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SUMMARY

Recent technological innovations such as giant magnetoresistance and spin-transfer

torque, along with a desire for researching the emergence of magnetism from a funda-

mental level, has led to much interest in understanding nanometer scale ferromagnets.

In this dissertation, I use sequential electron tunneling to study the differential con-

ductance spectra and magnetic properties of single cobalt and nickel particles below

5 nm in diameter, and observe a wealth of material-dependent effects. The spin-orbit

interaction is a key mechanism in the observation of a variety of effects, including gi-

ant electron spin g-factors and shifts in the anisotropy energy of the magnetic particle

upon the addition of a single electron. I show how such effects can lead to an effective

magnetization blockade, which allows for the voltage control of magnetic hysteresis.

I model the quantum mechanical system characteristics using master equations, and

propose a new type of spin-transfer torque device that relies on the magnetization

blockade effect.
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CHAPTER I

INTRODUCTION AND BACKGROUND

In this chapter, I will discuss the basic concepts and theoretical background of ferro-

magnetism, the spin-orbit interaction, and tunneling spectroscopy in nanoparticles.

Then, I will outline the goals of this dissertation.

1.1 Ferromagnetism

At its heart, magnetism is the result of angular momentum [101, 165], and arises

from the coupling of magnetic moments at a quantum mechanical level. In insulating

magnets, it is often expressed through a general magnetic Heisenberg Hamiltonian of

the form HM =
∑

i,j Ji,j
~Si · ~Sj, which is the pairwise sum over all individual spins of

a given sample. Here, Ji,j is the exchange coefficient between spins i and j, which

in general can vary between pairs, and ~Si is the quantum mechanical spin operator

for spin i. To make the problem tractable, it is often assumed that the exchange

coefficients are constant throughout a given sample (that is, Ji,j = J = const.)

Further, the simplification is often made, since the exchange interaction is highly

localized, that the coupling is only considered between nearest neighbors or next-

nearest neighbors on the lattice. The sign of J determines the nature of the magnetic

state of the material. If J < 0, then the configuration with minimal energy will

favor the alignment of spins, and is known as a ferromagnetic state. If J > 0, on

the other hand, then the minimizing the exchange energy will favor anti-alignment

of neighboring spins. The latter case is known as an antiferromagnetic state. In

transition metal ferromagnets, the itinerant exchange mechanism can be modeled

using a Stoner or Hubbard model.

More exotic magnetic Hamiltonians can arise due to the interaction with the

1



local environment. For example, the Ruderman-Kittel-Kasuya-Yosida (RKKY) in-

teraction and the superexchange interaction arise in systems where the two spins

in the magnetic Hamiltonian interact via an intermediary spin. This occurs due to

a nonmagnetic material separating the magnetic spins in the superexchange mech-

anism. Alternatively, the intermediary spin involves the conduction electrons in a

neighboring metal in the RKKY interaction, and results in an effective exchange con-

stant Ji,j( ~Ri − ~Rj) that is an oscillatory function of spin position. This implies that

two spins could be either ferromagnetically coupled or antiferromagnetically coupled,

based on the displacement ~Ri − ~Rj between them.

The ferromagnetic state of matter is unusual in terms of its size dependence, in

that, in principle, there is no minimum sample dimension below which ferromagnetism

disappears. Magnetism can persist down to the atomic length scales; however, the

directional localization of the magnetization of a single magnetic atom or molecule

is much weaker and tends to decay quickly [61,84,92,115]. Additionally, even at the

lowest temperatures, the magnetization stability is enervated by quantum tunneling

of magnetization [85,97].

The directional instability of magnetization in nanometer-scale ferromagnets arises

due to the irreversible coupling of a magnetic sample to its environment, which in-

duces spin randomization. This effectively quenches the ferromagnetic state and its

key signature of magnetic hysteresis. The crossover from stable hysteresis to spin

randomization is particularly pertinent as the length scale is reduced, and is well

understood in the case of thermal equilibrium [32, 106, 152]. However, in the case

of a perturbed, non-equilibrium ferromagnet, this crossover is more difficult to ad-

dress. In magnetic molecules, magnetization measurements of large ensembles re-

veal robust magnetic hysteresis at sufficiently low temperatures, but measurements

of a single magnetic molecule in a double tunneling barrier device show no hys-

teresis, even at temperatures much lower than the blocking temperature and near
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zero bias voltage [34, 49, 76, 143]. Additionally, Loth et al. and Khajetoorians et al.

have shown through atomically precise scanning tunneling microscopy (STM) exper-

iments that antiferromagnetic and ferromagnetic spin chains of only a few atoms can

display hysteresis, though the lifetimes of ferromagnetically stable states are much

shorter [85, 97]. Similar STM experiments have demonstrated the origins of atomic

scale magnetism through direct exchange and RKKY exchange mechanisms, which

are critically altered by the substrate material and the presence and orientation of lo-

cal adatoms [33,65,86,94,112]. All of these works reinforce the notion that magnetism

on such length scales is significantly influenced by the local environment. In this the-

sis, I address the effects of sequential electron tunneling transport on nanometer-scale

ferromagnetic particles.

Figure 1.1(a) displays an illustration of a large (bulk-scale) ferromagnetic material

at a temperature that is large relative to the material’s Curie temperature. At such

temperatures, the material is divided into a collection of magnetic domains. In each

domain, there is a local magnetic moment indicated by the arrows. The lines indicate

domain walls, which separate the regions of differently oriented magnetic moments.

The result of taking the average magnetic moment over the total volume of the sample

will result in a net zero magnetization. As the temperature is lowered, or a strong

magnetic field is applied, the domains will align and can lead to a large net magnetiza-

tion on the sample. In the special case of ferromagnets below their Curie temperature,

the material will exhibit a spontaneous magnetization even if there is no applied mag-

netic field. Figure 1.1(b) displays an illustration of a nanometer-scale single-domain

magnet. In this case, the local exchange forces dominate, which results in a particle

with all of the spins aligned into a large ‘macrospin’. Such single-domain magnets

are the subject of this thesis. Magnetic nanoparticles have garnered much attention

recently due to their potential applications ranging from the medical field [113] to

nonvolatile memory in computing.
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Figure 1.1: Ferromagnetism, domains, and anisotropy. Arrows indicate net magne-
tization orientation for given domain. (a) Illustration of large multi-domain magnetic
material. (b) Smaller single domain magnetic particle. (c) Double-well energy poten-
tial as a function of magnetization angle, illustrative of stable magnetization states
separated by an anisotropic energy barrier of height EB.

1.1.1 Measuring Magnetism

Many techniques exist for the measurement of magnetic structure and magnetic fields,

including Superconducting Quantum Interference Devices (SQUIDs), the magneto-

optical Kerr effect (MOKE), vibrating sample magnetometry (VSM), ferromagnetic

resonance, electron paramagnetic resonance, Mössbauer spectroscopy, the Hall Effect,

and neutron scattering. Further, Giant Magnetoresistance and Tunneling Magne-

toresistance can be used as a probe for inferring the relative orientation of magnetic

domains.
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1.1.2 Anisotropy

The form of the magnetic Hamiltonian quoted above is isotropic for a given pair of

spins; that is, the energy depends only on the relative orientation of the two spins, not

on their absolute direction relative to a fixed coordinate system. However, in many

solids the magnetic energy can be minimized if the overall magnetization is oriented

along one of the crystal axes. This variation of the magnetic energy as a function

of magnetization angle relative to the crystal axes is a type of magnetic anisotropy,

known as magnetocrystalline anisotropy, and arises due to the spin-orbit interaction.

Another type of anisotropy is due to the classical magnetostatic dipole interaction,

and leads to shape anisotropy, and to the demagnetization field. The competition

between the local exchange energy as indicated by the Heisenberg Hamiltonian, and

the long-range classical magnetostatic dipole interaction leads to nontrivial minimal-

energy states, and the formation of magnetic domains.

Variations on the magnetocrystalline anisotropy include magnetoelastic and sur-

face anisotropy. The former results from mechanical perturbations of the crystal

lattice, the distortion of which affects the minimal energy directions of the magne-

tization. The latter results from the truncation of a crystal in various facets at the

surface of a solid.

Anisotropy with a strong enough energy barrier separating two local minima leads

to the observation of hysteresis, which is characteristic of a bistable system. Such a

bistable system is depicted in Figure 1.1(c). Anisotropy in a single domain ferromag-

net is often described using the Stoner-Wohlfarth model. [137]

Depending on the size of the energy barrier separating the two local minima rela-

tive to other pertinent energy scales, external perturbations to the system can excite

the magnetization over the barrier. The Néel-Brown model [32,60,106] describes this
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the timescales of this process using an Arrhenius equation:

τN = τ0 exp

(
EB
kBT

)
.

Here, τ0 is the attempt time, τN is the Néel flip time, and kB is Boltzmann’s constant.

If the magnetization flips many times on the time scale of the measurement, the

particle is considered superparamagnetic, and the net measured magnetization will

be zero.

1.2 Spintronics and Spin-Transfer-Torque

Intrinsic to the nature of the electron is both a charge (e ≈ −1.602× 10−19 C) and a

quantized spin (Sz = ~/2, where ~ ≈ 1.055 × 10−34J · s), as illustrated in figure 1.2

(a)-(b). However, only in recent years has the electronic spin become an increasingly

integral component to technological applications, leading to the emergence of spin

electronics [47, 69, 155]. The discovery of the Giant Magnetoresistance (GMR) and

Tunneling Magnetoresistance (TMR) effects (which express the difference in electri-

cal resistance dependent on the degree of alignment of the magnetization in layers of

the conducting medium) led to significant advances in ‘spintronics’ [12, 57]. Among

these discoveries is the concept of spin transfer torque (STT), first predicted by Slon-

czewski and Berger [20, 135]. STT makes use of a spin-polarized current to induce

magnetization motion and switch magnetic domains. In this way, magnetic domains

in spin valve devices or TMR junctions can be controlled electronically, without the

need for an external magnetic field.

Various reviews for spin-transfer torque can be found in references [69, 82, 120],

but the process of STT switching can be summarized as follows. Typically, there

is a ‘free’ or soft magnetization layer that is free to be manipulated, and a ‘pinned’

or hard magnetization layer that has a fixed orientation. These layers are separated

by a tunneling barrier or a conducting layer for a TMR or GMR spin valve device,

respectively. One technique of pinning a layer is by fabricating it adjacent to an
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Figure 1.2: (a) Classical electronics only considered the charge component of the
electron. (b) Modern spin-electronics also utilizes the quantum mechanical intrinsic
spin of the electron. (c) Illustration of spin-transfer torque. Electrons flow from right
to left, beginning in the pinned magnetic layer. As the electrons encounter the free
magnetic layer, their spin becomes polarized along the magnetization direction of the
layer, experiencing a torque illustrated by the red arrow. The free layer experiences a
reactive torque, or spin-transfer torque, illustrated by the blue arrow. The net effect
of current flow in this direction results in an aligning of the free layer magnetization
with that of the pinned layer.

antiferromagnetic layer, which takes advantage of the exchange bias [133]. As is shown

in figure 1.2(c), for electronic current that flows from right to left, the electrons have

their spins polarized along the same direction as the magnetization in the pinned

layer. Assuming that they maintain their spin polarization in the interstitial region

between the free and pinned layers, then an impinging electron will experience a

torque (indicated by the red arrow in the figure) that aligns the electronic spin with

the magnetization of the free layer. However, conservation of angular momentum
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implies that the electron will also exert a transfer torque to the free layer, indicated

by the blue arrow in the figure. The net result of many such impinging electrons is

to align the free layer with the pinned layer. The reverse process is also possible.

For example, an electronic current flowing from left to right in the interstitial region

will scatter from the pinned layer with a spin polarized opposite the direction of the

pinned layer. This back-scattered spin-down current will exert a torque on the free

layer that will have the net effect of aligning the free layer anti-parallel to the fixed

layer. In this way, STT has been modeled in domain switching, macrospin modeling,

and scattering processes using Boltzmann transport [81,136,138,139,158–162].

An electronic current injected from a ferromagnetic lead into a normal metal or

semiconducting material will maintain its spin polarization for a certain length scale,

before spin-flip scattering returns the current to its equilibrium, non-spin-polarized

state. This process is analogous to the propagation of a minority charge carrier in a

doped semiconductor (for example, holes diffusing in an n-type semiconductor) [96].

As there is a characteristic length known as the diffusion length over which a minority

hole can propagate within an n-type region before recombination occurs, there is a

similar spin diffusion length, which indicates how far a spin-polarized current can

propagate before becoming unpolarized [18].

Currently, the concept of spin-transfer torque has not reached its full potential.

While there are many efforts to establish magnetic memory in the form of MRAM

that can be switched with spin-polarized currents, issues still exist in the implemen-

tation [82]. For example, one of the main forms of commercial spin-transfer torque

is accomplished through thermally assisted switching citeprejbeanu. However, the

heating process is the limiting factor in achieving higher switching rates.

In this thesis, based on the results we found regarding a magnetization blockade,

we will propose a type of voltage-controlled spin-transfer torque that could offer ad-

vantages over traditional current-driven spin-transfer torque. While our experiments
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focused on the low-temperature regime where we can more clearly elucidate the rel-

evant physical processes, our discoveries of different fundamental effects is of crucial

importance in expanding technologies to higher temperatures. Our basic research and

exploration of the magnetization blockade effect hold a lot of promise in the potential

for realizing more efficient spin-transfer torque devices.

1.3 Modeling Magnetization Dynamics

The notion of magnetization dynamics can be modeled in various ways, including

the Landau-Lifshitz-Gilbert equation [131], which can be modified to account for

spin-transfer torque [134]. Alternatively, the relevant magnetization angles si can be

modeled using a stochastic Langevin equation [132]:

∂si
∂t

= −1/τ0
kBT

∂E

∂si
+

√
2

τ0
ξ(t).

Here, τ0 is again the attempt time, E is the energy of the system, and ξ(t) is the

stochastic white-noise forcing term. The distribution of si can be described by a

probabilistic Fokker-Planck equation, or equivalently by a master equation [25,132]:

∂Pi
∂t

=
∑
j

[Γj→iPj − Γi→jPi] .

Here, Γi→j is the rate of transition from state i to state j. An example of such

quantum master equation simulations with the inclusion of spin-transfer torque effects

in mesoscopic magnets is found in reference [149]. It has also been considered in

references [73] and [147]. Primarily, in this thesis, I use the master equation approach

since the transition rates can be easily calculated, based on our phenomenological

Hamiltonian.

1.4 The Spin-Orbit Interaction

The atomic spin-orbit interaction arises because an electron in a central potential

moves in a non-inertial reference frame [124]. The ion about which the electron is
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orbiting exerts an electric field, which transforms into an effective magnetic field in

the non-inertial frame of the electron. The effective magnetic field couples to the

magnetic moment of the spin of the electron, and leads to a term in the Hamiltonian

proportional to ~L · ~S, where ~L is the orbital angular momentum of the electron about

the ion, and ~S is the electronic spin. To convert from the atomic spin-orbit interaction

into a form usable in a solid, the Hamiltonian can be modeled, for example, using a

tight binding method [48].

The spin-orbit interaction leads to many interesting effects, which range from

band structure alterations in semiconductors [96] to a mechanism for the spin-hall

effect [44]. Recently, Rashba spin-orbit splitting was found in a topological insula-

tor using spin-resolved Angle-Resolved Photoemission Spectroscopy (ARPES) [88].

Such an effect offers a promising candidate for spintronics applications [79]. In this

dissertation, the main results of the spin-orbit interaction are due to its effect on

magnetocrystalline anisotropy and its ability to break spin-related symmetries. As

I will discuss in detail, the main effects considered in this dissertation involve large

spin g-factors [50], and the establishment of a magnetization blockade [51], which can

lead to voltage control of magnetic hysteresis.

1.5 Energy Scales

One of the fascinating (and often complicated) aspects of our work involves the inter-

play of a number of different energy scales. Independently, these scales can be studied

and modeled; but taken together, non-trivial effects can emerge.

1.5.1 Thermal Energy

The energy associated with the thermal energy of a system is on the order of ET =

kBT , where kB is Boltzmann’s constant, and T is the system temperature in units of

Kelvin. In our experiments, initial resistance measurements of samples are conducted

at room temperature (∼ 300K), which corresponds to a thermal energy of ET =
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25.85 meV. The measurement of preliminary current hysteresis loops as a function

of magnetic field are taken at 4.2 K, which corresponds a thermal energy of ET =

0.362 meV. These measurements are performed by submerging a sample directly into

a liquid helium dewar. Further precise measurements are conducted in the dilution

refrigerator, which allows us to vary the temperature between 0.03 K and 4.2 K.

The lowest temperatures in our dilution refrigerator correspond to a thermal energy

of 2.59 µeV. In the dilution refrigerator, the temperature is recorded by use of a

calibrated resistor.

1.5.2 Charging Energy

The energy (or work) required to add a single electron of charge e to a metallic

island separated from its environment, with a corresponding capacitance C, is given

by Ec = e2/2C. Because the capacitance scales with the length L of the conductor,

(C ∼ ε0L), smaller metallic particles will have a smaller capacitance, leading to larger

values of Ec [165]. At low temperatures and small particle sizes, Ec can dominate the

competing energy scales, which leads to a finite bias voltage necessary for tunneling

an electron onto the particle.

1.5.3 Zeeman Energy

According to Kramers’ theorem, eigenstates of a system invariant under time reversal

are (at least) doubly degenerate. However, if a magnetic field is introduced (which

breaks time-reversal symmetry), the Kramers doublets will split as a linear function

of magnetic field. In atomic single-electron systems, this splitting of degenerate levels

is known as the Zeeman effect. The energy associated with a magnetic moment ~m

coupled to a magnetic field ~B is given by E = −~m · ~B. The splitting of the Zeeman

energy levels in a magnetic field ~B is given by Ez = gµBB, where µB = e~/2m is the

Bohr magneton. Typically, g ≈ 2 for the electronic g-factor, which leads to an energy

scale of gµB = 115µeV/T.
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More generally, an effective electronic g-factor can be defined in tunneling spec-

troscopy experiments, where g can be determined from the slope of spectral lines of

Zeeman-split Kramers doublets with respect to magnetic field.

1.5.4 Spin-Orbit Energy

There is an energy scale εSO associated with the lifetime of the spin orbit flip time

τSO, given by εSO = ~/τSO [31, 36, 59, 102, 116]. One of the mechanisms for spin-

flipping is the Elliot-Yafet mechanism [45, 163], in which an electron will change its

spin orientation with a certain probability each time it encounters a momentum-

scattering event. According to reference [36], the spin-orbit energy shifts εSO will be

given by εSO = ~/τSO ∼ ξ2d/Wd. Here, ξd is the degree of coupling between the spin

and orbital components of the wavefunction, and is on the order of 73 meV, 88 meV,

and 106 meV for Fe, Co, and Ni, respectively [43], while Wd is the 3d-band width,

which is on the order of 4 or 5 eV in Fe, Co, and Ni. It should be emphasized that

these are only estimates, and the spin-orbit energy shifts can vary between 1 meV

and 10 meV, depending on the specific particle realization [36]. These energy shifts

are expected upon the tunneling of a single electron onto a magnetic particle, and are

crucial for the model of a magnetization blockade introduced in this thesis.

1.5.5 Quantum Confinement Energy

As is often emphasized in elementary quantum mechanics courses, the energies of

bound electronic states form a discrete spectrum of values, corresponding to standing

wave solutions of the Schrödinger equation. The spacing between these eigenenergy

values varies with the degree of confinement; the more tightly bound the electron,

the larger the corresponding energy level spacing. For example, the energy levels for

an electron-in-a-box with infinite potential wells are given by En = n2~2π2/(2mL2),

where L is the length of the confinement region, m is the mass of the electron, and n
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takes on positive integer values. While the spacing varies as a function on n, the over-

all scale of the separation between consecutive energy levels is inversely proportional

to L2. That is, the smaller the confinement region, the more largely spaced the energy

levels. Similarly, the energy levels for a harmonic oscillator (quadratic confinement

potential in the spatial variable) is given by En = ~ω(n + 1/2), where n is again a

positive integer, and ω =
√
k/m. Here k is the effective spring constant, and a stiffer

spring leads to a larger value for k, and therefore stronger confinement potential. In

the harmonic oscillator case, the energy levels are equally spaced (that is, they do not

depend on n. For stronger confinement over a smaller region, the levels are spaced

further apart in energy. Such confinement effects are prevalent in fabricated struc-

tures that are essentially two-dimensional, which can arise from the confinement of a

physical boundary, such as the atomic extent of a layer of graphene [53, 107] or the

recent studies on transition metal dichalcogenides, such as MoS2 [117, 148]. Alterna-

tively, the confinement boundary can result from the local electrostatic environment

as is the case in modulation-doped epitaxial semiconducting heterojunctions [96]. Re-

gardless of the cause of confinement, the results are similar. Electrons confined in

one dimension behave as a two-dimensional electron gas, and therefore acquire an

altered density of states. Similarly, confinement in two dimensions leads to an effec-

tive one-dimensional electron gas (as is the case in graphene nanoribbons and carbon

nanotubes). Finally, electrons confined in all three dimensions behave as effective

zero-dimensional structures, and are called artificial atoms or quantum dots.

1.5.6 Fermi Energy and Mean Level Spacings

Because electrons are fermions (that is, they have half-integer spin in units of ~), they

obey the Pauli exclusion principle. Therefore, for a solid at T = 0, the electrons are

prevented from condensing into the lowest energy orbital, but rather must pile into

the increasing energy states so that no two electrons have the same set of quantum
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numbers. The energy value µ = εF at T = 0, which demarcates the highest occupied

orbital from the lowest unoccupied orbital, is known as the Fermi energy. At nonzero

temperatures, the average occupation of an orbital at energy E is governed by the

Fermi function:

f(E;T ) =
1

1 + exp
(
E−µ
kBT

)
The Fermi energy of Ni and Co are 8.7 eV and 9.5 eV, respectively [114]. In normal

metals, the energy cost of promoting an electron to a higher discrete level typically

dominates the exchange energy. However, due to the strong electron-electron interac-

tions in ferromagnets, there will be a rearrangement of the density of states depending

on the direction of the spin. This leads to two separate spin bands, known as the

‘majority’ and ‘minority’ spin bands. Each of these bands has a different effective

Fermi energy εF,maj and εF,min for the majority and minority bands, respectively, and

the separation of these effective Fermi energies is given by the exchange energy. Fur-

ther, the density of states varies as a function of energy, so the average discrete level

spacing for the different spin bands at their respective Fermi energies will be different.

To calculate some of the relevant energy scale data, I followed the process described

in references [37] and [90]. Our data for the exchange splitting and the minority and

majority level spacings were derived from reference [114]. For the mean level spacing

dσ of the majority and minority levels, we used the expression (as is described in

footnote 15 of reference [90]):

dσ = 1/[Na ·Dσ(εF )],

where Dσ(ε) is the spin-dependent bulk density of states per atom, Na is the number

of atoms, and σ indicates either the majority or minority band. The difference in

total integrated density of states gives the conversion factor 2S0/Na, which allows

us to write the energy spacing in terms of S0 rather than Na. The total integrated

density of states for the spin polarized bands for majority and minority electrons,
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respectively, are given by 5.33 and 4.66. The difference of these two yields a value

of 2S0/Na = 0.67. The density of states for the majority and minority electrons,

respectively, are given by 2.51 states/Ry/atom and 21.28 states/Ry/atom. Level

spacings dmaj and dmin for the nickel majority and minority levels, as evaluated at

their respective Fermi levels, are then given by:

dmaj = 1/Na · [2.51 Ry−1 ·(1 Ry/13.6 eV)]−1 = 5.41 eV/Na ·0.67Na/(2S0) = 1.8 eV/S0

dmin = 1/Na ·[21.28 Ry−1 ·(1 Ry/13.6 eV)]−1 = 0.64 eV/Na ·0.67Na/(2S0) = 0.2 eV/S0

Similarly, we used reference [114] to calculate the majority and minority level

spacings for cobalt, in order to affirm the validity of our calculations. In the case

of cobalt, the total integrated density of states values for the majority and minority

bands are given by 5.32 and 3.67, which leads to a value 2S0/Na = (5.32−3.67) = 1.65.

The density of states for the majority and minority electrons, respectively, are given

by 2.46 states/Ry/atom and 9.53 states/Ry/atom. Level spacings dmaj and dmin for

the cobalt majority and minority levels, as evaluated at their respective Fermi levels,

are then given by:

dmaj = 1/Na · [2.46 Ry−1 ·(1 Ry/13.6 eV)]−1 = 5.53 eV/Na ·1.65Na/(2S0) = 4.6 eV/S0

dmin = 1/Na · [9.53 Ry−1 ·(1 Ry/13.6 eV)]−1 = 1.43 eV/Na ·1.65Na/(2S0) = 1.2 eV/S0

Note that these results are identical to those obtained from reference [90], which

quotes values of “dmin ≈ 1.19 eV/s0, and dmaj ≈ 4.61 eV/s0, and the exchange

splittings of the Fermi energies ∆F ≡ εF,maj − εF,min (≈ 2 eV for cobalt).”

Using reference [114], we used the difference in energy between the main peaks in

the density of states for the majority and minority bands to estimate the exchange

splitting energy ∆. Doing so yields a value of ≈ 1 eV.

I repeated all the same calculations for the data for cobalt in reference [114] as well,

and found that our data agreed with the results obtained for cobalt in references [37]

and [90].
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In this case, the difference in majority and minority Fermi levels is approximately

2 eV, the same value quoted above from reference [90]. Note that there are different

conventions for defining the exchange energy, which can differ by a factor of 2. If

the exchange Hamiltonian is given by HM = JS · S ≡ U
2
S · S, then the “exchange

energy” can either be defined as J or as U . I use the latter convention, and note

as in reference [90] that “U may be estimated as U ≈ ∆F/s0”, where ∆F is the

exchange energy splitting between the minority and majority fermi levels. Defining

the exchange energy in the alternate way (by using J ≡ U/2), I estimate J ≈ 0.5eV.

1.5.7 Altering the Energy Scales

As mentioned previously, interesting effects emerge as the result of the interplay of

different energy scales. Therefore, the precise manipulation of various energy scales

is crucial for exploring novel effects. The thermal energy is easily controlled via the

positioning of samples in liquid nitrogen, liquid helium, or in the dilution refrigerator.

The Coulomb charging energy can be controlled by altering the capacitance of the

sample, either through changing the particle size or by adding a capacitively coupled

gate electrode. The Zeeman energy is determined entirely by the g-factor and the

applied magnetic field. For samples in the dilution refrigerator, the superconducting

magnet can be ramped to fields as high as 12 T. The spin-orbit energy varies from

sample to sample, and is harder to control precisely without fabricating a large sta-

tistical set of samples. The quantum confinement energy depends crucially on the

size of the particle, and the dimensionality of confinement. While the Fermi energy

cannot be changed for a given material, the mean discrete level spacing of particles

at their respective minority and majority Fermi levels can be altered by controlling

the size of the particles. Here I only predict a mean discrete level spacing; different

samples will realize different instances of such spacings. In measuring such effects,

our main tool is sequential electron tunneling transport [154].

16



1.6 Current Response Characteristics

In scientific research and engineering, a substantial number of characteristics can be

probed by measuring the electronic current response of a system, I, to an applied

bias voltage, V . In the simplest case, an ideal resistor with resistance R exhibits

a linear I(V ) characteristic, with a slope equal to dI/dV = 1/R. An ideal diode

exhibits current rectification properties as part of its current response to an applied

bias voltage. That is, the current response is asymmetric with respect to the sign

of V , and follows the form of an exponential function: I(V ) = Io(e
qV/kBT − 1).

Here, Io is the leakage current for a reverse-biased junction, q is the magnitude of

electronic charge, V is the applied bias voltage, and T is the temperature in Kelvin.

For V < 0, the current response is suppressed, or rectified. Although the current

expressions above refer to the ideal response characteristics, they are instructive for

how to interpret measurements in more complex experiments. For more complicated

current response functions, one can define the differential conductance dI/dV which

denotes an effective inverse resistance for different applied bias voltages.

Low temperature measurements of electron tunneling in quantum dots led to the

observation of current suppression in the low voltage regime. This ‘blockade’ of cur-

rent can arise due to a variety of mechanisms, such as the quantization of the electronic

charge, or the quantization of discrete energy levels as a result of quantum confine-

ment. In the experiments considered in this thesis, I use single electron tunneling

spectroscopy to probe the magnetic Hamiltonian of single ferromagnetic nanoparti-

cles. In such a case, both current suppression mechanisms are at play. That is, I

observe both Coulomb blockade due to the quantization of the electronic charge, and

steps in the I(V ) plot due to discrete particle energy levels.
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Figure 1.3: Current response curves. (a) I(V ) characteristics of an ideal resistor. (b)
I(V ) characteristics of an ideal diode. (c) I(V ) characteristics exhibiting Coulomb
blockade. (d) I(V ) characteristics exhibiting both Coulomb blockade and discrete
energy levels.

1.6.1 Coulomb Blockade and Sequential Electron Tunneling

In the particles studied in this dissertation, the charging energy required to add a

single electron to the particle requires a measurable bias voltage before tunneling

current onset occurs. For low bias voltages, therefore, the current is suppressed

by the Coulomb blockade. In such a situation, the current response curve to an

applied bias voltage can resemble the structure of that in figure 1.3(c) or (d). Because

the nano-island is localized from its environment via tunneling barriers, the electron

number on the dot is a well defined quantity. Similar device configurations have

been well-studied previously, and include a model for ‘orthodox’ Coulomb blockade

transport. [10, 19, 166]. In such as configuration, a finite bias voltage on the order
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Figure 1.4: (a) Equivalent circuit for double tunnel junction. (b) Energy band
diagram of double tunnel junction in a state of Coulomb blockade. (c) Energy band
diagram illustrating the onset of current at the edge of Coulomb blockade.

of millivolts will supply enough energy to tunnel a single electron onto the particle.

However, as long as the voltage is maintained at a low enough value, only a single

electron can tunnel onto the particle at a time, before tunneling off again. To explain

this effect, consider the circuit diagram in figure 1.4.

To account for discrete quantum states of the particle requires a model beyond

orthodox Coulomb blockade, and can be studied with techniques such as Random

Matrix Theory [3,4]. Higher order effects can be observed, such as elastic and inelastic

cotunneling, which can be explained through retaining further perturbative terms in

the tunneling Hamiltonian [4]. When the coupling of the particle to the conductive

leads becomes stronger (that is, when the resistance approaches or becomes lower

than the quantum resistance RQ = h/e2, then there is an intrinsic broadening hΓ of

the discrete levels on the dot associated with a finite lifetime. As long as the tunneling
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resistance RT � ~/e2, which amounts to hΓ being much smaller than other relevant

energy scales of the system (which is the case in the experiments under consideration

in this thesis), then cotunneling and higher order effects can be safely ignored. [93]

When the particle is well-separated from its tunneling leads, the effects of electron

tunneling can be studied by using a reduced density matrix approach. A general

procedure for studying a system with mixed quantum states makes use of the density

matrix, which allows for keeping track of the populations (or probabilities) of the basis

states and coherences among the basis states. For a given system Hamiltonian H and

a density matrix ρ, the temporal evolution of the density matrix can be calculated

from the Liouville-von Neumann equation:

i~
∂ρ

∂t
= [H, ρ].

However, H in the above equation includes both the particle and the tunneling leads.

At this point, a common procedure is to ‘trace over the reservoirs,’ which allows us

to partition the full density matrix into a reduced density matrix that involves the

particle Hamiltonian, and then treat the tunneling process from the reservoirs (or

leads) as a perturbation. The metallic (or ferromagnetic) leads are assumed to be in

local thermodynamic equilibrium, described by respective Fermi distributions func-

tions and held fixed at a specific electrochemical potential. This leads to a method of

tracking both the populations (probabilities) of occupation of the particle eigenstates,

as well as the coherences among these states, known as a generalized master equation.

However, for this work, I am primarily concerned with the populations of the

eigenstates, or the diagonal elements of the reduced density matrix. The tracking of

the eigenstate probabilities makes use of a master equation, and the rate of transitions

among the system states is calculated using the Fermi golden rule:

Γi→f =
2π

~
|〈f |ĤT |i〉|2δ(Ef − Ei).

Again, here the initial states |i〉 and final states |f〉 refer to the total system eigenstates
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(particle plus leads), and ĤT is the tunneling Hamiltonian operator. However, I

have mentioned previously the partitioning of the system into the particle and the

leads, which allows the factoring of the initial and final states of the system as:

|i〉 = |fL,i〉|fR,i〉|αi〉 and |f〉 = |fL,f〉|fR,f〉|αf〉. Here, fL and fR refer to the Fermi

distribution functions in the left and right leads, respectively, and α refers to an

eigenstate of the particle. Once attained, the tunneling rates can be incorporated into

the master equation simulations to determine steady state behavior of the probability

distribution, which in turn can be used to calculate the tunneling current.

1.6.2 Spin Blockade

A similar current blockade effect has been observed in double quantum dots [68, 78,

92,95,109,121,130], and has been identified as a spin blockade, due to the reliance of

the mechanism on electronic spin rather than charge. The basic configuration for a

spin blockade arises when there exist two quantum dots separated in a triple tunnel

junction, with surrounding metallic contacts. If each dot has a single discrete level

with a degeneracy of 2 to allow for tunnel electrons to assume either the state spin-

up or spin-down on each dot, and if one of the dots already has a single electron in

a well-defined discrete state, then the configuration will exhibit current rectification

based on the sign of applied bias voltage. If the current first tunnels onto the occupied

dot, then only a spin of the opposite orientation can tunnel onto the dot. Then, the

electron is not restricted in tunneling into the second dot, and then off into the drain

lead. If a bias is applied in the opposite direction, however, then if an electron of the

same spin tunnels onto the unoccupied dot first, it is blocked from tunneling onto

the occupied dot due to the energy cost of establishing a triplet state. That is, two

spin-up electrons are prohibited due to the Pauli exclusion principle on the occupied

dot. The only way for a spin up electron to tunnel onto the dot is for it to occupy a

higher discrete level, which is energetically inaccessible for low bias voltages.
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Later, I will describe a similar magnetization blockade effect, in which the spin-

orbit anisotropy energy shifts can prevent the particle magnetization from departing

beyond a critical angle from the easy axis, where the easy axis is defined as the en-

ergetically favorable magnetization direction. This effect leads to the voltage control

of magnetic hysteresis in nanomagnets.

1.7 Semiconducting Quantum Dots

The increasingly precise techniques of nanofabrication, including methods such as

electron-beam lithography and molecular beam epitaxy, have allowed for the detailed

study of devices whose length scales necessitate the incorporation of quantum me-

chanical effects. In particular, quantization effects in semiconductors can be observed

at larger length scales (fraction of a micron) as opposed to the exceedingly small

scales required for metallic samples (∼ 10 nm or less) [93]. Epitaxially grown semi-

conducting heterojunctions have allowed for the fabrication of extreme confinement of

electrons in one dimension in order to form a two-dimensional electron gas. With the

addition of metallic gates, the electrons can be confined even further dimensionally,

allowing for precise control of sequential electron tunneling. The analogous classical

trajectories of electrons in such samples exhibit chaotic trajectories, leading to a con-

figuration for probing the effects of quantum chaos [100]. The statistics of the energy

levels in such systems are amenable to statistical studies by random matrix theory,

which rely on a few general symmetry properties of the particular system.

Additionally, very large g-factors due to orbital electronic motion have been ob-

served in semiconducting quantum dots [105, 108, 128]. Later in this dissertation, I

will show examples of large spin g-factors that we measured in Co samples using

differential conductance tunneling spectroscopy [50]. Such effects were predicted by

Gorokhov and Brouwer [55, 56], and are due to the interplay of the spin-orbit inter-

actions and the electron-electron interactions in ferromagnetic quantum dots.
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1.8 Metallic Quantum Dots

In addition to semiconducting quantum dots, research has been performed recently

on metallic materials, which require sizes of the order of 10 nm in order to probe

the discrete energies due to quantum confinement. Rather than using an electrostatic

gate to constrict the location of electrons into a quantum well, metallic dots utilize the

physical boundary of the particle to confine the electrons. As in the semiconducting

quantum dot case, electronic trajectories exhibit chaos and can be studied statistically

with random matrix theory. Agam et al. have studied Al particles to explain the

clusters of resonances beyond the orthodox Coulomb blockade. The theory of single

electron tunneling and the consideration of discrete levels in a metal particle, in

addition to the Coulomb blockade, was studied theoretically [9].

