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SUMMARY 

 The chemistry-climate interaction is a two-way process: Atmospheric chemistry 

can interfere with the radiation budget and subsequently the climate system and climate 

change, through its impact on atmospheric chemistry, may pose challenges to air quality 

management. A good understanding of the interactions between atmospheric chemistry 

and climate is an important piece of information for human to cope with climate change 

and its consequences.  This dissertation employs multi-scale modeling analysis to explore 

two subtopics pertaining to the chemistry-climate interaction: (1) ground-level ozone 

pollution in the United States and (2) the marine sulfur chemistry over the tropical 

oceans.  

  In contrast to the decreasing trend in ozone concentrations in July resulting 

mainly from emission reduction, analysis of long-term (1980-2010) surface ozone data 

finds no appreciable trend during October over the southeast U.S., implicating that the 

benefit from emission reduction might be diminished by climate change. To understand 

the drivers for high ozone episodes during the fall, we use a 3-D chemical transport 

model to analyze the month of October 2010, the most recent ozone extreme over the 

Southeast in October. Analysis of meteorological conditions shows that the high ozone 

concentrations are due in part to a dry and warm weather condition, which enhances 

photochemical production and reduces pollution ventilation. Observational evidence and 

modeling analysis indicate that another contributor is enhanced emission of biogenic 

isoprene, a major ozone precursor, from water stressed plants under a dry and warm 

condition. The latter finding is corroborated by recent laboratory studies. This finding 

implicates that a drying and warming future, projected by climate models, will likely lead 



 xvii 

to ventilation reduction, more biogenic isoprene emissions, an extended ozone season 

from summer to fall, and an increase of secondary organic aerosols in the Southeast U.S. 

  We use vertical profiles observed in the DISCOVER-AQ aircraft campaign in 

July 2011 to examine how NOx, an important ozone precursor, distributes vertically in 

the boundary layer and how the vertical distribution is affected by meteorological or 

climate factors. In contrast to an even distribution in a well-mixed boundary layer, an 

often-used assumption in air pollution studies, the observed average vertical profile of 

NOx shows a large negative gradient with increasing altitude in the boundary layer. Our 

analysis suggests that the magnitude of the NOx gradient is highly sensitive to 

meteorological factors such as atmospheric stability. Using a 1-D chemical transport 

model, we reasonably reproduce the vertical profiles of NOx under different boundary 

layer stability conditions, classified based on potential temperature gradient and boundary 

layer height. We also use this 1-D model to investigate the impact of parameterizations of 

the boundary layer and land-surface processes on vertical profiles. Using model 

simulations, we evaluate the impact of boundary layer NOx gradient on the calculation of 

the ozone production rate and satellite NO2 retrieval. We show that using surface 

measurements and the well-mixed boundary layer assumption causes a ~45% high bias in 

the estimated boundary layer ozone production rate and that the variability of NO2 

vertical profiles is responsible for 5~10% variability in the retrieved NO2 tropospheric 

vertical columns. 

  Using the 1-D model, we also examine the sulfur chemistry during the PASE 

mission in the tropical Pacific. The production of sulfate aerosols through sulfur 

chemistry in marine environments is critical to the tropical climate system. Our work 



 xviii 

focuses on methanesulfonic acid (MSA), a critical compound that has not been studied in 

detail. The observed sharp decrease in MSA from the surface to 600m implies a surface 

source of 4.0×107 molecules/cm2/s. Evidence suggests that this source is photolytically 

enhanced in daytime. We also find that the observed large increase of MSA from the 

boundary layer into the lower free troposphere (1000-2000m) results mainly from the 

degassing of MSA from dehydrated aerosols. We estimate a source of 1.2×107 

molecules/cm2/s to the free troposphere through this pathway. This source of soluble 

MSA could potentially provide an important precursor for new particle formation in the 

free troposphere over the tropics, affecting the climate system through aerosol-cloud 

interactions. 
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CHAPTER 1 

INTRODUCTION 

1.1 Statement of the Problem 

 Atmospheric chemistry is a critical process in the Earth system that produces, 

transforms, and removes the trace gas and particle constituents in the atmosphere. 

Although only accounting for a small fraction of the atmosphere, these gas and particle 

constituents actively interact with other components of the Earth system and are key to 

many environmental issues such as photochemical smog, acid rain, and climate change. 

Being one of the greatest challenges to the human society, climate change, through its 

impact on atmospheric chemistry, may add to the difficulty of treating other 

environmental problems (e.g., air pollution). On the other side, species involved in 

atmospheric chemistry (e.g., aerosols) can interfere with the radiation budget and 

subsequently the climate system. Therefore, a good understanding of the interactions 

between atmospheric chemistry and climate provides an important piece of information 

for human to cope with climate change and its consequences.  

 In this dissertation, I will focus on two topics pertaining to chemistry-climate 

interactions: (1) ground-level ozone pollution in the United States and (2) the marine 

sulfur chemistry over the tropical oceans. In the former topic, I will investigate climate 

factors that affect ground-level ozone extremes and vertical distributions of ozone 

precursors. In the latter topic, I will explore the marine sulfur chemistry that modulates 

the climate system through the production of scattering aerosols, with a focus on the 

surface and tropospheric sources of methanesulfonic acid (MSA). 

1.1.1 Challenges of Climate Change to the Ground-level Ozone Control  

 Harmful to the health of human [Brunekreef and Holgate, 2002] and vegetation 

[Reich and Amundson, 1985], high level of ground-level ozone is a long-standing 
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environmental problem in the United States and many other countries. Tropospheric 

ozone is produced through photochemical reactions of nitrogen oxides (NOx=NO+NO2) 

and volatile organic compounds (VOC), the so-called ozone precursors. In the past 

several decades, to control the ozone pollution, tremendous efforts have been devoted to 

reducing the anthropogenic emissions of these precursors. Figure 1.1 shows that the 

emissions of VOC and NOx in the U.S. have been almost halved from 1970 to 2014 

[EPA, 2015]. The significant reduction of anthropogenic ozone precursors contributes to 

the decrease of ozone pollution in the U.S., especially during the summer when 

photochemistry and ozone production is active. For example, linear regression analysis 

finds that daily maximum 8-hour average ozone ([O3]MDA8) decreased by 0.46 ppbv/yr 

and 0.20 ppbv/yr in the northeast (NE) U.S. and southeast (SE) U.S., respectively, during 

the past three decades (Figure 1.2). 

 

Figure 1.1 Emissions of NOx and VOC from different sectors in the U.S. from 1970 

to 2014. Adapted from EPA [2015]. 

 

 In addition to anthropogenic emissions, it is also well known that ground-level 

ozone is also influenced by weather and climate [e.g., Jacob and Winner, 2009; Camalier 

et al., 2007]. Trends or cycles of global and regional climate can perturb ground-level 

ozone on a decadal and regional scale, potentially posing great challenges to air quality 
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control. Previous climate-chemistry models projections show that, holding anthropogenic 

emissions constant, ground-level ozone will increase during the ozone season (i.e., 

summer) over many regions in the U.S. in next 50 years [Avise et al., 2009; Chen et al., 

2009; Nolte et al., 2008]. Moreover, modeling and statistical analysis also suggest that 

some regions are likely to experience an extension of the ozone season into the fall [Avise 

et al., 2009; Bloomer et al., 2010; Camalier et al., 2007; Chen et al., 2009; Nolte et al., 

2008]. 

 

Figure 1.2 The trend of monthly [O3]MDA8 over (a) NE and (b) SE in July from 1980 

to 2010. 

 

 

Figure 1.3 (a) The climatological mean of [O3]MDA8 and (b) the linear trend of 

[O3]MDA8 over NE, SE, CA, and GL regions from 1980 to 2010. 

 

 In contrast to the decreasing ozone in the summer months, long-term ground-level 

ozone observations show a negligible or slightly positive trend in October over the NE, 

SE, and the Midwest (MW) (Figure 1.3), suggesting that either ozone concentrations are 
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insensitive to the large emission reduction in the past three decades or the emission 

reduction benefit is negated by regional climate change during October. Variance 

decomposition analysis of the long-term data in the SE shows that inter-annual variance 

is significantly larger in 2000s than that in 1980s and 1990s, which is likely a 

manifestation of regional climate impact (Figure 1.4).  

 

Figure 1.4 Variance decomposition of ground-level ozone observations over the SE 

in 1980s, 1990s, and 2000s into inter-annual, day-to-day, and spatial variance. 

 

 The growing climate influence and the extension of the ozone season pose new 

challenges to air quality managers to control the ozone pollution. Previous chemistry-

climate model projections show large variation in the sign and magnitude of the predicted 

ozone change during the fall, especially over forested regions such as the SE [Camalier et 

al., 2007; Chen et al., 2009; Nolte et al., 2008]. The lack of a consensus reflects the 

uncertainties in modeling regional climate change and the consequent response of 

ground-level ozone.   

1.1.2 Links between Climate Factors and Ground-level Ozone 

 It has well known that ground-level ozone relates closely with meteorological 

factors. A long-term trend or cycle of these meteorological parameters can impact 

ground-level ozone on a climate scale.  
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 The relations between climate factors and ground-level ozone are manifold: (1) 

Factors such as temperature and humidity influence the natural emissions of ozone 

precursors such as soil NOx [Wang et al., 1998], lightning NOx [Wang et al., 1998], and 

biogenic isoprene [Guenther et al., 2006; Pegoraro et al., 2007]; (2) Cloud fractions and 

thickness affect the downward radiation reaching the boundary layer (BL), which is the 

driver of photochemistry [Voulgarakis et al., 2009]; (3) Meteorological factors such as 

temperature and humidity influence reaction rates of some key reactions in ozone 

chemistry, including PAN dissociation [Racherla and Adams, 2008] and primary OH 

production from O(1D) and H2O [Johnson et al., 1999; Dawson et al., 2007]; (4) A stable 

BL reduces the vertical ventilation of ozone and its precursors; (5) Wind patterns 

determine the horizontal transport of ozone and its precursors [Fu et al., 2015]; (6) The 

wave activity in the upper troposphere can lead to downward transport of ozone to the 

ground, found to be important in high-elevated areas [Lin et al., 2015]. Moreover, varied 

meteorological factors are often inter-related. For example, under the high pressure 

system, multiple factors such as clear sky, stagnant BL, slow wind, and high temperature 

all contribute to enhancing ground-level ozone. Studies have reported that the frequency 

of summertime mid-latitude cyclones across eastern North America [Leibensperger et al., 

2008] and the westward extension of the Bermuda high [Zhu and Liang, 2013] are strong 

predictors of ozone pollution in the eastern U.S.  

1.1.3 The “Well-mixed”  Boundary Layer Assumption and Vertical Distribution of 

Ozone Precursors 

  The vertical distribution of air pollutants in the boundary layer (BL) is a complex 

function of emissions, advection, chemistry, and turbulent mixing. Since the lifetime of 

ozone is relatively long (several days), ground-level ozone concentrations are closely 

related to the boundary layer (BL) integrated production rather than the surface 
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production. Therefore, ground-level ozone concentration depends on the vertical 

distribution of ozone precursors in the BL. Based on the reasoning that vigorous turbulent 

mixing in the BL is much faster than chemical loss for many species of interest, air 

pollution studies often assume a well-mixed boundary layer, where pollutants are evenly 

distributed. This assumption enables researchers to infer average conditions in the BL 

from surface observations [e.g., Petritoli et al., 2004; Fiedler et al., 2005; Leigh et al., 

2007; Lee-Taylor et al., 2011; de Arellano et al., 2011; Knepp et al., 2013] and thus 

greatly extends the use of surface measurements. Because of the difficulty in obtaining 

vertically-resolved measurements, the validity of the assumption has not been well 

evaluated. Moreover, the impact of meteorological/climate parameters on the vertical 

distribution of precursors is potentially an important factor that affects the response of 

ozone production to climate change, which is also not well evaluated before. 

In an emission region under a minor advection condition, the well-mixed BL 

assumption readily works as a first-order approximation for long-lived species such as 

carbon monoxide and ethane but is invalid for very reactive species such as isoprene. 

However, for moderately reactive species which has a chemical life time comparable to 

the BL mixing time scale, the validity of the well-mixed BL assumption over emission 

regions and its implications have not been evaluated. One such species is nitrogen oxides 

(NOx=NO2+NO), a major precursor for ozone [Liu et al., 1992; Chameides et al., 1992], 

nitrate aerosol [Bassett and Seinfeld, 1983], and secondary organic aerosol [Ng et al., 

2007]. Loss of NOx through formation of nitric acid and organic nitrates results in a NOx 

chemical life time of several hours in daytime, which is comparable to the BL mixing 

time scale, indicating that the vertical distribution of NOx may be sensitive to the relative 
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importance between chemical loss and turbulent mixing. Inadequate knowledge of the 

vertical distributions of NOx can lead to biases in a variety of calculations, for example, 

the calculation of the BL-average ozone production rate [Liu et al., 2012a] and satellite 

NO2 retrieval [Boersma et al., 2004; Gu et al., 2014]. 

1.1.4 The Impact of Marine Sulfur Chemistry on Climate 

Organic sulfur is emitted from the ocean and, through oxidation, produces sulfate 

aerosols, which is critical to the tropical climate system [e.g., Charlson et al., 1987]. 

Since the discovery that dimethyl sulfide (DMS) is emitted in large quantities from the 

ocean [Barnard et al., 1982], marine sulfur chemistry has been studied extensively. The 

oxidation of DMS is mainly by the hydroxyl radical (OH), which converts more than half 

of DMS to sulfur dioxide (SO2) [Davis et al., 1998; Davis et al., 1999; Chen et al., 2000; 

Wang et al., 2001]. Further oxidation of SO2 in the gas or aerosol phase produces sulfuric 

acid (H2SO4), which can either condense onto existing particles or form new particles 

under favorable conditions [Davis et al., 1999; Mauldin et al., 1999; Weber et al., 2001]. 

In addition to SO2 and H2SO4, marine sulfur chemistry also involves other sulfur-

containing compounds such as dimethyl sulfoxide (DMSO), methane sulfinic acid 

(MSIA), and methanesulfonic acid (MSA). These species, although believed to be 

important, have not been studied as extensively as DMS and SO2.  

During the Pacific Atmospheric Sulfur Experiment (PASE) over the tropical 

Pacific in August and September of 2007, the vertical distributions of a relatively 

complete set of sulfur-containing compounds, including DMS, SO2, H2SO4, and MSA, 

were measured, providing observational constraints to test our understanding of sulfur 

chemistry in the marine boundary layer (MBL) and lower free troposphere (LFT) over 
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tropical regions. Model analysis shows that although simulated vertical profiles of DMS 

and SO2 are in reasonable agreement with observations [Gray et al., 2011], the model 

underestimates MSA in the MBL and the LFT. 

1.2 Description of the Chemical Transport Model 

To explore the topics outlined in Section 1.1, we take a multi-scale modeling 

approach using the Regional chEmical trAnsport Model (REAM). Specifically, we use 

the 1-D REAM to analyze the aircraft campaign data to understand the vertical 

distributions of species; and we use the 3-D REAM to analyze the factors that affect 

regional ozone extreme episodes.  

