemaps,” in Proceedings of the IEEE Sym-
posium on Information Visualization Conference Compendium (InfoVis 03),
2003.

[83] Fekete, J.-D., “The InfoVis Toolkit,” in IEEE Symposium on Information
Visualization, 2004. INFOVIS 2004, pp. 167 –174, 2004.

[84] Fekete, J.-D., Wijk, J. J. v., Stasko, J. T., and North, C., “The
Value of Information Visualization,” in Information Visualization (Kerren,
A., Stasko, J. T., Fekete, J.-D., and North, C., eds.), no. 4950 in Lecture
Notes in Computer Science, pp. 1–18, Springer Berlin Heidelberg, 2008.

[85] Foulser, D., “IRIS Explorer: a framework for investigation,” SIGGRAPH
Comput. Graph., vol. 29, pp. 13–16, May 1995.

[86] Frecon, E. and Smith, G., “WEBPATH-a three dimensional Web history,”
in IEEE Symposium on Information Visualization, 1998. Proceedings, pp. 3–10,
148, Oct. 1998.

[87] Freeman, L. C., “A Set of Measures of Centrality Based on Betweenness,”
Sociometry, vol. 40, pp. 35–41, Mar. 1977.

[88] Freeman, L. C., “Centrality in social networks conceptual clarification,” So-
cial Networks, vol. 1, no. 3, pp. 215–239, 1978.

[89] Freire, M., Plaisant, C., Shneiderman, B., and Golbeck, J.,
“ManyNets: An Interface for Multiple Network Analysis and Visualization,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, (New York, NY, USA), pp. 213–222, ACM, 2010.

[90] Fruchterman, T. M. J. and Reingold, E. M., “Graph drawing by force-
directed placement,” Softw: Pract. Exper., vol. 21, pp. 1129–1164, Nov. 1991.

[91] Fua, Y.-H., Ward, M., and Rundensteiner, E., “Navigating hierarchies
with structure-based brushes,” in 1999 IEEE Symposium on Information Visu-
alization, 1999. (Info Vis ’99) Proceedings, pp. 58–64, 146, 1999.

[92] Furnas, G. W. and Zacks, J., “Multitrees: Enriching and Reusing Hierar-
chical Structure,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’94, (New York, NY, USA), pp. 330–336, ACM,
1994.

[93] Gansner, E. R. and Koren, Y., “Improved Circular Layouts,” in Graph
Drawing (Kaufmann, M. and Wagner, D., eds.), no. 4372 in Lecture Notes
in Computer Science, pp. 386–398, Springer Berlin Heidelberg, Sept. 2006.

244

[94] Gansner, E., Hu, Y., and Kobourov, S., “GMap: Visualizing graphs and
clusters as maps,” in Visualization Symposium (PacificVis), 2010 IEEE Pacific,
pp. 201–208, Mar. 2010.

[95] Gansner, E., Hu, Y., North, S., and Scheidegger, C., “Multilevel ag-
glomerative edge bundling for visualizing large graphs,” in Visualization Sym-
posium (PacificVis), 2011 IEEE Pacific, pp. 187–194, Mar. 2011.

[96] Giacomo, E. D., Didimo, W., Liotta, G., and Palladino, P., “Visual
Analysis of One-to-Many Matched Graphs,” in Graph Drawing (Tollis, I. G.
and Patrignani, M., eds.), no. 5417 in Lecture Notes in Computer Science,
pp. 133–144, Springer Berlin Heidelberg, Sept. 2008.

[97] Gomez, J., Buck-Coleman, A., Plaisant, C., and Shneiderman, B.,
“TreeVersity: Comparing tree structures by topology and node’s attributes dif-
ferences,” in 2011 IEEE Conference on Visual Analytics Science and Technology
(VAST), pp. 275–276, Oct. 2011.

[98] Gou, L. and Zhang, X., “TreeNetViz: Revealing Patterns of Networks over
Tree Structures,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, pp. 2449–2458, Dec. 2011.

[99] Gove, R., Gramsky, N., Kirby, R., Sefer, E., Sopan, A., Dunne, C.,
Shneiderman, B., and Taieb-Maimon, M., “NetVisia: Heat Map #x0026;
Matrix Visualization of Dynamic Social Network Statistics #x0026; Content,”
in 2011 IEEE Third International Conference on Privacy, Security, Risk and
Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Com-
puting (SocialCom), pp. 19–26, Oct. 2011.

[100] Graham, M. and Kennedy, J., “Exploring Multiple Trees through DAG
Representations,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, pp. 1294–1301, Nov. 2007.

[101] Greilich, M., Burch, M., and Diehl, S., “Visualizing the Evolution of
Compound Digraphs with TimeArcTrees,” Computer Graphics Forum, vol. 28,
pp. 975–982, June 2009.

[102] Grivet, S., Auber, D., Domenger, J. P., and Melancon, G., “Bubble
tree drawing algorithm,” in Computer Vision and Graphics (Wojciechowski,
K., Smolka, B., Palus, H., Kozera, R. S., Skarbek, W., and Noakes,
L., eds.), no. 32 in Computational Imaging and Vision, pp. 633–641, Springer
Netherlands, 2006.