Davidović and Tinkham used tunneling transport to observe and explain the re-

duced g-factors in Au nanoparticles as a result of the strong spin-orbit interaction

in Au. Additionally, they observed stronger clustering of levels as the energy was

increased [39]. We have observed similar effects in Ni samples that are the result of

a different mechanism, in which clusters of resonances in the differential conductance

spectra resemble a finite bandwidth.

Previously, our group has also studied the suppression of spin-orbit scattering

in granular Au films [5, 6], as well as zero bias anomalies and localization in Au

nanojunctions [26]. Additionally, they have measured the effects of spin transport in

metallic particles, and the influence of ferromagnetic tunneling leads [21,22,150,151].

Similarly, Deshmukh et al. probed discrete states on normal metal particles, using

metallic or ferromagnetic leads, and observed nonequilibrium effects [40,42].

Finally, the notion of the electronic g-factor has been studied extensively both

theoretically [2, 31, 38, 125] and experimentally [23, 118, 119] in metal particles. It

was found that spin-orbit scattering leads to an effective g-tensor whose magnitude

depends on magnetic field direction. Further, the spin-orbit interaction tends to
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reduce the magnitude of the g-factor, allows variation of the g-factor from level to

level, and leads to avoided level crossing as a function of magnetic field.

1.9 Ferromagnetic Quantum Dots

The importance of single-domain magnets and the promising applications of spin-

tronics and spin-transfer torque have led to much interest in ferromagnetic quantum

dots. Theoretically, Barnas et al. [14–17] and Brataas et al. [27–29] analyzed a ferro-

magnetic quantum dot along with ferromagnetic leads.

Experimental works on various fronts in ferromagnetic quantum dots, including

Dan Ralph’s group at Cornell [41,58], Wernsdorfer’s group [70–72,140,142,152], and

our group [73–75, 150] have studied the nature of ferromagnetic particles and their

quantum mechanical interactions. While much has been explored theoretically on

these fronts as well [1,35–37,54,56,89,90,99,103,147], there remain many intricacies

to be explored in such systems.

1.10 Magnetic Molecules and Electronics

Even further miniaturization of magnetic structures has led to the possiblity for

molecular spintronics [11, 24, 62, 104, 111, 126, 127]. However, while there has been

progress experimentally in such areas [7, 62], electron transport measurements have

found stable hysteresis to be elusive [76]. Van Der Zant’s group has experimentally

studied different coupling regimes with the conducting lead contacts in gated sample

devices [110], as well as the ability to control magnetic anisotropy in single molecule

with gate voltage [167, 168]. Finally, Elste et al. and Timm et al. have conducted

master equation simulations in molecular magnets that are similar in form to the

simulations I perform in this thesis [46,144,145].
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1.11 Atomic-Scale Magnetism

With the advent of the spin-polarized scanning tunneling microscope (STM), it has

become possible in recent years to study the effects of building up magnetic structures

with atomic resolution. A good review of such experimental techniques is provided

in reference [153]. Among the researchers at the forefront of such efforts are Wiesen-

danger’s group at Hamburg, Heinrich’s group at IBM, and Otte’s group at Delft.

Wiesendanger’s group has studied magnetic atoms and chains adsorbed on a sample

surface which interact via direct [85] and RKKY [86] interactions, which contribute to

both ferromagnetic and antiferromagnetic atoms and spin chains [64,84,87,94]. Such

techniques have also provided the opportunity to study the basic physics of spin fric-

tion [156], the effects of different types of magnetic switching in few-atom systems [94],

along with the study of exotic topological states known as skyrmions [122,123]. Fur-

ther, they have considered a system for realizing spin-based logic in antiferromagnetic

spin chains, which rely on geometric frustration [87].

Heinrich’s group has probed antiferromagnetic states of few-atom spin chains [97],

as well as pump-probe spin relaxation, the Kondo effect in dimer adatoms, and in-

elastic tunneling spectroscopy [63,66,67,98,112]. Otte’s group has studied the manip-

ulation and atomic control of mangetocrystalline anisotropy of an Fe dimer [33]. A

common feature of all of these works is that magnetism is highly susceptible to subtle

environmental influences, and that the confluence of these different perturbations can

lead to novel and non-trivial effects. While the STM experiments mentioned here

offer atomic precision and dynamic manipulation, the tunnel junctions considered in

my dissertation are relatively static by comparison. That is, once the samples are fab-

ricated in our lab, the tunnel junction spacing and materials are fixed. However, the

amount of voltage tuning in our tunnel junctions offer an analogous degree of precision

in their ability to tune the coupling of magnetic nanoparticles to their environment.

The spin-orbit interaction induced anisotropy energy shifts and Coulomb blockade
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are crucial in shielding our samples from undesired environmental perturbations.

1.12 Goals of the Dissertation

In this dissertation, I will explore further into the characteristics of ferromagnetic

quantum dots, using sequential electron tunneling spectroscopy. I will present find-

ings on several ferromagnetic materials, including Co and different isotopes of Ni, and

find that Ni lies at the stability threshold for stable hysteresis. Measurements of Ni

samples display detailed tunneling spectra as as function of magnetic field, and only

some samples exhibit magnetic hysteresis. The interplay of various energy scales,

as predicted by reference [36], leads to fluctuations in the anisotropy energy when a

single electron is added to the particle. These anisotropy energy shifts allow for the

emergence of an effect that we denote as magnetization blockade, which allows for

the voltage tunable control of hysteresis in nanometer-scale ferromagnets. Addition-

ally, I will show measurements of large electron g-factors observed in the differential

conductance tunneling spectra of Co particles, which is due to the collaboration of

the spin-orbit and exchange interaction. I will also discuss the intricate spectra of

ferromagnetic particles. In Ni particles, this can lead to Zeeman splitting and cur-

vature of levels due to the spin-orbit interaction. Finally, I propose a spin-transfer

torque device based on the voltage control of magnetic hysteresis, which could of-

fer improvements and alleviate some of the issues involved with power dissipation in

current-driven STT devices.
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CHAPTER II

EXPERIMENTAL METHODS

In this chapter, I will discuss some of the various experimental apparatus and pro-

cedures utilized by our research group. Some sections are intended to help other

researchers to reproduce the work performed in this dissertation, and therefore those

readers uninterested in delving into such intricacies may wish to skip ahead to chapter

III.

2.1 Sample Fabrication

One challenge to the fabrication of nanometer-scale devices is the size constraint.

While the common technique of photo-lithography has been utilized for decades to

fabricate microelectronic devices, it suffers from the optical constraint of the wave-

length of light. That is, common photoresists that are based on ultraviolet light can

generate features on the order of λ/2, where λ is the wavelength of the light. In

order to generate features on the order of 50 nm or less, however, visible or even

ultraviolet (UV) light will not suffice. Recently, extreme UV light has been used for

lithography, but our lab utilizes a different method [157]. Instead of using light, we

can instead use electrons and corresponding e-beam resist. As de Broglie postulated,

an electron has a momentum-dependent wavelength λe, which can be described by

the formula: λe = h/p, where h is Planck’s constant, and p is the momentum of

the electron. Therefore, the higher the momentum of the electron, the smaller the

effective wavelength.
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Figure 2.1: Illustration of our scanning electron microscope. Below the objective lens
cone is the sample to be imaged, which is controlled by step motors (not pictured).

2.1.1 Electron Beam Lithography

As an alternative to photo-lithographic techniques that use visible or UV light, we

instead use electron beam lithography [30]. This requires the use of electron op-

tics, which are analogous to the traditional lenses used in the optics of visible light.

Instead of using glass lenses, we utilize electromagnetic lenses, which focus the elec-

trons toward the sample. Our electron optics are encapsulated in a scanning electron

microscope (SEM) manufactured by JEOL. The basic configuration of our SEM is

displayed in Figure 2.1.
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The electrons used for imaging the sample are generated by thermionic emission

from a heated tungsten filament. This filament is encased in a conical metal shell

known as the wehnelt, which has a small orifice at the apex to allow the emission of

electrons in a precise direction. A large potential difference is applied across the SEM

column in order to accelerate the electrons towards the sample. Once the electrons

are emitted from the wehnelt, they are focused by an alignment coil and a series of

electromagnetic condenser lenses, followed by scanning coils and the objective lens.

After striking the sample, the imaging electrons excite secondary electrons in an

inelastic scattering process. These secondary electrons are ejected from the sample

and detected by a collector, scintillator, light guide, and photomultiplier tube. The

scanning coils deflect the electron beam to allow it to scan across the surface of the

sample rapidly in a raster scan.

Because electrons react strongly with matter, the imaging system and sample

chamber of the SEM must be kept in a high vacuum, in order to reduce the risk

of electron scattering events with gas molecules over the length of the microscope.

In our system, this is accomplished by using a rotary pump and diffusion pump in

series, which are able to evacuate the specimen chamber to a high vacuum of 1×10−6

mbar(≈ 0.1 mPa) in less than 10 minutes. The rotary pump maintains a low pressure

on the exhaust end of the diffusion pump. Once this high vacuum level is achieved

in the specimen chamber, the electron beam can be turned on. A routine calibration

process must be practiced each time the specimen chamber is opened.

As with visible light optics, the imaging system of electron optics suffers from vari-

ous aberrations such as spherical aberration, chromatic aberration, and astigmatism.

Spherical aberration occurs when the electrons further off axis radially experience

more deflection than electrons closer to the axis. It results in image nonuniformities

known as barrel and pin cushion distortions. Chromatic aberration arises in light

optics due to dispersion and the fact that light of different wavelengths experience
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Figure 2.2: Photograph of Scanning Electron Microscope that I use to image samples
and conduct electron-beam lithography. Optical column is open at the top during a
routine filament replacement. The silver cone is the wehnelt.
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slightly different focal lengths, and for non-monochromatic sources, this causes a blur

along the optic axis near the focal point. In electron optics, the de Broglie wavelength

of the electron depends on the electron’s momentum. The generation of imaging elec-

trons from the filament begins with the fact that electrons are in thermal equilibrium

with the filament. These electrons will therefore exhibit a spread in velocities given

by the proper probability distribution. The current density J of the electrons flowing

from the wehnelt can be approximated by J = AT 2 exp (−Ew/kBT ), where A and

Ew (the filament material work function) both depend on the material composition

of the filament.

The important point is that this distribution of velocities has a non-zero variance,

and so the imaging electrons will contain a spread in momentum values. This spread

in momenta results in a spread in effective wavelengths of the electrons, or a non-

monochromatic electron optics source, which is susceptible to chromatic aberration.

Astigmatism is the common optical aberration due to lenses having different focal

lengths along two orthogonal directions that are transverse to the optic axis. We

observe astigmatism regularly when imaging with the SEM, and fortunately the SEM

contains an 8-pole electromagnetic lens that can be finely tuned each time we image a

sample. This is referred to as stigmator, and can be used to correct for astigmatism.

During the initialization process of the SEM, we move the sample stage to the cali-

bration region of the sample mount, which contains gold standard nanoparticles of a

known shape. We zoom the magnification to levels between 50,000× and 100,000×

and adjust the focus parameter until the nanoparticles are in the focal plane. To

check for astigmatism, we use the fine-focusing feature to shift the focal plane above

and below the height of the nanoparticles. If the particles begin to blur uniformly in

all directions as the focal plane is adjusted, then the astigmatism is negligible at this

stage. However, if the particles begin to distort and elongate preferentially along one
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direction as we change the focal plane, this is an indication that astigmatism is preva-

lent. To fix this, we adjust the x- and y- stigmator feature when the nanoparticles are

slightly out of focus. This should compress the image along the elongated direction.

We then bring the particle plane back into focus and defocus in the opposite direc-

tion. If there is elongation of the particles along a different direction, we continue to

adjust the x- and y- stigmator iteratively until the image blurs isotropically as the

focal length is varied.

As with the focus calibration procedures, a careful routine should also be followed

when replacing the filament. If the filament burns out in the middle of an electron-

beam lithography writing procedure, or during the imaging calibration steps, a noti-

fication will alert the SEM user on the computer screen. If this occurs, users should

wait a few minutes for the system to cool down before attempting to replace the

filament. As always, a clean pair of gloves must be donned before touching anything

near the open SEM chamber. Once the specimen chamber is vented to atmospheric

pressure and the wehnelt has cooled off, the top of the optical column can be opened,

as is shown in Figure 2.2. Then the wehnelt and filament can be carefully removed,

and the top of the optical column should be closed to avoid letting any dust or debris

into the SEM.

To remove the filament from the wehnelt, the three mounting screws can be loos-

ened, and the broken filament should be inserted into the case of used filaments, and

marked with the current date. There is a ring with three dashes that keeps the tung-

sten filament a certain distance from the wehnelt tip. However, before the filament

can be replaced, the wehnelt and ring need to be cleaned. Wooden sticks (as from a

cotton swab) with metal polisher can be used to clean the inside of the wehnelt. The

stick might need to be broken to fit into the crevices of the wehnelt. The wehnelt

should be cleaned with sterile lab wipes, and all of the residue and burn marks should

be removed. This process typically takes 15 or 20 minutes. Next, the wehnelt should
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be wiped and cleaned with acetone, followed by its placement in a beaker with 50/50

isopropanol(IPA)/acetone mixture to be ultrasonicated for 30 minutes. The wehnelt

should immediately be transferred to a second ultrasonicated bath of pure IPA, and

then sprayed clean with IPA. Finally, the wehnelt should be dried with compressed

air under the fume hood. At this point, some of the screws might have been jostled

free during the ultrasonication process, so the wehnelt should be inspected before pro-

ceeding. Next, the ring can be inserted, followed by a new filament, with the filament

notch 180◦ degrees away from the notch in the wehnelt. The filament filament should

be visually inspected through an aperture in the tip of the wehnelt, to ensure that the

filament is centered. Realignment and centering can be accomplished by adjusting

the relative tightness of the mounting screws that position the filament within the

wehnelt. Finally , the SEM optical column can be opened, and the new filament can

be inserted.

Now, the new filament needs to be calibrated and adjusted to ensure proper imag-

ing and long filament life. To accomplish this, insert a sample holder in the specimen

chamber that has a Faraday cup. Pump the specimen chamber to high vacuum and

turn on the SEM beam.

Increase spot size to 40 or 50 (in spot size units on screen) to get more accurate

current readings, and zoom into the Faraday cup in order to read out the total current

from the imaging electron beam. On the gun menu, increase the L.C. parameter

(which stands for load current through the filament), and you will see one peak in

current followed by a sudden drop. Keep increasing the L.C. until a plateau is reached

in the ammeter. The plateau has been reached when the L.C. is increased and the

output current goes up by only one part in one hundred. If the current value is stable,

adjust the beam position coordinates iteratively to maximize the current output. A

lens reset might be necessary if the current becomes unstable. This is typically due to

charge buildup in the column and the lens reset will clear the unwanted charge away.
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If the filament tip in the wehnelt is well-centered, all of the maximized parameters

(x, y, tilt/shift) should be close to the center marks as well. Lower the spot size, and

readjust alignment parameters.

Another issue to address in the electron beam lithography process is the nature of

the sample substrate. If the substrate is strongly insulating electrically, then the flux

of the charged imaging electrons on the substrate causes a buildup of charge, which

distorts the path of the later electrons. This leads to the distortion as shown in Figure

2.3(a). To alleviate this issue, we spin-coat a conductive polymer layer on top of the

electron photoresist methyl methacrylate/polymethyl methacrylate (MMA/PMMA)

bilayer, just prior to placing the sample in the SEM chamber for lithography. This

polymer layer is called ESpacer, and it is expensive so it should be used conservatively.

Figure 2.3(b) and (c) display the same contact pattern that was attempted in Figure

2.3(a), but pre-treated with ESpacer. This allowed the quick dissipation of charge

during the writing process, and therefore avoided the striped distortion issues shown

in Figure 2.3(a).

2.1.2 DesignCAD and NPGS

In order to efficiently automate the process of fabricating many samples at once, we

first specify and draw the sample geometry using a specific computer-aided-design

program called DesignCAD. This program interfaces with a numerical control system

and the SEM in order to generate sample geometries to our exact specifications,

without the need for lithographic masks. The numerical control software we use is

called Nanometer Pattern Generation System, or NPGS. NPGS controls the step

motors, the magnification, and electron beam blanker in the SEM chamber, and is

thus able to rapidly expose sections of the sample substrate in the desired geometric

pattern with an accuracy of approximately 50 nm for our setup. Figure 2.4 displays

the process of drawing sample contacts in DesignCAD, and using NPGS in the SEM
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Figure 2.3: Optical images of contacts made by electron-beam lithography. (a)
Charge buildup problem on insulating substrate distorts electron-beam writing pro-
cess. (b),(c) display different magnifications of sample with conducting ESpacer pre-
applied to substrate.

to deposit metallic contacts.

2.1.3 Vacuum System and Metal Deposition

After the sample substrate has undergone electron-beam exposure, we develop the

chip in a solution of methyl isobutyl ketone (MIBK) and isopropyl alcohol (IPA)

in a volume ratio of 1:3 for MIBK:IPA. After submerging the sample chip in the

MIBK/IPA solution for one minute, we wash the surface of the chip with pure IPA

for ten seconds and then use dry air to blow the surface dry. At this point, the sample

chip still has a MMA/PMMA bilayer over most of the surface, but the areas that were

exposed to the electron beam have been washed away in the chemical development

process. This leaves a series of trenches in the MMA/PMMA bilayer that reach to

the surface of the chip. After inspecting the geometry of the trenches with an optical

microscope to ensure that there were no misalignments during the electron beam

patterning process, we place the chip on a rotating state and mount the stage in a
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Figure 2.4: Optical images and DesignCAD files showing example of electron beam
lithography process with two magnification levels. (a),(d) Few-layer sample of MoS2

on a SiO2 substrate. (b),(e) DesignCAD image used for alignment in SEM. (c),(f)
deposited Au contacts on MoS2 sample. The larger dashed-blue squares in (b) and
(e) have a side length of 90 µm and 450 µm, respectively.

vacuum chamber, as depicted by the schematic in Figure 2.5. Under the inverted

stage, we can connect up to three metal boats. These boats contain a bowl-shaped

region covered with an insulating material into which we can place different metal

materials for use in the evaporation and sample deposition process. The boats are
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secured in position with large copper electrodes, which can drive large currents and

induce Joule heating of the boat. This causes the metal pellets to melt, if enough

power is transferred through the boat. However, this evaporation process must be

performed in a high vacuum (∼ 10−7 torr) in order to avoid possible contamination

between the deposited layers.

When the chamber is pumped down to low pressures, the partial pressure of the

surrounding gas is substantially reduced, and the melted metals evaporate into the

chamber. When the evaporated metal reaches the walls of the chamber or the sample

chip, it condenses on the cool surface and forms either a thin film or a collection

of nanoparticles, depending on the thickness of the deposited layer. We measure

the amount of metal that reaches the sample by use of a quartz crystal deposition

monitor. The principle of operation of such a deposition monitor relies on the fact

that the resonant frequency of a piezoelectric material such as quartz changes based

upon the addition of adsorbed mass on an outer layer of the crystal. Through material

calibration parameters (such as density), we can therefore determine the amount of

metal deposited on the surface of the crystal in a very accurate manner based upon

the precisely measured frequency shift of the resonant (low-impedance) response of

the crystal to an applied electric field. If we assume a uniform angular distribution

over small solid angles in the chamber, then the thickness of material is approximately

constant over the surface of the crystal. However, the thickness of material deposited

on the crystal will not in general be the exact same thickness as is deposited on the

sample chip, since the crystal is displaced from the sample chip. That is, the sample

chip is mounted vertically above the evaporation boat, while the crystal deposition

monitor is positioned at the same height, but at a horizontally displaced position. We

can correct for this difference by calibrating the amount of material deposited on the

chip and comparing it with the thickness measured by the crystal monitor. This ratio

is defined as an appropriate tooling factor, and is included in the metal deposition
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Figure 2.5: Illustration of the vacuum chamber in our lab. A cryopump reduces the
pressure in the chamber to 10−7 torr in order to perform thermal evaporation and
deposition of metallic layers on the samples etched by electron beam lithography.
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Figure 2.6: (a) Apparatus used to sinter Ni powder into a pellet form. (b) Sintered
pellet on wax paper. (c) Evaporation boats used in the vacuum chamber, containing
Al and Au that were used to deposit nanometer-scale films. (d) Array of sample chips
about to undergo metallic layer deposition, held on rotating sample stage. Numbers
refer to sample and fabrication batch numbers.

process. The thickness calibration can be performed in various ways. In our case, we

deposited a large amount (hundreds of nanometers) of material on a substrate, and

used an atomic force microscope to compare the deposited region with the normal

substrate.

The deposition of specific materials on our samples requires the acquisition of

metals in solid pellet form, rather than a powder. While this is easily accomplished

for a wide variety of materials, we ran into some difficulty when trying to evaporate

a rare and expensive isotope of nickel, 61Ni. The only way to purchase this isotope of

Ni was in a fine powder form. In order to remedy the situation, we used an apparatus

to compress the powder into a solid piece through a sintering process, the steps of

which are depicted in Figure 2.6.
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2.1.4 Wiring the Sample Chips to a Mount

Once the samples have undergone the metal deposition process, we place the chip in

an acetone bath in a glass Petri dish for 20 minutes. The temperature is elevated

to 40◦ C, and the dish is topped loosely with a second glass Petri dish to avoid

evaporation of the acetone. Next, we spray the surface of the chip with acetone, then

isopropyl alcohol before the surface dries, and the remaining metal layers are washed

away with the MMA/PMMA bilayer. What remains are the patterned devices on the

surface of the chip. However, at this point, we still need to connect the contact pads

of the devices to an external circuit. We accomplish this by first fabricating a plastic

mount to which each tunnel junction sample will connect. We make each of these

sample mounts by etching a copper plate with ferric chloride, and then soldering large

contacts on one edge of the mount. Each of these contacts is connected to microtech

contacts, which in turn are connected to a dipstick. A set of old completed samples

that have already undergone measurement in the dilution refrigerator are depicted in

Figure 2.7. When placing the sample chips on the sample mounts, we apply indium

solder with a needle probe (by hand) to copper wire, and connect the copper wire to

the larger solder contacts on the sample mount.

2.2 Measurement Process

Most of our measurements involve evaluating the current response to an applied bias

voltage. Due to the energy scales involved in our measurements, low temperatures

are essential. Therefore, many of our measurements are performed either in a liquid

helium bath (which corresponds to a temperature of 4.2K) or in the dilution refrig-

erator (which uses a mixture of two isotopes of helium to achieve temperatures as

low as 0.03K in our setup). Below, I will give a basic summary of the principle of

operation of a dilution refrigerator, and the basic routines for running our particular

apparatus.
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Figure 2.7: Samples that have already undergone measurement in the dilution re-
frigerator.

2.2.1 Dilution Refrigerator

The basic principle of a dilution refrigerator is similar to that of a conventional refrig-

erator, except that the refrigerant is a mixture of the two stable isotopes of helium,

3He and 4He. At low temperatures, there is a spontaneous phase separation of the two

isotopes, as is depicted in the schematic in Figure 2.8. The heavier, 4He phase and

the lighter, 3He phase separate spatially. However, even at absolute zero, there is still

a finite amount of ‘dilute’ 3He within the 4He region, from whence comes the name

‘dilution refrigerator’. When 3He crosses the phase boundary between the 3He-rich

phase and the 3He-dilute phase, it requires energy, in the same way evaporating water

requires latent heat of vaporization. The energy for such a phase change is supplied

by the surroundings of the mixing chamber, including the sample. This allows the

sample to cool to approximately 0.03 K, if the superconducting magnet is turned off,

or about 0.06 K if the magnet is running.
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Figure 2.8: Dilution refrigerator principle of operation. There are two separate
circulation systems. One includes the 1K pot which contains liquid 4He (red in
figure), and is pumped to maintain a temperature of approximately 1.5K. The second,
main circulation system consists of the 3He/4He mixture, which passes through the
condenser and the primary impedance. A phase boundary between the 3He-rich phase
(green) and the 3He-dilute phase (blue) is set up in the mixing chamber. Flow of 3He
across the phase boundary cools the sample. Extra 3He from the dilute phase is
preferentially evaporated by the still heater and pumped away (purple), to begin the
circulation again.
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2.2.2 Pre-Cooldown Procedures

Because of the high cost of liquid helium (particularly 3He for the mixture, but even

4He is quite costly), it is best to make the most efficient use of time and resources

in preparation for a dilution refrigerator cooldown, including the fabrication of many

samples and the proper testing of the dilution refrigerator. Prior to the cooldown,

pump out the still line and the condenser line overnight using the turbopump. On

the dipstick, perform a leak check using the He leak detector and by spraying He gas

near the joints of the dipstick where we replaced the indium seals.

Then, if there are no leaks, ground yourself at all times with the large resistance

bracelet and attach the sample holders and check to make sure they are all working.

Once this is performed, seal up the sample holder with the copper cylinder, and put

a little apiezon grease around the ridges in order to keep it lubricated. Otherwise,

copper against copper can fuse together. At this point, it is good to check the viability

of the samples again.

When the fridge starts off hot, the liquid nitrogen cold traps need to be cleaned.

This can be done in the following manner. Make sure the manual valve to the inner

vacuum chamber (IVC) and outer vacuum chamber (OCV) is closed. Put a cap on

the main bath tube. Note, these are labelled behind the control apparatus in the

shield room. You will want to use the heat gun on the nitrogen cold trap to heat it

up a lot (above 100◦C). Open valve 11A, then 2, then 7. As you do this, the pressure

reading on gauge G1 will increase (if valve 2 is open to connected the cold trap to the

trap). Then, turn on the 4He rotary pump, and open valves 5A and 2A. Because the

vent ports are all connected to the same place, the final opening of valve 2A connects

the 4He rotary pump to the line connecting the Ni cold trap. Continue heating the

trap with the heat gun for a few minutes, then close valve 11A which will seal off the

Ni cold trap. Then, close valves 2 and 7. Last, close valves 2A, then 5A, then turn

off the 4He pump.

43



The next step is sealing the inner vacuum chamber. Once the inner radiation

shield has been attached to the dipstick and the holes have been covered with metal

tape, it is time to heat the sorb with the heat gun, apply the indium wire seal, and

then seal the IVC. Then the IVC line should be evacuated with the turbo pump for

at least an hour. Next, perform a leak test using the He leak detector. If no leaks

are detected, you can insert the He exchange gas in the IVC. Be sure to use the T

shaped pipe adaptor with the helium gas line attached to the nozzle on one side, and

the turbo pump line on the other. The small port will attach to a small valve, which

attaches to the IVC line. Be sure to insert the copper cylinder inside the bottom of

the small valve where it connects to the IVC. This allows a specific quantity of He

exchange gas to be placed in the IVC to help the dipstick cool down. Then, pump

with the turbo pump’s roughing pump with the small valve open. Flush with helium

gas then turn gas off and keep pumping with the turbo pump’s roughing pump. Then

switch off the electronic valve on the turbopump to disconnect it from system. Turn

on the gas and then seal the small valve. Open the IVC valve for a second to admit

exchange gas, then close it. Then remove the fitting from the dipstick and cap seal

the IVC port. You also need to pump out the transfer line with the turbopump

overnight.

When the dipstick is ready, attach the fiberglass shield and carry it over to the

Faraday cage shield room and attach it to the wench on the ceiling. Use caution and

raise it up and watch that the wire doesn’t snap or hit the ceiling. It has very little

leeway and will just have less than a centimeter to be raised over the fridge and slid

into place. Then, slowly lower the dipstick and make sure the alignment markers are

overlapping in each marked location.

Again, because of the high cost of Helium, the dilution refrigerator should first be

cooled from room temperature down to ∼ 77K using the much less expensive liquid

nitrogen. This procedure can be achieved as follows. Make sure that the port to the
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fridge (exhaust) and the port to the dipstick fiberglass attachment are OPEN (that

is, don’t attach any one-way valves or anything like that). Then attach the nitrogen

transfer line with the fridge link attachment, rough side towards the rubber hose.

This will be slid into place in the cone in the bottom of the fridge, through the same

port where the helium transfers take place. Slide the rod into this port, and watch

for the piece of tape near the top of the rod— this marks where to slow down and

feel for the placement of the rod in the cone. Once it is in place, open the nitrogen

line valve from the dewar and allow the built up pressure in the dewar to transfer

the liquid nitrogen into the fridge. Note that if the transfer rod is in the cone, the

transfer process will be slower due to the flow impedance of the cone and this narrow

region. This process takes about two hours. Once the exhaust gas (outgassing) of the

fridge is cold, it won’t be too much longer before the fridge is full, so keep an eye on

the fridge. When liquid nitrogen starts spewing out of the exhaust port, turn off the

faucet on the dewar and use the heat gun to warm the rubber hose to allow it to be

bendy enough to remove the transfer rod from the fridge. Note that right after this

is the time to apply the two one-way valves to the fridge— one to the exhaust port

and one to the fiber glass attachment port. If you put the valves on previously, then

the outgassing of the nitrogen will cause the liquid to spew out of the transfer port

right as you are trying to remove the rod. To avoid this, wait until after removing the

rod and capping this area to put on the one way valves. The flanges will probably be

cold and caked with ice, so you might need to apply the heat gun around the exhaust

ports before attaching the one-way valves. Typically, the liquid nitrogen will need to

cool the fridge for a few hours (preferably overnight).

Before cooling the dilution refrigerator with liquid helium, the liquid nitrogen

must be evacuated; otherwise, it will freeze due the low temperature of liquid Helium

(and it will waste some or all of the liquid helium in the process). This is done by

attaching the transfer line to the nitrogen dewar again, but this time it is crucial to
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insert the transfer rod into the cone. If this is not done, then you will not be able to

evacuate all the nitrogen since the cone is connected to a pipe leading to the bottom

of the fridge. Remove the one-way valves, then insert the transfer rod.

Attach the adapter nozzle to the exhaust port of the fridge, and attach the other

end to a cylinder of ultra high purity (UHP) Ni gas. Then, open the vent port of the

nitrogen dewar and cap the fiber glass exhaust port.

Then open the liquid valve of the dewar and turn on the nitrogen gas to force the

liquid out of the fridge and back through the transfer line into the dewar.

Once all of the liquid nitrogen has been evacuated, the liquid helium transfer can

begin. The liquid helium transfer, and the process of cooling the mixture of Helium

isotopes is very complicated, and is best only performed with an experienced advisor

or senior graduate student to supervise. The particulars of the helium transfer and

mixture circulation are available in the Oxford Instruments instruction manual for

our dilution refrigerator.

2.2.3 I(V) Curves and Magnetic Field Sweeps

Once the liquid helium has been transferred and the mixture is properly circulating,

the fridge should reach a base temperature of approximately 0.03 K. Once this occurs,

the low-temperature data collection can begin. To further shield the samples from

extraneous interference due to ambient electromagnetic signals, we surround the en-

tire dilution unit in a copper-lined Faraday cage room. Measurement signals are fed

into the shield room via a filter box. Inside the dilution refrigerator is the supercon-

ducting magnet, which we utilize for applying a magnetic field as large as 12 T. The

superconducting magnet is a solenoid that is placed in thermal contact with the 4.2K

liquid helium bath during operation. Note, some care must be taken when operating

this powerful magnet. The power supply given by Oxford Instruments allows setting

a linear field sweep with an initial and final value, and a step size. In order to change
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the current flowing through the superconducting magnet, a small portion must be

heated in order to change the magnitude of the current through the coil. It is crucial

that the leads are driven normal by a heater before the magnetic field is swept, so

as to match the applied current with the persistent mode coil current. If this is not

taken into account, and there is a mismatch between the applied current and the coil

current, the coil will undergo a quench. This means that the whole coil suddenly

has a finite resistance, and dissipates power, heating the liquid helium in its vicinity.

This can quickly boil off and waste a significant amount of helium in the dilution

refrigerator, and will fill the shield room with helium gas.

The I(V ) curves we measure as a function of temperature and magnetic field are

evaluated as follows. First, we apply a bias voltage via a function generator through

the tunnel junction. The output current of the tunnel junction is grounded through

a current amplifier, which yields a measurement with sub-pA resolution. Both the

applied bias voltage and the resulting current are measured using a data acquisition

board from National Instruments, which in turn is connected to a computer on which

we collect and store data with a Labview program.

2.3 Finding Hysteresis at the Stability Threshold in Ni Par-
ticles

In the process of measuring magnetoresistance of Ni particles at 4.2 K, we were

surprised to find no hysteresis in any of the sample batches. Even though much work

has been done previously on cobalt nanoparticles of similar size, in those works the

observation of hysteresis was always quite clear, even at 4.2 K. We were curious why

we could not observe hysteresis in a Ni nanoparticle, and thought the result required

further study. Therefore, we systematically varied many experimental parameters,

such as isotopic content and Fe impurities. In addition to studying these different

parameters, it was also a matter of experience and refinement of our skills that led to

the observation of magnetic hysteresis in a Ni nanoparticle in a narrow bias voltage
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and temperature range.

We believed that the lack of hysteresis in nickel samples (juxtaposed with the

robust ferromagnetism in cobalt samples) required investigation and therefore moti-

vated us to determine the cause behind this suppression of stable ferromagnetism for

different ferromagnetic materials.

First, we posited an effect from nuclear spin. Common isotopes of Co have nuclear

spin 7/2, but common isotopes of Ni have zero nuclear spin. Therefore, we thought it

was plausible that there could be a hyperfine relaxation mechanism present in cobalt

which allowed an excited magnetization to relax toward a stable direction (and thus

allow multiple stable magnetization directions and hysteresis). To test our theory, we

fabricated samples of Ni isotope 61Ni, which possesses an intrinsic nuclear spin of 3/2.

We performed the same hysteresis measurements on 61Ni samples at 4.2 K, but found

the same results as with common-isotope Ni; that is, there was no visible hysteresis.

Thus, we determined that the nuclear spin mechanism was not the primary driving

force behind absence of magnetic hysteresis at 4.2 K in nanoparticles of the size we

were considering.

Next, we considered the effects of shape anisotropy in the nanoparticles. Co has

a higher saturation magnetization than Ni and therefore a greater shape anisotropy

energy for two particles of the same size but different material composition. Therefore,

we posited that the high shape anisotropy energy of cobalt established a larger energy

barrier between stable magnetization directions, thereby fortifying Co more strongly

against the effects of magnetization perturbation by coupling to electron transport

and other environmental influences. To test our hypothesis, we performed hysteresis

experiments on different magnetic materials with different saturation magnetization

values. We fabricated Fe nanoparticles and permalloy (Ni0.8Fe0.2) nanoparticles of

the same size as particles in the initial hysteresis measurements as cobalt and nickel.

We found that all the Fe samples displayed hysteresis at 4.2K, and that about half
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of the permalloy samples displayed hysteresis at 4.2K. The magnitude of saturation

magnetization, and, correspondingly, the shape anisotropy strength, increases from

Ni to permalloy to Co to Fe. Similarly, the percentage of samples of a given material

that show hysteresis increases monotonically from Ni to permalloy to Co to Fe. We

therefore concluded that shape anisotropy is the primary mechanism behind stable

magnetization and therefore hysteresis in nanoparticles of this size at 4.2K.

Next, we studied Ni samples in the dilution refrigerator, which has a base temper-

ature of 30 mK. When a constant magnetic field is applied to samples in the dilution

refrigerator, the temperature is typically at 30 mK. However, when the magnetic field

is swept to different values (e.g., during hysteresis measurements or for magnetic tun-

neling spectra measurements), the temperature rises to values between 60 mK and

80 mK. Initially, the differential conductance spectra vs. magnetic field of nickel sam-

ples did not show hysteresis at 60–80 mK or below, unlike the previous experiments

we performed on cobalt samples at 60 mK.