1.2.1 3-D REAM 

We use the 3-D REAM to explore the mechanisms behind regional ozone extreme 

episodes in the SE U.S. in the fall. The 3-D REAM has been applied over North America, 

East Asia, and the Polar Regions [Choi et al., 2005; Choi et al., 2008a; Choi et al., 

2008b; Zhao and Wang, 2009; Zhao et al., 2009a; Zhao et al., 2009b; Yang et al., 2010; 

Zhao et al., 2010; Liu et al., 2012b; Gu et al., 2013; Gu et al., 2014]. The model has a 

horizontal resolution of 36 km and 30 vertical layers in the troposphere. Transport is 

driven by the Weather Research and Forecasting (WRF) model assimilated 

meteorological fields constrained by the CFSR data. Most meteorological inputs are 

archived every 30 min except those related to convective transport and lightning 

parameterizations, which are archived every 5 min. Chemical initial and boundary conditions 

in the REAM are obtained from the global simulation for the same period using the GEOS-

CHEM model (v9-02) driven by GEOS-5 assimilated meteorological fields [Bey et al., 2001]. 
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The chemistry mechanism is adopted from GEOS-Chem v9-02 with expansion on 

aromatics chemistry [Liu et al., 2010]. The anthropogenic emissions are from the 

emission inventory of 2010 for the Task Force on Hemispheric Transport of Air Pollution 

version two (HTAPv2). The biogenic isoprene emissions are calculated using the Model 

of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) algorithm, which take 

into account factors such as temperature, solar radiation, leaf area index, and vegetation 

functional type. The leaf area index that fed into the MEGAN module was from the 

Moderate Resolution Imaging Spectroradiometer (MODIS, MOD15A2).  Cloud fraction 

and optical depth are calculated based on WRF meteorological fields [Choi et al., 2008a]. 

1.2.2 1-D REAM 

To facilitate the use of aircraft measurements to constrain the model, we use the 

1-D REAM to analyze the vertical profile of NOx during DISCOVER-AQ 2011 and 

MSA during the PASE. The 1-D REAM has been applied to analyze the campaign 

measurements in China [Liu et al., 2010; Liu et al., 2012a; Liu et al., 2014], at the South 

Pole [Wang et al., 2007], and over the tropical Pacific [Gray et al., 2011; Zhang et al., 

2014]. The 1-D REAM is a column chemical transport model that inherits relevant 

modules for photochemistry, convective transport, vertical diffusion, and wet/dry 

deposition from the original 3-D REAM. Similar to 3-D REAM, meteorological 

parameters (e.g., water vapor concentrations, temperature, pressure, and the diffusion 

coefficient) are also obtained from WRF assimilation. For the PASE study, we add a 

sulfur chemistry module including six sulfur chemistry reactions (Table 1.1).  
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Table 1.1 Gas-phase sulfur reactions and rate constants. Adapted from Zhu et al. 

[2006]. 

Reaction Rate constants, k(T), cm3 molec-1 

s-1 DMS + OH → 0.9SO2 + 0.1H2SO4 a1.10×10-11exp(-240/T) 

DMS + OH → 0.5DMSO + 0.2DMSO2 +0.3MSIA 
1.0×10-39exp(5820/T)[O2]

1+5.0×10-30exp(6280/T)[O2]
 

DMSO + OH → 0.9MSIA + 0.1DMSO2 9.0×10-11 

MSIA + OH → 0.9SO2 + 0.1MSA 9.0×10-11 

SO2 + OH → H2SO4 bF×K0×K∞/(K0+K∞) 

DMS + BrO → DMSO + MSIA 1.4×10-14exp(940/T) 
a Sander et al. (2006) 
b log F = log (0.525)/(1+[log(k0/k∞)]2 ), k0 = 4.5×10-31 (T/300)−3.9 [M], k∞ = 1.26×10-12 

(T/300)-0.7 

 

1.3 Scope of This Work 

Combining multi-scale modeling analysis with statistical analysis, this 

dissertation (1) identifies key climate factors that drives extreme episodes of ground-level 

ozone during the fall; (2) investigates the sensitivity of NOx vertical gradient to the BL 

stability; and (3) explores the missing sources of MSA in the MBL and the LFT over the 

tropical Pacific.  

Specifically, the remainder of this dissertation is organized as follows.  

 Chapter 2, “Climate driven ground-level ozone extremes in the Southeast 

United States during the fall,” analyzes the recent ozone extreme over the SE in 

October, 2010. Analysis shows that a dry and warm weather condition that enhances 

photochemical production and reduces pollution ventilation contributes to the episodes. 

In addition, observational evidence and modeling analysis indicate that another 

contributor is enhanced biogenic isoprene from water stressed plants under a dry and 

warm condition. This result implicates a novel climate-biosphere-chemistry interaction 

mechanism. Simulations show that the ground-level ozone is more sensitive to biogenic 
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isoprene during the fall than during the summer, indicating that this mechanism is likely 

to be a significant factor pertaining to the issue of extended ozone season. 

 Chapter 3, “Large vertical gradient of reactive nitrogen oxides in the 

boundary layer,” examines the vertical distributions of pollutants over the Washington-

Baltimore area measured during the DISCOVER-AQ 2011 aircraft campaign. The 

observed NOx, an important ozone precursor, show a large negative gradient with 

increasing altitude in the BL. Our analysis shows the magnitude of the NOx vertical 

gradient is highly sensitive to atmospheric stability, which is likely to change in response 

to climate change. Using 1-REAM simulations, the chapter also evaluates (1) the 

variation in vertical NOx profiles resulting from varied parameterizations of the BL and 

land-surface processes; (2) the bias in the BL-averaged ozone production rate by 

extrapolating surface measurements to the entire BL; and (3) the impact of temporal 

variability of NO2 vertical profiles on the satellite retrieval of NO2 tropospheric vertical 

columns.  

 Chapter 4, “Surface and tropospheric sources of methanesulfonic acid 

(MSA) over the tropical Pacific Ocean,” investigates the missing surface and 

tropospheric sources MSA over the tropical Pacific Ocean. The observed sharp decrease 

in MSA from the surface to 600m implies a surface source that is likely to be photolytical 

in nature. The observed large increase of MSA from the MBL into the LFT (1000-

2000m) results mainly from the degassing of MSA from dehydrated aerosols. This source 

potentially provides an important precursor for new particle formation in the free 

troposphere over the tropics, affecting the climate system through aerosol-cloud 

interactions. 

 Chapter 5, “Conclusions and Future Work,” summarizes the findings in 

Chapter 2-4 and make recommendations for the future work. 
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CHAPTER 2 

1CLIMATE DRIVEN GROUND-LEVEL OZONE EXTREMES IN 

THE SOUTHEAST UNITED STATES DURING THE FALL 

2.1 Introduction 

Ground-level ozone is an air pollutant that adversely affects the health of humans 

and ecosystems [Brunekreef and Holgate, 2002; Reich and Amundson, 1985]. High 

ground-level ozone events are typically found in the summer when the formation of 

ozone is active through photochemical reactions of nitrogen oxides (NOx=NO+NO2) and 

volatile organic compounds (VOCs). However, ozone concentrations are sensitive to 

weather and climate [e.g., Jacob and Winner, 2009] and the high-ozone season could 

extend beyond summer in the future [Avise et al., 2009; Bloomer et al., 2010; Camalier et 

al., 2007; Chen et al., 2009; Nolte et al., 2008]. Previous climate-chemistry model studies 

estimated the change of ground-level ozone (𝛥O3) in the U.S. resulting only from climate 

change. These results show large variation in the sign and magnitude of 𝛥O3 in the fall, 

especially over forested regions such as the southeastern U.S. (SE) [Camalier et al., 

2007; Chen et al., 2009; Nolte et al., 2008]. The lack of a consensus reflects the 

uncertainties in modeling regional climate change and the consequent response of 

ground-level ozone. Although the impact of meteorology and climate on ozone during the 

summer ozone season has been extensively studied [Bloomer et al., 2010; Bloomer et al., 

                                                 

 

 
1 This chapter is an extension of “Climate driven ground-level ozone extreme in the fall over the Southeast 

United States,” in preparation. Co-authors are Yuhang Wang, Tao Zeng, and Yongjia Song.   
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2009; Leibensperger et al., 2008; Olszyna et al., 1997; Steiner et al., 2010], much less 

efforts have been devoted to understand the climate response of ozone in the fall. 

Most of present studies on the climate impact on ground-level ozone focus on the 

ozone-temperature relationship [Jacob and Winner, 2009; Rasmussen et al., 2012; 

Rasmussen et al., 2013; Wu et al., 2008].  Although good correlations between ground-

level ozone and temperature are observed in many places and seasons, model analysis 

shows that the direct impact of temperature on ground-level ozone, mainly through PAN 

chemistry and biogenic isoprene emissions [e.g., Racherla and Adams, 2008], cannot 

fully explain the observed ozone-temperature sensitivity. Many other indirect 

mechanisms that correlate with temperature contribute to the ozone-temperature 

sensitivity, including regional transport, ventilation, and cloudiness [Voulgarakis et al., 

2009; Zhu and Liang, 2013; Fu et al., 2015; Lin et al., 2015]. Their correlations with 

temperature may vary with time and locations.  Therefore, in the case of surface ozone, 

temperature is just a surrogate of all meteorological or climate factors and can be 

unreliable or misleading. To truly understand the climate penalty for ground-level ozone, 

it is important to figure out how the correlations between these mechanisms and 

temperature vary with time and location and whether other critical mechanisms exist.  

The remainder of this chapter will proceed as follows. Section 2.2 describes the 

long-term ozone (Section 2.2.1) and isoprene (Section 2.2.2) data from EPA ground 

monitoring stations, long-term meteorological reanalysis data (Section 2.2.3), GOME-2 

satellite formaldehyde data (Section 2.2.4), 3-D REAM model experiments (Section 

2.2.5), and statistical analysis methods (Section 2.2.6). Section 2.3.1 examines the fall 

high ozone extremes over the SE in last three decades. Using statistical analysis, Section 
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2.3.2 finds humidity being a good predictor of ground-level ozone over the SE during 

October. Section 2.3.3 applies model simulations to study the high-ozone extreme in 

October 2010 and finds underestimation of ozone by the model during the episodes. 

Section 2.3.4 proposes a humidity-driven mechanism that explains the underestimation 

and presents modeling, observational, and laboratory evidence that supports the 

hypothesis. Section 2.3.5 demonstrates that alternative explanations are unlikely to 

explain the model bias. Finally, in Section 2.4, we summarize our findings and discuss 

the implications of our findings to the regional air pollution management in the context of 

climate change.  

2.2 Data and Methods 

2.2.1 EPA Ground-level Ozone Observations 

We downloaded the hourly ground-level ozone measurements (1980-2010) from 

the EPA Data Mar (https://ofmext.epa.gov/AQDMRS/aqdmrs.html). Among ~1500 

stations across the U.S. in the dataset, 18.6%, 38.0%, and 41.3 are classified as urban, 

suburban, and rural sites. The site type is unknown for about 2.1% sites. Figure 2.1 plots 

the distribution of these sites. To obtain a policy-relevant measure, we calculated the 

maximum daily 8-hour average ozone ([O3]MDA8) for each station using hourly data. 

[O3]MDA8 is used for most of our analysis.  

Because a meteorological system is usually on a synoptic scale (~1000 km), 

chapter 2 will study the regional-scale ozone feature rather than ozone concentrations at 

each individual station. So we average over all the stations within a region (i.e., SE, NE, 

MW, and CA) to obtain the regional daily [O3]MDA8. Dashed lines in Figure 2.1 show the 

definitions of these regions. Particularly, the area of the SE, the focus of Chapter 2, 
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mainly includes the states of Arkansas, Louisiana, Tennessee, Mississippi, Alabama, 

Georgia, North Carolina, and South Carolina. To explore the long-term features, we also 

derive the regional monthly mean [O3]MDA8 by taking average of the regional daily 

[O3]MDA8 within a month. While the analysis will focus on SE, we also compare results 

from SE with those from NE, MW, and CA to better understand the regional difference.  

 

Figure 2.1 Ground-level ozone monitoring stations in the U.S. Areas enclosed in the 

yellow, green, blue, and cyan dashed lines are defined as CA, NW, NE, and SE, 

respectively. 

 

2.2.2 EPA Ground-level Isoprene Measurements 

We also downloaded the hourly ground-level isoprene measurements from the 

EPA Data Mar. Among a few sites that have regular long-term measurements, the 

Yorkville, Georgia site (33.9285 N, 85.04534 W) locates in a rural area surrounded by 

forests and agricultural lands and is away from significant anthropogenic sources. The 

records last from 1998 to 2013. Daily canister samples are measured about every week 
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using gas chromatography with the flame ionization detector (GC-FID). The reported 

detection limit is 0.1 ppbvC for isoprene. 

2.2.3 Long-term Meteorological Reanalysis Data 

We use National Centers for Environmental Prediction (NCEP) Climate Forecast 

System Reanalysis (CFSR) data [Saha et al., 2010] to study meteorological patterns 

associated with ozone events. The original data are in hourly resolution and 

meteorological parameters include temperature, relative humidity, surface pressure, 

geopotential height at 850 mbar, wind direction, and wind speed. To obtain daily 

measures relevant to ozone production, we derived daily maximum temperature (Tmax) 

and daytime-averaged relative humidity (RH), wind speed, and other parameters. For 

wind direction, hourly wind data were first decomposed into u and v, which were then 

averaged over the daytime; then, a representative wind direction was calculated from 

daytime-averaged u and v. For comparison with phytological studies, we computed 

daytime-averaged vapor pressure deficit (VPD, defined as the difference between 

saturation vapor pressure and ambient vapor pressure) from temperature and relative 

humidity data. Like ground-level ozone, we derived regional daily and regional monthly-

mean series for these meteorological parameters to investigate the regional features on 

both daily and monthly scales. 

2.2.4 Satellite Formaldehyde Observations 

We use satellite formaldehyde column density data measured by GOME-2 

onboard METOP-A for model comparison (http://h2co.aeronomie.be/) [De Smedt et al., 

2012]. The overpass time for GOME-2 is around 10:00 in the morning. Model results at 

http://h2co.aeronomie.be/
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the overpass time are sampled. For the detailed retrieval algorithm, readers are referred to  

De Smedt et al. [2012]. 

2.2.5 3-D REAM Simulation 

We use the 3-D REAM to simulate ground-level ozone. As introduced in Section 

1.2.1, the model has a horizontal resolution of 36 km and 30 vertical layers in the 

troposphere, driven by the Weather Research and Forecasting (WRF) model assimilated 

meteorological fields constrained by the CFSR data. The chemistry mechanism is 

adopted from GEOS-Chem v9-02, with expansion on aromatics chemistry. The 

anthropogenic emissions are from the emission inventory from HTAPv2 for 2010. The 

biogenic isoprene emissions are calculated with the MEGAN v2.1 algorithm [Guenther et 

al., 2006]. The leaf area index that fed into the MEGAN module was from the MODIS 

product MOD15A2.  Cloud fraction and cloud optical depth is parameterized using the 

scheme described by Geleyn [1981]. To compare with observed [O3]MDA8 simulated 

[O3]MDA8 is computed with hourly output from the simulation.  

To evaluate the model performance in varied conditions, we conducted the base 

simulations for three Octobers with significantly different ozone levels in the SE. They 

are October 2008 (normal), October 2009 (extremely low), and October 2010 (extremely 

high). While the model performs well for the normal and low cases, it significantly 

underestimates the high episodes in October 2010 (Figure 2.4). 

To explore the mechanism driving the ground-level high-ozone extremes over the 

SE during October 2010, we conducted a series of simulations by perturbing the base 

simulation. To evaluate the contributions of biogenic isoprene emissions, we run the 

model with zero or doubled isoprene emissions. To characterize the impact of 
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temperature on the chemistry, we increase the BL temperature in the chemistry module 

by 1K or 2K. In another two simulations, we increase the BL temperature in both the 

chemistry and biogenic emission modules by 1K or 2K. To evaluate the humidity impact 

on chemistry, we also perturb the BL RH by +10% and -10%.We also design a 

simulation with no cloud cover and no biomass burning emissions to estimate the 

uncertainties brought by the cloud over parameterization and biomass burning, 

respectively.  

We simulate July 2010 to assess the seasonal difference between the summer and 

the fall. We also apply emission perturbation for anthropogenic NOx and biogenic 

isoprene to the both July 2010 and October 2010 base simulation, to calculate the 

sensitivity of [O3]MDA8 to anthropogenic NOx reduction and climate-driven biogenic 

increase in the summer and the fall. 

2.2.6 Explained Variance Decomposition (EVD) method 

We use the explained variance decomposition (EVD) method to attribute the 

contribution of correlated meteorological variables to the ground-level ozone. Note that 

unlike in other sections, the variables used in this section are normalized for simplicity of 

mathematical derivation.  