[103] Guerra-Gomez, J., Pack, M., Plaisant, C., and Shneiderman, B.,
“Visualizing Change over Time Using Dynamic Hierarchies: TreeVersity2 and
the StemView,” IEEE Transactions on Visualization and Computer Graphics,
vol. 19, pp. 2566–2575, Dec. 2013.

245

[104] Hadlak, S., Schulz, H., and Schumann, H., “In Situ Exploration of
Large Dynamic Networks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, pp. 2334–2343, Dec. 2011.

[105] Hagberg, A. A., Schult, D. A., and Swart, P. J., “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings of the 7th
Python in Science Conference (SciPy2008), (Pasadena, CA USA), pp. 11–15,
Aug. 2008.

[106] Ham, F. v., Schulz, H.-J., and Dimicco, J. M., “Honeycomb: Visual
Analysis of Large Scale Social Networks,” in Human-Computer Interaction IN-
TERACT 2009 (Gross, T., Gulliksen, J., Kotz, P., Oestreicher, L.,
Palanque, P., Prates, R. O., and Winckler, M., eds.), no. 5727 in Lec-
ture Notes in Computer Science, pp. 429–442, Springer Berlin Heidelberg, Aug.
2009.

[107] Hamming, R. W., “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, pp. 147–160, Apr. 1950.

[108] Heer, J. and Boyd, D., “Vizster: visualizing online social networks,” in
IEEE Symposium on Information Visualization, 2005. INFOVIS 2005, pp. 32–
39, Oct. 2005.

[109] Heer, J., Mackinlay, J., Stolte, C., and Agrawala, M., “Graphical
Histories for Visualization: Supporting Analysis, Communication, and Evalu-
ation,” IEEE Transactions on Visualization and Computer Graphics, vol. 14,
pp. 1189–1196, Nov. 2008.

[110] Heer, J. and Perer, A., “Orion: A system for modeling, transformation
and visualization of multidimensional heterogeneous networks,” in 2011 IEEE
Conference on Visual Analytics Science and Technology (VAST), pp. 51–60,
Oct. 2011.

[111] Heer, J., “Flare.”

[112] Heer, J. and Card, S. K., “DOITrees Revisited: Scalable, Space-constrained
Visualization of Hierarchical Data,” in Proceedings of the Working Conference
on Advanced Visual Interfaces, AVI ’04, (New York, NY, USA), pp. 421–424,
ACM, 2004.

[113] Heer, J., Card, S. K., and Landay, J. A., “Prefuse: A Toolkit for Inter-
active Information Visualization,” in Proc. of the ACM SIGCHI Conference on
Human Factors in Computing Systems, (CHI 2005), (New York, NY, USA),
pp. 421 –430, ACM, 2005.

[114] Heer, J. and Perer, A., “Orion: A system for modeling, transformation
and visualization of multidimensional heterogeneous networks,” Information
Visualization, vol. 13, pp. 111–133, Apr. 2014.

246

[115] Henr, N., Bezerianos, A., and Fekete, J., “Improving the Readability
of Clustered Social Networks using Node Duplication,” IEEE Transactions on
Visualization and Computer Graphics, vol. 14, pp. 1317–1324, Nov. 2008.

[116] Henry, N. and Fekete, J., “MatrixExplorer: a Dual-Representation System
to Explore Social Networks,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 12, pp. 677–684, Sept. 2006.

[117] Henry, N., Fekete, J., and McGuffin, M., “NodeTrix: a Hybrid Visual-
ization of Social Networks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 13, pp. 1302–1309, Nov. 2007.

[118] Henry, N. and Fekete, J.-D., “MatLink: Enhanced Matrix Visualization
for Analyzing Social Networks,” in Human-Computer Interaction INTERACT
2007 (Baranauskas, C., Palanque, P., Abascal, J., and Barbosa, S.
D. J., eds.), no. 4663 in Lecture Notes in Computer Science, pp. 288–302,
Springer Berlin Heidelberg, Sept. 2007.

[119] Herman, I., Melancon, G., and Marshall, M., “Graph visualization and
navigation in information visualization: A survey,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 6, pp. 24–43, Mar. 2000.

[120] Holten, D., “Hierarchical Edge Bundles: Visualization of Adjacency Rela-
tions in Hierarchical Data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, pp. 741–748, Sept. 2006.

[121] Holten, D., Isenberg, P., van Wijk, J., and Fekete, J., “An extended
evaluation of the readability of tapered, animated, and textured directed-edge
representations in node-link graphs,” in Visualization Symposium (PacificVis),
2011 IEEE Pacific, pp. 195–202, Mar. 2011.

[122] Holten, D. and Van Wijk, J. J., “Visual Comparison of Hierarchically
Organized Data,” Computer Graphics Forum, vol. 27, pp. 759–766, May 2008.

[123] Holten, D. and Van Wijk, J. J., “Force-Directed Edge Bundling for Graph
Visualization,” Computer Graphics Forum, vol. 28, pp. 983–990, June 2009.

[124] Holten, D. and van Wijk, J. J., “A User Study on Visualizing Directed
Edges in Graphs,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’09, (New York, NY, USA), pp. 2299–2308, ACM,
2009.