Because our nickel samples were not showing hysteresis, we added a ground plane

on-chip filter, in order to reduce effects from environmental noise. Even though

the temperature of the electrons on the particle remained between 70 and 80 mK

(as measured from the energy spectrum level widths full-width-half-maximum) there

could still have been a larger effective magnetic temperature (magnetic excitations)

due to stray microwaves coupling to the particle. These microwaves can excite the

particle magnetically, but, due to the time scales involved, may not be able to couple

strongly to the electrons in the leads and appear in our temperature readings. Similar

effects have been observed in single electron transistors [146] in the observation of

superconductivity suppression, even when the electron temperature is low. A silver

paint, sealed on-chip Faraday cage was required, in addition to cryogenic filtering, to

observe the full parity effects of superconductivity.
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While we are uncertain of the exact mechanism that ensures the presence of hys-

teresis in a given sample, we can surmise that the likely explanation for the lack of

hysteresis in most Ni samples is due to the weak shape anisotropy of Ni in comparison

to Co. The weaker energy barrier between different magnetization directions in Ni

with respect to Co makes Ni more susceptible to environmental perturbations (such as

thermal effects, high-bias voltage non-equilibrium effects, and stray electromagnetic

coupling effects). Any of these perturbations may be enough to excite the magnetiza-

tion of Ni across a barrier that separates two stable magnetization directions. If the

required excitation energy is low, (i.e., if the anisotropy energy barrier is low) then the

magnetization direction can easily explore all of the directional phase space available

to it instead of remaining localized in a stable equilibrium position. Additionally, our

master equation simulations will show that hysteresis is not guaranteed, as it depends

on the mesoscopic details of the particular nanoparticle.

To consider whether the voltage bias was too high for stable hysteresis, we note

that some of our Ni particle samples measured at 60 mK did not display any hysteresis

even though the Coulomb blockade voltage was low (8.9 mV and 2.5 mV for two other

samples). In our updated model based upon the master equation simulations, we have

shown why it is possible (and likely), based upon the mesoscopic variations among

the different particle Hamiltonian parameters from sample to sample, that many Ni

samples will not display hysteresis, even for the lowest bias values.

The effect of bias voltage history on magnetic hysteresis is further discussed in

chapter V, from which we learned that the magnetic hysteresis in the spectra can only

be measured only in a narrow range of voltage, which includes the Coulomb blockade

region.

The temperatures of the electrons in the leads can be estimated from the width of

the energy levels in the tunneling spectra data at high magnetic field. However, the

temperature of the electrons in the leads is always of the same order of magnitude,
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regardless of whether there is a filter present, and has been measured over many trials.

Therefore, we do not believe the electron temperature can explain the presence or lack

of hysteresis. As mentioned previously, magnetic temperature might be expected to

rise even in the case when the electronic temperature has not increased.

There is a loss of magnetoresistance contrast at the expected switching field for

higher temperatures than 2.3 K. We cannot unambiguously discern reproducible mag-

netic switching events at the higher temperatures. This doesn’t necessarily mean that

hysteresis is lost above 2.3 K. We do not have the data to confirm the status of hys-

teresis above that temperature. Our estimation of the blocking temperature is based

on extrapolation.

In chapter V, I will further detail the process of the findings of hysteresis in a

representative Ni sample. There, I note that five Ni samples were measured in the

dilution refrigerator. These samples were from a batch of five identically prepared Ni

samples of which two showed hysteresis. Here, I wanted to make a fair comparison

between samples since there were many possible parameters that could be varied

(isotope, ground plane filter, temperature range, Coulomb blockade width, material

composition). It would be quite complicated and infeasible to compare samples with

so many different parameters. Therefore, those different samples are not counted

among those considered in that chapter.
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CHAPTER III

COMPUTATIONAL METHODS

3.1 Introduction

In this chapter, I will summarize some of the simulations and computational tech-

niques I used in modeling and interpreting the experimental data. As mentioned

previously, the primary type of simulations I employed are two different implementa-

tions of solutions to the master equation. I will briefly review random processes and

how we can use a particular stochastic realization to model the time evolution of the

eigenstates of the magnetic particle. I will also describe the spin-dependent tunneling

density of states, and explain how it is a useful quantity for understanding a specific

Hamiltonian and its tunneling and magnetic characteristics.

3.2 Tunneling Density of States

During the sequential tunneling process, the particle Hamiltonian alternates between

two phenomenological magnetic Hamiltonian operators, H0 and H1, corresponding to

the N and N+1 electron particles:

H0 = −KS2
z/S0 + 2µBBSz, and

H1 = H0 + ε [cos θSESz + sin θSESx]
2 /S2

0 + εzS
2
z/S

2
0 + E0.

For the simulations studied here, we assume that H0 is characterized by a uniaxial

anisotropy with coefficient K and a Zeeman energy term. Similarly, we assume that

the N+1 electron particle is characterized by the same uniaxial anisotropy and Zeeman

terms, along with an additional term due to the spin-orbit energy anisotropy shifts

ε and εz. Here, θSE is the angle relative to the initial easy axis of the ε anisotropy

term. Such shifts depend on the orientation of the magnetization, as predicted by
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reference [36]. E0 is the constant offset energy due to the charging energy of one

extra electron. In the following three figures, the Hamiltonian parameters chosen

were S0 = 100, K = 10, ε = 200µeV, εz = −200µeV, θSE = π/6, and E0 = 1 meV.

One useful tool for observing the characteristics of a given tunneling Hamiltonian is

a spin-dependent tunneling density of states (DOS). We define

DOS(Sz, E) =
∑
α

|〈N,Sz|N + 1, α〉|2 δ(EN+1,α − EN,Sz − E).

The δ-functions are broadened by convolving with a Gaussian of width 1µeV. Such

a structure displays the energy weights corresponding to specific transitions between

the two different particle Hamiltonians as a function of the spin projection along the

easy axis of the particle, for the N → N + 1 electron particle transition.

Figures 3.1, 3.2, and 3.3 display the tunneling DOS for a particle with the Hamil-

tonians described above. This particular set of anisotropy energy shifts displays

magnetization blockade and voltage control of magnetic hysteresis. In each figure,

the tunneling DOS is portrayed in the center of the figure, where the dark blue region

represents zero density and the lighter regions display higher density. For Figure3.1,

the electrochemical potential in the source lead, represented by the solid orange line, is

below the level for the onset of sequential electron tunneling. The Coulomb blockade

charging energy is portrayed as the dotted red line, and the magnetization blockade

energy is depicted as the dashed green line. As a result, no current flows and so

the particle remains in its N electron ground state with Sz = −100. The horizontal

axis displays the projection of the particle spin onto the easy axis (z-axis), and the

illustrations above indicate the precession of the spin at these given Sz projections.

In the following Figures 3.2 and 3.3 illustrating the tunneling density of states, I

also plot the long-time distribution of particle states for higher bias voltage values,

again corresponding to a particle initialized in the N electron, Sz = −100 state. In

Figure 3.2, the electrochemical potential in the source lead is maintained between the

Coulomb blockade energy and the magnetization blockade energy. As a result, the
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Figure 3.1: Tunneling density of states with low source-drain bias, µs < Ec <
EM , where EC is the charging energy and EM is the magnetization blockade energy.
Lighter regions correspond to stronger density, while dark blue regions correspond to
zero density. The orange curves on the left and right illustrate the Fermi functions
in the source and drain leads, respectively, and the orange solid line indicates the
source Fermi level (that is, the electrochemical potential µs in the source lead). The
red dotted line indicates the Coulomb blockade. The green dashed line indicates the
magnetization blockade. The axes in the bottom and top indicate the spin projection
and illustrate the process in the dot. No current flows in this low bias regime, so the
particle remains in its initial state.

magnetization becomes excited and departs from the easy axis, but the level of µs

limits the degree of magnetization motion, and the long-time probability distribution

remains localized near the Sz = −100 state.

In Figure 3.3, µs is raised above the magnetization blockade energy, and thus the

particle magnetization is able to explore the full directional phase space. This leads to

a state probability distribution in the long-time limit that is approximately uniform.
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Figure 3.2: Tunneling density of states with medium source-drain bias raised past
the threshold of sequential electron tunneling, but remains below the magnetization
blockade energy Ec < µs < EM . Particle is initialized in N -electron, Sz = −100
state. The inset graph shows the long time histogram of the state distribution. The
particle is unable to switch into the other metastable state.

3.3 Probabilities and Generating a Random Event

A stochastic process is one which involves a random variable on some level. When

we discuss a random variable X, we often assume that we know something about the

values x which the variable can take, where x is a particular realization of the random

variable X. Additionally, we often assume that the likelihood of X realizing the value

x is known, and is given by P (x). Here, P (x) is the probability distribution of the

the random variable X.

For example, flipping a coin yields either ‘heads’ or ‘tails’, which are the particular

realizations of x. If the coin is fair, then the probability of the coin landing ‘heads’

is equivalent to the probability of the coin landing ‘tails’: P (H) = P (T ) = 0.5. Note

that if we sum over all possible realizations of x if P (x) assumes discrete values (or
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Figure 3.3: Tunneling density of states with large source-drain bias, Ec < EM < µs.
Because the energy is raised past the magnetization blockade, the distribution of state
probabilities in the inset becomes delocalized and approaches a uniform distribution.

integrate over all realizations of x if P (x) is continuous), then the result is equal to

1. This merely reflects that all possibilities are accounted for.

In the course of the stochastic implementation of the time evolution of the ferro-

magnetic particle Hamiltonian state distribution, there arises the need to generate a

random event each time step to determine whether or not the particle will transition

between eigenstates. While there exist standard pseudo-random number generating

functions in Matlab and other programming languages for generating random num-

bers on a given interval, this is mainly accomplished through uniformly distributed

random numbers or normally distributed random numbers. Here, the terms ‘uniform’

and ‘normal’ refer to the shape of the probability distribution function (pdf) for a

given random number [77]. As is indicated in Figure 3.4(a) and (b), the long-time his-

togram pdf for a normally distributed, and uniformly distributed, respectively, take

the shapes of a normal (Gaussian) distribution and a uniform (constant) distribution.
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Figure 3.4: Probability Distribution Function (PDF) for (a) normally distributed
variable and (b) uniformly distributed random variable. Cumulative Distribution
Function (CDF) for (c) normally distributed variable and (d) uniformly distributed
variable.

Figure 3.4(c) and (d) display the cumulative sums of (a) and (b), respectively, and

model the cumulative distribution function (cdf) for the normally distributed and

uniformly distributed pdf’s in (a) and (b). Note, in Figure 3.4(d), the true CDF

should continue at a constant value of 1 after x = 1.

3.4 Stochastic Time-Dependent Simulations

Figure 3.5 displays the basic procedure for generating a random event during each

time step and choosing a new eigenstate according to the state change probability

distribution function. For visual clarity purposes, the total spin of the N and N+1

electron particle was chosen to be S0 = 10 and S0 − 1/2 = 19/2, respectively. This

allowed the total state probability distribution vector (including both the N electron

states and N+1 electron states) to have a length of 2 ·S0 + 1 + 2 · (S0− 1/2) + 1 = 41.

The first 2S0 + 1 state vector indices correspond to the z-projection states of the
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Figure 3.5: State transition illustration. (a) Initial state, state transition pdf, and
state transition cdf are displayed. (b) Comparison of state transition pdf and a
histogram of randomly chosen values according to the distribution.

N electron particle, where Sz runs from −S0 to S0 in steps of 1. The remaining

2(S0−1/2)+1 state indices correspond to the energy eigenstates of the N+1 electron

particle, sorted according to their minimum to maximum Sz values.

In Figure 3.5(a), the particle is assumed in the ground state of the N = 10 electron

particle at the beginning of the time step (that is, the state index is 1). The master

equation is integrated one time step to determine the state change pdf. From the

state change pdf, a random number is chosen from this distribution, and the result

determines the new particle state at time t+ dt. This is accomplished by choosing a

uniformly distributed random number between 0 and 1, using that number to invert

the state change cdf and find the new state. This process is iterated many times as

the Hamiltonian or the bias voltage values change. Figure 3.5(b) displays the state
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change PDF and a histogram of values randomly chosen according to this distribution

using the method described above. The two values match extremely well, showing

the reliability of this general random number generator method.

time (ms)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
z
/S

0

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

  

Histogram

Energy

Figure 3.6: Random walk of magnetization due to electron transport. Right, evolu-
tion of particle magnetization in time. Left, histogram of occupied spin states (blue
bars) and uniaxial anisotropy energy well (red curve).

Figure 3.6 displays the random walk of the magnetization of an N = 10 particle

with a high applied bias voltage. On the left is a histogram of the states on which

the particle dwelt (blue bars), along with the shape of the uniaxial anisotropy energy

curve for the N=10 electron particle.

When the time-dependent simulation involves a changing magnetic field, this

changes the form of the Hamiltonian and the corresponding eigenstates. For defi-

niteness, suppose that the particle is initially in eigenstate |αN〉 of the N -electron

Hamiltonian at time t. If the new particle Hamiltonian at time t+dt is different than

the Hamiltonian at time t, then before calculating a possible transition to the state

at this new time step, I first project the old eigenstate |αN〉 onto the the new set of

N -electron eigenstates |βN〉. Upon this projection, I choose the new eigenstate |βN〉

such that the quantity ||〈βN |αN〉|| is maximized. The validity of such an assertion

lies in the adiabatic approximation, which assumes that the Hamiltonian is changing

slowly enough that the new eigenstate will correspond to an analogous state in the
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new Hamiltonian.

To do this, I first need to express |αN〉 and |βN〉 in a common basis. Since the

eigenstates of Sz, |mz〉, form a complete basis set, I expand |αN〉 and |βN〉 within

the |mz〉 basis: |αN〉 =
∑S0

mz=−S0
|mz〉〈mz|αN〉 and |βN〉 =

∑S0

mz=−S0
|mz〉〈mz|βN〉.

Using this common basis, the projection can be evaluated as:

||〈βN |αN〉|| = ||
∑
mz

∑
m′z

〈βN |mz〉〈mz|m′z〉〈m′z|αN〉||.

Since |mz〉 form an orthonormal set, 〈mz|m′z〉 = δmz ,m′z , where δi,j = 1 if i = j,

or δi,j = 0 if i 6= j. This simplifies the expression of the overlap: ||〈βN |αN〉|| =

||
∑

mz
〈βN |mz〉〈mz|αN〉||. Once this overlap is calculated for each possible state |βN〉,

I choose the state |β′N〉 which maximizes the overlap, and change the eigenstate of the

particle at time t + dt to |β′N〉. Then, the usual evolution process of calculating the

small change in the state probability distribution vector under the new Hamiltonian

and generating a stochastic event to see if the particle will transition during this time

step.

3.5 Other Example Simulations

I studied a Hamiltonian parameter space ofK = 10, ε = [−200, 200], εz = [−200, 0, 200],

and θSE = [π/6, π/4, π/3, π/2]. All energies are in units of micro-electron volts. Due

to mesoscopic fluctuations, these adjustable parameters will vary from sample to sam-

ple, and our goal was to merely sample the large possible parameter space. Note, in

order to convert from E to voltage, one needs to add the orbital, the exchange, and

the charging energy to E, and account for the capacitive division of the voltage. I

assume there is only one quasiparticle state µ within the energy range of tunneling,

and that the Fermi level in the drain is −∞; that is, fR = 0.

When determining the I(V ) characteristics, the state is initialized in the ground

state of the N -electron particle. For subsequent bias voltage data points, the initial
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state probability distribution is taken as the saturated value from the previous voltage

point.
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Figure 3.7: Density of states for a magnetically unstable particle. The white line
separates regions of spin increasing and spin decreasing transitions. The yellow line
indicates the evolution of 〈Sz〉 as the bias voltage is increased.

In this way, the progression of current and 〈Sz〉 will occur in the same way as

in experiments. Figure 3.7 displays the case for an unstable Hamiltonian (ε = εz =

200µeV, θSE = π/6), which leads to magnetization stability loss almost immediately

after the onset of current. In the DOS shown in Figure 3.7, the white line separates

spin increasing and decreasing transitions. For transitions below the white line, the

spin projection Sz of the new N + 1-electron particle state is lower than that of the

initial N -electron particle state. The yellow line follows the evolution of 〈Sz〉 as the

source Fermi level is increased. In this example Hamiltonian, the edge of the Coulomb

blockade (that is, the source Fermi energy corresponding to the onset of current) is

located at 0.342meV. The magnetization begins to become unstable (that is, 〈Sz〉

begins to rapidly increase) at the same source Fermi energy of 0.342 mV. By the
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time the source Fermi level is raised to 0.346 meV, the magnetization is completely

randomized as 〈Sz〉 → 0. Therefore, the current and magnetic stability characteristics

are highly dependent on mesoscopic fluctuations from particle to particle. The form of

the DOS in this unstable case, unlike the example in earlier in the chapter, lacks levels

that increase along with increases of Sz. In the example DOS in at the beginning of

the chapter, 〈Sz〉 follows the upward-sloped levels, and doesn’t become unstable until

the level features begin to decrease vs. Sz. In the DOS referenced here, the initial

levels near the onset of Coulomb blockade are decreasing vs. Sz, so the magnetization

is unstable from the beginning of current onset. In both DOS cases, when the levels

begin to decrease vs. Sz, a spin-flip cascade is initiated as subsequent spin-increasing

transitions require less and less energy. The result is the delocalization of 〈Sz〉 as

magnetic stability is lost.

3.6 Master Equation

The master equation utilized in our present work is adapted from references [73]

and [147]:

∂Pα
∂t

=
∑
β

∑
l=L,R

∑
σ=up,down

Γlσ
[
|〈β|cµσ|α〉|2 (fl(Eα − Eβ)Pβ − (1− fl(Eα − Eβ))Pα)

+
∣∣〈β|c†µσ|α〉∣∣2 (−fl(Eβ − Eα)Pα + (1− fl(Eβ − Eα))Pβ)

]
The above equation determines the evolution of the probability Pα of occupation

of a given particle state |α〉 in time. The spin of the electron is σ, and the tunneling

rate Γlσ in general could be different for the source and drain leads, and could depend

on the spin polarization. The time rate of change of Pα depends on the Fermi level

in the source and drain leads (L and R, respectively). These Fermi functions are

evaluated at the energy differences Eα−Eβ between the states involved in tunneling.

Each term in the sum also depends on the overlap between states |α〉 and |β〉, upon

the addition (c†µσ) or subtraction (cjσ) of an electron, where c†µσ is the electron creation

62



operator for the µth level, and cµσ is the electron annihilation operator for the µth

level.

Figure 3.8 illustrates the result of running the full master equation simulation,

rather than a stochastic realization. Each of the panels show how the state probability

distribution evolves as a function of time for different constant bias voltage values. For

each time step, the probability distribution is normalized by the occupation factor of

its most likely state, in order for the color scale to be readable for all times. This might

give the appearance of an (unphysical) increase in the total amount of probability,

but this is for visual clarity only. The total probability is always normalized to 1

throughout the simulation.

In Figure 3.8(a), the only occupied states remain well-localized near the Sz = −100

eigenstate. If the bias voltage is increased, as in Figure 3.8(b), some of the probability

leaks into the other minimum energy well (that is, the state distribution acquires a

finite value for states near Sz = +100. This effect of the spreading of the probability

among the two different potential wells is even more apparent in Figure 3.8(c). For

Figure 3.8(d), which corresponds to the highest applied voltage, the state probability

distribution quickly becomes uniform or equipartitioned among all of the eigenstates.

When determining the I(V ) characteristics, the state is initialized in the ground

state of the N -electron particle. For subsequent bias voltage data points, the initial

state probability distribution is taken as the saturated value from the previous voltage

point. In this way, the progression of current and 〈Sz〉 will occur in the same way as

in experiments.
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Figure 3.8: Evolution of full master equation state distribution vs time, for a particle
initialized in the Sz = −S0 ground state. Four panels show the effects of an increasing
bias voltage on the steady state convergence of the state distribution. (a) Low bias
voltage, the state distribution remains localized near Sz = −100. (b) Slightly higher
bias, some state probability surmounts barrier and begins to collect near the Sz =
+100 state. (c) Still higher bias voltage. The state distribution quickly fills both wells
of Sz = ±100. (d) Highest voltage considered here, the particle state distribution
becomes equipartitioned among all eigenstates.
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CHAPTER IV

GIANT ELECTRON-SPIN-G-FACTORS IN A

FERROMAGNETIC NANOPARTICLE

In this chapter, we utilize single-electron tunneling spectroscopy to measure the dis-

crete energy levels in a nanometer-scale cobalt particle at T=60mK, and find effective

single-electron spin g-factors ≈ 7.3. These large g-factors do not result from the typi-

cal orbital contribution to g-factors, since the orbital angular momentum is quenched.

Instead, they are due to non-trivial many-body excitations. A kink in the plot of con-

ductance vs. voltage and magnetic field is a signature of degenerate total spin on the

particle. Spin-Orbit interactions cause the new particle eigenstates to have ‘spin’ that

is an admixture of pure spin states. Fluctuations in the discrete energy level spacing

allow for the total change in ‘spin’ on the particle during a single-electron tunneling

event to be ∆S ′ = 3/2, leading to a g-factor around 6.

4.1 Introduction

The g-factor of an elementary particle is a dimensionless parameter relating the mag-

netic moment and the angular momentum. For an electron, the magnetic moment due

to spin ~S is ~µ = −gµB ~S/~, where g is the spin g-factor, µB is the Bohr Magneton, and

~ is the reduced Planck constant. In the Dirac point particle model of an electron, the

spin g-factor is precisely 2, but the coupling to the environment can change that value.

Recently, g-factors were measured of single electrons occupying quantum electron-in-

a-box levels in a nanometer-scale metallic particle . [8, 23, 39, 41, 74, 80, 118, 119, 125]

In particles made from light metals such as Al, the g-factors are very close to 2,

demonstrating that the g-factors are (very nearly) spin g-factors, and that coupling
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between the spin and the environment is weak. The orbital motion of the electron

does not affect the g-factors in light metallic particles because of the quenching of

the orbital angular momentum. [2, 102] Introduction of heavier metals into the par-

ticle material leads to a significant reduction of the g-factor, caused by the coupling

between the electron spin and the crystalline environment, via the Spin-Orbit (SO)

interaction. [39,125]

Here we present measurements of electron g-factors g ≈ 7.3 in a ferromagnetic

(Cobalt) particle. We show how this strong enhancement arises from the coupling

between traditional electron-in-a-box levels and the many-body states in the elec-

tronic environment, when the ground state of the particle is nearly spin-degenerate.

A different mechanism leading to very large spin g-factors has been proposed for

normal metal particles, but large g-factors have not been confirmed until now, prob-

ably because of the weak electron-electron interactions in normal metals. [55, 56] By

switching the material from normal metal to a ferromagnet, the electron-electron in-

teractions strengthen, making it more probable to observe large g-factors. Very large

g-factors have been observed recently in semiconducting quantum wires and dots,

where they represent the orbital contribution. [105, 108, 128] The difference between

semiconducting wires or dots and our metallic particles is that the orbital contribu-

tion is quenched in the metallic particle. The assumption that the orbital angular

momentum is quenched in a metal particle is based upon the work by Matveev and

Adam, [2, 102] wherein they calculate the orbital contribution to the g-factor for a

range of SO strengths, as well as for diffusive and ballistic transport. In the case

of zero SO interaction, there is no contribution to the orbital g-factor because the

magnetic field required to add a magnetic flux quantum over the area of our sample

is ≈ 1000T. When SO 6=0, the orbital contribution for a ballistic nanoparticle is on

the order of
(
m
m∗

)2
, where m and m∗ are the electron mass and effective mass, re-

spectively. Because the effective mass is enhanced for the narrow d-band of Cobalt,
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this orbital contribution term will not be � 1. For the diffusive particle case, the

orbital contribution will be even smaller. The large g-factors described in this letter

are of spin-origin, making the effect described herein different from that in semicon-

ducting quantum dots and wires. This finding shows that a fundamental property of

an electron, like the spin g-factor, can be strongly modified by the environment in an

unexpected way.

4.2 Experimental Methods and Data

Figure 4.1: (a) Circuit diagram of tunneling through particle. (b) Energy level
diagram for tunneling process. (c) IV curve displaying coulomb blockade and discrete
single-electron tunneling steps.

Fig. 4.1(a) sketches our arrangement for the studies of quantum levels and g-

factors in a metallic particle. A single metallic particle is attached between two

macroscopic leads, via high resistance tunnel junctions. Fig. 4.1(b) displays the

energy levels of the particle between the tunnel junctions. A voltage Vbias is applied

on the source lead, changing the Fermi level in that lead by eVbias. When the Fermi

level in the source is equal to the energy difference between the final and the initial

quantum state of the particle (after and before tunneling), an electron can tunnel from

the Fermi level in the lead into the particle, resulting in current flow. In that case

the electrons flow through the particle one-by-one. Current versus voltage increases
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in discrete steps at the voltages where the Fermi level in the source equals the energy

difference between the final and the initial quantum states of the particle, as our

sample shows in Fig. 4.1(c). In most metallic particles, the energy difference between

the final and the initial quantum state of the particle is equal to a discrete electron-in-

a-box level in the particle. Thus, voltages at which the steps are observed in the I-V

curve correspond to the discrete electron-in-a-box levels εµ. These levels are two-fold

spin-degenerate, because of Kramers’ theorem, and the degeneracy is lifted by the

applied magnetic field. The g-factor is defined as in Ref. [56], by

g =
±2

µB

dεµ
dB

. (1)

The tunneling junction devices are fabricated using the same recipe quoted in

Ref. [74]. See Appendix A for more details. The devices are studied at T=60mK in

a dilution refrigerator. The voltage bias is swept and the output current is measured

using an Ithaco model 1211 current preamplifier. The detailed data sweeps involve a

slow magnetic field ramp, along with a slightly faster sweep of the voltage bias. The

differential conductance is calculated numerically. Fig. 4.2 displays our experimental

data of the differential conductance vs. applied magnetic field and bias voltage for

a Co sample. There are three main features of the data that are different from

previous work on magnetic field dependence of tunneling spectra in a Co particle.

First, the energy levels vs. magnetic field exhibit an abrupt change in slope around

B = 4T. This kink was absent in prior work, which displayed energy levels that were

monotonic with field in the range B > 1T. [41, 58, 74] Second, the g-factors of some

levels in the figure are larger than 2. For example, the levels marked A and B in the

figure correspond to g-factors of ≈ 7.3 at B > 4T. In comparison, prior work displayed

only g-factors < 2 or ≈ 2 [41,58,74]. Finally, the fluctuations in the weights (i.e., the

relative heights of the differential conductance peaks) of various levels is enhanced.

Level A has a weight that is a factor of ≈ 4 smaller than level C, which displays a g-

factor of ≈ 0.6. In Appendix C, additional data is provided, demonstrating the usual
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magnetic hysteresis loops of discrete levels in the low magnetic field range (< 1.5T).

Because the energy level spacing of the Co particle is comparable to that of our

previous work, we estimate the particle size to be ≈ 2nm . [74]

Figure 4.2: Experimental data of differential conductance vs. magnetic field and
bias voltage. The dotted lines follow the conductance peak behavior for two different
spin transitions. The slope of the red dotted lines (A and B) yield a g-factor of ≈ 7.3,
while the green dotted lines (C) correspond to a g-factor ≈ 0.6.

4.3 Data Model: the Universal Hamiltonian

In this letter, we will present the analysis of electron tunneling through the particle,

based on the Universal Hamiltonian (UH) model, and show how giant spin g-factors

naturally arise in a ferromagnetic particle near spin degeneracies. [3] In the UH model,

when the SO-interaction is zero, the electron-electron interaction commutes with the

kinetic energy and the confinement potential, and the electronic energy in a metallic

particle can be written as

E(N,S0) =
∑

µ,σ=↑,↓

εµnµ,σ −
U

2
S(S + 1)− 2µBBSz, (2)
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where εµ is the energy of electron-in-a-box level µ, nµ,σ is the occupation number

for the level µ and spin direction σ, U is the exchange interaction, B is the magnetic

field applied along z-axis, and S and Sz are the spin magnitude and its z-component,

respectively, in units of ~. If the exchange interaction is small compared with the level

spacing δµ at the Fermi level, then the ground state for this Hamiltonian will be the

normal-metal Fermi sphere, with spin 0 or 1/2, depending on parity of the number of

electrons on the particle (N). Giant spin g-factors can arise in the normal-metal state;

however, their probability is very low. In the ferromagnetic state, the probability of

giant g-factors increases dramatically; thus, we first analyze the ferromagnetic case.

Ferromagnetism occurs if the exchange interaction U is comparable to or larger

than the level spacing δµ = εµ+1 − εµ at the Fermi level, and some minority electrons

are promoted to higher level majority states. The maximum energies of the occupied

levels will be labeled εm and εM (with corresponding level spacings δm and δM), for

the minority and majority electrons, respectively. In the ground state, the exchange

splitting between εm and εM is compensated by the gain in the exchange interaction

energy: εM − εm = U(S0 + 1/2) + d(B). [35, 99] The parameter d(B) has magnetic

field dependence d(B) = d0 − 2µBB, where d0 is a mesoscopic parameter. Since the

level spacings vary by the Wigner-Dyson statistics, the value of εM − εm will have

mesoscopic fluctuations comparable to δM + δm. Fig. 4.3(a) depicts the N-electron

ferromagnetic ground state with spin S0. S0 will be the ground state spin of the

particle if (U/2−δM) < d(B) < (δm−U/2). At the applied magnetic field Bd, defined

as d(Bd) = U/2− δM , the ground state is degenerate; that is, EN(S0) = EN(S0 + 1).

In a magnetic field slightly above Bd, the N-electron particle ground state spin will

be S0 + 1. The S0 + 1 state is obtained from the diagram in Fig. 3-A, by annihilating

the minority electron at energy εm and creating a majority electron at energy εM+1.

As the magnetic field increases further, the transitions to higher spin states take

place at the corresponding degeneracy fields. The stability regions for the ground
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Figure 4.3: A. Electron-in-a-box levels for minority and majority electrons. The
black dots signify occupied levels. B. Stability Diagram for N- and (N+1)-electron
particle. The spin value in each region denotes the ground state spin for the given
magnetic field range. There is a degeneracy in ground state spin at B = Bd and
B = B′d for the N- and (N+1)-electron cases respectively.

state spins S0 + i, i = 0, 1, 2, ... are shown in Fig. 4.3(b).

In a Co particle, the average spacings and the exchange interaction are δM =

4.58eV/S0, δm = 1.18eV/S0, and U = 1.77eV/S0, respectively. [35,114] Note that the

level spacings scale as 1/S0, which accounts for the vanishingly small level spacings as

the electron number approaches typical bulk values. The magnetic field region (∆B)

for the stability of a particular spin is, on average, 2µB∆B = δM + δm−U = 4eV/S0.

For a typical Co particle in our experiment, S0 ≈ 1000, and the corresponding mag-

netic field range is quite large, ∆B ≈ 35T. Since our typical experimental field range

of is ≈ 10T, we do not expect to observe spin degeneracy in a typical sample.

In an electron tunneling process, the number of electrons on the particle changes

by one. In that case, if the particle spin before tunneling is S0, then the final spin

of the particle after the tunneling transition will be S0 ± 1/2. In Co, most tunneling

transitions will be spin-lowering, as discussed previously. [41, 58, 74] Indeed, experi-

mental studies of electron-in-a-box levels in Co particles done to date show that the

levels from a given sample have roughly linear magnetic field dependence above about
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1T, with similar g-factors < 2.

Fig. 4.3(b) also displays the regions of stability for the ground state spins of

S0 − 1/2 + i, for the (N + 1)−electron system. B′d is the degenerate magnetic field

value for the (N + 1)-electron particle. Note that in most of the magnetic field

range, the tunneling transition between the ground states reduces the spin by 1/2.

However, in the narrow magnetic field range slightly below the degeneracy fieldBd, the

tunneling transition between the ground states will be spin-increasing, S0 → S0+1/2.

Such spin increasing tunnel transitions occur between B = B′d and B = Bd, where

gµB(Bd − B′d) = δm − U/2. On average, 〈Bd − B′d〉/∆B = 0.07. However, there

is a prediction from the UH model that did not gain much attention until now, as

far as we are aware. Because the level spacings fluctuate, there is a possibility that

(δm − U/2) could be negative. In a Co particle, δm = 1.33U/2. Assuming the

Wigner-Dyson distribution for δm, Pr[(δm − U/2) < 0]=36% (See Appendix B). If

(δm − U/2) < 0, then in the magnetic field interval [Bd, B
′
d], the ground state spins

of the N− and (N + 1)−electron systems will be S0 + 1 and S0 − 1/2. In that case,

the tunneling transitions between the ground states involve a spin-difference of 3/2,

so the tunnel transition would display a g-factor of 6. Near any spin degeneracy,

tunneling transitions between excited states can show large g-factors as well.

However, the tunnel Hamiltonian has zero-valued matrix elements between states

of the particle with a spin difference other than ±1/2. That is, there is a spin se-

lection rule ∆S = ±1/2. But, if the SO-interaction in the particle is included, then

the matrix elements 〈S0− 1/2, S0− 1/2|HSO|S0 + 1/2, S0 + 1/2〉 and 〈S0, S0|HSO|S0 +

1, S0 + 1〉 will be nonzero. For example, the calculation of the matrix element

〈3/2, 3/2|HSO|1/2, 1/2〉 is available in Ref. [56].That calculation can be extended

in a straightforward way to our states with large S0, but would be beyond the

present scope. In a ferromagnetic particle with large S0, many of the matrix ele-

ments of HSO calculated in Ref. [56] become negligibly small in the thermodynamic
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limit. For example, while 〈S0 + 1, S0 + 1|HSO|S0, S0〉 and 〈3/2, 3/2|HSO|1/2, 1/2〉 are

comparable, 〈S0 + 1, S0|HSO|S0, S0〉 is smaller by factor of ∼ 1/
√

2S0 compared to

〈3/2, 1/2|HSO|1/2, 1/2〉. The SO-interaction becomes a tri-diagonal matrix connect-

ing only spin ground states, while the matrix elements connecting different magneti-

cally excited levels can be neglected.

The result is that the spin-eigenstates of the particle with N+1 electrons are ‘spin’

admixtures (hereafter labeled with a prime index) of pure states |S0 + 1/2, S0 + 1/2〉

and |S0 − 1/2, S0 − 1/2〉. Similarly, for the N electron system, states |S0, S0〉 and

|S0 + 1, S0 + 1〉 mix. The closer the system is to spin-degeneracy, the stronger the

admixing will become. The admixing produces two effects. First, the matrix elements

of the tunnel Hamiltonian between |S0, S0〉′ → |S0± 1/2, S0± 1/2〉′ and |S0 + 1, S0 +

1〉′ → |S0 ± 1/2, S0 ± 1/2〉′, become nonzero. Now all tunneling transitions involving

these four levels become active. If admixing is weak, then the weight of the transition

|S0 + 1, S0 + 1〉′ → |S0 − 1/2, S0 − 1/2〉′ will be weak compared to the weight for

transition |S0, S0〉′ → |S0 − 1/2, S0 − 1/2〉′. Similar variation in weights have been

predicted before. [56] Second, the admixing will change the g-factors of the levels. For

example, we expect the g-factor for the transition |S0+1, S0+1〉′ → |S0−1/2, S0−1/2〉′

to be widely distributed around 6 and likely to remain much larger than 2, similar to

the analysis in Ref. [55,56]. However, there needs to be a more rigorous, full Random-

Matrix-Theory description that includes orbital contributions to the g-factor in order

to fully account for the value measured of 7.3.

Fig. 4.4-(a),(b) sketches the energy versus magnetic field near the spin-degeneracy

for the N - and (N + 1)- electron systems. In the magnetic field range between Bd

and B′d indicated in the figure, the tunneling transition between the ground states

involves a ‘spin’ change of ∆S ′ = 3/2, and the g-factor should be about 6. Even if

Bd > B′d, the tunnel transition with ∆S ′ = 3/2 will be close in energy. Thus, we

expect to observe large g-factors for the transitions between the excited states, as
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long as the applied magnetic field is tuned near spin-degeneracy.

In a normal metal particle, the above analysis leads to a similar result. At the

degeneracy field Bd,S−T between singlet and triplet for the N-electron state (assuming

N is even), the magnetic field is off degeneracy between doublet-quadruplet for the

(N+1)-electron state by the amount given by gµB(Bd,S−T − Bd,D−Q) = δ − U/2. In

order to observe a tunnel transition between ground state with spin-difference 3/2,

(δ − U/2) needs to be less than zero. In contrast to the Co particle, U in a normal

metal is small. For example, in a Au particle, U/2 ≈ 0.06δ, leading to the probability

of 0.3% that the tunneling transition between ground states has ∆S ′ = 3/2. [56] This

is perhaps the reason no g-factors larger than two have been measured in a metallic

particle, until now.