Given normalized [O3]MDA8, Tmax, and VPD, let EV be the coefficient of 

determination (R2) for a bivariate linear regression model [O3]MDA8 ~ Tmax + VPD. EV 

represents the fraction of total variance in [O3]MDA8 that can be explained by Tmax and 

VPD. The EVD method described here attempts to decompose EVT-VPD into three parts: 

a) Variance solely explained by Tmax, denoted as EVT; b) Variance solely explained by 
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VPD, denoted as EVVPD; and c) Variance explained by the correlation between Tmax and 

VPD, denoted as EVT-VPD.  

EV= EVT + EVVPD + EVT-VPD             …(1) 

 

In the first step to compute EVT , EVVPD, and EVT-VPD from the normalized data, 

do the following transformation: 

z1 = Tmax                                        …(2) 

z2 = [−
r

√1+r2
,

1

√1+r2
][Tmax

VPD
] 

where r is the Pearson correlation coefficient between Tmax and VPD. Note that z1 

and z2 are orthogonal. A bivariate linear regression ([O3]MDA8 ~z1+z2) leads to [O3]MDA8 

=a∙z1+b∙z2, where a and b are coefficients for z1 and z2, respectively. Since z1 and z2 

contain the same amount of information as Tmax and VPD do, R2 for this model is also 

EV. Furthermore, since z1 and z2 are orthogonal, EV can be decomposed into two parts:  

EV = a2 ∑ z1,i
2

i + b2 ∑ z2,i
2

i              … (3) 

The transformation in (2) also leads to 

            EVT + EVT−VPD = a2 ∑ z1,i
2

i              … (4) 

EVVPD = b2 ∑ z2,i
2

i                             … (5) 

Similarly to (2), we can also do the following transformation and regression: 

z3 = VPD 

z4 = [−
r

√1+r2
,

1

√1+r2
][

VPD
Tmax

]                   …(6) 

[O3]MDA8 =c∙z3+d∙z4 

We then have another decomposition of EV 
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EV = c2 ∑ z3,i
2

i + d2 ∑ z4,i
2

i               … (7) 

EVVPD + EVT−VPD = c2 ∑ z3,i
2

i         … (8) 

EVT = d2 ∑ z4,i
2

i                                … (9) 

Combining (4), (5), (8), (9), we can solve for EVT , EVVPD, and EVT-VPD.  

2.3 Results and Discussion 

2.3.1 High-ozone Extremes over the Southeast in October 

 Figure 2.2 shows the surface observations of monthly mean maximum daily 8-

hour average ozone concentration ([O3]MDA8) in October 2010. The high regional 

[O3]MDA8 concentrations over the SE (enclosed in the grey line in Figure 2.2) are higher 

than all other regions of the U.S. except a small area in the southern California. 133 

exceedances with daily [O3]MDA8 values greater than 75 ppbv occurred at 66 sites in the 

SE (Figure 2.3a). The numbers increase to 324 exceedances at 112 sites if the new 

ambient ozone standard threshold value by the EPA, 70 ppbv, is used.  

 

Figure 2.2 The high monthly-mean [O3]MDA8 observed  in October 2010 over the SE 

U.S.  
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Figure 2.3 puts the 2010 observations in the context of regional monthly mean 

[O3]MDA8 in October over the SE in the past three decades. The 30-year climatology mean 

of [O3]MDA8 is ~40 ppbv, considerably lower than that in the summer ozone season (~ 50 

ppbv in July). However, in the two extreme years, 2000 and 2010, [O3]MDA8 are 52 and 49 

ppbv, respectively, two inter-annual standard deviations higher than the climatological 

mean. These two extreme years also stand out with high counts of exceedances ([O3]MDA8 

>75 ppbv) in the region. There is clearly no obvious ozone trend in October in the last 3 

decades, in contrast to the significant decrease of [O3]MDA8 in the summer since 1980s 

(Figure 1.2b), suggesting that either ozone concentrations are insensitive to the large 

emission decreases (EPA, 2015) in the past three decades or the emission reduction 

benefit is diminished by regional climate change.   

2.3.2 Humidity: a Good Predictor of Ground-level Ozone over the Southeast 

during October  

Observation-based statistical analysis showed that surface ozone is affected by a 

number of meteorological factors, including temperature, humidity, pressure, wind speed, 

and wind direction [Camalier et al., 2007; Vukovich and Sherwell, 2003]. Correlations 

between surface ozone and these meteorological parameters vary with region and season, 

but temperature is usually found to best correlate with ozone [Fu et al., 2015; Rasmussen 

et al., 2012]. In October over the SE, using the monthly mean data from 1980-2010, we 

find that the correlation of [O3]MDA8 with daily maximum temperature (Tmax, R2=0.24) is 

much lower than with two humidity measures, relative humidity (RH, R2=0.71) and 

vapor pressure deficit (VPD, R2=0.67) (Figure 2.3b, 2.3c). We use VPD in this study 

since it is directly related to water stress of plants [Pegoraro et al., 2007]. Using daily 
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data, the correlation of [O3]MDA8 with VPD (R2=0.68) is also much higher than with Tmax 

(R2=0.32) (Figure 2.3d, 2.3e).    

 

Figure 2.3 Observed ground-level [O3]MDA8 and its relationship with meteorology 

over the SE in October from 1980 to 2010. a, Regional-averaged monthly mean 

[O3]MDA8 (black solid) has no significant trend, with a climatology mean ~ 40 ppbv 

(red dash). In the years 2000 and 2010, [O3]MDA8 reached 2σ (blue dash) above the 

climatology mean. These two years also feature high violation counts (yellow 

squares). b and d, [O3]MDA8 is well correlated with two humidity measures, VPD and 

RH. c and e, [O3]MDA8 is correlated moderately with Tmax, but poorly with wind 

speed. Red solid lines in d and e are linear fits and red dash lines the confidence 

intervals. a-c show monthly mean data and d-e show daily data. 

 

 

The interpretation of simple linear correlation analysis is often complicated by the 

colinearity between meteorological factors resulting in part from the synoptic-scale 

weather [Camalier et al., 2007]. We use the explained variance decomposition (EVD) 

method (see Section 2.2.6 for method description) to analyze the variance contributions 
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of Tmax, and VPD to daily [O3]MDA8 in four regions, SE, Northeast (NE), Midwest (MW), 

and California (CA) during 1980-2010. We compare the explained variance (EV) of daily 

[O3]MDA8 attributable solely by Tmax (EVT) or VPD (EVVPD) and that to the correlation 

between Tmax and VPD (EVT-VPD) in July and October (Table 2.1). In most cases, almost 

all EV is due to the correlated contribution by Tmax and VPD. The exception is the 

October case of SE, where 68% of the variance in [O3]MDA8 can be explained by the two 

meteorological variables and more than half of the contribution is solely from VPD.  

The analysis above implicates that humidity-related mechanisms are governing 

the ground-level ozone concentrations over the SE during the fall. 

 

Table 2.1 EVD analysis results for the explained variance of [O3]MDA8 by Tmax and 

VPD over varied regions in the US in July and October. 

 July October 

 CA NE MW SE CA NE MW SE 

EVT-VD 0.46 0.40 0.39 0.42 0.50 0.45 0.58 0.32 

EVT 0.00 0.14 0.05 0.00 0.00 0.08 0.04 0.00 

EVVD 0.05 0.00 0.01 0.07 0.04 0.11 0.11 0.36 

EV 0.51 0.54 0.45 0.49 0.54 0.64 0.73 0.68 

 

2.3.3 Simulations Underestimates Ground-level Ozone during Episodes 

To investigate the physical mechanism for the correlated increase of VPD and 

surface ozone, we examine in detail the extreme monthly [O3]MDA8 in October 2010, 

when the ozone enhancement is regional in nature (Figure 2.2) and the SE regional mean 

~ 10 ppbv higher than the climatological value (Figure 2.3a). The ozone enhancement in 

the monthly mean is mainly due to three episodes, October 7-12, 16-18, and 21-24, with 

concurrent high temperature and VPD (Figure 2.3b, 2.3c).  
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Figure 2.4 Model simulation of regional mean [O3]MDA8 in the SE during October 

2010. a, Comparing with the observed regional-mean [O3]MDA8 (black solid), the 

base simulation (red dash) underestimates by ~ 15 ppbv during the episodes. The 

bias is greatly reduced in the simulation with doubled biogenic isoprene emissions 

(blue dash). The simulation without biogenic isoprene emissions (green dash) gives a 

reference for the importance of biogenic emission during the month. The two 

episodes are concurrent with high VPD (i.e., dry conditions, blue circles) and high 

temperature (red triangles). b, The simulation with doubled isoprene emissions 

(blue circles) is in better agreement with observations than the base simulation 

(black cross). Every symbol represents a station within the grey dash line in a. The 

red line is the 1:1 line.  

 

 

Figure 2.4a and 2.4b show that the base simulation underestimate [O3]MDA8 by ~ 

15 ppbv during the three episodes in October 2010. In comparison, the sharp decrease 

towards the end of the month around October 26, due to an intensive extra-tropical 

cyclone, is well simulated by the model. The coupling between weather condition and 

surface ozone is clearly shown in the figure. During the period of warm and dry weather 

(i.e., high VPD values), ozone concentrations tend to be higher because a lower wind 
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speed reduces ventilation of high ozone air mass by advection and less cloud (and no 

precipitation) increases photochemical production.  

 

Figure 2.5 Simulated [O3]MDA8 in a low-ozone month, Oct. 2009, and a normal-ozone 

month, Oct. 2008 over the SE. a and b, Black solid lines are observations, red 

dashed lines are the base simulation, and green dashed lines are simulations with no 

isoprene emissions. c and d, Blue symbols are VPD and red symbols Tmax. 

 

 

The coupling of weather and surface ozone is also a function of emissions. Figure 

2.4a shows that the ozone enhancement during the episodes is much larger in the base 

simulation than a sensitivity simulation without biogenic isoprene emissions, reflecting 

the sensitivity of ozone production to VOC emissions in October [Jacob et al., 1995]. 

Thus, the ozone underestimations during dry and warm weather conditions may reflect 

errors in anthropogenic or natural emissions. We consider further that the model 

simulations do not have large biases when VPD values are low in October 2010 and that 

the model can simulate well ozone observations in the October of the low-ozone year of 

2009 or the average-ozone of 2008 (Figure 2.5) when VPD values are lower than 2010. 
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These results indicate that anthropogenic emissions, which do not vary much with 

weather, are reasonably estimated in the model. On the other hand, natural emissions of 

isoprene, the most significant VOC precursor for ozone in eastern U.S., are heavily 

affected by weather conditions. Indeed, the model biases of surface ozone in the warm 

and dry episodes in October 2010 are largely corrected in the sensitivity simulation with 

model estimated isoprene emissions being doubled (Figure 2.4). 

2.3.4 Humidity-driven Biosphere Feedback 

The fact that the model underestimation does not occur in simulations of low-

ozone (e.g., October 2009) or average-ozone (e.g., October 2008) Octobers (Figure 2.5) 

indicates caveats of model representation in high-ozone events. We conduct a series of 

sensitivity simulations (Section 2.2.5) to examine the drivers that are potentially 

responsible for the underestimation. One of these simulations shows that we can greatly 

reduce the bias during the episodes if we double the biogenic isoprene emissions (Figure 

2.4 and Figure 2.6).  

In addition to a reduction of bias in ground-level ozone, the increase in isoprene 

emissions also brings the simulated column density of formaldehyde (CH2O), a high-

yield product from isoprene chemistry often used for validating the isoprene emission 

inventory [Palmer et al., 2003; Palmer et al., 2006; Millet et al., 2006; Fu et al., 2007], to 

a better agreement with GOME-2 satellite observations (Figure 2.7). Note that the CH2O 

column in the base simulation agrees with GOME-2 observations in Octobers of 2008 

and 2009. These results suggest that the model may have underestimated the response of 

isoprene emissions to the meteorological conditions of both high temperature and low 

humidity (Figure 2.4). 
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Figure 2.6 The comparison between observed and simulated monthly mean [O3]MDA8 

in October 2010. a, observations  b, the base simulation; c, the simulation with 

doubled isoprene emissions. 

 

 

 

It is worthwhile to notice that compared with the intensive isoprene emissions in 

the summer over the SE, the doubled isoprene emissions (~20-30 mg/m2/day) are still 

relatively small. However, because of the shift of chemistry regime from NOx-sensitive in 

the summer to VOC-sensitive in the fall [Jacob et al., 1995], the ozone production 

becomes quite sensitive to isoprene in October (Figure 2.8). The significant contribution 

of isoprene to the ozone episodes, shown as the difference between the no-isoprene 

simulation and the doubled-isoprene simulation (Figure 2.4) in the October 2010 case, 

also underscores the importance of accurately modeling biogenic isoprene emissions in 

the fall, which has been paid inadequate attention in the community.  
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Figure 2.7 GOME-2 observed CH2O column density (black) over Southeast US 

during October from 2007 to 2011 features a peak in 2010, suggesting strong 

biogenic emissions. The simulated CH2O column density with standard MEGAN 

algorithm (red) is in agreement with satellite in 2008 and 2009, but has 

underestimation in 2010. Doubling biogenic emissions (blue) in 2010 reduces the 

bias. 

 

 

 

Figure 2.8 The relative sensitivity of daytime ozone to the change of isoprene 

emissions is larger in October, 2010 (SE average 0.048) than in July, 2010 (SE 

average 0.014) over the SEUS, demonstrating that the ozone production is more 

sensitive to biogenic VOC emissions in the fall because of the chemical regime shift. 
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The 3-D REAM model uses the MEGAN, a state-of-the-art biogenic emission 

module, to calculate biogenic isoprene emissions. The MEGAN algorithm takes into 

account environmental variables such as temperature, radiation, and soil moisture but 

includes no humidity-emission relationship [Guenther et al., 2006]. However, an 

examination of long-term isoprene measurements at Yorkville, GA, a forested site 

representative in the SE [Xu et al., 2015], during October from 1998 to 2013, suggests 

that the humidity-emission relationship may be more important than the well-known 

temperature-emission relationship in October. Because the inference of ambient isoprene 

concentration to the emissions is confounded by OH concentrations and boundary layer 

mixing, we compare empirical cumulative distribution functions (ECDF) of isoprene 

concentrations under different humidity or temperature conditions. The ECDFs show that 

high concentrations of isoprene occurs much more frequently in the low humidity case 

(VPD>2 kPa) than in the high humidity case (VPD<2 kPa) (Figure 2.9) suggesting that 

low humidity stimulate isoprene emissions. In contrast, no significant difference in 

ECDFs is found between high temperature (Tmax>30oC) and low temperature (Tmax<30 

oC) cases, implying that dependence of isoprene emissions on temperature is weaker than 

that on humidity in October.  

The enhancement of isoprene emissions in a low-humidity episode is noticed in a 

few laboratory studies [Pegoraro et al., 2005; Pegoraro et al., 2007]. For example, a 

study conducted in Biosphere 2, by controlling multiple factors, including air 

temperature, radiation, carbon dioxide concentration, soil moisture, and water vapor, 

demonstrated that the gross isoprene production from cottonwood trees could enhance by 

a factor of two when VPD increased from 1 kPa to 3 kPa (RH decreased from ~80% to 
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~40% under the experiment condition. See Figure 2.10). The doubling of isoprene 

emissions under the conditions of the October 2010 episodes is consistent with this 

laboratory study. It is also interesting to notice that the relationship between humidity and 

emissions observed in the field is rather contradictory [Geron et al., 1997; Pier, 1995; 

Potosnak et al., 2014]. However, most of these studies are subject to confounding factors 

such as soil moisture and are conducted in the main growing season instead of the fall. 