[125] Hong, J. Y., D’Andries, J., Richman, M., and Westfall, M., “Zoomol-
ogy: comparing two large hierarchical trees,” in Posters Compendium of Infor-
mation Visualization, pp. 120–121, 2003.

247

[126] Hong, S.-H. and Murtagh, T., “Visualisation of Large and Complex Net-
works Using PolyPlane,” in Graph Drawing (Pach, J., ed.), no. 3383 in Lec-
ture Notes in Computer Science, pp. 471–481, Springer Berlin Heidelberg, Sept.
2004.

[127] Huang, M. L., Huang, T.-H., and Zhang, J., “TreemapBar: Visualizing
Additional Dimensions of Data in Bar Chart,” in Information Visualisation,
2009 13th International Conference, pp. 98–103, July 2009.

[128] Hudak, P., “Building Domain-specific Embedded Languages,” ACM Comput.
Surv., vol. 28, Dec. 1996.

[129] Hunter, J., “Matplotlib: A 2d Graphics Environment,” Computing in Science
Engineering, vol. 9, pp. 90 –95, June 2007.

[130] Hurter, C., Telea, A., and Ersoy, O., “MoleView: An Attribute and
Structure-Based Semantic Lens for Large Element-Based Plots,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 17, pp. 2600–2609, Dec.
2011.

[131] Isenberg, P., Heimerl, F., Koch, S., Isenberg, T., Xu, P.,
Stolper, C., Sedlmair, M., Chen, J., Mller, T., and Stasko,
J., Visualization Publication Dataset. 2015. Published: Dataset:
http://vispubdata.org/http://vispubdata.org/\, Published Jun.\ 2015.

[132] Itoh, T., Yamaguchi, Y., Ikehata, Y., and Kajinaga, Y., “Hierarchical
data visualization using a fast rectangle-packing algorithm,” IEEE Transactions
on Visualization and Computer Graphics, vol. 10, pp. 302–313, May 2004.

[133] John, M., Schulz, H., Schumann, H., Uhrmacher, A., and Unger,
A., “Exploring time-varying hypergraphs,” in Poster Compendium of IEEE
Conference on Information Visualization, 2009.

[134] Johnson, B. and Shneiderman, B., “Tree-maps: a space-filling approach to
the visualization of hierarchical information structures,” in , IEEE Conference
on Visualization, 1991. Visualization ’91, Proceedings, pp. 284–291, Oct. 1991.

[135] Jones, E., Oliphant, T., Peterson, P., and others, “SciPy: Open source
scientific tools for Python,” 2001.

[136] Jusufi, I., Dingjie, Y., and Kerren, A., “The Network Lens: Interactive
Exploration of Multivariate Networks Using Visual Filtering,” in Information
Visualisation (IV), 2010 14th International Conference, pp. 35–42, July 2010.

[137] Jusufi, I., Kerren, A., and Zimmer, B., “Multivariate Network Exploration
with JauntyNets,” in Information Visualisation (IV), 2013 17th International
Conference, pp. 19–27, July 2013.

248

[138] Kamada, T. and Kawai, S., “An algorithm for drawing general undirected
graphs,” Information Processing Letters, vol. 31, pp. 7–15, Apr. 1989.

[139] Kang, H., Getoor, L., and Singh, L., “C-GROUP: A Visual Analytic Tool
for Pairwise Analysis of Dynamic Group Membership,” in IEEE Symposium on
Visual Analytics Science and Technology, 2007. VAST 2007, pp. 211–212, Oct.
2007.

[140] Kang, H., Plaisant, C., Lee, B., and Bederson, B., “NetLens: Iterative
Exploration of Content-Actor Network Data,” in Visual Analytics Science And
Technology, 2006 IEEE Symposium On, pp. 91–98, Oct. 2006.

[141] Kerr, B., “Thread Arcs: an email thread visualization,” in IEEE Symposium
on Information Visualization, 2003. INFOVIS 2003, pp. 211–218, Oct. 2003.

[142] Kim, N. W., Card, S. K., and Heer, J., “Tracing Genealogical Data with
TimeNets,” in Proceedings of the International Conference on Advanced Visual
Interfaces, AVI ’10, (New York, NY, USA), pp. 241–248, ACM, 2010.

[143] Kleiberg, E., van de Wetering, H., and van Wijk, J., “Botanical visual-
ization of huge hierarchies,” in IEEE Symposium on Information Visualization,
2001. INFOVIS 2001, pp. 87–94, 2001.

[144] Krzywinski, M., Birol, I., Jones, S. J., and Marra, M. A., “Hive plot-
srational approach to visualizing networks,” Brief Bioinform, vol. 13, pp. 627–
644, Sept. 2012.

[145] Kumar, H. P., Plaisant, C., and Shneiderman, B., “Browsing hierarchi-
cal data with multi-level dynamic queries and pruning,” International Journal
of Human-Computer Studies, vol. 46, pp. 103–124, Jan. 1997.

[146] Lambert, A., Bourqui, R., and Auber, D., “3d Edge Bundling for Ge-
ographical Data Visualization,” in Information Visualisation (IV), 2010 14th
International Conference, pp. 329–335, July 2010.

[147] Lambert, A., Bourqui, R., and Auber, D., “Winding Roads: Routing
edges into bundles,” Computer Graphics Forum, vol. 29, pp. 853–862, June
2010.