Moving back to Co particles, in order to measure large g-factors, we need to

measure the particle near spin-degeneracy at the ground state. The experimental

signature of the degeneracy would be a kink in the energy level versus magnetic field,

according to Fig. 4.4(c),(d). This is consistent with our data, where several levels

display a kink near B = 4T. Our model also agrees with the predictions of Ref. [13],

which discusses the signature kink in data near degeneracies, and is reminiscent of

Ref. [91,141]. Although the shape of the kink is not the exact same as that suggested

by our simple model, the two have qualitatively good agreement. Additionally, we do

not observe a second kink in the higher field range. However, due to the increasing

intensity of the conductance peaks in the higher field range (which we attribute to

stronger admixing between states), as well as a slight curvature of the lowest level

near 12T, it is likely that a second kink lies beyond our magnetic field range.

4.4 Conclusion

In summary, we predicted the possibility of large spin-g-factors of a ferromagnetic

particle tuned close to spin-degeneracy. The existence of these giant effective g-factors
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Figure 4.4: Possible spin transitions upon the tunneling event of a single electron
onto the particle. The length of the arrows represent the energy change of the particle
upon such a transition. A. Case where B′d < Bd, (δm > U/2). B. Case where B′d > Bd,
(δm < U/2). C,D. Kink in energy curve as a function of B for the two cases considered
in A,B.

is due to the many-body interactions (i.e., strong exchange energy) in a ferromagnetic

particle. When tuned within a certain range, the magnetic field induces a degenerate

total spin value on the particle. Due to fluctuations in the electron-in-a-box level

spacings, there is a significant probability that this magnetic field range, along with

spin-orbit interactions, can allow transitions that change the ‘spin’ of the particle by

3/2 upon the tunneling event of a single electron. However, this will only occur if the

magnetic field is tuned sufficiently close to one of these degenerate field values. We

prepared many samples of cobalt particles, and found the experimental signature of a

degenerate magnetic field value (the kink in the conductance data plot). Within this

data set, we found very large g-factors (g≈ 7.3), in relatively close agreement with
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our prediction. These giant spin-g-factors display the intricate interplay between the

many-body energy states and the traditional electron-in-a-box quantum states.

4.5 Appendices

4.5.1 Appendix A: Sample Fabrication

The structures of our samples are defined using electron-beam lithography on a

poly(methyl methacrylate)(PMMA) substrate, as is illustrated in Fig. 4.5.

50-180 nm

PMMA bridge
Direction 1:
Al, Al2 O3

Direction 2:
Co, Al2 O3, Al

Al

Al2 O3

Al2 O3

Co particles

Al

Al

Figure 4.5: Sample fabrication process. The cobalt particles are shown in red between
the two tunneling barriers (blue) and the conducting Al electrodes (yellow)

After exposure to the electron-beam, the sample is placed in developer solution

and a bridge of PMMA is established for use in shadow evaporation. Next, the

sample is placed in a vacuum chamber and the tunnel junctions are created through

shadow evaporation around the PMMA bridge. Aluminum is evaporated to form the

electrode, followed by a a layer of Al2O3 to form the first tunneling barrier. Next,

the sample is rotated and a layer of Cobalt on the order of 0.6 nm is added, which
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nucleates due to surface tension and forms the nanoparticles to be studied. A second

layer of Al2O3 is then added to form the other tunnel junction, and then a final layer

of Al is evaporated to form the other electrode. The electrodes are ≈ 14 nm thick,

and the Al2O3 tunnel junctions are ≈ 1.7 nm thick. After the evaporation process,

the excess metals are lifted off in acetone, leaving a series of patterned devices on

our substrate. The nanoparticles are pictured in Fig. 4.6 in a Transmission Electron

Microscope (TEM) micrograph.

Figure 4.6: TEM image of Co nanoparticles (dark) on amorphous Al2O3 background
(light)

4.5.2 Appendix B: Wigner-Dyson Statistics

The energy level statistics of electrons occupying chaotic wavefunctions on the quan-

tum dot can be modeled using Random Matrix Theory (RMT) and Wigner-Dyson

statistics. For our model, we use the Gaussian Orthogonal Ensemble (GOE) because
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we are in the low magnetic field regime and therefore can treat the system as ef-

fectively time-reversal invariant. Modeling the system with the Gaussian Unitary

Ensemble (GUE), which is the ensemble that should be used for systems without

time-reversal symmetry, was also performed, but the results for GOE and GUE

have a difference of only a few percent. The GOE has normalized energy level(
x ≡ δm

〈δm〉 , where 〈δm〉 ≡ δm

)
fluctuations that follow the distribution function F (x):

F (x) =
π

2
xe−

π
4
x2 (3)

So to find the probability, Pr, that (δ − U/2) is negative, we note:

A similar calculation using the GUE instead yields a probability of ≈ 30%. Either

way, there is non-negligible probability that the quantity (δ − U/2) will be negative.

4.5.3 Appendix C: Low Magnetic Field Data (< 1.5T)

The data shown in Fig. 4.7 displays the low magnetic field regime of the differential

conductance vs. voltage. Over time, the field was swept from −1.5 → +1.5T, and

then from +1.5 → −1.5T. This is shown in the graph by reading it from top to

bottom. The discontinuities in the conductance data for the same bias voltage values

indicate that a magnetic switch has occurred. Note the hysteresis in the switching

field values— when the field is swept from negative values to positive ones, the switch

occurs in the positive magnetic field range. Conversely, when the field is swept from

positive to negative values(the lower half of the graph) the switch occurs for negative

field values. These characteristics indicate that we are indeed measuring the tunneling

through a single ferromagnetic particle, and agree qualitatively with previous work

on Co particles [74].

78



Figure 4.7: Low Magnetic Field Data < 1.5 T
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CHAPTER V

VOLTAGE CONTROL OF MAGNETIC HYSTERESIS IN

A NICKEL NANOPARTICLE

In this chapter, the effects of voltage bias on magnetic hysteresis in single Ni parti-

cles 2-3nm in diameter are measured between temperatures of 60mK and 4.2K, using

sequential electron tunneling through the particle. While some Ni particles do not

display magnetic hysteresis in tunneling current versus magnetic field, in the Ni par-

ticles that display hysteresis, the effect of bias voltage on magnetic switching field

is nonlinear. The magnetic switching field changes weakly in voltage interval ∼1mV

above the tunneling onset voltage, and rapidly decreases versus voltage above that

interval. A voltage-driven mechanism explaining this nonlinear suppression of mag-

netic hysteresis is presented, where the key effect is a magnetization blockade due

to the addition of spin-orbit anisotropy εSO to the particle by a single electron. A

necessary condition for the particle to exhibit magnetization blockade is that εSO in-

creases when the magnetization is slightly displaced from the easy axis. In that case,

an electron will be energetically unable to access the particle if the magnetization

is sufficiently displaced from the easy axis, which leads to a voltage interval where

magnetic hysteresis is possible that is comparable to εSO/e, where e is the electronic

charge. If εSO decreases vs magnetization displacement from the easy axis, there is

no magnetization blockade and no hysteresis.

5.1 Introduction

The loss of magnetic hysteresis in nanomagnets arises due to the irreversible coupling

of a magnetic sample to its environment, and is well understood in the case of thermal
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equilibrium [32,106,152]. In this article, we address the loss of magnetic hysteresis in

the case of a voltage-biased nanomagnet. Such a nanomagnet is attached to electric

leads via two high resistance tunneling junctions, and the electron transport through

the nanomagnet at low temperatures exhibits Coulomb blockade and sequential elec-

tron tunneling. Prior measurements of voltage biased single magnetic molecules, in a

double tunneling barrier device, showed no magnetic hysteresis, even at temperatures

much lower than the blocking temperature. [34, 76] In contrast, bulk measurements

in ensembles of such molecules show hysteresis at low temperature [49, 143]. Recent

scanning tunneling microscopy experiments show that antiferromagnetic and ferro-

magnetic spin chains of only a few atoms can display hysteresis, though the lifetimes

of ferromagnetically stable states are much shorter [85, 97]. In single Co particles a

few nm in diameter, in a double tunnel barrier device, electron transport measure-

ments find hysteresis [41, 58, 74]. In this article we find that voltage-biased single Ni

particles 2-3nm in diameter lie at the threshold of stable magnetic hysteresis. While

some of our Ni particle samples do not display magnetic hysteresis at low temperature

and low bias voltage, other Ni particle samples display hysteresis in current versus

magnetic field. In the latter case, we find that the magnetic switching field is initially

weakly dependent on bias voltage. But at voltages ∼1mV above the voltage threshold

for sequential electron tunneling, the magnetic switching field quickly diminishes with

further increase in bias voltage, and the signatures of magnetic hysteresis are quickly

lost. This property is explained in this article in terms of bias voltage control of

magnetic hysteresis. The possibility of bias voltage-control of magnetization dynam-

ics in a voltage-biased ferromagnetic nanoparticle was first proposed by Waintal and

Brouwer. [147] In their proposal, the magnetization relaxation time is tunable by the

bias voltage and temperature. Their model has limited scope, however, because the

spin-orbit (so) interaction is taken into account only trivially, by the simple uniaxial

magnetic anisotropy energy of the particle. The effects of so-shifts (εSO) of discrete
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energy levels were not considered. Since εSO in transition metal particles (∼ 1meV) is

much larger than the magnetic anisotropy energy (per spin, ∼ 0.01meV), [36, 41, 58]

the model does not apply to realistic transition metal ferromagnetic particles. In

this work, we extend the model from Ref. [147] to include the spin-orbit shifts of

discrete levels, and find that the extended model explains our results well. We find

that the necessary condition for magnetic hysteresis is that εSO increases in response

to magnetization movement from the easy axis, due to an effective magnetization

blockade. If the condition is satisfied, the voltage scale governed by εSO determines

the bias voltage range where hysteresis can be detected. If εSO decreases in response

to magnetization displacement from the easy axis, then magnetic hysteresis will be

unstable with respect to sequential electron tunneling.

The outline of this chapter is as follows. In the next section, we describe the

measurements of magnetization dynamics as a function of temperature and bias volt-

age, and the differential conductance spectra characteristics. Next, we introduce the

basic theory and numerical models to explain the main effects observed in the exper-

imental section. Next, we describe the detailed theory behind our observation of an

effective magnetization blockade induced by voltage control of hysteresis. Finally, we

summarize our main results and point to future research areas.

5.2 Experimental Methods

As shown in Fig. 5.2(a) and (b), our samples consist of one or few Ni particles

immersed between two Al leads in a high-resistance aluminum-oxide double tunnel

junction. The sample fabrication process has been described in our earlier work [74],

and additional details are given in appendix A. Fig. 5.2(b) shows the image of Ni

particles created by the fabrication process. The I(V ) curve of a Ni sample at T =

0.06K and an applied magnetic field of B = 0.5T is displayed Fig. 5.2(c) . The

sample exhibits clear Coulomb blockade, which is the low voltage region where the
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current is negligibly weak.

To determine if the particle has magnetic hysteresis, a magnetic field is applied

parallel to the film plane. The bias voltage and temperature are held fixed, and the

current is observed while sweeping the magnetic field slowly, at low temperatures.

Figure 5.1: Experimental arrangement of tunneling through single Ni particles. (A)
Double barrier tunneling geometry. (B) Transmission Electron Micrograph of Ni
particles on amorphous Al2O3 background. Inset: zoomed figure that displays crystal
facet of Ni particle. (C) Current (I) vs. voltage (V ) curve at B = 0.5T and T =
0.06K.

We study the effects of magnetization dynamics in the Ni particle by measuring

the following quantities: (1) temperature dependence of the magnetic switching field

at fixed bias voltage, (2) bias voltage dependence of the magnetic switching field at

fixed temperature, and (3) tunneling spectra and current noise versus magnetic field.

Five Ni particle samples from the same sample fabrication batch have been studied,

and are mounted in the dilution refrigerator at the same time. Only two of the five

samples display magnetic hysteresis in tunneling current versus magnetic field at low

temperature and bias voltage, while the remaining three samples show no detectable

hysteresis at 0.06K temperature, for any bias voltage. For the presentation in this
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paper, we select a representative sample that displayed magnetic hysteresis at low

temperatures and bias voltage. The samples displaying no magnetic hysteresis will

be discussed in a separate publication. The second sample that exhibits magnetic

hysteresis reproduces the key observations from Ni sample 1.

5.2.1 Temperature Dependence of the Switching Field

First, we study the hysteresis of the tunneling current vs. magnetic field, as a function

of temperature at fixed bias voltage.
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Figure 5.2: Hysteresis loops in current versus magnetic field and temperature de-
pendence of switching fields. (A),(B) Representative measured hysteresis loops of the
Ni sample. Gray (Black) curves corresponds to decreasing (increasing) magnetic field
sweep direction. (C) Temperature dependence of the switching field averaged over
10 sweeps of magnetic field. (D),(E) Simulated hysteresis loops at different temper-
atures. (F) Simulated switching field vs. temperature as taken over 50 simulation
runs. Error bar indicate ± standard deviation.
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Figs. 5.2(a) and (b) display hysteresis loops in current versus magnetic field, at

T = 1.5K and T = 0.06K, respectively, at a bias of 7.8mV.The sweep rate in Fig. 5.2

is 0.07T/min.In Fig. 5.2(a), the magnetic field range ±0.5T, but the figure shows a

zoomed color scale image of a scan in current versus negatively-sweeping magnetic

field at rate 0.07T/min, while the bias voltage is slowly increasing from 6.0mV to

12.0mV, at a rate 0.0067mV/min. In the supplementary data in the appendix, the

voltage is increased slowly from 4.5mV to 11.0mV at a rate of 0.035mV/min, while

the magnetic field is swept more quickly in the interval ±0.25T at a rate 0.07T/min in

the negative sweep region 0→-0.2T, and 0.28T/min elsewhere. There is pronounced

current noise, in the form of downward spikes in current. After such a spike, current

generally returns back to the value before the spike. The magnetic field locations

of the spikes are random and not reproducible between repeated field sweeps, so the

spikes represent noise. In addition to the noise, however, one can see that the current

switches between two different values in the vicinity of ±0.12T at T = 1.5K and

±0.16T at T = 0.06K in Fig. 5.2(a) and 5.2(b), respectively. Those switches are

reproducible between different sweeps, with the standard deviation of the switching

field shown by the error bars in Fig. 5.2(c). Similar to the work in Refs. [41, 58, 74],

the switching fields as measured from the current switches will be identified here as

the magnetic switching fields of the Ni particle. Fig. 5.2(b) shows the tempera-

ture dependence of the switching field at 7.8mV. At each temperature, 10 magnetic

hysteresis loops are measured, to obtain the average switching field. The largest

temperature where magnetic hysteresis is resolved is 2.3K. Above that temperature,

there is a loss of magnetoresistance contrast at the expected switching field. The ex-

trapolated temperature where the switching field goes to zero (similar to the blocking

temperature TB) is ∼ 4− 5K. In comparison, in previously studied similarly sized Co

particles, which had magnetic hysteresis at 4.2K, the extrapolated temperature for

the suppression of magnetic hysteresis was ≈ 12K. [74] The blocking temperature in
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our Ni nanoparticle is comparable to that of a magnetic molecule Mn-12 [129]. Figs.

5.2(d),(e), and (f) display numerical simulations that will be discussed in the theory

section of the paper. In that section, we will estimate the size of the particle and find

a diameter ≈2-3nm. We note that the measured switching field versus decreasing

temperature saturates at ∼ 1K.

5.2.2 Hysteresis dependence on voltage bias

Next, we discuss our measurements of the current versus magnetic field at T = 0.06K,

as a function of the bias voltage applied across the particle, and discuss the main

result of the paper. Fig. 5.2.2(a) displays the experimental data in the form of single

sweeps of current vs. a decreasing magnetic field, for different bias voltage values.

Fig. 5.2.2(b) contains line profiles taken from individual constant-bias sections of Fig.

5.2.2(a). The line profiles are offset by 0.08pA for clarity. One notable feature in Fig.

5.2.2(a) and 5.2.2(b) is the symmetric positive peak in current versus field, of width

∼ 30mT centered at 0T. the peak is an artifact arising from the field reversal in the

superconducting magnet. The artifact disappears when the sweep rate is sufficiently

but impractically reduced, and thus will not be discussed further.

The magnetic switching fields are marked by arrows in Fig. 5.2.2(a) and 5.2.2(b).

Our main result is that the magnetic switching field is weakly dependent on voltage

in the interval 6.5−9mV, and drops rapidly between 9 and 10mV, while above 10mV,

there is a loss of magnetoresistance contrast at the anticipated switching field. At low

voltages, below the onset of tunneling current, there is also a loss of magnetoresistance

contrast at the switching field because the current is too small to be resolved. The

tunneling current increases relatively quickly in the voltage interval 6.5−9mV, where

the switching field is constant (that is, ∆I1 ≈ 0.4pA over this bias range). However,

the current is only weakly changing over the narrow voltage regime where the magnetic

switching field is reduced (that is, ∆I2 ≈ 0.05pA). So, it can be concluded that the
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Figure 5.3: Colorscale plots of dependence of hysteresis on the applied bias voltage.
In all cases, magnetic field is only swept from right to left. Black arrows correspond
to magnetic switching events. (A) Experimental data of hysteresis in current as a
function of magnetic bias voltage V . (B) Data slices at constant voltage values of
7.1,7.3,7.7,9.3,9.7,9.9, and 10.7 mV, taken from colorplot in (A). Each slice is offset
vertically by 0.08pA for visual clarity. (C) Simulation of hysteresis of particle current
as a function of V . (D) Simulation of hysteresis of particle magnetization projection
on z-axis as a function of V .

magnetic hysteresis suppression is bias-voltage driven, rather than proportional to

the tunneling current as in our previous work [74]. In the power range (0, 3.6)fW

the switching field is nearly constant, while it takes only an additional 0.5fW to

suppress the switching field above 9mV. This shows that the effect is not due to

simple heating, which would be proportional to the power. Further evidence that

heating is not responsible for the suppression of magnetic hysteresis is supplied by

the width of the spectral levels in high field, and will be discussed in the next section.

Additional data on bias voltage dependence of magnetic switching field, over a wider

voltage range than here, are provided in appendix C.
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5.2.3 Tunneling Spectra

In a voltage biased quantum dot, the differential conductance (dI/dV ) versus bias

voltage at low temperature is known as the tunneling spectra, due to the fact that

the differential conductance peaks map to quantum levels of the particle. At voltages

corresponding to such peaks, the Fermi level in one of the leads is equal to the

energy difference between the final and the initial quantum state of the particle, after

and before a single electron tunneling event, respectively. In our Ni particles, while

magnetic field sweeps at fixed voltage bias display both current noise in the form of

spikes, and reproducible magnetic switching at low voltage, as already discussed, the

tunneling spectra for a given sample possess a higher complexity. In the measurement

of the tunneling spectra vs magnetic field, the magnetic field sweeps slowly while the

bias voltage sweeps more quickly.For the differential conductance measurements of

Fig. 5.2.3(a), the field was swept from -11.5 T to +11.5T at a rate of 41mT/minute.

Simultaneously, the voltage was swept in a triangle wave from 0mV to 17.1 mV at

a rate of 4.39mV/minute. The current noise leads to strong noise in differential

conductance, making identification of the magnetic switching field in the tunneling

spectra difficult. A further complication is that the spectra may not display hysteresis

as a function of magnetic field; that is, the presence of hysteresis vs. magnetic field

in a given conductance spectra is dependent on the voltage range where the spectra

is measured.

Fig. 5.2.3(a) displays the tunneling spectra of Ni sample 1 in a voltage interval 4−

12 mV and a magnetic field interval of ±11.5T. The noise in differential conductance

is manifested as apparent speckle noise over the large voltage bandwidth in the low

magnetic field region. However, in the higher field regime, the noise is reduced as the

spectral width of the lowest level sharpens into two linear functions of field. This is

shown in Fig. 5.2.3(b) and 5.2.3(c), which show data slices of Ni sample 1 at B = 0.2T

and B = 11.3T, respectively, taken from Fig. 5.2.3(a). In Fig. 5.2.3(b), over wide
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voltage bandwidth, the differential conductance exhibits noise and rapidly oscillating

values, while in Fig. 5.2.3(c), the noise is much less pronounced. Rather, the spectra

have collapsed into a smaller voltage range.

The full width-half maximum (FWHM) of the lowest conductance peak can be

obtained by fitting the conductance peak to a Gaussian function, which is indicated

by full line in Fig. 5.2.3(c). The fit leads to a FWHM of 220µeV. The FWHM can

be related to the electron temperature Te in the leads as kBTe < FWHM/3.5(1 +

c1/c2) = FWHM/7.7, leading to electron temperature of approximately 0.3K. Here,

c1/c2 ≈ 1.2 is the capacitance ratio obtained from the ratio of the current onset

voltage at positive and negative bias, and 3.5 is from the FWHM of the derivative

of the Fermi function. Since the electron temperature is much smaller than the

temperature below which the switching field saturates (see Fig. 5.2), it confirms that

sample heating cannot be responsible for the bias voltage dependence of the switching

field.

Fig. 5.2.3(d),(e),(f) display the numerically simulated spectra, showing qualitative

agreement with the magnetic field dependence of the observed conductance speckle

noise and bandwidth. This will be further discussed in the theory section of the

paper.

5.3 Modeling using Master Equations

We model the physics of electron transport through Ni particles using two magnetic

Hamiltonians, and assume that the particle is in the sequential electron tunneling

regime, wherein the electron number on the particle alternates between N and N +1.

The particle magnetic Hamiltonian therefore alternates between H0 and H1, where

H0 = −KS2
z/S0+2µBBSz and H1 = H0+ε [cos θSESz + sin θSESx]

2 /S2
0+εzS

2
z/S

2
0+E0.

where B is the magnetic field. S0 is the ground state spin of the N-electron particle,

in units of ~. For the sake of notational simplification, we have not written explicitly

89



B (T)

V
 (

m
V

)

−10 0 10
4

6

8

10

12

B (T)

V
 (

m
V

)

−2 0 2
4

5

6

6 8 10

−1

0

1

d
I/
d
V

 (
n
S

)

V (mV)

6 8 10

−1

0

1

d
I/
d
V

 (
n
S

)

V (mV)

4.5 5 5.5

−1

0

1

d
I/
d
V

 (
n
S

)

V (mV)

4.5 5 5.5

−1

0

1

d
I/
d
V

 (
n
S

)

V (mV)

B =0.17T B =0T

B =11.3T B =3.5T

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.4: Differential conductance spectra (dI/dV vs. V ). (a)Experimental data
of differential conductance spectra. The gray-scale range is between -0.1 nS (dark)
and 0.8 nS (light). (b) and (c) display display the line profiles in conductance taken
from B = 0.17T and B = 11.3T, respectively. The offset smaller curve in (c) is a
local Gaussian fit to the level. (d) Simulations of the differential conductance spectra
given by the main Hamiltonian considered in this paper. (e) and (f) display simulated
dI/dV curves at zero and 3.5 Tesla, respectively, taken from the gray scale in (d).
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that S0 changes by 1/2 upon the electron tunneling event. This alters the spin

operators, and require the use of Clebsch-Gordan coefficients upon transforming the

size of the spin space. While we have included such effects in our simulations, we

neglected their expression in the Hamiltonians for notational clarity. The extra terms

in H1 correspond to the anisotropy added by a single electron. To motivate this form

of the single electron anisotropy, we note that the discrete electron-box levels in a

transition metal ferromagnetic particle are anisotropic with respect to the direction

of the total magnetization, and they fluctuate on the order of εSO = ~/τSO ≈ 1meV

due to the so-interaction. [36, 37] Here τSO is the so-flip time and is estimated to be

0.58 ps for Ni particles of this size. [36] Therefore, upon the addition of a tunneling

electron onto a discrete level of the particle, an anisotropy energy shift εSO (which is

played by the role of ε and εz) will be added to the particle Hamiltonian. Such so-

shifts in a ferromagnetic nanoparticle were first studied experimentally by Deshmukh

et al. [41] We explored a parameter space of 24 different H1 operators by varying θSE,

ε, and εz. In each case, we obtain the eigenenergies for the N + 1 and the N electron

particle EN+1,α and EN,Sz , for the eigenstates |N + 1, α〉 and |N,Sz〉, respectively.

We also add a constant energy term E0 = 2.5meV to the N + 1 electron particle

Hamiltonian, which accounts for the charging and the orbital energy contributions in

a tunneling transition. We convert from energy to voltage using capacitive division

between source and drain lead of 1:1.

In this article, we consider a particular realization of H1, where S0 = 100, K =

10µeV, ε = 200µeV, εz = −200µeV, and θSE = π/6, which qualitatively agrees with

our measurement. Using such parameters, we simulate the time evolution of both the

tunneling current through the particle, and the total magnetization of the particle, as

a function of magnetic field and bias voltage. As we will show later, S0 ∼ 200− 300

for our experimental particle, and εSO ∼ 1meV. The reason for using spin S0 = 100

in our computations is to make the simulations feasible in a reasonable time frame.
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Consequently, we reduced the effective εSO in the simulation to maintain a comparable

ratio of the total anisotropy (which scales with S0), and εSO.

When modeling the effects of electron transport on the eigenstates of the particle,

a common approach uses a master equation to calculate the evolution of the ensemble

probability distribution, among all eigenstates of the particle, until temporal conver-

gence is achieved [73, 147]. We will discuss such a calculation later (See appendix B

for more details on the implementation process). Another, complementary method

that yields simulation data with a more direct mapping to our experimental data is

to calculate the magnetization and tunneling current as a function of time, assuming

that the particle at each time step is in one of its eigenstates. We then calculate

transition probabilities and generate a random event each time step based upon these

transition probabilities in order to determine if the particle transitions to a different

eigenstate for the next time step. Even with this relatively simple model, we are

able to reproduce a significant number of characteristics of the experimental data,

including the apparent noise in the measured current. We have confirmed that the

statistical distribution histogram among different quantum states in time is the same

as the ensemble distribution obtained from the solutions of the total master equation.

5.3.1 Modeling Temperature Dependence of Switching Field

As in the experiment, simulations are carried out at a fixed bias voltage. The voltage

in the source lead is fixed at 4.9mV, which corresponds to the energy of tunneling

current onset at the edge of the Coulomb blockade at zero applied magnetic field and

the particle in the spin-ground state. The Fermi function value of 0 is assumed in

the drain lead. The magnetic switching field Bsw(T ) as a function of temperature

is determined from the switches (that is, largest discontinuity) as observed in both

current and magnetization. The effect of changing the particle temperature is taken

into account in the simulations only through the shape of the Fermi level in the
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source lead. That is, the particle receives indirect temperature equilibration with

the environment through the transport of electrons, rather than explicitly linking

the particle to a thermal bath. Fig. 5.2(d) and 5.2(e) display simulated hysteresis

in current for two representative values T = 0.7K and T = 0.06K, and Fig. 5.2(f)

shows the average simulated switching fields vs. temperature, with the error bar

indicating ± standard deviation. The noise in the current hysteresis loop increases

in magnitude as the field approaches the switching value. The results are in good

qualitative agreement with our experimental data.

The blocking temperature in the simulation is ≈ 2K, approximately two times

smaller than that estimated from measurements, while the magnetic switching fields

near zero temperature are comparable between measurement and simulation. Since

the blocking temperature generally scales with the size of the particle, [32,106] we can

conclude that the measured particle is two times larger in volume than the simulated

particle, or S0 = 200− 300, which corresponds to the particle diameter in the range

2-3nm, in agreement with the transmission electron micrograph in Fig. 5.2.

5.3.2 Modeling Bias Voltage Dependence of Switching Field

The simulated negatively-swept hysteresis curves in the colorplots of Fig. 5.2.2(c)

and (d) were calculated using the same scheme as in the temperature dependent

scans, but we varied the bias voltage for each sweep and held the temperature fixed

at T = 75mK. In the simulations, we can also observe the particle magnetization

directly. In Fig. 5.2.2(d), the magnetic switch is indicated by the sudden shift from

red to blue, and is well-defined and slowly varying over a large voltage range. Once the

bias reaches 5.16mV, the magnetic switch becomes unstable and the switching field

value decreases quickly. For bias values above 5.18mV, the magnetization switches

at random fields. In Fig. 5.2.2(c), the simulated tunneling current, rather than the

magnetization, is displayed.
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The simulation data in Fig. 5.3.2 consists of individual line profiles from the

colorplots of Fig. 5.2.2(c) and 5.2.2(d), plus data from the other field sweep direction.

At the lower bias values in 5.3.2(a),(b), the switches in current and magnetization

occur at clear, reproducible values. The magnetization vs. field begins to exhibit

small-amplitude noise as the field approaches the switching field, but the amplitude of

noise in the current relative to average is much higher than the corresponding relative

noise in the magnetization. However, in Fig. 5.3.2(c), the current has already reached

its saturated value for the higher bias voltage value, and thus the magnetization in Fig.

5.3.2(d) exhibits no hysteresis, but rather, random switching events. When current

becomes saturated at the highest bias values, fluctuations in current diminish, but the

switch is no longer resolvable. It is precisely this high bias voltage region of current

saturation where the switching of the magnetization exhibits the most noise. This is

in good agreement with our experimental data in Fig. 5.2.2(a), where the switching

field varies little over a large current range, but quickly falls of when the voltage is

raised further, while the current noise is suppressed above that voltage.

5.3.3 Modeling Energy Spectra and Noise

The numerical simulations of the tunneling spectrum versus magnetic field are dis-

played by the gray scale image in Fig. 5.2.3(d). As with our measured spectra, there

is significant noise in the conductance at low field in the simulation, which appears as

speckle noise at low field values of the differential conductance spectra. Fig. 5.2.3(e)

and (f) show data slices taken from the simulation data at B = 0T and B = 3.5T,

respectively. In Fig. 5.2.3(f), the noise in conductance is reduced, and there is only

a single smooth peak. This directly reproduces the qualitative structure observed

in the experimental data and provides very good visual agreement; that is, there is

clear noise in the spectra in the low field regions, but the noise is diminished in the

high field regions. The reason for the difference in magnetic field scale between Fig.
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Figure 5.5: Data slices taken from the simulation in Fig. 3-B,C. (A),(C) Simulated
current hysteresis loops at VL = 4.90meV and VL = 5.28meV, respectively. (B),(D)
Corresponding magnetization hysteresis loops at VL = 4.90meV and VL = 5.28meV,
respectively. Gray (black) correspond to data taken from a decreasing (increasing)
field sweep.

5.2.3(a) and Fig. 5.2.3(d) in both bias voltage and magnetic field range again lies

with the fact that our simulations used smaller spin (and therefore total anisotropy)

and corresponding smaller εSO than in the experimental case.

5.4 Understanding of Voltage Control of Hysteresis

As discussed in the previous section, there is a good qualitative agreement between

the observed parameters and master equation simulations. The purpose of this sec-

tion is to illuminate the physics of bias voltage control. The model of voltage control

of hysteresis can be understood from the perspective of an effective magnetization

blockade, similar to the well known spin blockade phenomenon studied previously in
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semiconducting quantum dots. [68, 78, 92, 95, 109, 121, 130] In the case of spin block-

ade, the tunneling current through consecutive quantum dots is diminished due to the

Pauli exclusion principle. In the case of magnetization blockade, the motion of the

magnetization is blocked in the neighborhood of the easy axis, due to the interplay

between Coulomb blockade and the energy cost associated with deflecting the mag-

netization at too large an angle away from an easy axis. Consider first the case where

εSO increases as the magnetization is displaced from the easy axis. If the bias volt-

age is low compared with εSO/e, then the potential energy in the leads cannot supply

enough energy for the particle to transition into the excited magnetization state (that

is, an electron cannot tunnel onto the particle to displace the magnetization beyond a

maximum angle determined by the bias voltage), and thus the magnetization remains

localized near the easy axis. Once the bias voltage is raised past εSO/e, however, the

electron can surmount the magnetization blockade and tunnel into higher particle

magnetization states. Next, consider the case where εSO decreases as the magneti-

zation is displaced from the easy axis. In this situation, there is no hindrance to

electron transport because further displacements of the magnetization from the easy

axis require decreasing amounts of energy. This runaway effect causes the magneti-

zation to displace arbitrarily far from the easy axis as soon as the tunneling process

has been initiated.

In the remainder of this section, we will explain this phenomenon of magnetization

blockade in detail. In the simulations that follow, we will assume that the applied

magnetic field is zero. As discussed earlier, the eigenenergies for the N + 1 and

the N electron particle are labeled EN+1,α and EN,Sz , for the eigenstates |N + 1, α〉

and |N,Sz〉, respectively. The values α = 0, 1, 2, ... are sorted in order of increasing

〈α|Sz|α〉. In the vicinity of the energetic minimum with negative 〈α|Sz|α〉, α also

sorts the excited states of the N + 1 electron particle, that is, EN+1,α increases versus

α for the Hamiltonian that we use.
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We found that the tunneling density of states (DOS) is a useful structure to explain

how voltage controls magnetization dynamics. For the aforementioned realization of

H0 and H1, Fig. 5.6 displays the results for the tunneling density of states (DOS)

for the N -electron particle with spin component Sz, where we define DOS(Sz, E) =∑
α

|〈N,Sz|N + 1, α〉|2δ(EN+1,α − EN,Sz − E). The δ−functions are broadened by

convolving with a Gaussian of width 1µeV. The darkest regions correspond to zero

DOS, while the white corresponds to the maximum DOS.
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Figure 5.6: Master equation simulations: (A) Tunneling density of states. Red, solid
curve with circle markers corresponds to non-magnetic transitions. Green dashed
curve corresponds to calculated 〈Sz〉 as bias voltage is ramped upwards. (B) Zoomed
region of the DOS from (A), displaying a so-shifted level increasing as a function of
magnetization-displacement from easy axis. (C) Current (blue solid line) and 〈Sz〉
(green dashed line) vs. bias Fermi energy curves.

We simulate the single-electron-tunneling using a master equation following the

procedure described in Ref. [147], to determine field and bias dependence of the

converged probability distribution PN,Sz and PN+1,α of quantum states of the particle

(see Appendix for more details). The source Fermi level energy of 2.45meV (or a bias

voltage of 4.9mV) corresponds to the onset of tunneling at the edge of the Coulomb
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blockade. In this section, we discuss the bias in terms of energy rather than voltage.

As mentioned previously, the conversion from voltage to energy requires capacitive

division, which amounts to a factor of 2 difference between the two quantities. The

Fermi function in the drain lead is set to 0 for the energy range in Fig. 5.6.

The white curves in the grayscale image of Fig. 5.6(a) represent energies of various

tunneling transitions between the magnetic states of the N and N+1 electron particle,

as a function of the initial state of the N electron particle. The distance between the

curves along the y-axis is dictated by the magnon excitation energy (20µeV for this

case). The tunneling transitions in the DOS span an energy range determined by εSO,

which is an order of magnitude larger than the magnon energy. Fig. 5.6(b) shows

zoomed-in DOS in the vicinity of Sz = −S0. Note the transition indicated by circle

markers connected with a line. At Sz = −100, the total DOS below the circle-marked

line is zero. This indicates that, for the N-electron particle in the ground state, the

tunneling transition indicated by the circle-marked line has the lowest energy, which

means that after the transition the particle will be in the N+1-electron ground state.

If initially Sz = −S0 + 1, there will be only one tunneling transition with energy

below the circle-marked line, which will be the transition from the first excited state

of the N electron particle to the ground state of the N + 1 electron particle. In such

transition, the magnetic energy decreases. Overall, the circle-marked line indicates

nonmagnetic transitions |N,−S0 + n〉 → |N + 1, α〉, where α = n. The curves at

energies above (below) the energy of the nonmagnetic transition, correspond to the

magnetically exciting (relaxing) transitions, in which α > n (α < n).

In the vicinity of Sz = −S0, the integral of the DOS over magnetically exciting

transitions (i.e. the total weight for the transitions above the circle-marked line) is

slightly higher than the integral over magnetically relaxing transitions. Consequently,

if EF in the source lead is above all tunneling transition energies, there will be a net

positive energy inflow from the lead into the magnetic subsystem. Similarly, we find
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that the electron outflow to the drain also produces a net positive energy inflow into

the magnetic subsystem. However, if EF in the source lead is reduced to lie within

the energy range spanned by the white curves, then the Fermi function in the source

lead will suppress some magnetically exciting transitions. The net energy flow into

the magnetic subsystem can be negative, which means that the magnetic relaxation

time is finite. A similar effect was studied in Ref. [147]. Due to this relaxation, a

steady state value of Sz will follow.