 

 

 

 

Figure 2.9 Comparisons of ECDFs under varied conditions of VPD and Tmax. (Left) 

Comparisons of ECDFs of isoprene measurements indicate that high isoprene 

concentrations are more likely to occur when VPD is greater than 2kPa. (Right) 

Comparisons of ECDFs do not find a higher probability of high isoprene 

concentrations for Tmax greater than 30 ºC. 
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Figure 2.10 The experiment conducted in Biosphere 2 by Pegoraro et al. [2007] 

shows that isoprene emission rate enhances by a factor of two from low VPD 

(humid, ~ 1 kPa) condition to high VPD (dry, ~3 kPa) condition.  

 

 

2.3.5 Exploration of Other Known Mechanisms 

To explore alternative explanations (Section 2.2.5) for the underestimation of 

ozone during the episodes, we also evaluate the sensitivities of multiple ozone-impacting 

factors, including temperature, water contents, and cloud cover. Our simulations find that 

an increase of temperature by 2 K results in an increase of [O3]MDA8  by less than 3 ppbv, 

mainly because of increased biogenic isoprene emissions (Figure 2.11). The simulations 

also show that perturbation of RH by 10% (without biogenic emission feedback) leads to 

change of [O3]MDA8  by less than 0.5 ppbv and that the effect is of variable signs, 

demonstrating that the direct impact of water content on ozone chemistry is small (Figure 

2.11). To rule out the possibility that underestimation of ozone is caused by 

overestimation of cloud cover, we conduct a simulation with zero cloud cover, which 

only negligibly increase [O3]MDA8 from the base simulation. Biomass burning, which 
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emits ozone precursors, can be more intensive during a drought. But examination of the 

Global Fire Emission Database (GFED) burning area shows that October 2010 is not an 

extraordinary month of biomass burning over the region (Figure 2.12). Regional mean 

[O3]MDA8 changes only negligibly in a simulation taken out the biomass burning 

emissions, indicating that the contribution of biomass burning to ozone is likely to be 

insignificant on a regional scale. These results from sensitivity simulations show that the 

modeling uncertainties of temperature, water contents, cloud cover, and biomass burning 

are unlikely to explain the ~ 15 ppbv underestimation of [O3]MDA8 during the episodes. 

 

Figure 2.11 The response of surface ozone ([O3]MDA8) to perturbation of temperature 

with or without biogenic emission feedback (left),  relative humidity, and cloud 

(right) shows that the uncertainties in these factor are inadequate to explain the 

underestimation of [O3]MDA8 during the episodes of October 2010. 

 

Figure 2.12 The GFED biomass burning area over the SE from 1999 to 2011 (black 

line) and data for Octobers of each year (red dot).    
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2.4 Summary and Implications 

Previous studies have raised concerns that climate change drives the extension of 

the ozone season into the fall [Avise et al., 2009; Chen et al., 2009]. Current discussions 

on the ozone climate penalty (the response of ground-level ozone to climate change) 

mainly focus on the ozone-temperature relationship [e.g., Jacob and Winner, 2009; 

Rasmussen et al., 2012; Wu et al., 2008]. However, our study finds ozone-humidity effect 

being a more important relationship regionally in October. Despite the great spread 

among members, the ensemble mean of a group of the state-of-art climate models (e.g., 

GFDL, CESM, and GISS) does show a decreasing trend of humidity over the SE region 

(Figure 2.13). Some model members (i.e., GFDL) even project a decreasing trend in the 

lower percentiles of relative humidity in the next 50 years, suggesting that it is probable 

that dry October similar to 2000 and 2010 will occur more frequently (Figure 2.13). Note 

that the VPD values in Figure 2.13 are significantly smaller than those in Figure 2.3 and 

2.4. That is because climate models use VPD for all 24 hours, but our analysis uses only 

daytime values. These results suggest that a drier SE is likely in the future; therefore, the 

humidity-regulated biogenic emission feedback proposed in this work may be a key 

factor for the extension of the ozone season. In addition, it is also expected that increased 

biogenic emissions in the SE will also lead to an increase of secondary organic aerosols, 

an air pollutant and a mediator in the climate feedback. 

Despite the regional projection of humidity is still subject to great uncertainty, our 

work highlights the complexity of biosphere-chemistry-climate interactions. Predictions 

of future ozone changes outside the conventional ozone season require more accurate 

representation of biogenic emissions, especially the possible linkage between humidity 



 34 

and isoprene emissions, which warrants further study. We suggest that the humidity 

effect be included in the evaluation of the future air quality control strategy in addition to 

the temperature penalty. 

 

Figure 2.13 Projections of VPD by climate models over the SE in next 50 years. a, 

Ensemble means from the GISS model (RCP 4.5) show increasing trend of VPD in 

the SE in the next 50 years; b, One GFDL model member with RCP 4.5 emissions 

predicts that high VPD events may become more extreme in the future. 
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CHAPTER 3 

2LARGE VERTICAL GRADIENT OF REACTIVE NITROGEN 

OXIDES IN THE BOUNDARY LAYER 

3.1 Introduction 

 The vertical distribution of air pollutants in the boundary layer (BL) is a complex 

function of emissions, advection, chemistry, and turbulent mixing. In homogeneously 

polluted areas (e.g., Washington-Baltimore region. See Figure 3.1) with relatively strong 

surface emissions, the vertical distribution of a pollutant is largely dependent on the 

competition between chemistry and turbulent mixing. Based on the reasoning that 

vigorous turbulent mixing in the BL is much faster than chemical loss for many species 

of interest, air pollution studies often assume a well-mixed BL. This assumption enables 

researchers to extrapolate surface observations into the entire BL [e.g., Petritoli et al., 

2004; Fiedler et al., 2005; Leigh et al., 2007; Lee-Taylor et al., 2011; de Arellano et al., 

2011; Knepp et al., 2013] and thus greatly extends the use of surface measurements. This 

assumption readily works as a first-order approximation for long-lived species such as 

carbon monoxide and ethane but is invalid for very reactive species such as isoprene. 

                                                 

 

 
2 This chapter is an extension of  “Large Vertical Gradient of Reactive Nitrogen Oxides in the Boundary 

Layer: Modeling Analysis of DISCOVER-AQ 2011 Observations”, submitted to Journal of Geophysical 

Research – Atmospheres. Coauthors are Yuhang Wang, Gao Chen, Charles Smeltzer, James Crawford, 

Jennifer Olson, James Szykman, Andrew J. Weinheimer, David J. Knapp, Denise D. Montzka, Armin 

Wisthaler, Tomas Mikoviny, Alan Fried, Glenn Diskin. 
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However, for moderately reactive species which has a chemical life time comparable to 

the BL mixing time scale, the validity of the well-mixed BL assumption over emission 

regions is determined by the competition between chemistry and mixing and has not been 

thoroughly evaluated. 

 In this chapter, we will focus on one such species, nitrogen oxides 

(NOx=NO2+NO), a primary pollutant that plays a critical role in the formation of 

tropospheric ozone [Liu et al., 1992; Chameides et al., 1992], nitrate aerosol [Bassett and 

Seinfeld, 1983], and secondary organic aerosol [Ng et al., 2007]. We will use aircraft 

measurements from a NASA Earth Venture campaign in July 2011, DISCOVER-AQ 

2011, to investigate the factors regulating the vertical profile of NOx and evaluate the bias 

of the BL-average ozone production rate [Liu et al., 2012a] and satellite NO2 retrieval 

[Boersma et al., 2004; Gu et al., 2014] calculation resulting from the inadequate 

knowledge of the vertical distributions. 

 The remainder of this chapter will proceed as follows. Section 3.2 describes the 

data and methods used in this study. Section 3.2.1 documents the aircraft measurements 

from DISCOVER-AQ 2011. To gain insight into how BL conditions impact the vertical 

profile of NOx, we classify the observed vertical profiles based on BL height and 

potential temperature gradient in Section 3.2.2. Section 3.2.3 describes the setup of the 1-

D REAM. Section 3.2.4 and Section 3.2.5 describe the calculation of model diagnostics 

and NO2 air mass factor, respectively. We present results and discussions in Section 3.3. 

In Section 3.3.1, we present modeling results and comparisons with observations based 

on the profile classification presented in Section 3.2.2. We then explore the sensitivity of 

the NOx vertical profile to BL stability in Section 3.3.2. To characterize the uncertainty in 

the modeling analysis, we analyze in Section 3.3.3 the impact of BL and land-surface 

parameterizations on the vertical profiles of NOx. In Sections 3.3.4 and 3.3.5, we 

quantitatively assess the influence of the BL NOx gradient on the calculation of the BL-
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averaged ozone production rate and tropospheric NO2 column retrieval, respectively. 

Finally, in Section 3.4, we summarize our findings. 

3.2 Data and Methods 

3.2.1 DISCOVER-AQ Aircraft Measurements 

Deriving Information on Surface Conditions from Column and Vertically 

Resolved Observations Relevant to Air Quality (DISCOVER-AQ 2011) is a NASA Earth 

Venture campaign taken over the Washington-Baltimore region in July 2011. 

DISCOVER-AQ is unique in that the aircraft systematically sampled the BL and to 

obtain a large dataset of vertical profiles of trace gases and aerosols. During DISCOVER-

AQ 2011, 14 research flights using the NASA P-3-B aircraft took place around the 

Washington-Baltimore region. By performing spiral profiling over six surface sites and 

occasionally over the Chesapeake Bay (Figure 3.1), extensive measurements were made 

in the BL and the LFT, providing a total of 253 daytime vertical profiles of various 

species from ~300 m to 5 km.  

NO, NO2, and ozone were measured by the NCAR 4-channel chemiluminescence 

instrument [Brent et al., 2013]. Formaldehyde was measured by a difference frequency 

generation absorption spectrometer [Weibring et al., 2010]. Volatile organic compounds, 

including isoprene, toluene, and xylene, were measured using a proton-transfer-reaction 

mass spectrometer [Lindinger et al., 1998]. CO was measured by a diode laser 

spectrometer [Sachse et al., 1987]. Table 3.1 summarizes the measurement methods and 

data uncertainties in DISCOVER-AQ 2011. 
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Figure 3.1 The sampling region of DISCOVER-AQ 2011. The colored symbols 

denote the surface sites above which extensive aircraft sampling in a spiral manner 

were made. 

 

 

Table 3.1 The measurement methods and data uncertainties in DISCOVER-AQ 

2011 

Species Method Frequency Typical Uncertainty 

NO 
4-channel chemiluminescence instrument 

 
1 Hz 

10% 

NO2 15% 

O3 5% 

CH2O 
Difference frequency generation 

absorption spectrometer 
1 Hz 4% 

CO Diode laser spectrometer 1 Hz 2% or 2ppbv 

Toluene 

Proton transfer reaction mass 

spectrometer 

 

0.07 Hz 

10% 

Xylenes 10% 

Isoprene 10% 

Acetaldehyde 10% 

MVK_MAC 10% 
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3.2.2 Classification of Vertical Profiles 

During DISCOVER-AQ 2011, extensive aircraft measurements were made by 

spiral profiling in the BL and the lower free troposphere, providing a total of 253 daytime 

vertical profiles of various species including NO and NO2 from ~300 m to 5 km. To 

calculate these vertical profiles, raw measurements of each spiral sampling are binned 

and averaged based on the model vertical levels in part to remove the fine-scale 

horizontal variation that cannot be simulated in a 1-D model.  

To investigate the impact of turbulent mixing on the vertical profile of NOx, we 

classify over 200 vertical profiles based on BL height and stability. The BL height is 

determined as the height where the potential temperature gradient is larger than 5 K/km 

[Heffter, 1980]. We classify a vertical profile as “deep”, “medium”, or “shallow” if the 

BL height is higher than 1 km, between 0.5 km and 1 km, or lower than 0.5 km, 

respectively. To characterize the stability of the BL, we calculate the average linear 

potential temperature gradient within the BL. We classify a vertical profile as “turbulent”, 

“neutral”, or “stable” if the potential temperature gradient is less than 0.1 K/km, between 

0.1 K/km and 1 K/km, or greater than 1 K/km, respectively. Note that our definitions of a 

turbulent, neutral, or stable BL are different from conventional ones, in which an 

unstable, neutral, or stable BL is usually defined as potential temperature gradient less 

than, equal to, or greater than 0 K/km, respectively. Our definition is designed to reflect 

the non-linear scale observed in the relationship between NOx vertical gradient and BL 

stability (See discussion in Section 3.3.2).  

Table 3.2 shows a summary of profile classification. Because our algorithm 

cannot identify the BL height for some of the vertical profiles, the total count of classified 
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profiles is 209. The vertical profiles in DISCOVER-AQ 2011 distribute unevenly among 

the categories. The dominant category is “deep and neutral” (123 profiles), accounting for 

more than half of all classified vertical profiles. Following “deep and neutral” are 

categories “deep and turbulent” (40 profiles), “medium and neutral” (24 profiles), 

“shallow and stable” (12 profiles), and “medium and stable” (7 profiles). As expected, the 

two dimensions, BL height and BL stability, overlap to a large extent and no profile falls 

in the categories “deep and stable”, “medium and turbulent”, “shallow and turbulent”, 

and “shallow and neutral”. Therefore, we exclude these four categories in our discussion. 

Because “shallow and stable” and “medium and stable” categories show similar vertical 

profiles and the profile numbers are relatively low, we also merge these two groups into 

the category “stable” so as to simplify our discussion. 

Table 3.2 Counts of vertical profile categories, classified based on BL height and 

potential temperature gradient.  

Height 

Stability 

Deep 

>1km 

Medium 

0.5-1km 

Shallow 

<0.5km 

Turbulent (<0.1K/km) 40 - - 

Neutral (0.1-1K/km) 123 24 - 

Stable (>1K/km) - 7 12 

 

Table 3.3 summarizes the distribution of profile categories among the time of the 

day and among surface sites. As a result of the sampling design, the classified vertical 

profiles are more frequent towards midday (10:00-14:00 LT) than late afternoon (14:00-

18:00 LT) and early morning (6:00-10:00 LT). On the other hand, the distributions of 

classified vertical profiles are similar among various sites, except for Chesapeake Bay 

and Beltsville. The underrepresentation of the Beltsville site is partly due to air traffic 
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control, which leads to difficulty in identifying the BL height from inadequate vertical 

sampling. Because of the cooler water surface relative to land at daytime, the BL over the 

Chesapeake Bay tends to be more shallow and stable. The similar category distributions 

of NOx profiles among land sites reflect homogeneity of BL conditions over the region. 

Table 3.3 also shows that “deep and turbulent” and “deep and neutral” cases are more 

frequent and “stable” cases are less frequent in midday and late afternoon than in early 

morning. However, it is noteworthy that we also find a few “deep and turbulent” and 

“deep and neutral” cases in the morning and a few “stable” cases in the afternoon. 

Table 3.3 Distributions of profile categories with respect to local time and location 

during DISCOVER-AQ 2011.  

 

Deep 

&Turbulent 

Deep 

&Neutral 

Medium 

&Neutral 
Stable Total 

Distribution of profile categories at varied local time 

6:00 -10:00 2 10 8 9 29 

10:00 - 14:00 29 75 12 7 123 

14:00 - 18:00 9 38 4 3 54 

Distribution of profile categories at varied sites 

Padonia 5 24 2 3 34 

Fairhill 9 25 5 1 40 

Aldino 8 21 5 2 36 

Edgewood 7 27 5 2 41 

Essex 6 22 3 3 34 

Beltsville 5 3 3 4 15 

Chesapeake Bay 0 1 1 4 6 
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3.2.3 1-D REAM Setup 

We use the 1-D REAM to analyze the vertical profile of NOx during DISCOVER-

AQ 2011. The 1-D REAM is constrained with measurements from DISCOVER-AQ 

2011. We specify surface-emitted species, including NO, NO2, aromatics, and isoprene, 

with observations at the lowest altitude of aircraft measurements (~300 m). While the 

emissions of these species can be estimated in the 1-D model, we did not carry out the 

analysis due to a lack of reliable observations below 300 m (A.1 in Appendix 1). For the 

same reason, all the analysis results presented in this work are above 300 m. For the 

species with relatively long lifetimes such as O3 and CO (Figure 3.3 (f)), we constrain the 

model with the measured vertical profiles. The diurnal variations of constrained species 

(e.g., NOx at 300 m, O3) are estimated by aggregating daytime observations when 

possible. Any measurement data gap is interpolated using 3-D REAM simulation results 

(e.g., at night). The unmeasured VOCs (e.g., alkanes) are specified at ~300 m with 3-D 

REAM simulation results. Their effects on O3 chemistry are not large. All model 

evaluations are done for the time of the observations. Comparing 1-D REAM results with 

observations, we find that model is able to reproduce the vertical profile of observed NOx 

(Figure 3.2) and other species (Figure 3.3 (a)-(e)). To achieve a quasi-steady state, we run 

the 1-D REAM with a 1-min time step for 20 simulation days with repeated diurnal 

meteorological fields in the day of the observation. Only the results from the last day are 

used for analysis. 