[148] Lamping, J., Rao, R., and Pirolli, P., “A Focus+Context Technique Based
on Hyperbolic Geometry for Visualizing Large Hierarchies,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’95,
(New York, NY, USA), pp. 401–408, ACM Press/Addison-Wesley Publishing
Co., 1995.

[149] Lee, B., Parr, C., Plaisant, C., Bederson, B., Veksler, V., Gray,
W., and Kotfila, C., “TreePlus: Interactive Exploration of Networks with
Enhanced Tree Layouts,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, pp. 1414–1426, Nov. 2006.

249

[150] Lee, B., Robertson, G. G., Czerwinski, M., and Parr, C. S., “Can-
didTree: Visualizing Structural Uncertainty in Similar Hierarchies,” Informa-
tion Visualization, vol. 6, pp. 233–246, Sept. 2007.

[151] Levandowsky, M. and Winter, D., “Distance between Sets,” Nature,
vol. 234, pp. 34–35, Nov. 1971.

[152] Li, S., Crouser, R. J., Griffin, G., Gramazio, C., Schulz, H.-J.,
Childs, H., and Chang, R., “Exploring hierarchical visualization designs
using phylogenetic trees,” vol. 9397, pp. 939709–939709–14, 2015.

[153] Liu, Z., Navathe, S., and Stasko, J., “Network-based visual analysis of
tabular data,” in 2011 IEEE Conference on Visual Analytics Science and Tech-
nology (VAST), pp. 41–50, Oct. 2011.

[154] Liu, Z., Navathe, S. B., and Stasko, J. T., “Ploceus: Modeling, visualizing,
and analyzing tabular data as networks,” Information Visualization, vol. 13,
pp. 59–89, Jan. 2014.

[155] Lucas, B., Abram, G. D., Collins, N. S., Epstein, D. A., Gresh,
D. L., and McAuliffe, K. P., “An architecture for a scientific visualization
system,” in Proceedings of the 3rd conference on Visualization ’92, VIS ’92,
(Los Alamitos, CA, USA), pp. 107–114, IEEE Computer Society Press, 1992.

[156] Luo, S.-J., Liu, C.-L., Chen, B.-Y., andMa, K.-L., “Ambiguity-Free Edge-
Bundling for Interactive Graph Visualization,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 18, pp. 810–821, May 2012.

[157] L, H. and Fogarty, J., “Cascaded Treemaps: Examining the Visibility and
Stability of Structure in Treemaps,” in Proceedings of Graphics Interface 2008,
GI ’08, (Toronto, Ont., Canada, Canada), pp. 259–266, Canadian Information
Processing Society, 2008.

[158] Mackinlay, J., Hanrahan, P., and Stolte, C., “Show Me: Automatic
Presentation for Visual Analysis,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 13, pp. 1137 –1144, Dec. 2007.

[159] Mackinlay, J., “Automating the design of graphical presentations of rela-
tional information,” ACM Trans. Graph., vol. 5, pp. 110–141, Apr. 1986.

[160] MathWorks, Inc., “Matlab.” http://www.mathworks.com/products/matlab/.

[161] McGuffin, M. and Balakrishnan, R., “Interactive visualization of ge-
nealogical graphs,” in IEEE Symposium on Information Visualization, 2005.
INFOVIS 2005, pp. 16–23, Oct. 2005.

[162] McGuffin, M., Davison, G., and Balakrishnan, R., “Expand-Ahead: A
Space-Filling Strategy for Browsing Trees,” in IEEE Symposium on Information
Visualization, 2004. INFOVIS 2004, pp. 119–126, 2004.

250

[163] McGuffin, M. and Jurisica, I., “Interaction Techniques for Selecting and
Manipulating Subgraphs in Network Visualizations,” IEEE Transactions on
Visualization and Computer Graphics, vol. 15, pp. 937–944, Nov. 2009.

[164] Microsoft Corp., “Excel.” http://products.o�ce.com/en-US/excel.

[165] Microsoft Corp., “Visio.” http://products.o�ce.com/en-us/visio/.

[166] Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., and Fekete,
J.-D., “Topology-aware Navigation in Large Networks,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, (New
York, NY, USA), pp. 2319–2328, ACM, 2009.

[167] Muelder, C. and Ma, K.-L., “Rapid Graph Layout Using Space Filling
Curves,” IEEE Transactions on Visualization and Computer Graphics, vol. 14,
pp. 1301–1308, Nov. 2008.

[168] Muelder, C. and Ma, K.-L., “A Treemap Based Method for Rapid Layout
of Large Graphs,” in Visualization Symposium, 2008. PacificVIS ’08. IEEE
Pacific, pp. 231–238, Mar. 2008.

[169] Munzner, T., “H3: laying out large directed graphs in 3d hyperbolic space,” in
, IEEE Symposium on Information Visualization, 1997. Proceedings, pp. 2–10,
Oct. 1997.

[170] Netzel, R., Burch, M., and Weiskopf, D., “Comparative Eye Tracking
Study on Node-Link Visualizations of Trajectories,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 20, pp. 2221–2230, Dec. 2014.