As an example, consider the N electron particle initially in its ground state

Sz = −S0, and apply a bias energy of 2.55meV. Initially, for Sz = −S0, all of the

DOS is below EF . Since the total probability of the magnetically exciting transitions

is higher than that for the magnetically relaxing transitions, Sz will initiate a random

walk in response to the applied bias, leading to Sz increasing linearly with time. A

similar magnetization random walk in the absence of so-interaction was studied previ-

ously [147]. When Sz reaches ≈ −88, as shown by the yellow cross in Fig. 5.6(a), then

a magnetically exciting transition will turn on in the DOS above EF , as indicated by

the yellow arrow in Fig. 5.6(a). Since this level is energetically prohibited due to the

height of EF , the magnetic energy inflow diminishes, and 〈Sz〉 will converge to slightly

above Sz = −88. We can conclude that the required condition for the localization of

Sz near the energetic minimum at Sz = −S0, which is also the condition for magnetic

hysteresis, is that the energy of the magnetically exciting transitions increase as Sz

shifts from the ground state value. This verifies our picture of magnetization block-

ade, wherein the energy conservation of the tunneling process pins the magnetization

within a small localized region, inducing an effective barrier against magnetization

motion. The simulations produce a striking separation in the bias voltage values

where the current onset occurs and where 〈Sz〉 increases to zero, as shown in Fig.

5.6(c). The dashed green curve in Fig. 5.6 is the converged 〈Sz〉 as a function of

bias energy E = EF , while the solid blue curve in the Fig. 5.6(c) is the converged
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I(EF ) curve. So, the magnitude of the current alone is not a sufficient parameter

for magnetization control. Rather, it is the bias Fermi energy that determines the

control of magnetization dynamics. As we varied the parameters to study different

H1 operators, we found many Hamiltonians that would altogether prevent the possi-

bility of magnetic hysteresis. Those H1 operators lack magnetic levels that increase

in energy as Sz shifts away from −S0. This explains our numerous experimental Ni

samples that showed no observable hysteresis.

5.5 Conclusions

In summary, we have presented an experimental realization of a bias voltage control of

magnetic hysteresis in a ferromagnetic particle. Through master equation simulations

and probabilistic eigenstate evolution equations, we have demonstrated the emergence

of an energy scale from the spin-orbit anisotropy contribution from a single electron,

which is able to explain how the range of magnetization motion is controlled by the

applied bias, irrespective of the size of the tunneling current. A necessary condition

for the bias voltage control of the magnetization is that the anisotropy contribution

of a single electron increases in response to a small magnetization displacement from

the easy axis. This constraining of magnetization motion within a localized orien-

tation due to the energy conservation of the electron tunneling acts as an effective

magnetization blockade. The qualitative results of our simulations agree remarkably

well with our experimental data. In terms of spin based electronics, the next step

could be to explore the use of voltage, rather than current, to control spin-transfer

torque in a ferromagnetic particle or molecule, which would require spin-polarized

drain and source leads.
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5.6 Appendices

5.6.1 Sample Fabrication

Samples are fabricated by using electron-beam lithography and a shadow evaporation

technique. We spin-coat a bilayer of methyl methacrylate/polymethyl methacrylate

(MMA/PMMA) electron-beam resist on a SiO2 substrate. An SEM is used to define

the desired sample dimensions and geometries on the substrate. Developing the sam-

ples exposes the areas of substrate exposed to the localized electron beam. Samples

are placed on a rotatable stage in a vacuum chamber, which is pumped down to 10−7

Torr. Layers of metal contacts and nanoparticles are evaporated in the vacuum using

current-induced Joule heating of the metals. A crystal monitor is used to track the

amount of metal deposited on the sample. In the first step, conducting planes of Al,

40 nm thick, are deposited, followed by 20 nm of insulating Al2O3 which conformally

covers the conducting Al. This forms the capacitive shunt filters which divert extra-

neous microwave noise away from the sample electrodes. We spin-coat the samples

with MMA/PMMA again and pattern the tunnel junctions. The tunnel junction

consists of an Al electrode (14 nm thick) followed by a layer of insulating Al2O3 ≈ 1.8

nm thick. Next a nominal thickness of 5-6 Angstroms of ferromagnetic metal are

deposited, which nucleate due to surface tension and form isolated nano-islands with

diameters on the order of 2−3 nm. The lattice constant extracted from the structure

in Fig. 5.2 confirms faced-centered-cubic Ni. In addition, energy dispersive X-ray

spectra (EDS) demonstrate that the particles are made from Ni. Next, another layer

of Al2O3 ≈ 1.8 nm thick is deposited to form the other half of the double tunnel junc-

tion. Finally, a second conducting contact of Al (14 nm) is deposited. The remaining

metal on the PMMA is washed away during a liftoff process in acetone. Samples are

then wired up and attached to a dipstick to be inserted into the dilution refrigerator.

The basic structure of the tunnel junction samples is as shown in Fig. 5.7(a), which

has the capacitive ground plane beneath the tunnel junction in order to filter any
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Figure 5.7: (A) Optical microscope image (stitched from multiple images of the same
device) of nickel tunneling device geometry with conducting ground plane beneath.
The black scale bar indicates 250 microns. (B) SEM image of typical tunnel junction
device. White scale bar indicates 0.5 microns.

unwanted high-frequency signals away from the sample. A zoomed SEM image of an

exemplary device junction is displayed in Fig. 5.7(b).

Samples are studied in a dilution refrigerator, and the sample leads are additionally

cryogenically filtered using a high loss transmission line with an exponential cut-off

at frequencies ∼ 10MHz. The samples sit in a Faraday cage at temperature ≈ 30mK.

An on-chip filter in the form of a capacitively coupled ground plane lies beneath the

sample, with a frequency cut-off also ∼ 10MHz. Typical junction resistance is ≈ GΩ,

and typical current per discrete levels is quite low, ∼ 0.1pA.

5.6.2 Master Equation Simulations

The master equation utilized in our present work is adapted from references [73]

and [147]:
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∂Pα
∂t

=
∑
β

∑
l=L,R

∑
σ=up,down

Γlσ
[
|〈β|cµσ|α〉|2 (fl(Eα − Eβ)Pβ − (1− fl(Eα − Eβ))Pα)

+
∣∣〈β|c†µσ|α〉∣∣2 (−fl(Eβ − Eα)Pα + (1− fl(Eβ − Eα))Pβ)

]
The above equation determines the evolution of the probability Pα of occupation

of a given particle state |α〉 in time. The spin of the electron is σ, and the tunneling

rate Γlσ in general could be different for the source and drain leads, and could depend

on the spin polarization. The time rate of change of Pα depends on the Fermi level

in the source and drain leads (L and R, respectively). These Fermi functions are

evaluated at the energy differences Eα−Eβ between the states involved in tunneling.

Each term in the sum also depends on the overlap between states |α〉 and |β〉, upon

the addition (c†µσ) or subtraction (cjσ) of an electron, where c†µσ is the electron creation

operator for the µth level, and cµσ is the electron annihilation operator for the µth

level.

While the total spin S0 on the N -electron particles in our experiments is likely

∼ 200, such calculations become very time consuming and computationally intensive,

and since our goal with the master equation simulations was to derive qualitative

results rather than a quantitative fit to our experimental data, we elected to do

simulations with S0 = 100. Additional parameters for our simulations include tun-

neling rate Γ = 60Mhz for both leads, time step ∆t = 1ns, and total integration time

t = 25µs. The probability distribution and magnetic energy are checked for saturated

convergence in time.

We studied a Hamiltonian parameter space of K = 10, ε = [−200, 200], εz =

[−200, 0, 200], and θSE = [π/6, π/4, π/3, π/2]. All energies are in units of µeV. Due to

mesoscopic fluctuations, these adjustable parameters will vary from sample to sample,

and our goal was to merely sample the large possible parameter space. Note, in order

to convert from E to voltage, one needs to add the orbital, the exchange, and the
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charging energy to E, and account for the capacitive division of the voltage. We

assume there is only one quasiparticle state µ within the energy range of tunneling,

and that the Fermi level in the drain is −∞; that is, fR = 0.

When determining the I(V ) characteristics, the state is initialized in the ground

state of the N -electron particle. For subsequent bias voltage data points, the initial

state probability distribution is taken as the saturated value from the previous voltage

point. In this way, the progression of current and 〈Sz〉 will occur in the same way as

in experiments.

The complementary simulation that we used in the calculation of the hysteresis

loops and spectra involves the same Hamiltonian and evolution equation as used in the

master equation simulations. One key difference, however, is that instead of evolving

the probability distribution of all eigenstates in time simultaneously until temporal

convergence, we initialize the particle in its ground state, and then calculate transition

probabilities for each time step. That is, we integrate the master equation for one

time step, and read all the transition probabilities in that time step. We then generate

a random event according to those probabilities, leading to the new eigenstate for the

particle before the next time step. For small time steps, the most likely event is that

the particle will remain in the same state. We have tested this scheme for a given

Hamiltonian and bias voltage, and found that the long-time histogram of eigenstate

probabilities using this method is identical to the steady state distribution of states

given by the master equation, as expected.

104



5.6.3 Additional Hysteresis vs. Voltage Data
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Figure 5.8: Additional voltage sweep data displaying one-sided current hysteresis
loops for Ni sample 1. (A) Colorplot displaying the reproducible effect of hysteresis
in a specific voltage range. Blue (Red) correspond to lower (higher) current. (B)
Data slices taken at constant voltage values from the colorplot in (A). Black arrows
indicate switching events. At the lowest and highest biases, switching resolution has
been lost.

To emphasize the reproducibility of the importance of voltage bias, rather than

current, on the hysteretic properties of Ni sample 1, we provide in Fig. 5.6.3(a) an

additional colorscale plot of current hysteresis in a narrow voltage range. Fig. 5.6.3

is an average over four voltage ramps, and the the main effect as observed in the data

from Fig. 5.2.2 is reproducible. Fig. 5.6.3(b) displays individual data slices from the

colorplot at the following increasing voltage values: 5.4, 6.2, 6.8, 8.2, 8.4, and 10.3

mV. The curves are offset vertically for clarity.
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CHAPTER VI

ZEEMAN SPLITTING OF DISCRETE LEVELS IN A

SINGLE NI NANOPARTICLE

6.1 Introduction

In single normal metal nanometer-scale particles, studies of Zeeman-splitting of dis-

crete electron-in-a-box levels have led to much information about the properties of the

spin-orbit (SO) interaction in those particles. Examples of such studies include mea-

surement of g-factors of Kramers doublets, avoided crossings, and level anisotropies in

a magnetic field [2,23,31,38,118,119,125]. Such variety of effects provide complemen-

tary information about the SO-interaction, and test theories how the SO-interaction

affects particle-in-a-box energy levels of the particle. In contrast to normal metal par-

ticles, tunneling spectroscopy of discrete levels in individual ferromagnetic (Co) par-

ticles with normal-metal leads, found no Zeeman splitting [41,58,73,74]. In addition,

discrete energy levels versus magnetic field exhibited magnetic hysteresis, showing

that electron tunneling did not perturb the magnetization of the Co particles signifi-

cantly. The absence of Zeeman splitting is a sign of a strong asymmetry between the

tunneling rates of spin-up and spin-down electrons, for electron tunneling from nor-

mal metal leads into or out of the ferromagnetic particle. Without the SO-interaction,

those tunneling rates are given by the appropriate Clebsch-Gordan coefficients, which

lead to the spin asymmetry in tunneling rate of order ∼ 1/2S0 � 1 [89]. If the SO-

interaction is added to theoretical analysis of spin-up and spin-down tunneling rates,

we find here that the ratio can be strongly enhanced and can approach 1, suggesting

high probability to observe Zeeman splitting in a ferromagnetic particle. In single

magnetic molecules, where S0 ∼ 1 − 10, Zeeman splitting in strong magnetic fields
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has been observed, but those single molecules did not exhibit magnetic hysteresis [76].

Additionally, Zeeman split levels did not cross at zero magnetic field, which would

be a hallmark spin-degeneracy. It is well known that the SO-interaction creates a

gap in the spin-space energy spectrum of a ferromagnet, and zero-field splitting in

tunneling spectra of magnetic molecules has been attributed to a very strong SO-

anisotropy [52, 76]. In this paper we find two single Ni-particles, of diameter 2 to

3nm, that display Zeeman splitting in their discrete energy levels. The Zeeman split

levels do not cross at zero magnetic field; rather, they cross at offset field values of

B = ±0.5T. Additionally, we observe zero-field splitting in the differential conduc-

tance spectra. Our main result is that the ratio of the currents that flow via two

Zeeman split levels is comparable to 1, indicating a strong mixing of spin-up and

spin-down states in the particle wave-functions. We also observe significant curva-

ture of the Zeeman split levels versus magnetic field, consistent with the strength of

the SO-interaction, and g-factors smaller than but comparable to 2.

6.2 Experimental Methods

To probe the structure of the discrete particle energy levels and their dependence on

magnetic field, we perform single electron tunneling spectroscopy measurements in a

dilution refrigerator. The basic device geometry is the same as that studied in previous

works [50, 51, 73, 74], and is summarized in Fig. 6.2. Samples are fabricated using

electron-beam lithography and shadow evaporation techniques. The sample consists

of two Al conducting electrodes, separated by a thin insulating layer of Al2O3, as

shown in Fig. 6.2(d). Embedded within this insulating layer are Ni nanoparticles of

size 2 to 3 nm. A representative Transmission Electron Microscope image of a Ni

nanoparticle an an amorphous Al2O3 substrate is displayed in Fig. 6.2(a). The white

lines in Fig. 6.2(a) indicate the primary crystal axes for the face-centered-cubic Ni.

Figs.6.2(b) and (c) display I(V ) curves of Ni sample 1 and Ni sample 2, respectively.
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The red and black curves correspond to magnetic field values. The discrete steps in

the I(V ) curves indicate the opening of another conducting channel in the particle,

which arises when one of the discrete particle energy levels becomes available for

tunneling. The insets of Figs. 6.2(b) and (c) display the full I(V ) curves, which

illuminate the well-known characteristic of Coulomb blockade in the low bias region.

Figure 6.1: Device fabrication geometry and current measurements. (a)Transmission
Electron Microscope image of Ni particle (b) Experimental current-voltage curve for
Ni sample 2. (c) Experimental current-voltage curve for Ni sample 1. Red (black)
correspond to low (high) magnetic field measurements. Steps in the I(V ) curves
correspond to discrete energy levels on the Ni particles. (d) Double-tunneling barrier
device connected to measurement apparatus through Al leads.

The energy level structure of the Ni nanoparticle is studied with differential con-

ductance (dI/dV ) measurements as a function of magnetic field. In these experiments,
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we ramp the magnetic field slowly, and sweep the bias voltage across the particle in a

triangle wave. The current response to the applied bias voltage is measured through

a current amplifier. Fig. 6.2 displays differential conductance spectra from two exem-

plary Ni samples which exhibit zero-field splitting of energy levels, as well as Zeeman

splitting of levels for magnetic fields larger than 1T.

Figure 6.2: Differential Conductance spectra of 2 Ni samples exhibiting zero-field
splitting and Zeeman splitting of energy levels. (a),(b) Spectra of Ni sample 1 in
the negative bias voltage range. (c),(d) Spectra of Ni sample 1 in the positive bias
range.(e),(f) Spectra of Ni sample 2. discrete levels are indicated by L1 through L12.

Figs. 6.2(a) and (c) present differential conductance measurements from the low

magnetic field sweeps for Ni sample 1 in the cases of negative and positive bias

voltage, respectively. The energy level near -19mV splits into two branches separated
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by ≈ 1mV as it approaches B = 0T. Further, the additional levels in Fig. 6.2(a)

on the positive and negative voltage bias regimes appear to exhibit splitting near

B = 0T; however, these levels are also subject to more noise. Figs. 6.2(b) and

(d) contain high-magnitude field sweeps for Ni sample 1. The level that exhibited

zero-field splitting in Fig. 6.2(a) also exhibits Zeeman splitting, as it branches into

the levels L2 and L3 that vary linearly with field in the high field regime in Fig.

6.2(b). For the lowest field values, the spectra of both samples have a broadened

bandwidth, which focuses into more clearly-defined branches as the field is increased.

The asymmetry in the voltage values at which conduction onset occurs results from

the different tunneling capacitance values in the source and drain leads. Unlike a

normal metal particle, the Zeeman splitting of our ferromagnetic Ni samples does not

begin at B = 0T, but is instead offset by ≈ ±0.5T. The first Zeeman-split level on the

negative bias side bears most of the spectral weight in the L3 branch that decreases in

energy as the field increases. The energy-increasing branch, L2, consequently, is weak

for all magnetic field values measured. The first Zeeman-split level in the positive-bias

regime, however, bears comparable spectral weight in branches marked L4 and L5 for

most of the field values measured. The amplitude ratio of the Zeeman split levels

as a function of magnetic field for Ni sample 1 is displayed in Fig. 6.3(a), for both

the positive and negative bias voltage regions. Additionally, the levels at higher bias

values in Fig. 6.2(d) exhibit nonlinear dependence on field. In Fig. 6.2(e) and (f), Ni

sample 2 contains many of the same qualitative features observed in sample 1. That

is, the Zeeman-split levels cross at non-zero field values. Also, there is a single branch

that bears much of the spectral weight for each Zeeman-split level. Nonlinearities

in the Zeeman-branches are apparent for higher field values. In each the first and

third levels above the coulomb blockade (L12 and L11), the energy-increasing branch

carries the larger amount of spectral weight. The second and fourth levels above

the coulomb blockade carry smaller amounts of spectral weight than the first and
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third levels, but they carry the weight more evenly among the energy-increasing

and energy-decreasing branches. Level L9 exhibits significant curvature in the high

field, as compared with the other more linear Zeeman levels L10, L11, and L12.

By fitting a line to the Zeeman-split levels with little curvature, and correcting for

capacitive division, we estimate effective g-factors of Ni samples 1 and 2 to be 1.9

and 2, respectively. Higher-order spin transitions are also visible in Fig. 6.2(f), and

appear as levels with higher magnitude slope dE/dB.

Based on a result from second order perturbation theory, we can relate the magni-

tude of εSO to the difference in second derivatives of Zeeman levels of a given sample.

If we simply compare the magnitude of the curvatures of the energy levels vs magnetic

field, as shown in Fig. 6.3(b), we find good agreement with simulation data. The

simulations will be discussed in a later section of the paper. The treatment based

on perturbation theory yields an estimate of εSO ≈ 0.67meV for Ni sample 1, and

εSO ≈ 0.52meV for Ni sample 2. In each of these cases, we took the difference in

curvatures of levels (L1-L2), and (L9+L12) for samples 1 and 2, respectively. If we

compare these values to the magnitude of the zero-field splitting of the energy in Ni

sample 1, we find good agreement. After correcting for capacitive division, the ZFS

of sample 1 is ≈ 0.58meV.

6.3 Simulations-Master Equations

The rich structure inherent to the magnetic spectra can be illuminated by the use

of a single-electron tunneling model, as well as master equations [51]. Due to the

large mesoscopic variations in our particle Hamiltonians, it is to be expected that

the particular details for each spectra may vary substantially as well. Exploring the

full range of every one of these mesoscopic parameters in order to perfectly fit each

data set of experimental spectra would be computationally infeasible. Nevertheless,

by sampling the vast parameter space of mesoscopic variations, we can reproduce a
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Figure 6.3: (a) Ratio of amplitudes of Zeeman split differential conductance peak
branches of Ni sample 1, in the positive (blue) and negative (red) bias voltage regimes,
respectively. (b) Curvature (d2E/dB2) of representative differential conductance lev-
els as a function of magnetic field. Blue corresponds to Ni sample 1 data, while red
and yellow correspond to the simulated differential conductance spectral levels SL1
and SL2 as shown in Fig. 4(a).

significant number of qualitative features. As the electron number on the particle

alternates between N and N + 1, the particle Hamiltonian also switches back and

forth between HN and HN+1. In this work, as we have shown in previous works [51],

we model HN and HN+1 in the following forms,

HN = −KS2
z/S0 − gµB ~B · ~S

HN+1 = HN + εSO [cos (θSO)Sz + sin (θSO)Sx]
2 /S2

0

where K is a scalar coefficient for the uniaxial anisotropy term, g is the electron

g-factor, µB is the Bohr magneton, ~B is the applied magnetic field for the Zeeman

energy term, ~S is the vector spin operator for the particle in units of ~, and θSO and

εSO is the magnitude of spin-orbit anisotropy energy added by a single electron during

the tunneling process.

Fig. 6.4 displays high-field simulated differential conductance spectra correspond-

ing to a Ni nanoparticle of spin S0 = 50 and εSO = −1meV. The intrinsic tunneling

rate through the right lead is lower than that of the left lead by a factor of 20. In
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these cases, we assumed a tunneling rate of 60MHz through the left lead and 3MHz

through the right lead. The difference between Fig. 6.4(a) and (b) is which lead’s

Fermi level is varied. In Fig. 6.4(a), µL is assumed fixed at a large value (1 eV),

while the Fermi level in the right lead, µR, is swept in a triangle wave. Similarly, in

Fig. 6.4(b), µR is held fixed at -1eV, while µL is varied in a triangle wave. In Fig.

6.4(b), there is clear zero field splitting of the energy level by an amount ≈ 0.6meV.

However, the zero field splitting is not apparent in Fig. 6.4(a).

Figure 6.4: Differential conductance simulations from converged Master Equations.
In each case, ε = −1meV, θSO = π/4, and the tunneling rates through the left (right)
lead are 60MHz (3MHz), respectively. (a) The Fermi function in the left lead, fL = 1,
and the Fermi energy of the right lead µR is varied. (b) The Fermi function in the
right lead, fR = 0, while the Fermi energy of the left lead, µL, is varied.

In Fig. 6.4(a) and (b), there are Zeeman-split branches of different spectral

weights, and the average curvature of the branches is proportional to the magni-

tude of εSO for each case. Additionally, the spectral weight distributions amongst

levels varies as a function of field. That is, multiple levels carry higher weight in the

low-field, while the spectral weight redistributes toward the energy decreasing branch

in higher fields. This is reminiscent of the experimental data in Figs. 6.2(b) and

6.2(d), in which the energy levels at higher bias exhibit curvature: that is, a non-

vanishing d2E/dB2. This is again in agreement with our simulated spectra, which

display clear nonlinearities in many of the spectral branches. Note, however, that like
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the experimental data, the curvatures in Fig. 6.4 can vary between branches of the

same level.

6.4 Conclusions

Using tunneling spectroscopy to explore the effects of the so-interaction in nanometer-

scale particles offers detailed insight into the interaction of ferromagnetism, charge

transport, and quantum mechanics. We have measured Zeeman splitting in the dif-

ferential conductance spectra of single Ni nanoparticles 2-3 nm in diameter under the

condition of tunneling electron transport. Due to the influence of the so-interaction

and its effect on the anisotropy of the particle, the tunneling rates of spin-up and

spin-down electrons become comparable in magnitude, as is manifested in the rela-

tive amplitudes in each Zeeman-split spectral branch. The Ni particles we studied

also exhibited spectral splitting near B = 0, as well as non-linear field dependence in

some of the magnetic energy levels. Through master equation simulations, we stud-

ied an asymmetric resistance tunnel junction and found both zero-field splitting and

curvature of the differential conductance energy levels comparable in both magnitude

shape with the observed data.
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CHAPTER VII

VOLTAGE-DRIVEN SPIN-TRANSFER TORQUE IN A

MAGNETIC PARTICLE

In this chapter, we discuss a spin-transfer torque device, where the role of the soft

ferromagnetic layer is played by a magnetic particle or a magnetic molecule, in weak

tunnel contact with two spin polarized leads. We investigate if the magnetization of

the particle can be manipulated electronically, in the regime where the critical current

for magnetization switching is negligibly weak, which could be due to the reduced

particle dimensions. Using master equation simulations to evaluate the effects of

spin-orbit anisotropy energy fluctuations on spin-transfer, we obtain reliable reading

and writing of the magnetization state of such magnetic particle, and find that the

device relies on a critical voltage rather than a critical current. The critical voltage

is governed by the spin-orbit energy shifts of discrete levels in the particle. This

finding opens a possibility to significantly reduce the power dissipation involved in

spin-transfer torque switching, by using very small magnetic particles or molecules.

In recent years, the miniaturization of magnets has approached the scale of single

molecules [24,62,76,104,110,111,127]. While there are many measurement techniques

for determining the magnetic state of such molecules, electron transport is particu-

larly important for integrating the molecules into a microelectronic system [7]. The

reduced dimensions of magnetic molecules pose both challenges and advantages. A

primary challenge is due to the fact that the energy barrier for magnetic switching

(EB) is suppressed in proportion with the volume of the magnet, which weakens the
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directional stability of the magnetization subject to thermal or electronic perturba-

tions. However, the weakened barrier could also be viewed as an advantage if the ex-

ternal perturbations are properly controlled to manipulate magnetic switching. Con-

sider spin-transfer torque (STT) switching in a metallic nanomagnet [20,83,120,135].

The switching is usually achieved by applying a spin-polarized current through the

nanomagnet, via Ohmic contacts between a ferromagnetic lead and the nanomagnet.

STT-switching is normally a current-driven effect. Using the expression for current

found in reference [135], it can be shown that the critical current for magnetization

switching due to STT is proportional to eαEB/η~, where e is the electronic charge, α

is the Gilbert damping parameter, and η is the efficiency ratio dependent on both the

spin polarization in the leads P and the angle between the equilibrium magnetization

in the lead and the nanomagnet [135]. In larger nanomagnets, EB is large and the

resulting critical current can be associated with large power dissipation, which is a

well known problem for applications. By reducing the size to the molecular scale, EB

can be significantly reduced, leading to the possibility of much lower critical current.

Alternatively, a possible reduction in the critical current could be achieved with an

increased spin relaxation time [41, 75, 164], which could reduce α. In this article, we

consider a magnetic particle or a magnetic molecule, making weak tunneling contact

between two ferromagnetic leads, and assume a vanishingly small critical current for

STT switching. We address the question if the magnetization direction in such a

regime can be reliably measured and manipulated, and find a voltage driven mecha-

nism that controls STT-switching. In that regime, the spin-transfer is dominated by

fluctuations of spin-orbit anisotropy energy, and predictable magnetic switching can

be induced by applying a critical voltage, independent of the size of the tunneling

current. By applying a voltage smaller than the critical voltage, the magnetization

direction can be read noninvasively, without inducing magnetic switching.
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7.1 Experimental Proposal

Recently, we have demonstrated experimentally that single Ni particles 2 to 3 nm

in diameter, embedded in double-tunnel junctions, exhibit hysteresis based on the

applied bias voltage [51]. A schematic of the device that we studied is shown in

figure 7.1(a). At low temperature, the particle exhibits Coulomb blockade at low

bias voltages, and sequential electron tunneling at higher bias voltages. The presence

of hysteresis was found to be governed primarily by the voltage applied across the

junction, rather than being controlled by the tunneling current. However, our prior

experimental work involved the coupling of the Ni particle to normal metal (Al) leads,

which lack spin-polarization. Crucial to the voltage control of magnetic hysteresis in

nanomagnets is the presence of spin-orbit energy shifts εSO of the discrete energy

levels of the particle, which vary with the direction of the magnetization [36,41]. The

voltage-control results from an effective magnetization blockade [51], which arises from

electron tunneling transitions with energy that increases as the particle magnetization

is displaced from the easy axis. The value of the magnetization blockade energy is

given by the tunneling transition energy ∆E, for which d∆E/dSz = 0, and the

magnetization is closest to the easy axis. Here, Sz is the particle spin component

along the easy axis. Finding this transition energy requires diagonalization of the

particle’s magnetic Hamiltonians, and in a typical case, we find the magnetization

blockade energy to be ∼ 0.65εSO [51]. At low bias voltage, magnetization blockade

prohibits electron tunneling transitions that would perturb the magnetization beyond

a certain angle from its easy axis. At bias voltages larger than εSO/e (relative to the

Coulomb blockade threshold), the magnetization blockade is surmounted. The result

is a voltage-controlled magnetic hysteresis over a bias range on the order of εSO/e,

governed by the shifts in spin-orbit anisotropy energy.

Figure 7.1(a) displays a generalization of such a configuration, in which we propose

a non-zero spin polarization in the source and drain leads. In figure 7.1(a), the grey
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region corresponds to a double-tunnel barrier, and the red circle corresponds to the

single-domain magnetic particle. The straight black arrows in this figure and in

subsequent figures correspond to the predominant spin polarization (in the +z or −z

direction for ↑ or ↓, respectively). The collection of spins in the magnetic particle

determine the direction of the magnetization.

Figure 7.1: (a) Junction geometry with either no spin polarization (P = 0) in leads,
and an applied magnetic field (B 6= 0), or no external magnetic field (B = 0), and non-
zero spin polarization in leads (P 6= 0). Red circle corresponds to magnetic particle
with net magnetization in direction of black arrow. Bias voltage V is applied on the
left lead, relative to the right lead. (b) Experimental hysteresis loop data at low and
high bias voltage values at T = 350 mK. Inset is the sample I(V ) curve. (c) Simulated
current hysteresis loops at low (V = 1.9 mV) and high (V = 2.4 mV) bias, with inset
simulated I(V ) curve for P = 0 and current onset threshold of Vse = ±1.8mV. Top
curve is offset vertically by 6 pA for clarity. (d) Simulated hysteresis of particle
magnetization, corresponding to low bias data in (c). (e) Simulated non-hysteretic
switching, corresponding to high bias data in (c). For all hysteresis loops, black (red)
corresponds to field sweep in positive (negative) direction.
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7.2 Modeling with Master Equations and Sequential Elec-
tron Tunneling

In this work, we model the effects of single electron tunneling by use of master equa-

tions in the same procedure used in our previous work [51]. In doing so, we explore

the viability of such an experimental realization as is displayed in Figure 7.1 (a). The

magnetic Hamiltonian under consideration is given by the following two alternating

operators. For the N electron particle, H0 = −KS2
z/S0 + 2µBBSz, where K is a

coefficient for the uniaxial anisotropy of the particle, B is the applied magnetic field,

and Sz is the spin operator in the z−direction, µB is the Bohr magneton, and S0

is the ground state spin of the particle in units of ~. For the N+1 electron particle,

H1 = H0+ε [cos θSESz + sin θSESx]
2 /S2

0+εzS
2
z/S

2
0+E0. In the latter case, we include,

in addition to the N electron case, the terms ε and εz resulting from the spin-orbit

energy shifts. θSE is the angle of the new anisotropy term arising from the additional

electron, and E0 is a constant offset term that depends on the Coulomb blockade and

discrete electron-hole quasiparticle spacing. The numerical parameters are given by

K = 10µeV, S0 = 100, ε = 200µeV, εz = −200µeV, θSE = π/6, E0 = 1meV, and

T = 70mK. The tunneling rates to or from a lead of polarization P for up and down

spins, respectively, are given by Γ(1 + P ) and Γ(1 − P ), where Γ = 60 MHz, and

the capacitance for each junction was 44aF. In the conversion from energy scale to

voltages, a factor of 2 was included to account for the capacitive division. We neglect

coupling between the magnetization and the thermal bath. In the previous exper-

imental and computational models [51], as is shown in figure 7.1(b)-(f) a magnetic

field is swept rather than using spin-polarized leads. The measured current hysteresis

loops as a function of magnetic field are displayed in figure 7.1(b). The top (bottom)

curves correspond to the current response at high (low) voltages relative to the mag-

netization blockade voltage. The dip in current prior to the zero field crossing is an

artifact due to the superconducting magnet. The inset shows the tunneling current

119



as a function of applied bias voltage. A typical stochastic realization of he simulated

current hysteresis loops at low and high bias relative to the magnetization blockade

are displayed in 7.1(c), along with a simulated I(V ) curve in the inset. The simulated

magnetization hysteresis loops that correspond to the current loops in figure 7.1(c) are

displayed in figure 7.1(d) and (e), for low and high voltages, respectively, relative to

εSO/e above the sequential electron tunneling threshold Vse. The experimental data

and the simulations demonstrate robust magnetic hysteresis at low voltage and ran-

dom magnetic switching at high bias voltage. The characteristic voltage scale that

differentiates between the two regimes corresponds to the magnetization blockade

energy.

Figure 7.2(a) and (b) illustrate the Coulomb blockade threshold and the magne-

tization blockade threshold. When the electrochemical potential of the lead is raised

above the first blockade, sequential electron transport is initiated as indicated by

the curved green arrows. When the electrochemical potential is increased above the

magnetization blockade threshold, the spin-polarized leads initiate the particle mag-

netization state writing process. In (a), the particle is initially in the M↓ state. The

voltage is swept linear ramp from −1.8 mV to −2.4 mV, and back to −1.8 mV, as

is shown in 7.2(c). When the electrochemical potential in the left lead reaches the

writing threshold, indicated by the small dotted line in (a), the magnetization of the

particle flips into the M↑ state. The voltage threshold for sequential electron tun-

neling is Vse = ±1.8 mV, while the voltage required for flipping the magnetic state

is approximately Vw = ±2.2 mV. Figure 7.2(d) displays the magnetization during

the reverse writing process. Consider the forward writing process (that is, using a

negative bias voltage to write the M↑ state). As the voltage magnitude rises between

Vse and Vw, the magnetization (given by Sz) begins to fluctuate about its energetic

minimum of Sz = −100. When the writing threshold potential is reached, the mag-

netization blockade is surmounted, and the magnetization flips as indicated by the
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Figure 7.2: Writing the magnetic state with spin-polarized leads PL = 0.5, PR =
−0.5. (a) Illustration of the electrochemical potential of the left lead (µL) for the
forward writing process (M↓ →M↑), implying a negative V . Long red dashed line is
the coulomb blockade threshold for sequential electron tunneling. When the writing
threshold, magnetization blockade (smaller green dotted line) is reached, the particle
magnetization flips directions. (b) Illustration of reverse state writing process (M↑ →
M↓). Green arrows indicate electron tunneling direction. (c) Magnetization vs voltage
during forward magnetic state writing process illustrated in (a). (d) Magnetization vs
voltage for reverse magnetic state writing process as illustrated in (b). In both (c) and
(d), blue (orange) correspond to magnetization during positive (negative) magnitude
ramp of bias. (e) Magnetic field hysteresis loop with PL = 0.5, PR = −0.5 at V = −2.2
mV. Black (red) corresponds to field sweep in positive (negative) direction. (f) same
as (e), but with PL = −0.5, PR = 0.5.

sudden jump of Sz around V = −2.2meV. Because the applied bias is still large at

this point, the magnetization continues to fluctuate about its other energetic min-

imum state of Sz = +100. When the potential is reduced to its initial value, the

fluctuations diminish as the magnetization relaxes into the M↑ state.

Similarly, the reverse writing process is displayed in figure 7.2(b) and (d), wherein

a positive bias voltage greater than 2.2 mV induces a switch of the particle into the
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M↓ state. The same result is obtained as in the forward writing process in figure

7.2(a) and (c). Thus, the sign of voltage can be used to write the binary state of the

magnetic particle. In figure 7.2(e) and (f), we simulate hysteresis loops as a function of

magnetic field for spin-polarized leads held at a bias voltage of -2.2 mV, the magnitude

of which is above the magnetization blockade threshold of -2.16 mV. As a result, we

observe an effective exchange bias due to spin accumulation on the particle. If the

magnitude of the bias voltage is below the magnetization blockade threshold, the

hysteresis loop appears qualitatively the same as in the P = 0 case, as the blockade

protects the particle from switching near zero field. In figure 7.2(e), the left and right

leads have spin polarization values of PL = 0.5 and PR = −0.5, respectively. In figure

7.2(f), PL = −0.5 and PR = 0.5. In both (e) and (f), the black (red) corresponds to a

positive (negative) magnetic field sweep direction. In both of these sweeps, there is an

increase in magnetization noise near zero field, as the particle has a small probability

to flip into the opposite magnetization state. As we have observed in a previous

work [74], the smaller magnetic spectrum spacing leads to the enhancement of spin-

flip rate, due to the spin-orbit energy fluctuations. This is precisely the characteristic

we require to allow STT switching in the proposed configuration. As the magnetic

field increases, the spin-flip rate is reduced significantly when the Zeeman splitting

energy approaches the spin-orbit energy shift εSO.