  To investigate how the parameterizations of the BL and land-surface processes 

impact the simulation, we test three BL schemes, Asymmetric Convective Model version 

2 (ACM2) [Pleim, 2007], Yonsei University (YSU) [Hong et al., 2006], and Mellor–
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Yamada–Janjic (MYJ) [Mellor and Yamada, 1982; Janjić, 1990], and two land-surface 

schemes, Noah and RUC, in the WRF model. For MYJ and YSU, we use a local 

turbulent diffusion scheme to do the vertical mixing. Although YSU includes non-local 

terms in its formulation, the local turbulent diffusion scheme is used because of the lack 

of a consistent treatment for meteorological parameters and chemical tracers [Pleim, 

2011]. For the hybrid local and non-local scheme ACM2, we implement the vertical 

transport scheme following Pleim [2007]. For comparison purposes, the sensitivity tests 

of BL schemes use only the Noah land-surface scheme and the sensitivity tests of land-

surface schemes use only the MYJ BL scheme. Section 3.3.3 summarizes and compares 

the performance of these BL and land-surface schemes. 

3.2.4 Model Diagnostics 

To investigate the factors controlling the vertical profile, we compute chemical 

lifetime (τc) and turbulent mixing time (τm) using model results. τc varies from species 

to species and is calculated as τc = [X]/Lx, where [X] is modeled concentration of 

species X and Lx the chemical loss rate of X. On the other side, τm is independent of the 

species in question and is defined as the time that a model layer takes to accumulate the 

concentration of an inert gas to 1/e of the first layer, given a fixed concentration in the 

first layer and zero initial concentrations in the rest of model layers. We use a simplified 

1-D model with only vertical turbulent transport driven by the WRF generated vertical 

turbulent diffusivity to calculate τm.  

Using the simulated concentrations of NO, HO2, and various peroxy radicals 

(RO2), we diagnose the vertical profile of the ozone production rate and derive the BL-
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averaged ozone production rate. The ozone production rate for a model layer i, denoted 

as P(O3)i, is calculate as  

P(O3)i = k0,i[NO]i[HO2]i + ∑ kj,i[NO]i[RO2]j,i

n

j=1
 , 

where k0,i is the rate constant for the NO+HO2 reaction, kj,i are rate constants for various 

NO+RO2 reactions, and [NO]i, [HO2]i, [RO2]j,i are concentrations for NO, HO2, and 

various RO2 radicals in layer i. The BL-averaged ozone production rate, denoted as 

P(O3)BL, is calculated as the average of the ozone production rate in each layer within the 

BL weighted with the layer thickness, 

P(O3)BL =
∑ P(O3)i ∙  hi

kBLT
i=kBLB

hBL
 , 

where hi is the thickness of layer i, kBLB is the lowest model layer with aircraft 

observations (~ 300 m), kBLT is the model layer that encloses the BL top, and hBL is the 

thickness of the boundary layer. We also compute the vertical profile of the net ozone 

production rate (N(O3) = P(O3) − L(O3)) and the BL-averaged net ozone formation rate 

𝐍(𝐎𝟑)𝐁𝐋 =
∑ 𝐍(𝐎𝟑)𝐢 ∙  𝐡𝐢

𝐤𝐁𝐋𝐓
𝐢=𝐤𝐁𝐋𝐁

𝐡𝐁𝐋
. 

3.2.5 Calculation of the NO2 Air Mass Factor 

The air mass factor (AMF), defined as the ratio of the slant column observed by a 

satellite to the vertical column to be retrieved, is a key quantity in retrieving the NO2 

tropospheric column. In addition to satellite measurement error, the AMF calculation 

constitutes an important source of retrieval error [Boersma et al., 2004]. Studies have 
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shown that using an inaccurate NO2 a priori profile shape leads to biases in the AMF 

[Boersma et al., 2004; Boersma et al., 2011].  

Based on simulated NO2 vertical profiles, we calculate the AMF for each 

individual profiles (AMFind) and the AMF for site-average and campaign-average vertical 

profiles (AMFavg). The difference between AMFind and AMFavg provides information on 

how the temporal variation in vertical profiles impacts NO2 column retrievals. To explore 

the contribution of BL stability to the temporal variability, we calculate the AMF for each 

profile category. In our calculation, we use the DAK2 radiation scheme provided by the 

Koninklijk Nederlands Meteorologisch Instituut (KNMI). 

3.3 Results and Discussion 

3.3.1 NOx Vertical Profiles 

Figure 3.2(a) shows good agreement between the observed and simulated vertical 

profile of NOx. Note that the aircraft sampling during DISCOVER-AQ 2011 was usually 

conducted in daytime with no significant cloud cover reported. Therefore, a well-

developed BL is expected. In fact, the average BL height during aircraft sampling is 1.4 

km. However, to the contrary of what a well-mixed BL would suggest, both the 

observations and model simulations show a substantial vertical gradient of NOx. The 

median concentration of NOx decreases from 1.5 ppbv at ~300 m to 0.4 ppbv at the 

average BL height (1.4 km), a 70% concentration decrease in 1 km. A closer examination 

of individual NOx vertical profile affirms the prevailing negative gradient of NOx in the 

BL during the campaign. The magnitude of the gradient, however, varies greatly from 

profile to profile (Figure 3.4 (a)).  
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Figure 3.2 (a) Observed (black) and simulated (red) median vertical profiles of NOx 

during DISCOVER-AQ 2011. Error bars indicate the interquartile ranges and 

crosses show the arithmetic means. (b)-(e) Observed (black) and modeled (red) 

median vertical profile of NOx for varied profile categories: (b) “deep and 

turbulent”, (c) “deep and neutral”, (d) “medium and neutral”, and (e) “stable”. Red 

lines show simulated results using ACM2 (solid), YSU (dash-dotted), and MYJ 

(dashed). 

 

 

 Research-quality ground-level NO2 measurements are only available at two sites, 

Edgewood and Padonia. Therefore, analysis of vertical gradient in the lowest 300 m is 

not included in the main text. See A.1 and Figure A.1 in the Appendix A for the 

information. 

Although not dedicated to the vertical gradient of NOx in the BL, a few previous 

studies trying to link column tropospheric NO2 to surface concentration hinted the 

existence of the vertical gradient [Petritoli et al., 2004; Knepp et al., 2013]. Assuming a 

well-mixed BL, these studies derived surface NO2 (Cderived) from dividing column NO2 

measurements by BL height and compared Cderived to surface measurements (Cmeasured). 

Regression analysis (Cderived = a Cmeasured + b) showed the slope, a, is always less than one, 

indicating that column-derived surface NO2 tends to underestimate when NOx is assumed 

to be well mixed in the BL. In addition, the observations by Petritoli et al. [2004] lasted 

for about a year in Northern Italy, so the implication of vertical NOx gradient from their 
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data also underscores the pervasive existence of the phenomenon. Furthermore, Petritoli 

et al. [2004] showed that the regression slope, a, is close to one in the winter but is much 

lower (0.1-0.3) in the summer. This seasonal cycle of the regression slope indicates that 

the gradient of NOx is more prominent in the summer than in the winter.  

 

Figure 3.3 Average vertical profiles for (a) J(NO2), (b) isoprene, (c) toluene, (d) 

xylene, and (e) peroxy nitrates, respectively. Solid black lines denote observations 

and dashed red lines model results; (f) Observed average vertical profile for carbon 

monoxide. 

 

 

3.3.2 Sensitivity of NOx Gradient to BL Stability 

Figure 3.4(a) shows that the relationship between the NOx gradient and BL 

stability (i.e., potential temperature (θ) gradient) has roughly three regimes. When the BL 

is in the turbulent regime (∂θ/ ∂z < 0.1K/km), NOx is well mixed; when the BL is in the 

stable regime (∂θ/ ∂z > 1K/km), the magnitude of the NOx gradient is largest (median 

gradient at ~ -3 ppbv/km); most interestingly, when the BL is in the transitional regime 

(0.1K/km < ∂θ/ ∂z < 1K/km), the vertical gradient of NOx appears to be highly 

sensitive to BL stability (or θ gradient). Based on this observation, we define in Section 

3.2.2 the criteria for “turbulent”, “neutral”, and “stable” categories. The predominance of 

the “deep and neutral” category (Table 3.2) implies that even when the BL is well 
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developed it is common that the atmosphere is in the neutral or transitional regime, in 

which the vertical gradient of NOx is sensitive to BL stability. 

 

Figure 3.4 (a) Relationship between the NOx gradient and the potential temperature 

(θ) gradient in the BL. Circles represent individual profiles and red squares 

represent the medians of NOx gradients in θ gradient bins. The six bins are defined 

as 0-0.002, 0.002-0.02, 0.02-0.1, 0.1-0.5, 0.5-1, 1-10 K/km, respectively; (b) NOx 

chemical lifetime (𝜏𝑐,NOx
) and vertical mixing time scale (𝜏𝑚) as a function of height 

in different cases: “deep and turbulent” (DT), “deep and neutral” (DN), “stable” (S), 

and all DISCOVER-AQ 2011 profiles (A). Note that NOx chemical lifetime in the 

“deep and neutral” case is not discernible from that for the all profiles and thus is 

not plotted. To compare, chemical lifetimes of CO (𝜏𝑐,CO) and isoprene (𝜏𝑐,ISOP) for 

all profiles are also plotted. 

 

 

The vertical gradient over a homogeneous region is largely a result of the 

competition between chemical loss and turbulent mixing. While chemical loss is 

determined by the chemical property of the species of interest and the photochemical 

environment, turbulent mixing is a function of BL stability. Qualitatively, for a surface-

emitted species, fast (slow) chemical loss and slow (fast) vertical mixing contribute to a 

large (small) vertical gradient. In Figure 3.4(b), we show average chemical life time (τc) 

and turbulent mixing time (τm) as a function of altitude for all categorized profiles and 
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each profile category. Consistent with previous studies conducted during the summer 

over the eastern US [Spicer, 1982; Sillman, 2000], τc for NOx during DISCOVER-AQ 

2011 is 2-5 hours throughout the BL, in “deep and neutral” and “deep and turbulent” 

cases, two dominant categories. In the “stable” case, τc is slightly longer (6-9 hours), 

likely due to cloud cover and hence reduced photochemical loss. In contrast, τm differs 

greatly under “turbulent”, “neutral” and “stable” conditions. The implication of this 

observation is that the difference in the vertical NOx gradient among the categories 

during the campaign is mainly attributable to the difference in BL stability (τm) rather 

than photochemical lifetime (τc). In contrast, the seasonal cycle of the vertical NOx 

gradient inferred from Petritoli et al. [2004] can be explained by the seasonal variation in 

photochemical conditions (i.e., solar radiation).  

Figure 3.4(b) also contrasts NOx with other species such as isoprene and carbon 

monoxide (CO). Average τc for isoprene is less than an hour, faster than τm in the BL, 

and thus resulting in a vertical profile with strong gradient in the BL (Figure 3.3(b)). On 

the other hand, average τc for CO is about a week, much longer than τm, allowing a well-

mixed vertical profile (Figure 3.3(f)). 

3.3.3 Impact of BL and Land-surface Schemes on NOx Vertical Profiles 

The simulation of vertical profiles depends on model representations of vertical 

mixing. In the 1-D REAM, vertical mixing is driven by the WRF-generated parameters 

such as turbulent diffusivity, which is computed by BL and land-surface schemes in 

WRF. A number of studies compared the performance of these WRF schemes in terms of 

meteorological parameters such as temperature and humidity [Gilliam and Pleim, 2010; 

Hu et al., 2010; Shin and Hong, 2011;  Xie et al., 2012], but few evaluated their influence 
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on chemical tracers [Yerramilli et al., 2010; Pleim, 2011]. To test how the choices of BL 

and land-surface schemes impact vertical mixing in the 1-D REAM, we choose three BL 

schemes (MYJ, YSU, and ACM2) and two land-surface schemes (Noah and RUC) in 

WRF and evaluate their performance with the DISCOVER-AQ 2011 observations. 

Figure 3.2 (b)-(e) shows the comparison of model results using aforementioned 

BL schemes with observations. Statistics for model performance of simulated NOx 

mixing ratios, including bias, linear correlation coefficient, and root mean squared error 

(RMSE), are summarized in Table 3.4. In general, all these schemes are able to generate 

mixing parameters that result in reasonable agreement with observations. However, the 

performance of the BL schemes differs among profile categories. For “turbulent” 

categories, YSU performs better than MYJ and ACM2 because YSU generates more 

mixing in the BL than the other two. But for “neutral” and “stable” categories, MYJ and 

ACM2 outperform YSU, which overestimates vertical mixing. It is noteworthy that Pleim 

[2011] points out that the formulation of YSU is inherently inconsistent between 

meteorological and chemical tracers. As a result, despite YSU being a non-local scheme, 

its implementation in the 1-D REAM only utilizes the vertical diffusion coefficient 

generated from WRF. This inconsistency may cause more BL mixing with the YSU 

scheme in our test. On the other hand, although the inclusion of non-local terms in ACM2 

does enhance vertical mixing relative to MYJ, ACM2 still seems to underestimate in 

“turbulent” cases. Unlike BL schemes, two land-surface schemes result in negligible 

difference in performance for all profile categories (Table 3.4). 
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Based on these results and the fact that the “deep and neutral” category dominates 

in DISCOVER-AQ 2011, we recommend using the ACM2 or MYJ BL scheme and the 

Noah or RUC land-surface scheme in WRF simulations for air pollution modeling.  

 

 

Table 3.4 Performance of BL and land-surface schemes for varied profile categories. 

Metrics for performance of simulated NOx mixing ratios include bias, correlation 

coefficient (R), and root mean squared error (RMSE). Bias and RMSE are in the 

unit of ppbv and R value is unitless. 

 Deep & Turbulent Deep & Neutral   Medium & Neutral  Stable   

 Bias R RMSE Bias R RMSE Bias R RMSE Bias R RMSE 

 BL schemes 

MYJ -0.23 0.66 0.94 0.01 0.46 2.17 -0.10 0.73 0.92 -0.14 0.77 1.18 

YSU -0.07 0.83 0.67 0.32 0.44 2.49 0.24 0.71 1.07 0.09 0.87 0.90 

ACM2 -0.20 0.82 0.73 0.13 0.50 2.06 0.14 0.75 0.90 0.04 0.88 0.89 

 Land-surface schemes 

Noah -0.23 0.66 0.94 0.01 0.46 2.17 -0.10 0.73 0.92 -0.14 0.77 1.18 

RUC -0.26 0.64 0.97 -0.01 0.44 2.20 -0.12 0.72 0.94 -0.18 0.72 1.30 

3.3.4 BL-averaged Ozone Production Rate 

The net ozone production rate, P(O3), calculated as the sum of reaction rates of 

NO with HO2 and organic RO2 (see Section 3.2.4 for details), quantifies how fast the in 

situ chemical production of ozone occurs. The calculation of P(O3) is crucial for 

diagnosis of the ozone production regime [Liu et al., 2012a]. Most studies report surface 

P(O3) based on ground-level measurements [e.g., Ren, 2003; Shirley et al., 2006; Kanaya 

et al., 2008]. However, in principle, because of a relatively long lifetime of ozone, BL-

averaged ozone production rate, P(O3)BL, is a more appropriate quantity to characterize 

the contribution of local chemistry to the surface concentration of ozone. In this regard, 

the ozone production rate derived from surface measurements, P(O3)surf, can be biased 

high relative to P(O3)BL if a gradient of P(O3) exists in the BL. Using the 1-D REAM, Liu 
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et al. [2012a] found that the P(O3)BL is about a factor of four lower than surface P(O3)surf 

in highly polluted urban Beijing and the authors attributed it to the large gradient of NOx 

in the BL. In this work, with aircraft measurements providing much more information to 

constrain the model, we derive vertical profiles of P(O3) and assess the uncertainty of 

P(O3)BL. 