[171] Neumann, P., Schlechtweg, D. S., and Carpendale, S., “ArcTrees:
Visualizing Relations in Hierarchical Data,” in EUROVIS 2005: Eurographics
/ IEEE VGTC Symposium on Visualization (Brodlie, K., Duke, D., and
Joy, K., eds.), The Eurographics Association, 2005.

[172] Nocaj, A. and Brandes, U., “Organizing Search Results with a Reference
Map,” IEEE Transactions on Visualization and Computer Graphics, vol. 18,
pp. 2546–2555, Dec. 2012.

[173] O’Madadhain, J., Fisher, D., Smyth, P., White, S., and Boey, Y.-
B., “Analysis and Visualization of Network Data Using JUNG,” Journal of
Statistical Software, vol. 10, no. 2, pp. 1 –35, 2005.

[174] Ortiz, S. and Cid, V. P., “Use cases of Impure, an information interface,” in
VisWeek 2010 Discovery Exhibition, (Salt Lake City, UT), 2010.

[175] Osawa, N., “A multiple-focus graph browsing technique using heat models
and force-directed layout,” in Fifth International Conference on Information
Visualisation, 2001. Proceedings, pp. 277–283, 2001.

251

[176] Page, L., Brin, S., Motwani, R., and Winograd, T., “The PageRank
Citation Ranking: Bringing Order to the Web.,” Technical Report 1999-66,
Stanford InfoLab, Nov. 1999. Previous number = SIDL-WP-1999-0120.

[177] Paiva, J., Florian, L., Pedrini, H., Telles, G., and Minghim, R., “Im-
proved Similarity Trees and their Application to Visual Data Classification,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17, pp. 2459–
2468, Dec. 2011.

[178] Parker, S. and Johnson, C., “SCIRun: A Scientific Programming Environ-
ment for Computational Steering,” in Supercomputing, 1995. Proceedings of the
IEEE/ACM SC95 Conference, p. 52, 1995.

[179] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E., “Scikit-learn: Machine Learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[180] Pirolli, P., Card, S. K., and Van Der Wege, M. M., “The E↵ects of
Information Scent on Visual Search in the Hyperbolic Tree Browser,” ACM
Trans. Comput.-Hum. Interact., vol. 10, pp. 20–53, Mar. 2003.

[181] Plaisant, C., Grosjean, J., and Bederson, B., “SpaceTree: support-
ing exploration in large node link tree, design evolution and empirical evalua-
tion,” in IEEE Symposium on Information Visualization, 2002. INFOVIS 2002,
pp. 57–64, 2002.

[182] Pretorius, A. J. and Van Wijk, J. J., “Visual Inspection of Multivariate
Graphs,” Computer Graphics Forum, vol. 27, pp. 967–974, May 2008.

[183] Pretorius, A. and van Wijk, J., “Visual Analysis of Multivariate State
Transition Graphs,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 12, pp. 685–692, Sept. 2006.

[184] Reda, K., Tantipathananandh, C., Johnson, A., Leigh, J., and
Berger-Wolf, T., “Visualizing the Evolution of Community Structures in
Dynamic Social Networks,” Computer Graphics Forum, vol. 30, pp. 1061–1070,
June 2011.

[185] Reingold, E. M. and Tilford, J., “Tidier Drawings of Trees,” IEEE Trans-
actions on Software Engineering, vol. SE-7, pp. 223–228, Mar. 1981.

[186] Riche, N. H., Dwyer, T., Lee, B., and Carpendale, S., “Exploring the
Design Space of Interactive Link Curvature in Network Diagrams,” in Proceed-
ings of the International Working Conference on Advanced Visual Interfaces,
AVI ’12, (New York, NY, USA), pp. 506–513, ACM, 2012.

252

[187] Robertson, G. G., Mackinlay, J. D., and Card, S. K., “Cone Trees:
Animated 3d Visualizations of Hierarchical Information,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’91, (New
York, NY, USA), pp. 189–194, ACM, 1991.

[188] Rost, U. and Bornberg-Bauer, E., “TreeWiz: interactive exploration of
huge trees,” Bioinformatics, vol. 18, pp. 109–114, Jan. 2002.

[189] Rosvall, M. and Bergstrom, C. T., “Mapping Change in Large Networks,”
PLoS ONE, vol. 5, p. e8694, Jan. 2010.

[190] Roth, S. F., Kolojejchick, J., Mattis, J., Chuah, M. C., Goldstein,
J., and Juarez, O., “SAGE tools: a knowledge-based environment for de-
signing and perusing data visualizations,” in Conference companion on Human
factors in computing systems, CHI ’94, (New York, NY, USA), pp. 27–28, ACM,
1994.

[191] Rufiange, S. and McGuffin, M., “Di↵Ani: Visualizing Dynamic Graphs
with a Hybrid of Di↵erence Maps and Animation,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 19, pp. 2556–2565, Dec. 2013.

[192] Santos, E., Lins, L., Ahrens, J., Freire, J., and Silva, C., “VisMashup:
Streamlining the Creation of Custom Visualization Applications,” Visualization
and Computer Graphics, IEEE Transactions on, vol. 15, pp. 1539 –1546, Dec.
2009.