If the bias voltage is maintained well between Vse and Vw, the differential resistance

measurements can operate as a non-invasive sensor to determine the particle magne-

tization state. Figure 7.3(a) and (b) illustrate the reading process for the M↓ and M↑

states, respectively. Figure 7.3(c) displays the differential resistance (dV/dI) ratios,

averaged over time, for the M↓:M↑ states. As a function of bias, the ratio of differen-

tial conductance varies as much as 40% for the different magnetization states. This

results from the asymmetry in the tunneling resistance near the Coulomb blockade

as a function of spin polarization mismatch. As long as the electrochemical potential
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Figure 7.3: Reading the magnetic state. (a) Sensing the M↓ state. (b) Sensing the
M↑ state. (c) Ratio of the differential resistance measurements for M↓ : M↑. Electro-
chemical potential is always maintained well below the writing threshold, indicated
by the small dotted green line in (a) and (b).

in the spin-polarized leads is maintained well below the writing threshold, the par-

ticle magnetization will only fluctuate weakly about its current energetic minimum

orientation, allowing for the reproducible sensing of the magnetic state.

At high voltages compared with Vse + εSO/e during the particle writing process,

there is a certain probability that the particle will switch back to its initial state

before relaxing. Figure 7.4 displays the histograms of the particle spin states, as a

function of spin polarization in the leads and particle size. In each of these cases, the

bias was held at V = −2.4meV, which is above the magnetization blockade voltage,

and would correspond to the forward state writing process as shown in figure 7.2(c).

For each configuration, we estimate the reliability r of successfully writing the state

M↑ by taking the ratio of the sum of states with Sz > 0 to the total sum of states. We

chose such a definition because in the actual state writing process, we would reduce
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Figure 7.4: Particle state histograms as a function of spin polarization in leads and
particle size, at high bias voltages relative to εSO/e. (a) Normal leads with no spin
polarization. (b) Spin polarization of ±0.5 in left and right leads, respectively. (c)
Spin polarization of ±0.9 in left and right leads, respectively. S0 = 100 in (a),(b),
and (c). (d) Spin polarization of ±0.5 in left and right leads, respectively, with larger
particle size of S0 = 200.

the magnitude of the bias voltage, and the particle would relax into whichever local

minimum had the same sign (Sz = ±S0, based on the final sign of Sz before lowering

the voltage). For figure 7.4(a), the state histogram is evaluated for non-spin-polarized

leads, as in the case for our previous experimental work [51]. Not surprisingly, the

non-polarized leads are ill-equipped to produce dependable switching of the particle

state to M↑. However, as is shown in figure 7.4(b) and (c), the reliability of switching

the particle becomes 83% (98%), with respective increases in spin polarization in the

leads PL = 0.5 and PR = −0.5 (PL = 0.9 and PR = −0.9). A similar effect can

be achieved by altering the size of the particle. For spin polarization in the leads
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of PL = 0.5 and PR = −0.5, the reliability of switching a particle of spin S0 = 50

(S0 = 200) is found to be 78% (97%). The state histogram for the latter case of

S0 = 200 is displayed in figure 7.4(d). In the case of PL = 0.25 and PR = −0.25

for S0 = 100, we found a reliability of 75%. However, we can increase the effective

reliability by use of the following procedure. First, we apply a voltage pulse of the

desired sign to attempt writing a magnetic state. Then, we can apply a smaller bias

voltage to read out the state. If the initial pulse has successfully written a state,

then halt the procedure. If not, apply a second voltage pulse and check the success

of the second attempted writing procedure. Assuming independent writing events,

each dictated by a reliability r, with 0 ≤ r ≤ 1, the overall reliability of the repeated

writing procedure will be 1 − (1 − r)n, where n is the number of attempted writing

events. If at any point between the writing attempts a successful state readout is

achieved, then the procedure is stopped. Using such a scheme with r = 0.75 and a

maximum of 4 writing attempts, the new reliability of writing the desired state is

raised above 99%.

7.3 Conclusions

In summary, we have presented a proposal for a generalized STT system in which the

soft magnetic layer is composed of a magnetic molecule or a magnetic particle which

exhibits an effective magnetization blockade due to spin-orbit shifts of discrete levels.

Rather than relying on a critical current to induce magnetic switching, magnetic

control in our proposed configuration is instead governed by the applied bias voltage

from spin-polarized leads. Our simulations indicate that the proposed configuration is

well suited for writing magnetic states with high repeatability, and for reading states

in a non-invasive manner. This opens the possibility for a significant reduction in

power dissipation in reduced scale STT devices.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

In summary, I have presented a dissertation on the effects of the spin-orbit interaction

on sequential electron tunneling in ferromagnetic nanoparticles at the confluence of

quantum mechanics and nanometer-scale magnetism. By studying metallic samples

on the order of 2 nm in diameter using a probe of a single electron at a time, and

at temperatures slightly above absolute zero, I was able to study the interaction of

different energy scales and observe novel effects due to the spin-orbit interaction.

In particular, I observed large electron spin g-factors in Co particles as a result of

the interplay between spin-orbit effects and ferromagnetic electron-electron interac-

tions. Further, I studied the detailed differential conductance spectra of Co and Ni

samples, and found differing characteristics among different materials. Next, I ob-

served a voltage-controllable hysteresis effect in single Ni nanoparticles, and modeled

such effects using master equation simulations. In doing so, I defined an effective

magnetization blockade due to the anisotropy energy shifts, and further proposed a

voltage-controlled spin-transfer torque device based on the same physical effect.

The magnetization blockade effect opens the the door for further study, including

an experimental implementation of the device proposed in the last chapter. Such

a project would be challenging, but also rewarding in the possibility of designing a

device that will push the limits of spin-transfer torque.
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APPENDIX A

DETAILED CODE OVERVIEW

In this appendix, we will discuss in detail the code utilized in this dissertation, and will

be broken into two primary sections. First, I will give an overview of the subroutines

that are called by the main two types of master equation simulation implementations.

Next, I will discuss the full master equation simulations, which describe the temporal

evolution of the full probability distribution over the particle eigenstates. Finally, I

will describe the stochastic master equation simulations, which use a similar probabil-

ity evolution equation as the full master equation mentioned previously, but assume

that at each time step, the sample is in one of its eigenstates. The transition proba-

bilities are calculated via integrating the master equation above for one time step in

order to calculate the likelihood of transition among the different eigenstates. In all

of the code below, I have attempted to comment the code as extensively as possible to

elucidate the details. All simulations were performed using MATLAB. An initial form

of the basic code for the full master equation simulation was written by my former

colleague, Wenchao Jiang. I have edited his code and tried to optimize portions that

were running slowly. As an example, I vectorized most of the nested loops in order to

make use of MATLAB’s matrix multiplication strengths. I also wrote the new code

for the stochastic evolution simulations, and the plotting procedures.

A.0.1 Subroutines Common to both Implementations of Master Equa-
tions

Necessary for each implementation of the primary programs are various subroutines,

such as the calculation of the particle spin operators and Hamiltonian operators,

sorting the eigenstates, and accounting for the Clebsch-Gordan coefficients. In this
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section, I will provide and describe the code of such subroutines that are necessary

for both the deterministic master equation evolution and for the stochastic eigenstate

evolution simulations.

A.0.1.1 Defining the Hamiltonian Parameters

The code in this section should be tacked on to the beginning of any simulation,

in order to define the basic parameters for the N and N + 1 particle Hamiltonian

operators, including the definition of the spin operators. The name of this script

is definehamilcellparam.m, and this should be edited to use the desired parameters

for the Hamiltonians. Note that this program makes use of the findspinoperators

function, which is included as the next program.

1 %definehamilcellparam.m

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Set Hamiltonian parameters here

%

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 S0 = 100; %defines the ground state spin of the N-electron particle

8 S01 = S0-1/2; %defines the ground state spin of the N+1 electron particle

9 % assumes only minority electrons contribute to tunneling. That is, the

10 % total spin of the particle is reduced by 1/2 upon the addition of a

11 % tunneling electron.

12

13 %All of the energies are in units of micro-eV.

14 epsilon = 200; %energy for extra anisotropy due to spin-orbit energy ...

15 %shifts from one electron.

16

17 epsilonz = -200; %energy for second extra anisotropy term.
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18

19 Kbiax = 0; % energy for biaxial anisotropy term

20

21 Kzunianis = 10; %energy coefficient for uniaxial anisotropy term

22

23 theta se = pi/6; %defines angle of added anisotropy relative to z-axis

24

25 countt=1; %index used for keeping track of the simulation progress ...

26 %to gauge how much time remains.

27

28 ktemp = 86*0.075; % to change the temperature in the leads, change ...

29 %the number that is multiplying 86. As it stands, this represents 75 mK, ...

30 %and 86 is Boltzmann's constant in units of micro-eV/Kelvin.

31

32 kappa=0;%-0.0001% term used to break degeneracy of zero magnetic field case

33

34 h = 0; %initialize the applied magnetic field to zero. this can be altered ...

35 %by making a vector of hvals for the magnetic field values at each time step.

36 Kzunianis = 10; %uniaxial anisotropy coefficient

37

38 [Sx,Sy,Sz,Sx1,Sy1,Sz1] = findspinoperators(S0,S01);

39

40 hamilcellparam = {S0,S01,epsilon,epsilonz,theta se,kappa,h,Sx,Sy,Sz, ...

41 Sx1,Sy1,Sz1,Kzunianis,Kbiax};

The following function takes S0 and S01 as inputs, and outputs the spin operators

for the N and N+1 electron particles.

1

2 function [Sx,Sy,Sz,Sx1,Sy1,Sz1] = findspinoperators(S0,S01)

3

4 %FINDSPINOPERATORS calculates N and (N+1) electron particle spin operators
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5 %Sx, Sy, Sz, and (Sx1, Sy1, Sz1), respectively, given total spin values S0

6 %and S01 for the N and N+1 electron particles

7 %Sx is for the spin of |S0 m> state

8 Sx=zeros(2*S0+1,2*S0+1);

9 Sz=zeros(2*S0+1,2*S0+1);

10 Sy=zeros(2*S0+1,2*S0+1);

11

12 %Sx1 is for the spin of |S0-1/2 m> state

13 Sx1=zeros(2*S0,2*S0);

14 Sz1=zeros(2*S0,2*S0);

15 Sy1=zeros(2*S0,2*S0);

16

17 %Calculate Sx, Sy, Sz operators for N electron particle

18 for k=-1*S0:1:S0

19 for j=-1*S0:1:S0

20 if j==k-1

21 Sx(k+S0+1,j+S0+1)=1/2*(sqrt((S0-j)*(S0+j+1)));

22 Sy(k+S0+1,j+S0+1)=-1i/2*(sqrt((S0-j)*(S0+j+1)));

23 elseif j==k

24 Sz(k+S0+1,j+S0+1)=k;

25 Sx(k+S0+1,j+S0+1)=0;

26 elseif j==k+1

27 Sx(k+S0+1,j+S0+1)=1/2*(sqrt((S0+j)*(S0-j+1)));

28 Sy(k+S0+1,j+S0+1)=1i/2*(sqrt((S0+j)*(S0-j+1)));

29 else Sx(k+S0+1,j+S0+1)=0;

30 end

31 end

32 end

33

34 %Calculate Sx1, Sy1, Sz1 for N+1 electron particle

35 for k=-(S01):1:(S01)

36 for j=-(S01):1:(S01)
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37 if j==k-1

38 Sx1(k+S01+1,j+S01+1)=1/2*(sqrt((S01-j)*(S01+j+1)));

39 Sy1(k+S01+1,j+S01+1)=-1i/2*(sqrt((S01-j)*(S01+j+1)));

40 elseif j==k

41 Sz1(k+S01+1,j+S01+1)=k;

42 Sx1(k+S01+1,j+S01+1)=0;

43 elseif j==k+1

44 Sx1(k+S01+1,j+S01+1)=1/2*(sqrt((S01+j)*(S01-j+1)));

45 Sy1(k+S01+1,j+S01+1)=1i/2*(sqrt((S01+j)*(S01-j+1)));

46 else Sx1(k+S01+1,j+S01+1)=0;

47 end

48 end

49 end

50

51 end

The next section of code defines the Hamiltonian operators for the N and N+1

electron particle. It requires an input cell of hamilcellparam, which can be generated

using the definehamilcellparam.m script above. It returns the eigenstates V (V1) and

eigenenergies D (D1) for the N (N+1) electron particle. These are combined into a

cell, hamiloutcell, for input into the sortandCG program below.

1 format('long')

2 % define a cell of parameters for input into the findhamilstates program:

3 hamilcellparam = {S0,S01,epsilon,epsilonz,theta se,kappa,h,Sx,Sy,Sz, ...

4 Sx1,Sy1,Sz1,Kzunianis,Kbiax};

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 function [V,D,V1,D1] = findhamilstates(hamilcellparam)

7 %FINDHAMILSTATES yields the eigenstates V (V1) and eigenvalues D (D1) for

8 %the N (N+1) electron Hamiltonians.

9 %hamilcellparam should be a cell of the following form:

131



10 %hamilcellparam = {S0,S01,epsilon,epsilonz,theta se,kappa,h,Sx,Sy,Sz, ...

11 % Sx1,Sy1,Sz1,Kzunianis,Kbiax};

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 % The name of the following subroutine is Costates4 nos.m

14

15 format('long')

16 % export hamiltonian parameters from hamilcellparam cell:

17 S0 = hamilcellparam{1};

18 S01 = hamilcellparam{2};

19 epsilon = hamilcellparam{3};

20 epsilonz = hamilcellparam{4};

21 theta se = hamilcellparam{5};

22 kappa = hamilcellparam{6};

23 h = hamilcellparam{7};

24 Sx = hamilcellparam{8};

25 Sy = hamilcellparam{9};

26 Sz = hamilcellparam{10};

27 Sx1 = hamilcellparam{11};

28 Sy1 = hamilcellparam{12};

29 Sz1 = hamilcellparam{13};

30 Kzunianis= hamilcellparam{14};

31 Kbiax = hamilcellparam{15};

32

33 %Magnetic Field direction

34 %define angles in spherical coordinates relative to z-axis (easy axis)

35 theta1=0;%3*pi/12;

36 phi1=0;%

37 b=[sin(theta1)*cos(phi1) sin(theta1)*sin(phi1) cos(theta1)];

38

39

40 %Spin-orbit anisotropy energy term from a single electron

41 soanisotropy = 0;
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42 soanisotropy1 = epsilon*((Sz1*cos(theta se)+Sx1*sin(theta se)))ˆ2/S01ˆ2 ...

43 + epsilonz*Sz1ˆ2/S01ˆ2;

44

45

46 %Shape Anisotropy Energy term (uniaxial in this case). kappa term breaks

47 %degeneracy in zero magnetic field case.

48 %Kbix is the coefficient for the biaxial anisotropy term.

49 shapeanisotropy = -Kzunianis*Szˆ2/S0 + kappa*Sxˆ2/S0 ...

50 - Kbiax*(Szˆ2-Sxˆ2)/S0;

51 shapeanisotropy1 = -Kzunianis*Sz1ˆ2/S01 + kappa*Sx1ˆ2/S01 ...

52 - Kbiax*(Sz1ˆ2-Sx1ˆ2)/S01;

53

54 %Zeeman Energy term (bohr magneton is 57.89 micro-eV/Tesla

55 zeemanenergy = -(2*h*57.89*(b(1)*Sx+b(2)*Sy+b(3)*Sz));

56 zeemanenergy1 = -(2*h*57.89*(b(1)*Sx1+b(2)*Sy1+b(3)*Sz1));

57

58 %Calculate for the eigenstates and eigenenergies

59 H=zeemanenergy+soanisotropy+shapeanisotropy;

60 H1=zeemanenergy1+soanisotropy1+shapeanisotropy1;

61

62 [V,D] = eig(H); %eigenstates/eigenvalues of N-electron Hamiltonian

63 [V1,D1] = eig(H1); %eigenstates/eigenvalues of (N+1)-electron Hamiltonian

64

65

66 end

67

68 hamiloutcell = {V,D,V1,D1};

A.0.1.2 Sorting the Particle Eigenstates

This section of code immediately follows the previous subroutine, each time the pre-

vious code is run. It calculates the expectation value of each spin component operator

(Sx, Sy, and Sz, along with S2
x, S

2
y , and S2

z ) for every pair of eigenstates for the N
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and N + 1 electron Hamiltonian. It sorts the eigenstates in order of increasing Sz ex-

pectation value, and then stores the eigenenergies of these sorted states in the vectors

Ens and Ens1 for the N and N + 1 electron particles, respectively. Then, the code

calculates the Clebsch-Gordan coefficients and the state overlap matrices.

1 function [TN2,TP2,T,SZS,SZS1,Ens,Ens1] = sortandCG(hamiloutcell,hamilcellparam)

2 %SORTANDCG -- sorts eigenstates and calculates clebsch gordan coefficents

3 %and state overlaps for use in master equation simulations.

4 % Takes two cells as inputs. The first, hamiloutcell, consists of a cell

5 % of {V,D,V1,D1}, which is the output from the findhamilstates function.

6 % The second cell input, hamilcellparam, is the same cell input of

7 % parameters into the initial findhamilstates function, and is of the

8 % form

9 % {S0,S01,epsilon,epsilonz,theta se,kappa,h,Sx,Sy,Sz,Sx1,Sy1,Sz1, ...

10 % Kzunianis}

11

12 format('long')

13 %export hamiloutcell parameters (eigenstates and eigenenergies):

14 V = hamiloutcell{1};

15 D = hamiloutcell{2};

16 V1= hamiloutcell{3};

17 D1= hamiloutcell{4};

18

19 % export hamiltonian parameters from hamilcellparam cell:

20 S0 = hamilcellparam{1};

21 S01 = hamilcellparam{2};

22 epsilon = hamilcellparam{3};

23 epsilonz = hamilcellparam{4};

24 theta se = hamilcellparam{5};

25 kappa = hamilcellparam{6};

26 h = hamilcellparam{7};
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27 Sx = hamilcellparam{8};

28 Sy = hamilcellparam{9};

29 Sz = hamilcellparam{10};

30 Sx1 = hamilcellparam{11};

31 Sy1 = hamilcellparam{12};

32 Sz1 = hamilcellparam{13};

33 Kzunianis= hamilcellparam{14};

34 Kbiax= hamilcellparam{15};

35

36 %Sort eigenstates below: (formerly the indexeadd.m script)

37

38

39 SpinZ1=real(V1'*(Sz1)*V1);

40 SpinZ=real(V'*(Sz)*V);

41 SpinX1=real(V1'*(Sx1)*V1);

42 SpinX=real(V'*(Sx)*V);

43 SpinY1=real(V1'*(Sy1)*V1);

44 SpinY=real(V'*(Sy)*V);

45

46 SpinZ2=real(V'*(Sz*Sz)*V);

47 SpinX2=real(V'*(Sx*Sx)*V);

48 SpinY2=real(V'*(Sy*Sy)*V);

49

50 SZE=zeros(1,2*S0+1);

51 SZE1=zeros(1,2*S01+1);

52

53 for i=1:2*S0+1

54 SZE(i)=real(SpinZ(i,i));

55 end

56 for i=1:2*S01+1

57 SZE1(i)=SpinZ1(i,i);

58 end
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59 [SZS,IX]=sort(SZE);

60 [SZS1,IX1]=sort(SZE1);

61

62 SZS=SZS';

63 SZS1=SZS1';

64

65 Ens=zeros(1+2*S0,1);

66 Ens1=zeros(1+2*S01,1);

67 SXS=Ens;

68 SYS=Ens;

69 SXS2=Ens;

70 SYS2=Ens;

71 SZS2=Ens;

72 for i=1:2*S0+1

73 Ens(i)=real(D(IX(i),IX(i)));

74 SXS(i)=SpinX(IX(i),IX(i));

75 SYS(i)=SpinY(IX(i),IX(i));

76 SXS2(i)=SpinX2(IX(i),IX(i));

77 SYS2(i)=SpinY2(IX(i),IX(i));

78 SZS2(i)=SpinZ2(IX(i),IX(i));

79 end

80 SXS1=Ens1;

81 SYS1=Ens1;

82 for i=1:2*S01+1

83 SXS1(i)=SpinX1(IX1(i),IX1(i));

84 SYS1(i)=SpinY1(IX1(i),IX1(i));

85 Ens1(i)=real(D1(IX1(i),IX1(i)));

86 end

87

88

89 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

90 %The following bit of code finds the clebsch gordan coefficients and
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91 %overlap matrices. (formerly the CGpra vectorized pg.m script)

92

93 %Clebsch-Gordon (CG) Coefficients

94 % This will calculate the CG coefficients for expressing a composite spin

95 % system's eigenstates |S01,m> in terms of the eigenstates of the separate

96 % representation |1/2,1/2>|S0,m-1/2> and |1/2,-1/2>|S0,m+1/2>, such that

97 % the transformation of one basis to another follows the identity:

98 % |S01,m> = pCGP*|1/2,1/2>|S0,m-1/2> + pCGN*|1/2,-1/2>|S0,m+1/2>, where

99 % S01 = S0-1/2.

100

101

102 %initialize vectors of CG coefficients:

103 pCGP = zeros(2*S01+1,1);

104 pCGN = zeros(2*S01+1,1);

105

106 for m=-S01:1:S01

107 pCGP(m+S01+1) = sqrt( (S0-m+1/2)/(2*S0+1) );

108 pCGN(m+S01+1) = -sqrt( (S0+m+1/2)/(2*S0+1) );

109 end

110

111 CGP = pCGP;

112 CGN = pCGN;

113

114 Vs=V;

115 Vs1=V1;

116 for i=1:1+2*S0

117 Vs(:,i)=V(:,IX(i));

118 end

119 for i=1:1+2*S01

120 Vs1(:,i)=conj(V1(:,IX1(i)));

121 end

122 %The following two lines put the CG coefficients in a matrix in order ...
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123 %to allow for vectorization of code for speed.

124 CGNmat = repmat(CGN,[1,2*S01+1]);

125 CGPmat = repmat(CGP,[1,2*S01+1]);

126

127 %The following two lines are a vectorized implementation of sums ...

128 %in order to optimize speed.

129 TN=conj((conj(Vs(2:2*S01+2,:)')*(Vs1.*CGNmat))');

130 TP=conj((conj(Vs(1:2*S01+1,:)')*(Vs1.*CGPmat))');

131

132 TP2=TP.*conj(TP);

133 TN2=TN.*conj(TN);

134 T=TP2+TN2; % T(i,j)=|<i |C |j>|ˆ2+|<i |C+ |j>|ˆ2

135

136 end

A.0.2 Plotting the Tunneling Density of States

The next program will calculate the Tunneling Density of States (DOS), for a given

set of Hamiltonian parameters defined in definehamilcellparam.m script. Requires

the findhamilstates and sortandCG sub-routines. The program outputs the DOS as

a matrix, dosmat, and automatically plots the result.

1 function [dosmat] = plotsingleDOS(eners,sigma)

2 % PLOTSINGLEDOS --calculates the tunneling density of states for the nth

3 % state on the N-electron particle tunneling into the sum over the m'

4 % states of the (N+1)-electron particle. inputs eners is the

5 % vector of energy values at which the DOS is evaluated, and sigma is the

6 % amount by which the delta function is spread by convolving with a

7 % gaussian of standard deviation sigma. Assumes that the

8 % definehamilcellparam script has been appropriately edited with the

9 % desired parameters before running this program.

10
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11 if nargin==0

12 %arbitrarily set eners and sigma if no inputs are given

13 eners = -150:1:150;

14 sigma = 1;

15 end

16 format('long')

17 tic

18

19 definehamilcellparam;

20 [V,D,V1,D1] = findhamilstates(hamilcellparam);

21 hamiloutcell = {V,D,V1,D1};

22 [TN2,TP2,T,SZS,SZS1,Ens,Ens1] = sortandCG(hamiloutcell,hamilcellparam);

23

24 % define a local function 'gaussian' with which to convolve the delta

25 % function energy term:

26 gaussian = @(x) 1./(sigma*sqrt(2*pi))*exp(-x.ˆ2/(2*sigmaˆ2));

27

28

29 dosmat = zeros(2*S0+1,length(eners));

30

31 for inds = 1:2*S0+1

32

33 for inde = 1:length(eners)

34 energy = eners(inde);

35 psum = 0;

36 for indm = 1:2*S0

37 en = Ens(inds);

38 em = Ens1(indm);

39

40 psum = psum + T(indm,inds)*gaussian(energy-em+en);

41

42
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43 end

44 dosmat(inds,inde) = psum;

45

46 end

47 end

48 toc

49

50 figure; imagesc(-S0:S0,eners/1000,dosmat');

51 set(gca,'fontname','arial','fontsize',18)

52 xlabel('S z');

53 ylabel('Energy (meV)');

54 title(['DOS, h=' num2str(h) 'T, \epsilon = ' num2str(epsilon/1000) ...

55 'meV, \epsilon z=' num2str(epsilonz/1000) 'meV, \theta S O = ' ...

56 num2str(theta se/pi) '\pi.']);

57 axis xy

58

59

60 end

A.0.3 Checking Convergence of Master Equation

The next short program checks to see if the Sz projection, as compared with the former

Sz projection 100 time steps previous, has converged to a value within a tolerance of

tol=0.1. These (arbitrary) choices can be altered within the simplemaster program

below, if desired.

1 function [torf] = checkconvergence(a,b,tol)

2 %checks to see if b has converged to a within tolerance tol

3 if abs(b-a)<tol

4 torf = true;

5 else

6 torf = false;

140



7

8 end

A.0.4 Master Equation Code

Now that I have described the preliminary subroutines used in both the determinis-

tic master equation code and the stochastic implementation, I will now describe the

deterministic master equation code itself. The name of the program is simplemas-

ter, and must be run for each set of looped parameters, such as the electrochemical

potential in the left and right leads (uL and uR, respectively), the thermal energy

in the leads (ktemp), the bare tunneling rates in the left and right leads (RL and

RR, respectively), the spin polarization in the left and right leads (PSL and PSR,

respectively), the total integration time for the master equation (t) and the time step

(dt). Further, the program requires an input cell called sortCGoutcell, which is de-

rived from the output of the program sortandCG, which should be run prior to every

implementation of simplemaster, if Hamiltonian parameters have changed. During

each call to simplemaster, the program checks for convergence of the Sz projection

in order to speed up the program. The program outputs the spin projection m as a

function of integration time, and the final converged probability distribution for the

N and N+1 electron particle (pend and qend, respectively).

1 function [m,pend,qend] = simplemaster(sortCGoutcell,loopparamscell)

2 %SIMPLEMASTER -- Integrates the deterministic master equation for a given

3 %set of input parameters, and checks for convergence of Sz projection

4 %within the program -- halts program in order to speed up process if Sz has

5 %converged to its value 100 time steps ago within tolerance tol. Calls

6 %checkconvergence subroutine.

7

8 %export values from the output from sortandCG program:
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9 TN2 = sortCGoutcell{1};

10 TP2 = sortCGoutcell{2};

11 T = sortCGoutcell{3};

12 SZS = sortCGoutcell{4};

13 SZS1 = sortCGoutcell{5};

14 Ens = sortCGoutcell{6};

15 Ens1 = sortCGoutcell{7};

16 S0 = (length(Ens)-1)/2;

17 S01 = (length(Ens1)-1)/2;

18

19 %export values from the current loop parameters:

20 uL = loopparamscell{1};

21 uR = loopparamscell{2};

22 ktemp = loopparamscell{3};

23 RL = loopparamscell{4};

24 RR = loopparamscell{5};

25 PSL = loopparamscell{6};

26 PSR = loopparamscell{7};

27 t = loopparamscell{8};

28 dt = loopparamscell{9};

29 pinit = loopparamscell{10};

30 qinit = loopparamscell{11};

31

32 Tt=T(1:(2*S01+1),1:(2*S0+1));

33

34

35

36 dP=zeros(1,2*S0+1);

37 dQ=zeros(1,2*S01+1);

38

39

40 P=zeros(length(t),2*S0+1);
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41 Q=zeros(length(t),2*S01+1);

42

43 % if pinit==0 && qinit==0

44 % P(1,1)=1;

45 % %initflag=false;

46 % else

47 P(1,:) = pinit;

48 Q(1,:) = qinit;

49

50 % if initflag==true

51 % P(1,1)=1;

52 % initflag=false;

53 % else

54 % P(1,:) = pinit;

55 % Q(1,:) = qinit;

56 % end

57

58 Ensmat = repmat(Ens',[2*S01+1,1]);

59 Ens1mat = repmat(Ens1,[1,2*S0+1]);

60

61 fL = 1./(1+exp((Ens1mat-Ensmat-uL)./ktemp));

62 fR = 1./(1+exp((Ens1mat-Ensmat-uR)./ktemp));

63

64

65 Ttu=TP2(1:2*S01+1,1:2*S0+1);

66 Ttd=TN2(1:2*S01+1,1:2*S0+1);

67

68 %spin dependent tunneling rates below:

69 RLu = (1+PSL)*RL;

70 RLd = (1-PSL)*RL;

71 RRu = (1+PSR)*RR;

72 RRd = (1-PSR)*RR;
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73

74 TfLu = RLu*times(Ttu,fL);

75 %matrix element for tunneling on to particle from left lead, spin up

76

77 TfLd = RLd*times(Ttd,fL);

78 %matrix element for tunneling on to particle from left lead, spin down

79

80 TfLua = RLu*times(Ttu,1-fL);

81 %matrix element for tunneling off of particle into left lead, spin up

82

83 TfLda = RLd*times(Ttd,1-fL);

84 %matrix element for tunneling off of particle into left lead, spin down

85

86 TfRu = RRu*times(Ttu,fR);

87 %matrix element for tunneling on to particle from right lead, spin up

88

89 TfRd = RRd*times(Ttd,fR);

90 %matrix element for tunneling on to particle from right lead, spin down

91

92 TfRua = RRu*times(Ttu, 1-fR);

93 %matrix element for tunneling off of particle into right lead, spin up

94

95 TfRda = RRd*times(Ttd, 1-fR);

96 %matrix element for tunneling off of particle into right lead, spin down

97

98 Tfu = TfLu + TfRu;

99 % total matrix element of spin up electron tunneling onto particle from ...

100 % both leads

101

102 Tfd = TfLd + TfRd;

103 % total matrix element of spin down electron tunneling onto particle ...

104 % from both leads
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105

106 Tf = Tfu + Tfd;

107 % total matrix element of both spin polarizations tunneling onto ...

108 % particle from leads

109

110 Tfua = TfLua + TfRua;

111 Tfda = TfLda + TfRda;

112 Tfa = Tfua + Tfda;

113 Tfp = Tfu + Tfd;

114 Tfaq = Tfua + Tfda;

115

116 for s=2:length(t)

117

118

119 qvecnow = (Q(s-1,:))';

120 qmatnow = repmat(qvecnow,[1,2*S0+1]);

121 Tfaq = dt*times(qmatnow,Tfa);

122

123 pvecnow = P(s-1,:);

124 pmatnow = repmat(pvecnow,[2*S01+1,1]);

125 Tfp = dt*times(pmatnow,Tf);

126

127

128

129 Tdiff=Tfaq-Tfp;

130

131 Tdiffp=-1*Tdiff';

132

133 dP=sum(Tdiff);

134 dQ=sum(Tdiffp);

135 dP=double(dP);

136 dQ=double(dQ);
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137 P(s,:)=P(s-1,:)+dP;

138 Q(s,:)=Q(s-1,:)+dQ;

139

140 %Every 200 time steps, this conditional loop checks to see if the

141 %spin projection m has converged to within a tolerance value (the

142 %default tolerance is 0.1 in units of hbar), as compared with the value

143 %of m at 100 time steps prior to the current value. If convergence has

144 %occurred, the remaining probability distribution values for P and Q

145 %are set to the most recent values.

146 if mod(s,200)==0

147 mnow = P(s,:)*SZS + Q(s,:)*SZS1;

148 mold = P(s-100,:)*SZS + Q(s-100,:)*SZS1;

149 if checkconvergence(mnow,mold,0.1)

150 P((s+1):length(t),:) = repmat(P(s,:),[(length(t)-(s+1)+1),1]);

151 Q((s+1):length(t),:) = repmat(Q(s,:),[(length(t)-(s+1)+1),1]);

152

153 break

154 end

155

156 end

157 end

158

159 Eem=P*(Ens(1:(2*S0+1))-Ens(1))+Q*(Ens1(1:(2*S01+1))-Ens1(1));

160 %magnetic energy relative to smallest Sz state energy

161 m=P*(SZS)+Q*(SZS1);

162 %expected spin projection onto z-axis

163 pend = P(end,:);

164 qend = Q(end,:);

165

166 end

below is the premaster test, for checking some of the programs.
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1 format('long')

2 definehamilcellparam;

3

4 [V,D,V1,D1] = findhamilstates(hamilcellparam);

5

6 hamiloutcell = {V,D,V1,D1};

7

8 [TN2,TP2,T,SZS,SZS1,Ens,Ens1] = sortandCG(hamiloutcell,hamilcellparam);

9

10 sortCGoutcell = {TN2,TP2,T,SZS,SZS1,Ens,Ens1};

11

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 %Can now run either full master equation simulation, or stochastic version%

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 uLvals = 100;

16 uRvals = -1E5;

17 uL = uLvals;

18 uR = uRvals;

19 ktemp = 86*0.075;

20 RR = 6E7;

21 RL = 6E7;

22 PSL = 0;

23 PSR = 0;

24

25 h = 0;

26 dt = 10E-9;

27 t = 0:dt:6E-5;

28 initflag = true;

29 pinit = [1,zeros(1,2*S0)];

30 qinit = zeros(1,2*S01+1);

31

32 %simplemaster
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33 loopparamscell = {uL,uR,ktemp,RL,RR,PSL,PSR,t,dt,pinit,qinit};

34 [m,pend,qend] = simplemaster(sortCGoutcell,loopparamscell);

35 figure; plot(m)

The next few programs will define some of the loops over the deterministic master

equation program. In particular, I will describe how to calculate the differential

conductance spectra based on the converged probability distribution of the master

equation for different bias voltage and magnetic field values. There are two main

forms of this program. In one form, the Fermi function in the right (that is, the

drain) lead is set equal to zero, and the left (that is, the source) Fermi lead is allowed

to vary. In the other form, the the Fermi function in the left (that is, the source)

lead is set equal to one, and the right (that is, the drain) Fermi lead is allowed

to vary. These spectra functions are quite general, and can as a special instance

plot the magnetization Sz or the current I as a function of voltage or of magnetic

field, based on the way the variables were defined. NOTE: The important concept

for these master equation spectra simulations is that they should be run in a new

data folder each time a new spectrum is required. This is because the loop over the

master equation program will save an individual data file for each implementation

of the simplemaster program, which ends up populating data folders with many files

quickly. One way to accomplish this is to copy the relevant code files into a new

folder, and then set the Matlab path to that new folder.

A.0.5 Defining uL (or uR) and the magnetic field

The following function can be used to initialize the chemical potential values and

magnetic field values, based on the desired range and number of data points for each

variable.

1 function [hvals,uLvals] = find h and uL(numhvals,hrange,numuLvals,uLrange)
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2 %FIND H AND UL -- given the number of distinct magnetic field values

3 %numhvals, within the field range hrange=[hmin,hmax], and given the number

4 %of distinct bias electrochemical potential values numuLvals, within the

5 %range uLrange = [uLmin,uLmax], returns overall vectors for magnetic field

6 %values hvals and bias values uLvals, that will reproduce the structure

7 %employed in differential conductance spectra measurements. It is assumed

8 %that the magnetic field is swept slowly from hmin to hmax, while the bias

9 %voltage values are swept in a triangle wave from uLmin to uLmax.