Figure 3.5 shows that P(O3) has a substantial gradient within the BL. The 

campaign median decreases from 10.5 ppbv/hr at 300 m to 3 ppbv/hr at 1.5 km. P(O3) of 

10 ppbv/hr near the surface is comparable to previous studies conducted in US urban 

regions such as New York and Philadelphia [e.g., Ren, 2003; Kleinman, 2005]. The 

analysis also shows that ozone is produced mainly through the reaction of HO2+NO 

(~80%) with minor contribution from organic RO2+NO reactions (Figure 3.6 (a)). In 

contrast to NOx, which decreases by 70% in the BL (Section 3.3.1), Figure 3.6 (b) shows 

that HO2 varies slightly from 300 m to 1.5 km (<10%). Therefore, we conclude that the 

gradient of P(O3) results primarily from the gradient of NOx rather than that of HO2 or 

RO2, which is consistent with Liu et al. [2012a]. In addition, we find that the vertical 

profiles of the net ozone production rate, N(O3), are similar to those of P(O3) because the 

ozone chemical loss rate during the campaign is relatively small (Figure 3.7). 

To assess the bias induced from approximating P(O3)BL as P(O3)surf, we calculate 

the relative difference between the P(O3)BL and P(O3) at 300 m. The latter is a proxy for 

P(O3)surf because we do not have true surface measurements from aircraft. As shown in 

Figure 3.5, P(O3) at 300 m is on average 48% larger than P(O3)BL, which is close to the 

value of 46% for the “deep and neutral” category. The relative bias becomes larger as the 

BL gets more stable and shallower, from 21% for the “deep and turbulent” category to 
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62% for the “medium and neutral” category. We also find that the relative bias between 

N(O3)BL and N(O3) at 300 m is about 39%, varying from 12% for the “deep and 

turbulent” category to 55% for the “stable” category (Figure 3.7). 

  
Figure 3.5 Median vertical profile of P(O3) for all profiles and each profile category. 

Relative biases of BL O3 production rates calculation using an assumed well-mixed 

NOx profile in the BL with NOx measured at ~300 m (P(O3)300m/P(O3)BL-1) are 

tabulated (inset).  

 

 

 
Figure 3.6 (a) Contributions of various reactions to P(O3) as a function of altitude; 

ALKp represents alkane-derived peroxy radicals and MCO3 acyl peroxy radicals; (b) 

Modeled vertical profiles for HO2 (black) and RO2 (blue). 
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Figure 3.7 Median vertical profile of N(O3) for all profiles and each profile category. 

Relative biases of BL net ozone production rate calculation using an assumed well-

mixed NOx profile in the BL (N(O3)300m/N(O3)BL-1) are tabulated.  

 

 

3.3.5 Tropospheric NO2 Column Retrievals 

Retrievals of tropospheric NO2 columns from satellite measurements require 

calculation of the air mass factor (AMF), which characterizes the relationship between 

NO2 abundance along the slant column (photon path from the sun to the satellite) and that 

in the vertical column for a given pixel [Boersma et al., 2011]. In practice, the AMF is 

calculated as an average of altitude-dependent AMFs weighted by a prescribed NO2 

vertical profile, following the equation 

AMF =
∫ amfh ∙ ch ∙ 𝑑h

∫ ch ∙ 𝑑h
, 

where amfh is the altitude-dependent AMF that describes the sensitivity to NO2 at 

altitude h and is usually obtained through radiative transfer calculation, and ch is the 

prescribed concentration of NO2 at altitude h and is usually provided by a 3-D chemical 

transport model. Estimates suggest that the uncertainty in the simulated a priori NO2 
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vertical profiles leads to a 5%-15% uncertainty in the calculated AMF [Hains et al., 

2010; Boersma et al., 2011].  

Various studies have been devoted to investigating how the uncertainties of NO2 

retrievals are affected by the a priori NO2 vertical profile. While a great number of 

studies [e.g., Eskes and Boersma, 2003; Boersma et al., 2011; Russell et al., 2011; Heckel 

et al., 2011] discuss the impact of the model spatial resolution on NO2 retrievals, only a 

few studies have examined the impact of temporal resolution [Lamsal et al., 2011; Heckel 

et al., 2011]. However, different retrieval algorithms sample simulated vertical profile at 

varied temporal resolutions, ranging from daily [e.g., Boersma et al., 2007], monthly 

[e.g., Russell et al., 2011; Valks et al., 2011], to annually [e.g., Bucsela et al., 2006]. In 

this section, we use the aircraft measurements during DISCOVER-AQ 2011 to assess the 

impact of variability in NO2 vertical profiles on the calculation of the AMF. 

Figure 3.8 (a) shows the relative difference of AMF between individual (AMFind) 

and average (AMFavg) vertical profiles at various sites. Note that in this case, NOx at the 

lowest 300 m is specified as that at 300 m. Results that account for the lowest 300 m at 

two sites with available research-quality ground-level NO2 measurements are presented 

in A.2 and Figure A.2 in Appendix A. Under the DISCOVER-AQ 2011 conditions, on 

average, using the campaign-average vertical profiles causes ~2-5% low bias. 

Additionally, the deviation of individual profiles from the average profile results in about 

±5% difference at all sites between AMFind and AMFavg (the boxes in Figure 3.8 (a) 

denotes the inter-quartile relative difference) and even larger difference for particular 

vertical profiles (the triangles in Figure 3.8 (a) denotes the largest positive or negative 

relative difference). We suggest that one should take into account this uncertainty in 
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temporal variability along with that in the horizontal resolution when developing and/or 

evaluating an NO2 retrieval algorithm.  

The statistics shown in Figure 3.8 (a) are quite consistent across all the sites, 

indicating that the variability in the AMF can be largely attributed to variability in the 

mixing property of the BL rather than spatial inhomogeneity. Figure 3.8 (b) shows that 

the AMF tends to decrease as the NO2 gradient becomes sharper in a shallower and more 

stable BL. The difference in the BL category explains the ~5% variability from the 

AMFavg, supporting the idea that the mixing property of the BL is primarily responsible 

for the variability of AMF observed in Figure 3.8 (a). 

 
Figure 3.8 (a) Relative difference between AMFind and AMFavg (AMFind/AMFavg-1) 

at each site and for the whole campaign. Dots represent average, boxes represent 

interquartile ranges, and triangles represent maximum and minimum of the relative 

difference, respectively; (b) AMF calculated from average vertical profile for each 

profile category. 
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3.4 Summary 

During DISCOVER-AQ 2011, we find frequent occurrences of significant NOx 

gradients within the BL, suggesting that the well-mixed BL assumption must be applied 

cautiously to BL NOx. The median vertical profile derived from aircraft spirals shows 

that NOx concentration decreases by ~ 70% from 300 m to 1.4 km. The observed vertical 

profiles of NOx can generally be reproduced by our 1-D photochemical model driven by 

WRF-generated meteorological fields. Analysis of the model results shows that the 

chemical lifetime of NOx is comparable to the vertical mixing time scale in the BL, 

resulting in the observed sensitivity of NOx gradient to BL stability.  

Model simulations using different BL and land-surface schemes in WRF found no 

significant impact on the 1-D model results. All of the three boundary layer schemes 

(MYJ, YSU, and ACM2) were able to generate a reasonable representation of the vertical 

mixing under DISCOVER-AQ 2011 conditions. Non-local schemes, ACM2 and YSU, 

moderately improved performance in a turbulent BL, but the YSU scheme tends to 

overestimate in “neutral” and “stable” cases. Using two land-surface schemes (Noah and 

RUC) resulted in little difference in simulated NOx vertical profiles. 

The gradient of NOx in the BL can confound the extrapolation of surface 

measurements to the entire BL. For example, using surface measurements in calculating 

the ozone production rate in the BL without considering the NOx gradient can result in a 

~45% high bias. In addition, since satellite retrieval of column density utilizes a priori 

vertical profiles, the model skill to reproduce a realistic vertical profile of NOx also 

affects our ability to correctly retrieve tropospheric NO2 column from satellite 
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measurements. Both spatial and temporal (inter-day) variations of BL NOx vertical 

profiles affect the accuracy of the retrievals.  

In this study, we have focused on understanding the vertical profiles of NOx 

observed in July, 2011 over Washington-Baltimore region during the DISCOVER-AQ 

campaign. However, we expect that the large gradient of NOx within the BL is not 

uncommon. More vertically resolved observations using aircraft, tethered balloon, and 

remote sensing techniques in other seasons and locations are necessary to understand the 

implications of BL NOx gradients on various applications of surface and satellite 

measurements in air quality studies. In addition, all the results presented here are based 

on aircraft measurements at least ~300 m above ground. Model results suggest that the 

NOx gradient between 300 m and surface tends to be larger than above 300 m due to 

surface NOx emissions. Therefore, reliable profile measurements in the lowest few 

hundred meters are also an important area of future field experiments targeting air 

quality. 
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CHAPTER 4 

3SURFACE AND TROPOSPHERIC SOURCES OF 

METHANESULFONIC ACID (MSA) OVER THE TROPICAL 

PACIFIC OCEAN 

4.1 Introduction 

Critical to the tropical climate system is the production of sulfate through organic 

sulfur emission and oxidation in marine environments [e.g., Charlson et al., 1987]. Since 

the discovery that dimethyl sulfide (DMS) is emitted in large quantities from the ocean 

[Barnard et al., 1982], marine sulfur chemistry has been studied extensively. The 

oxidation of DMS is mainly by the hydroxyl radical (OH), which converts more than half 

of DMS to sulfur dioxide (SO2) [Davis et al., 1998; Davis et al., 1999; Chen et al., 2000; 

Wang et al., 2001]. Further oxidation of SO2 in the gas or aerosol phase produces sulfuric 

acid (H2SO4), which can either condense onto existing particles or form new particles 

under favorable conditions [Davis et al., 1999; Mauldin et al., 1999; Weber et al., 2001]. 

In addition to SO2 and H2SO4, marine sulfur chemistry also involves other sulfur-

containing compounds such as dimethyl sulfoxide (DMSO), methane sulfinic acid 

                                                 

 

 
3 This chapter is an extension of  “Surface and free tropospheric sources of methanesulfonic acid (MSA)  

over the tropical Pacific Ocean,” published on Geophysical Research Letters in 2014. Coauthors are 

Yuzhong Zhang, Yuhang Wang, Burton Alonza Gray, Dasa Gu, Lee Mauldin, Christopher Cantrell, and 

Alan Bandy. 
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(MSIA), and methanesulfonic acid (MSA). These species, although believed to be 

important, have not been studied as extensively as DMS and SO2. 

Extensive airborne measurements onboard the NSF/NCAR C130 aircraft were 

carried out to study sulfur chemistry and its interaction with dynamics during the Pacific 

Atmospheric Sulfur Experiment (PASE) over the tropical Pacific (in the vicinity of 

Christmas Island, 157º20 Ẃ, 1º52 Ń) in August and September of 2007. Vertical 

distributions of a relatively complete set of sulfur-containing compounds, including 

DMS, SO2, H2SO4, and MSA, were measured, providing observational constraints to test 

our understanding of sulfur chemistry in the marine boundary layer (MBL) and lower 

free troposphere (LFT) over tropical regions. Using the 1-D REAM, Gray et al. [2011] 

showed that the modeled vertical profiles of DMS and SO2 during the PASE are in 

reasonable agreement with observations. They estimated an average DMS-to-SO2 

conversion efficiency of 73%. However, the budget analysis by Faloona et al. [2009] 

using PASE measurements found a close to unity conversion efficiency from DMS to 

SO2. Bandy et al. [2011] suggested that the discrepancy might be an indication of an 

unknown sulfur source, whose strength is approximately half that for DMS. In this work, 

we analyze the vertical distributions of MSA measured during PASE to understand its 

sources and transport over the tropical Pacific. 

The remainder of this chapter proceeds as follows. Section 4.2 describes the data 

and model setups. Section 4.2.1 documents the aircraft measurements from the PASE. 

Section 4.2.2 describes the 1-D REAM setup and the design of model experiments. 

Section 4.3 presents the major results. In Section 4.3.1 and 4.3.2, we use model 

experiments to explore the explanations for the enhancement of MSA at the surface and 
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in the LFT. Section 4.3.3 represents the MSA budget diagnosed from the 1-D REAM 

simulations. Section 4.4 discusses the implications of our findings to marine sulfur 

chemistry and the chemistry-climate interactions. 

4.2 Data and Model Description 

4.2.1 PASE Aircraft Data 

During PASE, fourteen research flights using the NSF/NCAR C-130 took place. 

Extensive aircraft measurements were obtained in the marine boundary layer (down to 

~50 m), the buffer layer (BuL, 600-1300 m), and the lower free troposphere (up to 2000 

m), providing well-resolved vertical profiles from the ocean surface to ~2000 m. The 

sampling strategy and flight patterns are described in Conley et al. [2009] and Faloona et 

al. [2009]. As in the work by Gray et al. [2011], our analysis used only Flight 2, 3, 5, 8, 

11, and 12. We excluded Flight 7 because of short sampling duration. Flights 1, 9, and 10 

were excluded because of incomplete measurement data. We also eliminated Flight 4 

because it was a cloud-sampling mission. We did not include the two nighttime flights (6 

and 13) in our analysis because of our research focus in daytime chemistry. A more 

detailed discussion concerning the choice of flights can be found in Gray et al. [2011].  

In this study, we make use of the full suite of PASE measurements such as aerosol 

size distribution and concentrations of MSA, DMS, SO2, OH, CO, O3, and water vapor. 

MSA was measured with selected-ion chemical-ionization mass spectrometry (SICIMS) 

[Mauldin et al., 1999]. Dry aerosol size distributions were measured using a combination 

of HiGEAR DMA, OPC, and APS instrumentation [Clarke et al., 2004]. To account for 

the uptake of water at ambient relative humidity [Bandy et al., 2011], we applied a 

humidity correction on the aerosol size distribution and used corrected values to calculate 
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aerosol scavenging. DMS measurements were taken by atmospheric-pressure ionization 

mass spectrometers (APIMS) [Bandy et al., 2002], OH was measured with selected-ion 

chemical-ionization mass spectrometry (SICIMS) [Mauldin et al., 1998], and O3 was 

recorded using a fast chemiluminescence instrument [Ridley et al., 1992]. Readers can 

refer to Bandy et al [2011] for more information on the PASE measurements. 

4.2.2 1-D REAM Simulations 

Previously, we have applied the 1-D REAM to investigate polar photochemistry 

at the South Pole [Wang et al., 2007], urban photochemistry in China [Liu et al., 2010; 

Liu et al., 2012], and sulfur chemistry over the tropical Pacific [Gray et al., 2011]. In this 

work, we use the 1-D REAM, which incorporates modules for O3-NOx-hydrocarbon 

photochemistry, marine sulfur chemistry, cloud/aerosol scavenging, turbulent and 

convective transport, and dry/wet deposition, to analyze the vertical distribution and 

sources of MSA over the tropical Pacific. The sulfur chemistry module utilizes a 

condensed sulfur chemistry mechanism involving gas-phase species of DMS, SO2, 

H2SO4, DMSO, DMSO2, MSIA, and MSA [Chen et al., 2000]. To test the possible 

impact of BrO, we also include the reaction between DMS and BrO in the mechanism. 