[193] Saraiya, P., Lee, P., and North, C., “Visualization of graphs with associ-
ated timeseries data,” in IEEE Symposium on Information Visualization, 2005.
INFOVIS 2005, pp. 225–232, Oct. 2005.

[194] Sarkar, M. and Brown, M. H., “Graphical Fisheye Views of Graphs,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI ’92, (New York, NY, USA), pp. 83–91, ACM, 1992.

[195] Satyanarayan, A., Russell, R., Hoffswell, J., and Heer, J., “Reactive
Vega: A Streaming Dataflow Architecture for Declarative Interactive Visual-
ization,” IEEE Transactions on Visualization and Computer Graphics, vol. 22,
pp. 659–668, Jan. 2016.

[196] Satyanarayan, A. andHeer, J., “Lyra: An Interactive Visualization Design
Environment,” Computer Graphics Forum, vol. 33, no. 3, pp. 351–360, 2014.

[197] Schroeder, W., Avila, L., Martin, K., Hoffman, W., and Law, C.,
The Visualization Toolkit-Users Guide. Kitware, Inc., 2001.

[198] Schulz, H. J., Hadlak, S., and Schumann, H., “The Design Space of Im-
plicit Hierarchy Visualization: A Survey,” IEEE Transactions on Visualization
and Computer Graphics, vol. 17, pp. 393–411, Apr. 2011.

253

[199] Schulz, H.-J., John, M., Unger, A., and Schumann, H., “Visual Analysis
of Bipartite Biological Networks,” in Eurographics Workshop on Visual Com-
puting for Biomedicine (Botha, C., Kindlmann, G., Niessen, W., and
Preim, B., eds.), The Eurographics Association, 2008.

[200] Selassie, D., Heller, B., and Heer, J., “Divided Edge Bundling for Di-
rectional Network Data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, pp. 2354–2363, Dec. 2011.

[201] Shamir, A. and Stolpnik, A., “Interactive visual queries for multivariate
graphs exploration,” Computers & Graphics, vol. 36, pp. 257–264, June 2012.

[202] Sharara, H., Sopan, A., Namata, G., Getoor, L., and Singh, L., “G-
PARE: A visual analytic tool for comparative analysis of uncertain graphs,” in
2011 IEEE Conference on Visual Analytics Science and Technology (VAST),
pp. 61–70, Oct. 2011.

[203] Shi, L., Wang, C., and Wen, Z., “Dynamic network visualization in 1.5d,” in
Visualization Symposium (PacificVis), 2011 IEEE Pacific, pp. 179–186, Mar.
2011.

[204] Shneiderman, B. and Aris, A., “Network Visualization by Semantic Sub-
strates,” IEEE Transactions on Visualization and Computer Graphics, vol. 12,
pp. 733–740, Sept. 2006.

[205] Siirtola, H. and Mkinen, E., “Constructing and Reconstructing the Re-
orderable Matrix,” Information Visualization, vol. 4, pp. 32–48, Mar. 2005.

[206] Singhal, A., “Modern information retrieval: A brief overview,” IEEE Data
Eng. Bull., vol. 24, no. 4, pp. 35–43, 2001.

[207] Six, J. M. and Tollis, I. G., “A Framework for Circular Drawings of Net-
works,” in Graph Drawing (Kratochvyl, J., ed.), no. 1731 in Lecture Notes
in Computer Science, pp. 107–116, Springer Berlin Heidelberg, Sept. 1999.

[208] Skau, D. and Kosara, R., “Interactive Poster: Designing New Visualizations
from Scratch without Programming,” in InfoVis 2011 Poster Compendium,
2011.

[209] Smith, M. A., Shneiderman, B., Milic-Frayling, N., Mendes Ro-
drigues, E., Barash, V., Dunne, C., Capone, T., Perer, A., and
Gleave, E., “Analyzing (Social Media) Networks with NodeXL,” in Proc. of
the Fourth International Conference on Communities and Technologies, (C&T
’09), (New York, NY, USA), pp. 255 –264, ACM, 2009.

[210] Sokal, R. R. and Michener, C., “A statistical method for evaluating sys-
tematic relationships,” Univ Kans Sci Bull, vol. 38, pp. 1409–1438, 1958.

254

[211] Sokal, R. R. and Rohlf, F. J., “The Comparison of Dendrograms by Ob-
jective Methods,” Taxon, vol. 11, no. 2, pp. 33–40, 1962.

[212] Stasko, J. and Zhang, E., “Focus+context display and navigation techniques
for enhancing radial, space-filling hierarchy visualizations,” in IEEE Symposium
on Information Visualization, 2000. InfoVis 2000, pp. 57–65, 2000.

[213] Stasko, J., Choo, J., Hu, M., Pileggi, H., Sadana, R., and Stolper,
C. D., “Poster: Citevis: Exploring Conference Paper Citation Data Visually,”
in IEEE 2013 Infovis Poster Compendium, 2013.

[214] Stasko, J., G\”{o}rg, C., and Liu, Z., “Jigsaw: Supporting Investigative
Analysis through Interactive Visualization,” Information Visualization, vol. 7,
pp. 118–132, June 2008.

[215] Stein, K., Wegener, R., and Schlieder, C., “Pixel-Oriented Visualization
of Change in Social Networks,” in 2010 International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), pp. 233–240, Aug. 2010.