10

11 h1 = linspace(hrange(1),hrange(2),numhvals);

12 uL1= linspace(uLrange(1),uLrange(2),numuLvals);

13 uL1 = uL1(:);

14

15 hvals = repmat(h1(:),[1,numuLvals]);

16 hvals = reshape(hvals',1,numuLvals*numhvals);

17

18 if mod(numhvals,2)== 0

19 %even number of sweeps of uL

20 uL2 = [uL1,uL1(end:-1:1)];

21 uLvals = reshape(repmat(uL2,[1,numhvals/2]),1,numuLvals*numhvals);

22

23

24 else

25 %odd number of sweeps of uL

26 uL2 = [uL1,uL1(end:-1:1)];

27 uLvals = repmat(uL2,[1,(numhvals-1)/2]);

28 uLvals= [uLvals,uL1];

29 uLvals = reshape(uLvals,1,numuLvals*numhvals);

30 end

31

32

33
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34 end

A.0.6 Define the Loop Parameters

The following script should be edited and run prior to running any loops over the full

master equation simulation.

1 % defineloopparamscell.m

2 % This script should be run prior to running the run masteruL program, in

3 % order to initialize the loopparamscell parameter data structure.

4 uL = uLvals(1);

5 uR = uRvals(1);

6 ktemp = 86*0.075; % to change the temperature in the leads, change ...

7 %the number that is multiplying 86. As it stands, this represents 75 mK,...

8 %and 86 is Boltzmann's constant in units of micro-eV/Kelvin.

9 RR = 6E7;

10 RL = 6E7/20;

11 PSL = 0;

12 PSR = 0;

13

14 h = hvals(1);

15 dt = 10E-9; %time step for master equation integration

16 t = 0:dt:6E-5; %vector of time values for integrating master equation

17

18 %below, pinit and qinit are the initial state probability distribution

19 %vectors for the N and N+1 electron particle eigenstates, respectively.

20 pinit = [1,zeros(1,2*S0)]; % this initializes the particle in the N ...

21 %electron particle ground state.

22 qinit = zeros(1,2*S01+1);

23

24 loopparamscell={uL,uR,ktemp,RL,RR,PSL,PSR,t,dt,pinit,qinit};
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A.0.7 Looping simplemaster over uL

The following program changes the source Fermi lead electrochemical potential uL,

as well as the magnetic field h, and loops over their values to save the converged data

point files in the current folder.

1 function [] = masterloopuL(loopvals,hamilcellparam,loopparamscell)

2 %MASTERLOOPUL -- this program loops over the different values of uL and h

3 %to run simplemaster in each case, then saves the results in the current

4 %directory folder.

5

6 format('long')

7

8 %export values from the current loop parameters:

9 uL = loopparamscell{1};

10 uR = loopparamscell{2};

11 ktemp = loopparamscell{3};

12 RL = loopparamscell{4};

13 RR = loopparamscell{5};

14 PSL = loopparamscell{6};

15 PSR = loopparamscell{7};

16 t = loopparamscell{8};

17 dt = loopparamscell{9};

18 pinit = loopparamscell{10};

19 qinit = loopparamscell{11};

20 if RR>RL

21 str leadrate = 'hiR';

22 elseif RL>RR

23 str leadrate = 'hiL';

24 else

25 str leadrate = 'equalleads';

26 end
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27

28 % export hamiltonian parameters from hamilcellparam cell:

29 S0 = hamilcellparam{1};

30 S01 = hamilcellparam{2};

31 epsilon = hamilcellparam{3};

32 epsilonz = hamilcellparam{4};

33 theta se = hamilcellparam{5};

34 kappa = hamilcellparam{6};

35 h = hamilcellparam{7};

36 Sx = hamilcellparam{8};

37 Sy = hamilcellparam{9};

38 Sz = hamilcellparam{10};

39 Sx1 = hamilcellparam{11};

40 Sy1 = hamilcellparam{12};

41 Sz1 = hamilcellparam{13};

42 Kzunianis= hamilcellparam{14};

43 Kbiax= hamilcellparam{15};

44

45 if ~exist('delta2','var')

46 delta2 = 0;

47 end

48

49 tic;

50

51 uLvals = loopvals{1};

52 uRvals = loopvals{2};

53 hvals = loopvals{3};

54 uLaxis = loopvals{4};

55 haxis = loopvals{5};

56

57 numsims = length(uLvals);

58 %run first loop separately....

152



59 h = hvals(1);

60 uL = uLvals(1);

61 uR = uRvals(1);

62 hamilcellparam{7} = h;

63 [V,D,V1,D1]=findhamilstates(hamilcellparam);

64 hamiloutcell = {V,D,V1,D1};

65 [TN2,TP2,T,SZS,SZS1,Ens,Ens1]=sortandCG(hamiloutcell,hamilcellparam);

66 sortCGoutcell = {TN2,TP2,T,SZS,SZS1,Ens,Ens1};

67

68

69 [m,pend,qend]= simplemaster(sortCGoutcell,loopparamscell);

70 toc

71 display([num2str(1/numsims*100) 'percent done'])

72

73 str = ['varyuL PG v ' str leadrate ' SPECTRA ZEEMAN h ' num2str(h) ...

74 ' S' num2str(S0) ' T ' num2str(ktemp/86) 'K delta ' ...

75 num2str(delta2) ' epz ' num2str(epsilonz/1000) ' angle ' ...

76 num2str(theta se/pi) 'pi ep' num2str(epsilon/1000) ' bias ' ...

77 num2str(1E-3*uL) 'mV.mat'];

78 save(str,'pend','qend','m')

79

80

81

82 for tind = 2:numsims

83 uL = uLvals(tind);

84 uR = uRvals(tind);

85 h = hvals(tind);

86 if h~=hvals(tind-1)

87 hamilcellparam{7} = h;

88 [V,D,V1,D1]=findhamilstates(hamilcellparam);

89 hamiloutcell = {V,D,V1,D1};

90 [TN2,TP2,T,SZS,SZS1,Ens,Ens1]=sortandCG(hamiloutcell,hamilcellparam);
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91 sortCGoutcell = {TN2,TP2,T,SZS,SZS1,Ens,Ens1};

92 end

93

94 loopparamscell{1} = uL;

95 loopparamscell{2} = uR;

96 loopparamscell{10} = pend;

97 loopparamscell{11} = qend;

98

99

100 [m,pend,qend]= simplemaster(sortCGoutcell,loopparamscell);

101 toc

102 display([num2str(tind/numsims*100) 'percent done'])

103

104 str = ['varyuL PG v ' str leadrate ' SPECTRA ZEEMAN h ' num2str(h) ...

105 ' S' num2str(S0) ' T ' num2str(ktemp/86) 'K delta ' ...

106 num2str(delta2) ' epz ' num2str(epsilonz/1000) ' angle ' ...

107 num2str(theta se/pi) 'pi ep' num2str(epsilon/1000) ' bias ' ...

108 num2str(1E-3*uL) 'mV.mat'];

109 save(str,'pend','qend','m')

110

111 end

112

113 end

A.0.8 Plotting Spectra, Magnetization, and Current (varying uL)

This program will plot the results calculated in the previous loop program. Note that

the saved files must be in the same folder as this program. The plotted results are

stored as matrices, and saved as a new file in the same folder.

1 function [currentmat,conductmat,szprojmat] = ...

2 plotspecuL(hamilcellparam,loopparamscell,loopvals)
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3 % Plot current, spectra, and magnetization as a function of magnetic field

4 % and bias energy uL, given the converged data point saved files from

5 % looping over the masterloopuL program.

6 %export values from the current loop parameters:

7 uL = loopparamscell{1};

8 uR = loopparamscell{2};

9 ktemp = loopparamscell{3};

10 RL = loopparamscell{4};

11 RR = loopparamscell{5};

12 PSL = loopparamscell{6};

13 PSR = loopparamscell{7};

14 t = loopparamscell{8};

15 dt = loopparamscell{9};

16 pinit = loopparamscell{10};

17 qinit = loopparamscell{11};

18 if RR>RL

19 str leadrate = 'hiR';

20 elseif RL>RR

21 str leadrate = 'hiL';

22 else

23 str leadrate = 'equalleads';

24 end

25

26 % export hamiltonian parameters from hamilcellparam cell:

27 S0 = hamilcellparam{1};

28 S01 = hamilcellparam{2};

29 epsilon = hamilcellparam{3};

30 epsilonz = hamilcellparam{4};

31 theta se = hamilcellparam{5};

32 kappa = hamilcellparam{6};

33 h = hamilcellparam{7};

34 Sx = hamilcellparam{8};
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35 Sy = hamilcellparam{9};

36 Sz = hamilcellparam{10};

37 Sx1 = hamilcellparam{11};

38 Sy1 = hamilcellparam{12};

39 Sz1 = hamilcellparam{13};

40 Kzunianis= hamilcellparam{14};

41 Kbiax= hamilcellparam{15};

42

43 % export sweep parameters from loopvals cell:

44 uLvals = loopvals{1};

45 uRvals = loopvals{2};

46 hvals = loopvals{3};

47 uLaxis = loopvals{4};

48 haxis = loopvals{5};

49

50 currentmat = zeros(length(uLaxis),length(haxis));

51 conductmat = zeros(length(uLaxis)-1,length(haxis));

52 szprojmat = zeros(length(uLaxis),length(haxis));

53

54 for hind = 1:length(haxis)

55 h = haxis(hind);

56 hamilcellparam{7} = h;

57 display(num2str(hind/length(haxis)*100));

58

59 %Ens1c = Ens1;

60 %plotiv v FAST uL;

61 [currentvec,conductvec,szprojvec] = findivuL(hamilcellparam, ...

62 loopparamscell,loopvals);

63

64 currentmat(:,hind) = currentvec;

65 conductmat(:,hind) = conductvec;

66 szprojmat(:,hind) = szprojvec;
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67 % end

68 end

69 delta2 = 0;

70 figure; imagesc(uLaxis/1000,haxis,currentmat'); axis xy;

71 title(['vary \mu L, Current vs. field and bias, \delta = ' ...

72 num2str(delta2) ', ' str leadrate]);

73 xlabel('Bias Energy \mu L (meV)'); ylabel('Magetic Field (T)');

74 figure; imagesc(uLaxis(1:end-1)/1000,hvals,conductmat'); axis xy;

75 title(['Conductance vs. field and bias, \delta = ' num2str(delta2) ', ' ...

76 str leadrate]);

77 xlabel('Bias Energy \mu L (mV)'); ylabel('Magetic Field (T)');

78 figure; imagesc(uLaxis/1000,haxis,szprojmat'); axis xy;

79 title('Magnetization vs. field and bias');

80 xlabel('Bias \mu L (meV)'); ylabel('Magetic Field (T)')

81 save(['spectrafig ' num2str(epsilon/1000) 'meV ' str leadrate ...

82 ' vary uL.mat'],'conductmat','currentmat',...

83 'szprojmat','uLaxis','haxis');

84

85 end

A.0.9 Find the I(V) curve by varying uL

The following program is a subroutine of the above program. It is called for each

slice of the spectra of constant magnetic field. If the number of magnetic field values

is chosen to be one, then this will simply find the I(V) curve.

1 function [currentvec,conductvec,szprojvec] = findivuL(hamilcellparam, ...

2 loopparamscell,loopvals)

3 %Plot IV-- given data from master equation solutions at different bias

4 %voltage values (for the left lead) uL, this function will calculate the

5 %current output as a function of bias and plot the result.

6 format('long')
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7

8 %export values from the current loop parameters:

9 uL = loopparamscell{1};

10 uR = loopparamscell{2};

11 ktemp = loopparamscell{3};

12 RL = loopparamscell{4};

13 RR = loopparamscell{5};

14 PSL = loopparamscell{6};

15 PSR = loopparamscell{7};

16 t = loopparamscell{8};

17 dt = loopparamscell{9};

18 pinit = loopparamscell{10};

19 qinit = loopparamscell{11};

20 if RR>RL

21 str leadrate = 'hiR';

22 elseif RL>RR

23 str leadrate = 'hiL';

24 else

25 str leadrate = 'equalleads';

26 end

27

28 % export hamiltonian parameters from hamilcellparam cell:

29 S0 = hamilcellparam{1};

30 S01 = hamilcellparam{2};

31 epsilon = hamilcellparam{3};

32 epsilonz = hamilcellparam{4};

33 theta se = hamilcellparam{5};

34 kappa = hamilcellparam{6};

35 h = hamilcellparam{7};

36 Sx = hamilcellparam{8};

37 Sy = hamilcellparam{9};

38 Sz = hamilcellparam{10};
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39 Sx1 = hamilcellparam{11};

40 Sy1 = hamilcellparam{12};

41 Sz1 = hamilcellparam{13};

42 Kzunianis= hamilcellparam{14};

43 Kbiax= hamilcellparam{15};

44

45 % export sweep parameters from loopvals cell:

46 uLvals = loopvals{1};

47 uRvals = loopvals{2};

48 hvals = loopvals{3};

49 uLaxis = loopvals{4};

50 haxis = loopvals{5};

51

52 currentvec= zeros(1,length(uLaxis));

53 szprojvec = zeros(1,length(uLaxis));

54

55 %hamilcellparam = {S0,S01,epsilon,epsilonz,theta se,kappa,h,Sx,Sy,Sz, ...

56 %Sx1,Sy1,Sz1,Kzunianis,Kbiax};

57 [V,D,V1,D1] = findhamilstates(hamilcellparam);

58 hamiloutcell = {V,D,V1,D1};

59 [TN2,TP2,T,SZS,SZS1,Ens,Ens1] = sortandCG(hamiloutcell,hamilcellparam);

60 sortCGoutcell = {TN2,TP2,T,SZS,SZS1,Ens,Ens1};

61

62 %Costates4 nos; indexeadd; CGpra vectorized pg; T 0p3pi = T;

63 %Ens1c = Ens1;

64

65

66 Ensmat = repmat(Ens',[2*S01+1,1]);

67 Ens1mat = repmat(Ens1,[1,2*S0+1]);

68

69 fL = 1./(1+exp((Ens1mat-Ensmat-uL)./ktemp));

70 fR = 1./(1+exp((Ens1mat-Ensmat-uR)./ktemp));
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71

72 %figure; imagesc(T);

73 % for indvp=1:length(uRvals)

74 for indvp=1:length(uLaxis)

75 uL = uLaxis(indvp);

76 delta2 = 0;

77

78 str = ['varyuL PG v ' str leadrate ' SPECTRA ZEEMAN h ' num2str(h) ...

79 ' S' num2str(S0) ' T ' num2str(ktemp/86) 'K delta ' ...

80 num2str(delta2) ' epz ' num2str(epsilonz/1000) ' angle ' ...

81 num2str(theta se/pi) 'pi ep' num2str(epsilon/1000) ' bias ' ...

82 num2str(1E-3*uL) 'mV.mat'];

83 load(str);

84

85 szprojvec(indvp) = m(end);

86

87

88 for alpha = 1:length(Ens)

89 for beta = 1:length(Ens1)

90 fermifunc(alpha,beta) = 1./(exp((Ens1(beta)-Ens(alpha)-uL)/ktemp)+1);

91

92 end

93 end

94

95

96 for alpha = 1:length(Ens)

97 for beta = 1:length(Ens1)

98

99 currentvec(indvp) = currentvec(indvp)+ ...

100 fermifunc(alpha,beta)*T(beta,alpha)*pend(alpha);

101

102 end
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103 end

104

105 end

106

107 gammaL = 2*RR*RL/(RR+RL);

108 q = 1.6E-19; %electronic charge

109 ccoef = gammaL*q*1E12;

110 %coefficient of current in units of pico-amps

111 currentvec = currentvec*ccoef;

112

113 conductvec = diff(currentvec)/mean(diff(uLaxis));

114

115 end

A.0.10 Calculating and Plotting, looping over the master equation by
varying uL

The following program combines all of the above programs and both calculates and

plots the spectra, using the full master equation.

1 %run masteruL.m

2 % The values below should be edited to their desired parameter values prior

3 % to running the script. This script loops over the different uL values and

4 % magnetic field values, and both saves the converged data and plots the

5 % resulting spectra.

6 numhvals = 31;

7 hrange = [-3,10];

8 numuLvals = 41;

9 %uLrange = [-2.5E3,2.5E3];

10 uLrange = [-2.5E3,2.5E3];

11 [hvals,uLvals] = find h and uL(numhvals,hrange,numuLvals,uLrange);

12 uRvals = -1E5*ones(size(uLvals));
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13

14 uLaxis = linspace(uLrange(1),uLrange(2),numuLvals);

15 haxis = linspace(hrange(1),hrange(2),numhvals);

16 loopvals = {uLvals,uRvals,hvals,uLaxis,haxis};

17

18 definehamilcellparam;

19

20 defineloopparamscell;

21

22 hamilcellparam{7} = hvals(1);

23

24

25

26 masterloopuL(loopvals,hamilcellparam,loopparamscell);

27

28 [currentmat,conductmat,szprojmat] = ...

29 plotspecuL(hamilcellparam,loopparamscell,loopvals);

30

31 figure; plot(currentmat)

A.1 Varying uR

The next few programs are identical to those in the previous section, with the excep-

tion that the right (drain) fermi lead is varied, while the left (source) fermi lead is

held at a constant value of one.

1 function [] = masterloopuR(loopvals,hamilcellparam,loopparamscell)

2 %MASTERLOOPUR -- this function loops through the different uR values and

3 %magnetic field values by running simplemaster and saves the results in the

4 %current directory folder.

5 format('long')

6
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7 %export values from the current loop parameters:

8 uL = loopparamscell{1};

9 uR = loopparamscell{2};

10 ktemp = loopparamscell{3};

11 RL = loopparamscell{4};

12 RR = loopparamscell{5};

13 PSL = loopparamscell{6};

14 PSR = loopparamscell{7};

15 t = loopparamscell{8};

16 dt = loopparamscell{9};

17 pinit = loopparamscell{10};

18 qinit = loopparamscell{11};

19 if RR>RL

20 str leadrate = 'hiR';

21 elseif RL>RR

22 str leadrate = 'hiL';

23 else

24 str leadrate = 'equalleads';

25 end

26

27 % export hamiltonian parameters from hamilcellparam cell:

28 S0 = hamilcellparam{1};

29 S01 = hamilcellparam{2};

30 epsilon = hamilcellparam{3};

31 epsilonz = hamilcellparam{4};

32 theta se = hamilcellparam{5};

33 kappa = hamilcellparam{6};

34 h = hamilcellparam{7};

35 Sx = hamilcellparam{8};

36 Sy = hamilcellparam{9};

37 Sz = hamilcellparam{10};

38 Sx1 = hamilcellparam{11};
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39 Sy1 = hamilcellparam{12};

40 Sz1 = hamilcellparam{13};

41 Kzunianis= hamilcellparam{14};

42 Kbiax= hamilcellparam{15};

43

44 if ~exist('delta2','var')

45 delta2 = 0;

46 end

47

48 tic;

49

50 uLvals = loopvals{1};

51 uRvals = loopvals{2};

52 hvals = loopvals{3};

53 uLaxis = loopvals{4};

54 haxis = loopvals{5};

55

56 numsims = length(uLvals);

57 %run first loop separately....

58 h = hvals(1);

59 uL = uLvals(1);

60 uR = uRvals(1);

61 hamilcellparam{7} = h;

62 [V,D,V1,D1]=findhamilstates(hamilcellparam);

63 hamiloutcell = {V,D,V1,D1};

64 [TN2,TP2,T,SZS,SZS1,Ens,Ens1]=sortandCG(hamiloutcell,hamilcellparam);

65 sortCGoutcell = {TN2,TP2,T,SZS,SZS1,Ens,Ens1};

66

67

68 [m,pend,qend]= simplemaster(sortCGoutcell,loopparamscell);

69 toc

70 display([num2str(1/numsims*100) 'percent done'])

164



71

72 str = ['varyuR PG v ' str leadrate ' SPECTRA ZEEMAN h ' num2str(h) ...

73 ' S' num2str(S0) ' T ' num2str(ktemp/86) 'K delta ' ...

74 num2str(delta2) ' epz ' num2str(epsilonz/1000) ' angle ' ...

75 num2str(theta se/pi) 'pi ep' num2str(epsilon/1000) ' bias ' ...

76 num2str(1E-3*uR) 'mV.mat'];

77 save(str,'pend','qend','m')

78

79

80

81 for tind = 2:numsims

82 uL = uLvals(tind);

83 uR = uRvals(tind);

84 h = hvals(tind);

85 if h~=hvals(tind-1)

86 hamilcellparam{7} = h;

87 [V,D,V1,D1]=findhamilstates(hamilcellparam);

88 hamiloutcell = {V,D,V1,D1};

89 [TN2,TP2,T,SZS,SZS1,Ens,Ens1]=sortandCG(hamiloutcell,hamilcellparam);

90 sortCGoutcell = {TN2,TP2,T,SZS,SZS1,Ens,Ens1};

91 end

92

93 loopparamscell{1} = uL;

94 loopparamscell{2} = uR;

95 loopparamscell{10} = pend;

96 loopparamscell{11} = qend;

97

98

99 [m,pend,qend]= simplemaster(sortCGoutcell,loopparamscell);

100 toc

101 display([num2str(tind/numsims*100) 'percent done'])

102
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103 str = ['varyuR PG v ' str leadrate ' SPECTRA ZEEMAN h ' num2str(h) ...

104 ' S' num2str(S0) ' T ' num2str(ktemp/86) 'K delta ' ...

105 num2str(delta2) ' epz ' num2str(epsilonz/1000) ' angle ' ...

106 num2str(theta se/pi) 'pi ep' num2str(epsilon/1000) ' bias ' ...

107 num2str(1E-3*uR) 'mV.mat'];

108 save(str,'pend','qend','m')

109

110

111

112

113 end

114

115 end

plotspecuR

1 function [currentmat,conductmat,szprojmat] = ...

2 plotspecuR(hamilcellparam,loopparamscell,loopvals)

3 % Plot current, spectra, and magnetization as a function of magnetic field

4 % and bias energy uR.

5 %export values from the current loop parameters:

6 uL = loopparamscell{1};

7 uR = loopparamscell{2};

8 ktemp = loopparamscell{3};

9 RL = loopparamscell{4};

10 RR = loopparamscell{5};

11 PSL = loopparamscell{6};

12 PSR = loopparamscell{7};

13 t = loopparamscell{8};

14 dt = loopparamscell{9};

15 pinit = loopparamscell{10};

16 qinit = loopparamscell{11};
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17 if RR>RL

18 str leadrate = 'hiR';

19 elseif RL>RR

20 str leadrate = 'hiL';

21 else

22 str leadrate = 'equalleads';

23 end

24

25 % export hamiltonian parameters from hamilcellparam cell:

26 S0 = hamilcellparam{1};

27 S01 = hamilcellparam{2};

28 epsilon = hamilcellparam{3};

29 epsilonz = hamilcellparam{4};

30 theta se = hamilcellparam{5};

31 kappa = hamilcellparam{6};

32 h = hamilcellparam{7};

33 Sx = hamilcellparam{8};

34 Sy = hamilcellparam{9};

35 Sz = hamilcellparam{10};

36 Sx1 = hamilcellparam{11};

37 Sy1 = hamilcellparam{12};

38 Sz1 = hamilcellparam{13};

39 Kzunianis= hamilcellparam{14};

40 Kbiax= hamilcellparam{15};

41

42 % export sweep parameters from loopvals cell:

43 uLvals = loopvals{1};

44 uRvals = loopvals{2};

45 hvals = loopvals{3};

46 uRaxis = loopvals{4};

47 haxis = loopvals{5};

48
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49 currentmat = zeros(length(uRaxis),length(haxis));

50 conductmat = zeros(length(uRaxis)-1,length(haxis));

51 szprojmat = zeros(length(uRaxis),length(haxis));

52

53 for hind = 1:length(haxis)

54 h = haxis(hind);

55 hamilcellparam{7} = h;

56 display(num2str(hind/length(haxis)*100));

57

58 %Ens1c = Ens1;

59 %plotiv v FAST uL;

60 [currentvec,conductvec,szprojvec] = findivuR(hamilcellparam, ...

61 loopparamscell,loopvals);

62

63 currentmat(:,hind) = currentvec;

64 conductmat(:,hind) = conductvec;

65 szprojmat(:,hind) = szprojvec;

66 % end

67 end

68 delta2 = 0;

69 figure; imagesc(uRaxis/1000,haxis,currentmat'); axis xy;

70 title(['vary \mu L, Current vs. field and bias, \delta = ' ...

71 num2str(delta2) ', ' str leadrate]);

72 xlabel('Bias Energy \mu L (meV)'); ylabel('Magetic Field (T)');

73 figure; imagesc(uRaxis(1:end-1)/1000,hvals,-conductmat'); axis xy;

74 title(['Conductance vs. field and bias, \delta = ' num2str(delta2) ', ' ...

75 str leadrate]);

76 xlabel('Bias Energy \mu L (mV)'); ylabel('Magetic Field (T)');

77 figure; imagesc(uRaxis/1000,haxis,szprojmat'); axis xy;

78 title('Magnetization vs. field and bias');

79 xlabel('Bias \mu L (meV)'); ylabel('Magetic Field (T)')

80
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81 save(['spectrafig ' num2str(epsilon/1000) 'meV ' str leadrate ...

82 ' vary uL.mat'],'conductmat','currentmat',...

83 'szprojmat','uRaxis','haxis');

84

85 end

findivuR

1 function [currentvec,conductvec,szprojvec] = findivuR(hamilcellparam, ...

2 loopparamscell,loopvals)

3 %Plot IV-- given data from master equation solutions at different bias

4 %voltage values (for the right lead) uR, this function will calculate the

5 %current output as a function of bias and plot the result.

6 format('long')

7

8 %export values from the current loop parameters:

9 uL = loopparamscell{1};

10 uR = loopparamscell{2};

11 ktemp = loopparamscell{3};

12 RL = loopparamscell{4};

13 RR = loopparamscell{5};

14 PSL = loopparamscell{6};

15 PSR = loopparamscell{7};

16 t = loopparamscell{8};

17 dt = loopparamscell{9};

18 pinit = loopparamscell{10};

19 qinit = loopparamscell{11};

20 if RR>RL

21 str leadrate = 'hiR';

22 elseif RL>RR

23 str leadrate = 'hiL';

24 else
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25 str leadrate = 'equalleads';

26 end

27

28 % export hamiltonian parameters from hamilcellparam cell:

29 S0 = hamilcellparam{1};

30 S01 = hamilcellparam{2};

31 epsilon = hamilcellparam{3};

32 epsilonz = hamilcellparam{4};

33 theta se = hamilcellparam{5};

34 kappa = hamilcellparam{6};

35 h = hamilcellparam{7};

36 Sx = hamilcellparam{8};

37 Sy = hamilcellparam{9};

38 Sz = hamilcellparam{10};

39 Sx1 = hamilcellparam{11};

40 Sy1 = hamilcellparam{12};

41 Sz1 = hamilcellparam{13};

42 Kzunianis= hamilcellparam{14};

43 Kbiax= hamilcellparam{15};

44

45 % export sweep parameters from loopvals cell:

46 uLvals = loopvals{1};

47 uRvals = loopvals{2};

48 hvals = loopvals{3};

49 uRaxis = loopvals{4};

50 haxis = loopvals{5};

51

52 currentvec= zeros(1,length(uRaxis));

53 szprojvec = zeros(1,length(uRaxis));

54

55 %hamilcellparam = {S0,S01,epsilon,epsilonz,theta se,kappa,h,Sx,Sy,Sz, ...

56 %Sx1,Sy1,Sz1,Kzunianis,Kbiax};
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57 [V,D,V1,D1] = findhamilstates(hamilcellparam);

58 hamiloutcell = {V,D,V1,D1};

59 [TN2,TP2,T,SZS,SZS1,Ens,Ens1] = sortandCG(hamiloutcell,hamilcellparam);

60 sortCGoutcell = {TN2,TP2,T,SZS,SZS1,Ens,Ens1};

61

62 %Costates4 nos; indexeadd; CGpra vectorized pg; T 0p3pi = T;

63 %Ens1c = Ens1;

64

65

66 Ensmat = repmat(Ens',[2*S01+1,1]);

67 Ens1mat = repmat(Ens1,[1,2*S0+1]);

68

69 fL = 1./(1+exp((Ens1mat-Ensmat-uL)./ktemp));

70 fR = 1./(1+exp((Ens1mat-Ensmat-uR)./ktemp));

71

72 %figure; imagesc(T);

73 % for indvp=1:length(uRvals)

74 for indvp=1:length(uRaxis)

75 uR = uRaxis(indvp);

76 delta2 = 0;

77

78 str = ['varyuR PG v ' str leadrate ' SPECTRA ZEEMAN h ' num2str(h) ...

79 ' S' num2str(S0) ' T ' num2str(ktemp/86) 'K delta ' ...

80 num2str(delta2) ' epz ' num2str(epsilonz/1000) ' angle ' ...

81 num2str(theta se/pi) 'pi ep' num2str(epsilon/1000) ' bias ' ...

82 num2str(1E-3*uR) 'mV.mat'];

83 load(str);

84

85 szprojvec(indvp) = m(end);

86

87

88 for alpha = 1:length(Ens)
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89 for beta = 1:length(Ens1)

90

91 fermifunc(alpha,beta) = 1-1./(exp((Ens1(beta)-Ens(alpha)-uR)/ktemp)+1);

92 end

93 end

94

95

96 for alpha = 1:length(Ens)

97 for beta = 1:length(Ens1)

98

99 currentvec(indvp) = currentvec(indvp)+ ...

100 fermifunc(alpha,beta)*T(beta,alpha)*pend(alpha);

101

102 end

103 end

104

105 end

106

107 gammaL = 2*RR*RL/(RR+RL);

108 q = 1.6E-19; %electronic charge

109 ccoef = gammaL*q*1E12;

110 %coefficient of current in units of pico-amps

111 currentvec = currentvec*ccoef;

112

113 conductvec = diff(currentvec)/mean(diff(uRaxis));

114

115 end

1 %run masteruR.m

2 % The values below should be edited to their desired parameter values prior

3 % to running the script. This script loops over the different uR values and
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4 % magnetic field values, and both saves the converged data and plots the

5 % resulting spectra.

6 numhvals = 31;

7 hrange = [-3,10];

8 numuRvals = 41;

9 %uLrange = [-2.5E3,2.5E3];

10 uRrange = [-2.5E3,2.5E3];

11 [hvals,uRvals] = find h and uL(numhvals,hrange,numuRvals,uRrange);

12 uLvals = 1E5*ones(size(uRvals));

13

14 uRaxis = linspace(uRrange(1),uRrange(2),numuRvals);

15 haxis = linspace(hrange(1),hrange(2),numhvals);

16 loopvals = {uLvals,uRvals,hvals,uRaxis,haxis};

17

18 definehamilcellparam;

19

20 defineloopparamscell;

21

22 hamilcellparam{7} = hvals(1);

23

24

25

26 masterloopuR(loopvals,hamilcellparam,loopparamscell);

27

28 [currentmat,conductmat,szprojmat] = ...

29 plotspecuR(hamilcellparam,loopparamscell,loopvals);

30

31 figure; plot(currentmat)

A.1.1 Stochastic Evolution Code

In this section, I will describe the stochastic eigenstate evolution code. First, I will

list the subroutine function that generates a random event based on the current
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state-change probability distribution, using Matlab’s built-in pseudo-random number

generator, ‘rand’, which returns a uniformly distributed random floating point number

between 0 and 1. This function ‘genrand’ returns an index in the total state vector.

1 function index of p = genrand(stateprob)

2 %this function will take an input state probability distribution function

3 %stateprob and find the cumulative probability distribution cp, and

4 %generate a random number to sample from cp, and output the index in the

5 %probability distribution

6 cp = cumsum(stateprob);

7 cp = cp/max(cp);

8

9 index of p=find(cp>rand(1),1);

10 end

The next program should be implemented each time the magnetic field changes.

It calculates the overlap of the previous eigenstate with the new set of eigenstates,

and assumes that the new state probability distribution is given by the state which

has a maximum overlap with the initial state.

1 function newstateprob = statechangedbv(stateprob,hinit,hnew,hamilcellparam)

2 %STATECHANGEDBV -- given input state probability distribution (from the previous

3 %time step, and the initial and new magnetic field values at the initial time

4 %step and the new time step, and a cell of hamiltonian parameters hamilcellparam

5 % this function is used when there is a transition between eigenstates as

6 %B --> B + dB.

7 % This script determines the closest eigenstate of H(B+dB) to H(B) as the

8 % magnetic field changes from B to B+dB.

9

10
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11 S0 = hamilcellparam{1};

12 S01 = hamilcellparam{2};

13

14 %hamilcellparam = {S0,S01,epsilon,epsilonz,theta se,kappa,h,Sx,Sy,Sz, ...

15 %Sx1,Sy1,Sz1,Kzunianis,Kbiax};

16

17

18

19 %calculate states for previous magnetic field value:

20 hamilcellparam{7} = hinit;

21 [V,D,V1,D1] = findhamilstates(hamilcellparam);

22 hamiloutcell = {V,D,V1,D1};

23 [TN2,TP2,T,SZS,SZS1,Ens,Ens1] = sortandCG(hamiloutcell,hamilcellparam);

24 sortCGoutcell = {TN2,TP2,T,SZS,SZS1,Ens,Ens1};

25

26 Vold = V;

27 V1old = V1;

28

29

30 %calculate states for new magnetic field value:

31 hamilcellparam{7} = hnew;

32 [V,D,V1,D1] = findhamilstates(hamilcellparam);

33 hamiloutcell = {V,D,V1,D1};

34 [TN2,TP2,T,SZS,SZS1,Ens,Ens1] = sortandCG(hamiloutcell,hamilcellparam);

35 sortCGoutcell = {TN2,TP2,T,SZS,SZS1,Ens,Ens1};

36

37 Vnew = V;

38 V1new = V1;

39

40 stateprobind = find(stateprob==max(stateprob),1);

41 if stateprobind>2*S0+1

42 %state is in Q. that is, N+1-electron case.
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43 oldstate = V1old(:,stateprobind-(2*S0+1));

44

45 indnewstate = find(abs(real(oldstate'*V1new))==max(abs(real(oldstate'*V1new))));

46 Q = zeros(1,2*S01+1); Q(indnewstate)=1;

47 P = zeros(1,2*S0+1);

48 newstateprob = [P,Q];

49 else

50 %state is in P. that is, N-electron case.

51 oldstate = Vold(:,stateprobind);

52 indnewstate = find(abs(real(oldstate'*Vnew))==max(abs(real(oldstate'*Vnew))));

53 Q = zeros(1,2*S01+1);

54 P = zeros(1,2*S0+1); P(indnewstate)=1;

55 newstateprob = [P,Q];

56 end

57

58 % if newstateprob ~= stateprob

59 % bprojflag = bprojflag+1;

60 % end

61

62

63 end

The following program is a subroutine to be used in defining the magnetic field values

and the applied bias voltage as a function of time:

1 function [hvals,uLvals] = find h and uL(numhvals,hrange,numuLvals,uLrange)

2 %FIND H AND UL -- given the number of distinct magnetic field values

3 %numhvals, within the field range hrange=[hmin,hmax], and given the number

4 %of distinct bias electrochemical potential values numuLvals, within the

5 %range uLrange = [uLmin,uLmax], returns overall vectors for magnetic field

6 %values hvals and bias values uLvals, that will reproduce the structure

7 %employed in differential conductance spectra measurements. It is assumed

176



8 %that the magnetic field is swept slowly from hmin to hmax, while the bias

9 %voltage values are swept in a triangle wave from uLmin to uLmax.