Kinetic data of the reactions are updated following Zhu et al. [2006] (Table 1.1). Vertical 

transport is simulated using WRF-assimilated meteorological fields based on the NCEP 

reanalysis data. Aerosol scavenging rate constant is calculated based on measured aerosol 

size distribution during the PASE [Bandy et al., 2011]. We calculate the aerosol 

scavenging rate constant (k) using the following equation, 

k = Dg ∫
2F(Kn, γ)

Dp

dA

d log Dp
dlog Dp 



 63 

where Dg is gas diffusivity in air, A is aerosol surface area, Dp is aerosol diameter, and F 

is a function of Knudsen number (Kn) and sticking coefficient (γ) [Daheke, 1983]. We 

specify a Dg value of 0.09 cm2/s and a γ value of 0.15 for MSA [De Bruyn et al., 1992; 

Schweitzer et al., 1998]. 

To simulate marine sulfur chemistry, near-surface DMS concentrations are 

specified as the observed values and model simulated DMS profiles are in good 

agreement with the observations [Gray et al., 2011]. We scale the simulated OH profile 

to match the observations and use the scaled values for sulfur chemistry calculation. In 

addition, observed concentrations of CO, O3, and water vapor are also used to constrain 

the model. For each flight, we run the model in a 1-min time step repeatedly using the 

chemical constraints and meteorological fields of that day for a period of 30 days to 

achieve a quasi-steady state and only the results of the last day is used for analysis. 

Gray et al. [2011] has shown that the 1-D REAM with such setups is able to 

reproduce the observed vertical profiles and daytime variations of DMS and SO2 during 

the PASE (Figure 4.1). In this study, we use the model by Gray et al. [2011], referred to 

as the BASE simulation, as the starting point of our analysis. Recognizing that the BASE 

simulation cannot fully describe the observed vertical profile of MSA, we design several 

exploratory simulations with varying model configurations (Table 4.1). To investigate the 

sharp gradient near the surface, we specify in the near-surface layer MSA as observed, 

BrO as 2 pptv, and DMSO as 4 pptv, respectively, in the FIX, BrO, and DMSO 

simulations. To explore the cause of the enhancement of MSA in the LFT, we turn off 

aerosol scavenging in the LFT in the NOSCAV simulation. We further allow MSA to 

degas from aerosols in the DEGAS simulation, in which aerosol-phase MSA is treated as 
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a tracer and degassing takes place when relative humidity is lower than 40%. The 

aerosol-phase MSA includes MSA either directly scavenged by aerosols or rapidly 

produced in aqueous phase from scavenged DMSO and MSIA [Zhu et al., 2006]. 

 
Figure 4.1 Observed and simulated daytime median vertical profiles of DMS and 

SO2 from the model simulation. The red lines are observation data and black lines 

model results. Boxes indicate inner quartiles.  

 

Table 4.1 Simulations conducted with the 1-D REAM in this study 

Name Description 

BASE A 1-D REAM simulation follows Gray et al. (2011). All other simulations 

are based on this simulation. 

FIX MSA in the bottom layer is specified to the observations. 

BrO BrO in the bottom layer is fixed at 2 pptv. 

DMSO DMSO in the bottom layer is fixed at 4 pptv. 

NOSCAV Aerosol scavenging is turned off in the LFT. 

DEGAS 

DF10/DF20 

Aerosol scavenging is turned off in the LFT. In addition, a fraction of 

MSA is degased from fine-mode aerosols if relative humidity is < 40%. 

Aerosol-phase MSA originates from scavenged MSA and MSA produced 

from scavenged DMSO and MSIA. We conducted two DEGAS 

simulations with degassing fractions (DF) of 10% and 20%, denoted as 

DEGAS DF10 and DEGAS DF20, respectively.  
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4.3 Results and Discussion 

4.3.1 MSA Gradient in the MBL 

One of the remarkable features revealed in the PASE data is a pronounced 

negative gradient of MSA from the ocean surface to ~600 m. Unlike well-mixed SO2 

[Gray et al., 2011], the observed median MSA concentrations decrease rapidly in the 

MBL, from 2.1×106 molecules/cm3 near the ocean surface to 0.6×106 molecules/cm3 at 

600 m (Figure 4.2). This change in concentrations translates to a negative gradient of 

2.5×106 molecules/cm3/km in the MBL. The BASE simulation, with chemical production 

from DMS oxidation being the only MSA source, fails to reproduce the gradient and 

significantly underestimates MSA concentrations in the lower MBL (Figure 4.2). The 

discrepancy between simulated and observed vertical profiles implies a missing MSA 

source close to the ocean surface that is not included in the BASE simulation. 

Constrained with observed MSA concentrations at the surface layer, the FIX 

simulation is able to reproduce both the concentrations and the gradient of MSA in the 

MBL (Figure 4.2), supporting the idea that an additional surface source can explain the 

discrepancy between the observations and BASE simulation. The budget calculation of 

the FIX simulation indicates a missing source of 4.0×107 molecules/cm2/s (Figure 4.9), 

which is much stronger than the estimated chemical production from DMS oxidation 

(9.0×106 molecules/cm2/s).  The comparison between daytime and before-dawn 

measurements (Figure 4.3) implies that this source is photolytically enhanced in daytime. 

However, we cannot conclusively determine the nature of this source using only the 

observations from the PASE. We therefore explore several possible mechanisms with the 

aid of the 1-D model. 
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Figure 4.2 Observed and simulated daytime median vertical profiles of MSA in the 

MBL. Observational data are represented with red solid lines. Red boxes indicate 

inner quartiles. Model results from BASE, FIX, BrO, and DMSO simulations are 

shown with blue solid, black solid, black dashed, and black dotted lines, 

respectively. 

 

 

One possible explanation is the oxidation of DMS by BrO, which is not modeled 

in the BASE simulation. Since the DMS+BrO reaction is through the addition channel, 

which favors MSA production, it is plausible that the DMS+BrO reaction contributes to 

the missing source of MSA. Previous studies on the PASE (e.g., Gray et al. [2011]) 

found that based on SO2 simulations, they could not either prove or rule out the presence 

of BrO in the MBL at a level of 1 pptv. To test the impact of BrO on MSA production, 

we assume in the BrO simulation the daily maximum BrO mixing ratio at the ocean 

surface to be 2 pptv. The BrO simulation results in the additional chemical production of 

MSA of 1.0×106 molecules/cm2/s. This addition, however, is insignificant in comparison 

to the missing source of 4.0×107 molecules/cm2/s and is unable to sustain the negative 
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gradient in the MBL (Figure 4.2). Therefore, we conclude that the presence of BrO, if 

any, is unlikely to be the primary reason for the missing source of MSA. 

 
Figure 4.3 Diurnal variation of MSA near the surface (0-200) m. Red and black dots 

represent median MSA concentrations from a before-dawn flight (Flight 13) and 

daytime flights (Flight 2, 3, 5, 8, 11, and 12), respectively. Vertical (error) bars 

represent the interquartile ranges of the data. 

 

 

Another possible reason for the underestimation of MSA production can be 

uncounted-for sources of MSA precursors such as DMSO. Unexpected high levels of 

DMSO (10-50 pptv) have been previously reported over the tropical ocean [Bandy et al., 

1996; Nowak et al., 2001]. Although DMSO measurements are unfortunately unavailable 

in the PASE, we are able to test the impact of high DMSO concentrations on MSA 

production with the model. In the DMSO simulation, we fix surface DMSO at 4 pptv, a 

moderately high concentration [Nowak et al., 2001]. The enhanced DMSO concentrations 

increase the chemical production of MSA to 4.9×107 molecules/cm2/s, which is 

comparable to the strength of the missing source. However, the median vertical gradient 

of MSA from the DMSO simulation appears to be smaller than observations (Figure 4.2). 

The gradient is not maintained in the model because DMSO is vertically mixed in the 
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MBL and the resulting MSA production from DMSO is not limited to the surface layer 

(as in the FIX case), leading to a model overestimate in most of the MBL. Despite 

imperfect agreement between the simulated and observed gradients, the results 

underscore the potential role of DMSO in MSA production. To further test this 

hypothesis, future studies require concurrent measurements of DMSO and MSA.   

In addition to unidentified chemistry, another possible explanation for the missing 

source of MSA is a primary emission directly from the ocean. This explanation is 

supported by the correlation between MSA concentrations and wind speeds in lower 

altitudes (<200m) (Figure 4.4). However, this correlation can also be a signal that MSA is 

being produced from very reactive sulfur species emitted from the ocean. Furthermore, 

because MSA is far more soluble than DMS (Henry’s law constant is 1015 for MSA and 

0.5 mole kg-1 atm-1 for DMS), it cannot easily degas from the water surface, unless aided 

by other mechanisms such as a thin organic film at the surface of the ocean, in which 

MSA is moderately soluble. 

4.3.2 MSA Increase in the LFT 

The vertical profile of MSA observed during PASE features a large increase in 

the LFT. The average mixing ratio of MSA in the LFT is 2.2×107 molecules/cm3, one 

order of magnitude larger than that in the MBL (Figure 4.5a). Similar features of 

enhanced MSA in the free troposphere are also found in the data from the PEM-A and 

PEM-B campaigns [Davis et al., 1999; Mauldin et al., 1999] (Figure 4.6). Analyses of 

measurements show that the controlling factor of the MSA concentrations in the LFT is 

humidity. Figure 4.5 also shows that MSA concentrations are negatively correlated with 



 69 

relative humidity (RH) in the LFT during PASE. Similar relationships between MSA and 

RH in the LFT are also found in PEM-A and PEM-B data (Figure 4.6). 

 
Figure 4.4 (Left) MSA observational raw data, with different colors reflecting wind 

speeds. (Right) Scatter plot of wind speed and MSA concentration below 200 m. 

Blue dots represent raw data. Black dots represent flight averages, with bars 

indicating standard deviations. The red line represents a least-squares regression of 

the observation data. 

 

 

The BASE simulation fails to reproduce MSA enhancement in the LFT. 

Recognizing that the affinity of gaseous MSA to aerosols is mainly due to its high 

solubility and that aerosols in the dry LFT tend to lose their water content, we perform 

the NOSCAV simulation, in which we turn off aerosol scavenging in the LFT. With the 

NOSCAV simulation, the model is able to generate a peak at the right altitude (~2 km), 

but the magnitude (0.7×107 molecules/cm3 at 2 km) is still much smaller than the 

observations (an average of 2.2×107 molecules/cm3 at 2 km) (Figure 4.5a). Model 

analysis shows that to reproduce the observed magnitude would require a source of MSA 

in the LFT at ~1.2×107 molecules/cm2/s (Figure 4.9).  
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Figure 4.5 (a) Observed and simulated daytime median vertical profiles of MSA 

from surface to 2000 m. Observational data are represented with red lines. Red 

boxes indicate inner quartiles. Model results from BASE, NOSCAV, DEGAS DF10, 

and DEGAS DF20 simulations are shown with blue solid, black solid, black dashed, 

and black dotted  lines, respectively. (b) Raw observational data of MSA in LFT, 

with color showing relative humidity (%). (c) Relative humidity and MSA 

concentrations anti-correlation in LFT. Blue dots represent raw data. Black dots 

represent flight averages, with bars indicating standard deviations. The red line 

represents a least-squares regression of the observation data. 

 

 

 
 

Figure 4.6 Observation data of MSA and relative humidity in PEM-Tropics A (left) 

and PEM-Tropics B (right) as a function of altitude. 
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Figure 4.7 MSA vapor pressure as a function of its concentration in water solution 

Adapted from Covington et al. [1973] and Hoppel [1987]. 

 

 

We hypothesize that the source of MSA in the LFT is degassing from aerosols as 

a result of high vapor pressure in the dry LFT. Previous experiments showed that the 

vapor pressure of MSA increases rapidly as the concentration of the solution increases 

(about 10 ppbv at 40 mole/L, see Figure 4.7) [Covington et al., 1973; Hoppel, 1987]. To 

maintain equilibrium, MSA tends to degas from dehydrated aerosols in the dry LFT, 

which constitutes a non-negligible source of MSA in the LFT. Since a full description of 

degassing entails detailed modeling of aerosols (e.g., composition, structure, acidity, 

efflorescence process, etc.), which is beyond the scope of this study, here we describe 

degassing with a simplified model that requires two parameters, an efflorescence point 

(EP) and a degassing fraction (DF). In the DEGAS simulation, we assign an EP of 40% 

(a value close to the EP of sea salt); a RH value of 40% also separates two clusters of 

high and low MSA observations during PASE (Figure 4.5c). We carry out a series of 

sensitivity simulations, and determine the best estimate of DF to be 10-20%. Figure 4.5a 

shows that the DEGAS simulations with a 40% EP and a DF between 10% and 20% are 

able to bracket the observed median profile. More detailed simulation of the degassing 
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mechanism requires more information on the microphysical property of PASE aerosols, 

which we do not currently have. 

 
Figure 4.8 (a) Observed negative correlation between MSA and SO2, and (b) 

positive correlation between SO2 and relative humidity in the LFT (1500-2500 m) 

are consistent with the degassing mechanism rather than long-range transport of 

MSA along with SO2. Blue dots represent raw data. Black dots represent flight 

averages, with bars indicating standard deviations. The red line represents a least-

squares regression of the observation data. 

 

 

An alternative explanation of the LFT source relates to the long-range transport of 

MSA in the dry LFT. Previous studies have speculated that long-range transport 

contributes to SO2 in the LFT [Gray et al., 2011] and high CCN concentrations [Hudson 

and Noble, 2009] during PASE. Back-trajectory from the NOAA HISPLIT model also 

suggests that the air mass in the LFT encountered in the PASE was advected from a 

region with intensive biogenic activity over the East Pacific [Gray et al., 2011]. Although 

we are unable to simulate long-range transport because of the limitation of the 1-D 

model, observational evidence suggests that long-range transport is unlikely a major 

contributor to the enhancement of MSA in the LFT. The sharp increase of MSA from 

1500-2000 m is inconsistent with a uniform vertical distribution of SO2 as result of 

advection and vertical transport [Gray et al., 2011]. In addition, we cannot find a positive 
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correlation between MSA and SO2 if long-range transport is significant. In contrast, 

observations show a negative correlation between MSA and SO2 in the LFT (Figure 4.8). 

Furthermore, relative humidity is negatively correlated with MSA (Figure 4.5c) but is 

positively correlated with SO2 (Figure 4.8) in the LFT. These relationships are all 

consistent with degassing MSA in the LFT under dry conditions. 

4.3.3 MSA Budget during the PASE 

Figure 4.9 summarizes the MSA budget in the MBL, the BuL, and the LFT, with 

a focus on required sources to explain the observations in the MBL and the LFT. In the 

MBL, we identify a missing source of 4.0×107 molecules/cm2/s from the ocean surface. 

In contrast, chemical production from DMS oxidation constitutes only 9.0×106 

molecules/cm2/s on a daily basis. For sinks, dry deposition (2.0×106 molecules/cm2/s) is 

small relative to the missing source. The dominant sink in the MBL is aerosol scavenging 

(4.7×107 molecules/cm2/s). However, since the strength of aerosol scavenging varies little 

with altitude in the MBL (Figure 4.10), the missing source from the surface is manifested 

by the observed negative concentration gradient in the MBL. In the LFT, degassing from 

aerosols constitutes an important source of 1.2×107 molecules/cm2/s. The strength of 

chemical production in the LFT is 2.0×106 molecules/cm2/s on a daily basis. Unlike in the 

MBL, the sink of aerosol scavenging is negligible owing to dry conditions in the LFT. 

The sole significant sink in the LFT is transport to the BuL, which is estimated at 1.6×107 

molecules/cm2/s. The total source strength in the LFT, the sum of degassing and chemical 

production, is much less than that in the MBL, but the weak sink and thus a long lifetime 

implies a much higher concentration of MSA in the LFT. 
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Figure 4.9 The budget of MSA in the MBL, the BuL, and the LFT.  