[216] Stolper, C., Kahng, M., Lin, Z., Foerster, F., Goel, A., Stasko,
J., and Chau, D., “GLO-STIX: Graph-Level Operations for Specifying Tech-
niques and Interactive eXploration,” IEEE Transactions on Visualization and
Computer Graphics, vol. 20, pp. 2320–2328, Dec. 2014.

[217] Stolte, C., Tang, D., and Hanrahan, P., “Polaris: a System for Query,
Analysis, and Visualization of Multidimensional Relational Databases,” IEEE
Transactions on Visualization and Computer Graphics, vol. 8, no. 1, pp. 52 –65,
2002.

[218] Sugiyama, K., Tagawa, S., and Toda, M., “Methods for Visual Under-
standing of Hierarchical System Structures,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 11, pp. 109–125, Feb. 1981.

[219] Tableau Software, “Tableau.” http://www.tableausoftware.com/.

[220] Tan, D., Smith, G., Lee, B., and Robertson, G., “AdaptiviTree: Adap-
tive Tree Visualization for Tournament-Style Brackets,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, pp. 1113–1120, Nov. 2007.

[221] Telea, A. and Ersoy, O., “Image-Based Edge Bundles: Simplified Visualiza-
tion of Large Graphs,” Computer Graphics Forum, vol. 29, pp. 843–852, June
2010.

[222] Teoh, S. T. and Kwan-Liu, M., “RINGS: A Technique for Visualizing Large
Hierarchies,” in Graph Drawing (Goodrich, M. T. and Kobourov, S. G.,
eds.), no. 2528 in Lecture Notes in Computer Science, pp. 268–275, Springer
Berlin Heidelberg, Aug. 2002.

[223] Tibco Software, “Spotfire.” http://spotfire.tibco.com/.

255

[224] TouchGraph, LLC, “TouchGraph Navigator 2.”
http://www.touchgraph.com/navigator.

[225] Trifacta Inc., “Vega.” http://trifacta.github.io/vega/.

[226] Tsiaras, V., Triantafilou, S., and Tollis, I. G., “Treemaps for Directed
Acyclic Graphs,” in Graph Drawing (Hong, S.-H., Nishizeki, T., and Quan,
W., eds.), no. 4875 in Lecture Notes in Computer Science, pp. 377–388, Springer
Berlin Heidelberg, Sept. 2007.

[227] Tu, Y. and Shen, H.-W., “Visualizing Changes of Hierarchical Data us-
ing Treemaps,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, pp. 1286–1293, Nov. 2007.

[228] Tu, Y. and Shen, H.-W., “Balloon Focus: a Seamless Multi-Focus+Context
Method for Treemaps,” IEEE Transactions on Visualization and Computer
Graphics, vol. 14, pp. 1157–1164, Nov. 2008.

[229] Tufte, E. R., Envisioning information. Cheshire, Conn.: Graphics Press,
1995.

[230] Tuttle, C., Nonato, L., and Silva, C., “PedVis: A Structured, Space-
E�cient Technique for Pedigree Visualization,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 16, pp. 1063–1072, Nov. 2010.

[231] Upson, C., Faulhaber, T.A., J., Kamins, D., Laidlaw, D., Schlegel,
D., Vroom, J., Gurwitz, R., and van Dam, A., “The application visual-
ization system: a computational environment for scientific visualization,” Com-
puter Graphics and Applications, IEEE, vol. 9, pp. 30 –42, July 1989.

[232] van den Elzen, S. and van Wijk, J., “Multivariate Network Exploration
and Presentation: From Detail to Overview via Selections and Aggregations,”
IEEE Transactions on Visualization and Computer Graphics, vol. 20, pp. 2310–
2319, Dec. 2014.

[233] van Ham, F., van de Wetering, H., and van Wijk, J., “Visualization
of state transition graphs,” in IEEE Symposium on Information Visualization,
2001. INFOVIS 2001, pp. 59–66, 2001.

[234] van Ham, F. and van Wijk, J., “Beamtrees: compact visualization of large
hierarchies,” in IEEE Symposium on Information Visualization, 2002. INFO-
VIS 2002, pp. 93–100, 2002.

[235] van Ham, F., Wattenberg, M., and Viegas, F., “Mapping Text with
Phrase Nets,” IEEE Transactions on Visualization and Computer Graphics,
vol. 15, pp. 1169–1176, Nov. 2009.

256

[236] van Wijk, J. and van de Wetering, H., “Cushion treemaps: visualization
of hierarchical information,” in 1999 IEEE Symposium on Information Visual-
ization, 1999. (Info Vis ’99) Proceedings, pp. 73–78, 147, 1999.

[237] Viegas, F., Wattenberg, M., van Ham, F., Kriss, J., and McKeon,
M., “ManyEyes: a Site for Visualization at Internet Scale,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 13, pp. 1121 –1128, Dec. 2007.

[238] Voigt, M., Pietschmann, S., Grammel, L., and Meiner, K., “Context-
aware Recommendation of Visualization Components,” pp. 101–109, Jan. 2012.

[239] Voorhees, E. M., “Implementing agglomerative hierarchic clustering algo-
rithms for use in document retrieval,” Information Processing & Management,
vol. 22, pp. 465–476, Jan. 1986.