10

11 h1 = linspace(hrange(1),hrange(2),numhvals);

12 uL1= linspace(uLrange(1),uLrange(2),numuLvals);

13 uL1 = uL1(:);

14

15 hvals = repmat(h1(:),[1,numuLvals]);

16 hvals = reshape(hvals',1,numuLvals*numhvals);

17

18 if mod(numhvals,2)== 0

19 %even number of sweeps of uL

20 uL2 = [uL1,uL1(end:-1:1)];

21 uLvals = reshape(repmat(uL2,[1,numhvals/2]),1,numuLvals*numhvals);

22

23

24 else

25 %odd number of sweeps of uL

26 uL2 = [uL1,uL1(end:-1:1)];

27 uLvals = repmat(uL2,[1,(numhvals-1)/2]);

28 uLvals= [uLvals,uL1];

29 uLvals = reshape(uLvals,1,numuLvals*numhvals);

30 end

31

32 end

Next, I include the full stochastic code. The basic program is called stochas-

tic master spectra, used for running a calculation of the differential conductance spec-

tra for a given set of Hamiltonian parameters. First, the script run stochmasterspec

is run, which calls the stochastic master spectra function. All of the relevant pa-

rameters should be defined in the run stochmasterspec first few lines. This function

also calls the find h and uL function, which calculates the magnetic field and bias
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energy uL as a function of time, given the input parameters. It should be noted that,

although these programs contain the word ’spec’, implying a calculation of the differ-

ential conductance spectrum, they can equally well be used to calculate a single I(V)

curve, if the magnetic field range hrange contains the same value for hmin and hmax,

and if the number of distinct magnetic field values is set to one: numhvals =1. One-

sided hysteresis loops can be run as well, if numuLvals is set to one. Alternatively, for

a full hysteresis loop, the line below the hvals definition in the run stochmasterspec

program can be uncommented. This code can also be used for running spin-polarized

switching simulations, such as the voltage-driven Spin-Transfer Torque methods dis-

cussed in the main text of the dissertation. This can be performed by changing PSL

and PSR in the initial few lines of the run stochmasterspec code below.

1

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Set Hamiltonian Parameters below, prior to running the ...

%

4 % stochastic master spectra program

%

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 definehamilcellparam;

8

9

10 PSL = 0; %spin polarization in left (source) lead

11 PSR = 0; %spin polarization in right (drain) lead

12 RR = 6E7; %bare tunneling rate in the right (drain) lead

13 RL = 6E7/20; %bare tunneling rate in the left (source) lead

14

15 numhvals = 1E3; % umber of distinct b-field values

16 hrange = [-3,10];%[range of b-field values, of form [min h,max h]
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17 numuLvals = 1E4; %number of distinct uL bias values

18 uLrange = [-2.5E3,2.5E3]; %range of uL bias values

19

20

21 [hvals,uLvals] = find h and uL(numhvals,hrange,numuLvals,uLrange);

22 % The line below can be uncommented when it is desired to run a full hysteresis loop.

23 %hvals = [hvals,hvals(end:-1:1)];

24 %uLvals = [uLvals,uLvals];

25 uRvals= -1E5*ones(size(uLvals));

26

27 dt = 10E-9; %time step

28 tvals = dt*[0:1:(length(uLvals)-1)]; %vector of time values

29

30 % the cell below is input into the stochastic master spectra program

31 stochloopparamcell= {S0,S01,PSL,PSR,RR,RL,ktemp,epsilon,epsilonz, ...

32 theta se,kappa,hvals,uLvals,uRvals,tvals,Kzunianis,Kbiax};

33

34 %run the stochastic master spectra program:

35 [stochmasterspecout] = stochastic master spectra(stochloopparamcell);

36 %stochmasterspecout = {mvalue,currentvector,hvals,uLvals,uRvals,tvals};

37 %extract the magnetization (mvalue) and the current (currentvector) as a

38 %function of time:

39 mvalue = stochmasterspecout{1};

40 currentvector = stochmasterspecout{2};

41

42 %define two matrices containing the current and magnetization vectors,

43 %ordered in order to plot them vs. applied magnetic field and applied bias

44 %energy uL:

45 currentmat = reshape(currentvector, numuLvals,numhvals);

46 mvaluemat = reshape(mvalue, numuLvals,numhvals);

47 %the following loop accounts for the fact that the simulation sweeps the

48 %bias energy uL in a triangle wave, but is plotted in sorted format:
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49 for hind = 2:2:numhvals

50 currentmat(:,hind) = currentmat(end:-1:1,hind);

51 mvaluemat(:,hind) = mvaluemat(end:-1:1,hind);

52 end

53 %define axes for magnetic field and bias energy uL:

54 haxis = linspace(hrange(1),hrange(2),numhvals);

55 uLaxis = linspace(uLrange(1),uLrange(2),numuLvals);

56 %define conductance matrix by taking derivative of current matrix:

57 condmat = diff(currentmat,1,1);

58

59

60

61 %the following loop checks the existence of a file name, and then saves the

62 %data from the most recent simulation in a new file name, without

63 %overwriting.

64 scount = 1;

65 strsave = ['spec ws' num2str(scount) '.mat'];

66 flag = true;

67 while flag

68 if exist(strsave,'file')

69 scount = scount+1;

70 strsave = ['spec ws' num2str(scount) '.mat'];

71 else

72 flag = false;

73 end

74 end

75 save(strsave);

76

77 %plot current and conductance matrices:

78 figure; imagesc(uLaxis,haxis,currentmat'); axis xy;

79 figure; imagesc(uLaxis(1:end-1),haxis,condmat'); axis xy;

80 %plot magnetization matrix:
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81 figure; imagesc(uLaxis,haxis,mvaluemat'); axis xy;

82

83 %uncomment below to plot hysteresis loops:

84 %npts = length(hvals)/2;

85 %ind1 = 1:npts;

86 %ind2 = (npts+1):length(hvals);

87 %figure; plot(hvals(ind1),mvalue(ind1),'k'); hold on;

88 %plot(hvals(ind2),mvalue(ind2),'r');

1 function [stochmasterspecout] = stochastic master spectra(stochloopparamcell)

2

3 % This script will calculate the temporal evolution of the magnetization of

4 % a Ni nanoparticle, due to the influence of single electron tunneling from

5 % spin-polarized leads. It takes the state transition probabilities from

6 % the master equation distribution, and generates a random event at each

7 % timestep, governed by the probability distribution of state transitions.

8 % At each timestep, the particle is assumed to be in an eigenstate of the

9 % tunneling hamiltonian |alpha>. The component Sz of the state alpha is

10 % recorded at each time step, that is, <alpha |Sz |alpha>. Outputs cell

11 % stochmasterspecout = {mvalue,currentvector,hvals,uLvals,uRvals,tvals}.

12

13

14 % This version is to be used to generate time-dependent, stochastic ...

15 % dI/dV spectra.

16

17 format('long');

18

19 %rng('default'); rng(1); % uncomment this line to choose to initialize the

20 %pseudo-random number generator and set seed to 1 for reproducibility.

21

22 tic;
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23

24 S0 = stochloopparamcell{1};

25 S01 = stochloopparamcell{2};

26 PSL = stochloopparamcell{3};

27 PSR = stochloopparamcell{4};

28 RR = stochloopparamcell{5};

29 RL = stochloopparamcell{6};

30 ktemp = stochloopparamcell{7};

31 epsilon =stochloopparamcell{8};

32 epsilonz=stochloopparamcell{9};

33 theta se=stochloopparamcell{10};

34 kappa =stochloopparamcell{11};

35 hvals = stochloopparamcell{12};

36 uLvals= stochloopparamcell{13};

37 uRvals= stochloopparamcell{14};

38 tvals = stochloopparamcell{15};

39 Kzunianis = stochloopparamcell{16};

40 Kbiax = stochloopparamcell{17};

41

42 [Sx,Sy,Sz,Sx1,Sy1,Sz1] = findspinoperators(S0,S01);

43 RLu = (1+PSL)*RL;

44 RLd = (1-PSL)*RL;

45 RRu = (1+PSR)*RR;

46 RRd = (1-PSR)*RR;

47

48

49

50 %[TN2,TP2,T,SZS,SZS1,Ens,Ens1] = sortandCG(hamiloutcell,hamilcellparam);

51

52

53 mtime = tvals;%0:tau:(100*201-1)*tau;

54 tau = mean(diff(tvals));
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55 uL = uLvals(1);

56 uR = uRvals(1);

57 h = hvals(1);

58 currentvector = zeros(size(mtime)); %initialize current values to zero

59

60

61 hamilcellparam = {S0,S01,epsilon,epsilonz,theta se,kappa,h,Sx,Sy,Sz, ...

62 Sx1,Sy1,Sz1,Kzunianis,Kbiax};

63 [V,D,V1,D1] = findhamilstates(hamilcellparam);

64 hamiloutcell = {V,D,V1,D1};

65 [TN2,TP2,T,SZS,SZS1,Ens,Ens1] = sortandCG(hamiloutcell,hamilcellparam);

66 sortCGoutcell = {TN2,TP2,T,SZS,SZS1,Ens,Ens1};

67

68

69

70 Ttu=TP2(1:2*S01+1,1:2*S0+1);

71 Ttd=TN2(1:2*S01+1,1:2*S0+1);

72

73 mvalue = zeros(size(mtime));

74

75 P = zeros(1,2*S0+1);

76 % probability distribution of N electron particle states

77

78 Q = zeros(1,2*S01+1);

79 % probability distribution of N+1 electron particle states

80 dP = zeros(size(P));

81 dQ = zeros(size(Q));

82

83 pstateup = false;

84 if pstateup == true

85 Q(end)=1;

86 %initialize particle in N+1 electron state, with Sz1 near +S01.
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87

88 else

89 Q(1)=1;

90 %initialize particle in N+1 electron state, with Sz1 near -S01.

91

92 end

93 flagnp1=true;

94 %keeps track of whether the particle has N+1 electrons.

95

96 stateprob = [P,Q];

97 % total probability distribution among N and N+1 electron particle states

98

99 cstateprob = cumsum(stateprob);

100

101 mvalue(1) = P*SZS+Q*SZS1;

102 %yields magnetization value, based on total spin-projection ...

103 %of particle along z axis.

104

105

106

107 Ensmat = repmat(Ens',[2*S01+1,1]);

108 Ens1mat = repmat(Ens1,[1,2*S0+1]);

109

110 fL = 1./(1+exp((Ens1mat-Ensmat-uL)./ktemp));

111 fR = 1./(1+exp((Ens1mat-Ensmat-uR)./ktemp));

112

113 % the above is the vectorized equivalent of the following ...

114 %nested loops:

115

116 % for j=1:2*S0+1

117 % for i=1:2*S01+1

118 % fL(i,j)=1/(exp((Ens1(i)-Ens(j)-uL)/ktemp)+1);
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119 % fR(i,j)=1/(exp((Ens1(i)-Ens(j)-uR)/ktemp)+1);

120 % end

121 % end

122

123

124 currentvector(1) = sum((fL.*T)*P')+sum((fL.*T)'*Q');

125

126 %the above is the vectorized version of the following nested loops:

127

128 % for alpha = 1:length(Ens)

129 % for beta = 1:length(Ens1)

130 % currentvector(1) = currentvector(1)+ ...

131 %fL(beta,alpha)*T(beta,alpha)*P(alpha)+ ...

132 %fL(beta,alpha)'*T(beta,alpha)'*Q(beta);

133 % end

134 % end

135

136 TfLu = RLu*times(Ttu,fL);

137 %matrix element for tunneling on to particle from left lead, spin up

138

139 TfLd = RLd*times(Ttd,fL);

140 %matrix element for tunneling on to particle from left lead, spin down

141

142 TfLua = RLu*times(Ttu,1-fL);

143 %matrix element for tunneling off of particle into left lead, spin up

144

145 TfLda = RLd*times(Ttd,1-fL);

146 %matrix element for tunneling off of particle into left lead, spin down

147

148 TfRu = RRu*times(Ttu,fR);

149 %matrix element for tunneling on to particle from right lead, spin up

150
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151 TfRd = RRd*times(Ttd,fR);

152 %matrix element for tunneling on to particle from right lead, spin down

153

154 TfRua = RRu*times(Ttu, 1-fR);

155 %matrix element for tunneling off of particle into right lead, spin up

156

157 TfRda = RRd*times(Ttd, 1-fR);

158 %matrix element for tunneling off of particle into right lead, spin down

159

160 Tfu = TfLu + TfRu;

161 % total matrix element of spin up electron tunneling onto particle from ...

162 % both leads

163

164 Tfd = TfLd + TfRd;

165 % total matrix element of spin down electron tunneling onto particle ...

166 % from both leads

167

168 Tf = Tfu + Tfd;

169 % total matrix element of both spin polarizations tunneling onto ...

170 % particle from leads

171

172 Tfua = TfLua + TfRua;

173 Tfda = TfLda + TfRda;

174 Tfa = Tfua + Tfda;

175 Tfp = Tfu + Tfd;

176 Tfaq = Tfua + Tfda;

177

178 gammaL = RR*RL/(RR+RL);

179 q = 1.6E-19; %electronic charge

180 ccoef = gammaL*q*1E12;

181 %coefficient of current in units of pico-amps

182
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183 %now, loop over all times

184 for tind=2:length(mtime)

185 h = hvals(tind);

186 uL = uLvals(tind);

187 uR = uRvals(tind);

188 if hvals(tind)~= hvals(tind-1)

189 hamilcellparam = {S0,S01,epsilon,epsilonz,theta se,kappa,h,Sx, ...

190 Sy,Sz,Sx1,Sy1,Sz1,Kzunianis,Kbiax};

191 [V,D,V1,D1] = findhamilstates(hamilcellparam);

192 hamiloutcell = {V,D,V1,D1};

193 [TN2,TP2,T,SZS,SZS1,Ens,Ens1] = sortandCG(hamiloutcell, ...

194 hamilcellparam);

195 sortCGoutcell = {TN2,TP2,T,SZS,SZS1,Ens,Ens1};

196

197 %Costates4 nos; indexeadd; CGpra vectorized pg;

198

199 Ttu=TP2(1:2*S01+1,1:2*S0+1);

200 Ttd=TN2(1:2*S01+1,1:2*S0+1);

201

202 hnew=hvals(tind);

203 hinit=hvals(tind-1);

204 newstateprob = statechangedbv(stateprob,hinit,hnew,hamilcellparam);

205 % statechange deltab v;

206 stateprob = newstateprob;

207 end

208

209 %define Fermi functions in left and right leads for bias

210 %uL, uR

211

212 Ensmat = repmat(Ens',[2*S01+1,1]);

213 Ens1mat = repmat(Ens1,[1,2*S0+1]);

214
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215 fL = 1./(1+exp((Ens1mat-Ensmat-uL)./ktemp));

216 fR = 1./(1+exp((Ens1mat-Ensmat-uR)./ktemp));

217

218

219 % for j=1:2*S0+1

220 % for i=1:2*S01+1

221 % fL(i,j)=1/(exp((Ens1(i)-Ens(j)-uL)/ktemp)+1);

222 % fR(i,j)=1/(exp((Ens1(i)-Ens(j)-uR)/ktemp)+1);

223 % end

224 % end

225

226 TfLu = RLu*times(Ttu,fL); %matrix element for tunneling on to ...

227 % particle from left lead, spin up

228 TfLd = RLd*times(Ttd,fL); %matrix element for tunneling on to ...

229 % particle from left lead, spin down

230 TfLua = RLu*times(Ttu,1-fL);%matrix element for tunneling off of ...

231 % particle into left lead, spin up

232 TfLda = RLd*times(Ttd,1-fL);%matrix element for tunneling off of ...

233 % particle into left lead, spin down

234

235 TfRu = RRu*times(Ttu,fR); %matrix element for tunneling on to ...

236 % particle from right lead, spin up

237 TfRd = RRd*times(Ttd,fR); %matrix element for tunneling on to ...

238 % particle from right lead, spin down

239 TfRua = RRu*times(Ttu, 1-fR); %matrix element for tunneling off of ...

240 % particle into right lead, spin up

241 TfRda = RRd*times(Ttd, 1-fR); %matrix element for tunneling off of ...

242 % particle into right lead, spin down

243

244 Tfu = TfLu + TfRu; % total matrix element of spin up electron ...

245 % tunneling onto particle from both leads

246 Tfd = TfLd + TfRd; % total matrix element of spin down electron ...
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247 % tunneling onto particle from both leads

248 Tf = Tfu + Tfd; % total matrix element of both spin polarizations ...

249 % tunneling onto particle from leads

250 Tfua = TfLua + TfRua;

251 Tfda = TfLda + TfRda;

252 Tfa = Tfua + Tfda;

253 Tfp = Tfu + Tfd;

254 Tfaq = Tfua + Tfda;

255

256 %generate probability distribution to determine if transition takes

257 %place.

258 if flagnp1

259 qmat = repmat(Q',[1,2*S0+1]);

260 Tfaq = tau*times(qmat,Tfa);

261 %for i=1:2*S0+1

262 % Tfaq(:,i)=tau*times(Q',Tfa(:,i));

263 %end

264 pmat = repmat(P,[2*S01+1,1]);

265 %for i=1:2*S01+1

266 % Tfp(i,:)=tau*times(P,Tf(i,:));

267 %end

268 Tfp = tau*times(pmat,Tf);

269

270 Tdiff=Tfaq-Tfp;

271 Tdiffp=-1*Tdiff';

272 dP=sum(Tdiff);

273 dQ=sum(Tdiffp);

274 stateprob =stateprob+[dP,dQ];

275 % if tind==2

276 % figure; plot(stateprob);

277 % end

278 eventind = genrand(stateprob);
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279 if eventind>2*S0+1

280 mvalue(tind) = mvalue(tind-1); %no transition case

281 currentvector(tind) = currentvector(tind-1);

282 else

283 P = zeros(1,2*S0+1);

284 Q = zeros(1,2*S01+1);

285 P(eventind) = 1;

286 flagnp1=false;

287 mvalue(tind) = P*SZS+Q*SZS1;

288

289

290 currentvector(tind) = sum((fL.*T)*P')+sum((fL.*T)'*Q');

291 %the above expression is a vectorized version of the following

292 %nested loops:

293

294 % for alpha = 1:length(Ens)

295 % for beta = 1:length(Ens1)

296 % currentvector(tind) = currentvector(tind)+ ...

297 % fL(beta,alpha)*T(beta,alpha)*P(alpha)+ ...

298 % fL(beta,alpha)'*T(beta,alpha)'*Q(beta);

299 % end

300 % end

301

302

303 stateprob = [P,Q];

304 end

305

306 else

307 qmat = repmat(Q',[1,2*S0+1]);

308 Tfaq = tau*times(qmat,Tfa);

309

310 pmat = repmat(P,[2*S01+1,1]);

190



311

312 Tfp = tau*times(pmat,Tf);

313 % qmat =

314 % %for i=1:2*S0+1

315 % % Tfaq(:,i)=tau*times(Q',Tfa(:,i));

316 % %end

317 % pmat =

318 % %for i=1:2*S01+1

319 % % Tfp(i,:)=tau*times(P,Tf(i,:));

320 % %end

321 Tdiff=Tfaq-Tfp;

322 Tdiffp=-1*Tdiff';

323 dP=sum(Tdiff);

324 dQ=sum(Tdiffp);

325 stateprob =stateprob+[dP,dQ];

326 eventind = genrand(stateprob);

327 if eventind<=2*S0+1

328 mvalue(tind) = mvalue(tind-1); %no transition case

329 currentvector(tind) = currentvector(tind-1);

330 else

331

332 P = zeros(1,2*S0+1);

333 Q = zeros(1,2*S01+1);

334 Q(eventind-(2*S0+1)) = 1;

335 flagnp1=true;

336 mvalue(tind) = P*SZS+Q*SZS1;

337

338

339 currentvector(tind) = sum((fL.*T)*P')+sum((fL.*T)'*Q');

340

341 stateprob = [P,Q];

342
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343 end

344 end

345

346 %the following conditional expression keeps track of how much progress

347 %the simulation has made overall, as a percent.

348 if mod(tind,2000)==0

349 toc;

350 display([num2str(tind/length(mtime)*100) ...

351 ' percent done....']);

352 end

353

354 end

355

356 toc;

357

358 %convert the current into pA, rather than normalized units:

359 currentvector = currentvector*ccoef;

360

361 stochmasterspecout = {mvalue,currentvector,hvals,uLvals,uRvals,tvals};

362

363 %The commented code below can be used to save the data in different

364 %formats. In this new version of the code, the saving process takes place

365 %outside of this program, and is performed after the stochmasterspecout

366 %cell is returned.

367 %

368 % time = clock;

369 % savestrval = [num2str(time(1)) ' ' num2str(time(2)) ' ' ...

370 % num2str(time(3)) ' t' num2str(time(4)) ' ' ...

371 % num2str(time(5))];

372 %

373 % runnum = 1;

374 % tre = true;
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375 %

376 % if ud==true

377 % strin = 'ud';

378 % else

379 % strin='u';

380 % end

381 %

382 % while tre

383 % strtestforrun = [strin 'fig2 hyst uRanduL Test ' ...

384 % strinitstate 'PG Mag vs time SP voltageswitching' ...

385 % ' H100alpha PSL ' num2str(PSL) ' PSR ' num2str(PSR) ...

386 % 'umin ' num2str(umin/1000) ' umax ' ...

387 % num2str(umax/1000) 'meV temp ' num2str(ktemp/86) ...

388 % 'K run ' num2str(runnum) '.mat'];

389 %

390 % if exist(strtestforrun,'file')

391 % display(num2str(runnum));

392 % runnum = runnum+1;

393 % else

394 % tre=false;

395 % end

396 % end

397 % save([strin 'fig2 hyst uRanduL Test ' strinitstate ...

398 % 'PG Mag vs time SP voltageswitching H100alpha PSL ' ...

399 % num2str(PSL) ' PSR ' num2str(PSR) 'umin ' ...

400 % num2str(umin/1000) ' umax ' num2str(umax/1000) ...

401 % 'meV temp ' num2str(ktemp/86) 'K run ' num2str(runnum) ...

402 % '.mat'],'mvalue','mtime','tau','uL','currentvector', ...

403 % 'hvals','RR','RL','uR','epsilon','epsilonz','theta se', ...

404 % 'ktemp','PSL','PSR','runnum');

405

406
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407 end
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[69] Žutić, I., Fabian, J., and Das Sarma, S., “Spintronics: Fundamentals and

applications,” Rev. Mod. Phys., vol. 76, pp. 323–410, 2004.

[70] Jamet, M., Wernsdorfer, W., Thirion, C., Mailly, D., Dupuis, V.,
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207



[107] Neto, A. C., Guinea, F., Peres, N., Novoselov, K. S., and Geim,

A. K., “The electronic properties of graphene,” Reviews of modern physics,

vol. 81, no. 1, p. 109, 2009.

[108] Nilsson, H. A., Caroff, P., Thelander, C., Larsson, M., Wagner,

J. B., Wernersson, L.-E., Samuelson, L., and Xu, H. Q., “Giant, level-

dependent g factors in insb nanowire quantum dots,” Nano Letters, vol. 9, no. 9,

pp. 3151–3156, 2009. PMID: 19736971.

[109] Ono, K., Shimada, H., Kobayashi, S., and Outuka, Y., “Magnetoresis-

tance of ni/nio/co small tunnel junctions in coulomb blockade regime,” Journal

of the physical society of Japan, vol. 65, p. 3449, 1996.

[110] Osorio, E., Bjørnholm, T., Lehn, J., Ruben, M., and Van Der Zant,

H., “Single-molecule transport in three-terminal devices,” Journal of Physics:

Condensed Matter, vol. 20, no. 37, p. 374121, 2008.

[111] Osorio, E. A., Moth-Poulsen, K., van der Zant, H. S., Paaske, J.,

Hedeg̊ard, P., Flensberg, K., Bendix, J., and Bjørnholm, T., “Elec-

trical manipulation of spin states in a single electrostatically gated transition-

metal complex,” Nano letters, vol. 10, no. 1, pp. 105–110, 2009.

[112] Otte, A. F., Ternes, M., Loth, S., Lutz, C. P., Hirjibehedin, C. F.,

and Heinrich, A. J., “Spin excitations of a kondo-screened atom coupled to

a second magnetic atom,” Phys. Rev. Lett., vol. 103, p. 107203, Sep 2009.

[113] Pankhurst, Q. A., Connolly, J., Jones, S., and Dobson, J., “Applica-

tions of magnetic nanoparticles in biomedicine,” Journal of physics D: Applied

physics, vol. 36, no. 13, p. R167, 2003.

[114] Papaconstantopoulos, D., Handbook of the band structure of elemental

solids. Plenum Press New York, 1986.

208



[115] Petta, J. R., Johnson, A. C., Taylor, J. M., Laird, E. A., A, A. Y.,

Lukin, M. D., Marcus, C. M., Hanson, M. P., and Gossard, A. C.,

“Coherent manipulation of coupled electron spins in semiconductor quantum

dots,” Science, vol. 309, pp. 2180–2184, 2004.

[116] Petta, J. R. and Ralph, D. C., “Studies of spin-orbit scattering in noble-

metal nanoparticles using energy-level tunneling spectroscopy,” Phys. Rev.

Lett., vol. 87, p. 266801, 2001.

[117] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and

Kis, A., “Single-layer mos2 transistors,” Nature nanotechnology, vol. 6, no. 3,

pp. 147–150, 2011.

[118] Ralph, D. C., Black, C. T., and Tinkham, M., “Spectroscopic measure-

ments of discrete electronic states in single metal particles,” Phys. Rev. Lett.,

vol. 74, p. 3241, 1995.

[119] Ralph, D. C., Black, C. T., and Tinkham, M., “Gate-voltage studies of

discrete electronic states in aluminum nanoparticles,” Phys. Rev. Lett., vol. 78,

p. 4087, 1997.

[120] Ralph, D. and Stiles, M. D., “Spin transfer torques,” Journal of Magnetism

and Magnetic Materials, vol. 320, no. 7, pp. 1190–1216, 2008.

[121] Rokhinson, L. P., Guo, L. J., Chou, S. Y., and Tsui, D. C., “Spin

transitions in a small si quantum dot,” Phys. Rev. B, vol. 63, p. 035321, Jan

2001.

[122] Romming, N., Hanneken, C., Menzel, M., Bickel, J. E., Wolter, B.,

von Bergmann, K., Kubetzka, A., and Wiesendanger, R., “Writing and

deleting single magnetic skyrmions,” Science, vol. 341, no. 6146, pp. 636–639,

2013.

209



[123] Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K., and

Wiesendanger, R., “Field-dependent size and shape of single magnetic

skyrmions,” Phys. Rev. Lett., vol. 114, p. 177203, May 2015.

[124] Sakurai, J. J. and Napolitano, J. J., Modern quantum mechanics. Pearson

Higher Ed, 2014.

[125] Salinas, D. G., Gueron, S., Ralph, D. C., Black, C. T., and Tinkham,

M., “Effects of spin-orbit interactions on tunneling via discrete energy levels in

metal nanoparticles,” Phys. Rev. B, vol. 60, p. 6137, 1999.

[126] Sanvito, S. and Rocha, A., “Molecular-spintronics: The art of driving spin

through molecules,” Journal of Computational and Theoretical Nanoscience,

vol. 3, pp. 624–642, 2006.

[127] Sanvito, S., “Molecular spintronics,” Chemical Society Reviews, vol. 40, no. 6,

pp. 3336–3355, 2011.

[128] Schroer, M. D., Petersson, K. D., Jung, M., and Petta, J. R., “Field

tuning the g factor in inas nanowire double quantum dots,” Phys. Rev. Lett.,

vol. 107, p. 176811, Oct 2011.

[129] Sessoli, R., Gatteschi, D., Caneschi, A., and Novak, M., “Magnetic

bistability in a metal-ion cluster,” NATURE, vol. 365, pp. 141–143, SEP 9

1993.

[130] Shaji, N., Simmons, C. B., Thalakulam, M., Klein, L. J., Qin, H.,

Luo, H., Savage, D. E., Lagally, M. G., Rimberg, A. J., Joynt, R.,

Friesen, M., Blick, R. H., Coppersmith, S. N., and Eriksson, M. A.,

“Spin blockade and lifetime-enhanced transport in a few-electron si/sige double

quantum dot,” Nature Physics, vol. 4, pp. 540–544, 2008.

210



[131] Skomski, R., “Nanomagnetics,” Journal of Physics: Condensed Matter,

vol. 15, no. 20, p. R841, 2003.

[132] Skomski, R., Kirby, R. D., and Sellmyer, D. J., “Activation entropy,

activation energy, and magnetic viscosity,” Journal of applied physics, vol. 85,

no. 8, pp. 5069–5071, 1999.

[133] Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord,

D., and Nogues, J., “Beating the superparamagnetic limit with exchange

bias,” Nature, vol. 423, pp. 850–853, 2003.

[134] Slonczewski, J. C., “Conductance and exchange coupling of two ferromag-

nets separated by a tunneling barrier,” Phys. Rev. B, vol. 39, p. 6995, 1989.

[135] Slonczewski, J. C., “Current-driven excitation of magnetic multilayers,”

Journal of Magnetism and Manetic Materials, vol. 159, pp. L1–L7, 1996.

[136] Stiles, M., Xiao, J., and Zangwill, A., “Phenomenological theory of

current-induced magnetization precession,” Physical Review B, vol. 69, no. 5,

p. 054408, 2004.

[137] Stoner, E. C. and Wohlfarth, E., “A mechanism of magnetic hysteresis

in heterogeneous alloys,” Philosophical Transactions of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences, vol. 240, no. 826,

pp. 599–642, 1948.

[138] Sun, J. Z., “Spin-current interaction with a monodomain magnetic body: A

model study,” Phys. Rev. B, vol. 62, pp. 570–578, Jul 2000.

[139] Sun, J. and Ralph, D., “Magnetoresistance and spin-transfer torque in mag-

netic tunnel junctions,” Journal of Magnetism and Magnetic Materials, vol. 320,

no. 7, pp. 1227–1237, 2008.

211



[140] Tamion, A., Raufast, C., Orozco, E. B., Dupuis, V., Fournier, T.,

Crozes, T., Bernstein, E., and Wernsdorfer, W., “Magnetization re-

versal of a single cobalt cluster using a rf field pulse,” J. Magn. Magn. Mater.,

vol. 322, p. 1315, 2010.

[141] Tarucha, S., Austing, D. G., Tokura, Y., van der Wiel, W. G., and

Kouwenhoven, L. P., “Direct coulomb and exchange interaction in artificial

atoms,” Phys. Rev. Lett., vol. 84, pp. 2485–2488, Mar 2000.

[142] Thirion, C., Wernsdorfer, W., and Mailly, D., “Switching of magneti-

zation by nonlinear resonance studied in single nanoparticles,” Nature Mater.,

vol. 2, p. 524, 2003.

[143] Thomas, L., Lionti, F., Ballou, R., Gatteschi, D., Sessoli, R., and

Barbara, B., “Macroscopic quantum tunnelling of magnetization in a single

crystal of nanomagnets,” Nature, vol. 383, p. 145, 1996.

[144] Timm, C., “Tunneling through magnetic molecules with arbitrary angle be-

tween easy axis and magnetic field,” Phys. Rev. B, vol. 76, p. 014421, Jul 2007.

[145] Timm, C. and Elste, F., “Spin amplification, reading, and writing in trans-

port through anisotropic magnetic molecules,” Phys. Rev. B, vol. 73, p. 235304,

Jun 2006.

[146] Tuominen, M. T., Hergenrother, J. M., Tighe, T. S., and Tinkham,

M., “Experimental evidence for parity-based 2e periodicity in a superconduct-

ing single-electron tunneling transistor,” Phys. Rev. Lett., vol. 69, pp. 1997–

2000, Sep 1992.

[147] Waintal, X. and Brouwer, P. W., “Tunable magnetic relaxation mecha-

nism in magnetic nanoparticles,” Phys. Rev. Lett., vol. 91, p. 247201, 2003.

212



[148] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., and

Strano, M. S., “Electronics and optoelectronics of two-dimensional transi-

tion metal dichalcogenides,” Nature nanotechnology, vol. 7, no. 11, pp. 699–712,

2012.

[149] Wang, Y. and Sham, L., “Quantum approach of mesoscopic magnet dynamics

with spin transfer torque,” Physical Review B, vol. 87, no. 17, p. 174433, 2013.

[150] Wei, Y. G., Liu, X. Y., Zhang, L. Y., and Davidovic, D., “Meso-

scopic resistance fluctuations in cobalt nanoparticles,” Phys. Rev. Lett., vol. 96,

p. 146803, 2006.

[151] Wei, Y. G., Malec, C. E., and Davidovic, D., “Modeling electron-spin

accumulation in a metallic nanoparticle,” Phys. Rev. B, vol. 78, p. 035435,

2008.

[152] Wernsdorfer, W., Orozco, E. B., Hasselbach, K., Benoit, A., Bar-

bara, B., Demoncy, N., Loiseau, A., Pascard, H., and Mailly, D.,

“Experimental evidence of the néel-brown model of magnetization reversal,”

Phys. Rev. Lett., vol. 78, pp. 1791–1794, 1997.

[153] Wiesendanger, R., “Spin mapping at the nanoscale and atomic scale,” Rev.

Mod. Phys., vol. 81, pp. 1495–1550, Nov 2009.

[154] Wolf, E. L., Principles of Electron Tunneling Spectroscopy. Oxford University

Press, 1989.

[155] Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M.,

von Molnar, S., Roukes, M. L., Chtchelkanova, A. Y., and Treger,

D. M., “Spintronics: A spin-based electronics vision for the future,” Science,

vol. 294, p. 1488, 2001.

213



[156] Wolter, B., Yoshida, Y., Kubetzka, A., Hla, S.-W., von Bergmann,

K., and Wiesendanger, R., “Spin friction observed on the atomic scale,”

Phys. Rev. Lett., vol. 109, p. 116102, Sep 2012.

[157] Wu, B. and Kumar, A., “Extreme ultraviolet lithography and three di-

mensional integrated circuita review,” Applied Physics Reviews, vol. 1, no. 1,

p. 011104, 2014.

[158] Xiao, J., Bauer, G. E., and Brataas, A., “Spin-transfer torque in mag-

netic tunnel junctions: Scattering theory,” Physical Review B, vol. 77, no. 22,

p. 224419, 2008.

[159] Xiao, J., Zangwill, A., and Stiles, M., “Boltzmann test of slonczewskis

theory of spin-transfer torque,” Physical Review B, vol. 70, no. 17, p. 172405,

2004.

[160] Xiao, J., Zangwill, A., and Stiles, M., “Macrospin models of spin transfer

dynamics,” Physical Review B, vol. 72, no. 1, p. 014446, 2005.

[161] Xiao, J., Zangwill, A., and Stiles, M., “A numerical method to solve

the boltzmann equation for a spin valve,” The European Physical Journal B,

vol. 59, no. 4, pp. 415–427, 2007.

[162] Xiao, J., Zangwill, A., and Stiles, M., “Spin-transfer torque for contin-

uously variable magnetization,” Physical Review B, vol. 73, no. 5, p. 054428,

2006.

[163] Yafet, Y., “g factors and spin-lattice relaxation of conduction electrons,” Sol.

State Phys., vol. 14, p. 1, 1963.

214



[164] Yakushiji, K., Ernult, F., Imamura, H., Yamane, K., Mitani, S.,

Takanashi, K., Maekawa, S., and Fujimori, H., “Enhanced spin accu-

mulation and novel magnetotransport in nanoparticles,” Nature Mater., vol. 4,

p. 57, 2005.

[165] Zangwill, A., Modern electrodynamics. Cambridge University Press, 2013.

[166] Zeller, H. R. and Giaver, I., “Tunneling, zero-bias anomalies, and small

superconductors,” Phys. Rev., vol. 181, p. 789, 1969.

[167] Zyazin, A. S., van den Berg, J. W., Osorio, E. A., van der Zant,

H. S., Konstantinidis, N. P., Leijnse, M., Wegewijs, M. R., May,

F., Hofstetter, W., Danieli, C., and others, “Electric field controlled

magnetic anisotropy in a single molecule,” Nano letters, vol. 10, no. 9, pp. 3307–

3311, 2010.

[168] Zyazin, A. S., van der Zant, H. S., Wegewijs, M. R., and Cornia,

A., “High-spin and magnetic anisotropy signatures in three-terminal transport

through a single molecule,” Synthetic Metals, vol. 161, no. 7, pp. 591–597, 2011.

215



VITA

Patrick Gartland was born a giddy lad in dewy Mountain Brook, AL. There he was

blessed with true friends, and with many teachers throughout the years who not only

instilled in him a sense of the joy that came with learning, but who also expressed

personal interest in his well-being. As a result, he developed a love of physics, music,

math, and poetry. Upon graduating from Mountain Brook High School, Patrick

travelled to Auburn University to study Physics at ‘The Loveliest Village On The

Plains’. There he met the fair lass Ashley, who was to become his closest friend.

After graduating from Auburn, Patrick continued on to pursue his PhD in physics

at Georgia Tech in Atlanta, GA. After some time in graduate school, the giddy lad

asked for fair Ashley’s hand in marriage, and they began their life adventure together.

In November of 2015, Patrick met with his committee to defend his dissertation.

216