 

 

Figure 4.10. Vertical distribution of the MSA aerosol scavenging rate constant 

during PASE.   
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4.4 Summary and Implications 

The budget of MSA shown in Figure 4.9 highlights the missing surface source in 

the MBL and the degassing source in the LFT. Previous studies indicate that our 

knowledge of oceanic sulfur sources may be incomplete. For example, Bandy et al. 

[2011] suggested that the discrepancy in DMS-to-SO2 conversion efficiency from two 

PASE studies [Gray et al., 2011; Faloona et al., 2009] can be reconciled if an additional 

oceanic sulfur source, half as strong as the DMS source, is present. The additional surface 

MSA source found here is only 2% of the DMS source during PASE, thus it is 

insufficient to reconcile the discrepancy. However, this MSA source may represent a 

group of organic sulfur compounds that have significant oceanic sources. If true, it would 

have significant implications to the marine sulfur budget and climate feedbacks over the 

tropical ocean. Model sensitivity analysis indicates that halogen (~1 pptv of BrO) 

oxidation of DMS is not a major contributor to MSA but MSA directly emitted or 

chemically produced could be important. Concurrent DMSO and MSA measurements 

will be necessary to constrain the model simulations presented here. 

This study suggests that aerosols can act as a source of MSA under dry conditions 

(e.g., the LFT in the PASE). We note that the net transport between the MBL and BuL is 

negligible (Figure 4.9), indicating that gas-phase MSA above the MBL is almost 

exclusively due to degassing from the aerosol phase. In addition, degassed MSA is not 

only MSA that aerosols scavenged elsewhere but also MSA produced from DMSO and 

MSIA in the aerosol phase [Davis et al., 1999; Zhu et al., 2006]. Therefore, the degassing 

source of MSA greatly enhances the apparent DMS-to-MSA conversion efficiency, 

which is quite small if only gas-phase chemistry is accounted for. Furthermore, after 
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transporting to humid and/or cold regions, these MSA gases may become an important 

contributor to new particle formation in the free troposphere [Hoppel, 1987]. For 

example, Froyd et al. [2009] reported previously that the enhancement of 

MSA/(MSA+sulfate) to ~0.5 in the aerosol phase in the upper free troposphere is 

accompanied by frequent formation of new particles (50% of flight time) over the 

tropical Pacific Ocean.  

Our results suggest that degassing from dehydrated aerosols of soluble 

compounds like MSA could potentially provide important precursors for new particle 

formation in the free troposphere over the tropics, affecting the climate system through 

aerosol-cloud interactions. More broadly, we propose that aerosols may be an important 

media for transporting a suite of (sulfur or other) soluble compounds from the marine 

boundary layer to the free troposphere through the degasing mechanism. The potential for 

new particle formation from these soluble gases and the resulting climate forcing in the 

tropics will require targeted field experiments and modeling analysis to address.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Summary of Findings 

5.1.1 Novel Mechanisms Potentially Important in Chemistry-Climate Interactions  

This dissertation discovers two novel important mechanisms of chemistry-climate 

interactions. First, our analysis in Chapter 2 reveals that the warm and dry weather is the 

main reason causing the high ozone extreme in October 2010. During the episodes, 

reduced ventilation, reduced cloud fraction, enhanced photochemistry, and increased 

biogenic isoprene emissions due to temperature all contribute to increased regional 

[O3]MDA8. In addition, we propose that the enhanced biogenic isoprene emissions from 

water-stressed vegetation contributes another  ~ 5-10 ppbv to the regional [O3]MDA8 over 

the SE during the three episodes in October 2010. The mechanism is not well-known, but 

is supported by laboratory and field observations. The mechanism is also consistent with 

the strong relationship between [O3]MDA8 and humidity (both RH and VPD). Because the 

chemistry regime shifts to VOC-sensitive during the fall, this mechanism, likely to be 

ineffective in the summer, can have a large impact on ground-level ozone in the fall, 

indicating that the fall is more vulnerable to the climate change through the climate-

biosphere-chemistry feedback. 

Second, our analysis in Chapter 4 indicates that dehydrated aerosols release 

gaseous MSA to the LFT. The degassing mechanism adds a large amount of MSA to the 

clean LFT. When the environment is cold and /or wet, the gaseous MSA in the LFT may 

form new particles, which upon growth affects the radiation budget. Our analysis also 
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finds that unknown surface emissions rather than Br chemistry result in the vertical 

gradient of MSA in the MBL. The unknown source can either be MSA or other unknown 

reactive sulfur compounds. This result underscores the incompleteness of our knowledge 

of marine sulfur emissions. Budget of MSA diagnosed reveals an interesting picture: (1) 

most MSA, DMSO, and MSIA in the MBL are removed by aerosols; (2) some of these 

aerosols are lifted into the LFT, dehydrated, and release MSA into the gas phase. Part of 

the degassed MSA is generated from DMSO and MSIA through aqueous reactions in the 

aerosol phase. Therefore, the apparent DMS-to-MSA conversion efficiency is much 

higher in the LFT than that in the MBL. In addition, because of the long life time in the 

LFT, MSA can potentially transport a long distance, impacting the new particle formation 

in a large area. 

5.1.2 Temperature is Not a Perfect Proxy for the Climate Penalty  

Current discussions on the ozone climate penalty (the response of ground-level 

ozone to climate change) mainly focus on the ozone-temperature relationship [Jacob and 

Winner, 2009; Rasmussen et al., 2012; Rasmussen et al., 2013; Wu et al., 2008], in which 

temperature is assumed to be a good proxy for all climate factors that impact on ground-

level ozone. Our results suggest that humidity, in addition to temperature, may be a key 

factor for the extension of the ozone season through the feedback of humidity on isoprene 

emissions. Our analysis also shows that temperature and humidity are not well correlated 

over the SE during the fall. Furthermore, the statistical analysis (Chapter 2) finds that 

relationships between meteorological parameters and ground-level ozone vary with 

season and region. Therefore, using only temperature projection to estimate the change of 
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ozone concentration due to climate change can potentially lead to misleading 

conclusions.  

Climate model simulations (e.g., GFDL, CESM, and GISS) project a decreasing 

trend of humidity over the SE region in next 50 years. Some of these models even project 

frequent occurrence of dry extremes. Although the regional projection of humidity is still 

subject to great uncertainties, our work highlights the complexity of climate-biosphere-

chemistry interactions and we suggest that the effect be included in the evaluation of the 

challenge to the air quality control in the future. 

5.1.3 Implications for Air Quality Management 

Sensitivity simulations (Chapter 2) demonstrate that the extension of the ozone 

season is mainly driven by the climate factors (e.g., enhanced biogenic emissions in 

response to increased temperature and reduced humidity). Although the absolute strength 

of isoprene emissions in the fall is much smaller than that in the summer, even during 

extreme episodes like October 2010, ground-level ozone during the fall is very sensitive 

to biogenic emissions.  Because of the chemical regime shifts from NOx-sensitive in the 

summer to VOC-sensitive in the fall, a moderate increase in biogenic emissions has a 

large impact on the ground-level ozone concentration. Our simulation also shows that 

further reduction of anthropogenic NOx emissions is not very effective in reducing 

ground-level ozone. Therefore, air quality management will face the challenge of the 

extension of the ozone season driven by climate change and diminished benefit from 

controlling anthropogenic NOx emissions. However, controlling measurements that aim 

at mitigating climate change can benefit air quality management.  
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5.1.4 Not-So-Well-Mixed Boundary Layer and its Implications 

We find in DISCOVER-AQ aircraft data frequent occurrences of significant NOx 

gradients within the BL (Chapter 3), suggesting that the widely-used well-mixed BL 

assumption must be applied cautiously to BL NOx. The median vertical profile derived 

from aircraft spirals shows that NOx concentration decreases by ~ 70% from 300 m to 1.4 

km. Although we have focused on the vertical profiles of NOx observed in July, 2011 

over Washington-Baltimore region during the DISCOVER-AQ campaign, we expect that 

the large gradient of NOx within the BL is not uncommon.  

Observed NOx gradient in the BL is highly sensitive to BL stability, which is a 

result of competition between chemistry and vertical mixing. Analysis of the 1-D model 

results shows that the chemical lifetime of NOx is comparable to the vertical mixing time 

scale in the BL. The sensitivity of NOx gradient to BL stability can mainly be explained 

by the variation in the vertical mixing strength. This result implicates another way that 

ozone chemistry interacts with climate.  

The gradient of NOx in the BL can confound the extrapolation of surface 

measurements to the entire BL. For example, using surface measurements in calculating 

the ozone production rate in the BL without considering the NOx vertical gradient can 

result in a ~45% high bias. In addition, since satellite retrieval of column density utilizes 

a priori vertical profiles, the model skill to reproduce a realistic vertical profile of NOx 

also affects our ability to correctly retrieve tropospheric NO2 column from satellite 

measurements. Both spatial and temporal (inter-day) variations of BL NOx vertical 

profiles affect the accuracy of the retrievals.  
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5.2 Recommendations for Future Work 

5.2.1 Regional and Seasonal Feature of the Climate Impact 

In this dissertation, we have studied the climate-driven ozone extremes over the 

SE region during October. The statistical analysis presented in Chapter 2 have shown that 

relationships between meteorological parameters and ground-level ozone vary with 

season and region. As a next step, research efforts should be made to extend the analysis 

to other regions and seasons.  

In addition, the present work focuses on the extreme case of October 2010. I 

recommend future work to conduct long-term simulations (more than 10 years) to 

evaluate the model performance on the ozone-meteorology relationship and assess the 

relative importance of anthropogenic emissions and climate factors on a climate-relevant 

time horizon.  

5.2.2 The Climate-Biosphere-Chemistry Feedback 

In this dissertation, we propose a climate-biosphere-chemistry mechanism 

involving the humidity dependence of biogenic isoprene emissions. Although results 

from some laboratory and field measurements support this idea, the mechanism has not 

been thoroughly studied. Often focusing on the temperature impact during the growing 

season, the existing studies on biogenic isoprene emissions have largely overlooked the 

humidity effect and the fall season. Answers to the following questions are still not clear: 

“Does the humidity effect exist for most plant types”, “Is the humidity effect only 

significant in the fall” and  “Does the humidity effect vary with the course of a drought?” 

Therefore, future laboratory and field studies are necessary to fill the gap.  
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5.2.3 Vertical Distributions of Ozone Precursors in the BL  

This dissertation uses only measurements sampled in DISCOVER-AQ 2011 over 

the Washington-Baltimore region during the summer. More vertically resolved 

observations using aircraft, tethered balloon, and remote sensing techniques in other 

seasons and locations are necessary to understand the implications of BL NOx gradients 

on various applications of surface and satellite measurements in air quality studies.  

In addition, most results presented in Chapter 3 are based on aircraft 

measurements at least ~300 m above ground. Model results suggest that the NOx gradient 

between 300 m and surface tends to be larger than above 300 m due to surface NOx 

emissions. Therefore, reliable profile measurements in the lowest few hundred meters are 

also an important area of future field experiments targeting air quality. 

5.2.4 Impact of Free Tropospheric MSA on the Radiation Budget 

This dissertation explores the surface and free tropospheric sources for MSA. The 

degassing of MSA from aerosols enhances the concentrations of MSA in the LFT. When 

in a cold, wet, and clean environment, MSA can form new particles, which can grow into 

fine-mode aerosols that attenuate solar radiation. These aerosols can also affect the 

formation, duration, and whiteness of clouds, and thus poses indirect effects on the 

radiation budget. While the current work focuses on exploring the mechanism, a future 

effort could be devoted to evaluating the impact of free tropospheric MSA on the global 

radiation budget.  
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APPENDIX A 

AUXILURY MATERIALS FOR CHAPTER 3 

 

The auxiliary materials for Chapter 3 include: discussions on (1) the vertical 

profile of NOx in the lowest 300 m of the BL, (2) impact of the lowest 300 m on AMF 

calculation; (3) comparison of isoprene flux between diagnosis from the 1-D REAM and 

computed by MEGAN. Three additional figures are also included. 

A.1 Vertical Profile of NOx Extending to the Surface 

Research-quality ground-level NOx measurements are available at Padonia and 

Edgewood. Combined with aircraft-measured vertical profiles, concurrent measurements 

at surface sites provide additional information about the vertical distribution of NOx in 

the lowest 300 m of the BL. Two distinct pictures, however, emerge from the two sites 

with available surface NOx measurements: a great enhancement towards the surface in 

Padonia (Figure A.1 (b)) but a small difference between the surface and 300 m in 

Edgewood (Figure A.1 (c)). Constrained with surface-measured NOx, 1-D REAM is able 

to reproduce the observed vertical profile with reasonable satisfaction in Padonia but 

failed to do so in Edgewood. Given that Edgewood is under the influence of the bay 

breeze during the daytime [Stauffer et al., 2012], the failure in Edgewood is likely due to 

the limitation that a 1-D model is unable to resolve horizontal transport. However, we 

argue that in a source region without complication of terrain and land-water contrast, the 

sharp NOx gradient in the lowest part of the BL found in Padonia is probably more 

representative. As a matter of fact, a recent study in Paris, France also reported a large 

gradient of NOx within the lowest 300 m [Dieudonné et al., 2013].  
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A.2 Impact of the Lowest 300 m on AMF Calculation 

Figure A.2 shows the comparison of AMF calculated with constant NO2 

concentration versus observed gradients in the lowest 300m in Padonia and Edgewood. 

On average, the strong near-surface NO2 gradient observed in Padonia leads to a 

considerably smaller AMF (0.76) than the AMF (0.80) calculated from a well-mixed 

lowest 300 m. Although what we are after here is the amount of NO2 in the whole 

tropospheric column, this nontrivial difference (~5%) highlights the importance of the 

NO2 gradient in the lowest 300 m of the BL. 

A.3 Validation of Isoprene Flux 

We utilize the 1-D REAM to diagnose the upward isoprene flux at ~ 300 m and 

compare the results with MEGAN results. MEGAN is an algorithm to compute biogenic 

emissions (e.g., isoprene) from terrestrial ecosystem. Despite its wide use, comparisons 

between MEGAN emissions and observed over-canopy flux in the eastern U.S. have 

rarely been documented. The few studies that has explored this issue [e.g., Palmer et al., 

2006; Müller et al., 2008] report that MEGAN-calculated isoprene emissions are within a 

factor of two of observations and track well the observed day-to-day variations [Palmer 

et al., 2006; Müller et al., 2008]. Based on the success in reasonably reproducing the 

vertical profile of isoprene, we diagnose the upward isoprene flux into the lowest model 

layer (denoted as EMIS as it is a proxy of emissions) as 
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EMIS =
∂[ISOP]

∂t
+ FluxOut + ChemLoss, 

where 
∂[ISOP]

∂t
 is the local tendency of isoprene concentration, FluxOut is the turbulent 

diffusion flux out of the upper boundary of the layer, and ChemLoss is the chemical loss 

of isoprene. All terms on right-hand side can be diagnosed from model results.  

Figure A.3 shows that isoprene emissions calculated by MEGAN are generally 

within a factor of two of the isoprene flux diagnosed in 1-D REAM. In addition, the good 

correlation between MEGAN-calculated and REAM-diagnosed emissions indicates that 

MEGAN is able to capture the short-term variations of isoprene emissions in response to 

environmental factors such as radiation and temperature.  

 

 

 
Figure A.1 Observed (black) and modeled (red) median vertical profiles of NOx for 

all sites (a), Padonia (b), and Edgewood (c), respectively. The model is constrained 

by aircraft NOx measurements at 300 m in (a) and surface NOx measurements in (b) 

and (c).  Black dots indicate the median for surface measurements. The numbers in 

the legend represent the count of vertical profiles. 
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Figure A.2  AMF calculated from vertical profiles with constant NOx in lowest 300 

m or with observed NOx gradient in lowest 300 m. 

 

 

 

 
Figure A.3 Comparison between isoprene emission flux diagnosed from 1-D REAM 

and that calculated from MEGAN at each site. Dashed red lines bracket the area 

with a factor of two bias.  
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