[240] W3C, “SVG Specification.”

[241] Wang, W., Wang, H., Dai, G., and Wang, H., “Visualization of Large
Hierarchical Data by Circle Packing,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’06, (New York, NY, USA),
pp. 517–520, ACM, 2006.

[242] Ware, C. and Franck, G., “Evaluating Stereo and Motion Cues for Visu-
alizing Information Nets in Three Dimensions,” ACM Trans. Graph., vol. 15,
pp. 121–140, Apr. 1996.

[243] Wattenberg, M., “Arc Diagrams: Visualizing Structure in Strings,” in Proc.
of IEEE Infovis 2002, pp. 110 –116, 2002.

[244] Wattenberg, M., “Visual Exploration of Multivariate Graphs,” in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’06, (New York, NY, USA), pp. 811–819, ACM, 2006.

[245] Wickham, H., ggplot2 Elegant Graphics for Data Analysis. Use R!, New York,
NY, USA: Springer, 2009. DOI: 10.1007/978-0-387-98141-3.

[246] Wickham, H., “A Layered Grammar of Graphics,” Journal of Computational
and Graphical Statistics, vol. 19, no. 1, pp. 3–28, 2010.

[247] Wilkinson, L., The grammar of graphics. New York: Springer, 2005.

[248] Wills, G., “Selection: 524,288 ways to say ldquo;this is interesting rdquo;,”
in Proceedings IEEE Symposium on Information Visualization ’96, pp. 54–60,
120, Oct. 1996.

[249] Wong, N., Carpendale, S., and Greenberg, S., “Edgelens: an interac-
tive method for managing edge congestion in graphs,” in IEEE Symposium on
Information Visualization, 2003. INFOVIS 2003, pp. 51–58, Oct. 2003.

257

[250] Wong, N. and Carpendale, S., “Supporting interactive graph exploration
using edge plucking,” vol. 6495, pp. 649508–649508–12, 2007.

[251] Wong, P. C., Foote, H., Mackey, P., Chin, G., Sofia, H., and
Thomas, J., “A Dynamic Multiscale Magnifying Tool for Exploring Large
Sparse Graphs,” Information Visualization, vol. 7, pp. 105–117, June 2008.

[252] Wong, P. C., Mackey, P., Perrine, K., Eagan, J., Foote, H., and
Thomas, J., “Dynamic visualization of graphs with extended labels,” in IEEE
Symposium on Information Visualization, 2005. INFOVIS 2005, pp. 73–80,
Oct. 2005.

[253] Wongsuphasawat, K., Moritz, D., Anand, A., Mackinlay, J., Howe,
B., and Heer, J., “Voyager: Exploratory Analysis via Faceted Browsing of Vi-
sualization Recommendations,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 22, pp. 649–658, Jan. 2016.

[254] Wood, J. and Dykes, J., “Spatially Ordered Treemaps,” IEEE Transactions
on Visualization and Computer Graphics, vol. 14, pp. 1348–1355, Nov. 2008.

[255] Wood, J., Isenberg, P., Isenberg, T., Dykes, J., Boukhelifa, N.,
and Slingsby, A., “Sketchy Rendering for Information Visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, pp. 2749–2758,
Dec. 2012.

[256] Woodruff, A., Olston, C., Aiken, A., Chu, M., Ercegovac, V., Lin,
M., Spalding, M., and Stonebraker, M., “DataSplash: A Direct Manipu-
lation Environment for Programming Semantic Zoom Visualizations of Tabular
Data,” J. of Visual Languages & Computing, vol. 12, pp. 551–571, Oct. 2001.

[257] Xiao, L., Yeh, R., and Hanrahan, P., “Flow map layout,” in IEEE Sym-
posium on Information Visualization, 2005. INFOVIS 2005, pp. 219–224, Oct.
2005.

[258] Xiong, R. and Brittain, E., “LiveWeb: Visualizing Live User Activities
on the Web,” in ACM SIGGRAPH 99 Conference Abstracts and Applications,
SIGGRAPH ’99, (New York, NY, USA), pp. 254–, ACM, 1999.

[259] Yi, J. S., Elmqvist, N., and Lee, S., “TimeMatrix: Analyzing Temporal
Social Networks Using Interactive Matrix-Based Visualizations,” International
Journal of Human-Computer Interaction, vol. 26, pp. 1031–1051, Nov. 2010.

[260] Zhao, S., McGuffin, M., and Chignell, M., “Elastic hierarchies: com-
bining treemaps and node-link diagrams,” in IEEE Symposium on Information
Visualization, 2005. INFOVIS 2005, pp. 57–64, Oct. 2005.

[261] Zhou, H., Yuan, X., Cui, W., Qu, H., and Chen, B., “Energy-Based
Hierarchical Edge Clustering of Graphs,” in Visualization Symposium, 2008.
PacificVIS ’08. IEEE Pacific, pp. 55–61, Mar. 2008.

258

[262] Ziegler, L., Kunz, C., Botsch, V., and Schneeberger, J., “Visualiz-
ing and exploring large networked information spaces with matrix browser,”
in Sixth International Conference on Information Visualisation, 2002. Proceed-
ings, pp. 361–366, 2002.

259

